

Lecture Notes in Computer Science 4060
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kokichi Futatsugi Jean-Pierre Jouannaud
José Meseguer (Eds.)

Algebra, Meaning,
and Computation

Essays Dedicated to Joseph A. Goguen
on the Occasion of His 65th Birthday

13

Volume Editors

Kokichi Futatsugi
Japan Advanced Institute of Science and Technology (JAIST)
Ishikawa, Japan
E-mail: kokichi@jaist.ac.jp

Jean-Pierre Jouannaud
École Polytechnique, Laboratoire d’Informatique (LIX)
91128 Palaiseau Cedex, France
E-mail: Jean-Pierre.Jouannaud@lix.polytechnique.fr

José Meseguer
University of Illinois at Urbana-Champaign (UIUC), Computer Science Dept.
Urbana, IL 61801-2302, USA
E-mail: meseguer@cs.uiuc.edu

Library of Congress Control Number: 2006927483

CR Subject Classification (1998): F.3.1-2, F.4, F.2.2, D.1.6, D.3.1-2, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-35462-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35462-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11780274 06/3142 5 4 3 2 1 0

. .

. .

. .

. .

. .

.

. .

. .

.

. .

. .

. .

.

. .

. .

. .

.

COL

. .

. .

. .

. .

. .

. .

. .

.

. .

. .

.

.

.

. .

. .

Sync or Swarm:
Musical Improvisation and the Complex Dynamics

of Group Creativity

David Borgo, Ph.D.

Associate Professor of Music
Critical Studies and Experimental Practices Program

University of California, San Diego
9500 Gilman Dr.

La Jolla, CA 92093-0326
dborgo@ucsd.edu

Abstract. This essay draws on participant observation, ethnographic interviews,
phenomenological inquiry, and recent insights from the study of swarm
intelligence and complex networks to illuminate the dynamics of collective
musical improvisation. Throughout, it argues for a systems understanding of
creativity—a view that takes seriously the notion that group creativity is not
simply reducible to individual psychological processes—and it explores
interconnections between the realm of musical performance, community
activities, and pedagogical practices. Lastly, it offers some reflections on the
ontology of art and on the role that music plays in human cognition and
evolution, concluding that improvising music together allows participants and
listeners to explore complex and emergent forms of social order.

1 Introduction

The nature of creativity in the arts and sciences has been of a topic of enduring human
interest. But the dominant scholarly approach to the subject, until recently, has
proceeded from the assumption that creativity is primarily an individual psychological
process, and that the best way to investigate it is through the thoughts, emotions, and
motivations of those individuals who are already thought to be gifted or innovative.
In the past several decades, however, researchers have begun to focus more attention
on the historical and social factors that shape and define creativity, and on its role in
everyday activities and learning situations.1 Yet despite this shift in the field towards
a systems perspective, the notion that creativity operates primarily on the level of
individuals (albeit now situated within a rich and complex environment), or that

1 This shift is attributed in great part to the work of Mihaly Csikszentmihalyi [1], who has
argued for a systems view of creativity. The work of sociologist Howard Becker has also been
influential in this regard, as well as foundational work in sociology of knowledge (Mannheim),
activity theory (Vygotsky), communities of practice (Lave and Wenger), ethnomethodology
(Garfinkel), and ecological psychology (Gibson).

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 1-24, 2006.
 Springer-Verlag Berlin Heidelberg 2006

2 David Borgo

creativity necessarily results in a creative product, has proved to be remarkably
resilient.

The practice of improvising music together calls into question many of these
assumptions. The activity is both intrinsically collaborative and inherently
ephemeral. Since roughly the middle of last century, an eclectic group of artists with
diverse backgrounds in contemporary jazz and classical music–and increasingly in
electronic, popular, and world music traditions as well–have pioneered an approach to
improvisation that borrows freely from a panoply of musical styles and traditions and
at times seems unencumbered by any overt idiomatic constraints. This musical
approach, often dubbed “free improvisation,” tends to devalue the two dimensions
that have traditionally dominated music representation–quantized pitch and metered
durations–in favor of the micro-subtleties of timbral and temporal modification and
the surprising and emergent properties of collective creativity in the moment of
performance.2

In the community of free improvisers it is not uncommon for musicians to speak of
the importance of developing a “group mind” during performance. This requires, at
the very least, cultivating a sense of trust or empathy among group members, and,
according to some, it may also involve reaching a certain egoless state in which the
actions of individuals and the group perfectly harmonize. Percussionist Adam
Rudolph described his trio’s approach to me this way: “We all participate in creating
the musical statement of the moment. In the process of being free as a collective, you
have to have selflessness to give yourself to the musical moment and not come from a
place of ego.”3

In the moment-to-moment dynamics of improvised performance it can also be
difficult to separate individual contributions and intentions from those cultivated by
the “group mind.” Bassist Richard Davis explains: “Sometimes you might put an idea
in that you think is good and nobody takes to it… And then sometimes you might put
an idea in that your incentive or motivation is not to influence but it does influence.”4

Acknowledging this inherent complexity, saxophonist Evan Parker finds that:

However much you try, in a group situation what comes out is group music and
some of what comes out was not your idea, but your response to somebody else’s
idea… The mechanism of what is provocation and what is response–the music is
based on such fast interplay, such fast reactions that it is arbitrary to say, "Did you
do that because I did that? Or did I do that because you did that?" And anyway the
whole thing seems to be operating at a level that involves...certainly intuition, and
maybe faculties of a more paranormal nature.5

Research on creativity has tended to make a distinction between an ideation stage,
in which the non-conscious brain produces novelty through divergent thinking, and an
evaluation stage, in which the conscious mind decides which new ideas are coherent

2 For two useful starting points on the web, covering principally the US and European scenes
respectively, see www.restructures.net and www.shef.ac.uk/misc/rec/ps/efi/. See also Bailey
[2].
3 Quoted in [7], p. 80.
4 Quoted in [6], p. 88.
5 Quoted in [8], p. 203.

Sync or Swarm 3

with the creative domain. From a systems perspective, however, ideation and
evaluation may occur in individuals in a complex rather than a linear fashion, and
during ensemble performances they may become externalized into a group process.
Keith Sawyer [3], in his recent book titled Group Creativity, expands Mihaly
Csikszentmihalyi’s [4] well-known notion of “flow”–in which the skills of an
individual are perfectly matched to the challenges of a task, and during which action
and awareness become phenomenologically fused–to include the process of entire
groups performing at their peak.6 Group flow, according to Sawyer, can inspire
individuals to play things that they would not have been able to play alone or would
not have explored without the inspiration of the group. Yet as a collective and
emergent property, group flow can be extremely difficult to study empirically.
Sawyer describes it as an irreducible property of performing groups that cannot be
reduced to psychological studies of the mental states or the subjective experiences of
the individual members of the group.

Models that focus on the creativity of individuals are not wrong, but like
Newtonian science, they may be inappropriate for trying to make sense of certain
types of phenomena. What we need are new models operating at a different level. In
the increasingly complex and interconnected world that we inhabit it is becoming
apparent that structure and organization can emerge both without lead and even
without seed. What happens and how it happens depends on the nature of the
network.

What implications do the study of group musical performance and the study of
complex network dynamics have for musical scholarship and more broadly for our
understandings of human creativity? In music, networks organize not only the social
world of performance (with whom you play) but also the ideascapes of creativity (by
whom you are influenced and what or how you chose to create) and the dynamics of
communities (how historical, cultural, and economic factors often dictate which
musicians and musical ideas gain notice and prestige). Networks make
communication and community possible, but they can also concentrate power and
opportunities in the hands of a few. In this essay I explore the dynamics of group
musical improvisation and recent insights from the study of swarm intelligence and
complex networks in order to investigate some ways in which musical studies might
productively grapple with the complex of factors that establish, maintain, expand, and
even destroy musical communities.

2 Insect Music

“At one level, improvisation can be compared with the ultimate otherness of an ant
colony or hive of bees. Perhaps it was no coincidence that in the wake of drummer
John Stevens and the Spontaneous Music Ensemble, certain strands of English
improvised music were known, half-disparagingly as insect music.

 David Toop [9], p. 247

6 Sawyer draws heavily on ethnographic work by Paul Berliner [5] and Ingrid Monson [6] for
his perspective on jazz and improvisation.

4 David Borgo

Improvisation is not a revolution that pits itself against codification; it is diffuse.
Like ants stripping a carcass, it works from the inside and outside of codes.
 John Corbett [10], p. 237

In Euro-American art-music culture this binary [between composition and
improvisation] is routinely and simplistically framed as involving the “effortless
spontaneity” of improvisation, versus the careful deliberation of composition–the
composer as ant, the improviser as grasshopper.
 George Lewis [11], p. 38

Scientists, artists, and laypeople alike have for centuries watched in wonder as a
flock of birds spontaneously takes flight and navigates in perfect harmony, or as a
hive of bees throws off a collective swarm into the air. At the dawn of the twentieth
century, the Belgian poet Maurice Maeterlinck wondered, “Where is ‘this spirit of the
hive’…where does it reside? What is it that governs here, that issues orders, foresees
the future?”7 We now know that within the swarm a half dozen or so anonymous
workers scout ahead to check for possible hive locations. When they report back to
the swarm, they perform an informative dance, the intensity of which corresponds to
the desirability of the site they scouted. Deputy bees follow up on the more
promising reports and return to either confirm or disconfirm the desirability of the
new location. Although it is rare for a single bee to visit more than one potential site,
through the process of compounding emphasis, the more desirable sites end up getting
the most visitors. In other words, the hive chooses: the biggest crowd eventually
provokes the entire swarm to dance off to its new location.

We can sense in this and other examples of complex and decentralized decision-
making certain qualities that appear to inform all life. William Morton Wheeler, the
founder of the field of social insects, argued as early as 1911 that an insect colony
operates as a type of superorganism: “Like a cell or the person, it behaves as a unitary
whole, maintaining its identity in space, resisting dissolution…neither a thing nor a
concept, but a continual flux or process.”8 Even the sound of the swarm can fascinate
human ears. For her aptly titled “Bee Project,” kotoist and multimedia artist Miya
Masaoka’s positioned a glass-enclosed bee hive of 3,000 bees in the center of the
stage and amplified, manipulated, and blended its sounds with those from a trio of
improvisers, all according to the instructions in her score. Later versions of the same
work have used spatialization software to twist and tilt the sound of the hive so that
listeners can be sonically located within the swarm.

As the three quotes offered at the beginning of this section illustrate, there are
several ways in which we might wish to locate musical connections to the swarm.
Some improvised music provokes such quick reactions from players and evokes such
complicated and dense soundscapes for listeners that a literal analogy to a swarm of
insects may seem rather appropriate. And the ways in which individual improvisers
can be heard to be “picking at” a shared body of modern techniques and sensibilities
but in resolutely individualistic ways, or to be following their own creative spark
while also being sensitive to and dependent on the evolving group dynamic, may

7 Quoted in [12], p. 7. Maeterlink’s book is available online at
http://www.eldritchpress.org/mm/b.html#toc.
8 Quoted in [12], p. 7.

Sync or Swarm 5

bring to mind the behavior of social insects that seem to have their own agenda while
also working in ways that organize the group without supervision. Finally, the notion
of “insect music” has perhaps become most associated with a type of generative
compositional scheme, and often with the power of computers to create complex
patterns from relatively simple materials, such that questions about the ways in which
creativity may be facilitated or constrained and the ways in which cultural
understandings may be reflected, reshaped, or remain concealed in this type of work
become particularly important.

In addition to being an extremely skilled improviser, the English drummer John
Stevens will always be remembered for his instrumental role in developing the scene
at The Little Theater Club in London that nurtured many in the first generation of
English free improvisers. One of his early pedagogical approaches was titled Click
Piece, and it included little more that the instruction to play the shortest sounds on
your instrument.9 In the collective setting, however, one would gradually become
aware of an emergent group sound. As David Toop [9] explains, “The piece seemed
to develop with a mind of its own and almost as a by-product, the basic lessons of
improvisation–how to listen and how to respond–could be learned through a careful
enactment of the instructions” (pp. 242-3). Steven’s Click Piece highlights one of the
central aspects of swarm dynamics; relatively simple decentralized activities can
produce dramatic, self-organizing behaviors.

In the scientific community, a growing number of researchers are exploring new
ways of applying swarm intelligence (or SI) to diverse situations.10 For instance, the
foraging of ants has led to improved methods for routing telecommunications traffic
in a busy network. The way in which insects cluster their dead can aid in analyzing
bank data. The distributed and cooperative approach used by many social insects to
transport goods and to solve navigational problems has led to new insights in the
fields of robotics and artificial intelligence. And the evolving division of labor in
honeybees has helped to improve the organization of factory assembly line workers
and equipment. As Eric Bonabeau and Guy Théraulaz [15] see it: “The potential of
swarm intelligence is enormous. It offers an alternative way of designing systems
that have traditionally required centralized control and extensive preprogramming”
(p.79).

Beyond these business and technological applications, however, one of the main
lessons of contemplating SI is that organized behaviors can develop in decentralized
ways. Can exploring and thinking about SI affect the way we make and think about
music? It remains difficult for many people to envision complex systems organizing
without a leader since we are often predisposed to think in terms of central control
and hierarchical command. The notion that music can be organized in complex ways
without a composer or conductor still leaves many scratching their heads in doubt.
Scientists have also been predisposed in the past to look for chains of command,
instances of clear cause and effect. But the emerging field of SI demonstrates that
complex behaviors and efficient solutions can be arrived at without a leader,
organized without an organizer, coordinated without a coordinator.

9 Stevens titled the reverse strategy “Sustained Piece.”
10 Although this field is often presented as evolving in only the past few years, examples drawn
from the world of social insects can be found in early cybernetics theory [13], pp. 156-7 and in
dissipative structures as well [14], pp. 181-6.

6 David Borgo

The secret of the swarm lies in the intercommunication of its members. Through
direct and indirect interactions among autonomous agents and between agents and
their environment, swarm systems are able to self-organize in decentralized, robust,
and flexible ways. Bonabeau, Théraulaz, and Marco Dorigo [16], a physicist,
biologist, and engineer working together at the Santa Fe Institute, offer a list of four
basic ingredients that through their interplay can manifest in swarm intelligence: 1)
forms of positive feedback, 2) forms of negative feedback, 3) a degree of randomness
or error, and finally 4) multiple interactions of multiple entities.

Positive feedback in SI can be usefully summarized as simple “rules of thumb” that
promote the creation of structures: activities such as recruitment and reinforcement.
Negative feedback counterbalances positive feedback and helps to stabilize the
system: it may take the form of saturation, exhaustion, or competition. A certain
degree of randomness or error is also crucial, since it enables the discovery of new
solutions and produces fluctuations that can act as seeds from which new structures
develop. Finally, SI generally requires a minimum density of mutually tolerant
individuals, since individuals should be able to make use of the results of their own
activities and the activities of others.

While something of a general and descriptive list, these ingredients do play
important roles in collective improvisation. Through positive feedback musicians not
only develop their own ideas from a kernel of inspiration, but they also work together
to support the ideas of others and the evolving ensemble sound. They “recruit” others
to support or sustain their own developments, or they may choose to “reinforce” the
creative direction of others instead. Similar to the ways in which information about
the best food source or the shortest path can be compounded among a swarm of bees
or a colony of ants, positive feedback increases the ability of an improvising group to
follow the more “promising” of many concurrent ideas being pursued by various
members.

 Negative feedback in improvisation helps to keep things interesting. By
intentionally looking elsewhere for new ideas or new musical areas to explore,
individuals can either signal transitions away from ensemble moments that have
lingered too long or seem to be going nowhere (the feelings of saturation and
exhaustion), or they can productively layer divergent sonic qualities and musical ideas
together or provoke others to boost their own creativity (through a competitive
element). Negative feedback helps to maintain a balance in the evolving
improvisation so that one idea does not continue to amplify indefinitely (although a
more static approach can produce interesting results as well).

Unexpected occurrences, in the form of randomness or error, often provide both
source material and inspiration for individuals and groups to explore new sonic
territory, musical techniques, and interactive strategies. Noticing and capitalizing on
unexpected fluctuations as an improvisation unfolds can produce important structural
cues, developments, and transitions, and it represents a particular joy of improvised
music making in general. Without this third ingredient, groups of improvisers who
work together over a longer period of time might become too familiar with one
another’s musical language and approach or might fall into regular strategies of
support and counterbalance (and this of course does happen).

Finally, the notion that individuals and the group as a whole benefit from multiple
interactions and perspectives is something of an axiom in ensemble forms of
improvisation and in the community of improvisers. One of the particular challenges

Sync or Swarm 7

of contemporary improvisation, for both players and listeners, is to remain aware of
and sensitive to the many musical gestures and processes circulating between
members of the group in the moment of performance and between members of the
community as ideas circulate via recordings, impromptu meetings, and the
overlapping personnel of various working groups.11

In much freer improvisation, the collective pattern of the group is more important
than any of the individual actions heard in isolation. But this does not deny freedom
to individual musicians. Saxophonist Evan Parker [17] highlights the ways in which
freedom works within the collective unfolding of what might easily be termed swarm
dynamics:

The freedom is of course that since you and your response are part of the context
for other people, and they have that function for you, it's very hard to unravel the
knots of why anybody is doing what they do in a given context. I think it's pretty
clear that you could sort of go with the flow, or you could go against the flow.
And sometimes what the music really needs is for you to go with the flow, and
sometimes what it really needs is for you to do something different. Or anybody,
somebody, to do something different. So that's why people improvise, presumably,
because they want the freedom to behave in accordance with their response to the
situations. But since their response then becomes part of the new situation for the
other players, it's very hard to say why a particular sequence of events unfolds in
the way it does. But we get used to following the narrative of improvisational
discourse...

Parker’s notion that “the music” needs for things to happen, needs for musicians to
do things, is a fairly common way in which improvisers speak about the process of
performance. In his liner notes to the album In Order to Survive, bassist William
Parker (no relation) expresses that, “Creative Music is any music that procreates itself
as it is being played to ignite into a living entity that is bigger than the composer and
player.”12 While these comments certainly resonate with the notion of a
superorganism touched on earlier, they may also highlight an additional dimension of
SI research: interactions within a swarm can be both direct and indirect. The direct
interactions are the obvious ones: with ants this can involve antennation or
mandibular contact, food or liquid exchange, chemical contact, etc. But indirect
interactions are more subtle. In SI they are referred to by the rather cumbersome term
stigmergy (from the Greek stigma: sting, and ergon: work). Stigmergy describes the
indirect interaction between individuals when one of them modifies the environment
and the other responds to the new environment rather than directly to the actions of
the first individual. This helps to describe the process of “incremental construction”
that many social insects use to build extremely complex structures or to arrange items
in ways that might at first seem arbitrary or random. And because positive feedback
can produce nonlinear effects, indirect interaction can result in dramatic bifurcations
when a critical point is reached: for example, some species of termites alternate

11 Here we might also want to envision the creative process of each individual as a type of
swarm dynamic, as the processes of ideation and evaluation can work rapidly and in complex
and nonlinear ways.
12 Black Saint records 12015902 (1995).

8 David Borgo

between non-coordinated and coordinated building to produce neatly arranged pillars
or strips of soil pellets.

But swarm intelligence has its limits and its drawbacks. Social insects can adapt to
changes in their environment, but only within a certain degree of tolerance. For
instance, many social insects are able to seek out and find new food sources when an
existing one is exhausted, or some species are able to reallocate labor roles if the
number of required workers for a specific task dwindles, all without explicit
instruction. But the “army ant syndrome” offers a compelling example of the limits to
this adaptability and of swarm intelligence in general. Among army ants, when a
group of foragers accidentally gets separated from the main colony, the separated
workers run in a densely packed “circular mill” until they all eventually die from
exhaustion. Although able to function well within the group under normal
circumstances, an unpredictable perturbation of a large enough degree can destroy the
colony’s cohesiveness and make it impossible for the group to recover.

For a musical analogy, while sensitivity to the group is an essential component of
improvised performance, to blindly base one’s own playing on what others do or to
simply follow the group as an overriding strategy can lead to rather inflexible and
ineffective results, producing a musical “circular mill.” And many improvisers, if
they sense that all of the participants are following each other too carefully, will “go
against the grain” or “forge out on their own” into new sonic territory; in other words,
they will defy the logic of the hive mind. To return briefly to our earlier example of
John Stevens’s Click Piece, although this generative approach to collective
improvisation offered an effective way to make “quite ravishing” music with a large
ensemble comprising players of mixed ability and experience, to more skillful and
confident musicians it quickly became an unproductive limitation. Simplifying the
parameters for improvisation can be useful and even necessary for making large
ensembles swarm effectively, but in the more intimate setting of a small group,
arguably the preferred arrangement for the majority of free improvisation enthusiasts,
a less restrictive framework is usually desired.

The cohesion of small groups can also be jeopardized by imbalances that lead to
polarization. Drawing on research with decision-making among corporate boards and
committees, James Surowiecki [18] identifies a few qualities that appear to factor into
all intimate social settings: earlier comments are more influential; higher status people
talk more and more often; and status is not always derived from
knowledge/experience. Since constantly making comparisons and adjustments to
others can result in an unproductive “group think,” it is important for individuals to
champion their own ideas in small group settings. But too much vehemence in this
can lead to a completely polarized setting or to an “information cascade” when others
are subsumed by a singular view or opinion. In short, deference to the ideas of others
is important, but so is dissent when required.

Without a doubt there are important differences in the degrees of freedom allowed
in a swarm of bees and in the sonic swarm of collective improvisation. But if
interesting complexities can emerge from groupings of individuals with a limited
array of communication possibilities, how much more can we expect from
experienced and creative artists? J. Stephen Lansing [19], an anthropologist who also
serves as external faculty at the Santa Fe Institute, wonders about complex adaptive
systems in general: “What if the elements are not cells or light bulbs but agents
capable of reacting with new strategies or foresight to the patterns they have helped to

Sync or Swarm 9

create?” (p. 194). Much of the current research by social scientists on complex
adaptive systems is concerned with precisely this question.

The field of SI is still very much in its infancy. It is often extremely difficult for
researchers to understand the inner workings of insect swarms and the variety of rules
by which individuals in a swarm interact. Even in those cases when we can
understand the behaviors of individuals, we may still be unable to predict or
understand the dynamics of the overall system since countless other environmental
factors come into play. When transposed into the realm of humans, these
uncertainties only compound themselves. Discussing the business and technological
applications of SI, Bonabeau and Théraulaz [15] confess that: “Although swarm-
intelligence approaches have been effective at performing a number of optimization
and control tasks, the systems developed have been inherently reactive and lack the
necessary overview to solve problems that require in-depth reasoning techniques”
(p.79). We still don’t know enough about social insects, little less social humans, to
be able to understand how certain group behaviors emerge and evolve.

Nevertheless, the notion that a group can have capacities and capabilities that
extend beyond the scope of any of its participating members is a powerful one. In a
provocative chapter titled “Hive Mind” from his book Out of Control, Kevin Kelly
[12] points out that the hive does possess much that none of its parts possesses. Not
only does swarm intelligence represent a type of distributed perception for the hive,
but the hive also possesses a type of distributed memory; the average honeybee
operates with a memory of six days, but the hive as a whole operates with a
distributed memory of up to three months, twice as long as the lifetime of the average
bee. Bonabeau et al. [16] write:

We suggest that the social insect metaphor may go beyond superficial
considerations. At a time when the world is becoming so complex that no single
human being can really understand it, when information (and not the lack of it) is
threatening our lives, when software systems become so intractable that they can
no longer be controlled, perhaps the scientific and engineering world will be more
willing to consider another way of designing “intelligent” systems where
autonomy, emergence and distributed functioning replace control, prepro-
gramming, and centralization (p.22).

We might also hope that the music world will continue to explore ways of
organizing sonic and social experiences that do not hinge on centralized notions of
control. Well aware of these concerns, trombonist/composer/scholar George Lewis
[20] writes in a recent essay reflecting on improvisation and the orchestra:

Orchestra performers operate as part of a network comprised not only of
musicians, composers and conductors, but also administrators, foundations, critics
and the media, historians, educational institutions, and much more. Each of the
nodes within this network, not just those directly making music, would need to
become “improvisation-aware,” as part of a process of resocialization and
economic restructuring that could help bring about the transformation of the
orchestra that so many have envisioned.

10 David Borgo

3 A Web Without a Spider

If group improvisation may be heard in its best moments to demonstrate complex and
emergent properties that are somehow greater than the sum of its parts, then
investigating individuals and ensembles in isolation of the network of surrounding
influences will not suffice. And as we move our gaze further into the social and
historical realms, the notion that any one individual is controlling their own web of
musical sounds and meanings becomes rather untenable. We need to reorient our
analytical framework to take account of the dynamics that occur in ensembles as they
perform together over days, weeks, months, and even years. And we need to
acknowledge the ways in which influences in musical communities circulate through
more than the sounds of performances and recordings; meaning is everywhere, not
simply in the “sounds themselves.” The networks involved include a host of social
conventions and material artifacts that affect the ways in which music is made and
heard: from the funding sources or media attention that a performer may receive to
the casual conversations or critical reviews that a performance may provoke. While it
may be fairly common to acknowledge the subtle influence that specific audiences
and venues can have on performance, especially in relation to improvisation, the
network of material, economic, technological, educational, and social factors at play,
and the complex meanings that they generate through their interactions, are far more
involved than that. In fascinating ways, this network-style organization both shapes
and is shaped by the activity of all of its participants; everyone changes the state of
everyone else. Although the spontaneous and surprising occurrences in improvised
performance can attract our immediate attention, it is through the dynamic interplay
of social, material, and sonic culture that we begin to sense the true lifeblood of the
music.

Although networks have interested researchers for decades, until recently, each
system tended to be treated in isolation, with little apparent reason or possible means
to see if its organizational dynamics had anything in common with other networks.
We are only now beginning to piece together some important qualities of, and
approaches to, the study of complex dynamic networks on a broad scale. But Albert-
László Barabási [21], one of the leading researchers in this still nascent field,
optimistically predicts: “Network thinking is poised to invade all domains of human
activity and most fields of human inquiry. It is more than another helpful perspective
or tool. Networks are by their very nature the fabric of most complex systems, and
nodes and links deeply infuse all strategies aimed at approaching our interlocked
universe” (p. 222).

The notion of networks may bring to mind rather bare-boned models of how things
are connected. To some extent this is true, since simplifying detail on one level of a
network can highlight organizational similarities on another that would otherwise go
unnoticed. Network models, however, are increasingly able to take account of some
of the rich dynamics that occur when individual components are not only doing
something–generating power, sending data, even making decisions–but also are
affecting one another over time. Steven Shaviro [22] writes in his book Connected,
Or What it Means to Live in the Network Society:

Sync or Swarm 11

As it seems to us now, a network is a self-generating, self-organizing, self-
sustaining system. It works through multiple feedback loops. These loops allow
the system to monitor and modulate its own performance continually and thereby
maintain a state of homeostatic equilibrium. At the same time, feedback loops
induce effects of interference, amplifications, and resonance. And such effects
permit the system to grow, both in size and in complexity. Beyond this, a network
is always nested in a hierarchy. From the inside, it seems to be entirely self-
contained, but from the outside, it turns out to be part of a still larger network (p.
10).

Music, as an inherently social practice, thrives on network organization. On
perhaps the most tangible level, a musician’s livelihood and creative opportunities
frequently depend on the breadth and depth of one’s network of social and
professional contacts. But network dynamics shape the sounds, practices, and
communities of music in decidedly more complex and subtle ways as well.
Musicians are influenced by their years of training or apprenticeship, countless hours
spent listening to music both publicly and privately, and perhaps most
comprehensively (yet frequently least acknowledged) by the historical and cultural
conventions of a given time and locale. The topics and techniques of music education
also depend on these network-style dynamics, which inform the process of choosing
canons and of exploring and imparting the intricacies of musical theory and musical
aesthetics. Finally the music industry’s far-reaching networks of production and
distribution, and increasingly its consolidated and insular organizational practices,
have the power to structure, at some degree or another, the networks of inspiration
and possibility for nearly everyone who is deeply committed to music.

Yet music researchers have in the past focused the lion’s share of attention on the
creative work of individuals, often treating their “work” as a collection of static
objects (e.g., scores or recordings) to be dissected and categorized. It is not
uncommon to hear graduate students in musicology programs lamenting (or coming
to terms with) the fact that they must find an increasingly obscure composer or
performer on whose work to focus their “comprehensive” scholarly lens. There has,
of course, been a pronounced and welcome shift in the past few decades towards a
“new musicology” that takes into account the historical and cultural factors that
influence not only the original production of a musical “work,” but also its variable
reception, taking particular notice of gender and racial constructions that may affect
both of these.13 And there has been a marked increase in the number of scholars
interested in expanding the scope of musical investigation into popular and non-
Western topics as the fields of ethnomusicology and popular music studies have come
into their own. But on the whole, music scholarship is only now beginning to focus
attention on the organizational complexities of music rather than treat it as the
provenance of a few gifted and prolific individuals.

The musical community has a vested interest in understanding network dynamics,
although individuals may vary considerably in their specific expectations. Network
thinking can shed light on the cultural power inequities that produce imbalances in
social and economic interactions. It may also tell us much about the spread of ideas
in musical communities and marketplaces under diverse historical and cultural

13 For examples, see the work of Susan Mclary and Suzanne Cusick among others.

12 David Borgo

conditions. Creative musicians may hope to find in network dynamics glimpses of
future directions for innovation or influence, strategies for how to avoid or disrupt
network hubs and established practices in hopes of alternative community
reorganization, or the means by which they might increase their own professional
contacts and opportunities.

Actor-Network Theory (ANT), a sociological approach that has emerged out of
science and technology studies, is geared towards embodying this very tension
between the centered ‘actor’ on the one hand and the decentered ‘network’ on the
other. As John Law [23], one of the field’s leading researchers, remarks: “In one
sense the word [actor network theory] is thus a way of performing both an elision and
a difference between what Anglophones distinguish by calling ‘agency’ and
‘structure’” (p.5).14 In short, ANT does not accept the notion that there is a
macrosocial system on the one hand, and bits and pieces of derivative microsocial
detail on the other. According to Law:

If we do this we close off most of the interesting questions about the origins of
power and organization. Instead we should start with a clean slate. For instance, we
might start with interaction and assume that interaction is all that there is. Then we
might ask how some kinds of interactions more or less succeed in stabilising and
reproducing themselves: how it is that they overcome resistance and seem to
become "macrosocial"; how it is that they seem to generate the effects such as
power, fame, size, scope or organisation with which we are all familiar. This, then,
is the one of the core assumptions of actor-network theory: that Napoleons are no
different in kind to small-time hustlers, and IBMs to whelk-stalls. And if they are
larger, then we should be studying how this comes about–how, in other words,
size, power or organisation are generated.15

As musical traditions expand in scope and popularity, better-connected “hubs” tend
to emerge. In jazz, for example, the "hubs" of Louis Armstrong, Duke Ellington,
Charlie Parker, Miles Davis, and John Coltrane, among others, are impossible to
ignore. During their lifetimes these musicians were well respected and well
connected (although not always early in their careers and not by everyone) and their
influence has only grown since. With the spread of institutionalized jazz education
and the increasing reliance of major labels on re-releasing canonical jazz recordings,
the visibility and "connectedness" of these hubs may only continue to grow. For
instance, in the last few years Columbia, Atlantic, and Verve have all drastically
reduced their roster of living artists in favor of re-releasing older material. Even the
Marsalises, perhaps the most visible jazz performers today, no longer have a major
record deal. David Hajdu [24] perceptively writes in an Atlantic Monthly spread on
Wynton: "Where the young lions saw role models and their critics saw idolatry, the
record companies saw brand names–the ultimate prize of American marketing. For
long established record companies with a vast archive of historic recordings, the
economies were irresistible: it is far more profitable to wrap new covers around
albums paid for generations ago than it is to find, record, and promote new artists" (p.
54).

14 For other important work in ANT see the publications of Geoffrey C. Bowker and Susan
Leigh Star.
15 http://www.comp.lancs.ac.uk/sociology/soc054jl.html.

Sync or Swarm 13

For an artistic tradition to remain dynamic and healthy the network dynamics that
take note of history and provide hubs for a common language and style should not
become too powerful. If the disparity between the hubs and the remainder becomes
too great, there may be a “tipping point” beyond which communication and
innovation in a tradition can suffer dramatically.16 In the same Atlantic Monthly
article, Jeff Levinson, the former Columbia Jazz executive, is quoted as saying: "The
Frankenstein monster has turned on its creators. In paying homage to the greats,
Wynton and his peers have gotten supplanted by them in the minds of the populace.
They've gotten supplanted by dead people" (p. 54).17 The disparity of attention in
music seems to be regulated through the process of interaction. This can come in the
direct form of collaboration between artists, but also in the indirect form of media
attention, record sales, performance opportunities, and arts funding or sponsorship.

In what is perhaps its most radical move, ANT attempts to take account of the
heterogeneous networks that include not only social or human dimensions, but also
the material dimensions that make human and social behaviors possible. ANT
explores how these heterogeneous networks come to be patterned to generate effects
like organizations, inequality, and power. Joseph Goguen explains:

Actor-Network theory can be seen as a systematic way to bring out the
infrastructure that is usually left out of the “heroic” accounts of scientific and
technological achievements. Newton did not really act alone in creating the theory
of gravitation: he needed observational data from the Astronomer Royal, John
Flamsteed, he needed publication support from the Royal Society and its members
(most especially Edmund Halley), he needed the geometry of Euclid, the
astronomy of Kepler, the mathematics of Galileo, the rooms, lab, food, etc. at
Trinity College, an assistant to work in the lab, the mystical idea of action at a
distance, and more, much more.18

The goals of network theory are gradually shifting from describing the topology of
systems to understanding the mechanisms that shape network evolution. Barabási [21]
acknowledges that, “We must move beyond structure and topology and start focusing
on the dynamics that take place along the links. Networks are only the skeleton of
complexity, the highways for the various processes that make our world hum. To
describe society we must dress the links of the social network with actual dynamical
interactions between people” (p. 225).

As in a house of mirrors, the science of networks has seemingly led us to a place in
which all of the details matter and, to some extent, none of them do. Since at least the
work of Emile Durkheim we have known that large-scale social phenomenon–the
predictable number of Parisians who commit suicide every year–can be independent
of the particulars–which Parisians are actually led to kill themselves and why. And

16 For a popular science treatment of the notion of a “tipping point” see Gladwell [25].
17 For a recent example of how powerful hubs have become in jazz, the San Francisco Jazz
Spring 2005 series of concerts featured no less than seven tributes to the music of John
Coltrane within a month’s time, including versions of his music from the albums A Love
Supreme, Ascension, Africa Brass, Crescent, and Interstellar Space. There was also a concert
by the Mingus Big Band and a tribute to the music of Rashaan Roland Kirk as well.
18 http://carbon.cudenver.edu/~mryder/itc_data/ant_dff.html.

14 David Borgo

despite the enormous complexities of the Isaac Newton example described above,
scientists in the modern era glean what they need to from Newton, usually without
reading his original work, and they move on to more pressing concerns.

Yet the details and vagaries of a network system do seem to matter enormously.
Although network theory often focuses on large-scale behaviors, these large-scale
behaviors are fundamentally provoked by the ability of one individual to influence
another and the notion that people can change their strategies depending on what
other people are doing. Through these dynamics alone, systems can self-organize in
remarkably complex ways.

In music, the practice of free improvisation is perhaps closest to this ideal of a self-
organizing system. Its bottom-up style emphasizes possibilities for adaptation and
emergence; it accentuates creativity-in-time and the dynamics of internal change. The
structures of improvisation can also continue to be extended in boundless ways
(although the system may be circumscribed, at least in part, by the abilities, materials,
and experiences of those who are participating). From one perspective, improvised
music is resilient to individual “mistakes” since sounds can be re-contextualized after
the fact by either the original performer or others in the group. And if one musician
drops out or is unable to make a performance, the system can often continue to
function without major interruption, perhaps even organizing in ways that are both
novel and more complex. From another perspective, however, group improvisation
may be less resilient to personality conflicts or pronounced aesthetic differences
between individuals. With traditional musical practices that are organized in a
predominantly hierarchical manner, personality differences can often be managed in
deference to the group leader, the authority of the musical score, or the
professionalism of “getting the job done.” Free improvisation ensembles tend to aim
for a more egalitarian organization that makes them particularly susceptible to the full
spectrum of both musical and so-called “extra-musical” influences.19

Despite its many promising qualities, improvisation is also rarely, if ever, the
“optimal” means to achieve a specific musical end (although it may in fact be both a
quicker and easier route to certain types of chaotic dynamics). The internal dynamics
of an improvising ensemble (particularly larger groupings of musicians) can be slow
to respond to change, and are, for the most part, beyond the control of any one
individual. Even when things do appear to work well, it will be impossible to analyze
the system’s dynamics during or after the fact with absolute precision. As with other
emergent forms of order, the collective dynamics of improvisation will, by definition,
always transcend the full awareness of individuals. For these and other reasons, many
ensembles choose to adopt certain compositional schemes or devices in order to offer
some additional degrees of control over the situation. There is no guarantee,
particularly in individual performances, that divergent components will find ways to
self-organize effectively.20 In general, however, the improvising music community

19 For a related discussion see [26].
20 It is interesting to note that, for a music predicated on what can be a very risky endeavor–to
improvise collectively in a group setting–accounts of failure can be very difficult to locate in
both the academic and trade coverage of the music. Similar to mechanical systems, we may
learn as much or even more by examining occasions on which improvised performance appears
to falter

Sync or Swarm 15

demonstrates the remarkable ability to absorb the new and the diverse without
disruption.

Individual ensembles will often, over time, establish their own sense of identity or
coherence. The boundary that develops naturally within an ensemble is not
necessarily one of personal affinity or exclusion, or one of aesthetic mandate, but
rather one of trust and conviviality. Like the boundary of a storm or the membrane of
a human cell, this boundary is both permeable and permanent. It defines the identity
of the system but also allows for the ongoing dynamics of exchange that are necessary
to maintain its existence. Of course, a certain danger may lurk for both physical and
musical systems if this boundary becomes either too porous or too impermeable. If
too much exchange is fostered with outside forces, the identity of a system may be put
in jeopardy. Likewise, if too little exchange is allowed or encouraged, a system may
decline either from reduced internal dynamics, or from its inability to continue to
adapt to the changing dynamics of its environment.

Network theory tells us that very different things can be connected through
surprisingly short distances. Small effects can have large causes, while at other times
large disturbances may be absorbed without much notice. Although the predictive
power of network theory is still an open question, it may be enough that through these
perspectives and approaches we can gain a better understanding of the structure of
connected systems and the way that different sorts of influences propagate through
them. Duncan Watts [27], another leading voice in the field, reminds us that,
“Darwin’s theory of natural selection, for instance, doesn’t actually predict anything.
Nevertheless, it gives us enormous power to make sense of the world we observe, and
therefore (if we chose) to make intelligent decisions about our place in it” (p. 302).

Although only limited work has been done on large-scale music networks to date,
one study that explored the relationships between jazz musicians from 1912 to 1940
found so-called “small world” properties. By using the Red Hot Jazz Archive
database on the Internet, Pablo Gleiser and Leon Danon [28] found that, on average,
only 2.79 steps separated early jazz musicians from one another. Their model also
captured the clustering of jazz musicians by geography, with New York and Chicago
as the major hubs, and by race, due to the highly segregated nature of the music
industry at the time. As in most human networks, a few individuals had very high
degrees of connectivity. Guitarist Eddie Lang topped their list, with connections to
415 other musicians, while artists like Jack Teagarden, Joe Venuti, and Louis
Armstrong were all in the top 10 of most connected musicians. UCSD Professor
Richard Belew and I are beginning a similar project to study the network dynamics of
musical communities using discographic information that will take account of more
contemporary artists as well.

Through the wonders of modern network technologies we can now connect to the
farthest reaches of the globe in an instant. And with more than a century of recorded
music available to us, we can easily engage with sounds that are similarly removed
from us, both culturally and historically. But in the age of iPods and web surfing we
also experience the world in increasing isolation at the same time. Yet the
resoundingly social nature of music, when viewed as performance rather than product,
offers the possibility for humans to synchronize their ears, brains, and bodies in ways
that may be unavailable otherwise. And improvised music’s particular penchant for
the emergent and unexpected may even allow us to explore and expand our own
homophily parameter–the sociological tendency of like to associate with like–as

16 David Borgo

familiar and less familiar sounds and people join together to find a common ground,
even if only temporarily.21

4 Harnessing Complexity

How can these practices be nurtured, particularly within the rather serious and sedate
halls of the music academy? The jazz community has traditionally stressed a type of
learning that might be called in contemporary discourse embodied, situated, and
distributed.22 Not only have many performers stressed the full integration of aural,
physical, and intellectual aspects of the music, but the notion that learning and
development can only occur within a supportive community is seen as paramount.
The Association for the Advancement of Creative Musicians (AACM) in Chicago and
the Creative Music Studio (CMS) in Woodstock, NY are two of the better-known
examples of this pedagogical orientation. In the standard music academy, however,
the study of musical improvisation has often been shoehorned into the conventional
curriculum or simply not addressed at all.

When addressed, institutionalized approaches to teaching musical improvisation
have tended to stress individual facility through memorization and pre-planning,
leaving little room for collective experimentation. Jonty Stockdale [29] finds that:
“[I]mprovisation in jazz studies programmes is infrequently developed through a
collective process, with a preference for the development of soloing facility through
the absorption and imitation of pre-existing language, usage, and style. Whilst this is
regarded as important for the development of a young jazz musician, matters of self-
expression, individualism, and most importantly experimentation are often left to later
stages, by which time exploration of free collective playing can appear unnecessary or
even redundant” (p. 109).

In his account of group creativity, Keith Sawyer [3] makes an important distinction
between a problem-solving and a problem-finding approach to art. Artists adopting
problem-solving techniques begin with a relatively detailed plan and work to
accomplish it successfully. Those employing a problem-finding approach, by
contrast, search for interesting problems as the work unfolds in an improvisatory
manner. Many beginning jazz improvisers are stuck in a problem-solving mode. As
pianist/composer Anthony Davis expressed to me in a recent interview: “They have
been taught right and wrong–these are the notes, these are the chords, these are the
arpeggios that work on a given chord. This chord happens on the 5th bar [in a blues].”
But through extended listening, practicing, and playing with musicians who are more
experienced, Davis finds that jazz players can move from a “dependence on
articulating the form” to “using the form, realizing that [the tune structure] is the
beginning of something and you have to create something else… They have to do
more than just keep time, they have to articulate time… They can make melodic

21 Duncan Watts’s current research shows that the most searchable networks involve
individuals who are neither too one-dimensional nor too scattered. As long as people have at
least two dimensions along which they are able to judge their similarity to others, then small
world networks are possible–people can still find short paths to remote and unfamiliar areas.
22 For more on this topic see chapter seven in Borgo [40].

Sync or Swarm 17

choices that are at least as strong as the melody that was there before.” Even as
students become more proficient, however, Davis reminds them that, “You have to
get beyond your mannerisms to really come up with a musical idea as opposed to a
catalog of what you do.”

Problem-finding approaches are equally important when improvising in a group,
since it is often impossible to determine the meaning of an action until other
performers have responded to it. The particular challenge of group improvisation,
then, is that each performer may have a rather different interpretation of what is going
on and where the performance might be going. In other words, intersubjectivity is
intrinsic to group performances. For Sawyer [3], however, “The key question about
intersubjectivity in group creativity is not how performers come to share identical
representations, but rather, how a coherent interaction can proceed even when they do
not” (p. 9). In part, this is possible because individuals shape a performance on both
denotative and metapragmatic levels; they simultaneously enact the details of a
performance and negotiate their interactions together. Even if a singular meaning to
performance always remains elusive, participants can shape the ways in which their
various interactions unfold.

Davis stresses that it is critical that students learn the difference between listening
and following: “In order to listen, you don’t necessarily follow…You try to construct
something that coexists or works well with something else–not necessarily this tail-
wagging-the-dog thing where you just follow someone.” For Davis, “Listening is
knowing what someone is doing and using it in a constructive way, as opposed to
mimicry, just trying to demonstrate that you are quote-unquote listening.” The very
notion that everything could be heard, processed, and immediately responded to
during complex moments of improvised music is, by itself, far too facile.
Trombonist/composer/scholar George Lewis [11] describes a type of “multi-
dominance” in improvised music–an African-American aesthetic by which
individuals articulate their own perspectives yet remain aware of the group dynamic,
ensuring that others are able to do so as well.

Yet exactly how group flow is cultivated in improvised performances can remain
rather mysterious. Describing his general approach to me, contrabassist Bertram
Turetzky remarked: “One way when I play free music, I try not to think of anything. I
respond or I initiate. And whatever my intuitions tell me, I go with them… Other
times in free music, I play with people perhaps I don’t know. And I say, well, the last
one started soft and slow and got faster and then went back… So all of a sudden I
start banging things and doing all kinds of stuff… For some people, I think you have
to be very rational. And you perhaps have to have an idea of where you think it could
go, and be the quarterback.” Turetzky acknowledged that establishing a proper group
rapport can be difficult “if someone has a big ego and wants to make everything
compositional.” When he perceives that the group flow is in jeopardy, at times he
may adopt a third strategy: “If there are three of four people, maybe I’ll stop a little
bit and let them see what they want to do. If there is a mess, let them sort it out. Let
them start something and maybe I can support them.”

Certain exercises employed by improvising actors may be useful for improvising
musicians. For instance, dramatist Keith Johnstone [30] believes that, “Humans are
too skilled in suppressing action. All the improvisation teacher has to do is to reverse

18 David Borgo

this skill and he creates very gifted improvisers. Bad improvisers block action, often
with a high degree of skill. Good improvisers develop action” (p. 95).23 Improvising
actors are taught that, instead of denying or rejecting what has been previously
introduced into the dramatic frame, they should accept the actions/words of others as
dramatic “offers” and, in turn, add something to the dramatic frame, i.e., present a
complimentary “offer,” or “revoice” an existing “offer.” The inherent challenge is to
avoid circumscribing or over-directing the group flow. This does not, however,
preclude the possibility of swiftly changing dramatic or musical directions, as the case
may be, but care should be taken to do this in a way that keeps previous developments
available for future moments of reference or expansion; a practice called “shelving”
by improvising actors. Of course, evaluating exactly when “revoicing” or “shelving”
the “offers” of others has been successful can be a tricky proposition. And the
inherent complexity, polyphony, and polysemy of music can make this even more
challenging. At heart, however, these exercises in improvised theater, and similar
ones adopted by musicians, are designed to improve one’s ability to listen and
remember, so that the ongoing group development will be stimulated rather than
curtailed.

Compositional schemes and strategies are often employed to help organize
improvised music, either prior to, or in the moment of, performance. Deciding how
or how much to organize performances, here again, becomes a tricky endeavor. John
Zorn’s Cobra may be the best-known “game piece” for improvising musicians.
Making a distinction between his work and conventional notions of composition,
Zorn remarked:

In my case, when you talk about my work, my scores exist for improvisers. There
are no sounds written out. It doesn’t exist on a time line where you move from one
point to the next. My pieces are written as a series of roles, structures,
relationships among players, different roles that the players can take to get
different events in the music to happen. And my concern as a composer is only
dealing in the abstract with these roles like the roles of a sports game like football
or basketball. You have the roles, then you pick the players to play the game and
they do it. And the game is different according to who is playing, how well they
are able to play…24

With their attentions already engaged in complex ways during performance, others
worry that highly involved schemes for structuring improvisation can hinder rather
than assist the natural development of the music. For instance, performer/scholar
Tom Nunn [32] writes: “When improvisation plans are complicated–no matter how
clear or well explained they might be–the attention of the improviser is constantly
divided between the plan and the musical moment, having to remember, or look at a
score, a graphic, or even a conductor. What often happens is that both the plan and
the music suffer from this divided attention” (p. 162).

In a recent interview, contrabassist Mark Dresser discussed with me the challenges
inherent in structuring pieces for improvisers: “Composition is often about control.
You have to build [improvisation] in. I’ve built pieces that have been little prisons,

23 For a related treatment regarding jazz improvisation, see [31].
24 Quoted in [10], p. 233.

Sync or Swarm 19

too. You’re looking at something really specific.” But he added, “It’s a trip to find
the balance. You try to find combinations where you have real focus and
condensation, and points of real expansion. For me, it is all about being a complete
musician. All of those things are interesting. At different points in the evening I try
to have all of those things. Its funny, though, when you get in the composer’s head
it’s really hard to let go of trying to control it or to create this kind of balance.”

Even compositional strategies that have the sole intent of facilitating group
improvisation during performance can backfire. Referring to Butch Morris’s
extensive system of conducted gestures designed to help organize improvised
performances, Dresser commented: “I’ve seen the conduction thing be a disaster with
people who just don’t like to be controlled.” Without pre-conceived strategies,
however, there is an ever-present danger that improvised music will fail on its own.
This danger may also increase with the size of the group. Philip Alperson [33] writes:
“As the number of designing intelligences increases, the greater is the difficulty in
coordinating all the parts; the twin dangers of cacophony and opacity lurk around the
corner” (p. 22).

This makes those moments when group improvisation is deemed successful all the
more powerful. While interviewing bassist Lisle Ellis, he confided: “A lot of
improvised music I don’t think is very good music. But man, when it hits, it’s
extraordinary! That’s what I’ve spent my life doing–waiting for those moments when
it really lines up–to find a way to have some consistency in it. Some days I think I
really know how to do that and other days I think I don’t have a clue.” In a telling
aside that highlights this balancing act of harnessing creativity, Ellis remarked, “I’ve
got to write more stuff down. I’ve got to write less stuff down.”

When discussing improvisation and composition, it can be particularly challenging
to avoid thinking in terms of simple dichotomies while at the same time remaining
leery of equally facile truisms about the music. Only with dualistic thinking, which
presents two things as opposed and forces one to choose between them, are preparing
for something in advance and the leap of freedom into the unforeseen viewed as
antithetical or incompatible. Dresser finds that, “Within control there are lots of
possibilities for freedom.” And discussing his time spent as young man in classes
with Muhal Richard Abrams at the AACM school, George Lewis [34] writes:
“Improvisation and composition were discussed as two necessary and interacting
parts of the total music-making experience, rather than essentialized as utterly
different, diametrically opposed creative processes, or hierarchized with one
discipline framed as being more important than the other” (p. 86). Dresser recounted
a telling moment during his first tour with Anthony Braxton’s quartet that resonates
with this issue: “The only time that Braxton criticized the quartet, he said, ‘Well, you
guys are playing the music correctly, but you’re just playing it correctly.’ The
criticism was you are being too dutiful, you’re not taking a chance. That was the day
that the format of the music actually changed, from being a solo-based music to an
ensemble music. All of a sudden, the nature of the music became different. That
moment articulated when the group came into its own.”

20 David Borgo

5 Final Thoughts

Why do people tend to assume that systems are organized either by lead or by seed?
In part, this is undoubtedly due to the fact that many if not most of our social
institutions and artistic creations are organized in this way. Yet an extreme reliance
on centralized organization and centralized metaphors in the past has led to a situation
in which many people are unwilling or unable to imagine systems organizing in a
decentralized fashion.25 When people hear music they tend to assume a composer, a
leader, or, when that music is improvised, they tend to assume that creativity emerges
solely from the individual. In many cases these intuitions may be right. But one of
the more encouraging aspects of much contemporary experimental music is that it is
not always easy or even possible to know if a particular instance of music was or was
not composed ahead of time.26 And the generative power of computers is blurring
these lines even further. Perhaps most encouraging of all, however, is the fact that
creativity is increasingly being viewed as a web of network interactions operating on
all scales, reflecting individual, social, cultural, and historical dimensions.

There are many compelling reasons to view artistic behavior not as some special
kind of activity cut off from the rest of human behavior but rather as much an
adaptation to the environment as any other human activity. Since a primary drive of
human beings is to perceive the environment as comprehensible and to make
successful predictions about the future, we have developed a cognitive/sensory
orientation that filters out any data that is not relevant to the needs of the moment.
But since such an orientation does not prepare an individual to deal with a particular
situation but only with a category, or kind, or class of situations, much of the
suppressed data may very well be relevant. The arts in general, and music in
particular, may serve the function of breaking up entrenched orientations, weakening
and frustrating our “tyrannous drive to order,” so that humans are better able to deal
with change, complexity, and chaos.27

Improvisers engage the unforeseen; they offer the experience of disorientation.28

They look to find problems, rather than to solve them. Improvised music also
reminds us that the notion of “art” is most appropriately located not in the “work”
itself, but rather in the perceiver’s role; a role that involves maintaining a search-
behavior focused on discontinuities. Emotional affect is not intrinsic to the “work”,

25 Decentralization may be biological coded for ants and other social insects, but it does not
seem to be as natural or automatic for humans. Or it may simply be that, because we are within
the system, we remain unaware of its emergent properties, just as individual bees and ants may
be unaware of their group’s emergent social organization (although this hypothesis is difficult if
not impossible to test). For lucid writing on this subject see [35] and [36].
26 Although this blurring may be artistically encouraging, we still need to be aware of cultural
assumptions that accompany our notions of musicking. Eddie Prévost [37] recounts an AMM
performance after which a woman came up to the musicians and remarked how moved she had
been by the music. Once she learned that the group had been improvising rather than playing
from a memorized score, she not only doubted their artistic and intellectual integrity, but she
was forced to question her own powers of discrimination. “How had it been possible for her to
enjoy and admire such work when its practice had been so… primitive.”
27 For some prescient writing on this subject see [38].
28 The Latin roots of the word improvisation are in-not and provisus-foreseen.

Sync or Swarm 21

but rather is dependent on a successful performance of the perceiver’s role; emotion is
the result of a discrepancy between expectation and actuality.29 Perhaps most
importantly, improvising music together allows participants and listeners to
experience and explore complex, decentralized, interconnected, and emergent social
dynamics.

Recent work in the cognitive neuroscience of music concerned with the role that
music plays in human evolution and development supports this view rather well. Ian
Cross [41], a leading researcher in this still nascent field, argues that music’s
nonefficaciousness–its general remove from immediate concerns for survival (from a
strict biological perspective)–make it especially well suited to testing out aspects of
social interaction, while its polysemy–its ability to producing multiple meanings–
endows us with the multipurpose and adaptive cognitive capacities that make us
human. In less technical language Cross writes: “[M]usic can be both a consequence
free means of exploring social interaction and a ‘play space’ for rehearsing processes
that may be necessary to achieve cognitive flexibility” (p. 51).30 People cooperating
in a musical activity need not find the same meaning in what they do in order for the
musical event to assist them in acquiring and maintaining the skill of being a member
of a culture. As Cross sees it, “The singularity of the collective musical activity is not
threatened by the existence of multiple simultaneous and potentially conflicting
meanings” (ibid.). Through continual engagement with art–viewed as the successful
performance of the perceiver’s role–we may in fact be better prepared to survive and
flourish in our increasingly interconnected, and therefore interdependent, world.

It is interesting to note that two of the hottest current topics for organizational
design are the sciences of complexity and jazz music. Both domains emphasize
adaptation, perpetual novelty, the value of variety and experimentation, and the
potential of decentralized and overlapping authority in ways that are increasingly
being viewed as beneficial for economic and political discourse. Robert Axelrod and
Michael Cohen [43] see in the move from the industrial revolution to the information
revolution a powerful shift from emphasizing discipline in organizations to
emphasizing their flexible, adaptive, and dispersed nature. And Karl Weick [44], in a
special issue of the journal Organization Science devoted to an exploration of “the
jazz metaphor,” finds that the music’s emphasis on pitting acquired skills and pre-
composed materials against unanticipated ideas or unprogrammed opportunities,
options, or hazards can offset conventional organizational tendencies towards control,
formalization, and routine. In a response to the heavy reliance by journal contributors
on swing and bebop as the source of their jazz metaphors, Michael Zack [45] outlined
ways in which free jazz might propel discourse even further into the realm of
emergent, spontaneous, and mutually constructed organizational structures.

Are there lessons from improvising music that can help us to understand, or at least
to cope with, the complexity of our world? Improvising music makes us aware of the
power of bottom-up design, of self-organization. It operates in a network fashion,

29 See Joseph Goguen’s work in [39] and in the co-author chapter of [40].
30 The notion of music as a “consequence free” activity is somewhat problematic, but it is used
here in the biological sense that music, in most all cases, does not by itself do physical harm to
humans. Since social interactions play an important role in our cognitive development it should
also be clear that these two properties cannot be easily divorced from one another. The notion
of “play” in relation to improvised music is taken up in [42].

22 David Borgo

engaging all of the participants while distributing responsibility and empowerment
among them. Networks facilitate reciprocal interactions between members, fostering
trust and cooperation, but they also can concentrate power in the hands of a few.
Under the best of circumstances, improvising music encourages social activities that
support the growth and spread of valued criteria through the network. For instance,
improvisers tend to value diversity, equality, and spontaneity and often view their
musical interactions as a model for appropriate social interactions. Tom Nunn [32]
writes: “Free improvisers are important to the society in bringing to light some
fundamental values and ideas, for example: how to get along; how to be flexible;
how to be creative; how to be supportive; how to be angry; how to make do. So there
is a social and political ‘content’ in their music that seems appropriate today, though it
may not usually be overt” (p. 133).

As we continue to explore ways of improvising music, we should look for ways to
assist would-be cooperators in interacting more easily and more frequently. The
robustness and equity of a network system is a direct result of the range and number
of interactions. We should also look to maximize participation from the fringes,
rather than the core. In complex systems, a healthy fringe speeds adaptation,
increases resilience, and is almost always the source of innovations. For instance,
nearly every new style of American popular music has emerged from the periphery–
from a localized, and often disadvantaged, community–to capture the attention of
national and international audiences (at which time much of the music’s original
meaning may of course be sacrificed).

Fostering improvising music has the potential to overcome the inherent problems
of a slow-moving traditional hierarchy, providing an effective way to handle
unstructured problems, to share knowledge outside of traditional structures, and to
inject local knowledge into the system. Improvising music also ensures that the
cognitive models and metaphors we live by remain flexible, while it reminds us that
our flexibility to learn and adapt are grounded in the bodily and the social. Without
cultivating this embodied, situated, and distributed approach to music making, and
without maintaining a healthy reverence for uncertainty, we can build complicated
music systems, but not complex ones.

Complex systems must strike an uneasy and ever-changing balance between the
exploration of new ideas or territories and the exploitation of strategies, devices, and
practices that have already been integrated into the system. In other words, complex
systems seek persistent disequilibrium; they avoid constancy but also restless change.
Perhaps in a way similar to democracy, which along with jazz music has been a
powerful symbol of liberation and resistance to oppression, improvising music
teaches us to value not only cooperation, but also compromise and change. In
politics, as in music, a notion of the “common good” is bound to mean different
things to different individuals and groups, such that the democratic experience is one
of not getting everything you want. In a similar way, the value of improvising music
lies not in the outcome of a single performance, but rather it emerges over time
through continued musical and social interactions. Improvising music together does
not necessarily produce optimal outcomes, but the decision to improvise music
together does.

Sync or Swarm 23

References

[1] Mihaly Csikzentmihalyi and Grant Jewell Rich. Musical improvisation: a systems
approach. In R. Jeith Sawyer, editor, Creativity in Performance, pp. 43-66. Ablex
Publishing Corporation, 1987.

[2] Derek Bailey. Improvisation: Its Nature and Practice in Music, Da Capo Press, 1993.
[3] R. Keith Sawyer. Group Creativity: Music, Theater, Collaboration. Lawrence Erlbaum

Associates, 2003.
[4] Mihaly Csikzentmihalyi. Flow: The Psychology of Optimal Experience. Dimensions,

1991.
[5] Paul Berliner. Thinking in Jazz: The Infinite Art of Improvisation. University of Chicago

Press, 1994.
[6] Ingrid Monson. Sayin’ Something: Jazz Improvisation and Interaction. University of

Chicago Press, 1996.
[7] David Borgo. The dialogics of free jazz: musical interaction in collectively improvised

performance. M.A. thesis, UCLA, 1996.
[8] John Corbett. Extended Play: Sounding Off From John Cage to Dr. Funkenstein. Duke

University Press, 1994.
[9] David Toop. Frame of freedom: improvisation, otherness and the limits of spontaneity. In

Undercurrents: The Hidden Wiring of Modern Music. Continuum, 2002.
[10] John Corbett. Ephemera underscored: writing around free improvisation. In Krin

Gabbard, editor, Jazz Among the Discourses, pp. 217-40. Duke University Press, 1995.
[11] George Lewis. Too many notes: computers, complexity and culture in voyager. Leonardo

Music Journal 10:33-39, 2000.
[12] Kevin Kelly. Out of Control: The New Biology of Machines, Social Systems, and the

Economic World. Addison-Wesley Publishing Company, 1994.
[13] Norbert Weiner. Cybernetics. MIT Press, 1961.
[14] Ilya Prigogine and Isabelle Stengers. Order Out of Chaos. Bantam Books, 1984.
[15] Eric Bonabeau and Guy Théraulaz. Swarm smarts. Scientific American (March):72-79,

2000.
[16] Eric Bonabaue, Marco Dorgio, and Guy Théraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, 1999.
[17] Evan Parker. Shopping with Evan Parker. Monastery Bulletin (October), 2004.
[18] James Surowiecki. The Wisdom of Crowds. Doubleday, 2004.
[19] J. Stephen Lansing. Complex adaptive systems. Annual Review of Anthropology 32:183-

204, 2003.
[20] George Lewis. Improvisation and the orchestra: a composer reflects. essay to accompany

a performance by the American Composers Orchestra at the Improvise! Festival, April
28, 2004.

[21] Albert-László Barabási. Linked: The New Science of Networks. Perseus, 2002.
[22] Steven Shaviro. Connected: Or What it Means to Live in a Network Society. University of

Minnesota Press, 2003.
[23] John Law and John Hassard. Actor Network Theory and After. Blackwell, 1999.
[24] David Hajdu. Wynton’s blues. The Atlantic Monthly (March), 2003.
[25] Malcolm Gladwell. The Tipping Point: How Little Things Can Make a Big Difference.

Back Bay Books, 2002.
[26] David Borgo. Synergy and surrealestate: the orderly-disorder of free improvisation.

Pacific Review of Ethnomusicology 10:1-24, 2002.
[27] Duncan Watts. Six Degrees: The Science of a Connected Age. W.W. Norton & Co., 2003.
[28] Pablo Gleiser and Leon Danon. Community structure in jazz. Advances in Complex

Systems 6(4):565-573, 2003.

24 David Borgo

[29] Jonty Stockdale. Reading around free improvisation. The Source: Challenging Jazz
Criticism 1:101-114, 2004.

[30] Keith Johnstone. Impro: Improvisation and the Theater. Faber and Faber, 1979.
[31] Kenny Werner. Effortless Mastery: Liberating the Master Musician Within. Jamey

Aebersold, 1996.
[32] Tom Nunn. Wisdom of the Impulse: On the Nature of Musical Free Improvisation. self

published, (tomnunn@sirius.com), 1998.
[33] Philip Alperson. On musical improvisation. Journal of Aesthetics and Art Criticism

43(1):17-29, 1984.
[34] George Lewis. Teaching improvised music: an ethnographic memoir. In John Zorn,

editor, Arcana: Musicians on Music. Granary Books, 2000.
[35] Peter Russell. The Global Brain: Speculations on the Evolutionary Leap to Planetary

Consciousness. J.P. Tarcher, Inc., 1983.
[36] Howard Bloom. Global Brain: The Evolution of Mass Mind from the Big Bang to the 21st

Century. John Wiley & Sons, 2000.
[37] Edwin Prévost. Minute Particulars. Matchless, 2004.
[38] Morse Peckham. Man’s Rage for Chaos. Chilton Books, 1965.
[39] Joseph Goguen. Musical qualia, context, time, and emotion. Journal of Consciousness

Studies 11(3/4):117-147, 2004.
[40] David Borgo. Sync or Swarm: Improvising Music in a Complex Age. Continuum, 2005.
[41] Ian Cross. Music, cognition, culture, and evolution. In Isabelle Peretz and Robert J.

Zatorre, editors, The Cognitive Neuroscience of Music, pp. 42-56. Oxford University
Press, 2003.

[42] David Borgo. The play of meaning and the meaning of play in jazz. Journal of
Consciousness Studies 11(3/4):174-190, 2004

[43] Robert Axelrod and Michael D. Cohen. Harnesing Complexity: Organizational
Implications of a Scientific Frontier. Basic Books, 2000.

[44] Karl Weick. Improvisation as a mindset for organizational analysis. Organization Science
9(5):543-555, 1998.

[45] Michael Zack. Jazz improvisation and organizing: once more from the top. Organization
Science 11(2):227-234, 2000.

My Friend Joseph Goguen

Rod Burstall

University of Edinburgh (Retired)

4/12 Belhaven Place, Edinburgh EH10 5JN, UK

Abstract. A personal account of how Joseph Goguen and I came to
work together and of the influence that Tibetan Buddhism had on us
and on our collaboration. A brief discussion of some neurological exper-
iments using meditators and how Goguen’s work connects Buddhism,
computing, and cognition.

Mind, Heart and Meditation

Joseph Goguen has an extraordinary mind and a big heart. My friendship with
him is long and deep, and it has affected my life in two major ways since I
met him in 1974. First we worked closely together on modularity and program
specification for a dozen years or more and continued to have many conversations
about computing until my retirement in 2000. During this time I learnt a lot
from Joseph about category theory and its applications to computing. Second
he introduced me to Buddhist practice and thought under the guidance of a
Tibetan teacher, Chögyam Trungpa Rinpoche, with whom we both studied until
his death in 1987.

I will say a little about how I met him and what our motivations were, but
mainly I would like to describe a part of his life, and mine, which will be less
familiar to most readers, namely his interest in Buddhism. Later this year it
will be the thirtieth anniversary of Joseph giving me instruction in the medita-
tion technique which he learned from Chögyam Trungpa. I am still practicing
it regularly, and now I spend some months each year in solitary or group medi-
tation retreats. I have been thinking particularly about the connection between
Buddhist empirical knowledge and science.

Meeting and Working with Joseph

In the early seventies I was working at Edinburgh University on programming
languages and correctness proofs, and I had learned some elements of universal
algebra and category theory. When I was in the US I arranged to visit Jim
Thatcher, who had written a paper with Wright on categories and automata. It
turned out that Jim was more interested in stopping the Vietnam War than in
category theory, but both ideas were fine by me. I gave him a hundred dollars
to stop the war, and I got him a visiting fellowship to Edinburgh. One day
Jim told me that a colleague of his, a very clever mathematician named Joe
Goguen, would visit us in Edinburgh. I was quite terrified of meeting a clever

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 25–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

26 Rod Burstall

mathematician, but found to my surprise that this Joe person did not frighten
me at all. So next year in 1975 when I was at a conference in Los Angeles I fixed
up to stay over the weekend with him. It was a very exciting weekend, and at
my invitation Joseph spent that summer in Edinburgh on a Science Research
Council Visiting Fellowship. This was the start of our technical collaboration.

We were both interested in software and program correctness proofs, also in
how to apply proof techniques to larger programs by imposing a modular struc-
ture on them. Joseph suggested we think about modularity of specifications, as
that might be easier then thinking about programs. This led to our development
of a specification language called Clear. To give it semantics we used category
concepts to explain parameterised specifications and ways to combine them. It
seemed that the parameter mechanisms and the ways of combining them should
not depend on the particular specification language, so we came up with the
categorical concept of an institution to abstract away from the underlying lan-
guage, which might be equational logic or predicate calculus or whatever. This
was done while we were visiting each other in Edinburgh and Los Angeles, two
very contrasting environments. I learnt more about categories. In LA, I learned
about going out for breakfast. We drew diagrams on paper napkins in the Pan-
cake House, then in the sand on Santa Monica beach. Once when we thought
we had had a good idea we danced down the street, under the suspicious eyes of
a passing LAPD police car. All this was very exciting and, I believe productive.
We continued to work happily together on these topics from time to time until
the nineties. I also had much pleasure collaborating for some years with Joseph’s
talented son Healfdene, who joined my research group in Edinburgh.

Creativity and Uncertainty

Turning to the Buddhist side of Joseph’s life, let me backtrack in time and
explain why I had started practicing meditation before I met Joseph.

Studying physics at Cambridge University in the fifties I became fascinated
by the idea of computing. After various twists and turns, teaching myself with
help from friends, I wound up as a Research Fellow in Edinburgh University
in the “Experimental Programming Unit”. I was thinking about programming
languages, artificial intelligence and lambda calculus, cheerfully staying up late
at night to write and debug code — by 1966 our unit actually had a computer
to ourselves, the only one in the University.

Now I found myself writing papers and taking part in workshops, part of a
critical community. After a while I realized that the joy of creativity had become
tinged with competition and with doubt whether people would think that I was
doing well enough. So it seemed that external activity was not enough, I also
had to deal with my own mind. Like many people I had long been interested in
mind, indeed part of the attraction of computers was the hope that they could
give us insight into the workings of our minds. So meditation was interesting
for both personal and intellectual reasons. It promised an investigation of mind
from the inside.

My Friend Joseph Goguen 27

Joseph and Tibetan Buddhism

In the early seventies Joseph met and studied with an unusual man, Chögyam
Trungpa Rinpoche, an accomplished and respected scholar, meditation master
and teacher who fled Tibet in 1959 at the age of nineteen and wound up in the
United States, via India and Britain. Trungpa was a poet, artist and practical
joker who had a profound impact on many of those who met him.

What Trungpa taught was, in Western terms, somewhere between psycho-
therapy, philosophy, life coaching, religion and how to become a kind and open-
minded person. It was the result of two and a half millennia of empirical investi-
gation of the human mind from the inside, and it included a practical technology
for training the mind. But it had been nurtured in Tibet in isolation from the
rest of the world, and it was expressed in a language which was little known
and hard to translate, with its own rich technical vocabulary. Trungpa opened
up to Western culture, learned English and translated not just the words but
also the concepts. He also developed a number of non-verbal ways of getting his
message across, for example by teaching former hippies who had been attracted
to his teachings in the seventies to decorously dance the Viennese waltz. He
first indulged his Western students, teased them and then demanded extraordi-
nary effort and discipline. Extraordinary effort and discipline was nothing new
for Joseph: in 1975 he spent twelve weeks at a Buddhist ‘Seminary’ taught by
Trungpa, an intensive regime of meditation and study.

It was a few weeks after this that I stayed with Joseph in Los Angeles for the
first time as recounted above. He took me along to the local Buddhist centre and
played me a taped talk by Trungpa. Someone asked a question about Mozart
and to my surprise Trungpa seemed to admire his music — I was curious about
this Tibetan guru with an appreciation of eighteenth century European music.
The following year when Joseph was spending a second summer in Edinburgh I
asked him to teach me the basic Buddhist meditation technique.

In 1981 Joseph attended a second twelve-week seminary, and this time my
wife and I were there too (our two eldest daughters followed in later years). Over
three hundred students and staff took over an off-season hotel in the Canadian
Rockies. Periods of meditation, 7 a.m. to 9 p.m. with brief breaks after meals,
alternated with periods of teaching, study and more meditation, running later
still if Trungpa was teaching. Our family continued to practice what we had
learnt, and we were very grateful to Joseph and to Trungpa Rinpoche.

We were taught practices to pacify the mind, open up our awareness and
develop kindness and compassion to others. The main point was to pay moment
by moment attention to what was actually happening in our minds, wandering
thoughts and emotions: irritation, curiosity, regret, benevolence or whatever —
touch it and let go. This was a sort of animal behaviour investigation with the
animal being our own mind. Beyond this there were techniques aiming to change
one’s mental processes by prescribed exercises of the imagination. In particular
we worked to diminish the “destructive emotions” of anger, passion/addiction,
ignorance, envy and arrogance. (A selection of Trungpa’s talks is available in [8].)

28 Rod Burstall

Since then Joseph and I have both pursued the Buddhist path under the
direction Trungpa and, after his death, under his son Mipham Rinpoche. We
have many times shared our ideas and experiences. So now let me sketch some
ways in which this could connect with the scientific side of our lives in neuro-
science, psychology of emotions or cognitive linguistics, also with Joseph’s own
contribution to studies of consciousness.

Connections Between Buddhist and Western Explorations of the
Mind

The two and a half thousand year old culture which we call Buddhism developed
psychological models for the mind and the processes of perception and action,
based on internal meditative investigations and the results of many different
methods of training the mind. These methods are essentially technical, complete
with manuals, and not based on any kind of supernatural interventions. They
are, of course, not exclusive to Buddhism, witness other Indian traditions, Sufis
and Christian contemplatives.

Stephen Laberge, who has conducted experiments on lucid dreaming and
compared his techniques with those of the Tibetan tradition [4], comments

The effectiveness of a psychological technique can be tested by careful
observers of the contents of consciousness without the need of technol-
ogy other than a well-trained mind and a disciplined body. On contrast,
testing the validity of an explanation of that technique may require the
extremely sophisticated technology needed for the visualization and mea-
surement of neural activity.

Richard Davidson at the University of Wisconsin at Madison was able to
examine with an fMRI scanner and with EEG the neural activities of advanced
meditators using the Tibetan methods. In a first experiment “Lama Oser” (a
pseudonym), a Westerner, who has been a Tibetan monk for about thirty years,
was tested using six different meditation practices, one minute each with a pause
of one minute between them. Oser’s brain showed clear distinctions between
these different meditations and the pauses. His sharp shifts between different
activities were exceptional. In the EEG tests, when meditating on compassion,
his brain showed “a dramatic increase in the electrical activity known as gamma”
in an area of the brain associated with “happiness, enthusiasm, high energy and
alertness” [3, pp. 1–13]. In a later experiment, Davidson was able to confirm
the EEG results, comparing a group of experienced meditators with a group of
novice meditators [1,7].

Paul Ekman of the University of California at San Francisco, an expert on
the science of emotion, tested the ability of Lama Oser and another very ex-
perienced Western meditator (each had done a total of two or three years of
solitary retreats). In one test he asked them to identify “microemotions”, facial
emotions such as fear or contempt, which only appear for a fraction of a second
and are impossible to control deliberately, showing them videotapes of flashes

My Friend Joseph Goguen 29

of one fifth or even one thirtieth of a second of the faces. They both showed
ability two standard deviations above the norm, far higher than any of the five
thousand other people tested, including policemen, psychiatrists and even Secret
Service agents. Such a diagnostic ability for emotions would be helpful to guide
students in the transformative practices of the Buddhist tradition [3, pp. 13–21,
123–131].

Turning to psychological models rather than meditation techniques, the Ma-
hayana tradition of Buddhism emphasizes the concept of “emptiness” (Sanskrit
“shunyata”). It is puzzling how this relates to Western traditions. The Mad-
hyamaka approach tries to show the inadequacy of our conceptual system by
reductio ad absurdum arguments. Some of these seem to deal with paradoxes
reminiscent of Zeno’s paradoxes, for example ones about movement, which have
been clarified by Western work on calculus and limits. But it seems to me that
these arguments should be directed, not at our mathematics or physics theories,
but rather at the built-in conceptual reasoning systems which are common to
all humans. These systems are of interest to cognitive science and cognitive lin-
guistics, and Joseph has long drawn my attention to the work of George Lakoff
and his associates on “metaphor”. The idea here is that our conceptual models
of the world start from in built sensory motor conceptual schemes, such as the
idea of containment, for example “a triangle inside a square” or “the path of a
movement with starting and finishing points”. From these other more abstract
concepts, “being in trouble” or “on the road to ruin”, are derived by metaphors
(mappings or morphisms). A derived concept can have its meaning determined
by several such metaphorical maps. Lakoff and co-authors have applied these
ideas to human understanding both in philosophy [5] and in mathematics [6].
All this is reminiscent of the early work by Joseph and myself on defining a
specification language, Clear, in terms of theories and theory morphisms. In
the last few years Joseph has been working on the construction of conceptual
systems using “semiotic morphisms” [2] (For other references see his website
http://www.cs.ucsd.edu/users/goguen/projs/semio.html).

Another connection is Joseph’s work as founder and editor of the Journal of
Consciousness Studies, which has fostered growing interest in this aspect of mind
and published work from many disciplines by philosophers, psychologists, neuro-
scientists, linguists and practitioners of the ancient traditions of contemplation
and meditation.

The Buddhist tradition is just one of many wisdom traditions, spiritual,
psychotherapeutic and medical. We need to keep these alive. Using the analytical
methods and tools of science, some elements of these traditions will be better
understood, so that they can take their place as part of the global culture of
accepted knowledge.

Conclusion

I hope that this personal view will have illuminated one less public side of
Joseph’s life journey and given some feel for how it coheres with his exten-

30 Rod Burstall

sive and admirable work in computing. I count myself very fortunate to have
shared some part of that journey with him.

Acknowledgements

I am deeply grateful to my teachers, notably Chögyam Trungpa Rinpoche,
Sakyong Mipham Rinpoche and Ringu Tulku Rinpoche. Thanks go to José
Meseguer for editorial comments and to Joe Hendrix for helping to prepare
the manuscript for publication.

As for Joseph: these words do not suffice.

References

1. Davidson, R. J., Kabat-Zinn, J., Schumacher, J., Rosenkranz, M. A., Muller, D.,
Santorelli, S. F., Urbanowski, F., Harrington, A., Bonus, K. and Sheridan, J. F.
(2003) “Alterations in brain and immune function produced by mindfulness med-
itation” Psychosomatic Medicine 65:564–570.

2. Goguen, Joseph A., Harrell, Fox (2006) “Foundations for Active Multimedia Nar-
rative: Semiotic Spaces and structural blending” To appear in Interaction Studies:
Social Behaviour and Communication in Biological and Artificial Systems.

3. Goleman, Daniel (2003) Destructive Emotions: a dialogue with the Dalai Lama.
Bloomsbury UK. Bantam USA.

4. Laberge, S. (2003) “Lucid Dreaming and the Yoga of the Dream State” In Bud-
dhism and Science: breaking new ground. ed. Wallace, B. Alan. Columbia University
Press, New York USA and Chichester UK. 233–258.

5. Lakoff, G. and Johnson, M. (1999) Philosophy in the Flesh: the embodied mind and
its challenge to western thought. Basic Books, New York USA.

6. Lakoff, G. and Nez, R. E. (2000) Where Mathematics Comes From: how the em-
bodied mind brings mathematics into being. Basic Books, New York USA.

7. Lutz, A., Greischar, L., Rawlings, N. B., Ricard, M., Davidson, R. J. (2004). “Long-
term meditators self-induce high-amplitude synchrony during mental practice”.
Proceedings of the National Academy of Sciences, 101: 16369–16373.

8. Trungpa, Chogyam (1999) The Essential Chgyam Trungpa. ed. Gimian, C., Shamb-
hala, Boston USA.

Metalogic, Qualia, and Identity on Neptune’s Great
Moon: Meaning and Mathematics in the Works of

Joseph A. Goguen and Samuel R. Delany

D. Fox Harrell

Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, Mail Code 0404

La Jolla, CA 92093-0404
USA

fharrell@cs.ucsd.edu

Abstract. The works of Joseph A. Goguen and Samuel R. Delany address wide
arrays of "big" issues in philosophy: identity and qualitative experience,
semiotic representation, and the divergence between meaning in formal systems
of understanding and in everyday lived experience. This essay attempts to draw
out some of the parallels between the works of these two authors, in particular
regarding metalogic, qualia, and identity, using illustrative examples from the
works of both authors. Their works exhibit parallel dual strands: (1) a desire to
rigorously and precisely map out these fundamental issues, and (2) a desire to
acknowledge and embrace the ambiguities of phenomenological experience and
its divergence from any formalizable theory. In the end, addressing such a wide
range of issues has required both authors to develop and adopt new discourse
strategies ranging from rational argumentation to mathematics, from religious
and philosophical commentary to speculative (science) fiction and poetry.

1 Introduction

A perusal of any dozen pages from the Summa reveals Slade's
formal philosophical presentation falls into three, widely differing
modes. There are the closely reasoned and crystallinely lucid
arguments. There are the mathematical sections in which symbols
predominate over words; and what words there are, are fairly
restricted to: “... therefore we can see that...,” “...we can take this
to stand for...,” “...from following these injunctions it is evident
that...,” and the like. The third mode comprises those sections of
richly condensed (if not impenetrable) metaphor, in language more
reminiscent of the religious mystic than the philosopher of logic.
For even the more informed student, it is debatable which of these
last modes, mathematical or metaphorical, is the more daunting. [8]
– Samuel R. Delany, discussing the work of the fictitious
metalogician Ashima Slade

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 31-49, 2006.
 Springer-Verlag Berlin Heidelberg 2006

32 D. Fox Harrell

I'm afraid that the reader may have found this paper rather a long
strange trip, starting from the practice of software engineering,
then going to category theory, and eventually ethics, passing
through topics like equational deduction, various programming and
specification paradigms, semiotics, theorem proving, requirements
engineering and philosophy.

From another perspective, this paper can be considered a diary
from a very personal journey moving from a mathematical view of
computing, through a process of questioning why it wasn't working
as hoped, to a wider view that tries to integrate the technical and
social dimensions of computing. This journey has required a
struggle to acquire and apply a range of skills that I could never
have imagined would be relevant to computer science. Always I
have sought to discover things of beauty – “flowers” - and present
them in a way that could benefit all beings, though of course I don't
expect that very many people will share my aesthetics or my ethics.
[15]
– Joseph Goguen, excerpts (slightly reordered) from an
autobiographical essay tracing the trajectory of his research career

The aroma of algebraic flowers motivates this paper. Joseph Goguen has used the
metaphor of flowers to describe the strivings of his own work because of the
parsimonious beauty it is possible to evoke with elegant formalizations in
mathematics. For him the essence of these “flowers” is rooted in compassion and a
true desire to benefit humanity. Yet, Goguen’s metaphor for his work is also one of
loss. His autobiographical essay “Tossing Algebraic Flowers Down the Great
Divide,” [14] suggests that his beautiful work is tumbling downward into a dark
crevasse between technical and social scientific or humanistic disciplines, perhaps
only to be discovered at an unknown time, or perhaps never.

It is not so! Goguen's algebraic flowers garland a gossamer network of bridges
between diverse fields: computing, mathematics, philosophy, sociology, semiotics,
narratology, and more. Though perhaps more researchers are familiar with Goguen's
work on the technical side of the divide, I intend to highlight the bridge his work
builds from computing and mathematics to humanistic and artistic issues. Personally,
this bridge has been a profound influence on my work. My academic training is in
logic, interactive media art, and computer science. In the course of these studies, I
became interested in new forms of interactive narrative that take advantage of the
affordances provided by computing. I came to feel that a powerful direction in
interactive artwork is to allow user interaction to affect meaning with narratives, and
with Professor Goguen's guidance as my advisor this intuitive direction transformed
into specific goals, for example generating new metaphors or constructing narratives
as users provide input. Toward this end Goguen's algebraic semiotics and his
approach to user-interface design were a revelation. He is an expert mathematician
dealing with semiotic issues also addressed by art theory. He is a computer scientist
who espouses the importance of narrative. Underneath this all is a concern for the
social, ethical applications of his work. Because he has not compromised his work

Metalogic, Qualia, and Identity on Neptune's Great Moon 33

toward either side of the divide, Goguen's feeling of loss regarding this work is
probably due to the limited number of people on either side of the divide interested in
seriously addressing the issues and methods of greatest import on the other side. I
have described my own background only because I live directly in the center of the
divide. For people like me, Goguen's work in these areas is of great importance both
for its application and example. It can be used directly for artistic technical practices
and it is an example of what is possible to achieve when combining methods from
diverse fields with rigor and a careful attention to the values implicit in them. This
essay is intended to convey this important aspect of Goguen's work by focusing on
several particular topics in his oeuvre and contrasting them with the work of another
author that has inspired me, Samuel R. Delany.

The title of this paper refers to my attempt to find sympathy in the works of these two
eclectic and profound authors. The planet Neptune’s largest moon is Triton, here
alluding to the title of Delany’s science fiction novel Trouble on Triton: An
Ambiguous Heterotopia. The idea for the thesis of this paper was inspired by the
character mentioned in the Delany quote above from that same novel. In the character
Ashima Slade, using the idiosyncratic genre of “critical fiction” which allows
meticulous commentary on his fictitious author, his lectures, and his theory, Delany
has constructed an astounding parallel counterpart for Goguen. The parallel is
astounding because of the amazing correspondence of topical concerns that exist
between Delany’s essay, and the content and style of his character Ashima Slade’s
Harbin-y Lecture Shadows1 (on the topic of the “Modular Calculus,” which grew out
of “metalogic”) [8] [10].

Goguen has never been one to shy away from “big” issues of human existence.
Likewise, as a science fiction and fantasy author constructing civilizations, ancient
and futuristic, in part to illuminate sociological points, Delany addresses major
philosophical themes. Both are employed as university professors, Goguen in
computer science and Delany in English and creative writing, yet the works of each
extend well beyond their disciplinary boundaries. Indeed in the quote above Goguen
expresses that his work has taken him on a journey through exotic disciplinary locales
ranging from category theory to ethnomethodology, and his work also ranges to
Buddhist thought and poetry and fiction writing on occasion. Similarly, Delany has
commented on a wide range of concerns including semiotics, paraliterature, cultural
theory, discourse analysis, gender studies, as well as producing meditations on
mathematics and technology. These lists of interests of the two authors are not
exhaustive, but they serve to highlight the difficulties, and pleasures for those
sympathetic to deep interdisciplinary thought, in elucidating parallels in two prolific,
singular authors.

There are many specific parallels in the works of Goguen and Delany. Mathematical
metaphors are pervasive in Delany’s oeuvre and metalogic takes a prominent role in

1 Robert Elliot Fox tells us in his book Conscientious Sorcerers that “the title in the first lecture
of the series, “Shadows,” is one the Delany himself used for a speculative/critical essay. As
Slade’s fictitious editor tells us, Slade took the title ‘from a nonfiction piece written in the
twentieth century by an author of light, popular fictions.” [10]

34 D. Fox Harrell

Trouble on Triton in particular. By the same token, identity and difference are major
themes in Goguen’s work. Often he addresses such concerns through very abstract
mathematics such as the theory of institutions which allows for the comparison of
logics (a type of metalogic). Though he is not as explicit about politicized social
identity in the same sense as Delany, Goguen is also concerned with the relationship
of these themes to everyday lived experience. This can be seen in his work on qualia.
In phenomenology, philosophers use the term “qualia” to describe introspectively
accessible feelings of everyday life that are irreducible to objective characteristics.
[25] Goguen has carried out a set of experiments relating qualia to the issue of
identity and difference. Similarly, while many artists are interested in exploring the
qualitative experiences of life, Delany creates rigorous literary thought experiments
that also seem to address the qualia of identity, in his case usually experiences of race,
gender, sexual orientation, and similar issues of social identity. The care with which
Delany constructs these detailed explorations is exemplified below in Section 2.1 as
he uses the metaphor of metalogic to make very specific observations about the nature
of race. Finally, both authors are brazenly concerned with mapping out meaning in
all of its modularity and nuance. They are unified in this concern as they both draw
upon a broad range of traditions from science, mathematics, literature, and social and
cultural theories to comment upon some of the most fundamental issues we, as
humans, experience in life.

The task of investigating the parallels above is quite worthwhile. It serves to
highlight contributions of both Goguen and Delany that perhaps are less well-known
than their main contributions to their fields, and more importantly because of the
insights such an exercise provides to issues such as (1) identity and qualitative
experience, (2) semiotic representation, and the (3) divergence between meaning in
formal systems of understanding and everyday lived experience. These three issues
are intended to focus this paper (as opposed to representing a comprehensive outline
of shared concerns between the authors). This is not meant to be a complete survey of
either author’s work since I intend rather to highlight particularly salient parallels
between them. Thus, the paper is structured as a series of two case studies followed
by discussion and a conclusion.

The first case study is centered on Delany’s description of “metalogic,” and the
“modular calculus” where appropriate, in his novel Trouble on Triton: An Ambiguous
Heterotopia. The second case study is centered on the philosophical notion of qualia
in Goguen’s work in several papers [16] [19], and the theory of institutions where
appropriate. [18] These case studies are unified by a concern with identity, though
the starting points from which Goguen and Delany consider identity are quite
different. The case studies are followed by a discussion that highlights the tension
between both authors’ desires to rigorously map meaning and representation (semiotic
concerns), and both authors’ realizations that this is a Sisyphean task when confronted
with the immensity of the real world and human perception of it. The paper
concludes with an account of the various discourse styles and strategies Goguen and
Delany use to express their ideas – an account of the artistry of the authors. Their
discourse styles can be seen as roughly fitting into the same three categories that
Delany outline’s for Ashima Slade’s work: (1) well-reasoned rational argumentation,
(2) mathematics (in Delany’s case sometimes pseudomathematics used in a

Metalogic, Qualia, and Identity on Neptune's Great Moon 35

metaphorical way), and (3) more esoteric, artistic, or even religious/spiritual
discourse.

2 Metalogic, Qualia, and Identity

2.1 Delany on Metalogic and Identity

Trouble on Triton: An Ambiguous Heterotopia is a novel that tells the story of a self-
described “reasonably happy man,” living in a futuristic society on Neptune’s moon
Triton. [3] In truth, this man, a conflicted and pompous anti-hero named Bron
Helstrom, is far from satisfied. He is ill at ease with his own social identity and
relationships with others. He is not a likable or sympathetic character, perhaps meant
to represent the pretentiousness often brought on by experience of the privileges
accompanying dominant social status. In a world where physique, gender, religion,
and race are nearly instantly reconfigurable, a world at war with our own planet Earth,
Bron is constantly concerned with how he presents himself externally, and with
compensating for his own insecurities. Though largely a meditation on identity, the
novel features a robust metaphor of mathematics to address the qualitative experience
of identity and the potential for transformation of identity.

At one point early in the novel Bron Helstrom takes about seven pages, and many
elaborate analogies involving colored clouds as spaces of significance, hens and a half
laying eggs and a half, and the grotte between the tiles of the Taj Mahal, to provide a
brief description of the field of metalogic. [6] Though in the novel’s storyworld
metalogic is meant to provide a rigorous theory and methodology for problem solving
in the real world when rules of formal logic are inadequate, it becomes immediately
clear that Delany’s discussion of metalogic has the issue of identity, and especially
racial identity, as a subtext.

The reader is oriented to this subtext as the character Miriamne (to whom Bron is
about to pontificate on metalogic) responds to Bron’s question on her preference for
how she takes her coffee:

“Black,” she said from the sling chair, “as my old lady,” and
laughed again…
“That’s what my father always used to say.” She put her hands on
her knees. “My mother was from Earth – Kenya, actually; and I’ve
been trying to live it down ever since.” [5]

Bron’s parents are soon to be revealed as “large, blond, diligent” and “like so many
others it was embarrassing, laborers.” The discussion is then, at the level of
nonfictional communication between Delany and the reader [22], a commentary on
the social situation of a white male, possessed of a strong sense of entitlement and
oriented primarily toward class distinctions, lecturing a woman of color. This
commentary plays out metaphorically and metonymically as metalogic is explained

36 D. Fox Harrell

via several examples that are rich with terms that parallel racialized color such as
“black,” “white,” “brown,” “pink,” “red,” “tan,” “colored,” and “nonwhite.2”

Specifically, Bron begins by posing a challenge to the “beginning tenet of practically
every formal logic text ever written, ‘To deny P is true is to affirm P is false’.” The
color consciousness comes into play when Miramne responds by mentioning that she
recalls “something about denying the Taj Mahal is white … is to affirm that it’s not
white … an idea that, just intuitively I’ve never felt comfortable with.” Delany goes
on to explicate this discomfort by having his character Bron elaborate upon metalogic,
with a series of arguments using the color of the Taj Mahal as an example. This
series of arguments clearly could apply as easily to a discussion of the nuances of
racial identity, moving from a simplistic system of finite (binary initially: white vs.
nonwhite) classification to a much more complicated system, a “parametal model of
language,” that stresses the metaphor to the breaking point as exemplified by the
following quote:

…he used the fanciful analogy of “meanings” like colored clouds
filling up the significance space, and words as homing balloons
which, when strung together in a sentence, were tugged to various
specific areas in their meaning clouds by the resultant syntax
vectors but, when released, would drift back more or less to where,
in their cloudy ranges, they’d started out. [7]

I now present a summary of the points that Bron makes in his informal discussion of
metalogic and argument against the idea that to deny P is to affirm not-P:

(1) Premise: denying the Taj Mahal is white is not to affirm that it is not white
(2) the significance of ‘white’ is a range of possibilities
(3) the significance of ‘white’ “fades imperceptibly” through grey to black and
 through pink to red, and even to some non-colors
(4) accepting that ‘white(Taj Mahal) = F’ ‘¬ white(Taj Mahal) = T’ means
 placing a boundary around an area in the range of significance and to call
 everything in this area white and everything outside of it not-white
(5) this is already a distortion of what was already mentioned to exist, namely

fading ranges of color and non-color
(6) values on the boundary line are unaccounted for
(7) objects that are piecewise white and not-white are unaccounted for, (e.g. the

Taj Mahal is made of white tiles held to brown granite by tan grotte)

Notice that at this point the “Taj Mahal” in this discussion could have been
substituted by “racial ambiguous individual” with no effect on Bron’s argument
(besides making it more socially salient or politically charged). Furthermore, we have
reached a point where a solution to the problem is to describe the Taj Mahal, or
racialized person, piecewise as being ‘white’ and also being some other discrete color
signifiers. This is how archaic (really still in practice, only sometimes less overtly)
systems of racial identity functioned, with any number of arbitrary discrete color

2 This is strikingly reminiscent of Duke Ellington’s “Black, Brown, and Beige” suite. [9]

Metalogic, Qualia, and Identity on Neptune's Great Moon 37

categories often defined by quantified mixtures of identity3. Indeed I personally grew
up well aware of the “one drop” rule that holds sway in the United States of America:
any bit of “black blood” implies blackness (up to a practical limit of 1/16). It is
common for individuals whose parents are identified as belonging to different racial
groups to claim “biraciality,” or even more finely grained subdivisions of race. DNA
testing technologies [2], along with contemporary sociological theories of
classification admitting the arbitrary nature of race [1], have rendered these piecewise
and discrete classifications of identity obsolete. With all this in mind, I present
Miriamne’s response to Bron’s argument so far: “Wait a second: Part of the Taj
Mahal is white, and part of the Taj Mahal is brown, and part of the Taj Mahal is – ”
to which Bron responds by continuing his argument as follows:

(8) the words ‘Taj Mahal’ also have a range of significance
(9) the range of significance of ‘Taj Mahal’ is not discrete, is not unambiguous,

and cannot be bounded in a simple two-dimensional model
(10) the Taj Mahal must be described in terms of continuously valued parameters,

not discrete perimeters. “Language is parametal, not perimetal. Areas of
significance space intermesh and fade into one another like color-clouds in a
three-dimensional spectrum.”

(11) thus ‘logical’ bounding is dangerous because it implies that boundaries can
be placed around significance spaces

(12) natural language can overcome these problems and provide parametal
descriptions

(13) rigorous and precise modeling of such phenomena using mathematics
requires extremely advanced tools of analysis (at minimum metalogicians
have simple model with seven coordinates, in practice they often use twenty-
one, and even this is just an abstract model for visualization that does not
fully explain the real world, i.e. “real space”)

At this point, Bron’s argument is not yet complete. The problem is that “significance
space” has been reified. That is, it is being treated as if it exists in the real world and
there is such a thing as a “real” significance space to be modeled. Delany’s
perspective here, as expressed through the character Bron, foreshadows recent
directions in cognitive science. Bron’s explanation shifts to expressing “how what-
there-is manages to accomplish what-it-does,” namely how the brain and sensory
perception are the origins of complicated concepts such as “significance space” and
other concepts in general. In short, it is almost an embodied perspective of cognition
[26] (though Delany does not discuss motor operations). In this view “meaning”

3 The artist Betye Saar expresses this using real historical colorized terms for black people
found in popular culture and works such as those of the author Langston Hughes. Some of
these are: “bright/light, cream, fair, marinee, peola, pinky/pink toes, taffy, vanilla, banana,
butterscotch, café au lait, ginger, golden, honey, peaches, yella/high yella/deep yella, almond,
caramel, copper, red/red bone, rusty, bark, brownie, brown sugar, cocoa brown/high brown,
low brown/seal brown/tobacco brown, chocolate/chocolate drop/deep chocolate, molasses,
walnut, bronze, blackie, blackbird/blackberry, black/blue black/charcoal black/coal
black/dark black/deep black/lamp black/stove black, crow jane, licorice, midnight/beyond
midnight, nightblack boy, tar baby.”

38 D. Fox Harrell

depends upon the fact that humans exist “in a world that is inseparable from our
bodies, our language, and our social history.” [26]

From here Bron continues to reformulate the problem, and to describe how metalogic
allows us to address it.

(14) the goals of metalogic are to delimit problems and to explore how elements
in the significance space interpenetrate each other

(15) metalogical delineation of significance space means examining specific
human utterances or texts (syntax vectors) to dismiss some areas from
consideration

(16) the delimited area is then considered “metalogically valid”
(17) to deny “meaningfully” that the Taj Mahal is not white does not imply, but

suggests, that it is some color (and not, for example, “freedom,” “death,”
“Halley’s comet,” or some other thing that is not relevant)

(18) the topological representation of not-P can take any shape in the significance
space, even contained within P (i.e. tangent to P at an infinite number of
points – it this case it is said that it “shatters P”)

(19) Summary: metalogic looks at cognitive activations triggered by linguistic
parole (language as it is actually used) [24], selects a model of this in n-
dimensional space, and looks at the interpenetration of truth values of
relevant elements. Only in this context does it make (metalogical) sense to
say that if the Taj Mahal is not white it is some other color, otherwise, the
original premise is supported: denying the Taj Mahal is white is not to affirm
that it is not white

The remainder of Bron’s lecture merely focuses on mathematical techniques to model
the significance spaces and industry protocols for doing so. So, stepping back to look
at what Bron has just explained, meaning in a metalogical framework is embodied
and triggered via discourse. Modeling meaning requires looking at both its cognitive
basis and its relationship to language as used in practice. Mathematical modeling
does not reify meaning, but it allows for precise statements to be made given an
abstraction, and this abstraction may be fairly complicated with the added advantage
that it can be modeled computationally in order to get closer to a precise account of
the fuzzy topic of human meaning. According to Bron, regarding the issue of
identity, the metalogical framework is shown to be much better than simplistic logical
formalizations and their simplistic underlying assumptions.

2.2 Goguen on Identity and Qualia

Goguen is also engaged in the business of metalogic. His paper with Rod Burstall on
the theory of institutions begins:

There is a population explosion among the logical systems used in
Computing Science. Examples include first order logic, equational
logic, Horn clause logic, higher order logic, infinitary logic,
dynamic logic, intuitionistic logic, order-sorted logic, and temporal
logic; moreover, there is a tendency for each theorem prover to have
its own idiosyncratic logical system. We introduce the concept of

Metalogic, Qualia, and Identity on Neptune's Great Moon 39

institution to formalise the informal notation of "logical system.
[18]

He notes that some “exotic” logic systems have been proposed to handle various
problems ranging from program construction to natural language. The theory of
institutions allows comparison between various logics, translations between results in
one logic and another, and an account of the fact that “many general results used in
the applications are actually completely independent of what underlying logic is
chosen.” The notion of an “institution” was introduced to “formalize the informal
notion of ‘logical system’,” with the requirement that there be “a satisfaction relation
between models and sentences which is consistent under change of notation.” Thus,
the use of the prefix ‘meta’ in the case of Goguen and Burstall is traditional in that it
abstracts to a higher level of generalization than model theory, which describes only
the satisfaction relationship between syntax and semantics within a logical system.
The theory of institutions allows logics themselves, many different vocabularies, to be
compared. It is apparent that the theory of institutions is a rigorously formulated
mathematical account with practical applications and wide theoretically implications.
[18]

In contrast, Delany’s notion of metalogic is not ‘meta’ in the traditional sense, rather
it is ‘meta’ in a socio-cultural sense. It begins by looking at formal logical reasoning
and its relationship to everyday human thought and problem solving. The ‘meta’
level from this perspective is the issue of how “logical” reasoning and representation
in cognitive, social, and cultural contexts diverges from formal logical systems.
Needless to say, Delany does not present this work as rigorous mathematics (it is
embedded in a science fiction novel!) and his use of the concept of a “logic” though
primarily presented mathematically, is also largely meant metaphorically, without
clear indication of where the boundaries between these two functions lie. This is not
troublesome, however, because as seen above in Section 2.1 Delany’s discussion of
metalogic is multiveilant and is meant to comment upon the nuances of social identity
relationships, to “ground” his novel (it is necessary in genre fiction to “mark” itself as
conforming to conventions of the genre – in science fiction this is often done with
detailed reference to mathematics and science) by postulating a well-thought out
futuristic system of thought, and probably to explore some of his own thoughts as a
philosopher and theoretician within the context of a fiction.

Goguen’s work does address many overlapping issues with raised in Delany’s account
of metalogic, but rather than being found in Goguen’s work on “metalogical”
concerns (institutions), it can be found in his work on qualia and algebraic semiotics.
In his paper “Time, Structure and Emotion in Music” [19], with Ryoko Goguen, it is
stated that:

In formal logic the Law of Identity is stated as “A = A” meaning
that every object is equal (or identical) to itself...The Law of
Identity may apply to objects of modern science or technology (e.g.
numbers), but not to human experience. It appears that human
senses have been optimized by evolution to find differences, in
which case identity is the failure to find a significant difference.

This formulation of identity with regard to human experience also can provide
commentary on sociological phenomena of identity such as prejudice, or even

40 D. Fox Harrell

politically topical issues such as racial profiling and gender discrimination. It
positions these practices as grounded in failures of sensory perception to account for
differences (physical or cultural, nuanced or overt) between individuals that
undoubtedly exist (as attested to by victims of systematic discrimination or profiling!)
and implicitly states that such practices are the results of failures to respect the
individuality of humans (instead relying upon inadequate and coarse systems of
generalization and classification). Furthermore, Goguen emphasizes that it is not only
truth values of concepts that are important, but qualitative experience in human
existence. Thus, Goguen is concerned with qualia, often described informally in
philosophy as “what remains when all objective features are subtracted.” [19]
Goguen would remark, however, that in lived experience subjective phenomena are
often attributed at least as much “reality” as so-called “objective” phenomena.

Informal empirical experimentation and phenomenological analysis have moved
Goguen to propose a different definition of qualia that avoids some of the vagueness
of the traditional definition above. Goguen’s definition is: “Qualia are the
hierarchically organized constituents of conscious experience, each with a saliency
and an emotional tone.” To demonstrate qualia phenomena, he and Ryoko Goguen
performed several musical experiments that yielded observations such as the
following [19]:

(1) added notes beneath a note can change the character of a top note
(2) what comes before a note can greatly change its feeling
(3) what comes after a note can greatly change its feeling
(4) the apparent duration of a note can be changed by what comes before it
(5) repetitive phrases are expected to take a role in a larger framework, are

grouped, and with extreme repetition can become seen as background noise
and ignored

(6) a note can appear many times in a piece of music, but will not be interpreted
merely as many instances of that note (the music is interpreted more
holistically)

Clearly, though the subject matter is music, these experiments offer a strong
commentary on the transitory and subjective nature of identity. It is easy to think of
parallels with social identity such as: prejudices can influence dispositions from an
individual toward another individual (quale 1 above), impressions of a person after
meeting him or her can alter dispositions toward that person (quale 2 above), or the
process of enculturation within a group can allow a shift from ignorance of social
protocol to full fluency with social protocol, so that interaction becomes automatic
(quale 5 above). While Goguen does not present such social experiments in his paper,
probably introspection will allow the reader of this paper to agree with these
phenomena. In fact, these phenomena are commonplace and not surprising at all.
What is striking is that such everyday observations seem to illuminate inadequacies of
common approaches to identity (prejudice and discrete classification), the limitations
of “objectifying” identity, and the philosophically oft-overlooked importance of
subjective experience and emotion when accounting for identity.

Since subjectivity phenomena rarely, if ever, occur in isolation, Goguen is also
concerned with accounting for how qualia combine. He grounds this account in
Gilles Fauconnier and Mark Turner’s theory of conceptual blending from cognitive

Metalogic, Qualia, and Identity on Neptune's Great Moon 41

linguistics (along with Goguen’s hierarchical information theory). Goguen and
Goguen describe conceptual blending as the process

… in which relatively small, transient structures called conceptual
spaces, combine or “blend” to yield a new space that may have
emergent structure. Simple examples are words like "houseboat"
and “roadkill,” and phrases like “artificial life” and “computer
virus.” Blending is considered a basic human cognitive operation,
invisible and effortless, but pervasive and fundamental, for example
in grammar, reasoning, and combinations of text with music. [19]

Important here is the fact that conceptual blending theory has an embodied basis as
discussed above in 2.1. Furthermore, Goguen has developed a theory of algebraic
semiotics that uses algebraic specification from computer science to provide formal
notation to describe sign systems and mappings between them that are capable of
representing conceptual blends. Goguen and I have developed an algorithm that
models some core aspects of conceptual blending theory. [20], [21] This means that
despite the subjective nature of qualia, and the qualitative nature of identity, at least
some aspects of these phenomena can be approached formally with the use of
mathematics. Though Goguen is careful to claim that such work is not intended to
reify the formal models (in parallel with Delany), it is clear that he seeks an account
of qualia and identity that is precise and rigorous, and that corresponds with the daily
realities of lived human experience.

3 Discussion

3.1 Goguen’s Models and Realities

Goguen and Delany both seek rigorous accounts of social issues, and both take
inspiration and ideas from logic and mathematics. Both also exhibit a tension in their
work between a desire to account for social phenomena as carefully as possible, as
enabled through construction of intricate models, and to acknowledge the inherent
limitations of such approaches. In a very broad sense perhaps they are trying to
reconcile the power of holistic accounts provided by structuralism with deeply felt
postmodernist understandings of the inadequacies of such global models. The desire
for rigorous modeling is exhibited as both authors offer semiotic foundations for their
work.

In Goguen’s algebraic semiotics the structure of complex signs, including signs in
diverse media, and the blending of such structures are described using semiotic
systems (also called sign systems) and semiotic morphisms. A sign system consists
of [21]:

a loose algebraic theory composed of type declarations (called
sorts) and operation declarations, usually including axioms and
some constants), plus a level ordering on sorts (having a maximum
element called the top sort) and a priority ordering on the
constituents at each level. Loose sorts classify the parts of signs,
while data sorts classify the values of attributes of signs (e.g., color

42 D. Fox Harrell

and size). Signs of a certain sort are represented by terms of that
sort, including but not limited to constants. Among the operations
in the signature, some are constructors, which build new signs
from given sign parts as inputs. Levels express the whole-part
hierarchy of complex signs, whereas priorities express the relative
importance of constructors and their arguments; social issues play
an important role in determining these orderings. Conceptual spaces
are the special case where there are no operations except those
representing constants and relations, and there is only one sort.
Many details omitted here appear in [11].

A semiotic morphism is a mapping between sign systems. One very useful type of
mapping discussed above is that between information and a representation of that
information. A semiotic morphism maps sorts, constructors, predicates and functions
of one sign system to sorts, constructors, predicates and functions of another sign
system respectively. An example of how a sign system can be represented differently
via different semiotic morphisms is presented in Figure 1 [11], which depicts
representations of time as reported by different types of clocks.

Fig. 1. Different representations of a clock

Goguen’s diagram depicts a unary clock that simply displays a character repeated a
number of times equal to the number of elapsed minutes in a day, a simple digital
clock that simply displays the same number of minutes in standard Arabic numerals,
and a clock that displays military time. Semiotic morphisms from multiple conceptual
spaces to a single conceptual space constitute a “blend.”

Using a basis in conceptual blending theory and algebraic semiotics, Goguen and I
have also provided an account of “style,” another subjective and seemingly
unformalizable topic. Still, we made modest claims that some notions of style can be
captured by the principles by which concepts and signs are blended, though this is not
to be seen as analogous to true, context dependent, qualitative human style. In [20],
we proposed two dimensions of style (regarding computer mediated texts):

(1) Construction of formal narrative (or other) elements of media structure, at
different levels of granularity. At a large grain level these elements could be

Metalogic, Qualia, and Identity on Neptune's Great Moon 43

narrative clauses, or scenes of a film, at a more fine grain they could be
syntactic parameters of clauses, prosody of poems, or types of shots of a
film, and at the smallest grain they could include character sprites or
collectible items in games, specific metaphors in poems, or icons used in a
user interface.

(2) Selection of media and genres, selection of content, principles for how
content elements can be combined, and controls for changing between media
and genres.

Later, we even offer the following bold statement (though we mitigate both of these
claims later):

Thus there are at least 12 dimensions of style in this approach, 4 at
each level: choice of domain4, content of domain, optimality
principles for blending, and controls for changing domains. [20]

The point here is not the particularities of this notion of style, but rather the desire for
the “cake” of a formal model of style, while being “able to eat” the facts that we do
not reify this formalization and we do realize its limitations.

Indeed, in another paper we make this value very explicit [21]:
Before briefly discussing algebraic semiotics, it may be helpful to
be clear about its philosophical orientation. The reason for taking
special case with this is that, in Western culture, mathematical
formalisms are often given a status beyond what they deserve. For
example, Euclid wrote, “The laws of nature are but the
mathematical thoughts of God.” … Somewhat less grandly, one
might consider that conceptual spaces are somehow directly
instantiated in the brain. However, the point of view of this paper is
that such formalisms are constructed by researchers in the course of
particular investigations, having the heuristic purpose of facilitating
consideration of certain issues in that investigation.

Under this view, all theories are situated social entities,
mathematical theories no less than others.

The varyingly humble and enthusiastic claims concerning the nature, and concrete
applications, of algebraic semiotics illuminate what I assert is a rare attitude toward
the integration of mathematics and social concern.

3.2 Delany’s Models and Realities

A rare attitude, but not unique. Delany’s “Informal Remarks Towards the Modular
Calculus” display a similar impulse. Part one of the “remarks” consists of the body of
the novel Trouble on Triton itself; other parts of the “remarks” are strewn throughout
other novels Delany has written in a completely different genre. Thus, the literary
theorist Robert Elliot Fox describes Delany’s “modular calculus” as a “mapping of
culture” that “embraces both science fiction and fantasy, as well as
critical/confessional modes.” [10] Using the vehicle of Ashima Slade’s Harbin-y

4 A “domain” here refers to a collection of knowledge regarding a particular idea or theme.

44 D. Fox Harrell

Lectures, Delany provides part two of his “informal remarks toward the modular
calculus [3],” discussed below.

The character Ashima Slade uses the sentence “The hammer hit a nail” to provide an
example of some core concepts of the modular calculus. In summing up the modeling
accomplished by that sentence Slade offers:

We are modeling attitudes, objects, and various aspects of a relation
between them; to do this job, we are using, among a large group of
things and relations, various of those things and relations to stand
for the objects, attitudes, and relations we wish to model.

Slade continues to explain that there are various ways to express the grammatical and
semantic relationships evident in the sentence, and likewise there are various ways to
describe the relationship between, for instance, “the three a’s in the sentence.” If the
sentence is thought to be formed of only letters and spaces, the ways to describe the
relationships that make up and describe the sentence are limited. Slade posits that if
the letters in the sentence were instead made of lines in a matrix on a digital display

Fig. 2. Digital display flash-out from Delany’s Trouble on Triton

(see Figure 2), the ways of describing a list of relations in the sentence would be quite
different, especially considering that letters can be made in multiple forms (see Figure
3).

Fig. 3. Digital letter forms from Delany’s Trouble on Triton

In explicating the modular calculus5, Slade distinguishes between modular and non-
modular descriptions. A modular description “preserves some of the modular
properties of the sentence in a list that describes the sentence.” A non-modular
description “preserves none of the modular relations of the sentence in a list that
describes the sentence.” Thus, Slade asserts that the digital display is modular
whereas mere letters and spaces are nonmodular. The modular calculus, then,
translates between a grammar (a list of sentences about how to compose sentences –
an inherently nonmodular description even if it is complete), and a modular
description. Slade concludes with the following remarks about the modular calculus:

Now the advantages of a modular description of either a modeling
object, like a sentence, or a modeling process, like a language, are

5 And distinguishing it from the “modular algebra,” which sadly Delany does not have Slade
explain in depth in the same essay.

Metalogic, Qualia, and Identity on Neptune's Great Moon 45

obvious vis-à-vis a nonmodular description. A modular description
allows us reference routes back to the elements in the situation
which is being modeled. A nonmodular description is nonmodular
precisely because, complete or incomplete as it may be, it destroys
those reference routes: it is, in effect, a cipher.
…
The problem that still remains to the calculus, despite my work, and
that will be discussed in later lectures, is the generation of formal
algorithms for distinguishing incoherent modular descriptive
systems from coherent modular descriptive systems. Indeed, the
calculus has already given us partial descriptions of many such
algorithms, as well as generating ones for determining
completeness, partiality, coherence, and incoherence—processes
which till now had to be considered, as in literature, matters of taste.

The parallel between the two authors’ ideas described above goes far beyond the fact
that both use figures depicting digital displays, Goguen and Delany share a concern
for the various ways to represent a particular sign system, and the fact (following
Saussure) that “signs come in systems.” [11] Both also are interested in mapping the
complex ways that sign systems are composed. But recall that Ashima Slade is
naught but a character in Delany’s “Informal Remarks Towards a Modular Calculus,”
and that the informal remarks are written in the fictional mode. Slade’s remarks and
their mathematical timbre serve a metaphorical purpose (though their contents also
express and reinforce that purpose) which is to express the complexities of meaning
and identity formations (at the very least Delany raises many other social and
philosophical issues) with fiction rather than formal modeling and the epistemological
problems formalisms present. This decision to employ a fictional mode provides an
advantage outlined observation of his other character, Bron Helstrom: “Ordinary,
informal, nonrigorous language overcomes all these problems, however, with a
bravura, panache and elegance that leave the formal logician panting and applauding.”

Like Goguen does with algebraic semiotics, Delany mitigates the modular calculus.
Slade’s fictitious biographer informs us that the modular calculus grew out of Slade’s
earlier work in metalogic. But Bron Helstrom’s lecture on metalogic was completely
undermined by his unsympathetic persona. Bron is a pompous “white” male who
speaks with dominant cultural authority and in fact is filled with insecurities. At one
point he angrily berates a worker on the telephone (or some futuristic version of a
telephone) whose department had mistakenly placed Miriamne, a cybralogician, in the
metalogics division. It becomes clear that Bron’s performance is only displayed in
the hopes of impressing Miriamne (Bron continues pretending to yell at the worker
even after he is hung up on). He exhibits an inability to relate to the woman in front
of him, and is completely bewildered by his own identity, revealing the limited utility
of his ability to pontificate on the subtly nuanced metalogical identity of the Taj
Mahal. And in the end, the discussion of formally modeling the color of the Taj
Mahal faded out in the face of lived reality as Bron’s lecture veered toward “muzzy
eloquence”: “…the thought struck: Somewhere in real space was the real Taj Mahal.
He had never seen it: He had never been to Earth.”

46 D. Fox Harrell

And the discussion of metalogic itself flashes out as Miriamne changes the subject to
mention that earlier she had run into a female acquaintance that Bron was interested
in. “What happened next was that his heart began to pound.”

4 Conclusions

Composing this paper has been a satisfying exercise that brought into conjunction the
works of two people whom I admire a great deal. This process raised important
issues about topics as diverse as social identity, qualia, semiotics, and consciousness,
but perhaps as importantly, an unifying aesthetic was formed. Both authors offer a
type of groundless [12] work with audacity in approaching “big” issues of life. In
order to locate the ambiguities and consistencies of representation and meaning,
Delany and Goguen each use a diving rod that bifurcates in two seemingly opposite
directions: (1) a desire to rigorously map and exploit regularities of the world(s) we
inhabit, and (2) a desire to acknowledge and embrace the ambiguities of lived human
experience and its divergence from any idealized theory. The feelings, sometimes
tension, sometimes cool detachment, most times deep compassion, the authors evoke
come in part from the subject matters of their inquiries, and in part from their methods
and discourse strategies used in their explorations, meditations. I conclude with a few
remarks on a final parallel between the two authors.

Delany, in a pair of quotations above, through the characters Bron Helstrom and
Ashima Slade, expressed the “bravura, panache, and elegance” of informal language,
and the ability of literature to formulate the modular calculus. Goguen, though
cognizant of the limitations of formal methods, writes that his early formal
mathematical work “may have an austere kind of beauty from its abstraction and
generality,” and coined the metaphor of “Tossing Algebraic Flowers Down the Great
Divide” to describe his life’s work in a biographical paper [14]. In the end, Goguen
and Delany exhibit aesthetically motivated craftsmanship in their work. They both
utilize a range of discourse styles, indeed all three that are exhibited in the fictitious
work of Ashima Slade which are, once again: (1) rational argumentation, (2) logic and
mathematics, and (3) more esoteric, artistic, or even religious/spiritual discourse.
Samuel R. Delany’s three modes can be exemplified in:

(1) the genre of critical fiction as in part two of “The Informal Remarks Towards
the Modular Calculus,

(2) the exposition of metalogic,
(3) and contrasting descriptions of subcultures, both self-indulgent:

Really, breast-bangles on a man? (even a very
young man.) Just aesthetically: weren’t breast
bangles more or less predicated on breasts that, a)
protruded and, b) bobbed…?” [4],

 and acetic:
Seven years ago, he’d actually attended a meeting
of the Poor Children of the Avestal Light and
Changing Secret Name; over three instruction
sessions he’d learned the first of the Nintey-Seven

Metalogic, Qualia, and Identity on Neptune's Great Moon 47

Sayable mantras/mumbles: Mimimomomizo-
lalilamialomuelamironoriminos… [4]

along with a lyrical beauty, now sparse, now dense, in his prose style.

Joseph A. Goguen’s three modes can be exemplified in:
(1) his philosophical discussion of qualia with some grounding in the work of

Martin Heidegger and Edmund Husserl [16]
(2) a great deal of his work in mathematics, a mild example is the introduction

of the notion of an institution:
...an institution consists of an abstract category
Sign, the objects of which are signatures, a
functor Sen: Sign Set, and a contravariant
functor Mod: Sign Setop (more technically, we
might uses classes instead of sets here).
Satisfaction is then a parameterized relation |= S
between Mod(S) and Sen(S), such that the
following satisfaction condition holds, for any
signature morphism f: S S', any S-model M,
and any S'-sentence e:

M |= S f(e) iff f(M) |= S' e
This condition expresses the invariance of truth
under change of notation. [18]

(3) his Buddhism based explorations of phenomenological and even
metaphysical concerns:

However, if Heidegger and the Buddhists are
right, it is the possibility of non-being which
gives beings their character of luminosity, and
hence the nothing, i.e., shunyata, is not only prior
to negation, but also to things.

The effect of this, as Heidegger says, is to rob
logic of its claim to supremacy, and in particular,
to rob it of its claim to provide foundations for
science and even for mathematics. Indeed, we
must conclude that foundations in the sense
sought by logicians are simply not possible. The
judgements that we make, and in particular any
negative judgements, are necessarily grounded in
our being-in-the-world, and not in any pre-
existing unshakable truths, or eternal world of
ideal things. [17]

And finally his poetry:
6:41 am

Clear leaf cloud masses
 motionlessly moving
past the static gray road -
 almost too lovely to bear. [13]

48 D. Fox Harrell

Acknowledgments

Joseph Goguen made this paper possible with the gift of his work. When I was
seeking a Ph.D. program, his algebraic semiotics inspired me to cross the United
States of America, to move back to the city where I was raised, to work with him on
combining twin streams of computation and art (especially narrative art). In his
Meaning and Computation Lab, his advisorship, and his friendship, I found what I
was seeking.

Samuel “Chip” Delany I have only met in passing moments, as a fan. In New York
City he graciously provided me his address so that I could mail him a correspondence
regarding one of his stories – my favorite short story in existence: “The Tale of
Rumor and Desire” – I never could find the right words to write him. In San Diego,
he offered bit of encouragement on publishing my novel. I thank Delany for forging a
trail in the combination of fantasy and sociology that is my passion.

References

1. Bowker, G. C., Star, S. L.: Sorting Things Out: Classification and Its Consequences. The
MIT Press, Cambridge, MA, (1999)

2. Collins, F. S.: What we do and don't know about ‘race,’ ‘ethnicity,’ genetics and health at
the dawn of the genome era . In: Nature Genetics 36, S13 - S15, National Human Genome
Research Institute, National Institutes of Health, Bethesda, Maryland, (2004)

3. Delany, S. R.: Trouble on Triton: An Ambiguous Heterotopia. Wesleyan University Press,
Hanover, NH, (1976)

4. Ibid., 2
5. Ibid., 48
6. Ibid., 48-55
7. Ibid., 51
8. Ibid., 295-296
9. Ellington, Duke. The Duke Ellington Carnegie Hall Concerts: January 1943, Berkeley:

Prestige, (1977).
10. Fox, R. E.: Conscientious Sorcerers: The Black Postmodernist Fiction of LeRoi Jones/

Amiri Baraka, Ishmael Reed, and Samuel R. Delany. Greenwood Press, New York, (1987)
11. Goguen, J.: An Introduction to Algebraic Semiotics, with Application to User Interface

Design, In: Proceedings, Computation for Metaphors, Analogy and Agents, edited by
Chrystopher Nehaniv. Yakamtsu, Japan, (1998)

12. Goguen, J.: Consciousness and the Decline of Cognitivism. In: Advance Papers, Second
Workshop on Distributed Collective Practice. University of California, San Diego, (2002)

13. Goguen, J.: November Qualia, URL =
 <http://www.cs.ucsd.edu/users/goguen/misc/novq.html>.
14. Goguen, J.: Tossing Algebraic Flowers Down the Great Divide. In: C. S. Calude, (ed.):

People and Ideas in Theoretical Computer Science, Springer, New York, (1999)
15. Ibid., 1
16. Goguen, J.A.: Musical Qualia, Context, Time and Emotion. In: J.A. Goguen and E. Myin

(eds.): Journal of Consciousness Studies, Volume 11, No. 3-4, March-April, Imprint
Academic, (2004)

Metalogic, Qualia, and Identity on Neptune's Great Moon 49

17. Goguen, J. A.: Truth and Meaning. In: Four Pieces on Error, Truth and Reality, Technical
Monograph PRG-89, Oxford University Computing Laboratory Programming Research
Group, Oxford, (1990)

18. Goguen, J., Burstall, R.: Introducing Institutions. In: Logics of Programs (Carnegie-
Mellon University, June 1983), Lecture Notes in Computer Science, Volume 164, Springer,
(1984) 221-256

19. Goguen, J., Goguen, R.: Time, Structure and Emotion in Music, Japanese translation by
Sumi Adachi to appear in book of University Lectures at Keio University, (2003-2004)

20. Goguen, J., Harrell, D. F.: Foundations for Active Multimedia Narrative: Semiotic Spaces
and Structural Blending. In revision, (2006)

21. Goguen, J., Harrell, D. F.: Style as Choice of Blending Principles. In: Style and Meaning in
Language, Art, Music and Design, Proceedings of a Symposium at the 2004 AAAI Fall

 Symposium Series, Technical Report FS-04-07, AAAI Press, Washington DC, October 21-
24, (2004)

22. Jahn, M.: Narratology: A Guide to the Theory of Narrative, URL =
 <http://www.uni-koeln.de/~ame02/pppn.htm>, N2.3.1.
23. Saar, Betye. Colored: Consider the Rainbow, Michael Rosenfeld Gallery, New York,

(2003)
24. Saussure, F.: Course in General Linguistics. Translated by Roy Harris. Duckworth,

London, (1976)
25. Tye, M.: Qualia, The Stanford Encyclopedia of Philosophy (Summer 2003 Edition),

Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/sum2003/entries/qualia/>.
26. Varela, F. J., Thompson, E., Rosch, E.: The embodied mind: Cognitive science and human
 experience. The MIT Press, Cambridge, MA, (1991)

Quantum Institutions

Carlos Caleiro, Paulo Mateus, Amilcar Sernadas, and Cristina Sernadas

CLC, Department of Mathematics, IST,
Av. Rovisco Pais, 1000-149 Lisbon, Portugal

Abstract. The exogenous approach to enriching any given base logic
for probabilistic and quantum reasoning is brought into the realm of
institutions. The theory of institutions helps in capturing the precise
relationships between the logics that are obtained, and, furthermore,
helps in analyzing some of the key design decisions and opens the way
to make the approach more useful and, at the same time, more abstract.

1 Introduction

A new logic was proposed in [1, 2, 3] for modeling and reasoning about quantum
states, embodying the relevant postulates of quantum physics (as presented, for
instance, in [4]) and adopting the exogenous approach (the original models are
kept). The logic was designed from the semantics upwards, starting with the key
idea of adopting superpositions of classical models as the models of the quantum
logic. In [5], other instances of the exogenous approach to enriching logics were
presented in detail. In short, the exogenous approach is based on adopting as
models of the new envisaged logic (enriched) sets of models of the given base
logic without tampering with the models of the original logic. As an example
assume that we want to introduce probabilities to a certain logic. Doing so, using
the exogenous approach, means that we consider the possible outcomes to be the
semantic structures and we assign probabilities to sets of such structures.

This novel approach to quantum logic semantics is completely different from
the traditional approach [6, 7] to the problem, as initially proposed by Birkhoff
and von Neumann [8], that focuses on the lattice of closed subspaces of a Hilbert
space. The main drawback of Birkhoff and von Neumann’s approach is that it
does not yield an extension of classical logic. Our semantics has the advantage
of closely guiding the design of the language around the underlying concepts
of quantum physics while keeping the classical connectives and was inspired by
the Kripke semantics for modal logic. The possible worlds approach was also
used in [9, 10, 11, 12, 13] for probabilistic logic. Our semantics to quantum logic,
although inspired by modal logic, is also completely different from the alternative
Kripke semantics given to traditional quantum logics (as first proposed in [14])
still closely related to the lattice-based operations. The resulting quantum logic
also incorporates probabilistic reasoning (in the style of Nilsson’s calculus [9, 10])
since the postulates of quantum physics impose uncertainty on the outcome of
measurements. From a quantum state (superposition of classical valuations living
in a suitable Hilbert space) it is straightforward to generate a probability space

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 50–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Quantum Institutions 51

of classical valuations in order to provide the semantics for reasoning about the
probabilistic measurements made on that state.

Herein, we present within the theory of institutions (a logic is identified with
an institution, as originally proposed in [15, 16]), the exogenous-style construc-
tion of a quantum logic from any given base logic in order to assess how general
the construction is. The construction is carried out in three main steps. Given
an arbitrary institution we first build its global extension (globalization) where
each model is just a set of models of the original institution. Then, we proceed
with the construction of its probabilistic extension (probabilization) where each
model is a probability space where the outcomes are models of the original in-
stitution. Finally, we obtain the quantum extension (quantization) of the given
institution where each model is a unit vector in the Hilbert space freely gen-
erated from a set of models of the original institution. Obviously, in each step
the language is enriched to take advantage and to express properties of the new
models. For instance, in the globalization step, global classical connectives are
added for reasoning about formulas of the original logic. The institutional per-
spective allows us to conclude that the first two constructions are fully general,
in the sense that nothing is assumed about the given institution and also that
nothing else is needed. But quantization requires some additional information
(the choice of qubit formulae).

In Section 2, we briefly present the relevant notions and results of the theory
of institutions. The globalization step is described in Section 3. The probabi-
lization step is presented in Section 4. Finally, in Section 5 we carry out the
quantization step of the enrichment. We conclude with an outline of further
research directions.

2 Institutional Preliminaries

In this paper, as a first step towards the full understanding of the proposed
approach to enriching logics, we shall adopt a variant of the original notion of
institution, without morphisms between models (c.f. [17]). For simplicity we shall
just call it an institution, without any further qualifiers. We denote by Cls the
category with classes as objects and maps between classes as morphisms.

An institution is a tuple I = 〈Sig,Sen,Mod,�〉 where: Sig is a category
(of signatures); Sen : Sig → Set is a (formula) functor; Mod : Sig → Clsop

is a (model) functor; and �= {�Σ}Σ∈|Sig| is a family of (satisfaction) relations
�Σ⊆ Mod(Σ) × Sen(Σ), such that the following satisfaction condition holds,
for every signature morphism σ : Σ → Σ′, every formula ϕ ∈ Sen(Σ), and every
model m′ ∈ Mod(Σ′): Mod(σ)(m′) �Σ ϕ iff m′ �Σ′ Sen(σ)(ϕ).

As usual, given a set Γ ⊆ Sen(Σ) of formulas and a model m ∈ Mod(Σ),
we will write m �Σ Γ to denote the fact that m �Σ ϕ for every ϕ ∈ Γ . Mutatis
mutandis, given a set M ⊆ Mod(Σ) of models and a formula ϕ ∈ Sen(Σ),
we will write M �Σ ϕ to denote the fact that m �Σ ϕ for every m ∈ M .
Recall that I induces a family �= {�Σ}Σ∈|Sig| of (entailment) relations �Σ⊆
Pw(Sen(Σ)) × Sen(Σ) defined by Γ �Σ ϕ if, for every m ∈ Mod(Σ), if m �Σ

Γ then m �Σ ϕ.

52 Carlos Caleiro et al.

The notions of arrow between institutions are at least as important as the
notion of institution itself. There is a rather extensive and prolific bibliography
on this subject, where various meaningful notions of arrows between institutions
are proposed, used, exemplified, and related with each other. A recent system-
atization of the field can be found in [17]. The notion of arrow that we will be
using in this paper can be classified as a comorphism (or a plain map as origi-
nally named in [18], or also a representation as renamed in [19]). It is however
a modified comorphism that maps models to sets of models, which can be ex-
plained as an instance of the general monad construction of [20]. The definition
will take advantage of the usual covariant powerset endofunctor Pw, in this case
extended to classes, that is, Pw : Cls → Cls is such that Pw(X) = 2X , and
Pw(f : X → X ′) maps each Y ⊆ X to f [Y] = {f(x) : x ∈ Y }.

Definition 1. A power-model comorphism from institution I to institution I ′

is a tuple 〈Φ, α, β〉 where Φ : Sig → Sig′ is a (signature translation) functor;
α : Sen → Sen′ ◦ Φ is a (formula translation) natural transformation; and
β : Mod′◦Φ→ Pw◦Mod is a (power-model translation) natural transformation,
such that the following coherence condition holds, for every signature Σ ∈ |Sig|,
formula ϕ ∈ Sen(Σ), and model m′ ∈ Mod′(Φ(Σ)): βΣ(m′) �Σ ϕ iff m′ �′

Φ(Σ)

αΣ(ϕ).

In the definition above, βΣ(m′) is a set of models. Thus, the coherence con-
dition states that m′ �′

Φ(Σ) αΣ(ϕ) iff, for every m ∈ βΣ(m′), m �Σ ϕ. Clearly,
the possibility that βΣ(m′) = ∅ is not excluded. In that case, m′ must satisfy
the translation via α of any formula whatsoever. A particularly interesting case
corresponds to the situation when βΣ(m′) is a singleton. If this happens for ev-
ery model then we can recast the power-model natural transformation simply to
β : Mod′ ◦ Φ→ Mod, thus obtaining the usual notion of comorphism.

It is a well known fact that comorphisms preserve entailment. A further sim-
ple condition on the surjectivity of the translation of models can also guarantee
the reflection of entailment. Such properties were studied in [21]. These results
can easily be lifted to the level of power-model comorphisms, as stated below.
(Power-model) comorphisms compose in the usual way.

Proposition 1. Let I and I ′ be institutions and 〈Φ, α, β〉 : I → I ′ a power-
model comorphism. Then Γ �Σ ϕ implies αΣ [Γ] �Φ(Σ) αΣ(ϕ). Additionally, if
for each m ∈ Mod(Σ) there exists m′ ∈ Mod′(Φ(Σ)) such that βΣ(m′) = {m},
then Γ �Σ ϕ iff αΣ [Γ] �Φ(Σ) αΣ(ϕ).

Proof. Given the power-model comorphism, assume that Γ �Σ ϕ. If m′ ∈
Mod′(Φ(Σ)) is such that m′ �′

Φ(Σ) αΣ [Γ] then, using the coherence condition
of the power-model comorphism, we have that βΣ(m′) �Σ Γ . Thus, by defini-
tion of entailment, it follows from Γ �Σ ϕ that βΣ(m′) �Σ ϕ. Using again the
coherence condition, we now get m′ �′

Φ(Σ) αΣ(ϕ). Hence, αΣ [Γ] �Φ(Σ) αΣ(ϕ).

Quantum Institutions 53

Assume now that the additional surjectivity condition holds and αΣ [Γ] �Φ(Σ)

αΣ(ϕ). If m ∈ Mod(Σ) is such that m �σ Γ then {m} �σ Γ . But we know that
there exists m′ ∈ Mod′(Φ(Σ)) such that βΣ(m′) = {m}. Thus, βΣ(m′) �σ Γ
and it follows from the coherence condition of the power-model comorphism that
m′ �′

Φ(Σ) αΣ [Γ]. Hence, by definition of entailment, it follows that m′ �′
Φ(Σ)

αΣ(ϕ). Using again the coherence condition we obtain that βΣ(m′) �σ ϕ, or
equivalently, m �σ ϕ. Therefore, Γ �Σ ϕ. 	

Hence, the existence of a power-model comorphism that fulfills the surjectiv-
ity condition stated in the second half of Proposition 1, for every signature, allows
one to say that the target institution is a conservative extension of the source
institution. Note that, for comorphisms, the surjectivity condition stated above
simply boils down to requiring that each map βΣ : Mod′(Φ(Σ)) → Mod(Σ)
is surjective. It is also a trivial task to check that the surjectivity condition is
preserved by composing (power-model) comorphisms.

3 Global Institution

As a first step in our development, we aim at characterizing the exogenous
enrichment of a given logic with a layer of global reasoning. For the purpose, let
I = 〈Sig,Sen,Mod,�〉 be the starting institution. We now proceed by defining
the envisaged global institution Ig and then showing, by means of a power-model
comorphism, that it extends I in a conservative way.

Definition 2. The global institution Ig = 〈Sig,Seng,Modg,�g〉 based on I is
defined as follows:
– Seng(Σ) is the least set containing Sen(Σ) such that, if δ, δ1, δ2 ∈ Seng(Σ)

then (� δ), (δ1 � δ2) ∈ Seng(Σ).
– Seng(σ) = σg is defined inductively by: σg(ϕ) = Sen(σ)(ϕ), σg(� δ) =

(� σg(δ)), and σg(δ1 � δ2) = (σg(δ1) � σg(δ2));
– Modg(Σ) = {M : ∅ 	= M ⊆ Mod(Σ)},
– Modg(σ)(M ′) = Mod(σ)[M ′];
– �g

Σ is defined inductively by: M �g
Σ ϕ iff M �Σ ϕ, M �g

Σ (� δ) iff M 	�g
Σ δ,

and M �g
Σ (δ1 � δ2) iff M 	�g

Σ δ1 or M �g
Σ δ2.

Clearly, Ig is an institution. Indeed, the functoriality of Seng and Modg is
straightforward. The satisfaction condition of Ig can be established by a simple
induction on formulas. The only interesting case is the base case, that we analyze
below, the other cases being immediate by induction hypotheses. Let σ : Σ →
Σ′ be a signature morphism, ϕ ∈ Sen(Σ) and M ′ ∈ Modg(Σ′). Then, by
definition of Seng and �g, M ′ �g

Σ′ Seng(σ)(ϕ) iff M ′ �Σ′ Sen(σ)(ϕ), that is,
m′ �Σ′ Sen(σ)(ϕ) for everym′ ∈M ′. Therefore, using the satisfaction condition
of I, this is equivalent to having Mod(σ)(m′) �Σ ϕ for every m′ ∈M ′, that is,
Modg(σ)(M ′) �g

Σ ϕ.
In the resulting logic, the connectives � and � correspond to global negation

and global implication, respectively. Other connectives can be easily introduced,

54 Carlos Caleiro et al.

like global conjunction (δ1
 δ2) ≡ �(δ1 � (� δ2)). If the base institution has
a negation ¬ and an implication ⇒, which can be understood as local, these
connectives do not collapse with the global ones. For implication, for instance,
we have that {(ϕ1 ⇒ ϕ2)} �g

Σ (ϕ1 � ϕ2), but the converse does not hold in gen-
eral, given two base formulas ϕ1, ϕ2 ∈ Sen(Σ). Namely, assume that I is the
institution of classical propositional logic, π1, π2 ∈ Σ are two propositional sym-
bols and v1, v2 ∈ Mod(Σ) are two classical valuations such that v1(π1) = 0,
v1(π2) = 0, v2(π1) = 1 and v2(π2) = 0. Then, {v1, v2} �g

Σ (π1 � π2) but
{v1, v2} 	�g

Σ (π1 ⇒ π2). The logic resulting from globalizing classical proposi-
tional logic was carefully studied in [5], where a sound and complete calculus
could be obtained by capitalizing on a calculus for classical logic and adding an
axiomatization of the new connectives. It is an open question if the same sort of
enterprise can be done in the general case. However, it seems possible to gener-
alize the technique used there, at least if the base logic enjoys an expressibility
property analogous to the disjunctive normal form of classical logic.

More interesting, at the moment, is to establish the precise relationship be-
tween the institutions I and Ig.

Proposition 2. The triple Cg = 〈Φg , αg, βg〉, where Φg is the identity functor
on Sig; for eachΣ, αg

Σ translates ϕ ∈ Sen(Σ) to ϕ; and for eachΣ, βg
Σ translates

M ∈ Modg(Σ) to M , is a power-model comorphism Cg : I → Ig and fulfills the
surjectivity condition.

Proof. The naturality of αg and βg is straightforward. Given a signature mor-
phism σ : Σ → Σ′ and ϕ ∈ Sen(Σ), we have Seng(σ)(αg

Σ(ϕ)) = Seng(σ)(ϕ) =
Sen(σ)(ϕ) = αg

Σ′(Sen(σ)(ϕ)). Similarly, given M ′ ∈ Modg(Σ′), then we have
Pw(Mod(σ))(βg

Σ′(M ′)) = Pw(Mod(σ))(M ′) = Mod(σ)[M ′]= Modg(σ)(M ′)
= βg

Σ(Modg(σ)(M ′)). The coherence condition is trivial. 	

As a corollary, by Proposition 1, Cg shows that Ig is in fact a conservative
extension of I.

4 Probability Institution

Let us now characterize the exogenous enrichment of a given logic with proba-
bilistic reasoning. We start by introducing the essential definitions and properties
of probability spaces. A probability space over a non-empty set Ω of outcomes
is a pair P = 〈B, μ〉 where B is a Borel field over Ω, that is, B ⊆ 2Ω contains
Ω and is closed for complements and countable unions; and μ : B → [0, 1] is a
measure with unitary mass, that is, μ(M) = 1 and μ(

⋃∞
i=1Bi) =

∑∞
i=1 μ(Bi) if

{Bi}∞i=1 ⊆ B is a family of pairwise disjoint sets.
In due course, we will need to map probability spaces along functions on their

outcomes. Let f : U → U ′ be a function, Ω ⊆ U and P = 〈B, μ〉 a probability
space over Ω. The image of P along f is the probability space f(P) = 〈B′, μ′〉
over Ω′ = f [Ω] where B′ = {B′ ⊆ Ω′ : f−1(B′) ∩ Ω ∈ B}; and μ′ is such that
μ′(B′) = μ(f−1(B′) ∩Ω).

Quantum Institutions 55

Let I = 〈Sig,Sen,Mod,�〉 be the starting institution. As before, we shall
first define the envisaged probability institution Ip and then show, using power-
model comorphisms, that Ip extends conservatively both I and Ig. Indeed, the
whole idea is to work with sets of models of the original institution, as in the
global case, but now endow them with a certain probability measure. Of course,
also the linguistic resources of the logic will be augmented to allow probabilistic
assertions and reasoning. For that sake, we assume fixed a set X of variables.
We shall also denote by R the set of all computable real numbers (see [22]).

Definition 3. The probability institution Ip = 〈Sig,Senp,Modp,�p〉 based on
I is defined as follows:
– Senp(Σ) is the least set containing Sen(Σ) such that: (� δ), (δ1 � δ2) ∈

Senp(Σ) if δ, δ1, δ2 ∈ Senp(Σ), and (t1 ≤ t2) ∈ Senp(Σ) if t1, t2 ∈ Tp(Σ),
where Tp(Σ) is the least set (of probabilistic terms) such that:X,R ⊆ Tp(Σ),
(
∫
ϕ) ∈ Tp(Σ) if ϕ ∈ Sen(Σ), and (t1 + t2), (t1.t2) ∈ Tp(Σ) if t1, t2 ∈ Tp(Σ);

– Senp(σ) = σp is defined inductively by: σp(ϕ) = Sen(σ)(ϕ), σp(� δ) =
(� σp(δ)), σp(δ1 � δ2) = (σp(δ1) � σp(δ2)), and σp(t1 ≤ t2) = (Tp(σ)(t1) ≤
Tp(σ)(t2)), where Tp(σ) is inductively defined by: Tp(σ)(x) = x, Tp(σ)(r) =
r, Tp(σ)(

∫
ϕ) = (
∫
Sen(σ)(ϕ)), Tp(σ)(t1+t2) = (Tp(σ)(t1)+Tp(σ)(t2)), and

Tp(σ)(t1.t2) = (Tp(σ)(t1).Tp(σ)(t2));
– Modp(Σ) is the class of all triples S = 〈M,P, ρ〉 where M is non-empty

set subset of Mod(Σ), P = 〈B, μ〉 is a probability space over M such that
{m ∈ M : m �Σ ϕ} ∈ B for every ϕ ∈ Sen(Σ), and ρ : X → R is an
assignment;

– Modp(σ)(〈M ′, P ′, ρ′〉) = 〈Mod(σ)[M ′],Mod(σ)(P ′), ρ′〉;
– �p

Σ is defined inductively by: S �p
Σ ϕ iff M �Σ ϕ, for ϕ ∈ Sen(Σ), S �p

Σ

(� δ) iff S 	�p
Σ δ, S �p

Σ (δ1�δ2) iff S 	�p
Σ δ1 or S �p

Σ δ2, and S �p
Σ (t1 ≤ t2) iff

[[t1]]S ≤ [[t2]]S , where the denotation of probabilistic terms [[]]S : Tp(Σ) → R
is defined inductively by: [[x]]S = ρ(x), for x ∈ X and [[r]]S = r, for r ∈ R,
[[
∫
ϕ]]S = μ({m ∈ M : m �Σ ϕ}), [[t1 + t2]]S = [[t1]]S + [[t2]]S and [[t1.t2]]S =

[[t1]]S .[[t2]]S .

Ip is an institution. Indeed the functoriality of Senp is straightforward. Con-
cerning Modp, and given σ : Σ → Σ′, just note that indeed 〈M,P, ρ〉 =
Modp(σ)(〈M ′, P ′, ρ′〉) ∈ Modp(Σ). Given ϕ ∈ Sen(Σ), {m ∈ M : m �Σ ϕ}
is measurable, because M = Mod(σ)[M ′], and it is also measurable the set
Mod(σ)−1({m ∈ M : m �Σ ϕ}) ∩M ′ = {m′ ∈ M ′ : Mod(σ)(m′) �Σ ϕ} =
{m′ ∈M ′ : m′ �Σ′ Sen(σ)(ϕ)}.

The satisfaction condition of Ip can be established by a simple induction on
formulas. The only interesting case is that of inequalities. Let t ∈ Tp(Σ). For ease
of notation let S′ = 〈M ′, P ′, ρ′〉 and P ′ = 〈B′, μ′〉, S = Modp(σ)(S′) = 〈M,P, ρ〉
and P = Mod(σ)(P ′) = 〈B, μ〉. We need to show that [[t]]S = [[Tp(σ)(t)]]S

′
. This

fact can be shown by a simple induction on terms. The interesting case concerns
the terms (

∫
ϕ). Given ϕ ∈ Sen(Σ), using the definitions of term denotation

and of image of a probability space, the satisfaction condition of the base insti-
tution I, and the definition of term translation, along with a little set-theoretical
manipulation, we have that

56 Carlos Caleiro et al.

[[
∫
ϕ]]S = μ({m ∈M : m �Σ ϕ}) =

μ′(Mod(σ)−1({m ∈M : m �Σ ϕ}) ∩M ′) =
μ′({m′ ∈M ′ : Mod(σ)(m′) �Σ ϕ}) =
μ′({m′ ∈M ′ : m′ �Σ′ Sen(σ)(ϕ)}) = [[

∫
Sen(σ)(ϕ)]]S

′
= [[Tp(σ)(

∫
ϕ)]]S

′
.

The term (
∫
ϕ) denotes the probability of ϕ, interpreted as the probability

of the models of the base institution that satisfy ϕ. The logic resulting from the
probabilization of classical propositional logic was carefully studied in [5], where
a sound and weak complete calculus could be obtained. The calculus extends the
one for the globalization of classical propositional logic by exploring the inter-
play between the classical connectives and probability, and uses an oracle rule for
reasoning with real numbers. Although the logic enjoys the deduction theorem
with respect to global implication, strong completeness is out of reach simply
because the logic is not compact. Take, for instance, Δ = {(r ≤ x) : r < 1

2}.
Clearly, Δ �p

Σ (1
2 ≤ x) but no finite subset of Δ does. Another interesting rele-

vant remark is the fact that the operators � and ♦ defined by (�ϕ) ≡ (1 ≤
∫
ϕ)

and (♦ϕ) ≡ �(
∫
ϕ ≤ 0) behave as normal modalities.

In the general case depicted here, however, our aim is to establish the precise
relationship between the institutions I, Ig and Ip.

Proposition 3. The triple Cgp = 〈Φgp, αgp, βgp〉, where Φgp the identity func-
tor on Sig; for each Σ, αgp

Σ translates each δ ∈ Seng(Σ) to δ; and for each Σ,
βgp

Σ translates each 〈M,P, ρ〉 ∈ Modp(Σ) to M ∈ Modg(Σ), is a comorphism
and fulfills the surjectivity condition.

Proof. The naturality of αgp and βgp and the coherence condition are straight-
forward. As for surjectivity, given a non-empty M ⊆ Mod(Σ) and m ∈M , take
for instance the triple S = 〈M, 〈B, μ〉, ρ〉 where B = 2M , μ(B) = and ρ is any
assignment. Then 〈B, μ〉 is a probability space over M , and βgp

Σ (S) = M . 	

As a corollary, by Proposition 1 and the observations therein, Cgp shows that
Ip is a conservative extension of Ig. By transitivity, Ip is also a conservative ex-
tension of I. Indeed, by composition, we also obtain a power-model comorphism
Cp = Cgp ◦ Cg : I → Ip that fulfills the surjectivity condition.

5 Quantum Institution

Finally, we turn our attention to the exogenous enrichment of a given logic with
quantum reasoning. In order to materialize the key idea of adopting superposi-
tions of models of the given logic as the models of the envisaged quantum logic,
let us start by recalling the essential concepts of quantum systems. Let us re-
call the relevant postulates of quantum physics (following closely [4]) and set up
some important mathematical structures.

Postulate 4 Associated to any isolated quantum system is a Hilbert space. The
state of the system is described by a unit vector |w〉 in the Hilbert space.

Quantum Institutions 57

For example, a quantum bit or qubit is associated to a Hilbert space of di-
mension two: a state of a qubit is a vector α0|0〉 + α1|1〉 where α0, α1 ∈ C and
|α0|2 + |α1|2 = 1. That is, the quantum state is a superposition of the two clas-
sical states |0〉 and |1〉 of a classical bit. Therefore, from a logical point of view,
representing the qubit by a propositional constant, a quantum valuation is a
superposition of the two classical valuations.

Postulate 5 The Hilbert space associated to a quantum system composed of
finitely many independent component systems is the tensor product of the com-
ponent Hilbert spaces.

For instance, a system composed of two independent qubits is associated
to a Hilbert space of dimension four: a state of such a system is a vector
α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉 where α00, α10, α01, α11 ∈ C and |α00|2 +
|α01|2 + |α10|2 + |α11|2 = 1. Again, representing the two qubits by two propo-
sitional constants, a quantum valuation is a superposition of the four classical
valuations. So, the Hilbert space of the system composed of two independent
qubits is indeed the tensor product of the two Hilbert spaces, each correspond-
ing to a single qubit.

Since we want to work with an arbitrary set of qubits, we will need the
following general construction. Given a nonempty set E, the free Hilbert space
over E is H(E), the inner product space over C defined as follows: each ele-
ment is a map |w〉 : E → C such that {e ∈ E : |w〉(e) 	= 0} is countable,
and
∑

e∈E ||w〉(e)|2 < ∞; addition, scalar multiplication and inner product
are defined by |w1〉 + |w2〉 = λe. |w1〉(e) + |w2〉(e), α|w〉 = λe. α|w〉(e), and
〈w1|w2〉 =

∑
e∈E |w1〉(e)|w2〉(e).

As usual, the inner product induces the norm |||w〉|| =
√
〈w|w〉, which on its

turn induces the distance d(|w1〉, |w2〉) = |||w1〉 − |w2〉||. Since H(E) is complete
for this distance, H(E) is a Hilbert space. Clearly, {|e〉 : e ∈ E} is an orthonor-
mal basis of H(E), where |e〉(e) = 1 and |e〉(e′) = 0 for every e′ 	= e. A unit
vector of H(E) is just a vector |w〉 ∈ H(E) such that |||w〉|| = 1.

Let Q be the set of qubits in hand. If there are no dependencies between
the qubits then the system is described by the Hilbert space H(2Q), where 2Q

is the set of all classical valuations. However, in many cases, we will be given
a finite partition S = {Q1, . . . , Qn} of Q, giving rise to n independent subsys-
tems. In the sequel, we will use

⋃
S to denote the set {

⋃
Qi∈RQi : R ⊆ S}.

Moreover, it may also be that the qubits Qi of each isolated subsystem are also
constrained and some of the classical valuations in 2Qi are impossible. Any set
V ⊆ 2Q of admissible classical valuations induces a set of admissible classi-
cal valuations for each subsystem, that is, Vi = {vi : v ∈ V } with vi = v|Qi .
Analogously, we will use vR to denote the restriction v|R of a valuation v to
R ∈
⋃
S, and VR = {vR : v ∈ V }. Then, the space describing the correspond-

ing quantum system will be the tensor product
⊗n

i=1 H(Vi). Still, note that
although (2Q)i = 2Qi and 2Q =

∏n
i=1 2Qi , in general V �

∏n
i=1 Vi. Moreover,

58 Carlos Caleiro et al.

although H(2Q) =
⊗n

i=1 H(2Qi) =
⊗n

i=1 H(
∏n

i=1 2Qi), in general we have that
H(V) �

⊗n
i=1 H(Vi) � H(

∏n
i=1 Vi).

Hence, we should only consider quantum states of
⊗n

i=1 H(Vi) that are com-
patible with V . Given the subspace relations stated above, we shall call a struc-
tured quantum state over V and S to a family |w〉 = {|wi〉}n

i=1 such that each
|wi〉 is a unit vector of H(Vi); and 〈v|(

⊗n
i=1 |wi〉) =

∏n
i=1 〈vi|wi〉 = 0 if v /∈ V .

Note that it is easy to identify
⊗n

i=1 |wi〉 with a unique unit vector in H(V)
since all the amplitudes on valuations not in V are null. Hence, by abuse of
notation, we shall also use |w〉 to denote

⊗n
i=1 |wi〉.

Now, we turn our attention to the postulates concerning measurements of
physical quantities.

Postulate 6 Every measurable physical quantity of an isolated quantum system
is described by an observable1 acting on its Hilbert space.

Postulate 7 The possible outcomes of the measurement of a physical quantity
are the eigenvalues of the corresponding observable. When the physical quantity
is measured using observable A on a system in a state |w〉, the resulting outcomes
are ruled by the probability space ProbA

|w〉 = 〈Ω,B|Ω, μA
|w〉〉 where in the case of

a countable spectrum μA
|w〉 = λB.

∑
λ∈Ω χB(λ)|Pλ|w〉|2 .

For the applications we have in mind in quantum computation and informa-
tion, only logical projective measurements are relevant. In general, the stochastic
result of making a logical projective measurement of the system at a structured
quantum state |w〉 determined as above is fully described by the probability
space 〈2V , μ|w〉〉 over V where μ|w〉(B) =

∑
v∈B |〈v|w〉|2 for every B ⊆ 2V .

In the sequel, we will need to be able to map quantum systems and states
across qubit maps. Let f : U → U ′, Q ⊆ U and Q′ = f [Q]. Then, the function
f• : 2Q′ → 2Q defined by f•(v′)(q) = v′(f(q)) is injective: if f•(v′1) = f•(v′2)
then, for each q ∈ Q, v′1(f(q)) = v′2(f(q)), which implies that v′1 = v′2 since
Q′ = f [Q]. Hence, f• establishes a bijection between any given set of classical
valuations V ′ ⊆ 2Q′

and V = f•[V ′] ⊆ 2Q. Therefore, f• also establishes an
isomorphism between the Hilbert spaces H(V ′) and H(V) obtained my map-
ping |w′〉 ∈ H(V ′) to |w〉 = f•(|w′〉) such that |w〉(f•(v′)) = |w′〉(v′). More-
over, note that every finite partition S′ = {Q′

1, . . . , Q
′
n} induces a partition

S = f−1[S′] = {Q1, . . . , Qn} of Q with each Qi = f−1(Q′
i) ∩ Q. Hence, since

surjectivity guarantees that each Q′
i = f [Qi], the Hilbert space isomorphism es-

tablished in the preceding paragraph by f• also applies to the subsystems, that
is, H(V ′

i) and H(Vi) are isomorphic.
1 Recall that an observable is a Hermitian operator such that the direct sum of its

eigensubspaces coincides with the underlying Hilbert space. Since the operator is
Hermitian, its spectrum Ω (the set of its eigenvalues) is a subset of R. For each
λ ∈ Ω, we denote the corresponding eigensubspace by Eλ and the projector onto Eλ

by Pλ.

Quantum Institutions 59

We now characterize the exogenous enrichment of a given institution I with
quantum reasoning. As in the previous cases, we shall first define the envisaged
quantum institution Iq and then characterize its relationship to I, as well as to
the institutions previously built. To this end, qubits will be selected formulas
of the original logic, that induce upon observation a probability distribution on
models of the original institution. The notation Iq is a little abusive here, since
the enrichment will be parameterized by a functor that chooses the qubits of
interest. Hence, we consider fixed a functor Qb : Sig → Set such that, for every
signature Σ, Qb(Σ) ⊆ Sen(Σ) and, for every signature morphism σ : Σ → Σ′,
Qb(σ) = Sen(σ)|Qb(Σ) and Sen(σ)[Qb(Σ)] = Qb(Σ′). Note that Sen(σ) is
required to be surjective on qubits, and that this requirement is essential in the
subsequent development of the Iq institution.

Clearly, models of the given institution induce classical valuations on the
qubits. We denote by VΣ : Mod(Σ) → 2Qb(Σ) defined, for each qubit ϕ ∈
Qb(Σ), by

VΣ(m)(ϕ) =
{

1 if m �Σ ϕ
0 otherwise .

To fulfill the original idea of working with quantum superpositions of models
of the original institution, we will have to restrict our attention to sets of models
M ⊆ Mod(Σ) on which VΣ is injective, that is, if m1,m2 ∈ M and m1 	= m2

then VΣ(m1) 	= VΣ(m2). In this way, we have a bijection between M and VΣ [M].
Given A ⊆ F ⊆ Qb(Σ), we shall denote by vF

A ∈ 2F the classical valuation
of the qubits in F defined by vF

A(ϕ) is 1 if ϕ ∈ A and is 0 otherwise.
The syntax of the logic will also be augmented, not only with probabilistic

reasoning, but also in order to allow us to manipulate complex amplitudes and
to talk about qubit independence. Hence, besides for the set X of real variables,
we also assume fixed a set Z of complex variables.

Definition 8. The quantum institution Iq = 〈Sig,Senq,Modq,�q〉 based on I
(and Qb) is defined as follows:
– Senq(Σ) is the least set including Sen(Σ) such that: (� δ), (δ1 � δ2) ∈

Senq(Σ) if δ, δ1, δ2 ∈ Senq(Σ); [F] ∈ Senq(Σ) if F ⊆ Qb(Σ); and (t1 ≤
t2) ∈ Senq(Σ) if t1, t2 ∈ Tq

R(Σ), where the sets Tq
R(Σ) and Tq

C(Σ) (of
real valued and complex valued terms, respectively) are defined by mu-
tual induction as follows: X,R ⊆ Tq

R(Σ); (
∫
ϕ) ∈ Tq

R(Σ) if ϕ ∈ Sen(Σ),
(t1 + t2), (t1.t2) ∈ Tq

R(Σ) if t1, t2 ∈ Tq
R(Σ), and Re(u), Im(u), arg(u), |u| ∈

Tq
R(Σ) if u ∈ Tq

C(Σ); Z ⊆ Tq
C(Σ), |�〉FA ∈ Tq

C(Σ) if A ⊆ F ⊆ Qb(Σ),
(t1 + it2), (t1.eit2) ∈ Tq

C(Σ) if t1, t2 ∈ Tq
R(Σ), u ∈ Tq

C(Σ) if u ∈ Tq
C(Σ),

(u1 + u2), (u1.u2) ∈ Tq
C(Σ) if u1, u2 ∈ Tq

C(Σ), and (ϕ 	 u1;u2) ∈ Tq
C(Σ) if

ϕ ∈ Sen(Σ) and u1, u2 ∈ Tq
C(Σ),

– Senq(σ) = σq is defined inductively by: σq(ϕ) = Sen(σ)(ϕ), σq(� δ) =
(� σq(δ)), σq(δ1�δ2) = (σq(δ1)�σq(δ2)), σq([F]) = [Sen(σ)[F]], and σq(t1 ≤
t2) = (Tq

R(σ)(t1) ≤ Tq
R(σ)(t2)), where Tq

R(σ) = σq
R and Tq

C(σ) = σq
C are de-

fined by mutual induction: σq
R(x) = x, σq

R(r) = r, σq
R(
∫
ϕ) = (
∫
Sen(σ)(ϕ)),

σq
R(t1 + t2) = (σq

R(t1) + σq
R(t2)), σ

q
R(t1.t2) = (σq

R(t1).σ
q
R(t2)), σ

q
R(Re(u)) =

Re(σq
C(u)), σq

R(Im(u)) = Im(σq
C(u)), σq

R(arg(u)) = arg(σq
C(u)), σq

R(|u|) =

60 Carlos Caleiro et al.

|σq
C(u)|, σq

C(z) = z, σq
C(|�〉FA) = |�〉Sen(σ)[F],Sen(σ)[A], σ

q
C(t1 + it2) =

(σq
R(t1) + iσq

R(t2)), σ
q
C(t1.eit2) = (σq

R(t1).eiσq
R(t2)), σq

C(u) = σq
C(u), σq

C(u1 +
u2) = (σq

C(u1) + σq
C(u2)), σ

q
C(u1.u2) = (σq

C(u1).σ
q
C(u2)), σ

q
C(ϕ 	 u1;u2) =

(Sen(σ)(ϕ) 	 σq
C(u1);σ

q
C(u2));

– Modq(Σ) is the class of all tuples 〈M,S, |w〉, ν, ρ〉 where: ∅ 	= M ⊆ Mod(Σ)
such that VΣ is injective onM , S is a finite partition of Qb(Σ), |w〉 is a struc-
tured quantum state over VΣ [M] and S, ν = {νFA}A⊆F⊆Qb(Σ) is a family
of complex numbers such that, whenever F ∈

⋃
S, νFA = 〈vF

A |
⊗

Qi⊆F wi〉
if vF

A ∈ VF , and νFA = 0 if vF
A /∈ VF , and ρ is an assignment such that

ρ(x) ∈ R for every x ∈ X , and ρ(z) ∈ C for every z ∈ Z;
– Modq(σ)(〈M ′,S′, |w′〉, ν′, ρ′〉) = 〈Mod(σ)[M ′], σ−1[S′], σ•(|w′〉), ν, ρ′〉 with
σ• = Sen(σ)•, σ−1 = Sen(σ)−1 and νFA = ν′Sen(σ)[F]Sen(σ)[A];

– �q
Σ is defined inductively by W �q

Σ ϕ iff M �Σ ϕ, for ϕ ∈ Sen(Σ), W �q
Σ

(� δ) iff W 	�q
Σ δ, W �q

Σ (δ1 � δ2) iff W 	�q
Σ δ1 or W �q

Σ δ2, W �q
Σ [F]

iff F ∈
⋃
S, and W �q

Σ (t1 ≤ t2) iff [[t1]]WR ≤ [[t2]]WR , where the denotations
of real terms [[]]WR : Tq

R(Σ) → R and of complex terms [[]]WC : Tq
C(Σ) →

C are defined by mutual induction as follows: [[x]]WR = ρ(x), for x ∈ X ,
[[r]]WR = r, for r ∈ R, [[

∫
ϕ]]WR = μ|w〉(VΣ [{m ∈ M : m �Σ ϕ}]), [[t1 + t2]]WR =

[[t1]]WR +[[t2]]WR , [[t1.t2]]WR = [[t1]]WR .[[t2]]WR , [[Re(u)]]WR = Re([[u]]WC), [[Im(u)]]WR =
Im([[u]]WC), [[arg(u)]]WR = arg([[u]]WC), and [[|u|]]WR = |[[u]]WC |, [[z]]WC = ρ(z),
for z ∈ Z, [[|�〉FA]]WC = νFA, [[t1 + it2]]WC = [[t1]]WR + i[[t2]]WR , [[t1.eit2]]WC =
[[t1]]WR .ei[[t2]]

W
R , [[u]]WC = [[u]]WC , [[u1 + u2]]WC = [[u1]]WC + [[u2]]WC , [[u1.u2]]WC =

[[u1]]WC .[[u2]]WC , and [[ϕ 	 u1;u2]]WC =
{

[[u1]]WC if M �Σ ϕ
[[u2]]WC otherwise .

Iq is an institution. Indeed the functoriality of Senq is straightforward. Con-
cerning Modq, and given a signature morphism σ : Σ → Σ′, note that indeed
W = 〈M, |w〉, ν, ρ〉 = Modq(σ)(W ′) ∈ Modq(Σ) if W ′ = 〈M ′, |w′〉, ν′, ρ′〉 ∈
Modq(Σ′). In particular, since M = Mod(σ)[M ′], then Sen(σ)•[VΣ′ [M ′]] =
VΣ [M] just because VΣ(Mod(σ)(m′))(ϕ) = VΣ′(m′)(Sen(σ)(ϕ)) for every m′ ∈
Mod(Σ′) and ϕ ∈ Qb(Σ), due to the satisfaction condition of the original
institution. Moreover, if A ⊆ F ⊆ Qb(Σ), and we let F ′ = Sen(σ)[F] and
A′ = Sen(σ)[A], the definition of νFA = ν′F ′A′ is suitable. First note that
vF ′

A′ ∈ VΣ′ [M ′] iff vF
A ∈ VΣ [M] just because Sen(σ)•(vF ′

A′) = vF
A . Moreover,

F ∈
⋃
S iff F ′ ∈

⋃
S′.

The satisfaction condition of Iq can be established by a simple induction on
formulas and on terms. The only interesting cases concern independence formulas
[F], plus probability (

∫
ϕ) and amplitude |�〉FA terms. In the first case, we

need to show that W �q
Σ [F] iff W ′ �q

Σ′ [F ′]. The result follows immediately
because F ∈ ∪S iff Sen(σ)[F] ∈ ∪S′. In the second case, we need to show that
[[
∫
ϕ]]WR = [[

∫
Sen(σ)(ϕ)]]W

′
R . Indeed, using the bijection between M and VΣ [M],

the fact that M = Mod(σ)[M ′], the satisfaction condition of the institution I,
and as a result the fact that Sen(σ)•(VΣ′(m′)) = VΣ(Mod(σ)(m′)), we have
that

Quantum Institutions 61

[[
∫
ϕ]]WR = μ|w〉(VΣ [{m ∈M : m �Σ ϕ}]) =∑
m∈M :m�Σϕ |〈VΣ(m)|w〉|2 =

∑
m∈M :m�Σϕ ||w〉(VΣ(m))|2 =∑

m∈M :m�Σϕ |Sen(σ)•(|w′〉)(VΣ(m))|2 =∑
m′∈M ′:m′�Σ′Sen(σ)(ϕ) |Sen(σ)•(|w′〉)(Sen(σ)•(VΣ′(m′)))|2 =∑
m′∈M ′:m′�Σ′Sen(σ)(ϕ) ||w′〉(VΣ′(m′))|2 =∑
m′∈M ′:m′�Σ′Sen(σ)(ϕ) |〈VΣ′(m′)|m′〉|2 =

μ|w′〉(VΣ′ [{m′ ∈M ′ : m′ �Σ′ Sen(σ)(ϕ)}]) = [[
∫
Sen(σ)(ϕ)]]W

′
R .

In the third case, we need to show that [[|�〉FA]]WR = [[|�〉F ′A′]]WR . Since we
already know that F ∈

⋃
S iff F ′ ∈

⋃
S′, and that vF ′

A′ ∈ VΣ′ [M ′] iff vF
A ∈ VΣ [M],

it suffices to verify that, when it makes sense,
〈vF

A |(
⊗

Qi⊆F |wi〉) =
∏

Qi⊆F 〈(vF
A)Qi |wi〉 =

∏
Qi⊆F ||wi〉((vF

A)Qi)|2 =∏
Qi⊆F |Sen(σ)•(|w′

i〉)(Sen(σ)•((vF ′
A′)Q′

i
))|2 =
∏

Q′
i⊆F ′ ||w′

i〉((vF ′
A′)Q′

i
)|2 =∏

Q′
i⊆F ′ 〈(vF ′

A′)Q′
i
|w′

i〉 = 〈vF ′
A′ |(
⊗

Q′
i⊆F ′ |w′

i〉).

Most of the syntactic constructions introduced in Iq are self explanatory. The
quantum specific constructs, besides all the operations on complex numbers, are
the [F] formulas and the |�〉FA terms. Intuitively, [F] holds if the qubits in F
form an independent subsystem of the whole, whereas |�〉FA evaluates, when-
ever it is meaningful, to the complex amplitude of the vector |vF

A〉 in the current
state of the systems. The logic resulting from the quantization of classical propo-
sitional logic was introduced and studied in [1, 2]. A sound and weak complete
calculus for the logic was obtained in [3] using an iterated Henkin construction
inspired by the technique in [13]. The qubits of interest in this case were the
propositional symbols. Using the logic it is possible, for instance, to model and
reason about quantum states corresponding to the famous case of Schrödinger’s
cat. The relevant attributes of the cat are cat-in-box, cat-alive, cat-moving
being inside or outside the box, alive or dead, and moving, respectively. The
following formulas constrain the state of the cat at different levels of detail:

1. [cat-in-box, cat-alive, cat-moving];
2. (cat-moving ⇒ cat-alive);
3. ((♦ cat-alive)
 (♦ (¬ cat-alive)));
4. (�[cat-alive]);
5. (
∫
cat-alive = 1

3).

Observe that the assertions are jointly consistent. They characterize the
quantum states where: the qubits cat-in-box, cat-alive, cat-moving are not
entangled with other qubits; the cat is moving only if it is alive; it is possible that
the cat is alive and also that the cat is dead; the qubit cat-alive is entangled
with the others; and the probability of observing the cat alive (after collapsing
the wave function) is 1

3 . Our aim is now to relate Iq with I, Ig, Ip.

Proposition 4. The triple Cpq = 〈Φpq , αpq, βpq〉, where Φpq the identity functor
on Sig; for each Σ, αpq

Σ translates each δ ∈ Senp(Σ) to δ; and for each Σ, βpq
Σ

62 Carlos Caleiro et al.

translates each 〈M,S, |w〉, ν, ρ〉 ∈ Modq(Σ) to 〈M, 〈2M , μ〉, ρ|X〉 with μ(B) =
μ|w〉(VΣ [B]), is a comorphism Cpq : Ip → Iq.

Proof. The naturality of the transformation αpq is straightforward. Concerning
βpq just note that given W = 〈M,S, |w〉, ν, ρ〉 ∈ Modq(Σ), βpq(W) is well
defined. The probability space 〈2M , μ〉 over M is just an isomorphic copy of
〈2VΣ [M], μ|w〉〉 over VΣ [M]. It is clearly a probability space, and its naturality
follows easily. The coherence condition is trivial. 	

Note however that, in general, Cpq does not satisfy the surjectivity condition,
and thus Iq is not a conservative extension of Ip. This happens for two essential
reasons: first, the sets M of models that appear in quantum models must be in
one-to-one correspondence with their induced classical valuations on the qubits;
second, even for such an M , due to the independence partitions, not all proba-
bility spaces over M can be obtained from a quantum structure. Of course, by
composition, we also obtain a comorphism Cgq = Cpq ◦ Cgp : Ig → Iq, and a
power-model comorphism Cq = Cpq ◦ Cp : I → Iq. It is very easy to check that
Cq meets the necessary surjectivity condition, and therefore Iq is still a conser-
vative extension of I. Given Σ, and a model m of I, we just need to consider any
quantum structure of the form 〈{m}, {Qb(Σ)}, 1|Vσ(m)〉, ν, ρ〉 with νFA = 1 if
F = Qb(Σ) and vF

A = Vσ(m), or F = ∅, and νFA = 0 otherwise. On the other
hand, it is easy to see that also Cgq will be surjective, and hence Iq a conservative
extension of Ig, whenever the first of the above mentioned restrictions is trivial.
That is, requiring that M is in one-to-one correspondence with its induced set
of valuations should not exclude any possible set of models. For this condition
to hold, it suffices to require that the qubit functor Qb is chosen in such a way
that, for each Σ and m1,m2 ∈ Mod(Σ), if m1 and m2 coincide on the satisfac-
tion of all qubits then m1 = m2. If the qubits are representative typically one
ends up with logically equivalent models, but in many institutions it is possible
to avoid having logically equivalent models. The case of classical propositional
logic is paradigmatic, once we take as qubits all the propositional symbols. But
similar choices are possible in many other logics. In [23] it is shown how to do
this choice in any suitable finitely-valued logic. For instance, in Lukasiewicz’s
three-valued logic it suffices to consider as qubits all propositional symbols and
negations of propositional symbols. This possibility also helps in shedding light
on the usefulness of considering restricted sets of admissible valuations.

6 Conclusion

Figure 1 is the diagram of the institutions and (power-model) comorphisms
we have built, where � is used to distinguish the arrows that guarantee a
conservative extension from their source to target. Our main goal in bringing into
the realm of institutions the exogenous approach to globalization, probabilization
and quantization of logics was to assess how general these constructions were.
The first two constructions are fully general, in the sense that nothing is assumed
about the given institution and also that nothing else is needed. But quantization

Quantum Institutions 63

Ig

��

Cgp

��
Cgq

��

I ��
Cp

��
��

Cg

�����������������

��

Cq

����
���

���
���

���
�

Ip

Cpq

��

Iq

Fig. 1. Institutions and (power-model) comorphisms.

requires some additional information (the choice of qubit formulae). On the
other hand, the quantum logic, as pointed out by the institutional approach,
is not general enough (namely, injectivity of VΣ on models, and surjectivity of
the qubit translations). The solution seems to suggest a slight generalization
of the exogenous approach towards working with multisets of models (as in
Kripke structures), a promising line of further development of the approach.
Furthermore, many interesting institution-theoretic questions remain open about
these logics and the construction mechanisms discussed herein, like analyzing
the properties of the constructions as functors on the category of institutions (or
better, on some category of institutions), studying the underlying categories of
models, and study their impact on the properties of the resulting categories of
specifications. From a logic-theoretic point of view, the next step is to attempt
at extending the completeness results in [5, 3] for a general base institution.

Acknowledgments

This work was partially supported by FCT and FEDER through POCI, namely
via the QuantLog POCI/MAT/55796/2004 Project of CLC. The authors wish
to express their gratitude to the regular participants in the QCI Seminar. Till
Mossakowski deserves a special acknowledgment due to his prompt will to serve
as an oracle on any question related to institutions and their notions of arrow.
Last, but not least, we are all much indebted to Joseph Goguen for many in-
spirational discussions on institutions in particular, and the world at large, over
the last two decades.

References

[1] Mateus, P., Sernadas, A.: Exogenous quantum logic. In Carnielli, W.A., Diońısio,
F.M., Mateus, P., eds.: Proceedings of CombLog’04, Workshop on Combination
of Logics: Theory and Applications, 1049-001 Lisboa, Portugal, Departamento de
Matemática, Instituto Superior Técnico (2004) 141–149 Extended abstract.

64 Carlos Caleiro et al.

[2] Mateus, P., Sernadas, A.: Reasoning about quantum systems. In Alferes, J., Leite,
J., eds.: Logics in Artificial Intelligence, JELIA’04. Volume 3229 of Lecture Notes
in Artificial Intelligence. Springer-Verlag (2004) 239–251

[3] Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous
quantum propositional logic. Information and Computation (in print) ArXiv
math.LO/0503453.

[4] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

[5] Mateus, P., Sernadas, A., Sernadas, C.: Exogenous semantics approach to enrich-
ing logics. In Sica, G., ed.: Essays on the Foundations of Mathematics and Logic.
Volume 1 of Advanced Studies in Mathematics and Logic. Polimetrica (2005)
165–194

[6] Foulis, D.J.: A half-century of quantum logic. What have we learned? In: Quan-
tum Structures and the Nature of Reality. Volume 7 of Einstein Meets Magritte.
Kluwer Acad. Publ. (1999) 1–36

[7] Chiara, M.L.D., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory.
Kluwer Academic Publishers (2004)

[8] Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of
Mathematics 37 (1936) 823–843

[9] Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28 (1986) 71–87
[10] Nilsson, N.J.: Probabilistic logic revisited. Artificial Intelligence 59 (1993) 39–42
[11] Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT

Press Series in Artificial Intelligence. MIT Press (1990)
[12] Bacchus, F.: On probability distributions over possible worlds. In: Uncertainty in

Artificial Intelligence, 4. Volume 9 of Machine Intelligence and Pattern Recogni-
tion. North-Holland (1990) 217–226

[13] Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Information and Computation 87 (1990) 78–128

[14] Dishkant, H.: Semantics of the minimal logic of quantum mechanics. Studia
Logica 30 (1972) 23–32

[15] Goguen, J., Burstall, R.: A study in the foundations of programming methodology:
specifications, institutions, charters and parchments. In: Category Theory and
Computer Programming. Volume 240 of LNCS. Springer (1986) 313–333

[16] Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. Journal of the ACM 39 (1992) 95–146

[17] Goguen, J., Roşu, G.: Institution morphisms. Formal Aspects of Computing 13
(2002) 274–307

[18] Meseguer, J.: General logics. In: Proceedings of the Logic Colloquium’87. North-
Holland (1989) 275–329

[19] Tarlecki, A.: Moving between logical systems. In: Recent Trends in Data Type
Specification. Volume 1130 of LNCS. Springer (1996) 478–502

[20] Mossakowski, T.: Different types of arrow between logical frameworks. In auf der
Heide, F.M., Monien, B., eds.: Procs. ICALP’96. Volume 1099 of LNCS. Springer
(1996) 158–169

[21] Cerioli, M., Meseguer, J.: May I borrow your logic? (Transporting logical struc-
tures along maps). Theoretical Computer Science 173 (1997) 311–347

[22] Bridges, D.S.: Computability. Volume 146 of Graduate Texts in Mathematics.
Springer-Verlag (1994)

[23] Caleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J.: Two’s company: “The
humbug of many logical values”. In Béziau, J.Y., ed.: Logica Universalis.
Birkhäuser Verlag (2005) 169–189

Jewels of Institution-Independent Model Theory

Răzvan Diaconescu

Institute of Mathematics of the Romanian Academy

Abstract. This paper is dedicated to Joseph Goguen, my beloved teacher
and friend, on the ocassion of his 65th anniversary. It is a survey of
institution-independent model theory as it stands today, the true form
of abstract model theory which is based on the concept of institution.
Institution theory was co-fathered by Joseph Goguen and Rod Burstall
in late 1970’s. In the final part we discuss some philosophical roots of
institution-independent methodologies.

1 Introduction

The theory of institutions is a categorical abstract model theory which formalises
the intuitive notion of logical system, including syntax, semantics, and the sat-
isfaction between them. Institutions constitute a model-oriented meta-theory on
logics similarly to how the theory of rings and modules constitute a meta-theory
for classical linear algebra. Another analogy can be made with universal algebra
versus groups, rings, modules, etc. By abstracting away from the realities of the
actual conventional logics, it can be noticed that institution theory comes in fact
closer to the realities of non-conventional logics.

The notion of institution arose within computing science in 1980’s in response
to the population explosion of logics in use there,1 with the ambition of doing
as much as possible at a level of abstraction independent of commitment to any
particular logic. This mathematical paradigm is called ‘institution-independent’
(abbreviated i-i) computing science or model theory.

Since their definition by Goguen and Burstall [11,31], institutions become a
common tool in the study of algebraic specification theory and can be considered
as its most fundamental mathematical structure. It is already an algebraic spec-
ification tradition to have an institution underlying each language or system, in
which all language/system constructs and features can be rigorously explained
as mathematical entities. Most modern algebraic specification languages follow
this tradition, including CASL [2], Maude [45], or CafeOBJ [25].

1 Some of them, such as first order (in many variants), second order, higher order, in-
finitary, Horn, equational, partial, type theoretic, intuitionistic, modal (in many vari-
ants), are well known or at least familiar to the ordinary logicians, while others such
as linear, behavioural, process, rewriting, polymorphic, coalgebraic, object-oriented,
etc. are known and used mostly in computing science.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 65–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 Răzvan Diaconescu

An institution I = (SigI, SenI,ModI, |=I) consists of

1. a category SigI, whose objects are called signatures,
2. a functor SenI : SigI → Set, giving for each signature a set whose elements

are called sentences over that signature,
3. a functor ModI : (SigI)op → Cat giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
morphisms, and

4. a relation |=I

Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI|, called Σ-satis-
faction,

such that for each morphism ϕ : Σ → Σ′ in SigI, the satisfaction condition

M ′ |=I

Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). When there is no danger of
ambiguity, we may skip the superscripts from the notation of the entities of the
institution, for example SigI may be simply denoted as Sig.

We denote the reduct functor ModI(ϕ) by 	ϕ and the sentence translation
SenI(ϕ) by ϕ(). When M = M ′	ϕ we say that M is a ϕ-reduct of M ′, and that
M ′ is a ϕ-expansion of M .

I-i model theory applies to a wide variety of logics, however due to space
constraints, in this paper we will discuss only examples from classical first order
logic and some of its fragments and extensions.

Classical (first order) logic as institution. Let FOL be the institution of many
sorted first order logic with equality. Its signatures (S, F, P) consist of a set of
sort symbols S, a set F of function symbols, and a set P of relation symbols.
Each function or relation symbol comes with a string of argument sorts, called
arity, and for functions symbols, a result sort. Fw→s denotes the set of function
symbols with arity w and sort s, and Pw the set of relation symbols with arity w.

Signature morphisms map the three components in a compatible way. Models
M are first order structures interpreting each sort symbol s as a set Ms, each
function symbol σ as a functionMσ from the product of the interpretations of the
argument sorts to the interpretation of the result sort, and each relation symbol
π as a subset Mπ of the product of the interpretations of the argument sorts.
Sentences are the usual first order sentences built from equational and relational
atoms by iterative application of logical connectives and quantifiers. Sentence
translations rename the sorts, function, and relation symbols. For each signature
morphism ϕ, the reduct M ′	ϕ of a model M ′ is defined by (M ′	ϕ)x = M ′

ϕ(x) for
each x sort, function, or relation symbol from the domain signature of ϕ. The
satisfaction of sentences by models is the usual Tarskian satisfaction defined
inductively on the structure of the sentences.

Without loss of generality, for the sake of simplicity of presentation, we always
assume non-empty sorts for the models. This can be achieved in two ways. The
semantic solution is to consider only models for which Ms 	= ∅ for each sort

Jewels of Institution-Independent Model Theory 67

s. The syntactical solution is to consider only signatures having at least one
constant for each sort.

The institution PL of propositional logic is obtained as the sub-institution
of FOL obtained by considering only the empty sorted signatures.

Positive first order logic, FOL+, restricts the FOL sentences only to those
constructed by means of ∧,∨, ∀, ∃, but not negation. Here ∨ and ∃ are no longer
reducible to ∧ and ∀ and vice versa.

An universal Horn sentence in FOL for a first order signature (S, F, P) is a
sentence of the form (∀X)H ⇒ C, where H is a finite conjunction of (relational
or equational) atoms and C is a (relational or equational) atom, and H ⇒ C is
the implication of C by H . The sub-institution HCL, Horn clause logic, of FOL
has the same signatures and models as FOL but only universal Horn sentences
as sentences.

An algebraic signature (S, F) is just a FOL signature without relation sym-
bols. The sub-institution of HCL which restricts the signatures only to the
algebraic ones and the sentences to universally quantified equations is called
equational logic and is denoted by EQL.

EQLN is the minimal extension of EQL with negation, allowing sentences
obtained from atoms and negations of atoms through only one round of quan-
tification, either universal or existential. More precisely, all sentences have the
form (QX)t1πt2 where Q ∈ {∀, ∃} and π ∈ {=, 	=}.

Let ∀∨ be the sub-institution of FOL determined by the universal disjunction
of atoms.

Infinitary first order logic, FOL∞,ω, extends FOL by allowing infinite con-
junctions. Similarly, HCL∞ extends HCL by allowing the hypothesesH of Horn
sentences (∀X)H ⇒ C to be infinite conjunctions of atoms. Also, ∀∨∞ extends
∀∨ by allowing infinite disjunctions of atoms.

Other examples of institutions in use in computing science include partial
[10], rewriting [44], label algebra [6], higher-order [8], polymorphic [52], temporal
[30], process [30], behavioural [7], coalgebraic [13], object-oriented [32] logics, and
many many more...

Significance of Institution-Independent Model Theory

While the goal of i-i formal specification has been greatly accomplished in the
algebraic specification literature, recently there has been significant progress to-
wards model theory too. This responds to the feeling shared by some researchers
that deep concepts and results in model theory can be reached in a significant
way via institution theory. The significance of i-i model theory is manifold.

First, it fulfils the main abstract model theory ideal by providing an uniform
generic approach to the model theory of various logics. This is especially relevant
for areas of knowledge involving a big variety of formal logical systems, most of
them unconventional. An important example comes from computing science in
general, and algebraic specification in particular. Related to this, institutions
also provide an ideal platform for exporting the rich and powerful body of con-

68 Răzvan Diaconescu

cepts and methods developed by conventional model theory to a multitude of
unconventional logics.

While conventional ‘abstract’ model theory of Barwise and Feferman [4,5]
extends first order logic explicitly by abstracting only sentences and satisfac-
tion and leaving signatures and models concrete and conventional, institutions
axiomatise the relationship between models and sentences by leaving them ab-
stract. Because of this lack of commitment to any particular logic, institutions
can be therefore considered as the true form of abstract model theory, some
authors even calling this ‘abstract abstract model theory’...

Then, i-i model theory has a special methodological significance. The i-i top-
down way of obtaining a model theoretic result, or just viewing a concept, leads
to a deeper understanding which is not suffocated by the (often irrelevant) details
of the actual logic and guided by structurally clean causality. A model theoretic
phenomenon is thus decomposed into various layers of abstract conditions, the
concepts being defined and results obtained at the most appropriate level of
abstraction. This contrasts with the traditional bottom-up approach in which
the development is done at a given level of abstraction. Thus concepts come
naturally as presumptive features that a “logic” might exhibit or not. Hypotheses
are kept as general as possible and introduced on a by-need basis. Results and
proofs are modular and easy to track down, despite sometimes very deep content.
Another reason for the strength of i-i methodology is that institutions provide
the most complete framework for abstract model theory, emphasising the multi-
signature aspect of logics by considering signature morphisms and model reducts
as primary concepts.

Finally, institution theory provide an efficient framework for doing logic and
model theory ’by translation or borrowing’ via a general theory of mappings
(homomorphisms) between institutions. For example, a certain property P which
holds in an institution I′ can be also established in another institution I provided
that we can define a mapping I → I′ which ‘respects’ P .

Apart of re-structuring known model theoretic methods, i-i model theory
has already produced two classes of new concrete results. The first class is rep-
resented by model theories for a multitude of less conventional logics which did
not have one properly. Out of i-i model theory, even a relatively well studied
area like partial algebra gets with minimal effort (in fact almost for free!) a well
developed and coherent body of advanced model theoretic concepts and results.
A second class of concrete applications is constituted by new results in classical
model theory obtained by institutional methods. At the moment of writing this
survey, we can report interpolation and definability for numerous Birkhoff-style
axiomatizable fragments of classical logic [22,49] and the elegant solution to the
interpolation conjecture for many sorted logic [35]. The former results reveal
a strong causality relationship between axiomatizability, on the one hand, and
interpolation and definability, on the other hand. They also demount, or revise,
the causal relationship between interpolation and definability. Maybe in this sec-
ond class of applications we can also mention the considerably facilitated access

Jewels of Institution-Independent Model Theory 69

to highly non-trivial results in classical model theory, such as Keisler-Shelah
Isomorphism Theorem.

This paper is a brief journey through i-i model theory as it stands today. A
full textbook on this topic is under preparation [16].

2 Basic Concepts

We assume the reader is familiar with basic notions and standard notations
from category theory; e.g., see [38] for an introduction to this subject. By way
of notation, |C| denotes the class of objects of a category C, C(A,B) the set
of arrows with domain A and codomain B, and composition is denoted by “;”
and in diagrammatic order. The category of sets (as objects) and functions (as
arrows) is denoted by Set, and Cat is the category of all categories.2 The opposite
of a category C (obtained by reversing the arrows of C) is denoted Cop.

In the following we focus on some basic institution theory concepts.

2.1 Presentations and Theories

The satisfaction relation between models and sentences determines a Galois con-
nection between the classes of models and the sets of sentences of a signature.
Let Σ be a signature in an institution (Sig,Sen,Mod, |=). Then

- for each set of Σ-sentences E, let E∗ = {M ∈ |Mod(Σ)| |M |=Σ e for each
e ∈ E}, and

- for each class M of Σ-models, let M∗ = {e ∈ Sen(Σ) | M |=Σ e for each
M ∈ M}.

These two functions denoted “()∗” form what is known as a Galois connec-
tion. Closed classes of models M = M∗∗ are called elementary and closed sets of
sentences E = E∗∗ are called theories .

When E and E′ are sets of sentences, E′∗ ⊆ E∗ is denoted by E |= E′. Two
sentences e and e′ of the same signature are semantically equivalent (denoted
as e |=| e′) if they are satisfied by the same class of models, i.e., {e} |= {e′}
and {e′} |= {e}. Two models M and M ′ of the same signature are elementarily
equivalent (denoted as M ≡ M ′) if they satisfy the same set of sentences, i.e.
{M}∗ = {M ′}∗. An institution is closed under isomorphisms when all isomorphic
models are elementarily equivalent. In this paper, we will always assume that
our institutions are closed under isomorphisms.

A theory E is presented by a set of sentences E0 if E0 ⊆ E and E0 |= E, and
is finitely presented if there exists a finite E0 which presents E. A presentation
morphism φ : (Σ,E) → (Σ′, E′) is a signature morphism such that φ(E) ⊆ E′∗∗.
A presentation morphism between theories is called a theory morphism. Notice
therefore that a theory morphism φ : (Σ,E) → (Σ′, E′) is a signature morphism

2 Strictly speaking, this is only a quasi-category living in a higher set-theoretic uni-
verse.

70 Răzvan Diaconescu

such that φ(E) ⊆ E′. It is easy to notice that under the composition of signa-
ture morphisms, presentations, respectively theory morphisms, form categories
denoted Pres, respectively Th.

Theorem 1. [31] The forgetful functors Pres → Sig and Th → Sig create lim-
its and colimits. Consequently, in any institution, the category of its presenta-
tions/theories has whatever limits or colimits its category of signatures has.

For example, FOL has all small (co)limits of signatures3, hence it also has all
(co)limits of presentations/theories.

2.2 Model Amalgamation

The model amalgamation property discussed in the following is one of the very
fundamental semantical properties of logics which underlies almost all i-i model
theoretic developments. It is the merit of institution theory to have discovered it.

In FOL, consider a model M1 for a signature Σ1 and a model M2 for a
signature Σ2 such that M1 and M2 are ‘consistent’ on the intersection of the
their signatures, i.e. M1	Σ1∩Σ2 = M2	Σ1∩Σ2 . The two models M1 and M2 can
be ‘amalgamated’ to a model M1 ⊗M2 for the union of the two signatures by
(M1 ⊗ M2)x = (M1)x when x ∈ Σ1 or (M1 ⊗ M2)x = (M2)x when x ∈ Σ2.
Notice that this definition is correct because M1 and M2 are ‘consistent’ on
Σ1 ∩ Σ2, and that the amalgamation is the unique (Σ1 ∪ Σ2)-model such that
(M1 ⊗M2)	Σ1 = M1 and (M1 ⊗M2)	Σ2 = M2.

Such model amalgamation property can be defined in any institution by
abstracting the intersection-union square of signatures to any commuting square
of signatures. In any institution, a commuting square of signature morphisms

Σ
ϕ1 ��

ϕ2

��

Σ1

θ1

��
Σ2

θ2

�� Σ′

Fig. 1

is an amalgamation square if and only if for each Σ1-model M1 and a Σ2-model
M2 such that M1	ϕ1 = M2	ϕ2, there exists an unique Σ′-model M1 ⊗ϕ1,ϕ2 M2,
called the amalgamation of M1 and M2, such that (M1⊗ϕ1,ϕ2 M2)	θ1 = M1 and
(M1 ⊗ϕ1,ϕ2 M2)	θ2 = M2. When we relax the requirement on the uniqueness
of M1 ⊗ϕ1,ϕ2 M2, we say that this is a weak amalgamation square. This amal-
gamation property is different and much more basic than some of the model
amalgamation properties studied in classical model theory textbooks referring
to the existence of a common elementary extension of two models of the same
signature.
3 One way to establish this is via general Grothendieck category constructions from

[56].

Jewels of Institution-Independent Model Theory 71

From a categorical viewpoint, when we also involve the model homomor-
phisms, the model amalgamation property says that

Mod(Σ) Mod(Σ1)
Mod(ϕ1)��

Mod(Σ2)

Mod(ϕ2)

��

Mod(Σ′)
Mod(θ2)
��

Mod(θ1)

��

is a pullback in Cat.
At the level of arbitrary institutions model amalgamation can therefore be

regarded as a limit preservation property. An institution (Sig,Sen,Mod, |=) is
semi-/directed/inductive/weakly exact when the model functor Mod : Sigop →
Cat preserves pullbacks/directed/inductive/weak4 limits, and is simply exact
when it preserves all small limits.

In general the many sorted institutions are exact, while the unsorted (or one-
sorted) ones are only semi-exact. This is due to the fact that the initial signatures
in the unsorted logics still have a sort, they are thus not initial as many sorted
signatures. On the other hand the semi-exactness is not affected since pushouts
of unsorted signatures are the same as pushouts of many sorted signatures.

Theorem 2. [26] If the institution I is semi-exact, then the theory model functor
Modp : (ThI)op → Cat preserves pullbacks.5

This result can be of course immediately extended to other types of exactness,
including full exactness.

2.3 Elementary Diagrams

The method of diagrams constitutes a traditional tool in many of the conven-
tional first order model theory developments. Recall that the ‘positive diagram’
of any first order model M consists of all atoms satisfied by M in the signature
extended with the elements of M . At the level of i-i model theory this is reflected
as a categorical property which, in essence, formalises the idea that the class of
model homomorphisms from a model M can be represented (by a natural iso-
morphism) as a class of models of a theory in a signature extending the original
signature with syntactic entities determined by M . This can be seen as a coher-
ence property between the semantical structure and the syntactical structure of
an institution. By following the basic idea that a structure is in reality defined
by its homomorphisms, the semantical structure of an actual institution is given
by the model homomorphisms. On the other hand the syntactical structure of
an institution is essentially determined by the atomic sentences.
4 Recall [38] that a weak universal property, such as adjunction, limits, etc., is the same

as the ordinary universal property except that only the existence part is required,
uniqueness not being thus required.

5 Modp(Σ, E) is the full subcategory of Mod(Σ) of those models satisfying E.

72 Răzvan Diaconescu

An institution (Sig,Sen,Mod, |=) has elementary diagrams [20] if and only if
for each signature Σ and each Σ-model M , there exists a signature morphism
ιΣ(M) : Σ → ΣM , “functorial” in Σ andM , and a set EM of ΣM -sentences such
that Mod(ΣM , EM) and the comma category M/Mod(Σ) are naturally isomor-
phic, i.e. the following diagram commutes by the isomorphism iΣ,M “natural”
in Σ and M

Mod(ΣM , EM)
iΣ,M ��

Mod(ιΣ(M)) 		��
���

���
���

�
(M/Mod(Σ))

forgetful

��
Mod(Σ)

The signature morphism ιΣ(M) : Σ → ΣM is called the elementary extension
of Σ via M and the set EM of ΣM -sentences is called the elementary diagram
of the model M . For each model homomorphism h : M → N let Nh denote
i−1
Σ,M (h).

The “functoriality” of ι means that for each signature morphism ϕ : Σ → Σ′

and each Σ-model homomorphism h : M → M ′	ϕ, there exists a presentation
morphism ιϕ(h) : (ΣM , EM) → (Σ′

M ′ , EM ′) such that

Σ
ιΣ(M)��

ϕ

��

ΣM

ιϕ(h)

��
Σ′

ιΣ′ (M ′)
�� Σ′

M ′

commutes.
The “naturality” of i means that for each signature morphism ϕ : Σ →

Σ′ and each Σ-model homomorphism h : M → M ′	ϕ the following diagram
commutes:

Mod(ΣM , EM)
iΣ,M �� M/Mod(Σ)

Mod(Σ′
M ′ , E′

M ′)
iΣ′,M′

��

Mod(ιϕ(h))

��

M ′/Mod(Σ′)

h/Mod(ϕ)=h;(−)�ϕ

��

Note that each elementary diagram (ΣM , EM) has an initial model MM =
i−1
Σ,M (1M).

An institution with elementary diagrams ι may be denoted by (Sig,Sen,
Mod, |=, ι).

For example, classical model theory considers traditionally various kinds of
model homomorphisms; each of them determine different elementary diagrams.
Below we give a list of several possibilities, each of them corresponding to a
specific restriction on model homomorphisms, but with the same elementary ex-
tensions. Let M be a Σ-model for a FOL-signature. Let ιΣ(M) be the extension
Σ → ΣM adding the elements of M as new constants to Σ, and MM be the
ιΣ(M)-expansion of M such that Mm = m for each element m ∈M .

Jewels of Institution-Independent Model Theory 73

model homomorphisms EM

all atoms in M∗
M

injective atoms and negations of atomic equations in M∗
M

closed atoms and negations of atomic relations in M∗
M

closed and injective atoms and negations of atoms in M∗
M

elementary embedding M∗
M

Recall that a FOL-model homomorphism h : M → N is closed when Mπ =
h−1(Nπ) for each relation symbol π of the signature, and is an ‘elementary
embedding’ when MM ≡ Nh. (Notice that because MM |= m 	= m′ for all
m,m′ ∈M which are different, h is also injective.)

Elementary diagrams are used in many i-i model theoretic developments.
For example, in the presence of elementary diagrams, limits and colimits of
models can be obtained from corresponding limits and colimits of signatures.
This is an important consequence of elementary diagrams because in the actual
institutions, limits, and especially colimits of models are much more difficult to
establish than (co)limits of signatures.

Theorem 3. [20] Consider and institution with elementary diagrams and initial
models of presentations. Then, for each signature Σ, the category of Σ-models
has J-(co)limits whenever the category of signatures Sig has J-(co)limits.

From Theorem 3 we can immediately establish that, for any FOL signature its
category of models has all small limits and colimits. For this, we have actually
to apply Theorem 3 to the fragment of FOL whose sentences are just (ground)
atoms. Because any Horn presentation has initial models, we can extend this
argument to a stronger result: the models of any Horn theory have all small
limits and colimits.

2.4 Free Models

The problem of existence of free models in institutions is often represented by
the problem of existence of initial models for theories. For example, in FOL the
largest class of theories admitting initial models is that of theories of universal
Horn sentences.

At the level of an arbitrary institution (Sig,Sen,Mod, |=), a theory morphism
ϕ : (Σ,E) → (Σ′, E′) is liberal if and only if the reduct functor
Modp(ϕ) : Modp(Σ′, E′) → Modp(Σ,E) has a left-adjoint ()ϕ.

Theorem 4. [20] A semi-exact institution with elementary diagrams and
pushouts of signatures is liberal when each theory has an initial model. Con-
versely, if the institution has initial signatures and is exact, each theory has an
initial model whenever the institution is liberal.

When we apply Theorem 4 to FOL, we get that HCL is liberal.

74 Răzvan Diaconescu

3 Internal Logic

Much of the i-i development of model theory relies on the possibility of defining
concepts such as logical connectives, quantification, and atomic sentences inter-
nally to any institution. The main implication of this fact is that the abstract
satisfaction relation between models and sentences can be decomposed at the
level of arbitrary institutions into several concrete layers of satisfaction defined
categorically in terms of (a simple form of) injectivity and reduction. Essentially
speaking, this ‘internal logic’ is what gives depth to the i-i approach to model
theory.

3.1 Boolean Connectives and Quantifiers

Boolean connectives. Given a signature Σ in an institution

- the Σ-sentence ρ′ is a (semantic) negation [53] of ρ when ρ′∗ = |Mod(Σ)|\ρ∗,
and

- the Σ-sentence ρ′ is the (semantic) conjunction [53] of the Σ-sentences ρ1

and ρ2 when ρ′∗ = ρ∗1 ∩ ρ∗2.

We can easily notice that negations and conjunctions of sentences are unique
modulo semantical equivalence.

An institution has (semantic) negation when each sentence of the institution
has a negation, and has (semantic) conjunctions when each two sentences (of the
same signature) have a conjunction. Distinguished negations are often denoted
by ¬ , while distinguished conjunctions by ∧ .

All these can be extended in the same way to other Boolean connectives, such
as disjunction (∨), implication (⇒), equivalence (⇔), etc., and also infinitary
conjunctions and disjunctions. An institution which has all semantic Boolean
connectives is called a Boolean complete institution.

Notice that while FOL is Boolean complete, EQL and HCL have no seman-
tic Boolean connectives

Quantifiers. Given a FOL signature morphism (S, F, P) and a set X of (new)
variables (for S), any (S, F � X,P)-sentence can be regarded as an ‘open’
(S, F, P)-sentence with ‘unbound’ variables X . When there are no unbound vari-
ables, an open sentence is just an ordinary (‘closed’) sentence. Recall that for any
(S, F, P)-model M , M |= (∃X)ρ if and only if there exists M ′ an (S, F �X,P)-
expansion of M such that M ′ |= ρ.

The concept of quantification can be defined ‘internally’ to any institution
I by abstracting FOL signature inclusions (S, F, P) ↪→ (S, F � X,P) to any
signature morphism χ : Σ → Σ′ in I. Therefore at the abstract level of arbitrary
institutions

- a Σ-variable is just a signature morphism χ : Σ → Σ′,
- an (open) χ-sentence is just a Σ′-sentence,
- a Σ-sentence ρ is a (semantic) existential χ-quantification [53] of a χ-

sentence ρ′ when ρ∗ = (ρ′∗)	χ; in this case we may write ρ as (∃χ)ρ′,

Jewels of Institution-Independent Model Theory 75

- a Σ-sentence ρ is a (semantic) universal χ-quantification [53] of a χ-sentence
ρ′ when ρ |=| ¬(∃χ)¬ρ′; in this case we may write ρ as (∀χ)ρ′.
For a class D ⊆ Sig of signature morphisms, we say that the institution has
universal/existential D-quantification when for each χ : Σ → Σ′ in D, each
Σ′-sentence has a universal/existential χ-quantification.

Generally, one may consider quantification only up to what the respective
concept of signature supports. For example FOL signatures support quantifi-
cations only up to second order, for higher order quantifications one needs to
involve a different concept of signature, coding higher order types.

Based on this internal concept of variable in [21] we have introduced an
internal general concept of substitution, which captures first-order, second-order,
and higher-order substitutions in actual logics.

Finitary signature morphisms. In conventional (first order) model theory, the
quantifications are finitary. At the level of abstract signature morphisms in
institutions, we say that a signature morphism χ : Σ → Σ′ is finitary when

for each directed diagram of Σ-models (Mi

fi,j ��Mj)(i<j)∈(I,≤) with a colimit

(Mi
μi ��M)i∈I and each χ-expansion M ′ of M there exists an index i ∈ I and

a χ-expansion μ′
i of μi.

3.2 Representable Signature Morphisms

Quasi-representable signature morphisms. For any FOL signature (S, F, P) and
any set X of variables, given any (S, F, P)-model homomorphism h : M → N ,
any (S, F � X,P)-expansion M ′ of M determines uniquely a (S, F � X,P)-
expansion h′ : M ′ → N ′ of h defined by h′ = h and N ′

x = h(M ′
x) for each

x ∈ X . In general, in FOL this property holds only for first order variables,
and can be seen as an i-i generalisation of the concept of first order variable.
This is important because many model theoretic results depend upon restricting
quantification to first order.

In any institution, a signature morphism χ : Σ → Σ′ is quasi-representable
[16] when for each Σ′-model M ′, the canonical functor below determined by the
reduct functor Mod(χ) is an isomorphism (of comma categories)

M ′/Mod(Σ′) ∼= (M ′	χ)/Mod(Σ)

Usual ‘first order’ variables in actual standard institutions, but also in institu-
tions such as E(FOL) (of FOL elementary embeddings) constitute examples of
quasi-representable signature morphisms. However, this concept accommodates
also other less conventional types of variables. For example, in the restriction of
REL (relational logic restricting FOL signatures only to those without oper-
ation symbols) to strong model homomorphisms, any signature extension with
constants and/or relation symbols is quasi-representable.

Proposition 1. [16,19] 1. In any institution the (finitary) quasi-representable
signature morphisms form a subcategory of Sig.

76 Răzvan Diaconescu

2. If the institution is semi-exact, then quasi-representable signature morphisms
are stable under pushouts.

Consider a quasi-representable signature morphism χ : Σ → Σ′ and assume that
Mod(Σ′) has an initial model 0Σ′. We have the following canonical isomorphisms:

Mod(Σ′) ∼= 0Σ′/Mod(Σ′) ∼= (0Σ′	χ)/Mod(Σ)

This situation shows that the Σ′-models M ′ can be ‘represented’ isomorphically
by Σ-model homomorphisms Mχ →M ′	χ, where Mχ denotes 0Σ′	χ.

Therefore, a signature morphism χ : Σ → Σ′ is representable [19] if and only
if there exists a Σ-modelMχ (called the representation of χ) and an isomorphism
iχ of categories such that the following diagram commutes:

Mod(Σ′)
iχ ��

Mod(χ)

��
���

���
���

(Mχ/Mod(Σ))

forgetful

��
Mod(Σ)

Fact 1 A signature morphism χ : Σ → Σ′ is representable if and only if it is
quasi-representable and Mod(Σ′) has an initial model.

Therefore, in FOL representable and quasi-representable signature morphisms
are the same concept. For example, given a setX of variables for a FOL signature
(S, F, P), the representation of the signature inclusion (S, F, P) ↪→ (S, F �X,P)
is given by the (free) term F -algebra TF (X). This corresponds to the fact that
(S, F � X,P)-models M are in canonical bijection with valuations of variables
from X to the carrier of M , which, by the freeness of TF (X), are in canonical
bijection with (S, F, P)-model homomorphisms TF (X) →M .

Proposition 2. [14] A FOL-signature morphism is representable if and only
if it is bijective on sort symbols, relation symbols, and non-constant operation
symbols.

First-order substitutions can be recovered from the internal concept of sub-
stitution between representable signature morphisms; at the general level they
are called representable substitutions [21].

3.3 Basic Sentences

Given any set of atoms (either equational or relational) E for a FOL-signature
(S, F, P), let 0E be the initial (S, F, P)-model satisfying E. Notice that

M |= E if and only if there exists a model homomorphism 0E →M

for each (S, F, P)-model M .

Jewels of Institution-Independent Model Theory 77

Given a signatureΣ in an arbitrary institution, a setE of Σ-sentences is basic
[19] if there exists a Σ-model ME such that for each Σ-model M , M |=Σ E if
and only if there exists a model homomorphism ME → M .

Notice that not all sentences admitting an initial model are basic. A coun-
terexample is given by negations of equations t1 	= t2 in an algebraic signature
(S, F).6 On the other hand, not all basic sentences are atoms or conjunctions of
atoms. For example, it can shown that FOL existentially quantified atoms are
basic too.

When the model homomorphisms ME → M are also unique, then we say
that E is epic basic. We say that a sentence ρ is (epic) basic when {ρ} is (epic)
basic. Note that in FOL all atoms are epic basic.

We say that a basic set of sentences E is finitary if the model ME is finitely
presented in the category Mod(Σ) of Σ-models. Note that in FOL any finite set
of atoms is finitary basic.

Proposition 3. [16] In any institution with elementary diagrams with quasi-
representable elementary extensions, the elementary diagrams are basic.

In any institution, a universal Horn sentence [16] is a sentence semantically
equivalent to (∀χ)E ⇒ E′ where χ : Σ → Σ′ is a quasi-representable signature
morphism, E is an epic basic set of Σ′-sentences, and E′ is a basic set of Σ′-
sentences. A universal Horn sentence (∀χ)E ⇒ E′ is finitary when E, E′ and
χ are finitary. Notice that universal Horn sentences in FOL, as defined in the
previous chapter, are the FOL instances of the i-i finitary Horn sentences.

3.4 Elementary Homomorphisms

The classical model theoretic concept of elementary embedding can be abstracted
to any institution (with elementary diagrams) as follows.

First notice that in any institution with elementary diagrams, the elementary
diagram of any model M has an initial model, denoted MM . Then a model
homomorphism h : M → N is elementary [34] when Nh |= M∗

M .

Fact 2 For each elementary homomorphism h : M → N , M∗ ⊆ N∗.

Based on the internal concept of open sentence, one may define another
concept of elementary homomorphism which does not require elementary dia-
grams. Given a class D ⊆ Sig of signature morphisms, aΣ-model homomorphism
h : A→ B is D-elementary when A′∗ ⊆ B′∗ for each D-expansion h′ : A′ → B′

of h.
In the actual institutions, D is usually taken to be the class of all signature

extensions with constants. Notice that in the case of FOL, and in fact in all
institutions with finitary sentences, elementarity with respect to signature ex-
tensions with arbitrary number of constants is equivalent to elementarity with
respect to extensions adding finite numbers of constants. Notice that in these
situations the following applies well.
6 This has the term model TF as its initial model, however it is not basic.

78 Răzvan Diaconescu

Proposition 4. [34] In an weakly semi-exact institution Let D be a class of
quasi-representable signature morphisms which is stable under pushouts. Then
D-elementary homomorphisms form a sub-institution of the original institution.

In the case of FOL, when we take D the class of finite signature extensions with
constants, this just says that FOL elementary embeddings form an institution.

In the presence of elementary diagrams satisfying certain ‘normality’ condi-
tions (see [34] for the definition), which is very natural in actual institutions,
the two notions of elementary homomorphisms coincide. This leads to another
important fact: the elementary homomorphisms attached to a system of elemen-
tary diagrams bring their own system of elementary diagrams, which is in fact
“more elementary” than the starting one.

Corollary 1. [34] In any weakly semi-exact institution I with ‘D-normal’ el-
ementary diagrams for D a class of quasi-representable signature morphisms
which is stable under pushouts, and such that it contains all elementary exten-
sions, the elementary homomorphisms form a (sub-)institution E(I) which has
elementary diagrams. E(I) is called the elementary sub-institution of I.

Theorem 5 below is an i-i generalisation of famous Tarski’s Elementary Chain
Theorem [57] which is used for many results in classical model theory (see [12])
and shows that the closure of elementary homomorphisms under directed colim-
its holds when the institution either has all negations (such as FOL, EQLN),
or no negation at all (such as FOL+, EQL), and it may fail on intermediate
cases (such as HCL).

Theorem 5. [34] Assume one of the following:
- each sentence is accessible from the basic ones by (possibly infinite) con-

junctions, disjunctions, universal D-quantifications, and finitary existential D-
quantifications, or

- the institution has negations and each sentence is accessible from the
basic ones by (possibly infinite) conjunctions, negations, and finitary D-
quantifications.

Then the class of D-elementary homomorphisms (or just elementary homo-
morphisms if in addition the institution has D-normal elementary diagrams and
D-contains all elementary extensions) is closed under directed colimits.

4 Model Ultraproducts

Much of the conventional model theory can be developed through the powerful
method of ultraproducts (see for example [36]). The i-i method of ultraprod-
ucts employs the following well known categorical concept of filtered products
[43,1,40,41].

Let C be a category with small products and small directed colimits. Consider
a family of objects {Ai}i∈I . Each filter F over the set of indices I determines a
functor AF : F → C such that AF (J ⊂ J ′) = pJ′,J :

∏
i∈J′ Ai →

∏
i∈J Ai for

each J, J ′ ∈ F with J ⊂ J ′, and with pJ′,J being the canonical projection.

Jewels of Institution-Independent Model Theory 79

Then the filtered product of {Ai}i∈I modulo F is the colimit μ : AF ⇒
∏

F Ai

of the functor AF . ∏
i∈J′ Ai

pJ′,J ��

μJ′
���

��
��

��

∏
i∈J Ai

μJ����
��
��
�

∏
F Ai

If F is an ultrafilter then the filtered product modulo F is called an ultra-
product . When Ai = A for all i ∈ I, then the filtered product is called filtered
power . Notice that a (direct) product

∏
i∈I Ai is the same as the filtered product∏

{{I}}Ai.
Categorical filtered products permit the definition of filtered products of

models in any institution with small products and small directed colimits for
each of its categories of models. We say that an institution has (small) prod-
ucts/directed colimits of models when all its categories of models have (small)
products/directed colimits.

In the case of FOL, model products are easy and directed colimits of mod-
els are created by the forgetful functor to (the underlying) sets because of the
finiteness of the arities of the operations and relations. Alternatively, one may
use the FOL corollary of Theorem 3. Categorical filtered products in FOL are
the same as classical filtered products first time introduced in [39].

For a signature Σ in an institution, a Σ-sentence e is

– preserved by F-filtered factors if
∏

F Ai |=Σ e implies {i ∈ I | Ai |=Σ e} ∈ F ,
and

– preserved by F-filtered products if {i ∈ I | Ai |=Σ e} ∈ F implies
∏

F Ai |=Σ

e,

for each filter F ∈ F over a set I and for each family {Ai}i∈I of Σ-models.
A sentence is a �Loś-sentence [19] when is preserved by all ultrafactors and all
ultraproducts.

Theorem 6. [19] In any institution, the �Loś-sentences
- contain all finitary basic sentences,
- are closed under Boolean connectives,
- are closed under any finitary representable quantification, and
- are closed under any projectively representable quantification if the institu-

tion has epic model projections.

An institution is a �Loś-institution [19] if and only if all its sentences are �Loś-
sentences. For example, FOL is a �Loś-institution because each sentence is acces-
sible from equations and relational atoms, which are finitary basic, by finitary
representable quantifications and Boolean connectives. Instead of finitary rep-
resentable quantification we may alternatively use the argument of projectively
representable quantifications. This shows that the extension of FOL with infini-
tary quantifications is also a �Loś-institution. However the extension FOL∞,ω of
FOL to infinitary conjunctions is not a �Loś-institution.

80 Răzvan Diaconescu

Compactness. An institution is m-compact if each set of sentences is consistent
when all its finite subsets have at least one model. If for each set of sentences E
and each sentence e, E |= e implies the existence of a finite subset Ef ⊆ E such
that Ef |= e, then we say that the institution is compact .

In the light of Theorem 6 the following constitutes an i-i Compactness The-
orem.

Corollary 2. Any �Loś-institution is (m-)compact.

5 Saturated Models

Saturated models are used in many model theoretic developments (see [12]), and
they can be approached naturally in an i-i framework.

Chains and (λ,D)-saturated models. In any category C, for any ordinal λ, a

λ-chain [27] is a λ-diagram (Ai

fi,j ��Aj)i<j≤λ such that for each limit ordinal
ζ ≤ λ, (fi,ζ)i<ζ is the colimit of (fi,j)i<j<ζ .

For any class of arrows D ⊆ C, a (λ,D)-chain [27] is any λ-chain (fi,j)i<j≤λ

such that fi,i+1 ∈ D for each i < λ.
For each signature morphism χ : Σ → Σ′, a Σ-model M χ-realizes a set

E′ of Σ′-sentences, if there exists a χ-expansion M ′ of M which satisfies E′.
It χ-realizes finitely E′ if it realizes every finite part of E′. A Σ-model M is
(λ,D)-saturated [27] for λ a cardinal and D a class of signature morphisms when

for each ordinal α < λ and each (α,D)-chain (Σi

ϕi,j ��Σj)i<j≤α with Σ0 = Σ,

for each (Σα
χ ��Σ′) ∈ D, each ϕ0,α-expansion of M χ-realizes any set of

sentences if and only if it χ-realizes it finitely.
The traditional concept of λ-saturated model can be recovered from this by

considering D to be the class of FOL signature extensions with a finite number
of constants.

λ-small signature morphisms. A signature morphism Σ
ϕ ��Σ′ is λ-small [27]

for a cardinal λ when for each chain (Mi

fi,j ��Mj)0≤i<j≤λ of Σ-homomorphisms

and each ϕ-expansion M ′ of Mλ, there exists i < λ and M ′
i

f ′
i,λ ��M ′ a ϕ-

expansion of fi,λ. For example, finitary signature morphisms are ω-small.
The following shows that each model can be elementarily embedded into a

saturated model, thus providing an existence theorem for saturated models.

Theorem 7. [27] 1. M ≡ N if there exists a model homomorphism M → N ,
2. it has finite conjunctions and existential D-quantifications,
3. it has inductive colimits of signatures and is inductive-exact,
4. for each signature Σ, the category of Σ-models has inductive colimits,

Jewels of Institution-Independent Model Theory 81

5. for each signature morphism Σ
χ ��Σ′ and E′ set of Σ′-sentences, if A

realizes E′ finitely then there exists a model homomorphism A→ B such that B
realizes E′,

6. for each signature morphism Σ
χ ��Σ′ and each Σ-model M , the class

of χ-expansions of M form a set, and
7. each signature morphism from D is quasi-representable, the category Sig

of signatures is D-co-well-powered, and for each ordinal λ there exists a cardinal
α such that each (λ,D)-chain is α-small.

Then for any cardinal λ and for each Σ-model M there exists a
Σ-homomorphism M → N such that N is (λ,D)-saturated.

Applications of Theorem 7 considers elementary institutions. This means
that in the case of FOL, the considered institution should be in fact the sub-
institution of E(FOL) with (arbitrarily large) signature extensions with con-
stants as signature morphisms (in order to fulfil the inductive-exactness condi-
tion). Then it is rather easy to establish the other conditions underlying Theorem
7. The most delicate are 4., which invokes Tarski’s Elementary Chain Theorem
(see Theorem 5), and 5., which follows from compactness.

The uniqueness of saturated models is probably the crucial result which is
used in the applications of saturated model theory. At the i-i level this requires
to spell out the following rather natural property of elementary extensions.

Simple elementary diagrams. The elementary diagrams ι of an institution are
simple [27] when for each signature Σ and all Σ-models A,B, for each ιΣ(B)-
expansion A′ of A, the following is a pushout square of signature morphisms.

Σ
ιΣ(B) ��

ιΣ(A)

��

ΣB

ιΣB
(A′)

��
ΣA

ιιΣ(B)(1A)
�� (ΣB)A′

It is easy to notice that in actual examples, those elementary diagrams such that
their elementary extensions just add the elements of the model as new constants
to its signature, like in FOL, are simple because the above diagram is in fact a
diagram of the form

Σ ��

��

Σ � |B|

��
Σ � |A| �� Σ � |B| � |A|

where |A| and |B| denote the sets of elements of (the carriers of) A and B.

82 Răzvan Diaconescu

Sizes of models. A D-size of a model M in an institution with elementary dia-
grams ι is a cardinal number λ such that the elementary extension ιΣ(M) = ϕ0,λ

for some (λ,D)-chain (ϕi,j)i<j≤λ.
For example, if we take D to be the class of FOL finite extensions of signa-

tures with constants, the D-size of a FOL model M can be taken as the cardinal
of its set |M | of elements, i.e. |M | = ∪s∈SMs where S is the set of the sorts of Σ.
It can be noticed that in this case λ-saturated and D-size λ means cardinality λ.

Theorem 8. [27] If the institution
1. has pushouts and inductive colimits of signatures,
2. is semi-exact and inductive-exact on models,
3. has simple elementary diagrams ι,
4. has existential D-quantification for a (sub)category D of signature mor-

phisms which is stable under pushouts,
5. has negations and finite conjunctions, and
6. the sentence functor preserves inductive colimits

then any two elementary equivalent (λ,D)-saturated Σ-models of D-size λ are
isomorphic.

In the case of FOL, the considered institution is just FOL (i.e. with the
positive diagrams as (abstract) elementary diagrams). Like for Theorem 7, con-
dition 6. holds by the finiteness of the sentences. Therefore we obtain that any
two λ-saturated FOL models of cardinality λ are isomorphic.

The following application is an i-i generalisation of the rather famous Keisler-
Shelah Theorem [12]. In the actual institutions the following conditions can be
established rather easily.

Corollary 3. [27] Consider a �Loś institution with a class D of signature mor-
phisms satisfying the hypothesis of Theorem 8 and which also satisfies the fol-
lowing:

- it has finite conjunctions and existential D-quantifications,
- each signature morphism preserve products and directed colimits,
- each signature morphism lifts completely ultraproducts.

Let λ be a an infinite cardinal, U a countably incomplete λ-good ultrafilter over I.
- the cardinality of Sen(Σ) is strictly smaller than λ,
- for each model M , if M has a D-size λ, then each ultrapower

∏
U M for an

ultrafilter U over I of cardinality k, has D-size λk.
Assuming the Generalised Continuum Hypothesis, any two elementarily

equivalent models have isomorphic ultrapowers (for the same ultrafilter).

Let us say that an institution has the Keisler-Shelah property if and only if it
satisfies the conclusion of above Corollary 3.

6 Preservation and Axiomatizability

6.1 Axiomatizability by Ultraproducts

In the applications the hypotheses of the following are handled by Theorem 6.

Jewels of Institution-Independent Model Theory 83

Theorem 9. In any institution with sentences preserved by ultraproducts that
has negation and conjunction,

- a class of models is elementary if and only if it is closed under ultraproducts
and elementary equivalence,

- a class of models is finitely axiomatizable if and only if both it and its
complement are elementary.

6.2 Varieties and Quasi-varieties

In classical logic it is know that in general the universal Horn sentences are
essentially the most complex sentences admitting initial models in the sense that
each such sentence is equivalent to a set of universal Horn sentences. It is easy to
see also that Horn sentences are also preserved by (closed) sub-models are direct
products. Below we show that this equivalence between the existence of initial
models and the closure under direct products and submodels is independent of
the actual institution.

Inclusion systems. We may use the concept of inclusion system for rephrasing the
category theoretic concepts of subobjects and quotients (that are traditionally
defined in terms of monics and epics).

〈I, E〉 is a inclusion system [26]7 for a category C if I and E are two sub-
categories with |I| = |E| = |C| such that

- I is a partial order, and
- every arrow f in C can be factored uniquely as f = ef ; if with ef ∈ E and

if ∈ I.
The arrows of I are called abstract inclusions, and the arrows of E are called
abstract surjections . The abstract surjections of some inclusion systems need not
necessarily be surjective in the ordinary set-theoretic sense, take for example the
inclusion system for Set where each function is an abstract surjection and the
abstract inclusions are just the identities. An inclusion system 〈I, E〉 is a epic
when all abstract surjections are epics.

In any category C with an inclusion system,

– A is a subobject of B if there exists an abstract inclusion A ↪→ B, and
– an object B is a quotient representation of A if there exists an abstract

surjection A → B. A quotient of A is an isomorphism class of quotient
representations.

The inclusion system is well-powered , respectively co-well-powered , if the class
of subobjects, respectively quotients, of each object is a set.

The category of models for a FOL-signature (S, F, P) admits two meaningful
epic inclusion systems which inherit the conventional inclusion system of the
category of sets and functions. Recall that a model homomorphism h : M → N
is closed when Mπ = h−1(Nπ) for each relation symbol π ∈ P , and is strong

7 In [15] the original definition of [26] is weakened to what they called ‘weak inclusion
systems’, which are in fact our inclusion systems.

84 Răzvan Diaconescu

when h(Mπ) = Nπ for each relation symbol π ∈ P . Also a submodel M of
a model N is the same with a model homomorphism M → N which is a set
inclusion for each sort s ∈ S.

inclusion system abstract inclusion abstract surjection
closed closed submodels surjective homomorphisms
strong (plain) submodels strong surjective homomorphisms

Varieties and quasi-varieties. When C has small products a class of objects of
C closed under isomorphisms

- is a quasi-variety if it is closed under small products and subobjects, and
- is a variety if it is a quasi-variety closed under quotients.

A object A of C is reachable if and only if it has no proper8 subobjects.
The following result links the possibility of free models for theories to the

quasi-variety property of the corresponding class of models. They generalise
classical results from universal algebra (see [33] and [42]).

Theorem 10. [54,20] Consider a semi-exact institution with pushouts of sig-
natures and with elementary diagrams such that for each signature it category of
models has an initial model, small products, and a co-well-powered epic inclusion
system. If the class of models of each presentation is a quasi-variety, then the
institution is liberal.

The following result extends the conclusion of Theorem 10 with its opposite
implication, thus obtaining an ‘if and only if’ characterisation of quasi-varieties.

Theorem 11. [54,20] Consider an institution with elementary diagrams such
that

- the category Mod(Σ) of Σ-models has an initial object 0Σ, small products,
and a co-well-powered epic inclusion system for each signature Σ,

- all model reduct functors preserve the abstract inclusions and the abstract
surjections, and

- the model reduct functors corresponding to the elementary extensions reflect
identities.
Then each presentation has a reachable initial model if and only if the class of
models of each presentation is a quasi-variety.

Under a set of appropriate conditions, the following Quasi-Variety Theorem
holds in any institution.

Theorem 12. [55,16] A class of models is a quasi-variety if and only if it is
the class of models of a set of universal Horn sentences.

The Birkhoff Variety Theorem also holds an i-i framework (under a set of ap-
propriate conditions) when we abstract traditional ‘equations’ with representable
universal basic sentences (abbreviated RUB), which are universal quantifications
of basic sets of sentences by representable signature morphisms.
8 Subojects which are different of A.

Jewels of Institution-Independent Model Theory 85

Theorem 13. [16] A class of models is a variety if and only if it is the class of
models of a set of RUB sentences.

6.3 General Birkhoff Axiomatizability

In FOL, a finer tuned version of the Quasi-Variety Theorem 12 says that
M∗∗ =Sc→ (PM), for each class M of models, where M∗ is the set of all Horn
sentences satisfied by all models of M, PM is the class of all products from
M and Sc→ M is the class of all closed sub-models of models from M. Simi-
larly, if instead we consider RUB sentences, cf. Variety Theorem 13 we have
that M∗∗ =Hr← (Sc→ (PM))), where Hr← M is the class of all ‘quotients’ of models
from M.

The i-i concept of Birkhoff-style axiomatizable closure can be captured more
generally by the following concept. (Sig,Sen,Mod, |=,F ,B) is a Birkhoff institu-
tion [22] if and only if

– (Sig,Sen,Mod, |=) is an institution such that the category of models Mod(Σ)
has small products and small directed colimits for each signature Σ ∈ |Sig|,

– F is a class of filters with {{∗}} ∈ F , and
– BΣ ⊆ |Mod(Σ)| × |Mod(Σ)| is a reflexive binary relation for each signature
Σ ∈ |Sig|

such that

M∗∗ = B−1
Σ (FM)

for each signature Σ and each class of Σ-models M ⊆ |Mod(Σ)|, and where FM
is the class of all F -filtered products of models from M.9

The following is a rather short list of Birkhoff institutions obtained as sub-
institutions of (infinitary) FOL by varying the type of sentences and via various
well-known axiomatizability results:

institution B F
FOL ≡ all ultrafilters
FOL ultraradicals all ultrafilters
PL = all ultrafilters
universal (quantifier-free) FOL sentences Sc→ all ultrafilters
universal FOL∞,ω sentences Sc→ {{{∗}}}
HCL∞

Sc→ {{I} | I set}
HCL Sc→ all filters
universal FOL atoms Hr←; Sc→ {{I} | I set}
EQL Hr←; Sw→ {{I} | I set}
∀∨ (universal disjunctions of atoms) Hs←; Sc→ all ultrafilters
∀∨∞ (univ. infinitary disj. of atoms) Hs←; Sc→ {{{∗}}}
∀∃ (universal-existential sentences) sandwiches ([12]) all ultrafilters.

9 The class of all filtered products of models modulo F for all filters F ∈ F .

86 Răzvan Diaconescu

where Hr denote the class of surjective, Hs the class of strong surjective, Hc

the class of closed surjective, Sw the class of inclusive, and Sc the class of closed
inclusive model homomorphisms.

7 Interpolation

Generalised interpolation in institutions. Craig Interpolation, abbreviated CI,
is classically stated as follows: if ρ1 |= ρ2 for two sentences, then there exists a
sentence ρ, called the interpolant of ρ1 and ρ2, that uses logical symbols that
appear both in ρ1 and ρ2 and such that ρ1 |= ρ |= ρ2.

An equivalent expression of the above property assumes ρ1 |= ρ2 in the union
signature Σ1 ∪ Σ2, and asks for ρ to be in the intersection signature Σ1 ∩ Σ2,
where Σi is the signature of ρi. If we naturally generalise the inclusion square

Σ1 ∩Σ2
��

��

Σ1

��
Σ2

�� Σ1 ∪Σ2

to any commuting square of signature morphisms (ϕ1, ϕ2, θ1, θ2) like in Fig.1
and replace sentences ρ1, ρ2, and ρ with sets of sentences E1, E2, and E, we get
the following form of CI: If θ1(E1) |=Σ′ θ2(E2), then there exists an interpolant
E ⊆ Sen(Σ) such that E1 |=Σ1 ϕ1(E) and ϕ2(E) |=Σ2 E2. A commuting square
satisfying the above property is called a Craig Interpolation square.

Notice that in a compact institution, if E2 is finite, then the interpolant
E can be chosen to be finite too. The immediate consequence of this fact is
that in compact institutions having finite conjunctions, this CI formulation is
equivalent to the more classical single sentences formulation considering single
sentences rather than sets of sentences. In fact, it is the potential absence of
conjunctions which motivates the generalisation from single sentences to sets of
sentences.

In actual in institutions, in general, CI squares can be found among pushout
squares since these constitute the accurate generalisation of intersection-union
squares of signatures. While in the unsorted restriction of FOL all pushout
squares have CI, this is not the case for (many sorted) FOL. Also, in EQL and
HCL, not all pushout squares have CI. This hints that in actual institutions we
should expect CI to hold not for all pushout squares, but for a restricted class
of pushout squares. It is often convenient to capture such classes of CI squares
by restricting independently ϕ1 and ϕ2 to belong to certain classes of signature
morphisms. Therefore, for any classes of signature morphisms L,R, we say that
the institution has the Craig (L,R)-Interpolation [9,23] if each pushout square
of signature morphism of the form

L ��

R
�� ����

Jewels of Institution-Independent Model Theory 87

is a Craig Interpolation square. The list below anticipates some of the most
representatives:

institution L R reference
unsorted FOL all all Cor. 5 or 6
FOL all injective on sorts Cor. 5 (via Thm. 15) or 6
FOL injective on sorts all Cor. 5 or 6
EQL, HCL all injective Cor. 4

Craig interpolation can be established in two major different ways, which
have rather complementary application domains, via Birkhoff-style axiomatiz-
ability properties of institutions, or via Robinson consistency.

7.1 Interpolation Via Birkhoff-Style Axiomatizability

For a functor C : Iop → Cat, let R = {Ri ⊆ |Ci|2}i∈|I| be a |I|-indexed binary
relation. We say (see [22]) that an arrow u : i→ i′ in I lifts R if and only if for
each M ′ ∈ |Ci′ | and N ∈ |Ci|, if 〈Cu(M ′), N〉 ∈ Ri then there exists N ′ ∈ |Ci′ |
such that Cu(N ′) = N and 〈M ′, N ′〉 ∈ Ri′ .

Theorem 14. [22] In a Birkhoff institution (Sig,Sen,Mod, |=,F ,B), any weak
amalgamation square (ϕ1, ϕ2, θ1, θ2) like in Fig.1 such that

- Mod(ϕ1) preserves products and directed colimits (of models), and
- ϕ2 lifts B

is a Craig Interpolation square.

Regarding Theorem 14, CI is expected for weak amalgamation squares, which
are slightly more general than pushouts squares in semi-exact institutions. The
preservation of products and directed colimits by model reducts is easy in actual
institutions, in fact they are created. For example, the latter holds because of the
finiteness of the arities of the operation and relation symbols of the signatures.
On the other hand, the lifting condition is the only interesting one which sets
limits to CI in applications of Theorem 14.

Corollary 4. [22] For universal FOL and FOL∞,ω sentences, HCL, HCL∞,
universal FOL atoms, EQL, ∀∨, ∀∨∞, each pushout of signature morphisms
(ϕ1, ϕ2, θ1, θ2) like in Fig.1 with ϕ2 injective, is a CI square.

Interpolation via Keisler-Shelah property. In situations when the meta-Birkhoff
axiomatizability is rather weak (in the sense that B is rather weakly defined), the
lifting condition (on ϕ2) can be rather hard to establish. The cost is thus shifted
from the axiomatizability property to the lifting condition. A typical example is
given by FOL, regarded as a Birkhoff institution with B the elementary equiv-
alence relation ≡, and F the class of all ultrafilters (cf. Theorem 9). However
by invoking the rather powerful result that FOL is a Keisler-Shelah institution,
[50] provides a characterisation of elementary equivalence ≡ strong enough for
supporting an easy applicability of Theorem 14, and which also leads to the
following corollary:

88 Răzvan Diaconescu

Corollary 5. In FOL, any pushout square of signature morphisms
(ϕ1, ϕ2, θ1, θ2) like in Fig.1 such that ϕ2 is injective on sorts is a Craig
Interpolation square.

7.2 Interpolation Via Consistency

A set of sentences E for a signature Σ in an arbitrary institution is consis-
tent if it has models, i.e. E∗ is not empty. Consistency and interpolation are
related by the concept of ‘Robinson consistency’. A commuting square of sig-
nature morphisms (ϕ1, ϕ2, θ1, θ2) like in Fig.1 is a Robinson Consistency square
(abbreviated RC square) if and only if every theories Ei ∈ Sen(Σi), i ∈ {1, 2},
with ‘inter-consistent reducts’, i.e. ϕ−1

1 (E1)∪ϕ−1
2 (E2) is consistent, have ‘inter-

consistent Σ′-translations’, i.e. θ1(E1) ∪ θ2(E2) is consistent.
Robinson Consistency in FOL is classically defined only for intersection-

union squares of signature morphisms, however, like for CI, this restriction is not
necessary. Notice also that in some institutions, usually those supporting strong
Birkhoff-style axiomatizability, such as equational logic EQL for example, RC
is a trivial property because each set of sentences is consistent.

Theorem 15. [51] In any institution with negation and finite conjunctions and
which is compact, each commuting square of signature morphisms is a Robinson
Consistency square if and only if it is a Craig Interpolation square.

A span of signature morphisms Σ1 Σ
ϕ1�� ϕ2 ��Σ2 is said to lift isomor-

phisms [35] if for each Σi-models Mi, i ∈ {1, 2}, such that M1	ϕ1
∼= M2	ϕ2 ,

there exists Σi-models Ni such that Mi
∼= Ni and N1	ϕ1 = N2	ϕ2 .

A commutative square of signature morphisms (ϕ1, ϕ2, θ1, θ2) like in Fig.1

lifts isomorphisms if the span Σ1 Σ
ϕ1�� ϕ2 ��Σ2 lifts isomorphisms.

Theorem 16. [35] Assume an institution such that
1. all model homomorphisms preserve satisfaction, i.e. if h : A→ B and then

A∗ ⊆ B∗,
2. it has pushouts of signatures and is weakly semi-exact on models,
3. it has elementary diagrams, denoted ι,
4. it has universal quantification over signature morphisms of the forms ιΣ(h)

and ιΣ(M) for each Σ-model homomorphism h : M → N ,
5. it has ω-colimits10 of models which are preserved by the model reduct func-

tors.
6. it has negation and finite conjunctions, and
7. it is compact.

Then any weak amalgamation square (ϕ1, ϕ2, θ1, θ2) like in Fig.1 (and in par-
ticular any pushout square) which lifts isomorphisms is a Robinson Consistency
square (and by Theorem 15 a Craig interpolation square too).

10 Here ω is the totally ordered set of the natural numbers.

Jewels of Institution-Independent Model Theory 89

In the case of classical FOL interpolation, the institution considered by The-
orem 16 is E(FOL), the institution of the FOL elementary embeddings. Then,
only condition 4. might need more justification, the rest being easy (for example
5. is just Tarski’s Elementary Chain Theorem; see Theorem 5). Therefore, in the
case of 4., if the sets of the ‘empty’ sorts of signatures are finite, [35] shows that
quantification over ιΣ(h) and ιΣ(M) reduces to ordinary FOL quantification.
Also, it is easy to see that in FOL a span (ϕ1, ϕ2) lifts isomorphisms iff either
one of ϕ1 or ϕ2 is injective on sorts (see [35]).

Corollary 6. The pushout of a span Σ1 Σ
ϕ1�� ϕ2 ��Σ2 of FOL signature

morphisms such that either ϕ1 and ϕ2 is injective on sorts is a Craig interpola-
tion square in FOL and FOL∞,ω.

8 Definability

The classical definability problem in model theory can be formulated as follows:
for any FOL-signature (S, F, P), a new relation symbol π is ‘implicitly’ defined
by a theory E if and only if it is ‘explicitly’ defined by the same theory. π
is implicitly defined when the forgetful reduct ModFOL((S, F, P � {π}), E) →
ModFOL(S, F, P) is injective, which in this case can be formulated in a more
syntactic but equivalent way as

E ∪E[π/π′] |=(S,F,P�{π,π′}) (∀X)(π(X) ⇔ π′(X))

for any other new relation symbol π′ of the same arity and where E[π/π′] is the
copy of E with π replaced by π′, while π is explicity defined if π can be ‘defined’
by a (S, F �X,P)-sentence Eπ, i.e.

E |=(S,F,P�{π}) (∀X)(π(X) ⇔ Eπ)

where X a string of variables matching the arity of π.

Generalised definability in arbitrary institutions. Definability problem can be
naturally formulated at the level of abstraction of arbitrary institutions by ab-
stracting the situation of the signature inclusion (S, F, P) ↪→ (S, F, P � {π}) to
an arbitrary signature morphism.

Let ϕ : Σ → Σ′ be a signature morphism and E′ be a Σ′-theory. Then ϕ

– is defined implicitly by E′ if the reduct functor Mod(Σ′, E′) → Mod(Σ) is
injective, and

– is defined (finitely) explicitly by E′ if for each signature morphism θ : Σ →
Σ1, and each sentence ρ ∈ Sen(Σ′

1), there exists a (finite) set of sentences
Eρ ⊆ Sen(Σ1) such that

E′ |=Σ′ (∀θ′)(ρ⇔ ϕ1(Eρ))

90 Răzvan Diaconescu

where

Σ
ϕ ��

θ

��

Σ′

θ′

��
Σ1 ϕ1

�� Σ′
1

is any pushout square of the span Σ1 Σ
θ�� ϕ ��Σ′ of signature mor-

phisms.

Note that Eρ is a (finite) set of sentences rather than a single sentence as
in the classical formulations of definability. The explicit definability says that
the new part of Σ′ introduced by ϕ can be coded only by ‘symbols’ of Σ. Al-
though these formulations coincide when the institution has conjunctions, the
set of sentences formulation gets the right concept of definability for institutions
without conjunctions, such as EQL, HCL, etc. This situation is very similar to
that of interpolation, where the concept of interpolant which is meaningful for
institutions not necessarily having conjunctions is given by a set of sentences
rather than by a single sentence.

One may define the concept of explicit definability such that the quantifica-
tion involved is admitted by the institution by requiring θ to belong to a class
D of signature morphisms stable under pushouts such that the institution has
universal D-quantification. Because such condition would not affect the results
below, for the simplicity of presentation we prefer the unrestricted version of the
explicit definability with θ any signature morphism.

Implicit definability contains the explicit definability. One of the most important
aspects of definability theory is to establish the relationship between implicit and
explicit definability. Although in classical model theory and in most of the ac-
tual institutions, explicit definability implies very easily implicit definability, the
abstract model theoretic framework shows this is in fact a conditioned prop-
erty holding for signature morphisms satisfying a certain condition which can be
formulated by relying upon model amalgamation and elementary diagrams.

In any semi-exact institution with elementary diagrams ι, a signature mor-
phism ϕ : Σ → Σ′ is tight when for all Σ′-models M ′ and N ′ with a common ϕ-
reduct, M ′⊗MM ≡ N ′⊗NN implies M ′ = N ′ (where M = M ′	ϕ = N ′	ϕ = N).

Σ
ϕ ��

ιΣ(M)

��

Σ′

θ′

��
ΣM ϕ1

�� Σ′
1

Consider the classical situation when ϕ is a signature morphism in FOL adding
one relation symbol π. Then the only possible difference between M ′ and N ′

could only be found in the difference between M ′
π and N ′

π. But M ′
π = {X |

M ′ ⊗MM |= π(X)} = {X | N ′ ⊗NN |= π(X)} = N ′
π.

Jewels of Institution-Independent Model Theory 91

The situation of this example is quite symptomatic for most of the actual
institutions. M ′ ⊗ MM is just the expansion of M ′ interpreting the elements
of M by themselves. Therefore M ′ ⊗MM ≡ N ′ ⊗ NN implies that each atom
in the extended signature is satisfied either by none or by both models, which
means that each symbol newly added by ϕ gets the same interpretation in M ′

and N ′. This argument holds in all actual institutions in which models interpret
the symbols of the signatures as sets and functions.

Corollary 7. [49] A FOL signature morphism is tight if and only if it is sur-
jective on sorts.

Proposition 5. [49] In any semi-exact institution with elementary diagrams,
each tight signature morphism is defined implicitly whenever it is defined explic-
itly.

For the rest of this section we focus on what is usually considered to be
the ‘definability problem’ in model theory, i.e. the explicit contains the implicit
definability. A signature morphism ϕ has the (finite) definability property [49] iff
a theory defines ϕ (finitely) explicitly whenever it defines ϕ implicitly.

8.1 Definability Via Interpolation

Craig-Robinson interpolation. Let us strengthen the Craig interpolation prop-
erty by adding to the “primary” premises E1 a set Γ2 (of Σ2-sentences) as
“secondary” premises. In any institution, a commuting square of signature mor-
phisms (ϕ1, ϕ2, θ1, θ2) like in Fig.1 is a Craig-Robinson Interpolation square (ab-
breviated CRI square) when for each set E1 of Σ1-sentences, each sets E2 and
Γ2 of Σ2-sentences, if θ1(E1) ∪ θ2(Γ2) |=Σ′ θ2(E2), then there exists a set E of
Σ-sentences such that E1 |=Σ1 ϕ1(E) and Γ2 ∪ ϕ2(E) |=Σ2 E2.

We can notice easily that any CRI square is also a CI square. The follow-
ing gives a sufficient condition when CI and CRI are equivalent interpolation
concepts.

Proposition 6. [29] If the institution has implications and is compact, a com-
muting square of signature morphisms is Craig-Robinson Interpolation square if
and only if is Craig Interpolation square.

The following can be regarded as the i-i generalisation of the Beth Definability
Theorem from classical model theory.

Theorem 17. [49] In any semi-exact (compact) institution having Craig-
Robinson (L,R)-interpolation for classes L and R of signature morphisms which
are stable under pushouts, any signature morphism in L∩R has the (finite) de-
finability property.

By the interpolation results for FOL presented above (see Corollary 6) and
because tight signature morphisms in FOL are those which are surjective on the
sorts (Corollary 7), we get the following:

92 Răzvan Diaconescu

Corollary 8. In FOL, any signature morphism which is injective on the sorts
has the finite definability property.

Moreover, the equivalence between implicit and explicit definability holds in
FOL for the signature morphisms which are bijective on the sorts.

8.2 Definability Via Axiomatizability

Definability Theorem 17 relies on Craig-Robinson interpolation, which does not
hold for institutions having strong axiomatizability properties, such as HCL and
EQL. In order to deal with such examples, [49] develops another definability
result which relies on axiomatizability properties and which can be applied to a
series of actual situations when Craig-Robinson interpolation fails.

The abstract Beth definability via axiomatizability relies on a ‘lifting’ con-
dition of the signature morphism. Given a family of relations R = {RΣ ⊆
|Mod(Σ)| × |Mod(Σ)|}Σ∈|Sig| indexed by the category of the signatures of an
institution, a signature morphism ϕ : Σ → Σ′ lifts weakly R iff for each Σ′-
model M ′ and N ′, if 〈M ′	ϕ, N

′	ϕ〉 ∈ RΣ then there exists P ′ a ϕ-expansion of
N ′	ϕ such that 〈M ′, P ′〉 ∈ RΣ′ . We may recall that the first (non-weakly) lifting
concept has been used by the interpolation Theorem 14. Notice that a signature
morphism lifts weakly a family of relations R whenever it lifts R.

However the result below uses the lifting condition in a reverse direction than
of Theorem 14.

Theorem 18. [49] Consider a (compact) semi-exact Birkhoff institution
(Sig,Sen,Mod, |=,F ,B) and a class S ⊆ Sig of signature morphisms which is
stable under pushouts and such that for each ϕ ∈ S

- ϕ lifts weakly B−1, and
- Mod(ϕ) preserves small products and directed colimits.

Then any signature morphism in S has the (finite) definability property.

The core technical condition which should be established in order to apply
Theorem 18 is, like for Theorem 14, the lifting condition on ϕ. In the case of
FOL, this leads to the following.

Corollary 9. [49] Any FOL signature morphism which is surjective on the sort
and operation symbols has the finite definability property in the institutions of
the universal Horn sentences, and has the definability property in the institutions
of universal sentences, of the universal infinitary sentences, and of the universal
infinitary Horn sentences.

Any FOL signature morphism which is bijective on the sort and operation
symbols and injective on the relation symbols has the finite definability property
in the institutions of the atomic sentences and of the equations, and has the
definability property in the institutions of ∀∨ and ∀∨∞.

Jewels of Institution-Independent Model Theory 93

9 Other Topics

Due to space constraints, we cannot present here all important topics of today
i-i model theory. Let us briefly mention here some of them which we could not
develop here.

Possible worlds semantics. This development [28] refers to the treatment of
modalities and their applications independently of the underlying logic. More
specifically, given a base institution with model amalgamation, on the semantics
side we internalise the concept of frame, and on the syntactic side we extend
the existing sentences with modalities. Our concept of frame is allowed to enjoy
a flexible degree of sharing which is modelled by the means of an institution
morphism from the base institution to a ‘domain’ institution. The extension of
modal sentences is based on our internal logic approach to logical connectives
and quantifiers. Then on top of the satisfaction relation of the base institution,
we define a modal satisfaction relation between frames and modal sentences.
This generates a new ‘modal’ institution on top of the base institution, and due
to the very mild conditions on the base institution, this ‘modalisation’ procedure
can applied to a wide variety of actual institutions.

By employing the institution-independent method of ultraproducts [28]
proves a fundamental preservation institution-independent result for modal sat-
isfaction, that each modal sentence is preserved by ultraproducts of frames.
Immediate consequences of this result includes compactness of possible worlds
semantics.

Grothendieck institutions. Grothendieck institutions [18] generalise the flatten-
ing Grothendieck construction from (indexed) categories to (indexed) institu-
tions. Regarded from a fibration theoretic angle, Grothendieck institutions are
institutions for which their category of signatures is fibred. On the one hand,
the actual institutions with many sorted signatures appear naturally as fibred
institutions determined by the fibrations given by the functor mapping each sig-
nature to its set of sort symbols. In this sense, fibred institutions can be regarded
as the reflection of the many sortedness phenomenon at the level of institution
theory. On the other hand, the Grothendieck construction on institution is more
adequate for modelling heterogeneous multi-logic environments. Any system of
institutions which are related by institution morphisms can be flattened by the
Grothendieck construction to a homogeneous institution, as has been done in
the case of CafeOBJ [25] or heterogenous specification with CASL extensions
[47]. In other words, this can be interpreted as putting together a system of
institutions into a single institution such that their individual identities and the
relationships between them are fully retained.

The Grothendieck construction on institutions can be done in two variants,
using institution morphisms like in [18] or using institution comorphisms like in
[46]. In the case when the institution morphisms or comorphisms correspond to
adjunction situations between the categories of signatures of the institutions, the

94 Răzvan Diaconescu

morphism-based and comorphism-based Grothendieck institutions can be shown
isomorphic [47].

An important class of problems posed by the Grothendieck, or fibred, institu-
tions is that of lifting of model-theoretic properties from the ‘local’ level of index
institutions, or fibres, to the ‘global’ level of the Grothendieck, or fibred, insti-
tution. While [17] and [18] investigate the lifting of theory colimits, free models,
model amalgamation, inclusion systems, [23] solves the interpolation problem
for Grothendieck institutions.

Stratified institutions. They have been introduced by Marc Aiguier and Fabrice
Barbier (see [3]) in order to model valuations of variables or states of models.
Although it is possible to develop a great deal of model theory using this i-i
technique, its biggest promise seems to be for the problem of combinations of
logics, which is currently one of the most challenging problems.

Proof-theoretic aspects. Recently there has been a successful attempt to enrich
institutions with proof theoretic structure [48], not by amalgamation of the often
conflicting model theoretic culture of institutions and the proof theoretic culture
of type theory, but by an institutional proof theory from scratch by extending
categorical logic [37] to represent proof as arrows in categories of sentences.

The recent paper [24] introduces a concept of proof rules for institutions
and argues that the proof systems of the actual institutions with proofs are
freely generated by their presentations as systems of proof rules. It also shows
that proof-theoretic quantification, an institutional refinement of the (meta-)rule
of Generalisation from classical logic, can also be added freely to any proof
system. By applying these universal properties, [24] is able to provide some
general compactness results for proof systems and some general soundness results
for institutions with proofs.

Proof systems for institutional logic emerges as a very promising new area
with many interesting open questions.

10 Philosophical Roots

In this final section I would like to share with the interested readers some personal
reflections about some philosophical aspects of institutions from the perspective
of Tibetan Buddhism, a spiritual and philosophical tradition shared by the fa-
thers of institution theory, Joseph Goguen and Rod Burstall, and by the author
of this survey.

Institution theory is not only a mathematical theory. In fact, I think its
main value resides in its unique way to approach mathematical and computing
science phenomena. In my view, the institutional way can be seen as an effect of a
Buddhist (trained) mind and an application of Śunyata, the Buddhist Mahayana
perspective on reality.

The highest explanation of Śunyata has been developed by the Madhya-
maka Prasangika philosophical school which had started in the great Buddhist

Jewels of Institution-Independent Model Theory 95

monastic university of Nalanda about 2000 years ago. Maybe the most promi-
nent philosophical figure of this school was Acharya Nagarjuna who wrote a
series of treaties consisting mainly of very sophisticated philosophical and logi-
cal arguments supporting the doctrine of Śunyata. The Madhyamaka Prasangika
philosophical viewpoint has been inherited and preserved to our days by all tra-
ditions of Tibetan Buddhism.

In brief, Śunyata means the emptiness of all phenomena, either mind or
matter, of an inherent nature. All phenomena thus arise on the basis of the
so-called ‘co-dependent origination’, which at a certain level can be thought
as a very profound distributed network of interdependencies. This view avoids
both extremes of eternalism (things posses an inherent nature) and of nihilism
(nothing exists), hence ‘Madhyamaka’ translated as ‘Middle Way’.

When applied to modern science, this offers a non-essentialist perspective.
While some branches of modern science, most notably quantum physics, res-
onates strongly to the Madhyamaka Prasangika explanation of reality in a rather
independent way (for the interested reader we recommend the recent survey [58]),
i-i methodology has been directly influenced by this philosophical perspective.

Śunyata also means a lack of reference point, a kind of groundless. Institu-
tions realize this in a very transparent way, because they truly transcede the
idea of commitment to particular logics. Moreover, concepts such as institution
(co)morphisms, which are central to institution theory, constitute efficient tech-
nical tools for understanding the immensely vast network of interdependencies
between logical systems. By contrast, the original abstract model theory pro-
gramme of Barwise and Feferman failed exactly because it was not based on
such groundless view on logic, still having classical logic as a reference point.

The rather intensive use of category theory for institutions, at various ways
and at various levels, is another illustration of the groundless aspect of institu-
tion theory. By emphasizing the relationships between objects rather than their
internal structure, category theory might be the single mathematical area which
realizes the principle of interdependency so close to its Buddhist meaning.

This philosophical viewpoint underlying institution theory is very intimately
connected to the feeling of elegance and clarity experienced when using the i-i
methodology, either in computing science or in model theory. Due to the space
limitations of this paper, we leave this discussion at this point, with the promise
to come back sometime with a full essay on the connections between Buddhism
and i-i thinking.

Acknowledgement

To Joseph Goguen for being an ideal teacher and a close caring friend, to Joseph
Goguen and Rod Burstall for inventing institutions, to the great algebraic spec-
ification community for setting high scientific and intelectual standards to our
research area, to the students of Şcoala Normală Superioară Bucharest, Mar-
ius Petria, Andrei Popescu, Daniel Găină, Mihai Codescu, Traian Şerbănuţă for
being bright and for their contribution first as patient students and later as
researchers of i-i model theory.

96 Răzvan Diaconescu

References

1. Hajnal Andréka and István Németi. A general axiomatizability theorem formu-
lated in terms of cone-injective subcategories. In B. Csakany, E. Fried, and E.T.
Schmidt, editors, Universal Algebra, pages 13–35. North-Holland, 1981. Colloquia
Mathematics Societas János Bolyai, 29.

2. Edigio Astesiano, Michel Bidoit, Hélène Kirchner, Berndt Krieg-Brückner, Peter
Mosses, Don Sannella, and Andrzej Tarlecki. CASL: The common algebraic spec-
ification language. Theoretical Computer Science, 286(2):153–196, 2002.

3. Fabrice Barbier. Géneralisation et préservation au travers de la combinaison des
logique des résultats de théorie des modèles standards liés à la structuration des
spécifications algébriques. PhD thesis, Université Evry, 2005.

4. Jon Barwise. Axioms for abstract model theory. Annals of Mathematical Logic,
7:221–265, 1974.

5. Jon Barwise and Solomon Feferman. Model-Theoretic Logics. Springer, 1985.
6. G. Bernot, P. Le Gall, and M. Aiguier. Label algebras and exception handling.

Science of Computer and Programming, 23:227–286, 1994.
7. Michel Bidoit and Rolf Hennicker. On the integration of the observability and

reachability concepts. In Proc. 5th Int. Conf. Foundations of Software Science
and Computation Structures (FOSSACS’2002), volume 2303 of Lecture Notes in
Computer Science, pages 21–36, 2002.

8. Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured
specifications. In Christine Choppy, Didier Bert, and Peter Mosses, editors, Work-
shop on Algebraic Development Techniques 1999, volume 1827 of LNCS, pages
401–418, 2000.

9. Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical
Computer Science, 286(2):197–245, 2002.

10. Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, Berlin, 1986.

11. Rod Burstall and Joseph Goguen. Semantics of Clear. Unpublished notes handed
out at the 1978 Symposium on Algebra and Applications, Stefan Banach Center,
Warsaw, Poland, 1978.

12. C.C.Chang and H.J.Keisler. Model Theory. North Holland, Amsterdam, 1990.
13. Corina Ĉırstea. Institutionalising many-sorted coalgebraic modal logic. In Coal-

gebraic Methods in Computer Science 2002, Electronic Notes in Theoretical Com-
puter Science, 2002.

14. Traian Şerbănuţă. Institutional concepts in first-order logic, parameterized speci-
fication, and logic programming. Master’s thesis, University of Bucharest, 2004.

15. Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems. Mathematical
Structures in Computer Science, 7(2):195–206, 1997.

16. Răzvan Diaconescu. Institution-independent Model Theory. To appear. Book draft.
(Ask author for current draft at Razvan.Diaconescu@imar.ro).

17. Răzvan Diaconescu. Extra theory morphisms for institutions: logical semantics for
multi-paradigm languages. Applied Categorical Structures, 6(4):427–453, 1998. A
preliminary version appeared as JAIST Technical Report IS-RR-97-0032F in 1997.

18. Răzvan Diaconescu. Grothendieck institutions. Applied Categorical Structures,
10(4):383–402, 2002. Preliminary version appeared as IMAR Preprint 2-2000, ISSN
250-3638, February 2000.

19. Răzvan Diaconescu. Institution-independent ultraproducts. Fundamenta Infor-
maticæ, 55(3-4):321–348, 2003.

Jewels of Institution-Independent Model Theory 97

20. Răzvan Diaconescu. Elementary diagrams in institutions. Journal of Logic and
Computation, 14(5):651–674, 2004.

21. Răzvan Diaconescu. Herbrand theorems in arbitrary institutions. Information
Processing Letters, 90:29–37, 2004.

22. Răzvan Diaconescu. An institution-independent proof of Craig Interpolation The-
orem. Studia Logica, 77(1):59–79, 2004.

23. Răzvan Diaconescu. Interpolation in Grothendieck institutions. Theoretical Com-
puter Science, 311:439–461, 2004.

24. Răzvan Diaconescu. Proof systems for institutional logic. Journal of Logic and
Computation, 2006. To appear.

25. Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of CafeOBJ. The-
oretical Computer Science, 285:289–318, 2002.

26. Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for
modularisation. In Gerard Huet and Gordon Plotkin, editors, Logical Environ-
ments, pages 83–130. Cambridge, 1993. Proceedings of a Workshop held in Edin-
burgh, Scotland, May 1991.

27. Răzvan Diaconescu and Marius Petria. Saturated models in institutions. In prepa-
ration.

28. Răzvan Diaconescu and Petros Stefaneas. Possible worlds semantics in arbitrary in-
stitutions. Technical Report 7, Institute of Mathematics of the Romanian Academy,
June 2003. ISSN 250-3638.

29. Theodosis Dimitrakos and Tom Maibaum. On a generalized modularization theo-
rem. Information Processing Letters, 74:65–71, 2000.

30. J. L. Fiadeiro and J. F. Costa. Mirror, mirror in my hand: A duality between spec-
ifications and models of process behaviour. Mathematical Structures in Computer
Science, 6(4):353–373, 1996.

31. Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95–146, January 1992.

32. Joseph Goguen and Răzvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Harmut Ehrig and Fernando Orejas, editors, Recent Trends in
Data Type Specification, volume 785 of Lecture Notes in Computer Science, pages
1–34. Springer, 1994.

33. George Grätzer. Universal Algebra. Springer, 1979.
34. Daniel Găină and Andrei Popescu. An institution-independent generalization of

Tarski’s Elementary Chain Theorem. Journal of Logic and Computation. To
appear.

35. Daniel Găină and Andrei Popescu. An institution-independent proof of Robinson
consistency theorem. Studia Logica. To appear.

36. J.L.Bell and A.B.Slomson. Models and Ultraproducts. North Holland, 1969.
37. Joachim Lambek and Phil Scott. Introduction to Higher Order Categorical Logic.

Cambridge, 1986. Cambridge Studies in Advanced Mathematics, Volume 7.
38. Saunders Mac Lane. Categories for the Working Mathematician. Springer, second

edition, 1998.
39. J. �Loś. Quleques remarques, théorèmes et problèmes sur les classes définissables

d’algèbres. In Mathematical Interpretation of Formal Systems, pages 98–113.
North-Holland, Amsterdam, 1955.

40. Michael Makkai. Ultraproducts and categorical logic. In C.A. DiPrisco, editor,
Methods in Mathematical Logic, volume 1130 of Lecture Notes in Mathematics,
pages 222–309. Springer Verlag, 1985.

98 Răzvan Diaconescu

41. Michael Makkai. Stone duality for first order logic. Advances in Mathematics,
65(2):97–170, 1987.

42. A. I. Malcev. The Metamathematics of Algebraic Systems. North-Holland, 1971.
43. G. Matthiessen. Regular and strongly finitary structures over strongly algebroidal

categories. Canad. J. Math., 30:250–261, 1978.
44. José Meseguer. Conditional rewriting logic as a unified model of concurrency.

Theoretical Computer Science, 96(1):73–155, 1992.
45. José Meseguer. A logical theory of concurrent objects and its realization in the

Maude language. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors,
Research Directions in Concurrent Object-Oriented Programming. The MIT Press,
1993.

46. Till Mossakowski. Comorphism-based Grothendieck logics. In K. Diks and W. Ryt-
ter, editors, Mathematical foundations of computer science, volume 2420 of LNCS,
pages 593–604. Springer, 2002.

47. Till Mossakowski. Foundations of heterogeneous specification. In 16th Workshop
on Algebraic Development Techniques 2002, LNCS. Springer, 2003.

48. Till Mossakowski, Joseph Goguen, Răzvan Diaconescu, and Andrzej Tarlecki.
What is a logic? In Jean-Yves Beziau, editor, Logica Universalis, pages 113–133.
Birkhauser, 2005.

49. Marius Petria and Răzvan Diaconescu. Abstract Beth definability in institutions.
Journal of Symbolic Logic, 2006/2007. To appear.

50. Andrei Popescu, Traian Şerbănuţă and Grigore Roşu. A semantic approach to
interpolation. Submitted.

51. Antonio Salibra and Giuspeppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Science, 6:261–286, 1996.

52. Lutz Schröder, Till Mossakowski, and Christoph Lüth. Type class polymorphism
in an institutional framework. In José Fiadeiro, editor, Recent Trends in Alge-
braic Development Techniques, 17th Intl. Workshop (WADT 2004), volume 3423
of Lecture Notes in Computer Science, pages 234–248. Springer, Berlin, 2004.

53. Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David Pitt,
Samson Abramsky, Axel Poigné, and David Rydeheard, editors, Proceedings, Sum-
mer Workshop on Category Theory and Computer Programming, pages 334–360.
Springer, 1986. Lecture Notes in Computer Science, Volume 240.

54. Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Science, 37:269–304, 1986. Preliminary version, University
of Edinburgh, Computer Science Department, Report CSR-165-84, 1984.

55. Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of
Computer and System Sciences, 33(3):333–360, 1986. Original version, University
of Edinburgh, Report CSR-173-84.

56. Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some fundamental algebraic
tools for the semantics of computation, part 3: Indexed categories. Theoretical
Computer Science, 91:239–264, 1991. Also, Monograph PRG–77, August 1989,
Programming Research Group, Oxford University.

57. Alfred Tarski and R.Vaught. Arithmetical extensions of relational systems. Com-
positio Mathematicæ, 13:81–102, 1957.

58. His Holiness the XIVth Dalai Lama. The Universe in a Single Atom. Wisdom
Publications, 2005.

Semantic Web Languages – Towards an Institutional
Perspective

∗

Dorel Lucanu1, Yuan Fang Li2, and Jin Song Dong2

1 Faculty of Computer Science
“A.I.Cuza” University

Iaşi, Romania
dlucanu@info.uaic.ro

2 School of Computing
National University of Singapore, Singapore
{liyf,dongjs}@comp.nus.edu.sg

Abstract. The Semantic Web (SW) is viewed as the next generation of the Web
that enables intelligent software agents to process and aggregate data autonomous-
ly. Ontology languages provide basic vocabularies to semantically markup data
on the SW. We have witnessed an increase of numbers of SW languages in the last
years. These languages, such as RDF, RDF Schema (RDFS), the OWL suite of
languages, the OWL− suite, SWRL, are based on different semantics, such as the
RDFS-based, description logic-based, Datalog-based semantics. The relationship
among the various semantics poses a challenge for the SW community for mak-
ing the languages interoperable. Institutions provide a means of reasoning about
software specifications regardless of the logical system. This makes it an ideal
candidate to represent and reason about the various languages in the Semantic
Web. In this paper, we construct institutions for the SW languages and use insti-
tution morphisms to relate them. We show that RDF framework together with the
RDF serializations of SW languages form an indexed institution. This allows the
use of Grothendieck institutions to combine Web ontologies described in various
languages.

1 Introduction

The family of Semantic Web (SW) languages increased very much in the last years
and we guess it will continue to increase in the future. This is somehow surprising for
SW community and it contradicts the initial intentions of the SW creators. But it is
a reality and we have to live with it. This increase refers specially to the languages
describing Web ontologies. Here are several examples: OWL with its three dialects
(Lite, DL, and Full) [20], SWRL [15], SWRL FOL [21], DLP [12], OWL− with its
three dialects (Lite−, DL−, Full−) [5], WRL [1], and the list does not finish here. For
these languages, different definitions for their semantics were proposed in the literature:
∗

This work is partially supported by Singapore MOE project Rigorous Design Methods and
Tools for Intelligent Autonomous (R-252-000-201-112) and NUS EERSS Program. The sec-
ond author would like to thank Singapore Millennium Foundation (SMF) for the financial
support.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 99–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

model-theoretic semantics [20,13], RDF based semantics [1,20], first-order logic based
semantics [15,21], frame logic semantics [5], Datalog semantics [5], Z semantics [8,18],
and so on. This gives rise to some confusions and debates about the meaning of the
hierarchy of SW languages as it has been illustrated in the well-known Tim Berners-
Lee’s “Semantic Web Stack” diagram (Fig. 1).

Fig. 1. The Semantic Web stack of languages

In this paper we use the institution theory in order to investigate the exact relation-
ships among these languages.

The notion of institutions [10] was introduced to formalize the concept of “logi-
cal systems”. Institutions provide a means of reasoning about software specifications
regardless of the logical system. Hence, it serves as a natural candidate to study the
relationship among the various SW languages, as they are based on different logical
systems (semantics).

In this paper, we investigate the relationship among languages RDF [17], RDF
Schema [4], OWL suite [20], and OWL− suite [5] by defining their respective insti-
tutions and relating these institutions using morphisms or comorphisms. A main ad-
vantage is a better understanding of the semantical relationship among the various SW
languages. Here we focus only on the RDF triple-based semantics. We show that RDF
framework (RDF and RDF Schema) together with RDF serializations of SW languages
form an indexed institution, and hence the whole framework can be organized as a
Grothendieck institution [7]. An interesting fact is that the construction of the indexed
institution is based on a diagram of RDF theories. We define a method of constructing
institutions starting from theories and then we extend it to diagrams of categories and
indexed institutions. We believe that we answer in this way the question regarding the
layering of SW languages [22]. Semantically, the “stack” of SW languages depicted by
Berners-Lee is an indexed institution. This indexed institution produces a Grothendieck

Semantic Web Languages – Towards an Institutional Perspective 101

institution which offers a formal framework for combining ontologies written in various
languages. In this way, all SW languages can “live” together.

The rest of the paper is organized as follows. In Section 2, we briefly present the
background information on SW languages and institutions. In Section 3, we define the
institutions of (bare) RDF and RDF Schema languages. These institutions are used as
the basis on which one of the semantics for SW languages is constructed using a method
presented in Section 2. Section 4 is devoted to the construction of the institutions defin-
ing SW languages. In Section 5, we construct an indexed institution based on a diagram
of RDF theories and we show that the RDF-based semantics of SW languages can
be defined as institution comorphisms from these languages to the indexed institution.
Section 6 concludes the paper and discusses future work directions.

Acknowledgment
This paper is dedicated, warmly and respectfully, to Professor Joseph Goguen on the
occasion of his 65th birthday. Joseph has determinative contributions in promoting Al-
gebra from the status of an abstract notation to that of a practical specification language,
widely used today in software engineering, and promoting logical systems as the “in-
stitution of the specification languages”. The research and teaching activity of the first
author is definitely guided by Joseph’s papers on these two issues. We wish him success
and happiness in his future.

2 Preliminaries

2.1 Semantic Web Languages

The Semantic Web is a vision as the new generation of the current World Wide Web
in which information is semantically marked-up so that intelligent software agents can
autonomously understand, process and aggregate data. This ability is realized through
the development of a “stack” of languages, as depicted by Berners-Lee in Fig. 1.

Based on mature technologies such as XML, Unicode and URI (Uniform Resource
Identifier), The Resource Description Framework (RDF) [17] is the foundation of later
languages in the SW. RDF is a model of metadata defining a mechanism for describing
resources that makes no assumptions about a particular application domain. It provides
a simple way to make statements about Web resources. An RDF document is a col-
lection of triples: statements of the form 〈subject , predicate, object〉, where subject is
the resource we are interested in, predicate specifies the property or characteristic of the
subject and object states the value of the property. This is the basic structure of the sub-
sequent ontology languages. RDF also defines vocabularies for constructing containers
such bags, sequences and lists.

RDF Schema [4] provides additional vocabularies for describing RDF documents. It
defines semantical entities such as Resource, Class, Property, Literal and various prop-
erties about these entities, such as subClassOf, domain, range, etc. In RDF Schema, Re-
source is the universe of description. It can be further categorized as classes, properties,
datatypes or literals. With these semantical constructs, RDF Schema can be regarded as
the basic ontology language.

102 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

The Web resources are represented by full URIs, consisting of a prefix, representing
a namespace, and a name representing the actual resource that is being described. In its
full form, the prefix and the resource name are separated by a #. In shorthand form, the
prefix can be represented by a shorter name and it is separated from the actual name by
a colon (:), as the following example shows. After a resource has been introduced by an
rdf:ID construct (in shorthand form of the URI), it can be subsequently accessed and
augmented by the rdf:about constructs. When there is no possibility of confusion,
the prefix can be omitted (but not the separator #).

Example 1. The following RDF fragment defines an RDFS class Carnivore, which is a
sub class of Animal.

<rdfs:Class rdf:ID="Animal"/>
<rdfs:Class rdf:ID="Carnivore">

<rdfs:subClassOf rdf:resource=#Animal"/>
</rdfs:Class>

In this example, the namespace is the URI http://ex.com/animals. The full URI for the
class Animal is http://ex.com/animals#Animal.

The ability to organize and categorize domain knowledge is a necessity for software
agents to process and aggregate Web resources. Domain knowledge is usually organized
as inter-related conceptual entities in a hierarchy. The RDF language is not expressive
enough to tackle such complexity.

In 2003, W3C published a new ontology language, the Web Ontology Language
(OWL) [20]. Based on description logics and RDF Schema, the OWL suite consists
of three sublanguages: Lite, DL and Full, with increasing expressiveness. The three
sublanguages are meant for user groups with different requirements of expressiveness
and decidability. OWL Lite and DL are decidable whereas OWL Full is generally not.

By saying that an ontology language is decidable, it actually means that the core
reasoning problems, namely, concept subsumption, concept/ontology satisfiability and
instantiation checking, are decidable [16].

One of the major extensions of OWL over RDF Schema is the ability to define re-
strictions using existing classes and properties. By using restrictions, new classes can be
built incrementally. In OWL, conceptual entities are organized as classes in hierarchies.
Individuals are grouped under classes and are called instances of the classes. Classes,
properties and individuals can be related by properties.

Example 2. The following OWL fragment shows the definition of an object property
eats and a class carnivore, which is further defined as an animal that only eats animals.
This is achieved through the use of an allValuesFrom restriction in OWL.

<owl:ObjectProperty rdf:ID="eats"/>
<owl:Class rdf:about="#Carnivore">

<rdfs:subClassOf>
<owl:Restriction><owl:allValuesFrom>

<owl:Class rdf:resource="#Animal"/>
</owl:allValuesFrom>

Semantic Web Languages – Towards an Institutional Perspective 103

<owl:onProperty>
<owl:ObjectProperty rdf:resource=

"http://ex.com/animals#eats"/>
</owl:onProperty>

</owl:Restriction></rdfs:subClassOf>
</owl:Class>

The class Carnivore is defined to be a sub class of an OWL restriction that defines an
anonymous class which only eats Animals.

The OWL− [5] suite of languages, namely Lite−, DL− and Full−, is a restricted
variant of OWL languages. OWL Lite− and DL− are strict subsets of OWL Lite and DL
respectively and they can be directly translated into Datalog. According to [5], the main
advantages of the OWL− include the following. Firstly, by translating OWL− to Dat-
alog, highly efficient deductive database querying capabilities can be used; Secondly,
rules extension and query languages can be easily implemented on top of OWL−.

In order to expand the expressiveness of SW languages, several rules extensions
have been proposed. SWRL [15] is a direct extension of OWL DL that incorporates
Horn-style rules. Among other things, it supports (universally quantified) variables and
built-in predicates/ functions for various data types.

On the contrary, the Web Rules Language (WRL) [1] is a rule-based ontology lan-
guage. Based on deductive databases and logic programming, it is designed to be com-
plementary to OWL, which is strong at checking subsumption relationships among con-
cepts. WRL focuses on checking instance data and the specification of and reasoning
about arbitrary rules. Moreover, WRL assumes a “Closed World Assumption”, whereas
OWL and SWRL assume an ”Open World Assumption”.

2.2 Institutions

Institutions supply a uniform way for structuring the theories in various logical systems.
Many logical systems have been proved to be institutions. Recent research showed that
institutions are useful in designing tools supporting verification over multiple logics.
The basic reference for institutions is [10]. A comprehensive overview on institutions
and their applications can be found in [6]. A well structured approach of the various
institution morphisms and many other recent constructions can be found in [11]. A
recent application of institutions in formalizing the information integration is given in
[9]. The Grothendieck institution construction we use in this paper follows the line from
[7]. The institutions use intensively category theory; we recommend [2] for a detailed
presentation of categories and their applications in computer science.

In this section we recall the main definitions for institutions and we introduce two
new constructions. The first is simple and it generalizes the notion of theoroidal comor-
phism by allowing to encode sentences from the source institution by conjunctions of
sentences in the target institution. The second is more complex and is used to construct
indexed institutions starting from diagrams of semantically constrained theories from
a basic institution. We use this construction to define the indexed institutions based on
RDF triples corresponding to SW languages.

104 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

An institution is a quadruple � = (Sign,Mod, sen, |=), where Sign is a category
whose objects are called signatures, Mod : Signop → Cat is a functor which associates
with each signature Σ a category whose objects are called Σ-models, sen is a functor
sen : Sign → Set which associates with each signature Σ a set whose elements are
called Σ-sentences, and |= is a function which associates with each signature Σ a binary
relation |=Σ ⊆ |Mod(Σ)| × sen(Σ), called satisfaction relation, such that for each
signature morphism φ : Σ → Σ′ the satisfaction condition

Mod(φop)(M ′) |=Σ ϕ⇔ M ′ |=Σ′ φ(ϕ)

holds for each model M ′ ∈ Mod(Σ′) and each sentence ϕ ∈ sen(Σ). The functor
sen abstracts the way the sentences are constructed from signatures (vocabularies). The
functor Mod is defined over the opposite category Signop because a “translation be-
tween vocabularies” φ : Σ → Σ′ defines a forgetful functor Mod(φop) : Mod(Σ′) →
Mod(Σ) such that for each Σ′-model M ′, Mod(φop)(M ′) is M ′ viewed as a Σ-model.
The satisfaction condition may be read as “M ′ satisfies the φ-translation of ϕ iff M ′,
viewed as a Σ-model, satisfies ϕ”, i.e., the meaning of ϕ is not changed by the transla-
tion φ.

We often use Sign(�), Mod(�), sen(�), |= to denote the components of the insti-
tution �. If φ : Σ → Σ′ is a signature morphism, then the Σ-model Mod(φop)(M ′) is
also denoted by M ′	φ and we call it the φ-reduct of M ′. We also often write φ(ϕ) for
Mod(φ)(ϕ).

If F is a set of Σ-sentences and M a Σ-model, then M |= F denotes the fact that M
satisfies all the sentences in F. Let F• denote the set F• = {ϕ | (∀M a Σ model)M |=Σ

F ⇒ M |=Σ ϕ}. A sentence ϕ is semantical consequence of F, we write F |=Σ ϕ, iff
ϕ ∈ F•.

A specification (presentation) is a way to represent the properties of a system inde-
pendent of model (= implementation). Formally, a specification is a pair (Σ,F), where
Σ is a signature and F is a set of Σ-sentences. A (Σ,F)-model is a Σ-model M such
that M |=Σ F. We sometimes write (Σ,F) |= ϕ for F |=Σ ϕ. A specification morphism
from (Σ,F) to (Σ′,F′) is a signature morphism φ : Σ → Σ′ such that φ(F) ⊆ F′•. We
denote by Spec the category of the specifications. A theory is a specification (Σ,F) with
F = F•; the full subcategory of theories in Spec is denoted by Th. The inclusion func-
tor U : Th → Spec is an equivalence of categories, having a left-adjoint-left-inverse
F : Spec → Th given by F (Σ,F) = (Σ,F•) on objects and identity on morphisms.

Given an institution � = (Sign,Mod, sen, |=), the theoroidal institution �th of �
is the institution �th = (Th,Modth, senth, |=th), where Modth is the extension of Mod
to theories, senth is sign;sen with sign : Th → Sign the functor which forgets the
sentences of a theory, and |=th = |sign|; |=.

Let � = (Sign,Mod, sen, |=) and �′ = (Sign′,Mod′, sen′, |=′) be two institutions.
An institution morphism (Φ, β, α) : � → �′ consists of:

1. a functor Φ : Sign → Sign′,
2. a natural transformation β : Mod ⇒ Φop ;Mod′, i.e., a natural family of functors
βΣ : Mod(Σ) → Mod′(Φ(Σ)), and

3. a natural transformation α : Φ;sen′ ⇒ sen, i.e., a natural family of functions αΣ :
sen′(Φ(Σ)) → sen(Σ),

Semantic Web Languages – Towards an Institutional Perspective 105

such that the following satisfaction condition holds:

M |=Σ αΣ(ϕ′) iff βΣ(M) |=′
Φ(Σ) ϕ

′

for any Σ-model M in � and Φ(Σ)-sentence ϕ′ in �′. Usually, the institution mor-
phisms are used to express the embedding relationship. An example of institution mor-
phism is (Φ, β, α) : �th → � which express the embedding of � in �th. Φ : Th → Sign
is given by Φ(Σ,F) = Σ, β : Modth ⇒ Φop ;Mod is defined such that β(Σ,F) is the iden-
tity, and α : Φ; sen ⇒ senth is defined such that α(Σ,F) is the identity.

An institution comorphism (Φ, β, α) : � → �′ consists of:

1. a functor Φ : Sign → Sign′,
2. a natural transformation β : Φop ;Mod′ ⇒ Mod, i.e., a natural family of functors
βΣ : Mod′(Φ(Σ)) → Mod(Σ), and

3. a natural transformation α : sen ⇒ Φ; sen′, i.e., a natural family of functions αΣ :
sen(Σ)) → sen′(Φ(Σ)),

such that the following satisfaction condition holds:

βΣ(M ′) |=Σ ϕ iff M ′ |=Φ(Σ) αΣ′(ϕ)

for any Φ(Σ)-model M ′ in � and Σ-sentence ϕ in �. If βΣ is surjective for each signa-
ture Σ, then we say that (Φ, β, α) is conservative. Usually, the institution comorphisms
are used to express the representation (encoding) relationship. A simple example of co-
morphism is (Φ, β, α) : � → �th, where Φ : Sign → Th is given by Φ(Σ) = (Σ, ∅),
β : Φ;Modth ⇒ Mod is defined such that βΣ is the identity, and α : sen ⇒ Φ; senth is
defined such that αΣ is the identity.

In many practical examples, we have to represent (encode) a sentence from the
source institution with a conjunction of sentences from the target institution. A simple
example is the representation of the equivalenceϕ↔ ϕ′ by the conjunction of two Horn
rules: ϕ→ ϕ′ ∧ ϕ′ → ϕ. Hence the following construction. The conjunction extension
of � is the institution �∧ = (Sign,Mod, sen∧, |=∧), where sen∧(Σ) = sen(Σ)∪{ϕ1 ∧
· · · ∧ ϕk | ϕ1, . . . , ϕk ∈ sen(Σ)}, M |=∧

Σ ϕ iff M |=Σ ϕ for all ϕ ∈ sen(Σ), and
M |=∧

Σ ϕ1 ∧ · · · ∧ ϕk iff M |=Σ ϕi for i = 1, . . . , k . There is an institution morphism
(Φ, β, α) : �∧ → � expressing the embedding of � in �∧. This embedding can also
be represented by a comorphism from � to �∧.

An indexed category is a functor G : I op → Cat, where I is a category of indices.
The Grothendieck category G# of an indexed category G : I op → Cat has pairs 〈i ,Σ〉,
with i an object in I and Σ an object in G(i), as objects, and 〈u, ϕ〉 : 〈i ,Σ〉 → 〈i ′,Σ′〉,
with u : i → i ′ an arrow in I and ϕ : Σ → G(u)(Σ′) an arrow in G(i), as arrows.

The Grothendieck institution �# of an indexed institution � : I op → Ins has

1. the Grothendieck category Sign# as its category of signatures, where Sign : I op →
Cat is the indexed category of signatures of �;

2. Mod# : (Sign#)op → Cat as its model functor, where Mod#〈i ,Σ〉 = Modi(Σ)
and Mod#〈u, ϕ〉 = βu

Σ′ ;Modi(ϕ);
3. sen# : Sign# → Set as its sentence functor, where sen#〈i ,Σ〉 = seni(Σ); and
4. M |=#

〈i,Σ〉 ϕ iff M |=i
Σ ϕ for all i ∈ |I |, Σ ∈ |Signi |, M ∈ |Mod#(i ,Σ)|, and

ϕ ∈ sen#(i ,Σ);

106 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

where �(i) = (Signi ,Modi , seni , |=i) for each index i ∈ |I | and �(u) = (φu , βu , αu)
for each index morphism u ∈ I .

We show how a theory (Σ0,F0) and a model constraint can define an institution
̂(Σ0,F0). A model constraint is a map [[]]c which associates a subcategory [[Σ,F]]c ⊆

Modth(Σ,F) with each theory (Σ,F), such that M ′	φ∈ [[Σ,F]]c for all φ : (Σ,F) →
(Σ′,F′) and M ′ ∈ [[Σ′,F′]]c . Moreover, a model constraint implies in fact a seman-
tical extension in the following sense. [[Σ,F]]c ⊆ Modth(Σ,F) implies [[Σ,F]]•c ⊇
Modth(Σ,F)•, where M• denotes the set of sentences satisfied by all models in M.
In other words, in the presence of model constraints we can prove more properties. The
constraints defined in [10] are a particular case of model constraints when the subcate-

gory can be syntactically represented. The institution ̂(Σ0,F0) is defined as follows:

1. the category of signatures is the comma category (Σ0,F0)↓Th, where the objects
are theory morphisms f : (Σ0,F0) → (Σ,F), and the arrows φ : f → f ′ are
consisting of theory morphisms φ : (Σ,F) → (Σ′,F′) such that f ;φ = f ′,

2. the model functor Mod(Σ̂0,F0) maps each signature f : (Σ0,F0) → (Σ,F) into
the subcategory [[Σ,F]]c ,

3. the sentence functor sen(Σ̂0,F0) maps a signature f : (Σ0,F0) → (Σ,F) into the
set of Σ-sentences,

4. the satisfaction relation is defined by M |=f ϕ iff M |=Σ ϕ.

Note that the model constraint is required only for theories (Σ,F) for that there exists a
theory morphism f : (Σ0,F0) → (Σ,F). We extend the above construction to diagrams
of theories and indexed institutions. Let D : I → Th be a diagram of theories and
([[]]i | i ∈ |I |) a model constraint such that if u : i → j is an arrow in I , then M ′	u∈
[[D(i)]]i for each M ′ ∈ [[D(j)]]j . We denote D(i) by (Σi ,Fi), i ∈ |I |. If u : j → i is

an arrow in I op , then there is an institution morphism (Φ, β, α) : ̂(Σj ,Fj) → ̂(Σi ,Fi),
where

1. Φ maps a signature f : (Σj ,Fj) → (Σ,F) into the signature D(u); f : (Σi ,Fi) →
(Σ,F);

2. β : Mod(Σ̂j ,Fj) → Φ; ̂(Σi ,Fi) is as follows: if f : (Σj ,Fj) → (Σ,E) is a

signature in ̂(Σj ,Fj), then βf is the identity because M	f 	D(u) is a Σi -model by
functoriality of Mod(�) and by the fact that D(u) and f are theory morphisms;

3. α : Φ;sen(Σ̂j ,Fj) → ̂(Σi ,Fi) is as follows: if f : (Σj ,Fj) → (Σ,E) is a signature

in ̂(Σj ,Fj), then αΦ(f) is identity.

The diagram D : I → Th together with the model constraint ([[]]i | i ∈ |I |) produces
an indexed institution D : I op → Ins, where Ins is the category of institutions and the
arrows are institution morphisms. We can define now the Grothendieck institution D#,
where

1. the category of signatures Sign(D#) is the Grothendieck construction Sign(D)#

corresponding to Sign(D) : I op → Cat, which maps each index i into Sign(Σ̂i ,Fi);

Semantic Web Languages – Towards an Institutional Perspective 107

2. the model functor Mod(D#) : Sign(D#) → Cat is given by:

Mod(D#)(〈i , f : (Σi ,Fi) → (Σ,F)〉) is Mod(Σ̂i ,Fi)(f) (that is equal to [[Σ,F]]i),
and if 〈u, φ〉 : 〈i , f :(Σi ,Fi) → (Σ,F)〉 → 〈j , f ′:(Σj ,Fj) → (Σ′,F′)〉, then

Mod(D#)(〈u, φ〉) = βf ′(u);Mod(Σ̂i ,Fi)(φ), (Φ, β, α) : ̂(Σj ,Fj) → ̂(Σi ,Fi);

3. the sentence functor sen(D#) : Sign(D#) → Set is given by:

sen(D#)(〈i , f : (Σi ,Fi) → (Σ,F)〉) is sen(Σ̂i ,Fi)(f) (that is equal to sen(�)(Σ)),
and if 〈u, φ〉 : 〈i , f : (Σi ,Fi) → Σ,F)〉 → 〈j , f ′ : (Σj ,Fj) → Σ′,F′)〉, then

sen(D#)(〈u, φ〉) = sen(Σ̂i ,Fi)(φ);αf (u), where (Φ, β, α) : ̂(Σj ,Fj) → ̂(Σi ,Fi);

4. if f : (Σi ,Fi) → (Σ,F), M ∈ Mod(D#)(〈i , f 〉) and ϕ ∈ sen(D#)(〈i , f 〉), then
M |=〈i,f 〉 ϕ iff M |=f ϕ.

This construction will be used to formalize the RDF triple-based logics underlying SW
languages. For instance, it is useful to combine ontologies described in various SW
languages.

3 RDF and RDF Schema Logics

In this section, we define the institutions for the languages RDF and RDF Schema.
The construction of these institutions is divided into three steps. Firstly, we construct a
bare-bone institution for RDF logic, capturing only the very essential concepts in RDF,
namely the resource references and the triples format. This logic then serves as the basis
on which the institutions of the actual RDF and RDF Schema are constructed. In turn,
the institutions defined in this section serve to define the RDF serialization of ontology
languages defined in Section 4.

3.1 Bare RDF Logic B̂RDF

As introduced in Section 2.1, the Resource Description Framework (RDF) is the foun-
dation language of the Semantic Web and all upper layer languages are based on it.
Hence, they are all based on the syntax defined in RDF, which is, the triples format.
Together with the use of URI for resource referencing, these two features of the RDF
language are common to all other languages. Hence, we extract them from RDF lan-
guage and define an institution, the bare RDF logic B̂RDF.

Example 3. Since resource references are the only signatures in B̂RDF, any triple will
be part of the sentences. As B̂RDF is a bare-bone RDF institution, it does not define
the XML serialization presented in the previous two examples. Therefore, we will use
the informal syntax in this example. Note that the separator # is replaced by a : in this
notation. The following triple is a legal sentence in B̂RDF, stating that carnivores eat
animals.

(animals:Carnivore, animals:eats, animals:Animal)

108 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

The Bare RDF logic B̂RDF is a bare-bone institution with resource references as the
only signatures. The sentences are triples. B̂RDF is not expressive at all. We use it as
a basis upon which we develop the Grothendieck institution of the triples-based logics
underlying SW languages.

A signature RR in B̂RDF is a set of resource references. A signature morphism φ :
RR → RR′ is an arrow in Set. The RR-sentences are triples of the form (sn, pn, on),
where sn, pn, on ∈ RR. Usually, sn is for subject name, pn is for property (predicate)
name, and on is for object name. RR-models I are tuples I = (RI,PI,SI, extI), where
RI is a set of resources, PI is a subset of RI (PI ⊆ RI) - the set of properties, SI :
RR → RI is a mapping function that maps each resource reference to some resource,
and extI : PI → P(RI × RI) is an extension function mapping each property to a
set of pairs of resources that it relates. An RR-homomorphism h : I → I′ between
two RR-models is a function h : RI → RI′ such that h(PI) ⊆ PI′ , SI;h = SI′ , and
extI;P(h × h) = h|PI

;extI′ . The satisfaction is defined as follows:

I |=RR (sn, pn, on) iff (SI(sn),SI(on)) ∈ extI(SI(pn)),

that (sn, pn, on) is satisfied if and only if the pair consisting of the resources associated
with the subject name sn and the object name on is in the extension of pn .

In order to simplify the notation, we often write extI(pn) instead of extI(SI(pn)).

3.2 RDF Logic R̂DF

The RDF logic R̂DF is constructed with B̂RDF as the basis. The addition in R̂DF is the
built-in vocabularies of the RDF language and the semantics of these language con-
structs. Hence, as shown below, we denote the signatures of R̂DF using theories, which
consist of these built-in vocabularies and sentences giving them semantics. We also add
some weak model constraints. More precisely, R̂DF is defined using the construction we
defined in Section 2.2 starting from a theory RDF and a model constraint [[]]RDF .

The RDF theory is RDF = (RDFVoc,TRDF), where the RDF vocabulary RDFVoc
includes the following items:

rdf:type, rdf:Property, rdf:value,
rdf:Statement, rdf:subject, rdf:predicate, rdf:object,
rdf:List, rdf:first, rdf:rest, rdf:nil,
rdf:Seq, rdf:Bag, rdf:Alt, rdf:_1 rdf:_2 ...

and TRDF consists of triples expressing properties of the vocabulary symbols:

(rdf:type, rdf:type, rdf:Property),
(rdf:subject, rdf:type, rdf:Property),
(rdf:predicate, rdf:type, rdf:Property),
(rdf:object, rdf:type, rdf:Property),
(rdf:value, rdf:type, rdf:Property),
(rdf:first, rdf:type, rdf:Property),
(rdf:rest, rdf:type, rdf:Property),
(rdf:nil, rdf:type, rdf:List),
(rdf:_1, rdf:type, rdf:Property),
(rdf:_2, rdf:type, rdf:Property),
...

Semantic Web Languages – Towards an Institutional Perspective 109

Note that the above vocabularies such as rdf:type are all shorthands of legal
URIs, as described in Section 2. All the above triples are self explanatory. For instance,
the triple (rdf:value, rdf:type, rdf:Property) states that rdf:value
is a property.

We suppose that there is a given set RRDF of RDF resources and a function SRDF :
RDFVoc → RRDF which associates a resource with each RDF symbol. It is easy to see
that RRDF and SRDF can be extended to an RDF-model RDF.

For each theory such that there is a theory morphism f : RDF → (RR,T), we
consider the model constraint [[RR,T]]RDF as consisting of those (RR,T)-models I
such that

– RI includes RRDF and the restriction of SI to RDFVoc coincides with SRDF,
– if p ∈ PI, then (p,SI(rdf:Property)) ∈ extI(rdf:type).

Since f is a theory morphism, the restriction of I to RDFVoc is an RDF-model. We denote
by R̂DF the institution defined by the theory RDF together with the model constraint
[[]]RDF using the method presented in Section 2.2.

If we denote by (̂∅, ∅) the institution defined by the theory (∅, ∅) and the model

constraint [[RR,T]]∅ = Mod(B̂RDF)th(RR,T), then B̂RDF
th

is isomorphic to (̂∅, ∅)
and we have the institution morphisms R̂DF → B̂RDF

th → B̂RDF.

3.3 The RDF Schema Logic R̂DFS

RDF Schema defines additional language constructs for the RDF language. It expands
the expressiveness of RDF by introducing the concept of universe of resources (rdfs:-
Resource), the classification mechanism (rdfs:Class) and a set of properties that
relate them (rdfs:subClassOf, rdfs:domain, rdfs:range). Hence, it is nat-
ural for the RDFS institution R̂DFS to be developed on top of R̂DF, with some more
model constraints added to capture the semantics of RDFS language constructs.

Example 4. Example 1 defines the sub class relationship between two RDF Schema
classes. In the shorthand, it can be represented in the informal syntax as follows.

(animals:Carnivore, rdfs:subClassOf, animals:Animal)

The RDF Schema theory RDFS = (RDFSVoc,TRDFSVoc) is composed of the RDF
Schema vocabulary RDFSVoc including RDFVoc together with

rdfs:domain, rdfs:range, rdfs:Resource,
rdfs:Literal, rdfs:Datatype, rdfs:Class,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:member,
rdfs:Container, rdfs:ContainerMembershipProperty

and the sentences TRDFS including TRDFS together the triples setting the properties of the
new symbols (for the whole list of triples see [13]):

(rdf:type, rdfs:domain, rdfs:Resource),
(rdfs:domain, rdfs:domain, rdf:Property),
(rdfs:range, rdfs:domain, rdf:Property),

110 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

(rdfs:subPropertyOf, rdfs:domain, rdf:Property),
(rdfs:subClassOf, rdfs:domain, rdfs:Class),
...

(rdf:type, rdfs:range, rdfs:Class),
(rdfs:domain, rdfs:range, rdfs:Class),
(rdfs:range, rdfs:range, rdfs:Class),
(rdfs:subPropertyOf, rdfs:range, rdf:Property),
(rdfs:subClassOf, rdfs:range, rdfs:Class),
...

We suppose that there is a given set RRDFS of RDF Schema resources and a func-
tion SRDFS : RDFSVoc → RRDFS which associates a resource with each RDF Schema
symbol and that satisfies SRDFS|RDFVoc = SRDF.

For each theory such that there is a theory morphisms f : RDFS → (RR,T), we
define the model constraint [[RR,T]]RDFS obtained by strengthening [[RR,T]]RDF with
the following conditions. If I ∈ [[RR,T]]RDFS, then:

– RI includes RRDFS and the restriction of SI to RDFSVoc coincides with SRDFS

– extI(rdfs:Resource) = RI

– (∀ x , y, u, v : RI)(x , y) ∈ extI(rdfs:domain) ∧ (u, v) ∈ extI(x) ⇒
u ∈ extI(y)

– (∀ x , y, u, v : RI)(x , y) ∈ extI(rdfs:range) ∧ (u, v) ∈ extI(x) ⇒
v ∈ extI(y)

– (∀ x , y : RI)(x , y) ∈ extI(rdfs:subClassOf) ⇒ extI(x) ⊆ extI(y)
– (∀ x : extI(rdf:Class))(x ,SI(rdfs:Resource)) ∈ extI(rdfs:subClassOf))
– (∀ x , y : RI)(x , y) ∈ extI(rdfs:subPropertyOf) ⇒ extI(x) ⊆ extI(y)
– (∀ x : extI(rdfs:ContainerMembershipProperty))

(x ,SI(rdfs:member)) ∈ extI(rdfs:subPropertyOf)

In other words, [[]]RDFS gives the intended semantics to syntactic constructions such as
domain, range, subClassOf, subPropertyOf, etc.

We denote by R̂DFS the institution such that R̂DFS → R̂DF is the indexed institution
produced by the diagram RDF → RDFS together with the model constraint [[]]RDFS .
We have the theory morphisms (inclusions) (∅, ∅) → RDF → RDFS and [[]]∅ ⊆
[[]]RDF ⊆ [[]]RDFS . We can formalize now the logics underlying RDF framework
as the Grothendieck institution defined by the indexed institution:

R̂DFS � R̂DF � B̂RDF
th ��

co
B̂RDF

4 Semantic Web Logics

A number of ontology languages have been proposed in the past years. These include
the OWL suite of languages, the OWL− suite of languages, OWL Flight, etc. They
are all based on RDF and RDFS but imposes different restrictions on the usage of
RDF(S) language constructs. Hence, their expressiveness is different. In this section,

Semantic Web Languages – Towards an Institutional Perspective 111

we construct institutions in an RDF(S)-independent way for some of these languages
and inter-relate them using institution morphisms. Then we relate them to RDF(S) by
exhibiting the comorphisms defining the RDF serializations. These institutions are in-
crementally constructed using the same pattern. Therefore we present more details only
for the first (smallest) one.

4.1 OWL Lite− Logic ̂OWLLite

OWL Lite− [5] is a proper subset of OWL Lite (see the next subsection) that can be
translated in Datalog. It is obtained from OWL Lite by removing those features con-
sidered hard to reason about. OWL Lite− is the lightest dialect of SW languages and

therefore we start with it. We denote by ̂OWLLite the institution of the ontology lan-
guage OWL Lite−.

Example 5. The class subsumption relationship is allowed in OWL Lite− as long as
neither of the classes is either top (�, the super class of all classes) or bottom (⊥, the
sub class of all classes, i.e., the empty class). Moreover, allValuesFrom restrictions
like that mentioned in Example 2 is also allowed in OWL Lite−. Hence, Example 2 is
also an OWL Lite− fragment.

The signatures of ̂OWLLite are triples Σ = (CN ,PN , IN), where CN is a set of
class names, PN is a set of individual property names, and IN is a set of individual
names. We assume that CN ,PN , and IN are pairwise disjoint. A signature morphism
φ : Σ → Σ′ is a function φ : CN ∪ PN ∪ IN → CN ′ ∪ PN ′ ∪ IN ′ such that
φ(CN) ⊆ CN ′, φ(PN) ⊆ PN ′, φ(IN) ⊆ IN ′, where Σ′ = (CN ′,PN ′, IN ′).

A Σ-model I consists of (RI,SI, extI), where RI is a set of resources, SI : CN ∪
PN ∪ IN → RI is a map such that SI(CN), SI(PN) and SI(IN) are pairwise disjoint,
and extI is a map associating a subset of RI with each class name cn ∈ CN , and a subset
of RI × RI with each property name pn . A Σ-homomorphism h : I → I′ between two
Σ-models is a function h : RI → RI′ such that SI;h = SI′ , extI|CN ;P(h) = extI′ |CN ,
and extI|PN ;P(h × h) = extI′ |PN .

For class expressions and Σ-sentences we use a more compact notation:

Res ::= restriction(pn allValuesFromcn) |
restriction(pn minCardinality(0))

C ::= cn | Res
S ::= Class(cn partialC1 . . .Ck) | Class(cn completecn1 . . . cnk) |

EquivalentClasses(cn1 . . . cnk) |
ObjectProperty(pn super(pn1) . . . super(pnk)) |
pn.domain(cn1 . . . cnk) | pn.range(cn1 . . . cnk) | pn.inverseOf(pn1) |
pn.Symmetric | pn.Transitive |
SubProperty(pn1 pn2) | EquivalentProperties(pn1 . . . pnk) |
Individual(in type(cn1) . . . type(cnk)) | in.value(pn in1)

112 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

The semantics of expressions is given by:

extI(restriction(pn allValuesFrom cn)) =
{x | (∀ y)(x , y) ∈ extI(pn) ⇒ y ∈ extI(cn)

extI(restriction(pn minCardinality(0))) =
{x | #({y | (x , y) ∈ extI(pn)}) ≥ 0}

The satisfaction relation between OWL Lite− Σ-models I and OWL Lite− Σ-sen-
tences is defined as it is intuitively suggested by syntax. For instance, we have:
I |=Σ Class(cn partialC1 . . . Ck) iff extI(cn) ⊆ extI(cn1) ∩ · · · ∩ extI(cnk)
I |=Σ ObjectProperty(pn super(pn1) . . . super(pnk)) iff

extI(pn) ⊆ extI(pn1) ∩ · · · ∩ extI(pnk)
I |=Σ pn.domain(cn1 . . . cnk) iff dom extI(pn) ⊆ extI(cn1) ∩ · · · ∩ extI(cnk)
I |=Σ SubProperty(pn1 pn2) iff extI(pn1) ⊆ extI(pn2)
I |=ΣIndividual(in type(cn1) . . . type(cnk)) iff SI(in)∈extI(cn1)∩· · ·∩extI(cnk)
I |=Σ in.value(pn in1) iff (SI(in),SI(in1)) ∈ extI(pn)
· · ·

4.2 OWL Lite Logic ̂OWLLite

OWL Lite is the least expressive species of the OWL suite. It is obtained by imposing
some constraints on OWL Full. These constraints include, for example, that the sets
of classes, properties and individuals are mutually disjoint; that min and max cardinal-
ity restrictions can only be applied on numbers 0 and 1; that value restrictions such
as allValuesFrom and someValuesFrom can only be applied to named classes.
Compared with OWL Lite−, OWL Lite is more expressive since it removes some con-
straints that are imposed on the latter. The details are discussed in the following. We

denote by ̂OWLLite the institution of OWL Lite.

Example 6. For example, OWL Lite− does not support the relationship between OWL
individuals, namely sameAs and differentFrom, whereas these features are pre-
sent in OWL Lite. Suppose that we have two URI references for carnivores car1 and
car2, which are actually referring to the same animal. We use the following code
fragment to represent this piece of knowledge:

<animals:Carnivore rdf:ID="car1"/>
<animals:Carnivore rdf:ID="car2"/>
<animals rdf:about="#car1>

<owl:sameAs rdf:resource="http://ex.com/animals#car2/>
</animals>

̂OWLLite is obtained from ̂OWLLite
−

by replacing the definition of expressions with

Res ::= restriction(pn allValuesFromcn) |
restriction(pn someValuesFromcn) |
restriction(pn minCardinality(n)) |
restriction(pn maxCardinality(n))

C ::= cn | owl:Thing | owl:Nothing | Res

Semantic Web Languages – Towards an Institutional Perspective 113

where n ∈ {0, 1}, and adding the following sentences:

pn.Functional | pn.InverseFunctional |
SameIndividual(in1, . . . , ink) | DifferentIndividuals(in1, . . . , ink)

The semantics of the new expressions is as follows:

extI(owl:Thing) is a subset of RI s.t. (∀ cn ∈ CN)extI(cn) ⊆ extI(owl:Thing),
extI(owl:Nothing) = ∅,
extI(restriction(pn someValuesFromcn)) =

{x | (∃ y)(x , y) ∈ extI(pn) ∧ y ∈ extI(cn)},
extI(restriction(pn minCardinality(1)cn)) =

{x | #{y | (x , y) ∈ extI(pn)}
 1},
extI(restriction(pn maxCardinality(1)cn)) =

{x | #{y | (x , y) ∈ extI(pn)} � 1}.

The satisfaction of the new sentences is intuitive and straightforward and we omit its
formal definition.

Proposition 1. There is a conservative comorphism from ̂OWLLite
−

to ̂OWLLite.

4.3 OWL DL− Logic ̂OWLDesLog
−

OWL DL− [5] is an extension of OWL Lite− and a subset of OWL DL (see the next
subsection) which can also be translated in Datalog. We denote by ̂OWLDesLog the
institution of OWL DL−. Compared to OWL Lite−, OWL DL− allows additional lan-
guage constructs value, someValuesFrom and oneOf, albeit that the latter two
are only allowed as the first argument of subClassOf (left hand side).

Example 7. In OWL DL−, the value restriction not present in OWL Lite− is allowed
in OWL DL−. This restriction constructs a class that for a given property, each of whose
instances must have (among others) a particular individual as the value mapped by this
property. Suppose that we want to model the fact that the ancestor of all humans is
Adam (among all his/her other ancestors), assuming that we have defined an individual
Adam and a property hasAncestor. Here is the definition in OWL DL−.

<owl:Class rdf:ID="Human">
<rdfs:subClassOf><owl:Restriction>

<owl:onProperty rdf:resource="#hasAncestor"/>
<owl:hasValue rdf:resource="#Adam"/>

</owl:Restriction></rdfs:subClassOf>
</owl:Class>

114 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

̂OWLDesLog
−

is obtained from ̂OWLLite
−

by replacing the definition of expres-
sions with

C ::= cn | Res | intersectionOf(C1, . . . , Cn)
Lhs D ::= C | Lhs Res | unionOf(Lhs D , . . . ,Lhs D) | oneOf(in1, . . . , ink)
Rhs D ::= C | Rhs Res

Res ::= restriction(pn value(in))
Lhs Res ::= Res | restriction(pn someValuesFrom(Lhs D))

| restriction(pn minCardinality(1))
Rhs Res ::= Res | restriction(pn allValuesFrom(Rhs D))

and replacing the class-related sentences with the following:

Class (cn partialRhs D) | Class (cn completeC) |
EquivalentClass(C1, . . . , Cn) | subClassOf(Lhs D ,Rhs D)

Note the use of class expressions instead of named classes. Lhs D and Rhs D repre-
sent class descriptions that can only appear in the left hand side and right hand side of
the subClassOf sentence, respectively.

The semantics of the value restriction is extI(restriction(pn value in)) = {x |
(x ,SI(in)) ∈ extI(pn)}. The semantics of the other expressions and the satisfaction
relation for the new sentences are defined as expected.

Proposition 2. There is a conservative comorphism from ̂OWLLite
−

to ̂OWLDesLog
−

.

4.4 OWL DL Logic ̂OWLDesLog

OWL DL is the main ontology language of the OWL suite. It is more expressive than
OWL Lite yet still decidable. It relaxes some constraints imposed on OWL Lite and
allows more language constructs to describe classes and properties. Still, classes, prop-
erties and individuals are mutually disjoint in OWL DL. We denote by ̂OWLDesLog the
institution of OWL DL. Compared to OWL DL−, OWL DL adds a number of language
features, such as enumerated class, disjointness classes, functional property, etc.

Example 8. The class Continents defines the continents of the Earth, namely Africa,
Antarctica, Asia, Australia, Europe, North America and South America. As this class
only contains these 7 instances, it is natural to use an enumeration to define it.

<owl:Class rdf:ID="Continents">
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Africa"/>
<owl:Thing rdf:about="#Antarctica"/>
<owl:Thing rdf:about="#Asia"/>
<owl:Thing rdf:about="#Australia"/>
<owl:Thing rdf:about="#Europe"/>

Semantic Web Languages – Towards an Institutional Perspective 115

<owl:Thing rdf:about="#North America"/>
<owl:Thing rdf:about="#South America"/>

</owl:oneOf>
</owl:Class>

̂OWLDesLog is obtained from ̂OWLLite replacing the definition of expressions with

Res ::= restriction(pn value in) |
restriction(pn allValuesFrom C) |
restriction(pn someValuesFrom C) |
restriction(pn minCardinality(n)) |
restriction(pn maxCardinality(n)) |

C ::= cn | owl:Thing | owl:Nothing | Res
intersectionOf(C1, . . . , Ck) | unionOf(C1, . . . , Ck) |
complementOf(C) | oneOf(in1, . . . , ink)

and adding the following sentences:

EnumeratedClass(cn in1, . . . , ink) | SubClassOf(C1, C2) |
DisjointClasses(C1, . . . ,Ck) | EquivalentClasses(C1, . . . , Ck) |
pn.domain(C1 . . . Ck) | pn.range(C1 . . . Ck) |
Individual(in type(C1), . . . , type(Ck)) | in.value(pn1 in1)

The semantics of the new expressions and the satisfaction relation for the new sentences
are defined as expected.

Proposition 3. a) There is a conservative comorphism from ̂OWLLite to ̂OWLDesLog.

b) There is a conservative comorphism from ̂OWLDesLog
−

to ̂OWLDesLog.

4.5 OWL Full Logic ̂OWLFull

OWL Full adds a number of features on top of OWL DL and also removes some re-
strictions. The vocabulary no longer needs to be separated. This means an identifier can
denote a class, an individual and/or a property at the same time.

Let X be a name denoting a class and a property in the same ontology Σ =
((CN ,PN , IN),F), i.e., X ∈ CN ∩PN , and let I be a (Σ,F)-model. For the moment,
we denote with X :CN the occurrence of X as a class and with X :PN the occurrence
of X as a property. We have SI(X :CN) = SI(X :PN) = SI(X), extI(X :CN) ⊆ RI,
and extI(X :PN) ⊆ RI × RI. Since X denotes just one entity, we relate the two sets
by means of a bijection rdefI(X) : extI(X :PN) → extI(X :CN). We may think that
rdef I(X)(r1, r2) is the URL address where the pair (r1, r2) is defined as an instance
of extI(X :PN). If X denotes a class (property) and an individual, then its meaning as
an individual is given by SI(X) and its meaning as class (property) is extI(X).

Also, keywords of the language can be used in place of classes, properties and
individuals, and restrictions. For instance, we may assume that subClassOf and

116 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

subPropertyOf are in PN . Then for X ,Y denoting both classes and properties,
we have subClassOf(X ,Y) iff SubPropertyOf(X ,Y); this is semantically ex-
pressed by (SI(X :CN),SI(Y :CN)) ∈ extI(SubClassOf) iff (SI(X :PN),SI(Y :PN))
∈ extI(SubPropertyOf).

We skip the formal definition of OWL Full here. The new features are added in a
similar way to other languages. In the definition of the signatures we remove the re-
striction as the sets CN ,PN , IN to be pairwise disjoint. The corresponding restriction
from the definition of models is also removed.

The original definition of OWL Full [20] is given directly over RDF Schema. Here
we refer an RDF independent definition for OWL Full. The fact that OWL Full is built
over RDF Schema is given by the following result.

Proposition 4. There is a conservative comorphism from R̂DFS to ̂OWLFull
th

.

It is easy to see that we cannot embed R̂DFS in ̂OWLDesLog. For instance, triples

like (rdf:type, rdf:type, rdf:Property) cannot be encoded in ̂OWLDesLog but can

be expressed as a sentence in ̂OWLFull.
If (Σ,F) is an ontology in OWL DL, then, syntactically, it is also an ontology in

OWL Full. However, the class of (Σ,F)-models in ̂OWLFull is richer than that of
(Σ,F)-models in ̂OWLDesLog. The reason is that in OWL Full we removed some
model constraints which are present in OWL DL. Hence we have the following result:

Proposition 5. There is not an embedding comorphism from ̂OWLDesLog to ̂OWLFull.

The theorem above has a drastic consequence: it could be unsound to use OWL Full
reasoners for OWL DL ontologies. This is refereed in literature as inappropriate layer-
ing [5].

The relationships between SW logics are expressed by the following diagram:

̂OWLFull ̂OWLDesLog � co
̂OWLDesLog

−

̂OWLLite � co

�
co

̂OWLLite
−

�
co

Between ̂OWLFull and ̂OWLDesLog we can define only a “syntactical comorphism”

consisting of an inclusion functor Sign(̂OWLDesLog) → Φ : Sign(̂OWLFull) and a

natural transformation α : Φ;sen(̂OWLDesLog) → sen(̂OWLFull).

5 RDF Serialization of Semantic Web Logics

In this section, we define the RDF serialization of the SW languages discussed in the
previous section. In terms of institution theory, an RDF serialization is a comorphism
(encoding) from the source language to an institution built over an RDF theory as in

Semantic Web Languages – Towards an Institutional Perspective 117

Section 2.2. Since the corresponding theories are related by morphisms, we get an in-
dexed institution. This approach results in a much clearer understanding of the relation-
ship among the various languages, as is shown at the end of the section.

5.1 RDF Serialization of OWL Lite−

We define the theory OWLLM = (OWLLMVoc,TOWLLM), where OWLLMVoc is RDFSVoc to-
gether with an enumerable set of anonymous names and the symbols

owl:allValuesFrom, owl:Class, owl:equivalentClass,
owl:equivalentProperty, owl:hasValue, owl:inverseOf,
owl:minCardinality, owl:ObjectProperty,
owl:SymmetricProperty, owl:TransitiveProperty,
owl:Restriction, owl:onProperty,
owl:allValuesFrom, owl:hasValue,owl:minCardinality

and TOWLLM is defined as TOWLLM = TRDFS ∪
{
(owl:Class, rdfs:subClassOf, rdf:Class),
(owl:allValuesFrom, rdf:type, rdf:Property),
(owl:allValuesFrom, rdfs:domain, rdf:Property),
(owl:equivalentProperties, rdf:type, rdf:Property),
(owl:equivalentProperties, rdfs:domain, rdf:Property),
(owl:equivalentProperties, rdfs:subPropertyOf,

rdfs:subPropertyOf),
(owl:ObjectProperty, rdf:type, rdfs:Class),
(owl:inverseOf, rdf:type, rdf:Property),
...

}

The anonymous names are used in translating OWL sentences into conjunctions of
triples [20]. As for RDF and RDF Schema, we suppose that there is a given set ROWLLM

of OWL Lite− resources and a function SOWLLM : OWLLMVoc→ ROWLLM which asso-
ciates a resource to each OWL Lite− symbol, and satisfies SOWLLM|RDFSVoc = SRDFS.

For each theory such that there is a theory morphisms f : OWLLM → (RR,T),
we define the model constraint [[RR,T]]OWLLM obtained by strengthening [[RR,T]]RDFS

with the following conditions. If I ∈ [[RR,T]]OWLLM , then:

– RI includes ROWLLM and the restriction of SI to OWLLMVoc coincides with SOWLLM.
– extI(owl:Class) ∩ extI(owl:ObjectProperty) = ∅
– (∀ x , y)(x , owl:Class) ∈ extI(rdf:type) ∧ (y, x) ∈ extI(rdf:type) ⇒

((y, owl:Class) /∈ extI(rdf:type)) ∧
((y, rdf:Property) /∈ extI(rdf:type))

– (∀ x , y)(x , y) ∈ extI(owl:equivalentClass) ⇒
(x ,SI(owl:Class)) ∈ extI(rdf:type) ∧

(y,SI(owl:Class)) ∈ extI(rdf:type) ∧ extI(x) = extI(y)
– (∀ u,w , v)(w ,SI(owl:Restriction)) ∈ extI(rdf:type) ∧

(w , u) ∈ extI(owl:onProperty) ∧ (w , v) ∈ extI(xowl:allValuesFrom) ⇒
extI(w) = {x | (x , y) ∈ extI(u) ⇒ y ∈ extI(v)}

118 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

– (∀ u, v ,w)(w ,SI(owl:Restriction)) ∈ extI(rdf:type) ∧
(w , u) ∈ extI(owl:onProperty) ∧ (w , v) ∈ extI(owl:hasValue) ⇒

extI(w) = {x | (x , v) ∈ extI(u)}
– (∀ u,w , y)(w ,SI(owl:Restriction)) ∈ extI(rdf:type) ∧

(w , u) ∈ extI(owl:onProperty) ∧ (w , 0) ∈ extI(owl:minCardinality) ⇒
extI(w) = {x | #({(x , y) ∈ extI(u)}) ≥ 0

– (∀ v ,w , x , y)(x , y) ∈ extI(owl:inverseOf) ⇒
(x ,SI(owl:ObjectProperty)) ∈ extI(rdf:type) ∧
(y,SI(owl:ObjectProperty)) ∈ extI(rdf:type) ∧
(w , v) ∈ extI(x) ⇔ (v ,w) ∈ extI(y)

– (∀ u, x , y)(u,SI(owl:SymmetricProperty)) ∈ extI(rdf:type) ∧
(x , y) ∈ extI(u) ⇒ (y, x) ∈ extI(u)

– (∀ u, x , y, z)(u,SI(owl:TransitiveProperty)) ∈ extI(rdf:type) ∧
(x , y) ∈ extI(x) ∧ (y, z) ∈ extI(x) ⇒ (x , z) ∈ extI(x)

– (∀ x , y)(x , y) ∈ extI(owl:equivalentProperty) ⇒
(x ,SI(rdf:Property)) ∈ extI(rdf:type) ∧
(y,SI(rdf:Property)) ∈ extI(rdf:type) ∧ extI(x) = extI(y)

The second and the third conditions say that the vocabulary is separated: a resource can-
not be a class, an individual and/or a property at the same time. The last three conditions
give the intended meaning of the symmetric property, transitive property, and equiva-
lent property, respectively. The other conditions give semantics to the new syntactical
constructions. We denote by ÔWLLM the institution generated by the theory OWLLM and
the model constraint [[]]OWLLM using the method presented in Section 2.2.

Proposition 6. There is a conservative comorphism (Φ, β, α) from ̂OWLLite to

(ÔWLLM
th

)∧.

Here is a brief description of the comorphism given by Proposition 6.

Φ : Sign(̂OWLLite) → Sign((ÔWLLM
th

)∧) is defined as follows. If Σ = (CN ,PN , IN)
is an OWL Lite− signature, then Φ(Σ) is Σ : OWLLM → (RR,T), where RR =
OWLLMVoc∪ CN ∪ PN ∪ IN , and T includes TOWLLM together with:
a triple (cn, rdf:type, owl:Class) for each cn ∈ CN ,
a triple (pn, rdf:type, owl:ObjectProperty) for each pn ∈ PN , and
a triple (in, rdf:type, rdf:Resource) for each in ∈ IN .

β : Φ;Mod((ÔWLLM
th

)∧) ⇒ Mod(̂OWLLite) is defined as follows. If I′ is a Φ(Σ)-
model, then βΣ(I′) = I, where RI = RI′ , SI(name) = SI′(name) for each name ∈
CN ∪ PN ∪ IN , extI(pn) = extI′(pn), and
extI(cn) = {x | (x ,SI′(cn)) ∈ extI′(rdf:type)}.

α : sen(̂OWLLite) ⇒ Φ; sen((ÔWLLM
th

)∧) is given such that αΣ associates with each
OWL Lite− syntactical construction a set (conjunction) of triples similar to that defined
in [20]. If Σ is an OWL Lite−-signature and M a Σ-model, then M can be extended
to Φ(Σ)-model by giving semantics to symbols in OWLLMVoc according to triples in
TOWLLM.

Semantic Web Languages – Towards an Institutional Perspective 119

5.2 RDF Serialization of OWL Lite

We define the theory OWLL = (OWLLVoc,TOWLL), where OWLLVoc is OWLLMVoc together
with

owl:Thing, owl:Nothing, owl:FunctionalProperty,
owl:SameIndividual, DifferentIndividuals, owl:someValues,
owl:maxCardinality

and TOWLL is defined as TOWLL = TOWLLM ∪
{
(owl:Thing, rdf:type, rdfs:Class),
(owl:Nothing, rdf:type, rdfs:Class),
(owl:FunctionalProperty, rdf:type, rdfs:Class),
(owl:InverseFunctionalProperty, rdf:type, rdfs:Class),
(owl:InverseFunctionalProperty, rdfs:subClassOf,

owl:ObjectProperty),
(owl:sameAs, rdf:type, rdf:Property),
...

}

As for OWL Lite−, we suppose that there is given a set ROWLL of RDF Schema
resources and a function SOWLL : OWLL → ROWLL which associates a resource to each
OWL Lite symbol, and satisfies SOWLL|OWLLMVoc = SOWLLM.

For each theory such that there is a theory morphisms f : OWLL → (RR,T) we de-
fine the model constraint [[RR,T]]OWLL obtained by strengthening [[RR,T]]OWLLM with
the following conditions. If I ∈ [[RR,T]]OWLL , then:

– RI includes ROWLL and the restriction of SI to OWLLVoc coincides with SOWLL.
– I satisfies the restrictions expressing the intended meaning of the new features.

We denote by ÔWLL the institution generated by the theory OWLL and the model con-
straint [[]]OWLL using the method presented in Section 2.2.

Theorem 1. There is a conservative comorphism from ̂OWLLite to (ÔWLL
th

)∧.

5.3 RDF Serialization of OWL DL−

We define the theory OWLDLM = (OWLDLMVoc,TOWLDLM), where the vocabulary
OWLDLMVoc is OWLLMVoc together with

owl:SubClassOf, owl:intersectionOf, owl:unionOf, owl:oneOf,
owl:someValues, owl:hasValue

and TOWLDLM is defined as TOWLDLM = TOWLLM ∪
{
(owl:intersectionOf, rdf:type, rdf:Property),
(owl:unionOf, rdf:type, rdf:Property),
(owl:oneOf, rdf:type, rdf:Property),
(owl:oneOf, rdfs:range, rdf:List),
...

}

120 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

As usual, we suppose that there is a given set ROWLDLM of RDF Schema resources
and a function SOWLDLM : OWLDLM → ROWLDLM which associates a resource to each
OWL DL− symbol, and satisfies SOWLDLM|OWLLMVoc = SOWLLM.

For each theory such that there is a theory morphisms f : OWLDLM → (RR,T) we
define the model constraint [[RR,T]]OWLDLM obtained by strengthening [[RR,T]]OWLLM

with the following conditions. If I ∈ [[RR,T]]OWLDLM , then:

– RI includes ROWLDLM and the restriction of SI to OWLDLMVoc is SOWLDLM.
– I satisfies the restrictions expressing the intended meaning of the new features.

We denote by ÔWLDLM the institution generated by the theory OWLDLM and the model
constraint [[]]OWLDLM using the method presented in Section 2.2.

Theorem 2. There is a conservative comorphism from ̂OWLDesLog
−

to (ÔWLDLM
th

)∧.

5.4 RDF Serialization of OWL DL

We define the theory OWLDL = (OWLDLVoc,TOWLDL), where OWLDLVoc is OWLLVoc to-
gether with

owl:DepricatedClass, owl:DisjointClasses, owl:SubClassOf,
owl:Functional, owl:InverseFunctional, owl:Transitive,
owl:SameIndividual, DifferentIndividuals, owl:someValues,
owl:Thing, owl:Nothing,
owl:intersectionOf, owl:unionOf, owl:complementOf,
owl:oneOf, owl:someValues, owl:hasValue, owl:maxCardinality

and TOWLDL is defined as TOWLDL = TOWLL ∪
{
(owl:intersectionOf, rdf:type, rdf:Property),
(owl:intersectionOf, rdfs:domain, owl:Class),
(owl:equivalentClass, rdf:type, rdf:Property),
(owl:disjointWith, rdf:type, rdf:Property),
...

}

As usual, we suppose that there is given a set ROWLDL of RDF Schema resources
and a function SOWLDL : OWLDL → ROWLDL which associates a resource to each OWL
DL symbol, and satisfies SOWLDLM|OWLLVoc = SOWLL.

For each theory such that there is a morphisms f : OWLDL → (RR,T) we define
the model constraint [[RR,T]]OWLDL obtained by strengthening [[RR,T]]OWLL with the
following conditions. If I ∈ [[RR,T]]OWLDL , then:

– RI includes ROWLDL and the restriction of SI to OWLDLVoc coincides with SOWLDL.
– I satisfies the restrictions expressing the intended meaning of the new features.

We denote by ÔWLDL the institution generated by the theory OWLDL and the model con-
straint [[]]OWLDL using the method presented in Section 2.2.

Theorem 3. There is a conservative comorphism from ̂OWLDesLog to (ÔWLDL
th

)∧.

Semantic Web Languages – Towards an Institutional Perspective 121

5.5 RDF Serialization of OWL Full

The theory OWLF = (OWLFVoc,TOWLF) is defined as follows. The vocabulary OWLFVoc
includes OWLDLVoc and the symbols corresponding to the new features. Similarly, TOWLF

includes TOWLDL together with triples restricting the use of the new symbols as intended
and triples expressing the equality of the parts of the OWL universe with their analogues
in RDF Schema.

ROWLF and SOWLF are defined as usual. The model constraint [[]]OWLF includes:

– The restriction corresponding to ROWLF and SOWLF.
– Restrictions expressing the intended meaning of all the features.
– Restrictions that force the parts of the OWL universe to be the same as their ana-

logues in RDF.

The vocabulary separation restriction is not included in [[]]OWLF .

Theorem 4. There is a conservative comorphism from ̂OWLFull to (ÔWLF
th

)∧.

5.6 Summing Up

All institutions we defined in this paper and their relationships are represented in Figure
2. The lower side includes the RDF indexed institution and it gives the semantics for
RDF layer in the Berners-Lee’s stack. It is worth to note that all arrows are institution
morphisms; hence we may define the semantics of the layer as being the Grothendieck
institution defined by this indexed institution. The upper side includes the institutions
corresponding to the SW languages and their relationships expressed as comorphisms.
The Grothendieck institution defined by this indexed institution gives the semantics
for ontology layer. The semantics of the layering of web ontology languages on the
RDF framework is given by a comorphism of Grothendieck institutions. Note that the
embedding of RDF Schema in OWL Full is not a component of this comorphism.

6 Conclusion

The multitude of languages causes certain confusion in the Semantic Web community as
they are based on different formalisms (description logics, Datalog, RDF Schema, etc.).
A careful and thorough investigation of the relationship among the various languages
will certainly reveal subtle differences among them.

Institutions and institution morphisms were developed to capture the notion of “log-
ical systems” and relate software systems regardless of the underlying logical system.
Hence, it is natural to use institutions to represent the various Semantic Web languages
(including RDF and RDF Schema) and study their relationship using institution mor-
phism.

In this paper, based on RDF(S), we define indexed institutions for RDF framework
layer and ontology layer. An overall relationship among all these languages can be
seen in Fig. 2. The figure shows that the institution approach can precisely capture the

122 Dorel Lucanu, Yuan Fang Li, and Jin Song Dong

̂OWLFull
th �co ̂OWLFull ̂OWLDesLog �co

̂OWLDesLog
−

Ontology

layer

̂OWLLite

co

� co

�
c
o

̂OWLLite
−

�
c
o

(ÔWLF
th
)∧

c
o

�

(ÔWLDL
th
)∧ �

c
o

�

(ÔWLDLM
th
)∧

co

�

RDFS

layer

(ÔWLL
th
)∧

�
�

�

(ÔWLLM
th
)∧

c
o

�

�

R̂DFS

co

�

� (R̂DFS
th
)∧

�
�

Fig. 2. RDF serialization

relationship among the various languages. The work presented in this paper opens up a
new practical application domain for the institutions theory.

One future work direction is to further investigate the relationship of various on-
tology languages with regard to their respective underlying logical systems. Languages
such as the OWL suite (OWL Lite, DL and Full) are based on description logics and
they assume an “Open World Assumption”. On the other hand, languages such as OWL
Flight and WRL are based on logic programming and they assume a “Closed World
Assumption”. The interoperability of these kinds of languages has been intensively dis-
cussed but is still an open question. We believe institution theory can help to clarify
this issue by establishing links at the logical level. It is also of interest to investigate
the properties of the indexed institution like theory colimits, liberality, exactness, inclu-
sions, and how the design of tools for SW can benefit from these properties.

References

1. J. Angele, H. Boley, J. de Brujin, D. Fensel, P. Hitzler, M. Kifer, R. Krummenacher,
H. Lausen, A. Polleres, R.Studer. Web Rule Language (WRL). Version 1.0, 2005.
http://www.wsmo.org/wsml/wrl/wrl.html.

2. M. Barr and Ch. Wells. Category Theory for Computing Science. Les Publications CRM,
Montreal, third edition, 1999

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May
2001.

Semantic Web Languages – Towards an Institutional Perspective 123

4. D. Brickley and R.V. Guha (editors). Resource Description Framework (RDF) Schema Spec-
ification 1.0. http://www.w3.org/TR/rdf-schema/, February 2004.

5. J. de Brujin, H. Lausen, and D. Fensel. OWL−. Deliverable D20.1v0.2, WSML, 2004.
http://www.wsmo.org/TR/d20/d20.1/v0.2/.

6. R. Diaconescu. Institution-independent Model Theory. To appear.
http://www.imar.ro/˜diacon/.

7. R. Diaconescu. Grothendieck institutions. Applied Categorical Structures, 10:383–402,
2002.

8. J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. Verifying DAML+OIL and beyond in Z/EVES.
In Proceedings of 26th International Conference on Software Engineering (ICSE’04), pages
201–210, Edinburgh, Scotland, May 2004.

9. J. Goguen. Information Integration in Institutions, 2004. To appear in avolume dedicated to
Jon Barwise, edited by Larry Moss.

10. J. Goguen and R. Burstall. Institutions: Abstract Model Theory for Specification and Pro-
gramming. Journal of the Association for Computing Machinery, 39(1):95–146, 1992.

11. J. Goguen and G. Roşu. Institution Morphisms. Formal Aspects of Computing, 13, pages
274-307, 2002.

12. B.N. Grosof, I. Horrocks, R. Volz, St. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. In Proc. of the Twelfth International World Wide
Web Conference, pages 48-57, ACM, 2003.

13. P. Hayes. RDF Semantics. http://www.w3.org/TR/rdf-mt/, February 2004
14. I. Horrocks and P. Patel-Schneider. A proposal for an OWL rules language. In Proc. of the

Thirteenth International World Wide Web Conference (WWW 2004), ACM, 2004.
15. I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.

Dean. SWRL: A semantic web rule language combining OWL and RuleML.
http://www.daml.org/2004/11/fol/rules-all.html, November 2004.

16. I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language. J. of Web Semantics, 1(1):7–26, 2003.

17. G. Klyne, J. Carroll (editors). Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. W3C Recommendation, 2004. http://www.w3.org/TR/rdf-concepts/.

18. D. Lucanu, Y. F. Li, and J. S. Dong. Web Ontology Verification and Analysis in the Z
Framework. Technical Report TR 05-01, University “Alexandru Ioan Cuza” of Iaşi, Roma-
nia, January 2005. http://thor.info.uaic.ro/˜tr/tr05-01.ps.

19. B. McBride. Jena: Implementing the RDF Model and Syntax Specification. In 2nd Int’l
Semantic Web Workshop, 2001.
http://www.hpl.hp.com/personal/bwm/papers/20001221-paper/.

20. P. Patel-Schneider, P. Hayes, and I. Horrocks (editors). OWL Web Ontology Semantics and
Abstract Syntax. http://www.w3.org/TR/2004/REC-owl-semantics-20040210/, 2004.

21. P. Patel-Schneider. A proposal for a SWRL extension to forst-order logic.
http://www.daml.org/2004/11/fol/proposal, November 2004.

22. P. Patel-Schneider, and D. Fensel, Layering the Semantic Web: Problems and Direc-
tions. In First International Semantic Web Conference (ISWC2002), Sardinia, Italy”.
citeseer.ist.psu.edu/article/patel-schneider02layering.html, 2002.

23. B.C. Pierce. Basic Category Theory for Computer Science. MIT, 1991.

Institutional 2-cells

and Grothendieck Institutions

Till Mossakowski

DFKI Lab Bremen and Dept. of Computer Science, University of Bremen, Germany

Abstract. We propose to use Grothendieck institutions based on 2-
categorical diagrams as a basis for heterogeneous specification. We prove
a number of results about colimits and (some weak variants of) exact-
ness. This framework can also be used for obtaining proof systems for
heterogeneous theories involving institution semi-morphisms.

1 Introduction

“There is a population explosion among the logical systems used in com-
puter science. Examples include first order logic, equational logic, Horn
clause logic, higher order logic, infinitary logic, dynamic logic, intuition-
istic logic, order-sorted logic, and temporal logic; moreover, there is a
tendency for each theorem prover to have its own idiosyncratic logical
system. We introduce the concept of institution to formalize the informal
notion of ’logical system’.” [10]

This famous quote from Joseph Goguen’s and Rod Burstall’s seminal paper
introducing institutions lead, in its consequences, also to the introduction of
Grothendieck institutions by Răzvan Diaconescu [5], which provide the semantic
basis for heterogeneous specifications, i.e. the involvement of a multitude of
logical systems within a single specification.

While the properties of Grothendieck institutions and their interaction with
colimits, exactness, liberality, Craig interpolation etc. is well-studied now (cf. the
forthcoming book [4]), the present theory of Grothendieck institutions still does
not answer certain practical problems. During the development of the heteroge-
neous tool set (Hets) [15,17], a parsing, static analysis and proof management
tool for heterogeneous specifications, we have encountered the following prob-
lems:

– often there is a plethora of possible translations between two given institu-
tions, making choice difficult for the user;

– often premises for theorems about Grothendieck institutions do not hold for
some of the institution involved — however, failure of a premise just for one
institution usually destroys applicability of a theorem;

– also, the premises needed for institution (co)morphisms do not hold in all
cases;

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 124–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Institutional 2-cells and Grothendieck Institutions 125

– finally, this means that the applicability of theorem proving for structured
specifications [2] is limited for Grothendieck institutions, and hence for het-
erogeneous specifications.

We introduce two ideas that may help solving these problems: the use of in-
stitutional 2-cells, and the weakening of exactness properties to quasi-exactness.
We prove a number of properties of these and discuss examples. Proofs can be
found in the appendix.

2 Institutions

Let CAT be the category of categories and functors.1

Definition 1. An institution I = (Sign,Sen,Mod, |=) consists of

– a category Sign of signatures,
– a functor Sen:Sign −→ Set giving, for each signature Σ, the set of sen-

tences Sen(Σ), and for each signature morphism σ:Σ−→Σ′, the sentence
translation map Sen(σ):Sen(Σ) −→ Sen(Σ′), where often Sen(σ)(ϕ) is
written as σ(ϕ),

– a functor Mod: (Sign)op −→ CAT giving, for each signature Σ, the cate-
gory of models Mod(Σ), and for each signature morphism σ:Σ−→Σ′, the
reduct functor Mod(σ):Mod(Σ′)−→Mod(Σ), where often Mod(σ)(M ′)
is written as M ′|σ,

– a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,

such that for each σ:Σ−→Σ′ in Sign the following satisfaction condition holds:

M ′ |=Σ′ σ(ϕ) ⇔M ′|σ |=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ).
#

Institutions can alternatively, and more succinctly, be characterized as func-
tors into a certain category of “twisted relations” [10], called “rooms” in [9]:

An institution room (S,M, |=) consists of

– a set of S of sentences,
– a category M of models, and
– a satisfaction relation |= ⊆ |M| × S.

Rooms are connected via corridors (which model change of notation within
one logic, as well as translations between logics).

An institution corridor (α, β): (S1,M1, |=1)−→(S2,M2, |=2) consists of

– a sentence translation function α:S1−→S2, and
– a model reduction functor β:M2−→M1, such that

1 Strictly speaking, CAT is not a category but only a so-called quasicategory, which
is a category that lives in a higher set-theoretic universe [11].

126 Till Mossakowski

M2 |=2 α(ϕ1) ⇔ β(M2) |=1 ϕ1

holds for each M2 ∈ |M2| and each ϕ1 ∈ S1 (satisfaction condition).
Now, an institution can equivalently be defined to be just a functor I:Sign−→

InsRoom (where Sign is the category of signatures).

Example 2. The institution FOL= of many-sorted first-order logic with equal-
ity. Signatures are many-sorted first-order signatures, i.e. many-sorted algebraic
signatures enriched with predicate symbols with arities. Signature morphisms
map signature symbols in a coherent way. Models are many-sorted first-order
structures, and model morphisms are standard algebra homomorphisms that
preserve the holding of predicates. Model (morphism) reduction is done by re-
naming model (morphism) components. Sentences are first-order formulas, and
sentence translation means replacement of the translated symbols. Satisfaction
is the usual satisfaction of a first-order sentence in a first-order structure.
#

Example 3. The institution Eq= of equational logic is the restriction of FOL=

to signatures without predicates, and (universally quantified) equations as the
only sentences.
#

Example 4. The institution PFOL= of partial first-order logic with equality.
Signatures are many-sorted first-order signatures enriched by partial function
symbols. Models are many-sorted partial first-order structures. Sentences are
first-order formulas containing existential equations, strong equations, defined-
ness statements and predicate applications as atomic formulas. Satisfaction is
defined using total valuations of variables, while valuation of terms is partial
due to the existence of partial functions. An existential equation holds if both
sides are defined and equal, whereas a strong equation also holds if both sides
are undefined. A definedness statement holds if the term is defined. A predicate
application holds if the terms contained in it are defined, and the correspond-
ing tuple of values is in the interpretation of the predicate. This is extended to
first-order formulas as usual. Moreover, signature morphisms, model reductions
and sentence translations are defined like in FOL=.
#

Example 5. The Casl institution extends PFOL= with subsorting and induc-
tion (for datatypes), see [14,3] for details. Casl has, among others, a modal logic
extension ModalCasl [15] and a coalgebraic extension CoCasl [18].
#

Example 6. There is an institution PLNG of a programming language [21]. It
is built over an algebra of built-in data types and operations of a programming
language. Signatures are given as function (functional procedure) headings; sen-
tences are function bodies; and models are maps that for each function symbol,
assign a computation (either diverging, or yielding a result) to any sequence of
actual parameters. A model satisfies a sentence iff it assigns to each sequence
of parameters the computation of the function body as given by the sentence.

Institutional 2-cells and Grothendieck Institutions 127

Hence, sentences determine particular functions in the model uniquely. Finally,
signature morphisms, model reductions and sentence translations are defined
similarly to those in FOL=.
#

Institution morphisms [10,7] relate two given institutions. A typical situation
is that an institution morphism expresses the fact that a “larger” institution is
built upon a “smaller” institution by projecting the “larger” institution onto
the “smaller” one. Dually, institution comorphisms [7] typically express that an
institution is included, or encoded into another one.

Using the notation of institutions as functors, given institutions I1:Sign1−→
InsRoom and I2:Sign2−→InsRoom, an institution morphism (Ψ, μ): I1−→I2
consists of a functor Ψ :Sign1−→Sign2 and a natural transformation μ: I2◦Ψ−→
I1. (Alternatively, we split μ into two natural transformations, denoted by α and
β). By contrast, an institution comorphism (Φ, ρ): I1−→I2 consists of a functor
Φ:Sign1−→Sign2 and a natural transformation ρ: I1−→I2 ◦ Ψ .

Together with obvious identities and composition, this gives us the cate-
gory Ins (CoIns) of institutions and institution (co)morphisms. An institution
semi-(co)morphism is like an institution (co)morphism, but without the sentence
translation component (and hence also without the satisfaction condition).

Example 7. There is an institution morphism going from first-order logic with
equality to equational logic. A first-order signature is translated to an algebraic
signature by just forgetting the set of predicate symbols; similarly, a first-order
model is turned into an algebra by forgetting the predicates. Sentence translation
is just inclusion of equations into first-order sentences.
#

Example 8. There is an institution semi-morphism toCASL from PLNG to Casl
[21]. It extracts an algebraic signature with partial operations out of a PLNG-
signature by adding the signature of built-in data types and operations of the
programming language. For any function declared, any PLNG-model determines
its computations on given arguments, from which we can extract a partial func-
tion that maps any sequence of arguments to the result of the computation (if
any). These are used to expand the built-in algebra of data types and opera-
tions of the programming language with an interpretation for the extra function
names in the signature obtained.
#

Example 9. There is an institution comorphism going from equational logic to
first-order logic with equality. An algebraic signature is translated to a first-
order signature by just taking the set of predicate symbols to be empty. Sentence
translation is just inclusion of equations into first-order sentences. A first-order
model with empty set of predicates is translated by just considering it as an
algebra.
#

Example 10. Similarly, there are obvious inclusion comorphisms from Casl to
ModalCasl and CoCasl, see [15].
#

128 Till Mossakowski

Example 11. Define an institution comorphism going from partial first-order
logic with equality to first-order logic with equality as follows: A partial first-
order signature is translated to a total one by encoding each partial function
symbol as a total one, plus a (new) unary predicate D (“definedness”) and a
(new) function symbol ⊥ (“undefined”) for each sort (this means that ⊥ and
D are heavily overloaded). Furthermore, we add axioms2 stating that D does
not hold on ⊥, and that (encoded) total functions preserve (“totality”) and re-
flect (“strictness”) D, while partial functions only reflect D (and the holding of
predicates implies D to hold on the arguments). Sentence translation is done by
replacing all partial function symbols by the total functions symbols encoding
them, replacing strong equations t = u by (D(t) ∨ D(u)) ⇒ t = u, existence
equations by conjunctions of the equation and the definedness (using D) of one
of the sides of the equation, replacing definedness with D, and leaving predicate
symbols as they are. For a given total model of the translated signature, we
just take as carriers of the partial model the interpretations of the definedness
predicates in the total model, while the total functions are restricted to these
new carriers, yielding partial functions.
#

3 Institution (Co)Morphism Modifications

A typical experience with using the heterogeneous tool set [15,17] is the following:
for some specification, you want to prove a theorem, and hence want to see
a list of its possible translations (along (co)comorphisms) into tool-supported
institutions. Now even with a small diagram of institutions, the list can become
quite large, because also composites should be shown (see Fig. 1 for a menu of
such translations). Now such lists generally bear a lot of redundancy, since two
different translation paths, though differing as (co)morphisms, lead to essentially
same results, as the following example shows:

Example 12. There are two ways to go from equational logic to first-order logic:
one is the obvious subinstitution comorphism ρ1 from Example 9, the other one
is the composition ρ2 of the obvious subinstitution comorphism from equational
logic to partial first-order logic composed with the encoding of partial first-order
logic into first-order logic from Example 11.3 These comorphisms are different: ρ2

adds some (superfluous) coding of partiality. Yet, for e.g. the purpose of re-using
proof tools, ρ1 and ρ2 are essentially the same.

In this context, the notion of modification helps.
In order to ensure that the difference between two translations really is

inessential, a crucial property of modifications is that they do not lead to identi-
fications of different sentence or model translation maps. Hence, we strengthen
the original notion from [5] to discrete modifications:
2 Hence, strictly speaking, this comorphism is a so-called simple theoroidal one, see

[19] for details.
3 Actually, since the latter is a simple theoroidal comorphism, we should take both to

end in FOLth, the institution of FOL-theories.

Institutional 2-cells and Grothendieck Institutions 129

Fig. 1. Dozens of translation possibilities for a Casl theory in Hets (from a
logic graph without comorphism modifications; using modifications, the number
of possible translations can be greatly reduced).

Definition 13. Given institution morphisms (Ψ, μ): I1−→I2 and (Ψ ′, μ′): I1−→
I2, a discrete institution morphism modification θ: (Ψ, μ) −→ (Ψ ′, μ′) is just a
natural transformation θ:Ψ −→ Ψ ′ such that μ = μ′ ◦ (I2 · θ). Similarly, given
institution comorphisms (Φ, ρ): I1 −→ I2 and (Φ′, ρ′): I1 −→ I2, a discrete insti-
tution comorphism modification θ: (Φ, ρ)−→(Φ′, ρ′) is a natural transformation
θ:Φ−→Φ′ such that (I2 · θ) ◦ ρ = ρ′.

Together with obvious identities and compositions, modifications can serve as
2-cells, leading to 2-categories Ins and CoIns.
#

In [5,4], a weaker notion of institution morphism modification has been intro-
duced, involving an additional natural transformation on the side of the models.
We have not found this extra generality of practical use and hence work with the
above stronger notion of discrete modification. However, since we will not use
any non-discrete modification, we will omit the qualification of being discrete
henceforth.

130 Till Mossakowski

Example 14. Consider the comorphisms from Example 12.

FOL

Eq

PFOL

The comorphism modification θ: ρ1 −→ ρ2 is just the pointwise inclusion of an
algebraic signature viewed as first-order signature into the theory coding a partial
variant of that signature.
#

Modifications also interplay with amalgamation:

Definition 15. Let ρ = (Φ, α, β): I1 −→ I2, ρ1 = (Φ1, α1, β1): I1 −→ J and
ρ2 = (Φ2, α2, β2): I2−→J be three comorphisms. A lax triangle

I1
ρ1

ρ θ J

I2

ρ2

of institution comorphisms and modifications is called (weakly) amalgamable, if

ModI1(Σ) ModJ (Φ1(Σ))
(β1)Σ

ModI2(Σ)

βΣ

ModJ (Φ2(Σ))
(β2)Σ

ModJ (θΣ)

is a (weak) pullback for each signature Σ ∈ |SignI |.
#

4 Colimits in Hom-Categories

As a first result about the 2-categorical structure of CoIns, we examine colimits
in the Hom-categories, which play a rôle for some results about the Grothendieck
construction (see Prop. 22 below):

Proposition 16. Given two institutions I and J , if J has pushouts of signa-
tures, then the Hom-category CoIns(I, J) has pushouts as well. This generalizes
to arbitrary non-empty colimits of connected diagrams.
#

Institutional 2-cells and Grothendieck Institutions 131

Note that initial objects in Hom-categories CoIns(I, J) generally do not
exist: an initial comorphism from I to J would have to translate I-sentences to
J-sentences over the initial signature, thereby losing any specific reference to the
signature, which generally destroys the satisfaction condition.

The dual situation is better for initial objects:

Proposition 17. Given two institutions I and J , if J has an initial signature
with empty set of sentences and terminal model category, then the Hom-category
Ins(I, J) has an initial object.
#

However, pushouts in Ins(I, J) seem to exist only under rather strong addi-
tional assumptions.

We hence prefer to work with comorphisms in the sequel.

5 Comorphism-Based Grothendieck Institutions

Grothendieck institutions have been introduced by Diaconescu [5] as a foun-
dation for heterogeneous specification. The basic data for comorphism-based
heterogeneous specification is a graph of institutions, comorphisms and modifi-
cations. Remember from Sect. 1 that the modifications are needed because we
want to express that certain compositions of comorphisms are the same. This
means that we need to specify both compositions and modifications. We hence
arrive at the following:

Definition 18. Given an index 2-category Ind, a 2-indexed coinstitution is
a 2-functor I: Ind∗ −→ CoIns4 into the 2-category of institutions, institution
comorphisms and institution comorphism modifications.
#

A 2-indexed coinstitution can be flattened, using the so-called Grothendieck
construction. The basic idea here is that all signatures of all institutions are put
side by side, and a signature morphism in this large realm of signatures consists
of an intra-logic signature morphism plus an inter-logic translation (along some
logic comorphism). The other components (sentences, models, satisfaction) are
then defined in a straightforward way.

The Grothendieck construction for indexed institutions has been described
in [5]; we develop its dual here [13]. In an indexed coinstitution I, we use the
notation Ii = (Signi,Seni,Modi, |=i) for I(i), (Φd, ρd) for the comorphism
I(d), and Iu for the modification I(u).

Definition 19. Given a 2-indexed coinstitution I: Ind∗ −→CoIns, define the
Grothendieck institution I# as follows:

– signatures in I# are pairs (i, Σ), where i ∈ |Ind| and Σ a signature in Ii,
– signature morphisms (d, σ): (i, Σ1)−→(j,Σ2) consist of a morphism d: j−→
i ∈ Ind and a signature morphism σ:Φd(Σ1)−→Σ2 in Ij,

– composition is given by (d2, σ2) ◦ (d1, σ1) = (d1 ◦ d2, σ2 ◦ Φd2(σ1)),

– I#(i, Σ) = Ii(Σ), and I#(d, σ) = Ii(Σ1)
ρd

Ij(Φd(Σ1))
Ij(σ)

Ij(Σ2) .

#

4 Ind∗ is the 2-categorical dual of Ind, where both 1-cells and 2-cells are reversed.

132 Till Mossakowski

That is, the room I#(i, Σ) (consisting of sentences, models and satisfaction)
for a Grothendieck signature (i, Σ) is defined component-wise, while the corri-
dor for a Grothendieck signature morphism is obtained by composing the cor-
ridor given by the inter-institution comorphism with that given by the intra-
institution signature morphism. We also denote the Grothendieck institution by
(Sign#,Sen#,Mod#, |=#).

While the comorphism based Grothendieck construction nearly satisfies all
of our needs, one problem remains. Sometimes, the Grothendieck construction
makes too many distinctions between signature morphisms (cf. Fig. 1). There-
fore, we use the institution comorphism modifications to obtain a congruence on
Grothendieck signature morphisms: the congruence is generated by

(d′, Iu
Σ :Φd′

(Σ)−→Φd(Σ)) ≡ (d, id:Φd(Σ)−→Φd(Σ)) (1)

relating morphisms from (i, Σ) to (j, Φd(Σ)), for Σ ∈ |Signi|, d, d′: j−→ i ∈ Ind,
and u : d ⇒ d′ ∈ Ind. We will later examine what is really added by the

congruence closure. But first, let us state the following crucial property:

Proposition 20. ≡ is contained in the kernel of I# (considered as a functor).

#

Let qI :Sign#−→Sign#/≡ be the quotient functor induced by ≡ (see [12]
for the definition of quotient category). Note that it is the identity on objects.
We easily obtain that the functor I# factors through the quotient category
Sign#/≡ :

Corollary 21. I#:Sign# −→ InsRoom leads to a quotient Grothendieck in-
stitution I#/≡:Sign#/≡−→InsRoom.
#

By abuse of notation, we denote I#/≡ by (Sign#/≡,Sen#,Mod#, |=#).
When considering e.g. the comorphism going from partial first-order logic

PFOL= to first-order logic FOL=, and the composite comorphism going from
PFOL= to Casl and then to FOL=, we end up in different comorphisms, which
are however related by a comorphism modification. The above identification
process in the Grothendieck institution now tells us that it does not matter
which way we choose.

In some cases, the congruence ≡ can be described succinctly:

Proposition 22. Assume that Ind∗ has cocones for diagrams of 2-cells of shape
• • • that are mapped to pushouts of 2-cells in CoIns. Then the
congruence ≡ defined above is explicitly given by

(d1, σ ◦ Iu1
Σ) ≡ (d2, σ ◦ Iu2

Σ)

for Σ ∈ |Signi|, d, d1, d2: j−→ i ∈ Ind, σ:Φd(Σ)−→Σ′ ∈ Signj and u1 : d ⇒
d1, u2 : d⇒ d2 ∈ Ind.
#

Institutional 2-cells and Grothendieck Institutions 133

Note that according to Prop. 16, under relatively mild assumptions, pushouts
of 2-cells in CoIns exist. Hence, the assumption of Prop. 22 that Ind∗ has
cocones for diagrams of 2-cells of shape • • • that are mapped to
pushouts of 2-cells in CoIns is quite realistic. In particular, it is possible to add
suitable cocones to Hom-categories in Ind∗ and interpret these as pushouts in
CoIns.

6 Amalgamation and Exactness

The amalgamation property (called ‘exactness’ in [6]) is a major technical as-
sumption in the study of specification semantics [20] and is important in many
respects. It allows the computation of normal forms for specifications [1,2], and
it is a prerequisite for good behaviour w.r.t. parameterization, conservative ex-
tensions [6] and proof systems [16].

Definition 23. A cocone for a diagram in Sign is called (weakly) amalgamable
if it is mapped to a (weak) limit under Mod. I (or Mod) admits (finite) (weak)
amalgamation if (finite) colimit cocones are (weakly) amalgamable, i.e. if Mod
maps (finite) colimits to (weak) limits. This property is also called (weak) exact-
ness, while (weak) semi-exactness is its restriction to pushout diagrams.
#

More generally, given a diagramD: J−→SignI , a family of models (Mj)j∈|J|
is called D-consistent if Mk|D(δ) = Mj for each δ: j −→ k ∈ J . A cocone
(Σ, (μj)j∈|J|) over the diagram in D: J −→SignI is called weakly amalgamable
if for each D-consistent family of models (Mj)j∈|J|, there is a Σ-model M with
M |μj = Mj (j ∈ |J |). If this model is unique, the cocone is called amalgamable.

Proposition 24. An institution admits (weak) amalgamation iff each colimiting
cocone in the category of signatures is (weakly) amalgamable.
#

A further weakening just requires the existence of weakly amalgamable co-
cones:

Definition 25. Call an institution I quasi-exact if for each diagram D: J −→
SignI , there is some weakly amalgamable cocone over D. Quasi-semi-exactness
is the restriction of this notion to diagrams of shape • • • .

The importance of this definition lies in the fact that it

1. interacts quite nicely with heterogeneous specification (the property holds
for Grothendieck institutions under very mild and practically feasible as-
sumptions), and it

2. is a prerequisite for the (soundness and completeness of the) proof calculus
of development graphs [15,16].

The theory of amalgamation and exactness in Grothendieck institutions for
indexed institutions has been developed by Diaconescu [5]. Actually, the corre-
sponding theory for indexed coinstitutions turns out to be much simpler [13].

134 Till Mossakowski

Theorem 26. Let I: Indop −→ CoIns be an indexed coinstitution and K be
some small category such that

1. Ind is K-complete,
2. Φd is K-cocontinuous for each d: i−→j ∈ Ind, and
3. the indexed category of signatures of I is locally K-cocomplete (the latter

meaning that Signi is K-cocomplete for each i ∈ |Ind|).

Then the signature category Sign# of the Grothendieck institution has K-colimits.

#

We cannot expect that this result directly carriers over to the quotient
Grothendieck institution, since quotients of categories generally do not inter-
act well with colimits. However, we can say something provided that we work
with a quotient of the index category Ind:

Proposition and Definition 27 Given a 2-category Ind, the relation of being
in the same connected component of a Hom-category defines a congruence ≡ on
the objects of the Hom-categories, i.e. the morphisms of Ind. Ind/ ≡ is the
corresponding quotient 1-category.
#

Lemma 28. Given a 2-indexed coinstitution I: Ind∗ −→ CoIns, if (d2, σ1) ≡
(d1, σ2) in Sign#, then d1 ≡ d2.
#

Proposition 29. Assume that Ind∗ has cocones for diagrams of 2-cells of shape
• • • that are mapped to pushouts of 2-cells in CoIns. Then the
congruence ≡ in Ind defined above is explicitly given by d1: i−→ j ≡ d2: i−→ j
iff there exist d: i−→j ∈ Ind and u1: d−→d1, u2: d−→d2 ∈ Ind.
#

Theorem 30. Let I: Ind∗−→CoIns be a 2-indexed coinstitution such that

1. Ind/≡ is K-complete for some small category K,
2. each connected component (considered as a subcategory) of a Hom-category

Ind(i, j) has a distinguished canonical weakly terminal object, such that these
canonical objects are stable under composition,

3. (d, σ1) ≡ (d, σ2) in Sign# implies σ1 = σ2,
4. Φd is K-cocontinuous for each d: i−→j ∈ Ind, and
5. the indexed category of signatures of I is locally K-cocomplete.

Then the signature category Sign#/≡ of the quotient Grothendieck institution
has K-colimits. (Note that assumptions 2 and 3 are vacuous in case of discrete
Hom-categories; we then get Theorem 26 as a special case.)
#

By contravariance of I, assumption 2 of the above proposition means that if
institution comorphisms are linked by modifications, there is always a “smallest”
comorphism that can be embedded into the other ones. This is quite realistic

Institutional 2-cells and Grothendieck Institutions 135

in practice. However, it is not so realistic to assume that these smallest co-
morphisms are stable under composition. For example, the composition of the
smallest embedding of FOL= into Casl with the smallest embedding of Casl
into second-order logic will give not given the smallest embedding of FOL= into
second-order logic, but rather a more complex one.

Assumption 3 basically means that the congruence does not identify signa-
ture morphisms within one institution, i.e. that each signature category Signi

is faithfully embedded into Sign#/≡. This assumption is a reasonable and de-
sirable property in practice. We record this explicity:

Proposition 31. embi:Signi−→Sign#/ ≡ is an embedding preserving colimits
under the assumptions of Theorem 30.
#

Let us now come to exactness. We extend the notion of semi-exactness to
comorphisms and to the indexed case. An institution comorphism (Φ, α, β) is
called (weakly) exact, if the naturality squares for β are (weak) pullbacks. An
2-indexed coinstitution I: Ind∗−→CoIns is called (weakly) locally semi-exact, if
each institution Ii is (weakly) semi-exact (i ∈ |Ind|). Assuming that equivalence
classes of 2-cells have canonical weakly terminal objects, I is called (weakly)
semi-exact if for each pullback in Ind/≡

i j1
[d1]

j2

[d2]

k
[e2]

[e1]

the square

Modi(Σ) Modj1(Φd1(Σ))
β

d1
Σ

Modj2(Φd2(Σ))

β
d2
Σ

Modk(Φe1(Φd1(Σ))) = Modk(Φe2 (Φd2(Σ)))
β

e2
Σ

β
e1
Σ

is a (weak) pullback for each signature Σ in Signi, where canonical weakly
terminal representatives are used.5

Theorem 32. Assume that the 2-indexed coinstitution I: Ind∗ −→CoIns ful-
fills the assumptions of Theorem 30. Then the quotient Grothendieck institution
I#/≡ is (weakly) semi-exact if and only if

1. I is (weakly) locally semi-exact,
2. I is (weakly) semi-exact, and
3. for all canonical weakly terminal d: i−→ j ∈ Ind, in Id is (weakly) exact.

#

5 It might be useful to weaken these notions in the way such that model morphisms
are ignored.

136 Till Mossakowski

Theorems 26, 30 and 32 already provide a good theoretical basis for hetero-
geneous specification. However, in some cases, these theorems are not general
enough: Given a diagram J → Ind, its limit must be the index of some insti-
tution that can serve to encode (via comorphisms) all the institutions indexed
by the diagram. While the existence of such an institution may not be a prob-
lem (e.g. higher-order logic often serves as such a “universal” logic for coding
other logics), the uniqueness condition imposed by the limit property is more
problematic. This means that any two such “universal” institutions must have
isomorphic indices and hence be isomorphic themselves. This might work well
is some circumstances, but may not desirable in others: after all, a number of
non-isomorphic logics, such as classical higher-order logic, the calculus of con-
structions and rewriting logic have been proposed as such a “universal” logic.6

A related problem7 is that the assumptions of Theorem 32 are too strong
to be met for all practical examples. E.g. the Casl institution is not weakly
semi-exact, and its encoding into HOL= [14] is neither exact, nor does it have
a cocontinuous signature translation.

We hence now generalize the previous results by replacing weak exactness
with quasi-exactness, i.e. amalgamable colimits with weakly amalgamable co-
cones, and thereby dropping the uniqueness requirement. Hence, several non-
isomorphic “universal” institutions may coexist peacefully with our approach,
and also non-exact institutions and comorphisms may be included in the indexed
coinstitution serving as basis for heterogeneous specification.

We first extend Def. 25 to indexed coinstitutions:

Definition 33. An indexed coinstitution I: Indop −→ CoIns is called locally
quasi-exact, if each institution Ii is quasi-exact (i ∈ |Ind|). It is called quasi-
exact, if for each diagram D: J −→ Ind, there is some cone (l, (dj)j∈|J|) over
D whose image under I is weakly amalgamable. Quasi-semi-exactness is the
restriction of these notions to diagrams of shape • • • .
#

However, for the index level, even quasi-exactness may be too strong. Con-
sider the diagram

Casl

ModalCasl CoCasl

How do we obtain a weakly amalgamable cocone? A simple way is to use
the embedding of ModalCasl into Casl and compose it with the inclusion of
Casl into CoCasl:

6 This problem can possibly be circumvented by formally adjoining limits to the index
category, which are then interpreted using Grothendieck institutions over subdia-
grams. However, this would add considerable complexity to the construction.

7 This problem already has been noted by Diaconescu [5] for his more special version
of Theorem 32; see [13] why we consider it to be more special.

Institutional 2-cells and Grothendieck Institutions 137

Casl

ModalCasl CoCasl

CoCasl

but the resulting square does not even commute.8 The reason is that on the way
from Casl to CoCasl via ModalCasl, ModalCasl adds an implicit set of
worlds, which is made explicit by the embedding of ModalCasl into Casl.9 To
obtain a commuting square, we would need to have a comorphism from CoCasl
to itself which adds an explicit set of worlds. However, this solution is rather
inelegant, since it means that any (present of future) extension of Casl without
possible world semantics (e.g. for HasCasl), we need a similar comorphism.

We hence prefer to split the square into two lax triangles:

Casl

ModalCasl CoCasl

CoCasl

and indeed, the square is weakly amalgamable in the following sense:

Definition 34. Given a 2-indexed coinstitution I: Ind∗ −→ CoIns, a square
consisting of two lax triangles of index morphisms

i

j2

d2

u2 u1
j1

d1

k

e2 e1
d

8 Of course, we could also embed everything into HOL, which would not cause any
relevant change to the subsequent discussion.

9 See [15] for the reason why the set of worlds cannot be omitted even for models of
signatures without modalities.

138 Till Mossakowski

is called (weakly) amalgamable, if the following diagram is a (weak) pullback

Modi(Σ) Modj1(Φd1(Σ))
βd1

Σ

Modk(Φd(Σ))

βd
Σ

Modk(Φe1(Φd1(Σ)))

βe1
Σ

Modk(Iu1
Σ)

Modj2(Φd2(Σ))

βd2
Σ

Modk(Φe2(Φd2(Σ)))
βe2

Σ

Modk(Iu2
Σ)

•

where the lower right square is a pullback. That is, each pair consisting of a
Φd2(Σ)- and a Φd1(Σ)-model with the same Σ-reduct is (weakly) amalgamable
to a pair consisting of a Φe2(Φd2(Σ))- and a Φe1(Φd1(Σ))-model having the same
Φd(Σ)-reduct.

I is called lax-quasi-exact, if each for pair of arrows j1
d1

i j2
d2 in

Ind, there is some square

i

j1 j2

k

consisting of a weakly amalgamable square of lax triangles, such that additionally
Ik is quasi-semi-exact.
#

Note that this property is different from (and indeed, incomparable to) amal-
gamability of the individual lax triangles:

Definition 35. Given a 2-indexed coinstitution I: Ind∗−→CoIns, a lax trian-
gle of index morphisms

i

j

k

is called (weakly) amalgamable, if I maps it to a (weakly) amalgamable lax tri-
angle in the sense of Definition 15.
#

Institutional 2-cells and Grothendieck Institutions 139

Theorem 36. For a 2-indexed coinstitution I: Ind∗−→CoIns, assume that

– I is lax-quasi-exact, and
– all institution comorphisms in I are weakly exact.

Then I#/≡ is quasi-semi-exact.
#

Call a diagram acyclic (connected) if the graph underlying its index category
is acyclic (connected) when the identity arrows are deleted.

Corollary 37. Let I satisfy the assumptions of Theorem 36. Then I#/≡ admits
weak amalgamation of finite acyclic connected diagrams.
#

As stated above, the importance of these results lies in the fact that quasi-
(semi-)exactness is a prerequisite for the (soundness and completeness of the)
proof calculus of development graphs [15,16]. Due to lack of space, we cannot go
into the details here. Instead, we provide a simple application of a typical situa-
tion of a view (or a refinement) involving hiding, illustrating a simple application
of the rule Theorem-Hide-Shift from the calculus of [15,16].

Proposition 38. In an institution, let a span of theories

Σ
σ1σ2

(Σ1, Ψ1) (Σ2, Ψ2)

be given. Then the refinement statement

Mod(σ1)−1(Mod(σ2)(|Mod(Σ2, Ψ2)|)) ⊆ |Mod(Σ1, Ψ1)|

follows from (and, hence can be reduced to) the statement

Mod(Σ3, θ2(Ψ2)) ⊆ Mod(Σ3, θ1(Ψ1))

provided that
Σ

σ1σ2

Σ1

θ1

Σ2

θ2

Σ3

is a weakly amalgamable square.
#

140 Till Mossakowski

7 From Specifications to Programs

Consider a specification SortSpec of sorting written in Casl (let it have signature
ΣS), and a sorting program SortProg written in PLNG (let it have signature
ΣP). We can use the institution semi-morphism toCASL:PLNG−→Casl from
example 8 to express that SortProg is an implementation of SortSpec. Let (Φ, β)
be toCASL decomposed in its signature and model translation component. Then
the property that we need to express is

βΣP (ModPLNG(SortProg)) ⊆ ModCasl(SortSpec)

assuming that Φ(ΣP) = ΣS (if needed, we can ensure this property by massaging
the Casl specification appropriately).

Now the question arises how to prove this property. It would be easy if
toCASL could be extended to an institution morphism; however, there is no
hope to translate Casl formulas into programs. However, we can split the semi-
morphism toCASL = (Φ, β) into a span of comorphisms

PLNG Casl ◦ ΦtoCASL− toCASL+

Casl

as follows:

SignPLNG id SignPLNG Φ SignCASL

SenPLNG incl ∅ incl SenCASL ◦ Φ

ModPLNG β
ModCasl ◦ Φop id ModCASL ◦ Φop

Here, the “middle” institution Casl◦Φ is the institution with signature category
inherited from PLNG, no sentences, and models inherited from Casl via Φ.

Our refinement statement can now be reformulated in terms of comorphisms:

(βtoCASL+

ΣP
)−1(βtoCASL−

ΣP
(ModPLNG(SortProg))) ⊆ ModCasl(SortSpec)

We can regard this in a suitable Grothendieck institution; then it has ex-
actly the form of the statement in Prop. 38. We hence can reformulate the
statement, provided that we have quasi-semi-exactness. By Theorem 36, we
need lax-quasi-exactness of the indexed coinstitution. The essential ingredi-
ent to find a square of two weakly amalgamable lax triangles for the span

PLNG Casl ◦ ΦtoCASL− toCASL+

Casl . But this can e.g. be given
by coding of both Casl and PLNG into a common logic such as higher order
logic (indexing institutions and comorphisms by themselves):

HOL

PLNG

PLNG2HOL

id θ
Casl

CASL2HOL

Casl ◦ Φ
toCASL− toCASL+

Institutional 2-cells and Grothendieck Institutions 141

ByTheorem36, this lead to a weakly amalgamable square in the Grothendieck
institution:

(Casl ◦ Φ,Σp)
(toCASL−,id) (toCASL+,id)

(PLNG,ΣP)

(PLNG2HOL,id)

(Casl, ΣS)

(CASL2HOL,θΣS
)

(HOL,PLNG2HOL(ΣP))

By Prop. 38, our refinement statement can now be reformulated as follows:

ModHOL(PLNG2HOL(SortProg)) ⊆ ModHOL(θ(CASL2HOL(SortSpec)))

which is amount to proving, in HOL,

PLNG2HOL(SortProg) $ θ(CASL2HOL(SortSpec)).

An implementation of this machinery for the case PLNG=Haskell is under
way, to become part of the Heterogeneous Tool Set Hets [15,17].

Acknowledgments There are a number of colleagues who have introduced
me into the field and who always are open for interesting discussions and collab-
orations; here I shall name only Joseph Goguen, Răzvan Diaconescu and Andrzej
Tarlecki. Andrzej Tarlecki made very valuable comments on a draft.

This work has been supported by the Deutsche Forschungsgemeinschaft un-
der Grants KR 1191/5-1 and KR 1191/5-2.

References

1. J. Bergstra, J. Heering, and P. Klint. Module Algebra. J. ACM, 37(2):335–372,
1990.

2. T. Borzyszkowski. Generalized interpolation in CASL. Information Processing
Letters, 76/1-2:19–24, 2000.

3. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS
Vol. 2960 (IFIP Series). Springer, 2004.

4. R. Diaconescu. Institution-independent Model Theory. To appear. Book draft.
(Ask author for a current draft.).

5. R. Diaconescu. Grothendieck institutions. Applied categorical structures, 10:383–
402, 2002.

6. R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularisation. In
G. Huet and G. Plotkin, editors, Proceedings of a Workshop on Logical Frameworks,
1991.

7. J. Goguen and G. Roşu. Institution morphisms. Formal aspects of computing,
13:274–307, 2002.

142 Till Mossakowski

8. J. A. Goguen and R. M. Burstall. Introducing institutions. volume 164 of Lecture
Notes in Computer Science, pages 221–256. Springer Verlag, 1984.

9. J. A. Goguen and R. M. Burstall. A study in the foundations of programming
methodology: Specifications, institutions, charters and parchments. In D. P. et al.,
editor, Category Theory and Computer Programming, volume 240 of Lecture Notes
in Computer Science, pages 313–333. Springer Verlag, 1985.

10. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.

11. H. Herrlich and G. Strecker. Category Theory. Allyn and Bacon, Boston, 1973.

12. S. Mac Lane. Categories for the Working Mathematician. Springer, 1998. Second
edition.

13. T. Mossakowski. Comorphism-based Grothendieck logics. In K. Diks and W. Ryt-
ter, editors, Mathematical foundations of computer science, volume 2420 of LNCS,
pages 593–604. Springer, 2002.

14. T. Mossakowski. Relating Casl with other specification languages: the institution
level. Theoretical Computer Science, 286:367–475, 2002.

15. T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. Ha-
bilitation thesis, University of Bremen, 2005.

16. T. Mossakowski, S. Autexier, and D. Hutter. Development graphs – proof manage-
ment for structured specifications. Journal of Logic and Algebraic Programming,
67(1-2):114–145, 2006.

17. T. Mossakowski, C. Maeder, K. Lüttich, and S. Wölfl. The heterogeneous tool set.
Submitted for publication.

18. T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel. Algebraic-co-
algebraic specification in CoCASL. Journal of Logic and Algebraic Programming,
67(1-2):146–197, 2006.

19. G. Roşu and J. Goguen. Composing hidden information modules over inclusive
institutions, 2004.

20. D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information
and Computation, 76:165–210, 1988.

21. A. Tarlecki. Moving between logical systems. In M. Haveraaen, O. Owe, and
O.-J. Dahl, editors, Recent Trends in Data Type Specifications. 11th Workshop on
Specification of Abstract Data Types, volume 1130 of Lecture Notes in Computer
Science, pages 478–502. Springer Verlag, 1996.

22. A. Tarlecki, R. M. Burstall, and J. A. Goguen. Some fundamentals algebraic tools
for the semantics of computation. Part 3: Indexed categories. Theoretical Computer
Science, 91:239–264, 1991.

A Proofs of the Theorems

Proof of Prop. 16. Given comorphisms (Φi, ρi): I −→ J (i = 1, 2, 3) and a span
of modifications

(Φ1, ρ1)
τ1 τ2

(Φ2, ρ2) (Φ3, ρ3)

Institutional 2-cells and Grothendieck Institutions 143

construct the signature component Φ(Σ) of the resulting comorphism as the
pushout

Φ1(Σ)
(τ1)Σ (τ2)Σ

Φ2(Σ)

(θ2)Σ

Φ3(Σ)

(θ1)Σ

Φ(Σ)

By the universal property of the pushout, this extends to a functor Φ:SignI −→
SignJ such that θ1:Φ3−→Φ and θ2:Φ2−→Φ become natural transformations.

I
ρ2

ρ1
ρ3

J ◦ Φ2

J·θ2

J ◦ Φ1
J·τ1 J·τ2

J ◦ Φ3

J·θ1

J ◦ Φ

We can then define room component of the pushout comorphism ρ: I−→J ◦Φ to
be J · θ2 ◦ ρ2 = J · θ1 ◦ ρ3, and the cocone consisting of θ1: (Φ3, ρ3)=⇒(Φ, ρ) and
θ2: (Φ2, ρ2)=⇒(Φ, ρ) is easily seen to satisfy the universal property of a pushout.

The proof for coproducts, coequalizers or arbitrary non-empty colimits of
connected diagrams is very similar.
#

Proof of Prop. 17: The initial institution morphism (Φ, μ): I−→J is defined
by letting Φ(Σ) be the initial signature, and μΣ consist of the empty map of
sentences and the unique functor into the terminal model category.
#

Proof of Prop. 20: By the definition of comorphism modification, (Ij · Iu) ◦
ρd′

= ρd. But this just means that equivalent signature morphisms induce the
same corridors.
#

Proof of Prop. 22: It is easy to see that the above relation is contain in
the relation generated by (1): just apply (1) twice. It remains to show that the
above relation is a congruence. Reflexivity and symmetry are clear. Concerning
transitivity, assume that

(d1, σ1 ◦ Iu1
Σ) ≡ (d3, σ1 ◦ Iu2

Σ) = (d3, σ2 ◦ Iu3
Σ) ≡ (d5, σ2 ◦ Iu4

Σ),

144 Till Mossakowski

the first relation being witnessed by u1 : d2 ⇒ d1, u2 : d2 ⇒ d3, and the second
by by u3 : d4 ⇒ d3, u4 : d4 ⇒ d5. Take the pullback in Ind(j, i) of the two spans

d1 d3 d5

d2

u1 u2

d4

u3 u4

d

u u′

By the construction of pushouts of 2-cells in CoIns (see Prop.16), the middle
square in

Φd1(Σ)

Iu1
Σ

Φd3(Σ)

Iu2
Σ Iu3

Σ

Φd5(Σ)

Iu4
Σ

Φd2(Σ)
Iu

Σ

σ1

Φd3(Σ)
Iu′

Σ

σ2

Φd(Σ)

σ

Σ′

is a pushout, and the mediating morphism σ leads to the desired form

(d1, σ1 ◦ Iu1
Σ) = (d1, σ ◦ Iu1◦u

Σ) ≡ (d5, σ ◦ Iu4◦u′
Σ) = (d5, σ2 ◦ Iu4

Σ).

Concerning composition, assume that

(d1, σ ◦ Iu1
Σ) ≡ (d2, σ ◦ Iu2

Σ)

via u1 : d⇒ d1, u2 : d⇒ d2, and

(e1, τ ◦ Iv1
Σ′) ≡ (e2, τ ◦ Iv2

Σ′)

via v1 : e⇒ e1, v2 : e⇒ e2. Then for k = 1, 2,

(ek, σ ◦ Iuk

Σ) ◦ (dk, τ ◦ Ivk

Σ′)
= (dk ◦ ek, σ ◦ Iuk

Σ ◦ Φek (τ) ◦ Φek (Ivk

Σ′)) (def. Grothendieck composition)
= (dk ◦ ek, σ ◦ Φek(τ) ◦ Φek(Ivk

Σ′) ◦ Iuk

Φek (Σ′)) (naturality of Iuk)
= (dk ◦ ek, σ ◦ Φek(τ) ◦ Ivk·uk

Σ′) (functoriality of I)

which shows that we arrive at the desired form.
#

Institutional 2-cells and Grothendieck Institutions 145

Proof of Thm. 26: Apply Theorem 1 of [22] with Ci = Signi and Cm = Φm.
Note that Sign# is then Flat(Cop)op.
#

Proof of Lemma 28: Easy induction over the definition of (d1, σ1) ≡ (d2, σ2).

#

Proof of Prop. 29: Analogous to the proof of Prop. 22.
#

Proof of Thm. 30: The proof idea follows that of Theorem 1 in [22], the
necessary modifications being caused by the congruences. By assumption 2, we
can always choose representatives d ∈ Ind of congruences classes [d] ∈ Ind/≡
in such a way that d is a canonical weakly terminal object. Similarly, we can
always choose representatives (d, σ) of congruence classes [(d, σ)] in Sign#/≡
in such a way that d is the canonical weakly terminal object in its connected
component: given an arbitrary (d, σ:Φd(Σ)−→Σ′) in Sign#, let u: d=⇒ t be a
2-cell into the canonical weakly terminal object. Then (t, σ ◦ Iu

Σ) is equivalent
to (d, σ).

Given a diagram D:K−→Sign#/≡, we introduce the notation (ik, Σk) for
D(k) (k ∈ |K|) and [(dm, σm)]: (ik, Σk) −→ (ik′ , Σk′) for D(m) (m: k −→ k′ ∈
K). Let D̄:K −→ Ind/ ≡ be the projection of D to the first component; by
Lemma 28 this is a well-defined diagram in Ind/≡. By assumption 1, D̄ has a
limit ([mk]: i−→ ik)k∈|K|.

Let the diagram G:K−→Signi be defined by

G(k) = Φmk(Σk) (k ∈ |K|)
G(m) = Φmk(σm) (m: k′−→k ∈ K)

Note thatmk is chosen to be canonical weakly terminal in [mk]. By assumption 5,
G has a colimit (σk:G(k) −→ Σ)k∈|K|. We show that ([(mk, σk)]: (ik, Σk) −→
(i, Σ))k∈|K| is a colimit of D.

Since equality implies congruence, ([(mk, σk)])k∈|K| is a cocone of D. Let
([(nk, θk)]: (ik, Σk)−→(i′, Σ′))k∈|K| be another cocone. By Lemma 28, ([nk]: i′−→
ik)k∈|K| is a cocone for D̄. Hence there is a unique [d]: i′−→ i with [mk] ◦ [d] =
[nk]. Since we choose representatives canonically in a way closed under compo-
sition, mk ◦ d = nk.

By assumption 4, (Φd(σk))k∈|K| is a colimit of Φd ◦G. Note that the source
of Φd(σk) is Φd(G(k)) = Φd(Φmk(Σk)) = Φnk(Σk). By the cocone property of
([(nk, θk)])k∈|K|, (nk, θk) ≡ (dm ◦ nk′ , θk′ ◦ Φnk′ (σm)) for m: k −→ k′ ∈ K. By
the assumption of weakly terminal canonical representatives, nk = dm ◦ nk′ . By
assumption 3, θk = θk′ ◦Φnk′ (σm). This shows that (θk:Φnk(Σk)−→Σ′)k∈|K| is a
cocone for Φd ◦G. Hence, there is a unique τ :Φd(Σ)−→Σ′ with τ ◦Φd(σk) = θk.
Then [(d, τ)]: (i, Σ) −→ (i′, Σ′) is a unique morphism in Sign#/ ≡ such that
[(d, τ)] ◦ [(mk, σk)] = [(nk, θk)].
#

Proof of Prop. 31: Clearly, embi is injective on objects. Faithfulness follows
from assumption 3. Preservation of colimits can be seen by inspecting the con-
struction of the proof of Theorem 30: if the indices are all i, then the colimit is
just that in Signi.
#

146 Till Mossakowski

Proof of Thm. 32: “Only if”, 1: Following Prop. 2 in [5], it is easy to see that
for each i ∈ |Ind|, the model functor Modi is the restriction Mod#(i,) of the
model functor of the Grothendieck institution to the subcategory Signi of the
Grothendieck signature category Sign#/≡.

(Signi)op embi

Modi

(Sign#/≡)op

Mod#

CAT

By Prop. 31, the canonical injection embi:Signi −→ Sign# preserves colimits,
hence Modi takes pushouts to (weak) pullbacks because Mod# does so.

“Only if”, 2: Given a pullback in Ind/≡

i j1
[d1]

j2

[d2]

k
[e2]

[e1]

choose d1, d2, e1, e2 canonically. By the construction of colimits in Theorem 30,
for any signature Σ in Signi,

(i, Σ)
[(d1,id)]

[(d2,id)]

(j1, Φd1(Σ))

[(e1,id)]

(j2, Φd2(Σ))
[(e2,id)]

(k, Φe1 (Φd1(Σ))) = (k, Φe2(Φd2(Σ)))

is a pushout in Sign#/≡ and is therefore mapped to a (weak) pullback by the
model functor. This gives exactly the desired property.

“Only if”, 3: Let d: j −→ i by canonical and σ:Σ1 −→Σ2 a signature mor-
phism in Signi. By the construction of colimits in Theorem 30,

(i, Σ1)
[(id,σ)]

[(d,id)]

(i, Σ2)

[(d,id)]

(j, Φd(Σ1))
[(id,Φd(σ))]

(j, Φd(Σ2))

is a pushout in Sign#/≡ and is therefore mapped to a (weak) pullback by the
model functor. Again, this gives exactly the desired property.

Institutional 2-cells and Grothendieck Institutions 147

“If”: Consider an arbitrary pushout in Sign#/≡

(i, Σ0)
[(d1,σ1)]

[(d2,σ2)]

(j1, Σ1)

[(e1,θ1)]

(j2, Σ2)
[(e2,θ2)]

(k,Σ′)

and assume that representatives are chosen canonically. By the construction of
colimits in Theorem 30, the above pushout can be expressed as the following
composition of four pushout squares:

(i, Σ0)
[(d1,id)]

[(d2,id)]

(j1, Φd1(Σ0))
[(id,σ1)]

[(e1,id)]

(j1, Σ1)

[(e1,id)]

(j2, Φd2(Σ0))
[(e2,id)]

[(id,σ2)]

(k, Φe1(Φd1(Σ0))) = (k, Φe2(Φd2(Σ0)))
[(id,Φe1σ1)]

[(id,Φe2σ2)]

(k, Φe1 (Σ1))

[(id,θ1)]

(j2, Σ2)
[(e2,id)]

(k, Φe2(Σ2))
[(id,θ2)]

(k,Σ′)

Now the model functor of the quotient Grothendieck institution maps the upper
left pushout to a (weak) pullback because the 2-indexed coinstitution is (weakly)
semi-exact, maps the lower right pushout to a (weak) pullback because the 2-
indexed coinstitution is (weakly) locally semi-exact, and maps the remaining
two squares to (weak) pullbacks because the comorphisms for canonical index
morphisms are (weakly) exact. Since (weak) pullback squares compose, the result
follows.
#

Proof of Thm. 36:

Let a diagram (j1, Σ1) (i, Σ)
(d1,σ1) (d2,σ2)

(j2, Σ2) in Sign#

be given. Let

i

j2

d2

u2 u1
j1

d1

k

e2 e1
d

148 Till Mossakowski

be a weakly amalgamable square of two lax triangles with Ik quasi-semi-
exact. By the latter property, there are θ1, θ2 such that

Φd(Σ)

Iu2
Σ

Iu1
Σ

Φe1(Φd1(Σ))
Φe1σ1

Φe1(Σ1)

θ1Φe2(Φd2(Σ))

Φe2σ2

Φe2(Σ2)
θ2

Σ′

is a weakly amalgamable square, which leads to weak amalgamability of the
lower right square in

(i, Σ)
(d1,id)

(d2,id)

(d,id)

(j1, Φd1(Σ))
(id,σ1)

(e1,id)

(j1, Σ1)

(e1,id)

(k, Φd(Σ))

(id,Iu2
Σ)

(id,Iu1
Σ)

(k, Φe1(Φd1(Σ)))
(id,Φe1(σ1))

(k, Φe1(Σ1))

(id,θ1)(j2, Φd2(Σ))

(id,σ2)

(e2,id)
(k, Φe2(Φd2(Σ)))

(id,Φe2(σ2))

(j2, Σ2)
(e2,id)

(k, Φe2(Σ2))
(id,θ2)

(k,Σ′)

The upper right and lower left squares are weakly amalgamable by weak
exactness of Ie1 and Ie2 . The pair of the remaining two squares is jointly weakly
amalgamable since it is induced by a weakly amalgamable square of two lax
triangles (and note that squares in Sign#/≡ induced by lax triangles in Ind
commute by definition of ≡). Since weakly amalgamable squares can be pasted
together, we get a weakly amalgamable cocone for the original diagram.
#

Proof of Corollary 37: In the sequel, we will use terms like “connected”,
“maximal”, “lower bound” for small categories, when we really mean the pre-
order obtained from the category by collapsing the hom-sets into singletons. A
maximal element in a pre-order is an element which is equivalent to any element
above it.

Let D: J −→ Sign# be a connected diagram and let Max be the set of
maximal nodes in J . We successively construct new diagrams out of J . Take two
nodes in Max that have a common lower bound (if two such nodes do not exist,
the diagram is not connected). By Theorem 36, there is a weak amalgamating
cocone for the sub-diagram consisting of the two maximal nodes and the lower
bound (together with the arrows from the lower bound into the maximal nodes).

Institutional 2-cells and Grothendieck Institutions 149

Extend the diagram with the cocone. The diagram thus obtained now has a set
of maximal nodes whose size is decreased by one. By iterating this construction,
we get a diagram with one maximal node. The maximal node then is just the
tip of a weakly amalgamating cocone for the original diagram.
#

Proof of Prop. 38:
A model M1 ∈ |Mod(σ1)−1(Mod(σ2(Mod(Σ2, Ψ2))))| is nothing but a pair

(M1,M2) of modelsM1 ∈ |Mod(Σ1)|,M2 ∈ |Mod(Σ2, Ψ2)| with common reduct
to Σ. This pair can be amalgamated to a model M3 ∈ |Mod(Σ3)|. SinceM3|θ2 =
M2, by the satisfaction condition, M3 |=Σ3 θ2(Ψ2). By the assumption, also
M3 |=Σ3 θ1(Ψ1). But this means M1 = M3|θ1 |=Σ1 Ψ1.
#

Some Varieties of Equational Logic

(Extended Abstract)�

Gordon Plotkin

LFCS, School of Informatics, University of Edinburgh, UK.

The application of ideas from universal algebra to computer science has long been
a major theme of Joseph Goguen’s research, perhaps even the major theme. One
strand of this work concerns algebraic datatypes. Recently there has been some
interest in what one may call algebraic computation types. As we will show,
these are also given by equational theories, if one only understands the notion
of equational logic in somewhat broader senses than usual.

One moral of our work is that, suitably considered, equational logic is not
tied to the usual first-order syntax of terms and equations. Standard equational
logic has proved a useful tool in several branches of computer science, see, for
example, the RTA conference series [9] and textbooks, such as [1]. Perhaps the
possibilities for richer varieties of equational logic discussed here will lead to
further applications.

We begin with an explanation of computation types. Starting around 1989,
Eugenio Moggi introduced the idea of monadic notions of computation [11,12]
with the idea that, for appropriately chosen monads T on, e.g., Set, the category
of sets, one thinks of T (X) as the type of computations of an element of X. For
example, for side-effects one takes the monad TS(X) =def (S ×X)S where S is
the set of states. Below, we take S =def V

Loc where V is a countably infinite
set of values such as the natural numbers, and Loc is a finite set of locations.
See [2] for a recent exposition of Moggi’s ideas, particularly emphasising the
connections with functional programming, where the monadic approach has been
very influential.

As is well known, equational theories give rise to free algebra monads. For
example the free semilattice monad arises from the theory of a binary operation
∪ subject to the axioms of associativity, commutativity and idempotence, where
the last is the equation x ∪ x = x. The induced monad TN (X) is the collection
of all non-empty finite subsets of X . In general, the equational theories with
operations of finite arity induce exactly those monads which have finite rank,
see, e.g., [19].

In denotational semantics one typically employs a category of ordered struc-
tures, such as ω-Cpo, the category of ω-cpos, which are partial orders with lubs
of increasing ω-chains, and with morphisms those monotonic functions preserving
the ω-lubs. An ω-Cpo-semilattice is a semilattice in ω-Cpo, that is an ω-cpo
together with a continuous binary function satisfying the semilattice axioms;

� This work has been done with the support of EPSRC grant GR/S86372/01 and a
Royal Society-Wolfson research merit award.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 150–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Some Varieties of Equational Logic 151

the free ω-Cpo-semilattice monad is (a generalisation of) the convex powerdo-
main monad, originally defined only on a subcategory [5]. There are also lower,
or Hoare, and upper, or Smyth, powerdomain monads; these are obtained by
adding an additional axiom, viz:

x ≤ x ∪ y

for the lower powerdomain, and:

x ≥ x ∪ y

for the upper one. Note that these are inequations rather than equations.
This idea was carried further in [15] where similar characterisations were

noted for other important monads arising in Moggi’s approach, such as those
for exceptions, state, input/output, probabilistic nondeterminism and nontermi-
nation. One of the main contributions there was an axiomatisation of the state
monad employing families of operations of finite or countably infinite arity, as
follows. For each location l one assumes given an operation symbol:

lookupl

of arity the countably infinite set V (it is convenient to allow any set to be an
arity, not just a cardinal) and for each each location l and value v one assumes
given a unary operation symbol:

updatel,v

The idea is that a term of the form lookupl(. . . tv . . .) denotes the computation
which looks up the contents of l in the current state and, if this is v, then proceeds
according to the computation denoted by the v-th argument, tv. Similarly a term
of the form updatel,v(t) denotes the computation which first updates the contents
of the location l to v and then proceeds according to the computation denoted
by t.

These ideas have been elaborated into what may be termed the algebraic the-
ory of notions of computation, where the operations and equations are primary
and determine the monads. The computational importance of the operations is
that it is they that give rise to the effects at hand [16]. Applications include
the operational semantics of effects [14], their modular combination [7] and,
prospectively, a general logic of effects [17]; see [18] for a survey.

The examples demonstrate that the algebraic theory of computation would
benefit from a wider means of expression than is provided by standard equational
theories: one also needs to consider parameterization, operations of countable,
i.e., denumerable, arity and inequations. As we will see, a unifying rôle is played
by Lawvere theories: each such kind of ‘equational’ theory corresponds to a
kind of Lawvere theory, possibly enriched or countable rather than finitary, as
standard.

152 Gordon Plotkin

Parameterization This occurs naturally in mathematics, for example in
the notion of a vector space over a given field F. There one has the axiom:

λ(x + y) = λx + λy

which involves both field elements and vectors. To treat the notion as an equa-
tional theory in the standard sense, one would introduce a unary operation of
‘multiplication by λ’ for each field element λ and the axiom would be rendered
as a family of equations, with one for each field element. We will instead treat
the axiom as a single parametric equation, with λ a variable ranging over the
field and with multiplication by a field element treated as a parametric unary
operation on the vector space.

One can go further and allow ‘side-conditions,’ involving only the parameter
variables. For example, in the case of state, treating update as a unary operation
parametric over locations and values, one has the following parametric equation:

updatel,v(updatel′,v′(x)) = updatel′,v′(updatel,v(x)) (if l 	= l′)

which has the side condition that l 	= l′; the equation states that the order in
which one updates distinct locations does not matter.

Such parametric equational theories abbreviate ordinary equational theories,
but, by allowing a schema to be replaced by a parametric equation with side
conditions, may enable finitary axiomatisation and consequent direct computer
implementation. Formally one assumes given an interpretation A of a many-
sorted first-order signature, the parameter signature; for the equational part one
further assumes given a parametric signature where the operation symbols are
assigned a given list of sorts from the parameter signature as well as the usual
natural number. There is then a natural notion of parametric term where the
parameters are given by standard first-order terms over the parameter signature
and so of parametric equation:

t = u (ϕ)

with side condition ϕ written in first-order logic with equality over the param-
eter signature. A collection of such equations abbreviate, as indicated above, a
standard equational theory over a derived signature.

There is a natural system for deriving these parametric equations from a given
collection Th of first-order formulas with equality over the parameter signature,
together with another given collection Eqn of parametric equations; the system
includes first-order logic with equality for the parameter spaces and equational
logic for the parametric equations. One can define whether a parametric equation
is a semantic consequence of Th and Eqn relative to the fixed interpretation A,
but, unfortunately, taking Th to be the theory of A, completeness need not hold.
It may, however, hold in particular cases: one such is that of vector spaces men-
tioned above taking the standard ‘ring signature’ for the many-sorted first-order
signature. On the other hand, fixing Th and Eqn, one can show completeness, if
by validity one means with respect to all models of Th.

Some Varieties of Equational Logic 153

Infinitary operations One can treat operations of countable arity using the
evident natural notions of countable equational theory and countable Lawvere
theory; the induced monads are those of countable rank. Here is an example of a
schema of infinitary equations involving the operation of looking up the contents
of a location:

lookupl(. . .updatel,v(x) . . .) = x

The equation states that if a location is looked up and then updated with the
value found, then that is equivalent to doing nothing.

However it would again be preferable to have a finitary syntax, now for op-
erations of countably infinite arity. To that end, we employ binding on variables
of the arity sort, here val (standing for V); the term-forming construction for
lookup is then:

lookupa(v :val.t)

where a is a parameter term of sort loc (standing for Loc) and t is a parametric
term given the environment v : val. With this, the above infinitary schema can
be written as the following finitary ‘equation’:

lookupl(v :val.updatel,v(x)) = x

We consider next the following infinitary equation scheme:

lookupl(. . . updatel′,v′(xv) . . .) = updatel′,v′(lookupl(. . . xv . . .)) (if l 	= l′)

which states that the operations of looking up one location and updating another
commute. Notice that it employs a family xv of variables. If we introduce the
notion of a parametric variable (ranging over a suitable collection of functions)
this infinitary equation scheme can also be rendered in a finitary fashion:

lookupl(v :val.updatel′,v′(xv)) = updatel′,v′(lookupl(v :val.xv)) (if l 	= l′)

These two ideas of binding and parametric variables suffice to write down all
the parameterized, possibly infinitary, equation schemes for global state given
in [15] finitarily.

In the general formalism, we again begin with an interpretation A of a pa-
rameter signature, as above, except that we assume also given a subcollection of
the sorts, called the arity sorts. In the parametric signature an operation symbol
has m parameter arguments of given parameter sorts, and n argument positions,
with the ith being abstracted on ki arity sorts. A collection of parametric equa-
tions abbreviates a countable equational theory, provided that the arity sorts
are interpreted by countable sets.

One can then give a logic following the previous lines. An immediate question
is whether the logic is complete for global state, where for the many-sorted first-
order signature one would take the two sorts, loc and val, and constants for all
the elements of Loc, with the evident interpretation using V and Loc. We would
also like to know whether we have completeness relative to all interpretations
of a given theory, as we do in the simpler case, considered above, of finitary

154 Gordon Plotkin

operations. Positive answers to such questions would demonstrate that valid
uniform infinitary equations have uniform proofs.

Inequations These are a natural generalisation of equations and there is
an evident notion of inequational, or ordered, equational logic over operations
of finite arity, which has a straightforward completeness theorem using posets
rather than sets [3]. The resulting ordered equational theories correspond to or-
dered Lawvere theories, in the sense of [23,3]. These are not the same as the
Pos-enriched Lawvere theories of [19], as the latter allow all finite posets as ar-
ities of operations, not just the discrete ones. However they are the same as the
Pos-enriched Lawvere theories of [10], equivalently the Pos-enriched discrete
Lawvere theories of [20]. There is a natural generalisation to countable inequa-
tional logic, and the inequational theories of this logic correspond to the discrete
countable Pos-theories (the countable case is the main one considered in [20]).
In general discrete V-theories of a given rank freely induce V-theories of that
rank, in the sense of [19], and the latter induce the V-monads of the same rank;
not all such monads arise from discrete theories.

Parameterization, now over given posets, is again an expressive convenience,
and there are inequational versions of the two equational deductive systems
considered above: one for parametric inequations and the other with finitary
syntax for infinitary operations. For the parameter interpretation A it is natural
to work with enriched first-order structures, which we take to mean here that
sorts are interpreted by posets, operations by monotonic functions and relations
by subsets; one then naturally works with first-order logic with inequations a ≤ b,
rather than equations, to express parameter conditions. One evidently requires
arity sorts to be interpreted by countable discrete partial orders to obtain discrete
countable Pos-theories from a collection of parametric inequations.

Turning to ω-Cpo-enrichment, one can consider discrete finitary or countable
ω-Cpo-theories. Here parameterization is more than an expressive convenience:
it enables one to implicitly write down equations involving sups of increasing
chains. One can still work with simple inequations, but rather than finitary or
countably infinitary operation symbols, one takes families of such, parameterized
over a collection of parameter ω-cpos. They are to be interpreted by functions
which are continuous over the parameter ω-cpos as well as the algebra ω-cpo. A
natural example is provided by d-cones, which arise when considering powerdo-
mains for mixed ordinary and probabilistic nondeterminism [22]. These are the
ω-Cpo-semimodules over the semiring R+, which latter is the ω-cpo of the non-
negative reals extended with a point at infinity, and endowed with the natural
semiring structure [13].

Collections of such inequations induce the discrete finitary or countable
ω-Cpo-theories, according to the arities of the operation symbols allowed. How-
ever there is a question as to what is the appropriate inequational logic. It may be
best to introduce an explicit infinitary syntax for sups of increasing ω-sequences,
but then sup-terms would only be well-formed if one could prove the sequence
was increasing, and that would mean a mutual recursion between the definitions
of proofs and well-formed terms. It remains to investigate such a system.

Some Varieties of Equational Logic 155

The next question is to what extent one can achieve a useful finitary sys-
tem. One can clearly investigate analogues of the methods used above to handle
parameterization and operations of countably infinite arity. But it is far from
clear what to do about the sup-terms. Perhaps one can restrict to considering
only least fixed-points and work with a combination of the above ideas and the
μ-calculus, for which, and associated logical and categorical results, see [4,8,21].

Whatever the difficulties are with finding the right logic, it is at least the
case that the combination of parameterization, binding constructions and in-
equations, interpreted over ω-Cpo, is enough to express all the theories of com-
putation types so far considered over that category. We should admit, however,
that this is not quite enough to account for all the computation types so far
considered. One difficult case is that of the continuations monad. However one
can argue that there the types should not be treated as algebraic since the nat-
ural operations are not even of the right type to be algebraic operations, and,
further, the monad does not have a rank [6].

A more interesting case is that of local state, as opposed to the above global
state, where one can declare new locations. This was treated using a monad over
a presheaf category in [15]. The monad was specified by equations, but they
involved a mixture of linear and ordinary operations, with the linear structure
coming from the Day tensor on the presheaf category. This example feels as if
it should be treatable within an algebraic framework, but we do not see the
proper notions of Lawvere theory or equational theory. Finally there is also the
possibility of employing other semantic categories in place of ω-Cpo for the
algebraic computational types; we content ourselves here with the remark that
for reasonable such categories, one would expect the relevant free algebras still
to exist.

References

1. F. Baader & T. Nipkow, Term Rewriting and All That, Cambridge University
Press, 1998.

2. N. Benton, J. Hughes & E. Moggi, Monads and Effects, Proc. APPSEM 2000,
LNCS, 2395, 42–122, Springer-Verlag, 2002.

3. S. L. Bloom, Varieties of Ordered Algebras, J. Comput. Syst. Sci., 13(2), 200–212,
1976.

4. S. L. Bloom & Z. Ésik, Iteration Theories: The Equational Logic of Iterative
Processes, EATCS Monographs on Theoretical Computer Science, Springer-Verlag,
1993.

5. M. Hennessy & G. D. Plotkin, Full Abstraction for a Simple Parallel Programming
Language, Proc. 8th. MFCS (ed. J. Becvár), LNCS, 74, 108–120, Springer-Verlag,
1979.

6. J. M. E. Hyland, P. B. Levy, G. D. Plotkin & A. J. Power, Combining Continuations
with Other Effects, Proc. 4th. ACM SIGPLAN Continuations Workshop, 45–47,
University of Birmingham Report CSR-04-1, 2004.

7. J. M. E. Hyland, G. D. Plotkin & A. J. Power, Combining Effects: Sum and Tensor,
Theoretical Computer Science, to appear, 2006.

156 Gordon Plotkin

8. A. J. C. Hurkens, M. McArthur, Y. N. Moschovakis, L. S. Moss & G. T. Whitney,
The Logic Of Recursive Equations, JSL, 63(2), 451–478, 1998.

9. J-P. Jouannaud, Twenty Years Later, Proc. 16th. RTA (ed. J. Giesl), LNCS, 3467,
368–375, Springer-Verlag, 2005.

10. J. Meseguer, Varieties of Chain-Complete Algebras, JPAA, 19, 347–383, 1980.
11. E. Moggi, Computational Lambda-Calculus and Monads, Proc. 4th. LICS, 14–23,

IEEE Press, 1989.
12. E. Moggi, Notions of Computation and Monads, Inf. & Comp., 93(1), 55–92, 1991.
13. G. D. Plotkin, A Domain-Theoretic Banach-Alaoglu Theorem, Festschrift for

Klaus Keimel, MSCS, 16, 1–13, 2006.
14. G. D. Plotkin & A. J. Power, Adequacy for Algebraic Effects, Proc. 4th. FOSSACS

(eds. F. Honsell & M. Miculan), LNCS, 2030, 1–24, Springer-Verlag, 2001.
15. G. D. Plotkin & A. J. Power, Notions of Computation Determine Monads, Proc.

5th. FOSSACS, LNCS, 2303, 342–356, Springer-Verlag, 2002.
16. G. D. Plotkin & A. J. Power, Algebraic Operations and Generic Effects, Applied

Categorical Structures, 11(1), 69–94, 2003.
17. G. D. Plotkin & A. J. Power, Logic for Computational Effects: Work in Progress,

Proc. 6th. IWFM (eds. J. M. Morris, B. Aziz & F. Oehl), Electronic workshops in
computing, BCS, 2003.

18. G. D. Plotkin & A. J. Power, Computational Effects and Operations: an Overview,
Proc. Domains VI, ENTCS, 73, 149–163, Elsevier, 2004.

19. A. J. Power, Enriched Lawvere Theories, Theory and Applications of Categories,
6, 83–93, 2000.

20. A. J. Power, Discrete Lawvere Theories, Proc. 1st. CALCO (eds. J. L. Fi-
adeiro, N. Harman, M. Roggenbach & J. J. M. M. Rutten), LNCS, 3629, 348–363,
Springer-Verlag, 2005.

21. A. Simpson & G. Plotkin, Complete Axioms for Categorical Fixed-point Operators,
Proc. 15th. LICS, 30–41, IEEE Press, 2000.

22. R. Tix, K. Keimel and G. Plotkin, Semantic Domains for Combining Probability
and Non-Determinism, ENTCS, Vol. 129, pp. 1–104, Amsterdam: Elsevier, 2005.

23. E. G. Wagner, J. B. Wright, J. A. Goguen & J. W. Thatcher, Some Fundamentals
of Order-Algebraic Semantics, Proc. 5th. MFCS (ed. A. W. Mazurkiewicz), LNCS,
45, 153–168, Springer-Verlag, 1976.

Complete Categorical Deduction

for Satisfaction as Injectivity

Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

Abstract. Birkhoff (quasi-)variety categorical axiomatizability results
have fascinated many scientists by their elegance, simplicity and gener-
ality. The key factor leading to their generality is that equations, con-
ditional or not, can be regarded as special morphisms or arrows in a
special category, where their satisfaction becomes injectivity, a simple
and abstract categorical concept. A natural and challenging next step is
to investigate complete deduction within the same general and elegant
framework. We present a categorical deduction system for equations as
arrows and show that, under appropriate finiteness requirements, it is
complete for satisfaction as injectivity. A straightforward instantiation
of our results yields complete deduction for several equational logics, in
which conditional equations can be derived as well at no additional cost,
as opposed to the typical method using the theorems of constants and
of deduction. At our knowledge, this is a new result in equational logics.

1 Introduction

Equational logic is an important paradigm in computer science. It admits com-
plete deduction and is efficiently mechanizable by rewriting: CafeOBJ [15],
Maude [12] and Elan [9] are equational specification and verification systems
in the OBJ [21] family that can perform millions and tens of millions of rewrites
per second on standard PC platforms. It is expressive: Bergstra and Tucker [5,6]
showed that any computable data type can be characterized by means of a finite
equational specification, and Goguen and Malcolm [17], Wand [41], Broy, Wirs-
ing and Pepper [11], and many others showed that equational logic is essentially
strong enough to easily describe virtually all traditional programming language
features. It has simple semantic models: its models are algebras, straightforward
and intuitive structures. We suggest Goguen and Malcolm [19] and Padawitz
and Wirsing [31] as good references for many-sorted equational logic, its com-
pleteness, as well as applications to computer science.

There are many variants and generalizations of equational logics, ranging
from unsorted [7] to many-sorted [19,31], to partial [32], to order-sorted [20,40],
to membership [27,10], to local [13], to hidden [18,34] equational logics, and
so on. A major challenge is to develop a uniform common framework for all
these variants, that allows one to formulate and prove at least some of their
important properties, such as Birkhoff axiomatizability, complete deduction and

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 157–172, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 Grigore Roşu

Craig interpolation. Whether this is possible or not is open, but what is certain
is the existence of elegant categorical equational variants by Banaschewski and
Herrlich [4], Andréka, Németi and Sain [2,3,30], Adámek and Rosický [1] and
many others, in which equations are viewed as epimorphisms and their satisfac-
tion as injectivity, and that these allow very general treatments of variety and
quasi-variety results. We also adopt this categorical view in the present paper.

To emphasize the simplicity and generality of this approach, we mention that
everything happens within only one category, denoted by C in this paper, which
has a factorization system 〈E ,M〉. The objects of C are viewed as models and
the morphisms in E , which for simplicity will be called equations, are viewed as
sentences1. In order to define our sound (w.r.t. injectivity) four rule inference
system for arrows in E , C is required to additionally have pushouts and enough
E-projectives. To show it complete, C also needs to have directed colimits and to
be E-co-well-powered, and some appropriate notions of finiteness for arrows in
E need to be introduced. A related variant by Diaconescu [14], called category-
based equational logic, considers equations as pairs of arrows, one for each term,
and then gives a set of deduction rules that resembles that of equational logics.

The present paper is part of our efforts to develop a unifying, categorical
framework for axiomatizability, deduction and interpolation for equational and
coequational logics. In [37] it is shown that the difference w.r.t. injectivity be-
tween epimorphisms of free/projective sources and epimorphisms of any sources
is exactly as the difference w.r.t. usual satisfaction between unconditional and
conditional equations, that is, the first define varieties while the second define
quasi-varieties. In [33,36], equational axiomatizability for hidden equational logic
and coalgebra is investigated, and in [38] a categorical generalization of equa-
tional interpolation is given. The closest to the present paper is [35], where we
also present a complete four rule inference system for equations as epics, but lim-
ited to unconditional axioms. In the present paper, due to crucial developments
of finiteness concepts and results, especially Proposition 3, we non-trivially ex-
tend the results in [35] by eliminating the admittedly frustrating limitation to
unconditional axioms, putting thus an end to our quest for complete deduction
when satisfaction is injectivity. We show that a four rule inference system for
epics is complete provided that all the axioms have finite conditions and the
equation to be derived is finite. An interesting characteristic of our deduction
system is that it is also complete for conditional equations, and that those can
be derived the same way as the unconditional ones. We are not aware of any
similar result for any equational paradigm in the literature until [35], where a
version of it, restricted to unconditional axioms, was presented.

Section 2 recalls some categorical concepts and introduces our notational
conventions. Section 3 revises factorization systems. Section 4 shows how equa-
tions, both unconditional and conditional, are equivalent to surjective morphisms
and their satisfaction to injectivity; clarifying examples are presented. Section

1 If one thinks that equations should be regular epimorphisms then one can read so
instead of “epimorphism.” Our results hold for any epimorphisms, so a restriction
to regular epimorphisms would be technically artificial and less general.

Complete Categorical Deduction for Satisfaction as Injectivity 159

5 introduces our four rule inference system for arrows and shows how it works
on various examples. Finiteness concepts and results are explored in Section 6,
which are necessary in Section 7 to show the completeness result. The last section
concludes the paper and presents challenges for further research.

2 Preliminaries

The reader is assumed familiar with basic concepts of category theory [26,23]
and equational logics [7,8,31,19]. In this section we introduce our notations and
conventions, and recall some less frequent notions. Given a category C, let |C|
denote its class of objects; we use diagrammatic order for composition of mor-
phisms, i.e., if f : A→ B and g : B → C then f ; g : A→ C. If the source or the
target of a morphism is not important in a certain context, then we replace it
by a bullet to avoid inventing new letters; for example, f : A→ •. In situations
where there are more bullet objects, they may be different. If f : A → B and
g : A → C have a pushout then we let fg : C → • and gf : B → • denote the
opposite arrows, up to isomorphism, of f and g in that pushout.

Given a class of morphisms E in a category C, P ∈ |C| is called E-projective
iff for any e : • → X in E and any h : P → X , there is a g s.t. g; e = h. C has
enough E-projectives iff for each object X ∈ |C| there is some E-projective
object PX and a morphism eX : PX → X in E . It is known that any set is E-
projective where E consists of all the surjective functions, that free algebras are
E-projective where E is the class of surjective morphisms, and that the category
of algebras has enough E-projectives (for an algebraX , one can take PX to be the
free algebra over the elements in X seen as variables). Dually, I is E-injective
iff for any e : X → • and any h : X → I, there is a g s.t. e; g = h. C is called
E-co-well-powered iff for any X ∈ |C| and any class D of morphisms in E of
source X , there is a set D′ ⊆ D such that each morphism in D is isomorphic to
some morphism in D′; we often call D′ a representative set of D.

IfX is an object in a category E , thenX ↓ E is the comma category containing
morphisms e, e′, ... : X → • in E as objects and morphisms h ∈ E such that
e;h = e′ as morphisms. Notice that if E contains only epimorphisms then there
is at most one morphism between any two objects in X ↓ E . The intuition in
our framework for the the objects e, e′, ... : X → • in the comma category X ↓ E
will be that of equations over the same source (variables, condition).

3 Factorization Systems

The idea to form subobjects by factoring each morphism f as e;m, where e is
an epic and m is a mono, seems to go back to Grothendieck [22] in 1957, and
was intensively used by Isbell [24], Lambek [25], Mitchell [28], and many others.
Lambek was probably the first to explicitly state a diagonal-fill-in property in
1966 [25], called also “orthogonality” by Freyd and Kelly in [16]. One of the
first formal definition of a factorization system that we are aware of was given
by Herrlich and Strecker [23] in 1973, under the name factorizable category, and

160 Grigore Roşu

a comprehensive study of factorization systems, containing different equivalent
definitions, was done by Németi [29] in 1982.

Definition 1. A factorization system of a category C is a pair 〈E ,M〉, s.t.:

– E and M are subcategories of epics and monics, respectively, in C,
– all isomorphisms in C are both in E and M, and
– each morphism f in C can be factored as e;m with e ∈ E and m ∈ M

“uniquely up to isomorphism”, that is, if f = e′;m′ is another factorization
of f then there is a unique isomorphism α such that e;α = e′ and α;m′ = m.

The following are important properties of factorization systems:

Proposition 1. Let 〈E ,M〉 be a factorization system for C, and let e ∈ E and
f ∈ C be morphisms having the same source. Then

1. Diagonal-fill-in. If f ;m = e; g then there is a “unique up to isomorphism”
h ∈ C such that e;h = f and h;m = g, and

2. Pushout. If the pushout of e and f exists then ef ∈ E.

For the rest of the paper, suppose that 〈E ,M〉 is a factorization system for
a category C. The proof of the following proposition, which intuitively shows
conditions under which “equations can be put together,” can be found in [35]:

Proposition 2. If X ∈ |C| and C has colimits then X ↓ E has colimits.

When C is E-co-well-powered, colimits in X ↓ E also exist for large diagrams
D (whose nodes form a class): one takes the colimit of a representative set of D.

Definition 2. We let ({γi}i∈I , eD : X → XD) denote the colimit of D ⊆ X ↓ E,
and use e1 ∪ e2 instead of eD if D consists of only e1 : X → • and e2 : X → •.

4 Equations as Epimorphisms

As advocated by Banaschewski and Herrlich [4], by Andréka, Németi and Sain
[2,30], and by many others including the author [37,35], equations can be re-
garded as epimorphisms and their satisfaction as injectivity. Readers with differ-
ent background bases can find/have different explanations or intuitions for these
relationships. We next informally give our version which seems closest in spirit to
the subsequent results, together with some examples inspired from group theory.

An unconditional equation e over variables x, y, ... is nothing but a binary
relation Re (containing only one pair) on the term algebra T (x, y, ...). This rela-
tion generates a congruence Ce, which further generates a surjective morphism
of free source se : T (x, y, z, ...) → T (x, y, ...)/Ce. An algebra satisfies e iff it is
{se}-injective. Conversely, the kernel Ks of a surjective morphism of free source
s : T (x, y, ...) → • is nothing but a set of equations quantified by x, y, ..., and an
algebra is {s}-injective iff satisfies Ks. It is often more convenient to work with

Complete Categorical Deduction for Satisfaction as Injectivity 161

sets of equations rather than with individual equations, as perhaps best illus-
trated by Craig interpolation results that do not hold for individual equations
but do hold for sets of equations [39,38]. In this paper, by equation we also mean
a set of individual equations over the same variables, so there is a one-to-one
correspondence between equations and epimorphisms of free sources.

Example 1. Let Σ be the unsorted signature consisting of a constant 1, a unary
operation () and a binary operation , and let us consider the equations
(∀x) x1 = x, (∀x) xx = 1, and (∀x, y, z) x(yz) = (xy)z. In our notation, these
equations correspond to the following three epimorphisms:

axiom1 : TΣ(x) → • generated by (x1, x),
axiom2 : TΣ(x) → • generated by (xx, 1),
axiom3 : TΣ(x, y, z) → • generated by (x(yz), (xy)z),

where TΣ(x) and TΣ(x, y, z) are the Σ-term algebras over the variable x and over
the variables x, y, z, respectively, and an epimorphism e : TΣ(x, y, ...) → • is gen-
erated by a binary relationR of terms iff e is the natural surjection TΣ(x, y, ...) →
TΣ(x, y, ...)/R that maps each term to its congruence class. Notice that we could
have also merged the first two epics into the epic axiom1 ∪ axiom2 : TΣ(x) →
TΣ(x)/{(x1,x),(xx,1)}. It is known that the algebras satisfying the three equations
above are exactly the groups, i.e., the left unit and left inverse equations can be
proved from the above. We will focus on these proofs in the next section.

What is less known is that conditional equations can also be viewed as epics
and their satisfaction as injectivity. This is explained in detail in [35]. Intuitively,
one first factors the term algebra by the condition and then takes the epic gen-
erated by the equivalence classes of the conclusion.

Example 2. The conditional equation (∀x) x = 1 if xx = 1 on groups (see Ex-
ample 1), is in our notation equivalent to the epic

axiom4 : TΣ(x)/(xx,1) → • generated by (x, 1),

where, for simplicity, we have identified equivalence classes with some represen-
tatives: (x, 1) should normally be (x̂, 1̂). A group satisfies this new axiom iff it
has no proper square roots of unity iff it is {axiom4}-injective.

In theoretical efforts, it is often technically more easily to abstract freeness by
projectivity. We have shown in [37] that there is essentially no difference between
projective and free sources of epimorphisms with respect to axiomatizability, and
that free objects are usually projective in almost any category. The results in
this paper also hold for both situations, but we only discuss projective sources.

For the rest of the paper we assume that C, besides its factorization system
〈E ,M〉, also has enough E-projectives. Moreover, for each object X ∈ |C| we fix
an arbitrary E-projective object PX and an arbitrary morphism eX : PX → X
in E . If C is the category of algebras over some signature and X is the quotient
of a free algebra by some congruence, then PX is usually taken to be the free
algebra and eX to map each term to its congruence class.

162 Grigore Roşu

Identity: X
1X �� X

1X

Union: X

e1
�����

e2 ���
��

��
e1∪e2 ��									

•

���
��

��
�

•

������

• e1, e2

e1 ∪ e2

Restriction:
X

e ��

e′ ���
��

��
� •

•

e

e′

E-Substitution:

PY

eY ��

f

��

Y
e∈E ��

��

•

��
X

e
f
Y ��

(eY ;e)f

��• •

ef
Y

(eY ; e)f

Fig. 1. Categorical inference rules.

Definition 3. We call the morphisms in E equations. If e : X → • is an
equation then eX : PX → X is called its condition. If X = PX then e is called
unconditional. An object A in C satisfies the equation e : X → •, written
A |= e, if and only if A is {e}-injective. |= trivially extends to sets of equations.

5 Sound Deduction

In this section we give four inference rules for equations as arrows as defined in
the previous section, show that they are sound and give some examples. The first
three rules also appeared in [35]. The fourth rule appeared in an over-simplified
form in [35] because conditional axioms were not allowed there.

In this section we assume that C, besides a factorization system 〈E ,M〉 and
enough E-projectives, also has pushouts.

Definition 4. Given a set of equations E, let $ denote the derivation relation
generated by the rules in Fig. 1, where E-Substitution is a class of rules, one
for each f : PY → X. If the source of e is X and E $ e then e is called an
X-derivation of E. Let DX(E) denote the full subcategory of X ↓ E of X-
derivations of E.

Complete Categorical Deduction for Satisfaction as Injectivity 163

Note that E $ e for each e ∈ E since one can take f = eY in E-Substitution, and
also that DX(E) can be a class in general because E can be a class. Since equa-
tions in E were allowed to have only E-projective sources in [35], E-Substitution
was a simple pushout there, for which reason it was called E-Pushout.

Theorem 1. Soundness. E $ e implies E |= e.

Proof. The soundness of the first three rules is easy; we only show the soundness
of E-Substitution. Let us assume that E |= ef

Y , let A be any object such that
A |= E, and let g : X → A be any morphism.

PY
eY ��

f

��

Y
e∈E ��

feY

��

•

�� h′

��

X ef
Y

��

(eY ;e)f

��

g ��

•

h
���

���
�

��
���

��

•

g′

��
A

Since A |= ef
Y , there is a morphism h like in the diagram above, such that

ef
Y ;h = g. Further, since A |= e there is a morphism h′ such that e;h′ = feY ;h.

Hence f ; g = (eY ; e);h′, so by the pushout property there is a morphism g′ such
that (eY ; e)f ; g′ = g. Therefore, A |= (eY ; e)f , i.e., E |= (eY ; e)f .

Example 3. We show that the three arrows E = {axiom1, axiom2, axiom3} de-
fined in Example 1 define indeed the groups, that is, that the remaining arrows
g1 : TΣ(x) → • generated by (1x, x), and g2 : TΣ(x) → • generated by (xx, 1),
stating the left-unit and left-inverse axioms of groups, can be derived from E.
The table in Figure 2 shows a possible proof, where the first column shows or
gives names to newly inferred arrows, the second shows a set of generators of the
kernel of the new arrow (a dash “-” means that the set of generators is obvious,
so we do not write it to save space), and the third column shows the inference
rule used to derive the new arrow (identity is omitted).

To derive e1, for example, one applies the substitution rule for e = axiom1

where f : TΣ(x) → TΣ(x) takes x to xx, using tacitly the identity rule on 1TΣ(x):

TΣ(x)
1TΣ(x) ��

f

��

TΣ(x)
ax1 ��

f

��

•

��
TΣ(x)

1TΣ(x) ��

e1:=(ax1)f

��• •

We showed in 29 inference steps that the three axioms define groups. The careful
reader may have noticed that we have used unnecessarily many Restriction steps.
Indeed, if one does all the substitutions first, followed by all the unions, and then
by reductions, then one can prove the above in only 19 steps.

164 Grigore Roşu

Generated by (,) Inference rule

e1 (xx)1, xx Substitution : axiom1

e2 (xx)xx, 1 Substitution : axiom2

e3 (xx)((xx)xx), ((xx)(xx))xx Substitution : axiom3

e4 – Union : e1 ∪ e2

e5 – Union : e3 ∪ e4

e6 ((xx)(xx))xx, xx Restriction : e5

e7 x1, x Substitution : axiom1

e8 x(1x), (x1)x Substitution : axiom3

e9 – Union : e7 ∪ e8

e10 x(1x), xx Restriction : e9

e11 xx, 1 Substitution : axiom1

e12 – Union : e10 ∪ e11

e13 x((xx)x), xx Restriction : e12

e14 x(xx), (xx)x Substitution : axiom3

e15 – Union : e13 ∪ e14

e16 x(x(xx)), xx Restriction : e15

e17 x(x(xx)), (xx)(xx) Substitution : axiom3

e18 – Union : e16 ∪ e17

e19 (xx)(xx), xx Restriction : e18

e20 – Union : e2 ∪ e19

e21 ((xx)(xx)xx, 1 Restriction : e20

e22 – Union : e6 ∪ e21

g2 xx, 1 Restriction : e22

e23 – Union : e14 ∪ g2

e24 x1, (xx)x Restriction : e23

e25 x1, x Substitution : axiom1

e26 – Union : e24 ∪ e25

e27 – Union : e11 ∪ e26

g1 1x, x Restriction : e27

Fig. 2. Deriving the remaining group properties.

As mentioned before, a benefit of our deduction system is that one can also
directly infer conditional equations.

Example 4. In the same context as in Example 3, one can infer the condi-
tional equation (∀x) x = x if xx = 1, which in our notation is the arrow
g3 : TΣ(x)/(xx,1) → • generated by (x, x) as in the table in Figure 3. Note
that e30 was possible since its source was TΣ(x)/(xx,1).

Example 5. In the context of groups without square roots of unity in Exam-
ple 2, where E = {axiom1, axiom2, axiom3, axiom4}, we can derive the condi-
tional equation (∀x, y) x = y if xy = yx, which in our notation is the morphism
g4 : TΣ(x, y)/(xy,yx) → • generated by (x, y). To apply substitution on axiom4,
with f : TΣ(x) → TΣ(x, y)/(xy,yx) taking x to xy, where Y = TΣ(x)/(xx,1)

and X = TΣ(x, y)/(xy,yx) and where ef
Y is generated by ((xy)(xy), 1) and

Complete Categorical Deduction for Satisfaction as Injectivity 165

TΣ(x)/(xx,1) → • Generated by (,) Inference rule

e1, .., e22, g2, .., g1 same as before same as before
e28 x(xx), (xx)x Substitution : axiom3

e29 – Union : g2 ∪ e28

e30 1x, x1 Restriction : e29

e31 – Union : e7 ∪ e30

e32 – Union : g1 ∪ e31

g3 x, x Restriction : e32

Fig. 3. Inferring a conditional property.

TΣ(x)/(xy,yx) → • Generated by (,) Inference rule

e1, ..., e22, g2, ..., g1 same as before same as before
e28 (xy)(xy), ((xy)x)y Substitution : axiom3

e29 (xy)(xy), ((yx)x)y Restriction : e28

e30 y(xx), (yx)x Substitution : axiom3

e31 – Union : e29 ∪ e30

e32 – Union : g2 ∪ e31

e33 (xy)(xy), (y1)y Restriction : e32

e34 y1, y Substitution : axiom1

e35 yy, 1 Substitution : axiom2

ef
Y (xy)(xy), 1 Restriction : e35

(eY ; axiom4)
f xy, 1 Substitution : axiom4

e36 x(yy), (xy)y Substitution : axiom3

e37 yy, 1 similar to g2

e38 1y, y similar to g1

e39 – Union : (eY ; axiom4)
f ∪ e36

e40 – Union : e37 ∪ e39

e41 – Union : e38 ∪ e40

g4 x, y Restriction : e41

Fig. 4. xyz

(eY ; axiom4)f by (xy, 1), we first derive ef
Y like in Figure 4. The diagram be-

low shows the relevant morphisms involved in this proof:

TΣ(x)
eY ��

f

��

Y
axiom4 ��

��

•

��
X

ef
Y ��

(eY ;axiom4)
f

��• •

6 Finiteness

Since derivation of arrows involves a finite number of steps, one cannot expect
any deduction system to be complete without some form of finiteness require-

166 Grigore Roşu

ments. In this section we first recall the usual categorical concept dedicated to
finiteness, then instantiate it to our framework, and then add one more require-
ment to factorization systems that makes them deal with finiteness smoothly.

A nonempty partially ordered set (I,≤) is directed provided that each pair
of elements has an upper bound. A directed colimit in a category K is a colimit
of a diagram D : (I,≤) → K, where (I,≤) is a directed poset (regarded as
a category). An object K of a category K is finitely presentable provided that
its hom-functor Hom(K,) : K → Set preserves directed colimits. It is easy
to see that K is finitely presentable iff for each directed colimit ({γi : D(i) →
C}i∈|I|, C) and each morphism f : K → C, there is an i ∈ |I| and a unique
morphism fi : K → D(i) such that fi; γi = f .

There are many examples of finitely presentable objects, such as finite sets
and posets, finite graphs and automata, finite and discrete topological spaces,
algebras presented by finitely many generators and finitely many equations, etc.
We refer the interested reader to [1] for many more examples, as well as inter-
esting properties of finitely presentable objects. What is relevant to our paper
is that a surjective morphism e : X → • of algebras is finitely presentable in the
comma category of surjective morphisms of source X iff its kernel, regarded as
a subalgebra of X ×X , is finitely generated; in our setting, where equations are
surjective morphisms, that means that e stands for a finite set of equations.

Definition 5. Equation e : X → • is finite iff it is finitely presentable in X ↓ E.

If D ⊆ X ↓ E is a finite diagram of finite equations, then with the notation
in Definition 2, by Proposition 1.3 in [1] it follows that eD is also finite. In par-
ticular, e1 ∪ e2 is finite whenever e1 and e2 are finite, so finiteness is preserved
by union. We next give conditions under which finiteness is also preserved by
pushout. Given a morphism m : X ′ → X in M, one can build “up to an iso-
morphism” a functor Fm : X ↓ E → X ′ ↓ E as follows: for each e : X → •, let
Fm(e) : X ′ → • be the epic by which m; e factorizes, and for each e1 : X → X1,
e2 : X → X2 and γ : X1 → X2 with e1; γ = e2, let Fm(γ) be the unique “up
to isomorphism” morphism given by the diagonal-fill-in property applied to the
diagram Fm(e2);m2 = Fm(e1); (m1; γ), where m; e1 factors through Fm(e1);m1

and m; e2 factors through Fm(e2);m2, like in the diagram below:

X ′
��

m

��

Fm(e1)��

Fm(e2)

��
X ′

1��

m1

��

Fm(γ)�� X2′��

m2

��
X e1

��

e2

��X1 γ
�� X2

Complete Categorical Deduction for Satisfaction as Injectivity 167

Fm(e) should be thought of as the restriction of e to X ′. Interestingly, Fm does
not preserve colimits in general. For example, if C is the category of sets then
one can take X = {a1, a2, a3}, X ′ = {a1, a3}, and e1 : X → • and e2 : X → •
such that e1(a1) = e1(a2) and e2(a2) = e2(a3), respectively, and note that (e1 ∪
e2)(a1) = (e1 ∪ e2)(a3), while (Fm(e1) ∪ Fm(e2))(a1) 	= (Fm(e1) ∪ Fm(e2))(a3),
where m is the inclusion X ′ ⊂ X . However, Fm does preserve directed colimits
both for sets and algebras. The proof is relatively easy but takes much space, so
we let it as an exercise to the interested reader (Hint: work with kernels instead
of epics). With the notation above,

Definition 6. The factorization system 〈E ,M〉 is reasonable provided that Fm

preserves directed colimits for each m ∈ M.

The following important property can be shown:

Proposition 3. In the context of Proposition 1, if 〈E ,M〉 is reasonable and e
is finite, then ef is finite.

Proof. Due to factorization, it suffices to show the result separately for f ∈ E
and for f ∈ M. Let D ⊆ X ↓ E be a directed diagram and let h be a morphism
such that ef ;h = eD (see Definition 2).

•

fe

��
gi

���
��
��
��
��
��
��
��
��
��
��

X ′

e

����������

f

��

•
h

hi

��
X

ef

���

�����

ei ��

eD

��• �� XD

If f ∈ E then note that f ;D is also a directed diagram and that ef ;D = f ; eD.
Since e is finite and since e; (fe;h) = ef ;D, there is some ei : X → • in D such
that f ; ei factors through e, i.e., there is some morphism gi such that f ; ei = e; gi.
By the pushout property of e and f , it follows that there is some morphism hi

such that ef ;hi = ei and fe;hi = gi. Hence, ei factors through ef , so ef is finite.
If f ∈ M then, since 〈E ,M〉 is reasonable, there is some morphism m ∈ M with
f ; eD = eFf(D);m.

168 Grigore Roşu

•

h′
i

��

h′

��
fe

��

X ′

e���

������

Ff (ei) ��
eFf (D)

��� �

f

��

• � �

mi

��

�� Xf ;D� �

m

��

•
hi

��

h
�����

�����
����

������
�����

����

X

ef���

�����

ei ��

eD

��• �� XD

Then e; (fe;h) = eFf (D);m, so by the diagonal-fill-in property there is a mor-
phism h′ such that e;h′ = eFf (D) and h′;m = fe;h. Since e is finite and Ff (D)
is directed, there is some ei ∈ D such that Ff (ei) factors through e, so there
is an h′i with Ff (ei) = e;h′i. Therefore, e; (h′i;mi) = f ; ei, where mi ∈ M is
such that f ; ei factors as Ff(ei);mi, so by the pushout property there is some
morphism hi such that ef ;hi = ei and fe;hi = h′i;mi. Hence ei factors through
ef , so ef is also finite.

7 Completeness

In this section we fix the following

Framework: A category C that
– admits a reasonable factorization system (E ,M),
– has enough E-projectives,
– is E-co-well-powered,
– has colimits2,

and show that, under appropriate finiteness conditions, the four rules presented
in the previous section are complete wrt satisfaction as injectivity.

The usual notion of closure under inference rules is extended to classes of
epics; in particular, D ⊆ X ↓ E is closed under E-substitution iff for any e : Y →
• in E and any f : PY → X , if ef

Y is in D then so is (eY ; e)f . Notice that DX(E)
is closed under all the four inference rules, so it is non-empty (because of closure
under Identity) and directed (due to closure under Union). If DX(E) is not a set
then, since C is E-co-well-powered, it can be replaced by some representative set
that it includes, so we can let eDX(E) : X → XDX(E) denote its colimit object,
as usual (see Definition 2). Then, with the notation in Definition 2,

Theorem 2. If E contains only equations of finite conditions, then

1. XD |= E for any non-empty directed diagram D ⊆ X ↓ E closed under
Restriction and E-Substitution;

2 Actually only directed colimits and certain pushouts are needed.

Complete Categorical Deduction for Satisfaction as Injectivity 169

2. For any equation e of source X, E |= e iff XDX(E) |= e;
3. Completeness. E |= e implies E $ e whenever e is finite.

Proof. 1. Let e : Y → • be any equation in E and let g : Y → XD be a morphism.
Since PY is E-projective and since eD ∈ E , there is a morphism f : PY → X
such that eY ; g = f ; eD.

PY
eY ��

f

��

Y
e∈E ��

��
g
��
��
��
�

���
��
��
��

•

f(eY ;e)

��
X ef

Y
��

(eY ;e)f

��

eD ��

• •
γ

��
XD

Since ef
Y is an arrow in the pushout of f and eY , eD factors through ef

Y , and
since ef

Y is finite (Proposition 3) and D is directed and non-empty, there is an e′

in D which factors through ef
Y . It follows then that ef

Y ∈ D because D is closed
under Restriction, and further that (eY ; e)f ∈ D because D is closed under E-
Substitution. Thus there is a morphism γ such that (eY ; e)f ; γ = eD. Notice that
eY ; (e; f (eY ;e); γ) = f ; (eY ; e)f ; γ = f ; eD = eY ; g, so e; (f (eY ;e); γ) = g because
eY is an epimorphism. Therefore, XD |= e.
2. If E |= e then by 1., noticing that DX(E) is closed under Restriction and
E-Substitution and is directed (because it is closed under Union) and non-empty
(because it is closed under Identity), it follows that XDX(E) |= e. Conversely, if
XD(E) |= e then there is an e′ such that e; e′ = eDX(E). Let A |= E and let
h : X → A. Since A |= DX(E), for each ej ∈ DX(E) there is a βj such that
ej ;βj = h. Then A together with the morphisms β form a cocone in C for DX(E),
so there is a unique g : XD(E) → A such that γj ; g = βj for all ej ∈ DX(E). It
follows then that e; (e′; g) = eDX(E); g = ej ; γj; g = ej;βj = h, that is, A |= e.
3. XDX(E) |= e by 2., so there is an e′ such that e; e′ = eDX(E). Since e is finite
and since DX(E) is non-empty, there is an ej in DX(E) which factors through
e. Since E $ ej , by Restriction it follows that E $ e.

Therefore, under reasonable and necessary finiteness conditions, the four rule
inference system can be used to derive any arrow e which is injectively satisfied
by all objects satisfying E. On the one hand, this can be regarded as a purely
categorical characterizing result, independently from logics. On the other hand,
instantiated to equational logics it gives an inference system which can derive any
conditional equational semantical consequence directly. For example, the Iden-
tity rules corresponds to reflexivity; the Union rule corresponds to closures under
transitivity and congruence closures over conclusions of conditional equations,
assuming that they have (provably) the same hypotheses (note that closure un-
der symmetry is implicit, because kernels or morphisms are symmetric binary
relations); the Restriction allows one to retain only a part of the conclusion of

170 Grigore Roşu

a conditional equation, in case one proved more than needed; finally, the E-
Substitution rule corresponds as expected to substitution, but note that it can
also derive conditional equations (when X is not projective).

8 Conclusion and Future Work

We presented a four rule categorical deduction system for a categorical abstrac-
tion of equational logics, in which equations are regarded as epimorphisms and
their satisfaction as injectivity. We showed that under reasonable finiteness con-
ditions, the four rule deduction system is complete. The research presented in
this paper is part of a project aiming at developing a categorical framework
in which axiomatizability, complete deduction and interpolation can be treated
uniformly. Birkhoff variety and quasi-variety results for equations regarded as
epics and for satisfaction regarded as injectivity are known and considered folk-
lore among category theorists. The results in this paper show that there is also
complete deduction within this framework. We are not aware of other similar
categorical completeness results in the literature, except previous work by the
author [35] where only unconditional axioms where supported and some interest-
ing results by Diaconescu [14] within his category-based equational logic, where
equations were regarded as parallel pairs of arrows and his five inference rules
were the typical ones for equational deduction.

There is much challenging research to be done. Can the Craig-like interpola-
tion results in [38] be instantiated to the categorical equational logic framework
presented in this paper? Can the present results be dualized, hereby obtaining
complete deduction for some variant of modal or coalgebraic logics? Would it be
possible to implement the four rules and thus develop an arrow-based, perhaps
graphical, equational reasoning engine?

Dedication. The author dedicates this paper to his former PhD adviser, Joseph
Goguen, to whom he warmly thanks for all his teachings and unforgettable time
spent at the University of California at San Diego. The author is also grateful to
Joseph Goguen for his enthusiasm in categorical approaches to equational logics,
and in particular for his encouragements in writing this material up.

References

1. J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Cam-
bridge University Press, 1994. London Math. Society. Lecture Note Series 189.

2. H. Andréka and I. Németi. A general axiomatizability theorem formulated in terms
of cone-injective subcategories. In B. Csakany, E. Fried, and E. Schmidt, editors,
Universal Algebra, pages 13–35. North-Holland, 1981. Colloquia Mathematics So-
cietas János Bolyai, 29.

3. H. Andréka and I. Németi. Generalization of the concept of variety and quasi-
variety to partial algebras through category theory. In Dissertationes Mathemati-
cae, volume 204. Polish Scientific Publishers, 1983.

Complete Categorical Deduction for Satisfaction as Injectivity 171

4. B. Banaschewski and H. Herrlich. Subcategories defined by implications. Houston
Journal Mathematics, 2:149–171, 1976.

5. J. Bergstra and J. Tucker. Characterization of computable data types by means
of a finite equational specification method. In J. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, Seventh Colloquium, pages 76–90.
Springer, 1980. Lecture Notes in Computer Science, Volume 81.

6. J. Bergstra and J. V. Tucker. Equational specifications, complete term rewriting
systems, and computable and semicomputable algebras. Journal of the Association
for Computing Machinery, 42(6):1194–1230, 1995.

7. G. Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society, 31:433–454, 1935.

8. G. Birkhoff and J. Lipson. Heterogenous algebras. Journal of Combinatorial The-
ory, 8:115–133, 1970.

9. P. Borovanský, H. Ĉırstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau,
C. Ringeissen, and M. Vittek. Elan. User manual;
http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN.

10. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

11. M. Broy, M. Wirsing, and P. Pepper. On the algebraic definition of programming
languages. ACM Trans. on Prog. Lang. and Systems, 9(1):54–99, Jan. 1987.

12. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings, First International Workshop on Rewriting Logic
and its Applications. Elsevier Science, 1996. Volume 4, Electronic Notes in Theo-
retical Computer Science.

13. V. Căzănescu. Local equational logic. In Z. Esik, editor, Proceedings, 9th In-
ternational Conference on Fundamentals of Computation Theory FCT’93, pages
162–170. Springer-Verlag, 1993. Lecture Notes in Computer Science, Volume 710.

14. R. Diaconescu. Category-based Semantics for Equational and Constraint Logic
Programming. PhD thesis, University of Oxford, 1994.

15. R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification. World Sci-
entific, 1998. AMAST Series in Computing, volume 6.

16. P. Freyd and G. Kelly. Categories of continuous functors. Journal of Pure and
Applied Algebra, 2:169–191, 1972.

17. J. Goguen and G. Malcolm. Alg. Semantics of Imperative Programs. MIT, 1996.
18. J. Goguen and G. Malcolm. A hidden agenda. Theoretical Computer Science,

245(1):55–101, August 2000.
19. J. Goguen and J. Meseguer. Completeness of many-sorted equational logic. Hous-

ton Journal of Mathematics, 11(3):307–334, 1985. Preliminary versions have ap-
peared in: SIGPLAN Notices, July 1981, Volume 16, Number 7, pages 24–37; SRI
Report CSL-135, May 1982; and Report CSLI-84-15, Stanford, Sep. 1984.

20. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105(2):217–273, 1992.

21. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introduc-
ing OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ:
algebraic specification in action, pages 3–167. Kluwer, 2000.

22. A. Grothendieck. Sur quelques points d’algébre homologique. Tôhoku Mathemat-
ical Journal, 2:119–221, 1957.

23. H. Herrlich and G. Strecker. Category Theory. Allyn and Bacon, 1973.

172 Grigore Roşu

24. J. R. Isbell. Subobjects, adequacy, completeness and categories of algebras.
Rozprawy Matematyczne, 36:1–33, 1964.

25. J. Lambek. Completions of Categories. Springer-Verlag, 1966. Lecture Notes in
Mathematics, Volume 24.

26. S. M. Lane. Categories for the Working Mathematician. Springer, 1971.
27. J. Meseguer. Membership algebra as a logical framework for equational specifi-

cation. In Proceedings, WADT’97, volume 1376 of LNCS, pages 18–61. Springer,
1998.

28. B. Mitchell. Theory of categories. Academic Press, New York, 1965.
29. I. Németi. On notions of factorization systems and their applications to cone-

injective subcategories. Periodica Mathematica Hungarica, 13(3):229–335, 1982.
30. I. Németi and I. Sain. Cone-implicational subcategories and some Birkhoff-type

theorems. In B. Csakany, E. Fried, and E. Schmidt, editors, Universal Alge-
bra, pages 535–578. North-Holland, 1981. Colloquia Mathematics Societas János
Bolyai, 29.

31. P. Padawitz and M. Wirsing. Completeness of many-sorted equational logic re-
visited. Bulletin of the European Association for Theoretical Computer Science,
24:88–94, Oct. 1984.

32. H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras.
Oxford University Press, 1987.

33. G. Roşu. A Birkhoff-like axiomatizability result for hidden algebra and coalgebra.
In B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors, Proceedings of the First
Workshop on Coalgebraic Methods in Computer Science (CMCS’98), Lisbon, Por-
tugal, March 1998, volume 11 of Electronic Notes in Theoretical Computer Science,
pages 179–196. Elsevier Science, 1998.

34. G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
http://ase.arc.nasa.gov/grosu/phd-thesis.ps.

35. G. Roşu. Complete categorical equational deduction. In L. Fribourg, editor, Pro-
ceedings of Computer Science Logic (CSL’01), volume 2142 of Lecture Notes in
Computer Science, pages 528–538. Springer, 2001.

36. G. Roşu. Equational axiomatizability for coalgebra. Theoretical Computer Science,
260(1-2):229–247, 2001.

37. G. Roşu. Axiomatizability in inclusive equational logics. Mathematical Structures
in Computer Science, to appear. http://ase.arc.nasa.gov/grosu/iel.ps.

38. G. Roşu and J. Goguen. On equational Craig interpolation. Journal of Universal
Computer Science, 6(1):194–200, 2000.

39. P. H. Rodenburg. A simple algebraic proof of the equational interpolation theorem.
Algebra Universalis, 28:48–51, 1991.

40. G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-sorted equational compu-
tation. In M. Nivat and H. Aı̈t-Kaci, editors, Resolution of Equations in Algebraic
Structures, Volume 2: Rewriting Techniques, pages 299–367. Academic, 1989.

41. M. Wand. First-order identities as a defining language. Acta Informatica, 14:337–
357, 1980.

Extension Morphisms for CommUnity

Nazareno Aguirre1, Tom Maibaum2, and Paulo Alencar3

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ruta 36 Km. 601, Ŕıo Cuarto (5800), Córdoba, Argentina,

naguirre@dc.exa.unrc.edu.ar
2 Department of Computing & Software, McMaster University,

1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1,
tom@maibaum.org

3 School of Computer Science, University of Waterloo,
200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1,

palencar@csg.uwaterloo.ca

Abstract. Superpositions are useful relationships between programs or
components in component based approaches to software development.
We study the application of invasive superposition morphisms between
components in the architecture design language CommUnity. This kind
of morphism allows us to characterise component extension relationships,
and in particular, serves an important purpose for enhancing components
to implement certain aspects, in the sense of aspect oriented software de-
velopment. We show how this kind of morphism combines with regulative
superposition and refinement morphisms, on which CommUnity relies,
and illustrate the need and usefulness of extension morphisms for the
implementation of aspects, in particular, certain fault tolerance related
aspects, by means of a case study.

1 Introduction

The demand for adequate methodologies for modularising designs and develop-
ment is increasing rapidly, due to the inherent complexities of modern software
systems. Of course, these modularisation methodologies do not affect only the
final implementation stages, but they also have an impact on earlier stages of
software development processes. Thus, it is generally accepted that, for the mod-
ularisation to be effective (and persistent, and resistant to evolution), it needs
to be applied from the start, at the level of specification or modelling of systems.
Modularising, or structuring, specifications has important benefits. It allows one
to divide the specifications into manageable parts, and to evaluate the conse-
quences of our architectural design decisions prior to the implementation of the
system. Moreover, it also favours the reuse of parts of the resulting implemen-
tations, and their adaptations and extensions for new application domains.

In the area of critical systems, specification languages are required to have
a precise meaning (since formal semantics is crucial for eliminating ambigui-
ties in specifications, and for developing tools for verification), and therefore
specifications tend to be much longer than those of informal frameworks. Thus,

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 173–193, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

174 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

mechanisms for structuring or modularising specifications and designs are es-
pecially important for formal specification languages, as they help to make the
specification and verification activities scalable. There exist many formal spec-
ification languages which put an emphasis on the way systems are built out of
components (e.g., those reported in [19,9,20,18]). CommUnity is one of these
languages; it is a formal program design language which puts special emphasis
on ways of composing abstract designs of components to form designs of systems
[6,5]. CommUnity is based on Unity [3] and IP [8], and its foundations lie in the
categorical approach to systems design [10]. Its mechanisms for composing speci-
fications have a formal interpretation in terms of category theoretic constructions
[5,6]. Moreover, CommUnity’s composition mechanisms combine nicely with a
sophisticated notion of refinement, which involves separate concepts of action
blocking and action progress.

We are particularly interested in CommUnity because, in our view, its design
composition mechanisms make it suitable for the specification and combination
(or “weaving”) of aspects, in the aspect oriented software development sense
[7]. Moreover, its rather abstract designs for components allow us to deal with
aspects at a design level, in contrast to most of the work on aspects, which
concerns implementation related stages (e.g., [14]). Some evidence of the ade-
quacy of CommUnity as a design language for aspects relies on the possibility of
defining higher-order connectors [16]. As shown in [16], a wide variety of aspects
(e.g., fault tolerance, security, monitoring, compression, etc) can be superim-
posed on existing CommUnity architectures, by building “stacks” of more and
more complex connectors between components.

Higher-order connectors provide a very convenient way of enhancing the be-
haviour of an architecture of component designs, by the superimposition of as-
pects. A crucial characteristic of CommUnity, which makes this possible, is the
complete externalisation of the definition of interaction between components
(a feature also exhibited by various other architecture description languages).
The component coordination mechanism of CommUnity reduces the coupling
between components to a minimum, and makes it feasible to superimpose be-
haviour (related to aspects) on existing systems via superposition and refinement
of components. However, higher-order connectors are not powerful enough for
defining various kinds of aspects, since some of these, as we will show, require
extensions of the components as well as in the connectors. Thus, we are forced
to consider another kind of superposition, known as invasive superposition [12],
which allows us to define extensions of components. By combining extension with
regulative superposition and refinement, we believe that we obtain a powerful
framework in which we can define architectures, and enhance their behaviours
by superimposing behaviour through aspects defined in terms of component
extension and higher-order connectors. Having the possibility of extending com-
ponents also provides us with a way of balancing the distribution of extended
behaviour among connectors and components, which would otherwise be put
exclusively on the connector side. This problem has also arisen in the context
of object oriented design and programming, attempting to define various forms

Extension Morphisms for CommUnity 175

of inheritance, resulting in the proposals attempting to characterise the concept
of substitutability [15,21]. We believe that this proposal provides a more solid
foundation for substitutivity, one that is better structured and more amenable
to analysis. We propose a definition of extension in CommUnity, partly mo-
tivated by the definitions and proof obligations used to define the structuring
mechanisms in B [1,4], that justifies the notion of substitutivity and provides a
structuring principle for augmenting components by breaking encapsulation of
the component. (Perhaps this should be considered a contradiction in terms!)

We show how extension morphisms combine with the superposition and re-
finement morphisms already present in CommUnity. We will also illustrate the
need and usefulness of extension morphisms for the implementation of aspects,
by means of a case study, based on a simple sender/receiver architecture com-
municating via an unreliable channel, which is then enhanced with some typical
aspects, imposing a standard fault tolerance mechanism.

2 The Architecture Design Language CommUnity

In this section, we introduce the reader to the CommUnity design language and
its main features, by means of an example. The computational units of a system
are specified in CommUnity through designs. Designs are abstract programs, in
the sense that they describe a class of programs (more precisely, the class of all
the programs one might obtain from the design by refinement), rather than a
single program [23,5].

Before describing in some detail the refinement and composition mechanisms
of CommUnity, let us describe the main constituents of a CommUnity design.
Let us first assume that we have a fixed set ADT = 〈ΣADT , ΦADT 〉 of datatypes,
specified as usual via a first-order specification. A CommUnity design is com-
posed of:

– A set V of channels, typed with sorts in ADT . V is partitioned into three
subsets Vin, Vprv and Vout, corresponding to input, private and output chan-
nels, respectively. Input channels are the ones controlled, from the point of
view of the component, by the environment. Private and output channels are
the local channels of the component. The difference between these is that
output channels can be read by the environment, whereas private channels
cannot.

– A first-order sentence Init(V), describing the initial states of the design4.
– A set Γ of actions, partitioned into private actions Γprv and public actions
Γpub. Each action g ∈ Γ is of the form:

g[D(g)] : L(g), U(g) → R(g)

where D(g) ⊆ Vprv ∪ Vout is the (write) frame of g (the local channels that
g modifies), L(g) and U(g) are two first-order sentences such that ΦADT $

4 Some versions of CommUnity, such as the one presented in [17], do not include an
initialisation constraint.

176 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

U(g) ⇒ L(g), called the lower and upper bound guards, respectively, and
R(g) is a first-order sentence α(V ∪ D(g)′), indicating how the action g
modifies the values of the variables in its frame. (D(g) is a set of channels
and D(g)′ is the corresponding set of “primed” versions of the channels in
D(g), representing the new values of the channels after the execution of the
action g.)

The two guards L(g) and U(g) associated with an action g are related to re-
finement, in the sense that the actual guard of an action gr implementing the
abstract action g, must lie between L(g) and U(g). As explained in [17], the
negation of L(g) establishes a blocking condition (L(g) can be seen as a lower
bound on the actual guard of an action implementing g), whereas U(g) estab-
lishes a progress condition (i.e., an upper bound on the actual guard of an action
implementing g, in the sense that it implies the enabling condition of an action
implementing g).

Of course, R(g) might not uniquely determine values for the variables D(g)′.
As explained in [17], R(g) is typically composed of a conjunction of implications
pre ⇒ post , where pre is a precondition and post defines a multiple assignment.

To clarify the definition of CommUnity designs, let us suppose that we would
like to model the unreliable communication between a sender and a receiver. We
will abstract away from the actual contents of messages between these compo-
nents, and represent them simply by an integer, identifying particular messages.
Then, a sender is a simple CommUnity design composed of:

– An output channel msg:int, representing the current message of the sender.
– A private channel rts: bool (“ready to send”), indicating whether the

sender is ready to send the current message or not (messages need to be
produced before sending them).

– An action send, which, if the sender is ready to send (indicated by the
boolean variable above), then goes back to a “ready to produce” state (char-
acterised by the rts variable being false).

– An action prod, that, if the sender is in a “ready to produce” state, incre-
ments by one the msg variable (i.e., generates a new message to be sent) and
moves to a “ready to send” state.

The CommUnity design corresponding to this component is shown in Figure 1.
In Fig. 1, the actions of the design have a single guard, meaning that their

lower and upper bound guards coincide. We will illustrate refinement through
more abstract designs below. An important point to notice in the sender design
is the way it communicates with the environment through the send action. This
action does not make a call to an external action, as one might expect; it will
be the responsibility of other components to “extract” the value of the output
variable msg, by synchronising other actions with the send action of the sender.
This will become clearer later on, when we build architectures and describe in
more detail the model of interaction between components in CommUnity.

To complete the picture, let us introduce some further designs. One is a simple
component with a single integer typed output variable, used for communication

Extension Morphisms for CommUnity 177

Design Sender

out

msg: int

prv

rts: bool

init

msg=0 ∧ rts=false

do

prod[msg,rts]: ¬rts → rts’=true ∧ msg’=msg+1

[] send[rts]: rts → rts’=false

Fig. 1. A CommUnity design for a simple sender component.

and for modelling the loss of messages (Figure 2). The other one is a receiver
component, somewhat similar in structure to the sender, but with an input
variable instead of an output one, and a boolean channel rtr (ready to receive)
instead of rts (Figure 3). To complete the picture, let us introduce some further
designs. One is a simple component with a single integer typed output variable,
used for communication and for modelling the loss of messages (Figure 2). The
other one is a receiver component, somewhat similar in structure to the sender,
but with an input variable instead of an output one, and a boolean channel rtr
(ready to receive) instead of rts. To complete the picture, let us introduce
some further designs. One is a simple component with a single integer typed
output variable, used for communication and for modelling the loss of messages
(Figure 2). The other one is a receiver component, somewhat similar in structure
to the sender, but with an input variable instead of an output one, and a boolean
channel rtr (ready to receive) instead of rts.

Design Communication_Medium

in

in_msg: int

out

out_msg: int

prv

rts: bool

init

out_msg=0 ∧ rts=false

do

transmit[out_msg,rts]: ¬rts → out_msg’=in_msg ∧ rts’=true

[] lose[]: ¬rts → true

[] send[rts]: rts → rts’=false

Fig. 2. A CommUnity design for an unreliable communication medium.

178 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

Design Receiver

in

msg: int

out

curr_msg: int

local

rtr: bool

init

curr_msg=0 ∧ rtr=true

do

rec[rtr,curr_msg]: rtr → rtr’=false ∧ curr_msg’=msg

[] prv cons[rtr]: ¬rtr → rtr’=true

Fig. 3. A CommUnity design for a receiver component.

2.1 Refinement Morphisms

Refinement morphisms constitute an important relationship between CommU-
nity designs. Not only do these morphisms allow one to establish “realisation”
relationships, indicating that a component is a more refined or concrete version
of another one, but they also serve an important purpose for parameter instanti-
ation. In particular, refinement morphisms are essential for the implementation
of higher-order connectors [16].

We will not give a fully detailed description of refinement morphisms here. We
refer the interested reader to [6,23,16,17,5] for a detailed account of refinement
in CommUnity.

A refinement morphism σ : P1 → P2 between designs P1 = (V1, Γ1) and
P2 = (V2, Γ2) consists of a total function σch : V1 → V2 and a partial function
σac : Γ2 → Γ1 such that:

– σch preserves the sorts and kinds (output, input or private) of channels;
moreover, σch is injective on input and output channels,

– σac maps shared actions to shared actions and private actions to private
actions; moreover, every shared action in Γ1 has at least one corresponding
action in Γ2 (via σ−1

ac),
– the initialisation condition is strengthened through the refinement, i.e.,
ΦADT $ InitP2 ⇒ σ(InitP1),

– every action g ∈ Γ2 whose frame D2(g) includes a channel σch(v), with
v ∈ V1, is mapped to an action σac(g) whose frame D1(σac(g)) includes v,

– if an action g ∈ Γ2 is mapped to an action σac(g), then ΦADT $ L2(g) ⇒
σ(L1(σac(g))) and ΦADT $ R2(g) ⇒ σ(R1(σac(g))),

– for every action g ∈ Γ1, ΦADT $ σ(U1(g)) ⇒
∨

h∈σ−1(g) U2(h).

As specified by these conditions, the interval determined by the lower and
upper bound guards can be reduced through refinement, and the assignments can
be strengthened. The interface of a component design, determined by the output
and input channels and shared actions, is preserved along refinement morphisms,

Extension Morphisms for CommUnity 179

and the new actions that can be defined in a refinement are not allowed to modify
the channels originating in the abstract component. Essentially, one can refine a
component by making its actions more detailed and less underspecified (cleverly
characterised by the reduction of the guard interval and the strenghthening of
the assignments), and possibly adding more detail to the component, in the form
of further channels or actions [17].

As an example of refinement, consider the more abstract version of the sender
design shown in Figure 4. Notice that the assignment associated with prod is
more abstract or liberal than the assignment of the same action in the Sender
design. Also, the lower bound guards of both actions are equivalent to those of the
corresponding actions in Sender, but the upper bound guards are strengthened
to false. Clearly, Abstract Sender is a more abstract version of the Sender
(or, equivalently, Sender is a refinement of Abstract Sender), and it is not
difficult to prove that there exists a refinement morphism between these designs.
In fact, Abstract Sender is also a refinement of the Communication Medium
component (where the abstract prod operation corresponds to the operations
lose and transmit), although it is less evident than in the first case.

Design Abstract_Sender

out

msg: int

prv

rts: bool

init

msg=0 ∧ rts=false

do

prod[msg,rts]: ¬rts, false → rts’=true ∧ msg’∈int
[] send[rts]: rts, false → rts’=false

Fig. 4. A more abstract CommUnity design for a sender component.

2.2 Component Composition

In order to build a system out of the above components, we need a mechanism
for composition. The mechanism for composing designs in Community is based
on action synchronisation and the “connection” of output channels to input
channels (shared memory). Basically, we need to connect the sender and receiver
through the unreliable medium. This can be achieved by:

– identifying the output channel msg of the sender with the input channel
in msg of the medium,

– identifying the input channel msg of the receiver with the output channel
out msg of the medium,

180 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

– synchronising the action send of the sender with actions transmit and lose
of the medium,

– synchronising the action send of the medium with action rec of the receiver.

The resulting architecture can be graphically depicted as shown in Figure 5. In
this diagram, the architecture is shown using the CommUnity Workbench [24]
graphical notation, where boxes represent designs, with its channels and actions5,
and lines represent the interactions (“cables” in the sense of [17]), indicating
how input channels are connected to output channels, and which actions are
synchronised. Notice that, in particular, action send of the sender is connected
to two different actions of the medium; this requires that, in the resulting system,
there will be two different actions corresponding to (or “invoking”) the send
action in the sender, one that is synchronised with transmit and another one
that is synchronised with lose. This allows us to model very easily the fact that,
sometimes, the sent message is lost (when the action send-lose is executed),
without using further channels in the communication medium.

Fig. 5. A graphical view of the architecture of the system.

Semantics of Architectures. CommUnity designs have an operational seman-
tics based on (labelled) transition systems. Architectural configurations, of the
kind shown in Fig. 5, also have a precise semantics; they are interpreted as cat-
egorical diagrams, representing the architecture [17]. The category has designs
as objects and the morphisms are superposition relationships. A superposition
morphism between two designs A and B captures, in a formal way, the fact that
B contains A, and uses it while respecting the encapsulation of A (regulative
superposition). The interesting fact is that the joint behaviour of the system
can be obtained by taking the colimit of the categorical diagram corresponding
to the architecture [5,6]. Therefore, one can obtain a single design (the colimit
object), capturing the behaviour of the whole system.

5 Private actions are not displayed by the CommUnity Workbench, although we de-
cided to show these actions, conveniently annotated, in the diagrams.

Extension Morphisms for CommUnity 181

More formally, a superposition morphism σ : P1 → P2 between designs P1 =
(V1, Γ1) and P2 = (V2, Γ2) consists of a total function σch : V1 → V2 and a partial
function σac : Γ2 → Γ1 such that:

– σch preserves the sorts of channels; private and output channels must be
mapped to channels of the same kind, but input channels can be mapped to
output channels,

– σac maps shared actions to shared actions and private actions to private
actions,

– the initialisation condition is strengthened through the superposition, i.e.,
ΦADT $ InitP2 ⇒ σ(InitP1),

– every action g ∈ Γ2 whose frame D2(g) includes a channel σch(v), with
v ∈ V1, is mapped to an action σac(g) whose frame D1(σac(g)) includes v,

– if an action g ∈ Γ2 is mapped to an action σac(g), then ΦADT $ L2(g) ⇒
σ(L1(σac(g))), ΦADT $ R2(g) ⇒ σ(R1(σac(g))), and ΦADT $ U2(g) ⇒
σ(U1(σac(g))).

As for refinement morphisms, superposition morphisms allow assignments to be
strengthened, but not weakened. Intuitively, P2 enhances the behaviour of P1

via the superposition of additional behaviour, described in other components
(and synchronised with P1). So, the actions of the augmented component P2

“using” corresponding actions in P1 do at least what the actions of P1 origi-
nally did. Since actions in P2 should use the corresponding actions in P1 within
enabledness bounds, the lower bound guards of actions in P1 must be strength-
ened when superposed in actions of P2. Notice however that, as opposed to the
case of refinement morphisms, upper bound guards can be strengthened, but not
weakened; as explained in [17], this is a key difference between refinement and
superposition, and reflects the fact that “all the components that participate in
the execution of a joint action have to give their permission for the action to
occur.” (cf. p. 9 of [17]).

3 Component Extension in CommUnity

In this section we describe the main contribution of this paper, namely, a new
kind of morphism between components for CommUnity. This kind of morphism,
that we call extension morphism, enables us to establish extension relationships
between components (of the kind defined by inheritance in object orientation),
and is of a different nature, compared to the already existing refinement and
superposition morphisms of CommUnity.

In order to illustrate the need for extension morphisms, let us consider the fol-
lowing case. Suppose that, for the existing system of communicating sender and
receiver, we would like to superimpose behaviour related to the monitoring of the
received messages. As explained in [16], this is possible to achieve, in an elegant
and structured way, by using higher-order connectors. Essentially, an abstract
monitoring structure is defined; this structure is composed of various abstract
designs, used for characterising roles of the architecture, like sender, receiver and

182 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

monitor, and others necessary for the implementation of the “observed connec-
tor”. These abstract designs are interconnected as shown in Figure 6. We will not
describe these designs in detail, and refer the reader to [16], where a detailed de-
scription of this higher-order connector is given. However, it is important to men-
tion that Abstract Sender (which is given in Fig. 4) and Abstract Receiver
can be refined by, essentially, any pair of components providing the basic func-
tionality for sending and receiving messages. Then, this higher-order connec-
tor is plugged into the existing architecture, through refinement, to obtain the
resulting architecture of Figure 7. It is important to notice the difference be-
tween Figures 6 and 7; Fig. 6 describes the (abstract, non instantiated) higher-
order connector for monitoring, whereas Fig. 7 described the instantiation of
this higher-order connector (see how Abstract Sender, Abstract Receiver and
Abstract Monitor have been instantiated by Communication Medium, Receiver
and Simple Monitor, respectively). The reader might observe that the actual
monitor that we are using, described in Figure 8, simply counts the number
of messages received by the receiver component. Notice that the guard of the
monitor must be as weak as possible (i.e., true), to avoid interfering with the
behaviour of the monitored operations.

In [16], several aspects are characterised and superimposed by using this same
technique.

Fig. 6. A higher-order connector for monitoring.

Now suppose that we would like to superimpose a “resend message” mecha-
nism on the architecture, in order to make the communication reliable. We can
capture the loss of a “packet” through a monitor, instead of using it simply for
counting the messages, as we did before. However, for the sender to reset and
start sending the message again, we need to replace it with a slightly more sophis-
ticated sender component, namely one with a reset operation, such as the one
shown in Figure 9. Notice that RES Sender cannot be obtained from Sender by
superposition, since it is clear that the new reset operation modifies a channel
originating in Sender. RES Sender cannot be obtained through the refinement of

Extension Morphisms for CommUnity 183

Fig. 7. Communication enhanced with a monitoring system.

Design Simple_Monitor

in

msg: int

prv

counter: int

init

counter=0

do

rec[counter]: true → counter’=counter+1

Fig. 8. A simple monitor to count received messages.

Sender either, since clearly its reset action, which modifies channels originating
in Sender, should be mapped to a corresponding action in this design, but it
does not respect any of the original assignments of actions prod and send, so it
cannot be mapped to any of these.

However, there exists a clear relationship between the original Sender com-
ponent and the new RES Sender: the state of the original is extended, and more
operations are provided (which might modify the channels of the original com-
ponent), but the effect of the original actions is maintained. This relationship is
a special case of what is called invasive superposition [12].

Invasive superposition has already been recognised as a possible relationship
between CommUnity designs in [6]; moreover, therein it has been shown that
CommUnity designs and invasive superpositions constitute a category. However,
not much attention has been paid to invasive superposition for the architec-
tural modelling of systems in CommUnity so far. Although not in the context
of CommUnity, some researchers have employed various kinds of superpositions
for defining architectures of components and augmenting their behaviours, par-
ticularly the work in [11]. Here, we propose the use of invasive superposition for
characterising component extension in CommUnity.

184 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

Design RES_Sender

in

lost-msg: int

out

msg: int

prv

rts: bool

init

msg=0 ∧ rts=false

do

prod[msg,rts]: ¬rts → rts’=true ∧ msg’=msg+1

[] send[rts]: rts → rts’=false

[] reset[msg,rts]: true → rts’=true ∧ msg’=lost-msg

Fig. 9. A CommUnity design for a sender component with a reset capability.

A distinguishing property typically associated with sound component ex-
tension is what is normally known as the substitutability principle [15]. This
principle requires, in concordance with the now highly regarded “design by con-
tract” approach [21], that if a component P2 extends another component P1,
then one must be able to replace P1 by P2, and the “clients” of the original com-
ponent must not perceive the difference. In other words, component P2 should
behave exactly as P1, when put in a context where P1 was expected. It is our aim
to characterise such extensions through the definition of extension morphisms
below.

Definition 1. An extension morphism σ : P1 → P2 between designs P1 =
(V1, Γ1) and P2 = (V2, Γ2) consists of a total function σch : V1 → V2 and a
partial mapping σac : Γ2 → Γ1 such that:

– σch is injective and σac is surjective,
– σch preserves the sorts and kinds of channels,
– σac maps shared actions to shared actions and private actions to private

actions,
– there exists a formula α, using only variables that are contained in (V2 −
σch(V1)), and such that ΦADT $ ∃v : α(v) and ΦADT $ InitP2 ⇔ σ(InitP1)∧
α,

– for every g ∈ Γ2 such that σac(g) is defined, and for every v ∈ V1, if σch(v) ∈
D2(g), then v ∈ D1(σac(g)),

– if an action g ∈ Γ2 is mapped to an action σac(g), then ΦADT $
σ(L1(σac(g))) ⇒ L2(g) and ΦADT $ σ(U1(σac(g))) ⇒ U2(g),

– for every g ∈ Γ2 such that σac(g) is defined, there exists a formula α, using
only primed variables that are contained in (V ′

2−σch(V1)′), such that ΦADT $
σ(L1(σac(g))) ⇒ (R2(g) ⇔ σ(R1(σac(g)))∧α) and ΦADT $ ∃v : α(v), where
v represents the primed variables of α.

The first condition for extension morphisms requires all actions of the original
component to be mapped to actions in the extended one, and the preservation

Extension Morphisms for CommUnity 185

of all the channels of the original component. In particular, it is not allowed for
several channels to be mapped to a single channel in the extended component.
(Notice that if this was allowed, then the extended component might not be
“plugged” into architectures where the original component could be “plugged”,
due to insufficient “ports” in the interface.) The second and third conditions
above require the types and kinds of channels and actions to be preserved. The
fourth condition allows the initialisation to be strengthened when a component
is extended, but respecting the initialisation of the channels of the original com-
ponent, and via realisable assignments for the new variables. The fifth condition
indicates that “old actions” of the extended component can modify new vari-
ables, but the only old variables these can modify are the ones they already
modified in the original component (in other words, frames can be expanded
only with new channels). The sixth condition establishes that both the lower
and upper bound guards can be weakened, but not strengthened. Finally, the
last condition establishes that the actions corresponding to those of the orig-
inal component must preserve the assignments to old variables, if the lower
bound guard of the original component is satisfied; this provides the extension
with some freedom, to decide how the action might modify old and new vari-
ables when executed under circumstances where the original action could not
be executed. Again, it is required for the assignments for new variables to be
“realisable”.

Going back to our example, notice that RES Sender is indeed an extension
of Sender, where the associated extension morphism σ = 〈σch, σac〉 is composed
of the identity mappings σch and σac on channels and actions, respectively. It
is clear that these mappings are injective and surjective, respectively, and that
sorts and kinds of channels are preserved by σch, and the visibility constraints
on actions are preserved by σac. Moreover, since the initialisation and the write
frames, guards and assignments of actions send and prod are not modified in
the extension, the last four conditions in the definition of extension morphisms
are trivially met.

Notice that extension morphisms are invasive, in the sense that new ac-
tions in the extended component are allowed to modify variables of the origi-
nal component. However, extension morphisms differ from invasive superposi-
tion morphisms, as formalised in [6] in various ways. In particular, guards are
weakened in extension morphisms, whereas these are strengthened in invasive
superposition morphisms. Moreover, our allowed forms of assignment and ini-
tialisation strengthening are more restricted than those of invasive superposition
morphisms.

It is not difficult to prove the following theorem, showing that, as for other
morphisms in CommUnity, designs and extension morphisms constitute a cate-
gory.

Theorem 1. The structure composed of CommUnity designs and extension mor-
phisms constitutes a category, where the composition of two morphisms σ1 and
σ2 is defined in terms of the composition of the corresponding channel and action
mappings of σ1 and σ2.

186 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

Proof. The proof can be straightforwardly reduced to proving that the compo-
sition of extension morphisms is an extension morphism (the remaining points
to prove that the proposed structure is a category are straightforward). So, let
σ1 : P1 → P2 and σ2 : P2 → P3 be extension morphisms. The composition σ1;σ2

is defined by the composition of the corresponding mappings of these morphisms.
Let us prove each of the restrictions concerning the definition of extension

morphism.

– First, σ1ch
;σ2ch

must be injective, and σ2ac ;σ1ac must be surjective; this is
easy to show, since the composition of injective mappings is injective, and
the composition of surjective mappings is surjective.

– It is clear that since both σ1ch
and σ2ch

preserve the sorts and kinds of
channels, so does the composition σ1ch

;σ2ch
.

– We have as hypotheses that there exist two formulas α1 and α2, referring to
variables in (V2 − σ1ch

(V1)) and (V3 − σ2ch
(V2)) respectively, and such that

ΦADT $ InitP2 ⇔ σ1(InitP1) ∧ α1 and ΦADT $ InitP3 ⇔ σ2(InitP2) ∧ α2;
moreover, both these formulas are “satisfiable”, in the sense that ΦADT $
∃v1 : α1(v1) and ΦADT $ ∃v2 : α2(v2) . We must show that there exists a
formula α3, using only variables that are contained in (V3 − σ1ch

;σ2ch
(V1)),

such that ΦADT $ ∃v3 : α3(v3) and ΦADT $ InitP3 ⇔ σ1;σ2(InitP1) ∧ α3.
We propose α3=̂σ2ch

(α1) ∧ α2.
• The fact that α3 refers only to variables in V3−σ1ch

;σ2ch
(V1)) is obvious.

• Let us prove that α3 is satisfiable. First, since α1 is satisfiable, so is
σ2ch

(α1) (satisfiability is preserved under injective language translation).
Second, it is easy to see that σ2ch

(α1) and α2 refer to disjoint sets of vari-
ables; therefore (and since the only free variables allowed in initialisation
conditions are the ones corresponding to channels), the safisfiability of
the conjunction σ2ch

(α1) ∧ α2 is guaranteed.
• Let us now prove that ΦADT $ InitP3 ⇔ σ1;σ2(InitP1) ∧ α3. We know

that ΦADT $ InitP3 ⇔ σ2(InitP2) ∧ α2, and that ΦADT $ InitP2 ⇔
σ1(InitP1) ∧ α1. Combining these two hypotheses, we straightforwardly
get that ΦADT $ InitP3 ⇔ σ2(σ1(InitP1) ∧ α1) ∧ α2, which leads us to
ΦADT $ InitP3 ⇔ (σ2(σ1(InitP1)) ∧ σ2(α1)) ∧ α2), as we wanted.

– We have to prove that for every g ∈ Γ3 such that σ2ac ;σ1ac(g) is defined, and
for every v ∈ V1, if σ1ch

;σ2ch
(v) ∈ D3(g), then v ∈ D1(σ1ac ;σ2ac(g)). This

is straightforward, thanks to our hypotheses regarding frame preservation of
morphisms σ1 and σ2.

– To prove that the composition of the morphisms σ1 and σ2 weakens both
the lower and the upper bound guards is also straightforward.

– We have as hypotheses that:
• for every g ∈ Γ2 such that σ1ac(g) is defined, there exists a formula α1

whose referring primed variables are contained in (V ′
2 − σ1ch

(V1)′) such
that: ΦADT $ ∃v1 : α1(v1) and ΦADT $ σ(L1(σ1ac(g))) ⇒ (R2(g) ⇔
σ1(R1(σ1ac(g))) ∧ α1),

• for every g ∈ Γ3 such that σ2ac(g) is defined, there exists a formula α2

whose referring primed variables are contained in (V ′
3 − σ2ch

(V2)′) such

Extension Morphisms for CommUnity 187

that: ΦADT $ ∃v2 : α2(v2) and ΦADT $ σ(L2(σ2ac(g))) ⇒ (R3(g) ⇔
σ2(R2(σ2ac(g))) ∧ α2).

Let g ∈ Γ3 such that σ2ac ;σ1ac(g) is defined. We have to find a formula
α3 whose referring primed variables are contained in (V ′

3 − σ1ch
;σ2ch

(V1)′)
such that: ΦADT $ ∃v3 : α3(v3) and ΦADT $ σ(L1(σ2ac ;σ1ac(g))) ⇒
(R3(g) ⇔ σ1;σ2(R1(σ2ac ;σ1ac(g))) ∧ α3). We propose α3=̂σ2ch

(α1) ∧ α2.
The justification of the “satisfiability” of α3 is justified, as for the case
of the initialisation, by the fact that both σ2(α1) and α2 are “satisfi-
able”, and they refer to disjoint sets of variables. Proving that ΦADT $
σ(L1(σ2ac ;σ1ac(g))) ⇒ (R3(g) ⇔ σ1;σ2(R1(σ2ac ;σ1ac(g))) ∧ α3) is also sim-
ple; having in mind that σ(L1(σ2ac ;σ1ac(g))) is stronger than σ(L2(σ2ac(g)))
and L3(g), we can “expand” R3(g) into σ2(R2(σ2ac(g)))∧α2), and this into
(σ1;σ2(R1(σ2ac ;σ1ac(g)) ∧ α1) ∧ α2), obtaining what we wanted.

The rationale behind the definition of extension morphisms is the character-
isation of the substitutability principle (a property that can be shown to fail for
invasive superposition as defined in [6]). The following result shows that, if there
exists an extension morphism σ between two designs P1 and P2 (and this exten-
sion is realisable), then all behaviours exhibited by P1 are also exhibited by P2.
Since superposition morphisms, used as a representation of “clientship” (strictly,
the existence of a superposition morphism between two designs indicates that
the first is part of the second, as a component is part of a system when the first
is used by the system), restrict the behaviours of superposed components, it is
guaranteed that all behaviours exhibited by a component when this becomes
part of a system will also be exhibited by an extension of this component, if
replaced by the first one in the system. Of course, one can also obtain more be-
haviours, resulting from the explicit use of new actions of the component. But if
none of the new actions are used, then the extended component behaves exactly
as the original one.

Theorem 2. Let P1 and P2 be two CommUnity designs, and σ : P1 → P2

an extension morphism between these designs. Then, every run of P1 can be
embedded in a corresponding run of P2.

Proof. For this theorem, we consider a semantics based on runs, i.e., infinite
sequences of interpretations such that they all coincide on the interpretation for
ADT , the first interpretation in the sequence satisfies the initial condition and
any pair of consecutive interpretations in the sequence either only differ in the
interpretation of input variables (stuttering), or they are in the “‘consequence”
relation for one of the actions of the component.

Let P1 and P2 be two CommUnity designs, and σ : P1 → P2 an extension
morphism between these designs. Let s = s0, s1, s2, . . . be a run for P1. We will
inductively construct a sequence s′ = s′0, s

′
1, s

′
2, . . . which is a run for P2, and

such that, for all i, (s′i)|σch(V1) ≡ si, i.e., the reduct of each s′i to the symbols
originating in P1 coincides with the interpretation si.

– Base case. The initialisation of P2 is of the form σ(InitP1) ∧ α, with α a
formula satisfying ΦADT $ ∃v : α(v), and whose variables are “new vari-

188 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

ables”, in the sense that they differ from those appearing in the initiali-
sation of P1. Then, there exists an interpretation Iα of the variables in α
that makes it true. We define s′0 as the extension of the interpretation s0,
appropriately translated via σ, with the interpretation Iα for the remaining
variables. Clearly, this interpretation satisfies the initial condition of P2, and
its reduct to the language of P1 coincides with s0.

– Inductive step. Assuming that we have already constructed a prefix s′ =
s′0, s′1, s′2, . . . , s′i of the run s′, we build the interpretation s′i+1 in the following
way. We know that si+1 is in one of the following two cases:
• si+1 is reached from si via stuttering. In such a case, we define s′i+1=̂s

′
i,

and clearly, by inductive hypothesis, we have that the reduct of s′i+1 to
the variables of P1 coincides with si+1, and (s′i, s

′
i+1) are in the “stut-

tering relationship”.
• there exists some action g ∈ Γ1 such that (si, si+1) are in the consequence

relationship corresponding to g. If this is the case, notice that, under the
“stronger guard” L1(g), the assignment of an action g2 in σ−1

ac (g) (which
is nonempty, since σac is surjective) is of the form σ(R1(σac(g)))∧α), for
a formula α referring only to the primed versions of new variables. Since
we know that ΦADT $ ∃v : α(v), there exists an interpretation Iα of the
variables in α that makes is true. We define s′i+1 as the extension of the
interpretation si+1, with symbols appropriately translated via σ, with
Iα for the interpretation of the remaining variables. It is straightforward
to see that (s′i, s

′
i+1) are in the consequence relation of g2, and that the

reduct of s′i+1 to the variables originating in P1 coincides with si+1.

3.1 Replacing Components by Extensions in Configurations

The intention of extension morphisms is to characterise component extension,
respecting the substitutability principle. One might then expect that, if a com-
ponent C can be “plugged” into an architecture of components, then we should
be able to plug an extension C′ in the architecture, instead of C. Due to the re-
strictions for valid extension, it can be guaranteed that a design in a well formed
diagram can be replaced with an extension of it, preserving the wellformedness
of the diagram (although it is necessary to consider an “open system” semantics,
since extensions might introduce new input variables, which would be “discon-
nected” after the replacement). Moreover, we can also prove that the colimit
of the new diagram (where a component was replaced by an extension of it) is
actually an extension of the colimit of the original diagram. This basically means
that the joint behaviour of the original system is augmented by the extension
of a component, but never restricted (i.e., the resulting system exhibits all the
behaviours of the original one, and normally also more behaviours).

We are not in a similar situation when combining extension and refinement.
As we mentioned, refinement plays an important role in the implementation
of higher-order connectors, since it allows us to “instantiate” roles with actual
components. Roles, as the Abstract Sender example, specify the minimum re-
quirements that have to be satisfied in order to be able to plug components using

Extension Morphisms for CommUnity 189

a higher-order connector. Notice that, in particular, the interval determined by
the guards of actions of the role has to be preserved or reduced by the actual
parameter, i.e., the component with which the role is instantiated. Consider, for
instance, the case of the Abstract Sender. As we mentioned, the design Sender
refines this more abstract Abstract Sender, and therefore we can instantiate
the abstract sender with the concrete one. Moreover, RES Sender, an extension
of Sender, also refines Abstract Sender, so it also can instantiate this role.
However, since extensions weaken both guards, it is not difficult to realise that,
if a component B refines a component A, and B′ is an extension of B, then it
is not necessarily the case that B′ also refines A. With respect to configurations
of systems, this means that, when replacing components by corresponding ex-
tensions, one might lose the possibility of applying or using some higher-order
connectors.

Although this might seem an unwanted restriction, it is actually rather nat-
ural. The conditions imposed by roles of a higher-order connector are a kind
of “rely-guarantee” assumptions. When extending a component we might lose
some properties the role requires for the component.

4 An Example Using Extension

Let us go back to our example of communicating components via an unreli-
able channel. As we explained in previous sections, we would like to superpose
behaviour on the existing architecture, to make the communication reliable by
implementing a reset in the communication when packets are lost. The mecha-
nism we used was very simple, and required a “reset” operation on the sender,
which, as we discussed, can be achieved by component extension. In order to
complete the enhanced architecture to implement the reset acknowledgement
mechanism, we need a monitor that, if it detects a missing packet, issues a call
for reset. The idea is that, if a message is not what the monitor expected (char-
acterised by the msg-exp), then it will go to a “reset” cycle, and wait to see if
the expected packet arrives. If the expected packet arrives, then the component
will start waiting for the next packet. Notice that, for the sake of simplicity, we
assume that the communication between the monitor and the extended sender
is reliable. The monitor used for this task is shown in Figure 10. The final ar-
chitecture for the system is shown in Figure 11.

Notice that, since the superposed monitor is spectative, we can guarantee
that, if the augmented system works without the need for reset in the commu-
nication, i.e., no messages are lost, then its behaviour is exactly the same as the
one of the original architecture with unreliable communication.

5 Related Work

The original work on CommUnity took its inspiration from languages like Unity
[3] and IP [8] and on related software engineering research [12] using superim-
position/superposition as structuring principles. Recently, research by Katz and

190 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

Design RES_Monitor

in

msg: int

out

msg-rst: int

prv

msg-exp: int

w: bool

init

msg-rst=0 ∧ msg-exp=0 ∧ w=true

do

rec1[msg-exp]: w ∧ msg-exp=msg → msg-exp’=msg-exp+1

rec2[msg-exp,msg-rst,w]: w ∧ msg-exp�=msg →
msg-exp’=msg-exp ∧ msg-rst’=msg-exp ∧ w’=false

rec3[msg-exp]: ¬w → msg-exp’=msg-exp

res[w]: ¬w → w’=true

Fig. 10. A monitor for detecting lost packets.

his collaborators has recognised the usefulness of superimposition as a way of
characterising aspects [13,11,22]. Especially in [11], there is a recognition of the
same principles we espouse in this paper, namely that aspects should be charac-
terised and applied at the architectural level of software development. Aspects
are seen as patterns to be applied to underlying architectures (which may already
have been modified by the application of previous concerns), based on specifica-
tions of the aspects. These specifications include descriptions of components and
connectors used to define the aspect, as well as “dummy” components defining
required services in order to be able to apply the aspect. The relationships and
structuring mechanisms and the instantiation of the “dummy” components are
explained in terms of superimpositions.

The motivation for our research is very similar, we want to lift the treatment
of aspects to the architectural level and view the application of aspects to the
design of some underlying system as the application of a transformation defined
by the aspect design to the underlying architecture, resulting in an augmented
architecture. The application of various aspects can be seen as the application of
a sequence of transformations to the underlying architecture (see [2]). This raises
concerns analogous to those discussed in [11]. In order to develop this framework,
we found it necessary to come to a better understanding of invasive superposi-
tions in the context of CommUnity. In particular, we needed to characterise a
structured use of invasive superpositions, which allows arbitrary changes break-
ing encapsulation of the component being superimposed. As noted earlier, this
problem has also arisen in the context of object oriented design and program-
ming, resulting in the various proposals attempting to characterise the concept
of substitutivity ([15]). We believe that this proposal provides a more solid foun-

Extension Morphisms for CommUnity 191

Fig. 11. The architecture of the system, with the reset mechanism.

dation for substitutivity, one that is better structured and more amenable to
analysis.

Of course, the work reported in [16,17] is related to our work, both because
it is based on CommUnity and because it recognises that the concept of higher
order connector (a kind of parameterised connector that can be applied to other
connectors to obtain more sophisticated connectors) can be used to characterise
certain aspects. Again the emphasis is on using the specification of the aspect, as
a higher order connector, to transform an existing architectural pattern in order
to apply the aspect. As we demonstrate in this paper, some interesting aspects
cannot be characterised in terms of this mechanism alone and it is necessary to
consider transformations that apply uniformly to connectors and to the compo-
nents they connect. Furthermore, some of the transformations require the use
of invasive superpositions, as in the main example used in this paper. This is a
subject that has received very little scrutiny in the CommUnity literature.

6 Conclusion

We have studied a special kind of invasive superposition for the characterisation
of extensions between designs in the CommUnity architecture design language.
This kind of morphism, that we have defined with special concern regarding
the substitutability principle [15] (an essential property associated with sound
component extension), allows us to complement the refinement and (regulative)
superposition morphisms of CommUnity, and obtain a suitable formal frame-
work to characterise certain aspects, in the sense of aspect oriented software de-
velopment. We have argued that some useful aspects require extensions on the
components, as well as in the connectors, and therefore the introduced extension
morphisms are necessary. Also, having the possibility of extending components
provides us a way of balancing the distribution of augmented behaviour in the

192 Nazareno Aguirre, Tom Maibaum, and Paulo Alencar

connectors and the components, which would otherwise be put exclusively on
the connector side (typically by means of higher-order connectors).

We illustrated the need for extension morphisms by means of a simple case
study based on the communication of two components via an unreliable channel.
We then augmented the behaviour of this original system with a fault tolerance
aspect for making the communication reliable, which required the extension of
components, as well as the use of higher-order connectors. This small case study
also allowed us to illustrate the relationships and combined use of extension,
superposition and refinement morphisms.

As we mentioned before, This problem has also arisen in the context of ob-
ject oriented design and programming, attempting to define various forms of
inheritance, resulting in the proposals attempting to characterise the concept
of substitutability [15,21]. We believe that this proposal provides a more solid
foundation for substitutivity, one that is better structured and more amenable
to analysis. The definition of extension in CommUnity that we introduced has
been partly motivated by the definitions and proof obligations used to define
the structuring mechanisms in B [1,4], that justifies the notion of substitutivity
and provides a structuring principle for augmenting components by breaking the
encapsulation of the component.

References

1. J.-R. Abrial, The B-Book, Assigning Programs to Meanings, Cambridge University
Press, 1996.

2. N. Aguirre, T. Maibaum and P. Alencar, Abstract Design with Aspects, submitted,
2005.

3. K. Chandy, J. Misra, Parallel Program Design - A Foundation, Addison-Wesley,
1988.

4. T. Dimitrakos, J. Bicarregui, B. Matthews and T. Maibaum, Compositional Struc-
turing in the B-Method: A Logical Viewpoint of the Static Context, in Proceedings
of the International Conference of B and Z Users ZB2000, York, United Kingdom,
LNCS, Springer-Verlag, 2000.

5. J. Fiadeiro, Categories for Software Engineering, Springer, 2004.
6. J. Fiadeiro and T. Maibaum, Categorical Semantics of Parallel Program Design,

in Science of Computer Programming 28(2-3), Elsevier, 1997.
7. R. Filman, T. Elrad, S. Clarke and M. Aksit, Aspect-Oriented Software Develop-

ment, Addison-Wesley, 2004.
8. N. Francez and I. Forman, Interacting Processes, Addison-Wesley, 1996.
9. D. Garlan and R. Monroe and D. Wile, ACME: An Architecture Description In-

terchange Language, in Proceedings of CASCON’97, Toronto, Ontario, 1997.
10. J. Goguen, Categorical Foundations for General System Theory, in F.Pichler and

R.Trappl (eds), Adavaces in Cybernetics anda Systems Research, Transcripta
Books, pages 121-130, 1973.

11. M. Katara and S. Katz, Architectural Views of Aspects, in Proceedings of Interna-
tional Conference on Aspect-Oriented Software Design AOSD 2003, 2003.

12. S. Katz, A Superimposition Control Construct for Distributed Systems, ACM
Transactions on Programming Languages and Systems, 15:337-356, 1993.

Extension Morphisms for CommUnity 193

13. S. Katz and J. Gil, Aspects and Superimpositions, ECOOP Workshop on Aspect
Oriented Programming, 1999.

14. G. Kiczales, An overview of AspectJ, in Proceedings of the European Conference on
Object-Oriented Programming ECOOP 2001, Lecture Notes in Computer Science,
Budapest, Hungary, Springer-Verlag, 2001.

15. B. Liskov and J. Wing, A Behavioral Notion of Subtyping, ACM Transactions on
Programming Languages and Systems, Vol 16, No 6, ACM Press, November 1994.

16. A. Lopes, M. Wermelinger and J. Fiadeiro, Higher-Order Architectural Connectors,
ACM Transactions on Software Engineering and Methodology, vol. 12 n. 1, 2003.

17. A. Lopes and J. Fiadeiro, Superposition: Composition vs. Refinement of Non-
Deterministic, Action-Based Systems, in Formal Aspects of Computing, Vol. 16,
N. 1, Springer-Verlag, 2004.

18. D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan and W. Mann, Specification
and Analysis of System Architecture Using Rapide, IEEE Transactions on Software
Engineering, Special Issue on Software Architecture, 21(4), 1995.

19. J. Magee, N. Dulay, S. Eisenbach and J. Kramer, Specifying Distributed Software
Architectures, in Proceedings of the 5th European Software Engineering Conference
(ESEC ’95), Sitges, Spain, Lecture Notes in Computer Science, Springer-Verlag,
1995.

20. N. Medvidovic, P. Oreizy, J. Robbins and R. Taylor, Using Object-Oriented Typing
to Support Architectural Design in the C2 Style, in Proceedings of the ACM SIG-
SOFT ’96 Fourth Symposium on the Foundations of Software Engineering, ACM
SIGSOFT, San Francisco, CA, 1996.

21. B. Meyer, Object-Oriented Software Construction, Second Edition, Prentice Hall,
2000.

22. M. Sihman and S. Katz, Superimpositions and Aspect-Oriented Programming, BCS
Computer Journal, vol. 46, 2003.

23. M. Wermelinger, A. Lopes and J. Fiadeiro, A Graph Based Architectural
(Re)configuration Language, in ESEC/FSE’01, V.Gruhn (ed), ACM Press, 2001.

24. M. Wermelinger, C. Oliveira, The CommUnity Workbench, In Proc. of the 24th
Intl. Conf. on Software Engineering, page 713. ACM Press, 2002.

Non-intrusive Formal Methods and Strategic

Rewriting for a Chemical Application

Oana Andrei1, Liliana Ibanescu2, and Hélène Kirchner3

1 INRIA - LORIA
2 ULP Strasbourg
3 CNRS - LORIA

Campus scientifique BP 239
F-54506 Vandoeuvre-lès-Nancy Cedex, France

First.Last@loria.fr

Abstract. The concept of formal islands allows adding to existing pro-
gramming languages, formal features that can be compiled later on into
the host language itself, therefore inducing no dependency on the for-
mal language. We illustrate this approach with the TOM system that
provides matching, normalization and strategic rewriting, and we give a
formal island implementation for the simulation of a chemical reactor.

1 Introduction

Concerned by the crucial need for improvement of existing software in their
logic, algorithmic, security and maintenance qualities, formal methods are more
and more used in the software design process. Usually they come into play both
at the design and verification levels either for formal specification or high-level
programming. But this approach does not take into account existing software,
while billions of code lines are executed every day. This might be one of the
reasons why formal methods did not yet fully succeed at the industrial level.

Among many formal method approaches, algebraic techniques providing a
clear semantics for signatures and rewrite rules are used in high-level languages
and environments like ASF+SDF [25], Maude [9], CafeOBJ [11], or ELAN [6,18]
which have been designed on these concepts. These rule-based systems have
gained considerable interest with the development of efficient compilers. How-
ever, when programs are developed in these languages, they can hardly interact
with programs written in another language like C or Java.

The work presented here proposes an alternative reconciling the use of alge-
braic formal features with the widely used object-oriented language Java. This is
possible through the Formal Islands approach developed in the Protheo project
team since a few years [21]. A formal island is a piece of code introducing formal
features. These new features are anchored in terms of the available function-
alities of the host language. Once compiled, these features are translated into
pure host language constructs preserving the behavior of the program. The for-
mal island concept is implemented through the software system TOM [3] which

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 194–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Non-intrusive Formal Methods and Strategic Rewriting 195

is built upon the concepts of rules and strategic rewriting. TOM is a good lan-
guage for programming by pattern-matching, and it is particularly well-suited for
programming various transformations on trees/terms or XML data-structures.
Moreover, its compiler has been designed with the TOM language.

The approach and the use of TOM are illustrated in this paper with a specific
example: we apply strategic rewriting to model a chemical reactor by means of a
formal island implementation. The considered problem is the automated gener-
ation of reaction mechanisms: a set of molecules and a list of generic elementary
reactions (reaction patterns) are given as input to a generator that produces the
list of all possible elementary reactions according to a specific reactor dynamics.
The solution of this problem consists of generating all possible reactions and
collecting all products starting from a small set of reactants. We are therefore
interested only in the qualitative aspects of this problem.

A number of software systems [5,14,22,30] have been developed for the auto-
mated generation of reaction mechanisms [10,24]. As far as literature says, these
systems are implemented using traditional programming languages, employing
rather ad-hoc data structures and procedures for the representation and transfor-
mations of molecules (e.g. Boolean adjacency matrices and matrices transforma-
tions). Furthermore, existing systems are limited, sometimes by their implemen-
tation technology, to acyclic species, or mono-cyclic species, whereas combustion
mechanisms often involve aromatic species, which are polycyclic.

In the GasEl project [7,8,16] we already have explored the use of rule-based
systems and strategies for the problem of automated generation of kinetics mech-
anisms [24,10] in the whole context of its use by chemists and industrial part-
ners. In GasEl the representation of chemical species uses the notion of molecular
graphs, encoded by a term structure called GasEl term [7] which is inspired by the
linear notation SMILES [31]. The graph isomorphism test is based on the Unique
SMILES algorithm [31] which provides a unique notation for each chemical struc-
ture regardless of the many possible equivalent description of the structure that
might be input; the order of this algorithm is N2log2N where N is the number
of atoms in the structure. Reactions patterns are encoded by a set of conditional
rewriting rules on GasEl terms. The molecular graph rewriting relation is simu-
lated by a rewriting relation on equivalence classes of terms [8]. The control of
the chemical reactions chaining (i.e. the reactor dynamics) is described using a
strategy language [7]. GasEl prototype is implemented in ELAN [6,18], encoding
a set of nine reaction patterns. Qualitative validations have been performed with
chemists [16].

The formal background of strategic rewriting is quite relevant for the consid-
ered problem: (i) chemical reactions are naturally expressed by chemists them-
selves using conditional rules; (ii) matching power associated with rewriting al-
lows retrieving patterns in chemical species; (iii) defining the control on rules is
essential for designing automated mechanisms generators in a flexible way and
for controlling combinatorial explosion. This gives the possibility to the chemist
of activating and deactivating reactions patterns, and of tuning their applica-
tion during each stage. The main technical difficulty with ELAN implementation

196 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

consisted in the encoding of reaction patterns on GasEl terms that correctly
simulates the corresponding transformation on molecular graphs. The TOM im-
plementation provides another approach to this problem, while keeping the same
molecular graph rewriting relation, and preserving the same chemical principles
and hypotheses as in GasEl.

The paper is structured as follows. Section 2 presents the formal island con-
cept that will be further illustrated in the sequel. The TOM system is briefly
described in Section 3 and the main language constructions needed to understand
the considered application are introduced. Section 4 is devoted to the chemical
example and explains what kind of reactor is modelled. Section 5 addresses the
formal island implementation of the chemical reactor and details the different
steps performed to achieve the Java implementation. Finally Section 6 draws
some conclusions and perspectives for future work.

2 Formal Islands

Since several years, we have been strongly concerned with the feasibility of strate-
gic rewriting as a practical programming paradigm [1,18]. The development of
efficient compilation concepts and techniques took an important place in the
language support design. The results presented in [20] led to a quite efficient
implementation and thus demonstrated the practicality of the paradigm.

Making strategic rewriting easily available in many programming languages
was the main concern that led to the emergence of formal island. This concept
provides a general way to make formal methods, and in particular matching and
rewriting, widely available.

We use the notions of formal island and anchoring to extend an existing
language with formal capabilities. A formal island is a piece of code introducing
formal features, while anchoring means to describe these new features in terms of
the available functionalities of the host language. Once compiled, these features
are translated into pure host language constructs, allowing us to say that the
formal islands are not intrusive with respect to the behavior of the application.

In the following we review the definitions of representation functions and
formal anchor for the unsorted case.

In order to precisely define these notions, we recall a few concepts of first
order term algebra needed here [17]. A signature F is a set of function symbols,
each one associated to a natural number by the arity function, ar : F → N. Fn

is the set of function symbols of arity n, Fn = {f ∈ F | ar(f) = n}. T (F ,X) is
the set of terms from a given finite set F of function symbols and a denumerable
set X of variable symbols. A position within a term is represented as a sequence
ω of positive integers describing the path from the root of the term to the root
of the subterm at that position, denoted by t|ω. Symb(t) is a partial function
from T (F ,X) to F which associates to each term t its root symbol f ∈ F . The
set of variables occurring in a term t is denoted by V ar(t). If V ar(t) is empty,
t is called a ground term and T (F) is the set of ground terms. We write t1 = t2
when t1 and t2 are syntactically equal.

Non-intrusive Formal Methods and Strategic Rewriting 197

Definition 1. ([19]) Given a tuple composed of a signature F , a set of variables
X , booleans B and integers N, given sets of host language constructs ΩF , ΩX ,
ΩT , ΩB, and ΩN, we consider a family of representation functions � that map:

– function symbols f ∈ F to elements of ΩF , denoted �f,
– variables v ∈ X to elements of ΩX , denoted �v,
– ground terms t ∈ T (F) to elements of ΩT , denoted �t,
– booleans b ∈ B = {�,⊥} to elements of ΩB, denoted �b,
– natural numbers n ∈ N to elements of ΩN, denoted �n.

Definition 2. ([19]) Given a tuple 〈F ,X , T (F),B,N〉 and the operations eq:
ΩT × ΩT → ΩB, is fsym: ΩT × ΩF → ΩB, and subtermf : ΩT × ΩN → ΩT
(f ∈ F), a representation function � is a formal anchor if it preserves the
structural properties of T (F) in �T (F) by the semantics of eq, is fsym, and
subtermf :
∀ t, t1, t2 ∈ T (F), ∀f ∈ F , ∀i ∈ [1..ar(f)] :

eq(�t1, �t2) ≡ �t1 = t2
is fsym(�t, �f) ≡ �Symb(t) = f

subtermf (�t, �i) ≡ �t|i if Symb(t) = f

We illustrate the concept of formal anchor with a small example from [19]:

Example 1. In C or Java like languages, the notation of term can be implemented by
a record (sym:integer, sub:array of term), where the first slot (sym) denotes the top
symbol, and the second slot (sub) corresponds to the subterms. It is easy to check
that the following definitions of eq, is fsym, and subtermf (where = denotes an atomic
equality) provide a formal anchor for T (F):

eq(t1, t2) � t1.sym = t2.sym ∧ ∀i ∈ [1..ar(t1.sym)],
eq(t1.sub[i], t2.sub[i])

is fsym(t, f) � t.sym = f

subtermf (t, i) � t.sub[i] if t.sym = f ∧ i ∈ [1..ar(f)]

3 TOM

TOM is an implementation of the idea of formal island [21]. TOM [3] provides
matching, normalization, and strategic rewriting in Java, C, and Caml [21,15].
In particular, we have used Java for developing the chemical application de-
scribed in this paper. In each of the three instances, matching and rewriting
primitives can be combined with constructs of the programming language, then
compiled to the host language, using similar techniques as for compiling ELAN.
The normal forms provided by rewriting are available to get conciseness and ex-
pressiveness in programs written in the host language. Moreover one can prove
that these sets of rewrite rules have useful properties like termination or con-
fluence. Once the programmer has used rewriting to specify functionalities and
to prove properties, the compilation dissolves this formal island in the existing

198 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

code. The TOM constructs are non-intrusive because their use induces no depen-
dence: once compiled, a TOM program contains no more trace of the rewriting
and matching statements that were used to build it.

Basically, a TOM program is a list of blocks, where each block is either a TOM
construct, or a sequence of characters. The idea is that after transformation,
the sequence of characters merged with the compiled TOM constructs becomes
a valid host language program having the same behavior as the initial TOM
program.

The main construct, %match, is similar to the match primitive found in func-
tional languages: given an object (called subject) and a list of patterns-actions,
the match primitive selects the first pattern that matches the subject and per-
forms the associated action. The subject against which we match can be any
object, but in practice, this object is usually a tree-based data-structure, also
called a term in the algebraic programming community. The match construct
may be seen as an extension of the classical switch/case construct. The main
difference is that the discrimination occurs on a term and not on atomic values
like characters or integers: the patterns are used to discriminate and retrieve
information from an algebraic data structure.

In addition to %match TOM provides the %rule construct which allows de-
scribing rewrite rule systems. This construct supports conditional rewrite rules
as well as rules with matching conditions (as in ELAN or ASF+SDF). By default,
TOM rules provide a leftmost innermost normalization strategy which computes
normal forms in an efficient way. It is of course possible to combine these features
with more complex strategies, like generic traversal strategies, to describe more
complex or generic transformations. When understanding all the possibilities of-
fered by TOM, this general purpose system becomes as powerful and expressive
as many specific rewrite rule based programming languages.

Another construct of TOM is the backquote (‘). This construct is used for
building an algebraic term or to retrieve the value of a TOM variable (a variable
instantiated by pattern-matching).

The %vas construct allows the user to define a many-sorted signature. This
construct is replaced at compile time by the content of the generated formal
anchor.

Other available constructs like %typeterm, %typelist, and %op which define
the formal anchor between signature formalism and concrete implementations
(Java classes) allow performing pattern matching against any data structure.

In order to make easier the use of TOM, two tools were developed: ApiGen
and Vas [3]. ApiGen is a system which takes a many-sorted signature as input,
and generates both a concrete implementation for the abstract data-type (for
example Java classes), and a formal anchor for TOM. Vas is a preprocessor for
ApiGen which provides a human-readable syntax definition formalism inspired
from SDF. These two systems are useful for manipulating Abstract Syntax Trees
since they offer an efficient implementation based on ATerms [26] which supports
maximal memory sharing, strong static typing, as well as parsers and pretty-
printers.

Non-intrusive Formal Methods and Strategic Rewriting 199

TOM provides a library inspired by ELAN, Stratego [27], and JJTraveler [29],
which allows us to easily define various kinds of traversal strategies. Figure 1
provides an algebraic view of elementary strategy constructors, and defines their
evaluation using the application operator @. We note that, according to the
definition, if c is a constant operator then All(s)@(c) returns c, while One(s)@(c)
returns failure. In this context, the application of a strategy to a term can fail.
In Java, the failure is implemented by an exception (VisitFailure).

Identity@(t) => t
Fail@(t) => failure
Sequence(s1, s2)@(t) => failure if s1@(t) fails

s2@(t′) if s1@(t) => t′

Choice(s1, s2)@(t) => t′ if s1@(t) => t′

s2@(t) if s1@(t) fails
All(s)@(f(t1, ..., tn)) => f(t′1, ..., t

′
n) if s@(t1) => t′1, ..., s@(tn) => t′n

failure if there exists i such that si@(ti) fails
One(s)@(f(t1, ..., tn)) => f(t1, ..., t

′
i, ..., tn) if s@(ti) => t′i

failure if s@(t1) fails, ..., s@(tn) fails
Omega(i, s)@(f(t1, ..., tn)) => f(t1, ..., t

′
i, ..., tn) if s@(ti) => t′i

failure if s@(ti) fails

Fig. 1. Strategy constructors

These strategy constructors are the key-component that can be used to define
more complex strategies. In order to define recursive strategies, the μ abstractor
was introduced. This allows giving a name to the current strategy, which can be
referenced later. Using strategy operators and the μ abstractor, new strategies
can be defined [28] as illustrated by Figure 2.

Try(s) = Choice(s, Identity)
Repeat(s) = μx.Choice(Sequence(s, x), Identity())
BottomUp(s) = μx.Sequence(All(x), s))
TopDown(s) = μx.Sequence(s, All(x)))
Innermost(s) = μx.Sequence(All(x), T ry(Sequence(s,x)))

Fig. 2. Examples of strategies

The Try strategy never fails: it tries to apply the strategy s; if it succeeds, the
result is returned, otherwise, the Identity strategy is applied, and the subject is
not modified.

The Repeat strategy applies the strategy s as many times as possible, until
a failure occurs. The last unfailing result is returned.

The strategy BottomUp tries to apply the strategy s to all nodes, starting
from the leaves. Note that the application of s should not fail, otherwise the
whole strategy also fails.

200 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

The TopDown strategy tries to apply the strategy s to all nodes, starting
from the root. It fails if the application of s fails at least once.

The strategy Innermost tries to apply s as many times as possible, starting
from the leaves. This construct is useful to compute normal forms.

4 Strategic Rewriting for a Chemical Reactor

The purpose of an automated generator of detailed kinetic mechanisms is to
take as input one or more hydrocarbon molecules and the reaction conditions,
and to give as output a reaction model, i.e. the list of applied reactions. We are
interested only in exhaustive generation of chemical reactions, therefore we con-
sider only the qualitative aspects of the model; the quantitative or probabilistic
features are treated separately by the chemists. For this kind of modeling the
two dimensional model of molecules is sufficient.

In this section we present the model used for the representation of chemical
species, the reaction pattern we considered, and the reactor dynamics.

4.1 Molecular Graphs

We now describe formally the chemical model we want to implement.

Fig. 3. Molecular graphs

A molecular graph [12] is a vertex-labelled and edge-labelled graph, where
each vertex is labelled with an atom and each edge graphically suggests the bond
type or is explicitly labelled with the bond type, as illustrated in Figure 3. A
chemical reaction is expressed as a rewriting rule for molecular graphs. Figure 4
gives an example of a chemical reaction.

4.2 Rules for Decorated Labelled Graphs

In the so-called primary mechanism, a set of nine reaction patterns is applied to
an initial mixture of molecules. A complete description of the involved reaction

Non-intrusive Formal Methods and Strategic Rewriting 201

Fig. 4. Bimolecular initiation for ethylbenzene

patterns is out of the scope of this paper, but the chemistry-like presentation
from Figure 5 gives the flavor of the transformations needed to be encoded.

Name Description

ui x − y −→ x • + • y

bi O = O + H − x −→ •OOH + •x
ipso •H + Ar − x −→ H − Ar + •x
me •β + H − x −→ β − H + •x
bs •x − y − z −→ x = y + •z
ox O = O + H − x − y• −→ •OOH + x = y

co.O. •O • + • x −→ •O − x

co •x + •y −→ x − y

di •x + H − y − z• −→ x − H + y = z

Fig. 5. Reaction patterns of primary mechanism: patterns involve simple (−) or
double (=) bonds, free radicals (•x), specific atoms (O, H); variables x, y, z can
be instantiated by any reactants

Every reaction pattern is also guarded by “chemical filters”, i.e. chemical con-
ditions of applications, not mentioned here, even if several of them are currently
implemented: they include considerations on the number of atoms in involved
molecules or free radicals, the type of radicals or the type of bonds, etc. Some
of them are discussed in [10].

4.3 Primary Mechanism

The primary mechanism can be described as the result of three stages (see Figure
6):

1. The initiation stage: unimolecular and bimolecular initiation reactions, (ui)
and (bi), are applied to initial reactants, i.e. to the initial mixture of molecules.
Let RS1 = RS be the set of all reactants that can be obtained.

2. The propagation stage: the set of reactions, (ipso), (me), (bs), (ox), and
(co.O.), are applied to all reactants in RSi to obtain a new set RSi+1 of
reactants. The reactants from RSi are then added to RSi+1. This step is
iterated until no new reactant is generated.

202 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

3. The termination stage: combination and disproportionation reactions, (co)
and (di), are applied to free radicals of RSi to get a set RS’ of molecules.

Fig. 6. Primary mechanism

The initial mixture of molecules, RS, is a finite set of reactants. Working
only on the qualitative aspects of this chemical problem, we are not interested
in the quantity or concentration of each reactant; hence, for each element in the
current set of reactants we consider to have an infinite supply.

The set of reaction rules R is partitioned into three sets Ri, Rp, and Rt where
Ri = {(ui), (bi)}, Rp = {(me), (ipso), (bs), (ox), (co.O.)}, and Rt = {(co), (di)}.

For expository reasons we consider here that all reactions have the generic
form m1 +m2 → m′

1 +m′
2, where at most one reactant in each side of the rule

can be a “dummy” reactant which is always present in the set of reactants.

P(S) UNIT (R : P(R), P1 : P(S) [, P2 : P(S)])
begin

P ′ := ∅;
while(¬terminate()) do

(m1, m2) := select(P1 [, P2]);
for all (m1 + m2 → m′

1 + m′
2) ∈ R

P ′ := insert(P ′, m′
1, m

′
2);

fi
od
return P ′

end

Fig. 7. The UNIT algorithm

The algorithms for the reactor dynamics for each stage have a common part,
which we call UNIT (Figure 7), parametrized by a set of reaction rules and one or
two input sets of reactants. select(P1) returns randomly each time a new pair of
reactants from P1 without removing them from P1. As expected, select(P1, P2)
returns randomly a new pair of reactants, first from P1 and the second from P2,

Non-intrusive Formal Methods and Strategic Rewriting 203

without removing the reactants from the two sets. insert(P,m′
1,m

′
2) adds the

two reaction products m′
1 and m′

2 to P if they are not already in P . The function
terminate() returns false as long as there are reactants that can interact by
means of rules from R.

P(S) AlgInit (P0 : P(S)) P(S) AlgPropag (P0 : P(S))
begin begin

return P0 ∪ UNIT(Ri, P0) i := 0;
end P ′′ := ∅;

repeat
P(S) AlgTermin (P0 : P(S)) P ′′ := P ′′ ∪ Pi;

begin Pi+1 := UNIT(Rp, P ′′, Pi) \ P ′′;
return P0 ∪ UNIT(Rt, P0) i := i + 1;

end until Pi = ∅;
return P ′′;

end

Fig. 8. The stage algorithms

Now the algorithms for the three stages can be written in a rather uniform
way as given in Figure 8.

We consider that the three stages of the reactor are executed sequentially due
to chemical hypothesis. Therefore the reactor dynamics is described in Figure 9.

AlgTermin(AlgPropag(AlgInit(P0)))

Fig. 9. The reactor dynamics

5 A Formal Island Implementation of the Primary
Mechanism

We present in this section how the primary mechanism is implemented in TOM
using the formal island principle.

The TOM implementation involves four steps, in order to design:

1. An algebraic view of molecular graphs, as a set of terms on a convenient
signature.

2. A representation mapping that establishes a correspondence between alge-
braic terms and Java objects. (This is the formal anchor.)

3. Reaction rules implemented with match constructs: the left-hand side con-
sists of a TOM term, while the right-hand side is a mixture of Java code and
TOM constructs.

204 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

4. Strategies for applying the reaction rules within each stage, and the chaining
of stages.

In the following subsections, we develop each of these steps.

5.1 Molecular Graphs Viewed as Algebraic Terms

A molecular graph (see Figure 3) is encoded by a term, as proposed in the
linear notation SMILES presented in [31]. Representing graphs as terms is a
choice design: terms provide an intermediate structure between graphs and their
representation by adjacency lists which appears to be well suited to the patterns
specific to our application.

We briefly recall the principles of this representation. Molecules are repre-
sented as hydrogen-suppressed molecular graphs (hydrogen atoms are not rep-
resented) with atom-labelled vertices and bond-labelled edges. If the hydrogen-
suppressed molecular graph has cycles, it can be transformed into a tree by
applying the following rule to every cycle: arbitrarily choose one simple- or
aromatic-labelled edge of the cycle, delete the edge, and add a fresh digit and the
label of the edge to the labels of the formerly adjacent vertices. This corresponds
to a spanning tree of the molecular graph. A vertex is chosen as root, and the
tree is represented in a (semi)parenthesized preorder traversal (the parentheses
are omitted for the right-most child of each vertex). Moreover, an aromatic cycle
is represented by lower case letters, and the aromatic and simple bonds are not
represented.

Fig. 10. From a cyclic molecular graph to an acyclic decorated molecular graph

In the first molecular graph from Figure 10 two edges are transformed into
implicit edges: (i) edge {6,11} labelled with simple is hidden and encoded by
labels (1, simple) on vertices 6 and 11; (ii) edge {5,6} labelled with aromatic is
hidden and encoded by labels (2, aromatic) on vertices 5 and 6. The aromaticity
of a bond is propagated to its end vertices which are labelled by lower case
letters in the SMILES notation, and by upper case letters prefixed by ar in the
signature. For example, if the vertex number 1 is chosen as root, a linear notation
is CCc(ccc12)cc2C=CO1; if the root is the vertex number 3 another notation is
C(CC)(ccc12)cc2C=CO1.

Non-intrusive Formal Methods and Strategic Rewriting 205

The user must provide as input for this prototype a list of molecules in the
SMILES notation. The associated TOM terms are quite heavy to handle, hence
the user does not need to deal with them. Moreover, the user can use a Java
based software provided by Chemaxon, called Marvin [2], which allows editing
and visualizing molecules on a web page: by simply drawing a molecule, one gets
its SMILES notation.

The syntax for the TOM terms encoding decorated molecular graphs is given
by Figure 11. The operator lab constructs a label composed of an integer and a
bond type encoding an implicit edge, while the operator symb constructs a label
for vertices composed of an atom name and a list of labels.

sorts Atom Bond Label LabelList Symbol Reactant ReactantList

abstract syntax

C -> Atom

arC -> Atom

O -> Atom

H -> Atom

e -> Atom

none -> Bond

simple -> Bond

double -> Bond

triple -> Bond

arom -> Bond

lab(no:int, bond:Bond) -> Label

concLab(Label*) -> LabelList

symb(atom:Atom, labels:LabelList) -> Symbol

rct(bond:Bond,symbol:Symbol,rctList:ReactantList) -> Reactant

conc(Reactant*) -> ReactantList

Fig. 11. The signature for TOM terms

We represent a decorated molecular tree as a term of sort Reactant as follows:

– a leaf v is a term of sort Reactant,

rct(b, symb(a, concLab(labs*)), conc())

where a encodes the label of the leaf (an atom symbol), b encodes the label
of the edge connecting v with his father, and labs* is a possibly empty list
of pairs of integers and bond types representing the associated set of broken
cycle labels;

– an internal vertex is a term of sort Reactant,

rct(b, symb(a, concLab(labs*)), conc(rcts*))

where rcts* encodes the list of its term-like represented children;
– the root has a dummy bond label, none, for uniformity reasons.

206 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

Operation symbols like conc above represent variadic associative operators
that construct a list from its arguments (that can be empty).

We consider that a radical point is an atom of valence 1 labelled by e (for
electron). For efficiency reasons, we consider all free radicals (such as •x in
Figure 5) to have tree representations where the electron is the root.

The signatures for GasEl terms and TOM terms are slightly different, but the
principles for building the terms are the same. The differences rise from restrict-
ing TOM signatures to many-sorted ones, while in ELAN one can use order-sorted
signatures. The operation symbols in TOM are given in prefix notation and are
always explicit.

5.2 Mapping Construction

In order to define necessary abstract data-types, we use the signature definition
mechanism (%typeterm, %typelist, %op, etc.) provided by TOM.

For example, given a Java class Reactant, we can define the following alge-
braic mapping for it:

%typeterm Reactant {

implement { Reactant }

equals(t1, t2) { t1.equals(t2) }

}

where the class Reactant has the following structure:

class Reactant {

private Bond bond;

private Symbol symbol;

private ArrayList rctlist;

public Reactant(Bond bond, Symbol symbol, ArrayList rctlist) {...}

....

}

We can define the following constructor for the Reactant type:

%op Reactant rct(bond:Bond, symbol:Symbol, radlist:ReactantList) {

is_fsym(t) { t instanceof Reactant }

get_slot(bond,t) { t.getBond() }

get_slot(symbol,t) { t.getSymbol() }

get_slot(rctlist,t) { t.getRctlist() }

make(bond,symbol,radlist) { new Reactant(bond, symbol, radlist) }

}

Non-intrusive Formal Methods and Strategic Rewriting 207

In fact, this algebraic operation is a mapping from algebraic terms to Java
objects that preserves the structural properties of Reactant sorted terms for
Reactant Java instances, i.e. is a formal anchor. Let us remind that the formal
anchor is determined by the semantics of three mappings: eq, is fsym, subterm.
The construct %typeterm contains the definition of eq which is equals. The
other two mapping definitions are given by means of the %op construct for the
operation symbol rct: the mapping is fsym(t, rct) is implemented by the con-
struct is_fsym(t), while the mapping subterm(t, i) is implemented by three
constructs get_slot for retrieving each of the three arguments of rct.

Instead of explicitly building this mapping, we can use the two external tools
developed together with TOM, Vas and ApiGen, to generate Java files imple-
menting the signature. In this way, we take advantage of the ATerm library and
the VisitableVisitor design pattern which are automatically implemented by the
generated classes. The memory sharing is very important for the implementa-
tion of reactants because the terms encoding them have in general many common
subterms, while the Visitor pattern is necessary for doing term traversals.

The construct %vas allows defining a Vas grammar in a .tom file:

%vas {

module data

imports ...

public

sorts Atom Bond CLabel CLabelList Symbol Reactant ReactantList ...

abstract syntax

...

}

Considering the signature described by Figure 11, after running Vas , some
standard directories are generated containing all classes that make up the API for
the signature. At the root level, the directory contains several standard classes
and the mapping for TOM (data.tom). The subdirectory types contains ab-
stract base classes for each sort defined in the signature, and one subdirectory
per sort that contains concrete classes for each operator of this co-arity.

The TOM implementation uses a specialized version of the Visitor design
pattern, the VisitableVisitor pattern, based on the visitor combinators concept
introduced in [29] which allows composition and full tree traversal control. The
basic visitor combinators are inspired by the strategy primitives of Stratego which
are presented in Figure 1 (except the Omega strategy). The Java classes gener-
ated for the algebraic operations defined within a Vas construct implement the
Visitable interface. On one side, the built-in or user defined traversal strategies
are visitable as algebraic terms; on the other side they define visit_Sort and
visit_ValueSort_OperationSymbol methods necessary for visiting algebraic
operations.

208 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

5.3 Reaction Rules

The reaction rules have the form:

r : t1[+ t2] → t′1 + t′2 if cond

(where the elements between square brackets are optional), and we implement
them using a match construct according to the following schema:

%match(Reactant subject1 [, Reactant subject2]) {
t1 [, t2] → {

if(cond) return pair(σ(t′1), σ(t′2));
}

}

where the argument of match is the term we want to rewrite (the reactant), and
σ is the substitution resulting from the matching process. Let us notice that only
the implementations of termination rules have two reactants in their left-hand
sides.

For all types of reaction rules, we define a base class ChemicalRule which
encloses the common features of all reaction rules. For each reaction application,
we determine the reaction products and its degeneration (how many times the
reaction can be applied in different parts of reactants with equal results).

In GasEl one of the implementation difficulties was to have exhaustive appli-
cation of a reaction rule on one or two reactants. Since the reaction rules are
encoded in ELAN as named strategies which can be applied only at the top of
a term, exhaustive application in GasEl is achieved by generating all tree-like
visions of an acyclic decorated molecular graph (a vision is obtained by choosing
a root on a spanning tree).

In TOM this problem is handled in an elegant way by using the strategy
Omega (Figure 1). Given a term t and a rewrite rule r : t1 → t2, the Omega
strategy provides the following features:

– we can apply a topdown (or other traversal) strategy for solving the matching
problem t1 % t; successful matches give rise to a family of substitutions
{σi}i∈N;

– for each match solution i, the position ωi in t where the pattern matched can
be retrieved as a Java object by means of the static method getPosition()
of the class MuTraveler;

– for a position ωi, the subterm t|ωi
is returned by the method getSubterm();

– for a position ωi, the term resulting from t after applying the rewriting rule
r, i.e. σi(t) is computed using the method getReplace(σi(t2)).

This is, up to our knowledge, an original feature that provides full control for
applying a rewriting rule and allows a wide range of applications. In particular
this is quite convenient for applying a reaction rule.

From the implementation point of view, there are two classes of reaction rules:
the first class consists of the reactions (ui), (bi), (me), and (ipso) corresponding

Non-intrusive Formal Methods and Strategic Rewriting 209

to an implementation by topdown traversal of a term in search for a reaction
pattern, while the second class consists of the rest of the reactions for which
the pattern (with the radical point) is always searched at the root. We illustrate
these two types of implementation with the following two examples.

Example 2. [Bimolecular initiation reaction] The generic reaction is:

O = O + H− x −→ •OOH + •x

and an application is illustrated in Figure 4. The result of applying the (bi)
reaction rule on a term subject is implemented by means of the following code:

if(!containsElectron(subject) && (nC(subject) > 1)) {

VisitableVisitor birule = new BiRule();

‘TopDown(Try((birule))).visit(subject);

this.setResultList(birule.getResultList());

}

First we test if the reactant does not contain a radical point (encoded as an
electron), and if it contains at least two carbon atoms. If the test is successful,
then we apply in a topdown manner a rule, instance of the class BiRule.

For every subterm of sort Reactant, during the top-down traversal of the
subject of the reaction, the following method of the object birule is applied:

public Reactant visit_Reactant(Reactant arg) throws VisitFailure {

Reactant r1, r2;

int n;

%match(Reactant arg) {

rct(b, symb(C(), concLab(labs*)), conc(rcts*)) -> {

n = nH(arg);

if(n >= 1) {

Position pos = MuTraveler.getPosition(this);

r1 = insertElectron(pos.getSubterm().visit(globalSubject));

r2 = hangE(pos.getReplace(r1).visit(globalSubject));

addMPack(‘mpack(n, pack(ctRcts.eoo, ctRcts.seoo),

pack(r2, usmiles(r2))));

}

}

}

return ‘Fail().visit(arg);

}

The variable globalSubject is set to the value of the term participating to
the reaction. We search within the term for a non-aromatic carbon atom which
has at least one hydrogen bound by examining all subterms of sort Reactant.
nH computes the number of hydrogen atoms connected to the C atom.

210 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

We attach an electron to the found carbon atom, we insert the new term in
the context, and then we twist the term by means of hangE such that the node
labelled by e becomes the root in the corresponding molecular tree in order to
preserve the chosen representation of free radicals.

A term of sort Pack represents a pair composed of a Reactant term and its
SMILES form computed with the algorithm presented in [31]; eoo is a constant
term corresponding to •OO, while seoo is the canonical form of eoo; n is the
degeneration of the reaction. The method addMPack adds an element consisting
of a pair of Pack-sorted terms with the multiplicity n to a private list of this
type; this list represents the result of the exhaustive application of a particular
reaction rule.

Example 3. [Beta-scission reaction with no cycle breaking] The generic reaction
is:

•x− y − z −→ x = y + •z
This reaction rule described by subgraphs is easily translated in a rule over

trees (as we can see schematically in Figure 12) which is matched at the top of
a term (because the electron is always placed in the root).

Fig. 12. Beta-scission on terms

5.4 Reactor Strategy

We present in this section the implementation of the reactor dynamics formally
described by the algorithms in Figures 8 and 9. We implement the function
UNIT given in Figure 7 by means of the visitor class UnitRule with a private
member consisting of an array of chemical rules:

class UnitRule extends data.dataVisitableFwd {

private Object rules[];

public UnitRule(Object rules[]) {

super(‘Fail());

this.rules = rules;

}

public PairPackList visit_PairPackList(PairPackList arg) { ... }

public PackList visit_PackList(PackList arg) { ... }

}

Non-intrusive Formal Methods and Strategic Rewriting 211

UnitRule can be used as a rule with a particular behavior on terms of sorts
PairPackList and PackList. Each of the visit_Sort methods contains appli-
cations of the rules passed as arguments on lists of reactants.

The initiation stage described by UNIT (Ri) given by Figure 8 is imple-
mented as follows:

ChemicalRule initRules[] =

{new UICCRule(), new UICHRule(), new BiRule()};

VisitableVisitor init_unit = new UnitRule(initRules);

plist = ‘Try(init_unit).visit(plist);

where plist from the right-hand side is the input list of chemical reactants
(the initial set of reactants), while plist from the left-hand side contains the
products obtained from the initiation stage together with the input reactants.

For the propagation stage, chemical hypotheses impose to apply the reac-
tions (me) and (ipso) only on the products resulted from the initiation stage.
Therefore we describe the propagation stage by means of the strategy
UNIT (Rp); repeat(UNIT (Rp − {(me), (ipso)})), and we implement it as fol-
lows:

ChemicalRule propagRules1[] = {new MeRule(), new IpsoRule(),

new BSCCRule(), new BSCHRule(), new OxRule(), new CombeOeRule()};

VisitableVisitor propag_unit1 = new UnitRule(propagRules1);

tmplist = ‘Try(propag_unit1).visit(plist);

tmplist = diff(tmplist, plist);

plist = appendLists(plist, tmplist);

pairlist = ‘pair(plist, tmplist);

ChemicalRule propagRules2[] = {new BSCCRule(), new BSCHRule(),

new OxRule(), new CombeOeRule() };

VisitableVisitor propag_unit2 = new UnitRule(propagRules2);

pairlist = ‘RepeatId(Try(propag_unit2)).visit(pairlist);

plist = getFirstList(pairlist);

First we put the reaction products from all propagation rules in tmplist,
then we select only the free radicals not already in the input list, and put them
together with the initial reactants. We make a pair of lists with the first element
consisting of all reactants, and the second element consisting of the list of new
free radicals, and we provide it as input for the strategy that applies the chemical
rules from the array propagRules2. The application of this strategy ends when
the list of new free radicals is empty. The result of the propagation stage consists
of the list of all products concatenated with the list of input reactants.

The termination stage described by UNIT (Rt) is implemented in TOM as
follows:

212 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

ChemicalRule terminRules[] = {new CoRule(), new DiRule()};

VisitableVisitor termin_unit = new UnitRule(terminRules);

plist = ‘Try(termin_unit).visit(plist);

For a given list of input molecules, this prototype writes in a file the chemical
products for each stage as well as the elementary reactions that took place during
the entire mechanism.

6 Conclusion

The first output of this work is a new prototype of a chemical reactor. First re-
sults revealed good properties with respect to chemical validations of the model.
In all but one cases, this prototype is faster (less than 13 seconds) than GasEl.
Moreover, for non cyclic molecules with 16 carbon atoms and a big number of
simple bonds, this implementation in TOM is up to 9 times faster than GasEl.
The execution times for the two prototypes have been compared on all examples
validated with chemists and presented in [16]. For the most complex molecule
tested (JP10) not completely handled in [16], the prototype in TOM was able to
terminate with 1165 generated reactions in 139 minutes. A complete comparison
between the GasEl prototype and the current implementation in TOM is not
trivial due to notation and implementation differences, and out of the scope of
this paper.

It may be worth noticing that the rule-based approach on graph structures
has also been studied in the modelling of signal transduction networks [13] and
metabolic pathways [23] in the domains of biological systems and protein inter-
actions. Our model of chemical reactor seems to be easily adaptable to these
domains.

Our second concern was to explore the formal island concept and method-
ology on a significant example. The objective of the formal island approach to
extend the expressivity of the host language with higher-level constructs at de-
sign time is well-illustrated in this example. From this point of view, the TOM
implementation appeared to be quite convenient to implement chemical rules
with conditions and actions expressed in the Java host language. On the other
hand, control was expressed with a high-level language of strategies which makes
now possible to reason about formal properties, especially the termination prop-
erty of each phase [4]. This illustrates the idea to perform formal proof on the
formal island constructions.

A further idea would be to implement a new version of the TOM compiler
able to perform graph rewriting. Representing cyclic structures in TOM is not
too difficult but matching and rewriting have to be adapted to this context.
Indeed this capability would open new application areas.

A long-term objective of the formal island approach is to certify the imple-
mentation of the formal island compilation into the host language. A first step
in this direction has been presented in [19] to generate proof obligations for

Non-intrusive Formal Methods and Strategic Rewriting 213

the compilation of matching. A similar concern is underway for rewriting and
strategies.

Further improvements of the formal island approach is to anchor other lan-
guage extensions, especially modules and parameters, while improving the ca-
pacity of the compiler to generate verification requirements related to properties
to be checked.

Acknowledgements: We sincerely thank Olivier Bournez, Pierre-Etienne
Moreau and Antoine Reilles for helpful remarks and interactions on this work,
and the Protheo group for scientific and financial support. This work has been
partially funded by an INRIA international internship program.

References

1. Elan web site. http://elan.loria.fr.

2. Marvin: A tool for Molecule Drawing and Visualization.
http://www.chemaxon.com/marvin/.

3. Tom web site. http://tom.loria.fr.

4. O. Andrei. Term graph and chemical rewriting. Internship report, LORIA, Protheo
Team, Nancy, France, September 2005.

5. E. S. Blurock. Reaction: System for Modeling Chemical Reactions. Journal of
Chemical Information and Computer Science, 35:607–616, 1995.

6. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen.
An Overview of ELAN. In C. Kirchner and H. Kirchner, editors, Proceed-
ings of the Second International Workshop on Rewriting Logic and Applica-
tions, volume 15, http://www.elsevier.nl/locate/entcs/volume15.html, Pont-
à-Mousson (France), September 1998. Electronic Notes in Theoretical Computer
Science. Rapport LORIA 98-R-316.

7. O. Bournez, G.-M. Côme, V. Conraud, H. Kirchner, and L. Ibănescu. A Rule-
Based Approach for Automated Generation of Kinetic Chemical Mechanisms.
In R. Nieuwenhuis, editor, Proceedings of the 14th International Conference on
Rewriting Techniques and Applications, RTA 2003, Valencia, Spain, June 9-11,
2003, volume 2706 of Lecture Notes in Computer Science, pages 30–45. Springer,
2003.

8. O. Bournez, L. Ibanescu, and H. Kirchner. From Chemical Rules to Term Rewrit-
ing. In 6th International Workshop on Rule-Based Programming, To appear in
ENTCS series, Nara, Japan, April 2005.

9. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and Programming in Rewriting Logic. Theoretical
Computer Science, (285):187–243, August 2002.

10. G.-M. Côme. Gas-Phase Thermal Reactions. Chemical Engineering Kinetics.
Kluwer Academic Publishers, 2001.

11. R. Diaconescu and K. Futatsugi. An overview of CafeOBJ. In C. Kirchner and
H. Kirchner, editors, Electronic Notes in Theoretical Computer Science, volume 15.
Elsevier, 2000.

12. J. Dugundji and I. Ugi. An Algebraic Model of Constitutional Chemistry as a
Basis for Chemical Computer Programs. Topics in Current Chemistry, 39:19–64,
1973.

214 Oana Andrei, Liliana Ibanescu, and Hélène Kirchner

13. J. R. Faeder, M. L. Blinov, and W. S. Hlavacek. Graphical rule-based representa-
tion of signal-transduction networks. In H. Haddad, L. M. Liebrock, A. Omicini,
and R. L. Wainwright, editors, Proceedings of the 2005 ACM Symposium on Ap-
plied Computing (SAC), Santa Fe, New Mexico, USA, March 13-17, 2005, pages
133–140. ACM, 2005.

14. J. M. Grenda, I. Androulakis, A. M. Dean, and W. H. Green. Application of Com-
putational Kinetic Mechanism Generation to Model the Autocatalytic Pyrolysis of
Methane. Industrial & Engineering Chemistry Research, 42:1000–1010, 2003.

15. J. Guyon, P.-E. Moreau, and A. Reilles. An integrated development environment
for pattern matching programming. In B. Barry and O. de Moor, editors, Pro-
ceedings of the 2nd eclipse Technology eXchange workshop, eTX’2004 (Barcelona,
Spain), Barcelona (Spain), 2004. Electronic Notes in Theoretical Computer Sci-
ence.

16. L. Ibanescu. Programmation par règles et stratégies pour la génération automatique
de mécanismes de combustion d’hydrocarbures polycycliques. Thèse de Doctorat
d’Université, Institut National Polytechnique de Lorraine, Nancy, France, June
2004.

17. C. Kirchner and H. Kirchner. Rewriting, solving, proving. A preliminary version
of a book available at www.loria.fr/~ckirchne/rsp.ps.gz, 1999.

18. C. Kirchner and H. Kirchner. Rule-based programming and proving: the ELAN
experience outcomes. In Proceedings of the Ninth Asian Computing Science Con-
ference ASIAN’04, volume 3371, pages 363–379, Chiang Mai, Thailand, December
2004. Lecture Notes in Computer Science.

19. C. Kirchner, P.-E. Moreau, and A. Reilles. Formal validation of pattern matching
code. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international confer-
ence on Principles and practice of declarative programming, pages 187–197, New
York, NY, USA, 2005. ACM Press.

20. H. Kirchner and P.-E. Moreau. Promoting rewriting to a programming language:
A compiler for non-deterministic rewrite programs in associative-commutative the-
ories. Journal of Functional Programming, 11(2):207–251, 2001.

21. P.-E. Moreau, C. Ringeissen, and M. Vittek. A Pattern Matching Compiler for
Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler
Construction, Warsaw (Poland), volume 2622 of LNCS, pages 61–76. Springer-
Verlag, May 2003.

22. E. Ranzi, T. Faravelli, P. Gaffuri, and A. Sogaro. Low-Temperature Combustion:
Automatic Generation of Primary Oxidation Reactions and Lumping Procedures.
Combustion and Flame, 102:179–192, 1995.

23. F. Roselló and G. Valiente. Analysis of metabolic pathways by graph transforma-
tion. In H. E. et al., editor, 2nd International Conference on Graph Transformation
- ICGT’04, Roma, Italy, volume 3256 of Lecture Notes in Computer Science, pages
70 – 82. Springer, 2004.

24. A. S. Tomlin, T. Turányi, and M. J. Pilling. Mathematical Tools for the Con-
struction, Investigation and Reduction of Combustion Mechanisms, volume 35 of
Comprehensive Chemical Kinetics, chapter 4, pages 293–437. Elsevier, Amsterdam,
1997.

25. M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-environment: A Component-Based Language
Development Environment. In Computational Complexity, pages 365–370, 2001.

26. M. G. J. van den Brand, H. A. de Jong, and P. Olivier. Efficient annotated terms.
Technical report, University of Amsterdam, 2000. SEN-R0003, ISSN 1386-369X.

Non-intrusive Formal Methods and Strategic Rewriting 215

27. E. Visser. Stratego: A Language for Program Transformation based on Rewriting
Strategies. System Description of Stratego 0.5. In A. Middeldorp, editor, Rewriting
Techniques and Applications (RTA’01), volume 2051 of Lecture Notes in Computer
Science, pages 357–361. Springer-Verlag, May 2001.

28. E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with
rewriting strategies. ACM SIGPLAN Notices, 34(1):13–26, January 1999. Pro-
ceedings of the International Conference on Functional Programming (ICFP’98).

29. J. Visser. Visitor combination and traversal control. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications - OOPSLA’01,
Tampa Bay, Florida, USA, volume 36(11) of ACM SIGPLAN Notices, pages 270–
282, 2001.

30. V. Warth, F. Battin-Leclerc, R. Fournet, P.-A. Glaude, G.-M. Côme, and G. Scac-
chi. Computer Based Generation of Reaction Mechanisms for Gas-Phase Oxida-
tion. Computers and Chemistry, 24:541–560, 2000.

31. D. Weininger, A. Weininger, and J. L. Weininger. SMILES. 2. Algorithm for
Generation of Unique SMILES Notation. Journal of Chemical Information and
Computer Science, 29:97–101, 1989.

From OBJ to ML to Coq

Jacek Chrząszcz1 � and Jean-Pierre Jouannaud2 ��

1 Institute of Informatics, Warsaw University, ul. Banacha 2, Warsaw
http://www.mimuw.edu.pl/~chrzaszc

2 École Polytechnique, LIX, CNRS UMR 7161, F-91400 Palaiseau
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/

This work is dedicated to our colleague Joseph Goguen, who was extremely influential
in the design of modern programming languages.

1 Introduction

Rigorous program development is notoriously difficult because it involves many as-
pects, among which specification, programming, verification, code reuse, maintenance,
and version management. Besides, these various tasks are interdependent, requiring go-
ing back and forth between them. In this paper, we are interested in certain language
features and in languages which help make the user’s life easier for developing pro-
grams satisfying their specifications.

Our interest focuses on three implemented specification/programming languages,
OBJ [14,18], ML[27] and Coq [10], which have played an important historical role in
the process of coming up with better languages. And indeed, both OBJ and ML had
many successors or dialects, among which OBJ3 [20], Cafe-OBJ [28], Maude [9] and
ELAN [2] for OBJ, and SML [23], CAML [30] and OCaml [29] among others for ML.
Coq has evolved with many different versions keeping the same name, following the
evolution of type theory from the calculus of constructions [11] to the extended calculus
of constructions [22] and the development of the theory of inductive types from Martin-
Löf’s type theory [25,26] to the calculus of inductive constructions [12,31]. Other proof
assistants based on a similar historical development include Lego [21], Alf [24] and
Agda/Alfa [1]. Coq remains the most mature and widely used of them all.

We explain briefly in the introduction what important properties are shared by these
three languages, and how OBJ has been influential in such a way that many important
characteristics of ML and Coq were already present in OBJ, sometimes in disguise.
In what sense can these three languages be considered as specification languages, or
programming languages, or proof development systems is another important aspect we
are interested in.

The user does not like doing things twice. Writing a specification in one language
before coding it in another language is more than a challenge: it is helpless. The cod-
ing part must be automated as is the case in all three languages we are interested in.
This automation obeys the same principle: forgetting the non-executable subpart of the
specification or of its proof.

� Partly supported by Polish KBN Grant 3 T11C 002 27
�� Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS,

École Polytechnique, INRIA, Université Paris-Sud.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 216–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From OBJ to ML to Coq 217

A specification is nothing but a logical property of the form ∀x.P (x) → Q(x),
where x is the vector of data, P (x) is the assumption, and Q(x) is the conclusion.
Therefore, the specification/programming language must contain (possibly via an en-
coding) a mechanism for expressing properties, as well as one for expressing compu-
tations and, possibly, a last one for expressing proofs. In ML, the specification part is
simple enough to be inferred automatically by the system from the user’s functional
program: this is called type inference. The program then satisfies this (extremely poor)
specification without requiring any further proof. In OBJ, specifications are algebraic,
that is, conditional equations giving meaning to the various functions and predicates in-
troduced by the user, and are executable via rewriting. Showing that the rewrite program
implements the specification requires several checks (confluence and termination) left
to the user. Proving properties of an OBJ specification can be done in the language itself
by using reflexion, this has been done in Maude and Elan, as well as in CafeOBJ — to
a limited extent. Coq uses higher-order intuitionistic logic as a specification language,
and includes the possibility to carry out the development of a (constructive) proof of
the specification by using a tactic language which generates a Coq term representing
the proof. A functional program meeting the specification can then be extracted auto-
matically from that proof by erasing all subepressions without computational content
which differ from the others by their type.

The old paradigm that the same program piece can be used several times in a bigger
program with different data has led to a first notion of abstraction, giving rise to the
notion of function, or subprogram. The idea that a program operating upon certain data
should not depend upon the way they are actually represented has led to the notion of
abstract data type. The same paradigm applied to groups of functions or subprograms
achieving some well-defined task, processing some well-defined data, has led to the no-
tion of module. Abstracting over modules themselves has lead to the notion of functor.
All three languages have pioneered the design of modules and functors in their respec-
tive areas, not to speak about abstract types, and OBJ has been very influential in this
matter.

Object-orientation is a different, important abstraction mechanism that is not part of
our three languages, and indeed, the first two have been extended so as to include object-
oriented features. We will not say more about object orientation, although OCaml, a
dialect of ML, played an important role in popularizing object orientation among the
community of functional programmers.

Among the programming tasks that should be eased by a good language choice,
only the last one, version management, is not taken care of at all by our three languages.
Some of the others tasks are better taken care of by OBJ or by ML or by Coq. In partic-
ular, the verification principles behind these languages differ in the expressivity of their
underlying specification language. In OBJ, typing looks very elementary, since OBJ
static types are checked in linear time by a bottom-up tree automaton. But OBJ types
are not all static, requiring some runtime type-checking as well. In ML, static typing is
more advanced, with a polymorphic type discipline for which types can be inferred by
an exponential (but practically linear) algorithm. In Coq, types are arbitrary formulas of
higher-order (intuitionistic) logic which can be checked in finite (but indefinite) time,
and cannot be inferred in general. This typing system generalizes both OBJ’s and ML’s

218 Jacek Chrząszcz and Jean-Pierre Jouannaud

typing as we will see. Verification can also be achieved by model checking or testing.
Both are lacking in OBJ, ML and Coq, but can of course be made available as tactics in
OBJ’s successors and Coq.

The quest for the ideal programming language will continue until a satisfactory
language is designed that internalizes features still taken care of by the user or by the
programming environment.

2 The Three Languages

2.1 OBJ

In their first landmark paper on CLEAR, Rod Burstall and Joseph Goguen introduced
the brand new bright idea that specifying a program required a specific language able
to reflect the structure of the problem itself [6]. Following the ADJ group [16,15], they
advocated for an algebraic specification language based on equationnal logic, together
with a module system in which logical theories could be specified. This was the birth
of CLEAR, later developped more formally in [7]. To our knowledge, CLEAR was the
very first specification language. CLEAR was algebraic, using many-sorted algebras
with error-sorts, an approach later revised to yield OBJ’s order-sorted algebras. CLEAR
had parameterized modules and theories, but no functors and was not implemented, al-
though one can consider that the first implementation of OBJ by Joseph Tardo [17], a
student of Joseph Goguen at UCLA, was indeed an implementation of CLEAR. A sec-
ond more advanced implementation was then written by David Plaisted when visiting
Joseph Goguen at SRI in 1982, which included associative-commutative rewriting.

OBJ2 was the third implementation of OBJ. It was developped in 1984, when Ko-
kichi Futatsugi and the second author visited Joseph Goguen and and José Meseguer
at SRI for one year. OBJ2 was the first algebraic specification language based on a
fragment of a Horn logic built on the equality predicate and finitely many membership
predicates called subsorts [14]. The many novel features of OBJ2 included a flexible
user-defined syntax, defining subsorts by Horn sentences, rapid prototyping via rewrit-
ing modulo associativity, commutativity, identity and their combinations, parameterized
modules and functors. OBJ2 was followed by OBJ3 [20], an improved implementation
developped by Claude and Hélène Kirchner whose postdoctoral visit closely followed
their advisor’s. Full Horn logic is available in the Maude language [9,3], one of OBJ’s
successors developped by José Meseguer and his collaborators.

An OBJ program is a collection of modules followed by queries. A module is either
an object or a theory. A module has a name, which we always write with capital let-
ters. Objects are made of two parts: a signature made of basic types called sorts, and of
constructors and (defined) operators for these sorts; the meaning of the operators and of
the subsorts is given by (executable) Horn clauses (called equalities or sort constraints
depending on the predicate heading the positive atom). We will also use the name of
membership for sort constraint, as in Maude. In general, the principal sort of a module
bears the same name as the module itself, but the first letter only is capitalized. Seman-
tically, objects are initial algebras, implemented via the computation of normal forms:
the meaning of the defined operators must be given by a convergent set of conditional

From OBJ to ML to Coq 219

rewrite rules (possibly modulo associativity, commutativity and the like). A theory is
much like an object except that it is not executable: its (loose) semantics is given by
the class of all algebras that satisfy the arbitrary first-order logical sentences specifying
its properties. The definition of an object or theory can use other objects or theories.
The keywords: using allows to import a module without ensuring any property of the
imported module which must therefore be copied; protecting ensures that the imported
module is not modified, making copying unnecessary; extending stands in-between,
since new values can be added in sorts, but old values cannot be made equal unless they
were equal beforehand. Parameterization is one more way for importing a module. If T
is a theory, parameterizing a moduleM by an abstract moduleX satisfying T will allow
using the symbols defined in T in order to buildM , possibly by using qualification as a
disambiguation mechanism. The parameterized module M can later be instantiated by
an actual A provided A satisfies the axioms of T . Asserting a module property is done
by a view, which is the third kind of entity in OBJ. The construction of the instantiated
module may also involve some copying.

OBJ has a much more powerful mechanism for defining types than it appears. Be-
sides its basic types called sorts, like IN and List, it also has type constructors: if the
module LIST is parameterized by an abstract module X assumed to satisfy the theory
T , then any type List(Elt) exists potentially, provided Elt is the sort of a module sat-
isfying T . This allows to build the types List(IN) as well as List(List(IN)), therefore
providing with some form of polymorphism. However, these types can only be used
if the corresponding module instances LIST [NAT] and LIST [LIST [NAT]] are ex-
plicitly constructed. The same mechanism provides with dependent types like bounded
lists of length n, where n can be a parameter of sort IN defined via a theory. It also has
arbitrary first-order Horn sentences as types, written t : s′ if A, where A is an arbitrary
conjunction of equations and memberships built from the variables in t. OBJ’s subsort
declaration is a static restriction of this mechanism. So, OBJ’s type system was quite
strong at the time OBJ was implemented, and has even some Curry-Howard flavour. In
retrospect, theories themselves can be seen as types for modules, and a view becomes
then an assertion that a module has some theory as type.

OBJ’s types, however, only serve specification purposes. Unlike modern functional
programming languages like ML, typing is not really internalized in OBJ: property
checking is left to the user’s responsibility. Still, a limited amount of type-checking is
done. For example, the left-hand and right-hand side of an equality must have the same
sort. And the expression occurring in the head of a membership must have a sort whose
asserted sort must be a subsort.

OBJ specifications are assumed to satisfy a few other properties, all left to the user.
For example, the set of rules in a module is supposed terminating and confluent, and
the operators should be completely defined. Maude provides support for checking these
properties.

2.2 ML

ML was the first functional programming language in which specifications were given
(actually, inferred) as types, another novel bright idea from the late seventies due to

220 Jacek Chrząszcz and Jean-Pierre Jouannaud

Robin Milner [27]. ML has a powerful higher-order module system, an efficient exe-
cution model via separate compilation, and a primitive verification mechanism via type
inference.

An ML program is a collection of modules. A module is either a structure, which
corresponds to an OBJ non-parametric object, or a functor which corresponds to a para-
metric object. Contrary to the latter, ML functors can be higher-order, i.e. they can be
parametrized by a module which itself is parametrized. Specification of a functor pa-
rameter is given by a module type. This can either be a signature, corresponding to an
OBJ theory, or a functor type. Contrary to OBJ theories, values cannot be specified by
equations, but types can.

Another difference is the lack of views in the ML module system. Since subtyping is
implicit, a functor F, expecting an argument of type SIG, can be applied to all modules
M, whose principal module type MSIG is a subtype of SIG. Using type inference, the
principal module type can be computed efficiently and since subtyping is an extension
of inclusion, views are not necessary. On the other hand, the OBJ views can also be
used to rename components of an object, which in ML can only be done via a functor.

The important feature of OBJ that is missing in ML is theory extension via key-
words extending and using. Because equational specification of values is lacking in
ML, signature inclusion, present in most ML implementations, is much weaker than its
OBJ counterpart, hence cannot be seen as a substitute. Indeed, theory extension can be
used as another means of parametrisation: assume one declares a function f of some
type in a theory A and one then uses it in a subsequent equational specification of some
function g; in a theory B extending A, one can then provide equations defining f, there-
fore completing the specifications of g at the same time. In fact, the specification of g is
parametrized by f. Similar ideas are currently being investigate by the ML community
with the so called mixins [4,19].

2.3 Coq

In the mid-eighties, following the path initiated by Curry, Howard, Girard and De
Bruijn, Thierry Coquand and Gérard Huet made another important step with the beau-
tiful Calculus of Constructions [11], in which types are arbitrary sentences of higher-
order intuitionistic logic. This calculus was the start of the language Coq, a proof as-
sistant including a full functional programming language as an executable subset. Coq
has a powerful higher-order module system with cut elimination semantics studied and
implemented by the first author [8], at that time a phd-student of the second author,
a primitive execution model via rewriting and an efficient execution model via com-
pilation. It also includes a sophisticated proof search engine via tactics (and a tactic
language), a secure proof checker based on type checking, and an extraction mecha-
nism towards modular ML code. Here, it must be stressed that the module system is
used to structure first specifications, then proofs, and finally the programs extracted
from proofs. The latter is of course facilited by the fact that the module systems of Coq
and ML are essentially the same.

The logical formalism implemented in Coq is based on the calculus of inductive
constructions [12,31]. The terms in Coq are of two sorts: calculable Set and logical

From OBJ to ML to Coq 221

Prop3. Values are typed by types, which are typed by the sort Set (for example0:nat
and nat:Set). The second sort, Prop, is a type of logical formulas, which in turn are
types of their proofs (formula, whose proof is e.g. fun x ⇒ x). In type theory with
dependent types these two worlds interleave, but it is nevertheless possible to use this
dichotomy in order to extract the computable content of a proof, by deleting all its
(logical) subterms of sort Prop.

The general structure of a Coq development is the same as that of an ML program.
The main difference lies in logical parts: axioms in specifications and theorems in im-
plementations. While in ML code precise specifications are usually written informally
as comments and correctness is based on trusting the programmer, in Coq one can write
specifications as logical formulas, and then carry out the proof that the specification is
satisfied.

3 Example

To compare the modular features of the three languages, we shall study a simple sorting
algorithm using an abstract priority queue. We also provide a naive implementation of
the priority queue and show how the abstract algorithm can be composed with the given
implementation. The obtained algorithm and data structure remain parameterized with
respect to the element ordering, which can itself be instantiated later on.

Priority queues are data structures implementing the following functionalities: cre-
ation of an empty queue, insertion of an element into the queue and extraction of the
minimal element from the queue. They can be realized very efficiently imperatively (Fi-
bonacci heaps, binomial heaps, etc) but efficient functional implementations also exist
(see e.g. [5]).

Using a priority queue, one can implement the following sorting algorithm: insert all
element into the queue and then extract them one by one. Several apparently different
sorting algorithms can be seen as instances of this abstract schema using a particular
implementation of a priority queue: selection sort uses unsorted lists, insertion sort uses
sorted lists and heapsort uses heaps.

This example, despite being so small and simple, illustrates quite well the modular
features of our three languages and how they evolved from OBJ to ML and Coq. We
show how a specification and an implementation of a data structure look like, how an
implementation of the data structure can be composed with an abstract algorithm, and
how the resulting concrete but parametric algorithm can be instantiated and used in a
program.

Our example shows the advantages of each approach: in OBJ one can write very
concise equational specifications, in ML specifications are very brief (and imprecise)
but implementations are very efficient, and Coq allows one to formally specify and
prove correctness of a data structure or algorithm. The comparison between ML and
Coq further shows how much work is needed to formally specify and verify a piece of
code.

We will give the actual code of the example in the presentation.

3 There are other sorts in Coq, namely the predicative hierarchy of Typei, i ∈ N, called uni-
verses [22], but we do not use them in this paper.

222 Jacek Chrząszcz and Jean-Pierre Jouannaud

4 Priority Queues in OBJ

We will take the liberty to exploit the full power of Maude and use its syntax when
appropriate, to ease the understanding. Using OBJ instead would sometimes require
some irrelevant detour.

Specification of an ordered type, pairs, queues and priority queues.

We define successively trivial theories with a distinguished sort, pairs, totally ordered
sets, queues and priority queues. Being part of any OBJ specification, the predefined
module BOOL has one sort, Bool, two (truth) values, true and false, and the usual
Boolean connectives as operations. In all examples, italics are used to identify OBJ
keywords. All sentences are terminated by a dot for parsing purposes. Underscores are
used to indicate arguments of operators which use a mixfix syntax.

th TRIV is
sort Elt .
endt

The theory TRIV requires the existence of (at least) one sort, named Elt.

obj PAIR[X :: TRIV, Y :: TRIV] is
sort Pair .
op pair : Elt.X Elt.Y -> Pair .
op 1st : Pair -> Elt.X .
op 2nd : Pair -> Elt.Y .
var E : Elt.X .
var E’ : Elt.Y .
eq 1st(pair(E, E’)) == E .
eq 2nd(pair(E, E’)) == E’ .
endo

The parameterized object PAIR builds upon two formal objects X and Y satisfy-
ing TRIV, which acts as a binder for the sort names Elt.X and Elt.Y, therefore
providing for the polymorphic sort constructor pair. Note the use of qualification for
disambiguating between the two instances of TRIV. The symbol == is used for equa-
tions in theories and for rules in objects. It is also used for the built-in equality available
at all sorts. Similarly, : s is the built-in membership predicate available at sort s. In
the equations, the variables E, E’ and E’’ are universally quantified by the binding
declaration var.

th TOSET[X :: TRIV] is protecting BOOL .
op ≤ : Elt Elt -> Bool .
var E E’ E’’ : Elt .
E E ≤ E == true .
eq E == E’ if E ≤ E’ and E’ ≤ E .
eq E ≤ E’’ == true if E ≤ E’ and E’ ≤ E’’ .
eq E ≤ E’ or E’ ≤ E == true .
endt

From OBJ to ML to Coq 223

The theory TOSET uses the module BOOL with the keyword protecting implying
two important properties: no new element of sort Bool can exist in the semantics (for
any two elements e,e’ of sort X, e≤e’ must be equal to either true or false), and
no two elements of sort Bool that were semantically different in BOOL can be equated
in TOSET.

th QUEUE[X :: TRIV] is protecting BOOL .
sorts NeQueue Queue .
subsorts Elt < NeQueue < Queue .
op empty : Queue .
op get : NeQueue -> Elt .
op rest : NeQueue -> Queue .
op insert : Elt Queue -> NeQueue .
op eq : Queue Queue -> Bool .
var Q : NeQueue .
eq eq(empty, empty) == true .
eq eq(insert(E, Q), empty) == false .
eq eq(insert(E, Q), insert(E’, Q’) ==

(E == E’) and eq(Q, Q’) .
eq eq(insert(get(Q), rest(Q)), Q) == true .
endt

In the theory of queues, the declaration NeQueue < Queue implies that get and
rest are total on their domain. An alternative is

var Q : NeQueue .
mb Q : Queue .

th PRIOQUE[X :: TRIV, Y :: POSET[X]] is extending
PAIR[X, QUEUE[X]] .

op extract : NeQueue -> Pair .
op ≤ : Elt Queue -> Bool .
var Q : NeQueue .
var E, E’ : Elt .
eq E ≤ nil == true .
eq E ≤ insert(E’, Q) == E ≤.Y E’ and E ≤ Q .
eq extract(insert(E, Q)) == pair(E, Q) if E ≤ Q .
eq extract(insert(E, Q)) == pair(1st(extract(Q)),

insert(E, 2nd(extract(Q)))) if E ≤ Q == false .
endt

Note how models of PRIOQUE alternate loose interpretations (of TRIV, QUEUE and
PRIOQUE) with initial interpretations (of PAIR and BOOL). The role of the PAIR is to
provide a polymorphic pairing construct.

224 Jacek Chrząszcz and Jean-Pierre Jouannaud

Specification of an abstract sorting algorithm based on priority queues.

th LIST[X :: TRIV] is protecting BOOL .
sorts NeList List .
subsorts Elt < NeList < List .
op nil : List .
op : List List -> List [assoc id : nil] .
op head : NeList -> Elt .
op tail : NeList -> List .
var E E’ : Elt .
var L L’ : List .
eq head(E L) == E .
eq tail(E L) == L .
mb L L’ : NeList if L : NeList or L’ : NeList .
endt

th ORDLIST[X :: TRIV, Y :: POSET[X],
Z :: LIST[X]] is

sorts NeOList OList .
subsorts NeOlist < OList < List .
subsorts NeOlist < NeList .
op sorted : List -> Bool .
op sort : List -> OList .
var L L’ L’’ : List .
var E E’ : Elt .
eq sorted(nil) == true .
eq sorted(E) == true .
eq sorted(E E’ L) == E ≤ E’ and sorted(E’ L) .
mb nil : OList .
mb L : NeOList if sorted(L) and L : NeList .
eq sort(L E L’ E’ L’’) == sort(L E’ L’ E L’’) .
eq sort(L) == L if sorted(L) .
endt

Note the subtle use of associativity and identity of concatenation in specifying sort
and sorted.

obj SORT[X :: TRIV, Y :: POSET[X], Z :: PRIOQUE[X, Y]] is
op sort : Queue -> OList .
var Q : NeQueue .
eq sort(empty) == nil .
eq sort(Q) == 1st(extract(Q)) sort(2nd(extract(Q))) .
endo

From OBJ to ML to Coq 225

Concrete algorithms for sorting elements of an ordered set.

view QLIST[X :: TRIV] of LIST[X] as QUEUE[X] .
sort Queue to List .
sort NeQueue to NeList .
op empty to nil
op get to head .
op rest to tail .
op insert to .
endv

This kind of typing assertion implies proof obligations to be checked by the user.
Here, the equation given for insert, get and rest must be verified for their inter-
pretation in LIST. We now construct specific priority queues as views to instantiate the
abstract sorting algorithm.

view PRIOQUE1[X :: TRIV, Y :: POSET[X]] of
PAIR[X, QLIST[X]] as PRIOQUE[X, Y] .

var L L’ : Queue .
var E : Elt .
op extract(L E L’) to pair(E, L L’)

if E ≤ L and E ≤ L’ .
op insert(E, L) to E L .
endv

view PRIOQUE2[X :: TRIV, Y :: POSET[X]] of
PAIR[X, ORDLIST[X, QLIST[X]]] as PRIOQUE[X, Y] .

var L : NeOList .
var L’ : OList .
var E E’ E’’ : Elt .
op extract(L) to pair(head(L), tail(L)) .
op insert : Elt List -> NeList .
eq insert(E, nil) == E .
eq insert(E, E’) == E E’ if E ≤ E’ .
eq insert(E, L E’ E’’ L’) == L E’ E E’’ L’

if E’ ≤ E and E ≤ E’’ .
endv

The module SORT[X, Y, PRIOQUE1[X, Y]] and the module SORT[X, Y,
PRIOQUE2[X, Y]] both inherit a sorting algorithm still parameterized by X, a set,
and Y, an order on that set. Applying further to, for example, the built-in module NAT
of natural numbers having the usual ordering on natural numbers, will generate objects
in which we can run the obtained sorting algorithms.

5 Priority Queues in ML

The ML version of our example is given in the Caml [29] dialect. It is divided into
four parts: the definition of all needed signatures, a simple implementation of priority

226 Jacek Chrząszcz and Jean-Pierre Jouannaud

queues as unsorted lists ListPQ, an implementation of sorting by an abstract priority
queue PQSort and composition of both implementations into a sorting module Sort.

The first file contains the signatures of an ordered type (consisting of a type and an
ordering function), a priority queue and a sorting algorithm. The latter two declare a
submodule E defining the ordering.

module type OrderedType =
sig

type t

(* The type of elements *)
val compare : t → t → int

(* compare a b is smaller than 0 if a is smaller than b, 0 if a=b, and is
larger than 0 if a is larger than b *)

end
module type PrioQueSig =
sig

module E : OrderedType

(* The type and ordering of the elements of the queue *)
type t

(* The type of priority queues *)
(* Operations: *)
val create : t
val insert : E.t → t → t
val extract : t → t * E.t

(* raises Not found if the queue is empty *)
end

module type SortSig =
sig

module E : OrderedType

(* The type and ordering of the elements to sort *)
val sort : E.t list → E.t list

(* The sorting function *)
end

The second file contains the definition of a priority queue based on unordered lists.
We skip the (straightforward) implementation here, the only interesting thing is the
functor’s header:

module ListPQ (O: OrderedType)
: PrioQueSig with module E=O

which says that the module ListPQ is a functor, taking an order O as parameter and
returning a priority queue where the ordering is the same as in O. Note that since the
output signature of this functor is given, its users will only have access to types and
functions specified in this signature. Other types and functions are treated as local and
implementation specific and therefore they will be inaccessible.

From OBJ to ML to Coq 227

The third element is the abstract algorithm, whose implementation is also trivial.
Again the interesting part is the functor’s header, which can have two possible forms.
The first one is the following:

module PQSort1 (O: OrderedType)
(PQ: PrioQueSig with module E=O)

: SortSig with module E=O

Now, in order to obtain the final sorting algorithm one can do it in OCaml in the
following way:

module Sort1 (O: OrderedType)
: SortSig with module E=O
= PQSort1(O)(ListPQ(O))

The module’s output signature is the signature of sorting with respect to the argu-
ment ordering. Its implementation is simply the composition of existing algorithms, all
this under the abstraction with respect to the argument ordering.

There is also a second way of writing the header of the abstract priority queue
sorting algorithm:

module type PQFunctSig
= functor (O’: OrderedType)

→ PrioQueSig with module E=O’

module PQSort2 (O: OrderedType) (PQF: PQFunctSig)
: SortSig with module E=O

The above code fragment consists of two parts: first the functor type is defined,
which corresponds exactly to the specification of ListPQ. Then the sorting algorithm
is presented as a higher-order functor, i.e. a functor which itself takes a functor as a
parameter. Of course, the first line of PQSort2 is the application of PQF to O in order
to get the priority queue PQ, and from this point on the code of both functors is identical.

Higher-order functors are not available in OBJ.
In order to obtain the final sorting algorithm, one applies PQSort2 to ListPQ:

module Sort2 (O: OrderedType)
: SortSig with module E=O
= PQSort2(O)(ListPQ)

The first approach to composing modules is more general than the second, because
one does not necessarily have to use a generic priority queue functor. Consequently the
use of data structures specialized to a given type is possible (e.g. if a set of values is
finite a priority queue can be based on counting elements).

On the other hand, the higher-order functor may correspond better to the intended
way the programmer wishes to use a given part of code in the whole program. This is
exactly our case, since we want to compose PQSortwith the generic ListPQ functor.

228 Jacek Chrząszcz and Jean-Pierre Jouannaud

Of course it is possible to get the advantages of both approaches: write the most
general specification, as in PQSort1, and then wrap it in a higher-order functor, pre-
senting the intentions of the programmer:

module PQSort2’ (O: OrderedType) (PQF: PQFunctSig)
: SortSig with module E=O
= PQSort1(O)(PQF(O)).

6 Priority Queues in Coq

The structure of the Coq development is the same as in ML, but the signatures now
contain formal specifications, and structures contain proofs of desired properties.

The first file, as in ML, contains the definition of all needed signatures. The signa-
tures are preceded by the definition of the type of a three-value proof-carrying compar-
ison: the type comparison t < = a b is for example inhabited by Lt p, where
p is a proof of the property a < b.

Inductive comparison (X : Set) (lt eq : X → X → Prop) (x y : X) : Set :=
| Lt : lt x y → comparison X lt eq x y
| Eq : eq x y → comparison X lt eq x y
| Gt : lt y x → comparison X lt eq x y.

Module Type OrderedType.

Parameter t : Set.

Parameter eq : t → t → Prop.
Parameter lt : t → t → Prop.

Parameter compare : ∀ x y : t, comparison t lt eq x y.

Axiom eq refl : ∀ x : t, eq x x.
Axiom eq sym : ∀ x y : t, eq x y → eq y x.
Axiom eq trans : ∀ x y z : t, eq x y → eq y z → eq x z.

Axiom lt trans : ∀ x y z : t, lt x y → lt y z → lt x z.
Axiom lt not eq : ∀ x y : t, lt x y → ¬ eq x y.

Hint Immediate eq sym.
Hint Resolve eq refl eq trans lt not eq lt trans.

End OrderedType.

Module Type PrioQueSig.

(* Declarations *)
Declare Module E : OrderedType.

Parameter t : Set.

Parameter create : t.
Parameter insert : t → E.t → t.
Parameter extract : t → option (t × E.t).

From OBJ to ML to Coq 229

(* Specification - auxiliary functions and predicates *)

Parameter number : t → E.t → nat .

Definition empty q : Prop := ∀ x, number q x = 0.

(* Queues are similar iff q1 = q2 + {x} *)
Definition similar (q1 q2 : t) (x : E.t) : Prop :=

(∀ y : E.t, ¬ E.eq x y → number q1 y = number q2 y)
∧ (∀ y : E.t, E.eq x y → number q1 y = S (number q2 y)).

(* Specification of operations *)

Axiom create empty : empty create.

Axiom insert similar :
∀ (q : t) (x : E.t), similar (insert q x) q x.

Axiom extract similar :
∀ (q q2 : t) (x : E.t),

extract q = Some (q2, x) → similar q q2 x.

Axiom extract minimal :
∀ (q q2 : t) (x y : E.t),

extract q = Some (q2, x) → E.lt y x → number q y = 0.

Axiom extract empty none :
∀ q : t, extract q = None → empty q.

End PrioQueSig.

Module Type SortSig.

Declare Module E : OrderedType.

Parameter sort : list E.t → list E.t.

Definition le e1 e2 := E.lt e1 e2 ∨ E.eq e1 e2.
Axiom sort sorted : ∀ l : list E.t, Sorting.sort le (sort l).

Axiom eq dec : ∀ e1 e2 : E.t, {E.eq e1 e2} + { ¬ E.eq e1 e2}.
Axiom sort permut :
∀ l : list E.t, Permutation.permutation E.eq eq dec l (sort l).

End SortSig.

The signature OrderedType, taken from [13], contains the same calculable elements
as its ML counterpart, but is constructed differently. Its main elements are the type and
the equality and ordering predicates (i.e. logical elements). The function compare is
only an addition to the predicates. Instead of an int, the compare function returns
an element of the comparison type defined earlier, i.e. the ordering decision together
with the proof that the decision is right.

Apart from this, the OrderedType signature contains axioms specifying the prop-
erties of ordering and equality and hints to instrument automatic tactics, trying to prove
properties concerned with the order. The latter element is of course not part of the type
theory.

The priority queue signature is also divided into two parts: declarations and speci-
fications. The declarations contain the same elements as in ML with the only exception

230 Jacek Chrząszcz and Jean-Pierre Jouannaud

of the extract function, which returns an option type, i.e. Some value if the queue is
not empty and None otherwise (instead of raising an exception). Note, however, that in
order to specify the queue operations one must declare additional functions, counting
the number of occurrences of a given element in the queue. Based on this function,
two predicates empty and similar can easily be defined in order to write the purely
logical axioms specifying how create, insert and extract work.

The signature of a sorting algorithm is simply an extension of its ML counterpart by
the logical axioms, saying that the list resulting from sorting is sorted and is a permu-
tation of the input list. The Sorting.sort and Permutation.permutation
predicates from the Coq standard library need additional elements such as less than or
equal predicate le or equality decidability property eq dec.

In the second file, the header of ListPQ is the following:

Module ListPQ (O: OrderedType) <: (PrioQueSig with Module E:=O).

The difference between the ML and Coq versions of this functor is the way the resulting
module type is declared. The Coq syntax Module M <: SIG means that the type checker
should check that the principal signature of M is included in SIG and the users of M
are allowed to use all the information inferred in its principal signature. We say that
this module type annotation is transparent as opposed to the opaque one that was used
in the ML version. The fact the transparent annotation is used is only important for
evaluation of programs inside Coq, such as Eval compute in (sort l), see below. Thanks
to transparency the reduction mechanism can see the definitions of all functions and
evaluate them. For typechecking reasons the opaque module type annotations would be
equally good.

In Coq, we also have two possibilities of writing the PQSort functor. The header of
the first-order one is as follows:

Module PQSort1 (O: OrderedType)
(PQ: PrioQueSig with Module E := O)

<: SortSig with Module E := O.

Unfortunately, due to the requirement that functors are applied only to names of mod-
ules, and the lack of local module bindings, the composition of PQSort1 and ListPQ is
somewhat lengthy:

Module Sort1 (O: OrderedType) <: (SortSig with Module E:=O).
Module ListPQ O := ListPQ O.
Module PQSort O := PQSort1 O ListPQ O.
(* Include PQSort O. *)
Module E := PQSort O.E.
Definition sort := PQSort O.sort.
Definition le := PQSort O.le.
Definition sort sorted := PQSort O.sort sorted.
Definition eq dec := PQSort O.eq dec.
Definition sort permut := PQSort O.sort permut.

End Sort1.

From OBJ to ML to Coq 231

Now we can apply the functor to an example module NatOrder and test the sorting!

Module NatSort1 <: (SortSig with Module E:=NatOrder)
:= Sort1 NatOrder.

Eval compute in (NatSort1.sort (4::5::1::2::nil)).

The higher-order way of writing PQSort

Module Type PQFunctSig (O’ : OrderedType)
:= PrioQueSig with Module E := O’.

Module PQSort2 (O: OrderedType) (PQF: PQFunctSig)
<: SortSig with Module E := O.

starting with the creation of the priority queue for O:

Module PQ := PQF O.
leads to a much simpler composition code:

Module Sort2 (O: OrderedType)
<: SortSig with Module E:=O
:= PQSort2 O ListPQ.

Unfortunately, due to a certain weakness of the Coq module system with respect to
transparency of higher-order functors, the instances of the PQSort2 functor cannot be
evaluated inside Coq. However, the ML code extracted from both functors can of course
be evaluated without any problems.

To summarize, it is interesting to compare the size of ML and Coq code. It follows
that Coq signatures with specifications by logical formulas are about 2-3 times longer
than their commented ML counterparts. Unfortunately, the implementations, which in
Coq contain proofs of required properties, are about 10-20 times longer than the corre-
sponding ML code.

7 Conclusion

We have presented three languages which integrate specification and implementation.
With the simple example of an abstract sorting algorithm based on a priority queue, we
demonstrate how each of the three languages can be used for programming in the large
by writing specifications, implementations and by composing abstract components. In
particular, we want to stress that parameterization should be available for all kinds of
modules.

We have seen that the most important concepts of the OBJ modules are still present
in more recent systems such as ML and Coq. Indeed, OBJ objects correspond to struc-
tures, parametric objects to functors and OBJ theories to signatures. Only the parametric
OBJ theories do not have direct representatives in the ML and Coq module systems, but
abstract signatures can easily be refined to concrete ones using the “with” notation. On
the other hand, higher-order modules are lacking in OBJ. Although they are not much
used in practice, our example shows their adequacy to describing dependencies on other
parametric components.

232 Jacek Chrząszcz and Jean-Pierre Jouannaud

Concerning the ability of these languages to specify and implement software com-
ponents, OBJ lies somewhere between ML and Coq. In ML, specifications are sim-
ply given as types for functions, and execution is based on an efficient call-by-value
evaluation strategy. In OBJ, one can write first-order equational and membership spec-
ifications that are executable via an efficient built-in associative-commutative rewrit-
ing mechanism guided by user-defined strategies. In Coq, the specification language
is higher-order predicate logic, which is by far the most expressive of the three. This
makes it possible to write a specification, implement it, prove that the implementation
is correct, run the implementation inside Coq and even extract the program into an exe-
cutable ML code. Some of these steps may of course involve complex, lengthy machine
computations.

The question arises of which language is best suited for fast prototyping. If no veri-
fication is needed, the answer would probably be ML. Separating signatures from their
actual implementation is just very neat, and allows a two steps development methodol-
ogy which does not require much interaction between these two phases unless there are
major design errors. Because OBJ modules provide at the same time with an interface
and logical requirements for the interface, specification and coding are no more clearly
separated. The development process becomes more complicated, going back and forth
between different pieces of the code. A comparison with Coq is more difficult, since
Coq gives you a lot more: while it is possible in OBJ to forget about the proof obliga-
tions generated when typing modules, this is not the case with Coq. A consequence is
that every change requires tedious adjustments of the proofs.

Acknowledgments: We thank Andrzej Gąsienica-Samek and Tomasz Stachowicz
for their help with the Coq development, Pierre-Yves Strub for checking preliminary
versions of the OBJ development in Maude, and the referee for many valuable com-
ments.

References

1. The Agda proof assistant. http://www.cs.chalmers.se/~catarina/agda/.
2. Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Marian

Vittek. ELAN: A logical framework based on computational systems. In J. Meseguer, editor,
1st International Workshop on Rewriting Logic and its Applications, Electronic Notes in
Theoretical Computer Science 4, 1996.

3. Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 1999.

4. Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inher-
itance. PhD thesis, Dept. of Computer Science, University of Utah, 1992.

5. Gerth Stolting Brodal and Chris Okasaki. Optimal purely functional priority queues. Journal
of Functional Programming, 6(6):839–857, 1996.

6. Rod M. Burstall and Joseph A. Goguen. Putting theories together to make specifica-
tions. In Proc. 5th International Joint Conference of Artificial Intelligence, Cambridge Mas-
sachusetts, pages 1045–1058, Edinburgh University, 1977.

7. Rod M. Burstall and Joseph A. Goguen. The semantics of CLEAR, a specification language.
In 1979 Copenhagen Winter School on Abstract Software Specification, volume 86 of LNCS.
Springer-Verlag, 1980.

From OBJ to ML to Coq 233

8. Jacek Chrząszcz. Modules in Coq are and will be correct. In Stefano Berardi, Mario Coppo,
and Ferruccio Damiani, editors, Types for Proofs and Programs, International Workshop,
TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers, volume 3085
of LNCS, pages 130–146. Springer, 2004.

9. Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles of Maude. In
J. Meseguer, editor, 1st International Workshop on Rewriting Logic and its Applications,
Electronic Notes in Theoretical Computer Science 4, 1996.

10. The Coq proof assistant. http://coq.inria.fr/.
11. Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Compu-

tation, 76:95–120, February 1988.
12. Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In P. Martin-Löf

and G. Mints, editors, COLOG-88: International conference on computer logic, volume 417
of LNCS. Springer-Verlag, 1990.

13. Jean-Christophe Filliâtre and Pierre Letouzey. Functors for Proofs and Programs. In Euro-
pean Symposium on Programming, volume 2986 of LNCS, pages 370–384, Barcelona, Spain,
April 2004. Springer-Verlag.

14. Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and José Meseguer. Principles
of OBJ2. In Proc. 12th ACM Symp. on Principles of Programming Languages, New Orleans,
1985.

15. J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specifica-
tion, correctness and implementation of abstract data types. In Current Trends in Program-
ming Methodology, vol. 4, pages 80–149. Prentice Hall, 1978.

16. J. A. Goguen, J. W. Thatcher, E. W. Wagner, and J. B. Wright. Initial algebra semantics and
continuous algebra. Journal of the ACM, 24(1):68–95, January 1977.

17. Joseph A. Goguen and Joseph J. Tardo. An introduction to obj, a language for writing and
testing formal algebraic specifications. In Specification of Reliable Software Conference,
pages 170–189, April 1979.

18. Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud. Applications of Algebraic Specifications Using OBJ, chapter Introducing OBJ*.
Cambridge University Press, 1993. D. Coleman, R. Gallimore and J. A. Goguen, eds.

19. Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In D. Le
Métayer, editor, Programming Languages and Systems, ESOP’2002, volume 2305 of LNCS,
pages 6–20. Springer-Verlag, 2002.

20. Claude Kirchner, Hélène Kirchner, and José Meseguer. Operational semantics of OBJ3. In
15th International Conference on Automata, Languages and Programming, volume 317 of
LNCS, pages 287–301. Springer-Verlag, 1988.

21. The LEGO proof assistant. http://www.dcs.ed.ac.uk/home/lego/.
22. Zhaohui Luo. ECC an Extended Calculus of Constructions. In 4th Symposium on Logic in

Computer Science, Pacific Grove, California, 1989.
23. David MacQueen. Theory and practice of higher-order type systems or the Standard ML

type system. Copy of Transparencies.
24. Lena Magnusson and Bengt Nordström. The alf proof editor and its proof engine. In

H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs, volume 806 of LNCS,
pages 213–237. Springer-Verlag, 1993.

25. Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.
Sheperdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic, pages 73–118.
North-Holland, 1975.

26. Per Martin-Löf. Intuitionistic Type Theory. Biblioplois, Napoli, 1984. Notes of Giowanni
Sambin on a series of lectues given in Padova.

27. Robert Milner. A theory of type polymorphism programming. Journal of Computer and
System Sciences, 17, 1978.

234 Jacek Chrząszcz and Jean-Pierre Jouannaud

28. Shin Nakajima and Kokichi Futatsugi. An object-oriented modeling method for algebraic
specifications in Cafe OBJ. In 19th International Conference on Software Engineering, pages
34–44. ACM Press, 1997.

29. The Objective Caml language. http://caml.inria.fr/.
30. Pierre Weis et al. The CAML reference manual. Rapport de Recherche 121, INRIA, 1990.
31. Benjamin Werner. Méta-théorie du Calcul des Constructions Inductives. PhD thesis, Univ.

Paris VII, 1994.

Weak Adhesive High-Level

Replacement Categories and Systems:
A Unifying Framework for Graph and

Petri Net Transformations

Hartmut Ehrig and Ulrike Prange

Technical University of Berlin, Germany
ehrig|uprange@cs.tu-berlin.de

Abstract. Adhesive high-level replacement (HLR) systems have been
recently introduced as a new categorical framework for graph tranfor-
mation in the double pushout (DPO) approach. They combine the well-
known concept of HLR systems with the concept of adhesive categories
introduced by Lack and Sobociński.
While graphs, typed graphs, attributed graphs and several other variants
of graphs together with corresponding morphisms are adhesive HLR cat-
egories, such that the categorical framework of adhesive HLR systems
can be applied, this has been claimed also for Petri nets. In this paper
we show that this claim is wrong for place/transition nets and algebraic
high-level nets, although several results of the theory for adhesive HLR
systems are known to be true for the corresponding Petri net transfor-
mation systems.
In fact, we are able to define a weaker version of adhesive HLR categories,
called weak adhesive HLR categories, which is still sufficient to show all
the results known for adhesive HLR systems. This concept includes not
only all kinds of graphs mentioned above, but also place/transition nets,
algebraic high-level nets and several other kinds of Petri nets. For this
reason weak adhesive HLR systems can be seen as a unifying framework
for graph and Petri net transformations.

1 Introduction

The use of categorical techniques for unifying frameworks in Computer Science
has a long tradition. In the early 1970ies the concept of closed monoidal cat-
egories was proposed by Goguen in [1] as a unifying framework for different
kinds of deterministic automata. An extension of this framework to nondeter-
ministic and stochastic automata using pseudo-closed categories was presented
in [2]. Other important examples are the unifying frameworks of institutions
and specification frames respectively. This first framework is based on a categor-
ical treatment of signatures, models and sentences introduced by Goguen and
Burstall [3], and the second one in [4] combines directly signatures and sentences
to specifications. In both cases we obtain a unifying framework for all kinds of
algebraic and logical specification techniques.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 235–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

236 Hartmut Ehrig and Ulrike Prange

Most recently the unifying framework of adhesive high-level replacement
(HLR) systems for different kinds of graph transformation systems has been
introduced in [5, 6]. The corresponding concept of adhesive HLR categories in-
tegrates those of HLR categories in [7] and adhesive categories by Lack and
Sobociński [8], which was later extended to quasi-adhesive categories [9]. The
concept of adhesive categories requires the existence of pushouts along monomor-
phisms and pullbacks, and the property that pushouts along monomorphisms
are van Kampen (VK) squares. Roughly spoken the last property means that
pushouts are stable under pullbacks and vice versa pullbacks are stable under
combined pushouts and pullbacks. In the case of adhesive HLR categories the
class of all monomorphisms is replaced by a subclass M of monomorphisms
closed under composition and decomposition and the existence of all pullbacks
by pullbacks along M-morphisms. In [5, 6] it is shown that there is a unifying
framework of adhesive HLR systems for graph transformation systems based on
the double pushout (DPO) approach [10] concerning a large variety of different
graph concepts, like labeled graphs, typed graphs, attributed graphs, typed at-
tributed graphs and hypergraphs. The key idea is to show that adhesive HLR
categories satisfy a number of different properties, called HLR properties, which
are used in [7] to prove important results like the Local Church-Rosser Theorem,
the Parallelism Theorem and the Concurrency Theorem. This was first shown
for adhesive categories in [8] for the class M of all monomorphisms and later
extended to adhesive HLR categories in [5, 6] and to quasiadhesive categories in
[9], where M is the class of all regular monomorphisms.

The idea to apply the DPO approach to Petri nets was first considered for
place/transition nets in [7] and for algebraic high-level nets in [11]. In [5] we
have claimed that the category (PTNets, M) of place/transition nets with the
class M of all injective morphisms is an adhesive HLR category in order to
apply the general theory of adhesive HLR systems also to place/transition nets.
Unfortunately this claim is wrong as we show in this paper. The reason is that
PTNets has general pullbacks, but pullbacks in general cannot be constructed
componentwise in Sets. However, pullbacks along monomorphisms in PTNets
can be constructed componentwise in Sets. This is the key idea to weaken the
concept of adhesive HLR categories using weak VK squares, such that (PTNets,
M) is a weak adhesive HLR category, and nevertheless this weaker concept
still allows to verify the HLR properties used in [7, 5, 6] to prove under some
additional assumptions the following main results:
1. Local Church-Rosser Theorem,
2. Parallelism Theorem,
3. Concurrency Theorem,
4. Embedding and Extension Theorem,
5. Local Confluence Theorem - Critical Pair Lemma.

In this paper we show for elementary nets, place/transition nets and algebraic
high-level nets that they are weak adhesive HLR categories for a suitable class of
morphisms. In [5, 6] we have shown already that adhesive HLR categories satisfy
the HLR properties to prove the main results stated above. In this paper we show

Weak Adhesive High-Level Replacement Categories and Systems 237

that this is already true for weak adhesive HLR categories. This implies that the
main results are also true for different kinds of Petri net transformation systems
including elementary, place/transition and algebraic high-level nets. Note, that
in contrast to the ”classical” theory of Petri nets and systems based on the token
game, where the structure of the nets remains unchanged, the theory of Petri net
transformations allows not only the token game, but also to change the structure
of the nets. In this sense weak adhesive HLR categories can be seen as a unifying
framework not only for graph but also for Petri net transformations.

This paper is organized as follows:
In Section 2 we review adhesive and adhesive HLR categories as introduced in [8]
and [5]. In Section 3 we extend these concepts to weak adhesive HLR categories
and systems. This is the basis to define Petri net transformation systems as an
instance of weak adhesive HLR systems in Section 4.

Acknowledgement

This paper is a contribution to a special issue of Springer LNCS as a Festschrift
on the occasion of the 65th birthday of J.A. Goguen. We are glad to announce
that the important contributions of J.A. Goguen concerning categorical unifying
frameworks for different areas in Computer Science have mainly influenced the
school in Berlin leading to similar ones and also to the new unifying framework
for graph transformation published recently and for Petri net transformation
presented in this paper.

2 Review of Adhesive and Adhesive HLR Categories

The intuitive idea of adhesive categories are categories with suitable pushouts
and pullbacks which are compatible with each other. More precisely the definition
is based on so-called van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is sta-
ble under pullbacks, and vice versa that pullbacks are stable under combined
pushouts and pullbacks. The name van Kampen derives from the relationship
between these squares and the Van Kampen Theorem in topology (see [12]).

Definition 1 (van Kampen square). A pushout (1) is a van Kampen square,
if for any commutative cube (2) with (1) in the bottom and the back faces being
pullbacks holds: the top face is a pushout iff the front faces are pullbacks.

A′

B′

A

B

C′

D′

C

D

(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

(1)

m

f

n

g

238 Hartmut Ehrig and Ulrike Prange

It might be expected that at least in the category Sets of sets and functions
each pushout is a van Kampen square. Unfortunately this is not true (see Ex.
1). But at least pushouts along monomorphisms (injective functions) are VK
squares (see [8, 9]).

Fact 1 (VK squares in Sets). In Sets, each pushout along a monomorphism
is a VK square. Pushout (1) is called a pushout along a monomorphism, if m
(or symmetrically f) is a monomorphism.

Example 1 (VK squares in Sets). In the following diagram on the left hand side
a VK square along an injective function in Sets is shown. All morphisms are
inclusions, or 0 and 1 are mapped to ∗ and 3 to 2.

Arbitrary pushouts are stable under pullbacks in Sets. That means, one
direction of the VK square property is also valid for arbitrary morphisms. But
the other direction is not necessarily fulfilled. The cube on the right hand side
is such a counterexample for arbitrary functions: all faces commute, the bottom
and the top are pushouts and the back faces are pullbacks. But obviously the
front faces are no pullbacks, therefore the pushout in the bottom fails to be a
VK square.

{0, 1}

{0, 1, 2, 3}

{0, 1}

{0, 1, 2}

{∗}

{∗, 2, 3}

{∗}

{∗, 2}

{0, 1} × {0, 1}

{0, 1}

{0, 1}

{∗}

{0, 1}

{∗}

{∗}

{∗}

π2

+mod2

π1

#

In the following definition of adhesive categories only those VK squares of
Def. 1 are considered where m is a monomorphism. According to Lack and
Sobociński [8] we define

Definition 2 (adhesive category). A category C is an adhesive category, if

1. C has pushouts along monomorphisms (i.e. pushouts, where at least one of
the given morphisms is a monomorphism),

2. C has pullbacks,
3. pushouts along monomorphisms are VK squares.

Let us first consider some basic examples and counterexamples for adhesive
categories (see [8]).

Weak Adhesive High-Level Replacement Categories and Systems 239

Fact 2 (Sets, Graphs, GraphsTG as adhesive categories). The categories
Sets of sets and functions, Graphs of graphs and graph morphisms and
GraphsTG of typed graphs and typed graph morphisms are adhesive categories.

Counterexample 2 (non-adhesive categories). For example, the category Posets
of partially ordered sets and the category Top of topological spaces and con-
tinuous functions are not adhesive categories. In the following diagram a cube
in Posets is shown that fails to be a van Kampen square. The bottom is a
pushout with injective functions (monomorphisms) and all lateral faces are pull-
backs, but the top square is no pushout in Posets. The proper pushout over the
corresponding morphisms is the square (1).

3

2 → 3

1 → 3

1 → 2 → 3

0 → 3

0 → 2 → 3

0 → 1 → 3

0 → 1 → 2 → 3

3 2 → 3

0 → 3
0 ↘
2 ↗ 3

(1)

#

Remark 1. In [9] Lack and Sobociński have also introduced a variant of adhesive
categories, called quasiadhesive categories, where the class of monomorphisms in
Def. 2 is replaced by regular monomorphisms. A monomorphism is called regular,
if it is the equalizer of two morphisms. For adhesive and also for quasiadhesive
categories Lack and Sobociński have shown, that all the HLR properties, shown
for adhesive HLR categories in Thm. 2 below, are valid. This allows to prove
several important results of graph transformation systems in the framework of
adhesive and also of quasiadhesive categories. On the other hand adhesive and
also quasiadhesive categories are special cases of adhesive HLR categories (C,M)
(see Def. 3 below), where the class M is specialized to the class of all monos and
of all regular monos respectively.

The main difference between adhesive HLR categories and adhesive categories
is that a distinguished class M of monomorphisms is considered instead of all
monomorphisms, so that only pushouts along M-morphisms have to be VK
squares. Moreover, only pullbacks along M-morphisms and not over arbitrary
morphisms are required (see [5, 6]).

Definition 3 (adhesive HLR category). A category C with a morphism
class M is called an adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms, composition
(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M) and decomposition
(g ◦ f ∈ M, g ∈ M ⇒ f ∈ M),

240 Hartmut Ehrig and Ulrike Prange

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks,

3. pushouts in C along M-morphisms are VK squares.

Remark 2. M-morphisms are closed under pushouts if, for a pushout (1) in Def.
1, m ∈ M implies that n ∈ M. Analogously, M-morphisms are closed under
pullbacks if, for a pullback (1), n ∈ M implies that m ∈ M.

Example 3 (adhesive HLR categories).

– All adhesive categories are adhesive HLR categories for the class M of all
monomorphisms.

– The category (HyperGraphs, M) of hypergraphs with the class M of
injective hypergraph morphisms is an adhesive HLR category.

– Another example for an adhesive HLR category is the category (Sig, M) of
algebraic signatures with the class M of all injective signature morphisms.

– The category (ElemNets, M) of elementary Petri nets with the class M of
all injective Petri net morphisms is an adhesive HLR category (see Fact 3).

– An important example of an adhesive HLR category is the category
(AGraphsATG, M) of typed attributed graphs with a type graph ATG
and the class M of all injective morphisms with isomorphisms on the data
part.
#

Counterexample 4 (non-adhesive HLR categories). The categories (PTNets,
M) of place/transition nets and (Spec, M) of algebraic specifications, where
M is the class of all the corresponding monomorphisms, fail to be adhesive HLR
categories (see Ex. 6).
#

3 Weak Adhesive HLR Categories and Systems

As pointed out in Counterex. 4 the category (PTNets, M) of place/transition
nets with the class M of all monomorphisms fails to be an adhesive HLR cat-
egory. For this reason we introduce now a slightly weaker version, called weak
adhesive HLR category.

For a weak adhesive HLR category we only soften item 3 in Def. 3, so that
only special cubes are considered for the VK square property.

Definition 4 (weak adhesive HLR category). A category C with a mor-
phism class M is called a weak adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms, composition
and decomposition,

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks,

Weak Adhesive High-Level Replacement Categories and Systems 241

3. pushouts in C along M-morphisms are weak VK squares, i.e. the VK square
property holds for all commutative cubes with m ∈ M and (f ∈ M or
b, c, d ∈ M) (see Def. 1).

Remark 3. For the weak version of the VK square property it is sufficient to
require f ∈ M or b, c, d ∈ M. In both cases this makes sure that the pullback
squares in the cube are pullbacks along M-morphisms.

Example 5 (weak adhesive HLR categories).

– All adhesive HLR categories are weak adhesive HLR categories.
– The category (PTNets, M) of place/transition nets with the class M of all

monomorphisms is a weak adhesive HLR category (see Fact 4).
– Similarly the category AHLNets(SP,A) of algebraic high-level nets with

fixed specification SP and algebra A considered with the class M of injective
morphisms is a weak adhesive HLR category (see Fact 5).

– An interesting example of high-level structures, which are not graph-like, are
algebraic specifications (see [13]). The category (Spec, Mstrict) of algebraic
specifications with the class Mstrict of all strict injective specification mor-
phisms is a weak adhesive HLR category.
#

Similar to adhesive HLR categories also weak adhesive HLR categories are
closed under product, slice, coslice, functor and comma category constructions.
That means we can construct new weak adhesive HLR categories from given
ones.

Theorem 1 (construction of weak adhesive HLR categories). Weak ad-
hesive HLR categories can be constructed as follows:

1. If (C, M1) and (D, M2) are weak adhesive HLR categories, then the product
category (C × D, M1 ×M2) is a weak adhesive HLR category.

2. If (C, M) is a weak adhesive HLR category, so are the slice category (C\X,
M ∩ C\X) and the coslice category (X\C, M ∩ X\C) for any object X
in C.

3. If (C, M) is a weak adhesive HLR category, then for every category X the
functor category ([X, C], M-functor transformations) is a weak adhesive
HLR category. An M-functor transformation is a natural transformation
t : F → G where all morphisms tX : F (X) → G(X) are in M.

4. If (A, M1) and (B, M2) are weak adhesive HLR categories and F : A → C,
G : B → C are functors, where F preserves pushouts along M1-morphisms
and G preserves pullbacks (along M2-morphisms), then the comma category
(ComCat(F,G; I), M) with M = (M1×M2)∩MorComCat(F,G;I) is a weak
adhesive HLR category .

In the following theorem we show several important properties for weak ad-
hesive HLR categories, which are essential to prove the main results in Cor. 1.
These properties have been required as HLR properties in [7] to show some of

242 Hartmut Ehrig and Ulrike Prange

the main results for HLR systems. In [8], it was shown already that these HLR
properties are valid for adhesive categories. They were extended to adhesive HLR
categories in [5], and now also for weak adhesive HLR categories using almost
the same proofs.

Theorem 2 (properties of weak adhesive HLR categories). Given a weak
adhesive HLR category (C, M), then the following properties hold:

1. Pushouts along M-morphisms are pullbacks: Given the following pushout
(1) with k ∈ M, then (1) is also a pullback.

2. M pushout-pullback decomposition lemma: Given the following commuta-
tive diagram with (1)+(2) being a pushout, (2) a pullback, w ∈ M and
(l ∈ M or u ∈ M). Then (1) and (2) are pushouts and also pullbacks.

3. Cube pushout-pullback lemma: Given the following commutative cube (3),
where all morphisms in the top and in the bottom are in M, the top is a
pullback and the front faces are pushouts. Then we have: the bottom is a
pullback iff the back faces of the cube are pushouts.

A′

B′

A

B

C′

D′

C

D(3)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

E

F

(1) (2)

k

l

u

s

r

w

v

4. Uniqueness of pushout complements: Given k : A→ B ∈ M and s : B → D
then there is up to isomorphism at most one C with l : A→ C and u : C → D
such that (1) is a pushout.

Now we are able to generalize graph transformation systems, grammars and
languages in the sense of [10] based on the category Graphs to weak adhesive
HLR categories, which was already done for HLR, adhesive and adhesive HLR
categories in [7], [8] and [5] respectively.

In general, a weak adhesive HLR system is based on productions, also called
rules, that describe in an abstract way how objects in this system can be trans-
formed. An application of a production is called direct transformation and de-
scribes how an object is actually changed by the production. A sequence of these
applications yields a transformation.

Definition 5 (production and transformation). Given a weak adhesive
HLR category (C, M), a production p = (L l← K

r→ R) (also called rule)
consists of three objects L, K and R called left hand side, gluing object and right
hand side respectively, and morphisms l : K → L, r : K → R with l, r ∈ M.

Given a production p = (L l← K
r→ R) and an object G with a morphism

m : L→ G, called match. A direct transformation G
p,m
=⇒ H from G to an object

H is given by the following diagram, where (1) and (2) are pushouts.

Weak Adhesive High-Level Replacement Categories and Systems 243

L K R

G D H

(1) (2)

l r

m k n

f g

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct transformations is called a trans-
formation and is denoted as G0

∗⇒ Gn. For n = 0, we have the identical trans-
formation G0

id⇒ G0, i.e. f = g = idG0 . Moreover, we allow for n = 0 also
isomorphisms G0

∼= G′
0, because pushouts and hence also direct transformations

are only unique up to isomorphism.

Definition 6 (weak adhesive HLR system, grammar and language). A
weak adhesive HLR system AHS = (C,M, P) consists of a weak adhesive HLR
category (C, M) and a set of productions P .

A weak adhesive HLR grammar AHG = (AHS, S) is a weak adhesive HLR
system together with a distinguished start object S.

The language L of a weak adhesive HLR grammar is defined by L = {G | ∃
transformation S

∗⇒ G}.

In [5, 6] it is shown that the HLR properties stated in Thm. 2 together
with binary coproducts compatible with M are sufficient to prove the following
main results for adhesive HLR systems. Hence we also have the following main
results for weak adhesive HLR systems which are stated explicitely in [7] for
HLR systems and in [5, 6] for adhesive HLR systems.

Corollary 1 (main results for weak adhesive HLR systems). Given a
weak adhesive HLR system with binary coproducts compatible with M (i.e. f, g ∈
M ⇒ f + g ∈ M), then we have the following results:

1. Local Church-Rosser Theorem,
2. Parallelism Theorem,
3. Concurrency Theorem.

The Local Church-Rosser Theorem allows one to apply two graph transfor-
mations G⇒ H1 via p1 and G⇒ H2 via p2 in an arbitrary order leading to the
same result H , provided that they are parallel independent. In this case they can
also be applied in parallel, leading to a parallel graph transformation G ⇒ H
via the parallel production p1 + p2. This second main result is called the Paral-
lelism Theorem. The Concurrency Theorem is concerned with the simultanous
execution of causally dependent transformations.

4 Petri Net Transformation Systems

Petri net transformation systems have been first introduced in [7] for the case
of low-level nets and in [11] for high-level nets using the algebraic presentation

244 Hartmut Ehrig and Ulrike Prange

of Petri nets as monoids as introduced in [14]. The main idea of Petri net trans-
formation systems is to extend the well-known theory of Petri nets based on the
token game by general techniques which allow to change also the net structure
of Petri nets. In [15], a systematic study of Petri net transformation systems has
been presented in the categorical framework of abstract Petri nets, which can
be instantiated to different kinds of low-level and high-level Petri nets. In this
chapter we show that the category (ElemNets, M) of elementary Petri nets is
an adhesive HLR category (see Fact 3) and that the categories (PTNets, M) of
place/transition nets and (AHLNets(SP,A), M) of algebraic high-level nets
over (SP,A) are weak adhesive HLR categories (see Fact 4 and 5). The corre-
sponding instantiations of weak adhesive HLR systems lead to different kinds of
Petri net transformation systems.

In the following we present a simple grammar ENGG (elementary net graph
grammar) for elementary Petri nets, which allows to generate all elementary
nets. The start net S of ENGG is empty. We have a production addP lace to
create a new place p and productions addTrans(n,m) for n,m ∈ N to create a
transition with n input and m output places.

addP lace:

∅ ∅ p

addTrans(n,m):

p1 ... pn

q1 ... qm

p1 ... pn

q1 ... qm

p1 ... pn

q1 ... qm

The grammar ENGG can be modified to a grammar PTGG (place/transition
net graph grammar) for place/transition nets if we replace the productions
addTrans(n,m) by productions addTrans(n,m)(i1, ..., in, o1, ..., om), where
i1, ..., in resp. o1, ..., om correspond to the arc weights of the input places p1, ..., pn

resp. the output places q1, ..., qm.

Definition 7 (elementary Petri net). An elementary Petri net is given by
N = (P, T, pre, post : T → P(P)) with a set P of places, T of transitions
and pre- and post-domain functions pre, post : T → P(P), where P(P) is the
power set of P . A morphism f : N → N ′ in ElemNets is given by f = (fP :
P → P ′, fT : T → T ′) compatible with the pre- and post-domain function, i.e.
pre′ ◦ fT = P(fP) ◦ pre and post′ ◦ fT = P(fP) ◦ post.

Fact 3 (elementary Petri nets as adhesive HLR category). The category
(ElemNets, M) of elementary Petri nets is an adhesive HLR category, where
M is the class of all injective morphisms.

Proof idea. The category ElemNets is isomorphic to the comma category
ComCat(IDSets,P ; I), where P : Sets → Sets is the power set functor and

Weak Adhesive High-Level Replacement Categories and Systems 245

I = {1, 2}. According to Thm. 1.4 it suffices to note that P : Sets → Sets pre-
serves pullbacks using the fact that (Sets, M) is an adhesive HLR category.
#

Definition 8 (place/transition net). According to [14] a place/transition net
N = (P, T, pre, post : T → P⊕) is given by a set P of places, a set T of transi-
tions, as well as pre- and post-domain functions pre, post : T → P⊕, where P⊕

is the free commutative monoid over P . A morphism f : N → N ′ in PTNets
is given by f = (fP : P → P ′, fT : T → T ′) compatible with the pre- and
post-domain functions, i.e. pre′ ◦ fT = f⊕

P ◦ pre and post′ ◦ fT = f⊕
P ◦ post.

Fact 4 (place/transition nets as weak adhesive HLR category). The cat-
egory (PTNets, M) of place/transition nets is a weak adhesive HLR category,
but not an adhesive HLR category, if M is the class of all injective morphisms.

Proof idea. The category PTNets is isomorphic to the comma category
ComCat(IDSets,�⊕; I) with I = {1, 2}, where �⊕ : Sets → Sets is the
free commutative monoid functor. According to Thm. 1.4 it suffices to note
�⊕ : Sets → Sets preserves pullbacks along injective morphisms using the fact
that (Sets, M) is a weak adhesive HLR category. This implies that (PTNets,
M) is a weak adhesive HLR category.

It remains to show that (PTNets, M) is not an adhesive HLR category. This
is due to the fact, that �⊕ : Sets → Sets does not preserve general pullbacks.
This would imply that pullbacks in PTNets are constructed componentwise for
places and transitions. In fact, in Ex. 6 we present a non-injective pullback in
PTNets, where the transition component is not a pullback in Sets, and a cube
which violates the VK properties of adhesive HLR categories.
#

Example 6 (non-VK square in PTNets). The square (1) in Fig. 1 with non-
injective morphisms g1, g2, p1, p2 is a pullback in the category PTNets, where
the transition component is not a pullback in Sets. In the cube in Fig. 1 the
bottom square is a pushout in PTNets along an injective morphism m ∈ M, all
side squares are pullbacks, but the top square is no pushout in PTNets. Hence
we have a counterexample for the VK property.
#

In the following we combine algebraic specifications with Petri nets leading to
algebraic high-level (AHL) nets (see [11]). For simplicity we fix the correspond-
ing algebraic specification SP and the SP -algebra A. For the more general case,
where also morphisms between different specifications and algebras are allowed,
we refer to [11]. Under suitable restrictions for the morphisms we also obtain a
weak adhesive HLR category in the more general case (see [15] for HLR proper-
ties of high-level abstract Petri nets).

Intuitively, an AHL net is a Petri net, where ordinary, uniform tokens are
replaced by data elements from the given algebra. Firing a transition t means to
remove some data elements from the input places and add some data elements,
computed by term evaluation, to the output places of t. There could be also some

246 Hartmut Ehrig and Ulrike Prange

t0

t′0

1,1′

1,2′

2,2′

2,1′

t1

1 2

t2

1′ 2′

t3

p

2

(1)

A B

C D

p1

p2

g2

g1

t0

t′0

1,1′

1,2′

2,2′

2,1′

t1

1 2

t2

1′ 2′ t3

p

2

1,1′

1,2′

2,2′

2,1′
1 2

1′ 2′

1m

p1

p2

g2

g1

Fig. 1. A pullback and a non-VK square in PTNets

firing conditions to restrict the firing behaviour of a transition. In addition, a
typing of the places restricts the data elements which could be put on each place
to that of a certain type.

Definition 9 (AHL net). An AHL net over (SP,A), where SP = (SIG,E,X)
has additional variables X and SIG = (S,OP), is given by N = (SP, P, T,
pre, post, cond, type,A) with sets P and T of places and transitions,
pre, post : T → (TSIG(X) ⊗ P)⊕ as pre- and post-domain functions,
cond : T → Pfin(Eqns(SIG,X)) assigning to each t ∈ T a finite set cond(t) of
equations over SIG and X, type : P → S a type function and A an SP -algebra.
Note that TSIG(X) is the SIG-term algebra with variables X, (TSIG(X)⊗P) =
{(term, p) | term ∈ TSIG(X)type(p), p ∈ P} and �⊕ is the free commutative
monoid functor. A morphism f : N → N ′ in AHLNets(SP,A) is given by a
pair of functions f = (fP : P → P ′, fT : T → T ′) which are compatible with the
pre, post, cond and type functions as shown below.

Pfin(Eqns(SIG,X))

T (TSIG(X) ⊗ P)⊕

T ′ (TSIG(X) ⊗ P ′)⊕

P

P ′

S

pre

post

pre′
post′

cond

cond′

fT (id⊗fP)⊕
type

type′
fP

Fact 5 (AHL nets as weak adhesive HLR category). Given an algebraic
specification SP and an SP -algebra A, the category (AHLNets(SP,A), M) of
algebraic high-level nets over (SP,A) is a weak adhesive HLR category. M is
the class of all injective morphisms f , i.e. fP and fT are injective.

Weak Adhesive High-Level Replacement Categories and Systems 247

Proof idea. According to the fact that(SP,A) is fixed the construction of push-
outs and pullbacks in AHLNets(SP,A) is essentially the same as in PTNets,
which is already a weak adhesive HLR category. We can apply the idea of comma
categories ComCat(F,G; I), where in our case the source functor of the oper-
ations pre, post, cond, type is always the identity IDSets, and the target func-
tors are (TSIG(X) ⊗)⊕ : Sets → Sets and two constant functors. In fact
(TSIG(X)⊗) : Sets → Sets, the constant functors and �⊕ : Sets → Sets pre-
serve pullbacks along injective functions. This implies that also (TSIG(X)⊗)⊕ :
Sets → Sets preserves pullbacks along injective functions, which is sufficient to
verify the properties of a weak adhesive HLR category.
#

Corollary 2 (main results for Petri net transformation systems). The
results stated in Cor. 1 are valid for Petri net transformation systems based on
the following categories:

1. (PTNets, M) (see Fact 4),
2. (ElemNets, M) (see Fact 3),
3. (AHLNets, M) (see Fact 5).

Example 7 (place/transition net transformation). We present an example of a
place/transition net transformation system from [16], where a communication
network is created and analyzed w.r.t. lifeness and safety properties. Here we
only consider the construction using Petri net transformations. The system is
composed of 3 components: a buffer, a printer and a communication unit depicted
in Fig. 2. The behaviour of the buffer and the printer are obvious from the

Tasks

Getting
task

task
Sending

(a) Buffer
Printer

Seize Release
Printing

prepared
Printing

completed
Printing

(b) Printer

transmit
Ready to

print
Ready to

2

1

0

NSC

NSC

NSC

1

D

C2

W

NOK

CP 2

GT

RT

RS

SSC

OK
C1

(c) Communication unit

Fig. 2. Components of the system

248 Hartmut Ehrig and Ulrike Prange

(1)

21 0
N N N

R
IL

Tasks

Tasks

TasksTasks

Tasks
Tasks

(2)

task

SendingSending Sending
task

Getting

Printing
completed

Printing

Printer

completed

task

Release

task

Printer

Printing

Release

prepared

Printing

Release

completed
Printing

Printing

Getting
task

completed

Printer

Seize

Printer Printer

Seize Printing

prepared
Printing

completed
Printing

Printer

Seize Release
Printing

prepared
Printing Printing

completed

(a) Buffer – Printer

trasmit

Ready to

TasksTasksTasks

Ready to
trasmit

Ready to
trasmit

task
Sending

task

GT

Sending

GT

(b) Buffer – Communication unit

printprintprint

Ready toReady toReady to

prepared
Printing

Printer

RT

Seize

prepared
Printing

Printer

Printer

RT

Seize

(c) Printer – Communication unit

Fig. 3. Interconnection of components

Weak Adhesive High-Level Replacement Categories and Systems 249

figure. The communication unit can send a message through a secure (SSC)
or non-secure (NSC) channel. Using the NSC channel a message may become
corrupted, therefore two copies of the message are sent, which are compared by
the receiving subunit D. If both copies differ (NOK), then the transmission has
to be repeated, otherwise (OK) it ends.

Petri net transformations are used to connect these three components. In the
top row of Fig. 3(a) the production to connect buffer and printer is depicted.
Fig. 3(a) shows the whole Petri net transformation as the application of this
production to the components buffer and printer. In Fig. 3(b) and Fig. 3(c) the
corresponding productions for connecting the communication unit with buffer
and printer are shown respectively. Applying all three productions leads to the
communication network depicted in Fig. 4.

transmit
Ready toprint

Ready to

2

1

0

NSC

NSC

NSC

D

Printer

Seize Release
Printing

prepared
Printing Printing

completed

C2

C1

W

OK

NOK

CP 2

RS

SSC

RT
Getting
task

GT

task
Sending

Fig. 4. Resulting communication network

5 Conclusion

In this paper we have shown how to extend adhesive HLR categories and systems
- recently introduced as a new categorical framework for graph transformation
in [5, 6] - to weak adhesive HLR categories and systems in order to be suitable
also as a unifying framework for Petri net transformations. It is interesting to
note that all the results for HLR systems based on adhesive HLR categories are
still valid under the weaker assumptions of weak adhesive HLR categories. But
we might need the stronger assumptions for results based on general pullback
constructions as considered in [8, 9]

Especially we have shown in this paper that the category (PTNets, M) of
place/transition nets with the class M of all monomorphisms is not an adhesive
HLR category, but a weak adhesive HLR category. This is sufficient to show

250 Hartmut Ehrig and Ulrike Prange

that the following main results of graph transformation systems are also valid
for Petri net transformation systems:
1. Local Church-Rosser Theorem
2. Parallelism Theorem
3. Concurrency Theorem
We conjecture that also the following results
4. Embedding and Extension Theorem
5. Local Confluence Theorem
stated explicitely in [5, 6] for adhesive HLR systems are valid for our Petri
net transformation systems considered above. The Embedding and Extension
Theorem allows us to embed transformations into larger contexts, and with the
Local Confluence Theorem we are able to show local confluence of transformation
systems on the basis of the confluence of critical pairs. As additional properties
we need a suitable E ′-M′ pair factorization and initial pushouts for Petri nets
which have been shown for graphs already in [5, 6].

References

[1] Goguen, J.: Discrete-Time Machines in Closed Monoidal Categories. Bull. AMS
78 (1972) 777–783

[2] Ehrig, H., Kiermeier, K.D., Kreowski, H., Kühnel, W.: Universal Theory of Au-
tomata. Teubner (1974)

[3] Goguen, J., Burstall, R.: Introducing Institutions. In Clarke, E., Kozen, D., eds.:
Logic of Programs. Volume 164 of LNCS., Springer (1984) 221–256

[4] Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints. Volume 21 of EATCS. Springer (1990)

[5] Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement
Categories and Systems. In Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G., eds.: Proceedings of ICGT 2004. Volume 3256 of LNCS., Springer (2004) 144–
160

[6] Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement
Systems: A New Categorical Framework for Graph Transformation. Fundamenta
Informaticae (2005)

[7] Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and Con-
currency in High-Level Replacement Systems. Math. Struct. in Comp. Science 1
(1991) 361–404

[8] Lack, S., Sobociński, P.: Adhesive Categories. In: Proc. of FOSSACS ’04. Volume
2987 of LNCS. Springer (2004) 273–288

[9] Lack, S., Sobociński, P.: Adhesive and Quasiadhesive Categories. Theoretical
Informatics and Applications 39(3) (2005) 511–546

[10] Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey).
In: Graph Grammars and their Application to Computer Science and Biology.
Volume 73 of LNCS. Springer (1979) 1–69

[11] Padberg, J., Ehrig, H., Ribeiro, L.: Algebraic High-Level Net Transformation
Systems. MSCS 2 (1995) 217–256

[12] Brown, R., Janelidze, G.: Van Kampen Theorems for Categories of Covering
Morphisms in Lextensive Categories. Journal of Pure and Applied Algebra 119
(1997) 255–263

Weak Adhesive High-Level Replacement Categories and Systems 251

[13] Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Volume 6 of EATCS. Springer (1985)

[14] Meseguer, J., Montanari, U.: Petri Nets are Monoids. Information and Compu-
tation 88(2) (1990) 105–155

[15] Padberg, J.: Abstract Petri Nets: A Uniform Approach and Rule-Based Refine-
ment. PhD thesis, TU Berlin (1996)

[16] Braatz, B., Ehrig, H., Urbášek, M.: Petri Net Transformations in the Petri Net
Baukasten. In Ehrig, H., Reisig, W., Rozenberg, G., Weber, H., eds.: Petri Net
Technology for Communication-Based Systems. Volume 2472 of LNCS., Springer
(2003) 37–65

From OBJ to Maude and Beyond

José Meseguer

University of Illinois at Urbana-Champaign, USA

Dedicated to Joseph Goguen on his 65th Birthday

Abstract. The OBJ algebraic specification language and its Eqlog and
FOOPS multiparadigm extensions are revisited from the perspective of
the Maude language design. A common thread is the quest for ever more
expressive computational logics, on which executable formal specifica-
tions of increasingly broader classes of systems can be based. Several
recent extensions, beyond Maude itself, are also discussed.

1 Introduction

Joseph and I met for the first time in San Francisco on February 25, 1977 at
the First (and last!) International Symposium on Category Theory Applied to
Computation and Control [80]. We wrote our first paper together in 1977 [57].
We worked very closely together at SRI from 1980 to 1988, when the bulk of
our joint published work appeared, and, after his departure to Oxford and his
subsequent return to San Diego, we have continued collaborating in various ways.
In honoring him as a friend, colleague, and mentor of those early years, I want
to reflect on some great things we did together at SRI from the perspective of
how they have influenced the work that other colleagues and I have done on
Maude in the 1990s and in the present decade. Since Maude itself is evolving
and expanding in different directions, my reflections, will not only look at the
past, but will also try to sketch what those directions, leading beyond Maude
itself, look like. My views are necessarily subjective and partial, and my memory
too; but that does not prevent me from trying to recollect things as best as I
can, and from taking full responsibility for my own words and actions.

One common thread of our joint work at SRI was the OBJ language. Joseph
and I worked on OBJ1 with David Plaisted [63], and then, in the annus mirabilis
1983–84, with Kokichi Futatsugi and Jean-Pierre Jouannaud on OBJ2 [47]. Then
came OBJ3 [53], the most ambitious and far-reaching language design and im-
plementation on which we worked with Claude and Hélène Kirchner, Patrick
Lincoln, Aristide Mégrelis, and Timothy Winkler. A long paper combining in
some way the OBJ2 and OBJ3 ideas appeared later [65], within an entire book
dedicated to the OBJ experience [66]. I try to explain in this paper how not only
OBJ, but also the Eqlog [59] and FOOPS [61] multiparadigm extensions of OBJ,
on which Joseph and I also worked together at SRI, have influenced Maude. But
to make better sense of all this, I think that it may be worthwhile to first present
my own perspective on the specification language design challenges that we have

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 252–280, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From OBJ to Maude and Beyond 253

been trying to meet all along, and which have motivated the design of each of
these languages.

1.1 System Specification Vs. Property Specification

In discussing different uses of logic in computer science, considerable confusion
can arise from lack of relevant distinctions. One that I have repeatedly found
useful to clarify some key issues is the distinction between system specification
and property specification. In a system specification we are after an unambiguous
specification of a given system and how it actually works. In its most useful form,
a system specification is executable and therefore provides an executable model
of the system. Such specifications are enormously useful, since a system design
can then be tested and analyzed in various ways, and it is possible to refine,
sometimes even automatically, such an executable model into an actual system
implementation.

By contrast, when specifying properties of a system we are not necessarily
after an executable model of our system. Instead, we assume it, as either al-
ready given or to be developed later, and specify such properties in a typically
nonexecutable manner: for example in first-order logic, higher-order logic, or
some temporal logic. That is, the properties we specify have an intended model,
namely the system design captured by a system specification, and we are in-
terested in verifying by different methods that the intended model satisfies the
properties stated in our property specification.

1.2 System Specification in Computational Logics

The above distinction brings us to the heart of a real problem: how can we
formally, that is using logical and mathematical methods, verify a property if
the system specification we have is informal, that is, if it does not precisely
define a mathematical model of our system? This is indeed a genuine problem.
Having a formal grammar is a necessary but insufficient condition: we also need
a formal semantics. This is where the rub comes with system specifications based
on conventional programming languages. For some such languages nobody has
managed so far to give a complete formal semantics and therefore the only
unambiguous “specifications” of some languages are their different compilers,
which may exhibit different behaviors. Here is where computational logics can
render an invaluable service. A computational logic can either:

1. be used as a declarative programming language with a precise mathematical
semantics to directly express system specifications; or

2. be used to give a precise mathematical semantics to a conventional program-
ming language, so that a system specified by a program in such a language
will indirectly acquire a precise mathematical meaning in the computational
logic.

254 José Meseguer

I have not yet defined what I mean by a computational logic. The simplest
practical answer is: a logic that you can implement as a programming language.
That is, you can define and implement a programming language whose programs
are exactly theories in the given logic and whose program execution is logical de-
duction. You then call such a language a declarative programming language.
The point is that from the earliest times of computability theory, logical for-
malisms and mathematical definitions of computability have gone hand in hand.
For example, Herbrand-Gödel computable functions are defined by equational
theories; and Church computability is defined in terms of the lambda calculus.
Over time, this has given rise to various declarative programming languages. For
example, pure Prolog is a declarative programming language associated to Horn
logic; pure ML and Haskell are declarative programming languages associated to
the typed lambda calculus; OBJ is a declarative programming language based on
order-sorted equational logic; and Maude is a declarative programming language
based on rewriting logic.

One can always blur the above distinctions, but this is not very helpful. For
example, there is always the Quixotic and amusing possibility of declaring that
everything is a logic!, including, say, C++, thus arriving at a toothless notion
of “logic”. The opportunities for confusion and obscurantism are indeed endless;
but such verbal games are for the most part a waste of time. Furthermore, it
is possible to give meta-logical requirements for declarative programming lan-
guages that cut through silly verbal games of this kind: Joseph and I gave such
requirements in terms of institutions in [60]; and I gave more detailed require-
ments in terms of general logics in [85].

1.3 The Quest for More Expressive Computational Logics

A lot of water has gone under the bridges since the 1930s. Founding computa-
tion on a theory of recursive functions was a great achievement at its time and
is still very useful today; but it is clearly a limited theory, and we know it. There
is, for example, no meaningful way of thinking of internet computations as de-
finable by recursive functions. Massive changes in the nature of computing and
emergence of entirely new applications do not make older computational logics
and declarative languages incorrect or useless; but they can make them limited,
relegated to specific niches. If a wider, more general applicability beyond such
niches is desired, computational logics are typically in need of either generaliza-
tion or replacement. One good example is functional programming, which is of
course a very elegant and powerful way of programming functional applications.
It is certainly possible to add bells and whistles to a functional language, for
example by grafting a process calculus on top of it, so as to make it suitable for
nonfunctional applications such as distributed computing. But what is the logic
of such a centaur? The fact that it can be given a semantics, just as Java can,
proves nothing, since the real issue is whether the resulting language remains
declarative in the precise sense of programs being theories in a logic, for a decent
meta-theoretic notion of logic, and computation being deduction in such a logic.

From OBJ to Maude and Beyond 255

Therefore, to preserve the declarative nature of a language, when extending
it to cover new application areas, one should think primarily of how its under-
lying logic can be extended, and only secondarily about the extended syntax:
declarative language design is primarily a task of logic design. The design space
is therefore the space, in fact the category, of logics. But there are tight design
constraints and tradeoffs that require good judgment. Not all logics are compu-
tational; and having a recursively enumerable set of deducible formulas is not a
sufficient condition: first-order logic has that, but it is hopeless as a program-
ming language. The logic has to remain lean and mean in order to allow efficient
implementations as a programming language, and not just as a theorem prover.
Yet, the whole point of an extension is to make the logic more expressive. How
to achieve both goals in an optimal way is the challenge.

OBJ and its extensions are a good case in point. As algebraic specifica-
tion/equational programming languages, OBJ2 [47] and OBJ3 [53,65] were ar-
guably the most expressive such languages in the 1980s. But they were, by the
very nature of their underlying order-sorted equational logic [62] and their as-
sociated operational semantics [52,70], functional languages. Extending OBJ in
a multiparadigm way was a task that Joseph and I undertook in the mid 1980s,
resulting in two new language designs: Eqlog [59], and FOOPS [61]. Eqlog uni-
fied functional/equational programming and Horn-logic programming; its logic
design task was to embed order-sorted equational logic and Horn logic without
equality into a suitable Horn logic with equality [60]. FOOPS unified equa-
tional/functional programming, Horn-logic programming, and object-oriented
programming. Although an underlying model-theoretic semantics was given,
based on algebraic data types with hidden sorts and behavioral equivalence be-
tween them in the sense of [58,94], FOOPS fell short of having an underlying logic
with modules as theories and computation as deduction. This was remedied later,
by theoretical developments presenting various proposals for a hidden or “ob-
servational” equational logic [50,51,56,55,122,64,68,11,10,9,115,116,117,30,120].
In hindsight, one can view CafeOBJ [46], BOBJ [54] and BMaude [96] as full-
blooded declarative languages that achieve in a more satisfactory way many of
the FOOPS goals.

1.4 Rewriting Logic and Maude

With rewriting logic [87,88,13] and Maude [86,90,18,19], several of us undertook
the task of unifying within a single declarative language: (i) equational/functional
programming; (ii) object-oriented programming; and (iii) concurrent/distributed
programming. That (iv) Horn-logic programming was also naturally embeddable
in this framework was clear from the early stages of this project [89,90], but at
the operational semantics level this required a generalization of narrowing that
was achieved later [132,133]. Three more insights emerged over time as part of
different research collaborations: (v) that real-time and hybrid systems could be
naturally specified in rewriting logic [108]; (vi) that higher-order type theory
was naturally embeddable in rewriting logic [130]; and (vii) that probabilistic

256 José Meseguer

systems were likewise expressible in a natural probabilistic extension of rewrit-
ing logic and could be simulated within rewriting logic itself [73,4]. In spite of
being multiparadigm in all the above (i)–(vii) ways, rewriting logic remains re-
markably lean and mean: it is a very simple formalism and, thanks to Steven
Eker, has a very high-performance Maude implementation. Modules are indeed
theories in the logic, and nothing more. Computation is deduction, and theories
have initial models [88,13], which give semantics to modules and support in-
ductive reasoning. Furthermore, operational properties such as termination can
be usefully formulated and verified by adopting this logical/deductive viewpoint
[36,79]

2 From Order-Sorted to Membership Equational Logic

Rewriting logic contains membership equational logic [92] as a sublogic. In
Maude’s language design this is reflected in its sublanguage of functional mod-
ules, for equational theories with initial semantics, and of functional theories
for equational theories with “loose” semantics. Therefore, in relating OBJ and
Maude the first task at hand is relating their corresponding equational logics.

One key reason why OBJ2 and OBJ3 were so expressive was their order-
sorted type theory. That one should use types to make any reasonable sense of
algebraic specifications goes without saying. But the problem with many-sorted
equational logic is that it does not deal well with partiality. Many simple oper-
ations, such as selectors in data structures or just simple arithmetic operations,
are partial. To the embarrassment of many-sorted specifications, simple trade
examples, such as the perennial stacks or the rational numbers, cannot be given
elegant many-sorted specifications: the top of the empty stack or division by zero
raise their ugly heads and require ugly ad-hoc solutions.

The appeal of order-sorted equational logic [62] is that, by allowing the ex-
pressive power of subtypes (subsorts), many partial functions become total on
appropriate subsorts. Furthermore, function symbols can be subsort overloaded,
which is very convenient in practice. But there are limits to the kind of partiality
expressible by typing means alone, which are those available in order-sorted al-
gebra. When the definedness of a function depends on semantic conditions such
as, for example, the fact that for the concatenation of two paths in a graph to
be defined the target node of the first must coincide with the source node of
the second, order-sorted equational logic is not enough. This was understood
early on, and led to formulating notions of unconditional [49] or conditional [52]
sort constraints ; but how to extend order-sorted equational logic so as to fully
account for conditional sort constraints remained an open question.

The appeal of membership equational logic (MEL) [92] is that it gives a full
account of partiality, and even a systematic, functorial way of relating partial
and total specifications [92,95]. Furthermore, as shown in [92], it embeds in a
conservative way the “right” version of order-sorted equational logic, one that
solves several anomalies, including the lack of pushouts of theory morphisms,
in the version given in [62]. But does membership equational logic remain lean

From OBJ to Maude and Beyond 257

and mean? The relevant facts are that it: (i) has a well-developed operational
semantics by rewriting (see the systematic study [12], which also deals with many
other automated deduction techniques); (ii) enjoys a high-performance Maude
implementation; (iii) is a quite simple logic; and (iv) has initial and free models
[92], on which inductive proof methods and inductive theorem proving tools can
be based [12,20]. From these facts it seems fair to conclude that the answer is
definitely yes.

In summary, therefore, we can view OBJ3 as a sublanguage of Maude’s func-
tional sublanguage. The generalization from OBJ3 to Maude is further stressed
by the fact that Maude supports order-sorted notation as convenient syntactic
sugar for membership equational logic axioms. In membership equational logic
atomic propositions are either equations t = t′, or memberships t : s, stat-
ing that term t has sort s. A subsort declaration s < s′ is then just syntactic
sugar for a conditional axiom x : s ⇒ x : s′. Similarly, an order-sorted opera-
tor declaration f : s1 . . . sn −→ s is syntactic sugar for the conditional axiom
x1 : s1 ∧ . . . ∧ xn : sn ⇒ f(x1, . . . , xn) : s.

A membership equational theory is a pair (Σ,H) with Σ a signature speci-
fying the kinds, sorts, and function symbols, and with H a set of Horn clauses
involving both equations and memberships. Kinds classify potentially meaning-
ful expressions, and sorts within a kind classify actually defined expressions.
Terms having a kind but not a sort correspond to undefined or error expres-
sions. For example, 2/0 is in the Number kind but has no sort. For execution
purposes we typically impose some requirements on such a theory. First of all,
its Horn clauses H may be decomposed as a union E ∪ A, with A a set of
equations that we will reason modulo (for example, A may include associativity,
commutativity and/or identity axioms for some of the operators in Σ). Second,
the remaining Horn clauses E are typically required to be Church-Rosser1 mod-
ulo A, so that we can use the conditional equations in E as equational rewrite
rules modulo A. Third, for some applications it is useful to make the equational
rewriting relation2 context-sensitive [76,77]. This can be accomplished by spec-
ifying a function μ : Σ −→ IN∗ assigning to each function symbol f ∈ Σ (with,
say, n arguments) a list μ(f) = i1 . . . ik of argument positions , with 1 ≤ ij ≤ n,
which must be fully evaluated (up to the context-sensitive equational reduc-
tion strategy specified by μ) in the order specified by the list i1 . . . ik before
applying any equations whose lefthand sides have f as their top symbol. For
example, for f = if then else fi we may give μ(f) = {1}, meaning that the first
argument must be fully evaluated before the equations for if then else fi are

1 See [12] for a detailed study of equational rewriting concepts and proof techniques
for mel theories.

2 As we shall see, in a rewrite theory R rewriting can happen at two levels: (1) equa-
tional rewriting with (possibly conditional) equations E; and (2) non-equational
rewriting with (possibly conditional) rewrite rules R. These two kinds of rewriting
are different. Therefore, to avoid confusion I will qualify rewriting with equations as
equational rewriting.

258 José Meseguer

applied3. Therefore, for execution purposes we can specify a membership equa-
tional theory as a triple (Σ,E∪A, μ), with A the axioms we rewrite modulo, and
with μ the map specifying the context-sensitive equational reduction strategy.
A Maude functional module is then, essentially, a specification of the form fmod
(Σ,E ∪A, μ) endfm.

3 Rewriting Logic: From OBJ to Maude

As already mentioned, the whole point of rewriting logic [87,88,13] and Maude
[86,90,18,19] was to unify within a single logic and associated declarative lan-
guage: (i) equational/functional programming; (ii) object-oriented programming;
and (iii) concurrent/distributed programming. For this unification, a purely
equational/functional framework would be clearly unsuitable4 The challenge
therefore was to find a lean and mean superlogic of equational logic in which
this unification could take place.

A related challenge was to make some sense of the quite diverse menagerie
of concurrency models that were around, often competing with each other as
the “right” model of concurrency. A key strategy in this competition game was
to produce, sometimes quite complicated, translations from other models, ad-
duced as proof of universality of the proposed model. Implicit in this strategy
was the belief that, given enough time, the right model, capable of expressing
all the relevant concurrency concepts would emerge. This search for the Holy
Grail of concurrency is certainly a chivalrous one; but I find serious grounds
for being skeptical about its success. The main difficulty is that concurrency
encompasses a very wide range of phenomena: there are concurrent functional
programs, concurrent grammars, dataflow networks, actors, Petri nets of various
ilks and colors, various synchronous and asynchronous process calculi, neural
networks, and so on. Although translations between some of these models are
possible, the fact that in this way some concurrency features can simulate others,
perhaps in a complex way, is not particularly helpful.

In my view, what was missing was a computational logic for concurrency that
could serve as a semantic framework in which different concurrency models could

3 As in OBJ2–3, in Maude maps μ specifying context-sensitive equational reduction
strategies are called evaluation strategies [47,40,18], and μ(f) = i1 . . . ik is speci-
fied with the strat keyword followed by the string (i1 . . . ik 0), with 0 indicating
evaluation at the top of the function symbol f . For an in-depth study of the rela-
tionship between OBJ/Maude evaluation strategies and context-sensitive rewriting
see [76,77].

4 The key point is that concurrency and nondeterminism cannot be directly modeled
in an equational/functional framework, which typically assumes determinism in the
form of a Church-Rosser property. Therefore, one needs special devices to model
some concurrency aspects indirectly. Two good examples of indirectly modeling con-
currency within a purely functional framework are the ACL2 semantics of the JVM
using a scheduler [101], and the use of lazy data structures in Haskell to analyze
cryptographic protocols [7].

From OBJ to Maude and Beyond 259

be naturally unified without requiring any translations. That is, in a logic one
can define quite different theories which have associated models. The logic then
allows one to understand in a unified way all such models as models in the same
logic; but there is plenty of room for diversity between them. Furthermore, once
we understand that a logical framework of this kind can give us an enormous
range of possibilities for naturally expressing different concurrency phenomena,
we realize that we can have a general framework without in any way needing a
general model, whatever that means.

Is rewriting logic a suitable general framework in exactly this sense? The
answer is necessarily an empirical one, and can never be claimed to be definitive.
But the amount of positive evidence gathered up to now, thanks to the research
of different people and covering indeed a very wide range of concurrency models,
is in my view very strong. The key point is the naturalness and directness with
which different concurrency models can be expressed as rewrite theories. It is
not a matter of complicated encodings : typically the original representations of
a model and those of its associated rewrite theory are isomorphic. Since all this
is a matter carefully documented in many papers and in several rewriting logic
surveys, I will not go over the, indeed quite large, body of work backing the view
that rewriting logic is a very expressive general framework for concurrency. I refer
the reader to the survey paper [82]; and for an explanation of how rewriting logic
unifies and improves upon other semantic frameworks such as algebraic semantics
and structural operational semantics (SOS) to the more recent papers [97,98].

3.1 Rewrite Theories: Their Execution and Formal Analysis

A rewrite theory is a tuple R = (Σ,E ∪ A, μ,R, φ), with: (1) (Σ,E ∪ A, μ) a
membership equational theory with “modulo” axioms A and context-sensitive
equational reduction strategy μ; (2) R a set of labeled conditional rewrite rules
of the general form

r : (∀X) t −→ t′ if (
∧
i

ui = u′i) ∧ (
∧
j

vj : sj) ∧ (
∧
l

wl −→ w′
l) (1)

where the variables appearing in all terms are among those in X , terms in each
rewrite or equation have the same kind, and in each membership vj : sj the
term vj has kind [sj]; and (3) φ : Σ −→ P(IN) a mapping assigning to each
function symbol f ∈ Σ (with, say, n arguments) a set φ(f) = {i1, . . . , ik},
1 ≤ i1 < . . . < ik ≤ n of frozen argument positions5 under which it is forbidden
to perform any rewrites.

Intuitively, R specifies a concurrent system, whose states are elements of the
initial algebra TΣ/E∪A specified by (Σ,E∪A), and whose concurrent transitions
are specified by the rules R, subject to the frozenness requirements imposed by φ.
5 In Maude, φ(f) = {i1, . . . , ik} is specified by declaring f with the frozen attribute,

followed by the string (i1 . . . ik). Although originated by a quite different moti-
vation, frozen operators have some similarities with notions such as “non-coherent
operators” in CafeOBJ [46], and “non-congruent” operators in BOBJ [54].

260 José Meseguer

The frozenness information is important in practice to forbid certain rewritings.
For example, when defining the rewriting semantics of a process calculus, one
may wish to require that in prefix expressions α.P the operator . is frozen
in the second argument, that is, φ(.) = {2}, so that P cannot be rewritten
under a prefix. Note that a rewrite theory R = (Σ,E ∪A, μ, φ,R) specifies two
kinds of context-sensitive rewriting requirements: (1) equational rewriting with
E modulo A is made context-sensitive by μ; and (2) non-equational rewriting
with R is made context-sensitive by φ. But the maps μ and φ impose different
types of context-sensitive requirements: (1) μ(f) specifies a list of arguments
where we are allowed to rewrite with equations in E; and (2) φ(f) specifies
arguments where we are forbidden to rewrite with the rules R. The maps μ and
φ substantially increase the expressive power of rewriting logic, because various
order-of-evaluation and context-sensitive requirements, which would have to be
specified by explicit rules in a formalism like SOS, become implicit and are
encapsulated in μ and φ.

For execution purposes a rewrite theory R = (Σ,E∪A, μ,R, φ) should satisfy
some basic requirements that are assumed to hold for Maude system modules.
Such modules are specifications of the form mod (Σ,E ∪A, μ,R, φ) endm. First,
in the membership equational theory (Σ,E∪A, μ), E should be ground Church-
Rosser modulo A – for A a set of equational axioms for which matching modulo
A is decidable – and ground terminating modulo A, up to the context-sensitive
strategy μ6. Second, the rules R should be coherent with E modulo A [136];
intuitively, this means that, to get the effect of rewriting in equivalence classes
modulo E ∪ A, we can always first simplify a term with the equations in E to
its canonical form modulo A, and then rewrite with a rule in R. Finally, the
rules in R should be admissible [18], meaning that in a conditional rewrite rule
of the form (1), besides the variables appearing in t there can be extra variables
in t′, provided that they also appear in the condition and that they can all be
incrementally instantiated by either matching a pattern in a “matching equation”
or performing breadth first search in a rewrite condition (see [18] for a detailed
description of admissible equations and rules).

Computation in Maude is then deduction with the inference rules of rewriting
logic (see [13]) that are efficiently implemented by the Maude engine under the
above executability assumptions. Specifically, equivalence classes modulo E ∪A
are represented by their unique canonical forms modulo A. That is, Maude per-
forms equational rewriting to reach a canonical form with the equations in E
modulo A by means of the reduce command. This is entirely analogous to OBJ’s
reduce command for equational specifications, but applies now to more general
theories. It also supports two variants of fair rewriting with the rules R modulo
A which, in combination with equational rewriting and under the coherence as-
sumption, achieves the effect of rewriting with R in (E ∪A)-equivalence classes.
These two commands are the rule-fair rewrite command; and the rule and po-

6 μ-termination is a weaker requirement than termination [77]; the interactions be-
tween context-sensitive rewriting and the Church-Rosser property are somewhat
subtle [75,78].

From OBJ to Maude and Beyond 261

sition fair frewrite command which, for object-based systems (see Section 3.3)
is also object and message fair. Furthermore, the context-sensitive requirements
provided by μ and φ are always respected. Since the rules R need not be confluent
and may be highly nondeterministic, the rewrite and frewrite commands give
just one execution path among many others. This is still very useful for execution
and simulation purposes, but for analysis purposes Maude’s search command
supports a systematic breadth-first exploration of all rewrite paths until states
matching a specified pattern and satisfying specified semantic conditions are
reached. For example, we may want to know whether the concurrent system
specified by our rewrite theory satisfies a given invariant (say, is deadlock-free).
We can then search for a reachable state satisfying the negation of the given
invariant. Within the practical limitations of time and memory, the search com-
mand then gives us a semi-decision procedure for the failure of such invariants,
regardless of the in general infinite number of reachable states of our systems.
Furthermore, for systems whose sets of reachable states are finite, Maude also
provides a decision procedure for the satisfaction of linear-time temporal logic
(LTL) properties. This is achieved through its built-in MODEL-CHECKER module
which, in the experiments that we have evaluated [41,42], performs explicit-state
on-the-fly model checking of LTL formulas with efficiency comparable to that of
the SPIN model checker [69].

3.2 Module Algebra: The Power of Reflective Thinking

One of the most powerful features of OBJ2 and OBJ3 was the possibility of
defining parameterized modules having semantic requirements for their instan-
tiation specified in the form of parameter theories. Such modules could then be
instantiated by means of views (theory interpretations) in the typical pushout
construction way of Clear [14]. They could also be renamed, and instantiations
and renamings could be composed in very expressive module expressions (see
[47,65]). This supported a very powerful discipline of parameterized program-
ming that inspired similar mechanisms in ML and in module interconnection
languages such as LILEANNA [135]. In hindsight, however, there were two lim-
itations. The first was that it took in practice a long time (several years of hard
work) to properly implement this part of the language. Indeed, it proved to
be the most complex and sophisticated component of OBJ3’s LISP-based imple-
mentation. The second limitation, much less apparent to us at the time, was that
OBJ’s module algebra, while very powerful, was a closed algebra, in the sense of
offering a fixed repertoire of theory operations. Of course, one could have imag-
ined other operations, but this would have required both a new metatheory and
big implementation efforts.

An important breakthrough at the theoretical level was the formulation of a
general axiomatic notion of reflective logic by Manuel Clavel and myself in [23],
followed by a series of papers, a Ph.D. thesis, and a book, showing that several
conditional and unconditional versions of rewriting logic, as well as membership
equational logic and many-sorted Horn logic with equality, are indeed reflective
[24,15,16,25,26]. Intuitively, a logic is reflective if it can represent its metalevel

262 José Meseguer

at the object level in a sound and coherent way. Specifically, rewriting logic can
represent its own theories and their deductions by having a finitely presented
rewrite theory U that is universal, in the sense that for any finitely presented
rewrite theory R (including U itself) we have the following equivalence

R $ t→ t′ ⇔ U $ 〈R, t〉 → 〈R, t′〉,

where R and t are terms representing R and t as data elements of U . Since U
is representable in itself, we can achieve a “reflective tower” with an arbitrary
number of levels of reflection.

Reflection is a very powerful property: it allows defining rewriting strategies
by means of metalevel theories that extend U and guide the application of the
rules in a given object-level theory R [24,16,83]; it is efficiently supported in the
Maude implementation by means of descent functions [17], implemented in the
built-in META-LEVEL module; it can be used to build a variety of theorem proving
and theory transformation tools [15,20,21,27]; and it can also be used to prove
metalogical properties about families of theories in rewriting logic, and about
other logics represented in the rewriting logic (meta-)logical framework [5,22,6].

From the module algebra point of view, the key advantage is that the univer-
sal theory U , and the META-LEVEL module that implements key descent functions
for it, have a sort Module whose terms represent finitary rewrite theories. This
means that theories become data that can be manipulated within the logic in
a declarative way. Similar sorts, defining data types for parameterized modules
and for views, can likewise be easily defined in extensions of the META-LEVEL
module. In this way, Francisco Durán and I showed that many powerful theory
composition operations endowing Maude with a module algebra can be defined
within the logic [37,32,39]. Furthermore, the module algebra so defined now be-
comes easily extensible. For example, the notion of parameterized module, and
the way in which module instantiation can be defined does not necessarily have
to follow a pushout-like pattern. Different forms of parameterization, understood
as new metalevel functions, can be easily defined. For instance, it is very easy to
define in the Full Maude extension of Maude a TUPLE(n) module that for each
nonzero natural number n provides a parameterized module of n-tuples [32].
Indeed, reflection has allowed considerable flexibility in easily defining and ex-
perimenting with different module composition operations before implementing
some of them in the underlying Core Maude system, as has been recently done
in Maude 2.2. Furthermore, Full Maude itself has been an excellent basis for
building other Maude extensions such as Real-Time Maude (see Section 4.1), a
strategy language for Maude [83], and the Maude termination tool (MTT) [36].

More generally, reflection has made it quite easy to build an environment of
formal analysis tools for Maude. Such tools, by their very nature, manipulate
and analyze rewrite theories. By reflection, a rewrite theory R becomes a term
R in the universal theory, which can be efficiently manipulated by the descent
functions in the META-LEVEL module. As a consequence, Maude formal tools
have a reflective design and are built in Maude as suitable extensions of the
META-LEVEL module. They include the following:

From OBJ to Maude and Beyond 263

– the Maude Church-Rosser Checker, and Knuth-Bendix and Coherence Com-
pletion tools [20,38,34,33]

– the Full Maude module composition tool [32,39]
– the Maude Predicate Abstraction tool [118]
– the Maude Inductive Theorem Prover (ITP) [16,20,27]
– the Real-Time Maude tool [109] (discussed in Section 4.1)
– the Maude Sufficient Completeness Checker (SCC) [67]
– the Maude Termination Tool (MTT) [36].

3.3 Object-Oriented Modules

A declarative treatment of the object paradigm was also a key goal from the very
beginning of rewriting logic [86], and was more fully realized as part of Maude’s
language design in [90]. Of course, since concurrent programming was also a key
goal, the point was to have a declarative way to specify and program concur-
rent object systems. This declarative approach, by using subsort overloading and
proposing a key distinction between class inheritance and module inheritance
solved also an old chestnut in concurrent object-oriented programming, namely
the so-called inheritance anomaly [91].

The essential idea is extremely simple. We view the state of a concurrent
object system as a “soup” of objects and messages. Mathematically, such a
soup is modeled as a multiset, built up from the objects and the messages by
means of a multiset union operator that is associative and commutative and
has the empty multiset as its identity element. Concurrent interactions between
objects, and between objects and messages, are then described by means of
rewrite rules that transform a fragment of such a soup into a new fragment. By
rewriting logic’s congruence rule [88], many such rewrites can of course take place
concurrently within the soup. Rules whose lefthand sides involve a single object
and at most one message are called asynchronous and essentially correspond
to the Actor model of computation [3,1]. Rules whose lefthand sides involve
more than one object are called synchronous, because such objects have to come
together synchronously in order for the interaction to take place.

More generally, the soup describing the distributed state of an object system
needs not be “flat” but may instead be a “soup of soups” with arbitrary nesting
depth. For example, the Internet is a network of networks and a soup of soups
in exactly this sense. This structuring is very useful, for example for security
and management/monitoring purposes. Carolyn Talcott and I modeled this in
rewriting logic by means of our “Russian dolls” model of concurrent object re-
flection [100]. The “dolls” in question are meta-objects, which may contain in
their belly a whole soup of other (meta-) objects, and so on “all the way down.”
In this way, all kinds of mechanisms for concurrent meta-object reflection can
be naturally axiomatized, programmed, and reasoned about [100]. The Russian
dolls model is also useful in clarifying the relationship between object-oriented
reflection and logical reflection in the sense of Section 3.2. Some object-oriented
reflection mechanisms do not need logical reflection: the hierarchical nesting
of dolls (meta-object nesting) is enough to express them. But more powerful

264 José Meseguer

concurrent object reflection mechanisms may use both the nesting of dolls and
logical reflection. For example, the mobility features of Mobile Maude [35] use
both meta-object reflection and logical reflection.

In Maude, concurrent object systems are specified in object-oriented mod-
ules [90,37,32,18]. Such modules provide syntactic sugar supporting all the usual
object-oriented concepts: objects, object attributes, messages, object classes, and
multiple class inheritance. Furthermore, they can be parameterized with param-
eter theories just like any other Maude module. Semantically, all this useful
syntactic sugar can be stripped away, so that a Maude object-oriented module is
semantically equivalent to an ordinary rewrite theory, that is, to a corresponding
Maude system module into which it can be desugared. Operationally, however,
knowledge of the existence of objects and messages within a multiset represent-
ing a distributed object state is used by Maude’s frewrite command to support
a rule, position, and object and message fair rewriting strategy. In conjunction
with Maude 2.2’s built-in internet sockets feature [19], this provides a very simple
and elegant way of doing declarative internet programming in Maude, because
there is no need whatsoever for writing any complicated thread scheduling code,
which is typically needed when a conventional language is used.

4 Beyond Maude

How general and expressive is rewriting logic? The best way to find out is by
pushing its limits. What follows is a progress report on how, through several
research collaborations, some of us have been extending rewriting logic and its
range of applications beyond those of Maude itself so as to encompass: (i) real-
time and hybrid systems; (ii) probabilistic systems; (iii) deduction with logical
variables; (iv) higher-order specifications; and (v) behavioral specifications.

4.1 Real-Time Maude

In many reactive and distributed systems, real-time properties are essential to
their design and correctness. Therefore, the question of how systems with real-
time features can be best specified, analyzed, and proved correct in the semantic
framework of rewriting logic is an important one. This question has been inves-
tigated by several authors from two perspectives. On the one hand, an extension
of rewriting logic called timed rewriting logic has been investigated, and has been
applied to some examples and specification languages [71,105,125]. On the other
hand, Peter Ölveczky and I have found a simple way to express real-time and hy-
brid system specifications directly in rewriting logic [106,108]. Such specifications
are called real-time rewrite theories and have rules of the form

r : {t} δ−→ {t′} if C

with δ a term denoting the duration of the transition (where the time domain
can be chosen to be either discrete or dense), {t} representing the whole state of

From OBJ to Maude and Beyond 265

a system, encapsulated with { }, and C an equational condition. Peter Ölveczky
and I have shown that, by making the clock an explicit part of the state, these
theories can be desugared into semantically equivalent ordinary rewrite theories
[106,108,109]. That is, in the desugared version we can model the state of a real-
time or hybrid system as a pair ({t}, τ), with {t} the current state, and with τ
the current global clock time. Then the above rule becomes desugared as

r : ({t}, τ) −→ ({t′}, τ + δ) if C

Rewrite rules can then be either instantaneous rules, that take no time and only
change some part of the state t, or tick rules, that advance the global time of
the system according to some time expression δ and may also change the state
t. When time is dense, tick rules may be nondeterministic, in the sense that the
time δ advanced by the rule is not uniquely determined, but is instead a para-
metric expression (however, this time parameter is typically subjected to some
equational condition C). In such cases, tick rules need a time sampling strategy
to choose suitable values for time advance. Besides being able to show that a
wide range of known real-time models (including, for example, timed automata,
hybrid automata, timed Petri nets, and timed object-oriented systems) can be
naturally expressed in a direct way in rewriting logic (see [108]), an important
advantage of our approach is that one can use an existing implementation of
rewriting logic to execute and analyze real-time specifications. Because of some
technical subtleties, this seems difficult for the alternative of timed rewriting
logic, although a mapping into our framework does exist [108].

Real-Time Maude [102,107,109,110] is a specification language and a formal
tool built in Maude by reflection. It provides special syntax to specify real-time
systems, and offers a range of formal analysis capabilities. The Real-Time Maude
2.1 tool [109,112] systematically exploits the underlying Maude efficient rewrit-
ing, search, and LTL model checking capabilities to both execute and formally
analyze real-time specifications. Reflection is crucially exploited in the Real-Time
Maude 2.1 implementation. On the one hand, Real-Time Maude specifications
are internally desugared into ordinary Maude specifications by transforming their
meta-representations. On the other, reflection is also used for execution and anal-
ysis purposes. The point is that the desired modes of execution and the formal
properties to be analyzed have real-time aspects with no clear counterpart at
the Maude level. To faithfully support these real-time aspects a reflective trans-
formational approach is adopted: the original real-time theory and query (for
either execution or analysis) are simultaneously transformed into a semantically
equivalent pair of a Maude rewrite theory and a Maude query [109,112]. One im-
portant concern about the search and model checking analyses thus performed
by Real-Time Maude is their completeness. Note that not all state-time pairs are
visited, but only those allowed by the given time sampling strategy. For dense
time it is even impossible to visit all times. Fortunately, under simple conditions
on the specification, that are indeed satisfied by almost all examples that have
been analyzed in Real-Time Maude, the analyses are indeed complete: if the tool
finds no counterexamples, the given property holds [111].

266 José Meseguer

In practice, Real-Time Maude executions and analyses are quite efficient.
They allow scaling up to highly nontrivial specifications and case studies. In
fact, both the naturalness of Real-Time Maude to specify large nontrivial real-
time applications (particularly for distributed object-oriented real-time systems)
and its effectiveness in simulating and analyzing the formal properties of such
systems have been demonstrated in a number of substantial case studies, includ-
ing: (1) the AER/NCA suite of active network protocols [102,104,113]; (2) the
NORM multicast protocol [74]; (3) the OGDC wireless sensor network algorithm
[134,114]; and (4) the CASH adaptive scheduling algorithm [103]. Real-Time
Maude is freely available from http://www.ifi.uio.no/RealTimeMaude. It is a
mature and quite efficient tool, and its source code, a tool manual, examples,
case studies, and papers are all available in its web page.

4.2 PMaude and SHYMaude

Many systems are probabilistic in nature. This can be due either to the uncer-
tainty of the environment in which they must operate, such as message losses
and other failures in an unreliable environment, or to the probabilistic nature of
some of their algorithms, or to both. In general, particularly for distributed sys-
tems, both probabilistic and nondeterministic aspects may coexist, in the sense
that different transitions may take place nondeterministically, but the outcomes
of some of those transitions may be probabilistic in nature. To specify systems of
this kind, rewrite theories have been generalized to probabilistic rewrite theories
in [72,73,4]. Rules in such theories are probabilistic rewrite rules of the form

r : t(x) → t′(x,y) if C (x) with probability y := πr(x)

where the first thing to observe is that the term t′ has new variables y disjoint
from the variables x appearing in t. Therefore, such a rule is nondeterministic;
that is, the fact that we have a matching substitution θ for the variables x such
that θ(C) holds does not uniquely determine the next state fragment: there can
be many different choices for the next state, depending on how we instantiate
the extra variables y in t′. In fact, we can denote the different such next states
by expressions of the form t′(θ(x), ρ(y)), where θ is fixed as the given match-
ing substitution, but ρ ranges along all the possible substitutions for the new
variables y. The probabilistic nature of the rule is expressed by the notation:
with probability y := πr(x), where πr(x) is a probability distribution which
may depend on the matching substitution θ. We then choose the values for y, that
is, the substitution ρ, probabilistically according to the distribution πr(θ(x)).

The fact that the probability distribution may depend on the substitution θ
can be illustrated by means of a simple example. Consider a battery-operated
clock. We may represent the state of the clock as a term clock(T,C), with T a
natural number denoting the time, and C a positive real denoting the amount
of battery charge. Each time the clock ticks, the time is increased by one unit,
and the battery charge slightly decreases; however, the lower the battery charge,
the greater the chance that the clock will stop, going into a state of the form

From OBJ to Maude and Beyond 267

broken(T,C’). We can model this system by means of the probabilistic rewrite
rule

rl [tick]: clock(T,C) => if B then clock(s(T),C - (C / 1000))

else broken(T,C - (C / 1000))

fi

with probability B := BERNOULLI(C / 1000) .

that is, the probability of the clock breaking down instead of ticking normally de-
pends on the battery charge, which is here represented by the battery-dependent
bias of the coin in a Bernoulli trial. Note that here the new variable on the rule’s
righthand side is the Boolean variable B, corresponding to the result of toss-
ing the biased coin. As shown in [72], probabilistic rewrite theories can express a
wide range of models of probabilistic systems, including continuous-time Markov
chains [131], probabilistic non-deterministic systems [119,123], and generalized
semi-Markov processes [48]; they can also naturally express probabilistic object-
based distributed systems [73,4], including real-time ones. Yet another class of
probabilistic models that can be simulated by probabilistic rewrite theories is
the class of object-based stochastic hybrid systems discussed in [99].

The PMaude language [73,4] is an experimental specification language whose
modules are probabilistic rewrite theories. Note that, due to their nondetermin-
ism, probabilistic rewrite rules are not directly executable. However, probabilistic
systems specified in PMaude can be simulated in Maude. As explained in [4,93],
this is accomplished by transforming a PMaude specification into a correspond-
ing Maude specification in which actual values for the new variables appearing
in the righthand side of a probabilistic rewrite rule are obtained by sampling
the corresponding probability distribution functions using standard techniques
based on random number generation and Maude’s built-in COUNTER and RANDOM
modules.

In general, provided that sampling for the probability distributions used in a
PMaude module is supported in the underlying infrastructure, we can associate
to it a corresponding Maude module. We can then use this associated Maude
module to perform Monte Carlo simulations of the probabilistic systems thus
specified. As explained in [4], provided all nondeterminism has been eliminated
from the original PMaude module7, we can then use the results of such Monte
Carlo simulations to perform a statistical model checking analysis of the given
system to verify certain properties. For example, for a PMaude specification of a
7 The point is that, as explained above, in general, given a probabilistic rewrite theory

and a term t describing a given state, there can be several different rewrites, perhaps
with different rules, at different positions, and with different matching substitutions,
that can be applied to t. Therefore, the choice of rule, position, and substitution is
nondeterministic. To eliminate all nondeterminism, at most one rule at exactly one
position and with a unique substitution should be applicable to any term t. As ex-
plained in [4], for many systems, including probabilistic real-time object-oriented sys-
tems, this can be naturally achieved, essentially by scheduling events at real-valued
times that are all different, because we sample a continuous probability distribution
on the real numbers.

268 José Meseguer

TCP/IP protocol variant that is resistant to Denial of Service (DoS) attacks, we
may wish to establish that, even if an attacker controls 90% of the network band-
width, it is still possible for the protocol to establish a connection in less than
30 seconds with 99% probability. Properties of this kind, including properties
that measure quantitative aspects of a system, can be expressed in the QATEX
probabilistic temporal logic [4], and can be model checked using the VeStA tool
[124]. See [2] for a substantial case study specifying a DoS-resistant TCP/IP
protocol as a PMaude module, performing Monte Carlo simulations by means of
its associated Maude module, and formally analyzing in VeStA its properties, ex-
pressed as QATEX specifications, according to the methodology just described.
More recently, several object-based stochastic hybrid system case studies have
been specified in an extension of both PMaude and Real-Time Maude called
SHYMaude [99] and have been simulated in Maude. Relevant formal properties
for each case study, expressed as QATEX specifications, have been statistically
model checked in VeStA using Monte Carlo simulations performed in Maude
[99].

4.3 Narrowing: Eqlog Revisited

Narrowing is a symbolic procedure like rewriting, except that rules, instead
of being applied by matching a subterm, are applied by unifying the lefthand
side with a nonvariable subterm. Traditionally, narrowing has been used as a
method to solve equations in a confluent and terminating equational theory. In
rewriting logic, Prasanna Thati and I have generalized narrowing to a procedure
for symbolic reachability analysis [132]. That is, instead of solving equational
goals ∃x. t = t′, we solve reachability goals ∃x. t −→ t′, stating that there
is an instance of t from which we can reach by rewriting with rules R modulo
equations E an instance of t′.

For arbitrary rewrite theories narrowing, though sound, is not a complete
procedure [132]. However, for large classes of theories of interest, including theo-
ries specifying distributed object systems, narrowing is complete and provides a
complete semidecision procedure for solving reachability problems [132]. Further
recent work on narrowing with rewrite theories focuses on: (1) generalizing the
procedure to so-called “back-and-forth narrowing,” so as to ensure completeness
under very general assumptions about the rewrite theory R [133]; and (2) effi-
cient lazy strategies to restrict as much as possible the narrowing search space
[45].

Narrowing with rewrite theories has important applications to the analysis of
cryptographic protocols. A relevant point is that, since narrowing with a rewrite
theory R = (Σ,E,R) is performed modulo the equations E, this allows more
sophisticated analyses than those performed under the usual Dolev-Yao “perfect
cryptography assumption.” It is well-known that protocols that had been proved
secure under this assumption can be broken if an attacker uses knowledge of
the algebraic properties satisfied by the underlying cryptographic functions. In
rewriting logic we can specify a cryptographic protocol with a type of rewrite
theory R = (Σ,E,R) for which narrowing is complete, and can model those

From OBJ to Maude and Beyond 269

algebraic properties as equations in E. Very recent work in this direction by
Escobar, Meadows and myself [44,43] uses rewriting logic and narrowing to give
a precise rewriting semantics to the inference system of one of the most effective
analysis tools for cryptographic protocols, namely the NRL Protocol Analyzer
[84].

Equational narrowing is a special case of rewriting logic narrowing, namely
the case where we solve reachability goals of the form ∃x. equal(t, t′) −→ true
using the equations E as rewrite rules and adding the extra rule equal(x, x) −→
true. Furthermore, Horn logic with equality can be conservatively embedded in
rewriting logic [89,81]. Indeed, in this embedding narrowing with the resulting
rewrite theory is complete and agrees with SLD resolution modulo the equations
E. This means that we reencounter our old friend Eqlog within the broader
perspective of rewriting logic narrowing.

4.4 The Open Calculus of Constructions

Rewriting logic is an expressive logical framework, in which many other logics
can be naturally represented [81]. Furthermore, by exploiting its reflective fea-
tures in conjunction with the inductive nature of initial models, it has also good
properties as a meta-logical framework, so that we can not only represent logics,
but can also reason within the framework about their meta-logical properties
[5,6].

But how good and general is it anyway? For example, how does it compare
with the higher-order type theory formalisms that have been proposed by dif-
ferent authors as logical frameworks? Mark-Oliver Stehr and I tried to give an
answer to this question using transitivity of representation mappings. If we could
show that a higher-order type theory can be easily and naturally represented in
rewriting logic in a conservative way, then any representation of a logic into such
a type theory would automatically yield one in rewriting logic by composition.
This would not be the simplest representation of that logic that one could define
directly in rewriting logic, but it would prove that anything one can represent in
the higher-order framework can likewise be represented in rewriting logic. Even
so, some people might still be skeptical. Maybe you did it for Martin-Löf type
theory, but how do I know that you can also do it for the Calculus of Construc-
tions? All this could be dragged ad nauseam. So, what Mark-Oliver and I did in
[130] was to specify a single parametric map (using parameterization in Maude)
faithfully representing pure type systems (PTS) [8] into rewriting logic. Since
pure type systems encompass a large class of type theories with simple types,
type parameters, and type families, including the lambda cube, our skeptical
colleagues would now have to come up with more exotic type theories outside
the PTS general fold. At the meta-logical framework level, a careful comparison
with higher-order type theories used for that purpose was given by David Basin,
Manuel Clavel and myself in [6].

In fact, Mark-Oliver and I defined in [130] several representation mappings for
pure type systems at different levels of abstraction. The more abstract, textbook-
like representation mapped isomorphically the textbook syntax of pure type sys-

270 José Meseguer

tems. But in order to give a more computational representation that would take
care automatically of all the binding and substitution paraphernalia, we also
gave a more concrete representation using Mark-Oliver’s CINNI calculus of ex-
plicit substitutions [126] and showed it equivalent to the textbook one. Similarly,
typing inference systems were represented in Maude in a computational way by
means of rewrite rules [130]. This more concrete representation map was used
by Mark-Oliver in his thesis [127] to implement in Maude his Open Calculus
of Constructions (OCC) [127,128,129]. Since the Coquand-Huet calculus of con-
structions (CC) [28] is one of the instances of pure type systems, one could of
course obtain an implementation of CC in Maude that way. But Mark-OIiver
went considerably further. One of the sore points with higher-order type theories
is their very limited and awkward way of dealing with equalities: an equational
reasoning system like Maude can perform millions of equational deduction steps
automatically in a second; but to represent such deduction steps within a given
constructive type theory one needs to justify each of those equality steps con-
structively. By generating proof objects for the deductions of an external tool,
for example for membership equational logic deduction [121], one can partly
get around the problem. But Mark-Oliver’s solution was more radical. By drop-
ping the constructive interpretation and allowing simple set-theoretic models for
OCC, he solved this problem directly: equality steps are allowed inside OCC,
even modulo axioms like associativity and commutativity. Furthermore, OCC
distinguishes several notations for equality, making clear whether they can be
handled automatically by equational simplification, or need to be performed by
explicit deduction steps. Likewise, a notation for relations representing rewrite
rules in the rewriting logic sense is also provided. All this means that OCC can
be viewed as a natural conceptual unification of the Calculus of Constructions
and of rewriting logic. In particular, Maude can be naturally regarded as a sub-
language of OCC. As shown in [127,128,129], all the nice reasoning capabilities
of the Calculus of Constructions, including its extensions with inductive and
co-inductive principles, can be represented in OCC, that can carry out highly
nontrivial proof tasks [127,128,129].

4.5 BMaude

In some sense, Maude, and languages like CafeOBJ [46] and BOBJ [54] that
support hidden logic and behavioral equivalence, push the envelope in differ-
ent directions of the specification language design space. Yet, there is a natural
question about how these languages are all related. For example, both Maude
and those languages have equational logic sublanguages. CafeOBJ itself provided
some answer to this question in the form of the CafeOBJ “cube” of institutions
[46], in which equational logic, hidden equational logic, and rewriting logic are
related and unified. But the unification of rewriting logic and hidden logic pro-
posed in [29] and used in [46,31] has some limitations regarding its model theory,
and the matter seems to deserve further research.

While leaving open the issue of whether a more satisfactory unification of
hidden logic and rewriting logic can be found, what Grigore Roşu and I did

From OBJ to Maude and Beyond 271

in [96] was to develop a hidden/behavioral extension of membership equational
logic called behavioral membership equational logic. We were interested in this
extension because of theoretical and practical reasons. Theoretically, the greater
generality and expressiveness of MEL over, say, order-sorted equational logic re-
sulted in a more expressive behavioral logic. Practically, the reflective features of
Maude make it easy to develop an extension of Maude called BMaude in which
theories in behavioral membership equational logic can be specified as modules,
and to support deduction in such modules by behavioral rewriting [120,122].
Work ahead in this direction includes passing from the present theoretical foun-
dations and BMaude language design to a prototype implementation, and finding
a more general behavioral extension of rewriting logic itself.

5 Conclusions

Science is a dialogue. This gets somewhat distorted by the unidirectional charac-
ter of publications, including this one; and by the impossibility of making always
explicit the many influences shaping our ideas. This festive occasion provides an
opportunity for reflecting, with gratitude, on such influences; and for looking in
hindsight at the road already traveled, and forward to the ways ahead. I have
tried to do a little of all this from a limited and subjective perspective, but one
that I am at least very familiar with: some of the ways in which the OBJ, Eqlog,
and FOOPS ideas have influenced Maude. And some of the directions in which
the current Maude ideas are expanding.

One way to wrap all this up is with a picture describing the relationship
between the different languages I have been discussing. I call it a language ge-
nealogy. Solid lines describe language inclusions (or near inclusions). Dashed
lines describe a weaker relationship, namely one of influence between different
languages. Not all influences are reflected in the picture: to avoid too much clut-
tering, only those that I think are more direct are depicted. One point to bear in
mind is that some of these languages are currently under construction, or even
in their design phase. For example, only a first prototype of PMaude exists at
present, and BMaude and SHYMaude are only language designs at this point.
Acknowledgments. In this paper I have reflected on some of the ways in
which Joseph’s ideas have influenced mine. But there are many others, both
scientific and nonscientific: so much so that an actual enumeration would be
both impossible and futile. It is with deep gratitude that I wish to thank Joseph,
not only for his ideas and his example, but above all for his friendship. I have
already mentioned by name all the colleagues who were involved in the OBJ1–3
collaborations. To all of them I also extend my sincere thanks.

Furthermore, although the references make all this clear, I want to point out
that: (1) the work on Maude is joint work with all the members of the Maude
team at SRI, UIUC, and the Universities of Madrid and Málaga; (2) the work
on Maude tools is joint work with Manuel Clavel, Francisco Durán, Santiago
Escobar, Joseph Hendrix, Salvador Lucas, Claude Marché, Hitoshi Ohsaki, Peter
Ölveczky, Miguel Palomino, Ralf Sasse, and Xavier Urbain; (3) the work on real-

272 José Meseguer

PMaude

SHYMaude���������
Real-Time Maude

SHYMaude�����������

Full Maude

PMaude�����������
Full Maude

Real-Time Maude���������

Maude

Full Maude��

Maude

OCC �����������

OBJ

Maude��

OBJ

Eqlog!!������
OBJ

CafeOBJ""�����������������������
OBJ

ML ##� � � � � � �

ML

Coq���
�
�

Coq

OCC$$�
�
�
�

OBJ

FOOPS%%������������������

Eqlog

FOOPS&&�����������������

FOOPS

CafeOBJ''�
�
�
�
�

Maude

CafeOBJ�������

FOOPS

BOBJ((�
�

�
�

�

CafeOBJ BOBJ��			

OBJ

BOBJ�������������������������������

Maude

BMaude))��������������������

BOBJ

BMaude**�
�
�
�

CafeOBJ

BMaude++�
�

�
�

Fig. 1. A language genealogy (→ inclusion; - - > influence)

time rewrite theories is joint work with Peter Ölveczky at the University of Oslo;
(4) the work on probabilistic rewrite theories and on stochastic hybrid systems is
joint work with Gul Agha, Nirman Kumar, Koushik Sen, and Raman Sharykin
at UIUC; (6) the work on OCC is entirely Mark-Oliver Stehr’s; and (7) BMaude
and its foundations are joint work with Grigore Roşu at UIUC. Several of these
collaborators have also given me very useful comments to improve the final
version of this paper.

This research has been supported by Grants ONR N00014-02-1-0715 and NSF
CNS 05-24516, and by a bilateral CNRS-UIUC research project on “Rewriting
calculi, logic and behavior.”

References

1. G. Agha. Actors. MIT Press, 1986.

2. G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati.
Formal modeling and analysis of DoS using probabilistic rewrite theories. In
Proc. Workshop on Foundations of Computer Security (FCS’05) (Affiliated with
LICS’05), 2005.

3. G. Agha and C. Hewitt. Concurrent programming using actors. In A. Yonezawa
and M. Tokoro, editors, Object-Oriented Concurrent Programming, pages 37–53.
MIT Press, 1988.

4. G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language
for probabilistic object systems. In 3rd Workshop on Quantitative Aspects of
Programming Languages (QAPL’05), 2005.

From OBJ to Maude and Beyond 273

5. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework.
In S. Kapoor and S. Prasad, editors, FST TCS 2000, pages 55–80. Springer LNCS,
2000.

6. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework.
ACM Transactions on Computational Logic, 5:528–576, 2004.

7. D. Basin and G. Denker. Maude versus Haskell: an experimental comparison in
security protocol analysis. In K. Futatsugi, editor, Proc. 3rd. Intl. Workshop on
Rewriting Logic and its Applications, volume 36. ENTCS, Elsevier, 2000.

8. S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of con-
structions and other systems in barendregt’s cube. Technical Report, Carnegie-
Mellon University and Università di Torino, 1988.

9. G. Bernot, M. Bidoit, and T. Knapik. Observational specifications and the indis-
tinguishability assumption. Theoretical Comp. Science, 139(1-2):275–314, 1995.

10. N. Berregeb, A. Bouhoula, and M. Rusinowitch. Observational proofs with critical
contexts. In Proceedings of FASE’98, volume 1382 of LNCS. Springer, 1998.

11. M. Bidoit and R. Hennicker. Observer complete definitions are behaviourally
coherent. In OBJ/CafeOBJ/Maude at Formal Methods’99, pages 83–94. Theta,
1999.

12. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

13. R. Bruni and J. Meseguer. Generalized rewrite theories. In J. Baeten, J. Lenstra,
J. Parrow, and G. Woeginger, editors, Proceedings of ICALP 2003, 30th Inter-
national Colloquium on Automata, Languages and Programming, volume 2719 of
Springer LNCS, pages 252–266, 2003.

14. R. Burstall and J. A. Goguen. The semantics of Clear, a specification language. In
D. Bjorner, editor, Proceedings of the 1979 Copenhagen Winter School on Abstract
Software Specification, pages 292–332. Springer LNCS 86, 1980.

15. M. Clavel. Reflection in general logics and in rewriting logic, with applications to
the Maude language. Ph.D. Thesis, University of Navarre, 1998.

16. M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications, 2000.

17. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. Met-
alevel computation in Maude. Proc. 2nd Intl. Workshop on Rewriting Logic and
its Applications, ENTCS, Vol. 15, North Holland, 1998.

18. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

19. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.2). December 2005, http://maude.cs.uiuc.edu.

20. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving
tools by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic
Formal Method. Elsevier, 2000. http://maude.cs.uiuc.edu.

21. M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal
meta-tool. In J. Wing and J. Woodcock, editors, FM’99 — Formal Methods,
volume 1709 of Springer LNCS, pages 1684–1703. Springer-Verlag, 1999.

22. M. Clavel, F. Durán, and N. Mart́ı-Oliet. Polytypic programming in Maude.
ENTCS 36, Elsevier, 2000. Proc. 3rd. Intl. Workshop on Rewriting Logic and its
Applications.

23. M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In
G. Kiczales, editor, Proceedings of Reflection’96, San Francisco, California, April
1996, pages 263–288, 1996. http://jerry.cs.uiuc.edu/reflection/.

274 José Meseguer

24. M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Appli-
cations, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

25. M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 285:245–288, 2002.

26. M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational
logic, many-sorted equational logic, Horn logic with equality, and rewriting logic.
In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2002.

27. M. Clavel and M. Palomino. The ITP tool’s manual. Universidad Complutense,
Madrid, April 2005, http://maude.sip.ucm.es/itp/.

28. T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76:95–120, 1988.

29. R. Diaconescu. Hidden sorted rewriting logic. In J. Meseguer, editor, Proc. First
Intl. Workshop on Rewriting Logic and its Applications, volume 4 of Electronic
Notes in Theoretical Computer Science. Elsevier, 1996.

30. R. Diaconescu and K. Futatsugi. Behavioral coherence in object-oriented algebraic
specification. Journal of Universal Computer Science, 6(1):74–96, 2000.

31. R. Diaconescu and K. Futatsugi. Logical foundations of CafeOBJ. Theoretical
Computer Science, 285:289–318, 2001.

32. F. Durán. A reflective module algebra with applications to the Maude language.
Ph.D. Thesis, University of Málaga, 1999.

33. F. Durán. Coherence checker and completion tools for Maude speci-
fications. Manuscript, Computer Science Laboratory, SRI International,
http://maude.cs.uiuc.edu/papers, 2000.

34. F. Durán. Termination checker and Knuth-Bendix completion tools for Maude
equational specifications. Manuscript, Computer Science Laboratory, SRI Inter-
national, http://maude.cs.uiuc.edu/papers, 2000.

35. F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude. In
Agent Systems, Mobile Agents, and Applications, ASA/MA 2000, volume 1882 of
Springer LNCS, pages 73–85. Springer-Verlag, 2000.

36. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termina-
tion of membership equational programs. In P. Sestoft and N. Heintze, editors,
Proc. of ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation, PEPM’04, pages 147–158. ACM Press, 2004.

37. F. Durán and J. Meseguer. An extensible module algebra for Maude. Proc. 2nd
Intl. Workshop on Rewriting Logic and its Applications, ENTCS, Vol. 15, North
Holland, 1998.

38. F. Durán and J. Meseguer. A Church-Rosser checker tool for Maude equational
specifications. Manuscript, Computer Science Laboratory, SRI International,
http://maude.cs.uiuc.edu/papers, 2000.

39. F. Durán and J. Meseguer. On parameterized theories and views in Full Maude
2.0. In K. Futatsugi, editor, Proc. 3rd. Intl. Workshop on Rewriting Logic and its
Applications. ENTCS 36, Elsevier, 2000.

40. S. Eker. Term rewriting with operator evaluation strategy. Proc. 2nd Intl. Work-
shop on Rewriting Logic and its Applications, ENTCS, Vol. 15, North Holland,
1998.

41. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2002.

From OBJ to Maude and Beyond 275

42. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker
and its implementation. In Model Checking Software: Proc. 10th Intl. SPIN Work-
shop, volume 2648, pages 230–234. Springer LNCS, 2003.

43. S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system
for the NRL protocol analyzer and its meta-logical properties. Submitted for
publication, 2005.

44. S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system
for the NRL protocol analyzer: Grammar generation. In Proc. FMSE’05, Formal
Methods in Security Engineering (Alexandria, Virginia, Nov. 2005), pages 1–12.
ACM Press, 2005.

45. S. Escobar, J. Meseguer, and P. Thati. Natural narrowing for general term rewrit-
ing systems. In Rewriting Techniques and Applications, 16th Intl. Conference RTA
2005, volume 3467, pages 279–293. Springer LNCS, 2005.

46. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series, 1998.

47. K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In B. Reid, editor, Proceedings of 12th ACM Symposium on Principles of Pro-
gramming Languages, pages 52–66. ACM, 1985.

48. P. Glynn. The role of generalized semi-Markov processes in simulation output
analysis, 1983.

49. J. Goguen. Order sorted algebra. Technical Report Semantics and Theory of
Computation Report 14, UCLA, 1978.

50. J. Goguen. Types as theories. In Topology and Category Theory in Computer
Science, pages 357–390. Oxford, 1991.

51. J. Goguen and R. Diaconescu. Towards an algebraic semantics for the object
paradigm. In Proceedings of WADT, volume 785 of LNCS. Springer, 1994.

52. J. Goguen, J.-P. Jouannaud, and J. Meseguer. Operational semantics of order-
sorted algebra. In W. Brauer, editor, Proceedings, 1985 International Conference
on Automata, Languages and Programming, volume 194 of Springer LNCS, pages
221–231. Springer-Verlag, 1985.

53. J. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer, and T. Winkler.
An introduction to OBJ3. In J.-P. Jouannaud and S. Kaplan, editors, Proceedings,
Conference on Conditional Term Rewriting, Orsay, France, July 8-10, 1987, pages
258–263. Springer LNCS 308, 1988.

54. J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proceedings,
15th International Conference on Automated Software Engineering (ASE’00). In-
stitute of Electrical and Electronics Engineers Computer Society, 2000. Grenoble,
France, 11-15 September 2000.

55. J. Goguen and G. Malcolm. Hidden coinduction: Behavioral correctness proofs
for objects. Mathematical Structures in Computer Science, 9(3):287–319, 1999.

56. J. Goguen and G. Malcolm. A hidden agenda. J. of TCS, 245(1):55–101, 2000.
57. J. Goguen and J. Meseguer. Correctness of recursive flow diagram programs. In

Proc. 6th Symp. Math. Found. Comp. Sci., pages 580–595. Springer LNCS 53,
1977.

58. J. Goguen and J. Meseguer. Universal realization, persistent interconnection
and implementation of abstract modules. In M. Nielsen and E. M. Schmidt,
editors, Proceedings, 9th International Conference on Automata, Languages and
Programming, pages 265–281. Springer LNCS 140, 1982.

59. J. Goguen and J. Meseguer. Equality, types, modules and (why not?) generics
for logic programming. Journal of Logic Programming, 1(2):179–210, 1984.

276 José Meseguer

60. J. Goguen and J. Meseguer. Models and equality for logical programming. In
H. Ehrig, G. Levi, R. Kowalski, and U. Montanari, editors, Proceedings TAP-
SOFT’87, volume 250 of Springer LNCS, pages 1–22. Springer-Verlag, 1987.

61. J. Goguen and J. Meseguer. Unifying functional, object-oriented and relational
programming with logical semantics. In B. Shriver and P. Wegner, editors, Re-
search Directions in Object-Oriented Programming, pages 417–477. MIT Press,
1987.

62. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

63. J. Goguen, J. Meseguer, and D. Plaisted. Programming with parameterized ab-
stract objects in OBJ. In D. Ferrari, M. Bolognani, and J. Goguen, editors, Theory
and Practice of Software Technology, pages 163–193. North-Holland, 1983.

64. J. Goguen and G. Roşu. Hiding more of hidden algebra. In Proceeding of FM’99,
volume 1709 of LNCS, pages 1704–1719. Springer, 1999.

65. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: Algebraic Specification in Action,
pages 3–167. Kluwer, 2000.

66. J. A. Goguen and G. Malcolm, editors. Software Engineering with OBJ: Alge-
braic Specification in Action, volume 2 of Advances in Formal Methods. Kluwer
Academic Publishers, Boston, 2000. ISBN 0-7923-7757-5.

67. J. Hendrix, M. Clavel, and J. Meseguer. A sufficient completeness reasoning tool
for partial specifications. In Rewriting Techniques and Applications, 16th Intl.
Conference RTA 2005, volume 3467, pages 165–174. Springer LNCS, 2005.

68. R. Hennicker and M. Bidoit. Observational logic. In Proceedings of AMAST’98,
volume 1548 of LNCS, pages 263–277. Springer, 1999.

69. G. Holzmann. The Spin Model Checker - Primer and Reference Manual. Addison-
Wesley, 2003.

70. C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ3. In
T. Lepistö and A. Salomaa, editors, Proceedings, 15th Intl. Coll. on Automata,
Languages and Programming, Tampere, Finland, July 11-15, 1988, pages 287–301.
Springer LNCS 317, 1988.

71. P. Kosiuczenko and M. Wirsing. Timed rewriting logic with application to
object-oriented specification. Technical report, Institut für Informatik, Univer-
sität München, 1995.

72. N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories:
Unifying models, logics and tools. Technical Report UIUCDCS-R-2003-2347, CS
Dept., University of Illinois at Urbana-Champaign, May 2003.

73. N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model of prob-
abilistic distributed object systems. Proc. of Formal Methods for Open Object-
Based Distributed Systems, FMOODS 2003, Springer LNCS Vol. 2884, 2003.

74. E. Lien. Formal modeling and analysis of the NORM multicast protocol in Real-
Time Maude. Master’s thesis, Dept. of Linguistics, University of Oslo, April 2004.
http://wo.uio.no/as/WebObjects/theses.woa/wo/0.3.9.

75. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. J. Functl. and Log. Progr., 1(4):446–453, 1998.

76. S. Lucas. Termination of on-demand rewriting and termination of obj programs.
In Proc. PPDP’01, pages 82–93. ACM, 2001.

77. S. Lucas. Termination of rewriting with strategy annotations. In Proceedings of
LPAR 2001, volume 2250 of LNAI, pages 669–684. Springer-Verlag, 2001.

From OBJ to Maude and Beyond 277

78. S. Lucas. Context-sensitive rewriting strategies. Inf. Comput., 178(1):294–343,
2002.

79. S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters, 95(4):446–453, 2005.

80. E. Manes, editor. Proceedings of the First International Symposium on Category
Theory Applied to Computation and Control, San Francisco, California, February
25–26 1974. Springer LNCS Vol. 25, 1975.

81. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
2nd. Edition, pages 1–87. Kluwer Academic Publishers, 2002. First published as
SRI Tech. Report SRI-CSL-93-05, August 1993.

82. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.
Theoretical Computer Science, 285:121–154, 2002.

83. N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for
Maude. In N. Mart́ı-Oliet, editor, Proc. 5th. Intl. Workshop on Rewriting Logic
and its Applications, pages 417–441. ENTCS, Vol. 117, Elsevier, 2004.

84. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

85. J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium’87, pages
275–329. North-Holland, 1989.

86. J. Meseguer. A logical theory of concurrent objects. In ECOOP-OOPSLA’90 Con-
ference on Object-Oriented Programming, Ottawa, Canada, October 1990, pages
101–115. ACM, 1990.

87. J. Meseguer. Rewriting as a unified model of concurrency. In Proceedings of the
Concur’90 Conference, Amsterdam, August 1990, pages 384–400. Springer LNCS
458, 1990.

88. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

89. J. Meseguer. Multiparadigm logic programming. In H. Kirchner and G. Levi,
editors, Proc. 3rd Intl. Conf. on Algebraic and Logic Programming, pages 158–
200. Springer LNCS 632, 1992.

90. J. Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Di-
rections in Concurrent Object-Oriented Programming, pages 314–390. MIT Press,
1993.

91. J. Meseguer. Solving the inheritance anomaly in concurrent object-oriented pro-
gramming. In O. M. Nierstrasz, editor, Proc. ECOOP’93, pages 220–246. Springer
LNCS 707, 1993.

92. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS
1376, 1998.

93. J. Meseguer. A rewriting logic sampler. In Proc. International Colloquium on
Theoretical Aspects of Computing ICTAC05 (Hanoi, Vietnam, October 2005),
volume 3722 of LNCS, pages 1–28. Springer, 2005.

94. J. Meseguer and J. Goguen. Initiality, induction and computability. In M. Ni-
vat and J. Reynolds, editors, Algebraic Methods in Semantics, pages 459–541.
Cambridge University Press, 1985.

95. J. Meseguer and G. Roşu. A total approach to partial algebraic specification. In
Proc. ICALP’02, pages 572–584. Springer LNCS 2380, 2002.

96. J. Meseguer and G. Roşu. Towards behavioral Maude: Behavioral membership
equational logic. In Proc. CMCS’02. Elsevier ENTCS, 2002.

278 José Meseguer

97. J. Meseguer and G. Roşu. Rewriting logic semantics: From language specifications
to formal analysis tools. In Proc. Intl. Joint Conf. on Automated Reasoning
IJCAR’04, Cork, Ireland, July 2004, pages 1–44. Springer LNAI 3097, 2004.

98. J. Meseguer and G. Roşu. The rewriting logic semantics project. In Proc. SOS
2005. Elsevier ENTCS, 2005.

99. J. Meseguer and R. Sharykin. Specification and analysis of distributed object-
based stochastic hybrid systems. In Hybrid Systems, HSCC 2006, pages 460–475.
Springer LNCS 3927, 2006.

100. J. Meseguer and C. Talcott. Semantic models for distributed object reflection.
In Proceedings of ECOOP’02, Málaga, Spain, June 2002, pages 1–36. Springer
LNCS 2374, 2002.

101. J. Moore, R. Krug, H. Liu, and G. Porter. Formal models of Java at the JVM level
– a survey from the ACL2 perspective. In Proc. Workshop on Formal Techniques
for Java Programs, in association with ECOOP 2001, 2002.

102. P. C. Ölveczky. Specification and Analysis of Real-Time and Hybrid Sys-
tems in Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000.
http://maude.csl.sri.com/papers.

103. P. C. Ölveczky and M. Caccamo. Formal simulation and analysis of the CASH
scheduling algorithm in Real-Time Maude. In Proc. FASE 2006, LNCS 3922,
pages 357–372. Springer, 2005.

104. P. C. Ölveczky, M. Keaton, J. Meseguer, C. Talcott, and S. Zabele. Specification
and analysis of the AER/NCA active network protocol suite in Real-Time Maude.
In Proc. of FASE’01, 4th Intl. Conf. on Fundamental Approaches to Software
Engineering, volume 2029 of Springer LNCS, pages 333–348. Springer-Verlag,
2001.

105. P. C. Ölveczky, P. Kosiuczenko, and M. Wirsing. An object-oriented algebraic
steam-boiler control specification. In J.-R. Abrial, E. Börger, and H. Langmaack,
editors, The Steam-Boiler Case Study Book, pages 379–402. Springer-Verlag, 1996.
Vol. 1165.

106. P. C. Ölveczky and J. Meseguer. Specifying real-time systems in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Appli-
cations, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

107. P. C. Ölveczky and J. Meseguer. Real-Time Maude: a tool for simulating and
analyzing real-time and hybrid systems. volume 36. ENTCS, Elsevier, 2000. Proc.
3rd. Intl. Workshop on Rewriting Logic and its Applications.

108. P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science, 285:359–405, 2002.

109. P. C. Ölveczky and J. Meseguer. Real-Time Maude 2.1. In N. Mart́ı-Oliet, editor,
Proc. 5th. Intl. Workshop on Rewriting Logic and its Applications, pages 285–314.
ENTCS, Vol. 117, Elsevier, 2004.

110. P. C. Ölveczky and J. Meseguer. Specification and analysis of real-time systems
using Real-Time Maude. In T. Margaria and M. Wermelinger, editors, Fundamen-
tal Approaches to Software Engineering (FASE 2004), volume 2984 of Springer
LNCS, pages 354–358. Springer-Verlag, 2004.

111. P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time
Maude. In G. Denker and C. Talcott, editors, Proc. 6th. Intl. Workshop on
Rewriting Logic and its Applications. ENTCS, Elsevier, 2006.

112. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 2006. To appear.

From OBJ to Maude and Beyond 279

113. P. C. Ölveczky, J. Meseguer, and C. L. Talcott. Specification and
analysis of the AER/NCA active network protocol suite in Real-Time
Maude. Technical Report UIUCDCS-R-2004-2467, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2004. Available at
http://www.ifi.uio.no/RealTimeMaude.

114. P. C. Ölveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sen-
sor network algorithms in Real-Time Maude. In The 14th International Workshop
on Parallel and Distributed Real-Time Systems (WPDRTS) 2006. IEEE Com-
puter Society Press, 2006.

115. P. Padawitz. Swinging data types: Syntax, semantics, and theory. In Proceedings,
WADT’95, volume 1130 of LNCS, pages 409–435. Springer, 1996.

116. P. Padawitz. Towards the one-tiered design of data types and transition systems.
In Proceedings of WADT’97, volume 1376 of LNCS, pages 365–380. Springer,
1998.

117. P. Padawitz. Swinging types = functions + relations + transition systems. The-
oretical Computer Science, 243:93–165, 2000.

118. M. Palomino. A predicate abstraction tool for Maude. Manuscript, Universidad
Complutense, 2005, http://maude.sip.ucm.es/˜miguelpt/papers/pa-tool.pdf.

119. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, 1994.

120. G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
121. G. Roşu, S. Eker, P. Lincoln, and J. Meseguer. Certifying and synthesizing mem-

bership equational proofs. In Proc. FM’03, volume 2805, pages 359–380. Springer
LNCS, 2003.

122. G. Roşu and J. Goguen. Hidden congruent deduction. In Automated Deduction
in Classical and Non-Classical Logics, volume 1761 of LNAI. Springer, 2000.

123. R. Segala. Modelling and Verification of Randomized Distributed Real Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

124. K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In 17th conference on Computer Aided Verification (CAV’05), volume
3576 of LNCS, pages 266–280, Edinburgh, Scotland, 2005. Springer.

125. L. Steggles and P. Kosiuczenko. A timed rewriting logic semantics for SDL: a
case study of the alternating bit protocol. Proc. 2nd Intl. Workshop on Rewriting
Logic and its Applications, ENTCS, Vol. 15, North Holland, 1998.

126. M.-O. Stehr. CINNI - a generic calculus of explicit substitutions and its appli-
cation to lambda-, sigma- and pi-calculi. ENTCS 36, Elsevier, 2000. Proc. 3rd.
Intl. Workshop on Rewriting Logic and its Applications.

127. M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving —
Towards a Unified Language based on Equational Logic, Rewriting Logic, and
Type Theory. Doctoral Thesis, Universität Hamburg, Fachbereich Informatik,
Germany, 2002. http://www.sub.uni-hamburg.de/disse/810/.

128. M.-O. Stehr. The Open Calculus of Constructions: An equational type theory
with dependent types for programming, specification, and interactive theorem
proving (Part I). Fundamenta Informaticae, 68(1–2):131–174, 2005.

129. M.-O. Stehr. The Open Calculus of Constructions: An equational type theory
with dependent types for programming, specification, and interactive theorem
proving (Part II). Fundamenta Informaticae, 68(3):249–288, 2005.

130. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic: Specifying
typed higher-order languages in a first-order logical framework. In Essays in
Memory of Ole-Johan Dahl, pages 334–375. Springer LNCS Vol. 2635, 2004.

280 José Meseguer

131. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994.

132. P. Thati and J. Meseguer. Symbolic reachability analysis using narrowing and
its application to the verification of cryptographic protocols. In N. Mart́ı-Oliet,
editor, Proc. 5th. Intl. Workshop on Rewriting Logic and its Applications, pages
153–182. ENTCS, Vol. 117, Elsevier, 2004.

133. P. Thati and J. Meseguer. Complete symbolic reachability analysis using back-
and-forth narrowing. In Proceedings of CALCO 2005, volume 3629 of LNCS,
pages 379–394. Springer, 2005.

134. S. Thorvaldsen and P. C. Ölveczky. Formal modeling and analysis
of the OGDC wireless sensor network algorithm in Real-Time Maude.
http://www.ifi.uio.no/RealTimeMaude/OGDC, 2005.

135. W. Tracz. Parametrized programming in LILEANNA. In Proc. 1993
ACM/SIGAPP Symp. on Applied Computing (SAC ’93), pages 77–86, 1993.

136. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 2002.

Constructive Action Semantics in OBJ

Peter D. Mosses

Department of Computer Science, Swansea University, Wales, UK
p.d.mosses@swan.ac.uk,

http://www.cs.swan.ac.uk/˜ cspdm/

Abstract. Goguen and Malcolm specify semantics of programming lan-
guages in OBJ. Here, we consider how the extensibility and reusability
of their specifications could be improved. We propose using the notation
and modular structure of the Constructive Action Semantics framework
in OBJ, and give a simple illustration. The reader is assumed to be fa-
miliar with OBJ.

1 Introduction

Conventional semantic descriptions of programming languages suffer from poor
modularity. In denotational semantics, for instance, descriptions are usually di-
vided into three sections, defining (abstract) syntax, semantic entities, and se-
mantic functions. The semantic functions map parts of programs composition-
ally to their denotations (which are themselves usually functions) and are de-
fined inductively by so-called semantic equations. All the definitions have global
visibility throughout the description of a particular language. Moreover, when
developing a denotational semantics, adding a new construct to the syntax of the
described language may require extensive reformulation of the definition of the
semantic functions. The need for reformulation can be largely eliminated using
monadic notation instead of pure λ-notation, but there are still no named mod-
ules that could be reused or extended in semantic descriptions of other languages.
Similarly, conventional structural operational semantics lacks explicit modules,
and adding a new construct may require reformulating all the previously-defined
rules to take account of a new component of configurations (although the latter
problem can be eliminated rather easily using MSOS [12]).

Goguen and Malcolm [3] specify semantics of programming languages us-
ing OBJ [4]. Their descriptions are a hybrid of denotational, operational, and
algebraic semantics. Importantly, the OBJ system supports validation of the
semantic description by running programs and proving properties about them.
The introduction of named modules with restrictions on the visibility of their
definitions helps to identify which parts could be affected when a definition
is changed. However, just as with conventional denotational and operational
semantics, adding a new construct to a language may still require extensive
reformulation of the description of the original constructs. Their modules are
also quite large, and unlikely to be reused directly in descriptions of different
languages. These points will be discussed further and illustrated in Sect. 2.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 281–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 Peter D. Mosses

We propose to improve the extensibility of semantics in OBJ by introduc-
ing actions. Actions are used as the denotations of programming constructs in
Action Semantics [8,9,14], and expressed using Action Notation (AN). This no-
tation plays the same role in action semantic descriptions as λ-notation does in
conventional denotational semantics, but also provides primitives and combina-
tors to specify control and data flow, scopes of bindings, effects on storage, and
interactive processes. The design of AN is such that previous specifications of de-
notations never need reformulation when adding a new construct to the described
language. For instance, the specification of the action semantics of an arithmetic
expression can remain the same, regardless of whether the sub-expressions might
have side-effects, raise exceptions, spawn processes, be non-deterministic, or di-
verge. Further details and illustrations will be given in Sect. 3.

Using AN dramatically improves the reusability of parts of semantic descrip-
tions. For instance, the semantic equations defining the denotations of arithmetic
expressions could now be reused verbatim in descriptions of different languages.
However, specification reuse by copying has major disadvantages: it leaves no
trace of the origin of the specification, and it is not apparent whether the copied
specification has been subsequently edited. Verbatim reuse should be made ex-
plicit by referring directly to the original specification.

To maximize the possibility of verbatim reuse, we propose two further changes
to the style of specifying semantics in OBJ. Both are rather radical, and form
the basis for a novel approach to developing semantic descriptions called Con-
structive Semantics [13]. The first change concerns modular structure, where we
intend to use a separate module for the description of each individual language
construct. Such a module contains a single semantic equation, specifying the
action semantics of the construct concerned using AN to combine the action
semantics of its components. The second change is to map the concrete syntax
of each language construct to the constructs of a language-independent abstract
syntax. The semantics of each concrete construct is then derived by composing
this map with the semantics of the abstract construct. Complex concrete con-
structs can be mapped to combinations of simpler abstract constructs; this is
similar to reducing a language to its kernel constructs, except that we do not
insist on the abstract constructs being themselves directly expressible in the
concrete language, nor that the abstract constructs are themselves irreducible.
Specification of constructive semantics in OBJ will be illustrated in Sect. 4.

The Constructive Action Semantics framework was originally developed in
collaboration with Doh [1], and further enhanced in collaboration with van den
Brand and Iversen [15]. A constructive action semantics for Core ML has been
specified together with Iversen [6], and used for semantics-based compiler gener-
ation [5]. A constructive version of MSOS [12] has been used in connection with
teaching operational semantics [10]. The general architecture of constructive se-
mantics is advocated as a useful paradigm for the development of any kind of
truly modular semantics [11,13].

The present paper is based on tentative experiments using OBJ. It includes
excerpts from the full specifications developed by the author, which are available

Constructive Action Semantics in OBJ 283

for downloading at http://www.cs.swan.ac.uk/˜cspdm/Goguen-FS/. Please note
that the author is not an expert user of OBJ; suggestions for improvements to
the use of OBJ in the specifications are welcome.

2 Algebraic Semantics in OBJ

We shall start by recalling how Goguen and Malcolm specify the semantics of
imperative programming languages algebraically in OBJ [3]. We shall then assess
the extensibility and reusability of such semantic descriptions.

2.1 A Simple Example

Goguen and Malcolm introduce a small language called Simple, and specify both
its syntax and semantics in OBJ. Some excerpts from their specification are given
below (the full OBJ code is available at http://www.cs.ucsd.edu/users/goguen/
sys/code1.html).

Goguen and Malcolm start by specifying the data types of Simple. For tech-
nical reasons (and to facilitate proofs), they specify a module ZZ which enriches
the built-in module INT with the operation _is_ : Int Int -> Bool, and with
various equations and conditional equations concerning integer operations and
relations.

OBJ allows rather general mixfix operation symbols. Goguen and Malcolm
exploit this to declare abstract syntax constructors that correspond to a grammar
for concrete syntax, so that concrete programs can be parsed as terms by OBJ:

obj EXP is pr ZZ .
dfn Var is QID .
sorts Exp Arvar Arcomp .
subsorts Var Int Arcomp < Exp .
ops a b c : -> Arvar .
op _+_ : Exp Exp -> Exp [prec 10] .
op _*_ : Exp Exp -> Exp [prec 8] .
op -_ : Exp -> Exp [prec 1] .
op _-_ : Exp Exp -> Exp [prec 10] .
op _[_] : Arvar Exp -> Arcomp [prec 1] .

endo

Goguen and Malcolm specify stores in terms of their relationship to expres-
sions, Boolean-valued tests, and assignment statements:

th STORE is pr BPGM .
pr ARRAY .

sort Store .
op initial : -> Store .
op _[[_]] : Store Exp -> Int [prec 65] .
...

284 Peter D. Mosses

op _;_ : Store BPgm -> Store [prec 60] .
var S : Store .
vars X1 X2 : Var .
...
eq S [[E1 + E2]] = (S[[E1]]) + (S[[E2]]) .
...
eq S ; X1 := E1 [[X1]] = S [[E1]] .
cq S ; X1 := E1 [[X2]] = S [[X2]] if X1 =/= X2 .
eq S ; X1 := E1 [[AV]] = S [[AV]] .
...

endth

Goguen and Malcolm’s specification of the semantics of structured programs
in Simple is formulated as equations between store terms, but the equations can
easily be understood operationally:

obj SEM is pr PGM .
pr STORE .

sort EStore .
subsort Store < EStore .
op _;_ : EStore Pgm -> EStore [prec 60] .
var S : Store .
var T : Tst .
var P1 P2 : Pgm .
eq S ; skip = S .
eq S ; (P1 ; P2) = (S ; P1) ; P2 .
cq S ; if T then P1 else P2 fi = S ; P1
if S[[T]] .

cq S ; if T then P1 else P2 fi = S ; P2
if not(S[[T]]) .

cq S ; while T do P1 od = (S ; P1) ; while T do P1 od
if S[[T]] .

cq S ; while T do P1 od = S
if not(S[[T]]) .

endo

(The supersort EStore is introduced because of the possibility of non-terminating
while-programs.)

2.2 Extensibility

Goguen and Malcolm’s semantics of Simple is algebraic (in the sense that it
is specified as an initial algebra, using algebraic axioms). It also appears to be
reasonably modular. But how extensible is it? Can we expect to be able to keep
it largely unchanged when adding new constructs to the described language?

Inspection of the main modules STORE and SEM reveals that their formulation
depends on two assumptions:

Constructive Action Semantics in OBJ 285

– expressions do not have side-effects, and
– the store is the only auxiliary information processed by expressions and

structured programs.

If we were to extend Simple by adding side-effects to expressions, representing
local bindings by environments, allowing expressions to raise exceptions, or many
other language features, we would violate one or both of these assumptions.

The need to reformulate large parts of semantic descriptions when adding
new features to language constructs is familiar from conventional denotational
and operational semantics. In the next section, we shall see how the use of
the action notation provided by action semantics can avoid the need for such
reformulation, and ensure better extensibility.

2.3 Reusability

To what extent could parts of Goguen and Malcolm’s semantics of Simple be
reused in descriptions of different languages? For instance, suppose we were to
describe the semantics of a corresponding sublanguage of C (with expressions
restricted to have no side-effects, etc.); which modules would we be able to reuse
verbatim?

Clearly, the modules specifying the data types of a programming language
are highly reusable. For example, the module ZZ that specifies (an enrichment of)
the usual integers would probably be appropriate in the semantic descriptions
of most programming languages; any further operations required could easily be
added after importing it.

However, several aspects of the other modules significantly hinder their reuse:

– The notation for expressions and structured programs is intended to reflect
their concrete syntax. OBJ allows notation to be changed when importing
a module, but when widespread changes would be needed (e.g., when going
from the syntax for structured programs in Simple to that in C) it would
surely be simpler and more perspicuous to copy and edit the original modules
than to import them and specify the renaming of operations.

– The module hierarchy is relatively deep. If a module such as EXP in Goguen
and Malcolm’s example semantics were to be reused by importing and en-
riching it, any module that imports EXP would require a corresponding en-
richment – unless it was copied and edited to refer to the module importing
and enriching EXP.

– Particular sets of constructs are bundled together in the same module. OBJ
does not allow operations to be hidden, so for instance when the module
EXP is imported, the concrete syntax for array variables (Arvar) and array
components (Arcomp) is included, whether one wants it or not. It appears
that copying and editing is the only way of removing declared operations.

In Sect. 4 we shall see how to remove all the above hindrances to reuse.

286 Peter D. Mosses

3 Action Semantics in OBJ

Action Semantics is a hybrid of denotational and operational semantics. As
usual in denotational semantics, semantic functions map programs and their
components to denotations that represent their contribution to overall program
behaviour. The semantic functions are compositional (i.e., the denotation of a
construct depends only on the denotations of its components) and defined induc-
tively by semantic equations. The main difference between action semantics and
conventional denotational semantics is that denotations in action semantics are
so-called actions, rather than higher-order functions on domains. The notation
used to express actions, called simply Action Notation (AN), is itself defined op-
erationally, in contrast to the λ-notation used in denotational semantics, which
has a pure mathematical interpretation. When performed, actions may be given
and compute data, refer to bindings, inspect and update storage; they may ter-
minate normally, terminate exceptionally, fail, or never terminate. As we shall
see below, AN is quite expressive, and provides primitives and combinators for
specifying data and control flow, scopes of bindings, and effects on storage.1

3.1 Data

The items of data processed by actions consist of the usual data types of pro-
gramming languages (numbers, arrays, etc.) together with identifiers, environ-
ments (representing bindings), storage cells (locations), and entities representing
various kinds of procedural and data abstraction (such as packages and classes).
Actions are given and may return arbitrary finite sequences of such data. The
constructors for such sequences can be declared in OBJ as follows:

obj DATA is
sorts Data Datum .
subsorts Datum < Data .
op no-data : -> Data .
op _ , _ : Data Data -> Data [assoc id: no-data] .
endo

All other operations on Data are represented by constants of sort Op:

obj DATA/OP is
ex DATA .
sort Op .
op _ ! _ : Op Data -> Data . *** result of application
op _ ? _ : Op Data -> Bool . *** definedness of result
endo

Note that also subsorts of Data are represented by constants (written in low-
ercase, e.g. datum for the subsort Datum), and the corresponding retracts are
represented by applying the operation ‘the’ to them (e.g. ‘the datum’).
1 AN also provides primitives for asynchronous threads and message-passing, but these

are omitted here.

Constructive Action Semantics in OBJ 287

3.2 Kernel AN

The primitives and combinators of the kernel of AN are declared below:

obj KERNEL-AN is
pr DATA DATA/BOOL DATA/INT DATA/SEQ DATA/BINDINGS DATA/STORE .
sorts Action Atomic-Action .
subsorts Atomic-Action < Action .
op copy : -> Atomic-Action .
op result _ : Data -> Atomic-Action .
op skip : -> Atomic-Action .
eq skip = result no-data .
op give _ : Op -> Atomic-Action .
op _ then _ : Action Action -> Action [assoc] .
op _ and _ : Action Action -> Action [assoc] .
op _ and-then _ : Action Action -> Action [assoc] .
op indivisibly _ : Action -> Action .

The difference between then and and-then is that in A1 then A2, the data com-
puted by A1 is passed to A2, whereas in A1 and-then A2, the data computed by
A1 is concatenated with that computed by A2. The difference between and-then
and and is that the former insists on sequential execution, whereas the latter
leaves the order unspecified, allowing interleaving.

op throw : -> Atomic-Action .
op thrown _ : Data -> Atomic-Action .
op err : -> Atomic-Action .
eq err = thrown no-data .
op _ catch _ : Action Action -> Action [assoc] .
op _ and-catch _ : Action Action -> Action [assoc] .

The above notation is used for actions that can terminate exceptionally, throwing
data. Note that when the given data is not in the domain of definition of an
operation O, the outcome of give O is the same as that of err.

op fail : -> Atomic-Action .
op check _ : Op -> Atomic-Action .
op _ else _ : Action Action -> Action [assoc] .

Explicit failure of an action is distinguished from throwing an exception, and
else allows combination of alternative actions to recover from failure.

op unfold : -> Action .
op unfolding _ : Action -> Action .

The above notation is used to express iteration.

op copy-bindings : -> Atomic-Action .
op _ scope _ : Action Action -> Action [assoc] .
op recursively _ : Action -> Action .

288 Peter D. Mosses

In A1 scope A2 above, the bindings computed by A1 are the current bindings
for A2. In recursively A the scope of the bindings computed by A includes A
itself.

op create : -> Atomic-Action .
op inspect : -> Atomic-Action .
op update : -> Atomic-Action .

The above notation is used for actions concerned with stored data.

op enact : -> Atomic-Action .

When the action enact is given an action as data, it performs that action. Action
is a subsort of Datum, and (constants corresponding to) action combinators are
included Op. Using the combinator scope allows the current bindings to be in-
corporated in actions before they are enacted, which supports both static and
dynamic bindings.

The following is an excerpt from the OBJ specification of the operational
semantics of kernel AN. It was developed primarily to support validation the
action semantics of Simple using OBJ. An action has to be supplied with data
and bindings, as well as access to the store, before it can be performed. The
outcome of the execution is computed data, thrown data, or failure, together
with the updated store.

op { _ } _ _ _ : Action Data Bindings Store -> Action .
op { _ } _ _ : Action Data Bindings -> Action .
op { _ } _ : Action Store -> Action .
op { _ } _ : Action Data -> Action .
op { _ } _ : Action Bindings -> Action .
vars A A1 A2 : Action .
vars D* D1* D2* : Data .
vars O : Op .
vars BS BS1 BS2 : Bindings .
vars S : Store .

eq {copy}D* BS S = {result D*}S .

eq {result D1*}D* BS S = {result D1*}S .

eq {give O}D* BS S =
if O ? D* then {result (O ! D*)}S else {err}S fi .

eq {A1 then A2}D* BS S = {A1}D* BS S then {A2}BS .
eq {result D1*}S then {A2}BS = {A2}D1* BS S .
eq {thrown D1*}S then {A2}BS = {thrown D1*}S .
eq {fail}S then {A2}BS = {fail}S .

Constructive Action Semantics in OBJ 289

3.3 Full AN

The primitives and combinators of the full AN are declared below. Note that,
in contrast to the original version of AN, so-called yielders are not part of the
kernel.

obj AN is
pr KERNEL-AN .
sort Yielder .
subsorts Data Op < Yielder .
op _ , _ : Yielder Yielder -> Yielder [assoc] .
op _ _ : Op Yielder -> Yielder .
op _ _ _ : Yielder Op Yielder -> Yielder .
op give _ : Yielder -> Action .
op _ _ : Atomic-Action Yielder -> Action .

Yielders allow compositions of data operations to be applied to the given data.
When Y is a yielder, the action give Y gives the result of Y. The action AA Y
makes the result of Y the data for the (atomic) action AA. For example, if the
action update is used alone, it has to be given a cell and a storable value as data,
whereas the action update(the cell, 0) is equivalent to (give the cell and
result 0) then update, and is given only a cell.

op check _ : Yielder -> Action .
op maybe _ : Action -> Action .

The action check Y merely tests whether the value is true (failing otherwise).
When A terminates exceptionally, maybe A fails (so maybe give O fails is the
given data is not in the domain of O).

op furthermore _ : Action -> Action .
op _ before _ : Action Action -> Action .

The action furthermore A lets the bindings computed by A override the current
bindings, so that (furthermore A1) scope A2 corresponds to a block. The ac-
tion A1 before A2 combines the bindings computed by A1 and A2, letting the
scope of the former bindings include A2.

op bind : -> Atomic-Action .
op current-bindings : -> Yielder .
op closure _ : Yielder -> Yielder .

The action bind merely computes a binding from the identifier and bindable
value given to it. The yielder closure A results in an action which, when en-
acted, performs A in the scope of the bindings that were current for the yielder.

op bound-to _ : Yielder -> Yielder .
op stored-at _ : Yielder -> Yielder .

The yielders bound-to Y and stored-at Y refer to components of the current
bindings and of the store, respectively.

290 Peter D. Mosses

The following equations illustrate how the expansion of full AN to kernel AN
is specified in OBJ:

eq give D* = result D* .
eq give (Y1, Y2) = give Y1 and give Y2 .
eq give (O Y) = give Y then give O .
eq give (Y1 O Y2) = (give Y1 and give Y2) then give O .
eq give current-bindings = copy-bindings .
eq give bound-to Y = (copy-bindings and give Y) then give bound .
eq give stored-at Y = give Y then inspect .

eq AA Y = give Y then AA .

eq maybe A = A catch fail .

eq furthermore A = copy-bindings then give overriding .

eq A1 before A2 =
(copy-bindings and A1) then
(give #2 and (give overriding scope A2)) then
give overriding .

eq bind = give binding .

eq closure Y = (result current-bindings) scope Y .

3.4 Action Semantics

The action semantics of Simple’s concrete expressions and structured programs
could be specified as follows.

First, a semantic function is declared for each sort of concrete syntactic con-
struct, e.g.:

op evaluate _ : Exp -> Action .

(It would be appropriate to specify what sorts of data the action denotations of
the different sorts of construct may return, but the required notation for subsorts
of Action has not yet been specified in OBJ.)

After importing AN and the relevant specifications of data types, the seman-
tic functions are defined by semantic equations, e.g.:

eq evaluate (E1 + E2) =
(evaluate E1 and evaluate E2) then give plus .

The action combinator A1 and A2 corresponds to so-called target-tupling of
functions: it performs A1 and A2 (in an unspecified order) and if they both
terminate normally, it concatenates the data that they computed. In contrast,

Constructive Action Semantics in OBJ 291

A1 then A2 corresponds to functional composition: it performs A1 first, and if
that terminates normally, it gives any data computed by A1 to the performance
of A2. There is also a combinator written A1 and-then A2, which is the same
as A1 and A2 regarding data flow, but insists on sequential performance of the
sub-actions. For any data operation O, the primitive action give O applies O to
its data to compute a result (terminating exceptionally when the data is not in
the domain of definition of the operation).

Apart from their use of common notation for data, actions, and semantic
functions, the semantic equations for the various constructs are completely inde-
pendent. For instance, the formulation of the semantic equations for arithmetic
expressions does not depend at all on whether expression evaluation might have
side-effects, raise exceptions, never terminate, etc. The only crucial feature of
expression evaluation is that if it terminates normally, it returns a single data
item.

Thanks to the independence provided by the use of AN, the semantic equa-
tions for different constructs never need reformulation when the constructs are
combined in the same language. Thus the semantic equation for a particular con-
crete construct can be the same in different languages, which promises a high
degree of reusability.

However, recall the hindrances to explicit reuse mentioned in Sect. 2.3: the
dependence on concrete syntax, the relatively deep module hierarchy, and the
bundling of constructs together in single modules. The next section shows how
these hindrances can be removed in OBJ. In conjunction with the use of ac-
tion semantics as described above, this leads to extreme reusabiity of parts of
semantic descriptions in OBJ.

4 Constructive Semantics in OBJ

As outlined in the introduction, constructive semantics involves two main de-
partures from the conventional style of semantic description:

– concrete language constructs are mapped to language-independent abstract
constructs, and

– the semantics of each abstract construct is specified in a separate module.

Together, the above features allow the development of a repository containing se-
mantic descriptions of individual abstract constructs, as well as the efficient reuse
of these descriptions in connection with the semantics of concrete languages.

Below, we shall illustrate the ideas of constructive semantics by showing
excerpts from a constructive action semantics of Simple, written in OBJ. See
[13] for further details of the approach, [6] for a constructive action semantics of
Core ML, and [15] for alternative tool support for constructive action semantics
based on the ASF+SDF Meta-Environment [7].

292 Peter D. Mosses

4.1 Mapping Concrete Languages to Abstract Constructs

The concrete constructs of Simple can be found in some form or other in most
high-level general-purpose languages. To avoid bias toward particular families
of programming language, we eschew the use of mixfix notation and concrete
symbols (such as reserved words or mathematical signs) when declaring abstract
constructs: the operation symbols are generally abbreviated words2 and ordinary
prefix notation is used when writing applications. Here are some examples:

op assign : Var Exp -> Cmd .
op cond : Exp Cmd Cmd -> Cmd .

The abstract constructs are classified as variables (Var), expressions (Exp), com-
mands (Cmd), etc., according to what kind of values they might compute.

A mapping from concrete Simple programs to abstract (language-independ-
ent) constructs is specified inductively in OBJ as illustrated in the excerpt below:

op [[_]] : Exp.LANG/SIMPLE/EXP -> Exp.CONS/EXP/SYN .
op [[_]] : Tst.LANG/SIMPLE/TST -> Exp.CONS/EXP/SYN .
op [[_]] : BPgm.LANG/SIMPLE/BPGM -> Cmd.CONS/CMD/SYN .
op [[_]] : Pgm.LANG/SIMPLE/PGM -> Cmd.CONS/CMD/SYN .
...
*** variables X :
eq [[X]] = X .
...
*** expressions E:
eq [[I]] = I .
eq [[E1 + E2]] = app(plus, [[E1]], [[E2]]) .
...
*** tests T:
eq [[B]] = B .
eq [[E1 < E2]] = app(lt, [[E1]], [[E2]]) .
...
*** basic programs:
eq [[X := E]] = assign(X, [[E]]) .
...
*** programs P:
eq [[skip]] = skip .
eq [[P1 ; P2]] = seq([[P1]], [[P2]]) .
eq [[if T then P1 else P2 fi]] = cond([[T]], [[P1]], [[P2]]) .
eq [[while T do P od]] = cond-loop([[T]], [[P]]) .

Notice that if Simple were to be extended with an if-then structured program, it
could be mapped to the obvious combination of previously introduced abstract
constructs, thus avoiding the introduction of a further abstract construct:

eq [[if T then P fi]] = cond([[T]], [[P]], skip) .

2 Unabbreviated words can be too long for use in lectures and exercise classes.

Constructive Action Semantics in OBJ 293

Readers who are already familiar with the notation and intended interpre-
tation of the abstract constructs concerned may find that the specification of
the mapping from concrete to abstract constructs is sufficient explanation of the
semantics of the concrete constructs. Other readers should consult the action
semantic descriptions of the abstract constructs involved in the mapping, e.g.:

eq evaluate app(O, E1, E2) =
(evaluate E1 and evaluate E2) then give O .

4.2 Modular Structure of Constructive Action Semantics

The declaration of the action semantic function for each sort of abstract construct
is a separate module, e.g.:

obj CONS/CMD/ACT is
pr CONS/CMD/SYN AN .
op execute _ : Cmd -> Action .

endo

Hierarchical module names such as CONS/CMD/ACT facilitate navigation among
large collections of modules, and avoid accidental clashes between names. The
imported module CONS/CMD/SYN merely declares the sort Cmd, and is therefore
available for use in connection with alternative styles of constructive seman-
tics. The module AN, in contrast, declares the full Action Notation, rather than
just the sort Action. (Modularization of the OBJ specification of AN would be
possible, but it is irrelevant to the main issues addressed here.)

The action semantic description of each individual abstract construct is also
a separate module, e.g.:

obj CONS/CMD/ASSIGN/ACT is
pr CONS/CMD/ASSIGN/SYN .
us CONS/CMD/ACT .
pr CONS/VAR/ACT CONS/EXP/ACT .
var V : Var. var E : Exp .
eq execute assign(V, E) =

(locate V and evaluate E) then update .
endo

It needs to import (i.e., depends on) only the modules that declare the action
semantic functions for the sorts mentioned in the signature of the constructor,
as well as any data types directly involved in the semantics of the abstract con-
struct. It never imports other modules concerned with individual abstract con-
structs. This discipline ensures a very flat modular structure, with no bundling
of abstract constructs together. Notice that the declaration of each variable used
in the semantic equation may have to be repeated in many different modules;
giving these declarations in the modules that introduce the sorts of abstract
constructs would allow their “importation” using the vars-of feature of OBJ,

294 Peter D. Mosses

and help to maintain uniformity of names for such variables, but on balance it
seems preferable to exhibit the sorts of variables locally.

Thanks to the systematic naming of modules, most of the modules that need
to be imported for the action semantics of an individual construct are determined
by the signature of the construct itself. It might be advantageous to generate the
OBJ modules from more concise specifications where using a sort automatically
imports the module that declares it (e.g., in OBJ files in the current directory,
or in a specified search path), and similarly for semantic functions. Such “auto-
loading” is familiar from Lisp, and has already been employed to considerable
advantage in ASDF, the Action Semantic Description Formalism developed for
use in connection with the Action Environment [5,6,15].

Finally, the specification of the mapping from a particular concrete language
imports the concrete syntax of the language and all the modules declaring the
abstract constructs used in the target of the mapping. The complete action se-
mantics of the concrete language imports moreover the modules that specify the
action semantics of the abstract constructs. The action semantics of a concrete
program is obtained by mapping it to an abstract program and applying the
appropriate semantic function, and the resulting action can then be performed.
See http://www.cs.swan.ac.uk/˜cspdm/Goguen-FS/ for the full details.

5 Conclusion

We have shown how constructive action semantics can be specified in OBJ,
and given excerpts from such a description of Goguen and Malcolm’s Simple
illustrative language. Compared to the algebraic semantics of the same language
given by Goguen and Malcolm, it would appear considerably easier to reuse entire
modules of our specification when describing extensions or different languages
(although full-scale case studies supporting this claim have yet to be carried
out). However, we had to introduce a separate module for each construct, and
all the explicit imports are somewhat tedious (both to write and to read).

Acknowledgement. This paper was written on the occasion of Joseph Goguen’s
65th birthday. I would like to conclude it with some comments in acknowledge-
ment of the influence that Joseph’s work has had on my own research. I first
met Joseph at MFCS in Gdańsk, Poland, in 1976. The invited paper that Joseph
presented there on “Some Fundamentals of Order-Algebraic Semantics” [16] was
particularly interesting to me in connection with my interest in denotational se-
mantics – but what sparked my lasting interest in his work most of all was his
impromptu evening session on the initial algebra approach to the specification of
abstract data types and its relationship to the observability-based approach of
Montanari and his colleagues [2]. Following Joseph’s subsequent work, I became
an enthusiastic user of order-sorted algebra. In 1985, I spent an intensive month
with Joseph’s group at SRI International, trying to specify some (half-baked and
overambitious) ideas regarding action notation in a somewhat shaky new version
of OBJ (about halfway between OBJ2 and OBJ3, I think). Despite not having

Constructive Action Semantics in OBJ 295

used OBJ much at all since then, I was pleasantly surprised to find how easy
it was to resume that project in connection with the preparation of this paper,
and how robust the portable BOBJ implementation of OBJ has become (thanks
to Kai Lin for promptly fixing the single bug that my specifications revealed). I
hope that the approach presented in this paper will stimulate further interest in
using OBJ for specifying semantics of programming languages.

The author is grateful to the anonymous referees for helpful suggestions.

References

1. K.-G. Doh and P. D. Mosses. Composing programming languages by combining
action-semantics modules. Sci. Comput. Programming, 47(1):3–36, 2003.

2. V. Giarratana, F. Gimona, and U. Montanari. Observability concepts in abstract
data type specification. In MFCS’76, Proc. 5th. Symp. on Mathematical Founda-
tions of Computer Science, volume 45 of LNCS, pages 576–587. Springer, 1976.

3. J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. The
MIT Press, 1996.

4. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: Algebraic Specification in Action.
Kluwer, 2000.

5. J. Iversen. Formalisms and Tools Supporting Constructive Action Semantics. PhD
thesis, University of Aarhus, 2005.

6. J. Iversen and P. D. Mosses. Constructive action semantics for Core ML. IEE
Proceedings-Software, 152:79–98, 2005. Special issue on Language Definitions and
Tool Generation.

7. The ASF+SDF Meta-Environment. http://www.cwi.nl/projects/MetaEnv/.
8. P. D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1992.
9. P. D. Mosses. Theory and practice of Action Semantics. In MFCS ’96, Proc. 21st

Int. Symp. on Mathematical Foundations of Computer Science, Cracow, Poland,
volume 1113 of LNCS, pages 37–61. Springer, 1996.

10. P. D. Mosses. Fundamental concepts and formal semantics of programming lan-
guages. Lecture Notes. Version 0.4, available from the author, 2004.

11. P. D. Mosses. Modular language descriptions. In Generative Programming and
Component Engineering: Third International Conference, GPCE 2004, Vancouver,
Canada, Proceedings, volume 3286 of LNCS, pages 489–490. Springer, 2004.

12. P. D. Mosses. Modular structural operational semantics. J. Logic and Algebraic
Programming, 60–61:195–228, 2004. Special issue on SOS.

13. P. D. Mosses. A constructive approach to language definition. Journal of Universal
Computer Science, 11(7):1117–1134, July 2005.

14. P. D. Mosses and D. A. Watt. The use of action semantics. In Formal Description
of Programming Concepts III, Proc. IFIP TC2 Working Conference, Gl. Avernæs,
1986, pages 135–166. North-Holland, 1987.

15. M. G. J. van den Brand, J. Iversen, and P. D. Mosses. An action environment. In
Proceedings of the Fourth Workshop on Language Descriptions, Tools, and Appli-
cations (LDTA 2004), volume 110 of ENTCS, pages 149–168. Elsevier, 2004.

16. E. G. Wagner, J. B. Wright, J. A. Goguen, and J. W. Thatcher. Some fundamen-
tals of order-algebraic semantics. In MFCS’76, Proc. 5th. Symp. on Mathematical
Foundations of Computer Science, volume 45 of LNCS, pages 153–168. Springer,
1976.

Horizontal Composability Revisited�

Donald Sannella1 and Andrzej Tarlecki2,3

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Institute of Informatics, Warsaw University

3 Institute of Computer Science, Polish Academy of Sciences

Abstract. We recall the contribution of Goguen and Burstall’s 1980
CAT paper and its powerful influence on theories of specification imple-
mentation that were emerging at about the same time, via the intro-
duction of the notions of vertical and horizontal composition of imple-
mentations. We then give a different view of implementation which we
believe provides a more adequate reflection of the rather subtle interplay
between implementation, specification structure and program structure.

1 Introduction

Goguen and Burstall’s Cat paper [GB80] is surely the most influential paper in
the algebraic specification literature never to be properly published in a work-
shop or conference proceedings or in a journal. The topic of the paper was the
notion of specification implementation—also known as refinement—as a relation
on specifications, used for the step-by-step development of a program from a
specification of requirements. We write SP SP ′ to denote that SP ′ is an
implementation of SP , with the informal meaning that SP ′ captures all the re-
quirements expressed by SP but in a way that incorporates more design decisions
and is thus closer to being a program. A hot question at the time was how to
properly formalise this intuition. Earlier work that was relevant to this question
was Hoare’s work on data refinement [Hoa72] which had been incorporated into
VDM [Jon80], and Milner’s work on simulations [Mil71]; first approaches in the
algebraic specification literature were [GTW78] and (early versions of) [Ehr82]
and [EKMP82].

The main contribution of [GB80] was to sketch a compelling two-dimensional
view of implementations, with implementations composing both vertically and
horizontally. Composition along the vertical dimension corresponds to compo-
sition of consecutive implementations: if SP SP ′ and also SP ′ SP ′′,
then one would expect to have SP SP ′′. This justifies the correctness of
the principle of stepwise refinement. (This was called vertical composition be-
cause Goguen and Burstall drew their implementations vertically, with SP at
the top; we draw them horizontally here, except in a few diagrams, to save

� This work was funded in part by the European IST FET programme under the
IST-2005-015905 MOBIUS and IST-2005-016004 SENSORIA projects, and by the
British–Polish Research Partnership Programme.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 296–316, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Horizontal Composability Revisited 297

space.) Horizontal composition is about composing implementations of parts of
a specification to give an implementation of the whole: if SP1 SP ′

1 and
SP2 SP ′

2, then one would expect to have SP1 ⊕ SP2 SP ′
1 ⊕ SP ′

2 for
any specification-building operation ⊕. In particular, this should hold for com-
position of parameterised specifications: if P1 P ′

1 and P2 P ′
2 then one

would expect to have P1;P2 P ′
1;P

′
2. Finally, it was suggested that vertical

and horizontal composition should satisfy the double law, which says that given a
diagram of implementations admitting both vertical and horizontal composition
of implementations, the result is the same whether vertical composition is done
before or after horizontal composition.

In Section 2 we recall this work. A vertical composition theorem was the
main result in many accounts of implementations that were emerging at about
the same time, sometimes under more or less restrictive conditions on the spec-
ifications or implementations in question. Horizontal composition proved more
elusive; in most cases it remained a topic for the “Future Research” section.
Recent approaches go further. For instance, [GT00] (cf. [Gog96]) provides some
algebraic laws that link vertical and horizontal structure, but with what seems
to be a somewhat different understanding of the vertical dimension. Another
example is [LF97] where horizontal composability is achieved for colimits of
specification diagrams in the context of specifications for reactive systems. Still,
to our knowledge, no theory of implementations ever entirely fulfilled the dream
of Cat.

In Section 4 we give a different view of implementations which we believe
properly reflects the subtle interplay between implementations, specification
structure and program structure, and observe that it trivially satisfies a ver-
tical composition theorem. In Section 5 we consider horizontal composition, and
conclude that it does not hold in general but neither is it desirable. The problem
with horizontal composition arises from the lack of correspondence in general
between the structure of a specification and the structure of a program that im-
plements it, and the difference between operations for combining specifications
on one hand and operations for combining program components on the other.

2 CAT

The Cat paper [GB80] outlines a vision for a future interactive programming
system to be used for the development and maintenance of programs from spec-
ifications, in which program components were to be equipped with specifications
of their properties. The processes by which implementations are carried out
were to be fully modularised and parameterised, and all concepts in Cat were
to have a full semantic definition in order to support formal proofs of correct-
ness. Complete system designs were to be obtained by composing a number of
implementations, each one expressing an elementary design decision. Such a de-
gree of formalization and modularization would be useful not just for achieving
correctness but also for restricting the scope of re-checking required when the
system is modified subsequently. Scherlis and Scott’s Inferential Programming

298 Donald Sannella and Andrzej Tarlecki

paper [SS83], which led to the Ergo project at CMU [LPRS88], contains some
more detailed ideas along similar lines.

The important part of [GB80] is only a few pages long, sandwiched between a
quick review of the features of the then brand-new Clear specification language
[BG80] and a long OBJ definition that is only marginally relevant (see [GT79] for
a presentation of OBJ as it was at the time). The key insight is the recognition
of a distinction between so-called vertical and horizontal structure:

“One basic intuition behind Cat is that the process of implementing
a large program from its specification has a two-dimensional structure.
One dimension of structure, the horizontal, corresponds to the structure
of the specification. The second dimension, the vertical, corresponds to
the sequence of successive refinements of the specification into actual
code; the specification is at the top, and the code is at the bottom. . . . A
major purpose of the Cat project is to render this intuition much more
precise.” J.A. Goguen and R.M. Burstall [GB80]

In elaborating this point, Goguen and Burstall make reference mainly to the
structure of specifications arising from parameterised specifications, known as
theory procedures in Clear, which provide a specification of requirements that
any actual parameter needs to satisfy as well as a specification of the result.
Implementation of one such procedure P by another one P ′ having the same
“metasource” and “metatarget” specifications SP and SP ′ respectively (where
any actual argument specification must extend SP and then the result will extend
SP ′ in a corresponding way) would be represented by the following diagram:

SP SP ′

� �P

� �
P ′

�

�

α

where α gives the relationship between P and P ′.
Nowadays the authors would presumably agree with us (see e.g. [Gog96])

that the proper entities here are specifications of parameterised programs, see
[SST92], that is, descriptions of functions mapping algebras to algebras, rather
than Clear theory procedures which map specifications (descriptions of classes
of algebras) to specifications. See Section 3.

Such implementations should compose both vertically and horizontally. Hori-
zontal composition of implementations refers to composition of implementations
of parts of a specification to give an implementation of the whole. Given the
following diagram:

SP SP ′

� �P

� �
P ′

�

�

α SP ′′

� �Q

� �
Q′

�

�
β

Horizontal Composability Revisited 299

horizontal composition would give

SP

� �P ;Q

� �
P ′;Q′

�

�
α·β SP ′′

where “·” denotes horizontal composition of implementations and “;” stands
for composition of specifications of parameterised programs. The same idea ap-
plies to other specification-building operations: given α : SP1 SP ′

1 and
α′ : SP2 SP ′

2, one would expect to have α' α′ : SP1 ⊕ SP2 SP ′
1 ⊕ SP ′

2

for any specification-building operation ⊕. This depends on having an opera-
tion ' for combining implementations that corresponds to each operation ⊕ for
combining specifications. But according to [GB80]:

“Questions remain about how the Clear operations can be extended
from specifications to implementations.”

Vertical composition of implementations corresponds to stepwise refinement:

SP SP ′

� �P

�P ′

� �
P ′′

�

�

α

α′
SP SP ′

� �P

� �
P ′′

�

�
α;α′

The composed implementation α;α′ combines the design decisions in α with
those in α′: for instance, if α shows how to implement graphs using sets, and
α′ shows how to implement sets using lists, then α;α′ shows how to implement
graphs using lists.

Now, suppose we have a structured specification with consecutive implemen-
tations of its components, like so:

SP SP ′

� �P

�P ′

� �
P ′′

�

�

α

α′
SP ′′

� �Q

�Q′

� �
Q′′

�

�

β

β′

In this situation we may apply vertical composition to give implementations
α;α′ and β;β′, and then apply horizontal composition to give an implementation
(α;α′)·(β;β′) : P ;Q P ′′;Q′′. Alternatively, we may first apply horizontal
composition to give implementations α·β and α′·β′, and then apply vertical
composition to give an implementation (α·β);(α′·β′) : P ;Q P ′′;Q′′. Goguen
and Burstall conjecture that these two implementations should be the same:
the order of composition should not matter. If this “double law” holds then
implementations form a two-dimensional category, see [Mac71] (where the double

300 Donald Sannella and Andrzej Tarlecki

law is called the “interchange law”). They speculate that the double law may
not hold for some specification-building operations, and then extra care must be
taken at such points during the implementation process.

All of this discussion is set in the context of an arbitrary institution [GB92]—
a concept which first appeared in the semantics of Clear [BG80]—abstracting
away from the particular logical system used to write specifications. There is
no formal definition of what implementation of specifications means. Goguen
and Burstall also suggest that the Cat framework would be appropriate for
use with various different programming languages and programming paradigms.
Although functional languages are the most obvious fit, they speculate that
the use of imperative languages and assembly languages should not pose any
insurmountable obstacles.

3 Specifications and Programs

The precise syntax of specifications is not very important in this paper. More
significant is the way that the semantics of specifications is defined: for each spec-
ification SP , we define its signature Sig(SP) and its class of models, Mod(SP),
where each SP-model is a Sig(SP)-algebra: Mod(SP) ⊆ Alg(Sig(SP)). The sig-
nature of a specification defines an interface giving names to the required pro-
gram components, while its models represent programs that are considered to be
its correct realizations. If Sig(SP) = Σ we will say that SP is a Σ-specification.

The framework we are describing is independent of any particular institution
[GB92]. It can therefore be used with different programming paradigms by se-
lecting a notion of model that reflects the features of the paradigm in question.
However, for the sake of concreteness and simplicity let us concentrate on stan-
dard many-sorted algebras over standard algebraic signatures, specified using
axioms in first-order logic with equality. These capture a subset of Standard ML
programs (so-called structures) over Standard ML signatures [MTHM97], com-
prising first-order non-polymorphic datatypes and first-order non-polymorphic
properly-terminating functions.

Example 3.1. The following signature defines an interface for a program to sort
lists of elements with respect to an order relation on the type of elements:

signature SORTELEM =

sig

type elem

val ord : elem * elem -> bool

type listelem

val nil : listelem

val cons : elem * listelem -> listelem

val sort : listelem -> listelem

end

A structure over this signature provides code for the required components, in-
cluding such a sorting program:

Horizontal Composability Revisited 301

structure SortElem : SORTELEM =

struct

type elem = int

fun ord(x,y) = x >= y

datatype listelem = nil | cons of elem * listelem

fun sort l = ... (* code for sort *) ...

end

The semantics of Standard ML [MTHM97] can be used to interpret the above
code as a definition of an algebraic signature, call it [[SORTELEM]], and a particular
algebra over this signature [[SortElem]] ∈ Alg([[SORTELEM]]).

Example 3.2. The following specification has the above program as a correct
realization:

specification SORTELEMSPEC =

spec

type elem

val ord : elem * elem -> bool

axiom ... (* ord is transitive, reflexive and antisymmetric *) ...

datatype listelem = nil | cons of elem * listelem

val sort : listelem -> listelem

axiom ... (* sort produces a permutation of its input *) ...

axiom ... (* the output of sort is ordered according to ord *) ...

end

Then Sig(SORTELEMSPEC) = [[SORTELEM]] and [[SortElem]] ∈ Mod(SORTELEMSPEC)
⊆ Alg([[SORTELEM]]).

For the sake of example, one often considers the following rudimentary ways
of building specifications:

basic specifications: For any signature Σ and set Φ of Σ-sentences, the basic
specification 〈Σ,Φ〉 is a Σ-specification with Mod(〈Σ,Φ〉) = {M ∈ Alg(Σ) |
M |= Φ}. (SORTELEMSPEC above is a basic specification.)

union: For any Σ, given Σ-specifications SP1 and SP2, their union SP1 ∪SP2

is a Σ-specification with Mod(SP1 ∪ SP2) = Mod(SP1) ∩ Mod(SP2).
translation : For any signature morphism σ:Σ → Σ′ and Σ-specification SP ,

translate SP by σ is a Σ′-specification with Mod(translate SP by σ) =
{M ′ ∈ Alg(Σ′) |M ′

σ ∈ Mod(SP)}.1
hiding : For any σ:Σ → Σ′ and Σ′-specification SP ′, derive from SP ′ by σ

is a Σ-specification with Mod(derive from SP ′ by σ) = {M ′
σ | M ′ ∈

Mod(SP ′)}.1

1 For any signature morphism σ: Σ → Σ′ and algebra M ′ ∈ Alg(Σ′), M ′
σ ∈ Alg(Σ)

is the reduct of M ′ with respect to σ, see e.g. [ST99]. When σ is a signature inclusion,
M ′

σ may be written as M ′
Σ .

302 Donald Sannella and Andrzej Tarlecki

This follows Asl [SW83, ST88a] and is different from Clear, where specification
expressions denoted theories which in turn have model classes, see [ST97] for a
discussion of the difference. The operations are more primitive but are similarly
expressive: for instance “+” in Clear corresponds to union of suitably translated
specifications over different signatures, where the translations respect shared
subspecifications.

This defines a number of so-called specification-building operations which map
specifications to more complex specifications: we have constant specification-
building operations (basic specifications), one binary specification-building op-
eration (union) and two unary ones (translation and hiding). In fact, each of
these may be viewed as a family of operations, indexed by signatures (union) and
specification morphisms (translation and hiding). Once this “static” indexing is
fixed, each specification-building operation semantically amounts to a function
on appropriate classes of models.

One property of the above specification-building operations will prove cru-
cial for further considerations: an n-ary specification-building operation op is
monotone if it is monotone as a function on model classes. That is: for any
specifications SP1, SP ′

1, . . . , SPn, SP ′
n, such that Sig(SP i) = Sig(SP ′

i) and
Mod(SP i) ⊆ Mod(SP ′

i) for i = 1, . . . , n, we also have Mod(op(SP1, . . . ,SPn)) ⊆
Mod(op(SP ′

1, . . . ,SP ′
n)).

All the above specification-building operations, and therefore any operation
that may be defined using them, are monotone. In fact, nearly all specification-
building operations one may find in the literature are monotone. The only
exception we are aware of are operations that select initial or free models of
specifications—one may argue though that such an operation should be viewed
as simply imposing an additional constraint on the class of models of a speci-
fication, like an axiom, rather than as specification-building operations in their
own right (see for instance data constraints in [GB92]).

Structured specifications in Casl [BM04, CoF04] are based on the operations
above as well; somewhat more convenient notation is introduced there, which we
will use in examples too. For instance, union (not limited to specifications with
identical signatures) is written with and, translation along surjective signature
morphisms is written with with (followed by the mapping of symbols), hiding
is written with reveal or hide (followed by a list of symbols). Perhaps most
useful is then, which is an obvious combination of a translation along a signa-
ture inclusion with union to build an extension of a specification by new sorts,
operations and/or axioms.

Example 3.3. Here are some examples of structured specifications:

specification ELEMSPEC =

spec

type elem

val ord : elem * elem -> bool

axiom ... (* ord is transitive, reflexive and antisymmetric *) ...

end

Horizontal Composability Revisited 303

specification ELEMLISTSPEC =

ELEMSPEC then

datatype listelem = nil | cons of elem * listelem

end

specification PERMELEMSPEC =

ELEMLISTSPEC then

val perm : listelem -> listelem

axiom ... (* perm produces a permutation of its input *) ...

end

specification ORDERELEMSPEC =

ELEMLISTSPEC then

val order : listelem -> listelem

axiom ... (* the output of order is ordered w.r.t. ord *) ...

end

specification STRUCTSORTELEMSPEC =

{PERMELEMSPEC with perm |-> sort}
and

{ORDERELEMSPEC with order |-> sort}

Specifications SORTELEMSPEC of Example 3.2 and STRUCTSORTELEMSPEC above
are equivalent: they have the same signature ([[SORTELEM]] in both cases, see
Example 3.1) and the same class of models.

In common with all work on algebraic specification we have taken the view
that algebras model programs. But in general we are interested in program
components which define new sorts and operations in terms of some existing ones.
These may be generic components, where the parameters are supplied explicitly,
or components that explicitly import or implicitly build on other components.
In each case, we need to model components as functions mapping algebras to
algebras; in the case of explicit or implicit imports this reflects the way that the
newly-defined sorts and operations depend on the imports.

Definition 3.4. Let Σ and Σ′ be signatures. A (Σ → Σ′)-constructor is a
function2 mapping Σ-algebras to Σ′-algebras.

In the standard algebraic institution, constructors correspond most directly
to Standard ML functors defining first-order non-polymorphic datatypes and
first-order non-polymorphic properly-terminating functions, where the input and
output signatures are explicit.

Example 3.5. Here is an example of a constructor in Standard ML:

signature ELEM =

sig

type elem

2 In general, we need to consider partial constructors, where the result may not be
defined for every algebra over the parameter signature but only for those that sat-
isfy additional constraints. See [ST89]. For simplicity, we restrict attention to total
constructors here, with a few comments in footnotes concerning partial constructors.

304 Donald Sannella and Andrzej Tarlecki

val ord : elem * elem -> bool

end

functor Sort(X: ELEM) : SORTELEM =

struct

open X

datatype listelem = nil | cons of elem * listelem

fun sort l = ... (* code for sort *) ...

end

The semantics of Standard ML can be used to interpret the above code as
defining a function mapping [[ELEM]]-algebras to [[SORTELEM]]-algebras, i.e. an
([[ELEM]] → [[SORTELEM]])-constructor. One important property of this function
is that it is persistent : the argument structure is extended to the result struc-
ture, preserving the interpretation of parameter types and values.

Any (Σ → Σ′)-constructor κ determines a specification-building operation,
written κ as well, that takes any Σ-specification SP to a Σ′-specification having
the image of Mod(SP) under κ as its models: Mod(κ(SP)) = {κ(M) | M ∈
Mod(SP)}. Hiding is one such specification-building operation, determined by
reduct. The other specification-building operations discussed above do not arise
in such a way, in general. Translation is determined by a total constructor only
when it is with respect to a bijective renaming3, and then it coincides with hiding
with respect to the inverse of that renaming. Casl union is not determined by
a total constructor unless there is no overlap (“sharing”) between the signatures
of the arguments.4

Constructors may themselves be specified. For the same reason as ordinary
specifications describe classes of algebras, constructor specifications describe
classes of constructors, that is, classes of functions mapping algebras to alge-
bras [SST92].

Definition 3.6. Given specifications SP and SP ′, the constructor specifica-
tion SP → SP ′ specifies the class of (Sig(SP) → Sig(SP ′))-constructors that
map models of SP to models of SP ′: Mod(SP → SP ′) = {F :Alg(Sig(SP)) →
Alg(Sig(SP ′)) | for each A ∈ Mod(SP), F (A) ∈ Mod(SP ′)}.5

Moreover, when Sig(SP) overlaps with Sig(SP ′) then the specified construc-
tors should preserve the interpretation of the overlapping sorts and operations. In
particular, when Sig(SP) is a subsignature of Sig(SP ′), then as in Casl we re-
quire the functions in Mod(SP → SP ′) to be persistent: when F :Alg(Sig(SP)) →
Alg(Sig(SP ′)) ∈ Mod(SP → SP ′) then for every model A ∈ Mod(SP), F (A) ∈
Mod(SP ′) is such that F (A) Sig(SP) = A.

3 Translations along surjective signature morphisms are determined by partial con-
structors, in general.

4 When there is overlap, Casl union is determined by a partial constructor which
amalgamates models that coincide on the shared subsignature.

5 If partial constructors are considered, an additional requirement here would be that
their domain contains Mod(SP).

Horizontal Composability Revisited 305

Example 3.7. Recall Examples 3.1–3.3. Then ELEMSPEC → SORTELEMSPEC is a
specification of (persistent) constructors F :Alg([[ELEM]]) → Alg([[SORTELEM]])
that when given a model E ∈ Mod(ELEMSPEC) extends it to a model F (E) ∈
Mod(SORTELEMSPEC). One example of such a constructor is the functor Sort ∈
Mod(ELEMSPEC→ SORTELEMSPEC), presented in Example 3.5. Constructor spec-
ifications correspond to functor specifications in Extended ML, see [KST97].

The generalisation to n-ary constructors and constructor specifications is
straightforward.

4 Implementations and Vertical Composition

A very simple notion of specification implementation is the following:

Definition 4.1. Let SP and SP ′ be specifications such that Sig(SP) = Sig(SP ′).
Then SP ′ is a simple implementation of SP, written SP SP ′, if Mod(SP) ⊇
Mod(SP ′).

This simply requires that all of the correct realizations of SP ′ are correct real-
izations of SP . That is, SP ′ incorporates all the requirements that are in SP ,
and perhaps other constraints that result from additional design decisions.

For simplicity, the definition of simple implementation requires the signatures
of both specifications to be the same. The hiding operation may be used to adjust
the signatures (for example, by removing auxiliary functions from the signature
of the implementing specification) if this is not the case.

The fact that simple implementations vertically compose is an immediate
consequence of the transitivity of the subset relation:

Proposition 4.2. If SP SP ′ and SP ′ SP ′′ then SP SP ′′.

The notion of simple implementation is powerful enough (in the context
of a sufficiently rich specification language) to handle all concrete examples of
interest. However, it is not very convenient. During the process of developing a
program, the successive specifications incorporate more and more details arising
from successive design decisions. Thereby, some parts become fully determined,
and remain unchanged as a part of the specification until the final program
is obtained. The following diagram is a visual representation of this situation,
where κ1, . . . , κn label the parts that become determined at consecutive steps.�

�

�

	
SP0

κ1

�
�

�
	SP1

κ1
κ2

�

�
SP2 · · ·

κ1
κ2

· · · κn•

It is more convenient to avoid such clutter by separating the finished parts from
the specification, putting them aside, and proceeding with the development of
the unresolved parts only:

306 Donald Sannella and Andrzej Tarlecki�

�

�

	
SP0 κ1

�
�

�
	SP1 κ2

�

�
SP2 κ3

· · · κn
• SPn =

where is a specification for which a standard implementation empty is
available.

It is important for the finished parts κ1, . . . , κn to be independent of the
particular choice of realization for what is left: they should extend any realization
of the unresolved part to a realization of what is being implemented. This is
exactly what is required by the notion of a constructor defined in Sect. 3: κi

is a function taking models of SP i to models of SP i−1. These considerations
motivate a more elaborate version of the notion of implementation:

Definition 4.3 ([ST88b]). Given specifications SP and SP ′ and constructor
κ : Alg(Sig(SP ′)) → Alg(Sig(SP)), we say that SP ′ is a constructor implemen-
tation of SP via κ, written SP κ SP ′, if κ ∈ Mod(SP ′ → SP).

Thus, in the development diagram above, κi:Alg(Sig(SP i)) → Alg(Sig(SP i−1))
with κi ∈ Mod(SP i → SP i−1) for 1 ≤ i ≤ n; that is, each κi corresponds to
a parameterised program with input interface SP i and output interface SP i−1.
Given a model M of SP i, κi may be applied to yield a model κi(M) of SP i−1.

Example 4.4. From Example 3.7, we have SORTELEMSPEC
Sort

ELEMSPEC. That
is, the task of implementing sorting of lists of elements with respect to a function
ord is reduced by means of the constructor Sort to the task of implementing
elem and ord.

The definition of constructor implementation generalises smoothly to imple-
mentations of constructor specifications. This requires higher-order constructors;
for details see [ST97].

It is easy to see that constructor implementations compose vertically:

Proposition 4.5. If SP κ SP ′ and SP ′
κ′ SP ′′ then SP

κ′;κ
SP ′′.

So, a constructor implementation via κ:Alg(Sig(SP ′)) → Alg(Sig(SP)) com-
posed with a constructor implementation via κ′:Alg(Sig(SP ′′)) → Alg(Sig(SP ′))
yields a constructor implementation via κ′;κ:Alg(Sig(SP ′′)) → Alg(Sig(SP)),
which is just the composition of the functions κ′ and κ written in diagrammati-
cal order.

Once the development process is finally complete (that is, when nothing is
left unresolved, as in the diagram above) we can successively apply the construc-
tors to obtain a correct realization of the original specification. The correctness
of the final outcome follows from the correctness of the individual constructor
implementation steps via vertical composition.

Proposition 4.6. Given a chain of constructor implementation steps

SP0 κ1
SP1 κ2

· · · κn
SPn =

we have (κn; · · · ;κ2;κ1)(empty) ∈ Mod(SP0).

Horizontal Composability Revisited 307

Many approaches to implementation in the literature make use of a restrictive
kind of constructor defined by a parameterised program having a particular
rigid form: for example, the notion of implementation in [EKMP82] corresponds
to the use of a constructor obtained by composing a free construction with a
reduct, then a restriction to a subalgebra, and finally a quotient, in that order.
Then the vertical composition of two implementations is required to yield an
implementation of the same form, which is only possible under certain additional
conditions on the specifications involved. This amounts to a requirement that the
composition of parameterised programs be forced into some given normal form,
which corresponds to requiring programs to be written in a rather restricted
programming language.

5 Horizontal Composition

In Sect. 3 we have recalled a few basic specification-building operations, which
form the backbone of many specification languages. Since the pioneering work
on Clear [BG80], a number of such languages have been designed and used,
with Casl [BM04, CoF04] as a prime recent example. They all aim at pro-
viding a convenient way to build specifications in a structured manner, where
specification-building operations are used to gradually construct more and more
complex specifications out of simpler component specifications. This horizon-
tal structure of specifications (in the terminology of [GB80]) is indispensable
for facilitating the understanding and use of any practical (hence: large and
complex) specification. Typical ways in which the horizontal structure of speci-
fications has been successfully exploited include the compositional semantics of
complex specifications languages like Casl [BCH+04] and compositional proof
systems for consequences of specifications, as introduced in [ST88a] and ana-
lyzed in [Bor02], even if for practical specification languages compositionality
may sometimes be sacrified [MHAH04].

Under a mild assumption of monotonicity of the specification-building oper-
ations involved, the horizontal structure of specifications may also be exploited
in the development process:

Proposition 5.1. Suppose that op is a monotone n-ary specification-building
operation. If SP1 SP ′

1, . . . , SPn SP ′
n then op(SP1, . . . ,SPn)

op(SP ′
1, . . . ,SP ′

n).

For simple implementations, Prop. 5.1 captures the essence of horizontal com-
position, as introduced in [GB80]. For constructor implementations this takes the
following form:

Proposition 5.2. Suppose that op is a monotone n-ary specification-building
operation. If SP1 κ1

SP ′
1, . . . , SPn κn

SP ′
n then op(SP1, . . . ,SPn)

op(κ1(SP ′
1), . . . , κn(SP ′

n)).

Note that κ1 in κ1(SP ′
1) refers to the specification-building operation determined

by the constructor κ1—see Sect. 3—and similarly for the other constructors.

308 Donald Sannella and Andrzej Tarlecki

The strength and usefulness of Props. 5.1 and 5.2 are severely limited by two
fundamental problems.

First, the consistency of specifications is not preserved under such refinement
in general. In Prop 5.1, op(SP1, . . . ,SPn) may be a perfectly implementable
(consistent) specification, while op(SP ′

1, . . . ,SP ′
n) is inconsistent, and hence can-

not be implemented, even if implementation of each of the refined individual
component specifications SP ′

1, . . . , SP ′
n is unproblematic.

Example 5.3. Consider the following trivial example:

specification EVEN =

spec val a : int

axiom exists k : int . a = 2 * k

end

specification SMALL =

spec val a : int

axiom a > 0 andalso a < 10

end

specification SMALL_EVEN = SMALL and EVEN

The last specification is formed as a union of two simpler specifications, and thus
combines the requirements they impose. (Obviously, algebras in [[SMALL EVEN]]
have a ∈ {2, 4, 6, 8}.)

Since and is monotone, Prop. 5.1 allows one to refine SMALL EVEN by refining
its component specifications independently. Consider for instance:

specification VERY_EVEN =

spec val a : int

axiom exists k : int . a = 8 * k

end

specification VERY_SMALL =

spec val a : int

axiom a > 0 andalso a < 5

end

specification VERY_SMALL_VERY_EVEN = VERY_SMALL and VERY_EVEN

Clearly, we have then EVEN VERY EVEN and SMALL VERY SMALL, and so
by Prop. 5.1,

SMALL EVEN VERY SMALL VERY EVEN.

However, even though both VERY SMALL and VERY EVEN are consistent and sep-
arately can be easily implemented, the specification VERY SMALL VERY EVEN is
inconsistent, and so taking this implementation step cannot lead to a final real-
ization of SMALL EVEN.

The above problem with consistency of the refined specification may arise
even with a unary specification-building operation op (for instance, consider
translation along a non-injective signature morphism). However, it does not arise
if the operation op is determined by a constructor.

Horizontal Composability Revisited 309

The other problem with refinement based on horizontal composability is per-
haps even more fundamental. Although the horizontal structure of a specification
is crucial for its understanding and use, in general this structure may well be
quite different from the modular structure of the final program that implements
it. The aims of horizontal structure at the level of the original, high-level, ab-
stract requirements specification are quite separate from the aims of modular
structure in the final program. An interesting and convincing example is pre-
sented in [FJ90] in a somewhat different framework, but the case study and
the general line of reasoning carry over here as well. The conclusion from this
is that while horizontal composability (with respect to monotone specification-
building operations) yields sound refinements and so may be used when appro-
priate, it cannot be the only way to implement structured specifications. We
need separate means to explicitly mark design decisions that fix the final mod-
ular structure of the program under development, which requires the top-level
specification-building operations to be determined by constructors. Once such a
design specification [AG97] has been fixed, this top-level horizontal structure is
to be preserved in programs resulting from the development process, and further
development proceeds for each component specification separately. The final re-
sult is then obtained by applying the top-level constructors to the outcomes of
these separate developments.

Consider for instance an n-ary constructor op. Abusing slightly the notation
of architectural specifications [BST02] as provided by Casl [BM04, CoF04], a
design specification that designates the top-level constructor op to be preserved
and used at the top level of the modular structure of the final program may take
the following form:

arch spec OP_DESIGN =

units U_1 : SP_1

...

U_n : SP_n

result op(U_1,...,U_n)

This introduces names (U 1, . . . , U n) of units (or modules) to be further de-
veloped as realizations of their specifications (SP 1, . . . , SP n, respectively) and
then put together using the constructor op to yield the overall realization of the
system.6 An architectural specification can be compared with ordinary specifica-
tions by defining its models to be all the possible result units that may be built
in this way. Then one may consider refinements involving architectural specifi-
cations, like SP OP DESIGN. This captures a design decision to implement
the specification SP by a modular system, where the top-level modules U 1, . . . ,
U n, fulfilling specifications SP 1, . . . , SP n, respectively, are put together using
the constructor op.

In particular, we always have: op(SP 1, . . . , SP n) OP DESIGN. Note that
op refers here to the specification-building operation determined by the con-
structor op, see Sect. 3.
6 If op is partial, it is necessary to ensure that no tuple of models which may potentially

be given as an argument to op is outside its domain. See [BST02].

310 Donald Sannella and Andrzej Tarlecki

For unary constructors K, the constructor implementation SP
K

SP ′ cor-
responds exactly to the refinement SP K DESIGN, where

arch spec K_DESIGN = unit U : SP’ result K(U)

An important twist in Casl architectural specifications is that the units
used here may in fact be generic modules, that is, constructors with specifica-
tions taking the form discussed in Sect. 3. This allows one to delegate “coding”
of constructors (as, say, Standard ML functors) to further development of the
corresponding units, and to limit the vocabulary of the constructors in use in
the result unit expression to a few basic constructs including the application of
a generic unit to an argument.

Example 5.4. Recall the specifications in Examples 3.1–3.7. Note that the spec-
ification SORTELEMSPEC requires a sorting program sort for some realization for
the type elem and ordering predicate ord chosen by the implementor. The fol-
lowing architectural specification decomposes this task by separating out on one
hand the task to build such a realization for elem and ord, and on the other
hand, the task of providing a sorting program sort that will work for any such
realization. The overall result is then given by instantiating the outcome of the
latter task to the outcome of the former one.

arch spec SORT_SPEC =

units E : ELEMSPEC

S : ELEMSPEC -> SORTELEMSPEC

result S(E)

Then SORTELEMSPEC SORT SPEC. We also have STRUCTSORTELEMSPEC
SORT SPEC even though the structure of SORT SPEC does not match the structure
of STRUCTSORTELEMSPEC.

The main point of architectural specifications as sketched above is that fur-
ther developments of the specified units may proceed independently from each
other, and the final results of these developments, which fulfill the unit specifi-
cations, may then be put together as prescribed by the result unit expression.
Soundness of this procedure is guaranteed by the horizontal composability of
implementations, Props. 5.1 and 5.2—however, with the additional effect that
consistency of the result is ensured provided that each refined component spec-
ification remains consistent.

Note that horizontal composability follows from the following properties of
implementation steps involving individual component specifications. Let op be
a monotone n-ary specification-building operation.

– If SP1 SP ′
1 then op(SP1, . . . ,SPn) op(SP ′

1, . . . ,SPn).
. . .
– If SPn SP ′

n then op(SP1, . . . ,SPn) op(SP1, . . . ,SP ′
n).

Prop. 5.1 then follows by a simple application of vertical composability
(Prop. 4.2).

Horizontal Composability Revisited 311

Similarly, for constructor implementations we have:

– If SP1 κ1
SP ′

1 then op(SP1, . . . ,SPn) op(κ1(SP ′
1), . . . ,SPn).

. . .
– If SPn κn

SP ′
n then op(SP1, . . . ,SPn) op(SP1, . . . , κn(SP ′

n)).

Prop. 5.2 now follows easily by Prop. 4.2.
The refinements of component specifications here are entirely independent

from each other, and so may be taken in an arbitrary order. “Composition” of
such independent refinements in any chosen order always yields the same result.

The key case here is when op is a constructor, and the specification considered
is the architectural specification OP DESIGN as above. In the notation of [MST04],
refinements of individual unit specifications can be defined as follows:

refinement R_1 = U_1: SP_1 refined to arch spec

unit X_1 : SP’_1

result K_1(X_1)

...

refinement R_n = U_n: SP_n refined to arch spec

unit X_n : SP’_n

result K_n(X_n)

In [MST04], we have introduced the possibility of composing refinements, and
indeed, according to the formal semantics given there, the above refinements can
be composed in an arbitrary order, and each such composition yields the same
result. For instance:

refinement R_1_to_n = R_1 then ... then R_n

refinement R_n_to_1 = R_n then ... then R_1

yields R 1 to n = R n to 1. The fact that these refinements coincide in the case
n = 2 captures the “double law” of [GB80], see Sect. 2.

In fact, [MST04] provides for the possibility of writing down the correspond-
ing fragment of a development tree as follows:

arch spec DEVELOP =

units U_1 : SP_1 refined to arch spec

unit X_1 : SP’_1

result K_1(X_1)

...

U_n : SP_n refined to arch spec

unit X_n : SP’_n

result K_n(X_n)

result op(U_1,...,U_n)

It should be clear (and this can be formally proved within the framework of
[MST04]) that this is equivalent to the following architectural specification:

arch spec OP_DESIGN’ =

units X_1 : SP’_1

...

X_n : SP’_n

result op(K_1(X_1),...,K_n(X_n))

312 Donald Sannella and Andrzej Tarlecki

This explicitly captures the composition of the design decision to use op as the
top-level constructor (captured by OP DESIGN) with the constructor implemen-
tations for components in an arbitrary order. Note that this easily generalises to
implementations of individual components that lead to further decomposition,
again given by architectural specifications.

Example 5.5. Continuing Examples 5.4 and 3.1–3.7, consider the following ad-
ditional specification:

specification INSERTELEMLISTSPEC =

ELEMLISTSPEC then

val insert : elem * listelem -> listelem

axiom ... (* if l is ordered then insert(e,l) puts e into l

so that the result is ordered *) ...

Then the architectural specification SORT SPEC may be refined as follows:

arch spec SORT_SPEC’ =

units E: ELEMSPEC

S: ELEMSPEC -> SORTELEMSPEC

refined to

arch spec

units L: ELEMSPEC -> ELEMLISTSPEC

I: ELEMLISTSPEC -> INSERTELEMLISTSPEC

IS: INSERTELEMLISTSPEC -> SORTELEMSPEC

result lambda X: ELEMSPEC . IS(I(L(X)))

result S(E)

We can also make the resulting overall design explicit as follows:

arch spec SORT_SPEC’’ =

units E: ELEMSPEC

L: ELEMSPEC -> ELEMLISTSPEC

I: ELEMLISTSPEC -> INSERTELEMLISTSPEC

IS: INSERTELEMLISTSPEC -> SORTELEMSPEC

result IS(I(L(E)))

Of course, we then have SORTELEMSPEC SORT SPEC’’. Further development
may involve for instance direct implementations of the generic units L, I and IS
as Standard ML functors, entirely independent from each other.

The above example is misleadingly simple since there is no requirement for
sharing between the units involved in the design. In general this need not be the
case. Suppose that the task of implementing a specification SPbig is decomposed
into the tasks of implementing specifications SP1 and SP2 where [[SP1 and
SP2]] ⊆ [[SPbig]] but the signatures of SP1 and SP2 overlap. If a realization of
SPbig is to be obtained by combining realizations of SP1 and SP2, these two
realizations need to share the realization of their common part. This is handled
as in [Bur84]: we provide a specification SP of the common part and add its
realization as a new task, and then use (persistent) generic units to separately

Horizontal Composability Revisited 313

extend the resulting unit to realizations of SP1 and SP2, thus ensuring that they
share this common part and so can be put together.

Formalizing this: if Sig(SP) ⊇ Sig(SP1) ∩ Sig(SP2) and [[SP and SP1 and
SP2]] ⊆ [[SPbig]], then SPbig SHARING SPEC where

arch spec SHARING_SPEC =

units U: SP

F1: SP->SP1

F2: SP->SP2

result F1(U) and F2(U)

Here, “and” is a partial binary constructor which amalgamates two models pro-
vided that they coincide on their common subsignature—see footnote 4 and note
that the requirement mentioned in footnote 6 is satisfied. Note again that further
refinements of the components may proceed independently from each other.

6 Conclusions

What emerged from [GB80] was a powerful and stimulating view of the process of
systematic development of software from high-level formal specifications. What
was insightful, new and perhaps ahead of its time then was the stress on structure
as the only realistic means to master the size and complexity of practical software
development projects.

The Cat paper identified formally two orthogonal aspects of structure in
the process of software development: the vertical dimension, the structure of the
development process as such; and the horizontal dimension, the structure of the
specifications involved in development. Making this distinction was crucial to
separating the two dimensions, for separate study, with vertical and horizontal
composability as the key result to aim for. These separate lines of research re-
sulted in a lot of interesting work, crucial for an adequate formalisation of the
development process.

The vertical dimension proved easier for the theory: in spite of technical dif-
ficulties, in many frameworks the key vertical compositionality result has been
established, with our composition of constructor implementations (further gen-
eralised to composition of abstractor implementations, not discussed here, see
[ST88b, ST97]) covering the previous work as special cases—with the results
recalled in Sect. 4.

The horizontal dimension attracted much work and research as well (includ-
ing the pioneering work by Goguen and Burstall themselves on Clear [BG80])
with many specification languages designed that included various forms of hor-
izontal structuring of specifications, and many key results on the use of this
horizontal structure for proper understanding and use of large specifications.
However, the interaction of the horizontal structure with development, formu-
lated in [GB80] as horizontal composability, and the double law used to capture
the interplay between the two dimensions, proved much tougher. In fact, there
are hints in [GB80] which indicate that the authors viewed this idea as some-
what speculative, and foresaw potential obstacles in making it effective. We have

314 Donald Sannella and Andrzej Tarlecki

already quoted their thought that the task to design implementation composi-
tion operations corresponding to all specification-building operations in Clear
might be difficult. They also mention that the structure of a specification, with
horizontal composition as the way to build its implementations, may constitute
an “implementation bias”, thus (perhaps unnecessarily) preventing implementa-
tions having a different structure. From our current perspective, it seems a bit
unrealistic to claim that “this kind of bias seems to be actually desirable for large
specifications, because it helps the implementer in his difficult task of structur-
ing the overall program design.” Indeed, this may well be the case sometimes,
but it is certainly not always true.

As presented at length in Sect. 5, we are very far from the view that horizon-
tal composability is unimportant. However, we believe that one should carefully
distinguish and keep separate two conceptually different roles that the horizontal
structure of a specification may play. One is the usual structuring of specifica-
tions, used to present the concepts of the problem space in a clear and perspicu-
ous way. The horizontal structure obtained in this way is in principle irrelevant
for vertical development, although it may be used when appropriate. The other
role is the design of the modular structure of the system to be developed. This
may be viewed as a very special kind of horizontal structure, which indeed is re-
quired to be preserved throughout development. Horizontal composability with
respect to this structure is crucial, of course, and the double law is a natural
and useful consequence. We proposed architectural specifications as a tool for
capturing horizontal structure of this latter kind. We feel that the overall pic-
ture of vertical development and its interplay with this horizontal structure, as
imposed by architectural specifications and sketched in Sects. 4 and 5, give a
well-founded account of the ideas that were put forward in [GB80].

Acknowledgements: Hearty congratulations to Joseph on his 65th birthday
and our thanks to him for the many novel ideas that over the years have stimu-
lated much of our own work as well!

References

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213–
249, 1997.

[BCH+04] H. Baumeister, M. Cerioli, A. Haxthausen, T. Mossakowski, P.D. Mosses,
D. Sannella, and A. Tarlecki. Casl semantics. [CoF04], part III, pages
115–273. D. Sannella and A. Tarlecki, editors.

[BG80] R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification
language. In Proceedings of the Abstract Software Specifications, 1979
Copenhagen Winter School, Springer LNCS 86, pages 292–332, 1980.

[BM04] M. Bidoit and P.D. Mosses. Casl User Manual. Springer LNCS 2900
(IFIP Series). 2004. With chapters by T. Mossakowski, D. Sannella, and
A. Tarlecki.

[Bor02] T. Borzyszkowski. Logical systems for structured specifications. Theoret-
ical Computer Science, 286:197–245, 2002.

Horizontal Composability Revisited 315

[BST02] M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications in
Casl. Formal Aspects of Computing, 13:252–273, 2002.

[Bur84] R.M. Burstall. Programming with modules as typed functional program-
ming. In Proc. Intl. Conference on Fifth Generation Computing Systems,
Tokyo, pages 103–112, 1984.

[CoF04] CoFI (The Common Framework Initiative). Casl Reference Manual.
Springer LNCS 2960 (IFIP Series). 2004.

[Ehr82] H.-D. Ehrich. On the theory of specification, implementation and pa-
rameterization of abstract data types. Journal of the Association for
Computing Machinery, 29:206–227, 1982.

[EKMP82] H. Ehrig, H.-J. Kreowski, B. Mahr, and P. Padawitz. Algebraic implemen-
tation of abstract data types. Theoretical Computer Science, 20:209–263,
1982.

[FJ90] J. Fitzgerald and C.B. Jones. Modularizing the formal description of
a database system. In Proc. 3rd Intl. Symp. VDM Europe: VDM and
Z, Formal Methods in Software Development, Springer LNCS 428, pages
189–210, 1990.

[GB80] J.A. Goguen and R.M. Burstall. Cat, a system for the structured elabora-
tion of correct programs from structured specifications. Technical Report
CSL-118, Computer Science Laboratory, SRI International, 1980.

[GB92] J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing
Machinery, 39(1):95–146, January 1992. An early version appeared under
the title “Introducing Institutions” in Logics of Programs, Springer LNCS
164, 221–256, 1984.

[Gog96] J.A. Goguen. Parameterized programming and software architecture. In
Proc. 4th Intl. IEEE Conf. on Software Reuse, pages 2–11, 1996.

[GT79] J.A. Goguen and J. Tardo. An introduction to OBJ: A language for
writing and testing software specifications. In M. K. Zelkowitz, editor,
Specification of Reliable Software, pages 170–189. IEEE Press, Cambridge
(MA, USA), 1979. Reprinted in Software Specification Techniques, N.
Gehani and A. McGettrick, editors, Addison-Wesley, 1985, pages 391–
420.

[GT00] J.A. Goguen and W. Tracz. An implementation-oriented semantics for
module composition. In Foundations of Component-Based Systems, pages
231–263. Cambridge University Press, 2000. Edited by G. Leavens and
M. Sitaraman.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra ap-
proach to the specification, correctness and implementation of abstract
data types. In Current Trends in Programming Methodology, Vol. 4: Data
Structuring, pages 80–149. 1978. Edited by R.T. Yeh.

[Hoa72] C.A.R. Hoare. Correctness of data representations. Acta Informatica,
1:271–281, 1972.

[Jon80] C.B. Jones. Software Development: A Rigorous Approach. Prentice Hall,
1980.

[KST97] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML:
A gentle introduction. Theoretical Computer Science, 173:445–484, 1997.

[LF97] A. Lopes and J. Fiadeiro. Preservation and reflection in specification. In
Proc. 6th Intl. Conference on Algebraic Methodology and Software Tech-
nology, AMAST 1997, Springer LNCS 1349, pages 380–394, 1997.

316 Donald Sannella and Andrzej Tarlecki

[LPRS88] P. Lee, F. Pfenning, G. Rollins, and W. Scherlis. The Ergo support
system: An integrated set of tools for prototyping integrated environ-
ments. In Proc. 3rd ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, pages 25–
34, 1988.

[Mac71] S. MacLane. Categories for the Working Mathematician. Springer, 1971.
[MHAH04] T. Mossakowski, P. Hoffman, S. Autexier, and D. Hutter. Casl logic.

[CoF04], part IV, pages 275–361. T. Mossakowski, editor.
[Mil71] R. Milner. An algebraic definition of simulation between programs. In

Proc. 2nd Intl. Joint Conf. on Artificial Intelligence, pages 481–489, 1971.
[MST04] T. Mossakowski, D. Sannella, and A. Tarlecki. A simple refinement lan-

guage for Casl. In Recent Trends in Algebraic Development Techniques:
Selected Papers from WADT 2004, Springer LNCS 3423, pages 162–185,
2004.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[SS83] W. Scherlis and D. Scott. First steps towards inferential programming.
In IFIP Congress, pages 199–212, 1983.

[SST92] D. Sannella, S. Soko�lowski, and A. Tarlecki. Toward formal develop-
ment of programs from algebraic specifications: Parameterisation revis-
ited. Acta Informatica, 29(8):689–736, 1992.

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165–210, 1988.

[ST88b] D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: Implementations revisited. Acta Informat-
ica, 25:233–281, 1988.

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML pro-
grams: Foundations and methodology. In Proc. Colloq. on Current Issues
in Programming Languages. Intl. Joint Conf. on Theory and Practice of
Software Development (TAPSOFT’89), Springer LNCS 352, pages 375–
389, 1989.

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specifica-
tion and program development. Formal Aspects of Computing, 9:229–269,
1997.

[ST99] D. Sannella and A. Tarlecki. Algebraic preliminaries. In E. Astesiano,
H.-J. Kreowski, and B. Krieg-Brückner, editors, Algebraic Foundations of
Systems Specification, chapter 2. Springer, 1999.

[SW83] D. Sannella and M. Wirsing. A kernel language for algebraic specifica-
tion and implementation. In Proc. 1983 Intl. Conf. on Foundations of
Computation Theory, Springer LNCS 158, pages 413–427, 1983.

Composition by Colimit

and
Formal Software Development

Douglas R. Smith

Kestrel Institute, Palo Alto, California 94304 USA

Abstract. Goguen emphasized long ago that colimits are how to com-
pose systems [7]. This paper corroborates and elaborates Goguen’s vision
by presenting a variety of situations in which colimits can be mechan-
ically applied to support software development by refinement. We il-
lustrate the use of colimits to support automated datatype refinement,
algorithm design, aspect weaving, and security policy enforcement.

1 Introduction

Goguen emphasized long ago that colimits are how one composes systems [7].
In particular, Burstall and Goguen focused on specifications as presentations
of theories and the composition of specifications by colimit in the CLEAR and
CAT system proposals [3,11]. In a sense this paper serves to corroborate and
elaborate Goguen’s insight through its applicability to software development by
refinement of specifications.

Kestrel’s Specware system [29,12] is a descendant of CLEAR and CAT that
uses the cocomplete category of specifications over higher-order logic. Specware
is used to support the refinement of specifications into correct code in various
target programming languages, including CommonLisp, C, and Java. The role
of category theory is to organize the larger-scale structure of specifications and
the refinement process. The objects of the category are specifications, diagrams
represent structured specifications, and morphisms represent inclusions, param-
eters, and refinements. Specware uses a colimit algorithm to compose specifica-
tions and it uses pushouts to instantiate parameterized specifications (as in [8]).
Most of the detailed design work in software development is logical in nature and
is performed inside specifications (i.e. below the level of the category). No deep
results of category theory are used, but the structuring provided by the categor-
ical framework has been conceptually useful and has guided the implementation
of Specware. The Specware system has been used for a variety of applications
involving both high assurance (e.g. [4]) properties and high performance (e.g.
[1]).

The most basic and straightforward use of colimits in a category of specifica-
tions is to build large specifications out of smaller specifications [2]. We briefly
review the technicalities of this usage, but the main focus of the paper is on

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 317–332, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

318 Douglas R. Smith

how to use composition by colimit to construct refinements. In particular, we
discuss (1) how to represent design abstractions as specifications and specifica-
tion morphisms and how to apply a design abstraction by colimit, and (2) how
to express some kinds of policy requirements by automata and how to enforce
such policies by a suitable colimit. The concepts are illustrated by examples from
automated datatype refinement, algorithm design, aspect weaving, and security
policy enforcement.

2 Preliminaries

We briefly review the category of specifications over classical higher-order logics,
since all the examples and discussion build on it.

A specification (or spec) is the finite presentation of a theory. The signature
of a specification provides the vocabulary for describing objects, operations, and
properties in some domain of interest, and the axioms constrain the meaning
of the symbols. For example, the following specification for partial orders is
expressed in the MetaSlang specification language of Specware. It introduces a
type symbol E and an infix binary predicate on E, called le, which is constrained
by the usual axioms.

spec Partial-Order is
type E
op le : E,E → Boolean
axiom reflexivity is x le x
axiom transitivity is x le y ∧ y le z =⇒ x le z
axiom antisymmetry is x le y ∧ y le x =⇒ x = y

end-spec

A specification morphism translates the language of one specification into the
language of another specification, preserving the property of provability, so that
any theorem in the source specification remains a theorem under translation. In
Specware, a specification morphism m : T → T ′ is given by a map from the type
and operator symbols of the domain spec T to the symbols of the codomain spec
T ′. To be a specification morphism it is sufficient to show that every axiom of
T translates to a theorem of T ′. It then follows that a specification morphism
translates theorems of the domain specification to theorems of the codomain.

For example, a specification morphism from Partial-Order to Integer can be
presented by:

morphism Partial-Order-to-Integer : Partial-Order → Integer is
{E (→ Integer, le (→ ≤}

where Integeris a specification for the integers that includes the usual constants
(such as 0), comparison relations (such as lesser-or-equal ≤), functions (such as
addition), and so on.

Translation of an expression by a morphism is by straightforward application
of the symbol map, so, for example, the Partial-Order axiom ∀(x : E) x le x

Composition by Colimit and Formal Software Development 319

translates to ∀(x : Integer) x ≤ x With a reasonable axiomatization of the
integers it is easy to verify that the three axioms of a partial order remain
provable in Integer theory after translation.

Specification morphisms compose in a straightforward way as the compo-
sition of finite maps. It is easily checked that specifications and specification
morphisms form a category SPEC. Colimits exist in SPEC and are easily com-

puted. Suppose that we want to compute the colimit of B A
i�� j ��C . First,

form the disjoint union of all sort and operator symbols of A, B, and C, then
define an equivalence relation on those symbols:

s ≈ t iff (i(s) = t ∨ i(t) = s ∨ j(s) = t ∨ j(t) = s).

The signature of the colimit (also known as pushout in this case) is the collection
of equivalence classes wrt ≈. The cocone morphisms take each symbol into its
equivalence class. The axioms of the colimit are obtained by translating and
collecting each axiom of A, B, and C. The colimit can be scalably computed in
near-linear time.

For example, suppose that we want to build up the theory of partial orders
by composing simpler theories.

spec BinRel is
type E
op le : E,E → Boolean
end-spec

−→

spec PreOrder is
import BinRel
axiom reflexivity is x le x
axiom transitivity is
x le y ∧ y le z =⇒ x le z

end-spec⏐⏐
spec Antisymmetry is

import BinRel
axiom antisymmetry is
x le y ∧ y le x =⇒ x = y

end-spec

The pushout of Antisymmetry ← BinRel → PreOrder is isomorphic to
the specification for Partial-Order given above. In detail: the morphisms are
{E (→ E, le (→ le} from BinRel to both PreOrder and Antisymmetry. The
equivalence classes are then {{E,E,E}, {le, le, le}}, so the colimit spec has one
type (which we rename E), and one operator (which we rename le). Further-
more, the axioms of BinRel, Antisymmetry, and PreOrder are each translated to
become the axioms of the colimit. Thus we have Partial-Order.

The universal property of the colimit means that there exists a unique speci-
fication morphism from the constructed Partial-Order specification to any other
specificaton that refines both PreOrder and Antisymmetry. Intuitively, Partial-
Order is the simplest specification that composes the logical content of PreOrder
and Antisymmetry.

320 Douglas R. Smith

Although the definitions above are given in higher-order logic, the concepts
presented below essentially assume a cocomplete category of specifications over
an institution [9].

For purposes of refinement, a loose semantics is natural. Semantics of a re-
finement morphism is given by a contravariant functor into CAT, the category
of small categories. That is, each spec denotes a category of models, and each
morphism denotes a functorial mapping that takes each codomain model into a
domain model. Particular semantics are enforced by applying appropriate refine-
ments and when performing the institution morphism from the spec language to
a programming language.

3 Composing and Refining Specifications

Kestrel’s work emphasizes automated tools for the refinement of specifications.
There are several reasons for taking this approach to software development:
(1) enhanced productivity through automated code generation, (2) enhanced
assurance due to the correct-by-construction characteristic of refinement-based
derivations, and (3) enhanced software quality and performance due to to auto-
mated application of codified best-practice design knowledge.

The first step in developing a new software application in Specware is build-
ing a domain specification and capturing the requirements of the application.
Composition by colimit plays a major role in building domain specifications. An
example from scheduling is shown in Figure 1. Generally, scheduling is about
the allocation of resources to tasks so as to satisfy constraints on timeliness,
capacity, cost, and so on. In the figure, specifications for Time and Quantity
are shared between Task (modeling scheduling tasks) and Resource (modeling
resources to carry out tasks). Quantity is used to model demand in Task and to
model capacity in Resource. A pushout is also used to instantiate a spec SET of
finite sets that is parameterized on a base type (called 1-Sort here). The actual
requirements are expressed by input/output constraints (pre/post-conditions)
on the scheduler (for more details, see [28]).

In a refinement setting, a formal specification of system requirements is re-
fined to code by incrementally adding design detail. Increments of implementa-
tion detail are expressed as morphisms between specifications (in an appropriate
category). There is an active community of researchers and practitioners explor-
ing the issues of building requirement specifications out of the (sometimes con-
flicting) agendas of various stakeholders. What has been missing in this picture
is a focus on how to construct refinements – are they mostly ad-hoc, or can they
be derived from reusable design abstractions? Most approaches to refinement in
the literature (e.g. VDM, Z, RAISE, B) rely on manual invention of refinements,
followed, if desired, by verification of the refinement conditions. Our approach,
implemented in KIDS and Specware/Designware, has hypothesized that most
code is derived from reusable design abstractions and that these can be codified
and mechanically applied. A key component of our research has been collecting
and formalizing principles of excellent design practice, as found in algorithm de-

Composition by Colimit and Formal Software Development 321

Reservation
= Resource×Task×Time

Resource

Time, Quantity

po

Task

Schedule
= Set(Reservation)

1-Sort

Set

Scheduler

po

Fig. 1. Scheduling Domain Specification

sign textbooks and practice, system design patterns/architectures/frameworks,
and so on.

The purpose of this paper is to highlight the ways in which colimits, in
suitable categories, play a central role in composing these sources of information
with the evolving design in order to mechanically generate refinements. Since the
colimit is scalably computable in the categories of interest, it can play a central
role in a refinement-oriented mechanized system development environment.

4 Design by Classification

Design knowledge typically has two essential components: its content and a char-
acterization of situations in which the content applies. We represent these two
components as the codomain and domain of a morphism, respectively. That is,
abstract design knowledge about datatype refinement, algorithm design, soft-
ware architectures, program optimization rules, visualization displays, and so
on, can be expressed as refinements (i.e. morphisms). The codomain embodies
a design constraint – the effect is a reduction in the set of possible implementa-
tions. The domain of one such refinement represents the abstract structure that
is required in a user’s specification in order to apply the embodied design knowl-
edge. The codomain of the refinement contains new structures and definitions
that are composed with the user’s requirement specification.

322 Douglas R. Smith

A ��

��

Spec0

��
B �� Spec1

The figure to the left shows the application of a library refine-
ment A → B to a given specification Spec0. First the library
refinement is selected. The applicability of the refinement to
Spec0 is shown by constructing a classification arrow from A to
Spec0 which classifies Spec0 as having A-structure by making
explicit how Spec0 has at least the structure of A. Finally the
refinement is applied by computing the pushout. The colimit
algorithm generates both the refined specification (the apex
shown in the lower right) and the cocone morphisms, including
the refinement morphism Spec0 → Spec1. The creative work
lies in constructing the classification arrow [21,22].

Furthermore we can organize the design theories into libraries with a taxonomic
structure – more general theories refine to more specialized theories. Mechanisms
for incrementally accessing and applying design theories from such a library as
discussed in [22].

The next two subsections elaborate these notions in the context of datatype
refinement and algorithm design respectively.

4.1 Datatype Refinement

Abstract data types (ADTs) allow us to think about data structures in terms of
their essential operations and properties. To work effectively with ADTs we must
add back in the implementation detail that is abstracted away in a, say, algebraic
presentation of an ADT. Refinements serve this purpose. Specifically a morphism
between an ADT theory and a (more concrete) datatype theory presents a way
to implement the ADT (or dually, a way to view the implementing datatype as
the ADT).

Some specific examples includes finite set theory mapping to lists or B-trees
or splay trees. Another example: finite sets over a small finite type mapping to
hash tables or bit vectors.

Each of these refinements/interpretations can be
represented and stored in a library. To apply a
datatype refinement we compute the following
pushout:

AbstractDT ��

��

Spec0

��
ConcreteDT �� Spec1

We sketch a simple example to illustrate the representation of abstract design
knowledge as morphisms. In particular, we can refine finite sets to bit vectors as
follows. Finite sets over the range 1..32 are partially specified by

spec FiniteSet is
type FSet
type Elt = 1..32 % range from 1 to 32
op {} : FSet % empty set
op with : FSet × Elt → FSet % add an element
op ∪ : FSet × FSet → FSet % union
op ∩ : FSet × FSet → FSet % intersection

Composition by Colimit and Formal Software Development 323

. . .
axiom commutativity is ((S with a) with b) = ((S with b) with a)
axiom idempotence is ((S with a) with a) = (S with a)
. . .
end-spec

Bit vectors of length 32 are partially specified by

spec BitVector32 is
type BV32
type Index = 1..32
op zero : BV 32 % the zero bit vector
op set : BV 32 × Index → BV 32 % set index bit to 1
op | : BV 32 ×BV 32 → BV 32 % bitwise OR
op & : BV 32 ×BV 32 → BV 32 % bitwise AND
op << : BV 32 × Index → BV 32 % left shift
. . .
end-spec

A refinement of FiniteSet to BitVector32 is presented by the morphism

morphism FSet-to-BitVector32 is
{ FSet (→ BV32

Elt (→ Index
{} (→ zero
with (→ set
∪ (→ |
∩ (→ &
. . .

}

If we have a specification S that imports FSet, then taking a pushout of
FSet-to-BitVector32 with the import morphism FSet → S yields a refinement
of S in which finite sets are implemented as bit vectors.

As another example, in Specware, the splay tree refinement is the default
implementation given to sets due to its good performance profile. Programmers
might tempted to avoid working with splay trees since their implementation is
a little more complex than simpler representations of sets. A refinement set-
ting allows developers to work with appropriate abstractions and obtain good
performance.

4.2 Algorithm Design

Just as an algebraic presentation of a datatype aims to capture the abstract
essence of the type, an algorithm theory aims to capture the abstract essence of
a class of algorithms [27]. For example, consider the class of greedy algorithms

324 Douglas R. Smith

(which work to build a solution by iteratively adding the best available compo-
nent to the incremental solution, until no more components remain). The greedy
algorithm can be abstractly represented by a program scheme, which is a defini-
tion in a theory that contains partially specified function symbols. A sufficient
condition that the scheme generates an optimal solution is given by the matroid
property (which is comprised of four conditions; see e.g. [15]). We can represent
this package (sufficient structure plus program scheme) as a morphism, prove it
once, and store it in a library.

A pushout can be used to apply such an algorithm refinement to a particular
problem. For example, the problem of finding a minimum spanning tree can be
solved by applying the greedy algorithm theory, yielding Kruskal’s algorithm (or
Prim’s algorithm depending how on the classification arrow is constructed).

Matroid Conditions ��

��

MST

��
Greedy Scheme �� Kruskal Algorithm

This approach to automated algorithm design was first implemented in the
KIDS system [20] and more clearly in Specware/Designware [24,23]. A series
of complex high-performance scheduling algorithms for Air Force applications
were developed using this approach in KIDS [28] and a domain-specific variant
of Designware called Planware [1].

5 Policy Enforcement

The previous two sections describe a means for applying abstract design knowl-
edge to generate algorithms. When we turn to system design, there are issues to
contend with that arise less obviously in algorithm design. In particular, cross-
cutting concerns are one source of the extra complexity that arises in system
design. A concern is cross-cutting if its manifestation cuts across the dominant
hierarchical structure of a program. Cross-cutting concerns explain a significant
fraction of the code volume and interdependencies of a system. The interdepen-
dencies complicate the understanding, development, and evolution of the system.

In this section, we illustrate two forms of cross-cutting concerns and how they
can be expressed and mechanically enforced. We call these concerns policies to
emphasize that (1) they are really requirements, and (2) they tend to reflect
non-functional concerns, such as auditing, security, and so on.

The following colimit shows the intention of our approach: to use a colimit
in a suitably defined category to enforce policies on a system design.

Shared Structure ��

��

System

��
Policy �� System with

Enforced Policy

Composition by Colimit and Formal Software Development 325

One issue that arises in this context is knowing where the policy applies.
For example, a security policy must be applied pervasively in order to provide
assurance. In our approach, static analysis [5,18] is used to find all occurrences
and to set up the cospan (i.e. the Shared Structure specification above).

5.1 AOP as Invariant Maintenance

A simple example of a cross-cutting concern is an error logging policy – the
requirement to log all errors in a system in a standard format. Error logging
necessitates the addition of code that is distributed throughout the system code,
even though the concept is easy to state in itself.

Aspect-oriented programming (AOP), as exemplified by AspectJ [13], pro-
vides a modular way to treat cross-cutting concerns. However, AspectJ aspects
are expressed at a programming language level which obscures their intention.
The reason for this, of course, is to lower the barriers to usage amongst the broad
Java programming community. In [25] we proposed some techniques for specify-
ing cross-cutting concerns as logical invariants to be maintained. For example, to
express an error-logging policy as an invariant, we assert that the error-log data
structure is equal to the list of all previous errors that have occurred during the
course of the computation. To formalize this invariant, we need to reify the his-
tory of the computation, purely for specification purposes [25]. The counterpart
to aspect weaving is (1) to use static analysis to find all code locations where the
invariant might be violated, and (2) to specify and synthesize code to reestab-
lish the invariant. For the error-logging example, static analysis would find all
potential code locations where an error might be thrown, and the composition
process would compose the throw with an update of the error-log data structure.

By expressing cross-cutting concerns as invariants, we capture their intention
more clearly and we can use algorithmic means (static analysis) to determine
the complete extent of their application, in contrast to the manual coding of join
points in AspectJ.

Our point here is that one of the key mechanisms underlying the enforce-
ment of an invariant is a suitable pushout. To see this most clearly, we switch
to a category of abstract state machines over a suitable specification language;
e.g. see especs in [16,17]. Here the objects are state machines and the mor-
phisms/refinements represent the simulates relation between automata. An ab-
stract state is given by a specification (for especs we use the higher-order spec-
ifications of Specware). For our purposes here, an abstract transition will be

specified by a pre/post-condition pair: A
[Pre,Post] ��						 B (we use dashed ar-

rows for transitions to distinguish them from morphisms in a diagram).
In a category of state machine, particularly especs, refinement means simu-

lation and colimit serves (1) to compose the corresponding state specifications
(the pushout of A and C is denoted A ⊕ C) and (2) to superpose the actions
on abstract transitions (the pushout of actions effectively conjoins their effects
so the composite action achieves both simultaneously). The following diagram
illustrates the composition of one step of the source system A ��			 B with a

326 Douglas R. Smith

step of the policy C ��			 D . The policy asserts that I is to hold invariantly
at states and the effect of composition is to add the invariance requirement to
the system.

• ��								

,,���
���

���
���

���

��

 •

--!!!!
!!!

!!!
!!!

!!!
!

		��
���

���
���

���
�

A
[Pre,Post] ��							

 B

		

 C

[I,I] ��							

,,"""
"""

"""
"""

""" D

..���
���

���
���

�

A⊕ C
[Pre∧I,Post∧I]

��						 B ⊕D

Static analysis is used to find the association of system steps and policy steps,
then a pushout, as above, is used to compose the two. A further synthesis step
is needed in order to synthesize an action that achieves the composed action
specification [Pre ∧ I, Post ∧ I]. For a variety of detailed examples see [25].

5.2 Enforcing Automata-Based Security Policies

The previous section described a simple kind of policy, based on invariant state
properties, and the composition and synthesis mechanisms that underlie enforce-
ment. A more general kind of policy can be specified by means of automata or
by temporal logic formulas.

As a concrete example, consider the following simple security policy which
is adapted from Schneider [19]. Whenever a process reads from a particular file
f , it is not allowed to send any messages. The policy states a particular kind of
information flow constraint. The policy can be expressed as a policy automaton:

��			 �������	
������0

α: ¬read f/
��

�
�#

β: read f/
��									 �������	
������1

γ: ¬send/
��

�
�#

δ: send/abort
��									 �������	2

The transitions are labeled in the form name : event/action. The events are
expressed as source-code patterns that either succeed (with bindings of pattern
variables) or fail. If an action is omitted, then it is a no-op. This policy has only
has one prescription of an action to take in a particular context – in policy state
1, if a send is attempted, then abort the program. The effect of enforcement
will be to terminate any behaviors that do not implement the policy (a send
following a read of file f). For examples of the enforcement of automata-based
policies that prescribe behavior, see the error-handling policies in [26].

Colimits can be used to enforce policies specified by a policy automaton.
However, there are interesting issues that arise. The foremost is that the effect
of enforcing this policy is to sometimes cause the program to abort (terminate
abnormally) when the system would otherwise continue normally. There are two
problems here: (1) how to handle conflicting constraints on the system (here the
system may satisfy constraints that conflict with the policy), and (2) how to

Composition by Colimit and Formal Software Development 327

define an appropriate notion of refinement (morphism) that allows termination
of behaviors.

One approach to handling conflicting requirements is to treat system require-
ments as having a linear priority order. The idea is that a system satisfies a prior-
ity ordering of constraints if whenever the system fails to satisfy one constraint
C, then it must satisfy some other higher-priority constraint. For example, it
is often the case in system code that safety and security constraints dominate
functional constraints. We make this approach more precise in the following.

Let 〈R,≺〉 be a linearly ordered set of temporal formulas [14], and S a pro-
gram. We say that a behavior b satisfies R if for each formula F in R, either S
satisfies F or it satisfies some other formula G ∈ R such that F ≺ G. S satisfies
R if every behavior of S satisfies R.

Technically, there is no extra expressive power in priority-ordered require-
ments. Consider the simplest situation in which there are just two requirements
A and B together with the order A ≺ B. An equivalent specification has the two
requirements A∨B and B without an order. Clearly this notion of satisfaction is
weak, since it admits programs that satisfy B but not A. While one could pursue
this to obtain a stronger theoretical definition of satisfaction (e.g. by considering
maximal satisfaction of dominated constraints), we take a pragmatic approach
that addresses the problem via the design process. That is, our approach will
be to perform design starting with the bottommost requirements of the order –
typically these are the basic functional constraints. Then, we iteratively select
dominating requirements in order and enforce them by colimit in the evolving
design. In this way, whenever we enforce a requirement, the composition process
will only override dominated constraints. The result is a design that will tend to
satisfy the base functionality requirements as much as possible, but with some
behaviors that accord with overriding policy constraints.

Mobile code provides a clear scenario in which this bottom-up design ap-
proach makes sense. Mobile code typically cannot be designed to anticipate all
environments that it might run in. One host environment may have local policies
that must be enforced, and it can do so by, say, composing the policies at the
byte-code level at upload time. This way, the local environment’s policies are
maintained even if it means disallowing behaviors of the mobile code that might
be acceptable in other environments.

Our point here is not to fully define a new approach to program satisfaction,
nor a new design methodology, but simply to show another context in which
composition by colimit provides basic support to system development.

The second problem mentioned above, a suitable notion of refinement that
allows behavior termination, can be addressed as follows. In the category of es-
pecs [16,17], abstract states are given by specifications and abstract transitions
are modeled by suitable morphisms – a state machine is then a diagram over a
category of specs. Each abstract state naturally has the identity self-transition
which is the identity morphism on specs. Semantically, the behaviors of such an
espec includes arbitrary stuttering (no-op transitions that do not change state).
In the literature, behaviors that stutter are often ruled out, although they play

328 Douglas R. Smith

a crucial role in refinement. We propose to go farther and admit all such stutter-
ing behaviors, including behaviors in which the machine stutters forever on some
state. There are at least two reasons to adopt this rather loose semantics. First,
it allows us to model failure in the underlying computation substrate. Most for-
mal models of behavior assume a perfect computational model and ignore the
unreliability of the hardware/software platform on which software executes. Sec-
ond, it allows us to treat as refinement the notion of policy enforcement that
works by terminating bad behaviors. In both cases, the idea is that for any
behavior that successfully reaches a final/accepting state (or does so infinitely
often), the semantics also includes all prefixes of that behavior. Each proper
prefix corresponds to a computation that is terminated (due to failure of com-
putational service, or to policing action, etc.). As a consequence, we obtain the
conventional notion of trace-containment semantics for refinement. That is, every
behavior of the codomain machine (including abnormally terminated behaviors)
maps-to/simulates a behavior of the domain machine.

Enforcement of a policy automaton occurs in two stages. In the first stage,
static analysis is used to simulate the automaton by matching the event patterns
against the control-flow of the system source code. Recent progress has pro-
duced scalable low-order polynomial time algorithms for policy simulation [10,6].
These algorithms work by simulating the policy forward through the source code,
recording the policy states and transitions in labels on the control-flow graph
of the source code. When matching a policy transition labeled event/action, if
the event pattern matches a source-code transition, then the policy transition
(instantiated with the bindings from the match) is associated with the source
transition. The algorithms terminate when a fixpoint is reached.

In effect, static analysis creates a refinement of the policy automaton that has
the same essential shape as the source code, thus enabling automatic composition
by colimit.

Consider for example the code

int c;
if c=0 then read f;
send m;
...

which is represented by a state machine in Figure 2. The figure also shows the
results of policy simulation/analysis – each state of the code is labeled with
the states of the policy automaton that it could possibly be in for some input,
and each transition is labeled with the set of possible policy transitions that it
simulates for some input.

Conceptually, the static analysis sets up a cospan in the category of especs
[16,17]. Figure 3 shows both the cospan and the cocone. The static analysis al-
lows us to set up a refinement of the policy automaton (shown on the right of
the cospan) and the abstract shape that is common to the source code and the
policy instance. In the example, the key feature is the policy ambiguity that
results from the conditional: after the conditional, the system state is in either

Composition by Colimit and Formal Software Development 329

•
���
�

•

c=0 � read f

//

�
�

$
c �=0�

00

$�
�

•
send m���
�

•

{0}
{α}���
�

{0}

{γ}

11

%
�

&
{β}

22

&
�
%

{0, 1}
{β}���
�

{0}

Fig. 2. Results of Static Analysis

���
�
�

◦

//

'
�

(00

(�
'

���
�
�

33))
))
))
))

◦

���
�
�

44*
**

**
**

*

[true,s′=0]
���
�
�

◦
c=0 $ read f

//

'
�

(
c 	=0$

00

(�
'

◦ ◦
[s=0,s′=1]

//

'
�

(
[s=0,s′=0]

00

(�
'

◦
send m
���
�
� ◦

s=0$ [true, true]
���
�
�

◦

55+
++

++
++

+

66,,
,,
,,
,,

◦

[true,s′=0]
���
�
�

◦
c=0 $ [s=0, s′=1 ∧ read f]

//

'
�

(
c 	=0$ [s=0, s′=0]

00

(�
'

◦
s=0$[true, true ∧ send m]

���
�
�

◦

Fig. 3. Colimit to Enforce Policy

330 Douglas R. Smith

policy state 0 or 1 depending on which branch was taken. Crucially then, the
send command is either (i) acceptable, if the policy state is 0, or (ii) forbidden
if the policy state is 1. The policy instance automaton reflects this by recording
the policy transitions that correspond to system transitions.

Computing the pushout has the essential effect of enforcing the security pol-
icy in the source code. Finally, program synthesis processes are applied to the
pushout specification and the result is translated back to the following source-
level code:

int c;
int s; /* state variable */
s := 0;
if c=0

then {read f || s := 1}
if s=0

then send m
else abort;

...

In the example, the composition results in the code aborting when c = 0.
The pushout object is a refinement of both the policy and the source code.

The approach outlined above applies to a given software design, and has the
effect of aborting behaviors that are forbidden by policy. while we can formulate
this process in terms of pushouts in an appropriate category, there are pros and
cons to this approach. It makes sense to use this approach with code of unknown
provenance that must be made to conform to local policies (e.g. mobile code or
services supplied over the Internet). However for bespoke code, the framework
gives the developer too much freedom – it doesn’t provide incentives for the
programmer to find ways to satisfy both the functional requirements as well
as safety and security policies. Our view is that good designers will develop an
architecture that supports for the kinds of policies that can be expected for the
system. The effect then of policy enforcement would be to add in the details of
the policy to the appropriate architectural mechanisms. A good example is access
control. There are standard architectures for access control [30] that prescribe the
mediation of a guard in any access to a resource that requires some protection.
The design pattern puts the requisite structure in place and the colimit composes
in the policy details.

6 Concluding Remarks

Our goal has been to show how composition by colimit can play a fundamental
role in software development by refinement. The benefits of these foundations
include enhanced productivity through automated code generation, enhanced
assurance due to the correct-by-construction characteristic of refinement-based
derivations, and potentially enhanced software quality and performance due to
to automated application of codified best-practice design knowledge.

Composition by Colimit and Formal Software Development 331

Acknowledgments: This work was partially supported by the US Department
of Defense and by the Office of Naval Research under Grant N00014-04-1-0727.

References

1. Becker, M., Gilham, L., and Smith, D. R. Planware II: Synthesis of schedulers
for complex resource systems. Tech. rep., Kestrel Technology, 2003.

2. Burstall, R. M., and Goguen, J. A. Putting theories together to make spec-
ifications. In Proceedings of the Fifth International Joint Conference on Artificial
Intelligence (Cambridge, MA, August 22–25, 1977), IJCAI, pp. 1045–1058.

3. Burstall, R. M., and Goguen, J. A. The semantics of CLEAR, a specification
languge. In Proceedings, 1979 Copenhagen Winter School on Abstract Software
Specification, D. Bjorner, Ed. Springer LNCS 86, 1980.

4. Coglio, A. Toward automatic generation of provably correct Java Card applets. In
Proc. 5th ECOOP Workshop on Formal Techniques for Java-like Programs (July
2003).

5. Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (1977), ACM, pp. 238–252.

6. Das, M., Lerner, S., and Seigle, M. ESP: Path-sensitive program verification
in polynomial time. In SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI’02) (2002).

7. Goguen, J. A. Categorical foundations for general systems theory. In Advances
in Cybernetics and Systems Research, F. Pichler and R. Trappl, Eds. Transcripta
Books, 1973, pp. 121–130.

8. Goguen, J. A. Parameterized programming. IEEE Transactions on Software
Engineering SE-10, 5 (September 1984), 528–543.

9. Goguen, J. A., and Burstall, R. M. Institutions: Abstract model theory for
computer science. Journal of the ACM 39, 1 (1992), 95–146.

10. Hallem, S., Chelf, B., Xie, Y., and Engler, D. A system and language
for building system-specific, static analyses. In SIGPLAN 2002 Conference on
Programming Language Design and Implementation (PLDI’02) (2002).

11. J. Goguen and R. Burstall. CAT: a system for the structured elaboration of
correct programs from structured specifications. Tech. Rep. CSL-118, SRI Inter-
national, 1988.

12. Kestrel Institute. Specware System and documentation, 2003.
http://www.specware.org/.

13. Kiczales, G., and et al. An Overview of AspectJ. In Proc. ECOOP, LNCS
2072, Springer-Verlag (2001), pp. 327–353.

14. Manna, Z., and Pnueli, A. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, New York, 1992.

15. Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

16. Pavlovic, D., and Smith, D. R. Composition and refinement of behavioral spec-
ifications. In Proceedings of Automated Software Engineering Conference (2001),
IEEE Computer Society Press, pp. 157–165.

17. Pavlovic, D., and Smith, D. R. Evolving specifications. Tech. rep., Kestrel
Institute, 2004.

332 Douglas R. Smith

18. Reps, T., Horwitz, S., and Sagiv, M. Precise interprocedural dataflow analysis
via graph reachability. In Conference Record of the Twenty-Second ACM Sympo-
sium on Principles of Programming Languages (1995), ACM, pp. 49–61.

19. Schneider, F. Enforceable security policies. ACM Transactions on Information
and System Security 3, 1 (February 2000), 30–50.

20. Smith, D. R. KIDS – a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering 16, 9 (1990), 1024–1043.

21. Smith, D. R. Constructing specification morphisms. Journal of Symbolic Compu-
tation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571–606.

22. Smith, D. R. Toward a classification approach to design. In Proceedings of Al-
gebraic Methodology and Software Technology (AMAST) (1996), vol. LNCS 1101,
Springer-Verlag, pp. 62–84.

23. Smith, D. R. Designware: Software development by refinement. In Proceedings
of the Eighth International Conference on Category Theory and Computer Science
(1999), M. Hoffman, D. Pavlovic, and P. Rosolini, Eds., pp. 355–370.

24. Smith, D. R. Mechanizing the development of software. In Calculational System
Design, Proceedings of the NATO Advanced Study Institute, M. Broy and R. Stein-
brueggen, Eds. IOS Press, Amsterdam, 1999, pp. 251–292.

25. Smith, D. R. A generative approach to aspect-oriented programming. In Pro-
ceedings of the Third International Conference on Generative Programming and
Component Engineering (2004), Springer-Verlag LNCS 3286, pp. 39–54.

26. Smith, D. R., and Havelund, K. Automatic enforcement of error-handling poli-
cies. Tech. rep., Kestrel Technology, September 2004.

27. Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. Science
of Computer Programming 14, 2-3 (October 1990), 305–321.

28. Smith, D. R., Parra, E. A., and Westfold, S. J. Synthesis of planning and
scheduling software. In Advanced Planning Technology (1996), A. Tate, Ed., AAAI
Press, Menlo Park, pp. 226–234.

29. Srinivas, Y. V., and Jüllig, R. Specware: Formal support for composing soft-
ware. In Proceedings of the Conference on Mathematics of Program Construction,
B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin, 1995, pp. 399–422.

30. The Open Group. Security design patterns. Tech. rep.,
http://www.opengroup.org/security/gsp.htm, 2004.

Proving Behavioral Refinements of

COL-specifications�

Michel Bidoit1 and Rolf Hennicker2

1 Laboratoire Spécification et Vérification (LSV), CNRS & ENS de Cachan, France
2 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

Abstract. The COL institution (constructor-based observational logic)
has been introduced as a formal framework to specify both generation-
and observation-oriented properties of software systems. In this paper
we consider behavioral refinement relations between COL-specifications
taking into account implementation constructions. We propose a general
strategy for proving the correctness of such refinements by reduction to
(standard) first-order theorem proving with induction. Technically our
strategy relies on appropriate proof rules and on a lifting construction to
encode the reachability and observability notions of the COL institution.

1 Introduction

Within the theory of algebraic specifications, behavioral (or observational) as-
pects of software systems have been considered since more than twenty years in
many approaches in the literature. One of the first studies exposing the impor-
tance of a behavioral view for the formalization of implementation notions has
been provided by Goguen and Meseguer in [11]. It is motivated by many ex-
amples which show that it is essential to abstract from internal implementation
details and to rely only on the observable behavior of programs.

As discussed in [7], behavioral refinement concepts can be classified into two
principal trends. The first one, pursued e.g. in [18, 19, 17, 3], uses an explicit be-
havioral abstraction operator to relax the standard model class semantics of the
specification to be implemented. The second one uses specifications with built-in
features to express behavioral properties. Examples are the hidden algebra insti-
tution developed by Goguen and his research group (see e.g. [12]), the CafeOBJ
language [9] and the COL institution (constructor-based observational logic [4]).
Each of these approaches is equipped with a notion of signature containing a
distinguished set of observer operations (to build observable experiments) and
with a notion of behavioral satisfaction such that the equality symbol is in-
terpreted by the observational equality of elements (where two elements of an
algebra are observationally equal if they cannot be distinguished by observable
experiments). In the COL institution signatures contain additionally to the ob-
servers a distinguished set of constructor operations which specify those elements
� This work is partially supported by the GLOWA-Danube project (01LW0303A)

sponsored by the German Federal Ministry of Education and Research.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 333–354, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

334 Michel Bidoit and Rolf Hennicker

which are of interest from the user’s point of view thus determining a subpart
of an algebra (called the contructor-generated part). Hence a COL-signature
ΣCOL = (Σ,OPCons,OPObs) consists of a (standard) many-sorted signature
Σ = (S,OP) together with distinguished sets OPCons of constructor operations
and OPObs of observer operations. The behavioral satisfaction of formulas is
then further relaxed to the COL-satisfaction relation |=ΣCOL which takes into
account only constructor-generated values for the valuation of variables (thus
abstracting from junk values).

A simple refinement relation between COL-specifications can be defined if
the specification SPCOL to be implemented and the implementing specification
SPICOL have the same COL-signature ΣCOL. In this case SPICOL is a behavioral
refinement of SPCOL if its model class Mod [SPICOL] is included in the model
class Mod [SPCOL] of SPCOL. To prove the correctness of the refinement one has
to show, assuming that SPCOL is a (flat) specification of the form 〈ΣCOL,Ax〉,
that Mod [SPICOL] |=ΣCOL Ax, i.e that all models of SPICOL behaviorally satisfy
the axioms of the abstract specification SPCOL. For this purpose one can directly
apply the proof techniques for behavioral consequences of COL-specifications de-
veloped in [4]. In general, however, the assumption that both specifications have
the same signature is much too restrictive because an implementation usually
involves some construction steps which led to the concept of a constructor im-
plementation introduced in [19]. In the context of the COL institution this idea
is formalized by the notion of a COL-implementation constructor κCOL which
can be applied to the models of the implementing specification SPICOL to pro-
duce models of the specification SPCOL to be implemented. Hence, to prove the
correctness of the refinement one has to show

(∗) κCOL(Mod [SPICOL]) |=ΣCOL Ax

with SPCOL = 〈ΣCOL,Ax〉 as above. Unfortunatley there is no obvious way for
discharging this proof obligation since we cannot expect that κCOL is compatible
with COL-satisfaction, i.e. we cannot reduce the proof to Mod [SPICOL] |=ΣICOL

Ax∗ (with an appropriate syntactic adjustment Ax∗ of Ax and ΣICOL being
the signature of SPICOL). For instance if we consider an implementation of sets
by lists, κCOL would be the (standard) reduct functor along a (standard) sig-
nature morphism that would not preserve the usual observer operations where
sets are observed by the membership test isin and lists are observed by head
and tail. Hence, the reduct used for the implementation construction would not
be compatible with the COL-satisfaction relations for sets and lists resp. These
considerations are in accordance with Goguen’s and Malcolm’s study on the dif-
ference between vertical signature morphisms used for refinements and horizon-
tal signature morphisms used for modular constructions of system specifications;
see [15].

In this paper we propose a strategy to discharge the proof obligation (*) which
consists of two major steps. In the first step (see Section 4) we show that instead
of the COL-specification SPICOL used for the implementation it is sufficient to
consider the (standard) first-order specification SPI obtained from SPICOL by

Proving Behavioral Refinements of COL-specifications 335

forgetting the observer and constructor opertions. For the correctness of the
corresponding proof rule it is essential that COL-implementation constructors
must preserve observational equivalences between algebras (a property which is
strongly related to Schoett’s notion of stability; see [20]).

As a consequence of the first step it remains to show that the (standard)
models of SPI behaviorally satisfy the axioms Ax of the specification SPCOL

to be implemented. Therefore, in the next step (see Section 5), we investigate
how the proof of behavioral consequences (w.r.t. |=ΣCOL) of an arbitrary class
of Σ-algebras can be reduced to standard first-order reasoning (plus induction).
Technically this is achieved by a “lifting” construction providing an appropriate
axiomatization of observational equalities and generated parts. Our proof tech-
niques are illustrated by an example (see Section 6) considering a behavioral
refinement of sets by non-redundant lists.

2 Basic Concepts

In this section we summarize the basic concepts that are needed to study be-
havioral refinements of COL-specifications and corresponding proof techniques.

2.1 Algebraic Preliminaries

We assume that the reader is familiar with the basic notions of algebraic spec-
ifications (see, e.g., [22, 14, 1]), like the notions of (many-sorted) signature Σ =
(S,OP) (where S is a set of sorts and OP is a set of operation symbols op :
s1, . . . , sn → s), signature morphism σ : Σ → Σ′, (total) Σ-algebra A =
((As)s∈S , (opA)op∈OP), Σ-term algebra TΣ(X) over a family X = (Xs)s∈S of
pairwise disjoint setsXs of variables of sort s and interpretation Iα : TΣ(X) → A
w.r.t. a valuation α : X → A. The class of all Σ-algebras is denoted by Alg(Σ).
Together with Σ-morphisms this class forms a category which, for simplicity, is
also denoted by Alg(Σ). For any signature morphism σ : Σ → Σ′, the reduct
functor |σ : Alg(Σ′) → Alg(Σ) is defined as usual and the reduct of a Σ′-
algebra A w.r.t. σ is denoted by A|σ. In particular, the reduct of A to a subsig-
nature Σ ⊆ Σ′ is denoted by A|Σ . In the following we assume that signatures
are finite.

The notion of an institution was introduced by Goguen and Burstall [13]
to formalize the general concept of a logical system from a model-theoretic
point of view; see [21] for an overview. An important example is the institution
FOLEq of many-sorted first-order logic with equality as detailed, e.g., in [2].
In FOLEq signatures are many-sorted signatures, models are Σ-algebras and
sentences are arbitray first-order Σ-formulas. The satisfaction of a first-order
Σ-formula ϕ by a Σ-algebra A, denoted by A |= ϕ, is defined as usual in the
first-order predicate calculus with equality. The notation A |= ϕ is extended in a
straightforward way to classes of algebras and sets of formulas. The institution
CFOLEq is an extension of the FOLEq institution where, in addition to first-
order sentences, we consider as extra sentences sort-generation constraints of

336 Michel Bidoit and Rolf Hennicker

the form SGC(SCons,OPCons). A Σ-algebra A satisfies a sort-generation con-
straint SGC(SCons,OPCons) if it is reachable w.r.t. OPCons , i.e. if each ele-
ment of a carrier set As with constrained sort s ∈ SCons can be constructed
by the interpretations of the constructors OPCons starting from constants and
from arbitrary elements of non-constrained sorts, if any. It is well-known that
a free sort-generation constraint is just an abbreviation for the corresponding
sort-generation constraint plus a finite set of first-order sentences to state that
all distinct constructor terms (up to variable renaming) denote distinct values.
Therefore, in the following, we will also assume that the CFOLEq institution is
equipped with free sort-generation constraints of the form FSGC(SCons,OPCons),
with the meaning described above (see [16, pp. 152–153]).

Any institution provides a suitable framework to define specifications. The se-
mantics of a specification SP is determined by its signature, denoted by Sig [SP],
and by its class of models, denoted by Mod [SP]. In this paper we will only con-
sider basic specifications 〈Σ,Ax〉 consisting of a signature Σ and a set Ax of
Σ-sentences, also called the axioms of the specification, with semantics:

Sig [〈Σ,Ax〉] def= Σ

Mod [〈Σ,Ax〉] def= {M ∈ Mod(Σ) |M |=Σ Ax}.

Notations. If SP is a specification and ϕ is a Sig [SP]-sentence, we write SP |= ϕ
for Mod [SP] |= ϕ and similarly for sets of Sig [SP]-sentences. In the context
of the CFOLEq institution we will also consider the sum SP1 + SP2 of two
specifications SP1 and SP2 with semantics:

Sig [SP1 + SP2]
def= Sig [SP1] ∪ Sig [SP2]

Mod [SP1 + SP2]
def= {A ∈ Alg(Sig [SP1] ∪ Sig [SP2]) |

A|Sig[SP1] ∈ Mod [SP1] and A|Sig[SP2] ∈ Mod [SP2]}.
By analogy, for any class C of Σ-algebras and any specification SP, we denote
by C + SP the class of Σ ∪ Sig [SP]-algebras defined by:

C + SP def= {A ∈ Alg(Σ ∪ Sig [SP]) | A|Σ ∈ C and A|Sig[SP] ∈ Mod [SP]}.

2.2 A Brief Introduction to the Constructor-Based Observational
Logic COL

The COL institution has been introduced as a formal framework to capture the
observational aspects of system specifications; see [4]. The basic idea is to con-
sider distinguished sets of constructor and observer operations. Intuitively, the
constructor operations determine those elements which are of interest from the
user’s point of view while the observer operations determine a set of observ-
able experiments that a user can perform to examine hidden states. Thus we
can abstract from junk elements and also from concrete state representations
whereby two states are considered to be “observationally equal” if they cannot
be distinguished by observable experiments.

Formally, a constructor operation is an operation symbol cons : s1, . . . , sn →
s with n ≥ 0. The result sort s of cons is called a constrained sort. An observer

Proving Behavioral Refinements of COL-specifications 337

operation is a pair (obs , i) where obs is an operation symbol obs : s1, . . . , sn → s
with n ≥ 1 and 1 ≤ i ≤ n. The distinguished argument sort si of obs is called a
state sort (or hidden sort). If obs : s1 → s is a unary observer we simply write
obs instead of (obs , 1). A COL-signature ΣCOL = (Σ,OPCons,OPObs) consists
of a standard many-sorted signature Σ = (S,OP) together with a distinguished
set OPCons ⊆ OP of constructor operations and a distinguished set OPObs of
observer operations (obs , i) with obs ∈ OP. We implicitly assume in the following
that whenever we consider a COL-signature ΣCOL the underlying (standard)
signature is Σ and similarly for Σ′

COL etc.

The set SCons ⊆ S of constrained sorts (w.r.t. OPCons) consists of all sorts
s such that there exists at least one constructor in OPCons with range s. The
set SLoose ⊆ S of loose sorts consists of all non-constrained sorts, i.e. SLoose =
S\SCons . The set SState ⊆ S of state sorts (or hidden sorts, w.r.t. OPObs) consists
of all sorts si such that there exists at least one observer (obs , i) in OPObs , obs :
s1, . . . , si, . . . , sn → s. The set SObs ⊆ S of observable sorts consists of all sorts
which are not a state sort, i.e. SObs = S \ SState . An observer (obs , i) ∈ OPObs,
obs : s1, . . . , si, . . . , sn → s is called a direct observer if s ∈ SObs , otherwise it is
an indirect observer.

The set OPCons of constructor operations (of a COL-signature ΣCOL) de-
termines a set of constructor terms. A constructor term is a term t of a con-
strained sort s ∈ SCons which is built only from constructor operations of OPCons

and from variables of loose sorts. In particular, if all sorts are constrained, i.e.,
SCons = S, the constructor terms are exactly the (S,OPCons)-ground terms
which are built by the constructor symbols. The set of constructor terms deter-
mines, for any Σ-algebra A, an S-sorted family of subsets of the carrier sets of
A, called the generated part and denoted by GenΣCOL(A). For each constrained
sort s ∈ SCons, the corresponding subset GenΣCOL(A)s ⊆ As consists of those
elements that can be constructed by the interpretations of the given constructors
(starting from constants and from arbitrary elements of loose sorts, if any). For
each loose sort s ∈ SLoose, GenΣCOL(A)s = As. The ΣCOL-generated part repre-
sents those elements which are of interest from the user’s point of view according
to the given constructor operations. A Σ-algebra A is reachable (w.r.t. ΣCOL) if
its carrier sets coincide with its ΣCOL-generated part.

The set OPObs of observer operations (of a COL-signatureΣCOL) determines
a set of observable contexts which represent the observable experiments that a
user can perform. Observable contexts are defined in a coinductive style which
will be reflected in the encoding of observable contexts in Section 5.

Definition 1 (Observable context). Let ΣCOL be a COL-signature, let X =
(Xs)s∈S be a family of pairwise disjoint, countably infinite sets Xs of variables
of sort s and let Z = ({zs})s∈SState be a disjoint family of singleton sets (one
for each state sort). The sets C(ΣCOL)s→s′ of observable ΣCOL-contexts with
“application sort” s and “observable result sort” s′, with s ∈ SState and s′ ∈
SObs, are the least sets such that:

338 Michel Bidoit and Rolf Hennicker

1. For each direct observer (obs , i) with obs : s1, . . . , si, . . . , sn → s′ and pair-
wise disjoint variables x1:s1, . . . , xn:sn,
obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn) ∈ C(ΣCOL)si→s′ .

2. For each observable context c ∈ C(ΣCOL)s→s′ , for each indirect observer
(obs , i) with obs : s1, . . . , si, . . . , sn → s, and pairwise disjoint variables
x1:s1, . . . , xn:sn not occurring in c,
c[obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn)/zs] ∈ C(ΣCOL)si→s′

where c[obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn)/zs] denotes the term obtained
from c by substituting the term obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn) for zs .

We assume that for any state sort s ∈ SState there exists an observable context
with application sort s.

The set of observable contexts determines, for any Σ-algebra A, an indistin-
guishability relation, called observational equality. The observational equality on
A is an S-sorted binary relation ≈ΣCOL,A such that for any two elements a, b ∈ A,
a ≈ΣCOL,A b holds if either a = b and a, b are observable (i.e. belong to a carrier
set of observable sort s ∈ SObs) or if a and b are hidden (i.e. belong to a carrier
set of a state sort s ∈ SState) but cannot be distinguished by the application
of observable contexts. The application of observable contexts is defined in the
usual way apart from the fact that for variables in X (occurring in an observable
context c) we consider only valuations in the generated part GenΣCOL(A) (i.e.
junk values are disregarded because they should not contribute to distinguish
elements). A Σ-algebra A is fully abstract if the observational equality coincides
(on all carrier sets) with the set-theoretic equality.

The constructor and the observer operations induce certain constraints on
Σ-algebras. First, since the constructor operations determine the values of inter-
est, we require that the non-constructor operations should (up to observational
equality) respect the constructor-generated part of an algebra, i.e. by the ap-
plication of non-constructor operations one should at most be able to obtain
elements which are observationally equal to some element of the constructor-
generated part GenΣCOL(A). Technically this means that for a given Σ-algebra
A we first consider the smallest Σ-subalgebra 〈GenΣCOL(A)〉Σ of A containing
the ΣCOL-generated part because this subalgebra represents the only elements
a user can compute (over the loose carrier sets) by invoking operations of Σ.
Then we require that each element of 〈GenΣCOL(A)〉Σ is observationally equal
to some element of the ΣCOL-generated part GenΣCOL(A) of A. This condition
is called reachability constraint.

Furthermore, since the declaration of observer operations determines a par-
ticular observational equality on any Σ-algebra A, the (interpretations of the)
non-observer operations should respect this observational equality, i.e. a non-
observer operation should not contribute to distinguish non-observable elements.
To ensure this we require that the observational equality is a Σ-congruence on
the subalgebra 〈GenΣCOL(A)〉Σ . (It is sufficient to consider 〈GenΣCOL(A)〉Σ in-
stead of A because computations performed by a user can only lead to elements
in the Σ-subalgebra 〈GenΣCOL(A)〉Σ .) This condition is called observability con-
straint.

Proving Behavioral Refinements of COL-specifications 339

A Σ-algebraA which satisfies both the reachability and the observability con-
straints induced by a COL-signature ΣCOL is called a ΣCOL-algebra (or simply a
COL-algebra). Obviously any Σ-algebra A which is reachable and fully abstract
w.r.t. ΣCOL is a ΣCOL-algebra. The class of all ΣCOL-algebras is denoted by
AlgCOL(ΣCOL). It can be extended to a category by an appropriate notion of
ΣCOL-morphism which reflects behavioral relationships between ΣCOL-algebras
(see [4] for details).

The satisfaction of the reachability and observability constraints allows us
to construct for each ΣCOL-algebra A its black box view which is a reachable
and fully abstract algebra representing the behavior of A from the user’s point
of view. The black box view is constructed in two steps. First, we restrict to
the ΣCOL-generated subalgebra 〈GenΣCOL(A)〉Σ of A thus forgetting junk val-
ues. Then, we identify all elements of 〈GenΣCOL(A)〉Σ which are observationally
equal. Hence the black box view of a ΣCOL-algebra A is given by the quotient
algebra of 〈GenΣCOL(A)〉Σ w.r.t. ≈ΣCOL,A which, for simplicity, will be denoted
by A/≈ΣCOL,A. Two ΣCOL-algebras A and B are observationally equivalent, de-
noted by A ≡ΣCOL B, if their black box views A/≈ΣCOL,A and B/≈ΣCOL,B are
isomorphic Σ-algebras. Observationally equivalent ΣCOL-algebras are isomor-
phic w.r.t. ΣCOL-morphisms (see [4]).

A crucial concept to obtain a built-in behavioral semantics for specifications is
the COL-satisfaction relation, denoted by |=ΣCOL , which generalizes the standard
satisfaction relation of first-order logic by abstracting with respect to reachability
and observability. First, from the reachability point of view, the valuations of
variables are restricted to the elements of the ΣCOL-generated part only. From
the observability point of view, the idea is to interpret the equality symbol “=”
occurring in a first-order formula ϕ not by the set-theoretic equality but by the
observational equality of elements.

Definition 2 (COL-satisfaction relation). For any COL-signature ΣCOL,
the COL-satisfaction relation between Σ-algebras and first-order Σ-formulas
(with variables in X) is denoted by |=ΣCOL and defined as follows. Let A ∈
Alg(Σ).

1. For any two terms t, r ∈ TΣ(X)s of the same sort s and for any valuation
α : X → GenΣCOL(A), A,α |=ΣCOL t = r holds if Iα(t) ≈ΣCOL,A Iα(r).

2. For any Σ-formula ϕ and for any valuation α : X → GenΣCOL(A),
A,α |=ΣCOL ϕ is defined by induction over the structure of the formula ϕ
in the usual way. In particular, A,α |=ΣCOL ∀x:s. ϕ if for all valuations
β : X → GenΣCOL(A) with β(y) = α(y) for all y 	= x, A, β |=ΣCOL ϕ.

3. For any Σ-formula ϕ, A |=ΣCOL ϕ holds if for all valuations α : X →
GenΣCOL(A), A,α |=ΣCOL ϕ holds.

The notation A |=ΣCOL ϕ is extended in the usual way to classes of algebras
and sets of formulas. The COL-satisfaction relation is defined not only for ΣCOL-
algebras but also for arbitrary Σ-algebras which will be important when we
consider proof techniques for behavioral refinement relations.

340 Michel Bidoit and Rolf Hennicker

Fact 1 Let ΣCOL be a COL-signature, let ϕ be a Σ-formula and let A be a
ΣCOL-algebra. Then:

A |=ΣCOL ϕ if and only if A/≈ΣCOL,A |= ϕ.

The above definitions provide the basic ingredients that lead to the COL
institution. In particular, the COL-satisfaction relation satisfies the satisfaction
condition of institutions w.r.t. COL-signature morphisms which are standard
signature morphisms fulfilling additional properties related to the preservation
of constructor and observer operations (see [4] for details). A basic COL specifi-
cation SPCOL = 〈ΣCOL,Ax〉 consists of a COL-signature ΣCOL and a set Ax of
Σ-sentences (the axioms of the specification). The semantics of SPCOL is given
by its signature ΣCOL and by its class of models:

Mod [SPCOL] = {A ∈ AlgCOL(ΣCOL) | A |=ΣCOL Ax}.

3 Behavioral Refinements

Generally, specification refinement is a relation between an abstract specifica-
tion to be implemented and a more concrete specification which satisfies the
requirements of the given abstract specification. Taking into account the observ-
able behavior described by COL-specifications, a COL-specification SPICOL is
considered as a behavioral refinement of a COL-specification SPCOL if SPICOL

respects the behavioral properties required by SPCOL. Formally, a simple be-
havioral refinement relation between two COL-specifications can be defined by
requiring that both specifications have the same signature and that the model
class of the implementing specification SPICOL is included in the model class of
SPCOL. Remember that for the sake of simplicity we restrict to basic specifica-
tions in the framework of this paper.

Definition 3 (Behavioral refinement: simple case).
Let SPCOL = 〈ΣCOL,Ax〉 and SPICOL = 〈ΣCOL,AxI〉 be two COL-specifications
with the same signature ΣCOL. SPICOL is a behavioral refinement of SPCOL,
denoted by SPCOL � SPICOL, if

Mod [SPICOL] ⊆ Mod [SPCOL].

To prove that SPCOL � SPICOL holds, one has to show that:

SPICOL |=ΣCOL ϕ for all axioms ϕ ∈ Ax,

i.e. that the axioms of SPCOL are observable consequences of SPICOL. For this
purpose one can directly apply the proof techniques for COL-specifications stud-
ied in [4] (since ΣCOL is also the signature of SPICOL).

Proving Behavioral Refinements of COL-specifications 341

In general, however, one has to take into account that an implementation
involves some construction step, an idea which has been formalized by the no-
tion of constructor implementation introduced in [19] (and similarly in other
implementation concepts; see [17, 10] for an overview). According to [19] an im-
plementation constructor is a function which maps algebras over the signature
of the implementing specification to algebras over the signature of the abstract
specification. Since it is sufficient if an implementation construction is defined
on the models of the implementing specification implementation constructors
are, in general, partial functions. We assume that implementation constructions
are performed in a uniform way, i.e. preserve isomorphisms. It is obvious that
the concept of an implementation constructor can be easily transferred to be-
havioral refinements of COL-specifications. In particular, the requirement that
isomorphisms are preserved means in the context of the COL institution that
a COL-implementation constructor preserves COL-isomorphisms, i.e. observa-
tional equivalences of COL-algebras (see Section 2.2).

Definition 4 (COL-implementation constructor). Let ΣCOL, ΣICOL be two
COL-signatures. A COL-implementation constructor from ΣICOL to ΣCOL is a
partial function κCOL : AlgCOL(ΣICOL) → AlgCOL(ΣCOL) which is COL-iso-
preserving, i.e. for all AI,BI ∈ AlgCOL(ΣICOL),

if AI ≡ΣICOL BI and κCOL(AI) is defined
then κCOL(BI) is defined and κCOL(AI) ≡ΣCOL κCOL(BI).

The definition domain of κCOL is denoted by Dom(κCOL).

Using the notion of a COL-implementation constructor we can generalize
Definition 3 to the case where the abstract and implementing specifications have
different signatures.

Definition 5 (Behavioral refinement w.r.t. an implementation con-
structor). Let SPCOL, SPICOL be two COL-specifications with signatures ΣCOL,
ΣICOL resp. and let κCOL be a COL-implementation constructor from ΣICOL

to ΣCOL. SPICOL is a behavioral refinement of SPCOL w.r.t. κCOL, denoted by
SPCOL �κCOL SPICOL, if

Mod [SPICOL] ⊆ Dom(κCOL) and κCOL(Mod [SPICOL]) ⊆ Mod [SPCOL].

As discussed in [7] an important question is, of course, which implementa-
tion constructors are appropriate for behavioral refinements. As a first approach
one could simply consider COL-signature morphisms σCOL : ΣCOL → ΣICOL.
Since COL is an institution, the corresponding COL-reduct functor |σCOL :
AlgCOL(ΣICOL) → AlgCOL(ΣCOL) preserves COL-isomorphisms, i.e. is a COL-
implementation constructor. Hence it is tempting to consider COL-refinements
where the syntactic relationship between the specification SPCOL to be imple-
mented and the implementing specification SPICOL is established by a COL-
signature morphism. This approach has, however, a serious drawback because
the implementing specification SPICOL usually has constructor and observer op-
erations OPICons, OPIObs which are unrelated to the constructor and observer

342 Michel Bidoit and Rolf Hennicker

operations OPCons, OPObs of the specification SPCOL to be implemented. As a
simple example we consider in Section 6 the implementation of sets by lists where
the observer for sets is the membership test isin while the observer operations
for lists are, as usual, the head and tail operations. Hence the COL-specifications
of sets and lists cannot be related by a COL-signature morphism which would
require the preservation of constructor and observer operations. This is the rea-
son why we want to consider standard signature morphisms and their reduct
functors as implementation constructors for COL-specifications.

But before let us still point out that our viewpoint has been inspired by
the following remarkable sentences by Goguen and Malcolm [15]: “Signature
morphisms perform two distinct roles. One role is to express the importation of
one specification into another. . . referred to as horizontal composition. . . so that
when a specification of a class of objects is imported into a larger specification, the
properties of the imported object classes are preserved. The other role performed
by signature morphisms is to compare two different specifications. This is referred
to as vertical composition, and pertains to relationships between layers. . . In such
a case we would not expect that signature morphisms encapsulate object class
specifications, but rather expect that signature morphisms preserve the behaviour
of object classes . . . ”.

Interpreting these considerations in the COL framework this means that it
is indeed adequate not to stick to COL-signature morphisms when we construct
implementations. COL-signature morphisms are the appropriate tool to ensure
encapsulation of COL-specifications (formally expressed by the satisfaction con-
dition of an institution) which is indeed important when we construct large de-
sign specifications in a modular way (i.e. by horizontal composition). But when
we discuss refinements by relating abstract and concrete specifications (vertical
composition) this is a totally different matter where it makes no sense to talk
about encapsulation.

Let us now consider two COL-specifications SPCOL, SPICOL with signatures
ΣCOL, ΣICOL resp. together with a (standard) signature morphism σ : Σ → ΣI
(where Σ and ΣI are the underlying standard signatures of ΣCOL and ΣICOL

resp.). Moreover, let us consider the reduct functor |σ : Alg(ΣI) → Alg(Σ) as
a partial function |σ : AlgCOL(ΣICOL) → AlgCOL(ΣCOL),1 where:

|σ(AI) def= AI|σ if AI|σ is a ΣCOL-algebra,
|σ(AI) is undefined otherwise.

Then we have the following fact (see Lemma 1 in [7]).

Fact 2 |σ : AlgCOL(ΣICOL) → AlgCOL(ΣCOL) is a COL-implementation con-
structor if σ(SObs) ⊆ SIObs and σ(SLoose) ⊆ SILoose where SObs, SIObs are the
observable sorts and SLoose, SILoose are the loose sorts induced by ΣCOL, ΣICOL

respectively (see Section 2.2).

1 By abuse of notation we use the same symbol |σ for the (total) reduct functor on
Alg(ΣI) and for its induced partial reduct function on AlgCOL(ΣICOL).

Proving Behavioral Refinements of COL-specifications 343

Let us stress that vertical signature morphisms used for refinements in [15]
satisfy the above conditions due to the fixed universe of visible data. Hence
vertical signature morphisms in the sense of [15] are special cases of COL-
implementation constructors.

4 Proof Rules for Behavioral Refinements: Part I

In the following we are interested in proof rules for proving behavioural refine-
ment relations SPCOL �κCOL SPICOL. Obviously, the following basic proof rule
follows directly from Definition 5:

For any COL-specifications SPCOL = 〈ΣCOL,Ax〉, SPICOL = 〈ΣICOL,AxI〉, and
COL-implementation constructor κCOL : AlgCOL(ΣICOL) → AlgCOL(ΣCOL):

(Basic)

(B1) Mod [SPICOL] ⊆ Dom(κCOL),
(B2) κCOL(Mod [SPICOL]) |=ΣCOL Ax

SPCOL �κCOL SPICOL

Note that in (B2) κCOL(Mod [SPICOL]) consists ofΣ-algebras and that |=ΣCOL

has been defined not only for COL-algebras but for arbitary Σ-algebras. Of
course, the central question is how to prove (B1) and (B2)? For this purpose,
we will follow a strategy which consists of two crucial steps. The idea of the first
step, elaborated in this section, is to consider instead of the COL-specification
SPICOL a standard specification SPI (over the FOLEq institution) and instead of
κCOL an implementation constructor κ on standard algebras. This idea is related
to the (behavioral) refinement notion in [20] and to the concept of an abstractor
implementation in [19] where behavioral refinement is, by definition, a relation
between the standard interpretation of the implementing specification and the
behavioral interpretation of the specification to be implemented. The idea of the
second step, elaborated in Section 5, is to reduce the proof of consequences w.r.t.
the COL-satisfaction relation |=ΣCOL to proofs w.r.t. the standard satisfaction
relation of first-order logic with equality.

Let us start by considering COL-implementation constructors which are in-
duced by standard implementation constructors. Given two signatures Σ and
ΣI a standard implementation constructor from ΣI to Σ is a function κ :
Alg(ΣI) → Alg(Σ) which is iso-preserving. For simplicity, let us assume that κ
is total. Since any COL-algebra is also a (standard) algebra it is obvious that
any implementation constructor κ : Alg(ΣI) → Alg(Σ) gives rise to a (partial)
function κCOL : AlgCOL(ΣICOL) → AlgCOL(ΣCOL) where:

κCOL(AI) def= κ(AI) if κ(AI) is a ΣCOL-algebra,
κCOL(AI) is undefined otherwise.

344 Michel Bidoit and Rolf Hennicker

If this partial function is COL-iso-preserving then κCOL is a COL-implementation
constructor induced by κ.2 For instance, Fact 2 provides a simple criterion when
reduct functors along standard signature morphisms induce COL-implementation
constructors.

To state our second proof rule we consider for any COL-specification SPICOL

its associated standard specification SPI obtained by forgetting the constructor
and observer operations declared in SPICOL. Then we have for any specifications
SPCOL = 〈ΣCOL,Ax〉, SPICOL = 〈ΣICOL,AxI〉, SPI = 〈ΣI ,AxI〉, where ΣI is
the underlying standard signature of ΣICOL, and for any κ : Alg(ΣI) → Alg(Σ)
and COL-implementation constructor κCOL : AlgCOL(ΣICOL) → AlgCOL(ΣCOL)
induced by κ:

(ForgetCOL)

(F1) κ(Mod [SPI]) ⊆ AlgCOL(ΣCOL),
(F2) κ(Mod [SPI]) |=ΣCOL Ax

(B1) Mod [SPICOL] ⊆ Dom(κCOL),
(B2) κCOL(Mod [SPICOL]) |=ΣCOL Ax

Lemma 1. The proof rule (ForgetCOL) is correct.

Proof. Assume (F1) and (F2). To prove (B1) and (B2) let AI ∈ Mod [SPICOL].
Then AI |=ΣICOL AxI and hence, by Fact 1, AI/≈ΣICOL,AI |= AxI. Thus
AI/≈ΣICOL,AI ∈ Mod [SPI]. By assumption (F1), κ(AI/≈ΣICOL,AI) is a ΣCOL-
algebra. Hence, since κCOL is induced by κ, κCOL(AI/≈ΣICOL,AI) is defined.
Since AI ≡ΣICOL AI/≈ΣICOL,AI and κCOL is a COL-implementation construc-
tor, κCOL(AI) is defined as well. Hence, Mod [SPICOL] ⊆ Dom(κCOL), i.e. (B1)
holds.

Moreover, since AI/≈ΣICOL,AI ∈ Mod [SPI], the assumption (F2) implies
that κ(AI/≈ΣICOL,AI) |=ΣCOL Ax. Then, since κCOL is induced by κ, we have
κCOL(AI/≈ΣICOL,AI) |=ΣCOL Ax. Since κCOL is a COL-implementation con-
structor and AI ≡ΣICOL AI/≈ΣICOL,AI , we conclude that κCOL(AI) ≡ΣCOL

κCOL(AI/≈ΣICOL,AI). But then κCOL(AI) |=ΣCOL Ax holds as well. Hence,
κCOL(Mod [SPICOL]) |=ΣCOL Ax, i.e. (B2) holds.
#

The proof rule (ForgetCOL) is also complete if Mod [SPI] is closed under
behavioral quotients, i.e. if any ΣI -algebra AI ∈ Mod [SPI] is a ΣICOL-algebra
such that AI/≈ΣICOL,AI ∈ Mod [SPI]. (The proof relies on the fact that, under
this assumption, Mod [SPI] ⊆ Mod [SPICOL].)

According to the given proof rules (Basic) and (ForgetCOL), the remaining
task to prove behavioral refinements is to prove (F1) and (F2). A possible ap-
proach to discharge (F1) will be explained with the example in Section 6. A
general technique to discharge (F2) is studied in the next section.

2 In particular this means that κ is compatible with observational equivalences between
COL-algebras, a property which is related to the notion of stability introduced by
Schoett [20].

Proving Behavioral Refinements of COL-specifications 345

5 Proof Rules for Behavioral Refinements: Part II

In this section we focus on how to handle the proof obligation (F2) arising from
the proof rule (ForgetCOL). Basically we have to show that a set of formulas is
behaviorally satisfied by some class of arbitrary algebras. The difficulty here is
that these algebras are not COL-algebras w.r.t. the same COL-signature as the
one used for the behavioral satisfaction considered, hence we cannot reuse the
ideas and proof techniques detailed in [4]. However, we can rely on another idea,
similar to the one introduced in [5], where the proof of behavioral consequences
is replaced by the proof of standard consequences using a so-called “lifting en-
coding”. The main difference to [5] is, first, that in COL we have distinguished
sets of observer and constructor operations which lead to much less observable
contexts and constructor terms than in the case of partial observational equali-
ties considered in [5]. Hence, the ideas of [5], which were mainly of theoretical
interest, now become practically relevant. Secondly, in contrast to [5], we fol-
low a coinductive style for the encoding of observable contexts which is more
appropriate for proving behavioral theorems.

Our lifting encoding relies on a syntactic counterpart of both the constructor
terms and the observable contexts. Therefore we need a few preliminary defini-
tions. Remember that given a COL-signature ΣCOL, for each state sort s and
observable sort s′, C(ΣCOL)s→s′ denotes the set of the observable ΣCOL-contexts
with application sort s and result sort s′.

Definition 6 (Lifted signature AL(ΣCOL) associated to a COL-signature
ΣCOL). Let ΣCOL = (Σ,OPCons,OPObs) be a COL-signature. The induced lifted
signature AL(ΣCOL) is defined as follows:

AL(ΣCOL) def= Σ ∪Δ(OPCons) ∪ Λ(OPCons) ∪Δ(OPObs) ∪ Λ(OPObs)

where Δ(OPCons) is the signature fragment containing:
– for each constrained sort s ∈ SCons, a new sort c[s];
– for each constructor cons : s1, . . . , sn → s ∈ OPCons,

a new operation cons∗ : s1, . . . , sn → c[s]
where here and in the following, for any sort r ∈ S, r def= r if r ∈ SLoose

and r def= c[r] if r ∈ SCons;
where Λ(OPCons) is the signature fragment containing:

– for each constrained sort s ∈ SCons,
a new (overloaded) operation inj : c[s] → s;

– for each constrained sort s ∈ SCons,
a new (overloaded) unary predicate G : s on the sort s;

where Δ(OPObs) is the signature fragment containing:
– for each state sort s ∈ SState and observable sort s′ ∈ SObs, if

C(ΣCOL)s→s′ is not empty, a new sort Cont [s→s′]; 3

3 Otherwise, i.e. if C(ΣCOL)s→s′ is empty, no new sort is added to reduce the syntactic
complexity of the encoding.

346 Michel Bidoit and Rolf Hennicker

– for each direct observer (obs , i) ∈ OPObs with obs : s1, . . . , si, . . . , sn →
s′, a new operation obs∗i : s1, . . . , si−1, si+1, . . . , sn → Cont [si→s′]; 4

– for each indirect observer (obs , i) ∈ OPObs with obs : s1, . . . , si, . . . , sn →
s, and for all observable sorts s′ ∈ SObs such that C(ΣCOL)s→s′ is not
empty,5 new (overloaded) operations
obs∗i : Cont [s→s′], s1, . . . , si−1, si+1, . . . , sn → Cont [si→s′];

and where Λ(OPObs) is the signature fragment containing:
– for each new sort Cont [s→s′], a new (overloaded) operation

apply : Cont [s→s′], s→ s′;
– for each state sort s ∈ SState, a new (overloaded) binary predicate

∼ : s, s.

Definition 7 (Lifting axioms Ax(ΣCOL) associated to a COL-signature
ΣCOL). Let ΣCOL = (Σ,OPCons,OPObs) be a COL-signature. The lifting axioms
Ax(ΣCOL) associated to the lifted signature AL(ΣCOL) introduced in Definition 6
are defined as follows:

Ax(ΣCOL) def= SGC(Δ(OPCons)) ∪ AxΣCOL(inj) ∪ AxΣCOL(G) ∪
FSGC(Δ(OPObs)) ∪ AxΣCOL(apply) ∪ AxΣCOL(∼)

where SGC(Δ(OPCons)) is the sort-generation constraint induced by the new
sorts c[s] and by the new operations cons∗;

where AxΣCOL(inj) states that the operations inj are injective and homomor-
phic w.r.t. OPCons, i.e. AxΣCOL(inj) is the union of:
– for each constrained sort s ∈ SCons, the conditional equation:

∀x, y:c[s]. inj (x) = inj (y) ⇒ x = y;
– for each constrained sort s ∈ SCons and constructor cons ∈ OPCons with

cons : s1, . . . , sn → s, the implicitly universally quantified equation:
inj (cons∗(x1, . . . , xn)) = cons(ζx1, . . . , ζxn)
where here and in the following, ζxi = xi if the sort of xi is in SLoose,
and ζxi = inj (xi) otherwise (i.e., if the sort of xi is of the form c[si]
with si ∈ SCons);

where AxΣCOL(G) is the set of sentences:
– for each constrained sort s ∈ SCons: ∀x:s. G(s) ⇔ ∃y:c[s]. x = inj (y);

where FSGC(Δ(OPObs)) is the free sort-generation constraint induced by the
signature fragment Δ(OPObs), i.e., by the new sorts Cont [s→s′] and the new
operations obs∗i ;

where AxΣCOL(apply) is the set of equations:
– for each direct observer (obs , i) ∈ OPObs with obs : s1, . . . , si, . . . , sn →
s′, the equation:
∀x1:s1, . . . , xi−1:si−1, xi+1:si+1, . . . , xn:sn. ∀xi:si.
apply(obs∗i (x1, . . . , xi−1, xi+1, . . . , xn), xi) =

obs(ζx1, . . . , ζxi−1, xi, ζxi+1, . . . , ζxn);

4 The existence of the direct observer (obs , i) entails the non-emptiness of
C(ΣCOL)si→s′ , hence the existence of the new sort Cont [si→s′].

5 Hence, the new sort Cont [s→s′] exists, and so does the new sort Cont [si→s′].

Proving Behavioral Refinements of COL-specifications 347

– for each indirect observer (obs , i) ∈ OPObs with obs : s1, . . . , si, . . . , sn →
s, and for all observable sorts s′ ∈ SObs such that the new sort Cont [s→s′]
exists, the equations:
∀c:Cont [s→s′], x1:s1, . . . , xi−1:si−1, xi+1:si+1, . . . , xn:sn. ∀xi:si.
apply(obs∗i (c, x1, . . . , xi−1, xi+1, . . . , xn), xi) =

apply(c, obs(ζx1, . . . , ζxi−1, xi, ζxi+1, . . . , ζxn));
where AxΣCOL(∼) is the set of sentences:

– for each state sort s ∈ SState:

∀x, y:s.

⎛⎝ ∧
Cont[s→s′]

∀c:Cont [s→s′]. apply(c, x) = apply(c, y)

⎞⎠⇔ x ∼ y .6

The main idea underlying the above definitions is that, to any Σ-algebra
A (where Σ is the standard signature underlying the COL-signature ΣCOL),
corresponds a unique (up to isomorphism) “lifted” AL(ΣCOL)-algebra AL(A)
which extends A (i.e., AL(A)|Σ = A) and satisfies the lifting axioms Ax(ΣCOL).7

Moreover, this lifted algebra AL(A) is defined in a way which ensures a one to
one correspondence between:

– values in the ΣCOL-generated part of the Σ-algebra A and values in the
carriers of the new sorts c[s] in AL(A);

– observable contexts, together with appropriate valuations of their variables
(in the ΣCOL-generated part of A), and values in the (carriers of the) syn-
tactic counterparts Cont [s→s′] in AL(A). Hence the new sorts Cont [s→s′]
reflect the observable contexts in C(ΣCOL)s→s′ and they are generated by the
constructors obs∗i . Note that our definition of the constructors of the new
sorts Cont [s→s′] follows the coinductive definition of observable contexts
given in Definition 1.

We still need a further definition to state the main result of this section.

Definition 8 (Lifted formula L(ϕ)). Let ΣCOL = (Σ,OPCons,OPObs) be a
COL-signature and ϕ be an arbitrary Σ-formula. The lifted formula L(ϕ) is the
AL(ΣCOL)-formula defined by: 8

L(ϕ) def=

⎛⎝ ∧
y:s∈FreeVar(ϕ) and s∈SCons

G(y)

⎞⎠⇒ ϕ∗

where FreeVar(ϕ) denotes the free variables of ϕ, if any, and where ϕ∗ is defined
by induction on the structure of ϕ as follows:

6 This sentence is finite, since for any state sort s ∈ SState, there is only a finite number
of sorts Cont [s→s′], where s′ ∈ SObs is an observable sort.

7 In other words, the lifting axioms Ax(ΣCOL) induce a strongly persistent free functor
from Σ-algebras to AL(ΣCOL)-algebras.

8 Note however that the only extra (not in Σ) symbols used in L(ϕ) are the predicates
G and ∼ . Moreover, note the similarity with [5, Def. 4.1-(iv)].

348 Michel Bidoit and Rolf Hennicker

1. If ϕ is an equation l = r between two terms of sort s:
if s ∈ SObs then ϕ∗ def= l = r, otherwise s ∈ SState and ϕ∗ def= l ∼ r;

2. (¬ϕ)∗ def= ¬(ϕ∗), (ϕ1 ∧ ϕ2)∗
def= ϕ∗

1 ∧ ϕ∗
2 , (ϕ1 ∨ ϕ2)∗

def= ϕ∗
1 ∨ ϕ∗

2 ;
3. If s ∈ SLoose then (∀x:s. ϕ)∗ def= ∀x:s. ϕ∗,

otherwise s ∈ SCons and (∀x:s. ϕ)∗ def= ∀x:s. [G(x) ⇒ ϕ∗].

Obviously L(ϕ) coincides with ϕ∗ if ϕ is a closed Σ-formula.

Theorem 3. Let ΣCOL = (Σ,OPCons,OPObs) be a COL-signature. For any
class C ⊆ Alg(Σ) of Σ-algebras and any Σ-formula ϕ, we have:

C |=ΣCOL ϕ if and only if C + 〈AL(ΣCOL),Ax(ΣCOL)〉 |= L(ϕ) .

Proof. For lack of space we only detail here the main steps of the proof.

Step 1: In a first step we introduce a semantic lifting of Σ-algebras as follows.
Let L(Σ) be the signature Σ enriched by the predicates G and ∼ (as they are
introduced in Definition 6). Remember that L(ϕ) is indeed a L(Σ)-formula,
as pointed out in Definition 8. Now the semantic lifting L(A) of a Σ-algebra
A is defined as being the unique L(Σ)-algebra extension of A defined by:
1. L(A)|Σ def= A;
2. For any constrained sort s ∈ SCons, and a ∈ L(A)s = As, GL(A)(a) if

and only if a ∈ GenΣCOL(A)s;
3. For any state sort s ∈ SState, and a, b ∈ L(A)s = As, a ∼L(A) b if and

only if a ≈ΣCOL,A,s b .
Now we have:

A |=ΣCOL ϕ if and only if L(A) |= L(ϕ).

The proof of this fact is similar to the proof of Theorem 4.2 in [5].
Step 2: In a second step we prove that, for any Σ-algebra A:

AL(A)|L(Σ) = L(A)

This indeed results directly from Definitions 6 and 7 (see the comments
after the later definition), and from the definitions of GenΣCOL(A) and of
≈ΣCOL,A .

Step 3: From the above we conclude that:
A |=ΣCOL ϕ if and only if, according to Step 1,
L(A) |= L(ϕ) if and only if, according to Step 2,
AL(A)|L(Σ) |= L(ϕ) if and only if, according to the satisfaction condition
in CFOLEq, AL(A) |= L(ϕ) . This is enough to conclude the proof of the
theorem, since {AL(A) | A ∈ C } = C + 〈AL(ΣCOL),Ax(ΣCOL)〉.
#
As a direct consequence of Theorem 3 we obtain the following proof rule.

For any COL-specification SPCOL = 〈ΣCOL,Ax〉, CFOLEq-specification SPI =
〈ΣI ,AxI〉 and for any κ : Alg(ΣI) → Alg(Σ):

(Lifting)
(L) κ(Mod [SPI]) + 〈AL(ΣCOL),Ax(ΣCOL)〉 |= L(Ax)

(F2) κ(Mod [SPI]) |=ΣCOL Ax

Proving Behavioral Refinements of COL-specifications 349

6 Example: Implementation of Sets by Non-redundant
Lists

In this section we illustrate the use of our proof rules and proof techniques on a
small but non-trivial example.

6.1 The Behavioral Refinement Relation

The following specification Set-col specifies properties of sets over a loose do-
main of arbitary elements. As constructors for sets we use the operations empty
and add and as an observer for sets we use the membership test isin .9

spec Set-col =
sorts bool , elem, set
ops true, false : bool ;

empty : set ;
add : elem × set → set ;
remove : elem × set → set ;
isin : elem × set → bool ;

constructors empty, add
observer (isin, 2)
axioms
∀x , y : elem; s : set
%% standard axioms for booleans, plus

• isin(x , empty) = false
• isin(x , add(x , s)) = true
• x 	= y ⇒ isin(x , add(y, s)) = isin(x , s)
• isin(x , remove(x , s)) = false
• x 	= y ⇒ isin(x , remove(y, s)) = isin(x , s)
• add(x , add(x , s)) = add(x , s)
• add(x , add(y, s)) = add(y, add(x , s))

end
As a refinement for sets we consider a classical implementation of sets by

non-redundant lists where the set operation add is implemented in a such a way
that it inserts an element x into a list only if x does not yet occur in the list and
the set operation remove just removes the first occurrence of an element.
spec List-col =

sorts bool , elem, list
ops true, false : bool ;

empty : list ;
cons : elem × list → list ;
head : list → elem;
tail : list → list ;
isin : elem × list → bool ;

9 All our examples are expressed using a syntactic sugar similar to the one of Casl [8].

350 Michel Bidoit and Rolf Hennicker

add : elem × set → set ;
remove : elem × set → set ;

constructors empty, cons
observers head , tail
axioms
∀x , y : elem; l : list
%% standard axioms for booleans, plus

• head(cons(x , l)) = x
• tail(cons(x , l)) = l
• isin(x , empty) = false
• isin(x , cons(x , l)) = true
• x 	= y ⇒ isin(x , cons(y, l)) = isin(x , l)
• isin(x , l) = true ⇒ add(x , l) = l
• isin(x , l) = false ⇒ add(x , l) = cons(x , l)
• remove(x , empty) = empty
• remove(x , cons(x , l)) = l
• x 	= y ⇒ remove(x , cons(y, l)) = cons(y, remove(x , l))

end
To state the refinement relation we still need an appropriate COL-implemen-

tation constructor. Since List-col provides already all set operations the simple
idea is to forget the list operations cons , head and tail and to perform an appro-
priate renaming to match the sorts set and list . For this purpose we consider the
(standard) signature morphism σSetasList : ΣSet → ΣList where ΣSet denotes
the underlying (standard) signature of Sig [Set-col],10 similarly, ΣList denotes
the underlying (standard) signature of Sig [List-col] and σSetasList(set)

def= list ,
σSetasList(x)

def= x otherwise.
Since bool and elem are the observable sorts of both Set-col and List-col,

Fact 2 implies that the reduct functor |σSetasList : Alg(ΣSet) → Alg(ΣList) on
standard algebras induces a COL-implementation constructor:

|σSetasList : AlgCOL(Sig [List-col]) → AlgCOL(Sig [Set-col]).

Then, we claim that List-col is indeed a behavioral refinement of Set-col
w.r.t. |σSetasList , i.e. Set-col � |σSetasList List-col.

6.2 Proof of the Refinement

For the proof of the above refinement relation the combination of the rules
(Basic) and (ForgetCOL) provided in Section 4 shows that it is enough to con-
sider the standard specification List obtained from List-col by omitting the
declarations of the constructors and observers. Then we have the following two
proof obligations:

10 i.e. ΣSet consists of all sorts and operations of the COL-signature Sig[Set-col]
without any constructor or observer declaration.

Proving Behavioral Refinements of COL-specifications 351

(F1) Mod [List]|σSetasList ⊆ AlgCOL(Sig [Set-col])
(F2) Mod [List]|σSetasList |=Sig[Set-col] ϕ for all axioms ϕ of Set-col

To prove (F1) one has to check that the reducts of all models of List satisfy
the reachability and observability constraints induced by Sig [Set-col]; see Sec-
tion 2. To check the reachability constraint we consider the generated parts of
sort set which are constructed by empty and add. Obviously, due to the imple-
mentation of add, those parts represent lists without duplicates. Moreover, from
the axioms of List it follows that the only non-constructor operation remove
does not introduce duplicates, i.e. the constructor-generated parts are already
subalgebras and therefore the reachability constraint is trivially satisfied. For the
proof of the observability constraint one has to show that both non-observer op-
erations add and insert are congruent, i.e. are compatible with the observational
equality for sets. For this purpose one can use the lifting encoding considered
below and prove the congruence axioms for ∼. Another strategy would be first
to verify (F2) and then to conclude that both add and remove are congruent
operations since the axioms of Set-col provide sufficiently complete definitions
for add and for remove.11

For the proof of (F2) we will apply the rule (Lifting) of the previous section
which says that it is sufficient to prove that for all axioms ϕ of Set-col,

Mod [List]|σSetasList + 〈AL(Sig [Set-col]),Ax(Sig [Set-col])〉 |= L(ϕ)

or equivalently, since the (standard) satisfaction relation is compatible with
reducts of (standard) algebras,

List∗ + 〈AL(Sig [Set-col]),Ax(Sig [Set-col])〉 |= L(ϕ),

where List∗ is the same specification as List but with the sort list renamed
into set . For this purpose, we first compute, according to Definition 6, the lifted
signature:

AL(Sig [Set-col]) def= ΣSet ∪Δ(OPCons) ∪ Λ(OPCons) ∪Δ(OPObs) ∪ Λ(OPObs)

where Δ(OPCons) consists of
– the new sort c[set]
– the new operations empty∗ : c[set]; add∗ : elem × c[set] → c[set];

where Λ(OPCons) consists of
– the new operation inj : c[set] → set ;
– the new unary predicate G : set ;

where Δ(OPObs) consists of
– the new sort Cont [set→bool];
– the new operation isin∗ : elem → Cont [set→bool];

and where Λ(OPObs) consists of
– the new operation apply : Cont [set→bool] × set → bool ;
– the new binary predicate ∼ : set × set .

11 This idea follows a general result presented in [6] for observational logic and equa-
tional specifications which still has to be extended to COL and conditional equations.

352 Michel Bidoit and Rolf Hennicker

In the next step, we compute, according to Definition 7, the lifted axioms:

Ax(Sig[Set-col])
def
= SGC(Δ(OPCons)) ∪ AxSig[Set-col](inj) ∪ AxSig[Set-col](G) ∪

FSGC(Δ(OPObs)) ∪ AxSig[Set-col](apply) ∪ AxSig[Set-col](∼)

where SGC(Δ(OPCons)) is the sort-generation constraint
generated type c[set] ::= empty∗ | add∗(elem ; c[set]);

where AxSig[Set-col](inj) consists of
– the conditional equation:

∀s, s′:c[set]. inj (s) = inj (s′) ⇒ s = s′;
– the implicitly universally quantified equations:

inj (empty∗) = empty
inj (add∗(x, s)) = add(x, inj (s))

where AxSig[Set-col](G) consists of
– ∀s:set . G(s) ⇔ ∃s′:c[set]. s = inj (s′);

where FSGC(Δ(OPObs)) is the free sort-generation constraint
free type Cont [set→bool] ::= isin∗(elem);

where AxSig[Set-col](apply) is the equation:
– ∀x:elem , s:set . apply(isin∗(x), s) = isin(x, s)

where AxSig[Set-col](∼) is the sentence:
– ∀s, s′:set .

(∀c:Cont [set→bool]. apply(c, s) = apply(c, s′)) ⇔ s ∼ s′

According to the above axioms, the unary predicate G characterizes those
lists (of type set because of the performed renaming) which are built with empty
and add . These lists are exactly the lists with no duplicates used for the represen-
tation of sets. On the other hand, the above axioms provide also a specification of
the binary predicate ∼ which relates any two lists containing the same elements
(independently of the order and the number of occurrences of these elements).

Let us now compute the lifting L(ϕ) of all axioms ϕ of Set-col which leads,
according to Definition 8, to the following set of sentences:

∀x , y : elem; s : set
• isin(x , empty) = false
• G(s) ⇒ isin(x , add(x , s)) = true
• G(s) ⇒ (x 	= y ⇒ isin(x , add(y, s)) = isin(x , s))
• G(s) ⇒ isin(x , remove(x , s)) = false (1)

• G(s) ⇒ (x 	= y ⇒ isin(x , remove(y, s)) = isin(x , s))
• G(s) ⇒ add(x , add(x , s)) ∼ add(x , s)
• G(s) ⇒ add(x , add(y, s)) ∼ add(y, add(x , s)) (2)

Of course, the remaining task is to show that the lifted axioms given above are
consequences of List∗ + 〈AL(Sig [Set-col]),Ax(Sig [Set-col])〉. In most cases
the proof is already a direct consequence of the axioms of the List specification
without the need of the predicates G and ∼. The situation is, however, different
for the sentences (1) and (2). In the case of (1) the relativization w.r.t. G(s)

Proving Behavioral Refinements of COL-specifications 353

is indeed crucial, because isin(x, remove(x, s)) = false holds only for those list
interpretations of s which have no duplicates, but these are exactly the lists
characterized by the predicate symbol G. In the case of (2), the use of ∼ instead
of “=” is crucial as well, since two lists (also two non-redundant lists) are different
if they contain the same elements but in a different order. In this case they are,
however, observationally equal which is axiomatized by ∼.12

7 Conclusion

We have provided proof techniques to verify behavioral refinements of COL-
specifications based on a reduction to first-order specifications and (standard)
inductive reasoning. Hence, any inductive theorem prover can be used to prove
behavioral refinements. Let us stress that we do not use coinduction to prove the
behavioral validity of equations but we use an encoding of observational equali-
ties and generated parts which works for arbitrary first-order formulas. Typical
proofs of consequences of the encoding are then performed by induction on the
(coinductive) structure of observable contexts. Next steps are the extension of
our approach to take into account structured specifications and the study of fur-
ther examples of implementation constructors like, e.g., specification extension.

Acknowledgement. We are grateful to the anonymous referee of a previous
version of this paper for valuable remarks.

References

1. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic Founda-
tions of Systems Specification. Springer, 1999.

2. M. Bidoit, M.-V. Cengarle, and R. Hennicker. Proof systems for structured speci-
fications and their refinements. In [1], chapter 11, pages 385–433. Springer, 1999.

3. M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural implemen-
tations. Acta Informatica, 35:951–1005, 1998.

4. M. Bidoit and R. Hennicker. Constructor-based observational logic. Journal of
Logic and Algebraic Programming, 67 (1-2):3–51, 2006. Preliminary version avail-
able at www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BID-HEN-JLAP.pdf.

5. Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of be-
havioural properties. Theoretical Computer Science, 165(1):3–55, 1996.

6. Michel Bidoit and Rolf Hennicker. Observer complete definitions are behaviourally
coherent. In Proc. OBJ/CafeOBJ/Maude Workshop at Formal Methods’99,
Toulouse, France, Sep. 1999, pages 83–94. THETA, 1999.

12 As a side remark the reader may note that in the lifted sentence requiring the
idempotency of add the predicate symbol ∼ could indeed be replaced by “=” due
to the relativization w.r.t. G(s) and the implementation of add .

354 Michel Bidoit and Rolf Hennicker

7. Michel Bidoit and Rolf Hennicker. Externalized and internalized notions of behav-
ioral refinement. In Dang Van Hung and Martin Wirsing, editors, Proceedings of the
2nd International Colloquium on Theoretical Aspects of Computing (ICTAC’05),
volume 3722 of Lecture Notes in Computer Science, pages 334–350, Hanoi, Viet-
nam, October 2005. Springer.

8. Michel Bidoit and Peter D. Mosses. Casl User Manual – Introduction to Using
the Common Algebraic Specification Language, volume 2900 of Lecture Notes in
Computer Science. Springer, 2004.

9. R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification, volume 6 of
AMAST Series in Computing. World Scientific, 1998.

10. H. Ehrig and H.-J. Kreowski. Refinement and implementation. In [1], chapter 7,
pages 201–242. Springer, 1999.

11. J. Goguen and J.A. Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. In Proc. ICALP’82, volume 140 of Lecture
Notes in Computer Science, pages 265–281. Springer, 1982.

12. J. Goguen and G. Roşu. Hiding more of hidden algebra. In J.M. Wing, J. Wood-
cock, and J. Davies, editors, Proc. Formal Methods (FM’99), volume 1709 of Lec-
ture Notes in Computer Science, pages 1704–1719. Springer, 1999.

13. Joseph Goguen and Rod Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

14. J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wiley
and Teubner, 1996.

15. G. Malcolm and J. Goguen. Proving correctness of refinement and implementation.
Technical Report PRG-114, Oxford University Computing Laboratory, 1994.

16. Peter D. Mosses, editor. Casl Reference Manual, volume 2960 of Lecture Notes in
Computer Science. Springer, 2004.

17. F. Orejas, M. Navarro, and A. Sanchez. Implementation and behavioural equiva-
lence. In Recent Trends in Data Type Specification, volume 655 of Lecture Notes
in Computer Science, pages 93–125. Springer, 1993.

18. D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34:150–178, 1987.

19. D.T. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: implementation revisited. Acta Informatica, 25:233–281,
1988.

20. O. Schoett. Data abstraction and correctness of modular programming. Technical
Report CST-42-87, University of Edinburgh, 1987.

21. Andrzej Tarlecki. Institutions: An Abstract Framework for Formal Specification.
In [1], chapter 4, pages 105–130. Springer, 1999.

22. Martin Wirsing. Algebraic Specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, chapter 13, pages 676–788. Elsevier Science Pub-
lishers B.V., 1990.

The Reactive Engine for Modular Transducers

Gérard Huet and Benôıt Razet

INRIA Rocquencourt,
BP 105, 78153 Le Chesnay Cedex, France

Abstract. This paper explains the design of the second release of the
Zen toolkit [5–7]. It presents a notion of reactive engine which simulates
finite-state machines represented as shared aums [8]. We show that it
yields a modular interpreter for finite state machines described as local
transducers. For instance, in the manner of Berry and Sethi, we define a
compiler of regular expressions into a scheduler for the reactive engine,
chaining through aums labeled with phases — associated with the letters
of the regular expression. This gives a modular composition scheme for
general finite-state machines.

Many variations of this basic idea may be put to use according to cir-
constances. The simplest one is when aums are reduced to dictionaries,
i.e. to (minimalized) acyclic deterministic automata recognizing finite
languages. Then one may proceed to adding supplementary structure
to the aum algebra, namely non-determinism, loops, and transduction.
Such additional choice points require fitting some additional control to
the reactive engine. Further parameters are required for some functional-
ities. For instance, the local word access stack is handy as an argument to
the output routine in the case of transducers. Internal virtual addresses
demand the full local state access stack for their interpretation.

A characteristic example is provided, it gives a complete analyser for
compound substantives. It is an abstraction from a modular version of
the Sanskrit segmenter presented in [9]. This improved segmenter uses
a regular relation condition relating the phases of morphology genera-
tion, and enforcing the correct geometry of morphemes. Thus we obtain
compound nouns from iic*.(noun+iic.ifc), where iic and ifc are the re-
spectively prefix and suffix substantival forms for compound formation.

Dedicated to Joseph Goguen for his 65th birthday

1 Regular Morphology

We first consider the simplest framework for finite automata, where the state
transition graph is a dictionary structure (lexical tree or trie). Such structures
represent acyclic deterministic finite-state automata, with maximal sharing of
initial paths. Every state is accessible from the initial state, and we may also
assume that every state is on an accepting path. When we minimize the tree
as a dag, we obtain the corresponding minimal deterministic automaton. Such

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 355–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

356 Gérard Huet and Benôıt Razet

automata recognize finite languages. They are adequate for representing the
lexicons of natural languages.

In a framework of generative morphology, we want to model the construction
of lexemes from smaller chunks called morphemes: radical stems, prefixes and
suffixes. It is convenient to sort the morphemes into categories, and to enforce
structural conditions on these categories, restricting the geometry of lexemes.
For instance, we may describe this geometry by a regular expression over the
alphabet of lexical categories. The language generated by the regular expression,
substituting each category by its corresponding morpheme lexicon, is recognized
by a modular reactive engine, which chains the morphemes dictionary lookup
with transitions corresponding to the regular expression recognizer. We shall use
for this setup variants of the compiling algorithm of Berry and Sethi [2].

1.1 Automaton Interface

We use as algorithmic description language Pidgin ML, a core applicative subset
of Objective Caml. Thus our algorithms may be read as rigorous higher-order
inductive definitions, while being directly executable, in the spirit of literate
programming.

We first recall the basic structures of the Zen toolkit [5].
We use as basic alphabet the natural numbers provided by the hardware

processor:

module Word : sig

type l e t t e r = in t
and word = l i s t l e t t e r ;
end ;

Thus the basic morphology operations will rely on list processing, and not on
string processing (and certainly not on encoding formats such as Unicode-UTF8,
which are meant for data exchange portability and should not be used for core
computation).

Here is the interface to our simplistic automata, reduced to deterministic
transitions over a lexicon tree. Each state is labeled with a boolean (indicating
whether or not it is an accepting state), and points to the list of its successor
states, labeled with a letter.

module Auto : sig

type auto = [State of (bool × dete r)]
and dete r = l i s t (Word . l e t t e r × auto) ;
end ;

We assume that at most one transition issued from a given state is labeled
with a given letter. The datatype auto is here isomorphic to lexical trees, or
dictionary, also called tries. We may also assume that dead alleys, i.e. states
which do not have an accepting node as a substructure, are ruled out. Thus the

The Reactive Engine for Modular Transducers 357

contraction of the tree as a dag, using for instance the corresponding instance of
the sharing functor [5], yields the minimal automaton that recognizes the finite
language stored in the dictionary.

1.2 Dispatching

We call phases the lexical categories, which constitute the alphabet of the reg-
ular expression defining the morphological geometry. We compile this regular
expression using the Berry-Sethi method, which linearizes the expression, and
computes the local automaton associated to this linearization [2, 3].

We recall that local automata (also called Glushkov automata) are finite
automata such that all transitions labeled with a given letter lead to the same
state, characteristic of this letter. States may thus be named with letters, here
phases. It is this locality condition which is a key to modularity.

A local automaton is described by an initial phase, a set of terminal phases,
here represented as a boolean function over phases, and a dispatch transition
function, mapping each phase to a set of following phases, sequentialized here
as a list. In the notations of [2], initial is called 1, dispatch is called follow, and
terminal is implicit from the use of an endmarker symbol. In the terminology of
Eilenberg [4], the set of non-empty words recognized by a local automaton is a
local set over phases.

In the Zen toolkit implementation, the Dispatch module is actually generated
by meta-programming, i.e. it compiled from the regular expression, as we shall
explain in section 4.

1.3 Scheduling

We are now ready to start the description of the reactive engine, as a functor
taking a module Dispatch as parameter, and using its dispatch function as a
local scheduler. Here is the corresponding specification of our React module. We
assume the utility programming functions fold right (list iterator), assoc, length,
mem, etc. from the List standard library.

module React
(Dispatch : sig

type phase = α ;
value transducer : phase → auto ;
value i n i t i a l : phase ;
value te rmina l : phase → bool ;
value dispatch : phase → l i s t phase ;
end) = struct

type input = Word . word
and backtrack = [Advance of phase and input]
and resumption = l i s t backtrack ;

A resumption value stores as a datum what is necessary to resume our reac-
tive engine as a coroutine.

358 Gérard Huet and Benôıt Razet

The scheduler gets its phase transitions from dispatch. It respects the order
of dispatching.

value schedule phase input cont =
l e t add phase cont = [Advance phase input : : cont] in
f o l d r i g h t add (d i spatch phase) cont ;

1.4 React

The reactive engine originates from the Sanskrit segmenter described in [9],
generalized to the framework of mixed automata defined in [8].

Here we have a much simpler framework, since we do not have transducer
output, but we get a modular interpreter, driven by the phase scheduler.

In the following definition, phase is the current phase, input is the input
tape represented as a word, back is the backtrack stack of type resumption,
and state is the current state of type auto. We favor deterministic transitions
within a phase to non-deterministic transitions to the next phase(s). Within a
phase, we favor longer words over shorter ones. Phase transitions are effected
in dispatch order. We have a mutual inductive definition between the reactive
engine, reading forward, and the continuation manager, backtracking on failure.

exception Fin i shed ;

value rec r ea c t phase input back s t a t e = match s t a t e with
[Sta te (b , det) →
l e t dete r cont = match input with

[[] → cont inue cont
| [l e t t e r : : r e s t] →

try let s ta te ’ = as soc l e t t e r det in
r ea c t phase r e s t cont s ta te ’

with [Not found → cont inue cont]
] in

i f b (∗ accep t ing ∗) then
i f input = [] (∗ end o f input ∗) then

i f te rmina l phase then back (∗ s o l u t i o n found ∗)
else cont inue back

else let cont = schedule phase input back in
dete r cont

else dete r back
]

and cont inue = fun
[[] → raise Fin i shed
| [resume : : back] → match resume with

[Advance phase input →
r ea c t phase input back (transducer phase)

]
] ;

The Reactive Engine for Modular Transducers 359

1.5 Usage

The initialization of the reactive engine consists in setting the backtrack stack
to the single initial state given by Dispatch.initial, input being initialized to the
full sentence:

value i n i t r e a c t sentence = [Advance i n i t i a l s entence] ;

We may now recognize a string as belonging to the rational language de-
scribed by the regular expression by calling the reactive continuation manager
with this initial resumption:

value r ea c t1 sentence = cont inue (i n i t r e a c t sentence) ;

If the sentence belongs to the language, react1 will return with a resumption
value, otherwise it will throw the exception Finished. The resumption value is
not of use in this simple model, where the interpreter is used as a mere recognizer.
In more elaborate versions below, react may be used as a coroutine in order to
compute a stream of transductions.

Note that classical formal languages theory abstracts a language as a set
of words, or occasionally as a multiset (hiding structural idempotence) when
multiplicities matter. Here we hide structural commutativity as well, obtaining
streams of solutions, where computational details such as fairness, essential for
completeness, may be revealed and discussed.

1.6 Correctness, Completeness

Let us be given a module Dispatch by its components phase (an ordered list
of discrete phase values defining the alphabet), initial (the initial phase), and
functions transducer : phase → auto, terminal : phase → bool and dispatch :
phase → list phase.

Let L(φ) be the language recognized by the automaton transducer(φ), for
a given phase φ. We assume that L(initial) is the singleton {ε} where ε is the
empty word [], that L(φ) does not contain ε for any other phase φ, and that for
every phase φ the list dispatch(φ) does not contain initial. These invariants will
be enforced by the Berry-Sethi compiler presented in section 4.

Let us say that a sequence ((φ1, w1), ... (φn, wn)) is a valid analysis of a given
word w whenever, taking φ0 = initial, we get w = w1 · w2 · ... wn with (0 <
i ≤ n) wi ∈ L(φi), (0 ≤ i < n) φi+1 ∈ dispatch(φi), and terminal(φn) = True.
For i > 0, we know from the assumptions above that L(φi) does not contain the
empty word, so there is a finite number of such analyses.

We define a total ordering on analyses by the lexicographical ordering gen-
erated by (φ,w) < (φ′, w′) iff either φ precedes φ′ in the common dispatch list
where φ and φ′ belong, or else φ = φ′ and w′ is a strict initial prefix of w.

The correction and completeness of the react algorithm may be established by
proving that it generates the set of valid analyses of an input word w in the sense
that it implicitly builds a sequence of pairs of analyses of w and resumptions
((α1, r1), ...(αN , rN)) such that, taking r0 = init react w, for each i (0 ≤ i < N)

360 Gérard Huet and Benôıt Razet

the evaluation of continue ri terminates with value ri+1, and the evaluation
of continue rN raises the exception Finished. Furthermore the list (α1, ...αN)
contains all the valid analyses of w, listed increasingly with respect to the above
ordering.

We shall not give a formal proof of this rather fastidious property, which can
be established by computational induction.

We remark that this argument makes explicit the fact that, within a given
phase, we search for longer partial solutions before shorter ones. This is a rather
arbitrary heuristic, which is convenient for the segmenting application.

2 Modular Aums

So far our automata have been mere recognizers for finite sets of words, i.e.
dictionaries. Chaining them through phases, we may for instance model simple
segmentation problems, where a sentence is defined as a list of words separated
by blanks or punctuation signs, and words are defined as compounds of mor-
phemes, according to prefix, suffix, or other finite-state regimes. Such a segmenter
may be composed with a tagger, when the word dictionaries are decorated with
morphological derivation annotations, using the structure of revmaps [5], which
allows efficient sharing of morphological regularities.

We now allow more complex automata for the various phases. For instance,
we may allow a notion of transition with virtual addresses, allowing both non-
deterministic moves (including ε-transitions), and cycles.

Virtual addresses, as opposed to pointers and explicit cyclic structures, pro-
vide a declarative mechanism respecting sharing. In the original presentation of
aums [8], two varieties of virtual addresses are proposed: absolute addresses, in-
dexing a state by its absolute access path in the forest of deterministic skeletons,
and relative addresses, indexing a state in the current covering trie by the short-
hest path in the tree, encoded as a differential word pairing a natural number
(how many levels in the tree you should go up) with a word (indexing the target
state down from the closest common ancestor). These differential words are used
for instance in the revmap structure, to store the reverse morphology.

In the next section, we shall ignore relative addresses, which necessitate a
slightly more complex apparatus for their proper evaluation, since sharing makes
ambiguous the inheritance relation, and thus access paths must be maintained in
the automaton structure for proper interpretation. We shall present first simple
absolute addresses. Furthermore, the role of the forest index will be played by
the phase: to each phase corresponds a unique auto structure, covering all the
states pertaining to this phase.

2.1 Mixed Automata with Virtual Absolute Addresses

A transition (w, v) recognizes word w on the input tape (the “guard” of the
transition), and jumps to the state absolutely adressed by v in the next phase.

The Reactive Engine for Modular Transducers 361

module Auto : sig

type t r a n s i t i o n = (Word . word × Word . word)
and cho i c e s = l i s t t r a n s i t i o n ;

type auto = [State of (de t e r × cho i c e s)]
and dete r = l i s t (Word . l e t t e r × auto) ;
end ;

We take as convention that the state State(d, c) is accepting iff c is not empty.
We now define acceptance as the condition on external transitions (w, v) when
the input is empty, the (next) phase is terminal, and the access parameter v
verifies a final condition which we shall not precise further. Typically, v is final
if it is empty or if it consists in a special end of sentence marker.

2.2 Service Routine

Our resumptions are now more complex, since we have non-deterministic choice
points:

type backtrack =
[Choose of phase and input and auto and cho i c e s
| Advance of phase and input and word
]

and resumption = l i s t backtrack ;

exception Fin i shed ;

Here are two service routines to manage guard management.

exception Guard ;
value rec advance n w = i f n = 0 then w else match w with

[[] → raise Guard
| [: : t l] → advance (n−1) t l
] ;

Thus advance n [a1; ... aN] = [ap; ... aN], where p = N − n, whenever
n ≤ N ; otherwise the exception Guard is raised.

(∗ [acce s s : phase → word → auto] ∗)
value a c c e s s phase = acc (transducer phase)

where rec acc s t a t e = fun
[[] → s t a t e
| [c : : r e s t] → match s t a t e with

[Sta te (deter ,) →
acc (L i s t . a s so c c de te r) r e s t

]
] ;

362 Gérard Huet and Benôıt Razet

2.3 React for Aums

We use a similar schedule function as previously, it now stores the v access path
for the next phase transition.

value schedule phase input v cont =
l e t add phase cont = [Advance phase input v : : cont]
in f o l d r i g h t add (d i spatch phase) cont ;

We are now ready to present the reactive engine. It consists in three si-
multaneous inductions, the main one react managing the deterministic search,
while stacking non-deterministic choice points, the second choose managing non-
deterministic jumps, and the third continue backtracking in case of dead end.
We favor deterministic transitions over non-deterministic ones.

(∗ phase i s the par s ing phase ,
input i s the input tape repre sen t ed as a word ,
back i s the back t rack s t ack o f type resumption ,
s t a t e i s the current s t a t e o f type auto ∗)

value rec r ea c t phase input back s t a t e =
match s t a t e with
[Sta te (det , c ho i c e s) →

(∗ we ex p l o r e the d e t e rm in i s t i c space f i r s t ∗)
l e t cont = i f cho i c e s = [] then back else

[Choose phase input s t a t e cho i c e s : : back]
in match input with

[[] → cont inue cont
| [l e t t e r : : r e s t] →

try let nex t s t a t e = as so c l e t t e r det in
r ea c t phase r e s t cont n ex t s t a t e

with [Not found → cont inue cont]
]

]
and choose phase input back s t a t e = fun

[[] → cont inue back
| [(w, v) : : o the r s] →

l e t cont = i f o the r s = [] then back else
[Choose phase input s t a t e o the r s : : back]

in try let tape = advance (l ength w) input in
i f tape = [] (∗ inpu t f i n i s h e d ∗) then

i f te rmina l phase && f i n a l v then cont
else cont inue cont

else cont inue (schedule phase tape v cont)
with [Guard → cont inue cont]

]
and cont inue = fun

[[] → raise Fin i shed
| [resume : : back] → match resume with

The Reactive Engine for Modular Transducers 363

[Choose phase input s t a t e cho i c e s →
choose phase input back s t a t e cho i c e s

| Advance phase input word →
try let nex t s t a t e = ac c e s s phase word

in r ea c t phase input back nex t s t a t e
with [Not found → cont inue back]

]
] ;

Finally, here is the initialisation routine, building the initial resumption:

value i n i t r e a c t input = [Advance i n i t i a l input []] ;

As previously, we may recognize a sentence using:

value r ea c t1 sentence = cont inue (i n i t r e a c t sentence) ;

2.4 Correctness, Completeness

Similarly to the previous section, we may prove the correctness and completeness
of the construction, provided the guard w of each non-deterministic transition
is non-empty. We may refine this condition as follows.

Definition: Guard condition. There is no cycle of transitions of an aum all
of which have an empty guard: (ε, w1); (ε, w2); ...(ε, wn). By cycle we mean that,
for some access word w0 in the current phase φ0 leading in transducer(φ0) to
state σ0, σ0 has among its choices (ε, w1), φ1 in dispatch(φ0) with w1 leading in
transducer(φ1) to state σ1, etc, until σn = σ0.

We claim that react terminates on an input word whenever the guard con-
dition is verified. Note that this is a global condition on the family of aums,
which requires the knowledge of the phase transition relation, but which may be
checked in time linear in the cumulated size of the aum family.

3 Modular Aum Transducers

We now give the final refinement of our construction, with aums having both
local and global virtual addresses.

3.1 Transducers

module Auto : sig

type cont inua t i on = (Word . word × Word . word)
and t r a n s i t i o n =

[Externa l of (Word . word × cont inua t i on)
| I n t e r na l of (Word . word × Word . d e l t a)
] ;

364 Gérard Huet and Benôıt Razet

type auto = [State of (de t e r × cho i c e s)]
and dete r = l i s t (Word . l e t t e r × auto)
and cho i c e s = l i s t t r a n s i t i o n ;
end ;

An internal transition Internal(w, d) recognizes w on the input tape and
jumps to the state relatively addressed by d within the same phase. This uses
the notion of differential word [5] from module Word:

type de l t a = (i n t × word) ; (∗ d i f f e r e n t i a l words ∗)

A differential word is a notation permitting to retrieve a word w from another
word w′ sharing a common prefix. It denotes the minimal path connecting the
words in a trie, as a sequence of ups and downs: if δ = (n, u) we go up n times
and then down along word u. In order to interpret the n part, we need to keep the
stack of states leading locally to the current state. We keep along this stack the
corresponding word path as well — this is useful as a parameter to the output
computation.

An external transition External(w, c) recognizes w on the input tape and
executes the continuation c in a following phase. A continuation (u, v) returns
words u as output parameter and v as access parameter in the next phase trans-
ducer.

As above we define acceptance as the condition on external transition when
the input is empty, the phase is terminal, and the access parameter v verifies a
final condition which we shall not precise further.

3.2 Modular Transducers

We now produce output, as words labeled by their phase.

type input = Word . word
and output = l i s t (phase × Word. word) ;

The access stack has a letter component and a state component. The state
component is necessary to interpret the part of the internal virtual address which
concerns going up, whereas the letter component, i.e. the absolute name of the
state in the current phase is useful for computing the transducer output.

type s tack = l i s t (Word . l e t t e r × auto) ;

type backtrack =
[Choose of phase and input and output

and auto and s tack and cho i c e s
| Advance of phase and input and output and Word . word
]

and resumption = l i s t backtrack ;

Since the Advance resumption has now an output component and an access
component (anticipating a prefix of the next phase component), we parameterize
the scheduler accordingly:

The Reactive Engine for Modular Transducers 365

value schedule phase input output a c c e s s cont =
l e t add phase cont =

[Advance phase input output a c c e s s : : cont]
in f o l d r i g h t add (d i spatch phase) cont ;

The service routine access manages the access stack, the functions pop and
push are used to interpret internal jumps.

(∗ acces s : phase → word → (auto × s t ack) ∗)
value a c c e s s phase = acc (transducer phase) []

where rec acc s t a t e s tack = fun
[[] → (s ta te , s tack)
| [c : : r e s t] → match s t a t e with

[Sta te (deter ,) →
acc (a s so c c de te r) [(c , s t a t e) : : s tack] r e s t

]
] ;

value rec pop n s t a t e s tack =
i f n=0 then (s ta te , s tack)
else match s tack with

[[] → raise (Fa i lu r e ”Wrong In t e r na l jump”)
| [(, s t) : : r e s t] → pop (n−1) s t r e s t
]

and push w s ta t e s tack = match w with
[[] → (s ta te , s tack)
| [c : : r e s t] → match s t a t e with

[Sta te (deter ,) →
push r e s t (a s so c c de te r) [(c , s t a t e) : : s tack]

]
] ;

value jump (n ,w) s t a t e s tack =
l e t (s ta te0 , s tack0) = pop n s t a t e s tack
in push w s ta t e 0 s tack0 ;

We provide the access stack as an output parameter via an extracting routine:

value e x t r a c t s tack (, (u ,)) =
f o l d l e f t unstack u stack

where unstack acc (c ,) = [c : : acc] ;

3.3 Modular Reacting Transducers

We have a similar structure of three mutually recursive functions, but now choose
has two cases, for the two transition constructors.

366 Gérard Huet and Benôıt Razet

value rec r ea c t phase input output back stack s t a t e =
match s t a t e with
[Sta te (det , c ho i c e s) →

l e t cont = i f cho i c e s = [] then back else
[Choose phase input output s t a t e s tack cho i c e s : : back]

in match input with
[[] → cont inue cont
| [l e t t e r : : r e s t] →

try let s ta te ’ = as soc l e t t e r det
and stack ’ = [(l e t t e r , s t a t e) : : s tack] in
r ea c t phase r e s t output cont stack ’ s ta te ’

with [Not found → cont inue cont]
]

]
and choose phase input output back s t a t e s tack = fun

[[] → cont inue back
| [Externa l ((w, (u , v)) as r u l e) : : o the r s] →

l e t cont = i f o the r s = [] then back else
[Choose phase input output s t a t e s tack o the r s : : back]

in try let tape = advance (l ength w) input
and out = [(phase , e x t r a c t s tack ru l e) : : output]
in i f tape = [] (∗ inpu t f i n i s h e d ∗) then

i f termina l phase && f i n a l v then (out , cont)
else cont inue cont

else cont inue (schedule phase tape out v cont)
with [Guard → cont inue cont]

| [I n t e r na l (w, d e l t a) : : o the r s] →
l e t cont = i f o the r s = [] then back else
[Choose phase input output s t a t e s tack o the r s : : back]

in try let tape = advance (l ength w) input
and (s ta te ’ , stack ’) = jump de l t a s t a t e s tack
in r ea c t phase tape output cont stack ’ s ta te ’

with [Guard → cont inue cont]
]

and cont inue = fun
[[] → raise Fin i shed
| [resume : : back] → match resume with

[Choose phase input output s t a t e s tack cho i c e s →
choose phase input output back s t a t e s tack cho i c e s

| Advance phase input output word →
try let (s ta te ’ , stack ’) = ac c e s s phase word

in r ea c t phase input output back stack ’ s ta te ’
with [Not found → cont inue back]

]
] ;

The Reactive Engine for Modular Transducers 367

3.4 Correctness, Completeness

The definitions of trace and analysis may be extended to the case of transducers,
and the correctness and completeness of our engine may be formally proved in
the sense that all transductions of the input word are properly generated, for a
notion of left-to-right transduction. We omit here the full formal development.

In the case of non overlapping junction transductions, as defined in [9], the
construction simplifies, since Internal transitions are not needed. The proofs of
termination, correctness and completeness of the reactive engine are carried out
in full in [9], for the simple case of one phase junction relations verifying a non-
overlapping criterion. This criterion allows parallel computation of the relation
along phases, without the need to cascade the transductions. Furthermore, such
relations are invertible, and the reactive engine may thus be used to invert eu-
phony and return segmentation solutions, even when the euphony relation is not
length-preserving.

Other variations may be considered, since the presence or absence of output
transitions is orthogonal to the structure of virtual addresses. We have considered
virtual addresses of two kinds, internal and external. We may also imagine other
encodings of jumps, potentially relevant for specific applications. For instance,
specific encodings, relying on the fact that the underlying alphabet is boolean,
may be used to represent boolean circuits, in the manner of BDD structures.

The general problem of compiling an arbitrary finite-state machine descrip-
tion into some variety of our aum structures is not addressed in the current pa-
per. This problem has many degrees of freedom, since there is a choice between
mapping state transitions into the deterministic skeleton, on one hand, and the
non-deterministic choices sequences, on the other; in the latter case, there is a
further choice between External and Internal jumps. Finally, the partition into
phases may be more or less coarse, and extra encoding letters, disjoint from the
input alphabet, may be used to attach orphan states. We should not expect one
uniform best solution to this problem anyway, and compiling strategies may well
depend on the application domain.
Remark.
In [9], section 8.1, the recursive call from choose calls react with occ parameter
v, instead of rev v as effected above for next stack. This is a local optimisation
for the case of sandhi, where the junction rules are such that the length of
component v is at most 1.

4 Dispatch Synthesis from Regular Expressions

We now explain how to synthesize the dispatch function from a regular expression
representation of the phase language, using the Berry-Sethi algorithm [2]. The
basic idea is that we compose a number of finite automata/transducers, each
named with a phase. Phases are the letters of an alphabet, and we define the
admissible joint behaviour of our automata as a rational language over the phase
alphabet, specified by a regular expression.

368 Gérard Huet and Benôıt Razet

4.1 Regular Expressions and Their Linearization

Here is the type of regular expressions. The type parameter α is used to abstract
from the symbol representation.

type regexp α =
[One
| Symb of α
| Union of regexp α and regexp α
| Conc of regexp α and regexp α
| Star of regexp α
| Eps i lon of regexp α
| Plus of regexp α
] ;

We use a specific constructor Plus rather than defining R+ as the macro
R · R∗, because of the blow-up due to its non-linearity.

We mark symbols with an integer to linearize the regular expression.

type marked α = (α × i n t) ;

A symbol s is mapped to (s, 0) if it occurs only one, and to (s, 1), (s, 2),
etc. otherwise. Marked symbols are used as states of the recognizing automaton.
The type local represents local automata, in the sense of Eilenberg, as a 4-tuple
defining its initial state, the other states, the transitions, and the terminal states:

type l o c a l α =
(marked α × l i s t (marked α)
× l i s t (marked α × l i s t (marked α))
× l i s t (marked α)
) ;

We skip the details of the linearization function mark, which is straightfor-
ward. The function mark takes as argument a regexp α, and returns a pair of type
regexp(marked α) × list(marked α), consisting of the marked expression, and
the list of marked symbols which will be used as states of the local automaton.

4.2 The Berry-Sethi Compiler

We basically follow the construction given in [2], with the addition of the Plus
operation. We need an intermediate structure of discriminating regular expres-
sions, which makes explicit whether the associated rational language contains
the empty word ε or not.

type d regexp α =
[DOne
| DSymb of α
| DUnion of bool and d regexp α and d regexp α
| DConc of bool and d regexp α and d regexp α
| DStar of d regexp α

The Reactive Engine for Modular Transducers 369

| DEpsilon of d regexp α
| DPlus of bool and d regexp α
] ;

We can tell in unit time this property with function delta, and translate in
linear time a regexp in a discriminating regexp with function discr.

value de l t a = fun
[DOne → True
| DSymb → False
| DUnion b | DConc b → b
| DStar | DEpsilon → True
| DPlus b → b
] ;

(∗ d i s c r : regexp α → d regexp α ∗)
value rec d i s c r = fun

[One → DOne
| Symb s → DSymb s
| Union e1 e2 →

l e t de1 = d i s c r e1 and de2 = d i s c r e2 in
DUnion (d e l t a de1 | | de l t a de2) de1 de2

| Conc e1 e2 →
l e t de1 = d i s c r e1 and de2 = d i s c r e2 in
DConc (d e l t a de1 && de l t a de2) de1 de2

| Star e → DStar (d i s c r e)
| Eps i lon e → DEpsilon (d i s c r e)
| Plus e →

l e t de = d i s c r e in
DPlus (d e l t a de) de

] ;

The core of the algorithm is the computation of sets first, follow and last.

(∗ f i r s t : l i s t α→ d regexp α→ l i s t α ∗)
value rec f i r s t l = fun

[DOne → l
| DSymb d → [d : : l]
| DUnion e1 e2 → f i r s t (f i r s t l e2) e1
| DConc e1 e2 →

i f de l t a e1 then f i r s t (f i r s t l e2) e1
else f i r s t l e1

| DStar e | DEpsilon e | DPlus e → f i r s t l e
] ;

(∗ f o l l ow : α → regexp α → l i s t (α × l i s t α) ∗)
value f o l l ow i n i t i a l exp =

l e t rec f 1 exp l f o l =

370 Gérard Huet and Benôıt Razet

match exp with
[DOne → f o l
| DSymb d → [(d , l) : : f o l]
| DUnion e1 e2 →

l e t f o l 2 = f1 e2 l f o l in f 1 e1 l f o l 2
| DConc e1 e2 →

l e t f o l 2 = f1 e2 l f o l in
le t l 1 = i f de l t a e2 then f i r s t l e2

else f i r s t [] e2 in
f 1 e1 l 1 f o l 2

| DStar e | DPlus e →
l e t l r e s = f i r s t l e in
f 2 e l r e s f o l

| DEpsilon e → f 1 e l f o l
]

and f 2 exp l f o l = (∗ (f i r s t [] exp) a l r eady in l ∗)
match exp with
[DOne → f o l
| DSymb d → [(d , l) : : f o l]
| DUnion e1 e2 →

l e t f o l 2 = f2 e2 l f o l in f 2 e1 l f o l 2
| DConc e1 e2 →

l e t b1 = de l t a e1
and b2 = de l t a e2 in
i f b1 (∗ l 1 and l 2 in l ∗)
then i f b2

then f 2 e1 l (f 2 e2 l f o l)
else f 1 e1 (f i r s t [] e2) (f 2 e2 l f o l)

else i f b2
then f 2 e1 (f i r s t l e2) (f 1 e2 l f o l)
else f 1 e1 (f i r s t [] e2) (f 1 e2 l f o l)

| DStar e | DEpsilon e | DPlus e → f 2 e l f o l
] in

le t f o l s e t s = f1 exp [] []
and i n i t i a l s = f i r s t [] exp in
[(i n i t i a l , i n i t i a l s) : : f o l s e t s] ;

Functions f1 and f2 both compute the follow sets of Berry-Sethi but with
different assertions on their arguments; precisely, a call (f1 exp l fol) is such
that first elements of exp are not in l, and the contrary assertion obtains for f2.
Thus we never attempt to add elements already present in l, which maintains a
constant cost of adding an element in l.

(∗ l a s t : α → regexp α → l i s t α ∗)
value l a s t i n i t i a l e =

l e t rec l a s t r e c l = fun

The Reactive Engine for Modular Transducers 371

[DOne → l
| DSymb d → [d : : l]
| DUnion e1 e2 →

l a s t r e c (l a s t r e c l e2) e1
| DConc e1 e2 →

i f de l t a e2 then l a s t r e c (l a s t r e c l e2) e1
else l a s t r e c l e2

| DStar e | DEpsilon e | DPlus e → l a s t r e c l e
] in

le t l = l a s t r e c [] e in
i f de l t a e then [i n i t i a l : : l] else l ;

Now we have all the ingredients to compile a regular expression:

(∗ compile : marked α → regexp α → l o c a l α ∗)
value compi le i n i t i a l exp =

l e t (exp m , s t a t e s) = mark exp in
le t exp d = d i s c r exp m in
le t f o l = f o l l ow i n i t i a l exp d
and l a s t s = l a s t i n i t i a l exp d in
(i n i t i a l , s ta t e s , f o l , l a s t s) ;

4.3 Parametric Regular Expressions

We now define systems of regular expressions over parametric alphabets whose
symbols are associated to aums. Meta-variables allow sharing in such descrip-
tions. We skip the details of the syntax, and present just an example of such a fi-
nite machine description, actually a subproblem of Sanskrit morphology, namely
noun phrases representing compound substantives.

initial init epsilon_aum

alphabet noun ; iic ; ifc end

automaton Disp
node SUBST = iic* . (noun | iic.ifc)

end

Here we specify that the initial phase is called init, that the user must
provide a value epsilon_aum for the aum recognizing just the empty word,
as well as aum values noun, iic and ifc for recognizing the corresponding
languages. We are interested in the language iic* . (noun | iic.ifc). In the
intended application, SUBST is the language of substantive forms, containing
noun forms as well as compounds, formed with prefix iic forms which may be
iterated, and suffix ifc forms.

We skip the details of the parsing of such a description. In the current syn-
tax, we allow systems of regular expressions, allowing sharing, and the compiler
unfolds the system into a flattened expression.

372 Gérard Huet and Benôıt Razet

We use the meta-programming facilities provided by the Camlp4 preproces-
sor, which allows macro-generation of an Ocaml program at the level of abstract
syntax. Skipping the details of this meta-programming, we obtain mechanically,
for the above example, the following module text.

module Automata (Auto : sig type auto = ’ a ; end) =
struct

type auto vec t =
{ epsi lon aum : Auto . auto ;

noun : Auto . auto ; i i c : Auto . auto ; i f c : Auto . auto } ;
module Disp (Fsm : sig value autos : auto vec t ; end) =

struct
type phase =

[I n i t | I i c 1 | Noun | I i c 2 | I f c] ;
value t ransducer = fun

[I n i t → Fsm . autos . eps i lon aum
| I i c 1 → Fsm . autos . i i c
| Noun → Fsm . autos . noun
| I i c 2 → Fsm . autos . i i c
| I f c → Fsm . autos . i f c
] ;

value dispatch =
fun
[I n i t → [I i c 1 ; Noun ; I i c 2]
| I i c 1 → [I i c 1 ; Noun ; I i c 2]
| Noun → []
| I i c 2 → [I f c]
| I f c → []
] ;

value i n i t i a l = I n i t ;
value termina l phase = L i s t .mem phase [Noun ; I f c] ;

end ;
end ;

We now have all the components we wish to assemble, since the module
instanciation (Automata Auto), for Auto one of the aum description modules
given in the previous sections, creates a module Dispatch=(Disp Fsm) having
the right functionality, with module Fsm holding the aum implementations. In
this simple example these implementations are the various lexicons correspond-
ing to the respective lexical categories. In the Sanskrit platform, these aums are
decorated with non-deterministic transitions (using external addressing) corre-
sponding to sandhi prediction.

Remarks. 1. During the Berry-Sethi compiling process, the candidate regular
expression is linearized when a phase occurs more than once. However, the cor-
responding automata are shared via the transducer component, recovering the
proper sharing.

The Reactive Engine for Modular Transducers 373

2. Our Sanskrit platform1 now uses this modular methodology, which enforces
the right geometry for morphological chunks, taking care of preverb affixes,
proper recognition of compound forms and periphrastic verbal constructions,
and proper analysis of absolutive forms (with suffixes in -tvā for roots and -ya
for verbs admitting preverbs).
3. As usual, we may augment our automata descriptions with weights reflecting
(possibly conditional) probabilities in order to get stochastic automata whose
behaviour reflects hidden Markov chains in the data. Note that the correctness
criteria are invariant with the permutation of choices induced by priority selec-
tion according to these weights.

4.4 A Variant Using Antimirov’s Compiling Algorithm

V. Antimirov proposed in [1] another algorithm for compiling regular expres-
sions, using a notion of partial derivative. This algorithm produces automata
that may be significantly smaller than the ones obtained by the Berry-Sethi
algorithm. Such automata do not have the locality condition, and now the mod-
ularity of the construction obtains by a more complex mapping, since the trans-
ducer invocation does not simply depend on the states, but on the transitions.
We shall not develop further this variant construction in this paper.

5 Conclusion

We have presented a methodology for constructing finite-state machines, such
as finite automata and transducers, in a modular way. Regular expressions over
an alphabet of phases express a composition of machines under a finite-state-
controlled constraint. This corresponds to considering a regular expression not
as the mere denotation of a rational language over the alphabet of its symbols
seen as string generators, but rather as a rational polynomial over its symbols,
abstracting themselves rational sets. The algebraic property of closure of ra-
tional sets over substitution (mapping symbols to rational sets), together with
the local automaton representation of finite-state machines, provide the natural
foundation for the modular composition of finite-state machines.

Our mechanism allows the controlled interaction of machines compiled as
mixed automata (aums). This is useful for instance for shallow parsing in com-
putational linguistics applications. For the Sanskrit platform built by the first
author, this allows to build a tagger composing machines which invert phonol-
ogy (sandhi analysis) and morphology, with separate machines for distinct lex-
ical classes, constrained by the geometrical conditions defining admissible com-
pounds, preverb management, and periphrastic constructions with auxiliary verbs.

Our design exploits and justifies our functional programming methodology
as follows:

1 http://sanskrit.inria.fr/

374 Gérard Huet and Benôıt Razet

– Applicative programming leads to robust well-structured programs, ame-
nable to formal proofs and to journal publication, in the spirit of literate
programming — all our programs are rigorously expressed as inductive def-
initions over higher-order types.

– Functionality is essential to the concise expression of powerful control para-
digms such as continuations, essential for the definition of coroutine inter-
preters for non-deterministic search.

– Modularity of the programming language is the essence of the parametricity
underlying algebraic closure operations, and thus is an essential abstraction
paradigm.

– Powerful macro-generation mechanisms lead to an effective meta-program-
ming methodology, tailoring general algorithms to the specific needs of ap-
plications.

– Despite this very high-level view of software architecture, the resulting pro-
grams are efficient enough for their integration in real size applications, as
witnessed by their use in computational linguistic platforms [9].

References

1. V. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theoretical Computer Science, 155:291–319, 1996.

2. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48:117–126, 1986.

3. J. Berstel and J.-E. Pin. Local languages and the Berry-Sethi algorithm. Theoret-
ical Computer Science, 155:439–446, 1996.

4. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
1974.

5. G. Huet. The Zen computational linguistics toolkit. Technical report, ESSLLI
Course Notes, 2002. !http://pauillac.inria.fr/ huet/ZEN/esslli.pdf!

6. G. Huet. The Zen computational linguistics toolkit: Lexicon structures and mor-
phology computations using a modular functional programming language. In Tu-
torial, Language Engineering Conference LEC’2002, 2002.

7. G. Huet. Linear contexts and the sharing functor: Techniques for symbolic compu-
tation. In F. Kamareddine, editor, Thirty Five Years of Automating Mathematics.
Kluwer, 2003. !http://pauillac.inria.fr/ huet/PUBLIC/DB.pdf!

8. G. Huet. Automata mista. In N. Dershowitz, editor, Verification: The-
ory and Practice: Essays Dedicated to Zohar Manna on the Occasion of
His 64th Birthday, pages 359–372. Springer-Verlag LNCS vol. 2772, 2004.
!http://pauillac.inria.fr/ huet/PUBLIC/zohar.pdf!

9. G. Huet. A functional toolkit for morphological and phonological processing, ap-
plication to a Sanskrit tagger. J. Functional Programming, 15,4:573–614, 2005.
+http://pauillac.inria.fr/ huet/PUBLIC/tagger.pdf+.

10. E. Roche and Y. Schabes. Finite-State Language Processing. MIT Press, 1997.
11. R. Sproat. Morphology and Computation. MIT Press, 1992.

A Bialgebraic Review of Deterministic Automata,
Regular Expressions and Languages

Bart Jacobs

Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

B.Jacobs@cs.ru.nl http://www.cs.ru.nl/B.Jacobs

To Joseph Goguen on the occasion of his 65th birthday

Abstract. This papers reviews the classical theory of deterministic automata and
regular languages from a categorical perspective. The basis is formed by Rutten’s
description of the Brzozowski automaton structure in a coalgebraic framework.
We enlarge the framework to a so-called bialgebraic one, by including algebras
together with suitable distributive laws connecting the algebraic and coalgebraic
structure of regular expressions and languages. This culminates in a reformulated
proof via finality of Kozen’s completeness result. It yields a complete axioma-
tisation of observational equivalence (bisimilarity) on regular expressions. We
suggest that this situation is paradigmatic for (theoretical) computer science as
the study of “generated behaviour”.

1 Introduction

In the early seventies Joseph Goguen described automata within a categorical perspec-
tive (see for instance [11,12,13]), together with colleagues Arbib and Manes [1]. This
paper fits in that tradition, using a more modern, bialgebraic setting, where algebra
meets coalgebra. A bialgebra is a combined algebra and coalgebra F (X) → X →
G(X) on a common carrier (or state space) X , satisfying a certain compatibility re-
quirement wrt. a distributive law connecting the two functors F,G. These bialgebras
found application within the abstract, combined description of operational and denota-
tional semantics started explicitly by Turi and Plotkin [35,34]—and more implicitly by
Rutten and Turi [32]. This is now an active line of work [26,20,5,18].

Goguen has always shown an interest in methodological and philosophical issues
surrounding computing. The work in this paper also lends itself to such reflections. It is
often claimed that data processing is the subject of the discipline of computer science.
We think it is more to the point to describe the subject of computer science as generated
behaviour. This is the behaviour that can be observed on the outside, for instance via a
screen or printer. It arises in interaction with the environment, as a result of the computer
executing instructions.

This behaviouristic approach allows us to understand the relation with natural sci-
ences: biology is about “spontaneous” behaviour, and physics concentrates on lifeless
natural phenomena, without autonomous behaviour. The generated behaviour that we
claim to be the subject of computer science arises by a computer executing a program

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 375–404, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

376 Bart Jacobs

according to strict operational rules. The behaviour is typically observed via the com-
puter’s I/O. Abstractly, the program can be understood as an element in an inductively
defined set P of terms. This set thus forms a suitable initial algebra F (P) → P , where
the functor F captures the signature of the operations for forming programs. The oper-
ational rules for the behaviour of programs are described by a coalgebra P → G(P),
where the functor G captures the kind of behaviour that can be displayed—such as
deterministic, or with exceptions. We see that in abstract form, generated computer be-
haviour amounts to the repeated evaluation of an (inductively defined) coalgebra struc-
ture on an algebra of terms. Hence the bialgebras that form the basic structures used in
this paper are at the heart of computer science.

One of the big challenges of computer science is to develop techniques for effec-
tively establishing properties of generated behaviour. Often such properties are for-
mulated positively as wanted, functional behaviour. But these properties may also be
negative, like in computer security, where unwanted behaviour must be excluded. How-
ever, an appropriate logical view about program properties within the combined alge-
braic/coalgebraic setting has not been fully elaborated yet.

A distributive law is a natural transformation FG ⇒ GF that describes (in the
current setting) the proper interaction of term-formation and computational behaviour.
The basic observation of [35,34], further elaborated [5], is that such natural transforma-
tions correspond to specification formats for operational rules on (inductively defined)
programs. A bialgebra is an algebra-coalgebra pair satisfying a compatibility require-
ment wrt. a given distributive law. These bialgebras, as already claimed, form very
fundamental structures in computing, because they combine algebraic structure with
the associated computational behaviour. The compatibility requirement entails elemen-
tary properties like: observational equivalence (i.e. bisimulation wrt. the coalgebra) is a
congruence (wrt. the algebra).

This paper concentrates on deterministic automata, regular expressions and lan-
guages. They form the very basic structures in computer science (see for instance [28])
which are studied early on in standard curricula in computing. The main contribution
of this paper is the demonstration that these classic structures fit perfectly in the bialge-
braic framework. In fact, they may be considered as a paradigmatic example. The paper
does not contain new results on regular expressions / automata / languages as such, but
on the way they can (or should) be organised. The proper mathematical language for
this organisation is categorical. The reader is assumed to be familiar with basic notions
like functor, natural transformation, (co)monad and adjunction, such as can be found in
any introductory text on category theory. Our investigations take place in the category
Sets of ordinary sets and functions. We are well aware that many results generalise to
other categories, but we do not always strive for the highest level of generality.

There is already a large body of algebraic work on regular expressions, automata
and languages, for instance within the context of regular algebras [9]. The coalge-
braic perspective on this topic was introduced by Rutten [30,33,31], who demonstrated
its fruitfulness especially for proving equalities via coinduction (using bisimulations).
Rutten’s work exploits the automaton structure on regular expressions introduced by
Brzozowski [8,9]. Here we go a step further by developing the bialgebraic (combined
algebraic-coalgebraic) perspective. This involves a number of new technical results:

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 377

– a general mechanism for obtaining distributive laws and bialgebras for determinis-
tic automata in Section 3;

– a description of the free algebra and Brzozowski coalgebra structure on regular
expressions as a bialgebra wrt. a (categorical) GSOS law in Subsection 4.3;

– a new proof of Kozen’s completeness result [23,24] for regular expressions and
languages in Section 5, by describing the coalgebra of regular expressions mod-
ulo equations as a final object. This shows that Kozen’s axioms and rules give a
complete axiomatisation of observational equivalence (bisimilarity) on regular ex-
pressions.

Throughout the paper we heavily rely on previous work, notably [35,31,24].
We expect that the bialgebraic picture that is emerging constitutes a paradigm which

also applies to many more computational models (as already suggested in [35]). After
all, regular expressions are extremely elementary, and capture only a very limited form
of computation. Hence the bialgebraic paradigm is still in need of further instantiation,
confirmation, and elaboration.

2 Deterministic Automata as Coalgebras

This section collects some standard facts about deterministic automata, described as
coalgebras, in order to determine the setting and fix the notation.

We use two arbitrary sets A and B, where the elements of A may be understood as
letters of an alphabet, and the elements of B as outputs. A deterministic automaton
with A as input and B as output set consists of two functions:

δ:X −→ XA for transition ε:X −→ B for output

acting on a state space X . The transition function δ maps a state x ∈ X and an input
letter a ∈ A to a successor state x′ = δ(x)(a) ∈ X . In that case one may write
x

a−→ x′. The output function ε gives for a state x ∈ X the associated observable
output ε(x) ∈ B.

The one-step transition function δ can be extended to a multiple-step transition func-
tion δ�. The latter takes a state x ∈ X and a sequence σ ∈ A� of inputs to a successor
state obtained by consecutively executing the steps in σ.

X
δ�

�� XA�

defined as

{
δ�(x)(〈〉) = x

δ�(x)(a · σ) = δ�(δ(x)(a))(σ)
(1)

This extended transition function δ� gives rise to the multiple-step transition notation:
x

σ−→∗ x′ stands for x′ = δ�(x)(σ), and means that x′ is the (non-immediate) succes-
sor state of x obtained by applying the inputs from the sequence σ ∈ A�, from left to
right.

The behaviour beh(x):A� → B of a state x ∈ X is then obtained as the function
that maps a finite sequence σ ∈ A� of inputs to the observable output

beh(x)(σ) = ε(δ�(x, σ)) ∈ B (2)

378 Bart Jacobs

The transition and output functions δ and ε of a deterministic automaton can be
combined into a tuple 〈δ, ε〉:X → XA × B forming a coalgebra of the functor D =
DA,B given by U (→ UA × B. A coalgebra homomorphism from

(
〈δ1, ε1〉:X1 →

XA
1 × B
)

to
(
〈δ2, ε2〉:X2 → XA

2 × B
)

consists of a function h:X1 → X2 between
the underlying state spaces satisfying:

D(f) ◦ 〈δ1, ε1〉 = 〈δ2, ε2〉 ◦ f,

That is, fA ◦ δ1 = δ2 ◦ f and ε1 = ε2 ◦ f . Or, more concretely, f(δ1(x)(a)) =
δ2(f(x))(a) and ε1(x) = ε2(f(x)), for all x ∈ X and a ∈ A.

This describes morphisms in a category CoAlg(D). The following result, occur-
ring for example in [2,29,16], is simple but often useful. It gives an explicit description
of the final object in the category CoAlg(D). The proof is easy, and left to the reader.

Proposition 1. The final coalgebra of the functor D = (−)A × B for deterministic
automata is given by the set of behaviour functionsBA�

, with structure:

BA�
〈D,E〉

�� (BA�)A ×B

given by:

D(ϕ)(a) = λσ ∈ A�. ϕ(a · σ) and E(ϕ) = ϕ(〈〉). �

As is well-known—after Lambek—the structure map of a final coalgebra is an iso-
morphism. The carrier BA�

of the final coalgebra collects all possible behaviours of
deterministic automata. Two special cases are worth mentioning explicitly.

Example 1. Consider the above final coalgebra BA� ∼=−→
(
BA�)A × B of the deter-

ministic automata functor D = (−)A ×B.

1. When A is a singleton set 1 = {0}, so that A� = N, the resulting functor D =
(−)×B captures stream coalgebrasX → X ×B. Its final coalgebra is the set BN

of infinite sequences (streams) of elements of B, with (tail, head) structure,

BN

∼= �� BN ×B given by ϕ (−→ (λn ∈ N. ϕ(n+ 1), ϕ(0))

2. When B = 2 = {0, 1} describing final (or accepting) states of the automaton, the
final coalgebra BA�

is the set L(A) = P(A�) of languages over the alphabet A,
with structure:

L(A)
∼= �� L(A)A × 2 given by L (−→ (λa ∈ A.D(L)(a), E(L))

where D(L)(a) is the so-called a-derivative, introduced by Brzozowski [8], and
defined as:

D(L)(a) = {σ ∈ A� | a · σ ∈ L},
and where E(L) = 1 ⇐⇒ 〈〉 ∈ L.
Given an arbitrary automaton X → XA × {0, 1} of this type, the resulting be-
haviour map beh:X → P(A�) thus describes the language beh(x) ⊆ A� ac-
cepted by this automaton with x ∈ X considered as initial state.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 379

Both these final coalgebras BN and L(A) = P(A�) are studied extensively by
Rutten, see [30,33,31]. One of the things that he emphasises is the use of bisimulation as
a reasoning principle. Here we only sketch the main points, for deterministic automata.

Definition 1. Consider two coalgebras 〈δ1, ε1〉:X1 → XA
1 × B and 〈δ2, ε2〉:X2 →

XA
2 × B. A bisimulation between them is a relation R ⊆ X1 ×X2 on the underlying

state spaces that satisifies for all x1 ∈ X1, x2 ∈ X2,

R(x1, x2) =⇒
{
ε1(x1) = ε2(x2), and

R(δ1(x1)(a), δ2(x2)(a)), for all a ∈ A.

We write y1 ↔ y2 and call y1, y2 bisimilar if there is a bisimulation R with R(y1, y2).

Bisimilarity expresses observational equality, that is, equality as far as one can ob-
serve with the available (coalgebraic) operations. This explains the following result.

Proposition 2. In the situation of the previous definition one has: y1 ↔ y2 if and only
if beh〈δ1,ε1〉(y1) = beh〈δ2,ε2〉(y2).

Proof. The implication (⇒) is easy, since if y1 ↔ y2, say via a bisimulation R with
R(y1, y2), then by induction, R(δ�

1(y1)(σ), δ�
2(y2)(σ)), for each σ ∈ A�. This yields

beh〈δ1,ε1〉(y1) = ε1(δ�
1(y1)(σ)) = ε2(δ�

2(y2)(σ)) = beh〈δ2,ε2〉(y2). For the reverse
implication (⇐) one uses that the relation {(x1, x2) | beh〈δ1,ε1〉(x1) = beh〈δ2,ε2〉(x2)}
is a bisimulation. This follows directly because the beh maps are homomorphisms. �

States are thus bisimilar if and only if they are equal when mapped to the final coal-
gebras. Bisimulations provide a means to prove equations via “single-step” arguments.
This makes coinductive reasoning similar to ordinary inductive approaches. See [15]
for an abstract account of the underlying dualities.

Here is a very simple example—already using the regular algebra structure on lan-
guages from Example 3 later on. For each letter a ∈ A one has (1 + a)∗ = a∗ in L(A).
This can be proven via the bisimulation R = {〈(1 + a)∗, a∗〉} ∪ {〈∅, ∅〉}.

At some stage we shall need the modal “eventually” operator ♦. Let 〈δ, ε〉:X →
XA ×B be an arbitrary coalgebra / automaton. For a predicate (or subset) P ⊆ X we
define ♦(P) ⊆ X as the set of all states that are reachable from P :

♦(P) = {δ�(x)(σ) | x ∈ P, σ ∈ A�}.

For a single state we write ♦(x) for ♦({x}). Note that ♦(P) is a subcoalgebra / sub-
automaton, because it is by construction closed under transitions. It may be described
as the least invariant containing P , see [17]. The greatest invariant �(P) contained in
P is the predicate {x | ∀σ ∈ A�. δ�(x)(σ) ∈ P}.

3 Structured Output Sets and Distributive Laws

In [31, Section 9] the situation is studied where the output set B of a coalgebra X →
XA×B is a semiring. This generalises the situations studied in [31] of final coalgebras

380 Bart Jacobs

of real-valued streams (B = R) and languages (B = 2). It is shown that the sum and
multiplication operations on B can be extended to the final coalgebras involved.

Here we go a step further and assume an algebra structure β:T (B) → B, for a
monad T :Sets → Sets with unit η: id ⇒ T and multiplication μ:T 2 ⇒ T . Semirings
then form a special case, see Subsection 3.4. We show how this T -algebra structure
on the output set B induces a distributive law TD ⇒ DT , and a strengthened form
of coinduction using “T -automata”, following the approach of [36,5]. We shall give
several illustrations involving different types of automata, for various concrete monads.
These investigations go a bit beyond what is strictly needed for deterministic automata
and regular languages.

To start, we recall that for an arbitrary monad T and functor G acting on the same
category, a distributive law λ:TG⇒ GT is a natural transformation that interacts ap-
propriately with the monads unit η and multiplication μ. This means that the following
two diagrams commute.

GX
ηGX ��

G(ηX) 77-
--

--
--

--
TGX

λX
��

T 2GX

μGX

��

T (λX)
�� TGTX

λTX �� GT 2X

G(μX)
��

GTX TGX
λX

�� GTX

Example 2. The next two illustrations will be used frequently. They both involve the
so-called strength map.

1. For each functor T on the category Sets and for each set X there is a natural
transformation st:T (−)X ⇒ (−)X T . It is usually called strength, and given as
map T (Y X) → (TY)X by the formula:

st(u)(x) = T
(
λh ∈ Y X . h(x)

)
(u).

In case T happens to carry a monad structure, the strength map becomes a distribu-
tive law. The above two diagrams then translate into:

Y X
ηY X ��

(ηY)X 88.
..

..
..

..
T (Y X)

st
��

T 2(Y X)
T (st)

��

μY X

��

T
(
(TY)X

) st �� (T 2Y)X

(μY)X

��
(TY)X T (Y X)

st
�� (TY)X

(The diligent reader may have noticed that strength is also natural in the functor,
in the sense that for a natural transformation σ:F ⇒ G one has stGX,Y ◦ σY X =
(σY)X ◦ stFX,Y .)
One useful point about strength for monads is that it allows pointwise construction
of algebras on function spaces: if α:T (Y) → Y is an Eilenberg-Moore algebra,
then so is αX ◦ st:T (Y X) → (TY)X → Y X .

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 381

2. We have formulated the notion of a distributive law for a monad and a functor.
There are several “obvious” variations, for instance for a functor and a comonad.
The next example again involves strength, and is related to the final coalgebra con-
struction in Proposition 1.
To start, let (M, ·, e) be an arbitrary monoid. It gives rise to a functor (−)M :Sets →
Sets that turns out to be a comonad. The counit EX :XM → X uses the monoids
unit in EX(ϕ) = ϕ(e), and the comultiplication CX :XM → (XM)M works via
the monoids multiplication in CX(ϕ) = λa ∈M.λb ∈M.ϕ(a · b).
We claim that for an arbitrary functor F , there is a distributive law F (−)M ⇒
(−)M F over the comonad (−)M . This law is again given by strength, and satisfies
the following two “dual” properties.

F (XM) st ��

F (EX) 77//
///

///
//

(FX)M

EFX

��

F (XM) st ��

F (CX)
��

(FX)M

CFX
��

F (X) F
(
(XM)M

)
st

�� (F (XM))M

stM
�� ((FX)M

)M
Why is all this relevant? Well, the final coalgebra structure described in Proposi-
tion 1 arises in this manner via the (free) monoid (A�, ·, 〈〉) of strings with con-
catenation: its observation map E:BA� → B is precisely the above counit EB ,
and its transition map D:BA� → (BA�

)A arises from the comultiplication CB ,
via restriction to singleton sequences: D(ϕ)(a)(σ) = C(ϕ)(〈a〉)(σ). The fact that
strength forms a distributive law will be used in the proof of Proposition 4 below.

As stated in the beginning of this section, we assume an Eilenberg-Moore algebra
β:T (B) → B. By definition it satisfies the algebra laws β ◦ η = id and β ◦ T (β) =
β ◦ μ. Then we can define a distributive law of the monad T over the automata functor
D = (−)A ×B from the previous section, namely:

TD �9λ DT with components T (XA ×B)
λX �� (TX)A ×B

This law is obtained as composite:

T (XA ×B)
〈T (π1), T (π2)〉 �� T (XA) × TB

st × β �� (TX)A ×B

The next result summarises what we have found so far.

Proposition 3. Each Eilenberg-Moore algebra T (B) → B induces a distributive law
λ:TD ⇒ DT for the deterministic automata functor D = (−)A ×B. �

When we have an arbitrary monad T , functor G, and a distributive law λ:TG ⇒
GT the relevant associated notion is that of a λ-bialgebra: a pair of maps:

TX
a �� X

b �� GX

382 Bart Jacobs

where:

– a is an Eilenberg-Moore algebra;
– a and b are compatible via λ, which means that the following diagram commutes.

TX

T (b)
��

a �� X
b �� GX

TGX
λX

�� GTX

G(a)
��

A map of λ-bialgebras, from (TX a−→ X
b−→ GX) to (TY c−→ Y

d−→ GY) is
a map f :X → Y that is both a map of algebras and of coalgebras: f ◦ a = c ◦ T (f)
and d ◦ f = G(f) ◦ b.

The next two results are standard, see for e.g. [5,18], and are given without proof.

Lemma 1. Assume a distributive law λ:TG ⇒ GT , and let ζ:Z
∼=−→ GZ be a final

coalgebra. It carries an Eilenberg-Moore algebra obtained by finality in:

GTZ ��									
G(α)

GZ

TGZ

λZ

��

TZ

T (ζ) ∼=
��

��										
α Z

∼= ζ

��

The resulting pair (TZ α−→ Z
ζ−→ GZ) is then a final λ-bialgebra. �

Lemma 2. In presence of a distributive law λ:TG ⇒ GT , there exists a bijective
correspondence between GT -coalgebras e:X → GTX (also called equations) and

λ-bialgebras (T 2X
μX−→ TX

d−→ GTX) with free algebra μX .

Moreover, let (TY a−→ Y
b−→ GY) be a λ-bialgebra. Then there is a bijective

correspondence between “solutions of e” f :X → Y in:

GTX
GT (f)

�� GTY
G(a)��

GY

X

e

��

f
�� Y
b
��

and λ-bialgebra maps g:TX → Y —for the associated equations and λ-bialgebras. �

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 383

Proposition 4. The assumed algebra β:TB → B induces on the carrier BA�

of the
final D-coalgebra from Proposition 1 another T -algebra via a pointwise construction,
namely,

β̂
def
=
(
T (BA�

)
st �� (TB)A� βA�

�� BA�
)

so that E:BA� → B is a homomorphism of algebras. This β̂ is the unique coalgebra
homomorphism from Lemma 1,

DT (BA�

) ��									
D(β̂)

D(BA�

)

TD(BA�

)

λBA�

��

T (BA�

)

T (〈D,E〉) ∼=
��

��										
β̂

BA�

∼= 〈D,E〉

��

using the distributive law from Proposition 3. Hence, this β̂ together with the final

coalgebra forms the final λ-bialgebra: T (BA�

)
β̂−→ BA� 〈D,E〉−→ D(BA�

).

Proof. According to Lemma 1 it suffices to prove that β̂ is a homomorphism of coalge-
bras. Here we use that strength is a distributive law as described in Example 2.(2).

D(β̂) ◦ λ ◦ T (〈D,E〉)
= D(βA� ◦ st) ◦ 〈st ◦ T (π1), β ◦ T (π2)〉 ◦ T (〈D,E〉)
= 〈(βA�

)A ◦ stA ◦ st ◦ T (D), β ◦ T (E)〉
= 〈(βA�

)A ◦ D ◦ st, β ◦ E ◦ st〉
= 〈(βA�

)A ◦ D, β ◦ E〉 ◦ st

= 〈D,E〉 ◦ βA� ◦ st

= 〈D,E〉 ◦ β̂. �
The coinduction principle associated with a final λ-bialgebra is called λ-coinduc-

tion in [5]. In the current situation, with the functor D for deterministic automata, the
principle yields a strengthened form of coinduction for “T -automata”.

Theorem 1. For each T -automaton 〈δ, ε〉:X → D(TX) = (TX)A × B—where B
carries a T -algebra β:TB → B—there is a unique map beh:X → BA�

making the
following diagram commute.

(TX)A ×B = DTX
DT (beh)

�� DT (BA�

)
D(β̂)��

D(BA�

)

X

〈δ, ε〉

��

beh
�� BA�

〈D,E〉
��

384 Bart Jacobs

Proof. This result is a direct consequence of Lemmas 1 and 2, but we like to give the
concrete construction, as in the proof of Proposition 1. First we define an extension
δ�:X → (TX)A�

of δ like in (1) by induction:

δ�(x)(〈〉) = η(x) δ�(x)(a · σ) = μ
[
st
(
T (δ�)
(
δ(x)(a)

))
(σ)
]
.

Then we can define the required map as:

beh =
(
X

δ�
�� (TX)A� (Tε)A�

�� (TB)A� βA�

�� BA�
)
. �

In the remainder of this section we shall investigate several instantiations of the
monad T in the results above.

3.1 The Identity Monad and Deterministic Automata

If we take T = id, with β = id as identity algebra we get λ = id and β̂ = id, so that
λ-coinduction is just the ordinary form of coinduction for deterministic automata.

3.2 The Powerset Monad and Non-deterministic Automata

In the above context we now consider the situation where the monad T is the powerset
monad P and where the output set B is 2 = {0, 1}. An Eilenberg-Moore algebra of
P is a complete lattice (see e.g. [25, Chapter VI.2, Exerice 1]), i.e. a poset with joins
(and hence also meets) of all subsets. Since 2 = P(1), we have a free monad structure⋃

:P(2) → 2 given by union. The strength map st:P(Y X) → P(Y)X is st(u)(x) =
{f(x) | f ∈ u}. The resulting distributive law, say λP :PD ⇒ DP , is given by:

P(XA × 2)
λPX �� P(X)A × 2

U
� �� 〈λa ∈ A. {f(a) | ∃b. (f, b) ∈ U}, ∃f. (f, 1) ∈ U〉

The final coalgebra is in this case the set 2A�

= P(A�) = L(A) of languages over
the “alphabet”A, see Example 1 (ii). The induced algebra structure P(L(A)) → L(A)
is simply union

⋃
.

The λP -coinduction principle from Theorem 1 tells how a state x of a non-deter-
ministic automaton is mapped to the associated language (that is accepted starting from
x as initial state):

P(X)A × 2 = DP(X) ��								 DPL(A)
D(
⋃

)��
DL(A) = L(A)A × 2

X

��

��										 L(A)

∼=
��

This was first noted in [5, Corollary 4.4.6].

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 385

3.3 The Multiset Monad and Weighted Automata

It is well-known that the Kleene-star or list monadX (→ X� has monoids as Eilenberg-
Moore algebras. The monad M for commutative monoids is given by multisets:

M(X) = {ϕ ∈ NX | ϕ has finite support},

where the support of ϕ is the set supp(ϕ) = {x ∈ X | ϕ(x) 	= 0}. Such a ϕ can thus be
represented as finite sum n1x1 + · · · + nkxk of elements xi ∈ X with “multiplicities”
ni = ϕ(xi) ∈ N. The action M(f) on such a representation is then simply n1f(x1) +
· · · + nkf(xk). The unit of this monad is x (→ 1x and multiplication is n1ϕ1 + · · · +
nkϕk (→ λx ∈ X.n1ϕ1(x) + · · · + nkϕk(x).

An M-automaton 〈δ, ε〉:X → M(X)A×2 is then a so-called weighted automaton.
For a state x ∈ X and letter a ∈ A there may then be several result states xi in the
outcome δ(x)(a) = n1x1 + · · · + nkxk, each with a particular “weight” ni.

The set 2 forms a commutative monoid via finite disjunctions �,∨—and also via
conjunctions. The disjunctions induce a commutative monoid structure on L(A) given
by union of languages. Since this is an idempotent monoid, the structure of multiplici-
ties is ignored when a state is mapped to the associated language.

3.4 The Semiring Monad

A basic observation is that there is a distributive law of monads π: (−)� ◦ M ⇒ M ◦
(−)� between the list and multiset monads. It is given by multiplication in N:

M(X)� πX �� M(X�)

〈ϕ1, . . . , ϕn〉 � ��∑{ϕ1(x1) · · ·ϕn(xn)〈x1, . . . , xn〉 | xi ∈ supp(ϕi)}

= λ〈y1, . . . , ym〉 ∈ X�.

{
0 if m 	= n

ϕ1(y1) · · ·ϕn(yn) otherwise.

With some perseverance one can prove that π is a natural transformation that commutes
appropriately with the monad structures.

It is a standard result that in presence of a distributive law like π: (−)� ◦ M ⇒
M ◦ (−)� the composite M ◦ (−)� is again a monad, see for instance [6,19,4].
Moreover, the multiset monad M can be lifted to a monad M on the category of (−)�-
algebra (monoids), such that the algebras of the composite monad M ◦ (−)� are the
same as M-algebras. This functor M maps a monoid (X, ·, 1) to (M(X), •, η(1)) with
multiplication • given by:

ϕ • ψ =
∑

{ϕ(x)ψ(y)(x · y) | x ∈ supp(ϕ), y ∈ supp(ψ)}.

An Eilenberg-Moore algebra (M(X), •, η(1)) → (X, ·, 1) for the monad M con-
sists of a commutative monoid m:M(X) → X whose structure map m preserves the
monoid structure. Such an algebra of the composite monad is thus a semiring. There-
fore we call the monad the semiring monad, and write it as S(X) = M(X�).

386 Bart Jacobs

Rutten [31, Section 9] explicitly considers deterministic automata X → XA × B
where the set B is a semiring, i.e. carries an Eilenberg-Moore algebra S(B) → B.
This includes his main examples B = R and B = 2. In those cases the final coalgebra
BA�

is also a semiring, via pointwise construction. Theorem 1 yields for a “semiring”
automatonX → S(X)A × 2 a mappingX → L(A) to languages over A.

3.5 The Language Monad

The language monad L(X) = P(X�) can be constructed similarly to the semiring
monad S(X) = M(X�), namely via a distributive law. The algebras of the language
monad are Kleene algebras with arbitrary joins, also known as unital quantales, see [18]
for more information. Theorem 1 then yields behaviours for states of “language au-
tomata” X → L(X)A ×B. They resemble alternating automata [27].

4 Regular Expressions

As is well-known, regular expressions are built up from constants 0, 1, letters a ∈ A
from a given alphabetA, sum s+ t, composition s · t and Kleene-star s∗. These opera-
tions form an algebra of the functor:

R(X) = 1 + 1 + (X ×X) + (X ×X) +X

where we ignore the alphabet for a moment—because it will turn up in the associated
monad below. The initial algebra of this functor R is not so interesting: it consists of
the (closed) terms that can be obtained from 0, 1 via +, ·, (−)∗. Notice that at this stage
there are no equations involved. They will appear in the next section.

Example 3. For an arbitrary set U , the set of languages L(U) = P(U�) over U carries
an R-algebra structure R(L(U)) → L(U). It is given by the familiar definitions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

zero term case: 0 (−→ ∅
one term case: 1 (−→ {〈〉}

sum case: (L1, L2) (−→ L1 ∪ L2

product case: (L1, L2) (−→ {σ1 · σ2 | σi ∈ Li}
star case: L (−→

⋃
n∈N

Ln.

since a single (algebra) map R(L(U)) → L(U) jointly describes five maps of the
form 1 → L(U), 1 → L(U), L(U) × L(U) → L(U), L(U) × L(U) → L(U) and
L(U) → L(U), giving the individual operations of regular algebra.

For the special case where U = ∅ we get an algebra structure on L(∅) = P(∅�) =
P(1) = 2. This structure R(2) → 2 uses 0,∨ and 1,∧ as additive and multiplicative
monoids, and the constant map x (→ 1 as star operation.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 387

Usually one considers regular expressions over an alphabetA. It means that the let-
ters a ∈ A are used as atoms to build up regular expressions. This can be done via the
free monad R∗ generated by R. It is defined on a setA as the initial algebra of the func-
tor X (→ A + R(X). We shall sometimes write ReA for the carrier R∗(A) of regular
expressions over A, or simply Re if the alphabet A is clear from the context. This set
Re is built up inductively from 0, 1, a ∈ A using the regular operations +, ·, (−)∗.

We thus have an initiality isomorphism [ηA, τA]:A + R(Re) ∼=−→ Re, where the
map τA:R(R∗(A)) → R∗(A) is the free R-algebra on A. The extension map σ:R ⇒
R∗ is then given by σ = τ ◦ R(η).

The next result collects the basics about this situation.

Lemma 3. In the situation described above:

1. The functorA (→ R∗(A) is a monad, whose category of Eilenberg-Moore algebras
is isomorphic to the category of R-algebras. The multiplication of this monad is
defined by initiality in:

R∗A+ R
(
R∗R∗A

)
∼=[η, τ]
��

��						
id + R(μA)

R∗A+ R(R∗A)

[id, τ]
��

R∗R∗A ��											
μA

R∗A

2. The R-algebra on 2 from Example 3 yields a distributive law λ:R∗D ⇒ DR∗ for
the deterministic automaton functor D = (−)A × 2.

Proof. The first point is standard, and the second is a special case of Proposition 3. �
With this result, an R-algebra from Example 3, say r:R(L(U)) → L(U) corre-

sponds to a unique Eilenberg-Moore algebra r:R∗(L(U)) → L(U) with r ◦ σ = r.
Especially for U = ∅ this yields an algebra R∗(2) → 2 that will be used in (4) below.
The multiplication μ maps a term s(t1, . . . , tn) built up from other terms t1, . . . , tn as
atoms, to the term s[t1, . . . , tn] obtained by substituting these ti into s.

Example 4. The standard interpretation of the set ReA regular expressions over an al-
phabet A in the set L(A) of languages over A may be understood as the unique homo-
morphism of algebras:

R∗R∗A

μA

��

��						
R∗([[−]])

R∗(L(A)
)

��
ReA = R∗A ��								

[[−]]
L(A)

with [[η(a)]] = {〈a〉}.

The Eilenberg-Moore algebra on L(A) arises from the R-algebra from Example 3.
Freeness of μA and the inclusion {〈−〉}:A→ L(A) does the rest.

Usually one does not make a clear distinction between an expression like s = 1 +
a∗ba∗ ∈ ReA and its interpretation [[s]] = 1 ∪ a∗ba∗ ∈ L(A). Here however, we like
to keep the two apart, and use an explicit interpretation function [[−]].

388 Bart Jacobs

4.1 Two Questions

Given this basic set-up, we ask ourselves the following two questions.

1. Is there a coalgebra/automaton structure 〈D,E〉 on regular expressions such that
the above interpretation [[−]] is also a homomorphism of coalgebras, as in:

R∗R∗A

μA

��

R∗([[−]]) �� R∗(L(A)
)

��
ReA = R∗A

��
〈D,E〉 ??

[[−]]
�� L(A)

∼= 〈δ, ε〉
��

(R∗A)A × 2
[[−]]A × 2

�� L(A)A × 2

(3)

2. Is this diagram a map between two κ-bialgebras, for a suitable distributive law κ.

We address this matter in the next two subsections. The first question can be answered
positively, and involves Brzozowski’s “derivative” and “non-empty word” operations on
regular expressions from [8,9]. The second question will be solved by a special kind of
distributive law, following the so-called GSOS format. It puts the concrete construction
of Brzozowski in the general framework developed in [35].

4.2 Regular Expressions as Coalgebras

From a coalgebraic perspective the most interesting part of regular expressions is that
they form a deterministic automaton 〈D,E〉: Re → ReA × 2 = D(R∗(A)).

The output operation E: Re → 2 is obtained by freeness as the unique map in

R∗(Re)

μ
��

��						
R∗(E)

R∗(2)

��
Re ��								

E
2

with E(η(a)) = 0 (4)

where the algebra structure R∗(2) → 2 is as described before Example 4. Commutation
of the diagram (4) yields the equationsE(0) = 0, E(1) = 1, E(s+ t) = E(s) ∨ E(t),
E(s · t) = E(s) ∧ E(t) and E(s∗) = 1. This operationE describes what is sometimes
called the empty word property.

Since the values of E(s) ∈ 2 are either 0 or 1, we shall often treat E(s) as a term in
Re.

By induction on the structure of a term s ∈ Re one checks the first bi-implication:

E(s) = 1 ⇐⇒ 〈〉 ∈ [[s]] ⇐⇒ (ε ◦ [[−]])(s) = 1

Hence ε ◦ [[−]] = E, which is one part of the lower square in (3).

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 389

The “derivative” operation D: Re → ReA is more complicated. It is due to Brzo-
zowski [8], see also [9]. We shall use the common notation Da(s) for the successor
term D(s)(a). The derivative is defined by the following clauses (or rules).

Da(0) = 0 Da(s+ t) = Da(s) +Da(t)

Da(1) = 0 Da(s · t) = Da(s) · t+ E(s) ·Da(t)

Da(b) =

{
1 if b = a

0 otherwise.
Da(s∗) = Da(s) · s∗.

(5)

Is this a proper inductive definition? The problem is in the clause for composition,
where the term t is used in the subterm Da(s) · t in original form. Similarly for s in
the star case. Hence we cannot use an inductive/freeness definition like for E in (4).
We have to use recursion to deal with the additional parameter. The remainder of this
subsection elaborates the required formulation of recursion.

A categorical analysis of strengthened induction principles for a functor F is given
in [36] in terms of distributive laws between F and a comonad—dual to the approach
underlying Theorem 1. We shall use this approach in the current situation where F is
the functorA+R(−) for regular expressions described in the beginning of this section
and the comonad is simply (−) × D for a set D, with coalgebra Δ = 〈id, id〉. We
concentrate on the result, and refer to [36] for the distributive law involved.

Theorem 2 (Recursion following [36]). An initial algebra α:F (D) ∼=−→ D satisfies
the following strengthened induction property: for each map f :F (X ×D) → X there
is a unique map h:D → X making the following diagram commute.

F (D ×D)
F (h×D)

�� F (X ×D)

f

��

F (D)
F (Δ)

��

α ∼=��
D

h
�� X

Proof. We shall give a direct proof, ignoring the distributivity properties involved. Let
f :F (X×D) → X therefore be given. Write f ′ = 〈f, α ◦ F (π2)〉:F (X×D) → X×
D. It gives by initiality rise to a unique map k:D → X ×D with k ◦ α = f ′ ◦ F (k).
Then π2 ◦ k = id by uniqueness of algebra maps α → α. Hence we take h = π1 ◦ k.

�

With this theorem the derivative operation D: Re → ReA can be obtained by re-
cursion from a map [f1, f2]:A+ R(ReA × Re) → ReA in:

A+ R
(
Re
)

∼=[η, τ]
��

��								
id + R(〈D, id〉)

A+ R
(
ReA × Re

)
[f1, f2]
��

Re ��													
D

ReA

(6)

390 Bart Jacobs

The map f1:A → ReA is defined as f1(a) = λb ∈ A. if b = a then 1 else 0. And
f2:R(ReA × Re) → ReA is given by the following cases.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

zero term case: 0 (−→ λa ∈ A. 0

one term case: 1 (−→ λa ∈ A. 0

sum case: (〈ϕ1, s1〉, 〈ϕ2, s2〉) (−→ λa ∈ A.ϕ1(a) + ϕ2(a)

product case: (〈ϕ1, s1〉, 〈ϕ2, s2〉) (−→ λa ∈ A.ϕ1(a) · s2 + E(s1) · ϕ2(a)

star case: (ϕ, s) (−→ λa ∈ A.ϕ(a) · s∗.

Commutation of the diagram (6) now yields the appropriate clauses (5) for the derivative
function. Further, by induction on s ∈ Re one proves:

[[D(s)(a)]] = D([[s]])(a) as in Example 1 (ii)

= {σ ∈ A� | a · σ ∈ [[s]]}.

This means that [[−]] is a homomorphism of both algebras and coalgebras in (3). This
settles our first question from Subsection 4.1. In particular, the operational seman-
tics ([[−]] as coalgebra homomorphism) is compositional (i.e. is an algebra homomor-
phism).

We now turn to the second question from Subsection 4.1.

4.3 Regular Expressions as Bialgebras

Since the derivative operation D: Re → ReA is defined by recursion (instead of in-
duction), the distributive laws and bialgebras described in Section 3 do not work in this
situation. Interestingly, the so-called GSOS format does work. It has been developed
in syntactic form for process calculi [7,14], and formulated categorically in [35]. We
follow the latter approach—see also [5]. The main point is that these GSOS laws have
an extra parameter—like in recursion.

Definition 2. For a monad T and functor G, a GSOS law is a distributive law of the
form λ:T (G× id) ⇒ (G× id)T with π2 ◦ λ = T (π2).

A λ-model, or GSOS model, for such a GSOS law λ, consists of an Eilenberg-
Moore algebra a:TX → X and a coalgebra b:X → GX on the same state space,

such that the pair TX
a−→ X

〈b,id〉−→ GX ×X is a λ-bialgebra; equivalently, such that
the following diagram commutes.

TX

T (〈b, id〉)
��

a �� X
b �� GX

T (GX ×X)
π1 ◦ λ

�� GTX

Ga

��

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 391

The formulation of GSOS law that we use is not quite the same as in [35]. The
latter handles the special case where the monad T is free, i.e. of the form F ∗. The
next result shows that this special case of our definition is equivalent to the “natural
transformation” formulation used in [35].

Proposition 5. Let F be an arbitrary endofunctor with associated free monad F ∗.
There is a bijective correspondence between:

GSOS laws F ∗(G× id) �9λ (G× id)F ∗
====================================
natural transformations F (G× id) �9

ρ GF ∗

We use an overline-notation λ (→ λ, ρ (→ ρ for this correspondence, in both directions.

Correspondingly, F ∗X a→ X
b→ GX is a λ-model (as in Definition 2) if and only

if the following diagram commutes.

FX

F (〈b, id〉)
��

a ◦ σ �� X
b �� GX

F (GX ×X)
λ

�� GF ∗X

Ga

��

In view of this result, we shall often also call a natural transformation F (G× id) ⇒
GF ∗ a GSOS law.

Proof. We only describe the constructions, and leave the details to the interested read-
ers. For the correspondence between GSOS laws and natural transformations, first as-
sume a GSOS law λ:F ∗(G×id) ⇒ (G×id)F ∗. It gives rise to a natural transformation:

λX =
(
F (GX ×X) σ �� F ∗(GX ×X)

λX �� GF ∗X × F ∗X
π1 �� GF ∗X

)
Conversely, for ρ:F (G×id) ⇒ GF ∗ we define a distributive law ρ = 〈ρ1, ρ2〉:F ∗(G×
id) ⇒ (G × id)F ∗ where ρ2 = F ∗(π2) and ρ1 is defined by recursion (following
Theorem 2) in:

(
(GX ×X) +

F
(
F ∗(GX ×X)

))
[η, τ] ∼=

��

��							
id + F (〈ρ1, id〉)

(
(GX ×X) +

F
(
GF ∗X × F ∗(GX ×X)

))
[Gη ◦ π1, Gμ ◦ ρ ◦ F (id × F ∗(π2))]

��
F ∗(GX ×X) ��																

ρ1
GF ∗X

392 Bart Jacobs

The equivalence with respect to models amounts for F ∗X a→ X
b→ GX to:

F ∗X

F ∗(〈b, id〉)
��

a �� X
〈b, id〉�� (G× id)X FX

F (〈b, id〉)
��

a ◦ σ �� X
b �� GX

iff

F ∗(GX ×X)
λ

�� (G× id)F ∗X

Ga× a

��

F (GX ×X)
λ

�� GF ∗X

Ga

��

The direction from left to right is straightforward, and the reverse direction requires the
use of uniqueness in recursion. �

Example 5. The regular expression functor R(X) = 1+1+(X×X)+(X×X)+X
and the deterministic automaton functor D(X) = XA × 2 are connected via a GSOS
law:

R(XA × 2 ×X)
ρX �� R∗(X)A × 2

0 � zero �� (λa ∈ A. 0, 0)

1 � one �� (λa ∈ A. 0, 1)

〈(ϕ1, b1, x1), (ϕ2, b2, x2)〉 � plus �� (λa ∈ A.ϕ1(a) + ϕ2(a), b1 ∨ b2)

〈(ϕ1, b1, x1), (ϕ2, b2, x2)〉 � product �� (λa ∈ A.ϕ1(a) · x2 + b1 · ϕ2(a), b1 ∧ b2)

(ϕ, b, x) � star �� (λa ∈ A.ϕ(a) · x∗, 1).

One recognises the clauses/rules for D and E as described in the previous subsection.
Their format can thus be expressed via a GSOS law; see [5] for more information about
such correspondences. We shall illustrate that this law is fundamental, in the sense that
it induces familiar structure (and associated results) on regular expressions.

There are a number of general results about GSOS laws that put our running exam-
ple in perspective. We shall concentrate on these results first, and return to the example
of regular expressions at the end of this subsection. The next two results are the ana-
logues for GSOS laws of Lemmas 1 and 2. The proof of the second one uses a form of
recursion for Eilenberg-Moore algebras.

Lemma 4. If we have a GSOS law λ:T (G× id) ⇒ (G× id)T , then a final coalgebra
ζ:Z ∼=−→ GZ induces a final λ-model with algebraα:TZ → Z defined by coinduction:

GTZ ��							 Gα
GZ

T (GZ × Z)
π1 ◦ λ

��

TZ ��								
α

T (〈ζ, id〉)
��

Z

∼= ζ

��

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 393

Proof. By uniqueness one obtains that α is an Eilenberg-Moore algebra. By construc-
tion the pair (α, ζ) is a λ-model. It is final because for an arbitrary λ-model TX

a→
X

b→ GX the induced coalgebra map X → Z is also an algebra map—again proven
by uniqueness. �

Lemma 5. Given a GSOS law λ:T (G × id) ⇒ (G × id)T there is a bijective corre-
spondence between GT -coalgebras and λ-models with free algebra:

“equations” X
e �� GTX

================================
λ-models TTX μ

�� TX
d

�� GTX

and also between corresponding solutions and bialgebra maps.

Proof. The proof relies on the following “recursion” version of freeness for Eilenberg-
Moore algebras: for each f :X → Y and a:T (Y × TX) → Y there is a unique map g
in:

T 2X

μ
��

��						
T (〈g, id〉)

T (Y × TX)

a
��

TX ��								
g Y

with g ◦ η = f (7)

provided that a satisfies a ◦ η = π1 and a ◦ μ = a ◦ T (〈a, μ ◦ T (π2)〉). The proof of
this property is much like the proof of Theorem 2 and left to the reader.

We only describe the correspondence between equations and GSOS models, and
leave the rest to the interested reader. Given e:X → GTX define e via (7) in:

T 2X

μ
��

��						
T (〈e, id〉)

T (GTX × TX)

Gμ ◦ π1 ◦ λ
��

TX ��								
e

GTX

with e ◦ η = e

By construction this forms a λ-model. In the reverse direction, given d:TX → GTX

one takes d = d ◦ η:X → GTX . Then e = e ◦ η = e. And d = d follows by
uniqueness, using that (μ, d) is a GSOS model: Gμ ◦ π1 ◦ λ ◦ T (〈d, id〉) = d ◦ μ. �

Remark 1. 1. If we apply the construction of the previous lemma starting from a law
ρ:F (G × id) ⇒ GF ∗ like in Proposition 5, then the GSOS model F ∗F ∗X

μ−→
F ∗X d−→ GF ∗X associated with an equation e:X → GF ∗X can be described
via recursion (like in Theorem 2) as:

394 Bart Jacobs

X + F (F ∗X)

∼=[η, τ]
��

��										
id + F (〈d, id〉)

X + F (GF ∗X × F ∗X)

[e,Gμ ◦ ρ]
��

F ∗X ��															
d

GF ∗X

This will be used later.
2. In [35, Proposition 5.1] it is shown that a (GSOS) law ρ:F (G×id) ⇒ GF ∗ induces

a lifting of the free monad F ∗ to the category CoAlg(G). The construction uses
the previous point: it takes a coalgebra b:X → GX to the coalgebra-part of the
bialgebra corresponding to the equation G(η) ◦ b:X → GF ∗X .

With all these general GSOS results in place we are finally in a position to analyse
the situation of regular expressions and languages, using the GSOS law from Exam-
ple 5.

Theorem 3. 1. The “equation” A→ D(R∗(A)) that is given by the two maps

A �� R∗(A)A A �� 2
a � �� λb ∈ A. if b = a then 1 else 0 a � �� 0

corresponds by Lemma 5 to the free algebra and Brzozowski automaton structure
on the set Re = R∗(A) of regular expressions:

R∗(Re)
μ �� Re

〈D,E〉
�� ReA × 2

2. The final D-coalgebra L(A) ∼=−→ L(A)A × 2 of languages yields by Lemma 4 the
final bialgebra:

R∗(L(A)) �� L(A)
∼= �� L(A)A × 2

with the standard algebra of regular expressions.
3. The interpretation [[−]]: Re → L(A) introduced via freeness in (3) can also be

obtained as beh: Re → L(A) by finality using the previous two points.
4. Bisimilarity between regular expressions is a congruence: s ↔ s′ and t ↔ t′

implies s+ t↔ s′ + t′, s · t↔ s′ · t′ and s∗ ↔ s′∗.

Proof. 1. Let’s write e:A → ReA × 2 for the equation. We need to check that the
Brzozowski structure 〈D,E〉 from Subsection 4.2 fits in the description in Re-
mark 1.(1), i.e. that the following diagram commutes,

A+ R(Re)

∼=[η, τ]
��

id + R(〈〈D,E〉, id〉)
�� A+ R(ReA × 2 × Re)

[e, (μA × id) ◦ ρ]
��

Re 〈D,E〉
�� ReA × 2

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 395

where ρ is as described in Example 5. This diagram commutes because the Brzo-
zowski structure 〈D,E〉 precisely follows the GSOS law ρ.

2. Similarly we need to show that the standard interpretation α:R(L(A)) → L(A)
yields a commuting diagram in Lemma 4. This means that 〈δ, ε〉 ◦ α = (αA× id) ◦
ρ ◦ R(〈〈δ, ε〉, id〉), which can be checked easily—where 〈δ, ε〉 is the final coalgebra
structure on L(A).

3. Obvious, since [[−]] is also a map of coalgebras.
4. The bisimilarity relation ↔ � Re×Re is the equaliser e at the bottom row below,

because of Proposition 2 and because [[−]] = beh by the previous point.

R∗(↔) d ��

���
�
�
�

R∗(Re) ×R∗(Re)

μ× μ

��

R∗([[−]]) ◦ π1 ��

R∗([[−]]) ◦ π2

�� R∗(L(A))

��
↔ ��

e
�� Re × Re

[[−]] ◦ π1 ��

[[−]] ◦ π2

�� L(A)

The map d = 〈R∗(π1 ◦ e),R∗(π2 ◦ e)〉 induces an algebra structure on the
relation ↔, as indicated. This makes ↔ a congruence. �

The map [[−]]: Re → L(A) defined by initiality is by construction “compositional”,
in the sense that it preserves the operations. This map describes what may be called the
denotational semantics of regular expressions. In contrast, the map beh: Re → L(A)
obtained by finality describes the operational semantics, because it is induced by the
dynamical (coalgebra) structure on regular expressions. The equality of denotational
[[−]] and operational beh semantics in point 3 of the previous theorem says in particular
that the operational semantics is compositional, so that for instance the behaviour of a
sum expression is the sum of the behaviours of the two summands. Many coincidences
of operational and denotational semantics are described in more concrete form in [3].

5 Regular Expressions with Equations

An equational logic for regular expressions is formulated by Kozen in [23], for which a
completeness theorem is proved. An alternative proof of completenes (again by Kozen)
is given in [24]. Here we shall give a coalgebraic review of the situation, which leads to
a third completeness proof. It is similar, but shorter, than the proof in [24].

Throughout this section we fix a finite alphabetA. We shall indicate where we need
this finiteness (in Definition 4).

The definition of Kleene algebra from [23] involves a particular formulation of the
rules for the star operation. It requires for an algebra [0, 1,+, ·, (−)∗]:R(Y) → Y that
(Y, 0, 1,+, ·) is an idempotent semiring in which the star axioms and rules in point 2
below hold.

One can also turn the set Re of regular expressions into a Kleene algebra via a
suitable quotient. For clarity we shall use a special symbol

.= ⊆ Re × Re for the least
relation satisfying the next three points.

396 Bart Jacobs

1. (Re,+, 0, ·, 1) is an idempotent semiring, i.e.

– (Re,+, 0) is an idempotent commutative monoid, in which one defines a par-
tial order by s ≤ t ⇐⇒ s+ t

.= t.
– (Re, ·, 1) is a monoid, where · preserves the additive monoid structure +, 0 in

both arguments: s · (t+ r) .= (s · t) + (s · r) and (t+ r) · s .= (t · s) + (r · s),
and also s · 0 .= 0 and 0 · s .= 0.

2. The star inequalities and rules:

1 + s · s∗ ≤ s∗ 1 + s∗ · s ≤ s∗
s+ t · x ≤ x

t∗s ≤ x

s+ x · t ≤ x

s · t∗ ≤ x

3. Axioms and rules making
.= a congruence, i.e. an equivalence relation preserved

by the operations: s
.= s′ and t

.= t′ implies s + t
.= s′ + t′, s · t .= s′ · t′ and

s∗ = s′∗.

We shall write Re/
.= for the set of regular expressions modulo

.=. By construction it
forms a Kleene algebra. As usual, we often simply write s for the equivalence class
[s] = {t ∈ Re | t .= s} ∈ Re/ .=.

Of the many results that can be derived in Kleene algebras we shall need the fol-
lowing ones.

Lemma 6. In an arbitrary Kleene algebra one has:

1. 1 + s · s∗ = s∗;
2. s · x = x · t implies s∗ · x = x · t∗.

And each term s ∈ Re satisfies s ≥
∑

a∈A a ·Da(s) + E(s).

Proof. The inequality 1 + s · s∗ ≤ s∗ is one of the star axioms. And s∗ ≤ 1 + s · s∗ is
obtained by applying a star rule to the inequality 1 + s · x ≤ x for x = 1 + s · s∗.

For the second point it suffices to show: if s · x ≤ x · t then s∗ · x ≤ x · t∗. The
latter can be obtained via a star rule from x + s · (x · t∗) ≤ x · t∗, which follows from
the assumption s · x ≤ x · t.

The final inequality s ≥
∑

a∈A a · Da(s) + E(s) is obtained by induction on the
structure of s ∈ Re. �

The following two standard lemmas (see e.g. [9,24,31]) must be made explicit first.

Lemma 7. 1. The derivative operation on regular expressions preserves equality, i.e.
satisfies s

.= t =⇒ Da(s) .= Da(t), for each letter a. Similarly, s
.= t =⇒ E(s) =

E(t).
The Brzozowski coalgebra structure 〈D,E〉: Re → ReA × 2 thus restricts to
〈D,E〉: (Re/ .=) → (Re/ .=)A × 2, making the quotient map [−]: Re � Re/ .=
a homomorphism of coalgebras.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 397

2. If s
.= t then [[s]] = [[t]], i.e. s, t yield the same languages. Hence the diagram (3)

of bialgebras can be further refined by taking images:

R(Re)

μ
��

�� R(Re/ .=)

��

�� R(Lr(A))

��

�� R(L(A))

��
Re

〈D,E〉
��

�� �� Re/ .=

〈D,E〉
��

��
[[−]] �� Lr(A)

��

�� �� L(A)

∼= 〈δ, ε〉
��

ReA × 2 �� (Re/ .=)A × 2 �� Lr(A)A × 2 �� L(A)A × 2

(8)

where Lr(A) is the subset of regular (also called rational) languages obtained as
interpretation [[s]] of a regular expression s.

The completeness result of [24] states that the (restricted) homomorphism [[−]] in
the middle of (8) is an isomorphism, see Theorem 4 below.

Proof. By induction on the length of derivations of
.=. �

The derivative operation D: Re → ReA yields a multiple derivative D�: Re →
ReA�

like in (1). Similarly we get D�: Re/ .=→ (Re/ .=)A�

for expressions modulo
equations. We shall also use the subscript notation in these situations (and drop the
star), so that Dσ(s) = D�(s)(σ) with cases D〈〉(s) = s and Da·σ(s) = Dσ(Da(s)).

Lemma 8. Expressions modulo equations have only finitely many successors: for each
term/state s ∈ Re the set ♦(s) = {Dσ(s) | σ ∈ A�} ⊆ Re/ .= of successors of s in the
coalgebra Re/ .=→ (Re/ .=)A × 2 is finite.

Proof. The basic terms are easy, since ♦(0) = {Dσ(0) | σ ∈ A�} = {0}, ♦(1) =
{1, 0} and ♦(a) = {a, 1, 0}. For the compound terms one first proves the following
equations.

Dσ(s+ t) .= Dσ(s) +Dσ(t)

Dσ(s · t) .= Dσ(s) · t+
∑

τ ·ρ=σ;ρ�=〈〉
E(Dτ (s)) ·Dρ(t)

Dσ(s∗) .= Dσ(1) +Dσ(s) · s∗ +
∑

τ ·ρ=σ;τ,ρ�=〈〉
E(Dτ (s)) ·Dρ(s∗).

These equations are obtained by induction on the length of σ ∈ A�.
If we now write #♦(s) ∈ N for the number of elements of ♦(s), then:

#♦(0) = 1 #♦(s+ t) ≤ #♦(s) · #♦(t)

#♦(1) = 1 #♦(s · t) ≤ #♦(s) · 2#♦(t)

#♦(a) = 3 #♦(s∗) ≤ #♦(s) · 2#♦(s).

Hence we can conclude that each subset ♦(s) ⊆ Re/ .= is finite. �

398 Bart Jacobs

Next we shall define a category in which the Brzozowski automaton on Re/ .= lives.

Definition 3. We write DetAutfb for the category of deterministic automata with finite

behaviour. Objects are coalgebras 〈δ, ε〉:X → XA × 2 such that for each state x ∈ X
the set of successors ♦(x) = {δ�(x)(σ) | σ ∈ A�} ⊆ X is finite. Maps in DetAutfb
are the usual homomorphisms of coalgebras.

(Notice that we leave the set A of inputs implicit in the notation.)

It is not hard to see that if
(
X → XA × 2

) f
�
(
Y → Y A × 2

)
is a surjective

coalgebra homomorphism whereX → XA×2 is in DetAutfb, then so is Y → Y A×2.
The reason is that f(δ�(x)(σ)) = δ�(f(x))(σ), and so ♦(f(x)) ⊆ f [♦(x)]. Hence the
automaton structure Lr(A) → Lr(A)A × 2 from (8) is also in the category DetAutfb,
via the surjection [[−]]: Re/ .=� Lr(A).

A basic property of Kleene algebras is that an inequality x ≥ s · x + t has a least
solution s∗t, via the star rule and via s∗ · t ≥ s ·

(
s∗ · t
)
+ t. Even stronger, the latter is

actually an equality, since s ·
(
s∗ · t
)

+ t
.=
(
s · s∗ + 1

)
· t .= s∗ · t.

This can be generalised to equations in multiple variables, using the standard fact
that square matrices in Kleene algebras form again Kleene algebras, and can be used to
solve equations, see [23, Section 3]. A system of n equations:

xi = si1x1 + · · · + sinxn + ti

has a least solution that can be described as vector S∗ · T where

S =

⎛⎜⎜⎝
s11 · · · s1n

...

sn1 · · · snn

⎞⎟⎟⎠ and T =

⎛⎜⎜⎝
t1
...

tn

⎞⎟⎟⎠
describe the equation as −→x = S · −→x + T and the star operation S∗ is in the Kleene
algebra of n× n matrices.

Definition 4. Let 〈δ, ε〉:X → XA × 2 be an arbitrary coalgebra with finite behaviour
(i.e. an object of DetAutfb). With each state x ∈ X we associate a term �x ∈ Re/ .=
in the following way.

By assumption ♦(x) is finite, say ♦(x) = {x1, x2, . . . , xn} where x1 = x. An
n × n transition matrix Sx = (sij) and an output vector Tx = (ti) over Re/ .= are
constructed with elements

sij =
∑

{a ∈ A | δ(xi)(a) = xj} and ti = ε(xi).

We then take �x ∈ Re/ .= to be the first element of the least solution S∗
x · Tx of the

associated equations. More formally, as vector product, �x = (1 0 . . . 0) · S∗
x · Tx.

The sum
∑

in this definition exists because we have assumed that the alphabetA is
finite. The sum over an empty set is 0, as usual. Notice that the ordering of the elements
in ♦(x) is not relevant.

One can understand S as a big square matrixX×X → Re/ .= defined by (x, x′) (→∑
{a | δ(a)(x) = x′} like in [24]. The matrix Sx in the definition is then the restriction

of S to {x1, . . . , xn} ⊆ X .

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 399

Lemma 9. The mapping x (→ �x is a homomorphism of coalgebras.

Proof. Consider x = x1 ∈ X as in Definition 4. We need to show:

E(�x) = ε(x) and D(�x)(a) = �δ(x)(a).

We notice that the vector of solutions in Re/ .= can be described as
−−→�xi. Hence

�x1 .= s11 · �x1 + · · · + s1n · �xn + ε(x1),

where each sij is a sum of atoms/letters from A. Thus:

E(�x) = E(s11 · �x1 + · · · + s1n · �xn + ε(x1))

=
(
E(s11) ∧ E(�x1)

)
∨ · · · ∨

(
E(s1n) ∧ E(�xn)

)
∨ E(ε(x1))

=
(
0 ∧ E(�x1)

)
∨ · · · ∨

(
0 ∧ E(�xn)

)
∨ ε(x1)

= ε(x1)

D(�x)(a) = D(s11 · �x1 + · · · + s1n · �xn + ε(x1))(a)

= D(s11 · �x1)(a) + · · · +D(s1n · �xn)(a)

= D(s11)(a) · �x1 + E(s11) ·D(�x1)(a) + · · ·+
D(s1n)(a) · �xn + E(s1n) ·D(�xn)(a)

= D(s11)(a) · �x1 + · · · +D(s1n)(a) · �xn
= �xi if δ(x)(a) = xi

= �δ(x)(a). �

By finality this homomorphism �− yields a commuting diagram:

Re/ .=
[[−]]

�� Lr(A) � � �� L(A)

X

�−
��

beh

990000000000000000000000000000000

In particular, when X = Lr(A), we see that �− is a section of [[−]].

Corollary 1. The coalgebra Lr(A) → Lr(A)A × 2 is final in the category DetAutfb.

Proof. Given a coalgebra X → XA × 2 in DetAutfb there is a composition of ho-
momorphisms [[−]] ◦ �− :X → Re/ .=→ Lr(A). If we have two homomorphisms
f, g:X → Lr(A), then by postcomposition with the inclusion Lr(A) ↪→ L(A) we
get two homomorphisms to the final (−)A × 2 coalgebra—which must thus be equal.
Hence also f = g. �

At this stage we can obtain Kleene’s theorem [21], as point 2 below. Point 1 is [31,
Theorem 10.1].

400 Bart Jacobs

Corollary 2. 1. A languageL ∈ L(A) is regular—i.e. belongs to Lr(A) ↪→ L(A)—if
and only if the set of derivatives ♦(L) is finite.

2. A language L ∈ L(A) is regular if and only if it is accepted by a finite automaton
(i.e. an automaton with a finite state space).

Proof. 1. If L ∈ Lr(A), then ♦(L) is finite because Lr(A) is in DetAutfb. Con-
versely, if ♦(L) is finite, then ♦(L) can be considered as a subcoalgebra ♦(L) ↪→
L(A) that belongs to DetAutfb. Hence it factors as ♦(L) ↪→ Lr(A).

2. If L is regular, then ♦(L) is itself a finite automaton (by 1) with initial state L ∈
♦(L) whose behaviour beh(L) ∈ Lr(A) is L itself. Conversely, if L ∈ L(A) is
beh(x) for an initial state x ∈ X of a finite automaton, then ♦(x) is finite, so
L = beh(x) ∈ Lr(A) because Lr(A) is final in DetAutfb. �
The next two lemmas and their proofs are reformulations of results in [24].

Lemma 10. If f :X → Y is a homomorphism in DetAutfb, then �f(x) = �x.

Proof. If ♦(x) = {x1, . . . , xn} where x1 = x, then ♦(f(x)) = {f(x1), . . . , f(xn)}.
The latter set may be smaller than the former. We shall consider the following three
square matrices S, f̂ , Sf : {1, . . . , n}2 → Re/ .=.

Sij =
∑

{a | xi
a−→ xj}(

Sf
)
ij

=
∑

{a | f(xi)
a−→ f(xj)}

(
f̂
)
ij

=

{
1 if f(xi) = f(xj)

0 otherwise.

Then there is an equality of matrix products:(
S · f̂
)
ij

=
∑

k Sik · (f̂)kj

=
∑

{
∑

{a | xi
a−→ z} | z ∈ ♦(x) ∧ f(z) = f(xj)}

=
∑

{a | ∃z ∈ ♦(x). xi
a−→ z ∧ f(z) = f(xj)}

=
∑

{a | f(xi)
a−→ f(xj)}

=
∑

{a | ∃z ∈ ♦(x). f(z) = f(xi) ∧ f(z) a−→ f(xj)}
=
∑

{
∑

{a | f(z) a−→ f(xj)} | z ∈ ♦(x) ∧ f(z) = f(xi)}
=
∑

k(f̂)ik · (Sf)kj

=
(
f̂ · Sf
)
ij
.

Lemma 6 (2) now yields S∗ · f̂ = f̂ · (Sf)∗. If we write T for the vector of elements
ε(xi) = ε(f(xi)), then f̂ · T = T , since(

f̂ · T
)
i

=
∑

k(f̂)ik · Tk =
∑

{ε(xk) | f(xk) = f(xi)}
=
∑

{ε(xi) | f(xk) = f(xi)} = ε(xi) = Ti.

Hence:

�x = (1 0 . . . 0) · S∗ · T = (1 0 . . . 0) · S∗ · f̂ · T
= (1 0 . . . 0) · f̂ · (Sf)∗ · T
= (f̂11, . . . , f̂1n) · (Sf)∗ · T
=
∑

{�f(xi) | f(xi) = f(x1)} = �f(x).

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 401

The last equation holds even though Sf may be “too big” a matrix, describing too
many equations. These additional equations however are repeated equations, which do
not influence the least solution. �

Lemma 11. The homomorphism �−: Re/ .=→ Re/ .= is the identity.

Proof. We first establish the following points.
1. �s ≤ s, for s ∈ Re/ .=;
2. �1 .= 1 and �0 .= 0;
3. s ≤ t implies �s ≤ �t;
4. s ≤ �s.

The first and fourth point then yield the required result.
As to the first point, for s ∈ Re/ .= we obtain �s via the recipe in Definition 4,

namely by considering the successor states/derivatives ♦(s) = {s1, . . . , sn} and the
associated transition matrix. By Lemma 6 these terms s1, . . . , sn satisfy the defining
inequality for �si, so that �si ≤ si, since �si is the least solution.

The term 1 has one successor, namely 0. The associated single equation, following
Definition 4, is x = 1, which has as (least) solution �1 .= 1. Similarly �0 .= 0.

For the third point we consider the productX = Re/ .= ×Re/ .= as state space with
two coalgebra structures 〈D,E1〉, 〈D,E2〉:X → XA × 2, where

D(s, t)(a) = (Da(s), Da(t)) E1(s, t) = E(s) E2(s, t) = E(t).

The projections πi:X → Re/ .= are then homomorphisms from 〈D,Ei〉 to 〈D,E〉.
Hence Lemma 10 applies. Given elements s, t ∈ Re/ .=, let S = S(s,t) be the tran-
sition matrix associated with (s, t) ∈ X , and T1, T2 be the associated output vec-
tors determined by the output functions E1, E2 respectively. Thus, if s ≤ t, then
E1(s, t) ≤ E2(s, t) and similarly for all successors of (s, t)—because D and E are
order preserving. Hence T1 ≤ T2, and thus:

�s = �π1(s, t) = �(s, t) wrt. 〈D,E1〉
= (1 0 . . . 0) · S∗ · T1

≤ (1 0 . . . 0) · S∗ · T2

= �(s, t) wrt. 〈D,E2〉
= �π2(s, t)
= �t.

For the fourth point we proceed like in [24] and prove the stronger statement ∀t ∈
Re. s · �t ≤ �s · t by induction on s. We are then done by taking t = 1, using point 2.

– 0 · �t .= 0 .= �0 .= �0 · t.
– 1 · �t .= �t .= �1 · t.
– �b · t ≥

∑
a∈A a ·Da(�b · t) + E(�b · t) by Lemma 6

.=
∑

a∈A a · �Da(b · t) + E(b · t) by Lemma 9
.= b · �t by point 2.

402 Bart Jacobs

– (s1 + s2) · �t .= s1 · �t + s2 · �t
≤ �s1 · t + �s2 · t by induction hypothesis

≤ �s1 · t+ s2 · t by point 3.
.= �(s1 + s2) · t.

– (s1 · s2) · �t .= s1 · (s2 · �t)

≤ s1 · �s2 · t by induction hypothesis

≤ �s1 · (s2 · t) by induction hypothesis
.= �(s1 · s2) · t.

– Finally, s∗ · �t ≤ �s∗ · t is obtained by applying the star rule to:

�t + s · �s∗ · t ≤ �t + �s · (s∗ · t) by induction hypothesis

≤ �t+ s · (s∗ · t) by point 3.
.= �(1 + s · s∗) · t
.= �s∗ · t by Lemma 6. �

Theorem 4 (Completeness [23,24]). The Brzozowski coalgebra Re/ .=→ Re/ .=A ×2
is final in DetAutfb. Hence the (bialgebra) homomorphism [[−]]: Re/ .=→ Lr(A) is an
isomorphism.

Proof. Each object X → XA × 2 in DetAutfb yields a homomorphism �−:X →
Re/ .= by Lemma 9. Suppose we have two homomorphisms f, g:X → Re/ .=, then by
Lemmas 10 and 11 we have:

f = idRe/
.
= ◦ f (11)= �− ◦ f (10)= �− (10)= �− ◦ g (11)= idRe/

.
= ◦ g = g.

Final object are unique up-to-isomorphism, so the coalgebra homomorphism [[−]] =
beh: Re/ .=→ Lr(A) is an isomorphism by Corollary 1. �

Another way to formulate this result is: Kozen’s axioms and rules give a complete
axiomatisation of bisimilarity for regular expressions. Indeed, for s, t ∈ Re,

s↔ t⇐⇒ beh(s) = beh(t) by Proposition 2

⇐⇒ [[s]] = [[t]] by Theorem 3.(3)

⇐⇒ [s] = [t] by Theorem 4, where [−]: Re � Re/ .=

⇐⇒ s
.= t.

This gives a perfect bialgebraic match, where the equational logic on the algebra-side
completely captures the observational equivalence on the coalgebra-side. Similar such
results occur for instance within a line of work [10] in process algebra.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 403

6 Conclusions

We have illustrated the effectiveness of the bialgebraic approach introduced by Turi and
Plotkin [35] by showing how it neatly connects the elementary and classic structures of
computer science, namely regular expressions, automata and languages. It thus forms a
framework for what we consider to be the essence of computing: generated behaviour
via matching algebra-coalgebra pairs. This framework may even guide developments
in settings which are more complicated and possibly less well-developed, like extended
regular expressions [22], or timed and probabilistic automata and their languages.

Acknowledgements

Thanks are due to Ichiro Hasuo for helpful discussions and for his valuable comments
on the first draft of this paper.

References

1. M.A. Arbib and E.G. Manes. Foundations of system theory: Decomposable systems. Auto-
matica, 10:285–302, 1974.

2. M.A. Arbib and E.G. Manes. Algebraic Approaches to Program Semantics. Texts and
Monogr. in Comp. Sci.,. Springer, Berlin, 1986.

3. J.W. de Bakker and E. Vink. Control Flow Semantics. MIT Press, Cambridge, MA, 1996.
4. M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revised and

corrected version available from URL:
www.cwru.edu/artsci/math/wells/pub/ttt.html.

5. F. Bartels. On generalised coinduction and probabilistic specification formats. Distributive
laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam, 2004.

6. J. Beck. Distributive laws. In B. Eckman, editor, Seminar on Triples and Categorical Ho-
molgy Theory, number 80 in Lect. Notes Math., pages 119–140. Springer, Berlin, 1969.

7. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journ. ACM, 42(1):232–
268, 1988.

8. J.A. Brzozowski. Derivatives of regular expressions. Journ. ACM, 11(4):481–494, 1964.
9. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

10. W. Fokkink. On the completeness of the equations for the Kleene star in bisimulation. In
M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software Technology, number
1101 in Lect. Notes Comp. Sci., pages 180–194. Springer, Berlin, 1996.

11. J.A. Goguen. Minimal realization of machines in closed categories. Bull. Amer. Math. Soc.,
78(5):777–783, 1972.

12. J.A. Goguen. Realization is universal. Math. Syst. Theor., 6(4):359–374, 1973.
13. J.A. Goguen. Discrete-time machines in closed monoidal categories. I. Journ. Comp. Syst.

Sci, 10:1–43, 1975.
14. J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as a con-

gruence. Inf. & Comp., 100(2):202–260, 1992.
15. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Inf.

& Comp., 145:107–152, 1998.
16. B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones, C. Lengauer, and

H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages 83–103.
Kluwer Acad. Publ., 1996.

404 Bart Jacobs

17. B. Jacobs. Exercises in coalgebraic specification. In R. Crole R. Backhouse and J. Gibbons,
editors, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction,
number 2297 in Lect. Notes Comp. Sci., pages 237–280. Springer, Berlin, 2002.

18. B. Jacobs. Distributive laws for the coinductive solution of recursive equations. Inf. & Comp.
204(4), 2006, pages 561–587. Earlier version in number 106 in Elect. Notes in Theor. Comp.
Sci.

19. P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc.,
7:294–297, 1975.

20. M. Kick. Bialgebraic modelling of timed processes. In P. Widmayer et al., editor, Interna-
tional Colloquium on Automata, Languages and Programming, number 2380 in Lect. Notes
Comp. Sci., pages 525–536. Springer, Berlin, 2002.

21. S.C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon
and J. McCarthy, editors, Automata Studies, number 34 in Annals of Mathematics Studies,
pages 3–41. Princeton University Press, 1956.

22. S. Koushik and G. Rosu. Generating optimal monitors for extended regular expressions. In
Runtime Verification (RV’03), number 89(2) in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2003.

23. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Inf. & Comp., 110(2):366–390, 1994.

24. D. Kozen. Myhill-nerode relations on automatic systems and the completeness of Kleene al-
gebra. In A. Ferreira and H. Reichel, editors, Symposium on Theoretical Aspects of Computer
Science, number 2010 in Lect. Notes Comp. Sci., pages 27–38. Springer, Berlin, 2001.

25. S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.
26. M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and co-

pointed endofunctors, monads and comonads. In H. Reichel, editor, Coalgebraic Methods
in Computer Science, number 33 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2000.

27. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theor. Comp. Sci.,
54(2/3):267–276, 1987.

28. D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 1–55. Elsevier/MIT Press, 1990.

29. H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct. in
Comp. Sci., 5:129–152, 1995.

30. J. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorigi and
R. de Simone, editors, Concur’98: Concurrency Theory, number 1466 in Lect. Notes Comp.
Sci., pages 194–218. Springer, Berlin, 1998.

31. J. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata,
and power series. Theor. Comp. Sci., 308:1–53, 2003.

32. J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency. In J.W.
de Bakker, W.P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency, number
803 in Lect. Notes Comp. Sci., pages 530–582. Springer, Berlin, 1994.

33. J.J.M.M. Rutten. Automata, power series, and coinduction: Taking input derivatives se-
riously (extended abstract). In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors,
International Colloquium on Automata, Languages and Programming, number 1644 in Lect.
Notes Comp. Sci., pages 645–654. Springer, Berlin, 1999.

34. D. Turi. Functorial operational semantics and its denotational dual. PhD thesis, Free Univ.
Amsterdam, 1996.

35. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Logic in Computer
Science, pages 280–291. IEEE, Computer Science Press, 1997.

36. T. Uustalu, V. Vene, and A. Pardo. Recursion schemes from comonads. Nordic Journ.
Comput., 8(3):366–390, 2001.

Sheaves and Structures of Transition Systems

Grant Malcolm

Department of Computer Science
University of Liverpool, Liverpool L69 7ZF, UK

Abstract. We present a way of viewing labelled transition systems as
sheaves: these can be thought of as systems of observations over a topol-
ogy, with the property that consistent local observations can be pasted
together into global observations. We show how this approach extends to
hierarchical structures of labelled transition systems, where behaviour is
taken as a limit construction. Our examples show that this is particularly
effective when transition systems have structured states.

1 Introduction

Despite many advances in developing calculi and formal models for concurrent
processes, it is still difficult to reason effectively about large systems, which may
comprise many subcomponents related in intricate ways, and have a correspond-
ingly large state space. It is therefore important to find compositional methods
of specifying, analysing, and reasoning about hierarchical, distributed and con-
current processes based on coherent notions of observation and behaviour.

Goguen [11] has proposed sheaf theory as a semantic foundation for the
study of concurrent and distributed systems. Sheaf theory is concerned with the
transition from local to global properties, and a sheaf can be thought of as a
system of observations made at various locations in a topology, with the key
property that consistent local observations can be uniquely pasted together to
provide a global observation. Thus, the semantics of a distributed system could
be couched in terms of the topology of the system and the local observations
that could be made of its various parts, and the overall, global behaviour of
the system then emerges from the behaviour of its parts. Goguen’s paper builds
upon earlier work on Categorical General Systems Theory [7,8], and together
these papers provide a rich variety of different kinds of systems, including musical
pieces [9,12], that do indeed give rise very naturally to sheaves. The approach has
been used to give semantics to Petri nets by Lilius [16], and to object-oriented
languages, originally by Wolfram and Goguen [25], and also by Ehrich, Goguen
and Sernadas [6], and by Cı̂rstea [4].

Many of the examples of Goguen’s sheaf-theoretic approach use discrete time
as a topology: here, behaviour is observed locally at particular intervals of time,
and the global behaviour is the behaviour over the union of these intervals.
Cı̂rstea’s work also provides a relationship between sheaves on discrete time and
transition systems, and strengthens the arguments for a sheaf-theoretic approach
by showing that transition systems give rise to sheaves: a transition system has

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 405–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

406 Grant Malcolm

an ‘underlying’ sheaf. In this paper we further explore the possibility of using
sheaf theory to provide a semantic foundation for distributed concurrent sys-
tems, by exploring their relationship to labelled transition systems. We present
an adjunction that provides translations between labelled transition systems and
sheaves on a topology of traces, i.e., prefix-closed sets of words over the alphabet
of labels. However, our main interest is in systems built from subcomponents.
We show that the adjunction extends to hierarchically structured transition sys-
tems by using a principle from Goguen’s Categorical Systems Theory: behaviour
is limit. Although colimits are also used to model ways of combining concurrent
processes (see, e.g., [22]), we would suggest that for processes with a structured
notion of state, limits provide the most useful ways of combining systems. In-
deed, the limit constructions we consider provide ways of structuring states. The
following section contains some examples; see also [17]. As a consequence of the
emphasis that we place on states, we are less interested in notions such as bisim-
ulation. We show that the adjunction between transition systems and sheaves
extends to hierarchical systems, and that the translation from transition systems
to sheaves preserves limits and, hence, behaviour.

We assume familiarity with basic notions from category theory: functor, nat-
ural transformation, limit and adjunction (see [10,1] for introductions).

This paper is dedicated with great affection to Joseph Goguen on his sixty
fifth birthday. I had the privelege and pleasure of working as a research assistant
with Joseph for several years; I can think of no better apprenticeship for a
computer scientist. His wealth of ideas and breadth of vision were stimulating
and inspirational, and I am delighted to dedicate this to him as inspiration,
teacher, and friend.

2 Transition Systems and Sheaves

The following subsections review labelled transition systems and sheaves, and
presents an adjunction between them. We begin by recalling some basic defini-
tions concerning labelled transition systems, which we generalise to allow tran-
sitions to take labels in an arbitrary monoid.

2.1 Transition Systems

Definition 1. A labelled transition system over L is a pair (T, (−→), where
T is a set of states, and (−→ ⊆ T×L×T is the transition relation. We write
t

l(−→ t′ for (t, l, t′) ∈ (−→, and we will usually refer to a transition system (T, (−→)
simply as T . A pointed transition system is a transition system T with a
distinguished initial state t0 ∈ T .

A morphism of transition systems over L (T1, (−→1) → (T2, (−→2) is a func-
tion f : T1 → T2 such that if t l(−→1 t

′ then f(t) l(−→2 f(t′); a morphism of pointed
transition systems in addition maps the initial state to the initial state.

Sheaves and Structures of Transition Systems 407

When there is no risk of confusion, we will drop subscripts and decorations on
the arrow ‘(−→’, and simply write, for example, ‘if t l(−→ t′ then f(t) l(−→ f(t′).’

Note that there is another common definition of morphism in the literature
(see, e.g., [23,22]), whereby morphisms ‘lift’ transitions, in the sense that for a
morphism f : T1 → T2, if f(t) l(−→ t′ in T2, then there is some t1 ∈ T1 such that
t

l(−→ t1 in T1 and f(t1) = t′. This definition is particularly useful in studying
bisimulation, but since that is beyond the scope of the present paper, we use the
simpler definition above.

Example 1. Any subset S ⊆ L∗ of lists over L gives rise to a transition system
(S, (−→), where w l(−→w′ iff w′ = wl. For example, take S = {ε, a, aa, ab} ⊆
{a, b}∗, where ε is the empty list. Then we have ε a(−→ a, a a(−→ aa, and a b(−→ ab,
describing a simple transition system with a ‘fork’ at state a. Any morphism
f : (S, (−→) → (T, (−→) describes a similarly forking path (or run) in T : both

f(ε) a(−→ f(a) a(−→ f(aa) and

f(ε) a(−→ f(a) b(−→ f(ab)

The following is an example that we will refer to later on in Section 3, where
we consider hierarchical structures of transitions systems.

Example 2. Consider a coffee dispenser that dispenses coffee only after payment
has been received. Later on, we will see an example concerning a coin slot that
accepts payment; for the moment we simply assume a boolean value that says
whether or not payment has been received. The states of the coffee dispenser are
pairs consisting of a boolean value and a number between 0 and 20, indicating
the level of coffee available; that is, the state set is Bool×{0..20}.

There are three labels for transitions: d for dispensing coffee, n for notification
that payment has been received, and r for refilling. Transitions are described
exhaustively as follows:

– (true,N) d(−→ (f alse,N − 1) for all 0 < N ≤ 20,
– (f alse,N) n(−→ (true,N) for all 0 ≤ N ≤ 20, and
– (B,N) r(−→ (B, 20) for all B ∈ Bool and all 0 ≤ N ≤ 20.

Any transition system over L extends to a transition system over L∗ with

t
ε(−→ t′ iff t = t′

t
wl(−→ t′ iff t w(−→ t′′ and t′′ l(−→ t′ for some t′′ .

That is, transitions can be freely extended to paths of transitions. We can use
this to provide a slightly more general notion of transition system that takes
labels in a monoid.

408 Grant Malcolm

Definition 2. Let M = (M, ·, ε) be a monoid (we generally write mm′ in place
of m · m′); we say m is a prefix of m′, and write m ≤ m′, iff m′ = mn for
some n ∈ M , and we say that a subset X ⊆ M is prefix-closed iff x ≤ y and
y ∈ X implies x ∈ X. We write Ω(M) for the set of all prefix-closed subsets of
M (including M itself), and for m ∈M , we write m↓ for the set of all prefixes
of m (including m itself)

A labelled transition system over M is a pair (T, (−→), with (−→ ⊆
T×M×T such that

t
ε(−→ t′ iff t = t′

t
mn(−→ t′′ iff t m(−→ t′ and t′ n(−→ t′′ for some t′ ∈ T .

A morphism f : (T, (−→) → (T ′, (−→) of transition systems over M is a function
f : T → T ′ such that t m(−→ t′ implies f(t) m(−→ f(t′). This gives a category LTSM
of transition systems over M.

We usually refer to a labelled transition system (T, (−→) simply as T .

In the sequel, we will be interested in transition systems that are built from
other transition systems by taking limits. For the present, we note

Proposition 1. The category LTSM is complete.

Limits are constructed from limits of the underlying state sets; we will see
some examples in Section 3.

2.2 Sheaves

Sheaf theory is used in many branches of mathematics, the underlying theme in
its various applications being the passage from local to global properties [13].
It provides a formal notion of coherent systems of observations: a number of
consistent observations of various aspects of an object can be uniquely pasted
together to give an observation over all of those aspects. The passage from local
to global properties, and the pasting together of local observations of behaviour
allow sheaf theory to be usefully applied in computer science, to give models
for concurrent processes [19,5,16] and objects [11,6,25,4,17]. We give a basic
definition of ‘sheaf’ below; fuller accounts can be found in [21,15].

We may consider a sheaf as giving a set of observations of an object’s be-
haviour from a variety of ‘locations’. The notion of location is formalised by the
following

Definition 3. A complete Heyting algebra is a partially ordered set (C,≤)
such that:

• for all c, d ∈ C, there is a greatest lower bound c ∧ d
• for all subsets {ci | i ∈ I} of C, there is a least upper bound

∨
i∈I ci

• greatest lower bounds distribute through least upper bounds:

(
∨
i∈I

ci) ∧ d =
∨
i∈I

(ci ∧ d) .

Sheaves and Structures of Transition Systems 409

For example, any topological space with the inclusion ordering between open sets
is a complete Heyting algebra; also, any complete lattice is a complete Heyting
algebra. In particular, the set of prefix-closed subsets of a monoid, Ω(M), is a
complete Heyting algebra.

Like any preorder, a complete Heyting algebra C can be seen as a category;
in particular, the opposite category Cop has the elements of the set as objects,
and a unique arrow from c′ to c precisely when c ≤ c′.

Definition 4. Let C be a complete Heyting algebra; a presheaf F on C is a
functor from Cop to Set. That is, for each c ∈ C there is a set F (c), and for
c, d ∈ C such that c ≤ d, there is a restriction function Fc≤d : F (d) → F (c),
subject to the following conditions:

• Fc≤c = idF (c), the identity on the set F (c); and
• if c ≤ d ≤ e, then Fd≤e;Fc≤d = Fc≤e.

Notation 1 For a presheaf F on C, if c ≤ d in C and x ∈ F (d), we often write
x|̀c for Fc≤d(x).

A sheaf is a presheaf which allows families of consistent local observations to
be pasted together to give a global observation.

Definition 5. A presheaf F is a sheaf iff it satisfies the following pasting
condition:

• if c =
∨

i∈I ci and xi ∈ F (ci) is a family of elements for i ∈ I such that
xi |̀ci∧cj = xj |̀ci∧cj for all i, j ∈ I, then there is a unique x ∈ F (c) such that
x|̀ci = xi for all i ∈ I.

A morphism of sheaves θ : F → G is just a natural transformation from F to G
viewed as presheaves.

We write ShM for the category of sheaves over Ω(M), where M is a monoid.

Given θ : F → G, naturality of θ says that θ respects restrictions: given
Y ≤ X , and e ∈ F (X),

θY (e|̀Y) = θX(e)|̀Y .

Example 3. For S ⊆M , if we write Ω(S) for the prefix-closed subsets of S, then
Ω is a sheaf over Ω(M); given an inclusion X ⊆ Y of prefix closed sets, then
ΩX⊆Y takes V ⊆ Y (i.e., V ∈ Ω(Y)) to V ∩X ⊆ X (i.e., V ∩X ∈ Ω(X)).

Example 4 (Eventually φ). Let T be a pointed transition system on L∗ with a
distinguished initial state t0 ∈ T , and a subset of states φ ⊆ T . The functor
-φ : Ω(L∗) → Set defined by

-φ(X) =
∏

w∈X

{p : w↓ → T | p(ε) = t0 ∧
(∃w′ ∈ L∗, p′ : w′↓ → T)w ≤ w′ ∧ p′ |̀w↓ = p

∧ p′(w′) ∈ φ}

is a sheaf.

410 Grant Malcolm

We will look in more detail at limits in Section 3; again we note

Proposition 2. The category ShM is complete.

Limits are constructed pointwise from limits in Set. For example, given
sheaves F and G, their product F×G is defined by F×G(X) = F (X)×G(X).

2.3 An Adjunction Between Transition Systems and Sheaves

We present a translation from transition systems to sheaves, and a translation
from sheaves to transition systems. The main result of this section is that these
translations form an adjunction.

Given a transition system T , we construct a sheaf from T by considering
sets of paths in T , as in Example 1. Recall that a (forking) path in T was just
a transition system morphism f : X → T for some X ∈ Ω(M). If we have
f1 : X1 → T and f2 : X2 → T such that f1 |̀X1∩X2 = f1 |̀X1∩X2 , then clearly these
functions can be uniquely pasted to give a morphism, or path, X1∪X2 → T .

Definition 6. The functor ShM : LTSM → ShM is defined by, for a prefix-
closed subset X ∈ Ω(M)

ShM(T)(X) = LTSM(X,T) .

Note that, because every X ∈ Ω(M) is a transition system, LTSM(, T) is a
functor Ω(M)op → Set, and so this definition also applies for morphisms (i.e.,
inclusions) in Ω(M). That is, restriction in ShM(T) is restriction of paths.

For f : T → U in LTSM, the natural transformation

ShM(f) : ShM(T) → ShM(U)

is defined by saying that for each X ∈ Ω(M), the component ShM(f)X takes a
T -path h : X → T to the U - path h; f : X → U . This is in fact the action of
the functor LTSM(X,) on f , and naturality of ShM(f) is a consequence of this
fact.

Going the other way, we represent a sheaf by its set of ‘elements’ (m, e), where
m ∈ M and e ∈ F (m↓). transitions on these states are given by the restriction
actions of F .

Definition 7. The functor Tr : ShM → LTSM is defined by

TrM(F) =
∑

m∈M

F (m↓) .

Transitions in this system are defined by (m, e) n(−→ (m′, e′) iff m′ = mn and
e′ |̀m↓ = e. For natural transformations θ : E → F in ShM,

TrM(θ) : TrM(E) → TrM(F)

takes (m, e) ∈ TrM(E) to (m, θm↓(e)) ∈ TrM(F).

Sheaves and Structures of Transition Systems 411

Our main result of this section is that ShM gives the ‘underlying’ sheaf of a
transition system.

Theorem 1. TrM is left adjoint to ShM.

Proof. The unit of the adjunction is given by ηF : F → ShM(TrM(F)), which,
for X ∈ Ω(M), takes e ∈ F (X) to the path mapping x ∈ X to (x, e|̀x↓). For
any transition system T , a morphism h : F → ShM(T) uniquely extends to
h� : TrM(F) → T , which takes (m, e) ∈ TrM(F) to hm↓(e)(m).

This generalises a result of Winskel that gives an adjunction between standard
transition systems and presheaves [3]. The adjunction applies more to presheaves
than to sheaves. A further twist can be given by considering pointed transition
systems. Let F be a sheaf, then TrM(F) can be made a pointed transition system
by designating (ε, ∗) as initial state, where ∗ is the unique element of F ({ε}).
Since morphisms of pointed transition systems preserve initial states, and if we
take ShM(TrM(F))(X) to be the set of pointed transition system morphisms
from X (with initial state ε) to TrM(F), then any such morphism corresponds
uniquely to a consistent family of elements em↓ ∈ F (m↓) for m ∈ X , which,
since F is a sheaf, corresponds uniquely to an element e ∈ F (X). Thus, if we
specialise the above adjunction to pointed transition systems, the unit of the
adjunction is an isomorphism.

In the next section, we look at how behaviour of composite systems arises
through limit constructions. Since ShM is a right adjoint, our translation from
transition systems to underlying sheaves preserves limits, and therefore, be-
haviour:

Corollary 1. ShM preserves limits.

3 Hierarchical Systems

In this section we explore the notion of behaviour as limit for transition systems
built from component parts. We start by allowing transition systems to vary over
the monoids of their labels, and extend the completeness results of the previous
section to this setting. Correspondingly, we also introduce morphisms between
the ‘trace’ topologies of sheaves, and extend the adjunction of Theorem 1 to
hierarchically structured transition systems.

We give an example based on the coffee dispenser of Example 2, which shows
that the appropriateness of limits as giving behaviour of composite systems
depends, to some extent, on our ‘state-based’ approach to transition systems.

Finally, we use a generalisation of the notion of sheaf to show that the notion
of behaviour as limit is, in itself, sheaf-theoretical.

We begin by noting that the category Mon of monoids and monoid homo-
morphisms is complete. Limits of monoid homomorphisms capture the notion of
synchronisation on actions.

412 Grant Malcolm

Example 5. The pullback of fi : Mi → M (i = 1, 2) is the monoid with under-
lying set {(x1, x2) ∈M1×M2 | f1(x1) = f2(x2)}, unit ε = (ε, ε) and composition
defined by (x1, x2)(y1, y2) = (x1y1, x2y2), together with first and second projec-
tions to M1 and M2 respectively.

As a particular example, let M = {c}∗, M1 = {a, b, c}∗ and M2 = {c, d}∗,
with f1(a) = f1(b) = ε = f2(d), and f1(c) = c = f2(c). Then the pullback
contains all pairs (x, y) in {a, b, c}∗×{c, d}∗ where x and y contain the same
number of c’s.

We can think of the monoid homomorphisms as taking a sequence of actions
in some system Mi and ‘restricting’ them to a sequence of actions in a subsystem
M. In the particular pullback described above, the common subsystem M has
only one action, c. We can think of these ‘words’ as expressing sequences of
actions where the action of c is synchronised in M1 and M2.

Also note that

(a b c, d c d) = (ε, d) (a b, ε) (c, c) (ε, d) = (a b, ε) (ε, d) (c, c) (ε, d)

so unsynchronised actions from different components can occur in any order.

3.1 Behaviour as Limit

We begin by considering morphisms between transition systems over different
label monoids.

Definition 8. The category LTS has objects (M, T), where M is a monoid, and
T is a labelled transition over M. A morphism φ : (M, T) → (M′, T ′) is a pair
φ = (f, g), with f : M → M′ a monoid homomorphism, and g : T → T ′ such

that if t m(−→ t′, then g(t)
f(m)(−→ g(t′).

Again, these morphisms can be thought of as expressing a restriction to a
subsystem.

Example 6. Recall the coffee dispenser of Example 2 as a transition system over
M = {d, n, e}∗. We give an example of a morphism from the coffee dispenser to
a simple coin slot that can accept coins. The state set of the coin-slot transition
system is Bool, indicating whether a coin has been inserted. There are two labels
for transitions: c for a coin being inserted, and e for ending a transaction (the
coffee is dispensed and the coin chinks into the money box). The transitions are
defined exhaustively by:

– f alse c(−→ true
– true e(−→ f alse

We describe a morphism from the coffee dispenser to the coin slot. The monoid
homomorphism on labels is defined by

d (→ e

n (→ c

r (→ ε

Sheaves and Structures of Transition Systems 413

and the mapping from the state of the coffee dispenser (Bool×{0..20}) to that
of the coin slot (Bool) is just the first projection. It is straightforward to check
that these maps preserve transitions; for example, in the coffee dispenser,

(true,N) d(−→ (f alse,N − 1)

for all 0 < N ≤ 20, which translates to true e(−→ f alse in the coin slot.

In this example, we think of the coffee dispenser as actually comprising a
coin slot as a subsystem. This is perhaps somewhat unnatural; a more realistic
description might have both the coffee dispenser and the coin slot sharing a
common subcomponent (essentially just the boolean value of the example above).
We hope that the familiarity of this example to readers will make them more
disposed to indulge such simplifications.

The case of two systems sharing a common subcomponent is treated in the
next example, which illustrates

Proposition 3. The category LTS is complete.

Limits are taken componentwise, consisting of a limit of monoids, together
with a limit of the associated transition systems.

We saw in Example 6 how a morphism from a coffee dispenser to a coin slot
expressed the idea that the coin slot was a subcomponent of the coffee dispenser,
so that coffee was only dispensed after a coin had been put in the slot. We first
present another morphism from a money box to the coin dispenser (so that coins
put in the slot eventually end up in the money box), and then show how the
limit of these two morphisms behaves.

Example 7. A money box with a coin slot as a subcomponent can be specified as
having states that are pairs whose first component is a boolean value, specifying
whether there is a coin in the slot, and whose second component is a natural
number specifying how many coins are in the money box.

Transitions are labelled by c for a coin entering the slot, t for the coin being
taken from the slot to the money box, and m for all the money being taken out
of the box. Transitions are defined exhaustively by

– (f alse,N) c(−→ (true,N) for all N ≥ 0,
– (true,N) t(−→ (f alse,N + 1) for all N ≥ 0, and
– (B,N) m(−→ (B, 0) for all N ≥ 0 and B ∈ Bool.

The monoid homomorphism to the coin slot is given by

c (→ c

t (→ e

m (→ ε

and the first projection (B,N) (→ B gives the mapping on states.

414 Grant Malcolm

We now have two mappings to the coin slot, indicating that this is a subobject
of both the coffee dispenser and the money box:

CD MB

CS

�
�

��

�
�

�	
(f1, g1) (f2, g2)

The limit of the monoid morphisms gives a label monoid of

{(u, v) ∈ {d, n, r}∗×{c, t,m}∗ | f1(u) = f2(v)} (1)

Since the coffee dispenser and money box synchronise on coins entering and
leaving the coin slot, this requires every d (dispense coffee) to be paired with a t
(take the coin), and every n (notify there’s a coin in the slot) to be paired with
a c (coin in the slot). Thus, the pullback monoid of labels is effectively the same
as lists over {dt, nc, r,m}, but where occurrences of r and m (the unsynchronised
actions) commute (dt represents the synchronized event of coffee being dispensed
and the coin being taken from the slot, i.e., dt = (d, t), while nc represents the
synchronised events of a coin being put in the slot and the coffee dispenser
notified of this) i.e., nc = (n, c); for example:

nc r m dt m = nc m r dt m

are equal because it does not matter what order unsynchronised events occur
in — if you like, they occur in separate frames of reference with no notion of
simultaneity applying. Both sequences represent a coin being put into the slot,
then the machine being refilled and its money box emptied (in either order, or
even ‘at the same time’), then coffee being dispensed, and then the money box
being emptied once again.

The state set of the limiting transition system is

{(b, x, b′, y) ∈ Bool×{0..20}×Bool×N at | g1(b, x) = g2(b′, y)} .

Since in this case both g1 and g2 are the first projection, the requirement is simply
that b = b′. In other words, the state of the common coin-slot subcomponent
is shared by the coffee dispenser and the money box. Any changes in the coin
slot’s state must occur in both the coffee dispenser and the money box.

This synchronisation on a shared subcomponent is again reflected in the
transitions of the limiting transition system: essentially, a label (u, v) as in (1)
represents a u-transition on the coffee-dispenser part together with a v-transition
on the money box part. Formally,

(b, x, b, y)
(u,v)(−→ (b′, x′, b′, y′) iff (b, x) u(−→ (b′, x′) and (b, y) v(−→ (b′, y′)

For example,

(true, x, true, y) dt(−→ (f alse, x− 1, f alse, y + 1)

Sheaves and Structures of Transition Systems 415

for 0 < x ≤ 20 and y ≥ 0, represents coffee being dispensed and the coin being
taken from the coin slot to the money box.

3.2 Sheaves of Hierarchical Systems

We extend the relationship described in Section 2 between transition systems
and sheaves to the hierarchical systems described in the previous subsection.
This gives a much more interesting notion of topology that arises from the way
a hierarchical system is composed from its subcomponents. By ‘more interesting’,
we mean that such a topology gives a more realistic notion of location at which to
observe a system. We conclude by observing that the behaviour-as-limit approach
to hierarchical systems naturally gives rise to sheaves on such a topology.

We begin by showing that monoid homomorphisms allow a translation be-
tween topologies Ω(M).

Definition 9. A monoid homomorphism f : M → M′ extends to a mapping
Ω(f) : Ω(M) → Ω(M′) defined by

Ω(f)(X) = {y ∈M | y ≤ f(x) for some x ∈ X} .

That is, Ω(f)(X) is the prefix-closure of the image f(X).
The morphism also extends, contravariantly, to a functor ShM′ → ShM,

which we also denote Ω(f), defined by

Ω(f)(G)(X) = G(Ω(f)(X))

for a sheaf G on Ω(M′).

Now we can define morphisms between sheaves on different trace topologies.
Corresponding to the category LTS, we have a category Sh, where, intuitively,
morphisms correlate to restrictions to subsystems.

Definition 10. The category Sh has objects (M, F), where M is a monoid, and
F is a sheaf on Ω(M). A morphism (M, F) → (M′, F ′) is a pair (f, θ), where
f : M → M′ is a monoid homomorphism, and θ : F → Ω(f)(F ′).

Given (f, θ) : (M1, F1) → (M2, F2) and (g, κ) : (M2, F2) → (M3, F3), the
composite (f, θ); (g, κ) is (f ; g, θ;κΩ(f)) : (M1, F1) → (M3, F3). To make sense
of the second component, note that for X ∈ Ω(M1),

θX : F1(X) → Ω(f)(F2)(X) = F2(Ω(f)(X))

and

κΩ(f)(X) : F2(Ω(f)(X)) → Ω(g)(F3)(Ω(f)(X)) = F3(Ω(f ; g)(X))

This is an example of a Grothendieck category, with the following consequence
(see, e.g., [20]):

416 Grant Malcolm

Theorem 2. The functor ShM extends to a functor Sh : LTS → Sh, taking
(M, T) to (M,ShM(T)); also, TrM extends to Tr : Sh → LTS taking (M, F)
to (M,TrM(F)). Moreover, Tr is left adjoint to Sh.

As a corollary, since Sh is a right adjoint, it preserves limits, and therefore
preserves the behaviour of a composite system constructed by taking limits, as
in Example 7. We might use this to verify a property such as the ‘eventually-φ’
property of Example 4 by constructing an element of -φ(X) by showing that
every word w ∈ X can be extended to a path ending in a state where φ holds.
However, this Ω(M) topology really only says that the branching behaviour of
a transition system arises by pasting together linear paths w↓ → T . A more
powerful approach to capturing global properties through local properties would
be to construct sheaves on a topology representing the hierarchical structure of
a composite system. Such topologies can arise through downwards-closure.

Let X be a preorder category, with a unique morphism x → y whenever
x ≥ y. For example, X might have objects 0, 1 and 2, with 0 ≤ 1 and 0 ≤ 2, and
a functor δ : X → LTS, for example, would then represent two transition systems
with a shared subcomponent. The completion Ω(X) of downward-closed subsets
of X, in this example, looks like

{0, 1, 2}
�

�
�	

�
�

��
{0, 1} {0, 2}

{0}
�
∅

�
�

��

�
�

�	

which represents all of the parts of the system: downwards-closure means that
subcomponents are always included in a ‘part’. Note that the example shows that
moving from X to Ω(X) is very like moving from the basis of a pullback diagram
to a pullback diagram. The top element that is added, {0, 1, 2}, corresponds to
the limit, i.e., to the behaviour of the entire system, while {0, 1} corresponds
to the system on the left, together with its ‘component’, 0. In Example 7, this
latter would be the coffee dispenser with its component coin slot.

Rather than extend the machinery of the previous sections to sheaves on
topologies Ω(X), we conclude by showing that the notion of behaviour as limit
is itself sheaf-like. For this, we need a generalisation of the notion of sheaf that
seems to be due to Gray (cf. [14], Chapter 18), and allows for sheaves that take
values in categories other than Set:

Sheaves and Structures of Transition Systems 417

Definition 11. A sheaf with values in a category L is a functor F from a com-
plete Heyting algebra to L such that if X =

∨
i∈I Xi, then

F (X) −→
∏
i∈I

F (Xi)−→−→
∏

i,j∈I

F (Xi ∧Xj)

is an equaliser diagram (where all the arrows arise from the obvious restrictions
by the universal property of the target product).

The universal property of the equaliser diagram expresses that consistent families
of ‘elements’ can be uniquely pasted together: a unique arrow to F (X) arises from
an arrow to

∏
i∈I F (Xi) that equalises the parallel arrows, that is, ‘elements’ of

each F (Xi) that agree on overlaps Xi ∧Xj.
The following follows directly from general properties of limits:

Proposition 4. Let X be a preorder category, and let δ : X → LTS. Define
δ∗ : Ω(X) → LTS by δ∗(X) = lim(δ|̀X); then δ∗ is a sheaf of transition systems.

This states that the behaviour of a composite system arises by pasting to-
gether the behaviours (i.e., limits) of its components. We could combine this
with Theorem 2 to obtain that δ∗;Sh is a sheaf of sheaves: the behaviour of a
composite system arises by pasting together consistent paths through its compo-
nent parts. We might thus, for example, verify that particular paths are possible
globally by verifying that their restrictions to subcomponents are possible locally.

We can also show that the approach goes beyond an interleaving model
of concurrency. One attempt to capture asynchronous or ‘true concurrency’ is
Winskel and Nielsen’s notion [24] of transition systems with independence; these
are transition systems with a relation, |, on transitions, which specifies inde-
pendence between transitions (e.g., they can occur truly concurrently). Such an
independence relation is required to satisfy:

t
m(−→ t1 ∼ t

m(−→ t2 ⇒ t1 = t2

t
m(−→ t1 | t n(−→ t2 ⇒ (∃u) t m(−→ t1 | t1 n(−→u ∧ t n(−→ t2 | t2 m(−→u

t
m(−→ t1 | t1 n(−→u⇒ (∃t2) t m(−→ t1 | s n(−→ t2 ∧ t n(−→ t2 | t2 m(−→u

t
m(−→ t1 ∼ t2

m(−→u | w n(−→w′ ⇒ t
m(−→ t1 | w n(−→w′

where ∼ is the equivalence relation freely generated by ≺, which is defined by
t

m(−→ t1 ≺ t2
m(−→u iff there is an n with t

m(−→ t1 | t n(−→ t2, t
m(−→ t1 | t1 m(−→u

and t
n(−→ t2 | t2 n(−→u. We can give a simpler characterisation of independence

for sheaves of transition systems. Suppose F is a sheaf of transition systems on
Ω(X), as in the example above, then transitions t1

m(−→ t′1 and t2
n(−→ t′2 in the

limit are independent iff m|̀{0,1} = ε and n|̀{0,2} = ε (or vice-versa w.r.t. 1 and
2). That is, transitions are independent iff they are local to separate parts of the
system. More generally, given C = C1∪C2, transitions at F (C) are independent
iff one restricts to ε at C1 and the other restricts to ε at C2.

Proposition 5. Independence of transitions for sheaves gives transition systems
with independence in the sense of Winskel and Nielsen [24].

418 Grant Malcolm

4 Conclusion

We have presented an adjunction between transition systems and sheaves on
a topology of traces. The functor from transition systems to sheaves is right
adjoint, and therefore preserves limits, which we consider to be the behaviour of
hierarchical systems of transition systems.

The eventual aim of this work (from which we are still a long way off) is to
provide semantic foundations for reasoning about hierarchical, distributed con-
current systems. Of paramount importance in such an endeavour are coherent
notions of behaviour and observation. In this paper we have adopted the prin-
ciple that the behaviour of composite, hierarchical, systems is given by a limit,
and our results add to the argument [19,11] that viewing sheaves as systems of
observations is coherent with the notion of behaviour as limit. As the examples
in this paper illustrate, the notion of behaviour as limit leads to a more ‘state-
based’ view of transition systems. Often, states in transition systems are viewed
as little more than ‘place holders’ between transitions; there are advantages to
such an approach, indeed it is almost necessary for process calculi and the study
of bisimulation, and one area for future work is to relate the state-based approach
to these established and successful fields.

Labelled transition systems are one of the fundamental structures in concur-
rency, and this paper establishes some relationships between transition systems
and sheaves. It seems quite possible to further develop this, and relate sheaves
usefully to other fundamental structures. To some extent, this has already been
done, for example Monteiro and Pereira [19] consider event systems, Ehrich et
al [6] and Goguen [11] apply sheaf-theoretic machinery to concurrent object sys-
tems, while Monteiro [18] applies related concepts to coalgebra. These all seem
to be quite separate threads of development, and it would be instructive to find
some means of drawing them together. One possibility lies in Lawvere’s notion
of ‘control category’, which determines a structure on observations, and is used
by Bunge and Fiore [2] to give a general framework for considering concurrent
processes.

References

1. Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice
Hall, 1990.

2. Marta Bunge and Marcelo Fiore. Unique factorization lifting functors. Journal of
Pure and Applied Algebra, 2002.

3. Gian Luca Cattani and Glynn Winskel. Presheaf models for concurrency. In Com-
puter Science Logic: Tenth international Workshop, CSL’96, Annual Conference of
the EACSL. Selected Papers, number 1258 in Lecture Notes in Computer Science,
pages 58–75. Springer-Verlag, 1997.

4. Corina Ĉırstea. A distributed semantics for FOOPS. Technical Report PRG-TR-
20-95, Programming Research Group, University of Oxford, 1995.

5. Rakesh Dubey. On a general definition of safety and liveness. Master’s thesis,
School of Electrical Engineering and Comp. Sci., Washington State Univ., 1991.

Sheaves and Structures of Transition Systems 419

6. Hans-Dieter Ehrich, Joseph A. Goguen, and Amı́lcar Sernadas. A categorial theory
of objects as observed processes. In J.W. de Bakker, Willem de Roever, and Gregorz
Rozenberg, editors, Foundations of Object Oriented Languages. Springer-Verlag
Lecture Notes in Computer Science 489, 1991.

7. Joseph A. Goguen. Mathematical representation of hierarchically organised sys-
tems. In E. O. Attinger, editor, Global Systems Dynamics, pages 111–129.
S. Karger, 1970.

8. Joseph A. Goguen. Objects. International Journal of General Systems, 1:237–243,
1975.

9. Joseph A. Goguen. Complexity of hierarchically organized systems and the struc-
ture of musical experiences. Int. Journal of General Systems, 3:233–251, 1977.

10. Joseph A. Goguen. A categorical manifesto. Mathematical Structures in Computer
Science, 1(1):49–67, 1991.

11. Joseph A. Goguen. Sheaf semantics for concurrent interacting objects. Mathemat-
ical Structures in Computer Science, 11:159–191, 1992.

12. Joseph A. Goguen. Musical qualia, context, time, and emotion. Journal of Con-
sciousness Studies, 11:117–147, 2004.

13. John Gray. Fragments of the history of sheaf theory. In M.P. Fourman, C.J.
Mulvey, and D.S. Scott, editors, Applications of Sheaves. Springer-Verlag Lecture
Notes in Mathematics 753, 1980.

14. Joachim Lambek and Philip J. Scott. Introduction to Higher Order Categorical
Logic. Cambridge University Press, 1986. Cambridge Studies in Advanced Math-
ematics, Volume 7.

15. Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer-
Verlag, 1992.

16. Johan Lilius. A sheaf semantics for Petri nets. Technical Report A23, Dept. of
Computer Science, Helsinki University of Technology, 1993.

17. Grant Malcolm. Interconnection of object specifications. In Stephen Goldsack and
Stuart Kent, editors, Formal Methods and Object Technology. Springer Workshops
in Computing, 1996.

18. Lúıs Monteiro. Observation systems. Electronic Notes in Theoretical Computer
Science, 33, 2000.

19. Lúıs Monteiro and Fernando Pereira. A sheaf-theoretic model of concurrency. In
Proc. Logic in Computer Science (LICS ’86). IEEE Press, 1986.

20. Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some fundamental algebraic
tools for the semantics of computation, part 3: Indexed categories. Theoretical
Computer Science, 91:239–264, 1991.

21. B.R. Tennison. Sheaf Theory, volume 20 of London Mathematical Society Lecture
Notes. Cambridge University Press, 1975.

22. G. Winskel and W. Nielsen. Models for concurrency. Technical Report DAIMI PB
– 463, Computer Science Department, Aarhus University, 1993.

23. Glynn Winskel. A compositional proof system on a category of labelled transition
systems. Information and Computation, 87:2–57, 1990.

24. Glynn Winskel and Mogens Nielsen. Models for concurrency. In Samson Abramsky,
editor, Handbook of Logic and the Foundations of Computer Science, volume 4.
Oxford University Press, 1995.

25. David A. Wolfram and Joseph A. Goguen. A sheaf semantics for FOOPS ex-
pressions (extended abstract). In M. Tokoro, O. Nierstrasz, P. Wegner, and
A. Yonezawa, editors, Proceedings of the ECOOP’91 Workshop on Object-Based
Concurrent Computing, pages 81–98. Springer-Verlag Lecture Notes in Computer
Science 612, 1992.

Uniform Functors on Sets

Lawrence S. Moss

Mathematics Department
Indiana University

Bloomington IN 47405 USA

Dedicated to Joseph Goguen on his 65th birthday

Abstract. This paper studies uniformity conditions for endofunctors
on sets following Aczel [1], Turi [21], and others. The “usual” functors
on sets are uniform in our sense, and assuming the Anti-Foundation
Axiom AFA, a uniform functor H has the property that its greatest
fixed point H∗ is a final coalgebra whose structure is the identity map.
We propose a notion of uniformity whose definition involves notions from
recent work in coalgebraic recursion theory: completely iterative monads
and completely iterative algebras (cias). Among our new results is one
which states that for a uniform H , the entire set-theoretic universe V is
a cia: the structure is the inclusion of HV into the universe V itself.

1 Introduction

I have considered Joseph Goguen to be one of my main teachers for many years.
My first encounter with him was in an undergraduate course in the theory of
computation given at UCLA around 1979. What I remember most is that se-
rious students had to both write research papers and take an oral final exam,
and looking back I see it as both a didactic move and a way to take seriously
the thoughts of students. After hearing of my interests in mathematics and lin-
guistics, he suggested that I write on representing inexact concepts in Montague
grammar, thereby mixing topics that he considered interesting: formal semantics
and fuzzy logic. Later, I took a graduate seminar that he and Charlotte Linde
taught on natural language processing. I remember their strong opposition to
generative grammar and advocacy of views that there was no “real world.” Both
of these were a real surprise. I also remember Joseph’s sense of humor as well as
his more serious side.

A few years later, I was a post-doc at Stanford’s Center for the Study of
Language and Information. Joseph had moved to SRI a few years earlier and
was also at CSLI. I don’t know how we started, but he and José Meseguer
started meeting to decide on something to work on together. They pointed me
to a conjecture of theirs on abstract data type computability which I settled and
wrote up in a paper with the two of them. One of them told me I was getting
“on-the-job training” in category theory, and this very paper is also on-the-job
training. I also remember Joseph’s delightful influence all over CSLI during that

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 420–448, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Uniform Functors on Sets 421

time. I mainly lost touch with him after that, though at some point after he
moved to UCSD we met again through my oldest friend, Martin Schapiro.

For me, one of the most long-lasting influences were various pointers to cur-
rents in the social sciences, along with indications that these deserved to be
taken seriously in computer science and artificial intelligence. Another was the
mingling and mixing of ideas from Western science and Eastern religions; de-
spite being raised in Los Angeles and with Alan Watts’ lectures regularly on
my radio, I scarcely had met anyone who lived the ideas. I am still inspired by
his wide-ranging concerns and penetrating insights into many subjects. In all of
these, I am reminded of a character in the story of his namesake the Joseph of
Genesis, the “man” in 37:15-17, someone who points people to important places
and ideas. It is a pleasure to thank Joseph for his many years of direct inspiration
to me and wish him many more years.

1.1 Whatever Happened to the Study of Recursive Program
Schemes?

The title of our volume is “Algebra, Meaning, and Computation,” and so I want
to make the case that my contribution is related to all three points. As in the
distantly-related areas of the semantics of natural language, the semantic project
in computer science is to give some sort of mathematical model of meaning.
Today the semantic project attracts less attention and prestige than the study
of algorithmic complexity. (This is especially true in the USA.) Still, the area is
important because if one wants to be sure that computer programs ‘do what they
are supposed to’, then one quickly needs formally specified and tractable notions
of meaning. I think it is fair to say that the centerpiece of the semantic project
concerning computation is the treatment of recursion, the main mechanism of
‘looping’ for computer programs and algorithms. The work reported here is an
offshoot of coalgebraic recursion theory, an application of ideas from coalgebra
and closely related fields to circular phenomena and more recently to recursive
program schemes. Many of the mathematical tools that are now common in
semantics were first introduced for the study of recursive program schemes. I
would like to think that some of the notions in coalgebraic recursion theory also
will enter the mainstream of semantic research. I also think that some of this
work allows one to approach the semantics of computation from an even more
algebraic perspective than previous studies. For example, one of Joseph Goguen’s
early papers mentions the use of initial continuous algebras in connection with
recursion. As a result of very recent work, it turns out that one can dispense with
the domain-theoretic underpinnings of continuous algebras (or more precisely,
one has a clearer understanding of the principles that make continuous algebras
work in the first place). But none of this is a main point in this paper, however,
and so I will only touch on these matters in passing. For a longer discussion, one
could see [15] or [16].

Given the importance of recursion and recursive program schemes, one has
to ask why the subject is not pursued so intensively these days. Here are two

422 Lawrence S. Moss

possible answers: (a) the work that had been done was mathematically challeng-
ing, requiring expertise in both algebra and domain theory; and at the same
time it was not clear that the results coming out of it justified one’s mastery of
the field. And (b), there were many easier things to do, and many of them had
a closer connection to computer science practice.

This paper is actually about a different subject, but with a connection: our
concern here is the notion of uniformity for functors on sets that goes back
to Peter Aczel’s book [1] on non-wellfounded sets. The book contains a short
discussion of what it called the Special Final Coalgebra Theorem, a result that
gives a sufficient condition for a functor on the category of sets (actually the
category of classes) to have a final coalgebra whose carrier is the greatest fixed
point of the functor and whose structure map is the identity. This is a natural
matter to investigate from the point of view of the book. However, the particular
condition given was difficult to understand and work with, and so it fell to other
researchers to clarify the matter. This has been the subject of a number of other
papers such as [19,18,22,21]. This paper is another in the same line. It revisits
the discussion in the light of concepts introduced by Adámek and his coworkers:
mainly completely iterative monads and algebras. This paper formulates a new
notion of uniformity for functors and studies it under AFA, and it also obtains
some new results.

To read this paper, one should be conversant with the basics of category
theory. At the same time, readers with this background only (that is, readers
who have not worked with set theory or non-wellfounded sets) are likely to
find the whole issue in this paper uninteresting. The reason for this is that we
are interested in properties of functors which are not preserved under natural
isomorphism. These properties are defined in terms of inclusion morphisms and
greatest fixed points, and neither of these are preserved in this way. (However,
the referee of this paper points out to me that the topic of the paper could be
more interesting to those who have seen inclusion systems). Returning to the
intended audience, it would also help to have seen the background notions that
we expound in Section 2, but we have attempted to be concise and as (only as)
complete as necessary.

2 Background

In this section, we present the background that we need in two parts: background
from coalgebra, and background from set theory. In both cases, the background
will be unusual. From coalgebra, we need a set of definitions from a handful of
recent papers. I doubt that most people who glance at this paper will have heard
of any of these notions, and I also know that the spare presentation here will
not really help one to get a feeling for the substantial work in the area. On the
set theoretic side, most of the background concerns non-standard subjects such
as non-wellfounded sets and functors on the category of classes.

The next two sections may be read in either order.

Uniform Functors on Sets 423

2.1 Background from Coalgebra

Let A be category with a fixed finite coproduct operation ⊕.1 An endofunctor
H : A → A is iteratable [sic]: for each object A, the functor H() ⊕ A has a
final coalgebra. This condition of iteratabiltiy is satisfied by many functors of
interest; it is perhaps most pertinent to this paper that results of Aczel and
Mendler [4] later strengthened by Adámek et al [5] show that every endofunctor
on the category of classes is iteratable. In the setting of this paper, it will be
important to remember that the power set functor is iteratable on the category
of classes but not on the category of sets. On the other hand the subfunctors
Pκ are iteratable on the category of sets; here Pκ(X) is the set of subsets of X
whose cardinality is at most κ.

If H is iteratable, then for each object A we have a final H()⊕A-coalgebra
(TA, αA). As the notation indicates, T extends to a functor and α to a natural
transformation. T has many properties, but only a few are explicitly needed in
this paper. For example, we need at one point that in the endofunctor category
[A,A], the functor G (→ (H ·G)⊕Id has (T, α) as a final coalgebra. Moreover,H
brings not only T but also a free completely iterative monad. For our purposes, a
completely iterative monad based on H is a monad T = (T, μ, η) together with
natural transformations α : T → HT ⊕ Id and τ : HT → T such that

1. For all objects A of A, (TA, αA) is a final coalgebra of H() ⊕A.
2. [τ, η] : HT ⊕ Id→ T is the pointwise inverse of α.
3. Every suitably guarded equation morphism has a unique solution.

Actually, the first point is the key; the other are consequences and/or strength-
enings of it. We shall not need the precise formulation of the last point, so we
omit it.

We shall always write κ for τ ·Hη. In general, an ideal natural transformation
into T is one that factors through τ ; so κ, for example, is ideal.

Proposition 1. The diagrams below commute:

HTT
τT ��

Hμ

��

TT

μ

��
HT τ

�� T

HT
τ ��

κT

��

T

TT

μ

::11111111

Completely iterative algebras The following notion is studied in Milius [14] and
other papers. Let H : A → A be an endofunctor. By a flat equation morphism
in an object A (of parameters) we mean a morphism of the form

e : X → HX ⊕A .

1 We are using the symbol ⊕ in this section rather than the more usual symbol +
for coproducts. In this paper, + will denote the specific coproduct on sets or classes
given by the Kuratowski pairing operation (see Section 2.2). We use the different
notations to help the reader with this distinction.

424 Lawrence S. Moss

Let (A, a : HA → A) be an H-algebra. We say that s : X → A is a solution of
e in (A, a) if the square

X
e ��

s

��

HX ⊕A

Hs⊕A

��
A HA⊕A

[a,A]
��

commutes. (Note that we often use the name of an object (such as A) as a name
of the identity morphism on it.) And we call (A, a) a completely iterative algebra
(or cia) for H if every flat equation morphism in A has a unique solution in it.

Example 1 We present a suggestive example, not so much for this paper but
for other discussions. It is based on ideas of Peter Freyd [12] which figure in his
presentation of the unit interval as the carrier of a final coalgebra structure on
a certain category. Let A be the category of sets, let HX = X +X in the usual
way, and and let I be the unit interval [0, 1]. Consider the following algebra
a : I + I → I: a(inl(x)) = x/2, and a(inr(x)) = (x+1)/2. It turns out that (I, a)
is a cia for H . In elementary terms, this means that every system of equations
such as the one below has a unique solution in I:

x1 = 1
2x2 + 1

2
x2 = 1

2x3

x3 = 1
2x4

x4 = 1
2x5

x5 = 1
2x6 + 1

2
x6 = .347

On the right we can have one of three things: a variable multiplied by 1/2, the
sum of 1/2 and a variable multiplied by 1/2, or a constant from [0, 1]. The cia
property says that every such system, even one with an infinite or uncountable
set of variables, has a unique solution in [0, 1]. Incidentally, the easiest way to
establish the cia property is to argue via more general results on complete metric
spaces, eventually using the Banach Fixed Point Theorem.

In the statement below and wherever we refer to inverses of various maps,
recall that final coalgebra morphisms are always categorical isomorphisms.

Proposition 2 (AMV [6], Milius [14]). Concerning cias for H and com-
pletely iterative monads:

1. If (A, a−1) is a final coalgebra for H, then (A, a) is a cia for H.
2. For every object A, (TA, τA) is a cia for H.
3. For every cia (A, a) for H, the solution to the flat equation morphism αA is

an Eilenberg-Moore algebra of the monad T . We write this solution morphism
as ã : TA→ A.

4. Moreover, for every cia (A, a) for H, the triangle

HA
a ��

κA

��

A

TA
ã

::11111111

commutes.

Uniform Functors on Sets 425

A solution principle Given a final coalgebra (A, a−1) for an endofunctor H , we
can map any H-coalgebra uniquely into it. In this paper, we often will want to
map other kinds of morphisms into it. This matter is related to the “flattening”
constructions that one finds in the theory of non-wellfounded sets. For example
if we have f : X → TX we shall want to define something like a coalgebra
morphism f † : X → A and say what its properties should be. We shall use the
notions mentioned in this section. Recall that (A, a) gives a cia for H , and we
then have an Eilenberg–Moore algebra structure ã : TA→ A. Now using ã and
our f : X → TX , we shall define the map f † so that the triangle on the right
commutes

X
f ��

f†

��

TX

[[f†]]
111

;;111
Tf†

��
A TA

ã

��

(1)

So there are two tasks. First, we must introduce the [[]] operation on various
morphisms and then spell out its relevant properties. Then after this we need to
use this notation in principles of definition.

Definition 1. Let H be iteratable, let (A, a−1) be a final H-coalgebra, and let
T be the associated monad. Recall that ã : TA → A is the Eilenberg-Moore
algebra structure associated to A; it is the solution to the flat equation morphism
αA : TA → HTA ⊕ A with parameters in A. For any morphism of the form
f : B → A, we let [[f]] : TB → A be given by

[[f]] = ã · Tf.

Lemma 1. Once again, let (A, a−1) be a final H-coalgebra. Here are some prop-
erties of the morphisms [[f]], where f : B → A.

1. [[f]] · ηB = f .
2. [[f]] · τB = a ·H [[f]].
3. [[idA]] ·T [[f]] = [[[[f]]]] = [[f]] ·μB, where μ is the multiplication of the monad T .
4. [[f]] = [[idA]] · Tf .

The proofs are routine calculations using naturality and the definition of an
Eilenberg-Moore algebra of a monad.

We also need what would be considered a folkloric result.

Lemma 2. Let (A, a−1) be a final H-coalgebra, so that (A, a) is a cia for H.
Let f : X → TX ⊕A factor as on the left below.

X
f0 ��

f 77/
//

//
//

// HX ⊕A

κX⊕A

��
TX ⊕A

X
f ��

f†

��

TX ⊕A

Tf†⊕A

��
A TA⊕A

[̃a,A]

��

Then there is a unique f † : X → A such that f † = [ã, A] · (Tf † ⊕A) · f .

426 Lawrence S. Moss

Proof We have already mentioned the result in Milius [14] to the effect that
(A, a) is a cia for H . Thus there is a unique morphism f0

† making the square in
the upper left below commute:

X
f0 ��

f0
†

��

HX ⊕A
κX⊕A ��

Hf0
†⊕A

��

TX ⊕A ��

�	

Tf0
†⊕A

��

A HA⊕A
[a,A]

��

κA⊕A

��
TA⊕A

[̃a,A]

<<2222222222222

The triangle commutes using Proposition 1, and the square on the right by
naturality of κ. So the outside of the figure commutes, showing that f0† is a
morphism with the properties requested in our result. And if g : X → A is any
morphism making the outside of the figure commute, then the square at the
upper left commutes. Thus we have g = f0

†. This establishes the uniqueness of
solutions. .

As this section comes to a close, we look back at the diagram in (1). We now
have the promised result that this diagram defines f † uniquely from f , assuming
the relevant guardedness condition.

Lemma 3. Let (A, a−1) be a final H-coalgebra, and let f : X → TX factor
through κX : HX → TX. Then there is a unique f † : X → A such that

f † = [[f †]] · f.

Proof Apply Lemma 2 to inl · f : X → TX⊕A. There is a unique g : X → A
such that

g = [ã, A] · (Tg ⊕A) · inl · f = ã · Tg · f = [[g]] · f.

We take g for the needed morphism f †. For the uniqueness, if g = [[g]] · f , then
the same calculations as above show that g = [ã, A] · (Tg ⊕A) · inl · f ; hence we
are done by Lemma 2. .

We emphasize that the background in this section only contains a hint of a
more extensive subject that is currently an active area. Not only have I omitted
many motivational points connected to recursive program schemes, first- and
second-order substitution, the very interesting notion of an Elgot algebra, and
the like. I also have not even mentioned all of the results that this paper will call
upon. the results that we are going to use directly. Two places to read about all
of this and more is Stefan Milius’ dissertation [15] and the paper on recursive
program schemes and coalgebra [16].

Uniform Functors on Sets 427

2.2 Background from Set Theory

We remind the reader of the basic facts of set theory which will be relevant in
this paper.

The Kuratowski ordered pair (a, b) of two sets a and b is {{a}, {a, b}}. In
terms of this one defines and studies relations, functions, and the like. One also
defines versions of the natural numbers by: 0 = ∅, 1 = {∅}, etc. Finally, we shall
fix a coproduct operation + on sets by

a+ b = ({0} × a) ∪ ({1} × b)
= {(0, x) : x ∈ a} ∪ {(1, y) : y ∈ b}

For sets a and b, the coproduct injections inl : a→ a+ b and inr : b→ a+ b are
then given by

inl(x) = (0, x)
inr(y) = (1, y)

Henceforth in this paper, the symbol + is used for this operation on sets (ex-
tended in the natural way to classes).

For any set a,
⋃
a is the set of elements of elements of a. A set a is transitive

if
⋃
a ⊆ a. The transitive closure of a is

tc(a) = a ∪
⋃
a ∪
⋃⋃

a ∪ · · · .

This is a set, and it is the smallest transitive set (under the inclusion ordering)
which includes a.

If a ⊆ b, we write ia,b for the inclusion map of a into b. If b = V , then we
generally drop it from the notation. So if a ⊆ b, we have ia = ib · ia,b.

Note also that if a is transitive, then a ⊆ Pa. Further ia,Pa : a→ Pa is a P-
coalgebra, and ia : a→ V is a P-coalgebra morphism from it to (V, i−1

PV = idV).
The axioms of set theory are not about sets as much as they are about

the universe of sets. One of the intuitive principles of the theory is that arbi-
trary collections of mathematical objects “should be” sets. Due to paradoxes,
this intuitive principle is not directly formalized in standard set theories. In a
sense, the axioms one does have are intended to give enough sets to constitute
a mathematical universe while not having so many as to risk inconsistency. But
it is natural in this connection to consider some collections of objects which are
demonstrably not sets. These are called proper classes. The term class informally
refers to a collection of mathematical objects. Classes are usually not first-class
objects in set theory (certainly they are not in the most standard set theory,
ZFC). Instead, a statement about classes is regarded as a paraphrase for some
other (more complicated and usually less intuitive) statement about sets. This
is probably not a good place to discuss the details of the formalization; one clear
source is Chapter 1 of Azriel Levy’s book [13] on set theory. For our purposes,
classes may be taken as definable subcollections of sets. For example, if a is any
set, then the class of all sets which do not contain a as an element is {x : a /∈ x}.
The class V of all sets is {x : x = x}. The definability here is in the first-order

428 Lawrence S. Moss

logic with just a symbol ∈ for membership, and the quantifiers range over sets
(not classes). If C is a class, the power class of C,

P(C) = {x : x is a set, and (∀y)(y ∈ x→ ϕC(y))},

where ϕC is the formula that defines the class C.
We are interested in functors H on sets and classes which are monotone in

the sense of preserving inclusions among objects: if a ⊆ b, then Ha ⊆ Hb.
Each set-based2 monotone operation H on classes has a least fixed point H∗

and a greatest fixed point H∗. For the least fixed point, we first define classes Hα

by transfinite recursion:H0 = ∅,Hα+1 = H(Hα) and for limit λ,Hλ =
⋃

β<λHβ .
Then the class H∗ is defined by x ∈ H∗ iff (∃α)x ∈ Hα. The assumption that H
be set-based, together with the Replacement Axiom, implies that H∗ is a fixed
point of H , and it is easy to see by induction that each Hα is a subset of any
fixed point of H . So H∗ is the least fixed point. In categorical terms, (H∗, id)
is an initial H-algebra on the category of classes. We are especially concerned
with the dual concept, greatest fixed points. As shown in Aczel [1],

H∗ =
⋃

{b : b is a set and b ⊆ Hb}.

H∗ might well be a proper class.
For example, by Cantor’s Theorem there are no sets which are fixed points

of the power set functor, but on classes, the least fixed point exists and indeed is
the class WF of wellfounded sets. Another fixed point is the class V of all sets.
Saying that PV = V just means that every set of sets is a set, and that every set
is a set of sets. (So this would contradict any axiom of urelements, and indeed
usually set theories implicitly do not allow for urelements.) Note that iV , iPV ,
PiV , and PiPV all denote the same operation, the identity on the universe.

Here are some further examples to orient the reader. The identity functor
has the universe V as its greatest fixed point on the category of classes. The
identity has not greatest fixed point on sets. But even on classes, the greatest
fixed point is not the carrier of a final coalgebra structure, since that would
be a mere singleton set. But consider the variant functor H(a) = 1 × a. Here
there are some differences, even though H is naturally isomorphic to the identity.
Whether H has any fixed points besides ∅ is a question that is sensitive to the
underlying set theory. Under the Foundation Axiom, the empty set ∅ is the only
fixed point of H . Under the Anti-Foundation Axiom (formulated shortly),H has
one additional fixed point (which therefore is the greatest fixed point): there is
a unique set a such that a = {(0, a)} (this uses AFA). And so b = {a} satisfies
b = {0}×{a} = 1×b. Moreover, b is the only set with this property except for ∅.

In any case, the overall point is that properties of the greatest fixed points of
various operations are sensitive to the underlying set theory. The topics of this
paper are certain classes which form either final coalgebras or cias for various
functors. Again, such classes do not exist in the usual set theory ZFC, due mainly
2 The condition of set-based-ness introduced in Aczel [1] turned out to be unnecessary

for functors on classes: see [5,9,10]. As a result, we suppress mention of this condition.

Uniform Functors on Sets 429

to the Foundation Axiom. In this connection, and in connection with other
coalgebraic notions, it is more natural to work in the set theory ZFA obtained
from ZFC by replacing the Foundation Axiom with a ‘dual’ statement, the Anti-
Foundation Axiom first formulated by Forti and Honsell and then popularized
in Peter Aczel’s book [1].

The Anti-Foundation Axiom The Anti-Foundation Axiom (AFA) is the asser-
tion that for every set b and every e : b → Pb, there exists a unique s : b → V
such that s = Ps · e:

b
e ��

s

��

Pb

Ps

��
V PV

(2)

The map s is called the solution to the system e.
To see how this is used, we mentioned above that under AFA, there is a unique

set a = {(0, a)}. To see this, we let b = {v, w, x, y, z} and consider e : b → Pb
given by

e(v) = {w}
e(w) = {x, y}
e(x) = {z}

e(y) = {v, z}
e(z) = ∅

Then if s is as in the statement of AFA, we have s(v) = {s(w)}, s(w) =
{s(x), s(y)}, . . ., s(z) = ∅. So s(x) = {0}, s(y) = {s(v), 0}, and

s(w) = {{0}, {s(v), 0}} = (0, s(v)).

Finally, s(v) = {(0, s(v)}. Thus s(v) is a set which solves a = {(0, a)}. It is not
hard to check that it is the only solution, because any solution to this equation
gives a solution to the “flat system” e by unraveling a bit.

Lemma 4 (Turi [21], see also [18]). AFA is equivalent to the assertion that
(V, iV) = (V, idV) is a final P-coalgebra.

Our overall setting in this paper is ZFA. (Actually, many of the results do
not actually use AFA, especially those before Section 3.1. But the main results
of the paper do use it.)

(By the way, the formulation of AFA in (2) above does not include any
specific morphism between V and PV . This is basically the way AFA is presented
in Aczel’s book [1], for example, and also my book with Jon Barwise [8]. The
disadvantage of this kind of formalization is that it hides the fact that there are
two different possible assertions:

b
e ��

s

��

Pb

Ps

��
V

(iPV)−1
�� PV

vs.
b

e ��

s

��

Pb

Ps

��
V PV

iPV

��

430 Lawrence S. Moss

When one reworks our statement of AFA using the first formulation, one can
sense the connection to final coalgebras and Lemma 4. The second formulation
would be closer to what we find in Lemma 6.)

The main problem for this papers and all previous ones on “uniformity” for
functors is to propose a condition guaranteeing that the greatest fixed point of a
monotone H be a final coalgebra together with the identity. This paper proposes
and studies one such condition.

3 Standard Functors and Monads

At this point, we have all of the background we need to begin our study The first
concept we need is that of a standard functor on sets or classes. An endofunctor
H is standard if H preserves inclusion maps in the sense that Hia,b = iHa,Hb.
This notion was introduced in a slightly stronger form in Adámek and Trnková’s
book [7]; Theorem 3.4.5 of that book shows that every functor on sets is naturally
isomorphic to a standard functor in their sense.

Proposition 3. The coproduct + derived from the Kuratowski pair has the prop-
erty that for all classes c, the endofunctor + c is standard.

The proof is an easy calculation. Of course, the functors c+ are also standard.
Here is a consequence of these: Let x ⊆ x′ and y ⊆ y′. Then the diagram

x
inl ��

ix,x′

��

x+ y

ix,x′+iy,y′
��

x′
inl

�� x′ + y′

(3)

commutes.

Definition 2. Let T be the free completely iterative monad on H. T is standard
if for each a, Ta = HTa+ a, and moreover αa = idTa.

Lemma 5. Let T be the free completely iterative monad on a standard functor
H. If T is a standard monad, then T is a standard functor.

Proof Let a ⊆ b, and write i for ia,b. We know that T i is the unique map such
that T i · τa = τb ·HTi. (This follows from the Substitution Theorem of [3,2,18]
applied to ηb · i.) But if we take T i to be iTa,Tb, then the equation is satisfied:

iTa,Tb · τa = τb · iHTa,HTb = τb ·HiTa,Tb.

In this we are using the fact that τ is inl for a standard functor, and also equation
(3). So by uniqueness, T i = iTa,Tb. .

Uniform Functors on Sets 431

3.1 P Generates a Standard Iterative Monad

We check here that under AFA, P generates a standard iterative monad. The
general idea of our work is to use this fact to show that many other functors also
generate standard iterative monads. In fact, our definition of uniformity effects
such a reduction.

Lemma 6 (See [18]). Let H be standard. The following are equivalent:

1. (H∗, id) is a final H-coalgebra.
2. (V, iHV) is a coalgebra-final H-algebra: for every class b and every e : b →

Hb, there exists a unique solution s : b → V , a morphism such that s =
iHV ·Hs · e:

b
e ��

s

��

Hb

Hs

��
V HV

iHV

��

Proof We show first that (2) implies (1). Consider e : b→ Hb and its solution
s. Let c = s[b] be the image of b under s. Then Hs[Hb] ⊆ H(s[b]) = Hc (see, e.g.,
Proposition 5.1.2 of [18]). Condition (2) in our lemma implies that c ⊆ Hs[Hb],
and so we see that c ⊆ Hc. Let t : b → c be such that ic · t = s. Then all parts
of the diagram on the left below commute, save for the top square.

b
e ��

s

��

t
882

22
22

22
22

2 Hb

Hs

��

Ht==���
���

���
�

c
ic

>>33
33
33
33
3 ic,Hc

�� Hc

iHc,HV =Hic

���
�

??��
��

V HV
iHV

��

b
e ��

t

��

Hb

Ht

��
c

ic,Hc ��

ic,H∗
��

Hc

iHc,HH∗
��

H∗ HH∗

Thus that part also commutes. This is the top square on the right, and so it
commutes. By the monotonicity of H , we have c ⊆ H∗. Thus the bottom square
on the right commutes, and we see that ic,H∗ · t is a coalgebra morphism from
(b, e) to (H∗, id).

Next, we argue the uniqueness of this morphism ic,H∗ · t. Suppose that f :
b → H∗ is any coalgebra morphism. Let c′ = f [b], let t′ : b → c′, and write
f as ic′,H∗ · t′. So we have a diagram similar to the one on the right above,
but with t replaced by t′, and c by c′. The overall outside commutes. And since
iHc′,HH∗ is an inclusion and hence monic, we see that the top square commutes:
ic′,Hc′ · t′ = Ht′ · e. This means that the top square on the left commutes,
mutatis mutandis. We then take s′ to be i′c · t′ so that the two triangles on the
left commute. By our statement (1), we have uniqueness of solutions; thus s′ = s.
It follows that t′ = t and c′ = c. We conclude that f = ic′,H∗ · t′ = ic,H∗ · t, as
desired.

432 Lawrence S. Moss

Now we prove that (1) implies (2). Let (H∗, id) be final, We check that
(2) indeed holds. Let e : b → Hb. We have a final H-coalgebra morphism
e∗ : b→ H∗, and we consider iH∗ · e∗. We see that

iHV ·H(iH∗ · e∗) · e = iHV ·HiH∗ · (He∗ · e)
= iHV · iHH∗,HV · iH∗,HH∗ · e∗
= iH∗ · e∗

This shows that iH∗ · e∗ is a solution to e in the sense of point (2) above. For
the uniqueness, if s is a solution to e, then write s = ic · t as in the work we did
above in showing that (2)⇒(1). By the finality of H∗, we have e∗ = ic,H∗ · t. But
now s = ic · t = iH∗ · ic,H∗ · t = iH∗ · e∗. .

In the next proposition, and in the rest of this paper, we let Gw be the
constant functor with value w.

Proposition 4. For every set w, ((P+Gw)∗, id) is a final coalgebra for P+Gw.

Proof We apply Lemma 6. Let e : b→ Pb+ w. Consider the diagram below:

b
e ��

f

��

Pb+ w
Pb+iw ��

Pf+w

��

Pb+ V

Pf+V

��

PV + w

iPV +w@@###
###

###
PV +iw

��44
444

444
44

V PV + V
[iPV ,V]

��

The map f comes from the fact that (V, (iPV)−1) is a cia for P. (So note that
AFA is used here.) Thus the overall outside commutes. The right square easily
commutes. For the triangle, we use the general fact that ia+b = [ia, ib]. (In fact,
for classes a, b, and c such that a ⊆ c, and b ⊆ c, and a + b ⊆ c, we have
ia+b,c = [ia,c, ib,c].) We conclude that the left square above commutes. This is
the existence of the needed f in Lemma 6, and the uniqueness comes from the
cia structure. .

It follows from Proposition 4 that P generates a standard iterative monad on
the category of classes.

4 The Class TV and the Map χ

As we now know, the power set functor determines a free completely iterative
monad

T = (TP, μP, ηP).

Uniform Functors on Sets 433

This monad is indeed standard. It also comes with additional natural transfor-
mations αP and τP. Because this is the most common monad in the rest of the
paper, we drop the superscripts on all of this data related to it.

By AFA the inverse of inclusion gives a final coalgebra (iPV)−1 : V → PV .
Because so much of the rest of this paper uses the map [[iPV]], we shorten the
notation to write

χ = [[iPV]] : TV → V.

For a mnemonic on this, think of χ for χrunch. As we shall see, it takes elements
of TV and collapses them back to sets. Those familiar with the Mostowski col-
lapse in set theory might think of χ as a kind of non-wellfounded version of that
map.

It is worthwhile to get a feeling for the class TV . To understand it better,
we use Proposition 4, taking V for w. So TV is the greatest fixed point of the
functor which takes a class X to

P(X) + V = ({0} × P(X)) ∪ ({1} × V).

Hence TV is the largest collection C of sets with the property that each member
of C is of one of the following forms:

1. (0, x) for some subset x ⊆ C.
2. (1, x) for some set x.

Note as well that η : Id → T is defined by ηX(a) = (1, a) for all classes X
and all sets a ∈ X . As for τ , standardness implies that its components are all
inclusions.

We now turn to χ. The elements of TV code sets as follows:

1. (0, x) codes the set of sets coded by the elements of x.
2. (1, x) codes x itself.

The map χ is the decoding map.

Example 2 Here are some examples of χ at work:

1. For all sets a, χ(1, a) = a, and thus χ(0, {(1, a)}) = {a}.
2. χ(0, ∅) = ∅.
3. χ(0, {(0, ∅)}) = {χ(0, ∅)} = {∅}.
4. χ(0, {(0, ∅), (1, x)}) = {χ(0, ∅), χ(1, x)} = {∅, x}.
5. For all sets a and b,

(0, {(0, {(1, a)}), (0, {(1, a), (1, b)})})
belongs to TV , and χ applied to it is the ordered pair (a, b).

In all of these, we omit mention of α since it is the identity.

We record the following application of Lemma 1:

Proposition 5. Concerning χ : TV → V :

1. χ · ηV = idV .
2. χ · τV = iPV · Pχ.
3. χ · Tχ = [[χ]] = χ · μV .

434 Lawrence S. Moss

5 Uniformity

As our title indicates, this paper is about notions of uniformity for functors on
sets and classes. We propose a new definition in Section 5.1 below. Before that,
we want to mention the previous notions of uniformity in the literature, and the
motivation for them.

The first place where some notion of “uniform functor” may be found is
Aczel’s book [1] on non-wellfounded sets. His definition is in terms of the “ex-
panded universe . . . [which] has an atom xi for each pure set i.” In our termi-
nology, this is exactly PT . (Recall that we are dropping the superscript, writing
T for TP.) Were his definition to be translated into our notation, it would look
similar to ours. It would involve for each class A a map πA : HA → TA with
some properties. However, the resulting π is not required to be a natural trans-
formation (and indeed, it was not realized until several years later that T was
even a functor, etc.). As a compensation, the definition requires another prop-
erty on π. Incidentally, I have not worked extensively with Aczel’s definition, but
it seems to be hard to check that the uniform functors in his sense are closed
under composition.

We also emphasize that the first motivation for uniformity is to provide a
sufficient condition on a monotone functor H that its greatest fixed point H∗ be
a final H-coalgebra along with the identity as a structure map.

The first work to formulate uniformity in terms of natural transformations
is that of Turi [21] (also presented in Turi and Rutten [22]). Our definition is
similar to theirs, and to distinguish the two we call theirs TR-uniformity. Its
definition is in terms of a different monad on sets, the monad W given by WX
is the least fixed point of X (→ PX+X . In addition, there is a unique morphism
εV : WV → V such that the composition

WV �� PWV + V
[PεV ,idV] �� PV + V

[iPV ,idV] �� V

is εV . They require of a functor H that there be a natural transformation ρ :
H → PW such that

HV

iHV

��

ρV �� PWV

PεV

��
V PV

iPV

��

(The use of PWV corresponds to our requirement that that natural transfor-
mations involved in uniformity be ideal.) The main difference is that we use the
monad T , a larger monad than W ; hence more functors are uniform in our sense.
(For example, the constant Ka functors whose value a are non-wellfounded sets
are uniform in our sense but not in Turi and Rutten’s sense. Furthermore, func-
tors built from Ka in the expected ways will also turn out to be uniform in our
sense; see Theorem 7.)

Uniform Functors on Sets 435

Once again, it is worthwhile mentioning that their motivation for uniformity
again is the same as Aczel’s. However, they recognize that there is also a different
intuition, one related to substitution:

Intuitively, an endofunctor on SET is uniform on maps [their termi-
nology, following Aczel] if it is completely determined by is action on
objects (i.e., classes). Most endofunctors are thus uniform on maps. For
instance, consider the endofunctor X (→ A × X mapping a class X to
its product with a fixed class A. Given a function f : X → Y , the value
of A × f at an element (a, x) of A × X is the pair (a, f(x)) ∈ A × Y
which is obtained by applying f to the x ∈ X in A ×X . This suggests
that the class X should be regarded as a class of variables and that,
in general, the action of a functor F uniform on maps on a function f
should simply be the substitution of the variables x occurring in FX by
f(x). (Turi [21] p. 211; also Turi and Rutten [22], Sec. 5.5.)

For other approaches, see Devlin [11] and also Moss and Danner [19].
The upshot is that there are two intuitions at work in the definition of uni-

formity, or at least two different goals. One is to search for condition on functors
F which guarantees that the greatest fixed point F ∗ of F be a final coalgebra
with the identity as the structure map. I would like to emphasize, especially for
readers with a background in category theory, that this kind of question is not
“preserved under natural isomorphisms of functors”. The identity functor will
never be uniform under any reasonable definition, but functors like 1 × x will
turn out uniform under AFA.

A second intuition is mentioned in the quoted paragraph above. We could
say that this has to do with the class TV and way that set theory is used to
represent natural mathematical operations, and also with the matter of coding
sets by elements of TV . The overall thrust of set theory as a foundational study
is that natural mathematical operations are representable in a first-order way
in the universe of sets. It is not always easy to spell out what this means, and
most textbooks never get around to it. What we are doing in the definition of
uniformity is to spell out the representability of natural mathematical operations,
but not in terms of first-order logic but in terms of the iterative monad of the
power set.

5.1 Our Definition

We now come to the main definition in this paper. We continue to write T for
the monad determined by the power set functor, omitting the superscript P in
most places. We also remind the reader that an ideal natural transformation is
one which factors through τ .

Definition 3. A functor H is uniform if there is an ideal natural transformation
π : H → T such that for all classes a,

[[ia]] · πa = iHa.

We call π a uniformity for H.

436 Lawrence S. Moss

Uniformity is equivalent to standardness plus the identity χ ·πV = iHV . This
says that if we encode HV as a subclass of TV and then collapse back to V via
χ, we have an inclusion. The reason why we want to do any encoding has to do
with co-recursion: given e : a → Ha, we want to use get a solution satisfying
an appropriate recursion principle. There is no evident way to do this without
extra maps. We use π to get a related map e′ : a → T (a). Having this, we use
Lemma 3 to get a map a→ V .

Lemma 7. Let π : H → T be an ideal natural transformation. The following
are equivalent:

1. H is uniform.
2. H is standard, and χ · πV = iHV .

Proof First, assume that π is a uniformity for H . Then in particular, χ ·πV =
iHV . The interesting point is to check that H is standard. Let a ⊆ b. In the
diagram below,

Ha��

��

iHa

��

πa ��

Hia,b

��

Ta
Tia,b

;;55
55
55
55

Tia

��

Hb πb

��

iHb

��

Tb

Tib AA6
66

66
66

6

V TVχ
��

everything commutes except the region on the left: the top uses naturality of
π; the triangle on the right is by applying T to the fact that ia = ib · ia,b; and
uniformity is used in the overall outside and in the bottom square. So we see
that iHa = iHb ·Hia,b. But now we notice a general fact: if x and y are any sets,
and f : x → y is such that ix = iy · f , then x ⊆ y and f = ix,y. It now follows
that Ha ⊆ Hb and that Hia,b = iHa,Hb, as desired.

Going the other way, suppose H is standard, and χ ·πV = iHV . Let a be any
class. Return to the diagram above, and replace b by V . Then our assumption
that χ · πV = iHV implies that the bottom square commutes, and the region
on the left is by standardness. It follows that we have the desired uniformity
equation [[ia]] · πa = iHa. .

The second formulation is often easier to check, since standardness is usually
immediate for functors. We use Lemma 7 without further mention.

Our main results The main results of this paper are as follows: the uniform
functors contain the power set functor and the constants, and they are closed
under a number of natural operations including composition and iteration. A
uniform H has the property that H∗ together with the identity is a final H-
coalgebra, and V together with the inclusion of HV into it is a cia for H . The
same generally holds for λ-uniform functors, a notion we introduce in Section 7

Uniform Functors on Sets 437

except that the only constant functors which are λ-uniform are those for sets in
Hλ. If H is λ-uniform, then H∗ is a subset of Hλ.

The rest of this paper is devoted to proofs of these assertions, and some
additional discussion.

5.2 Examples and Closure Properties

Example 3 We establish the uniformity of the power set functor P. This functor
is easily standard. Let π : P → T be τ ·Pη from the iterative monad determined
by P. Note that π is ideal. Furthermore,

χ · τV · PηV = iPV · Pχ · PηV

= iPV · PidV

= iPV

We used Proposition 5.

Example 4 Let w be a set; we show that the constant functor Gw with value
w is uniform. Let w be the transitive closure of w. Since w ⊆ P(w), we have
an inclusion iw,P(w). To shorten our notation, we abbreviate this as i in this
example. We regard i as a natural transformation between constant functors.
We also have a natural transformation Gw → PGw → PGw + Id. By a finality
result concerning T in the functor category, we have a natural transformation
π0 : Gw → T such that π0 = τP ·Pπ0 · i. It follows easily from this that χ ·π0(V)
is the inclusion iGwV = iw. And the desired ideal natural transformation is π0 ·j,
where j is the inclusion iw,w considered as a natural transformation.

Example 5 The identity functor I is not uniform. Here are two ways to see this.
First, we argue directly, by contradiction. Suppose we had an ideal π : I → T
such that χ · π = idV . Then for all sets a, ida = χ · iT (a),T (V) · πa. In short,
for all x ∈ a, x = χ(πax). Let a = {0, 1}. Then πa(0) must be (0, ∅), as π is
ideal, and χ−1[∅] = {(0, ∅), (1, ∅)}. Let f : a → a be the transposition f(0) = 1
and f(1) = 0. By naturality, πa · f = Tf · πa. Applying this to 0, we see that
πa(1) = Tf(0, ∅) = (0, ∅). But then we would have 1 = χ · πa(1) = χ(0, ∅) = ∅;
this is a contradiction.

A less elementary way to establish the non-uniformity is to use a result from
later that for uniform H , the greatest fixed point H∗ gives a final coalgebra with
the identity map. For 1, we have I∗ = V . But the final coalgebras of I are the
singleton sets. So for this reason, I is not uniform.

Example 6 In contrast to this, the functor H(a) = a+0 is uniform; this is the
same as

H(a) = 1 × a = {(0, x) : x ∈ a}.

438 Lawrence S. Moss

The natural transformation π : H → T is given by

πa(0, x) = (0, {(0, {(0, 0)}), (0, {(0, 0), (1, x)})}).

Similar to what we have seen in Example 2, part 5, for all sets x, χ(πV (0, x)) =
(0, x):

χ((0, {(0, {(0, 0)}), (0, {(0, 0), (1, x)})}))
= {χ(0, {(0, 0)}), χ(0, {(0, 0), (1, x)})}
= {{0}, {0, x}} (∗)
= (0, x)

The calculations in the line marked (∗) were performed in Example 2. Moreover,
π is an ideal natural transformation because each πa(0, x) is an ordered pair
beginning with 0; more formally, consider π∗ : H → PT given by

π∗
a(0, x) = {(0, {(0, 0)}), (0, {(0, 0), (1, x)})}.

Then π = τ · π∗. The most tedious part of the verification has to do with the
naturality of π∗. Let f : a → b. Note that Tf(0, 0) = (0, 0), and for all x ∈ a,
Tf(1, x) = (1, fx). It follows that

Tf(0, {(0, 0), (1, x)}) = {(0,PTf{(0, 0), (1, x)}} = {(0, {(0, 0), (1, fx)}}.

Therefore

π∗
b (1, fx) = {(0, {(0, 0)}), (0, {(0, 0), (1, fx)})}

= {Tf(0, {(0, 0))}, T f(0, {(0, 0), (1, x)})}
= PTf{(0, {(0, 0)), (0, {(0, 0), (1, x)}}}
= PTf(π∗

a(0, x))

The point is that we can “implement” the pairing machinery in a way which
is recoverable by χ. In a similar fashion, we also have the following result:

Theorem 7. If F and G are uniform, and a is any set, then the following
functors are also uniform: F +G, F ×G, 1 + F , F a.

Proof See [18] for many similar calculations involving the coding machinery.
.

Finally, we have the following proposition which shows that our notion of
uniformity indeed generalizes TR-uniformity as defined in Section 5. This result
is not needed for the rest of this paper, and the reader may omit it. We shall need
a property of the monad W . The monad W also carries some extra structure.
First of all, there is a natural transformation [γ, δ] : PW + Id → W . P may be
regarded as an endofunctor on the endofunctor category on classes; viz. F (→
P ·F . We also get a related functor P · +Id. For the functor W , the value of this
functor at W is PW + Id. So the natural transformation [γ, δ] : PW + Id→W
may be regarded as a (P · + Id)-algebra structure for P. (For that matter,
[τ, η] : PT + Id → T is another algebra structure.) Moreover, (W, [γ, δ]) is an
initial algebra of this functor P · + Id. By initiality, there is a unique natural
transformation β : W → T giving an algebra morphism from [γ, δ] to [τ, η].

Uniform Functors on Sets 439

Proposition 6. Every standard TR-uniform functor H is uniform in our sense.

Proof Let ρ establish the TR-uniformity of H . Let π = τ · Pβ · ρ. Then π
is ideal. We are going to use Lemma 7. We must check that the outside of the
figure below commutes:

HV

iHV

��

ρV �� PWV

PεV

��

PβV �� PTV
τV ��

Pχ

>>33
33
33
33
33
33
3

TV
������

πV

V���� �	
χV

PV
iPV

��

The square on the left commutes by definition of TR-uniformity, the region at
the top is the definition of π, and the region at the right and bottom is by
Proposition 5, part 2. For the triangle, we show that χ · βV = εV . To do this,
consider the diagram below:

PWV + V

[γV ,δV]

��

PβV +idV �� PTV + V
Pχ+idV ��

[τV ,ηV]

��

PV + V

[iPV ,idV]

��
WV

βV

�� TV χ
�� V

The square on the left commutes by the definition of β as an algebra morphism
in the endofunctor category. The square on the right commutes by Proposition 5.
Taken together, the two squares show that χ · βV satisfies the equation which
uniquely defines εV . Hence χ · βV = εV , as desired. .

This result, together with our earlier remark about constant functors for
non-wellfounded sets, shows that the standard TR-uniform functors are a proper
subcollection of the uniform functors.

5.3 Closure Under Composition and Iteration

Theorem 8. If F and G are uniform, then FG is also uniform.

Proof Let F be uniform via π, and G uniform via ρ. To see that F · G is
uniform, let π ∗ ρ = πT · Fρ, and consider the natural transformation

μ · (π ∗ ρ).

440 Lawrence S. Moss

The following diagram shows π to be an ideal natural transformation:

FG
Fρ �� FT

πT ��

π0T 88.
..

..
..

. TT
μ �� T

PTT

τT

��

Pμ
�� PT

τ

��

Here π0 is a natural transformation with the property that π = τ · π0; this gives
the the triangle above. The commutativity of the square is a part of Proposi-
tion 1.

Consider next the following diagram:

FGV

iF GV,F V ��77
777

777
77

��
iF GV

��

FρV �� FTV
πTV ��

Fχ

��

TTV

Tχ

��
FV

πV ��

iF V
��77

777
777

777
TV

χ

��
V

The upper triangle is obtained by applying F to the uniformity equation for G
and using the standardness of F as well. Everything else commutes easily. We
now use Proposition 5 to calculate:

χ · μV · πTV · FρV = χ · Tχ · πTV · FρV = iFGV .

This completes the proof that FG is uniform. .

Theorem 9. Let (TH , μH , ηH) be a standard iterative monad which is free on
a uniform functor H. Then TH is also uniform.

Proof In this proof we have the monad of H and also the monad of P. As in
our statement, we write the data coming from the first free completely iterative
monad with the superscript H , and we continue our practice of dropping the
superscripts on the free completely iterative monad of P.

We know that TH is standard by Lemma 5. Let π : H → T be a uniformity
for H . Let π̂ : H → PT be such that π = τ · π̂. By the fundamental freeness
theorem of Aczel et al. [2], there is a unique ideal monad morphism π∗ : TH → T
such that π = π∗ · κ. We check that χ · π∗

V = iT HV .

Uniform Functors on Sets 441

Consider the following diagram:

THV
αH

V ��

π∗
V

��

HTHV + V
π̂

TH V
+V

��
[τH

V ,ηH
V]

�� PTTHV + V
τ

TH V
+V

�� TTHV + V

Tπ∗
V +V

��
TV

χ

��

TTV + V
[μV ,ηV]

��

Tχ+V

��
V TV + V

[χ,V]
��

(4)
We claim that both halves commute. The bottom uses Proposition 5. For the top,
it is best to begin at HTHV + V and argue separately for the two components.
The right component commutes due to the fact that π∗ is a monad morphism;
specifically, π∗ · ηH = η. The left component is more involved. We drop V and
consider the following diagram in the endofunctor category:

TH

π∗

��

HTH
π̂T H ��τ�� PTTH

τT H
��

PTπ∗

��

TTH

Tπ∗

��

PT

τ

,,"""
"""

"""
"""

"""
" PTT

τT

��

Pμ��

T TTμ
��

For the hexagonal region in the upper left, we appeal to Lemma 6.10 of [16].
The region on the right commutes by naturality of τ . The bottom square is an
instance of Proposition 1.

At this point we know that (4) commutes. We conclude that g = χ · π∗
V

satisfies

[χ, V] · Tg · (πV + V) · αH
V = g.

By our Solution Lemma 2, there is exactly one g which satisfies this equation.
We check that iT HV also satisfies it. We note that the diagram below commutes:

442 Lawrence S. Moss

THV

iT H V

��

HTHV + V
π̂

TH V
+V

��

[i
HT H V

,iV]

==888
888

888
888

888

[τH
V ,ηH

V]�� PTTHV + V
τ

TH V
+V

�� TTHV + V

Ti
T H V

+V

��

������
πT V +V

[[[i
TH V

]],V]

BB������
������

������
������

������
������

������
������

�

V TV + V
[χ,V]

��

In the topmost region, we have used the fact that π = τ · π̂. To see that the
triangle on the left commutes, recall that αH

V = [τH
V , η

H
V]−1 is the identity and

that iHT HV +V = [iHT HV , iV]. We have used the fact that π is uniform in the
middle region, and on the right we have the definition of [[iT HV]].

This concludes the proof that χ · π∗
V = iT HV . .

6 Consequences of Uniformity

Theorem 10 below is an adaptation of the analogous result from [18], and ulti-
mately the ideas come from Turi [21], following Aczel [1]. We remind the reader
that AFA is needed in the results of this section.

Theorem 10. Let H be uniform. Then (H∗, id) is a final H-coalgebra, where
H∗ is the greatest fixed point of H.

Proof H is standard, so we may use Lemma 6. Since we are assuming AFA,
Lemma 3 applies. Let e : b → Hb. There is a unique s = f † : b → V such that
s = [[s]] · πb · e. Consider the following diagram.

b
e ��

s

��

Hb
πb ��

Hs

��

TPb

T Ps

��

HV

πV 88/
///

//
///

iHV>>99
99
99
99
9

V TPVχ
��

All the parts clearly commute except the left, and thus this does commute. This
part shows that s = iHV ·Hs ·e. For the uniqueness, note that s with our desired
property determines a solution to πb · e. .

Corollary 1. If H is uniform, then H generates a standard iterative monad by
taking for each class a, Ta = (H +Ga)∗, the greatest fixed point of H +Ga.

Proof We know that for all sets a, H + Ga is uniform and standard. So the
result follows from Theorem 10. .

Uniform Functors on Sets 443

As shown in Milius [14], if H is any iteratable functor (on any category with
+) and T and τ are from its free completely iterative monad, then (TA, τA :
HTA → TA) is always a cia for H . The next fact does not follow from Milius’
result.

Theorem 11. If H is uniform, then (V, iHV) is a cia for H.

Proof The proof is virtually the same as that of Theorem 10, so we merely
indicate the idea and exhibit the diagram. Let e : X → HX + V . Consider the
diagram below:

X
e ��

f

��

HX + V
πX+V ��

Hf+V

��

TX + V

Tf+V

��

HV + V
πV +V

��77
777

777
777

[iHV ,V]@@:::
:::

:::
:::

V TV + V
[χ,V]

��

The map f comes from Lemma 2 applied to (πX + V) · e. The rest of the proof
is the same. .

7 A Variation: λ-Uniformity

For each cardinal λ, consider the functor Pλ giving the set of subsets of size less
than λ: by

Pλ(s) = {t ⊆ s : |t| < λ}.

We have a natural transformation nλ : Pλ → P whose components are the
evident inclusions.

Proposition 7. (V, iPλV) is a cia for Pλ. Specifically, given a flat equation
morphism e : X → PλX+V , we have a flat equation morphism for P: ((nλ)X +
V) · e. The solution to these two are the same morphism.

The natural transformation νλ : Pλ → T shows Pλ to be uniform, where
νλ = τ · Pη · nλ. That is, it is ideal, and

χ · (τ · Pη · nλ)V = (χ · (τ · Pη)V) · (nλ)V = iPV · iPλV,PV = iPλV .

We have used the calculation in Example 3.
As a result, these functors Pλ generate standard iterative monads on the

category of classes by taking greatest fixed points. Moreover, these functors have
a property that P does not have: as functors on Set, they have final coalgebras.
Indeed, the greatest fixed point of Pλ is the set Hλ of sets x such that |tc(x)| < λ,

444 Lawrence S. Moss

where tc(x) is the transitive closure of x.3 For λ an infinite regular cardinal, this
is the same thing as saying that |x| < λ, and every y ∈ tc(x) also has cardinality
< λ. The properties of this collection Hλ are sensitive to the underlying set
theory. But assuming either the Foundation or Anti-Foundation Axioms, it is a
set and not just a class. As a result, the functors Pλ determine standard iterative
monads Tλ on Set. We use a subscript λ to indicate the data from this monad.

Proposition 8. The inclusion iHλ
: Hλ → V is a morphism of cias for Pλ.

Using the freeness theorem of Aczel et al. [2], there is a unique ideal monad
morphism νλ : Tλ → T such that νλ = νλ · τλ ·Pηλ. All of the components of νλ

are inclusions.
We rework the results of Sections 4 and 5 by replacing P by Pλ throughout.

The first step is to comment on the morphisms [[f]]λ associated to morphisms
f : B → Hλ. We define [[f]]λ : TλB → Hλ by a# · Tλf , where a# : TλHλ → Hλ

is the solution to αA : Tλ → HλTλ +Hλ in the cia (Hλ, id).

Proposition 9. For all sets B and all functions f : B → Hλ, the diagram
below commutes:

TλB
[[f]]λ ��

(νλ)B

��

Hλ

iHλ

��
TB

[[iHλ
·f]]

�� V

Proof We consider the following diagram:

TλB
Tλf ��

(νλ)B

��

TλHλ

TλiHλ

��
���

���
���

a#
��

(νλ)Hλ

��

Hλ

iHλ

��

TλV

(νλ)V

�� â
����

���
���

���
�

TB
Tf

�� THλ
TiHλ

�� TV
ã

�� V

(5)

The leftmost two squares commutes by naturality. The morphism â : TλV → V
is the solution of the flat equation morphism αV : TλV → PλTλV + V . The
square on the right takes an argument. Let G be the functor a (→ Pλa + Hλ.
Then the greatest fixed point G∗ gives a final coalgebra with the identity as
structure map. Recall Lemma 6 for G and αV : TλV → G(TλV). We check that
both iHλ

· a# and â · TλiHλ
are solutions of αV . The verifications are easy and

we omit them.
3 We do apologize for any notational confusion that could result from our use of H

for a functor and to designate an operation from cardinals to sets.

Uniform Functors on Sets 445

The commutativity of the triangle also takes an argument. We show that
ã·(νλ)V has the property which uniquely defines â; that is, that it is a solution to
αV . By Proposition 7, we only need to show that ã ·(νλ)V is a solution to TλV →
PTλV + V . But this follows from the compositionality identity (see, e.g., [14])
and the fact that (νλ)V reorganizes the flat morphism TλV → PTλV + V to
TV → PTV + V .

The commutativity of the outside of (5) implies the result of this lemma, in
view of the definitions of [[f]]λ and [[iHλ

· f]]. .
In the definition and results below, we recall that a standard functor H :

Set → Set extends to a standard endofunctor on classes. We identify the two
functors.

Definition 4. H is λ-uniform if H is uniform via some π : H → P such that
for all sets a,

[[ia,Hλ
]]λ · πa = iHa,Hλ

.

Proposition 10. H is λ-uniform iff there is some uniformity ρ : H → T which
factors through νλ.

Proof First, suppose that H is λ uniform via π : H → Tλ. Let ρ = νλ · π.
Then the diagram below shows that for all sets a, [[ia]] · ρa = iHa.

Ha
πa ��

ρa

����
���

���
���

� Tλa
[[ia,Hλ

]]λ ��

(νλ)a

��

Hλ

iHλ

��
Ta

[[iHλ
·ia,Hλ

]]
�� V

We used Proposition 9. In the other direction, suppose that ρ is a uniformity for
H which factors as ρ = νλ · π. Then the lower passage above is an inclusion. So
since iHλ

is an inclusion, so is [[ia,Hλ
]]λ · πa. .

This shows that if H is λ-uniform, then H is uniform. And it is also easy to
check that if λ < κ and H is λ-uniform, then H is κ-uniform.

As we mentioned above, the results of this paper which we established for our
notion of uniformity may be reworked for the refined versions of λ-uniformity.
For example, the version of Theorem 10 gives the following result.

Proposition 11. If H is λ-uniform, then H∗ ⊆ Hλ. In particular, there is a
final coalgebra for H which is a subset of the set of sets of hereditary cardinality
< λ.

Turning to the closure properties of the collection of λ-uniform functors,
the main point is that then the constant functor with value w is λ-uniform iff
w ∈ Hλ. And we see that any functor built from constants w ∈ Hλ, Pλ, product,
and coproduct has a final coalgebra which is a set and moreover is a subset of
Hλ. This final result gives an application of our work to the topic of bounded
functors on Set.

446 Lawrence S. Moss

8 Concluding Remarks

The main point of this paper has been to rework the theory of uniformity using
some of the machinery introduced in coalgebraic recursion theory in past years,
including the notions of a completely iterative monad and a completely iterative
algebra. As we have seen, there are two different intuitions at work, two different
goals for the study. In a sense, one wants to find functors with the nice property
that their greatest fixed points are final coalgebras, and then the technical details
lead one to propose definitions that are about functors working by a general form
of substitution.

As it happens, the notions of uniformity that attempt to get at the intuition
that a functor is determined “by substitution” in some sense single out a smaller
class than those which give final coalgebras by considering greatest fixed points.
The referee to this paper mentions the functor which maps each set into the set
of all its finite multisets as an example. I shall work instead with the distribution
functor D on sets given by D(X) is the set of all finite partial functions μ from
X to (0, 1] such that Σx∈X μ(x) = 1. (Equivalently, one may work with total
function which whose value is 0 at all by finitely many points. However, this
alternative would not define a monotone functor.) On morphisms, D works by
marginalization (summing). The details are technical but it seems intuitively
clear that D is not uniform in our sense (or under any definition stated in terms
of natural transformations and maps like χ). At the same time, it is the case
that the greatest fixed point of D is a final coalgebra with the identity, and the
universe is a cia for it with the inclusion. For D itself, this is easy to see as D∗

is a singleton x = {{(x, 1)}}. Things are more interesting for variants such as
H(x) = D(x) + A for a fixed set A. We show by example that (H∗, id) is a
final coalgebra, invoking Lemma 6. Let b = {w, x, y, z}, let a ∈ A, and consider
e : b→ Hb given on the left below:

e(w) = inl {(x, 1/3), (y, 1/3), (z, 1/3)}
e(x) = inl {(x, 1)}
e(y) = inl {(y, 1)}
e(z) = inr a

f(w) = (0, {(x, 2/3), (z, 1/3))}
f(x) = (0, {(x, 1)})

f(z) = (1, a)

To get the desired s : b→ V , we must identify x and y (since they are bisimilar
in e); this is the reason why uniformity in the sense of this paper fails). We do this
in the system f . This system has a unique solution s∗, by standard techniques.
We then extend s∗ to the desired s by s(y) = s∗(x).

The results here extend to show that every functor built from D and the
polynomial-forming operations (except of course for the identity functor) has
the properties of interest in this paper. One can even imagine re-working the
definition of uniformity in this paper to allow D and related functors to be
uniform. However, doing this in an ad hoc manner gives no insight to help with
a search for the most general uniformity notion.

Uniform Functors on Sets 447

Acknowledgments

I thank Jǐŕı Adámek and Stefan Milius for several conversations on this topic. I
also thank them and anonymous referee for corrections of errors, and for many
suggestions which improved this paper.

References

1. Peter Aczel, Non-Well-Founded Sets. CSLI Lecture Notes Number 14, CSLI
Publications, Stanford, 1988.

2. Peter Aczel, Jǐŕı Adámek, Stefan Milius, Jiri Velebil, “Infinite trees and com-
pletely iterative Theories: a coalgebraic view.” Theoretical Computer Science,
300 (2003), 1-45.

3. Peter Aczel, Jǐŕı Adámek, and Jǐŕı Velebil, “A coalgebraic view of infinite trees
and iteration,” Electronic Notes in Theoretical Computer Science 44.1 (2001).

4. Peter Aczel and Nax Mendler, “A final coalgebra theorem”, in D. H. Pitt et
al (eds.) Category Theory and Computer Science, Springer-Verlag, Heidelberg,
1989, 357–365.

5. Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil, “On coalgebra based on classes,”
Theoretical Computer Science 316 (2004), no. 1-3, 3–23.

6. Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil, “Elgot algebras,” preprint, 2005.
7. Jǐŕı Adámek and Věra Trnková, Automata and Algebras in Categories. Kluwer

Academic Publishers Group, Dordrecht, 1990.
8. Jon Barwise and Lawrence Moss, Vicious Circles. CSLI Lecture Notes Number

60, CSLI Publications, Stanford, 1996.
9. Daniela Cancila, Ph.D. Dissertation, University of Udine Computer Science

Department, 2003.
10. Daniela Cancila, Furio Honsell, and Marina Lenisa, “Properties of set functors,”

in F. Honsell et al. eds., Proceedings of COMETA’03, ENTCS, 104 , 2004, pp.
61-80.

11. Keith Devlin, The Joy of Sets, second edition. Springer-Verlag, 1993.
12. Peter Freyd, “Real coalgebra”, post on categories mailing list, 22 December

1999, available via www.mta.ca/∼cat-dist.
13. Azriel Levy, Basic Set Theory, Springer-Verlag 1979.
14. Stefan Milius, “Completely iterative algebras and completely iterative monads,”

Inform. and Comput. 196 (2005), 1–41.
15. Stefan Milius, Ph.D. Dissertation, Institute of Theoretical Computer Science,

Technical University of Braunschweig, 2005.
16. Stefan Milius and Lawrence S. Moss, “The category theoretic solution of recur-

sive program schemes,” in J. L. Fiadero et al (eds.) the Proceedings of CALCO
2005, Springer LNCS 3629, 2005, 293–312.

17. Lawrence S. Moss, “Coalgebraic logic,” Annals of Pure and Applied Logic 96
(1999), no. 1-3, 277–317.

18. Lawrence S. Moss, “Parametric corecursion,” Theoretical Computer Science 260
(1–2), 2001, 139–163.

19. Lawrence S. Moss and Norman Danner, “On the foundations of corecursion,”
Logic Journal of the IGPL Vol. 5, No. 2 (1997) pp. 231–257.

20. J.J.M.M. Rutten, “Universal coalgebra: a theory of systems,” Theoretical Com-
puter Science 249(1), 2000, pp. 3-80.

448 Lawrence S. Moss

21. Daniele Turi, Functorial Operational Semantics and its Denotational Dual,
(Ph.D. thesis, CWI, Amsterdam, 1996).

22. Daniele Turi and J.J.M.M. Rutten, “On the foundations of final semantics:
non-standard sets, metric spaces, partial orders,” Mathematical Structures in
Computer Science 8 (1998), no. 5, 481–540.

An Algebraic Approach to Regular Sets

Horst Reichel

Institut für Theoretische Informatik
Technische Universität Dresden

D–01062 Dresden, Germany
reichel@tcs.inf.tu-dresden.de

Abstract. In recent years an increasing interest in regular sets for dif-
ferent kinds of elements could be observed. The introduction of XML has
led to investigations of regular sets of both ranked and unranked trees
and also of attributed unranked trees.
The aim of this short note is to introduce a uniform notion of regularity.
If instantiated for strings, ranked trees and unranked trees it will coincide
with the existing concepts and it can easily be extended to arbitrary data
types. This leads to a natural notion of regularity for different kinds of
attributed unranked trees and also to regular sets of structured elements
which have not yet been investigated. The approach takes advantage
from freeness constraints and parametric abstract data types as offered
by the algebraic specification language Casl

1 Introduction

It is well known that strings and ranked trees can be interpreted as ground terms
of suitable ranked signatures (alphabets).

In the case of strings over a finite alphabet Σ the corresponding signature
ΩString consists of a constant ε and a unary operation for each letter x ∈ Σ. For
each ΩString–algebra A there exists a unique homomorphism fA : T(ΩString) →
A where T(ΩString) denotes the free term algebra for the signature ΩString. For
each term t = εx1 . . . xn the homomorphism fA maps t to the evaluation of t in
A. Now it is folklore that a subset L ⊆ T (ΩString) is regular if and only if there
is a finite ΩString–algebra A with a distinguished subset A0 ⊆ A such that

L = f−1
A

(A0).

This means that L is the homomorphic inverse image of an accepting set A0 of
states of the finite automaton A.

It has been shown by Thatcher at that a corresponding characterization holds
for regular sets of ranked trees.

It turns out that for the intended generalization it will be more convenient to
work with partial algebras and weak homomorphisms between partial algebras.

In order to define unranked trees and other types of structured data, we
will work with more general algebraic structures as usually used in Universal
Algebra. The generalizations concern the domains of fundamental operations. In

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 449–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

450 Horst Reichel

a many–sorted framework the domains of fundamental operations are assumed
to be products of sorts and the codomain to be one of the given sorts. We will
allow that the domain of a fundamental operation can be an abstract data type
on the given sorts. Such structures arise naturally if one works with many–sorted
algebras and freeness constraints which are basic in the algebraic specification
language Casl .

One example for this more general concept is given by list–algebras. For list–
algebras the domain of a fundamental operation may be the set of all finite lists
with elements out of the carrier set of the list–algebra.

Let us have a first look at the simplest case of list–algebras. We consider the
signature with just one sort s and one operation symbol of type c : s lists →
s. What about the ground terms generated by that signature? Since there
is the empty list, denoted by [], there is the ground term c([]). This ground
term can be used to build for instance the list [c([]), c([]), c([])] consisting of
three copies of the previously constructed ground term. This list yields a new
ground term c([c([]), c([]), c([])]). Similarly one could construct c([c([]), c([])]) and
c([c([]), c([c([]), c([])]), c([])]) and so on. Evidently, the ground terms represent the
construction of list of list of . . . list of the empty set which may also be be seen as
finite unranked ordered trees. This corresponds to the well known specification
of finite unranked ordered trees as an inductively defined data type.

It is well known that regular sets of finite unranked ordered trees can also
be characterized as inverse homomorphic images. But, taking only finite list–
algebras would lead to a more general concept. For the characterization of regular
sets of finite unranked trees one has to use an additional property which leads to
so–called regular list–algebras, where a list–algebra is called regular, if the set of
lists (sequences) of elements mapped by the fundamental operation to one and
the same element is always a regular set of lists (sequences). A finite regular list–
algebra is a finite deterministic bottom–up tree automaton in the terminology
of [1]. Therefore, in the following we will also speak of states if we talk about
elements of finite regular algebras.

This encourages us to call a subset of an inductively defined data type regular
if it is the inverse homomorphic image of an accepting subset of a finite regular
algebra (of a corresponding generalized type). In this way, the definition and
investigation of regular expressions can very generally be based on operations
on classes of finite regular algebras. This leads to a uniform view of regular
expressions for different types of structured data.

It is worth mentioning that finite regular algebras coincide with finite algebras
in the case of traditional algebras for ranked alphabets.

This short note may be seen as a straightforward generalization of J.W.
Thatcher’s work on tree automata. This generalization does not include regular-
ity for sets of infinite data structures like streams or infinite lists.

An Algebraic Approach to Regular Sets 451

2 Algebraic Operations with Structured Domains

Traditional algebraic structures use on the meta level only the type constructors
of Cartesian products. Algebraic structures in the framework of category theory
use for typing arbitrary endofunctors T : Set → Set and define an algebra as
a pair (A,α : T (A) → A). In the case of many–sorted algebras one has to use
endofunctors T : SetS → SetS with a finite set S of sort names.

In this note we will work with endofunctors that can be built up by finite
Cartesian products and by generic free data types in the sense of the algebraic
specification language Casl [4]. This requirement rules out for instance the
powerset functor, but it allows the powerset functor Pω() of finite subsets. This
means that we use ideas and concepts which came up very early within the
theory of abstract data type, see for instance [2], [8], [5], [6] and [7].

The following are some examples of extended signatures for these more gen-
eral algebras:

SIG ListAlgebras IS
SORTS s
OPS c : s_lists ---> s

END

SIG Attributed1ListAlgebras IS
SORTS s1, s2
OPS c : s2 x s1_lists ---> s1

END

SIG SetAlgebras IS
SORT s
OPS c : s_sets ---> s

END

SIG Attributed2ListAlgebras IS
SORTS s1, s2
OPS c : s1_lists x s2_lists ---> s1

END

An algebra A = (As1, As2; cA) for the signature Attributed2ListAlgebra
is then given by an arbitrary set As1, the interpretation of the sort name s1,
a second set As2, the interpretation of the sort name s2, and a mapping cA :
A∗

s2 × A∗
s1 → As1. Accordingly an algebra A = (As; cA : Pω(As) → As) for the

extended signature SetAlgebras is given by the interpretation of the sort name
s and the interpretation of the operation symbol c which assigns to each finite
subset of the carrier set an element of the carrier set.

Since we want to define regular subsets of intial algebras of extended sig-
natures, we will first have a look at the intial algebras of the given extended
signatures.

452 Horst Reichel

As described in the introduction the initial algebra of the extended signa-
ture ListAlgebras represents finite ordered unranked trees. However, the initial
algebra of the signature Attributed1ListAlgebras is given by the empty set
for both sort names. But, the intended meaning of the signature is the set of
finite ordered unranked trees whose nodes are labelled with elements out of the
interpretation of s2. By the same reason the initial algebra of the signature
Attributed2ListAlgebras differs from the intended meaning. In that case the
nodes should be labelled with lists of elements out of the interpretation of the
sort name s2. In both cases the difference is caused by the fact that the initial
algebras interpret the sort name s2 by the empty set.

Finally, we see that the initial algebra of the signature SetAlgebras repre-
sents finite unordered and repetition free trees.

The problems described above can be solved by the use of parameteric ex-
tended signatures. If one uses the sort name s2 as a parameter then each inter-
pretation of this sort name produces an instantiated extended signature. Now,
for each nonempty interpretation of the sort parameter the initial algebras of
the instantiated extended signatures represent the intended meaning.

Parameterized extended signatures are just syntactic sugar for the represen-
tation of families of extended signatures. If one interprets the sort parameter s
by a set M then the instantiated extended signature results by adding s as a
sort symbol each element of M as a constant operation symbol m : s, and one
has to fix the interpretation of the sort name s to the set M .

In the following we will work with one instance of the parametric version of
Attributed2ListAlgebra where the parameter sort s2 is instantiated by the
alphabet {a, b, A,B}. The resulting extended signature is

SIG ALAlg IS
SORTS s,
OPS c : {a,b,A,B}* x s_lists ---> s

END

3 Regular Subsets of Initial Extended Algebras

In the case of strings and finite ranked trees regular subsets can be characterized
as inverse homomorphic images of subsets of finite algebras. The example of finite
ordered unranked trees shows that in general finite algebras are not sufficient to
characterize regular subsets by inverse homomorphic images. More specific finite
algebras are needed.

Definition 3.1. Let Sig be an extended signature such that for all type
constructors used in definitions of the types of domains of the operation symbols
the notion of regular subsets is known. Let A be a finite algebra for the given
signature. The finite algebra is called regular if for each operation and each
element of a carrier the inverse image of that element is a regular subset of the
domain.

An Algebraic Approach to Regular Sets 453

If the used type constructors of a signature preserve finite sets, then evidently
each finite algebra is regular. Therefor, the concept of regularity of finite algebras
is not needed in case of regular strings (lists) or finite ranked trees.

Definition 3.2. Let Sig be an extended signature such that for all type
constructors used in definitions of the types of domains of the operation symbols
the notion of regular subsets is known. A subset of the initial Sig–algebra T(Sig)
is called regular if it is the inverse homomorphic image of a subset of a finite
regular Sig–algebra.

The extended signatures above use only products and lists as type construc-
tors. Therefore, this definition can be used to define regular sets for the defined
types of trees.

In a next step trees could be used as typ constructors in order to define
other structured data types. Definition 3.2 provides then notions of regular sets
for the resulting structured data types. Since each interesting data type can be
specified by freeness constraints using only finitely many auxiliary data types,
also defined by freeness constraints, Definition 3.2 allows to define the concept
of regular sets for all interesting data type, using a suitable hierarchy of type
definitions by freeness constraints.

Since Attributed1ListAlgebras–algebras are deterministic bottom–up au-
tomata as introduced in [1], the notion of regular sets for the extended signature
Attributed1ListAlgebras coincides with the notion of tree regular languages
according Definition 2.14 in [1].

Let us apply Definition 3.2 to the extended signature ALAlg. A finite regular
ALAlg–algebra A = (As; cA) assigns to pair of a finite list of elements out of As

and a finite list of elements out of {a, b, A,B} an element in As.
The unique homomorphism from the initial ALAlg–algebra to a specific finite

regular ALAlg–algebra
A = (As, ; cA)

defines a classification of the trees where each class is given by the inverse ho-
momorphic image of an element in As. The basic operation cA assigns to each
class a regular set over {a, b, A,B} whose elements can be used as attributes for
the root of trees out of the corresponding class.

We will illustrate this by an example:
Example 3.1: Let E = (Es; cE) be given by:

Es = {s0, s1, s2, s3, sd}
for (w, l) ∈ ({a, b, A,B}∗ ×A∗

s) :

cE(w, l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s0 if w ∈ L(a∗) l ∈ {nil}
s1 if w ∈ L(b∗) l ∈ {s0s0, s0s0s0}
s2 if w ∈ L((A+B)a∗) l ∈ {s1s1, s0s1}
s3 if w ∈ L((A+B)b∗) l ∈ {s2s2s2, s1s2s3}
sd else else

and let us assume that {s3} ⊆ Es is the set of accepting states.

454 Horst Reichel

Then we have four interesting classes of attributed trees, defined by the
inverse homomorphic images of s0, s1, s2, s3 respectively, and the complement of
the union of this classes, represented by sd.

s0 represents the class of all trees with exactly one node labelled with a string
w ∈ L(a∗).

s1 represents the class of trees with two or three sons, classified by s0 and
the root is labelled with a string w ∈ L(b∗).

s2 represents the class of trees with two sons such that the first is classified
by s1 or s0 and the second son is classified by s1. Finally the root is labelled
with a string L((A+B)a∗).

Finally, the accepting state s3 represents the class of trees with exactly three
sons, where either all of them are classified by s2 or the first son is classified by
s1, the second by s2 and the third again by s3. The root is labelled by a string
w ∈ L((A+B)b∗).

The example shows that the explicit definition of the basic operation of a
finite regular algebra for the extended signature ALAlg has great similarity with
a tree grammar, where the elements act as meta variables.

The example shows also another aspect, it is basically a partial ALAlg–algebra
with a one–point completion given by the state sd. In terms of automata this
completion point is a trap. If the computation once reaches the trap it can never
leave it.

4 Regular Expressions Based on Colimits

The investigation of regular expressions can now be based on colimits in suitable
categories. The well known interpretation of the operations of regular expression
as operations on finite automata can now be extended to operations on finite
regular extended algebras.

We will illustrate this by means of the category of finite partial regular ALAlg–
algebras as objects and weak homomorphisms as morphisms.

Weak homomorphisms preserve the applicability of the basic operations but
do not necessarily reflect this property. To be more precise, let A,B be partial
algebras. Then cA : {a, b, A,B}∗ ×A∗

s →? As and cB : {a, b, A,B}∗ × B∗
s →? Bs

are partial mappings. A total mapping f : As → Bs is a weak homomorphism
if for each (x, y) ∈ dom(cA) the pair (x, f∗(y)) ∈ dom(cB) and f(cA(x, y)) =
cB(x, f∗(y)), where f∗ : A∗

s → B∗
s is the canonic extension to lists.

From category theory it is known that arbitrary finite colimits exist if sum
and coequalizer exist [3]. Therefore, the most interesting constructions on alge-
bras are summation and quotient construction.

Before we study this construction in detail we introduce a notation. For a
given finite partial regular ALAlg–algebra A and a given subset X ⊆ As of
accepting states L(A, X) denotes the regular set of those ground terms for the
extended signature ALAlg which can be evaluated in A to a value out of X . To
be more formal, if At denotes the one–point completion of A and

fAt : T(ALAlg) → At

An Algebraic Approach to Regular Sets 455

the unique homomorphism then we define

eval(A) = {t ∈ T (ALAlg)| fAt(t) ∈ As},
L(A, X) = {t ∈ T (ALAlg)| fAt(t) ∈ X ⊆ As}.

With this notation it is easy to see that the empty set of ground terms and
the set of all ground terms are both regular. For the empty set one takes an
algebra A = (As; cA) where there is no w ∈{a,b,A,B}∗ with (w, nil) ∈ dom(cA)
and for the second case one takes the total one–element algebra where the only
element is also an accepting one.

For a finite partial regular algebra A = (As; cA) we call an element cA(w, nil),
if it exists, an initial state of A.

In the following we describe the sum of two algebras A,B. First we take the
disjoint unions As + Bs. Let inA : As → As + Bs, inB : Bs → As + Bs be the
injections. As + Bs becomes the carrier of A + B. The basic operation cA+B is
defined as follows

cA+B(w, l) =

⎧⎨⎩ cA(w, l) if l = in∗
A(l′) and (w, l′) ∈ dom(cA)

cB(w, l) if l = in∗
B(l′) and (w, l′) ∈ dom(cB)

undefined else

It is a matter of routine to show that this construction gives a sum in the
category of finite partial regular ALAlg–algebras with weak homomorphisms.

Summation can be used to show that the union of two regular subsets is again
regular. If X ⊆ As, Y ⊆ Bs are given sets of accepting states in A,B respectively
and X � Y denotes the union of their embeddings in A + B then

L(A, X) ∪ L(B, Y) = L(A + B, X � Y).

That regular subsets in T (ALAlg) are closed under intersection can easily be
seen by means of the Cartesian product of finite partial regular algebras:

L(A, X) ∩ L(B, Y) = L(A × B, X × Y).

It is even simpler to see that the complement of a regular subset is regular.
One takes just the complement of the accepting subset on states in a finite
(total) regular algebra which represents the given regular subset and one gets
the wanted algebra for the complement.

Above we have seen that the sum of algebras represents the union of regular
sets and the sum of regular expressions. What about the composition and the
star–operation of regular expressions. The semantics of these operations can be
reduced to quotient construction of finite partial regular algebras. It is sufficient
to define how states can be fused together.

Let A = (As; cA) be a given partial algebra and x, y ∈ As two elements. We
define the quotient algebra Ax�y which results from A by fusing x with y as
follows.

Definition 4.1: An equivalence relation R ⊆ As × As in the carrier set
of a partial algebra A is called a congruence if for all w ∈ {a, b, A,B}∗

456 Horst Reichel

and all (a1, a
′
1) ∈ R, . . . , (an, a

′
n) ∈ R, n ≥ 0 if cA(w, [a1, . . . , an]) = a and

cA(w, [a′1, . . . , a
′
n]) = a′ then (a, a′) ∈ R.

Definition 4.2: For a given partial ALAlg–algebra A and a congruence R in
A the quotient A/R has the quotient set As/R as carrier and

cA/R(w, [〈a1〉R, . . . , 〈an〉R]) = 〈a〉R

if there are representatives a′i ∈ 〈ai〉R for i ∈ {1, . . . , n} with

cA(w, [a′1, . . . , a
′
n]) = a

where 〈x〉R denotes the congruence class containing x.
Since congruences in the sense of Definition 4.1 are closed under intersections

there exists for each set X of pairs the smallest congruence containing X which
is denoted by RX . RX is also called the congruence generated by X .

The algebra Ax�y can now be defined by

Ax�y = A/R{(x,y)}.

Iterated application of this construction leads to the identification of a finite
set {x1, . . . , xn} of states with the state y or of identifying x1 with y1 . . .xn with
yn. The resulting quotient algebra will be denoted by

A{x1,...,xn}�y and A{x1�y1,...,xn�yn}

respectively.
For a given ALAlg–algebra A, a set X ⊆ As of accepting states and a congru-

ence relation R the set of accepting states in A/R is given by {〈x〉R | x ∈ X}.
By means of the introduced quotient construction on partial ALAlg–algebras

one can define a construction on algebras which corresponds to the *–operation of
regular expressions. The corresponding algebra A∗ can be constructed as quotient
of the congruence relation which is generated by fusing each initial state with
each accepting state.

With respect to Example 3.1 the algebra E has one initial state s0 and one
accepting state s3. This implies

E∗ = Es3�s0 .

The quotient construction together with the sum can be used to define an
operation on algebras which corresponds to the product of regular expressions
or the sequential composition of automata. The basic idea for the construction
of A ·B is to define first a sum A + (B + . . .B) which contains as many copies of
B as A has accepting states and fuse each accepting state with the initial states
of the copy of B which corresponds to the accepting state.

There is one problem left. Which algebras correspond to the atomic regular
expressions? The corresponding concept of an atomic partial algebra depends on
the given extended signature. We will discuss the case of atomic partial ALAlg–
algebras.

An Algebraic Approach to Regular Sets 457

Let be given a finite set {a0, a1, . . . , an}, 0 ≤ n, and regular sets L1 ⊆
{a, b, A,B}∗, L2 ⊆ {a1, . . . , an}∗. Then we call a partial ALAlg–algebra A with
the carrier set {a0, a1, . . . , an} atomic if dom(cA) = L1 × L2 and cA(w, l) = a0

for all w ∈ L1, l ∈ L2.
Finally we demonstrate that the partial ALAlg–algebra which results from

Example 3.1 by removing the trap sd can be constructed out of atomic partial
ALAlg–algebras using summation and quotient construction.

We start with the following atomic algebras:

1. A with A = {a0}, L1(A) = L(a∗), L2(A) = {nil};
2. B with B = {b0, b1}, L1(B) = L(b∗), L2(A) = {b1b1, b1b1b1};
3. C with C = {c0, c1, c2}, L1(C) = L((A+B)a∗), L2(C) = {c2c2, c1c2};
4. D withD = {d0, d1, d2, d3}, L1(D) =L((A+B)b∗), L2(D) = {d2d2d2, d1d2d3};

Then

(A + B + C + Dd3�d0){a0�b1,b0�c2,a0�c1,c0�d2,b0�d1}

is a representation (up to isomorphism) of the partial ALAlg–algebra from Ex-
ample 3.1.

Based on this example it is not hard to see that each finite partial regular
ALAlg–algebra can be constructed out of atomic partial ALAlg–algebras using
summations and quotient constructions.

5 Conclusions

We have introduced a uniform notion of regular sets which is applicable to ar-
bitrary structured data types and which coincides with the existing notions of
regular sets of words, ranked and unranked trees. The introduced notion is based
on the observation that regular sets can be seen as subsets of free data types
which are inverse homomorphic images of finite regular algebras (for suitable
signatures).

In this paper we have sketched by a representative example a purely algebraic
approach to the notion of regular sets for arbitrary data type. By a suitable
extension of the signatures of algebras the approach of Thatcher [14] to ranked
trees could be generalized to arbitrary structured data types. This approach can
be seen as an addition to approaches based on logics, see for instance [11]and
[12].

Algebras without rank have earlier also been used by Indermark [9]. But
Indermak uses unranked algebras in order to avoid many–sortedness.

The most closely related work is that of K. Hashiguchi, Y. Wada and S.
Jimbo [10] which use classical algebraic structures. They introduce binoids which
have two associative binary operations and an identity to each operation. One
operation is used to represent the depth and the other to represent the width of
trees. The formal framework of this approach becomes rather complicated, since
a two–sorted structure has to be encrypted in a one–sorted structure and the

458 Horst Reichel

unrestricted width and depth of unranked trees in two binary operations. This
approach does not offer a framework which can easily be extended to arbitrary
structured data types.

It remains for future work to give a complete formal presentation of the
sketched approach. Additionally it would be interesting to know if the coalge-
braic approach to regular expressions developed by J.J.M.M. Rutten [13] can be
extended to the more general situation of regular sets of arbitrary structured
data.

References

1. M. Murata A. Brüggemann-Klein and D. Wood. Regular tree and regular hedge
languages over unranked alphabets: Version 1. Technical Report HKUST-TCSC-
2001-0, The Hongkong University of Science and Technology, April 2001.

2. R.M. Burstall A. Tarlecki and J.A. Goguen. Some fundamental algebraic tools for
the semantics of computation - part III: Indexed categories. TCS, (91):239–264,
1991.

3. M. Barr and Ch. Wells. Category Theory for Computing Science. International
Series in Computer Science. Prentice–Hall, second edition edition, 195.

4. M. Bidoit and P.D. Mosses. CASL - User Manual, volume 2900 of LNCS. Springer,
2004.

5. Rod Burstall and Joseph Goguen. The semantics of CLEAR, a specification lan-
guage. Springer LNCS, 86:292–332, 1979.

6. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6. Springer–Verlag, eatcs monographs on theoretical
computer science edition, 1985.

7. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints, volume 21. Springer–Verlag, eatcs monographs on theo-
retical computer science edition, 1990.

8. Joseph A. Goguen. A categorical manifesto. Math. Struct. in Comp. Sci., 1(1):49–
67, 1991.

9. K. Indermark. On rational definitions in complete algebras without rank. Theo-
retical Computer Science, 21:281–313, 1982.

10. Y. Wada K. Hashiguchi and S. Jimbo. Regular binoid expressions and regular
binoid languages. Theoretical Computer Science, 304:291–313, 2003.

11. F. Neven. Automata, logic, and XML. In Proceedings CSL 2002, volume 2471 of
LNCS, pages 2–26. Springer, 2002.

12. F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3), 2002.
13. J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of

streams, automata, and power series. Theoretical Computer Science, 308(1-3):1–
53, 2003.

14. J.W. Thatcher and J.B. Wright. Generlized finite automata theory with an appli-
cation to a decision problem of second–order logic. Mathematical Systems Theory,
2(1):57–81, 1968.

Elementary Algebraic Specifications of the

Rational Complex Numbers

Jan A. Bergstra1 and John V. Tucker2

1 University of Amsterdam,
Informatics Institute,

Kruislaan 403,
1098 SJ Amsterdam,

The Netherlands.
janb@science.uva.nl

2 Department of Computer Science,
University of Wales Swansea,

Singleton Park,
Swansea, SA2 8PP,
United Kingdom.

j.v.tucker@swansea.ac.uk

Abstract. From the range of techniques available for algebraic speci-
fications we select a core set of features which we define to be the ele-
mentary algebraic specifications. These include equational specifications
with hidden functions and sorts and initial algebra semantics. We give
an elementary equational specification of the field operations and conju-
gation operator on the rational complex numbers Q(i) and discuss some
open problems.

For Joseph Goguen

1 Introduction

Joseph Goguen has a vision for the theory of computation. It is algebraic, it is
comprehensive, and it is focussed on the world’s work. He uses a set of mathemat-
ical tools from category theory and universal algebra to explore a vast landscape
of fundamental concepts, system architectures, emerging technologies, and con-
temporary practices in software development. He is a great explorer. His achieve-
ment is a fine example of just how much intellectual ground can be covered in the
life time of a brilliant computer scientist with energy, curiosity, technical insight
and a personal scientific agenda. He has reflected on his work on computing up
to 1999 in Goguen [15]. There is so much to think about in this oeuvre.

One early line of thought is the role of initial algebras in semantic modelling
and specification, expounded in [19]. Our own work in algebraic specifications
from 1979 onwards owes a great debt to Joseph Goguen and his colleagues Jim
Thatcher and Eric Wagner who, writing as the ADJ Group, provided a perfect

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 459–475, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

460 Jan A. Bergstra and John V. Tucker

mathematical basis for modelling and specifying abstract data types, starting
in [20]. The ADJ Group established most of the basic theory by combining the
technical ideas of many sorted algebras, equations, conditional equations, hidden
functions and sorts, term rewriting and initial algebras. We continue to use many
of their notations and techniques. Thanks to Sam Kamin [22], a rapidly growing
literature was organised and problems identified and clearly stated, such as when
were hidden functions and sorts necessary? Some of the more difficult problems
of partiality, errors and parameterization also showed themselves in their early
writing, problems which, after many long papers and books, are still not quite
under control. Joseph Goguen and Eric Wagner have reflected on the ADJ Group
in [13] and [38], respectively.

Our general theory of the algebraic specification of computable data types
analysed the relationship between computability of abstract data types and equa-
tional specifications. Between 1979 and 1995 we published a series of papers that
classified the computable, semicomputable and cosemicomputable data types us-
ing algebraic specifications (see, for example, Bergstra and Tucker [2,3,4,5]). We
proved several theorems that show that all computable data types have specifi-
cations that are very simple and small, or have good term rewriting properties,
but always with hidden functions. Work has continued on this subject, refining
notions such as finality (e.g., including Meseguer and Goguen [16] and Moss,
Meseguer and Goguen, [31]), and on open questions (e.g., by Marongiu and
Tulipani [26] and, most recently, by Khoussainov [23,24]).

We have returned to the foundations of the subject in [7], tackling the speci-
fication of basic data types such as the rational numbers, and we continue here.
First, we will select a core set of features which we define to be the elementary
algebraic specifications. These are close to the basic techniques of the ADJ Group
of the 1970s.

The set Q of rational numbers is a number system designed to denote mea-
surements. They are used to define the real and complex numbers via approxi-
mation. The rationals are the numbers with which we make finite computations.
Algebras made by equipping Q with some constants and operations we call ratio-
nal arithmetics. We usually calculate with the algebra (Q|0, 1,+,−, ·,−1) which
is called the field of rational numbers when the operations satisfy certain stan-
dard axioms.

In addition to rational arithmetics, of particular interest are field extensions
of the rational number field. Through Galois Theory, field extensions play a
fundamental role in our understanding of the algebra of numbers, including the
theory of equations ([12,34]). One important field extension is the field of rational
complex numbers, based on the set

Q(i) = {p+ i · q|p, q ∈ Q}.

This has special operations such as complex conjugation cc(p+ i · q) = p− i · q.
The algebras of rational numbers, such as the field and its extensions by real

and complex numbers, are among the truly fundamental data types. Despite the
fact they have been known and used for over two millennia, they are neglected in

Elementary Algebraic Specifications of the Rational Complex Numbers 461

the modern theory of data types. After over 30 years of data type theory, many
questions about rational arithmetics and their extensions are open.

Now the common rational arithmetics and field extensions are all computable
algebras. Indeed, in the theory of computable rings and fields there is a wealth
of constructions of computable algebras that start with the rationals and the fi-
nite fields: see the introduction and survey Stoltenberg-Hansen and Tucker [36].
Therefore, according to our general theory of algebraic specifications of com-
putable data types they have various equational specifications under initial and
final algebra semantics. Computable algebras even have equational specifications
that are also complete term rewriting systems ([5]). However, these general spec-
ification theorems for computable data types involve hidden functions and are
based on equationally definable enumerations of data.

Recently, in Moss [30], algebraic specifications of the rationals were consid-
ered. Among several interesting observations, Moss showed that there exists an
equational specification of the ring of rationals (i.e., without division) with just
one unary hidden function. He used a special enumeration technique based on
a remarkable enumeration theorem for the rationals in Calkin and Wilf [10]. He
also gave specifications of other rational arithmetics and asked if hidden functions
were necessary. In [7] we proved that there exists a finite equational specification
under initial algebra semantics, without hidden functions, of the field of rational
numbers. The pursuit of this result leads to a thorough axiomatic examination
of the divisibility operator, in which some interesting new axioms and models
were discovered, and related results on fields and other rational arithmetics.

In particular, here we prove:

Theorem 1. There exists a finite equational specification under initial algebra
semantics, and without hidden functions, of the algebra

(Q(i)|0, 1, i,+,−, ·,−1 , cc)

of rational complex numbers with field and conjugate operations that are all total.

The structure of the paper is this. In Section 2, we discuss the basics of
specification theory and define the elementary algebraic specifications. In Section
3, we describe the algebras and the axioms we will use to specify them. In
Section 4 we prove the main theorem. Finally, in Section 5 we discuss some open
problems.

This paper, and our [7,8,9], can be read independently but they are better
viewed as a sequel to Bergstra and Tucker [4,5], which contain many comple-
mentary results.

2 Elementary Algebraic Specifications

Since the first examples of algebraic specifications of data types in the 1970s,
there has been a steady growth in the features that one may add to the basic
techniques to be found in the early ADJ papers such as [20]. The new techniques
have been introduced for a number of obvious reasons: they have been found to

462 Jan A. Bergstra and John V. Tucker

be natural, or useful, or necessary to solve problems, or they have been used to
extend or explore simpler techniques. The development of languages and tools
(such as OBJ, ASF-SDF, Maude, CASL, etc.) for algebraic specification has
increased the number and complexity of features in use.

So just what are the basic elements of this subject?

2.1 What Are the Elementary Algebraic Specifications?

Algebraic specification starts with the idea of modelling - e.g., data, processes,
syntax, hardware, etc. - using sets and functions. Wherever there are sets and
functions there are algebras! For example, the sets X,Y and function f : X → Y
are combined to form the many sorted algebra (X,Y |f). A particular algebra
A is a mathematical model of a specific concrete representation of the system
equipped with concrete operations. The need to understand the system, its rep-
resentations and the extent to which they are unique leads to the concepts of (i)
axiomatic theories for the chosen operators, and (ii) homomorphisms and iso-
morphisms for the comparison of algebras. The simplest axioms are equations.
The simplest deductions are are those of equational logic based on the rewriting
of terms. Any system can be modelled in this way. Therefore, we define the basic
elements as follows.

Definition 1. An algebraic specification (Σ′, E′) of a Σ algebra A is elementary
if it involves only

1. A many sorted signature Σ′ that is non-void. A signature is non-void if there
is a closed term of every sort.

2. A set E′ of equations or conditional equations.
3. An initial algebra semantics such that I(Σ′, E′)|Σ ∼= A.

In particular, the elementary specifications require total functions, allow hidden
functions and sorts, and may or may not be complete term rewriting systems.
Clearly, there are plenty of restrictions in force: see 2.2.

A standard way of proving an elementary specification is to check these
properties:

Definition 2. An algebraic specification (Σ′, E′) of a Σ algebra A satisfies
Goguen’s conditions if it the following are true:

No Junk or Minimality The algebra A is Σ-minimal.
No Confusion or Completeness For all closed Σ terms t, t′, we have

A |= t = t′ if, and only if, E′ $ t = t′.

In particular, the Goguen conditions imply that

I(Σ′, E′)|Σ ∼= A.

Elementary Algebraic Specifications of the Rational Complex Numbers 463

What makes these features elementary?
The purpose of developing a specification is to model, analyse and under-

stand. In simple terms, these algebraic tools are fundamental for any modelling
using sets and functions: they are used to abstract and analyse the properties of
an idea, component, or system. One chooses a set of operators and postulates a
set of laws they satisfy; the laws are expressed as equations or conditional equa-
tions. The terms express all possible operations that can be derived by combining
operations, and the equational identities express the consequent facts about the
model. The term rewriting is a completely basic mechanism for both abstract
reasoning and computation. This view suggests the elementary character of the
equations and that we cannot make do with less. There is also an argument that
they need extension in special circumstances.

Now, the whole modelling and specification process for elementary specifica-
tions is mathematically robust in the sense that the syntax and semantics have
virtually no special conditions, neither subtle or obvious.

In modelling using an elementary algebraic specification one simply starts
playing with operators, equations and rewrites. There are no side conditions,
side effects, and semantic errors to beware. The elementary algebraic specifi-
cations work simply in all cases. The only mistakes possible are mistakes in
understanding what one is trying to model.

In our algebraic theory of computable data types, there are many results
that show that if a many sorted algebra can be implemented on a computer
then it possesses a range of elementary equational specifications with remarkable
properties. Technically, all computable algebras can be specified with hidden
functions, and all semicomputable algebras can be specified with hidden sorts
and functions. In general this is the best possible. One theorem provides complete
term rewriting systems ([5], Terese [37]). We need not worry about their power
because:

The elementary algebraic specifications can specify everything that can be
implemented on a computer in principle.

2.2 What Are the Non-elementary Algebraic Specifications?

What features have we excluded from the Definition 1 and hence have “declared”
to be not elementary, and why?

We have excluded final algebra semantics because final algebras of equational
specifications do not always exist and there are different interpretations possible
(see Moss, Meseguer and Goguen [31]).

We have excluded loose semantics because we are focussed on specifying
algebras up to isomorphism rather than classes of possible models.

We have excluded the following, too:

– Generalisations of equations One can use first order formulae that are
“close” to equations such as Horn formulae. Since we exclude relations the
Horn clauses are excluded. The multi-equations studied by Adamek et. al.
[1] are also not simple enough.

464 Jan A. Bergstra and John V. Tucker

– Partial functions Partiality is an essential aspect of computation. However,
their logic is awfully complicated. Total functions are not without problems
when specifying the stack, as we have seen in our [6]. However, as we showed
in [7], it is not a problem to use total functions to specify the inverse on the
rationals.

– Errors and exceptions The addition of new types of data, such as error
flags, to familiar old friends, such as the natural numbers equipped with the
predecessor n−1, leads to difficult specifications and semantic complications.

– Subsorts and order sorted algebras Subsorts occur naturally and help
with modelling subtyping, errors, etc. However, there are different theories
none of which are simple: see, for example, Mosses on unified algebras [32]
or the survey [18].

– Higher order The higher-order theory is complicated from the start though
it does possess a nice generalisation of the standard theory (see Meinke [27]).

– Empty sorts Empty sorts are tricky: see Goguen and Meseguer [17].
– Priorities Priorities for the equational rules are technically natural in de-

veloping software tools for algebraic specifications. However, they lead to
complications since their term algebra representations do not satisfy the
equations in general and must be considered pre-initial in some sense.

– Modularity Our elementary specifications are flat and do not have imports.
Even the most simple notion of import introduces involved operations for
flattening, see Rees et al [33].

– Parameterization There are many alternate treatments of parameteriza-
tion, none of them simple.

Many of the features and techniques above that we have declared to be not
elementary we certainly consider important. For example, features such as par-
tiality and higher order equations are semantically fascinating and challenging
to study, and are necessary to meet desires for certain kinds of specifications.
However, they are not elementary.

Some of the festures we have chosen for exclusion, such as subsorts, may seem
less complicated to the user: they are not. For example, consider distinguishing
the set Q �=0 of non-zero elements of Q using a subsort of a signature for the
field of rationals: let nzrat be the subsort of the sort rat. What is the type of
the rational function 1/(1+x.x)? Is it nzrat and, if so, why? This kind of typing
problem is complicated for if it were decidable then the diophantine problem over
Q would be decidable - this remains an important open problem in computability
theory. The types of open terms are problematic, and so are types of equations.
Is the equation (1 + x.x)/(1 + x.x) = 1 usable as an axiom? If so, what does
that imply about its type, or should that be given explicitly. But what can the
type be: taking type nzrat represents the axiom that this denominator is never
0 which to prove may require this very axiom, taking as type rat may be a type
error.

We believe that none of the features in our list are elementary for users, and
that combining them leads to significant complications.

Elementary Algebraic Specifications of the Rational Complex Numbers 465

2.3 Technical Preliminaries on Algebraic Specifications

We assume the reader is familiar with using equations and conditional equations
and initial algebra semantics to specify data types. Some accounts of this are:
ADJ [20], Meseguer and Goguen [29], or Wirsing [40].

The theory of algebraic specifications is based on theories of universal al-
gebras (e.g., Wechler [39], Meinke and Tucker [28]), computable and semicom-
putable algebras (Stoltenberg-Hansen and Tucker [35]), and term rewriting (Klop
[25], Terese [37]).

We use standard notations: typically, we let Σ be a many sorted signature
and A a total Σ algebra. The class of all total Σ algebras is Alg(Σ) and the
class of all total Σ-algebras satisfying all the axioms in a theory T is Alg(Σ, T).
The word ‘algebra’ will mean total algebra.

3 Specifications for Rational Complex Numbers

3.1 Algebraic Specifications of the Rationals

We will build our specifications in stages. The primary signature Σ is simply
that of the field of rational numbers:

signature Σ
sorts field
operations
0: → field;
1 : → field;
+: field× field→ field;
− : field→ field;
· : field× field→ field;
−1 : field→ field
end

The first set of axioms is that of a commutative ring with 1, which establishes
the standard properties of +, −, and ·.

equations CR

(x+ y) + z = x+ (y + z) (1)
x+ y = y + x (2)
x+ 0 = x (3)

x+ (−x) = 0 (4)
(x · y) · z = x · (y · z) (5)

x · y = y · x (6)
x · 1 = x (7)

x · (y + z) = x · y + x · z (8)

end

466 Jan A. Bergstra and John V. Tucker

Our first set SIP of axioms for −1 contain the following, which we call the
strong inverse properties. They are “strong” because they are equations in in-
volving −1 without any guards, such as x 	= 0:

equations SIP

(−x)−1 = −(x−1) (9)
(x · y)−1 = x−1 · y−1 (10)
(x−1)−1 = x (11)

end

Our specification CR ∪ SIP draws attention to division by zero:

Lemma 1. The following equation is provable from CR ∪ SIP :

0−1 = 0.

In particular, in our [7] (Theorem 3.5) we add a single axiom L to prove:

Theorem 2. There exists a finite elementary equational specification (Σ,CR∪
SIP ∪ L), without hidden functions and under initial algebra semantics, of the
rational numbers with field operations that are all total.

In [7] we also add to CR ∪ SIP the restricted inverse law (Ril),

equations Ril

x · (x · x−1) = x (12)

end

which, using commutativity and associativity, expresses that x · x−1 is 1 in the
presence of x.

Whilst the initial algebra of CR is the ring of integers, we find that

Lemma 2. The initial algebra of CR + SIP + Ril is a computable algebra but
it is not an integral domain.

The models of CR+ SIP +Ril are algebras with nice properties, in spite of
not being fields nor even integral domains.

Definition 3. A model of CR + SIP +Ril is called a meadow.

All fields are clearly meadows but not conversely (as the initial algebra is not
a field).

Theorem 3. For any closed terms t, t′ ∈ T (Σ), the following are equivalent

1. t = t′ is true in all totalised fields.
2. t = t′ is true in all totalised meadows.

Elementary Algebraic Specifications of the Rational Complex Numbers 467

3.2 Algebraic Specifications of the Rational Complex Numbers

We add to the field signature Σ the complex conjugate operation cc : field →
field to form the signature Σcc. Also to this signature we add the constant
i : → field to form the signature Σcc,i. Consider these equations over the sig-
nature Σcc,i:

equations CC

i · i = −1 (13)
cc(1) = 1 (14)
cc(i) = −i (15)

cc(x+ y) = cc(x) + cc(y) (16)
cc(x · y) = cc(x) · cc(y) (17)
cc(−x) = −cc(x) (18)
cc(x−1) = (cc(x))−1 (19)

cc(x · x−1) = x · x−1 (20)

end

3.3 Totalised Fields and Algebras Satisfying the Specifications

The axioms of a field simply add to CR the following: the general inverse law
(Gil)

x 	= 0 =⇒ x · x−1 = 1

and the axiom of separation (Sep)

0 	= 1.

Thus, let (Σ, Tfield) be the axiomatic specification of fields, where

Tfield = CR ∪Gil ∪ Sep.

Clearly, this specification is not elementary as it contains negations; and, as it
is commonly applied, allows partial functions in its models.

However, by definition, the class Alg(Σ, Tfield) is the class of total algebras
satisfying the axioms in Tfield. For emphasis, we refer to these algebras as to-
talised fields.

For all totalised fields A ∈ Alg(Σ, Tfield) and all x ∈ A, the inverse x−1 is
defined. In particular, 0−1

A is defined. The actual value 0−1
A = a can be anything.

However, it is convenient to set 0−1 = 0 (see [7], and compare, e.g., Hodges
[21], p. 695). We use the specification CR ∪ SIP which forces 0−1 = 0 (Lemma
1). A field with 0−1 = 0 we call a 0-totalised field.

The main Σ-algebras we are interested in are these: first,

Q0 = (Q|0, 1,+,−, ·,−1)

468 Jan A. Bergstra and John V. Tucker

where the inverse is total

x−1 = 1/x if x 	= 0;
= 0 if x = 0

This total algebra satisfies the axioms of a field Tfield and is a 0-totalised field
of rationals. Next, we are interested in the 0-totalised field extension Q0(i) and
its expansion by conjugation Q0(i, cc).

4 Proof of Main Theorem

Theorem 4. There exists a finite elementary equational specification (Σcc,i, E),
without hidden functions, of the algebra Q0(cc, i) of rational complex numbers
with field and conjugate operations that are all total, under initial algebra se-
mantics. That is,

I(Σcc,i, E) = Qcc,i

Proof. Let (Σ,E) be any elementary equational specification without hidden
functions of the 0-totalised field of rationals Q0 = (Q|0, 1,+,−, ·,−1) so I(Σ,E)
∼= Q0. By Theorem 2, there is such an elementary specification. The strategy
is to build a specification of Q0(cc, i) using real and imaginary parts, which are
rationals.

Let Σcc be the field signature Σ extended by the complex conjugation oper-
ator

cc : field→ field.

First, we look at conjugation on Q.

Conjugation on Q. Conjugation on Q ⊂ C is the identity function, cc(r) = r
for r ∈ Q. Let Q0(cc) be the 0-totalised field of rational numbers extended by
conjugation cc. Let E+ be the result of applying the following transformation of
the equations in E: for each variable x in each equation of E substitute

1
2 (x+ cc(x)),

where 1
2 = (1+1)−1. When applied to a complex number, the formula calculates

its real part so when applied to a rational complex number from Q0(cc, i) it
returns a rational number that would satisfy the equations of E.

Now define

E+
cc = E+ ∪ {cc(x) = x} ∪ { 1

2 (x+ x) = x},

Lemma 3. I(Σcc, E
+
cc) ∼= Q0(cc)

Elementary Algebraic Specifications of the Rational Complex Numbers 469

Proof. We use Goguen’s conditions.
No Junk The algebra Q0(cc) is clearly Σcc minimal since Q0 is Σ minimal.
No Confusion By inspection, Q0(cc) |= E+

cc. We have to show completeness.
First, we make the observation that

E+
cc $ E

since we can derive the equations of E by substituting back using the two axioms
added as follows:

E+
cc $ 1

2 (x+ cc(x)) = 1
2 (x+ x) = x.

Now suppose that Q0(cc) |= t1 = t2 for any closed terms. By using axiom
cc(x) = x in E+

cc, we can delete cc in the terms t1, t2 ∈ T (Σcc) to form t′1, t
′
2 ∈

T (Σ) such that

E+
cc $ t1 = t′1 and E+

cc $ t2 = t′2.

We know that

Q0 |= t′1 = t′2

and since (Σ,E) is an initial algebra specification, we have

E $ t′1 = t′2.

Hence, by the above observation,

E+
cc $ t′1 = t′2.

and by applying cc(x) = x as often as t′1, t
′
2 contain occurrences of cc

E+
cc $ t1 = t2.

This completes the argument.

Let us replace the equation cc(x) = x in E+
cc by the set

CCid = {cc(t) = t|t ∈ T (Σ)}

of all its closed Σ-term instances. We define:

E++
cc = E+ ∪ CCid ∪ { 1

2 (x+ x) = x}.

Lemma 4. I(Σcc, E
++
cc) ∼= Q0(cc)

Proof. Replacing an equation by the set of all its closed instances does not change
the initial algebra. In this case the cc’s can be removed anyway.

Now we consider the complex numbers

Conjugation on Q(i). Now consider the signature Σcc,i = Σcc ∪{i : → field},
and the algebra Q0(cc, i) of rational complex numbers. We define the set

470 Jan A. Bergstra and John V. Tucker

T = CR ∪ SIP ∪Ril ∪ CC ∪ {2 · 2−1 = 1}

Theorem 5. I(Σcc,i, E
+ ∪ T) ∼= Q0(cc, i)

Proof. We verify the Goguen conditions.
No Junk Clearly, Q0(cc, i) is Σcc,i minimal.
No Confusion By inspection,

Q0(cc, i) |= E+ ∪ T .

For this we use the fact that the substitution of 1
2 (x + cc(x)) for each x in E

guarantees that E is restricted to rational values which are the real parts of x
when evaluated in Q0(cc, i).

To complete the argument we need some lemmas.

Lemma 5. For each t ∈ T (Σcc), we have T $ cc(t) = t.

Proof. This is an easy induction on t.

Some useful consequences of this lemma are as follows. First, T $ CCid.
Furthermore, we may deduce

T $ 1
2 (x+ x) = 1

2 · 2x = 2
2 · x = 1 · x = x

using CR and the axiom 2 · 2−1 = 1 in T . So we also have

E+ ∪ T $ E++
cc .

Now suppose that Q0(cc, i) |= t1 = t2 with t1, t2 ∈ T (Σcc,i). To show com-
pleteness we have to show that E+ ∪ T $ t1 = t2.

Lemma 6. For any closed term t ∈ T (Σcc,i) there are terms p, q ∈ T (Σ) such
that

T $ t = p+ i · q.

Proof. We prove this by induction on terms.

Basis By the ring axioms of CR, the constants are as follows:

0 = 0 + i · 0
1 = 1 + i · 0
i = 0 + i · 1.

Induction Step There are five cases, one for each operation. The cases of +,−, ·
are easy - here is one:

Let t = t1 · t2 and suppose as induction hypothesis:

T $ t1 = p1 + i · q1 and T $ t2 = p2 + i · q2.

Elementary Algebraic Specifications of the Rational Complex Numbers 471

Then, substituting, we calculate:

T $ t = t1 · t2 by assumption
$ t = (p1 + i · q1) · (p2 + i · q2) by induction hypothesis
$ t = (p1 · p2 − q1 · q2) + i(q1 · p2 + q2 · p1) by axioms in CR and

i · i = −1

The other cases are more interesting.
Let t = cc(t0) and suppose as induction hypothesis:

T $ t0 = p0 + i · q0.
Then, substituting, we calculate:

T $ t = cc(t0) by assumption
$ t = cc(p0 + i · q0) by induction hypothesis
$ t = cc(p0) − i · cc(q0) by axioms of CC in T
$ t = p0 + i · q0 by Lemma 5.

Let t = r−1 and suppose as induction hypothesis:

T $ r = p+ i · q.
Then, substituting, we calculate:

T $ t = r−1 by assumption

$ t =
1

p+ i · q by induction hypothesis

$ t =
1

p+ i · q · 1
p+ i · q · (1

p+ i · q)−1 by Ril in T

$ t =
1

p+ i · q · 1
p+ i · q · (p+ i · q) by SIP

$ t =
1

p+ i · q · p+ i · q
p+ i · q by axioms of CR

$ t =
1

p+ i · q · cc(p+ i · q
p+ i · q) by axiom of cc(x · x−1) = x · x−1

$ t =
1

p+ i · q · cc(p+ i · q)
cc(p+ i · q) by axiom of CC

$ t =
1

p+ i · q · cc(p) − i · cc(q)
cc(p) − i · cc(q) by axioms of CC

$ t =
p− i · q

(p+ i · q) · (p− i · q) by Lemma 5

$ t =
p

p2 + q2
− i · q

p2 + q2
by axioms of T

whch has the required form.

472 Jan A. Bergstra and John V. Tucker

Finally, to finish the completeness, suppose Q0(cc, i) |= t1 = t2 with t1, t2 ∈
T (Σcc,i). By Lemma 6, we suppose that

T $ t1 = p1 + i · q1 and T $ t2 = p2 + i · q2.

where p1, p2, q1, q1 ∈ T (Σ). Hence,

Q0 |= p1 = p2 and Q0 |= q1 = q2.

By Lemma 4, I(Σcc, E
++
cc) ∼= Q0(cc) and so by completeness

E++
cc $ p1 = p2 and E++

cc $ q1 = q2.

Next, thanks to Lemma 5, a consequence is

E+ ∪ T $ E++
cc .

Therefore,

E+ ∪ T $ p1 = p2 and E+ ∪ T $ q1 = q2.

and so we are done with

E+ ∪ T $ p1 + i · q1 = p2 + i · q2.

This completes the proof of Theorem 5.

And hence the main theorem.

5 Concluding Remarks

There are open questions left over from the study of the rationals. For example,
the following problem is quite basic:

Problem 1. Is there a finite elementary equational specification of the 0-totalised
field Q0, without hidden functions and under initial algebra semantics, which
constitutes a complete term rewriting system?

We know from our [5] that there exists such a specification with hidden
functions.

However, questions proliferate as one reflects on the number of algebras using
the rational numbers ([36]). For example, we do not know the answer to these
simple questions.

Problem 2. Is there a finite elementary equational specification of the field Q0(i)
of rational complex numbers, without any hidden functions?

Problem 3. Is there a finite elementary equational specification of the algebra
Q0(i, cc), (without further hidden functions), which constitutes a complete term
rewriting system?

Elementary Algebraic Specifications of the Rational Complex Numbers 473

The rational numbers constitute the data type for measurement with a finite
system of units and subunits. The real and complex numbers are constructed
as completions of the rationals, using the idea of the approximation of measure-
ments with unlimited accuracy. The real and complex numbers are the basis for
vast range of data types used to model physical systems by means of measure-
ment and equations (e.g., algebras of sequences, streams and signals, scalar and
vector fields, continuous functions, probability distributions, and their abstrac-
tions). In general terms the data in these algebras are continuous data and they
are built by some completion process from subalgebras containing discrete data,
as the reals are made from the rationals.

Problem 4. To create a comprehensive theory of computing, specifying and rea-
soning with systems based on continuous data. Ideally, the theory should integrate
discrete and continuous data.

At present this is a huge and complicated task as computation, specification
and verification on continuous data are all active research areas. In fact, the task
is a challenge in the special case of real numbers, see [7] for a discussion.

References

1. J. Adamek, M. Hebert and J. Rosicky On abstract data types presented by
multiequations Theoretical Computer Science 275 (2002) 427 - 462

2. J A Bergstra and J V Tucker, The completeness of the algebraic specification
methods for data types, Information and Control, 54 (1982) 186-200

3. J A Bergstra and J V Tucker, Initial and final algebra semantics for data
type specifications: two characterisation theorems, SIAM Journal on Computing,
12 (1983) 366-387.

4. J A Bergstra and J V Tucker, Algebraic specifications of computable and
semicomputable data types, Theoretical Computer Science, 50 (1987) 137-181.

5. J A Bergstra and J V Tucker, Equational specifications, complete term rewrit-
ing systems, and computable and semicomputable algebras, Journal of ACM, 42
(1995) 1194-1230.

6. J A Bergstra and J V Tucker, The data type variety of stack algebras, Annals
of Pure and Applied Logic, 73 (1995) 11-36.

7. J A Bergstra and J V Tucker, The rational numbers as an abstract data type,
submitted.

8. J A Bergstra and J V Tucker, On fields and meadows of finite characteristic,
submitted.

9. J A Bergstra, Elementary algebraic specifications of the rational function field,
CIE 2006, Springer Lecture Notes in Computer Science, accepted for publication.

10. N Calkin and H S Wilf, Recounting the rationals, American Mathematical
Monthly, 107 (2000) 360-363.

11. E Contejean, C Marche and L Rabehasaina, Rewrite systems for natural,
integral, and rational arithmetic, in Rewriting Techniques and Applications 1997,
Springer Lecture Notes in Computer Science 1232, 98-112, Springer, Berlin,1997.

12. H Edwards, Galois theory, Springer, 1984.
13. J A Goguen, Memories of ADJ, Bulletin of the European Association for Theo-

retical Computer Science, 36 (October 1989), pp 96-102.

474 Jan A. Bergstra and John V. Tucker

14. J A Goguen, A categorical manifesto, Mathematical Structures in Computer Sci-
ence, 1 (1991), pp 49-67.

15. J A Goguen, Tossing algebraic flowers down the great divide, in C S Calude
(ed.), People and ideas in theoretical computer science, Springer, Singapore, 1999,
pp 93-129.

16. J Meseguer and J A Goguen, Initiality, induction, and computability, In M
Nivat (editors) Algebraic methods in semantics, Cambridge University Press,1986
pp 459 - 541

17. J Meseguer and J A Goguen, Remarks on remarks on many-sorted algebras
with possibly emtpy carrier sets, Bulletin of the EATCS, 30 (1986) 66-73.

18. J A Goguen and R Diaconescu An Oxford Survey of Order Sorted Algebra
Mathematical Structures in Computer Science 4 (1994) 363-392.

19. J A Goguen, J W Thatcher, E G Wagner and J B Wright, Initial algebra
semantics and continuous algebras, Journal of ACM, 24 (1977), 68-95.

20. J A Goguen, J W Thatcher and E G Wagner, An initial algebra approach
to the specification, correctness and implementation of abstract data types, in
R.T Yeh (ed.) Current trends in programming methodology. IV. Data structuring,
Prentice-Hall, Engelwood Cliffs, New Jersey, 1978, pp 80-149.

21. W Hodges, Model Theory, Cambridge University Press, Cambridge, 1993.

22. S Kamin, Some definitions for algebraic data type specifications, SIGLAN Notices
14 (3) (1979), 28.

23. B Khoussainov, Randomness, computability, and algebraic specifications, Annals
of Pure and Applied Logic, (1998) 1-15

24. B Khoussainov, On algebraic specifications of abstract data types, in Computer
Science Logic: 17th International Workshop, Lecture Notes in Computer Science,
Volume 2803, 299-313, 2003

25. J W Klop, Term rewriting systems, in S. Abramsky, D. Gabbay and T Maibaum
(eds.) Handbook of Logic in Computer Science. Volume 2: Mathematical Structures,
Oxford University Press, 1992, pp.1-116.

26. G Marongiu and S Tulipani, On a conjecture of Bergstra and Tucker, Theoret-
ical Computer Science, 67 (1989), 87-97.

27. K Meinke, Universal algebra in higher types, Theoretical Computer Science, 100
(1992) 385-417.

28. K Meinke and J V Tucker, Universal algebra, in S. Abramsky, D. Gabbay and T
Maibaum (eds.) Handbook of Logic in Computer Science. Volume I: Mathematical
Structures, Oxford University Press, 1992, pp.189-411.

29. J Meseguer and J A Goguen, Initiality, induction and computability, in M
Nivat and J Reynolds (eds.), Algebraic methods in semantics, Cambridge University
Press, Cambridge, 1985, pp.459-541.

30. L Moss, Simple equational specifications of rational arithmetic, Discrete Mathe-
matics and Theoretical Computer Science, 4 (2001) 291-300.

31. L Moss, J Meseguer and J A Goguen, Final algebras, cosemicomputable al-
gebras, and degrees of unsolvability, Theoretical Computer Science, 100 (1992)
267-302.

32. P Mosses, Unified algebras and institutions, Proceedings 4th Logic in Computer
Science, IEEE Press, 1989, 304-312.

33. D Rees, K Stephenson and J V Tucker, The algebraic structure of interfaces,
Science of Computer Programming, 49 (2003), 47-88.

34. I Stewart, Galois theory, Chapman and Hall, 1973.

Elementary Algebraic Specifications of the Rational Complex Numbers 475

35. V Stoltenberg-Hansen and J V Tucker, Effective algebras, in S Abramsky, D
Gabbay and T Maibaum (eds.) Handbook of Logic in Computer Science. Volume
IV: Semantic Modelling, Oxford University Press, 1995, pp.357-526.

36. V Stoltenberg-Hansen and J V Tucker, Computable rings and fields, in E
Griffor (ed.), Handbook of Computability Theory, Elsevier, 1999, pp.363-447.

37. Terese, Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence 55, Cambridge University Press, Cambridge, 2003.

38. E Wagner, Algebraic specifications: some old history and new thoughts, Nordic
Journal of Computing, 9 (2002), 373 - 404.

39. W Wechler, Universal algebra for computer scientists, EATCS Monographs in
Computer Science, Springer, 1992.

40. M Wirsing, Algebraic specifications, in J van Leeuwen (ed.), Handbook of Theoret-
ical Computer Science. Volume B: Formal models and semantics, North-Holland,
1990, pp 675-788.

From Chaos to Undefinedness

A Story About Recursion as Well as Termination, Underspecification,
Nondeterminism, Fixpoints, Metric Treatment, and Logical Models

Dedicated to Joseph Goguen

Manfred Broy

Institut für Informatik, Technische Universität München
D-80290 München Germany, broy@in.tum.de

http://wwwbroy.informatik.tu-muenchen.de

Abstract. The semantic and logical treatment of recursion and of recursive
definitions in computer science, in particular in requirements specification, in
programming languages and related formalisms such as -calculus or
recursively defined functions is one of the key issues of the semantic theory of
programming and programming languages. As it has been recognised already
in the early days of the theory of programming there are several options to
formalise and give a theory of the semantics of recursive function
declarations. In different branches of computer science, logics, and
mathematics various techniques for dealing with the semantics of recursion
have been developed and established. We outline, compare, and shortly
discuss advantages and disadvantages of these different possibilities, illustrate
them by a simple running example, and relate these approaches.

1 Introduction

In informatics, recursion appears - explicitly or implicitly - everywhere. Throughout
this paper we study the following problem pattern. We assume that we are given a
heterogeneous algebra, also called a computation structure in the foundation of
abstract data types, consisting of a family of carrier sets (corresponding to data types)
and a family of functions/operations over them. We furthermore assume that we are
given a logical theory for which the algebra is a model. This theory need not
necessarily be logically complete. In this case, there might exist many further
essentially different models for the given theory.

We study the introduction of an additional function identified by a fresh function
symbol f into this algebra and its logical theory, in particular. We carry out this
extension by first fixing the functionality of the introduced function. The sorts and the
associated carrier sets that form its domain and range determine it. After fixing the
functionality we define the values (the “graph”) of the function by an explicit,
possibly recursive equation f(x) = E.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 476-496, 2006.
 Springer-Verlag Berlin Heidelberg 2006

From Chaos to Undefinedness 477

A signature, a set of axioms, and a set of inference rules provide a logical theory.
The signature provides symbols for constants, functions, logical variables, and, in the
case of heterogeneous theories, of sorts (also called types) as well. Based on the
signature we form terms and formulas. The set of axioms and inference rules induce
a deduction relation |-. We express by |- the proposition that the formula follows
logically from the axioms in by the logical inference rules of the logical theory.

With logical theories we associate models. A model is an algebra. We work only
with total algebras in the following. These are algebras where all functions are total.
In the case of heterogeneous theories it is a heterogeneous algebra, which contains a
“carrier” set for each sort of the signature, a data value for each constant and a
function for each function symbol. This family of sets and functions allows us to
interpret terms and formulas. Terms are interpreted by mapping them onto elements
of the algebra's carrier sets, which represent their values. Formulas are interpreted by
truth values.

For a model we require that all formulas for which the proposition |- holds be
mapped by the interpretation to the truth-value true. For each model we call the set of
elements of the carrier sets for each of which a term exists whose interpretation yields
this element the standard elements (also called the term generated elements). The
other terms are called non-standard elements. A model that contains only standard
elements is called a standard or a term-generated model. An equation of the form f(x)
= E is called recursive (for the function symbol f) if the function symbol f occurs in
the term E.

The introduction of a new function symbol by recursion can be studied either in the
model-theoretic or in the logical setting:

In a logical approach, we extend the signature of the given logical theory by
adding the fresh function symbol f to it. Then we add the specifying equation
f(x) = E as an axiom. By this approach, we transform the given theory into an
extended one. Of course, we want to be sure that the step of adding the function
symbol f and the equation provides a conservative extension of the logical
theory (meaning that we do not introduce any additional properties to the given
logical theory) and that the defining equation1 characterises the function f
uniquely.
In a model-theoretic approach, we extend the algebra by a function called f that
is required to fulfil the equation f(x) = E. To justify that step we want to be sure
that such a function actually exists (in other words that the definition of f by the
equation actually makes sense) and that it is uniquely determined by the
equation.

Of course, both approaches are closely related. In the context of the logical approach
we may consider the set of models of the theory. Then the idea of a conservative
extension can be used, from which it follows that each of the models of the logical
theory can be extended in a unique way adding a function called f that fulfils the
defining equation.

1 More precisely, for every ground term t of appropriate sort we would like to be able to reduce

the term f(t) to a ground term that does not contain the function symbol f.

478 Manfred Broy

Recursion is a funny concept. To “define” a function recursively seems like a miss-
use of the principle of definition, which requires that in a definition a new concept be
defined exclusively in terms of known concepts. A recursive equation is circular by
nature while it is a fundamental principle that definitions are required to be
noncircular. This is in contrast to explicit, noncircular, defining equations where we
define a function f by an explicit equation

 (*) f(x) = E where the function symbol f does not occur free in the term E
In the nonrecursive case E is an arbitrary term that may contain the identifier x but
must not contain the function symbol f, however. Of course, by the nonrecursive
equation (*) the function f is uniquely determined. Moreover, it is obvious that such a
function f always exists. In other words, adding the equation (*) to define the meaning
of a fresh function symbol f within a logical system does never introduce any
contradiction. The extended theory is always a conservative extension by
construction.

The function application f(x) is then only an abbreviation for the term E. Similarly,
for any term G the term f(G) is just an abbreviation for the term E[G/x]. Here by
E[G/x] we denote the term formed by substituting the term G for the identifier x in
the term E. It is obtained from E by replacing all (free) occurrences of the identifier x
in the term E by the term G.

This simple situation of explicit (nonrecursive) equational definitions changes
crucially if we allow for recursive equations. By recursion we declare a function f by
the recursive equation

 (**) f(x) = E

where the term E may contain arbitrary many applications of the function (symbol) f.
In the case of such recursive definitions of functions the semantic and logical
treatment gets way more complicated. We observe:

There need not exist at all a function f that fulfils the equation (**); in
other words, adding the equation (**) as the defining axiom for the fresh
function symbol f to an axiomatic theory may introduce a logical
inconsistency and allows the deduction of a contradiction.
There are cases where there exist many distinct functions f that fulfil the
defining equation (**). So adding the equation (**) as an axiom may lead
to an extension of a complete theory into one that is incomplete.
There are cases where the term f(t) cannot be reduced with the help of the
axioms and the equation (**) to a term that does not contain the function
symbol f. Then new “nonstandard” elements that were not representable
by the terms available so far may be the result of function calls of f; in
other words, f may be chosen such that it yields results that are not
elements in the original algebra. As a consequence there may be standard
models of the extended logical theory that are not standard models for the
original logical theory. In fact, there are even cases where there does not
exist a standard model for the original logical theory the carrier sets of
which form a standard model for the extended theory, if in the standard
model a total function f that fulfils the equation does not exist.

From Chaos to Undefinedness 479

Recursion has both a logical and an operational flavour. The function f is
characterised by an equation f(x) = E and this equation defines a rewrite rule f(x)
E. This observation is the bridge between a descriptive and an algorithmic
interpretation of the syntax of a programming and a specification language. In the
following, we show a number of technical options to treat the semantics of recursion
by logical and mathematical means.

One popular way to deal with the semantics of recursion is to give an operational
semantics for recursively defined functions. Term rewriting can do this. This means
that we introduce a rewriting relation on terms defined by rewriting rules. In the
case of a recursive definition, given a ground term t that contains the recursively
defined function symbol f we assume that the reduction sequence

 t t1 ... tn
for the term t either terminates leading to a term tn that cannot be reduced anymore
(meaning there does not exist a term tn+1 such that tn tn+1 holds) such that tn is a
term in normal form, which in our case, in particular, means that tn does not contain
applications of the function symbol f any longer (otherwise we could use the
reduction f(x) E) or that the reduction can be continued forever resulting in an
infinite reduction sequence.

This operational interpretation provides a strong guideline for the logical and
denotational treatment of recursion. Given an operational interpretation (be it by an
interpreter or by a term rewriting system) we have a clear reference for the logical
treatment of recursion: the logical interpretation should match with the operational
one, or, formulated in a more demanding way, it should reflect exactly the abstract
behaviour induced by the operational semantics in terms of rewriting.

Before we go deeper into the semantic treatment of recursion let us be more
precise on the used syntax. A recursive equation

 f(x) = E ()

is an equation where the expression E contains an arbitrary number of applications
of the function f. Since the term E is finite it certainly contains only a finite number,
say n IN, applications of the function f, say f(G1), ..., f(Gn). In the following we
sometimes want to identify the instances of the individual applications. This can be
done by replacing the expression E by an expression E* such that in E* each of the
fresh function symbols f1, ..., fn occurs exactly once (we assume that the identifiers f1,
..., fn do not occur in the term E) such that the following equation holds:

 E = E* f/f1, ..., f/fn

This way each application is marked individually by a function symbol fi that occurs
exactly once. In a model-theoretic approach we associate with the expression E* a
function (by using individual function symbols in each application)

(1) f1, ..., fn: x: E*

or a function (using the function symbol f for each of the applications):

(2) f: x: E

480 Manfred Broy

The function given by (2) is called the functional associated with the recursive
equation (). The function given by (1) is called the multicall functional associated
with the equation (). If the expression E contains exactly one recursive application
both coincide.

In general, the expression E contains conditional expressions to formulate case
distinctions. These can be eliminated and transformed (under the assumption that C is
a Boolean term) into conditional equations by replacing each equation of the form

 f(x) = if C then E1 else E2 fi

into the following two conditional equations:

 C = true f(x) = E1

 C = false f(x) = E2
If we assume then C is two valued (“tertium non datur”) this translation is an
equivalence relation. Moreover we also use rules like: replace the term

f(if C then E1 else E2 fi)

by the semantically equivalent term

if C then f(E1) else f(E2) fi.

By furthermore breaking up the terms in E in the equation f(x) = E that way we can
eliminate all conditional expressions by implications. This way recursive equations
are transformed schematically into a set of conditional equations and vice versa, as
long as all conditional equations have the form shown above.

All problems with recursive declarations disappear if we manage to choose our
defining equation for f such that it defines the total function associated with the
function symbol f uniquely. Special cases, where this applies, are definitions that can
be interpreted inductively. This means that we can find a Noetherian partial order
on the domain of the function f such that the following holds: in the recursive
equation

 P f(x) = E’

where the expression E’ contains only the recursive applications f(G1), ... f(Gk) of the
function f we can prove that the values of the terms G1, ..., Gn are always elements
that are in that ordering strictly below the original argument x1). In other words, we
can prove

 P Gk < x

for all k. Then the recursive definition can be seen as an infinite set of explicit
nonrecursive equations for the values of the function associated with the identifier f.

In the following, we shortly recapitulate and relate the various techniques to give a
denotational or an axiomatic semantics to recursion. The main goal of this work is to

1) In fact, working with conditional expressions the situation gets slightly more complicated.

The recursive applications are guarded by conditions. Only if the conditions evaluate to true
the modified parameters Gk have to be strictly below x.

From Chaos to Undefinedness 481

integrate and justify a number of methodological decisions when working with a
theory of program construction.

This work is motivated to a large extend by discussions in the IFIP Working Group
2.3 by discussions with Michel Sintzoff and the work of Tony Hoare, presented at the
Marktoberdorf Summer School 1996, towards a integrating framework for the
semantics and different semantical techniques to treat recursion in specification and
programming languages.

2 Simple Running Example: Division

We demonstrate the various approaches to deal with the semantics of recursion by a
very simple running example. This example has to be simple enough to keep the
treatment short and concise but it should include and envisage the typical problems
that arise when dealing with recursion. With this in mind we choose arithmetic
division on the naturals as a running example.

Let IN denote the set of natural numbers. Division on the naturals can be
represented by a partial or by a total function on the naturals:

 div: IN IN IN

or (note that functions are a special case of a relation) by a relation

Div IN IN IN
or (isomorphic to a relation) by a set-valued function

 DIV: IN IN (IN)

or (again isomorphic to a relation) by a predicate

 isdiv: IN IN IN IB

or by a predicate that characterises a set of (partial or total) functions

 ISDIV: (IN IN IN) IB

Strictly speaking according to the foundations of mathematics the function div
represents also a relation which is a subset of product set IN IN IN. Since div is
supposed to be a function we require that it contains for given numbers x, y at most
one triple (x, y, z). This requirement for a relation to be called a function is known as
the Leibniz principle. In other words, a function is a relation that fulfils the Leibniz
principle. A function with two arguments is called total, if it contains for every pair of
arguments x and y a triple (x, y, z); otherwise it is called partial. We are free to
associate with a recursive definition a function or a general relation (allowing us to
deal also with “nondeterminism” in our model).

Of course, the critical question is how to specify the result of division in the case
where its second argument is 0. In the algebra of partial functions there is a simple
answer. Working with partial functions, we easily express that the result of a function
application is “not defined” or more precisely “does not exist”. But for partial
functions we pay the price that we now can write expressions that “do not of a value”.
For total functions, on the other hand, this simple solution is not available. For them

482 Manfred Broy

for each pair of arguments a result has to be given, which, however, in the case of
nontermination might be chosen quite arbitrarily. However, for partial functions the
logical theory of equations is certainly less standard than that for total function.

In the case of set-valued functions, relations, or predicates, the idea of partial
functions is easily incorporated. We may return the empty set for DIV(x, 0), define
that every triple of the form (x, 0, t) is not in the relation DIV or that the predicate
isdiv(x, 0, t) yields always false.

We may also represent undefined by “chaos” and return the set of all naturals for
DIV(x, 0), including all triples (x, 0, z) into the relation Div and analogously define
isdiv(x, 0, z) to be always true. In fact, we can choose many constructions between
these two extremes. If we work with a predicate ISDIV that characterises a set of
functions we can select any function that behaves like division in the case of the
second argument being distinct to 0 and arbitrary otherwise. Or we may be more
restrictive in the case the second argument is 0. All these options are discussed in
more detail in the following.

3 Inductive Definitions, Total Functions

One simple way to cope with recursive definitions of functions is to follow the ideas
of primitive recursion and their generalisations to inductive definitions. To do that we
make sure that the recursive equation that defines the function is based on some kind
of Noetherian ordering and therefore defines a function uniquely. The advantage of
this approach is that it allows us to keep the logics classical and simple. For instance,
we may restrict our model and our logics to total functions. Then all terms that can be
formulated over the given signature denote well-defined elements.

Unfortunately by this technique, which is often used in type theory and in a
number of verifications support systems like PVS (see [PVS 92]), recursive
definitions need more work for their justification, since we have to prove termination.
For that an appropriate Noetherian order has always to be introduced explicitly by
which has to be proven that the definition is inductive. Only in simple cases this proof
can be carried out by schematic or even automatic proof techniques. More
remarkable, however, is that certain recursive definitions of practical importance
cannot be treated at all that way or at least not in a straightforward manner. Famous
examples are functions with nonrecursively enumerable codomains such as
interpreters of programming languages of universal computability (an example is
typed -calculus with -recursion). For these examples a constructive definition of
the inductive ordering does not exist.

We use our running example of division on natural numbers to demonstrate the
idea of inductive definitions. We work with the function symbol div that has two
parameters. The critical question is, of course, which result the function div should
return if the second parameter is 0.

A recursive definition of the total function associated with the symbol div is given
by the following conditional equations (let n, m be of sort Nat):

 div(m, n) = n > m

 div(m, n) = 1+div(m-n, n) m n n > 0

From Chaos to Undefinedness 483

In the second equation - read from left to right as a rewrite rule - the first argument is
decreased provided n > 0. Note that the condition n > 0 for the second equation is
crucial according to the assumption that div is a total function. Leaving it away would
lead to the equation

 d = 1+d
for the natural number d = div(m, n) for the case n = 0, which introduces a
contradiction into the theory of natural numbers.

By the conditional equations the result of applying div to the parameters (m, 0) is
obviously not specified. Therefore we characterise this approach to the treatment of
recursion by the sketch word total functions with underspecification.

Underspecification means, of course, that the axiomatisation of the introduced
function is incomplete. As a consequence, there are several functions that fulfil the
axioms. A simple, but not very elegant trick to specify the function div uniquely after
all would be to give an arbitrary specification for the case that the second parameter is
0, for instance, by specifying:

 div(m, 0) = 0.
However, this trick is by no means very elegant and even, in general, not always
possible. The idea of restricting the equations by predicates that characterise the
parameters for which the function is defined is not always so simple to achieve. In the
case of functions with nonrecursive domains (more precisely, not recursively
enumerable codomains), in fact, we cannot even formulate the domain restriction by a
decidable (computable) condition.

The two equations given above provide, of course, not a classical inductive
definition. In a classical inductive definition we work at the left-hand side of the
equation with patterns of the form div(0, n) and div(m+1, n). For division, such a
version of a specification is neither very efficient nor very elegant nor intuitive.
Nevertheless, it can be rather easily formulated as follows:

 div(0, n) = 0

 div(m+1, n) = if m+1-div(m, n)*n n then div(m, n)+1
 else div(m, n)
 fi

This is in fact a classical inductive definition, working with the standard Noetherian
ordering on the natural numbers. In the case n = 0 we easily deduce the equation

div(m, n) = m

by the two defining equations which is certainly a possible, but of course arbitrary
and therefore somewhat artificial choice for the value of div(m, 0). We might call
such an implicit specification of the result of a function by some rather arbitrarily
chosen value an overspecification. It constraints the function div in a way not justified
by its underlying theory of arithmetic.

484 Manfred Broy

4 Recursive Equations in CPOs and Metric Spaces

Another option that avoids - in contrast to inductive principles - the requirements of
the existence of an inductive order is to introduce either a partial ordering or a metric
distance into the function space of the recursively defined function. This construction
is done such that these sets are turned into complete partially ordered sets, or into
complete metric spaces. Then it has to be shown that the defining functional is
monotonic, or, in the sense of the metric, strongly contracting. From this, by general
theorems, the existence of a (least) fixpoint can be concluded, which is a particular
solution for the recursive equations.

4.1 Least Fixpoints and CPOs of Partial Functions

In the partial order approach even recursive equations are treated which do not define
fixpoints uniquely. A specific fixpoint (“least fixpoint”) is associated with the
recursive equation (or more precisely with the function associated with the right-hand
side of the defining equation) by selecting the least function in that ordering that
fulfils the equations. We may even treat recursive equations that way which, added in
a naive approach for total functions, would introduce a contradiction. This is achieved
by introducing elements representing “undefined” with specific logical properties1).
This way partial functions are represented by total functions.

In the general case, however, there may exist many solutions (meaning several
functions that fulfil the equations) for the recursive equation. The classical approach
of fixpoint theory is then to choose the least solution, the so-called least fixpoint of
the functional, associated with the defining equations.

As it is well-known we can turn the set of the natural numbers by a simple
extension into a complete partially ordered set (cpo). We introduce a pseudo element

 that serves as a dummy for the result of function applications that does not have a
well-defined result. Along these lines, we define the following “natural” extension of
the set of natural numbers

 IN = IN { }
We define the function

 div: IN IN IN

on the set IN extended by . We specify the function div on this extended set by (
m, n IN) the equations:

 div(m, n) = 0 n > m,

 div(m, n) = div(m-n, n) + 1 n m.

Here we do not have to give any restrictions for the value of the argument n in the
second equation. The reason is that for the case n = 0, although we now get the
equation

 div(m, 0) = div(m, 0) + 1

From Chaos to Undefinedness 485

which does not lead to a contradiction since we may choose (and in this case can even
deduce this equation from the defining equations since is the only element that
fulfils the equation)

 div(m, 0) =

One might ask, why introducing the dummy not only into the range of the function
div but also into its domain. The answer is simple. If we want to freely form
expressions of nested function applications such as in the term

 div(div(1, 0), 2)
we have to allow for the case that also the values of the arguments of the function div
might be . However, then we have also to specify the result of the function div in
cases where one of its arguments is . For that case we choose a simple solution. We
assume that div and all other arithmetic functions are strict functions. This means that
the result of a function is whenever by strictness one of its arguments is . For div
we get the equations:

 div(x,) = div(, x) =

This idea of a “strict” extension of total or partial functions to total functions on
domains and ranges that are extended by the element can be used also for all the
other functions schematically such as the arithmetic functions. This extension is
required, anyhow, to be able to cope properly with terms like div(n, 0) + 1.

The set of strict functions on domains and ranges that are extended by the dummy
 is isomorphic to the set of partial functions on sets the same domains and ranges

without the element . It is not difficult to reformulate (see [Broy 86] all constructs
for strict functions for the set of partial functions and vice versa. However, when
interested in nonstrict functions the concept of partial functions is no longer powerful
enough.

We introduce a partial order on the set IN as follows:

 m, n IN : m n (m = n = m)

It extends to functions by pointwise application

 f' f m, n IN : f'(m, n) f(m, n)

A related approach to domains for recursive equation are metric spaces. In the metric
space approach the treatment of partiality and underspecification is not so simple. The
functions for which we want to find a fixpoint are required to be strongly contracting,
in general. If they are, they have a unique fixpoint2.

We do not give a metric version of the treatment of the recursive equation for div
since the classical approaches work only for functions that are total such that the
defining functions are contracting and have unique fixpoints (see [de Bakker, Zucker
84]). Therefore they do not apply immediately to our example. We come back to the
metric space approach in section 4.3 when working with sets of functions.

2 We may work with set-valued functions instead of functions producing single elements as

results. Then we may drop the requirements of strong contractivity and replace it by weak
contractivity.

486 Manfred Broy

4.2 Complete Lattices of Predicates

A technique that is very similar to the cpo-based least fixpoint approach is the
complete lattice of predicates. As it is well known, predicates are partially ordered by
logical implication and form a complete lattice. We explain the idea with the help of
our example. Let us consider the following functional

: (IN IN IN) (IN IN IN)

that maps functions onto functions and that is specified by the term in the defining
equation for division as follows:

[f](m, n) = if m < n then 0 else f(m-n, n) fi

The functional is induced by the recursive equation that is specifying div. The
fixpoint equation then reads follows:

 div = div .

We may replace the functional associated with the recursive equation by a predicate
transformer that operates on predicates over functions:

 T: ((IN IN IN) IB) ((IN IN IN) IB)

It is specified by (note the similarity to the functional introduced above) the
recursive equation

 T[Q].f m, n IN: m < n f(m, n) = 0

 m n f': Q[f'] f(m, n) = 1+ f'(m-n, n)

or expressed with the help of the function :

 T[Q].f = f': f = [f'] Q[f']

Obviously, the function T is an inclusion monotonic function on predicates1).
Therefore it has (recall that the set of predicates forms a complete lattice) as well
known from -calculus a weakest and a strongest fixpoint. It is not difficult to show
that the strongest fixpoint of the predicate transformer T is the predicate f: false and
the weakest fixpoint is the predicate

f: m, n IN: (m < n f(m, n) = 0)

 (m n n > 0 f(m, n) = 1+ f(m-n, n))

Hence the weakest fixpoint is the predicate on functions that characterises all
functions that fulfil the defining equations for div but produce arbitrary results in the
case the second parameter is 0.

In general, we may treat recursive equations along the lines explained above as
follows. Introducing a function

 f: D R

1) We call T also a predicate transformer.

From Chaos to Undefinedness 487

specified by the recursive equation

 f(x) = E
we may translate the recursive equation into a predicate

 Q: (D R) IB

specified by the equivalence

 Q[f] x: f1, ..., fn: Q[f1] ... Q[fn] f(x) = E*

where the expression E* is defined as in the introduction where we defined
 E = E*[f/f1, ..., f/fn]

This definition of the predicate Q does never introduce a contradiction since the right-
hand side is inclusion monotonic (or, in other terms, implication monotonic) in the
predicate Q. According to -calculus a strongest and a weakest solution exist. We can
easily show, moreover, that the weakest solution is never the strongest predicate f:
false provided the equation f(x) = E specifying the function f has a solution. We only
have to choose that solution for all the function f1, ..., fn to obtain one solution. But
there are many other solutions, in general. More precisely there may be functions f
that fulfil the proposition Q[f] where Q is the weakest solution. These functions need
not by fixpoints of . In the case of the function div as defined by the cpo approach
these functions f all have the property div f.

 We may replace the definition of Q by the more liberal equation

 Q.f = f’: [f’] f’ f’ f

We prove that the predicate

 Q.f div f

is a fixpoint of where

 T[Q].f = f :Q.f’ [f’] f
as follows:

 T Q .f

 f : f f Q f

 f : f f div f

Monotonicity of shows

 div {fixpoint property}

 = div {monotonicity of , div f }

f

 f

Thus T Q .f div f.

488 Manfred Broy

Now assume div f. Then (div is a fixpoint)

div f

Thus we have

 f : f f Q.f

This shows that div f T Q .f.

4.3 Metric Spaces

Similar as above where we work with predicates on functions we may work with
metric spaces over the set of functions or relations. We introduce a metric distance on
the function space (D R):

 d: (D R) (D R) IR

such that (D R) is a complete metric space. A function

: (D R) (D R)

is called weakly contracting if for all sets of functions g1, g2 (D R):

 d(g1, g2) d((g1), (g2))

We call the function strongly contracting if there exists a real number IR with 0
< < 1 such that

 d(g1, g2) d((g1), (g2))

The idea of metric spaces for proving the existence of fixpoints is well known. Given
a complete metric space (X, d) and a strongly contracting function

: X X

there exists a unique fixpoint of .
The critical issue is to select an appropriate metric distance on functions. In our

example of functions in IN IN IN we may define a metric distance as follows
(where is a number with 0 < < 1):

 d(f1, f2) = max nm: f1(n, m) f2(n, m)

This metric induces a metric distance on sets of functions and turns the function space
into a complete metric space. In fact, with this metric distance every inductive
definition leads to a contractive functional. Note, that in our running example the
functional is not strongly contracting. The technique of metric spaces as we
introduced it works only for recursive equations that define least fixpoints that total
functions.

From Chaos to Undefinedness 489

5 Lattice of Predicate Logics

When following logic oriented approaches to give semantics to recursion we work
with inclusion-monotonic functions on predicates called predicate transformers
where the specified functions are represented as relations or predicates. Recursive
equations can be mapped onto predicate transformers and for predicate transformers
we can apply constructions from -calculus. This way we can associate strongest or
weakest predicates with recursive equations specifying functions. These predicates
characterise functions or relations.

Note that both the choice of the weakest as well as the choice of the strongest
solution of recursive equations leads to interesting interpretations of recursive
equations. An example for such a treatment is given already at the end of the previous
section.

We may define the ternary predicate and the naturals Div (representing a relation)
also directly recursively by the following logical equivalence:

 Div(m, n, r) if m n then r = 0
elif r = 0 then false

 else Div(m-n, n, r-1)
fi

which reads in a more logical style (translating the if-then-else-fi into classical logical
connectors)

 Div(m, n, r) (m n r = 0) (r > 0 m n Div(m-n, n, r-1))

It is not difficult to show that from these equivalences we obtain directly the
following conditional equivalences

 m < n Div(m, n, r) (r = 0)

 m n r = 0 Div(m, n, r) false

 m n r > 0 Div(m, n, r) Div(m-n, n, r-1)

From these formulas we can deduce (via an easy proof by induction on the naturals)
the following logical consequence:

 n > 0 Div(m, n, r) (0 m-n*r < n)
In the case n = 0 we obtain the equivalences

 r = 0 Div(m, 0, r) false

 r > 0 Div(m, 0, r) Div(m, 0, r-1)

So by straightforward induction the only choice for the logical value of Div(m, 0, r) is
therefore

 m, r IN: Div(m, 0, r) false

In contrast to functions modelling division in propositions Div(m, n, r) and in their
isomorphic representation by ternary relations we do not have any indication which of
the three arguments are considered as input and which as output for the operation to
be defined. It is therefore more explicit to work instead with a set-valued function

490 Manfred Broy

DIV: IN IN (IN)

that is specified by the following equation

DIV(m, n) if m < n then 0
else {y+1: y DIV(m-n, n)}

fi
Recall, that the powerset is a complete lattice ordered by set inclusion. Moreover,
consider the functional , defined by the equation

[F](m, n) if m < n then {0}
else {y+1: y F(m-n, n)}
fi

We have DIV = (DIV). is monotonic with respect to the set inclusion ordering.
More precisely, it is monotonic with respect to the ordering on set-valued functions
induced by pointwise application of the inclusion ordering on sets. Therefore, since
the sets form a complete lattice there exists an inclusion least and an inclusion
greatest fixpoint according to Knaster-Tarski. The least fixpoint is described by the
set-valued function

 m, n: {r IN: 0 m-n*r < n}

The greatest fixpoint is given by the same set-valued function. The set-valued
functions are isomorphic to relations. They stress, however, which of the elements of
the tuples in a relation are input and which are considered as output.

Of course, we may also work with sets of natural numbers extended by the element
 as a dummy for undefined when associating relations or set-valued functions with

recursive definitions. This way we obtain combinations of the partial order approach
and the lattice of sets approach.

6 Sets of Models

When dealing with algebraic equations for the specification of functions which can
also be seen as recursive equations for functions it is common by now to work with so
called loose semantics approaches (see Broy, Wirsing 82). This means that we
associate not only exactly one model with a set of axioms, such as for instance an
initial model, but, in general, a set of models in terms of heterogeneous algebras with
an algebraic specification (which is a logical theory). If we consider a purely
equational specification and restricted forms of axioms we can identify extreme
models in the class of models such as initial or terminal algebras. This works even in
the case of conditional equations. These initial or terminal algebras are closely related
to strongest and weakest solutions in a form of predicates that are associated with the
logical treatment of recursion (see Broy, Wirsing 80).

Let the following specification of natural numbers be given (we follow closely the
syntax and concepts of Larch, see [Larch 93]):

From Chaos to Undefinedness 491

SPEC NAT =

{ based_on BOOL

 sort Nat

 0 : Nat,
 succ, pred : Nat Nat,
 iszero : Nat Bool,
 +, *,- : Nat, Nat Nat, Infix

 Nat generated_by 0, succ,

 iszero(0) = true,
 iszero(succ(x)) = false,

 pred(succ(x)) = x,

 0+y = y,
 succ(x)+y = succ(x+y),

 x-0 = x,

 0-y = y,

 succ(x)-succ(y) = x-y,

 0*y = 0,

 succ(x)*y = y+(x*y) }

It defines the natural numbers by the help of an induction principle and some basic
operations (for details see [Larch 93]). Recall that functions in Larch are assumed to
be total. If we add the following specification fragment (extending the specification
NAT)

div: Nat, Nat Nat

div(m, n) = 0 m < n ()

div(m, n) = div(m-n, n)+1 m n ()

to the specification NAT above, we get a contradiction (all functions are assumed to
be total), since with the help of the generation principles which gives the basis for
induction proofs we may deduce the proposition: n Nat: n n+1. As
demonstrated before the equation

 div(m, 0) = div(m, 0)+1
leads to a contradiction. If we drop the term generation principle (this is the principle
to consider standard models only) then induction is no longer available as a proof
principle and the contradiction can no longer be deduced since div(m, 0) may be a
non-standard-value.

However, giving up induction would hurt. The other option to avoid the
inconsistency while maintaining the principle of induction is to use the following
conditional defining equation:

492 Manfred Broy

 div(m, n) = div(m-n, n)+1 m n n > 0

instead. Adding only this equation and the equation () there exist many models for
the enriched specification. Each of these models contains a function div with arbitrary
choices for the results of function application div(m, 0). This approach corresponds
again exactly to the idea of underspecification.

7 The Herbrand Universe

Another area where recursive declarations are used is logic programming. Here we
work with the concept of term models called Herbrand models. These so called
Herbrand models are used to interpret “recursive” Horn clauses.

When dealing with ideas from logic programming we do not represent operations
like division by functions but by relations or by predicates. Along these lines we may
describe division by the predicate

 Div: IN IN IN IB

specified by the following Horn-clauses:

 Div(m, n, 0) m < n

 Div(m+n, n, r+1) Div(m, n, r)

Of course, there are many predicates Div that fulfil these axioms. The weakest of
these predicates is true (more precisely the predicate x, y, r: true). The strongest
predicate corresponds to the so called closed world assumption, which leads to the
strongest predicate that fulfils the Horn-clauses. It is specified by the equivalence

 Div(m, n, r) (0 m-n*r < n)

This relation Div directly represents the partial function div discussed extensively
above. The closed world assumption simply assumes that all facts that are not
explicitly stated as being true (more precisely that cannot be deduced logically from
the axioms) are false. This is exactly mirrored by the possible computations (which
may be seen as logical deductions) and also by the strongest fixpoint. This is the
standard semantics used in logic programming.

Of course, there are many other solutions (other predicates that fulfil the
equations). For every natural number k IN we get a predicate Divk specified by the
equation

 Divk(m, n, r) (0 m-n*r < n) k r.

These relations Divk and the strongest fixpoint are examples for fixpoints (solutions)
of the defining Horn-clauses for Div.

From Chaos to Undefinedness 493

8 Conclusion

Recursion is a fundamental concept in computer science. Recursion is used both
explicitly, such as in recursive data type declarations, recursive function declarations,
or in formal languages, and implicitly, such as in loops, everywhere. There are many
options to treat the semantics of recursive equations. They all have serious impacts on
the logical theories and mathematical models of programming.

Let us finally survey the considered options for the treatment of recursion shortly
once more: to treat recursive declarations we have to observe the following facts:

Models with total functions without any extension to “undefined” cannot be
extended by recursive equations without running into contradictions for certain
recursive equations. We have to be careful to add conditions to those equations to
avoid contradictions. However, in the worst case, such conditions are not recursive
and thus not computable.

We can extend the logic of total functions to partial functions, functions on cpos,
relations, predicates, set-valued functions of even sets of functions. All such
extensions can be used to treat recursion. In fact, such an extension makes the logic
more sophisticated, in general.

As we have demonstrated the different possibilities may be combined. For
instance, we can work with sets of total functions or with sets of partial functions.
Each of these approaches has its advantages and disadvantages. Working with total
functions allows us to keep the logics simple, for the price that not all computable
functions can be described by computable expressions and that contradictions and
incompleteness may be introduced.

A second disadvantage, from a practical point of view perhaps a more serious one,
of the concept of total functions with underspecification is the fact that the arguments
for which, operationally speaking, the recursion does not terminate are not
distinguished logically from the cases where the values of the function are well-
defined by a terminating recursion. This is awful and unacceptable from the point of
view of software engineering since reasoning about exceptions, termination, and
definedness is an important part of the specification and analysis of reliability and
verification of programs. We want to be able to distinguish bad and unacceptable
arguments from good acceptable ones! Therefore we are in favour of explicit
representations of undefined (see the discussion in Hehner 74).

Appendix

As we have shown, a purely equational treatment and characterisation of solutions of
recursive equations is difficult. However, there is one logical “trick” that allows us to
work with total functions even in cases of recursive definitions that lead within a
logical setting to least fixpoints that are function with non-recursively enumerable
codomains. For each function

 f: D R

494 Manfred Broy

that is specified by the recursive equation

(*) f(x) = E
we introduce together with the function symbol f a corresponding predicate

 domf: D IB

that characterises the subset of the domain D for which the function f has to have a
well-specified result and replace therefore the recursive equation (*) by the weaker
implication

 domf(x) f(x) = E

Of course, this implication alone is not strong enough to characterize the function
associated with the symbol f and certainly not at all to characterize the predicate domf
the way we want it. A trivial choice to fulfil the conditional equation would be to
choose domf(x) = false. Then the conditional equation is trivially fulfilled. Therefore
we need additional axioms for specifying the domain restriction predicate domf.

We assume for simplicity that all given function and operation symbols g: D R
in our signature have an associated domain predicate

 domg: D IB

We introduce a syntactic rewrite procedure that produces for every term E
syntactically a logical formula DEF E that characterizes the proposition the value of
the expression “E is well defined”. It is specified as follows:

 DEF x true for
identifiers x

 DEF h(E1,...,En) domh(E1, ..., En) DEF E1 ... DEF En

 DEF if C then E1 else E2 fi

 DEF C (C DEF E1) (C DEF E2)

For total functions g we simply choose domg(x) true for all x.
Based on these definitions we replace the recursive equation

 f(x) = E
by the following two axioms

(**) domf(x) f(x) = E

 DEF E domf(x)

If all function symbols g occurring in function calls in the expression E are totally
defined in the sense of domg(x) = true for all except the function f we can simplify
this treatment. The formula DEF[E] then only refers to the definedness of the
recursive calls in the term E.

By this simple encoding of the domain predicate we work with underspecification
both for the function f and the domain predicate domf. Formally, domf is a predicate
and has nothing to do with the function f. However, the predicate is used as a guard
for the recursive defining equation for f. So the defining equation is not required to be

From Chaos to Undefinedness 495

valid if domf(x) is false. This avoids contradictions, since in the case the function
application f(x) does not terminate we cannot derive domf(x) = true and thus always
may choose domf(x) = false.

We demonstrate how our idea works in the case of our simple example. In the case
of division we get the following defining equations for div:

 domdiv(m, n) n > m div(m, n) = 0

 domdiv(m, n) n m div(m, n) = 1+div(m-n, n)

and the following axioms for domdiv:

 n > m domdiv(m, n)

 domdiv(m-n, n) domdiv(m, n)

By this we can prove the definedness of the function div for all its arguments (m, n)
with n > 0 introduced by a recursive equation. This way we exactly mimic the way
computations are executed.

However, the introduction of a domain predicate is only a logical trick which
encodes the classical idea of fixpoint theory for partial functions into logics of total
functions. In the case of our example we can prove

 domdiv(m, n) n 0
Moreover, by contradiction, (assuming div is a total function) we can prove

domdiv(m, 0) since domdiv(m, 0) would lead to a contradiction since by this we could
deduce

 div(m, 0) = 1 + div(m, 0)

Hence a proof by contradiction yields domdiv(m, 0).
Note that, in general, however, the predicate, domf is not uniquely specified by the

axioms (**). If several fixpoints exist for the recursive equation f(x) = E then also
several solutions for domain predicate domf exist. If we choose the strongest predicate
for domf this reflects the idea of the least defined fixpoint.

References

[Broy 86]
M. Broy: Partial interpretations of higher order algebraic types. (Invited lecture) In: J.
Gruska (ed): Mathematical Foundations of Computer Science-13th Symposium, Lecture
Notes in Computer Science 233, Berlin-Heidelberg-New York-Tokyo: Springer 1986, 29-43

 [Broy, Wirsing 80]
M. Wirsing, M. Broy: Abstract data types as lattices of finitely generated models. In: P.
Dembinski (ed.): Mathemarical Foundations of Computer Science - 9th Symposium.
Rydzyna 1980, Lecture Notes in Computer Science 88, Berlin-Heidelberg-New York:
Springer 1980, 673-685

Broy, Wirsing 82
M. Broy, M. Wirsing: Initial versus terminal algebra semantics for partially defined abstract
types. Technische Universität München, Institut für Informatik, TUM-I8018, December
1981. Revidierte Fassung: Partial Abstract Types, Acta Informatica 18, 1982, 47-64

496 Manfred Broy

Broy, Pepper, Wirsing 87
M. Broy, M. Pepper, M. Wirsing: On the algebraic definition of programming languages.
Technische Universität München, Institut für Informatik, TUM-I8204, 1982. Revised
version in TOPLAS 9:1 (1987) 54-99

[de Bakker, Zucker 84]
J. W. de Bakker and J. I. Zucker. Processes and the denotational semantics of concurrency.
Information and Control, 54(1/2):70-120

[Hehner 84]
E.C.R. Hehner: Predicative Programming. Comm. ACM 27:2, 1984, 134-151

Knaster-Tarski
A. Tarski: A lattice-theoretical fixpoint theorem and its application. Pacific Journal of
Mathematics Vol. 5, 1955, 285-309

Larch 93
John V. Guttag and James J. Horning, with S.J. Garland, K.D. Jones, A. Modet, and J.M.
Wing: Larch: Languages and Tools for Formal Specification, Springer-Verlag Texts and
Monographs in Computer Science, 1993

-calculus 81
H.P. Barendregt: The Lambda Calculus: Its Syntax and Semantics. North-Holland 1981

-calculus 73
P. Hitchcock, D. Park: Induction rules and termination proofs. M. Nivat (ed.): Proc. Ist
ICALP. North Holland 73

-calculus 99
R. Milner: Communication and mobile systems: the -calculus. Cambridge University Press
1999

Prolog/Herbrand Universe 87
J. Lloyd. Foundations of Logic Programming: 2nd Edition. Springer-Verlag, 1987

[PVS 92]
S. Owre, J. M. Rushby, N. Shankar: PVS: A Prototype Verification System. In: Deepak
Kapur (ed.):11th Conference on Automated Deduction, Saratoga, NY, Jun, 1992

[Schieder, Broy 99]
B. Schieder, M. Broy: Adapting Calculational Logic to the Undefined. The Computer
Journal, Vol. 42, No. 2, 1999

[Sintzoff 87]
M. Sintzoff: Expressing program developments in a design calculus. M. Broy (ed.): Logic of
programming and calculi of discrete design. Springer NATO ASI Series, Series F:
Computer and System Sciences, Vol. 36, 1987, 343-365

[Scott 81]
D. Scott: Lectures on a mathematical theory of computation. In: Theoretical Foundations of
Programming Methodology, edited by M. Broy and G. Schmidt. D. Reidel Publishing
Company, 1982, pp. 145 - 292

Completion Is an Instance of Abstract Canonical

System Inference

Guillaume Burel1 and Claude Kirchner2

1 Ecole Normale Supérieure de Lyon & LORIA�

2 INRIA & LORIA�

Abstract. Abstract canonical systems and inference (ACSI) were intro-
duced to formalize the intuitive notions of good proof and good inference
appearing typically in first-order logic or in Knuth-Bendix like comple-
tion procedures.

Since this abstract framework is intended to be generic, it is of funda-
mental interest to show its adequacy to represent the main systems of
interest. This has been done for ground completion (where all equational
axioms are ground) but was still an open question for the general com-
pletion process.

By showing that the standard completion is an instance of the ACSI
framework we close the question. For this purpose, two proof represen-
tations, proof terms and proofs by replacement, are compared to built
a proof ordering that provides an instantiation adapted to the abstract
canonical system framework.

Classification: Logic in computer science, rewriting and deduction,
completion, good proof, proof representation, canonicity.

1 Introduction

The notion of good proof is central in mathematics and crucial when mecha-
nizing deduction, in particular for defining useful and efficient tactics in proof
assistant and theorem provers. Motivated on one hand by this quest for good
proof theory and on the other by the profound similarities between many proof
search approaches, N. Dershowitz and C. Kirchner proposed in [17, 18] a general
framework based on ordering the set of proofs. In this context the best proofs
are simply the minimal one. Once one has defined what the best proofs are by
the mean of a proof ordering, the next step is to obtain the best presentation of
a theory, i.e. the set of axioms necessary for obtaining the best proofs for all the
theory, but not containing anything useless.

To formalize this, the notion of good inference was introduced by M.P.
Bonacina and N. Dershowitz [6]. Given a theory, its canonical presentation is
defined as the set of the axioms needed to obtain the minimal proofs. It is gen-
eral enough to produce all best proofs, leading to a notion of saturation, but

� UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 497–520, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

498 Guillaume Burel and Claude Kirchner

it does not contain any redundant informations, hence the notion of contrac-
tion. Presentations, i.e. sets of axioms, are then transformed using appropriate
deduction mechanisms to produce this canonical presentation.

This leaded to the Abstract Canonical Systems and Inference (ACSI) generic
framework presented in [18, 6].

The ACSI framework got its sources of inspiration from three related points.
First, the early works on Proof orderings as introduced in [3] and [4] to prove the
completeness of completion procedures a la Knuth-Bendix. Second, the devel-
opments about redundancy [24, 5] to focus on the important axioms to perform
further inferences. Last but not least, by the completion procedure [31], central
in most theorem proving tools where an equality predicate is used. This proce-
dure has been refined, mainly for two purposes: to have a more specific and thus
more efficient algorithm when dealing with particular cases, or to increase the
efficiency although remaining general. For the first case, a revue of specific com-
pletion procedures for specific algebraic structures can be found in [33]. For the
second case, completion has been extended to equational completion [25, 36, 28];
inductionless induction, initiated by J.A. Goguen [21] and D. Musser [35]; and
ordered completion [32, 24, 4], to mention only a few. One important applica-
tion of the completion procedure is rewrite based programming, either based on
matching or on unification. The seminal work of J.A. Goguen on OBJ and its
various incarnations [22] plays a preeminent role in this class of algebraic lan-
guages and has directly inspired CafeOBJ [20], ELAN [8] or Maude [14]. When
the operational semantics of the language is based on unification, we find logic
programming languages of the Prolog family, where EQLOG [23] is also a pre-
eminent figure. Good syntheses about completion based rewrite programs can
be found in [15, 7].

Several works intend to uniform this different completion procedures, and to
make it a special case of a more general process. The notion of critical-pair com-
pletion procedure was introduced by [10] and covers not only standard comple-
tion, but also Buchberger algorithm for Gröbner basis [9, 42] and resolution [37].
Indeed, R. Bündgen shown that Buchberger’s algorithm can be simulated by
standard completion [11]. This concept of critical-pair completion was categori-
cally formalized by K. Stokkermans [40]. Other generalizations can be found in
works of M. Schorlemmer [39], M. Aiguier and D. Bahrami [1] or in the PhD of G.
Struth [41], where standard completion, Buchberger’s algorithm and resolution
are shown to be special instantiation of a non-symmetric completion procedure.

But, even if initially motivated by these three points, the ACSI framework
has been developed as a full stand alone theory. This theory provide important
abstract results based on basic hypothesis on proofs and a few postulates.

Therefore, a main question remains: is this framework indeed useful? Does
this theory allows to uniformly understand and prove the main properties of a
proof system, centered around the appropriate ordering on proofs?

At the price of a slight generalization of two postulates, it is shown in [12],
that good proofs in natural deduction are indeed the cut free proofs as soon as
proofs are compared using the ordering induced by beta reduction over the sim-

Completion Is an Instance of Abstract Canonical System Inference 499

ply typed lambda-terms. For ground completion, the adequacy of the framework
has been shown in [16], leaving the more general question of standard completion
open.

This paper proves the adequacy to the framework for the standard completion
procedure, generalizing in a non trivial way the result of [16] and showing the
usefulness of abstract canonical systems. This brings serious hopes that the ACSI
framework is indeed well adapted and useful to uniformly understand and work
with other algorithms, in particular all the ones based on critical-pair completion.

The next section will summarize the framework of abstract canonical systems,
as defined in [18, 6], and briefly recall the standard completion. Section 3 deals
with two representations of proofs in equational logic, namely as proof terms in
the rewriting logic [34], and as proof by replacement [3]. We will show how to
combine them to keep the tree structure of the first one, and the ordering associ-
ated with the second one, which is well adapted to prove the completeness of the
standard completion. Finally, in Section 4, we will apply the abstract canonical
systems framework to this proof representation to show the completeness of the
standard completion. The proofs details are given in the Appendix.

2 Presentation

2.1 Abstract Canonical Systems

The results in this section are extracted from [18, 6], which should be consulted
for motivations, details and proofs.

Let A be the set of all formulæ over some fixed vocabulary. Let P be the set
of all proofs. These sets are linked by two functions: [·]Pm : P → 2A gives the
premises in a proof, and [·]Cl : P → A gives its conclusion. Both are extended to
sets of proofs in the usual fashion. The set of proofs built using assumptions in
A ⊆ A is noted by3

Pf (A) !=
{
p ∈ P : [p]Pm ⊆ A

}
.

The framework proposed here is predicated on two well-founded partial
orderings over P: a proof ordering > and a subproof relation �. They are
related by a monotonicity requirement (postulate E). We assume for conve-
nience that the proof ordering only compares proofs with the same conclusion
(p > q ⇒ [p]Cl = [q]Cl), rather than mention this condition each time we have
cause to compare proofs.

We will use the term presentation to mean a set of formulæ, and justifica-
tion to mean a set of proofs. We reserve the term theory for deductively closed
presentations:

Th A != [Pf (A)]Cl = {[p]Cl : p ∈ P, [p]Pm ⊆ A} .

3 !
= is used for definitions.

500 Guillaume Burel and Claude Kirchner

Theories are monotonic:

Proposition 1 (Monotonicity). For all presentations A and B:

A ⊆ B ⇒ Th A ⊆ Th B

Presentations A and B are equivalent (A ≡ B) if their theories are identical:
Th A = Th B. In addition to this, we assume the two following postulates:

Postulate A (Reflexivity). For all presentations A:

A ⊆ Th A

Postulate B (Closure). For all presentations A:

Th Th A ⊆ Th A

We call a proof trivial when it proves only its unique assumption and has no
subproofs other than itself, that is, if [p]Pm = {[p]Cl} and p� q ⇒ p = q, where
� is the reflexive closure of the subproof ordering �. We denote by â such a
trivial proof of a ∈ A and by Â the set of trivial proofs of each a ∈ A.

We assume that proofs use their assumptions (postulate C), that subproofs
don’t use non-existent assumptions (postulate D), and that proof orderings are
monotonic with respect to subproofs (postulate E):

Postulate C (Trivia). For all proofs p and formulæ a:

a ∈ [p]Pm ⇒ p� â

Postulate D (Subproofs Premises Monotonicity). For all proofs p and q:

p� q ⇒ [p]Pm ⊇ [q]Pm

Postulate E (Replacement). For all proofs p, q and r:

p� q > r ⇒ ∃v ∈ Pf ([p]Pm ∪ [r]Pm). p > v � r

We make no other assumptions regarding proofs or their structure. As remarked
in [6], the subproof relation essentially defines a tree structure over proof: a
“leaf” is a proof with no subproofs but itself, and direct subproofs, i.e. subproofs
that are not subproofs of another subproof, can be considered as “subtrees”.
These trees can be infinitely branching, but their height is finite because of the
wellfoundedness of �.

The proof ordering > is lifted to an ordering � over presentations:

A � B if A ≡ B and ∀p ∈ Pf (A) ∃q ∈ Pf (B). p ≥ q .

Completion Is an Instance of Abstract Canonical System Inference 501

We define what a normal-form proof is, i.e. one of the minimal proofs of
Pf (Th A):

Nf (A) != μPf (Th A) != {p ∈ Pf (Th A) : ¬∃q ∈ Pf (Th A). p > q} .

The canonical presentation contains those formulæ that appear as assump-
tions of normal-form proofs:

A� != [Nf (A)]Pm .

So, we will say that A is canonical if A = A�.
A presentation A is saturated if it supports all possible normal form proofs:

Pf (A) ⊇ Nf (A) .

The set of all redundant formulæ of a given presentation A will be denoted
as follows:

Red A != {r ∈ A : A � A \ {r}} .

and a presentation A is contracted if

Red A = ∅ .

The following main result can then be derived [17]:

Theorem 1. A presentation is canonical iff it is saturated and contracted.

We now consider inference and deduction mechanisms. A deduction mecha-
nism � is a function from presentations to presentations and we call the relation
A � B a deduction step. A sequence of presentations A0 � A1 � · · · is called
a derivation. The result of the derivation is, as usual, its persisting formulæ:

A∞
!= lim inf

j→∞
Aj =

⋃
j>0

⋂
i>j

Ai .

A deduction mechanism � is sound if A � B implies Th B ⊆ Th A. It is
adequate if A � B implies Th A ⊆ Th B. It is good if proofs only get better:

� ⊆ � .

A derivation A0 � A1 � · · · is good if Ai � Ai+1 for all i.
We now extend the notion of saturation and contraction to derivation:

– A derivation {Ai}i is saturating if A∞ is saturated.
– It is contracting if A∞ is contracted.
– It is canonical if both saturating and contracting.

A canonical derivation can be used to build the canonical presentation of the
initial presentation:

Theorem 2. A good derivation is canonical if and only if

A∞ = A�
0 .

502 Guillaume Burel and Claude Kirchner

2.2 The Standard Completion

The standard completion algorithm was first introduced by Knuth and Bendix
in [31], hence the name it is often called. Its correctness was first shown by Huet
in [26], using a fairness hypothesis. We use here a presentation of this algorithm
as inference rules (see Fig. 1), as can be found in [3]. For basics on rewritings
and completions, we refer to [2, 29].

The Knuth-Bendix algorithm consists of 6 rules which apply to a couple E,R
of a set of equational axioms and a set of rewriting rules. It takes a reduction
ordering >> over terms as argument. The rules are presented in Fig. 1.

Deduce: If (s, t) is a critical pair of R

E,R � E ∪ {s = t}, R

Orient: If s >> t
E ∪ {s = t}, R � E, R ∪ {s → t}

Delete:
E ∪ {s = s}, R � E, R

Simplify: If s−→
R

u

E ∪ {s = t}, R � E ∪ {u = t}, R

Compose: If t−→
R

u

E, R ∪ {s → t} � E, R ∪ {s → u}

Collapsea: If s −→
v→w∈R

u, and s � v,

E, R ∪ {s → t} � E ∪ {u = t}, R

Fig. 1. Standard Completion Inference Rules.
a � designate the encompassment ordering, s � t if a subterm of s in an instance of t

but not vice versa.

Since [26], standard completion is associated with a fairness assumption (see
[3, Lemma 2.8]): at the limit, all equations are oriented (E∞ = ∅) and all per-
sistent critical pairs coming from R∞ are treated by Deduce at least once.

Because we work with terms with variables, the reduction ordering >> cannot
be total, so that Orient may fail. Therefore, the standard completion algorithm
may either:

– terminate with success and yield a terminating, confluent set of rules;
– terminate with failure; or
– not terminate.

Completion Is an Instance of Abstract Canonical System Inference 503

Here, the completeness of the standard completion will only be shown using the
ACSI framework for the first case.

3 Proof Representations

Our goal is now to use the ACSI framework to directly show that standard
completion inference rules are correct and complete. We have therefore first to
find the right order on proofs. We have two main choices that we are now defining
and relating.

3.1 Proof Terms

Let us first consider the proof representation coming from the one used in rewrit-
ing logic (introduced by Meseguer [34], see also [30]). Consider a signature Σ,
and a set of variable V . The set of terms built upon these signature and vari-
ables is noted T (Σ, V). Consider also a set of equational axioms E and a set of
rewrite rules R based on this signature. To simplify the notations of proof terms,
equational axioms and rewrite rules are represented by labels not appearing in
the signature Σ. An equational axiom or a rewrite rule (l, r) ∈ E ∪ R will be
also noted (l(x1, . . . , xn), r(x1, . . . , xn)) where x1, . . . , xn are the free variables
of both sides. We consider the rules of the equational logic given in the Fig. 2.
These inference rules define the proof term associated with a proof. The notation
π : t −→ t′ means that π is a proof term—that could also be seen as a trace—
showing that the term t can be rewritten to the term t′.

By definition, T (Σ, V) is plunged into the proof terms when they are formed
with the rules Reflexivity and Congruence. Also, Reflexivity for t −→ t is
not essential because it can be replaced by a tree of Congruence isomorph to
t. The proof terms associated are furthermore the same in both case: t. Notice
that these proof terms are a restricted form of rho-terms [13].

Example 1. Consider the rewrite rules and equational axiom

!1 : g(x)−→d(x), !2 : s = t, !3 : l−→r,

– r is a proof term of r = r,
– f(!1(!2), (!3; r)−1) is a proof term of f(g(s), r) = f(d(t), l).

Some proof terms defined here are “essentially the same”. For instance, the
transitivity operator should be considered as associative, so that the proofs
(π1;π2);π3 and π1; (π2;π3) are equal. This can be done by quotienting the proof
terms algebra by the congruence rules of Fig. 3. In particular, in proof terms, par-
allel rewriting can be combined in one term without transitivity. The Parallel
Moves Lemma equivalence corresponds to the fact that this parallel rewriting
can be decomposed by applying first the outermost rule, then the innermost, or
conversely. (About the Parallel Moves Lemma, see for instance [27].)

504 Guillaume Burel and Claude Kirchner

Reflexivity:

t : t−→t

Congruence:
π1 : t1−→t′1 . . . πn : tn−→t′n

f(π1, . . . , πn) : f(t1, . . . , tn)−→f(t′1, . . . , t
′
n)

Replacement: For all rules or equational axioms
 = (g(x1, . . . , xn), d(x1, . . . , xn)) ∈ E ∪ R,

π1 : t1−→t′1 . . . πn : tn−→t′n

(π1, . . . , πn) : g(t1, . . . , tn)−→d(t′1, . . . , t
′
n)

Transitivity:
π1 : t1−→t2 π2 : t2−→t3

π1; π2 : t1−→t3

Symmetry:
π : t1−→t2

π−1 : t2−→t1

Fig. 2. Inference Rules for Equational Logic

Example 2. From the rules Associativity, Identities and Inverse we
can deduce that the proofs (π1;π2)−1 and π−1

2 ;π−1
1 are equivalent:

(π1;π2)−1 ≡ (π1;π2)−1; t
≡ (π1;π2)−1;π1;π−1

1

≡ (π1;π2)−1;π1; t′;π−1
1

≡ (π1;π2)−1;π1;π2;π−1
2 ;π−1

1

≡ t′′;π−1
2 ;π−1

1

≡ π−1
2 ;π−1

1 .

We similarly have f(π1, . . . , πn)−1 equivalent to f(π−1
1 , . . . , π−1

n), because
f(π−1

1 , . . . , π−1
n) ≡ f(π−1

1 , . . . , π−1
n); f(t1, . . . , tn)

≡ f(π−1
1 , . . . , π−1

n); (f(π1, . . . , πn); f(π1, . . . , πn)−1)
≡ (f(π−1

1 , . . . , π−1
n); f(π1, . . . , πn)); f(π1, . . . , πn)−1

≡ f(π−1
1 ;π1, . . . , π

−1
n ;πn); f(π1, . . . , πn)−1

≡ f(t′1, . . . , t
′
n); f(π1, . . . , πn)−1

≡ f(π1, . . . , πn)−1 .

3.2 Proofs by Replacement of Equal by Equal

This proof representation was introduced by [3] to prove the completeness of the
Knuth-Bendix completion algorithm, using an ordering over such proofs that
decreases for every completion step.

Completion Is an Instance of Abstract Canonical System Inference 505

Associativity: For all proof terms π1, π2, π3,

π1; (π2; π3) ≡ (π1; π2); π3

Identities: For all proof terms π : t−→t′,

π; t′ ≡ t; π ≡ π

Preservation of Composition: For all proof terms π1, . . . , πn, π′
1, . . . , π

′
n, for all

function symbols f ,

f(π1; π
′
1, . . . , πn; π′

n) ≡ f(π1, . . . , πn); f(π′
1, . . . , π

′
n)

Parallel Moves Lemma: For all rewrite rules or equational axiom =
(g(x1, . . . , xn), d(x1, . . . , xn)) ∈ E ∪ R, for all proof terms π1 : t1−→t′1, . . . , πn :

tn−→t′n,

(π1, . . . , πn) ≡ (t1, . . . , tn); d(π1, . . . , πn)
≡ g(π1, . . . , πn); (t′1, . . . , t

′
n)

Inverse: For all proof terms π : t−→t′,

π; π−1 ≡ t
π−1; π ≡ t′

Fig. 3. Equivalence of Proof Terms

An equational proof step is an expression s
p←→
e
t where s and t are terms, e

is an equational axiom u = v, and p is a position of s such that s|p = σ(u) and
t = s[σ(v)]p for some substitution σ.

An equational proof of s0 = tn is any finite sequence of equational proof steps(
si

pi←→
ei

ti

)
i∈{0,...,n}

such that ti = si+1 for all i ∈ {0, . . . , n− 1}. It is noted:

s0
p0←→
e0

s1
p1←→
e1

s2 · · · sn
pn←→
en

tn .

A rewrite proof step is an expression s
p−→
�
t or t

p←−
�
s where s and t are

terms, ! is a rewrite rule u → v, and p is a position of s such that s|p = σ(u)
and t = s[σ(v)]p for some substitution σ.

An proof by replacement (of equal by equal) of s0 = tn is any finite se-

quence of equational proof steps and rewrite proof step
(
si

pi

�i
�i

ti

)
i∈{0,...,n}

where �i ∈ {←→,−→,←−} for i ∈ {0, . . . , n} and such that ti = si+1 for

all i ∈ {0, . . . , n− 1}. It is noted:

s0
p0

�0
�0

s1
p1

�1
�1

s2 · · · sn

pn

�n
�n

tn .

506 Guillaume Burel and Claude Kirchner

Example 3. Consider the rewrite rules and equational axiom:

!1 : g(x)−→d(x), !2 : s = t, !3 : l−→r,

– r is a proof by replacement of r = r (empty sequence),

– f(g(s), r) 1−→
�1

f(d(s), r) 11←→
�2

f(d(t), r) 2←−
�3

f(d(t), l) is a proof by replacement

of f(g(s), r) = f(d(t), l).

3.3 From Proof Terms to Proofs by Replacement

In order to have a one to one correspondence between proof representations, we
use the equivalence of proof terms defined in Fig. 3. We can refine them to the
proof term rewrite system � given in Fig. 4, in which π, π′, π1, . . . range over
proof terms, t, t′, t1, . . . over Σ-terms, f, g, d over function symbols, ! over rules
and equational axioms labels and i and k over {1, . . . , n}.

Delete Useless Identities:
π; t′

t; π

}
� π

Sequentialization: If πk : tk−→t′k and there exists i �= j ∈ {1, . . . , n} such that

πi �= ti and πj �= tj ,

f(π1, . . . , πn) � f(π1, t2, . . . , tn); f(t′1, π2, . . . , tn); . . . ; f(t′1, t
′
2, . . . , πn)

Composition Shallowing: If πi : ti−→t′i and π′
i : t′i−→t′i

′
,

f(t1, . . . , πi; π
′
i, . . . , tn) � f(t1, . . . , πi, . . . , tn); f(t1, . . . , π

′
i, . . . , tn)

Parallel Moves: If = (g(x1, . . . , xn), d(x1, . . . , xn)), π1 : t1−→t′1, . . . , πn :

tn−→t′n, and if there exists i ∈ {1, . . . , n} such that πi �= ti,

(π1, . . . , πn) � (t1, . . . , tn); d(π1, . . . , πn)

Delete Useless Inverses:
t−1 � t

Inverse Congruence: If πi : ti−→t′i,

f(t1, . . . , π
−1
i , . . . , tn) � f(t1, . . . , πi, . . . , tn)−1

Inverse Composition:

(π1; π2)
−1 � π−1

2 ; π−1
1

Fig. 4. Rewrite System for Proof Terms

Completion Is an Instance of Abstract Canonical System Inference 507

The associativity is still considered in the congruence, so that all proof terms
rewrite rules must be considered modulo the associativity of ; which will be noted
∼. The class rewrite system that we consider will be therefore noted � / ∼. As
it is linear, we can use the framework and results from [25].

We first prove that this rewrite system is included in the equivalence relation
of Fig. 3.

Proposition 2 (Correctness). For all proof terms π1, π2, if π1 � π2 then
π1 ≡ π2.

The converse is false: for instance f(!1, !2) ≡ f(t1, !2); f(!1, t′2) but we do
not have f(!1, !2)

∗↔
�
f(t1, !2); f(!1, t′2).

Proposition 3 (Termination and Confluence). The proof term rewrite sys-
tem � modulo ∼ is terminating and confluent modulo ∼.

The proof terms rewrite system � allow us to give a correspondence between
proof terms and proofs by replacement of equal by equal: normal forms of proof
terms correspond exactly to proofs by replacement. This fact is expressed in
the following theorem, which is indeed a generalization of Lemma 3.6 in [34] for
equational logic. We also have operationalized the way to construct the chain of
“one-step sequential rewrites”.

Theorem 3 (Correspondence between Proof Representations). The
normal form of a proof term π for the rewrite system �, noted nf(π), has
the following form: For some n ∈ N, some contexts w1[], . . . , wn[], some
indices i1, . . . , in ∈ {−1, 1}, some rule labels !1, . . . , !n and some terms
t11, . . . , t

1
m1
, . . . , tn1 , . . . , t

n
mn

:

nf(π) = (w1[!1(t11, . . . , t
1
m1

)])i1 ; . . . ; (wn[!n(tn1 , . . . , t
n
mn

)])in

where for all proof terms ν, ν1 is a notation for ν.

Such a proof term correspond with the following proof by replacement of equal
by equal:

w1[g1(t11, . . . , t
1
m1

)]
p1

�1
�1

w1[d1(t11, . . . , t
1
m1

)]
p2

�2
�2

· · ·
pn

�n
�n

wn[dn(tn1 , . . . , t
n
mn

)]

where for all j ∈ {1, . . . , n} we have:

– !j = (gj , dj),
– pj is the position of [] in wj [],
– �j = −→ if ij = 1 and !j ∈ R,

←− if ij = −1 and !j ∈ R,

←→ if !j ∈ E.

– if j 	= n, wj [dj(t
j
1, . . . , t

j
mj

)] = wj+1[gj+1(t
j+1
1 , . . . , tj+1

mj+1
)].

508 Guillaume Burel and Claude Kirchner

Example 4. Consider π = f(!1(!2), (!3; r)−1) where !1 : g(x)−→d(x), !2 : s = t,
!3 : l−→r, we have:

π −→
�

f(!1(s); d(!2), (!3; r)−1) (Parallel Moves)

−→
�

f(!1(s); d(!2), r); f(d(t), (!3; r)−1) (Sequentialization)

−→
�

f(!1(s); d(!2), r); f(d(t), r−1; !−1
3) (Inverse Composition)

−→
�

f(!1(s); d(!2), r); f(d(t), r; !−1
3) (Delete Useless Inverses)

−→
�

f(!1(s); d(!2), r); f(d(t), !−1
3) (Delete Useless Identities)

−→
�

f(!1(s), r); f(d(!2), r); f(d(t), !−1
3) (Composition Shallowing)

−→
�

f(!1(s), r); f(d(!2), r); f(d(t), !3)−1 (Inverse Congruence)
This last term is the normal form proof term, and it is equivalent to the proof

by replacement f(g(s), r) 1−→
�1

f(d(s), r) 11←→
�2

f(d(t), r) 2←−
�3

f(d(t), l).

Due to this theorem, normal forms of proof terms can be considered in the
following indifferently as proof terms or as proofs by replacement.

3.4 Proofs Ordering

The representation of Bachmair by the mean of proof by replacement was defined
to introduce an order on proofs [3]: given a reduction ordering >>, to each single

proof steps s
p

�
�
t is associated a cost. The cost of an equational proof step s

p←→
u=v

t

is the triple ({{s, t}}, u, t). The cost of a rewrite proof step s
p−→

u→v
t is ({{s}}, u, t).

Proof steps are compared with each other according to their cost, using the lexi-
cographic combination of the multiset >>mult extension of the reduction ordering
over terms in the first component, the encompassment ordering � on the second
component, and the reduction ordering >> on the last component. Proofs are
compared as multisets of their proof steps. For two proofs by replacement p, q,
we will write p >rep q if p is greater than q for such an ordering.

Using theorem 3, we can translate Bachmair’s proof ordering to proof terms:

Definition 1 (Bachmair’s Ordering on Proof Terms).
For all proof terms π1, π2, we say that π1 >B π2 iff

nf(π1) >rep nf(π2) .

Example 5. Suppose we have Σ = {f1, a0, b0, c0} where the exponents of func-
tion symbols denote their arity, and a precedence f > a > b > c.

Consider π1 = f(!−1
1 ; !2) and π2 = f(!3) where !1 = a−→b, !2 = a−→c and

!3 = b = c, and suppose a > b > c.
We have nf(π1) = f(b) 1←−

�1
f(a) 1−→

�2
f(c) and nf(π2) = f(b) 1−→

�3
f(c). The

cost of nf(π1) is {{({{f(a)}}, a, f(b)), ({{f(a)}}, a, f(c))}}, the cost of nf(π2) is
{{({{f(b), f(c)}}, b, f(c))}}, so nf(π1) >rep nf(π2) and π1 >B π2.

Completion Is an Instance of Abstract Canonical System Inference 509

As we can see, the way we define the ordering over proofs is not trivial. The
question remains if we could have defined it more directly, without using the
representation as proof by replacement. The following statement give a beginning
of answer: we cannot hope to extend an RPO on Σ-terms to a RPO4 >rpo on
proof terms so that >B and >rpo coincide for the normal forms of proof terms:

Counter-example 6. With the same hypothesis as in Example 5, let !f =
f(a)−→c and !b = b−→c.

We now want to extend the precedence to !f and !b in order to extend the
RPO to proof terms. If we have !f < !b, f(a) ε−→

�f

c >rep b
ε−→
�b

c but !f<rpo!b.

If we suppose f > !f > !b we have f(a) ε−→
�f

c >rep f(b) 1−→
�b

f(c) but

!f<rpof(!b).
If we suppose !f > !b and !f > f , then f(f(b)) 11−→

�b

f(f(c)) >rep f(a) ε−→
�f

c

but f(f(!b))<rpo!f .
Such an extension is therefore impossible, there is no extension of >rpo on

proof terms such that for all proof terms π1, π2, we have nf(π1)>rponf(π2) if and
only if nf(π1) >B nf(π2).

In other words, the ordering we defined above can not be defined as a RPO over
proof terms.

In the following, proofs will be represented by proof terms, the proof ordering
> between them will be the ordering >B restricted to proofs with the same
conclusion, and the subproof relation � will be the subterm relation.

4 Standard Completion Is an Instance of Abstract
Canonical System

4.1 Adequacy to the Postulates

Adequacy to postulates A, B, C and D comes from the tree structure of the
proof terms representation.

Postulate E is not trivially verified, because of the definition of the ordering
as translation of an ordering over proof by replacement. Nevertheless:

Theorem 4 (Postulate E for Equational Proofs). For all contexts w[], for
all proof terms q, r:

q > r implies w[q] > w[r] .

The deduction mechanism � used here will be of course the standard com-
pletion. We now show that it has the required properties.

4 Or better an ordering compatible with associativity, such as the AC-RPO [38].

510 Guillaume Burel and Claude Kirchner

4.2 Standard Completion Is Sound and Adequate

This is shown in [3, Lemma 2.1]: if E,R � E′, R′, then ∗←→
E∪R

and ∗←→
E′∪R′

are the

same. To prove this, one has simply to verify it for each inference rule of standard
completion.

4.3 Standard Completion Is Good

This is shown in [3, Lemma 2.5, 2.6]: if E,R � E′, R′, then proofs in E,R can
be transformed to proofs in E′, R′ using following rules:

s←→
E

t � s−→
R′

t (Orient)

s←→
E

t � s−→
R′

u←→
E′

t (Simplify)

s←→
E

s � s (Delete)

s←−
R
u−→

R
t � s←→

E′
t (Deduce)

s←−
R
u−→

R
t � s

∗−→
R′

v
∗←−
R′

t

s−→
R
t � s−→

R′
v←−

R′
t (Compose)

s−→
R
t � s−→

R′
v←→

E′
t (Collapse)

We have −→
�

⊆>, so these proofs become indeed better.

4.4 Standard Completion Is Canonical

We can now show the following theorem:

Theorem 5 (Completeness of Standard Completion). Standard comple-
tion results—at the limit, when it terminates without failure—in the canonical,
Church-Rosser basis.

Proof. We can show R∞ = E�
0, and because standard completion is good we can

use Theorem 2.

Remark 1. When standard completion does not terminate, we can show that
E�

0 = R�
∞ ⊆ R∞. Consequently, the resulting set R∞ is then saturated, but it is

not necessarily contracted.

This shows that the standard completion is an instance of the framework of
the abstract canonical systems, when we choose the convenient proof represen-
tation.

Completion Is an Instance of Abstract Canonical System Inference 511

5 Conclusion

We presented a proof that standard completion can be seen as an instance of
the abstract canonical systems and inference framework. This led us to make
precise the relation between different equational proof representations. The first
one, proof terms as presented in [34], is convenient to consider proofs as terms,
with a subterm relation and substitutions. The other one, initiated in [3], is well
adapted to the study of the completeness of the standard completion procedure.
We presented a way to pass from one representation to another by the mean of
the proof term rewrite rules presented in Fig. 4. Thanks to this, we extended
the ordering introduced with the proof by replacement to the proof terms and
thus combine the advantages of both representations. This therefore positively
answer to the question whether the abstract canonical systems, centered in a
quite general way around the notion of proof ordering, are indeed the right
framework to uniformly prove the completeness of completion.

We plan now to understand how the results we have presented here can be
extended to other completion procedures. Bachmair introduced another proof
ordering to prove the completeness of the completion modulo [3], so that the
generalization seems rather natural. We plan also to look at other kinds of de-
duction mechanisms, such as Buchberger’s algorithm or resolution. For this, we
may show that Struth’s non-symmetric completion [41], which subsumes both
procedures, is also an instance of the ACSI framework.

Furthermore, proof terms as presented by [34, 30] are specific terms of the
rewriting calculus [13] [http://rho.loria.fr]. The link between the completion pro-
cedure and the sequent systems mentioned above can probably be found here
and be related to Dowek’s work proving that confluent rewrite rules can be linked
with Cut-free proofs of some sequent systems [19].

Acknowledgments This paper benefited greatly from suggestions, discussions and
the enthusiasm of Nachum Dershowitz. We thank also Georg Struth for his useful
comments and the anonymous referees for their careful reading and constructive
suggestions.

References

[1] M. Aiguier and D. Bahrami. Structures for abstract rewriting. Journal of Auto-
mated Reasoning, 2006. To appear.

[2] F. Baader and T. Nipkow. Term Rewriting and all That. Cambridge University
Press, 1998.

[3] L. Bachmair. Proof methods for equational theories. PhD thesis, University of
Illinois, Urbana-Champaign, (Ill., USA), 1987. Revised version, August 1988.

[4] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof
orderings. Journal of Association for Computing Machinery, 41(2):236–276, 1994.

[5] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

[6] M. P. Bonacina and N. Dershowitz. Abstract Canonical Inference. ACM Trans-
actions on Computational Logic, 2006. To appear.

512 Guillaume Burel and Claude Kirchner

[7] M. P. Bonacina and J. Hsiang. On rewrite programs: semantics and relationship
with Prolog. Journal of Logic Programming, 14(1 & 2):155–180, October 1992.

[8] P. Borovansky, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewrit-
ing logic point of view. Theoretical Computer Science, 2(285):155–185, July 2002.

[9] B. Buchberger. An algorithm for finding a basis for the residue class ring of a
zero-dimensional polynomial ideal. PhD thesis, University of Inssbruck (Austria),
1965. (in German).

[10] B. Buchberger. A critical-pair/completion algorithm for finitely generated ideals
in rings. In E. Börger, G. Hasenjaeger, and D. Rödding, editors, Proceedings of
Logic and Machines: Decision problems and Complexity, volume 171 of Lecture
Notes in Computer Science, pages 137–161. Springer-Verlag, 1983.

[11] R. Bündgen. Simulating Buchberger‘s algorithm by Knuth-Bendix completion.
In R. V. Book, editor, Rewriting Techniques and Applications: Proc.of the 4th
International Conference RTA-91, pages 386–397. Springer, Berlin, Heidelberg,
1991.

[12] G. Burel. Systèmes Canoniques Abstraits : Application à la Déduction Naturelle
et à la Complétion. Master’s thesis, Université Denis Diderot – Paris 7, 2005.

[13] H. Cirstea and C. Kirchner. The rewriting calculus — Part I and II. Logic Journal
of the Interest Group in Pure and Applied Logics, 9(3):427–498, May 2001.

[14] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the first international workshop on rewrit-
ing logic, volume 4, Asilomar (California), September 1996. Electronic Notes in
Theoretical Computer Science.

[15] N. Dershowitz. Computing with rewrite systems. Information and Control,
65(2/3):122–157, 1985.

[16] N. Dershowitz. Canonicity. Electronic Notes in Theoretical Computer Science,
86(1), June 2003.

[17] N. Dershowitz and C. Kirchner. Abstract saturation-based inference. In P. Ko-
laitis, editor, Proceedings of LICS 2003, Ottawa, Ontario, June 2003. ieee.

[18] N. Dershowitz and C. Kirchner. Abstract Canonical Presentations. Theorical
Computer Science, To appear, 2006.

[19] G. Dowek. Confluence as a cut elimination property. In R. Nieuwenhuis, editor,
RTA, volume 2706 of Lecture Notes in Computer Science, pages 2–13. Springer,
2003.

[20] K. Futatsugi and A. Nakagawa. An overview of CAFE specification environment
– an algebraic approach for creating, verifying, and maintaining formal specifica-
tions over networks. In Proceedings of the 1st IEEE Int. Conference on Formal
Engineering Methods, 1997.

[21] J. A. Goguen. How to prove algebraic inductive hypotheses without induction,
with applications to the correctness of data type implementation. In W. Bibel
and R. Kowalski, editors, Proceedings 5th International Conference on Automated
Deduction, Les Arcs (France), volume 87 of Lecture Notes in Computer Science,
pages 356–373. Springer-Verlag, 1980.

[22] J. A. Goguen and G. Malcolm, editors. Software Engineering with OBJ: alge-
braic specification in practice, volume 2 of Advances in Formal Methods. Kluwer
Academic Publishers, Boston, 2000.

[23] J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules for
logic programming. In D. DeGroot and G. Lindstrom, editors, Logic Programming:
Functions, Relations, and Equations, pages 295–363. Prentice-Hall, Englewood
Cliffs, NJ, 1986.

Completion Is an Instance of Abstract Canonical System Inference 513

[24] J. Hsiang and M. Rusinowitch. Proving refutational completeness of theorem
proving strategies: The transfinite semantic tree method. Journal of the ACM,
38(3):559–587, July 1991.

[25] G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

[26] G. Huet. A complete proof of correctness of the Knuth–Bendix completion algo-
rithm. Journal of Computer and System Sciences, 23(1):11–21, August 1981.

[27] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, I. In J.-L.
Lassez and G. Plotkin, editors, Computational Logic, chapter 11, pages 395–414.
The MIT press, 1991.

[28] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM Journal of Computing, 15(4):1155–1194, 1986.

[29] C. Kirchner and H. Kirchner. Rewriting, solving, proving. A preliminary version
of a book available at www.loria.fr/~ckirchne/rsp.ps.gz, 1999.

[30] C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic programming
languages using computational systems. In P. Van Hentenryck and V. Saraswat,
editors, Principles and Practice of Constraint Programming. The Newport Papers.,
chapter 8, pages 131–158. The MIT press, 1995.

[31] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, Oxford, 1970.

[32] D. Lankford. Canonical inference. Technical report, Louisiana Tech. University,
1975.

[33] P. Le Chenadec. Canonical Forms in Finitely Presented Algebras. John Wiley &
Sons, 1986.

[34] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

[35] D. Musser. On proving inductive properties of abstract data types. In Proceedings,
Symposium on Principles of Programming Languages, volume 7. Association for
Computing Machinery, 1980.

[36] G. Peterson and M. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28:233–264, 1981.

[37] J. A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM, 12:23–41, 1965.

[38] A. Rubio and R. Nieuwenhuis. A total AC-compatible ordering based on RPO.
Theoretical Computer Science, 142(2):209–227, 1995.

[39] W. M. Schorlemmer. Rewriting logic as a logic of special relations. Electr. Notes
Theor. Comput. Sci., 15, 1998.

[40] K. Stokkermans. A categorical formulation for critical-pair/completion proce-
dures. In M. Rusinowitch and J.-L. Remy, editors, CTRS, volume 656 of Lecture
Notes in Computer Science, pages 328–342. Springer, 1992.

[41] G. Struth. Canonical Transformations in Algebra, Universal Algebra and Logic.
Dissertation, Institut für Informatik, Universität des Saarlandes, Saarbrücken,
Germany, June 1998.

[42] F. Winkler. Knuth-Bendix procedure and Buchberger algorithm - A synthesis.
In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic
and Algebraic Computation, pages 55–67, Portland (Oregon, USA), 1989. ACM
Press.

514 Guillaume Burel and Claude Kirchner

A Proofs for Section 3 and 4

A.1 From Proof Terms to Proof by Replacement

To prove the termination of � / ∼, we need a reduction ordering compatible with
associativity. We consider only associativity here, although most of the existing
works use associativity and commutativity. Therefore, we need the following
lemma.

Lemma 1. If A ⊆ B then > is B-compatible implies > is A-compatible.

Proof. Just notice that s′ ∗←→
A

s > t
∗←→
A

t′ implies s′ ∗←→
B

s > t
∗←→
B

t′.

We can therefore use the AC-RPO ordering: a total AC-compatible simplifi-
cation ordering on ground terms is defined in [38], as an extension of the RPO.
To compare terms, they are interpreted using flattening and interpretation rules.
As we consider here that the associative commutative symbols have the lowest
precedence, we do not need the interpretation rules, and we will only present
the flattening rules: terms are reduced using a set of rules

f(x1, . . . , xn, f(y1, . . . , yr), z1, . . . , zm) → f(x1, . . . , xn, y1, . . . , yr, z1, . . . , zm)
(1)

for all AC-symbols f with n + m ≥ 1 and r ≥ 2. Such a rewrite system is
terminating as shown in [38].

For all terms t, let snf(t) denote the set of normal forms of t using rules (1).
Given a precedence > on function symbols, let >rpo denote the recursive path

ordering with precedence > where AC function symbols have multiset status and
other symbols have lexicographic status.

If f(s1, . . . , sn) is the normal form of a term s rewriting by (1) only at topmost
position, then tf(s) != (s1, . . . , sn).

Definition 2 (AC-RPO). For all terms s, t, s >AC−rpo t if:

– ∀t′ ∈ snf(t) ∃s′ ∈ snf(s), s′ >AC−rpo t
′ or

– ∀t′ ∈ snf(t) ∃s′ ∈ snf(s), s′ ≥rpo t
′ and tf(s) = f(s1, . . . , sm) and tf(t) =

(t1, . . . , tn) and

• if the head of s is AC then {{s1, . . . , sm}}>AC−rpomult{{t1, . . . , tn}} or
• if the head of s is not AC then (s1, . . . , sm)>AC−rpolex(t1, . . . , tn).

Proposition 4 ([38]). The AC-RPO is an AC-compatible simplification order-
ing which is total for non AC-equivalent ground terms.

We define a precedence > such that for all function symbols f and for all
rule labels ! we have ! > f > ·−1 > ; . The AC-RPO built with this precedence
will be noted /.

Completion Is an Instance of Abstract Canonical System Inference 515

To show termination, we also need the following lemma:

Lemma 2. For all proof terms π : t−→t′, we have π 0 t and π 0 t′.

Proof. By induction on the structure of the proof term π.
For Reflexivity, π = t = t′.
For Congruence, π = f(π1, . . . , πn), t = f(t1, . . . , tn) and t′ = f(t′1, . . . , t

′
n).

By induction hypothesis, for all i ∈ {1, . . . , n}, we have πi 0 ti, t
′
i. Further-

more, π is not reducible on the top position using rules (1), so that snf(π) =
{f(π′

1, . . . , π
′
n) : ∀i, π′

i ∈ snf(πi)}, whereas t and t′ are not reducible. Conse-
quently, by definition of an AC-RPO, π 0 t, t′.

For Replacement, π = !(π1, . . . , πn), t = g(t1, . . . , tn) and t′ = d(t′1, . . . , t
′
n)

where ! = (g, d) ∈ E ∪R. With the same arguments than for Congruence, we
can conclude that π 0 t, t′ (recall that ! > g, d).

For Transitivity, π = π1;π2 where π1 : t−→t′′ and π2 : t′′−→t′. By in-

duction hypothesis, π1 0 t and π2 0 t′. As / is a simplification ordering,
π / π1, π2 0 t, t′.

For Symmetry, π = π′−1 where π′ : t′−→t. By induction hypothesis and

because / is a simplification ordering, π / π′ 0 t′, t.

Proposition 5 (Termination). The rewrite system � of Fig. 4 modulo ∼ is
terminating for ground proof terms.

Proof. We can show that �⊆/, thus proving the termination of � / ∼:
For Delete Useless Identities, it comes from the fact that / is a simplifi-

cation ordering.
For Sequentialization, rules (1) are not applicable

on the left side whereas they lead on the right side to
; (f(π1, t2, . . . , tn), f(t′1, π2, . . . , tn), . . . , f(t′1, t

′
2, . . . , πn)). We have f >;,

thus by definition of a RPO, we must then prove that for all
i ∈ {1, . . . , n} we have f(π1, . . . , πn) /RPO f(t′1, . . . , t′i−1, πi, ti+1, . . . , tn),
i.e. (π1, . . . , πn) /lex

RPO (t′1, . . . , t
′
i−1, πi, ti+1, . . . , tn). By hypothesis there exists

at least a j ∈ {1, . . . , n} \ {i} such that πj 	= tj , so we can conclude with the
preceding lemma.

For Composition Shallowing, both sides are not reducible using rules
(1). We have f >;, thus we have to show: f(t1, . . . , πi;π′

i, . . . , tn) /RPO

f(t1, . . . , πi, . . . , tn) and f(t1, . . . , πi;π′
i, . . . , tn) /RPO f(t1, . . . , π′i, . . . , tn). Both

comparisons hold by definition of a RPO.
For Parallel Moves, both sides are not reducible using rules (1). We

have ! >;, thus we have to prove that !(π1, . . . , πn) /RPO !(t1, . . . , tn) and
!(π1, . . . , πn) /RPO d(π1, . . . , πn). The first comparison holds because of the
lemma and because there exists a i ∈ {1, . . . , n} such that πi 	= ti; the second
one holds because ! > d.

For Delete Useless Inverses, this comes from the fact that / is a simpli-
fication ordering.

516 Guillaume Burel and Claude Kirchner

For Inverse Congruence, both sides are not reducible using rules (1), there-
fore this is a consequence of f > ·−1.

For Inverse Composition, both sides are not reducible using rules (1),
therefore this is a consequence of ·−1 >;.

We can also prove confluence:

Proposition 6 (Confluence). The rewrite system � is confluent modulo ∼
on ground proof terms.

Proof. The class rewrite system is linear and terminating, so we just have to
check that the critical pairs are confluent [25].

For ←−
R

◦−→
R

, it is easy to check for most of the critical pairs that they are

confluent. We only detail the most problematic one. For two possible applications
of Sequentialization, we have for instance f(g(ν1, . . . , νm), π1, . . . , πn) that
can be rewritten to f(g(ν1, . . . , νm), t1, . . . , tn); f(g(s1, . . . , sm), π1, . . . , tn); . . . ;
f(g(s1, . . . , sm), t′1, . . . , πn) and to f(g(ν1, . . . , sm); . . . ; g(s′1, . . . , νm), π1, . . . , πn).
Both of them reduce to f(g(ν1, . . . , sm); . . . ; g(s′1, . . . , νm), t1, . . . , tn);
f(g(s1, . . . , sm), π1, . . . , tn); . . . ; f(g(s1, . . . , sm), t′1, . . . , πn).

For ←−
R

◦←→
A

, the only rules that can interfere with ∼ are Delete Useless

Identities, Composition Shallowing and Inverse Composition. We can
check that all critical pairs are confluent.

Theorem 6 (Correspondence between Proof Representations). The
normal form of a proof term π for the rewrite system �, noted nf(π), has
the following form: For some n ∈ N, some contexts w1[], . . . , wn[], some
indices i1, . . . , in ∈ {−1, 1}, some rule labels !1, . . . , !n and some terms
t11, . . . , t

1
m1
, . . . , tn1 , . . . , t

n
mn

:

nf(π) = (w1[!1(t11, . . . , t
1
m1

)])i1 ; . . . ; (wn[!n(tn1 , . . . , t
n
mn

)])in

where ν1 is a notation for ν.
We will denote by nf(π) the normal form of a proof term π.

Such a proof term correspond with the following proof by replacement of equal
by equal:

w1[g1(t11, . . . , t
1
m1

)]
p1

�1
�1

w1[d1(t11, . . . , t
1
m1

)]
p2

�2
�2

· · ·
pn

�n
�n

wn[dn(tn1 , . . . , t
n
mn

)]

where for all j ∈ {1, . . . , n} we have:

– !j = (gj , dj),
– pj is the position of [] in wj [],

– �j =

−→ if ij = 1 and !j ∈ R,

←− if ij = −1 and !j ∈ R,

←→ if !j ∈ E.

– if j 	= n, wj [dj(t
j
1, . . . , t

j
mj

)] = wj+1[gj+1(t
j+1
1 , . . . , tj+1

mj+1
)].

Completion Is an Instance of Abstract Canonical System Inference 517

Proof. We first have to check that proof terms in that form are indeed irreducible
by �, what is left to the reader.

Then, suppose that we have an irreducible proof term. Because Sequential-
ization cannot be applied, there is at most one ; under all function symbols.
Because Composition Shallowing cannot be applied, there are no ; under all
function symbols. Because Inverse Congruence and Inverse Composition
cannot be applied, ·−1 is applied between ; and function symbols. Irreducible
proof term are therefore application of ; over eventually ·−1 over base terms
composed of function symbols and rule labels.

Because Delete Useless Identities and Delete Useless Inverse cannot
be applied, there is a least one non-trivial proof (i.e a proof with a label in
it) in each of these base terms. Because Sequentialization cannot be applied,
there is at most one non-trivial proof in each of them. Because Parallel Moves
cannot be applied, the subterms of the labels are Σ-terms. Consequently, each
base term contains one and only one rule label, applied to Σ-terms.

A.2 Adequacy to the Postulates

Postulate A: The proof of (u, v) ∈ E ∪ R labeled by ! is !(x1, . . . , xn) where
x1, . . . , xn are the free variables of (u, v).

Postulate B: We can replace the assumption !(π1, . . . , πn) of something proved
by its proof where the free variables are replaced by the proofs π1, . . . , πn.

Postulate C and D: These postulates hold because of the tree structure of proofs.

Postulate E: This one does not trivially hold. We first show the following lemma:

Lemma 3. For all function symbols f of arity n + 1, for all proof terms
π1, . . . , πn, q and r:

q > r implies f(π1, . . . , q, . . . , πn) > f(π1, . . . , r, . . . , πn) .

Proof. Suppose q > r, thus by definition nf(q) >rep nf(r). To compare
f(π1, . . . , q, . . . , πn) and f(π1, . . . , r, . . . , πn), we have to transform them to proof
by replacement. As −→

�/∼
is Church-Rosser, the way it is applied does not matter.

We have

f(π1, . . . , q, . . . , πn)
−→
�

∗ f(π1, t2, . . . , tn); . . . ; f(t′1, . . . , q, . . . , tn); . . . ; f(t′1, . . . , πn)

−→
�

∗ f(π1, t2, . . . , tn); . . . ; f(t′1, . . . ,nf(q), . . . , tn); . . . ; f(t′1, . . . , πn)

Then, if nf(q) contains ; the underlined term will be split by Composition
Shallowing. If it contains −1 the rule Inverse Congruence will be applied.

518 Guillaume Burel and Claude Kirchner

Some terms outside the underline corresponding to identity will be removed by
Delete Useless Identities, and the normal form will look like:

f(π1, t2, . . . , tn); . . . ; f(t′1, . . . , q1, . . . , tn)i1 ; . . . ; f(t′1, . . . , qm, . . . , tn)im ; . . . ;
f(t′1, . . . , πn)

with nf(q) = qi1
1 ; . . . ; qim

m .
The same will apply with r, and therefore, to compare the initial proofs, we

just have to compare the costs of the underlined terms.
The cost of nf(q) will look like {{({{s1}}, u1, h1), . . . , ({{sm}}, um, hm)}}. Then the

cost of f(t′1, . . . , q1, . . . , tn)i1 ; . . . ; f(t′1, . . . , qm, . . . , tn)im will be:{
({{f(t′1, . . . , s1, . . . , tn)}}, u1, f(t′1, . . . , h1, . . . , tn)), . . . ,
({{f(t′1, . . . , sm, . . . , tn)}}, um, f(t′1, . . . , h,m, . . . , tn))

}
.

For nf(r) they will be respectively {{({{g1}}, v1, d1), . . . , ({{gp}}, vp, dp)}} and:{
({{f(t′1, . . . , g1, . . . , tn)}}, v1, f(t′1, . . . , d1, . . . , tn)), . . . ,
({{f(t′1, . . . , gp, . . . , tn)}}, vp, f(t′1, . . . , dp, . . . , tn))

}
.

>>, which is used to compare the first and the third components of
each part of the cost, is a reduction ordering, so that nf(q) >rep

nf(r) implies for instance f(t′1, . . . , q1, . . . , tn)i1 ; . . . ; f(t′1, . . . , qm, . . . , tn)im >rep

f(t′1, . . . , r1, . . . , tn)i1 ; . . . ; f(t′1, . . . , rp, . . . , tn)ip .

The same is true for labels:

Lemma 4. For all rule labels !, for all proof terms π1, . . . , πn, q and r:

q > r implies !(π1, . . . , q, . . . , πn) > !(π1, . . . , r, . . . , πn)

Proof. !(π1, . . . , q, . . . , πn) and !(π1, . . . , r, . . . , πn) can be reduced by Parallel
Moves to !(t1, . . . , tn); d(π1, . . . , q, . . . , πn) and !(t1, . . . , tn); d(π1, . . . , r, . . . , πn).
We can therefore conclude using the preceding lemma.

This allows us to show

Theorem 7 (Postulate E for Equational Proofs). For all proof terms p, r,
for all position i of p:

p|i > r implies p > p[r]i .

Proof. This is proved by induction on i. For i = ε this is trivial. For i 	= ε, by
induction hypothesis, the result holds for the subproofs of p. For the head of p:

– for Symmetry, it is trivial;
– for Transitivity, it comes from the fact that equational proofs are compared

as the multiset of their equational proof steps;
– for Congruence, it comes from lemma 3;
– for Replacement, it comes from lemma 4.

Completion Is an Instance of Abstract Canonical System Inference 519

A.3 Standard Completion Is Canonical

Remember that by fairness assumption, E∞ = ∅.

Lemma 5. For all standard completion derivations (Ei, Ri)i:

E�
0 ⊆ R∞ .

Proof. By contradiction, suppose there is (a, b) ∈ E�
0 \ R∞, labeled !. Because

completion is adequate, there exists p ∈ μPf (R∞) proving a = b. Because a =
b ∈ E�

0, !(x1, . . . , xn) ∈ Nf (E0) = Nf (R∞) where (xi)i are the free variables of
!, so that

p > !(x1, . . . , xn)

– If there are no peak in nf(p), then nf(p) is a valley proof, and it is easy to
show that it is smaller than !(x1, . . . , xn), which is a contradiction with the
preceding comparison.

– If there is a parallel peak, for instance s[c, e] i←−
�1

s[d, e]
j−→
�2

s[d, f],

then the proof by replacement where this peak is replaced by
s[c, e]

j−→
�2

s[c, f] i←−
�1

s[d, f] is smaller, thus leading to a contradiction with

the minimality of p in Pf (R∞).
– If there is a critical peak, then by fairness assumption there is some step k

where this critical peak is treated by Deduce. The proof of the conclusion
of the critical peak at the step k + 1 is therefore smaller. Because standard
completion is good, it can only go smaller, so that at the limit we can find
by replacement of the critical peak by this proof a smaller proof of a = b,
thus leading to a contradiction with the minimality of p in Pf (R∞).

Lemma 6. For all standard completion derivations (Ei, Ri)i which terminate
without failure:

R∞ ⊆ E�
0 .

Proof. By contradiction, suppose there is (a, b) ∈ R∞ \ E�
0, labeled by !. Then

there exists a proof p ∈ μPf (E�
0) such that !(x1, . . . , xn) > p where x1, . . . , xn

are the free variables of !.
Rules comes from orientation of equational axioms through Orient, so that

a >> b. The cost of !(x1, . . . , xn) is then {{({{a}}, a, b)}}. Consider the leftmost

step of nf(p). It is of the form a
i

�
(c,d)

a[d]i where c = a|i. If it is a i←−
d→c

a[d]i then

the cost of this proof step would be {{({{a[d]i}}, d, a)}}, which is then greater than
{{({{a}}, a, b)}}, thus leading to a contradiction with the fact that !(x1, . . . , xn) > p.
If a i←→

c=d
a[d]i then the cost of this proof step would be {{({{a, a[d]i}}, c, a[d]i)}},

which is then greater than {{({{a}}, a, b)}}, thus leading to a contradiction with the
fact that !(x1, . . . , xn) > p. If it is a i−→

c→d
a[d]i then there is a critical pair (b, a[d]i)

520 Guillaume Burel and Claude Kirchner

in R∞ (we just proved that E�
0 ⊆ R∞). The fairness assumption will there-

fore apply, and therefore Deduce will produce the equational axiom b = a[d]i,
which will be oriented, and a−→b ∈ R∞ will be simplified through Compose
or Collapse. Because a−→b is persisting, it must be generated once again, thus
contradicting the termination of the completion.

Theorem 8 (Completeness of Standard Completion). Standard comple-
tion results — at the limit, when it terminates without failure — in the canonical,
Church-Rosser basis.

Proof. There is nothing more to prove, because we have R∞ = E�
0, and standard

completion is good so we can use Theorem 2.

Eliminating Dependent Pattern Matching

Healfdene Goguen1, Conor McBride2, and James McKinna3

1 Google, New York, New York
2 School of Computer Science and Information Technology, University of Nottingham

3 School of Computer Science, University of St Andrews

Abstract. This paper gives a reduction-preserving translation from Co-
quand’s dependent pattern matching [4] into a traditional type theory [11]
with universes, inductive types and relations and the axiom K [22].
This translation serves as a proof of termination for structurally recur-
sive pattern matching programs, provides an implementable compilation
technique in the style of functional programming languages, and demon-
strates the equivalence with a more easily understood type theory.

Dedicated to Professor Joseph Goguen on the occasion of his 65th birthday.

1 Introduction

Pattern matching is a long-established notation in functional programming [3,19],
combining discrimination on constructors and selection of their arguments safely,
compactly and efficiently. Extended to dependent types by Coquand [4], pattern
matching becomes still more powerful, managing more complexity as we move
from simple inductive datatypes, like Nat defined as follows,

Nat : " = zero : Nat | suc (n :Nat) : Nat

to work with inductive families of datatypes [6] like Fin, which is indexed over
Nat (Fin n is an n element enumeration), or Fin’s ordering relation, ≤, indexed
over indexed data.4

Fin (n :Nat) : " = fzn : Fin (suc n)
| fsn(i :Fin n) : Fin (suc n)

(i :Fin n) ≤n (j :Fin n) : " = leqzn;j : fzn ≤(sucn) j
| leqsn;i;j (p : i ≤n j) : fsn i ≤(sucn) fsn j

Pattern matching can make programs and proofs defined over such structures
just as simple as for their simply-typed analogues. For example, the proof of
transitivity for ≤ works just the same for Fin as for Nat:

trans (p : i ≤ j ; q : j ≤ k) : i ≤ k
trans leqzn;j q (→ leqzn;k

trans (leqsn;i′;j ′ p′) (leqsn;j ′;k ′ q ′) (→ leqsn;i′;k ′ (trans p′ q ′)

4 Here we write as subscripts arguments which are usually inferrable; informally, and
in practice, we omit them entirely.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 521–540, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

522 Healfdene Goguen, Conor McBride, and James McKinna

There is no such luxury in a traditional type theory [14,20], where a datatype
is equipped only with an elimination constant whose type expresses its induction
principle and whose operational behaviour is primitive recursion. This paper
provides a translation from dependent pattern matching in Coquand’s sense to
such a type theory—Luo’s UTT [11], extended with the Altenkirch-Streicher K
axiom ‘uniqueness of identity proofs’ [22]. Coquand observed that his rules admit
K; Hofmann and Streicher have shown that K does not follow from the usual
induction principle for the identity relation [9]. We show that (a variant of) K is
sufficient to bridge the gap: it lets us encode the constructor-based unification
which Coquand built directly into his rules.

Our translation here deploys similar techniques to those in [18], but we now
ensure both that the translated pattern matching equations hold as reductions
in the target theory and that the equations can be given a conventional oper-
ational semantics [1] directly, preserving termination and confluence. By doing
so, we justify pattern matching as a language construct, in the style of ALF [13],
without compromising the rôle of the elimination constant in characterising the
meaning of data.

An early approximant of our translation was added to the Lego system [12]
and demonstrated at ‘Types 1998’. To date, McBride’s thesis [15] is the only
account of it, but there the treatment of the empty program is unsatisfying,
the computational behaviour is verified only up to conversion, and the issue of
unmatched but trusted terms in pattern matching rules is barely considered.

Our recent work describes the key equipment. The account of elimination
in [16] uses a heterogeneous equality to express unification constraints over de-
pendently typed data. Hence where Coquand’s pattern matching invokes an
external notion of unification and of structural recursion, we have built the tools
we need within type theory [17]. Now, finally, we assemble these components to
perform dependent pattern matching by elimination.

Overview The rest of the paper is organised as follows. Section 2 ex-
amines pattern matching with dependent types, and develops basic definitions,
including that of specialisation in patterns, as well as the programs which will
eventually be translatable to type theory. The key technical definition here is
that of splitting tree; novel here is the recording of explicit evidence for impos-
sible case branches. Section 3 describes the target type theory. This is extended
by function symbols with defining equations which determine reduction rules,
subject to certain conditions. The allowable such function definitions arise from
the existence of valid splitting trees. Finally, Section 4 shows how such func-
tion definitions may be eliminated in favour of closed terms in the type theory
with the same reduction behaviour; the valid splitting trees precisely correspond
to the terms built from constructor case analysis and structural recursion on
inductive families, modulo the heterogeneous equality Eq.

Eliminating Dependent Pattern Matching 523

2 Dependent Pattern Matching

Let us first take a look at what dependent pattern matching is, and why it is
a more subtle notion than its simply typed counterpart. Inductive families gain
their precision from the way their constructors have specialised return types. For
example, the constructors of Fin can only make elements of sets whose ‘size’ is
non-zero. Consider writing some function p (i : Nat; x : Fin i) : · · ·. Trying to
match on x without instantiating i is an error. Rather, one must take account
of the fact that i is sure to be a suc, if p is to typecheck:

· · · 	$ p i fz : Nat p (suc j) fz (→ · · ·
· · · 	$ p i (fs y) : Nat p (suc j) (fs y) (→ · · ·

Of course, there need not be any actual check at run time whether these (suc j)
patterns match—the type system guarantees that they must if the patterns for
x do. This is not merely a convenient optimisation, it is a new and necessary
phenomenon to consider. For example, we may define the property of ‘being in
the image of f ’ for some fixed f : S → T , then equip f with an ‘inverse’:

Imf (t :T) : " = imf (s :S) : Imf (f s) inv (t :T ; p : Imf t) : S
inv (f s) (imf s) (→ s

The typing rules force us to write (f s) for t , but there is no way in general that
we can compute s from t by inverting f . Of course, we actually get s from the
constructor pattern (imf s) for p, together with a guarantee that t is (f s).

We have lost the ability to consider patterns for each argument independently.
Moreover, we have lost the distinction of patterns as the sub-language of terms
consisting only of the linear constructor forms, and with this, the interpretation
of defining equations as rewriting rules is insufficient. It is not enough just to
assign dependent types to conventional programs: specialised patterns change
what programs can be.

Let us adapt to these new circumstances, and gain from specialisation, ex-
ploiting the information it delivers ‘for free’. For example, in a fully decorated
version of the step case of the above definition of the trans function,

trans(sucn);(fsn i);(fsn j);(fsn k) (leqsn;i;j p′) (leqsn;j ;k q ′) (→
leqsn;i;k (transn;i;j ;k p′ q ′)

it is precisely specialisation that ensures the p′ and q ′ are not arbitrary ≤ proofs,
but rather appropriate ones, which justify the recursive call to trans. Meanwhile,
we need not analyse the case

· · · 	$ trans(sucn);(fsn i);?;k (leqsn;i;j p′) leqzn;k : fs i ≤(sucn) k

because the two proof patterns demand incompatible specialisations of the mid-
dle value upon which they must agree. In general, specialisation is given by the
most general unifier for the type of the value being analysed and the type of the
pattern used to match it. Later, we shall be precise about how this works, but
let us first sketch how we address its consequences.

524 Healfdene Goguen, Conor McBride, and James McKinna

2.1 Patterns with Inaccessible Terms

The key to recovering an operational interpretation for these defining equations
is to find the distinction between those parts which require constructor matching,
and those which merely report specialisation. We shall show how to translate the
terms on the left-hand sides of definitional equations written by the programmer
into patterns which, following Brady [2], augment the usual linear constructor
forms with a representation for the arbitrary terms reported by specialisation
and presupposed to match.

Definition 1 (Patterns)

pat := x 1x2=⇒ x av(x) =⇒ {x}
| c pat∗ 1c #p2=⇒ c 1#p2 av(c #p) =⇒ av(#p)
| term 1t2=⇒ t av(t) =⇒ ∅

lhs := f pat∗ 1f #p2=⇒ f 1#p2 av(f #p) =⇒ av(#p)

We say the terms marked t are inaccessible to the matcher and may not bind
variables. The partial map av(−) computes the set of accessible variables, where
av(#p) is the disjoint union,

⊎
i av(pi), hence av(−) is defined only for linear

patterns. The map 1−2 takes patterns back to terms.
We can now make sense of our inv function: its left-hand side becomes

inv (f s) (im s)

Matching for these patterns is quite normal, with inaccessible terms behaving like
‘don’t care’ patterns, although our typing rules will always ensure that there is
actually no choice! We define match to be a partial operation yielding a match-
ing substitution, throwing a conflict exception5, or failing to make progress
only in the case of non-canonical values in a nonempty context.

Definition 2 (Matching) Matching is given as follows:

match(x , t) =⇒ [x (→ t]
match(chalk #p, chalk#t) =⇒ matches(#p,#t)
match(chalk #p, cheese#t) ⇑ conflict
match(u, t) =⇒ ε

matches(ε, ε) =⇒ ε

matches(p; #p, t;#t) =⇒ match(p, t);matches(#p,#t)

So, although definitional equations are not admissible as rewriting rules just
as they stand, we can still equip them with an operational model which relies
only on constructor discrimination. This much, at least, remains as ever it was.

Before we move on, let us establish a little equipment for working with pat-
terns. In our discussion, we write p[x] to stand for p with an accessible x ab-
stracted. We may thus form the instantiation p[p′] if p′ is a pattern with variables
5 We take chalk and cheese to stand for an arbitrary pair of distinct constructors.

Eliminating Dependent Pattern Matching 525

disjoint from those free in p[−], pasting p′ for the accessible occurrence of x and
1p′2 for the inaccessible copies. In particular, p[c #y] is a pattern, given fresh #y .
Meanwhile, we shall need to apply specialising substitutions to patterns:

Definition 3 (Pattern Specialisation) If σ is a substitution from variables
Δ to terms over Δ′ with av(p) = Δ �Δ′ (making σ idempotent), we define the
specialisation σp, lifting σ to patterns recursively as follows:

σx =⇒ σx if x ∈ Δ
σx =⇒ x if x ∈ Δ′

σ(c #p) =⇒ c σ#p σt =⇒ σt

Observe that av(σp) = Δ′.

Specialisations, being computed by unification, naturally turn out to be idem-
potent. Their effect on a pattern variable is thus either to retain its accessibility
or to eliminate it entirely, replacing it with an inaccessible term. Crucially, spe-
cialisation preserves the availability of a matching semantics despite apparently
introducing nonlinearity and non-constructor forms.

2.2 Program Recognition

The problem we address in this paper is to recognize programs as total functions
in UTT+K. Naturally, we cannot hope to decide whether it is possible to con-
struct a functional value exhaustively specified by a set of arbitrary equations.
What we can do is fix a recognizable and total fragment of those programs whose
case analysis can be expressed as a splitting tree of constructor discriminations
and whose recursive calls are on structurally decreasing arguments.

The idea is to start with a candidate left-hand side whose patterns are just
variables and to grow a partition by analysing a succession of pattern variables
into constructor cases. This not only gives us an efficient compilation in the style
of Augustsson [1], it will also structure our translation, with each node mapping
to the invocation of an eliminator. Informally, for trans, we build the tree

trans p q

p : i ≤ j

⎧⎪⎪⎨⎪⎪⎩
trans leqz q (→ leqz
trans (leqs p′) q

q : fs j ≤ k
{
trans (leqs p′) leqz

trans (leqs p′) (leqs q ′) (→ leqs (trans p′ q ′)

The program just gives the leaves of this tree: finding the whole tree guaran-
tees that it partitions the possible input. The recursion reduces the size of one
argument (both, in fact, but one is enough), so the function is total.

However, if we take a ‘program’ just to be a set of definitional equations, even
this recognition problem is well known to be undecidable [4,15,21]. The difficulty
for the recognizer is the advantage for the programmer: specialisation can prune
the tree! Above, we can see that q must be split to account for (leqs q ′), and

526 Healfdene Goguen, Conor McBride, and James McKinna

having split q , we can confirm that no leqz case is possible. But consider the
signature empty (i :Fin zero) : X . We have the splitting tree:

empty i

i : Fin zero

{
empty fz

empty (fs i ′)

If we record only the leaves of the tree for which we return values, we shall
not give the recognizer much to work from! More generally, it is possible to
have arbitrarily large splitting trees with no surviving leaves—it is the need to
recover these trees from thin air that makes the recognition of equation sets
undecidable. Equations are insufficient to define dependently typed functions,
so we had better allow our programs to consist of something more. We extend
the usual notion of program to allow clauses f #t � x which refute a pattern
variable, requiring that splitting it leaves no children. For example, we write

empty (i :Fin zero)
empty i � i

We now give the syntax for programs and splitting trees.

Definition 4 (Program, Splitting Tree)

program := f (context) : term
clause+

clause := f term∗ rhs
rhs := (→ term

| � x

splitting := compRule
| [context] lhs

x
{
splitting+

compRule := [context] lhs rhs

We say that a splitting tree solves the programming problem [Δ] f #p, if these are
the context and left-hand side at its root node. Every such programming problem
must satisfy av(#p) = Δ, ensuring that every variable is accessible.

To recognize a program with clauses {f #ti ri | 0 ≤ i ≤ n} is to find a
valid splitting tree with computation rules {[Δi] f #pi ri | 0 ≤ i ≤ n} such that
1f #pi2= f #ti and to check the guardedness of the recursion. We defer the precise
notion of ‘valid’ until we have introduced the type system formally, but it will
certainly be the case that if an internal node has left-hand side f #p[x], then
its children (numbering at least one) have left-hand sides f σ#p[c #y] where c is
a constructor and σ is the specialising substitution which unifies the datatype
indices of x and c #y .

We fix unification to be first-order with datatype constructors as the rigid
symbols [10]—we have systematically shown constructors to be injective and
disjoint, and that inductive families do not admit cyclic terms [17]. Accordingly,
we have a terminating unification procedure for two vectors of terms which will
either succeed positively (yielding a specialising substitution), succeed negatively
(establishing a constructor conflict or cyclic equation), or fail because the prob-
lem is too hard. Success is guaranteed if the indices are in constructor form.

Eliminating Dependent Pattern Matching 527

We can thus determine if a given left-hand side may be split at a given
pattern variable—we require all the index unifications to succeed—and generate
specialised children for those which succeed positively. We now have:

Lemma 5 (Decidable Coverage) Given f (#x : #S) : T ; {f #ti ri | 0 ≤ i ≤ n},
it is decidable whether there exists a splitting tree, with root [#x : #S] f #x : T and
computation rules {[Δi] f #pi ri | 0 ≤ i ≤ n} such that 1f #pi2= f #ti.

Proof The total number of constructor symbols in the subproblems of a split-
ting node strictly exceeds those in the node’s problem. We may thus generate all
candidate splitting trees whose leaves bear at most the number of constructors
in the program clauses and test if any yield the program. �

Coquand’s specification of a covering set of patterns requires the construction
of a splitting tree: if we can find a covering for a given set of equations, we may
read off one of our programs by turning the childless nodes into refutations.
As far as recursion checking is concerned, we may give a criterion a little more
generous than Coquand’s original [4].

Definition 6 (Guardedness, Structural Recursion) We define the binary
relation ≺, ‘is guarded by’, inductively on the syntax of terms:

ti ≺ c t1 . . . tn
1 ≤ i ≤ n

f ≺ t
f s ≺ t

r ≺ s s ≺ t
r ≺ t

We say that a program f (#x : #S) : T ; {f#ti ri | 0 ≤ i ≤ n} is structurally recursive
if, for some argument position j, we have that every recursive call f #s which is a
subterm of some ri satisfies sj ≺ tij .

It is clearly decidable whether a program is structurally recursive in this
sense. Unlike Coquand, we do permit one recursive call within the argument of
another, although this distinction is merely one of convenience. We could readily
extend this criterion to cover lexicographic descent on a number of arguments,
but this too is cosmetic. Working in a higher-order setting, we can express the
likes of Ackermann’s function, which stand beyond first-order primitive recur-
sion. Of course, the interpreter for our own language is beyond it.

3 Type Theory and Pattern Matching

We start from a predicative subsystem of Luo’s UTT [11], with rules of infer-
ence given in fig. 1. UTT’s dependent types and inductive types and families are
the foundation for dependent pattern matching. Programs with pattern match-
ing are written over types in the base type universe "0, which we call small
types. Eliminations over types to solve unification are written in "1, and the
Logical-Framework-level universe � is used to define a convenient presentation
of equality from the traditional I, J and K. Our construction readily extends to

528 Healfdene Goguen, Conor McBride, and James McKinna

validity context � valid E � valid
Γ � S : α

Γ ; x : S � valid
α ∈ {�0, �1, �}

typing context � term : term

Γ � valid
Γ � x : S

x : S ∈ Γ
Γ � valid

Γ � �0 : �1

Γ � valid
Γ � �1 : �

Γ � S : α Γ ; x : S � T : α
Γ � Πx :S. T : α

α ∈ {�0, �1, �}

Γ ; x : S � t : T
Γ � λx :S. t : Πx :S. T

Γ � f : Πx :S. T Γ � s : S
Γ � f s : [x → s]T

Γ � t : S S � T Γ � T : σ
Γ � t : T

reduction term � term
(λx :S. t) s � [x → s]t

plus contextual closure

conversion term ∼= term equivalence closure of �

cumulativity term � term

�0 � �1 �1 � �
S1

∼= S2 T1 � T2

Πx :S1. T1 � Πx :S2. T2

S ∼= T
S � T

R � S S � T
R � T

Fig. 1. Luo’s UTT (functional core)

the additional hierarchy of universes of full UTT. The impredicative universe of
propositions in UTT is not relevant to explaining pattern matching through the
primitive constructs of type theory, and so we omit it.

We identify terms that are equivalent up to the renaming of bound variables,
and we write [x (→ s]t for the usual capture-free substitution of s for the free
variable x in t .

UTT is presented through the Logical Framework, a meta-language with
typed arities for introducing the constants and equalities that define a type the-
ory. While the Logical Framework is essential to the foundational understanding
of UTT, it is notationally cumbersome, and we shall hide it as much as possible.
We shall not distinguish notationally between framework Π kinds and object-
level Π types, nor between the framework and object representations of types.
We justify this by observing that � represents the types in the underlying frame-
work, and that "0 and "1 are universes with names of specific types within �.
However, informality with respect to universes may lead to size issues if we are
not careful, and we shall explicitly mention the cases where it is important to
distinguish between the framework and object levels.

There is no proof of the standard metatheoretic properties for the theory
UTT plus K that we take as our target language. Goguen’s thesis [8] establishes
the metatheory for a sub-calculus of UTT with the Logical Framework, a single

Eliminating Dependent Pattern Matching 529

universe and higher-order inductive types but not inductive families or the K
combinator. Walukiewicz-Chrzaszcz [23] shows that certain higher-order rewrite
rules are terminating in the Calculus of Constructions, including inductive fam-
ilies and the K combinator, but the rewrite rules do not include higher-order
inductive types, and the language is not formulated in the Logical Framework.

However, our primary interest is in justifying dependent pattern matching by
translation to a traditional presentation of type theory, and UTT plus K serves
this role very well. Furthermore, the extensions of additional universes, inductive
relations and the K combinator to the language used in Goguen’s thesis would
complicate the structure of the existing proof of strong normalization but do not
seem to represent a likely source of non-termination.

3.1 Telescope Notation

We shall be describing general constructions over dependent datatypes, so we
need some notational conveniences. We make considerable use of de Bruijn’s
telescopes [5]—dependent sequences of types—sharing the syntax of contexts.
We also use Greek capitals to stand for them. We may check telescopes (and
constrain the universe level α of the types they contain) with the following
judgment:

Γ $ valid
Γ $ E tele(α)

Γ $ S : α Γ ; x :S $ Δ tele(α)
Γ $ x : S;Δ tele(α)

We use vector notation #t to stand for sequences of terms, t1; . . . ; tn. We identify
the application f t1; . . . ; tn with f t1 . . . tn. Simultaneous substitutions from a
telescope to a sequence are written [Θ (→ #t], or [#t] if the domain is clear. Substi-
tuting through a telescope textually yields a sequence of typings t1 :T1; . . . ; tn :Tn

which we may check by iterating the typing judgment. We write #t : Θ for the
sequence of typings [#t]Θ, asserting that the t’s may instantiate Θ. We also let
Γ $ σΔ assert that σ is a type-correct substitution from Δ to Γ -terms.

We write ΠΔ. T to iterate the Π-type over a sequence of arguments, or
Δ→T if T does not depend on Δ. The corresponding abstraction is λΔ. t. We
also let telescopes stand as the sequence of their variables, so if f : ΠΔ. T , then
Δ $ f Δ : T . The empty telescope is E , the empty sequence, ε.

3.2 Global Declarations and Definitions

A development in our type theory consists of a global context Γ containing dec-
larations of datatype families and their constructors, and definitions of function
symbols. To ease our translation, we declare global identifiers g with a tele-
scope of arguments and we demand that they are applied to a suitable sequence
wherever they are used. Each function f(Δ) : T has a nonempty set of com-
putation rules. We extend the typing and reduction rules (now contextualised)
accordingly:

g(Θ) :T ∈ Γ Γ ;Δ $ #t : Θ
Γ ;Δ $ g #t : [#t]T

f #t �Γ θe if [Δ′] f #p (→ e ∈ Γ

matches(#p,#t) =⇒ θ

530 Healfdene Goguen, Conor McBride, and James McKinna

We take the following at least to be basic requirements for defined functions.

Definition 7 (Function Criteria) To extend Γ with f(Δ) : T with computa-
tion rules {[Δi] f #pi ri | 0 ≤ i ≤ n}, we require that:

– Γ ;Δ $ T : �,
– the computation rules arise as the leaves of a splitting tree solving [Δ] f Δ,
– the corresponding program is structurally recursive,
– if ri is (→ ei, then Γ ;Δi $ ei : Pi.

We shall check basic properties of pattern matching computation shortly, but
we first give our notion of data (and hence splitting) a firm basis.

Definition 8 (Inductive Families) Inductive families with n ≥ 1 construc-
tors are checked for strict positivity and introduced globally as shown in fig. 2.
We write D for the telescope Ξ; z :D Ξ.

Γ � Ξ tele(�0) {Γ |D(Ξ) :�0 � Δi con(�ui) | i ≤ n};
Γ ; D(Ξ) :�0; {ci(Δi) :D �ui | i ≤ n};

ED({M i :ΠΔi. hyps(Δi, big)→�1 | i ≤ n}; D) :�1

{[�M ; Δi] ED
�M �ui (ci Δi) → M i Δi recs(Δi,ED

�M) | i ≤ n};
eD(P :D→�1; {mi :ΠΔi. hyps(Δi, little(P))→P �ui (c Δi) | i ≤ n}; D) :P D

{[P ; �m; Δi] eD P �M �ui (ci Δi) → mi Δi recs(Δi, eD P �m) | i ≤ n}
� valid

where big(,) =⇒ �1 little(P)(�v, x) =⇒ P �v x

Γ ; Θ � �u : Ξ
Γ |D(Ξ) :�0; Θ � ε con(�u)

hyps(ε,h) =⇒ ε
recs(ε, f) =⇒ ε

Γ ;Θ � A : �0 Γ |D(Ξ) :�0; Θ; a : A � Δ con(�u)
Γ |D(Ξ) :�0; Θ � a : A;Δ con(�u)

hyps(a : A; Δ,h) =⇒ hyps(Δ,h)
recs(a : A; Δ, f) =⇒ recs(Δ, f)

Γ ; Θ � Φ tele(�0) Γ ; Θ; Φ � �v : Ξ Γ |D(Ξ) :�0; Θ � Δ con(�u)
Γ |D(Ξ) :�0; Θ � r : ΠΦ. D �v; Δ con(�u)

hyps(r : ΠΦ. D �v; Δ,h) =⇒ r ′ : ΠΦ. h(�v, r Φ);hyps(Δ,h)
recs(r : ΠΦ. D �v; Δ, f) =⇒ (λΦ. f �v (r Φ));recs(Δ, f)

Fig. 2. Declaring inductive types with constructors

In Luo’s presentation [11], each inductive datatype is an inhabitant of �; it is
then given a name in the universe "0. There is a single framework-level eliminator
whose kind is much too large for a UTT type. Our presentation is implemented
on top: D really computes Luo’s name for the type; our UTT eliminators are

Eliminating Dependent Pattern Matching 531

readily simulated by the framework-level eliminator. This definition behaves as
usual: for Nat, we obtain

Nat : "0; zero : Nat; suc(n :Nat) :Nat;
ENat(Z :"1;S :Nat → "1 → "1;n :Nat) :"1;

[Z ;S] ENat Z S zero (→ Z
[Z ;S ;n] ENat Z S (suc n) (→ S n (ENat Z S n)
eNat(P :Nat → "1; z :P zero; s :Πn :Nat. P n → P (suc n);n :Nat) :P n;

[P ; z ; s] eNat P z s zero (→ z
[P ; z ; s ;n] eNat P z s (suc n) (→ s n (eNat P z s n)

Given this, the Fin declaration yields the following (we suppress EFin):

Fin(n :Nat) :"0; fz(n:Nat) :Fin (suc n); fs(n:Nat; i :Fin n) :Fin (suc n);
EFin · · · ;
eFin(P : Πn:Nat. Fin n → "1;

z : Πn :Nat. P (suc n) (fzn); s : Πn :Nat; i :Fin n. Pn i → P(suc n) (fsn i);
n :Nat; i :Fin n) : Pn i

[P ; z ; s;n] eFin P z s (suc n) (fzn) (→ z n
[P ; z ; s ;n; i] eFin P z s (suc n) (fsn i) (→ s n i (eFin P z s n i)

All of our eliminators will satisfy the function criteria: each has just one split,
resulting in specialised, inaccessible patterns for the indices. As the indices may
be arbitrary terms, this is not merely convenient but essential. Rewriting with the
standard equational laws which accompany the eliminators of inductive families
is necessarily confluent.

Meanwhile, empty families have eliminators which refute their input.

Γ $ Ξ tele("0)
Γ ; D(Ξ) :"0; ED(D) :"1; [Ξ; x] ED Ξ x � x ;

eD(P : D→"1; D) :P D; [P ;Ξ; x] eD P Ξ x � x
$ valid

We have constructed families over elements of sets, but this does not yield
‘polymorphic’ datatypes, parametric in sets themselves. As Luo does, so we
may also parametrise a type constructor, its data constructors and eliminators
uniformly over a fixed initial telescope of UTT types, including "0.

3.3 Valid Splitting Trees and Their Properties

In this section, we deliver the promised notion of ‘valid splitting tree’ and show
it fit for purpose. This definition is very close to Coquand’s original construction
of ‘coverings’ from ‘elementary coverings’ [4]. Our contribution is to separate the
empty splits (with explicit refutations) from the nonempty splits (with nonempty
subtrees), and to maintain our explicit construction of patterns in linear con-
structor form with inaccessible terms resulting from specialisation.

532 Healfdene Goguen, Conor McBride, and James McKinna

Definition 9 (Valid Splitting Tree) A valid splitting tree for f (Δ) : T has
root problem [Δ] f Δ. At each node,

– either we have Δ′ $ e : [1#p2]T and computation rule

[Δ′] f #p (→ e

– or we have problem [Δx ; x :D#v; xΔ]f #p[x] and for each constructor c(Δc) : D#u,
unification succeeds for #u and #v, in which case
• either all succeed negatively, and the node is the computation rule

[Δx ; x :D #v; xΔ] f #p[x] � x

• or at least one succeeds positively, and the node is a split of form

[Δx ; x :D #v; xΔ] f #p[x]
x {S

Each positive success yields a pair (Δ′, σ) where σ is a most general
idempotent unifier for #u and #v satisfying Δ′ $ σΔc;σΔx and dom(σ) �
Δ′ = Δc �Δx , and contributes a subtree to S with root

[Δ′;σ[x (→ cΔc]xΔ] f σ#p[cΔc]

We shall certainly need to rely on the fact that matching well typed terms
yields type-correct substitutions. We must also keep our promise to use inacces-
sible terms in patterns only where there is no choice.

Definition 10 (Respectful Patterns) For a function f (Δ) : T , we say that
a programming problem [Δ′] f #p has respectful patterns provided

– Δ′ $1#p2 : Δ
– if Θ $ #a : Δ and matches(#p,#a) =⇒ θ, then Θ $ θΔ′ and θ1#p2 ∼= #a.

Let us check that valid splitting trees maintain the invariant.

Lemma 11 (Functions have respectful patterns) If f(Δ) : T with compu-
tation rules {[Δi] f #pi ri | 0 ≤ i ≤ n} satisfies the function criteria, then [Δi] f #pi

has respectful patterns.

Proof The root problem [Δ] f Δ : T readily satisfies these properties. We
must show that splitting preserves them. Given a typical split as above, taking
[Δx ; x :D#v; xΔ]f #p[x] to some [Δ′; xΔ]f σ#p[cΔc], let us show the latter is respectful.

We have Δx ; x : D #v; xΔ $ 1#p[x]2 : Δ, hence idempotence of σ yields Δ′; x :
D σ#v;σxΔ $1σ#p[x]2 : Δ. But c σΔc : D σ#u ∼= D σ#v, hence Δ′; xΔ $1σ#p[cΔc]2 : Δ.

Now suppose matches(σ#p[c Δc],#a) =⇒ φ for Φ $ #a : Δ. For some #b : Δc,
we must have matches(#p[x],#a) =⇒ θ; [x (→ c#b]. By assumption, the #p[x] are
respectful, so Φ $ (θ; [x (→ c#b])(Δx ; x :D #v; xΔ), hence c#b : D θ#v = D [Δc (→ #b]#u,
and θ; [x (→ c#b]1#p[x]2 ∼= #a. Rearranging, we get θ; [Δc (→ #b]1#p[cΔc] ∼= #a2.

Eliminating Dependent Pattern Matching 533

But θ; [Δc (→ #b]y unifies #u and #v and thus factors as θ′ · σ as σ is the most
general unifier. By idempotence of σ, θ′ and θ; [Δc (→ #b]y coincide on Δ′. But
φ coincides with θ; [Δc (→ #b] on Δ′ because they match the same subterms of
the #a, so θ; [Δc (→ #b] = φ · σ, hence φ1σ#p[cΔc]2 ∼= #a. Moreover, we now have
Φ $ (φ · σ)Δc and Φ $ (φ · σ)(Δx ; x : D #v; xΔ), but idempotence makes Δ′ a
subcontext of σ(Δc;Δx), so Φ $ φ(Δ′;σxΔ) as required. �

Lemma 12 (Matching Reduction Preserves Type) If Θ $ f #a : A and
f (Δ) : T has a computation rule [Δ′] f #p (→ e for which matches(#p,#a) =⇒ θ,
then Θ $ θe : A.

Proof By inversion of the typing rules, we must have [#a]T 4A. By respect-
fulness, we have Θ $ θΔ′ and #a ∼= θ1#p2. By construction, Δ′ $ e : [1#p2]T , hence
Θ $ θe : [θ1#p2]T ∼= [#a]T 4A. �

Lemma 13 (Coverage) If a function f (Δ) : T is given by computation rules
{[Δi] f #pi ri : Pi | 0 ≤ i ≤ n}, then for any Θ $ #t : Δ, it is not the case that for
each i, matches(#pi,#t) ⇑ conflict.

Proof An induction on splitting trees shows that if we have root problem f #p
and matches(#p,#t) =⇒ θ for well typed arguments #t, matching cannot yield
conflict at all the leaf patterns. Either the root is the leaf and the result is
trivial, or the root has a split at some x : D#v. In the latter case, we either have θx
not in constructor form and matching gets stuck, or θx = c#b where #c (Δc) : D#v,
hence unifying #u and #v must have succeeded positively yielding some σ for which
we have a subtree whose root patterns, σ#p[c Δc] also match #t. Inductively, not
all of this subtree’s leaf patterns yield conflict. �

It may seem a little odd to present coverage as ‘not conflict in all cases’,
rather than guaranteed progress for closed terms. But our result also treats
the case of open terms, guaranteeing that progress can only be blocked by the
presence of non-constructor forms.

Lemma 14 (Canonicity) For global context Γ , if Γ $ t : D#v, with t in normal
form, then t is c#b for some #b.

Proof Select a minimal counterexample. This is necessarily a ‘stuck function’,
f #a. By the above reasoning, we must have some internal node in f ’s splitting
tree [Δx ; x :D #v; xΔ] f #p[x] with θ1#p[x]2 ∼= #a but Γ $ θx : D θ#v a non-constructor
form. But θx is a proper subterm of f #a, hence a smaller counterexample. �

Lemma 15 (Confluence) If every function defined in Γ satisfies the function
criteria, then �Γ is confluent.

Proof Function symbols and constructor symbols are disjoint. By construc-
tion, splitting trees yield left-hand sides which match disjoint sets of terms.
Hence there are no critical pairs. �

534 Healfdene Goguen, Conor McBride, and James McKinna

4 Translating Pattern Matching

In this section, we shall give a complete translation from functions satisfying the
function criteria and inhabiting small types to terms in a suitable extension of
UTT, via the primitive elimination operators for inductive datatypes. We do this
by showing how to construct terms corresponding to the splitting trees which
give rise to the functions: we show how to represent programming problems as
types for which splitting trees deliver inhabitants, and we explain how each step
of problem reduction may be realised by a term.

4.1 Heterogeneous Equality

We must first collect the necessary equipment. The unification which we take
for granted in splitting trees becomes explicit equational reasoning, step by step.
We represent problems using McBride’s heterogeneous equality [16]:

Eq(S ,T :�0; s :S ; t :T) :"1; refl(R:�0; r :R) :EqR R r r ;
subst(R:�0;s,t:R; q :EqR R s t ;P :R→"1; p :P s) :P t ;
[R; r ;P ; p] substR;r ;r (reflR r) P p (→ p

Eq is not a standard inductive definition: it permits the expression of hetero-
geneous equations, but its eliminator subst gives the Leibniz property only for
homogeneous equations. This is just a convenient repackaging of the traditional
homogeneous identity type family I. The full construction can be found in [15].

It is to enable this construction that we keep equations in "1. We shall be
careful to form equations over data sets, but not equality sets. We are unsure
whether it is safe to allow equality sets in "0, even though this would not yield
an independent copy of "0 in "0. At any rate, it is sufficient that we can form
equations over data and eliminate data over equations.

We shall write s 5 t for EqS T s t when the types S, T are clear. Furthermore
Eq precisely allows us to express equations between sequences of data in the same
telescope: the constraints which require the specialisation of datatype indices
take exactly this form. Note we always have D tele("0), hence if #s,#t : D, we may
form the telescope of equations q1 :s1 5 t1; . . . ; qn :sn 5 tn tele("1) which
we naturally abbreviate as #s 5 #t. Correspondingly, we write refl #t : #t 5 #t.

4.2 Standard Equipment for Inductive Datatypes

In [17], we show how to equip every datatype with some useful tools, derived from
its eliminator, which we shall need in the constructions to come. To summarise,

caseD is just eD weakened by dropping the inductive hypotheses.
BelowD(P : D → "1; D) : "1 is the ‘course of values’, defined inductively by

Giménez [7]; simulated via ED, BelowD P Ξ z computes an iterated tuple
type asserting P for every value structurally smaller than z . For Nat we get

BelowNat P zero (→ 1
BelowNat P (suc n) (→ BelowNat P n ×P n

Eliminating Dependent Pattern Matching 535

belowD(P :D → "1; p :ΠD. BelowD P D → P D; D) :BelowD P D constructs
the tuple, given a ‘step’ function, and is simulated via eD:

belowNat P p zero (→ ()
belowNat P p (suc n) (→ (λb :BelowNat P n. (b, p n b)) (belowNat P p n)

recD(P : D → "1; p : ΠD. BelowD P D → P D; D) : P D is the structural
recursion operator for D, given by recD P p D (→ p D (belowD P p D)

We use caseD for splitting and recD for recursion. For unification, we need:

noConfusionD is the proof that D’s constructors are injective and disjoint—
also a two-level construction, again by example:

NoConfusionNat(P : "1; x , y :Nat) :"1

NoConfusionNat P zero zero (→ P → P
NoConfusionNat P zero (suc y) (→ P
NoConfusionNat P (suc x) zero (→ P
NoConfusionNat P (suc x) (suc y) (→ (x 5 y→P) → P

noConfusionNat(P : "1; x , y :Nat; q :x 5 y) :NoConfusionNat P x y
noConfusionNat P zero zero (refl zero) (→ λp :P . p
noConfusionNat P (suc x) (suc x) (refl (suc n)) (→ λp :x 5 x →P . p (refl x)

NoConfusionD is simulated by two appeals to ED; noConfusionD uses
subst once, then caseD to work down the ‘diagonal’.

noCycleD disproves any cyclic equation in D—details may be found in [17].

Lemma 16 (Unification Transitions) The following (and their symmetric
images) are derivable:

deletion m :ΠΔ. P
$ λΔ; q. m Δ

: ΠΔ. t 5 t→ P

solution m : ΠΔ0. [x (→ t]ΠΔ1. P
$ λΔ; q. subst T t x q (λx . ΠΔ0;Δ1. P) m Δ0 Δ1

: ΠΔ. t 5 x → P
if Δ ∼ Δ0; x :T ;Δ1 and Δ0 $ t : T

injectivity m : ΠΔ. #s 5 #t→ P

$ λΔ; q. noConfusion P (c #s) (c #t) q (m Δ)
: ΠΔ. c #s 5 c #t→ P

conflict $ λΔ; q. noConfusion P (chalk #s) (cheese #t) q
: ΠΔ. chalk #s 5 cheese #t→ P

cycle $ λΔ; q. noCycle P . . . q . . .
: ΠΔ. x 5 c 1#p[x]2→ P

Proof By construction. �

536 Healfdene Goguen, Conor McBride, and James McKinna

4.3 Elimination with Unification

In [16], McBride gives a general technique for deploying operators whose types
resemble elimination rules. We shall use this technique repeatedly in our con-
structions, hence we recapitulate the basic idea here. Extending the previous
account, we shall be careful to ensure that the terms we construct not only have
the types we expect but also deliver the computational behaviour required to
simulate the pattern matching semantics.

Definition 17 (Elimination operator) For any telescope Γ $ Ξ tele("0), we
define a Ξ-elimination operator to be any

e : ΠP :ΠΞ. "1 . (ΠΔ1. P #s1) → · · · → (ΠΔn. P #sn) → ΠΞ. P Ξ

Note that eD is a D-elimination operator; caseD and recD are also. We refer
to the Ξ as the targets of the operator as they indicate what is to be eliminated;
we say P is the motive as it indicates why; the remaining arguments we call
methods as they explain how to proceed in each case which may arise. Now let
us show how to adapt such an operator to any specific sequence of targets.

Definition 18 (Basic analysis) If e is a Ξ-elimination operator (as above),
Δ tele("0) and Δ $ T : "1, then for any Δ $ #t : Ξ, the basic e-analysis of ΠΔ.T
at #t is the (clearly derivable) judgment

m1 :ΠΔ1;Δ. Ξ 5 #t→ T ; . . . ;mn :ΠΔn;Δ. Ξ 5 #t→ T

$ λΔ. e (λΞ. ΠΔ. Ξ 5 #t→ T) m1 . . .mn #t Δ (refl #t) : ΠΔ. T

Notice that when e is caseD and the targets are some #v; x where x : D#v ∈ Δ,
then for each constructor c (Δc) : D #u, we get a method

mc : ΠΔc;Δ. #u 5 #v → cΔc 5 x → T

Observe that the equations on the indices are exactly those we must unify to
allow the instantiation of x with c Δc. Moreover, if we have such an instance
for x , i.e. if θ unifies #u and #v, and takes x (→ c θΔc, then the analysis actually
reduces to the relevant method:

caseD (λD. ΠΔ. Ξ 5 #t→ T) #m θ#v (c θΔc) θΔ (refl θ#v) (refl (c θΔc))
� mc θΔ

c θΔ (refl θ#v) (refl (c θΔc))

We may now simplify the equations in the method types.

Definition 19 (Specialisation by Unification) Given any type of the form
ΠΔ. #u 5 #v → T : "1, we may seek to construct an inhabitant—a specialiser—by
exhaustively iterating the unification transitions from lemma 16 as applicable.
This terminates by the usual argument [10], with three possible outcomes:

Eliminating Dependent Pattern Matching 537

negative success a specialiser is found, either by conflict or cycle;
positive success a specialiser is found, given some m : ΠΔ′. σT for σ a most

general idempotent unifier of #u and #v, or
failure at some stage, an equation is reached for which no transition applies.

Lemma 20 (Specialiser Reduction) If specialisation by unification delivers

m : ΠΔ′. σT $ s : ΠΔ. #u 5 #v → T

then for any Θ $ θΔ unifying #u and #v we have s θΔ (refl θ#u) �∗ m θΔ′.

Proof By induction on the transition sequence. The deletion, solution and
injectivity steps each preserve this property by construction. �

We can now give a construction which captures our notion of splitting.

Lemma 21 (Splitting Construction) Suppose Δ $ T : "1, with Δ tele("0),
Δx ; x :D#v; xΔtele("0) and Δx ; x :D#v; xΔ $1#p[x]2 : Δ. Suppose further that for each
c (Δc) : D #u, unifying #u with #v succeeds. Then we may construct an inhabitant
f : ΠΔx ; x :D #v; xΔ. [1#p[x]2]T over a context comprising, for each c with positive
success,

mc : ΠΔ′;σ[x (→ cΔc]xΔ. [1σ#p[cΔc]2]T
for some most general idempotent unifier Δ′ $ σ(Δc;Δx). In each such case,

f σΔx (c σΔc) xΔ �∗ mc Δ
′ xΔ

Proof The construction is by basic caseD-analysis of ΠΔx ; x :D#v; xΔ. [1#p[x]2]T
at #v; x , then specialisation by unification for each method. The required reduction
behaviour follows from lemma 20. �

4.4 Translating Structural Recursion

We are very nearly ready to translate whole functions. For the sake of clarity,
we introduce one last piece of equipment:

Definition 22 (Computation Types) When implementing a function f (Δ) :
T , we introduce the family of f-computation types as follows:

Comp-f(Δ) :"0; return-f(Δ; t :T) :Comp-f Δ

call-f(Comp-f) :T
call-f Δ (return-f Δ t) (→ t

where call-f is clearly definable from eComp-f .

Comp-f book-keeps the connection between f ’s high-level program and the
low-level term which delivers its semantics. We translate each f -application to the
corresponding call-f of an f -computation; the latter will compute to a return-f
value exactly in correspondence with the pattern matching reduction. The trans-
lation takes the following form:

538 Healfdene Goguen, Conor McBride, and James McKinna

Definition 23 (Application Translation) If f (Δ) : T is globally defined, but
Δ $ f : Comp-f Δ for some f not containing f , the translation {−}f

f takes

{f #t}f
f =⇒ call-f {#t}f

f ([{#t}f
f]f)

and proceeds structurally otherwise. Recalling that we require global functions to
be applied with at least their declared arity, this translation removes f entirely.

Theorem 24 If f (Δ) : T has a small type and computation rules [Δi] f #pi ri
satisfying the function criteria, then there exists an f such that

Δ $ f : Comp-f Δ and s �Γ ;f t implies {s}f
f �+

Γ {t}f
f

Proof It suffices to ensure that the pattern matching reduction schemes are
faithfully translated. For each i such that ri returns a value (→ ei, we shall have

{f 1#pi2}f
f = call-f 1#pi2 [1#pi2]f �∗

Γ call-f 1#pi2 (return-f 1#pi2 {ei}f
f) �Γ {ei}f

f

Without loss of generality, let f be structurally recursive on some x :D #v, jth in
Δ. The basic recD-analysis of ΠΔ. Comp-f Δ at #v; x requires a term of type

ΠD.BelowD P D → ΠΔ. D 5 #v; x → Comp-f Δ

where P = λD. ΠΔ.D 5 #v; x → Comp-f Δ. Specialisation substitutes #v; x for D,
yielding a specialiser [m]s of the required type, with

m : ΠΔ.BelowD P #v x → Comp-f Δ;Δ $ recD P [m]s #v x Δ (refl #v; x)
�∗

Γ m Δ (belowD P [m]s #v x) : Comp-f Δ

by definition of recD and specialisation reduction. We shall take the latter to be
our f , once we have suitably instantiated m. To do so, we follow f ’s splitting
tree: lemma 21 justifies the splitting construction at each internal node and at
each � y leaf. Each programming problem [Δ′] f #p in the tree corresponds to the
task of instantiating some m ′ : ΠΔ′.BelowD P ([1#p2](#v; x)) → Comp-f 1#p2where,
again by lemma 21, m 1#p2�∗

Γ m ′ Δ′.
The splitting finished, it remains to instantiate the mi corresponding to each

[Δi] f #pi (→ ei. Now, [Δ (→1#pi2] takes x : D #v to some 1pij2 : D #u, so we may take

mi (→ λΔi;H :BelowD P #u 1pij2. return-f 1#pi2 e†i
where e†i is constructed by replacing each call f #r in ei by an appropriate appeal
to H . As f is well typed and structurally recursive, so [Δ (→ #r] maps x : D #v to
rj : D #w where rj ≺1pij2. By construction, BelowDP #u1pij2reduces to a tuple of
the computations for subobjects of1pij2. Hence we have a projection g such that
gH : ΠΔ. #w; rj 5 #v; x → Comp-f Δ and hence we take call-f #r (gH #r (refl #w; rj))
to replace f #r, where by construction of belowD,

call-f #r (g (belowD P [m]s #u 1pij2) #r (refl #w; rj))
�∗

Γ call-f #r ([m]s #w rj #r (refl #w; rj))
�∗

Γ call-f #r (m #r (belowD P [m]s #w rj))
= {f #r}f

f

Eliminating Dependent Pattern Matching 539

So, finally, we arrive at

{f 1#pi2}f
f = call-f 1#pi2 (m 1#pi2 (belowD P [m]s #u 1pij2))
�∗

Γ call-f 1#pi2 (mi Δi (belowD P [m]s #u 1pij2))
�∗

Γ call-f 1#pi2(return-f 1#pi2 [H (→ belowD P [m]s #u 1pij2]e†i)
�∗

Γ call-f 1#pi2(return-f 1#pi2 {ei}f
f)

= {ei}f
f

as required. �

5 Conclusions

We have shown that dependent pattern matching can be translated into a power-
ful though notationally minimal target language. This constitutes the first proof
that dependent pattern matching is equivalent to type theory with inductive
types extended with the K axiom, at the same time reducing the problem of the
termination of pattern matching as a first-class syntax for structurally recursive
programs and proofs to the problem of termination of UTT plus K.

Two of the authors have extended the raw notion of pattern matching that
we study here with additional language constructs for more concise, expressive
programming with dependent types [18]. One of the insights from that work is
that the technology for explaining pattern matching and other programming lan-
guage constructs is as important as the language constructs themselves, since the
technology can be used to motivate and explain increasingly powerful language
constructs.

References

1. Lennart Augustsson. Compiling Pattern Matching. In Jean-Pierre Jouannaud,
editor, Functional Programming Languages and Computer Architecture, volume
201 of LNCS, pages 368–381. Springer-Verlag, 1985.

2. Edwin Brady, Conor McBride, and James McKinna. Inductive families need not
store their indices. In Stefano Berardi, Mario Coppo, and Ferrucio Damiani, edi-
tors, Types for Proofs and Programs, Torino, 2003, volume 3085 of LNCS, pages
115–129. Springer-Verlag, 2004.

3. Rod Burstall. Proving properties of programs by structural induction. Computer
Journal, 12(1):41–48, 1969.

4. Thierry Coquand. Pattern Matching with Dependent Types. In Bengt Nordström,
Kent Petersson, and Gordon Plotkin, editors, Electronic Proceedings of the Third
Annual BRA Workshop on Logical Frameworks (B̊astad, Sweden), 1992.

5. Nicolas G. de Bruijn. Telescopic Mappings in Typed Lambda-Calculus. Informa-
tion and Computation, 91:189–204, 1991.

6. Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks. CUP, 1991.

7. Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Programs,
’94, volume 996 of LNCS, pages 39–59. Springer-Verlag, 1994.

540 Healfdene Goguen, Conor McBride, and James McKinna

8. Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,
Laboratory for Foundations of Computer Science, University of Edinburgh, 1994.
Available from
http://www.lfcs.informatics.ed.ac.uk/reports/94/ECS-LFCS-94-304/.

9. Martin Hofmann and Thomas Streicher. A groupoid model refutes uniqueness of
identity proofs. In Proc. Ninth Annual Symposium on Logic in Computer Science
(LICS) (Paris, France), pages 208–212. IEEE Computer Society Press, 1994.

10. Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract alge-
bras: A rule-based survey of unification. In Jean-Louis Lassez and Gordon Plotkin,
editors, Computational Logic: Essays in Honor of Alan Robinson, pages 257–321.
MIT Press, 1991.

11. Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, 1994.

12. Zhaohui Luo and Robert Pollack. LEGO Proof Development System: User’s Man-
ual. Technical Report ECS-LFCS-92-211, Laboratory for Foundations of Computer
Science, University of Edinburgh, 1992.

13. Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof engine.
In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs,
LNCS 806. Springer-Verlag, 1994. Selected papers from the Int. Workshop TYPES
’93, Nijmegen, May 1993.

14. Per Martin-Löf. A theory of types. Manuscript, 1971.
15. Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD

thesis, University of Edinburgh, 1999. Available from
http://www.lfcs.informatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/.

16. Conor McBride. Elimination with a Motive. In Paul Callaghan, Zhaohui Luo,
James McKinna, and Robert Pollack, editors, Types for Proofs and Programs
(Proceedings of the International Workshop, TYPES’00), volume 2277 of LNCS.
Springer-Verlag, 2002.

17. Conor McBride, Healfdene Goguen, and James McKinna. A few constructions on
constructors. In Jean-Christophe Filliâtre, Christine Paulin, and Benjamin Werner,
editors, Types for Proofs and Programs, Paris, 2004, LNCS. Springer-Verlag, 2004.

18. Conor McBride and James McKinna. The view from the left. Journal of Functional
Programming, 14(1), 2004.

19. Fred McBride. Computer Aided Manipulation of Symbols. PhD thesis, Queen’s
University of Belfast, 1970.

20. Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s
type theory: an introduction. Oxford University Press, 1990.

21. Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for LF.
In D. Basin and B. Wolff, editors, Proceedings of the Theorem Proving in Higher
Order Logics 16th International Conference, volume 2758 of LNCS, pages 120–135,
Rome, Italy, September 2003. Springer.

22. Thomas Streicher. Investigations into intensional type theory. Habilitation Thesis,
Ludwig Maximilian Universität, 1993.

23. Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the calculus of con-
structions. J. Funct. Program., 13(2):339–414, 2003.

Iterative Lexicographic Path Orders

Jan Willem Klop1,2,3, Vincent van Oostrom4, and Roel de Vrijer1

1 Vrije Universiteit, Department of Theoretical Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

jwk@cs.vu.nl, rdv@cs.vu.nl
2 Radboud Universiteit Nijmegen, Department of Computer Science,

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
3 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

4 Universiteit Utrecht, Department of Philosophy,
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Vincent.vanOostrom@phil.uu.nl

Abstract. We relate Kamin and Lévy’s original presentation of lexico-
graphic path orders (LPO), using an inductive definition, to a presenta-
tion, which we will refer to as iterative lexicographic path orders (ILPO),
based on Bergstra and Klop’s definition of recursive path orders by way
of an auxiliary term rewriting sytem.

Dedicated to Joseph Goguen, in celebration of his 65th birthday.

1 Introduction

In his seminal paper [1], Dershowitz introduced the recursive path order (RPO)
method to prove termination of a first-order term rewrite system (TRS) T . The
method is based on lifting a well-quasi-order 4 on the signature of a TRS to a
well-quasi-order 4rpo on the set of terms over the signature [2]. Termination of
the TRS follows if l /rpo r holds for every rule l→ r of T .

In Bergstra and Klop [3] an alternative definition of RPO is put forward,
which we call the iterative path order (IPO), the name stressing the way it is
generated—see also Bergstra, Klop and Middeldorp [4]. It is operational in the
sense that it is itself defined by means of an (auxiliary) term rewrite system Lex,
the rules of which depend (only) on the given well-quasi-order 4.

What has been lacking until now is an understanding of the exact relationship
between the recursive and iterative approaches to path orders. This will be the
main subject of our investigation here. We show that both approaches coincide
in the case of transitive relations (orders). Moreover, we provide a direct proof of
termination for the iterative path order starting from an arbitrary terminating
relation on the signature, employing a proof technique due to Buchholz [5]. Both
proofs essentially rely on a natural-number-labelled variant Lexω of the auxiliary
TRS Lex, introduced here for the first time.

For the sake of exposition we focus on the restriction of RPO due to Kamin
and Lévy [6] known as the lexicographic path order (LPO)—see also Baader and

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 541–554, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

542 Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer

Nipkow [7]. Restricting the iterative approach accordingly gives rise to what we
call the iterative lexicographic path order (ILPO), as formulated for the first
time in the PhD thesis of Geser [8] and, in a slightly restricted form, by Klop [9].
As far as we know also in this case the correspondence between both has not
been investigated in the literature.

The proofs that the iterative lexicographic path order is terminating and
that LPO and ILPO coincide will constitute the body of the paper. In the con-
clusions, we put forward some ideas on the robustness of this correspondence,
i.e. whether variations on LPO can be matched by corresponding variations on
ILPO restoring their coincidence.

Acknowledgement We thank Alfons Geser for useful remarks.

2 The Iterative Lexicographic Path Order

The iterative lexicographic path order (ILPO) is a method to prove termination
of a term rewrite system (TRS). Here a TRS T is terminating if its rewrite
relation →T is so, i.e. if it does not allow an infinite reduction t0 →T t1 →T
t2 →T · · · . The method is based on iteratively lifting a terminating relation R
on the signature to a terminating relation Rilpo on the terms over the signature.
The lifting is iterative in the sense that Rilpo is defined via the iteration of
reduction steps in an atomic decomposition TRS Lex (depending on R), instead
of recursively as in Dershowitz’s recursive path order method [1]. By its definition
via the atomic decomposition TRS, transitivity and closure under contexts and
substitutions of Rilpo are automatic, which combined with termination yields
that Rilpo is a so-called reduction order [10, Definition 6.1.2]. Therefore, for the
TRS T to be terminating it suffices that l Rilpo r holds for each rule l→ r in T .

As a running example to illustrate ILPO, we take the terminating relation
R given by M R A and A R S on the signature of the TRS Ded of addition and
multiplication on natural numbers with the rewrite rules of Table 1, going back
to at least Dedekind [11].5

A(x,0) → x
A(x,S(y)) → S(A(x, y))

M(x,0) → 0

M(x,S(y)) → A(x, M(x, y))

Table 1. Dedekind’s rules for addition and multiplication

Clearly, the relation R is terminating and ILPO will lift it to a terminating
relation Rilpo such that l Rilpo r holds for each rule l → r in Ded, implying
termination of Ded.
5 Dedekind took 1 instead of 0 for the base case.

Iterative Lexicographic Path Orders 543

For a given relation R over the signature, the definition of Rilpo proceeds
in two steps: We first define the atomic decomposition TRS Lex depending on
R, over the signature extended with control symbols. Next, the relation Rilpo

is defined by restricting iteration of Lex-reduction steps, i.e. of →+
Lex, to terms

over the original signature.

Definition 1. Let R be a relation on a signature Σ, and let V be a signature
of nullary symbols disjoint from Σ (called variables). The atomic decomposition
TRS Lex is 〈Σ �Σ∗ � V,R〉, where:

1. The signature Σ∗ of control symbols is a copy of Σ, i.e. for each function
symbol f ∈ Σ, Σ∗ contains a fresh symbol f∗ having the same arity f has.

2. The rules R are given in Table 2, for arbitrary function symbols f , g in
Σ, with x, y, z disjoint vectors of pairwise disjoint variables of appropriate
lengths.

f(x) →put f∗(x)
f∗(x) →select xi (1 ≤ i ≤ |x|)
f∗(x) →copy g(f∗(x), . . . , f∗(x)) (f R g)

f∗(x, g(y), z) →lex f(x, g∗(y), l, . . . , l) (l = f∗(x, g(y), z))

Table 2. The rules of the atomic decomposition TRS Lex

The idea of the atomic decomposition Lex is that marking the head symbol of a
term, by means of the put-rule, corresponds to the obligation to make that term
smaller, whereas the other rules correspond to atomic ways in which this can be
brought about:

1. The select-rule expresses that selecting one of the arguments of a term makes
it smaller.

2. The copy-rule expresses that a term t can be made smaller by putting copies
of terms smaller than t below a head symbol g which is less heavy than the
head symbol f of t.

3. The lex-rule expresses that a term t can be made smaller by making one of
its subterms smaller. At the same time one may replace all the subterms to
the right (whence the name lex) of this subterm by arbitrary terms that are
smaller than the whole term t.

For our running example Ded, the reduction A(x, 0) →put A∗(x, 0) →select x in
Lex, is a decomposition of the first rule into atomic Lex-steps. This also holds for
the other rules of Ded. E.g. the case of the fourth rule is displayed in Figure 1.

Remark 1. The atomic decomposition TRS Lex is not minimal; in general it
does not yield unique atomic decompositions of rules. For instance, assuming
for the moment that M R 0 would hold, the third rule M(x, 0) → 0 of Ded

544 Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer

+

M∗(x, S(y))
put

select

lex

select

A(M∗(x, S(y)), M∗(x, S(y)))

A(x, M∗(x, S(y)))

A(x, M(x, S∗(y)))

copy

M(x, S(y))

A(x, M(x, y))

Lex

Fig. 1. Atomic Lex-decomposition of the fourth Dedekind rule

could be atomically decomposed into both M(x, 0) →put M∗(x, 0) →select 0 and
M(x, 0) →put M∗(x, 0) →copy 0; the term M∗(x, 0) is copied to all (zero!) arguments
of the symbol 0.

Definition 2.

1. The iterative lexicographic path order Rilpo of a relation R on a signature
Σ is the restriction of →+

Lex to T (Σ � V).
2. A TRS is ILPO-terminating if its rules are contained in Rilpo for some

terminating relation R.

For the TRS Ded we already saw that l →+
Lex r holds for each rule l→ r. Hence

Ded is ILPO-terminating.
An observation that plays a crucial role in many termination methods is that

a TRS is terminating if and only if it admits a reduction order, i.e. iff its rules
are contained in a terminating (order) relation which is closed under contexts
and substitutions. (See e.g. [10, Prop. 6.1.3].) Note that transitivity and closure
under contexts and substitutions of Rilpo are ‘built in’ into its definition via the
atomic decomposition TRS. Therefore, in order to show that Rilpo is a reduction
order, it only remains to be shown that it is terminating. This will be proved in
Section 4. From that result we can then conclude that ILPO-termination implies
termination.

But first, in Section 3, we present some further examples of ILPO-terminating
TRSs.

Remark 2. Although by definition the iterative lexicographic path order Rilpo is
transitive, even in cases when R isn’t, we do not put stress on this. In particular,
transitivity is not used in the proof that termination lifts from R to Rilpo .

Remark 3. The iterative lexicographic path order as presented here is a strength-
ening of the version of the iterative path order in [9] (which is there still called

Iterative Lexicographic Path Orders 545

recursive path order). The difference is that in [9] instead of the lex-rule (cf. Ta-
ble 2) the down-rule is employed:

f∗(x, g(y), z) →down f(x, g∗(y), z)

It expresses that a term may be made smaller by making one of its arguments
smaller. The down-rule is a derived rule in our system:

f∗(x, g(y), z) →lex f(x, g∗(y), l) �select f(x, g∗(y), z)

where the ith select-step applies to the ith occurrence of l = f∗(x, g(y), z), and
then selects zi. The implication in the other direction does not hold as witnessed
by the one-rule TRS f(a, b) → f(b, a) which cannot be proven terminating by
the method presented in [9], but which is ILPO-terminating for a R b:

f(a, b) →put f
∗(a, b) →lex f(a∗, f∗(a, b)) →copy f(b, f∗(a, b)) →select f(b, a)

The simplify-left-argument-rule, introduced in the exercises in [9] in order to
prove termination of the Ackermann TRS Ack (see below), is also easily derived
in our system: it simply is the lex-rule with x taken to be the empty vector, i.e.
the leftmost argument must be made smaller. It is easy to see that also that
version is strictly weaker than ILPO-termination.

3 Examples of ILPO-terminating TRSs

In this section the iterative lexicographic path order method is illustrated by
applying it to some well-known TRSs.

The example of Dedekind’s rules for addition and multiplication only employs
trivial applications of the lex-rule, where z is empty. Proving ILPO-termination
of the Ackermann function requires non-trivial applications of the lex-rule.

Example 1 (Ackermann’s function). The TRS Ack has a signature consisting
of the nullary symbol 0, the unary symbol S, and the binary symbol Ack, with
rules as in Table 3.

Ack(0, y) → S(y)
Ack(S(x), 0) → Ack(x, S(0))

Ack(S(x), S(y)) → Ack(x, Ack(S(x), y))

Table 3. Ackermann’s function

For the relation R defined by Ack R S, the TRS Ack is ILPO-terminating as
witnessed by the following atomic decompositions of each of its rules:

– Ack(0, y) →put Ack∗(0, y) →copy S(Ack∗(0, y)) →select S(y).
– Ack(S(x), 0) →put Ack∗(S(x), 0) →lex

Ack(S∗(x), Ack∗(S(x), 0)) →select Ack(x, Ack∗(S(x), 0)) →copy

Ack(x, S(Ack∗(S(x), 0))) →select Ack(x, S(0)).

546 Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer

– Ack(S(x), S(y)) →put Ack∗(S(x), S(y)) →lex

Ack(S∗(x), Ack∗(S(x), S(y))) →select Ack(x, Ack∗(S(x), S(y))) →lex

Ack(x, Ack(S(x), S∗(y))) →select Ack(x, Ack(S(x), y)).

Example 2 (Dershowitz and Jouannaud [12]). Consider the string rewrite system
DJ given by the four rules in Table 4.

10 → 0001

01 → 1

11 → 0000

00 → 0

Table 4. String rewrite system on 0,1-words

So we have e.g. the reduction

1101 → 100011 → 10011 → 0001011 → 001011 → 00100000 → 0000010000 → . . .

To capture this string rewrite system as a term rewrite system, the symbols 0
and 1 are perceived as unary function symbols and the rules are read accordingly;
e.g. 10→ 0001 is the term rewrite rule

1(0(x)) → 0(0(0(1(x))))

To show ILPO-termination for DJ , we set 1 R 0 and check l Rilpo r for every
rule l → r. For the displayed rule the corresponding atomic decomposition is
shown in Figure 2 (after dropping all parentheses).

copy

10x

0001x
+

Lex

1∗0x
put

01∗0x

copy

select
00010∗x

001∗0x

lex

0001∗0x

copy

Fig. 2. Atomic Lex-decomposition of the rule 10x→ 0001x

Iterative Lexicographic Path Orders 547

Example 3 (Primitive recursion). Let a TRS on the natural numbers be given,
having a unary function symbol g and a ternary function symbol h. Suppose we
adjoin a binary symbol f to the signature, with defining rules

f(0, x) → g(x)
f(S(x), y) → h(f(x, y), x, y)

If the original TRS is ILPO-terminating, say for the terminating relation R on its
signature, then the resulting system is ILPO-terminating again as can be easily
seen after adjoining f R g and f R h to R (this yields a terminating relation
again).

4 ILPO-termination Implies Termination

The remaining task is now to show that if a relation R is terminating, then Rilpo

is terminating as well. As explained in Section 2, Rilpo is then a reduction order,
and it follows that ILPO-termination implies termination.

Since the rewrite rules of Rilpo are given by the restriction of →+
Lex to T (Σ �

V), termination of the atomic decomposition TRS Lex would be sufficient for
termination of Rilpo . However, Lex is in general not terminating. For instance,
in case of the running example we have, despite R being terminating:

A(x, y) →put A
∗(x, y) →copy S(A∗(x, y)) →copy S(S(A∗(x, y))) →copy . . .

We even have cycles

A∗(x, y) →copy S(A∗(x, y)) →put S
∗(A∗(x, y)) →select A

∗(x, y)

In either case, non-termination is ‘caused’ by the left-hand side of the copy-rule
being a subterm of its right-hand side; a priori such an iteration is not bounded.
Similar examples can be given with the lex-rule, which is also self-embedding.

However, observe that in both of the infinite reductions the control symbol A∗

is ‘used’ infinitely often — by the copy rule. We will show that this is necessary
in any infinite reduction. More precisely, that if for each control symbol a bound
is given in advance on how often it can be used in the copy- and lex-rules, this
will yield a terminating TRS Lexω. Since in any given atomic decomposition
l →+

Lex r of a rule l→ r, any control symbol is only used finitely often (certainly
not more often than the length of the decomposition), the relations →+

Lex and
→+

Lexω coincide on the unmarked terms. We will exploit this fact by proving
termination of Rilpo via termination of Lexω.

Definition 3. Let R be a relation on a signature Σ, and let V be a signature of
nullary symbols disjoint from Σ. The TRS Lexω is 〈Σ �Σω � V,Rω〉:

1. The signature Σω of ω-control symbols consists of ω copies of Σ, i.e. for
each symbol f ∈ Σ and natural number n, Σω contains a fresh symbol fn

having the arity f has.

548 Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer

f(x) →put fn(x)
fn(x) →select xi (1 ≤ i ≤ |x|)

fn+1(x) →copy g(fn(x), . . . , fn(x)) (f R g)
fn+1(x, g(y), z) →lex f(x, gn(y), l, . . . , l) (l = fn(x, g(y), z))

Table 5. The rules of Lexω

2. The rules Rω are given in the table, for arbitrary symbols f , g in Σ and
natural number n, with x, y, z disjoint vectors of pairwise disjoint variables
of appropriate lengths.

The TRS Lex (Definition 1) is seen to be a homomorphic image of Lexω by
mapping fn to f∗, for any natural number n. Vice versa, reductions in Lex can
be ‘lifted’ to Lexω.

Lemma 1. →+
Lex and →+

Lexω coincide as relations restricted to T (Σ � V).

Proof.

(⊆) One shows that →+
Lex is included in →+

Lexω by formalizing the reasoning
already indicated above. In particular, one can translate (lift) a finite reduc-
tion of length n in Lex to Lexω by replacing all marks (∗) in the begin term
by a natural number greater than n and, along the reduction, likewise each ∗
introduced by an application of the put-rule. Numerical values for the other
marks then follow automatically by applying the Lexω-rules that correspond
to the original Lex-rules.
The result then follows, because, if t→+

Lex s and the terms t, s are in T (Σ �
V), i.e. do not contain marks, then the transformation of a →Lex -reduction
from t to s to Lexω leaves the begin and end terms t and s untouched.

(⊇) Every →+
Lexω step is a →+

Lex step, by the homomorphism.
#

Example 4. The atomic decomposition displayed in Figure 1 can be lifted to:

– M(x, S(y)) →put M2(x, S(y)) →copy A(M1(x, S(y)), M1(x, S(y))) →select

A(x, M1(x, S(y))) →lex A(x, M(x, S0(y))) →select A(x, M(x, y)).

The main theorem is proven by employing an ingenious (constructive) proof
technique due to Buchholz [5].6

Lemma 2. If R is terminating, then Lexω is terminating.

6 The technique has been discovered independently by Jouannaud and Rubio [13],
who show that it combines well with the Tait–Girard reducibility technique (both
are essentially based on induction on terms), leading to a powerful termination proof
technique also applicable to higher-order term rewriting.

Iterative Lexicographic Path Orders 549

Proof. To make the notation uniform, in the sense that all function symbols will
carry a label, we employ fω(t) to denote the term f(t) for an unmarked symbol
f . This allows us to write any Lexω-term uniquely as an ω-marked term of the
form fα(t) for some unmarked symbol f , some ordinal α and some vector of
terms t. The ordinal α will be a natural number n or ω. In the crucial induction
in this proof we will make use of the fact that in the ordering of the ordinals we
have ω > n for each natural number n.

We prove by induction on the construction of terms that any ω-marked term
is terminating. To that end it is sufficient to show that any ω-marked term
fα(t) is terminating under the assumption (the induction hypothesis) that its
arguments t are terminating.

So assume that t1, . . . , tn are terminating, with n the arity of f . We prove
that fα(t) is terminating by a further induction on the triple consisting of f ,
t, and α in the lexicographic product of the relations R, (→Lexω	SN)n and > .
Here (→Lexω	SN)n is the n-fold lexicographic product of the terminating part
of →Lexω , with n the arity of f .

Clearly, the term fα(t) is terminating if all its one-step →Lexω -reducts are.7

The latter we prove by distinguishing cases on the type of the reduction step.

1. If the step is a head step, we perform a further case analysis on the rule
applied.
(put) The result follows by the IH for the third component of the triple,

since ω > m for any natural number m.
(select) The result follows by the termination assumption for the t.
(copy) Then α is of the form m + 1 for some natural number m, and the

reduct has shape gω(fm(t), . . . , fm(t)) for some g such that f R g. By
the IH for the third component, each of the fm(t) is terminating. Hence,
by the IH for the first component, the reduct is terminating.

(lex) Then α is of the form m+1 for some natural number m and the reduct
has shape fω(t1, . . . , ti−1, g

m(s), fm(t), . . . , fm(t)), with ti = gω(s). Each
fm(t) is terminating by the IH for the third component. Hence, the
reduct is terminating by the IH for the second component, since gm(s)
is a one-step Lexω-reduct of ti (for the put-rule).

2. If the step is a non-head step, then it rewrites some direct argument, and
the result follows by the IH for the second component.
#

Theorem 1. ILPO-termination implies termination.

Proof. Suppose the TRS T is ILPO-terminating for some terminating relation
R on its signature, i.e. l Rilpo r holds for each rule l→ r in T .

Since Rilpo is defined as a restriction of →+
Lex which in turn coincides with

→+
Lexω by Lemma 1, it is a transitive relation that is closed under contexts and

substitutions and, by Lemma 2, also terminating. Hence, Rilpo is a reduction
order, and therefore T must be terminating.
#
7 This observation can be used as an inductive characterization of termination: a term

is terminating if and only if all its one-step reducts are. In a constructive rendering
of the proof one can take this characterization as the definition of termination.

550 Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer

Hence termination of the example TRSs such as Ded, follows from their ILPO-
termination as established above.

Remark 4. It is worth noting that Buchholz’s proof technique can also be applied
to non-simplifying TRSs. For instance, for proving termination of the one-rule
TRS f(f(x))→f(g(f(x))) the technique boils down to showing that any instance
f(g(f(t))) of the right-hand side is terminating on the assumption that the direct
subterm f(t) of the corresponding instance of the left-hand side is. This follows
by ‘induction’ on the right-hand side and cases on the shape of the left-hand
side of the rule: f(g(f(t))) can be rewritten neither at the head nor at position
1, hence it is terminating if f(t) is.

5 Equivalence of ILPO with the Recursive Lexicographic
Path Order

We show that ILPO is at least as powerful as the recursively defined lexico-
graphic path order found in the literature, and is equivalent to it for transitive
relations. The following definition of >lpo for a given strict order > on the sig-
nature Σ, is copied verbatim from Definition 5.4.12 in the textbook by Baader
and Nipkow [7].

Definition 4. Let Σ be a finite signature and > be a strict order on Σ. The
lexicographic path order >lpo on T (Σ, V) induced by > is defined as follows:
t >lpo s iff

(LPO1) s ∈ Var(t) and t 	= s, or
(LPO2) t = f(t1, . . . , tm), s = g(s1, . . . , sn), and
(LPO2a) there exists i, 1 ≤ i ≤ m, with ti ≥lpo s, or
(LPO2b) f > g and t >lpo sj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, t >lpo sj for j, 1 ≤ j ≤ n, and there exists i, 1 ≤ i ≤ m,

such that t1 = s1, . . ., ti−1 = si−1 and ti >lpo si.

It is easy to see that this is still a correct recursive definition for > being an
arbitrary relation R, yielding Rlpo. We call a TRS T = 〈Σ,R〉 LPO -terminating
for a terminating relation R, if R ⊆ Rlpo.

Lemma 3. Rlpo ⊆ Rilpo , for any relation R.

Proof. We show by induction on the definition of t Rlpo s that t∗ �Lex s, where
(f(t))∗ = f∗(t). This suffices, since t→put t

∗ and t, s are not marked.

(LPO1) If s ∈ Var(t) and t 	= s, then the result follows by repeatedly
selecting the subterm on a path to an occurrence of s in t.

(LPO2) Otherwise, let t = f(t1, . . . , tm), s = g(s1, . . . , sn).
(LPO2a) Suppose there exists i, 1 ≤ i ≤ m, with either ti = s or ti Rlpo s.

In the former case, the result follows by a single application of the select-
rule for index i. In the latter case, this step is followed by an application
of the put-rule after which the result follows by the IH.

Iterative Lexicographic Path Orders 551

(LPO2b) Suppose f R g and t Rlpo sj for all j, 1 ≤ j ≤ n. Then the result
follows by a single application of the copy-rule and n applications of the
IH.

(LPO2c) Suppose f = g, t Rlpo sj for j, 1 ≤ j ≤ n, and there exists i,
1 ≤ i ≤ m, such that t1 = s1, . . ., ti−1 = si−1 and ti Rlpo si. Then
the result follows by a single application of the lex-rule, selecting the ith
argument, and the IH for ti Rlpo si and t Rlpo sj for j, i < j ≤ n.
#

We call the Lex-strategy implicit in this proof the wave strategy. The idea is that
the marked positions in a term represent the wave front, which moves downwards,
i.e. from the root in the direction of the subtrees of a left-hand side, generating an
ever growing prefix of the right-hand side behind it. This is visualised abstractly
in Figure 3, and for the atomic Lex-decomposition of M(x, S(y)) → A(x, M(x, y))

Fig. 3. Wave strategy

of Figure 1, in Figure 4. (In fact, all Lex-reductions given above adhere to the
wave strategy.) One can prove a converse to Lemma 3 by a detailed proof-

S∗

selectM∗

M∗ M∗ M∗

S

M

x S

y

x S

y

A

Sx x

y y

x

A

x S

y y

x

Mx

A A

x M

x y

put copy select lex

Fig. 4. Wave strategy for atomic Lex-decomposition of M(x, S(y))→A(x, M(x, y))

theoretic analysis, showing that any Lex-reduction can be transformed, into a
wave reduction. The upshot is that in general Rilpo = (Rlpo)+. As a corollary
we then have that ILPO is equivalent with LPO for any strict order, and that

552 Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer

Rilpo is decidable, in case R is a terminating relation for which reachability is
decidable: simply ‘try all waves up to the size of the right-hand side’.8

Remark 5. Note that (R+)ilpo may differ from Rilpo . Consider the signature
consisting of nullary symbols a, b, and unary symbols f , g, and the terminating
relation f R b R g. Then the one-rule TRS f(a)→g(a) is not ILPO-terminating,
but it is ILPO-terminating for R+. The problem is that making f(a) smaller
using R forces erasure of its argument a, because b is nullary.

A proof-theoretic analysis of the wave strategy is beyond the scope of this paper.
Here we will be satisfied by giving a rather ad hoc proof of the converse of
Lemma 3, for the case where we start with a transitive relation R.

Lemma 4. Rilpo ⊆ Rlpo, for any transitive relation R.

Proof. Fix the relation R. By definition, if t Rilpo s then t→+
Lex s. By Lemma 1,

then also t →+
Lexω s. To show that this implies t Rlpo s, we employ a homomor-

phic embedding ε of ω-marked terms (as introduced in the proof of Lemma 2)
defined by fα(u) (→ f(ε(u), α). Here the terms in the range of ε are terms over
the signature obtained from Σ by increasing the arity of every function symbol
by 1, and adjoining the ordinals up to ω as nullary symbols. The idea of the
embedding is that every function symbol gets an extra final argument signifying
how many times the symbol may be ‘used’. Initially (unmarked) it is set to ω.
Embedding the TRS Lexω (see Table 5) yields the TRS ε(Lexω) having rules
given in Table 6.

f(x, ω) →put f(x, n)
f(x, n) →select xi (1 ≤ i ≤ |x|)

f(x, n + 1) →copy g(f(x, n), . . . , f(x, n), ω) (f R g)
f(x, g(y, ω), z, n + 1) →lex f(x, g(y, n), l, ω) (l = f(x, g(y, ω), z, n))

Table 6. Rules of ε(Lexω)

By definition of ε, t →+
Lexω s implies ε(t) →+

ε(Lexω) ε(s). It is easy to verify that
each of the ε(Lexω)-rules is contained in ε(R)lpo , where ε(R) is obtained by taking
the union of R and the natural greater than relation > on the ordinal symbols,
and relating every function symbol to any ordinal symbol. Note that ε(R) is
transitive since R and > are. Since the relation ε(R)lpo is closed under contexts
and substitutions and is transitive if ε(R) is (see e.g. [10,7]),9 we conclude that
8 This is somehow analogous to the way in which rippling guides the search for a proof

of a goal from a given [14].
9 Note that these properties need to be verified separately for the recursive lexico-

graphic path order (or any variation on it). In case of the iterative lexicographic
path order (or any variation on it), these properties hold automatically by it being
given by a TRS, allowing one to focus on establishing termination.

Iterative Lexicographic Path Orders 553

ε(t) ε(R)lpo ε(s). That this implies t Rlpo s, follows by an easy induction on
the definition of the former. The crux of the proof is that the adjoined ordinal
symbols do not relate to the original symbols from Σ. The only problematic
cases (since then the IH could not be applied) are:

(LPO2a) holds since either ω = ε(s) or ω ε(R)lpo ε(s). Neither can be the
case since ω is not related to symbols in Σ, in particular not to the head
symbol of ε(s) (which is the same as the head of s).

(LPO2c) holds since ω ε(R)lpo ω. This obviously cannot be the case.

In the other cases the IH does the job, e.g.

(LPO2a) holds since either ε(ti) = ε(s), or ε(ti) ε(R)lpo ε(s), for some i.
Then either ti = s by injectivity of ε, or ti ε(R)lpo s by the IH, and we
conlude t Rlpo s.
#

Combining Lemmas 3 and 4 yields our second main result.

Theorem 2. >ilpo = >lpo, for any transitive relation (order) >.

6 Conclusion

We have shown that our iterative set-up of ILPO can serve as an independent
alternative to the classical recursive treatment of LPO. It can be seen as being
obtained by decomposing the recursive definition, extracting atomic rules from
the inductive clauses. From this perspective it is only natural that we have
taken an arbitrary terminating relation (instead of order) on the signature as
our starting point, so one could speak, in the spirit of Persson’s presentation of
recursive path relations [15], of iterative lexicographic path relations.

We claim that the correspondence between recursive and iterative ways of
specifying path orders is robust, i.e. goes through for variants of LPO like the
embedding relation and recursive path orders. Substantiating the claim is left to
future research.

Another direction for further investigation is suggested by Remark 4. It seems
that an analogous argument can be used to yield soundness of Arts and Giesl’s
dependency-pair technique for proving termination. (See e.g. [10, Section 6.5.5].)
Thus, whereas non-simplifying TRSs are traditionally out of the scope of the
recursive path order method, by their termination proof being tied to Kruskal’s
Tree Theorem, Buchholz’s technique will give us a handle on a uniform treatment
of both path orders and the dependency-pair technique.

References

1. Dershowitz, N.: Orderings for term rewriting systems. TCS 17(3) (1982) 279–301
2. Marcone, A.: Fine analysis of the quasi-orderings on the power set. Order 18

(2001) 339–347

554 Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer

3. Bergstra, J., Klop, J.: Algebra of communicating processes. TCS 37(1) (1985)
171–199

4. Bergstra, J., Klop, J., Middeldorp, A.: Termherschrijfsystemen. Programmatu-
urkunde. Kluwer (1989)

5. Buchholz, W.: Proof-theoretic analysis of termination proofs. APAL 75(1-2) (1995)
57–65

6. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. Univer-
sity of Illinois (1980)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

8. Geser, A.: Relative Termination. PhD thesis, Universität Passau, Germany (1990)
9. Klop, J.: Term rewriting systems. In Abramsky, S., Gabbay, D., Maibaum, T., eds.:

Handbook of Logic in Computer Science. Volume 2, Background: Computational
Structures. Oxford University Press (1992) 1–116

10. Terese: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (2003)

11. Dedekind, R.: Was sind und was sollen die Zahlen?, Brunswick (1888)
12. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In van Leeuwen, J., ed.: Hand-

book of Theoretical Computer Science. Volume B, Formal Models and Semantics.
Elsevier (1990) 243–320

13. Jouannaud, J.P., Rubio, A.: The higher-order recursive path ordering. In: 14th
Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society
(1999) 402–411

14. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-Level Guidance for
Mathematical Reasoning. Volume 56 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press (2005)

15. Persson, H.: Type Theory and the Integrated Logic of Programs. PhD thesis,
Chalmers, Sweden (1999)

A Functorial Framework for Constraint Normal Logic
Programming

Paqui Lucio2, Fernando Orejas1, Edelmira Pasarella1, and Elvira Pino1

1 Departament LSI
Universitat Politècnica de Catalunya,

Campus Nord, Mòdul C5, Jordi Girona 1-3, 08034 Barcelona, Spain
{orejas,edelmira,pino}@lsi.upc.es

2 Departament LSI
Univ. Pais. Vasco,

San Sebastián, Spain
jiplucap@si.ehu.es

Abstract. The semantic constructions and results for definite programs do not
extend when dealing with negation. The main problem is related to a well-known
problem in the area of algebraic specification: if we fix a constraint domain as
a given model, its free extension by means of a set of Horn clauses defining a
set of new predicates is semicomputable. However, if the language of the exten-
sion is richer than Horn clauses its free extension (if it exists) is not necessarily
semicomputable. In this paper we present a framework that allows us to deal with
these problems in a novel way. This framework is based on two main ideas: a
reformulation of the notion of constraint domain and a functorial presentation
of our semantics. In particular, the semantics of a logic program P is defined in
terms of three functors: (O P P,A L G P,L O G P) that apply to constraint domains
and provide the operational, the least fixpoint and the logical semantics of P, re-
spectively. The idea is that the application of O P P to a specific constraint solver,
provides the operational semantics of P that uses this solver; the application of
A L G P to a specific domain, provides the least fixpoint of P over this domain;
and the application of L O G P to a theory of constraints provides the logic theory
associated to P. We prove that these three functors are in some sense equivalent.

1 Introduction

Constraint logic programming was introduced in ([9]) as a powerful and conceptually
simple extension of logic programming. Following that seminal paper, the semantics
of definite (constraint) logic programs has been studied in detail (see, e.g. [10], [11]).
However, the constructions and results for definite programs do not extend when deal-
ing with negation. The main problem is related to a well-known problem in the area of
algebraic specification: if we fix a constraint domain as a given model, its free extension
by means of a set of Horn clauses defining a set of new predicates is semicomputable.
However, if the language of the extension is richer than Horn clauses its free extension
(if it exists) is not necessarily semicomputable ([8]). Now, when working without nega-
tion we are in the former case, but when working with negation we are in the latter case.
In particular, this implies that the results about the soundness and completeness of the

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 555–577, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

556 Paqui Lucio et al.

operational semantics with respect to the logical and algebraic semantics of a definite
constraint logic program do not extend to the case of programs with negation, except
when we impose some restrictions to these programs.

The only approach that we know dealing with this problem is ([19]). In that pa-
per, Stuckey presents one of the first operational semantics which is proven complete
for programs that include (constructive) negation. Although we use a different opera-
tional semantics, that paper has had an important influence in our work on negation.
The results in ([19]) were very important when applied to the case of standard (non-
constrained) logic programs because they provided some good insights about construc-
tive negation. However, the general version (i.e., logic programs over an arbitrary con-
straint domain) is not so interesting (in our opinion). The reason is that the completeness
results are obtained only for programs over admissible constraints. We think that this
restriction on the constraints that can be used in a program is not properly justified.

In our opinion, the problem when dealing with negation is not on the class of con-
straints considered, but rather, in the notion of constraint domain used. In particular,
the notion of constraint domain used in the context of definite programs is not adequate
when dealing with negation. Instead, we propose a small reformulation of the notion of
constraint domain. To be precise, we propose that a domain should be defined in terms
of a class of elementarily equivalent models and not in terms of a single model. With
this variation we show the equivalence of the logical, operational, and fixpoint seman-
tics of programs with negation without needing to restrict the class of constraints.

The logical semantics that we have used is the standard Clark-Kunen 3-valued com-
pletion of programs (see, e.g. [19]). The fixpoint semantics that we are using is a vari-
ation of other well-known fixpoint semantics used to deal with negation ([5,19,6,15]).
Finally, the operational semantics that we are using is an extension of a semantics called
BCN that we have defined in ([16]) for the case of programs without constraints. The
main reason for using this semantics and not Stuckey’s semantics is that our seman-
tics is simpler. This implies having simpler proofs for our results. In particular, we do
not claim that our semantics is better than Stuckey’s (nor that it is worse). A proper
comparison of these two semantics and of others like [5,6] would need experimental
work. We have a prototype implementation of BCN ([1]), but we do not know if the
other approaches have been implemented. Anyhow, the pragmatic virtues of the various
operational approaches to constructive negation are not a relevant issue in this paper.

Our semantics is functorial. We consider that a constraint logic program is a pro-
gram that is parameterized by the given constraint domain, i.e., that the semantics of a
program should be some kind of mapping. However, we also think that working in a
categorical setting provides some additional advantages that are shown in the paper.

The paper is organized as follows. In the following section we give a short intro-
duction to the semantics of (definite) constraint logic programs. In Section three, we
discuss the inadequacy of the standard notion of constraint domain when dealing with
negation and propose a new one. In Section four we study the semantics of programs
when defined over a given arbitrary constraint domain. Then, in the following section
we define several categories for defining the various semantic domains involved and
define the functorial semantics of logic programs. Finally, in Section 6 we prove the
equivalence of the logical, fixpoint and operational semantics.

A Functorial Framework for Constraint Normal Logic Programming 557

2 Preliminaries

A signature Σ consists of a pair of sets (FSΣ,PSΣ) of function and predicates symbols,
respectively, with some associated arity. TΣ(X) denotes the set of all first-order Σ-terms
over variables from X , and TΣ denotes the set of all ground terms. A literal is either an
atom p(t1, . . . ,tn) (namely a positive literal) or a negated atom ¬p(t1, . . . ,tn) (namely a
negative literal). The set FormΣ is formed by all first-order Σ-formulas written (from
atoms) using connectives ¬,∧,∨,→,↔ and quantifiers ∀,∃. We denote by f ree(ϕ) the
set of all free variables occurring in ϕ. ϕ(x) specifies that f ree(ϕ) ⊆ x. SentΣ is the set
of all ϕ ∈ FormΣ such that f ree(ϕ) = /0, called Σ-sentences. By ϕ∀�z (resp. ϕ∃�z) we
denote the formula ∀x1 . . .∀xn(ϕ) (resp. ∃x1 . . .∃xn(ϕ)), where x1 . . .xn are the variables
in f ree(ϕ)� z. In particular, the universal (resp. existential) closure, that is ϕ∀� /0 (resp.
ϕ∃� /0) is denoted by ϕ∀ (resp. ϕ∃).

The semantics of normal logic programs is defined using a concrete three-valued
extension of the classical two-valued interpretation of logical symbols. The connectives
¬,∧,∨ and quantifiers (∀, ∃) are interpreted as in Kleene’s logic ([12]). However, ↔ is
interpreted as the identity of truth-values (hence, ↔ is two-valued) Moreover, to make
ϕ ↔ ψ logically equivalent to (ϕ → ψ)∧(ψ → ϕ), Przymusinski’s interpretation ([17])
of → is required. It is also two-valued and gives the value f exactly in the following
three cases: t→ f, t→ u and u→ f. Equality is two-valued also. Following [3], it is
easy to see that the above three-valued logic satisfies (as classical first-order logic does)
all of the basic metalogical properties, in particular completeness and compactness.

A three-valued Σ-structure, A , consists of a universe of values A, and an interpreta-
tion of each function symbol by a total function (of adequate arity), and of each pred-
icate symbol by a total function on the set of the three boolean values {t,f,u} (i.e.,
a partial relation). Hence, terms cannot be undefined, but atoms can be interpreted as
u. ModΣ denotes the set of all three-valued Σ-structures. A Σ-structure A ∈ ModΣ is a
model of (or satisfies) a set of sentences Φ if, and only if, A (ϕ) = t for any sentence
ϕ ∈ Φ. This is also denoted by A |= Φ. We will denote by A |=σ Φ that A satisfies
the sentence σ(Φ), resulting from the valuation σ : f ree(Φ) → A of the formula Φ.
Given a set Φ of Σ-sentences ModΣ(Φ) is the subclass of ModΣ formed by the models
of Φ. Logical consequence Φ |= ϕ means that A |= ϕ holds for all A ∈ ModΣ(Φ). Two
Σ-structures A and B are elementarily equivalent, denoted A 5 B if A (ϕ) = B (ϕ) for
each first-order Σ-sentence ϕ. We denote by EQ(A) the set of all Σ-structures that are
elementarily equivalent to A .

A Σ-theory is a set of Σ-sentences closed under logical consequence. A theory can
be presented semantically or axiomatically. A semantic presentation is a class C of Σ-
structures. Then, the theory semantically presented by C is the set of all Σ-sentences
which are satisfied by C :

T h(C) = {ϕ ∈ SentΣ | f or all A ∈ C A (ϕ) = t}

An axiomatic presentation is a decidable set of axioms Ax ⊆ SentΣ. Then, the theory
axiomatically presented by Ax is the set of all logical consequences of Ax:

T h(Ax) = {ϕ ∈ SentΣ | Ax |= ϕ}
A Σ-theory T is said to be complete if ϕ ∈ T or ¬ϕ ∈ T holds for each Σ-sentence ϕ.

558 Paqui Lucio et al.

2.1 Constraint Domains

A constraint logic program can be seen as a program where some function and
predicate symbols have a predefined meaning on a given domain, called the con-
straint domain. In particular, according to the standard approach for defining the
class of CLP(X) programs ([10], [11]), a constraint domain X consists of five parts
(ΣX ,LX ,AxX ,DX ,solvX), where ΣX = (FSX ,PSX) is the constraint signature, i.e., the
set of symbols that are considered to be predefined; LX is the constraint language, i.e.,
the class of ΣX -formulas that can be used in programs; DX is the domain of computa-
tion, i.e., a model defining the semantics of the symbols in ΣX ; AxX is an axiomatization
of the domain, i.e., a decidable set of ΣX -sentences such that DX |= AxX ; and, finally,
solvX is a constraint solver, i.e., an oracle that answers queries about constraints and
that is used for defining the operational semantics of programs. In general, constraint
solvers are expected to solve constraints, i.e., given a constraint c, one would expect
that the solver will provide the values that satisfy the constraint or that it returns an
equivalent constraint in solved form. However, in our case, we just need the solver to
answer (un)satisfiability queries. We consider that, given a constraint c, solvX (c) may
return F, meaning that c is not satisfiable or it may answer T, meaning that c is valid in
the constraint domain, i.e., that ¬c is unsatifiable. The solver may also answer U mean-
ing that either the solver does not know the right answer or that the constraint is neither
valid nor unsatifiable.

In addition, a constraint domain X must satisfy:

– T,F, t1 = t2 ∈ LX (hence the equality symbol = belongs to PSX) and LX is closed
under variable renaming, existential quantification and conjunction. Moreover, the
equality symbol = is interpreted as the equality in DX , and AxX includes the equal-
ity axioms for =.

– The solver does not take variable names into account, that is, for all renamings ρ,
solvX (c) = solvX (ρ(c))

– AxX ,DX and solvX agree in the sense that:

1. DX is a model of AxX .
2. For all c ∈ LX ∩SentΣX : solvX (c) = T ⇒ AxX |= c.
3. For all c ∈ LX ∩SentΣX : solvX (c) = F ⇒ AxX |= ¬c.

Moreover, solvX must be well-behaved, i.e., for any constraints c1 and c2:

1. solvX (c1) = solvX (c2) if |= c1 ↔ c2.

2. If solvX (c1) = F and |= c1 ← c∃� f ree(c1)
2 then solvX (c2) = F.

In what follows, a constraint domain X = (ΣX ,LX ,AxX ,DX ,solvX) will be called
a (ΣX ,LX)-constraint domain.

2.2 Constraint Logic Programs

A constraint logic program over a (ΣX ,LX)-constraint domain X can be seen as a gen-
eralization of a definite logic program. In particular, a constraint logic program consists
of rules p : − q1, ...,qn�c1, ...,cm, where each qi is an atom and each ci is a constraint in

A Functorial Framework for Constraint Normal Logic Programming 559

LX , and where atoms have the form q(t1, . . . ,tn), where q is a user-defined predicate and
t1, . . . ,tn are terms over ΣX . A program rule can be written, equivalently, in flat form

p(X1, . . . ,Xn) : − q1, ...,qn�c1, ...,cm,X1 = t1, . . .Xn = tn

where X1, . . . ,Xn are fresh new variables. In what follows we will assume that constraint
logic programs consist only of flat rules.

The semantics of a (ΣX ,LX)-logic program P can be also seen as a generalization
of the semantics of a (non-constrained) logic program. In particular, in [10,11], the
meaning of P is given in terms of the usual three kinds of semantics.

The operational semantics is defined in terms of finite or infinite derivations S1 �
S2 � . . .� Sn . . ., where the states Si in these derivations are tuples Gi�Ci, where Gi is a
goal (i.e., a sequence of atoms) and Ci is a sequence of constraints (actually a constraint,
since constraints are closed under conjunction). In particular, from a state S = G�C we
can derive the state S′ = G′�C′ if there is a rule p(X1, . . . ,Xn) : − G0�C0, and an atom
p(t1, . . . ,tn) in G, where X1, . . . ,Xn are fresh new variables not occurring in G�C, such
that G′ =<G0,(G\p(t1, . . . ,tn))> and C′ =<C,C0,X1 = t1, . . .Xn = tn > is satisfiable.
Then, given a derivation S1 � S2 � . . . � Sn, with Sn = Gn�Cn, we say that Cn is an
answer to the query S1 = G1�C1 if Gn is the empty goal.

The logical semantics of P is defined as the theory presented by P∪AxX .
Finally its algebraic semantics, M(P,X), is defined as the least model of P extend-

ing DX , in the sense that this model agrees with DX in the corresponding universe of
values and in the interpretation of the symbols in ΣX . It may be noted that Σ-structures
extending DX can be seen as subsets of BaseP(DX), where BaseP(DX) is the set of all
atoms of the form p(α1, . . . ,αn), where p is a user-defined predicate and α1, . . . ,αn are
values in DX . As in the standard case, the algebraic semantics of P can be defined as
the least fixpoint of the immediate consequence operator T XP : 2BaseP(DX) → 2BaseP(DX)

defined as follows:

T XP (I) = {σ(p) | σ : f ree(p) → DX is a valuation, (p :−a�c) ∈ P, I |=σ a and DX |=σ c}

In [11] it is proved that the above three semantics are equivalent in the sense that:

– The operational semantics is sound with respect to the logical semantics. That is, if
a goal G has answer c then P∪AxX |= c → G.

– The operational semantics is also sound with respect to the algebraic semantics.
That is, if a goal G has answer c then M(P,X) |= c → G.

– The operational semantics is complete with respect to the logical semantics. That is,
if P∪AxX |= c→G, then G has answers c1, . . . ,cn such that AxX |= c↔ c1∨ . . .∨cn.

– The operational semantics is complete with respect to the algebraic semantics. That
is, if M(P,X) |=σ G, where σ : f ree(G) → DX is a valuation, then G has an answer
c such that DX |=σ c

2.3 A Functorial Semantics for Constraint Logic Programs

The semantic definitions sketched in the previous subsection are, in our opinion, not
fully satisfactory. On one hand, a constraint logic program can be seen as a logic pro-
gram parameterized by the constraint domain. Then, we think that its semantics should

560 Paqui Lucio et al.

also be parameterized by the domain. This is not explicit in the semantics sketched
above. On the other hand, we think that the formulation of some of the previous equiva-
lence results could be found to be, in some sense, not fully satisfactory. Let us consider,
for instance, the last result, i.e., the completeness of the operational semantics with re-
spect to the algebraic semantics. In our opinion, a fully satisfactory result would have
said something like:

if M(P,X) |=σ G where σ : f ree(G) → DX is a valuation, then G has an answer c such
that solvX (c) 	= F

However this property will not hold unless the constraint solver solvX is also com-
plete with respect to the computation domain.

In our opinion, each of the three semantics (logical, algebraic and operational se-
mantics) of a constraint logic program should be some kind of mapping. Moreover, we
can envision that the parameters of the logical definitions would be constraint theories.
Similarly, the parameters for algebraic definitions would be computation domains. Fi-
nally, the parameters for the operational definitions would be constraint solvers. In this
context, proving the soundness and completeness of one semantics with respect to an-
other one would mean comparing the corresponding mappings. In particular, a given
semantics would be sound and complete with respect to another one if the two semantic
mappings are in some sense equivalent. On the other hand, we believe that these map-
pings are better studied if the given domains and codomains are not just sets or classes
but categories, which means taking care of their underlying structure. As a consequence,
these mappings would be defined as functors and not just as plain set-theoretic func-
tions.

In Section 5 the above ideas are fully developed for the case of constraint normal
logic programs. The case of constraint logic programs can be seen as a particular case.

3 Domain Constraints for Constraint Normal Logic Programs

In this section, we provide a notion of constraint domain for constraint normal logic
programming. The idea, as discussed in the introduction, is that this notion, together
with a proper adaptation of the semantic constructions used for (unconstrained) nor-
mal logic programs, will provide an adequate semantic definition for constraint normal
logic programs. In particular, the idea is that the logical semantics of a program should
be given in terms of the (3-valued) Clark-Kunen completion of the program, the op-
erational semantics in terms of some form of constructive negation [19,5,6], and the
algebraic semantics in terms of some form of fixpoint construction (as in [19,6,15]).

The main problem is that a straightforward extension (as it may be just the inclu-
sion of negated atoms in the constraint languages) of the notion of constraint domain
introduced in Subsection 2.1 will not work, as the following example shows.

Example 1 Let P be the CLP(N) program:

q(z) : − �z = 0
q(v) : − q(x)�v = x + 1

A Functorial Framework for Constraint Normal Logic Programming 561

and assume that its logical semantics is given by its completion:

∀z(q(z) ↔ (z = 0∨∃x(q(x)∧ v = x + 1))).

This means, obviously, that q(n) should hold for each n. Actually, the model defined
by the algebraic semantics seen in Subsection 2.1 would satisfy ∀zq(z). Now consider
that P is extended by the following definitions:

r : − ¬q(x)
s : − ¬r

whose completion is:
(r ↔∃x(¬q(x))) ∧ (s ↔¬r).

Now, the operational semantics, and also the ω-iteration of the Fitting’s operator
[7], would correspond to a three-valued structure extending IN, where both r and s are
undefined and where, as before, q(n) holds for each n. Unfortunately, such a structure
would not be a model of the completion of the program since this structure satisfies
∀zq(z) but it does not satisfy either ¬r or s.

The problem with the example above is that, if the algebraic semantics is defined by
means of the ω-iteration of an immediate consequence operator, then, in many cases, the
resulting structure would not be a model of the completion of the program. Otherwise,
if we define the algebraic semantics in terms of some least (with respect to some order
relation) model of the completion extending IN, then, in many cases, the operational
semantics would not be complete with respect to that model. Actually, in some cases
this model could be non (semi-)computable ([2], [8]).

In our opinion, the problem is related to the following observation. Let us suppose
that X = (Σ,L ,Ax,D,solv) and X ′ = (Σ,L ,Ax,D′,solv) are two constraint domains
that only differ in their domains of computation, D and D′, which are elementarily
equivalent. Now, a program defined over any of these domains would show exactly
the same behaviour, since both algebras satisfy exactly the same constraints, i.e., we
may consider that two structures that are elementarily equivalent should be considered
indistinguishable as domains of computation for a given constraint domain. As a con-
sequence, we may consider that the semantics of a program over two indistinguishable
constraint domains should also be indistinguishable. However, if P is a (Σ,L)-program,
then M(P,X) and M(P,X ′) are not necessarily elementarily equivalent. In particular if
we consider the program P of Example 1 and we consider as constraint domain a non-
standard model of the natural numbers IN′, then we would have that M(P, IN) |= ∀zq(z)
but M(P, IN′) 	|= ∀zq(z).

We think that this problem is caused by considering that the domain of computa-
tion, DX , of a constraint domain is a single structure. In the case of programs without
negation this apparently works fine and it seems quite reasonable from an intuitive
point of view. For instance, if we are writing programs over the natural numbers, it
seems reasonable to think that the computation domain is the algebra of natural num-
bers. However, when dealing with negation, we think that the computation domain of
a constraint domain should be defined in terms of the class of all the structures which

562 Paqui Lucio et al.

are elementarily equivalent to a given one. To be precise, we reformulate the notion of
constraint domain as follows:

Definition 2 A (ΣX ,LX)-constraint domain X is a 5-tuple (ΣX ,LX ,AxX ,DomX ,solvX),
where ΣX = (FSX ,PSX) is the constraint signature, LX is the constraint language,
DomX = EQ(DX) is the domain of computation, i.e., the class of all ΣX -structures
which are elementarily equivalent to a given structure DX , AxX is a decidable set of
ΣX -sentences such that DX |= AxX , and solvX is a constraint solver, such that:

– T,F,t1 = t2 ∈ LX (hence the equality symbol = belongs to PSX) and LX is closed un-
der variable renaming, existential quantification, conjunction and negation. More-
over, the equality symbol = is interpreted as the equality in DomX and AxX includes
the equality axioms for =.

– The solver does not take variable names into account, that is, for all variable re-
namings ρ, solvX (c) = solvX (ρ(c))

– AxX ,DomX and solvX agree in the sense that:
1. DX is a model of AxX .
2. For all c ∈ LX ∩SentΣ: solvX (c) = T ⇒ AxX |= c.
3. For all c ∈ LX ∩SentΣ: solvX (c) = F ⇒ AxX |= ¬c.

As before, we assume that solvX is well-behaved, i.e., for any constraints c1 and c2:

1. solvX (c1) = solvX (c2) if |= c1 ↔ c2.

2. If solvX (c1) = F and |= c1 ← c∃� f ree(c1)
2 then solvX (c2) = F.

4 Semantic Constructions for Constraint Normal Logic Programs

Analogously to constraint logic programs, given a signature Σ = (PSΣ,FSΣ), normal
constraint logic Σ-programs over a constraint domain X = (ΣX ,LX ,AxX ,DomX ,solvX),
can be seen as a generalization of a normal logic programs. So, a Σ-program now con-
sists of clauses of the form a :− !1, ..., !m�c1, . . . ,cn, where a and the !i, i ∈ {1, . . . ,m},
are a flat atom and flat literals, respectively, whose predicate symbols belong to PSΣ \
PSX and the c j, j ∈ {1, . . . ,n} belong to LX . As before, we also assume that all clauses
defining the same predicate p have exactly the same head p(X1, . . . ,Xm).

4.1 Logical Semantics

The standard logical meaning of a Σ-program P is its (generalized) Clark’s completion
CompX (P) = AxX ∪P∗, where P∗ includes a sentence

∀z(q(z) ↔ ((G1 ∧ c1)∃�z ∨ . . .∨ (Gk ∧ ck)∃�z))

for each q ∈ PSΣ \PSX , and where {(q(z) : − G1�c1), . . . ,(q(z) : − Gk�ck)} is the set
3 of all the clauses in P with head predicate q. In what follows, this set will be denoted
by De fP(q). Intuitively, in this semantics we are considering that De fP(q) is a complete

3 If the set is empty, then the above sentence is simplified to ∀z(q(z) ↔ F

A Functorial Framework for Constraint Normal Logic Programming 563

definition of the predicate q. A weaker logical meaning for the program P is obtained
by defining its semantics as AxX ∪P∀, where P∀, is the set including a sentence

∀z(q(z) ← ((G1 ∧ c1)∃�z ∨ . . .∨ (Gk ∧ ck)∃�z))

for each q ∈ PSΣ \PSX .

4.2 The BCN Operational Semantics

In this section we generalize the BCN operational semantics introduced in [16] and
refined in [1] in such a way that it can be used for any constraint domain. The BCN
operational semantics is based on two operators originally introduced by Shepherdson
[18] to characterize Clark-Kunen’s semantics in terms of satisfaction of (equality) con-
straints. Such operators exploit the definition of literals in the completion of programs
and associate a constraint formula to each query. As a consequence, the answers are
computed, on one hand, by a symbolic manipulation process that obtains the associated
constraint(s) of the given query and, on the other hand, by a constraint checking process
that deals with such constraint(s). In particular, the original version ([16]) of the BCN
operational semantics works with programs restricted to the constraint domain of terms
with equality.

Definition 3 For any program P, the operators T P
k and FP

k associate a constraint to
each query, as follows:

Let De fP(q)={q(z) : − !i�ci | 1 ≤ i ≤ m}

T P
0 (q(z)) = F T P

k+1(q(z)) =
∨m

i=1∃yi(ci ∧T P
k (!i))

FP
0 (q(z)) = F FP

k+1(q(z)) =
∧m

i=1∀yi(¬ci ∨FP
k (!i))

For all k ∈ IN:

T P
k (T) = T FP

k (T) = F

T P
k (¬q(z)) = FP

k (q(z)) FP
k (¬q(z)) = T P

k (q(z))

T P
k (
∧n

j=1 ! j) =
∧n

j=1 T P
k (! j) FP

k (
∧n

j=1 ! j) =
∨n

j=1 FP
k (! j)

For any c ∈ LX , for any k ∈ IN:

T P
k (c) = c FP

k (c) = ¬c

Definition 4 Let P be a program and solvX a constraint solver. A BCN(P,solvX)-
derivation step is obtained by applying the following derivation rule:

(R) !1, !2�d is BCN(P,solvX)-derived from !1, !(x), !2�c if there exists k > 0 such that

d = T P
k (!(x))∧ c and solvX (d∃) 	= F.

564 Paqui Lucio et al.

Definition 5 Let P be a program and solvX a constraint solver.

1. A BCN(P,solvX)-derivation from the query L is a succession of BCN(P,solvX)-
derivation steps of the form L �(P, solvX) . . . �(P, solvX) L′. Then, L

n�(P, solvX)L′ means
that the query L′ is BCN(P,solvX)-derived from the query L in n BCN(P,solvX)-
derivation steps.

2. A finite BCN(P,solvX)-derivation L
n�(P, solvX)L′ is a successful derivation if L′ = �c.

In this case, c∃\ f ree(L) is the corresponding BCN(P,solvX)-computed answer.
3. A query L = !�c is a BCN(P,solvX)-failed query if solvX ((c → FP

k (!))∀) = T for
some k > 0 such that solvX (FP

k (!)∀) 	= F.

A selection rule is a function selecting a literal in a query and, whenever Solvx is
well-behaved, BCN(P,solvX) is independent of the selection rule used. To prove this
assertion we follow the strategy used in [14,11], so we first prove the next lemma.

Lemma 6 (Switching Lemma) Let P be a program and Solvx be a well-behaved solver.
Let L be a query, !1, !2 be literals in L and let L �(P, solvX) L1 �(P, solvX) L′ be a non-failed
derivation in which !1 has been selected in L and !2 in L1. Then there is a derivation
L �(P, solvX) L2 �(P, solvX) L′′ in which !2 has been selected in L and !1 in L2, and L′ and L′′

are identical up to reordering of their constraint component.

Theorem 7 (Independence of the selection rule) Let P be a program and solvX a
well-behaved solver. Let L be a query and suppose that there exists a successful
BCN(P,solvX)-derivation from L with computed answer c. Then, using any selection
rule R there exists another successful BCN(P,solvX)-derivation from L of the same
length with an answer which is a reordering of c.

Next, we establish the basis for relating the BCN(P,solvX) operational semantics to
the logical semantics of a particular class of constraint logic programs. The proposition
below provides the basis for proving soundness and completeness of the semantics.

Proposition 8 Let Σ = (FSX ,PSX ∪PS) be an extension of a given signature of con-
straints ΣX = (FSX ,PSX) by a set of predicates PS, and let P be a Σ-program. For each
ΣX -theory of constraints AxX , each conjunction of Σ-literals ! and each k in IN:

P∗ ∪T h(AxX) |= (T P
k (!) → !)∀

4.3 Fixpoint Semantics

According to what is argued in Section 3, we consider the domain (DomΣ/≡,4) for
computing immediate consequences defined as follows: Let DomΣ be the class of three-
valued Σ-interpretations which are extensions of models in DomX . Then, as it is done in
[19] to extend [13] to the general constraint case, we consider the Fitting’s ordering on
DomΣ interpreted in the following sense: For all partial interpretations A ,B ∈ DomΣ,
for each ΣX -constraint c(x) and each Σ-literal !(x):

A 4 B i f f A ((c → !)∀) = t ⇒ B ((c → !)∀) = t

A Functorial Framework for Constraint Normal Logic Programming 565

It is quite easy to see that (DomΣ,4) is a preorder. Therefore, we consider the equiv-
alence relation ≡ induced by 4 (A ≡ B if, and only if, A 4 B and B 4 A), and the
induced partial order

[A], [B] ∈ DomΣ/≡ : [A] 4 [B] i f f A 4 B

to build a cpo (DomΣ/≡,4) with a bottom class [⊥Σ] such that for each A ∈ [⊥Σ] we
have that A ((c → !)∀) 	= t for all ΣX -constraint c(x) and all Σ-literal !(x). That is, the
set of goals of the form (c → !)∀ satisfied by the models in [⊥Σ] is empty.

Proposition 9 (DomΣ/≡,4) is a cpo with respect to 4, and, the equivalence class [⊥Σ]
is its bottom element.

Definition 10 (Immediate consequence operator T DomX
P) Let P be a Σ-program, then

the immediate consequence operator T DomX
P : DomΣ/≡ → DomΣ/≡ is defined for each

[A] ∈ DomΣ/≡, as

T DomX
P ([A]) = [ΦDXP (A)]

where DX is the distinguished domain model in the class DomX , A is any model in [A],
and [ΦDXP (A)] is the ≡-class of models such that for each ΣX -constraint c(x) and each
Σ-atom p(x),

(i) ΦDXP (A)((c → p)∀) = t if, and only if, there are (renamed versions of) clauses
{p(x) : − !i

1, . . . , !
i
ni

�di | 1 ≤ i ≤ m} ⊆ De fP(p) and DX -satisfiable constraints
{ci

j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ ni} such that

• A ((ci
j → !i

j)
∀) = t

• DX ((c →∨1≤i≤m∃yi(
∧

1≤ j≤ni
ci

j ∧di))∀) = t

(ii) ΦDXP (A)((c → ¬p)∀) = t if, and only if, for each (renamed version) clause in
{p(x) : − !i

1, . . . , !
i
ni

�di | 1 ≤ i ≤ m} = De fP(p(x)) there is a Ji ⊆ {1, . . .ni} and
DX -satisfiable constraints {ci

j | 1 ≤ i ≤ m ∧ j ∈ Ji} such that

• A ((ci
j →¬!i

j)
∀) = t

• DX ((c →∧1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t

where, for each i ∈ {1, . . . ,m}, yi are the free variables in {!i
1, . . . , !

i
ni
,di} not in x.

Remark 11 In the definition of the operator ΦDXP , we could choose any other model in
DomX , instead of DX , since all of them are elementarily equivalent, and the domain is
just used for constraint satisfaction checking. Similarly, A could be any other model in
[A] since it is used for checking satisfaction of sentences of the form (c→ !)∀. Moreover,

models in a ≡-class [ΦDXP (A)] are elementarily equivalent in its restrictions to ΣX . In

fact, [ΦDXP (A)]|ΣX = DomX since, all classes in DomΣ are (conservative) predicative

extensions of DomX and, the operator T DomX
P does not compute new consequences from

LX .

566 Paqui Lucio et al.

In what follows we will prove that T DomX
P is continuous in the cpo DomΣ/≡. As a

consequence, it has an effectively computable least fixpoint.

Theorem 12 T DomX
P is continuous in the cpo (DomΣ/≡,4), so it has a least fixpoint

T DomX
P ↑ω =

⊔
[ΦDXP ↑n].

However, it is important to notice that, as we will show in example 13,⊔
[ΦDXP ↑n] 	= [ΦDXP ↑ω]

In fact, the operator ΦDXP can be considered a variant of the Stuckey’s immediate con-

sequence operator in [19], so, it inherits its drawbacks. On one hand, ΦDXP is monotonic
but not continuous. On the other hand, it will have different behavior depending on the
constraint domain in DomX that may be predicatively extended.

Example 13 Consider the CNLP(N)-program from example 1:

q(z) : − �z = 0
q(v) : − q(x)�v = x + 1
r : − ¬q(x)

First, let us look at the behaviour of the operator Φ:

– ΦNP ↑ω would be the model extending N where r is undefined and all the sentences
{(z = n → q(z))∀|n ≥ 0} are true, so, the sentence ∀z.q(z) will be evaluated as true

in ΦNP ↑ω. This is not a fixpoint since we can iterate once more, to obtain a different

model ΦNP ↑(ω+ 1) where ¬r is true.
– In contrast, if we consider any non-standard model M elementarily equivalent to
N , the sentence ∀z.q(z) will be evaluated as undefined in ΦMP ↑ω, so, no more
consequences will be obtained if we iterate once more.

Now we can compare with the behaviour of T :

Similar to the first case, T EQ(N)
P ↑ω is the class of ≡-equivalent models extending

EQ(N), where r is undefined and all the sentences

{(z = n → q(z))∀|n ≥ 0}

are true. But now, this is a fixpoint in contrast to what happens with any other operator
working over just one standard model. In particular, it is not difficult to see that the

sentence ∀z.q(z) is never satisfied (by models) in [ΦNP ↑k] for any k. This is because
we are considering also non standard models (as the predicative extension of the above
M) at each iteration. Therefore, as a consequence of the definition of

⊔
, we have that

∀z.q(z) is not satisfied in

T EQ(N)
P ↑ω =

⊔
[ΦNP ↑k]

A Functorial Framework for Constraint Normal Logic Programming 567

Finally, as a consequence of the continuity of T DomX
P , we can extend a result from

Stuckey [19] related to the satisfaction of the logical consequences of the completion in
any ordinal iteration of ΦDXP , until the ω iteration of T DomX

P (its least fixpoint):

Theorem 14 (Extended Theorem of Stuckey)
Let T h(DomX) be the complete theory of DomX . For each Σ-goal !�c:

1. P∗ ∪T h(DomX) |=3 (c → !)∀ ⇔ ∀A ∈ T DomX
P ↑ω : A ((c → !)∀) = t

2. P∗ ∪T h(DomX) |=3 (c →¬!)∀ ⇔ ∀A ∈ T DomX
P ↑ω : A ((c →¬!)∀) = t

5 Functorial Semantics

As introduced in Subsection 2.3, one basic idea in this work is to formulate the construc-
tions associated to the definition of the operational, least fixpoint and logical semantics
of constraint normal logic programs in functorial terms. This allows us to separate the
study of the properties satisfied by these three semantic constructions, from the classic
comparisons of three kinds of semantics of programs over a specific constraint domain.
Moreover, once the equivalence of semantic constructions is (as intended) obtained, the
classical completeness results that can be obtained depending on the relations among
solvers, theories and domains, are just consequences of the functorial properties.

Comparing these semantic functors is not straightforward since, intuitively, their
domains and codomains are different categories. We can see the logical semantics of
a (ΣX ,LX)-constraint logic program P as a mapping (a functor), let us denote it by
L O G P, whose arguments are logical theories and whose results are also logical theo-
ries. The algebraic semantics of P, denoted A L G P, can be seen as a functor that takes as
arguments logical structures and returns as results logical structures. Finally, the oper-
ational semantics of P, denoted O P P can be considered to take as arguments constraint
solvers and return as results (for instance) interpretations of computed answers.

We solve this problem by representing all the semantic domains involved in terms
of sets of formulas. This is a quite standard approach in the area of Logic Program-
ming where, for instance, (finitely generated) models are often represented as Herbrand
structures (i.e., as classes of ground atoms) rather than as algebraic structures. One
could criticize this approach in the framework of constraint logic programming, since
a class does not faithfully represents a single model (the constraint domain of com-
putation DomX) but a class of models. However, we have argued previously that, when
dealing with negation, a constraint domain of computation should not be a single model,
but the class of models which are elementarily equivalent to DomX . In this sense, one
may note that a class of elementarily equivalent models is uniquely represented by a
complete theory. However, since we are dealing with three-valued logic, we are going
to represent model classes, theories and solvers as pairs of sets of sentences, rather than
just as single sets.

In what follows, we present the categorical setting required for our purposes. Being
more precise, first of all, we need to define the categories associated to solvers, compu-
tation domains and theories (axiomatizable domains). Then, we will define the category
which properly represents the semantics of programs. Finally, we will define the three

568 Paqui Lucio et al.

functors that respectively represent the operational, logical and algebraic semantics of
a constraint normal logic programs.

Definition 15 Given a signature ΣX , a ΣX -pre-theory M is a pair of sets of ΣX -sen-
tences (Mt,Mf).

Remarks and Definitions 16

1. Given a solver solvX of a given language LX of ΣX -constraints, we will denote by
M solvX the pre-theory associated to solvX , i.e., the pair (Mt,Mf) where Mt is
the set of all constraints c ∈ LX such that solvX (c) = T and Mf is the set of all
constraints c ∈ LX such that solvX (c) = F.

2. Similarly, given a set of axioms AxX of a given language LX of ΣX -constraints, we
will denote by M AxX the theory associated to AxX .

3. Finally, given a computation domain DomX of a given language LX of ΣX -
constraints, we will denote by MDomX the theory associated to DomX , i.e., the pair
(Mt,Mf) where Mt is the set of sentences satisfied by DomX and Mf is the set
of sentences which are false in DomX . Note that, since constraint domains are typ-
ically two-valued, Mt would typically be a complete theory and, therefore, Mf is
the complement of Mt.

For the sake of simplicity, given a pre-theory M , we will write M (c) = t, to mean
c ∈Mt; M (c) = f, to mean c ∈Mf; and M (c) = u, otherwise.

Now, according to the above ideas, we will define categories to represent constraint
solvers, computation domains and domain axiomatizations. Also, following similar
ideas we are going to define a category of semantic domains for programs. In this case,
we will define the semantics in terms of sets of formulas. However, we will restrict
ourselves to sets of answers, i.e., formulas with the form c → G, where G is any goal.

Definition 17 (Categories for Constraint Domains and Program Interpretations)
Given a signature ΣX we can define the following categories:

1. The category of ΣX -pre-theories, PreThΣX (or just PreTh if ΣX is clear from the
context) is defined as follows:

– Its class of objects is the class of ΣX -pre-theories.
– For each pair of objects M andM ′ there is a morphism from M to M ′, noted

just by M 4c M ′, if Mt ⊆M ′
t and Mf ⊆M ′

f
2. T hΣX (or just T h) is the full subcategory of PreThΣX whose objects are theories.
3. CompThΣX

(or just CompTh) is the full subcategory of PreThΣX whose objects are

complete theories
4. Given a constraint language LX and a signature Σ extending ΣX , ProgIntΣ

(ΣX ,LX)
(or just ProgInt if Σ,ΣX and LX are clear from the context) is the category where:

– Its objects are sets of sentences (c → !)∀ or (c →¬!)∀, where c ∈ LX and ! is
a conjunction of Σ-literals.

A Functorial Framework for Constraint Normal Logic Programming 569

– For each pair of objects A and A ′ there is a morphism from A to A ′, noted just
by A 4 A ′ if A ⊆ A ′

• ΣX ⊆ ΣX ′ and
• for each (FSX ,PSX ∪PS)-literal !(x) and ΣX -formula c(x), A ((c→ !)∀)=
t implies A ′((c → !)∀) = t, and A ((c → ¬!)∀) = t implies A ′((c →
¬!)∀) = t.

As pointed out before, this categorical formulation allows us to speak about rela-
tions among solvers, domains and theories by establishing morphisms among them in
the common category PreTh, in such a way that the morphism between two objects rep-
resents the relation “agrees with” (or completeness if they are seen in the reverse sense).
To be more precise, given a constraint domain X =(ΣX ,LX ,AxX ,DomX ,solvX), we can
reformulate the conditions (in Section 2.1) required among solvX , DomX and AxX as:

M solvX 4c M AxX 4c MDomX

in PreTh. That is, since DomX must be a model of AxX , there is a morphism from
M AxX toMDomX . Moreover, since solvX must agree with AxX , there is a morphism from
M solvX toM AxX . Then, by transitivity, solvX agrees with DomX , so there is a morphism
M solvX to MDomX . In addition, we can also reformulate other conditions in these terms:

– solvX is AxX -complete (respectively, DomX -complete) if, and only if, M AxX 4c

M solvX (respectively,MDomX 4c M solvX).
– AxX completely axiomatizes DomX if, and only if,MDomX 4cM AxX , so, as expected
M AxX =MDomX .

Finally, we will define the three functors that represent, for a given program P, its
operational, its algebraic or least fixpoint, and its logical semantics.

Definition 18 (Functorial semantics) Let P be a Σ-program. We can define three func-
tors O P P : PreT h→ProgInt, A L G P : CompTh→ProgInt and L O G P : T h→ ProgInt
such that:

a) O P P, A L G P and L O G P assign objectsM in its corresponding source category to
objects in ProgInt, in the following way

1. Operational Semantics:

O P P(M) = {(c → !)∀ | (M (c∃) 	= f) and there is a BCN(P,M)−derivation
for !�T with computed answer d such that M ((c → d)∀) = t}∪
{(c →¬!)∀ | !�c is a BCN(P,M)− failed goal}

2. Least Fixpoint Semantics:

A L G P(M) = {(c → !)∀ | (M (c∃) 	= f)∧T MP ↑ω |= (c → !)∀}∪
{(c →¬!)∀ | (M (c∃) 	= f)∧T MP ↑ω |= (c →¬!)∀}

570 Paqui Lucio et al.

3. Logical Semantics:

L O G P(M) = {(c → !)∀ | (M (c∃) 	= f)∧P∗ ∪T h(M) |= (c → !)∀}∪
{(c →¬!)∀ | (M (c∃) 	= f)∧P∗ ∪Th(M) |= (c →¬!)∀}

b) To each pair of objects M and M ′ such that M 4c M ′ in the corresponding
source category, F ∈ {A L G P,L O G P} assigns the morphism F (M) 4 F (M ′) in
ProgInt. However, O P P is contravariant, i.e.,M 4cM ′ in PreTh implies F (M ′)4
F (M) in ProgInt.

It is easy to see that A L G P and L O G P are functors as a straightforward conse-
quence of the fact that morphisms are partial orders and the monotonicity of the opera-
tor T MP and the logic, respectively. The contravariance of O P P is a consequence of the
fact that the BCN-derivation process only makes unsatisfiability queries to the solver
to prune derivations. This means that when Mf is larger the derivation process prunes
more derivation sequences.

Now, given a (ΣX ,LX)-program P, we can define the semantics of P as

[[P]] = (O P P,A L G P,L O G P)

6 Equivalence of Semantics

In this subsection, we will first prove that the semantic constructions represented by the
functors O P P, A L G P and L O G P are equivalent in the sense that for each object M in
CompTh, O P P(M), A L G P(M), and L O G P(M) are the same object in ProgInt.

Then, we will show the completeness of the operational semantics with respect
to the algebraic and logical semantics just as a consequence of the fact that functors
preserve the relations from its domains into its codomains.

Theorem 19 Let P be a Σ-program. For each object M in CompTh,

O P P(M) = A L G P(M) = L O G P(M)

Finally, we present the usual completeness results of the operational semantics that
can be obtained when the domains, theories and solvers are not equivalent. As we
pointed out before, these results can be obtained just as a consequence of working with
functors. In particular, since M solvX 4c MDomX the contravariance of O P P implies that
A L G P(MDomX) 4c O P P(M solvX), and similarly for the logical semantics. That is:

Corollary 20 (Completeness of the operational semantics) For any program P, O P P

is complete with respect to A L G P and with respect to L O G P. That is, for each con-
straint domain (ΣX ,LX ,AxX ,DomX ,solvX):

– A L G P(MDomX) 4c O P P(M solvX)
– L O G P(M AxX) 4c O P P(M solvX)

Acknowledgements: The authors would like to thank an anonymous referee for his
work in improving this paper. This work has been partially supported by the Spanish
CICYT project GRAMMARS (ref. TIN2004-07925-C03).

A Functorial Framework for Constraint Normal Logic Programming 571

References

1. J. Álvez, P. Lucio, and F. Orejas. Constructive negation by bottom-up computation of literal
answers. Proc. 20004 ACM Symp. on Applied Computing, pp. 1468–1475, 2004.

2. J. A. Bergstra, M. Broy, J. V. Tucker, and M. Wirsing. On the power of algebraic specifica-
tions. In Jozef Gruska and Michal Chytil, editors, Math. Foundations of Computer Science
1981, Lecture Notes in Computer Science 118: 193–204. Springer, 1981.

3. W. A. Carnielli. Sistematization of finite many-valued logics through the method of tableaux.
J. of Symbolic Logic, 52(2):473–493, 1987.

4. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293–322. Plenum Press. New York, 1978.

5. W. Drabent. What is a failure? An approach to constructive negation. Acta Informática,
32:27–59, 1995.

6. F. Fages. Constructive Negation by pruning. J. of Logic Programming, 32:85–118, 1997.
7. M. Fitting. A Kripke-Kleene semantics for logic programs. J. of Logic Programming, 4:295–

312, 1985.
8. J. Goguen and J. Meseguer. Initiality, Induction and Computability. in Algebraic Methods

in Semantics, (M. Nivat and J. Reynolds, eds.). Cambridge Univ. Press:459–540, 1985.
9. J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL, pages 111–119, 1987.

10. J. Jaffar and M. Maher. Constraint logic programming: a survey. J. of Logic Programming,
(19/20):503–581, 1994.

11. J. Jaffar, M. Maher, K. Marriot, and P. Stukey. The semantics of constraint logic programs.
J. of Logic Programming, (37):1–46, 1998.

12. S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
13. K. Kunen. Signed data dependencies in logic programs. J. of Logic Programming, 7:231–

245, 1989.
14. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
15. P. Lucio, F. Orejas, and E. Pino. An algebraic framework for the definition of compositional

semantics of normal logic programs. J. of Logic Programming, 40:89–123, 1999.
16. E. Pasarella, E. Pino, and F. Orejas. Constructive Negation without subsidiary trees. In 9th

Int. Workshop on Functional and Logic Programming, Benicassim, Spain. 2000.
17. T. Przymusinski. On the declarative semantics of deductive databases and logic programs.

In J. Minker, editor, Foundations of Deductive Databases and Logic Progamming, pages
193–216. Morgan Kaufmann, 1988.

18. J.C. Shepherdson. Language and equality theory in logic programming. Technical Report
PM-91-02, University of Bristol, 1991.

19. P. J. Stuckey. Negation and constraint logic programmming. Information and Computation,
118:12–23, 1995.

7 Appendix

Proof of Lemma 6 Let L be !1, !1, !2, !2, !3�c. Then, L1 = !1, !2, !2, !3�c∧T P
k (!1), k> 0,

and solvX ((c∧T P
k (!1))∃) 	= F, and, L′ = !1, !2, !3�c∧T P

k (!1)∧T P
k′ (!2), k> 0, k′ > 0 and

solvX ((c∧T P
k (!1)∧T P

k′ (!2))∃) 	= F.
Now, to construct the derivation L �(P, solvX) L2 �(P, solvX) L′′ in which !2 is select first

in L1 we choose L2 = !1, !1, !2, !3�c∧T P
k′ (!2) and L′′ = !1, !2, !3�c∧T P

k′ (!2)∧T P
k (!1).

Since solvX ((c∧T P
k (!1)∧T P

k′ (!2))∃) 	= F, by the well-behavedness property of solvX ,
we know that solvX ((c∧T P

k′ (!2))∃) 	= F and solvX ((c∧T P
k′ (!2)∧T P

k (!1))∃) 	= F. Hence,
L �(P, solvX) L2 �(P, solvX) L′′ is a valid BCN(P,solvX)-derivation.

572 Paqui Lucio et al.

Proof of Theorem 7 The proof follows by induction on the length, n, of the
BCN(P,solvX)-derivation. The base step, n = 0, trivially holds. Assume that the state-
ment holds for n′ < n. Now, to prove the inductive step, consider the BCN(P,solvX)-
derivation

L �(P, solvX) L1 �(P, solvX) . . .�(P, solvX) Ln−1 �(P, solvX) �c

Since this is a successful derivation, each literal in L is selected at some point of
the derivation. Let us consider the literal ! in L and suppose that it is selected in
Li. By applying Lemma 6 i times we can reorder the above derivation to obtain the
following one L �(P, solvX) L′

1 �(P, solvX) . . . �(P, solvX) L′
n−1 �(P, solvX) �c′, such that ! is se-

lected in L and c′ is a reordering of c. Assume that the selection rule R selects lit-
eral ! when considering the singleton derivation L. From the induction hypothesis,

there is another BCN(P,solvX)-derivation L′
1

n−1� (P, solvX)�c′′, using the selection rule R′,
where R′ selects literals as they are selected by the rule R when considering the

derivation L �(P, solvX) L′
1

n−1� (P, solvX)�c′′. So, c′′ is a reordering of c′ and hence of c. Thus,
L �(P, solvX) L′

1 �(P, solvX) . . .�(P, solvX) L′
n−1 �(P, solvX) �c′′ is the BCN(P,solvX)-derivation we

were looking for.

Proof of proposition 8 We are going to prove that P∗ ∪T h(AxX) |= (T P
k (!) → !)∀ for

each k ∈ IN, since it is easy to see that the general case is a straightforward consequence
of Definition 3.

The proof follows by induction on k and it merely relies on standard syntactical
properties of first-order logic. For the base case, k = 0, the proposition trivially holds.
Assume that the statement holds for k′ < k. Assume T P

k (!) is satisfiable (if it is not
satisfiable the proposition trivially holds). There are two cases:

1. != p(x). Then, applying twice the definition of T P
k , the first time for atoms and the

second time for the conjunction of literals, we obtain the following:

T P
k (p(x)) =

m∨
i=1

∃yi(ci ∧T P
k−1(!

i)) =
m∨

i=1

∃yi(ci ∧
ni∧

j=1

T P
k−1(!

i
j))

Now, from the induction hypothesis we have that, for all i ∈ {1, . . . ,m} and for all
j ∈ {1, . . . ,ni}:

P∗ ∪Th(AxX) |= (T P
k−1(!

i
j) → !i

j)
∀

Then, it follows logically that,

P∗ ∪T h(AxX) |= (
m∨

i=1

∃yi(ci ∧
ni∧

j=1

T P
k−1(!

i
j)) →

m∨
i=1

∃yi(ci ∧
ni∧

j=1

!i
j))

∀

And, again, applying the definition of T P
k we obtain the following:

P∗ ∪T h(AxX) |= (T P
k (p) →

m∨
i=1

∃yi(ci ∧
ni∧

j=1

!i
j))

∀ (1)

A Functorial Framework for Constraint Normal Logic Programming 573

In addition, by the completion of predicate p(x), we have that,

P∗ ∪T h(AxX) |= (
m∨

i=1

∃yi(ci ∧
ni∧

j=1

!i
j) → p(x))∀ (2)

Hence, by (1) and (2), we can conclude that

P∗ ∪Th(AxX) |= (T P
k (p(x)) → p(x))∀, k > 0

2. ! = ¬p(x). Then, T P
k (¬p(x)) = FP

k (p(x)), and applying the definition of FP
k we

obtain the following:

FP
k (p(x)) =

m∧
i=1

∀yi(¬ci ∨FP
k−1(!

i)) =
m∧

i=1

∀yi(¬ci ∨
ni∨

j=1

FP
k−1(!

i
j))

Using the induction hypothesis we have that, for all i ∈ {1, . . . ,m}, j ∈ {1, . . . ,ni}:

P∗ ∪Th(AxX) |= (FP
k−1(!

i
j) →¬!i

j)
∀

Therefore, it follows logically that,

P∗ ∪T h(AxX) |= (
m∧

i=1

∀yi(¬ci ∨
ni∨

j=1

FP
k−1(!

i
j)) →

m∧
i=1

∀yi(¬ci ∨
ni∨

j=1

¬!i
j))

∀

Again, applying the definition of FP
k , we have that,

P∗ ∪T h(AxX) |= (FP
k (p(x)) →

m∧
i=1

∀yi(¬ci ∨
ni∨

j=1

¬!i
j))

∀ (3)

Finally, we use the completion of the predicate p(x) to obtain:

P∗ ∪T h(AxX) |= (
m∧

i=1

∀yi(¬ci ∨
ni∨

j=1

¬!i
j) →¬p(x))∀ (4)

Hence, by (3) and (4), we can conclude that

P∗ ∪Th(AxX) |= (FP
k (p(x)) →¬p(x))∀, k > 0 �

Proof of proposition 9 To prove that (DomΣ/≡,4) is a cpo, we show that each increas-
ing chain {[A i]}i∈I ⊆ DomΣ/≡, [A 1] 4 . . .4 [A n] 4 . . ., has a least upper bound

⊔
[A n].

Let [A] be such that A ((c → !)∀) = t iff, for some n, A n((c → !)∀) = t. Then, it is
almost trivial to see that

– for each n, [A n] 4 [A]
– for any other [B] such that [A n] 4 [B] for each n, [A] 4 [B].

Finally, it is trivial to see that [⊥Σ] 4 [A] for all [A] ∈ DomΣ/≡.

574 Paqui Lucio et al.

Proof of Theorem 12 First of all, T DomX
P is monotonic as a consequence of the fact that

ΦDXP is monotonic. Then, being T DomX
P monotonic, to prove that it is continuous it is

enough to prove that is is finitary. That is: For each increasing chain {[A n]}n∈I, [A 1] 4
. . .4 [A n] 4 . . .

T DomX
P (

⊔
[A n]) 4

⊔
T DomX

P ([A n])

Let [A] =
⊔

[A n] and [B] = T DomX
P (

⊔
[A n]) = [ΦDXP (A)]. Let us assume B ((c →

!)∀) = t. We have two cases:

(a) If != p(x) then, by the definition of the operator ΦDXP , we know there are (renamed
versions of) clauses {p(x) :− !i

1, . . . , !
i
ni

�di | 1 ≤ i ≤ m} in P and DX -satisfiable
constraints {ci

j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ ni} such that

• A ((ci
j → !i

j)
∀) = t

• A ((c →∨1≤i≤m∃yi(
∧

1≤ j≤ni
ci

j ∧di))∀) = t

In such a situation, by definition of
⊔

, we know that for each 1 ≤ i ≤ m and 1 ≤
j ≤ ni there is a [A k] ∈ {[A n] | n ∈ I} such that A k((ci

j → !i
j)
∀) = t. Then, since

(DomΣ/≡,4) is a cpo, we know that each finite sub-chain has a least upper bound
in {[A n]}n∈I . Let it be [A s]. In addition, since all models in DΣ are elementarily
equivalent we can state that

• A s((ci
j → !i

j)
∀) = t

• A s((c →
∨

1≤i≤m∃yi(
∧

1≤ j≤ni
ci

j ∧di))∀) = t

Therefore, ΦDXP (A s)((c → p(x))∀) = t so for all models C ∈ [ΦDXP (A s)] we have
that C ((c → p(x))∀) = t. Thus, by definition of

⊔
, this implies that for all C ′ ∈⊔

[ΦDXP (A n)] =
⊔
T DomX

P ([A n]) we have that C ′(c → p(x)))∀ = t.
(b) The proof for ! = ¬p(x) proceeds in the same way. That is, by the definition of

the operator ΦDXP , we know that for each (renamed version) clause in {p(x) :
− !i

1, . . . , !
i
ni

�di | 1 ≤ i ≤ m} = De fP(p(x))) there is a Ji ⊆ {1, . . .ni} and DX -
satisfiable constraints {ci

j | 1 ≤ i ≤ m ∧ j ∈ Ji} such that

• A ((ci
j →¬! j)∀) = t

• A ((c →∧1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t

Again, by definition of
⊔

, we know that for each j ∈ J there is a [A j]∈ {[A n] |n ∈ I}
such that A j((c j → ¬! j)∀) = t. Then, as a consequence of (DomΣ/≡,4) being a
cpo, and all models in DΣ being elementarily equivalent, there is a class [A s] in the
chain such that

• A s((ci
j →¬! j)∀) = t

• A s((c →
∧

1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t

Therefore ΦDXP (A s)((c →¬p(x))∀) = t so, for all models C ∈ [ΦDXP (A s)] we have
that C ((c →¬p(x))∀) = t. And, finally, by definition of

⊔
, this implies that for all

C ′ ∈⊔[ΦDXP (A n)] =
⊔
T DomX

P ([A n]) we have that C ′(c →¬p(x)))∀ = t.

A Functorial Framework for Constraint Normal Logic Programming 575

Proof of Theorem 14 We prove that 1 and 2 hold for a goal !�c. Then, the general
case for !�c easily follows from the logical definition of the truth-value of (c → !)∀ and
(c →¬!)∀.
The Stuckey’s result states that P∗ ∪T h(DomX) |=3 (c → !)∀ if, and only if,

ΦDXP ↑ k((c → !)∀) = t

for some finite k. So, by definition of T DomX
P , this is equivalent to

∀A ∈ T DomX
P ↑ k : A ((c → !)∀) = t

for some finite k. And, by definition of
⊔

, to

∀A ∈
⊔
T DomX

P ↑ k : A ((c → !)∀) = t

Proof of Theorem 19 First of all, we have that L O G P(M) = A L G P(M) as a direct
consequence of Theorem 14 (Extended Theorem of Stuckey). We will prove that

– A L G P(M) 4 O P P(M) and
– O P P(M) 4 L O G P(M)

(a) To prove that A L G P(M)4 O P P(M) we use induction on the number of iterations
of T MP . We just consider goals such that != p(x) and != ¬p(x), since the general
case follows from the properties of operators T P

k and FP
k and the fact that BCN is

independent of the selection rule. The base case n = 0 is trivial, since T MP ↑0 = [⊥Σ]
and [⊥Σ]((c → !)∀) 	= t for all ΣX -constraint c(x) and all Σ-literal !(x).
Assume that for all k ≤ n, T MP ↑k((c → !)∀) = t implies O P P(M)((c → !)∀) = t.
If ! = p(x) then, by the definition of T MP , we know that there are clauses {p(x) :
−!i

1, . . . , !
i
ni

�di |1≤ i≤m} in P andM -satisfiable constraints {ci
j | 1≤ i≤m ∧ 1≤

j ≤ ni} such that T MP ↑n((ci
j → !i

j)
∀) = t and

M ((c →
m∨

i=1

∃yi(
ni∧

j=1

ci
j ∧di))∀) = t

Then, by the induction hypothesis we have that O P P(M)((ci
j → !i

j)
∀) = t for all

1 ≤ i ≤ m and 1 ≤ j ≤ ni. Thus, there exist successful BCN(P,M)-derivations for
each 1 ≤ i ≤ m and 1 ≤ j ≤ ni:

!i
j�di �(P,M) �T P

ki
j
(!i

j)∧di

such that M ((T P
ki

j
(!i

j))∧di)∃) 	= f and M (ci
j → T P

ki
j
(!i

j))
∀) = t.

576 Paqui Lucio et al.

Let k > 0 be the largest number in {ki
j |1 ≤ i ≤ m ∧ 1 ≤ j ≤ ni}. Then, as a

consequence of the monotonicity of the operator T P
− , we knowM ((

∧ni
j=1 T P

k (!i
j))∧

di)∃) 	= f. And since

T P
k (

ni∧
j=1

!i
j) =

ni∧
j=1

T P
k (!i

j)

and

M ((
ni∧

j=1

ci
j → T P

k (
ni∧

j=1

!i
j))

∀) = t

we have that

M ((c →
m∨

i=1

∃yi(T
P

k (
ni∧

j=1

!i
j)∧di))∀) = t

That is, M (T P
k+1(p(x))∃) 	= f and

M ((c → T P
k+1(p(x)))∀) = t

Therefore, we can guarantee the existence of a successful BCN(P,M)-derivation:

p(x)�t �(P,M) �T P
k+1(p(x))

such that O P P(M)((c → p(x))∀) = t.
The proof for ! = ¬p(x) proceeds in the same way. That is, according to the def-
inition of the operator T MP , we know that for each (possibly renamed) clause in
{p(x) :− !i

1, . . . , !
i
ni

�di | 1 ≤ i ≤ m} = De fP(p(x))) there is a Ji ⊆ {1, . . .ni} and
M -satisfiable constraints {ci

j | 1 ≤ i ≤ m ∧ j ∈ Ji} such that:

• T MP ↑n((ci
j →¬! j)∀) = t

• M ((c → ∧1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t
Again, by the induction hypothesis we have that for all 1 ≤ i ≤ m and j ∈ Ji,
O P P(M)((ci

j →¬!i
j)
∀) = t so, for some ri

j > 0

M ((ci
j → FP

ri
j
(!i

j))
∀) = t

Let r > 0 be the largest number in {ri
j |1 ≤ i ≤ m ∧ j ∈ Ji}. Then, as a consequence

of the monotonicity of the operator FP
− , we know M ((

∨
j∈Ji

FP
r (!i

j))
∃) 	= f. And,

since FP
r (
∨

j∈Ji
!i

j)=
∨

j∈Ji
FP

r (!i
j) andM ((

∨
j∈Ji

ci
j →FP

r (
∨

j∈Ji
!i

j))
∀)= twe have

that

M ((c → FP
r+1(p(x)))∀) = t

Therefore, we can guarantee that p(x)�c is a BCN(P,M)-failure, so
O P P(M)((c →¬p(x))∀) = t.

(b) Finally, we prove that O P P(M) 4 L O G P(M). Again we have two cases:
(i) Suppose that O P P(M)((c → ¬!)∀) = t so, !�c is a BCN(P,M)-failed goal.

Hence, M ((c → FP
k (!))∀) = t, for some k > 0. Therefore, by Proposition 8,

we can conclude that P∗ ∪Th(M) |= (c →¬!)∀.

A Functorial Framework for Constraint Normal Logic Programming 577

(ii) Suppose now that O P P(M)((c → !)∀) = t. Again we will prove the case !=
p(x) since the general case will follow from the properties of T P

k and the fact
that BCN is independent of the selection rule. So we assume p(x)�c has a
BCN(P,M)-derivation

p(x)�t �(P,M) �T P
k (p(x))

such that M ((c → T P
k (p(x)))∀) = t. Then, again as a consequence of Proposi-

tion 8, we can conclude that P∗ ∪Th(M) |= (c → p(x))∀.

A Stochastic Theory of

Black-Box Software Testing

Karl Meinke

School of Computer Science and Communication,
Royal Institute of Technology, 100-44 Stockholm, Sweden

Abstract. We introduce a mathematical framework for black-box soft-
ware testing of functional correctness, based on concepts from stochastic
process theory. This framework supports the analysis of two important
aspects of testing, namely: (i) coverage, probabilistic correctness and
reliability modelling, and (ii) test case generation. Our model corrects
some technical flaws found in previous models of probabilistic correct-
ness found in the literature. It also provides insight into the design of
new testing strategies, which can be more efficient than random testing.

1 Introduction

Structural or glass-box testing of the functional correctness of software systems
has been theoretically studied at least since the early 1950s (see for example
[Moore 1956]). Although many useful structural test strategies have been de-
veloped, (see for example the survey [Lee and Yannakakis 1996]), theoretical
studies clearly indicate the limitations of structural testing. In particular the
complexity of structural testing techniques often grows exponentially with the
size of the system.

To overcome this limitation, software engineers use black-box testing meth-
ods for large systems (see e.g. [Beizer 1995]). We will assume that a functional
requirement on a system S can be modelled as a pair (p, q) consisting of pre-
condition p on the input data and a postcondition q on the output data of S.
The simplest strategy for black-box testing is random testing, in which input
vectors satisfying p are randomly generated, and the output of each execution is
compared with the postcondition q as a test oracle.

Efforts to improve on random testing, for example by careful manual design
of test cases based on system knowledge and programming expertise, face the
problem of proving their cost effectiveness. In fact to date, a general theoretical
framework in which different black-box test strategies can be compared seems to
be lacking. Constructing such a theory is a challenging problem for the theoreti-
cian. Not least because when structural features of a system S are hidden, much
less remains on which to build a mathematical model. Essentially we have only
the pre and postconditions p and q and the semantics or black-box behaviour
of S.

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 578–595, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Stochastic Theory of Black-Box Software Testing 579

In this paper we introduce a mathematical foundation for black-box testing
of functional correctness based on the theory of stochastic processes. Our ap-
proach is sufficiently general to deal with both: (i) coverage, test termination
and reliability modelling, and (ii) efficient test case generation. These two issues
seem to be central to any improvement in software testing technology.

A system under test is invisible under the black-box methodology. Thus we
can view its output as a source of stochastic behaviour under a sequence of tests.
Our approach exploits the analogy between:

(i) a black-box test which can be viewed as an input/output measurement made
on an unseen and randomly given program, and
(ii) a random variable which is a measurable function between two σ-fields.

Thus we can study how different strategies for black-box testing involve dif-
ferent assumptions about the finite-dimensional distributions (FDDs) of such
random variables. While exact calculations of probabilities are generally diffi-
cult, it seems possible to identify heuristics which simplify and approximate
these calculations. These can form the basis for new test strategies and tools.

The organisation of this paper is as follows. In Section 2 we formalise the
concept of test success for a program S with respect to a functional correctness
requirement {p}S{q}. In Section 3, we introduce the necessary concepts from
measure theory and the theory of stochastic processes which are used to formalise
probabilistic statements about testing. Our model corrects some technical flaws
found in previous models of probabilistic correctness in the literature. In Section
4, we consider the coverage problem and termination criteria for testing. In
Section 5 we consider efficient test case generation. Section 6 considers open
problems and future research.

2 Logical Foundations of Functional Black-Box Testing

In this section we formalise functional black-box testing within the traditional
framework of program correctness. The principle concept to be defined is that
of a successful black-box test for functional correctness.

To simplify our exposition, we consider requirements specifications and com-
putation over the ordered ring Z of integers. It should be clear that our approach
can be generalised to any countable many-sorted data type signature Σ, (see for
example [Loeckx et al. 1996]) and any minimal Σ algebra A.

The first-order language or signature Σring for an ordered ring of integers
consists of two constant symbols 0, 1, three binary function symbols +, ∗, −
and two binary relation symbols =, ≤. The ordered ring Z of integers is the first-
order structure with domain Z where the constant, function and relation symbols
are interpreted by the usual arithmetic constants, functions and relations.

Let X be a set of variables. The set T (Σring , X) of all terms is defined
inductively in the usual way, and T (Σring) = T (Σring , ∅) denotes the subset
of all variable free or ground terms. If α : X → Z is any assignment then

580 Karl Meinke

α : T (Σ, X) → Z denotes the term evaluation mapping. For any ground term t
we may write tZ for α(t).

We assume the usual definition of the set L(Σring , X) of all first-order for-
mulas over Σring and X as the smallest set containing all atomic formulas (equa-
tions and inequalities) which is closed under the propositional connectives ∧, ¬
and the quantifier ∀. The expression φ ∨ ψ denotes ¬(¬φ ∧ ¬ψ) while φ → ψ
denotes ¬φ ∨ ψ. The set Lω1, ω(Σring , X) of all infinitary first-order formulas
over Σring and X extends L(Σring , X) with closure under countably infinite
conjunctions ∧

i∈I

φi,

for I a countable set. (See e.g. [Barwise 1968].) This infinitary language plays
a technical role in Section 3 to translate first-order formulas into probabilistic
statements about testing.

We assume the usual definitions of a free variable in a formula or term, and
the substitution of a free variable by a term.

Next we recall how first-order formulas are used to define pre and postcondi-
tions for a program within the framework of the Floyd-Hoare theory of program
correctness. For an overview of this theory see e.g. [de Bakker 1980].

Definition 1. For any set X of variable symbols. define X ′ = {x′ | x ∈ X}. A
variable x ∈ X is termed a prevariable while x′ ∈ X ′ is termed the corresponding
postvariable.

A precondition is a formula p ∈ L(Σring , X) with only prevariables, while
a postcondition is a formula q ∈ L(Σring , X ∪X ′) that may have both pre and
postvariables.

Let Ω(X) be an arbitrary programming language in which each program ω ∈
Ω(X) has an interface i(ω) = x where x = x1, . . . , xk ∈ Xk is a finite sequence
of length k ≥ 1 of integer variables. The interface variables xi are considered to
function as both input and output variables for ω. If ω has the interface x we
may simply write ω[x]. Note that, consistent with black-box testing, we assume
no internal structure or syntax for Ω(X) programs. We will assume semantically
that each program ω[x] ∈ Ω(X) has a simple deterministic transformational
action on the initial state of x1, . . . , xk. In the sequel, for any set B, we let
B⊥ = B ∪ {⊥} where ⊥ denotes an undefined value. We let f : A→ B⊥ denote
a partial function between sets A and B that may be undefined on any value
a ∈ A, in which case we write f(a) = ⊥. If f(a) is defined and equal to b ∈ B
we write f(a) = b. We use [A → B⊥] to denote the set of all partial functions
from A to B.

Definition 2. Let Ω(X) be a programming language. By a semantic mapping
for Ω(X) we mean a mapping of programs into partial functions,

[[.]] :
⋃
k≥1

[Zk → Zk
⊥]

A Stochastic Theory of Black-Box Software Testing 581

where for any program ω ∈ Ω(X) with interface i(ω) = x1, . . . , xk

[[ω]] : Zk → Zk
⊥

is a partial recursive function.

Intuitively, for any input a = a1, . . . ak ∈ Zk, either ω fails to terminate when
the interface variables x1, . . . , xk are initialised to a1, . . . ak respectively, and
[[ω]](a) = ⊥, or else ω terminates under this initialisation, and [[ω]](a) =
b1, . . . bk, where bi is the state of the interface variable xi after termination.

Let us collect together the definitions introduced so far to formalise the con-
cepts of test success and failure. Recall the usual satisfaction relation Z, α |= φ
in Z for a formula φ (finitary or infinitary) under an assignment α : X → Z in
the Σring structure Z.

Definition 3. Let ω ∈ Ω(X) be a program with interface i(ω) = x1, . . . , xk ∈
Xk.

(i) A functional specification {p}ω{q} is a triple, where p ∈ L(Σring , X) is a
precondition and q ∈ L(Σring , X ∪X ′) is a postcondition.

(ii) A specification {p}ω{q} is said to be true in Z under assignments a : X → Z
and b : X ′ → Z if, and only if, Z, a |= p and if [[ω]](a(x1), . . . a(xk)) =
b(x′1), . . . , b(x′k) then Z, a ∪ b |= q. If {p}ω{q} is true in Z under a and b we
write

Z, a ∪ b |= {p}ω{q}.
We say that {p}ω{q} is valid in Z and write Z |= {p}ω{q}, if, and only if, for
every a : X → Z if there exists b : X ′ → Z such that [[ω]](a(x1), . . . a(xk)) =
b(x′1), . . . , b(x

′
k) then Z, a ∪ b |= {p}ω{q}.

(iii) Let p be a precondition and q be a postcondition. For any a : X → Z we say
that ω fails the test a of {p}ω{q} if, and only if, there exists b : X ′ → Z such
that Z, a |= p and [[ω]](a(x1), . . . a(xk)) = b(x′1), . . . , b(x′k) and

Z, a ∪ b 	|= q.

We say that ω passes the test a of {p}ω{q} if ω does not fail a.

Intuitively ω fails the test a : X → Z of {p}ω{q} if a satisfies the precon-
dition p, and ω terminates on the input a but the resulting output assignment
b : X ′ → Z does not satisfy the postcondition q. This definition is consistent with
the partial correctness interpretation of validity for {p}ω{q} used in Definition
3.(ii) (c.f. [de Bakker 1980]). Partial correctness (rather than the alternative to-
tal correctness interpretation) is appropriate if we require a failed test case to
produce an observably incorrect value in finite time rather than an unobservable
infinite loop. In particular, for this choice of Definitions 3.(ii) and 3.(iii) we have

Z 	|= {p}ω{q} ⇔ ω fails some test a of {p}ω{q}.

Thus we have formalised program testing as the search for counterexamples
to program correctness (under the partial correctness interpretation).

582 Karl Meinke

3 A Stochastic Calculus for Program Correctness

Within the framework of program correctness outlined in Section 2, we wish
to approach functional black-box testing in a quantitative way. The following
question seems central. Given a specification {p}ω{q} suppose that ω has passed
n tests a1, . . . , an of p and q: for any new test an+1 what is the probability that
ω will fail an+1? Intuitively, we expect this failure probability to monotonically
decrease as a function of n. For fixed n we also expect the failure probability to
depend on the values chosen for a1, . . . , an. An optimal testing strategy would
be to choose an+1 with the maximal probability that ω fails an+1, for each n ≥ 0.
In this section we will introduce a probabilistic model of testing that can be used
to answer this question.

Recall from probability theory the concept of a σ–algebra or σ–field (Ω, F) of
events, where Ω is a non-empty set of elements termed outcomes and F ⊆ ℘(Ω)
is a collection of sets, known as events, which is closed under countable unions
and intersections. (See e.g. [Kallenberg 1997].) Importantly for us, (A, ℘(A)) is
a σ-field, for any countable set A, including any set of partial recursive functions.

Definition 4. Let x = x1, . . . , xk ∈ Xk, for k ≥ 1, be an interface. By a
sample space of programs over x we mean a pair

Ω[x] = (Ω[x], eval),

where Ω[x] ⊆ Ω(X) is a subset of programs ω[x] all having the same interface
x, and eval : Ω[x] × Zk → Zk

⊥ is the program evaluation mapping given by

eval (ω, a1, . . . , ak) = [[ω]](a1, . . . , ak).

We say that Ω[x] is extensional if, and only if, for all programs ω, ω′ ∈ Ω[x]

(∀a ∈ Zk eval(ω, a) = eval (ω′, a)) → ω = ω′.

We consider extensional sample spaces of programs only. It is important for
distribution modeling that all programs ω ∈ Ω[x] have the same interface x.

Recall that a probability measure P on σ-field (Ω, F) is a function P : F →
[0, 1] satisfying: P(∅) = 0, P(Ω) = 1, and for any collection e1, e2, . . . ∈ F of
events which are pairwise disjoint, i.e. i 	= j ⇒ ei ∩ ej = ∅,

P(
∞⋃

i=1

ei) =
∞∑

i=1

P(ei).

The triple (Ω, F , P) is termed a probability space.
Let (Ω, F) and (Ω′, F ′) be σ-fields. A function f : Ω → Ω′ is said to be

measurable, if, and only if, for each event e ∈ F ′,

f−1(e) ∈ F .

A Stochastic Theory of Black-Box Software Testing 583

Let P = (Ω, F , P) be a probability space. A random variable X : Ω → Ω′ is a
measurable function. If X : Ω → Ω′ is any random variable then X induces a
probability function PX : F ′ → [0, 1] defined on any e ∈ F ′ by

PX(e) = P(X−1(e)).

Then (Ω′, F ′, PX) is a probability space. Thus one important role of a random
variable that we will exploit in Definition 9 is to transfer a probability measure
from F -events onto F ′-events.

We may take more than one measurement on the outcome of any random
experiment. We can consider any finite number or even an infinite number of
measurements. This leads us naturally to the important concept of a stochastic
process. Let I be any non-empty set. A stochastic process S over (Ω′, F ′) is
an I-indexed family of random variables S = 〈Si : Ω → Ω′ | i ∈ I〉. For each
ω ∈ Ω, the function S(ω) : I → Ω′ defined by

S(ω)(i) = Si(ω)

is termed a path of the process S. (See e.g. [Grimmet et al. 1982].)

Definition 5. Let x = x1, . . . , xk ∈ Xk, for k ≥ 1, be an interface and let
Ω[x] be a sample space of programs. Define

Ix = {x1, . . . , xk} × Zk

to be an indexing set for a family of random variables. For each index

(xi, a1, . . . , ak) ∈ Ix,

define the random variable S(xi, a1, ..., ak) : Ω[x] → Z⊥ by

S(xi, a1, ..., ak)(ω) =

{
⊥ if eval (ω, a1, . . . , ak) = ⊥,
eval(ω, a1, . . . , ak)i, otherwise.

Thus S(xi, a1, ..., ak)(ω) gives the output obtained for the interface variable xi by
executing program ω on the input a1, . . . , ak.

A path S(ω) : {x1, . . . , xk} × Zk → Z⊥ for the stochastic process S =
〈 Si | i ∈ Ix 〉 gives the entire input/output behaviour of the program ω.

Definition 5 exploits the analogy between: (i) a black-box test which can be
viewed as an input/output measurement made on an unseen and therefore essen-
tially randomly given program, and (ii) a random variable which is a measurable
function between two σ-fields. A test sequence is just a sequence of such in-
put/output measurements made on the same unseen program. Therefore, it is
natural to model all possible tests on the same program as a path of a stochastic
process. Hence we arrive at the model given by Definition 5.

Modelling programs as stochastic processes in this way now makes it possible
to derive probabilistic statements about test success and failure.

584 Karl Meinke

In the remainder of this section, we let (Ω[x], F , P) denote an arbitrary
probability space, where Ω[x] = (Ω[x], eval) is a countable extensional sample
space of programs, and F = ℘(Ω[x]). In order to assign probabilities to pre
and postconditions on any program ω ∈ Ω[x] we need to be able to represent
these as events (i.e. sets of programs) within the σ-field F . For this we begin by
showing how first-order terms can be analysed in terms of the random variables
introduced in Definition 5.

Now Z is a minimal Σring structure. So by definition, for any integer i ∈ Z
there exists a canonical numeral i ∈ T (Σring) which denotes i in Z, i.e. iZ = i.

Definition 6. For any assignment a : X → Z, we define the translation map-
ping

a� : T (Σring , X ∪ {x′1, . . . , x′k}) → T (Σring , Ix)

by induction on terms.
(i) a�(0) = 0 and a�(1) = 1.
(ii) For any variable x ∈ X, a�(x) = a(x),
(iii) For any postvariable x′ ∈ {x′1, . . . , x′k},

a�(x′) = (x, a(x1), . . . , a(xk)).

(iv) For any terms t1, t2 ∈ T (Σring , X ∪ X ′), and for any function symbol
op ∈ {+, ∗, −},

a�(t1 op t2) = (a�(t1) op a�(t2)).

In essence a� replaces each logical variable and prevariable with the name of its
value under a. Also a� replaces each postvariable with the index of its corre-
sponding random variable under a.

In order to translate first-order formulas into events we extend a� to
all first-order formulas by mapping these into the quantifier-free fragment of
Lω1, ω(Σ, Ix), in which even bound variables have dissappeared.

Definition 7. For any assignment a : X → A, we define the translation map-
ping

a� : L(Σring , X ∪ {x′1, . . . , x′k}) → Lω1, ω(Σring , Ix)

by induction on formulas.
(i) For any terms t1, t2 ∈ T (Σring , X∪{x′1, . . . , x′k}) and any relation symbol
R ∈ {≤, =},

a�(t1 R t2) = (a�(t1) R a�(t2)).

(ii) For any formulas φ1, φ2 ∈ L(Σring , X ∪ {x′1, . . . , x′k}),

a�(φ1 ∧ φ2) = (a�(φ1) ∧ a�(φ2))

a�(¬φ1) = ¬(a�(φ1))

A Stochastic Theory of Black-Box Software Testing 585

(iii) For any variable x ∈ X∪{x′1, . . . , x′k}, and any formula φ ∈ L(Σring , X∪
{x′1, . . . , x′k}),

a�(∀x φ) =
∧
i∈Z

a[z → i]�(φ[x/z])

where z ∈ X − {x1, . . . , xn} is the least (non-interface) variable (under a fixed
enumeration) such that z is not free in φ and a[z → i] : X → A agrees with a
everywhere except on z, where a[z → i](z) = i.

Now we can easily associate an event consisting of a set of programs with every
quantifier free formula φ ∈ Lω1, ω(Σring , Ix) as follows.

Definition 8. Define the event set F(φ) ⊆ Ω[x] for each quantifier free formula
φ ∈ Lω1, ω(Σring , Ix) by induction on formulas.
(i) For any terms t1[i1, . . . , im], t2[i1, . . . , im] ∈ T (Σring , Ix), and any rela-
tion symbol R ∈ {≤, =},

F(t1 R t2)) =

〈 Si1 , . . . , Sim 〉−1({ b ∈ Zm | Z, b |= t1 R t2 }).

(ii) For any quantifier free formulas φ1, φ2 ∈ Lω1, ω(Σring , Ix),

F(φ1 ∧ φ2) = F(φ1) ∩ F(φ2)

F(¬φ1) = Ω[x] − F(φ1)

(iii) For any countable family of quantifier free formulas
〈 φi ∈ Lω1, ω(Σring , Ix) | i ∈ I 〉,

F(
∧
i∈I

φi) =
⋂
i∈I

F(φi).

Notice in Definition 8.(i) we assume that { b ∈ Zm | Z, b |= t1 R t2 } is in-
deed an event on Zm. In the case that we take the discrete σ-field ℘(Zm) this
requirement is trivially satisfied.

Using Definition 8 we can now translate the probability distribution P on
programs into probability values for correctness statements. Thus we come to
the central definitions of this section.

Definition 9. Let φ ∈ L(Σring , X ∪ {x′1, . . . , x′k}) be any formula.

(i) We define the probability that φ is satisfiable under a : X → Z by

P(Sata(φ)) = P(F(a�(φ))).

(ii) We define the probability that φ is satisfiable by

P(Sat(φ)) = P(
⋃

a:X→Z

F(a�(φ))).

586 Karl Meinke

(i) We define the probability that φ is valid by

P(Z |= φ) = P(
⋂

a:X→Z

F(a�(φ))).

Definition 9.(i) provides a rigorous mathematical answer to the initial ques-
tion this section. It is helpful to illustrate this definition with some simple ex-
amples.

Example 1. Let x ∈ X be a single variable interface.
(i) Consider the specification

{ }ω{x′ = m ∗ x+ c},

which asserts that ω[x] computes a linear function f(x) = mx + c of its input
variable x. For any input assignment of a ∈ Z to x

F(a�(x′ = m ∗ x+ c)) =

F((x, a) = m ∗ a+ c) =

〈 S(x, a) 〉−1{b ∈ Z | Z, b |= (x, a) = m ∗ a+ c} =

{ω ∈ Ω[x] | eval(ω, a) = m ∗ a+ c}.
Thus

P(Sata(¬ x′ = m ∗ x+ c)) =

P({ω ∈ Ω[x] | eval(ω, a) 	= m ∗ a+ c})

is the probability that a randomly chosen single variable program ω[x] ∈ Ω[x]
fails the postcondition x′ = m ∗ x+ c on the test input a ∈ Z.
(ii) More generally, the probability that a program ω[x] will fail a test ak+1 ∈ Z
of p and q given that ω has already passed k tests a1, . . . , ak ∈ Z with output
b1, . . . , bk ∈ Z is the conditional probability

P(Satak+1(p ∧ ¬q) | {ω ∈ Ω : eval(ω, ai) = bi for 1 ≤ i ≤ k}).

Definition 9 satisfies several intuitive properties.

Proposition 1. Let φ, ψ ∈ L(Σring , X ∪ {x′1, . . . , x′k}) be any formulas.

(i) If Z |= φ then P(Z |= φ) = 1.

(ii) If Z |= ¬φ then P(Z |= φ) = 0.

(iii) If Z |= φ→ ψ then P(Z |= φ) ≤ P(Z |= ψ).

(iv) P(Z |= φ) = 1 − P(Sat(¬φ)).

(v) If Z |= φ↔ ψ then P(Z |= φ) = P(Z |= ψ).

Proof. Follows easily from Definition 9.

A Stochastic Theory of Black-Box Software Testing 587

By Proposition 1.(v) the probability that a correctness formula is valid is
independent of its syntactic structure and depends only on its semantics.

Although these properties are intuitive, they are not satisfied by any of the
reliability models of [Hamlet 1987], [Miller et al. 1992] or [Thayer et al. 1978].
For example, these models all assign a probability p < 1 of satisfying a tautology.
We believe this points to a significant conceptual flaw in existing models of
probabilistic correctness in the literature.

4 Test Coverage and Software Reliability

Given that n tests of a program ω[x] are unsuccessful in finding an error in ω,
what is the probability that ω satisfies a specification {p}ω{q}? If it is possible
to calculate or even estimate this probability value, then we have a clearly de-
fined stopping criterion for black-box testing: we may terminate when a desired
probability of correctness has been achieved. Thus the concept of probability of
correctness gives a formal model of black-box test coverage, where by coverage
we mean the extent of testing. We shall apply the theoretical model introduced
in Section 3 to consider the problem of estimating the probability of correctness.

An obvious technical problem is to find a distribution P on programs which is
realistic. However, to begin to study coverage and the testing termination prob-
lem we can use very simple heuristical probability distributions, and examine
how calculations can be made.

For simplicity, we consider programs with a single integer variable interface
x ∈ X . Let

Ω[x] = (Ω[x], eval).

Also, for simplicity, we assume that Ω[x] is a subrecursive language, i.e. each
program ω[x] ∈ Ω[x] terminates on all inputs. Thus eval : Ω[x]×Z → Z is also a
total function, which allows us to work with totally defined random walk models
of paths.

To calculate the probability of satisfying a formula φ, we need a probability
distribution P : ℘(Ω[x]) → [0, 1] Recalling Definition 5, one approach is to
consider the associated family of random variables

S = 〈 S(x, i) : Ω[x] → Z | i ∈ Z 〉.

A simple model of the FDDs of these random variables is to assume a random
walk hypothesis. Writing Si for S(x, i) we can relate Sn and Sn+1 by a formula
Sn+1 = Sn +Xn where

〈 Xi : Ω[x] → Z | i ∈ Z 〉

is another family of random variables. A simple relationship is to define an
exponential distribution on the Xi by

P(Xi = +n) = P(Xi = −n) =
1
3

(
1
2

)n

for all n ∈ N.

588 Karl Meinke

An exponential random walk over a finite interval can model any total func-
tion over that interval. This distribution captures the simple intuition that fast
growing functions are increasingly unlikely. Furthermore it is easily analysed,
and for simple formulas, we can estimate the probability of satisfiability. After
n test passes on the inputs a1 ≤ a2 ≤ . . . ≤ an ∈ Z we have a sequence of
n−1 intervals [ai, ai+1]. We can consider the probability of satisfying a formula
p ∧ ¬q (where p is a precondition and q is a postcondition) over each of these
intervals separately. To perform such an analysis, we first note that the interval
[ai, ai+1] can be renormalised to the interval [0, ai+1 − ai] without affecting
the probability values. (An exponential random walk is homogeneous along the
x-axis.) Let us consider probabilities for the individual paths over an interval
[0, a].

The probability of a path following an exponential random walk is a function
of its length and its volatility.

Definition 10. Let y = y0, y1, . . . , yn ∈ Zn+1 be a path of length n ≥ 1. We
define the volatility λ(y) ∈ Z of y by

λ(y) =
n∑

i=1

| yi − yi−1 |.

Proposition 2. Let y = y0, y1, . . . , yn ∈ Zn+1 be a path of length n ≥ 1. Then

P(Si = yi for i = 1, . . . , n | S0 = y0) =
(

1
3

)n(1
2

)λ(y)

.

Proof. By induction on n.

Let us consider monotone paths.

Definition 11. Let y = y0, y1, . . . , yn ∈ Zn+1 be a path of length n ≥ 1. We
say that y is monotone if y0 ≤ y1 ≤ . . . ≤ yn or y0 ≥ y1 ≥ . . . ≥ yn.

Proposition 3. Let y = y0, y1, . . . , yn ∈ Zn+1 be a path of length n ≥ 1.
(i) If y is monotone then λ(y) = |yn − y0|.
(ii) If y is non-monotone then λ(y) > |yn − y0|.

Proof. By induction on the length of paths.

Thus it is easy to calculate the probability of a monotone path.

Corollary 1. Let y = y0, y1, . . . , yn ∈ Zn+1 be a monotone path of length n.
Then

P(Si = yi for i = 1, . . . , n | S0 = y0) =
(

1
3

)n(1
2

)|yn−y0|
.

A Stochastic Theory of Black-Box Software Testing 589

Proof. Immediate from Propositions 2 and 3.

So the probability of a monotone path under the exponential distribution is
independent of the steps taken, and depends only on the start and end points. In
fact, by Proposition 3, this property characterises the monotone paths. Further-
more, any non-monotone path y from y0 to yn has exponentially lower probability
than any monotone path from y0 to yn by a factor

(
1
2

)λ(y)−|yn−y0|.
Let CR(n, r) be the number of ways of selecting a collection of r objects

from a total of n objects with repetitions. Then

CR(n, r) = C (n+ r − 1, r)

where C (n, r) is the binomial coefficient defined by

C (n, r) =
n(n− 1) . . . (n− r + 1)

r!
.

Recall the well known upper negation identity (see e.g. [Graham et al. 1989])

C (n, r) = (−1)rC (r − n− 1, r),

from which we can infer CR(n, r) = (−1)rC (−n, r).

Theorem 1. For any n ≥ 1 and y0, yn ∈ Z,

P(Sn = yn | S0 = y0) =(
1
3

)n(1
2

)|yn−y0|(
CR(n, |yn − y0|) +

∑
i>0

min(i, n−1)∑
k=1

C (n, k) CR(k, i− k) CR(n− k, |yn − y0| + i)
(

1
2

)i)
.

Proof. Apply Proposition 2 and sum over all volatility values.

To illustrate the approach, we estimate the probability of a single variable
program ω[x] failing a test of a simple linear equational specification

{ }ω{x′ = m ∗ x+ c},

within an interval [0, n]. (Recall Example 1.) We may assume that ω passes both
tests of the endpoints 0 and n.

Theorem 2. (i) For any n > 1 and any c ∈ Z,

P(Si 	= c for some 0 < i < n | S0 = c, Sn = c) ≈
(
n− 1
n+ 1

)
.

(ii) For any n > 1 and any m, c ∈ Z, where m 	= 0,

P(Si 	= mi+ c for some 0 < i < n | S0 = c, Sn = mn+ c)

≈ 1 − 1
CR(n, |nm|)

.

590 Karl Meinke

Proof. (i) Follows from Proposition 2 and Theorem 1 by considering non-mono-
tone paths with highest probability satisfying Si 	= c for some 0 < i < n.

(ii) Clearly, there is only one monotone path y0, . . . , yn of length n, satisfying
y = mx+ c, namely

y = y0 = c, y1 = m+ c, . . . , yn = nm+ c.

So for all monotone paths from c to nm+ c excluding y, using Corollary 1 and
Theorem 1,

P(Sn = nm+ c, Si 	= mi+ c for some 0 < i < n | S0 = c) =

(CR(n, |nm|) − 1)
(

1
3

)n(1
2

)|nm|
.

Hence the result follows.

By a similar analysis of other types of correctness formulas, it becomes clear
that closed form solutions to reliability estimation problems become intractable
for anything other than simple kinds of formulas. For practical testing problems,
Monte Carlo simulation (see e.g. [Bouleau 1994]) seems to be a necessary tool
to estimate reliability after n tests, even for such a simple distribution as the
exponential random walk.

Clearly, the results of this section depend on specific properties of the expo-
nential random walk. This distribution model represents a naive but mathemat-
ically tractable model of reality. An open question for future research is to find
more realistic models or program distributions. Of course, more accurate models
would lead to slightly different results than those presented here.

5 Test Case Generation (TCG)

In section 4 we considered the problem of stopping the testing process with some
quantitative conclusion about the reliability of a program after n tests have been
passed. In this section we consider how to apply our stochastic model to the ac-
tual testing phase that precedes termination. How can we use the stochastic
approach to efficiently generate test cases that can effectively uncover errors?
We have already seen in Section 4 that calculations of correctness probabilities
may be computationally expensive. However, for certain kinds of probability
distributions an approach to TCG can be developed from outside probability
theory, using classical function approximation theory, with the advantage of ef-
ficient speed.

For clarity of exposition, we will again deal with the case of a program in-
terface consisting a single input/output variable x ∈ X . Furthermore, we will
generalise from probability measures to arbitrary finite measures at this point.
(Recall that every probability measure is a measure, but not vice-versa.)

A Stochastic Theory of Black-Box Software Testing 591

Definition 12. Let M : [[m,n] → D] → R+ be a measure for D ⊆ Z. (If the
codomain of M is [0, 1] then M is an FDD.) Then M is elective if, and only if,
for any (a1, b1), . . . , (ak, bk) ∈ [m,n] ×D the set

F(a1, b1), ..., (ak, bk) = { g : [m,n] → D | g(ai) = bi for 1 ≤ i ≤ k }

has a unique maximum member underM , i.e. there exists f ∈ F(a1, b1), ..., (ak, bk)

such that for all g ∈ F(a1, b1), ..., (ak, bk)

g 	= f ⇒ M(g) < M(f).

To understand Definition 12, suppose that b1, . . . , bk ∈ D are the results of
executing a program ω[x] on the test inputs a1, . . . , ak ∈ [m,n] respectively.
Then an elective measure M gives for the input/output pairs

(a1, b1), . . . , (ak, bk)

a unique “most likely candidate” for a function f extending these pairs to the
entire interval [m,n]. This candidate function f , which is the maximum member
f ∈ F(a1, b1), ..., (ak, bk) under M , represents a “best” guess of what the partially
known system under test might look like in its entirety.

An elective measure M : [[m,n] → D] → R+ gives rise to an iterative
test case generation procedure in the following way. Given k executed test cases
a1, . . . , ak ∈ [m, n] for a program ω[x] with results b1, . . . , bk ∈ D, we can
consider the unique elected function fk ∈ F(a1, b1), ..., (ak, bk) as a model of ω[x].
By analysing fk we may be able to locate a new test case ak+1 ∈ [m,n] such that
ak+1 satisfies a precondition p but fk(ak+1) does not satisfy a postcondition q.
Then ak+1 is a promising new test case to execute on ω[x]. If no such ak+1 exists
we can use some other choice criteria (e.g. random) for the k + 1-th test, and
hope for a more promising test case later as the sequence of elected functions
fk : k ≥ 1 converges to the actual input/output behaviour of ω[x].

The fundamental technical problem for this approach to TCG is to find a suit-
able elective measureM . One pragmatic solution to this problem is introduced in
[Meinke 2004] using function approximation theory. Specifically, an interpolant
(usually a local interpolant) of (a1, b1), . . . , (ak, bk) ∈ [m,n] ×D is chosen as
the elected function. In [Meinke 2004] piecewise polynomials were investigated
as local interpolants. Many other classes of approximating functions are known
in the literature such as splines, wavelets, radial basis functions, etc. Thus the
technique gives a rich source of algorithms.

Our main result in this section is to show that for a large class of approxima-
tion methods, the function approximation approach (which is non-probabilistic,
and fast to the extent that interpolants can be efficiently computed and evalu-
ated) is equivalent to the measure theoretic approach.

Definition 13. Let D ⊆ Z be any subset. An interpolation scheme is a mapping
I : ℘([m,n] ×D) → [[m,n] → D] such that for all 1 ≤ i ≤ k

I({(a1, b1), . . . , (ak, bk)})(ai) = bi.

592 Karl Meinke

We will show that a large class of interpolation schemes, including polynomial
interpolation, actually give rise to elective measures, and even elective probabil-
ity measures. Thus the approximation approach can be seen as a special case
of the stochastic approach, where the FDDs are implicit, but can be efficiently
computed.

Definition 14. Let μ : 22[m,n] → R+ be a finite measure (not necessarily a
probability measure). Let

I : ℘([m,n] ×D) → [[m,n] → D]

be an interpolation scheme. Define the measure

μI : [[m,n] → D] → R+

by
μI(f) = μ({ {ai1 , . . . , aik

} ⊆ [m,n] |

I[{ (ai1 , f(ai1)), . . . , (ai1 , f(ai1)) }] = f }).

Proposition 4. If D ⊆ Z is finite then μ can be defined so that μI is a proba-
bility measure for any interpolation scheme I.

Proof. By construction.

Definition 15. Let M : [[m,n] → D] → R+ be an elective measure. Define
the interpolation scheme IM : ℘([m,n] ×D) → [[m,n] → D] by

IM [{ (a0, b0), . . . , (ak, bk) }] = f,

where f ∈ { g : [m,n] → D | g(xi) = yi for 1 ≤ i ≤ k } is the unique element
for which M(f) is maximum.

Definition 16. Let I : ℘([m,n] × D) → [[m,n] → D] be an interpolation
scheme.
(i) I is monotone if, and only if, I[{ (a0, b0), . . . , (ak, bk) }] = f and
{ (a′0, b

′
0), . . . , (a′j , b

′
j) } ⊆ f and { a0, . . . , ak } ⊆ { a′0, . . . , a′j } imply

I[{ (a′0, b
′
0), . . . , (a′j , b

′
j) }] = f.

(ii) I is permutable if, and only if, for any { a1, . . . , ak } ⊆ [m,n] and f :
[m,n] → D if I[{ (a1, f(a1)), . . . , (ak, f(ak)) }] = f then for any
{ a′1, . . . , a′k } ⊆ [m,n]

I[{ (a′1, f(a′1)), . . . , (a′k, f(a′k)) }] = f.

A Stochastic Theory of Black-Box Software Testing 593

Example 2. Polynomial approximation is monotone and permutable.

Theorem 3. Let I : ℘([m,n] ×D) → [[m,n] → D] be a monotone permutable
interpolation scheme. Then μI is elective and IμI

= I.

Proof. Consider any {(a1, b1), . . . , (an, bn)} ⊆ [m,n] ×D and suppose

I[{(a1, b1), . . . , (an, bn)}] = f,

then we need to show that

IμI

[{(a1, b1), . . . , (an, bn)}] = f.

It suffices to show that for any g : [m,n] → D such that g(ai) = bi for 1 ≤ i ≤ n
and g 	= f , μI(g) < μI(f), i.e. μI is elective. Consider any such g and any
{a′1, . . . , a′k} ⊆ [m,n] ×D and suppose that

I[{(a′1, g(a′1)), . . . , (a′k, g(a
′
k))}] = g.

Since I is permutable we must have k ≥ n.
Since I is an interpolation scheme

I[{(a1, f(a1)), . . . , (an, f(an))}] = f.

Then since I is permutable

I[{(a′1, f(a′1)), . . . , (a′n, f(a′n))}] = f,

Finally since I is monotone and k ≥ n,

I[{(a′1, f(a′1)), . . . , (a′k, f(a′k))}] = f.

Therefore

{{a1, . . . , ak} ⊆ [m,n] | I[{(a1, g(a1)), . . . , (ak, g(ak))}] = g} ⊆

{{a1, . . . , ak} ⊆ [m,n] | I[{(a1, f(a1)), . . . , (ak, f(ak))}] = f}.
Thus since μ is a measure, μI(f) > μI(g), i.e. μI is elective.

6 Conclusions

In this paper we have introduced a stochastic model for black-box testing of the
functional correctness of programs. This model allows us to derive a probability
value for the validity of a correctness formula of the form {p}ω{q} conditional on
the results of any finite set of black-box tests on ω. It corrects technical problems
with similar models occuring previously in the literature. Our model provides a
solution to the difficult problem of measuring coverage in black-box testing. It
also suggests new approaches to the test case generation process itself.

594 Karl Meinke

Further research is necessary to establish accurate models of the probabilistic
distribution of programs. Furthermore, we may generalise our model to consider
how program distributions are influenced by the choice of the programming
problem to be solved (the precondition p and postcondition q). This would give
a theoretical model of the competent programmer hypothesis of [Budd 1980].
This also requires consideration of the difficult problem of non-termination. For
example, it may be necessary to introduce a non-functional time requirement
into specifications, in order to abort a test that can never terminate. Research
into other abstract data types and concrete data structures also presents an
important problem in this area.

Much of this research was carried out during a sabbatical visit to the De-
partment of Computer Science Engineering at the University of California at
San Diego (UCSD) during 2003. We gratefully acknowledge the support of the
Department, and in particular the helpful comments and advice received from
Joseph Goguen and the members of the Meaning and Computation group. We
also acknowledge the financial support of TFR grant 2000-447.

References

[de Bakker 1980] J.W. de Bakker, Mathematical Theory of Program Correctness,
Prentice-Hall, 1980.

[Barwise 1968] J. Barwise (ed), The Syntax and Semantics of Infinitary Languages,
Lecture Notes in Mathematics 72, Springer-Verlag, Berlin, 1968.

[Bauer 1981] H. Bauer, Probability Theory and Elements of Measure Theory, Academic
Press, London, 1981.

[Beizer 1995] B. Beizer, Black-Box Testing, John Wiley, 1995.
[Bouleau 1994] N. Bouleau, D. Lepingle, Numerical Methods for Stochastic Processes,

John Wiley, New York, 1994.
[Budd 1980] Budd, T.A. DeMillo, R.A. Lipton, R.J. Sayward, F.G. Theoretical and

Empirical Studies on Using Program Mutation to Test the Functional Correctness of
Programs, Proc. 7th ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, 220-223, 1980.

[Graham et al. 1989] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathe-
matics, Addison-Wesley, Reading Mass., 1989.

[Grimmet et al. 1982] G. Grimmet, D. Stirzaker, Probability and Random Processes,
Oxford University Press, 1982.

[Hamlet 1987] Hamlet, R.G. Probable Correctness Theory, Inf. Proc. Letters 25, 17-25,
1987.

[Kallenberg 1997] O. Kallenberg, Foundations of Modern Probability, Springer Verlag,
1997.

[Lee and Yannakakis 1996] D. Lee, M. Yannakakis, Principles and Methods of Testing
Finite State Machines - a Survey, Proc. IEEE, 84 (8), 1090-1123, 1996.

[Loeckx et al. 1996] J. Loeckx, H-D. Ehrich, M. Wolf, Specification of Abstract Data
Types, Wiley Teubner, Chichester 1996.

[Meinke 2004] K. Meinke, Automated Black-Box Testing of Functional Correctness
using Function Approximation, pp 143-153 in: G. Rothermel (ed) Proc. ACM SIG-
SOFT Int. Symp. on Software Testing and Analysis, ISSTA 2004, Software Engi-
neering Notes 29 (4), ACM Press, 2004.

A Stochastic Theory of Black-Box Software Testing 595

[Miller et al. 1992] Miller, K.W. Morell, L.J. Noonan, R.E. Park, S.K. Nicol, D.M.
Murrill, B.W. Voas, J.M.: Estimating the Probability of Failure when Testing Re-
veals no Failures, IEEE Trans. Soft. Eng. 18 (1), 33-43, 1992.

[Moore 1956] E.F. Moore, Gedanken-experiments on Sequential Machines, Princeton
Univ. Press, Ann. Math. Studies, 34, 129-153, Princeton NJ, 1956.

[Thayer et al. 1978] Thayer, T.A. Lipow, M. Nelson, E.C.: Software Reliability, North
Holland, New York, 1978.

[Weiss and Weyuker 1988] Weiss, S.N. Weyuker, E.J.: An Extended Domain-Based
Model of Software Reliability, IEEE Trans. Soft. Eng. 14 (10), 1512-1524, 1988.

Some Tips on Writing Proof Scores

in the OTS/CafeOBJ Method

Kazuhiro Ogata1,2 and Kokichi Futatsugi2

1 NEC Software Hokuriku, Ltd.
ogatak@acm.org

2 Japan Advanced Institute of Science and Technology (JAIST)
kokichi@jaist.ac.jp

Abstract. The OTS/CafeOBJ method is an instance of the proof score
approach to systems analysis, which has been mainly devoted by re-
searchers in the OBJ community. We describe some tips on writing proof
scores in the OTS/CafeOBJ method and use a mutual exclusion proto-
col to exemplify the tips. We also argue soundness of proof scores in the
OTS/CafeOBJ method.

1 Introduction

The proof score approach to systems analysis has been mainly devoted by re-
searchers in the OBJ community [10,8]. In the approach, an executable algebraic
specification language is used to specify systems and system properties, and a
processor of the language, which has a rewrite engine as one of its functionalities,
is used as a proof assistant to prove that systems satisfy system properties. Proof
plans called proof scores are written in the algebraic specification language to
conduct such proofs and the proof scores are executed by the language processor
by means of rewriting to check if the proofs are success.

Proof scores can be regarded as programs to prove that algebraic specifi-
cations satisfy system properties. While proof scores are being designed, con-
structed and debugged, we can understand algebraic specifications being ana-
lyzed more profoundly, which may even let us find flaws lurked in the specifica-
tions [15,14]. Our thought on proof is similar to that of the designers of LP [11].
Proof scripts written in a tactic language provided by proof assistants such as
Coq [1] and Isabel/HOL [13] may be regarded as such programs, but it seems
that such proof assistants rather aim for mechanizing mathematics.

We have argued that the proof score approach to systems analysis is an
attractive approach to design verification in [6] thanks to (1) balanced human-
computer interaction and (2) flexible but clear structure of proof scores. The
former means that humans are able to focus on proof plans, while tedious and
detailed computations can be left to computers; humans do not necessarily have
to know what deductive rules or equations should be applied to goals to prove.
The latter means that lemmas do not need to be proved in advance and proof
scores can help humans comprehend the corresponding proofs; a proof that a

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 596–615, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 597

system satisfies a system property can be conducted even when all lemmas used
have not been proved, and assumptions used are explicitly and clearly written
in proof scores. To precisely assess the achievement of (1) and (2) in the proof
score approach and compare it with systems analysis with other existing proof
assistants, however, we need further studies.

The OTS/CafeOBJ method [17,4,7] is an instance of the proof score approach
to systems analysis. In the OTS/CafeOBJ method, observational transition sys-
tems (OTSs) are used as models of systems and CafeOBJ [2], an executable alge-
braic specification language/system, is used; OTSs are transition systems, which
are straightforwardly written as algebraic specifications. An older version of the
OTS/CafeOBJ method is described in [17,4], and the latest version is described
in [7]. We have conducted case studies, among which are [15,18,19,16,20], to
demonstrate the usefulness of the OTS/CafeOBJ method. In this paper, we de-
scribe some tips on writing proof scores in the OTS/CafeOBJ method. A mutual
exclusion protocol called Tlock using atomicInc, which atomically increments the
number stored in a variable and returns the old number, is used as an example.
We also argue soundness of proof scores in the OTS/CafeOBJ method.

The rest of the paper is organized as follows. Section 2 describes the
OTS/CafeOBJ method. Section 3 describes tips on writing proof scores in the
OTS/CafeOBJ method. Section 4 informally argue soundness of proof scores in
the OTS/CafeOBJ method. Section 5 concludes the paper.

2 The OTS/CafeOBJ Method

In the OTS/CafeOBJ method, systems are analyzed as follows.

1. Model a system as an OTS S.
2. Write S in CafeOBJ as an algebraic specification. The specification consists

of sorts (or types), operators on the sorts, and equations that define (proper-
ties of) the operators. The specification can be executed by using equations
as left-to-right rewrite rules by CafeOBJ.

3. Write system properties in CafeOBJ. Let P be the set of such system prop-
erties and let P ′ be the empty set. .

4. If P is empty, the analysis has been successfully finished, which means that
S satisfies all the properties in P ′. Otherwise, extract a property p from P
and go next. .

5. Write a proof score in CafeOBJ to prove that S satisfies p. The proof may
need other system properties as lemmas. Write such system properties in
CafeOBJ and put them that are not in P ′ into P if any. .

6. Execute (or play) the proof score with CafeOBJ. If all the results are as
expected, then the proof is discharged. Put p into P ′ and go to 4. If all the
results are not as expected, rewrite the proof score and repeat 6. .

Tasks 5 and 6 may be interactively conducted together. A counterexample may
be found in tasks 5 and 6.

598 Kazuhiro Ogata and Kokichi Futatsugi

In this section, we mention CafeOBJ, describe the definitions of basic con-
cepts on OTSs, write on how to write OTSs in CafeOBJ and how to write proof
scores that OTSs satisfy invariant properties in CafeOBJ.

2.1 CafeOBJ

CafeOBJ [2] is an algebraic specification language/system mainly based on order-
sorted algebras and hidden algebras [9,3]. Abstract data types are specified in
terms of order-sorted algebras, and abstract machines are specified in terms of
hidden algebras. Algebraic specifications of abstract machines are called behav-
ioral specifications. There are two kinds of sorts in CafeOBJ: visible sorts and
hidden sorts. A visible sort denotes an abstract data type, while a hidden sort
denotes the state space of an abstract machine. There are three kinds of opera-
tors (or operations) with respect to (wrt) hidden sorts: hidden constants, action
operators and observation operators. Hidden constants denote initial states of ab-
stract machines, action operators denote state transitions of abstract machines,
and observation operators let us know the situation where abstract machines are
located. Both an action operator and an observation operator take a state of an
abstract machine and zero or more data. The action operator returns the suc-
cessor state of the state wrt the state transition denoted by the action operator
plus the data. The observation operator returns a value that characterizes the
situation where the abstract machine is located.

Basic units of CafeOBJ specifications are modules. CafeOBJ provides built-in
modules. One of the most important built-in modules is BOOL in which proposi-
tional logic is specified. BOOL is automatically imported by almost every module
unless otherwise stated. In BOOL and its parent modules, declared are the visible
sort Bool, the constants true and false of Bool, and operators denoting some
basic logical connectives. Among the operators are not_, _and_, _or_, _xor_,
implies and _iff_ denoting negation (¬), conjunction (∧), disjunction (∨),
exclusive disjunction (xor), implication (⇒) and logical equivalence (⇔), re-
spectively. The operator if_then_else_fi corresponding to the if construct in
programming languages is also declared. CafeOBJ uses the Hsiang term rewrit-
ing system (TRS) [12] as the decision procedure for propositional logic, which is
implemented in BOOL. CafeOBJ reduces any term denoting a proposition that is
always true (false) to true (false). More generally, a term denoting a proposi-
tion reduces to an exclusively disjunctive normal form of the proposition.

2.2 Observational Transition Systems (OTSs)

We suppose that there exists a universal state space denoted Υ and that each
data type used in OTSs is provided. The data types include Bool for truth values.
A data type is denoted D∗.

Definition 1 (OTSs). An OTS S is 〈O, I, T 〉 such that

– O : A finite set of observers. Each observer ox1:Do1,...,xm:Dom : Υ → Do

is an indexed function that has m indexes x1, . . . , xm whose types are

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 599

Do1, . . . , Dom. The equivalence relation (υ1 =S υ2) between two states
υ1, υ2 ∈ Υ is defined as ∀ox1,...,xm : O. (ox1,...,xm(υ1) = ox1,...,xm(υ2)), where
∀ox1,...,xm : O is the abbreviation of ∀ox1,...,xm : O.∀x1 : Do1 . . . ∀xm : Dom.

– I : The set of initial states such that I ⊆ Υ .
– T : A finite set of transitions. Each transition ty1:Dt1,...,yn:Dtn : Υ → Υ is an

indexed function that has n indexes y1, . . . , yn whose types are Dt1, . . . , Dtn

provided that ty1,...,yn(υ1) =S ty1,...,yn(υ2) for each [υ] ∈ Υ/=S , each υ1, υ2 ∈
[υ] and each yk : Dtk for k = 1, . . . , n. ty1,...,yn(υ) is called the successor state
of υ wrt S. Each transition ty1,...,yn has the condition c-ty1:Dt1,...,yn:Dtn : Υ →
Bool, which is called the effective condition of the transition. If c-ty1,...,yn(υ)
does not hold, then ty1,...,yn(υ) =S υ. �

We note the following two points on transitions, which have something to
do with writing proof scores. (1) Although transitions are defined as relations
among states in some other existing transition systems, transitions are func-
tions on states in OTSs. This is because transitions are represented by (action)
operators in behavioral specifications and operators are functions in CafeOBJ.
However, multiple transitions that are functions on states can be substituted for
one transition that is a relation among states. (2) Basically there is no restric-
tion on the form of effective conditions. But, effective conditions should be in
the form c1-ty1,...,yn(υ) ∧ . . . ∧ cM -ty1,...,yn(υ), where each ck-ty1,...,yn(υ) has no
logical connectives or has one negation at head, so that proof scores can have
clear structure. When an effective condition is not in this form, it is converted to
a disjunctive normal form. If the disjunctive normal form has more than one dis-
junct, multiple transitions each of which has one of the disjuncts as its effective
condition can be substituted for the corresponding transition.

Definition 2 (Reachable states). Given an OTS S, reachable states wrt S
are inductively defined:

– Each υinit ∈ I is reachable wrt S.
– For each ty1,...,yn ∈ T and each yk : Dtk for k = 1. . . . , n, tx1,...,xn(υ) is

reachable wrt S if υ ∈ Υ is reachable wrt S.

Let RS be the set of all reachable states wrt S . �

Predicates whose types are Υ → Bool are called state predicates. All proper-
ties considered in this paper are invariants.

Definition 3 (Invariants). Any state predicate p : Υ → Bool is called invari-
ant wrt S if p holds in all reachable states wrt S, i.e. ∀υ : RS . p(υ). �

We suppose that each state predicate p considered in this paper has the form
∀z1 : Dp1 . . . ∀za : Dpa. P (υ, z1, . . . , za), where υ, z1, . . . , za are all variables in p
and P (υ, z1, . . . , za) does not contain any quantifiers.

A concrete example of how to model a system as an OTS is given.

Example 1 (Tlock). The pseudo-code executed by each process i can be written
as follows:

600 Kazuhiro Ogata and Kokichi Futatsugi

Loop
l1: ticket[i] := atomicInc(tvm);
l2: repeat until ticket[i] = turn;

Critical section;
cs: turn := turn + 1;

tvm and turn are non-negative integer variables shared by all processes and
ticket[i] is a non-negative integer variable that is local to process i. Initially,
each process i is at label l1, tvm and turn are 0, and ticket[i] for each i is
unspecified. The value of tvm (which stands for a ticket vending machine) is the
next available ticket. Each process i obtains a ticket, which is stored in ticket[i],
at label l1. A process is allowed to enter the critical section if its ticket equals the
value of turn at label l2. turn is incremented when a process leaves the critical
section at label cs.

Let Label, Pid and Nat be the types of labels (l1, l2 and cs), process IDs
and non-negative integers (natural numbers). Tlock can be modeled as the OTS
STlock such that

– OTlock � {tvm : Υ → Nat, turn : Υ → Nat, ticketi:Pid : Υ → Nat, pci:Pid : Υ →
Label}

– ITlock � {υinit ∈ Υ | tvm(υinit) = 0 ∧ turn(υinit) = 0 ∧ ∀i : Pid. (pci(υinit) = l1)}
– TTlock � {geti:Pid : Υ → Υ, checki:Pid : Υ → Υ, exiti:Pid : Υ → Υ}

The three transitions are defined as follows:

– geti : c-geti(υ) � pci(υ) = l1. If c-wanti(υ), then

tvm(geti(υ)) � tvm(υ) + 1, turn(geti(υ)) � turn(υ),

ticketj(geti(υ)) � if i = j tvm(υ) elseticketj(υ), and

pcj(geti(υ)) � if i = j then l2 else pcj(υ).

– checki : c-checki(υ) � pci(υ) = l2 ∧ ticketi(υ) = turn(υ). If c-wanti(υ), then

tvm(checki(υ)) � tvm(υ), turn(checki(υ)) � turn(υ),

ticketj(geti(υ)) � ticketj(υ), and pcj(checki(υ)) � if i = j then cs else pcj(υ).

– exiti : c-exiti(υ) � pci(υ) = cs. If c-wanti(υ), then

tvm(exiti(υ)) � tvm(υ) + 1, turn(exiti(υ)) � turn(υ),

ticketj(geti(υ)) � ticketj(υ), and pcj(exiti(υ)) � if i = j then l1 else pcj(υ).

Let MX(υ) be ∀i, j : Pid. [(pci(υ) = cs ∧ pcj(υ) = cs) ⇒ i = j]. MX(υ)
is invariant wrt STlock, i.e. ∀υ : RSTlock .MX(υ), although it may need to be
verified. �

2.3 Specifying OTSs in CafeOBJ

We suppose that a visible sort V∗ corresponding to each data type D∗ used in
OTSs and the related operators are provided. Xk and Yk are CafeOBJ variables
corresponding to indexes xk and yk of observers and transitions, respectively.

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 601

The universal state space Υ is represented by a hidden sort, say H declared
as *[H]* by enclosing it with *[and]*. Given an OTS S, an arbitrary initial
state is represented by a hidden constant, say init, each observer ox1,...,xm

is represented by an observation operator, say o, and each transition ty1,...,yn

is represented by an action operator, say t. The hidden constant init, the
observation operator o and the action operator t are declared as follows:

op init : -> H
bop o : H Vo1 ...Vom -> Vo

bop t : H Vt1 ...Vtn -> H

The keyword bop or bops is used to declare observation and action operators.
We suppose that the value returned by ox1,...,xm in an arbitrary initial state

can be expressed as f(x1, . . . , xm). This is expressed by the following equation:

eq o(init,X1,...,Xm) = f(X1,...,Xm) .

f(X1,...,Xm) is the CafeOBJ term corresponding to f(x1, . . . , xm).
Each transition ty1,...,yn is defined by describing what the value returned by

each observer ox1,...,xm in the successor state becomes when ty1,...,yn is applied in
a state υ. When c-ty1,...,yn(υ) holds, this is expressed generally by a conditional
equation that has the form

ceq o(t(S,Y1,...,Yn),X1,...,Xm) = e-t(S,Y1,...,Yn,X1,...,Xm)
if c-t(S,Y1,...,Yn) .

S is a CafeOBJ variable of H, corresponding to υ. e-t(S,Y1,...,Yn,X1,...,Xm)
is the CafeOBJ term corresponding to the value returned by ox1,...,xm in the
successor state denoted by t(S,Y1,...,Yn). c-t(S,Y1,...,Yn) is the CafeOBJ
term corresponding to c-ty1,...,yn(υ).

If c-ty1,...,yn(υ) always holds in any state υ or the value returned by ox1,...,xm

is not affected by applying ty1,...,yn in any state υ (i.e. regardless of the truth
value of c-ty1,...,yn(υ)), then a usual equation is used instead of a conditional
equation. The usual equation has the form

eq o(t(S,Y1,...,Yn),X1,...,Xm) = e-t(S,Y1,...,Yn,X1,...,Xm) .

e-t(S,Y1,...,Yn,X1,...,Xm) is S if the value returned by ox1,...,xm is not
affected by applying ty1,...,yn in any state.

When c-ty1,...,yn(υ) does not hold, ty1,...,yn changes nothing, which is ex-
pressed by a conditional equation that has the form

ceq t(S,Y1,...,Yn) = S if not c-t(S,Y1,...,Yn) .

We give the CafeOBJ specification of STlock.

Example 2 (CafeOBJ specification of STlock). SQlock is specified in CafeOBJ as
the module TLOCK:

602 Kazuhiro Ogata and Kokichi Futatsugi

mod* TLOCK { pr(PNAT) pr(LABEL) pr(PID)

[Sys]

-- an arbitrary initial state

op init : -> Sys

-- observation operators

bops tvm turn : Sys -> Nat bop ticket : Sys Pid -> Nat

bop pc : Sys Pid -> Label

-- action operators

bops get check exit : Sys Pid -> Sys

-- CafeOBJ variables

var S : Sys vars I J : Pid

-- init

eq tvm(init) = 0 . eq turn(init) = 0 . eq pc(init,I) = l1 .

-- get

op c-get : Sys Pid -> Bool {strat: (0 1 2)}

eq c-get(S,I) = (pc(S,I) = l1) .

--

ceq tvm(get(S,I)) = s(tvm(S)) if c-get(S,I) .

eq turn(get(S,I)) = turn(S) .

ceq ticket(get(S,I),J)

= (if I = J then tvm(S) else ticket(S,J) fi) if c-get(S,I) .

ceq pc(get(S,I),J) = (if I = J then l2 else pc(S,J) fi) if c-get(S,I) .

ceq get(S,I) = S if not c-get(S,I) .

-- check

op c-check : Sys Pid -> Bool {strat: (0 1 2)}

eq c-check(S,I) = (pc(S,I) = l2 and ticket(S,I) = turn(S)) .

--

eq tvm(check(S,I)) = tvm(S) . eq turn(check(S,I)) = turn(S) .

eq ticket(check(S,I),J) = ticket(S,J) .

ceq pc(check(S,I),J)

= (if I = J then cs else pc(S,J) fi) if c-check(S,I) .

ceq check(S,I) = S if not c-check(S,I) .

-- exit

op c-exit : Sys Pid -> Bool {strat: (0 1 2)}

eq c-exit(S,I) = (pc(S,I) = cs) .

--

eq tvm(exit(S,I)) = tvm(S) .

ceq turn(exit(S,I)) = s(turn(S)) if c-exit(S,I) .

eq ticket(exit(S,I),J) = ticket(S,J) .

ceq pc(exit(S,I),J)

= (if I = J then l1 else pc(S,J) fi) if c-exit(S,I) .

ceq exit(S,I) = S if not c-exit(S,I) .

}

A comment starts with -- and terminates at the end of the line. PNAT, LABEL
and PID are the modules in which natural numbers, labels and process IDs
are specified. The keyword pr is used to imports modules. The operator s of
s(tvm(S)) and s(turn(S)) is the successor function of natural numbers. The
keyword start: is used to specify local strategies to operators [5]. The local
strategy (0 1 2) given to c-get indicates that when CafeOBJ meets a term

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 603

whose top is c-get such as c-get(s,i), CafeOBJ should try to rewrite the
whole term such as c-get(s,i). If CafeOBJ does not find any rules with which
the term is rewritten, it evaluates the first and second arguments such as s and
i in that order, and tries to rewrite the whole term such as c-get(s′,i′) again,
where s′ and i′ are the results obtained by evaluating s and i. �

2.4 Proof Scores of Invariants

Although some invariants may be proved by rewriting and/or case splitting only,
we often need to use induction, especially simultaneous induction [7]. We then
describe how to verify ∀υ : RS . p(υ) by simultaneous induction by writing proof
scores in CafeOBJ based on the CafeOBJ specification of S.

It is often impossible to prove ∀υ : RS . p(υ) alone. We then suppose that it is
possible to prove ∀υ : RS . p(υ) together with N −1 other state predicates3, that
is, we prove ∀υ : RS . (p1(υ) ∧ . . . ∧ pN (υ)), where p1 is p. We suppose that each
pk has the form ∀zk : Dpk. Pk(υ, zk) for k = 1, . . . , N . Note that the method
described here can be used when pk has more than one universally quantified
variable. Let υc

init be an arbitrary initial state of S, and then for the base case,
all we have to do is to prove

∀z1 : Dp1. P1(υc
init, z1) ∧ . . . ∧ ∀zN : DpN . PN (υc

init, zN) (1)

For each induction case (i.e. each ty1,...,yn ∈ T), all we have to do is to prove

∀z1 : Dp1. P1(υc, z1) ∧ . . . ∧ ∀zN : DpN . PN (υc, zN)
⇒ ∀z1 : Dp1. P1(tyc

1,...,yc
n
(υc), z1) ∧ . . . ∧ ∀zN : DpN . PN (tyc

1,...,yc
n
(υc), zN) (2)

for an arbitrary state υc and an arbitrary value yc
k for k = 1, . . . , n.

To prove (1), we can separately prove each conjunct

Pi(υc
init, z

c
k) (3)

where zc
k is an arbitrary value of Dpk for k = 1, . . . , N . To prove (2), assuming

∀z1 : Dp1. P1(υc, z1), . . . , ∀zN : DpN . PN (υc, zN), we can separately prove each
Pk(tyc

1,...,yc
n
(υc), zc

k), where zc
k is an arbitrary value of Dpk, for k = 1, . . . , N .

Pk(υc, zc
k) is often used as an assumption to prove Pk(tyc

1,...,yc
n
(υc), zc

k). Therefore,
the formula to prove has the form

(Pα(υc, dα) ∧ Pβ(υc, dβ) ∧ . . .) ⇒ [Pk(υc, zc
k) ⇒ Pk(tyc

1,...,yc
n
(υc), zc

k)] (4)

where α, β, . . . ∈ {1, . . . , N} and dα, dβ , . . . are some values of Dpα, Dpβ , . . . for
i = 1, . . . , N .

We next describe how to write proof plans of (3) and (4) in CafeOBJ. We
first declare the operators denoting P1, . . . , PN and the equations defining the
operators. The operators and equations are declared in a module, say INV (which
imports the module where S is written), as follows:
3 Generally, such N − 1 state predicates should be found while ∀υ : RS . p(υ) is being

proved.

604 Kazuhiro Ogata and Kokichi Futatsugi

op invk : H Vpk -> Bool
eq invk(S,Zk) = Pi(S,Zk) .

for k = 1, . . . , N . Zk is a CafeOBJ variable of Vpk and Pi(S,Zk) is a CafeOBJ term
denoting Pk(υ, zk). In INV, we also declare a constant zc

k denoting an arbitrary
value of Vpk for i = 1, . . . , N . We then declare the operators denoting basic
formulas to prove in the induction cases and the equations defining the operators.
The operators and equations are declared in a module, say ISTEP (which imports
INV), as follows:
op istepk : Vpk -> Bool
eq istepk(Zk) = invk(s,Zk) implies invk(s’,Zk) .

for i = 1, . . . , N . s and s’, which are declared in ISTEP, are constants of H. s
denotes an arbitrary state and s’ denotes a successor state of the state.

The proof plan of (3), written in CafeOBJ, has the form
open INV
red invk(init,zc

k) .
close

for i = 1, . . . , N . The command open makes a temporary module that imports
a given module and the command close destroys it. The command red reduces
a given term. CafeOBJ scripts like this constitute proof scores. Such fragments
of proof scores are called proof passages. Feeding such a proof passage into the
CafeOBJ system, if the CafeOBJ system returns true, the corresponding proof
is successfully done.

The proof of (4) often needs case splitting. We suppose that the state space
is split into Lk sub-spaces4 in order to prove (4) and that each sub-space is
characterized by a proposition casekl for l = 1, . . . , Lk provided that casek1 ∨
. . . ∨ casekLk

. The proof of (4) can be then replaced with

casekl ⇒
[(Pα(υc, dα) ∧ Pβ(υc, dβ) ∧ . . .) ⇒ [Pk(υc, zc

k) ⇒ Pk(tyc
1,...,yc

n
(υc), zc

k)]] (5)

for l = 1, . . . , Lk and k = 1, . . . , N .
We suppose that dα, dβ , . . . are CafeOBJ terms denoting dα, dβ , . . . Then the

proof passage of (5) has the form
open ISTEP
-- arbitrary objects
op yc

1 : -> V1 . · · · op yc
N : -> VN .

-- assumptions
Declaration of equations denoting casekl.
-- successor state
eq s’ = t(s,yc

1,...,y
c
N) .

-- check
red (invα(s,dα) and invβ(s,dβ) and ...) implies istepk(zc

k) .
close

for l = 1, . . . , Lk and k = 1, . . . , N .
4 Generally, such case splitting should be done while ∀υ : RS . p(υ) is being proved.

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 605

Equations available in a proof passage “openM · · · close” are those declared
in the module M and the modules imported by M plus those declared in the
proof passage. We say that the lefthand side of an equation l = r (a term t) is
(ir)reducible in a proof passage if l (t) is (ir)reducible wrt E \ {l = r} (E), where
E is the set of all equations available in the proof passage.

We briefly describe the proof scores of ∀υ : RSTlock .MX(υ).

Example 3 (Proof socres of ∀υ : RSTlock .MX(υ)). We need four more state pred-
icates to prove ∀υ : RSTlock .MX(υ), which are found while proving it. The four
state predicates are as follows: p2(υ) � ∀i, j : Pid. [(pci(υ) = cs ∧ pcj(υ) =
l2 ∧ ticketj(υ) = turn(υ)) ⇒ i = j], p3(υ) � ∀i : Pid. (pci(υ) = cs ⇒
turn(υ) < tvm(υ)), p4(υ) � ∀i, j : Pid. [(pci(υ) = l2 ∧ pcj(υ) = l2 ∧ ticketi(υ) =
ticketj(υ) ⇒ i = j], and p5(υ) � ∀i : Pid. (pci(υ) = l2 ⇒ ticketi(υ) < tvm(υ)).
The proof of ∀υ : RSTlock .MX(υ) needs p2, that of ∀υ : RSTlock . p2(υ) needs MX,
p3 and p4, that of ∀υ : RSTlock . p3(υ) needs MX and p5, that of ∀υ : RSTlock . p4(υ)
needs p5, and that of ∀υ : RSTlock . p5(υ) needs no other state predicates.

The module INV is declared as follows:

mod INV { pr(TLOCK)

ops i j : -> Pid

op inv1 : Sys Pid Pid -> Bool op inv2 : Sys Pid Pid -> Bool

op inv3 : Sys Pid -> Bool op inv4 : Sys Pid Pid -> Bool

op inv5 : Sys Pid -> Bool

var S : Sys vars I J : Pid

eq inv1(S,I,J) = ((pc(S,I) = cs and pc(S,J) = cs) implies I = J) .

eq inv2(S,I,J) = ((pc(S,I) = cs and pc(S,J) = l2

and ticket(S,J) = turn(S)) implies I = J) .

eq inv3(S,I) = (pc(S,I) = cs implies turn(S) < tvm(S)) .

eq inv4(S,I,J) = ((pc(S,I) = l2 and pc(S,J) = l2

and ticket(S,I) = ticket(S,J)) implies I = J) .

eq inv5(S,I) = (pc(S,I) = l2 implies ticket(S,I) < tvm(S)) .

}

The module ISTEP is declared as follows:

mod ISTEP { pr(INV)

ops s s’ : -> Sys

op istep1 : Pid Pid -> Bool op istep2 : Pid Pid -> Bool

op istep3 : Pid -> Bool op istep4 : Pid Pid -> Bool

op istep5 : Pid -> Bool

vars I J : Pid

eq istep1(I,J) = inv1(s,I,J) implies inv1(s’,I,J) .

eq istep2(I,J) = inv2(s,I,J) implies inv2(s’,I,J) .

eq istep3(I) = inv3(s,I) implies inv3(s’,I) .

eq istep4(I,J) = inv4(s,I,J) implies inv4(s’,I,J) .

eq istep5(I) = inv5(s,I) implies inv5(s’,I) .

}

606 Kazuhiro Ogata and Kokichi Futatsugi

Let us consider the following proof passage of ∀υ : RSTlock .MX(υ):

open ISTEP

-- arbitrary values

op k : -> Pid .

-- assumptions

-- eq c-check(s,k) = true .

eq pc(s,k) = l2 . eq ticket(s,k) = turn(s) .

qq i = k . eq (j = k) = false . eq pc(s,j) = cs .

-- successor state

eq s’ = check(s,k) .

-- check

red istep1(i,j) .

close

The proof passage corresponds to a (sub-)case obtained by splitting the induc-
tion case for checkk. The (sub-)case is referred as case 1.check.1.1.0.1. CafeOBJ
returns false for the proof passage. From the five equations that character-
ize the (sub-)case, however, we can conjecture p2. When inv2(s,j,i) implies
istep1(i,j) is used instead of istep1(i,j), CafeOBJ returns true for the
proof passage.

Let us consider the following proof passage of ∀υ : RSTlock . p2(υ):

open ISTEP

-- arbitrary values

op k : -> Pid .

-- assumptions

-- eq c-exit(s,k) = true .

eq pc(s,k) = cs .

eq (i = k) = false . eq (j = k) = false . eq pc(s,i) = cs .

-- successor state

eq s’ = exit(s,k) .

-- check

red istep2(i,j) .

close

The proof passage corresponds to a (sub-)case obtained by splitting the in-
duction case for exitk. The (sub-)case is referred as case 2.exit.1.0.0.1. Al-
though CafeOBJ returns neither true nor false for the proof passage, we
notice that inv1(s,i,k) reduces to false in the proof passage. Therefore,
we use inv1(s,i,k) implies istep2(i,j) instead of istep2(i,j) and then
CafeOBJ returns true for the proof passage. �

3 Tips

What we should do to prove a state predicate invariant wrt an OTS is three
tasks: (1) use of simultaneous induction, (2) case splitting and (3) predicate
(lemma) discovery/use. We use the proof of ∀υ : RSTlock .MX(υ) to describe the
three tasks.

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 607

3.1 Simultaneous Induction

The first thing to do is to use simultaneous induction to break the proof into
the four (sub-)goals (one is the base case and the others are the three induction
cases) and the four proof passages are written. The proof passage of the base
case is as follows:

open INV

red inv1(init,i,j) .

close

The proof passage of the induction case for checkk is as follows:

open ISTEP

op k : -> Pid .

eq s’ = check(s,k) .

red istep1(i,j) .

close

The case is referred as case 1.check. The proof passages of the remaining two
induction cases are written likewise.

CafeOBJ returns true for the base case but neither true nor false for each
of the three induction cases. What to do for the three induction cases are case
splitting and/or predicate discovery/use.

3.2 First Thing to Do for Each Induction Case

Each induction case for ty1,...,yn is split into two (sub-)cases: (1) c-ty1,...,yn and
(2) ¬c-ty1,...,yn unless c-ty1,...,yn holds in every case. Case 1.check is split into the
two (sub-)cases whose corresponding proof passages are as follows:

open ISTEP

op k : -> Pid .

eq c-check(s,k) = true .

eq s’ = check(s,k) .

red istep1(i,j) .

close

open ISTEP

op k : -> Pid .

eq c-check(s,k) = false .

eq s’ = check(s,k) .

red istep1(i,j) .

close

The two (sub-)cases are referred as case 1.check.1 and 1.check.0. CafeOBJ re-
turns true for case 1.check.0 but neither true nor false for case 1.check.1.
CafeOBJ always returns true for the (sub-)case where ¬c-ty1,...,yn due to Defi-
nition 1 if the OTS concerned is correctly written in CafeOBJ.

3.3 Appropriate Equations Declared in Proof Passages

As shown, each (sub-)case is characterized by equations. Equational reasoning by
rewriting is used to check if a proposition holds in each case, but full equational
reasoning power is not used because CafeOBJ does not employ any completion
facilities. Therefore, equations that characterize a case heavily affects the success

608 Kazuhiro Ogata and Kokichi Futatsugi

in proving that a proposition holds in the case. We describe appropriate equa-
tions, which characterize a case, declared in a proof passage. If CafeOBJ returns
true for a proof passage, nothing should be done. Otherwise, the equations in
the proof passage should be appropriate as described from now.

– The lefthand side of each equation should be irreducible in a proof passage so
that the equation can be used effectively as a rewrite rule. This is because the
rewriting strategy adopted by CafeOBJ is basically an innermost strategy.

– Let PP(E), where E is a set of equations, be a proof passage in which
the equations in E are declared, and E1 and E2 be sets of equations. We
suppose that

∧
e1∈E1

e1 is equivalent to
∧

e2∈E2
e2. If every equation in E1

can be proved by rewriting from PP(E2) but every equation in E2 cannot
be proved by rewriting from PP(E1), then E2 should be used instead of E1.
Some examples are given.
1. Let E1 be {ρ1 ∧ ρ2 = true} and E2 be {ρ1 = true, ρ2 = true}. We

suppose that ρ1 ∧ ρ2, ρ1 and ρ2 are irreducible in PP(∅). Then, ρ1 ∧ ρ2

reduces to true in PP(E2) but l1 (l2) does not necessarily reduce to
true in PP(E1). Therefore, E2 should be used instead of E1.

2. Let c be a binary data constructor. We suppose that c(a1, b1) equals
c(a2, b2) if and only if a1 equals a2 and b1 equals b2. Let E1 be {c(a1, b1) =
c(a2, b2)} and E2 be {a1 = a2, b1 = b2}. We suppose that c(a1, b1), a1

and b1 are irreducible in PP(∅). Then, both c(a1, b1) and c(a2, b2) reduce
to a same term in PP (E2) but a1 and a2 (b1 and b2) do not necessarily
reduce to a same term in PP(E1). Therefore, E2 should be used instead
of E1.

3. Let n be a natural number, N be a constant denoting an arbitrary
multiset of natural numbers, the juxtaposition operator be a data
constructor of multisets. The juxtaposition operator is declared as
op __ : Bag Bag -> Bag {assoc comm id: empty}, where Bag is the
visible sort for multisets of natural numbers and is a supersort of Nat,
assoc and comm specify that the operator is associative and commuta-
tive, and id: empty specifies that empty, which is the constant denoting
the empty multiset, is an identity of the operator. We suppose that we
want to specify that N includes n. One way is to use n ∈ N = true, and
the other way is to use N = n N ′, where N ′ is another constant denoting
an arbitrary multiset of natural numbers5. Let E1 be {n ∈ N = true}
and E2 be {N = n N ′}. We suppose that n ∈ N and N are irreducible
in PP(∅). Then, n ∈ N reduces to true in PP(E2) if ∈ is defined ap-
propriately in equation, but N and n N ′ do not necessarily reduce to a
same term in PP(E1). Therefore, E2 should be used instead of E1.

4. ¬ρ is reducible in any proof passage because of the Hsiang TRS. If ρ
is irreducible in a proof passage, ¬ρ reduces to ρ xor true in the proof

5 Since N is an arbitrary multiset and includes n, N must be n′ N ′, where (1) n′

equals n or (2) n ∈ N ′. We can select (1) because the juxtaposition operator is
associative and commutative.

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 609

passage. Therefore, one way of making the equation (¬ρ) = true effective
is to use (ρ xor true) = true. But, ρ = false is more appropriate.

5. This example is a variant. Let E1 be {(l = r) = true} and E2 be {l = r}.
We suppose that l = r and l are irreducible in PP(∅). l = r reduces to
true in both PP(E1) and PP(E2). It is often the case, however, that E2

is more appropriate than E1 because l reduces r in PP(E2) but l does
not in PP(E1).

According to what has been described in this subsection, the proof passage
of case 1.check.1 should be rewritten as follows:

open ISTEP

op k : -> Pid .

-- eq c-check(s,k) = true .

eq pc(s,k) = l2 . eq ticket(s,k) = turn(s) .

eq s’ = check(s,k) .

red istep1(i,j) .

close

CafeOBJ still returns neither true nor false for this proof passage. Then, what
we should do is further case splitting.

3.4 Further Case Splitting

For a proof passage for which CafeOBJ returns neither true nor false, the case
corresponding to the proof passage is split into multiple (sub-)cases in each of
which CafeOBJ returns either true or false. When CafeOBJ returns true in a
(sub-)case, nothing should be done for the case. When CafeOBJ returns false
in a (sub-)case, it is necessary to find a state predicate that does not hold in the
case and is likely invariant wrt an OTS concerned.

There are some ways of splitting a case into multiple (sub-)cases.

– Based on a proposition ρ : A case is split into two (sub-)cases where (1) ρ
holds and (2) ρ does not, respectively. As shown in Subsect. 3.2, case 1.check
is split into the two (sub-)cases based on the proposition c-check(s,k).

– Based on data constructors : We suppose that a data type has M data con-
structors. Then, a case is split into M (sub-)cases. Some examples are given.
1. Nat has the two data constructors 0 and s. Let x be a constant denoting

an arbitrary natural number in a proof passage. The case corresponding
to the proof passage is split into the two (sub-)cases where (1) x = 0 and
(2) x = s(y), where y is another constant denoting an arbitrary natural
number. Case (1) means that x is zero and case (2) means that x is not
zero.

2. Bag has the two data constructors empty and __. Let N be a constant
denoting an arbitrary multiset in a proof passage. The case corresponding
to the proof passage is split into the two (sub-)cases where (1) N = empty
and (2) N = n′ N ′, where n′ is a constant denoting an arbitrary natural
number and N ′ is a constant denoting an arbitrary multiset. Case (1)
means that N is empty and case (2) means that N is not empty.

610 Kazuhiro Ogata and Kokichi Futatsugi

– Based on a tautology whose form is ρ1∨. . .∨ρM : A case is split into M (sub-)
cases where (1) ρ1 holds, . . . , (M) ρM holds. This case splitting generalizes
the case splitting based on a proposition because ρ ∨ ¬ρ is a tautology.

In order to apply one of the three ways of splitting a case, we need to find a
proposition, a constant denoting an arbitrary value of a data type, or a tautology
whose form is ρ1∨. . .∨ρM . There are usually multiple candidates based on which
a case is split. A selection from such candidates affects how well a proof concerned
is conducted. It is necessary to understand an OTS concerned and experience
writing proof scores so as to select a better one among such candidates. There
are some heuristic rules, however, to select one among such candidates.

– Select a proposition that directly affects the truth value of a proposition to
prove such as istep(i,j). If i equals j, istep(i,j) reduces to true in case
1.check.1, the proposition i = j may be a good candidate.

– Select a proposition ρ if ρ appears in a result obtained by reducing a propo-
sition to prove. If ρ appears at the conditional position of if_then_else_fi
such as if ρ thena else b fi, ρ may be a good candidate.

We describe how to split case 1.check.1. CafeOBJ returns ((if (k = i)
then cs else pc(s,i) fi) = cs) and ... for the corresponding proof pas-
sage. Then, we select the proposition k = i to split the case. The equation i =
k is declared6 in one proof passage whose corresponding case is referred as case
1.check.1.1, and the equation (i = k) = false is declared in the other proof
passage whose corresponding case is referred as case 1.check.1.0.

Since CafeOBJ returns if (k = j) then cs else pc(s,j) fi = cs and
... for the proof passage corresponding case 1.check.1.1, we select the propo-
sition k = j to split the case. The equation j = k is declared in one proof
passage whose corresponding case is referred as 1.check.1.1.1, and the equation
(j = k) = false is declared in the other proof passage whose corresponding
case is referred as case 1.check.1.1.0. CafeOBJ returns true for the former proof
passage, but pc(s,j) = cs xor true for the latter proof passage. Then, case
1.check.1.1.0 is also split based on pc(s,j) = cs. The equation pc(s,j) = cs
is declared in one proof passage whose corresponding case is referred as case
1.check.1.1.0.1, and the equation (pc(s,j) = cs) = false is declared in the
other proof passage whose corresponding case is referred as case 1.check.1.1.0.0.
CafeOBJ returns false for the former proof passage and true for the latter
proof passage. Case 1.check.1.0 can be split into four (sub-)cases in the same
was as case 1.check1.1.

3.5 Predicate (Lemma) Discovery/Use

When CafeOBJ returns false for a proof passage, there are two possibilities:
(1) if an an arbitrary state characterized by the case corresponding to the proof
passage is not reachable wrt an OTS S concerned, the case can be discharged,
6 Note that i = k is declared instead for k = i.

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 611

and (2) otherwise, a state predicate concerned is not invariant wrt S. If a state
predicate is invariant wrt S and does not hold in the case, then an arbitrary
state characterized by the case is not reachable wrt S. That is why we find a
state predicate that does not hold in the case and is likely invariant wrt S.

Let E is a set of equations that characterize a case such that CafeOBJ re-
turns false for a proof passage corresponding to the case. We suppose that∧

e∈E e is equivalent to a proposition whose form is Q(υc, zc
α). Let q(υ) be

∀zα : Dqα.¬Q(υ, zα). Since q surely does not hold in the case characterized by
E, q is one possible candidate. Generally, q′ such that q′ ⇒ q can be a candidate
because q′ does not hold in the case characterized by E,

Let us consider the proof passage corresponding to case 1.check.1.1.0.1
shown in Example 3. From the five equations that characterize the case, we
obtain the proposition pc(s,i) = l2 and pc(s,j) = cs and ticket(s,i) =
turn(s) and not(j = i) by concatenating them with conjunctions, substitut-
ing k with i because of the equation i = k, and deleting the tautology i = i.
p2 is obtained from the proposition,

Some contradiction may be found in a set of equations that characterize a
case even when CafeOBJ does not return false in a proof passage corresponding
to the case. If that is the case, a state predicate can be obtained from the
contradiction such that the state predicate does not hold in the case and is
likely invariant wrt an OTS concerned.

Let us consider the proof passage corresponding to case 2.exit.1.0.0.1 shown
in Example 3. We notice that the three equations pc(s,k) = cs, pc(s,i) = cs
and (i = k) = false contradict ∀υ : RSTlock .MX(υ) and inv1(s,i,k) can be
used in the proof passage.

Even when any contradictions are not found in a set of equations that charac-
terize a case and CafeOBJ does not return false in a proof passage correspond-
ing to the case, a state predicate may be found such that the state predicate can
be used to discharge the case and is likely invariant wrt an OTS concerned.

Let us consider the proof passage corresponding to case 1.check.1.1.0.
CafeOBJ returns pc(s,j) = cs xor true for the proof passage, but inv2(s,j,
i) also reduces to pc(s,j) = cs xor true in the proof passage. Therefore,
inv2(s,j,i) can be used to discharge the case and it is not necessary to split
the case anymore.

4 Soundness of Proof Scores

Let us consider the proof of ∀υ : RS . (p1(υ) ∧ . . . ∧ pN (υ)) described in Sub-
sect. 2.4 again. If CafeOBJ returns true for each proof passage in the proof
scores, p1, . . . , pN are really invariant wrt S provided that

1. Needless to say, the computer (including the operating system, the hardware,
etc.) on which CafeOBJ works is reliable,

2. Equational reasoning is sound and rewriting faithfully (partially though) im-
plements equational reasoning [8]; the CafeOBJ implementation of rewriting
is reliable,

612 Kazuhiro Ogata and Kokichi Futatsugi

3. The Hsiang TRS is sound [12]; the TRS is reliably implemented in CafeOBJ,
4. The built-in equality operator _==_ is not used,
5. S is specified in CafeOBJ in the way described in Subsect. 2.3, and
6. The proof scores of ∀υ : RS . (p1(υ) ∧ . . . ∧ pN(υ)) are written in the way

described in Subsect. 2.4.

When CafeOBJ meets the term a == b, it first reduces a and b to a′ and b′, which
are irreducible wrt a set of equations (rewrite rules) concerned, and returns true
if a′ is exactly the same as b′ and false otherwise. The combination of _==_ and
not_ can damage the soundness. Since the built-in inequality operator _=/=_ is
the combination of _==_ and not_, it should not be used either. Let us consider
the following module:

mod! DATA { [Data]

ops d1 d2 : -> Data

}

We try to prove ∀d : Data.¬(d = d2) by writing a proof score. A plausible proof
score that consists of one proof passage is as follows:

open DATA

op d : -> Data . -- an arbitrary value of Data.

red not(d == d2) . -- or red d =/= d2 .

close

CafeOBJ returns true for this proof passage, which contradicts the fact that
there exists the counterexample d2. Therefore, users should declare an equality
operator such as _=_ for each visible sort and equations defining it instead of
== and _=/=_.

Under the above six assumptions, the only thing that we should take care of
on the soundness is whether all necessary cases are checked by rewriting for each
proof passage. A possible source of damaging it is transitions. Since transitions
are functions on states in OTSs, however, the source can be dismissed. Every
operator is a function in CafeOBJ as well. Therefore, rewriting surely covers all
necessary cases for each proof passage.

Note that we do not have to assume that the CafeOBJ specification of S,
when it is regarded as a TRS, is terminating or confluent for the soundness.
If the CafeOBJ specification is not terminating, CafeOBJ may not return any
results for a proof passage forever. This causes the success in proofs, but does
not affect the soundness.

We suppose that a term a has two irreducible forms a′ and a′′ in a proof
passage because the CafeOBJ specification is not confluent and that a actually
reduces to a′ but not to a′′. Although CafeOBJ ignores a rewriting sequence
that starts with a and ends in a′′, this does not affect the soundness because
a′ equals a′′ from an equational reasoning point of view and it is enough to use
either a′ or a′′. Whether the CafeOBJ specification is confluent, however, can
affects the success in proofs. Let us consider the following module:

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 613

mod! DATA2 { [Data2]

ops d1 d2 d3 : -> Data2

op _=_ : Data2 Data2 -> Bool {comm}

var D : Data2

eq (D = D) = true .

eq d1 = d2 . eq d1 = d3 .

}

We try to prove d1 = d3 by writing a proof passage. The case is split into two
(sub-)cases where (1) d2 = d3 and (2) d2 	= d3. Then, the proof score that
consists of two proof passages is as follows:

open DATA2

eq d2 = d3 .

red d1 = d3 .

close

open DATA2

eq (d2 = d3) = false .

red d1 = d3 .

close

CafeOBJ returns true for the first proof passage and false for the second proof
passage. We stuck for the second proof passage unless we notice the equation d1
= d3 in the module DATA2.

From what has been described, it is desirable that the CafeOBJ specification
of S is terminating and confluent.

We can check if proof scores that state predicates are invariant wrt S con-
forms to what is described in Subsect. 2.4. We suppose that all proofs are con-
ducted by simultaneous induction. Let P and P ′ be sets of state predicate such
that P ′ is empty. A procedure that makes such a check is as follows:

1. If P is empty, the procedure successfully terminates, which means that the
proof score of ∀υ : RS . p(υ) for each p ∈ P ′ conforms to what is described
in Subsect. 2.4; otherwise, extract a predicate p from P and go next.

2. Check if a proof score of ∀υ : RS . p(υ)q has been written. If so, go next;
otherwise, the procedure reports that a proof score of ∀υ : RS . p(υ) has not
been written and terminates.

3. Check if the proof score of ∀υ : RS . p(υ)q conforms to simultaneous induc-
tion. If so, go next; otherwise, the procedure reports that the proof score of
∀υ : RS . p(υ)q does not conform to simultaneous induction and terminates.

4. Check if the proof score of ∀υ : RS . p(υ)q covers all necessary cases. If so,
put p into P ′, put other state predicates that are used in the proof score
and that are not in P ′ into P , and go to 1; otherwise, the procedure reports
that the proof score of ∀υ : RS . p(υ) does not cover all necessary cases and
terminates.

The procedure can increase the confidence in soundness of proof scores.

614 Kazuhiro Ogata and Kokichi Futatsugi

5 Conclusion

We have described some tips on writing proof scores in the OTS/CafeOBJ
method and used Tlock, a mutual exclusion protocol using atomicInc, to ex-
emplify the tips. We have also informally argued soundness of proof scores in
the OTS/CafeOBJ method.

We have been developing a tool called Gateau [21] that takes propositions
used for case splitting and state predicates used to strengthen the basic induction
hypothesis, and generates the proof score of an invariant, which conforms to what
is described in Subsect. 2.4.

Proof scores can also be considered proof objects, which can be checked as
described in Sect. 4. We think that it is worthwhile to develop a tool, which is an
implementation of the procedure in Sect. 4 that checks if a proof score conforms
to what is described in Subsect. 2.4. Such a tool can be complementary to Gateau.

References

1. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

2. R. Diaconescu and K. Futatsugi. CafeOBJ Report, volume 6 of AMAST Series in
Computing. World Scientific, 1998.

3. R. Diaconescu and K. Futatsugi. Behavioural coherence in object-oriented alge-
braic specification. J. UCS, 6:74–96, 2000.

4. R. Diaconescu, K. Futatsugi, and K. Ogata. CafeOBJ: Logical foundations and
methodologies. Computing and Informatics, 22:257–283, 2003.

5. K. Futatsugi, J. A. Goguen, J. P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In 12th POPL, pages 52–66. ACM, 1985.

6. K. Futatsugi, J. A. Goguen, and K. Ogata. Verifying design with proof scores. In
VSTTE 2005, 2005.

7. K. Futatsugi, J. A. Goguen, and K. Ogata. Formal verification with the OTS/Cafe-
OBJ method. submitted for publication, 2006.

8. J. Goguen. Theorem Proving and Algebra. The MIT Press, to appear.
9. J. Goguen and G. Malcolm. A hidden agenda. TCS, 245:55–101, 2000.

10. J. Goguen and G. Malcolm, editors. Software Engineering with OBJ: Algebraic
Specification in Action. Kluwer, 2000.

11. J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.
Larch: Languages and Tools for Formal Specification. Springer, 1993.

12. J. Hsiang and N. Dershowitz. Rewrite methods for clausal and nonclausal theorem
proving. In 10th ICALP, LNCS 154, pages 331–346. Springer, 1983.

13. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer, Berlin, 2002.

14. K. Ogata and K. Futatsugi. Flaw and modification of the iKP electronic payment
protocols. IPL, 86:57–62, 2003.

15. K. Ogata and K. Futatsugi. Formal analysis of the iKP electronic payment proto-
cols. In 1st ISSS, LNCS 2609, pages 441–460. Springer, 2003.

16. K. Ogata and K. Futatsugi. Formal verification of the Horn-Preneel micropayment
protocol. In 4th VMCAI, LNCS 2575, pages 238–252. Springer, 2003.

Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method 615

17. K. Ogata and K. Futatsugi. Proof scores in the OTS/CafeOBJ method. In 6th
FMOODS, LNCS 2884, pages 170–184. Springer, 2003.

18. K. Ogata and K. Futatsugi. Equational approach to formal verification of SET. In
4th QSIC, pages 50–59. IEEE CS Press, 2004.

19. K. Ogata and K. Futatsugi. Formal analysis of the NetBill electronic commerce
protocol. In 2nd ISSS, volume 3233 of LNCS, pages 45–64. Springer, 2004.

20. K. Ogata and K. Futatsugi. Equational approach to formal analysis of TLS. In
25th ICDCS, pages 795–804. IEEE CS Press, 2005.

21. T. Seino, K. Ogata, and K. Futatsugi. A toolkit for generating and displaying
proof scores in the OTS/CafeOBJ method. In 6th RULE, ENTCS 147(1), pages
57–72. Elsevier, 2006.

Drug Interaction Ontology (DIO) and the
Resource-Sensitive Logical Inferences

Mitsuhiro Okada1, Yutaro Sugimoto1,
Sumi Yoshikawa2, and Akihiko Konagaya2

1 Logic Group, Department of Philosophy, Keio University
2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
{mitsu,sugimoto}@abelard.flet.keio.ac.jp

2 Genomic Science Center (GSC), RIKEN
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan

{sumi,konagaya}@gsc.riken.jp

Abstract. In this paper, we propose a formulation for inference rules
in Drug Interaction Ontology (DIO). Our formulation for inference rules
is viewed from the standpoint of process-description. The relations in
DIO are now described as resource-sensitive linear logical implications.
The compositional reasoning on certain drug-interactions discussed in
our previous work on DIO is represented as a construction of a linear
logical proof. As examples of our formulation, we use some anti-cancer
drug interactions.3

1 Introduction

Ontology-oriented knowledgebases have been studied and developed in various
fields, where knowledgebases are designed in accordance with the underlying on-
tological structures, such as structures of persistent objects, structures of func-
tions, structures of processes, etc. Ontologies of the biomedical and bioinformatic
domain have been studied and developed very intensively, as well as ontologies of
other specific domains and domain-independent general ontologies.4 Needless to
say, in order to make an ontology-based database useful and practical, it is im-
portant to provide a suitable formal language and an inference engine, which will
make the best use of the ontological structures of the relevant domains. For this
purpose, various formal language frameworks and various inference engines have
been proposed in the literature on biomedical and bioinformatic applications.

Some have employed tree and graph structures for the basic formal struc-
tures and retrieving-search engines on the tree/graphs are used. 5 Others have
used the relation-based predicate logic language and its variants as the formal

3 We would like to express our sincere thanks to the anonymous referee for invaluable
comments on earlier versions of this paper.

4 For some survey of ontology-methodology for knowledgebases, see e.g. [17] [22] [26].
5 E.g. Gene Ontology (GO) Editorial Style Guide [1] [2].

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 616–642, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 617

framework, in which the logical engine based on first order predicate logic is
often employed explicitly or implicitly (e.g. [8] [13]): B.Smith et al. [23] [24],
for example, proposed the use of a somewhat limited number of primitive predi-
cates/relations for a biological ontology in the setting of a fragment of first order
predicate logic. Description Logics are also considered variants of predicate logic,
which enhance the latter’s expressive power (for concepts, for example) to some
extent while preserving its effective computability.6 The transformation and in-
tegration techniques among different ontology languages are also important, and
some pioneering works have been done by Goguen and others (cf., e.g. [5] [6] [7])
using category theoretical tools.

In the domain of drug/pharmaceutical applications, knowledgebases devel-
oped on the basis of molecular level ontology, are particularly useful, and it
would be important to design the reasoning of drug-interactions according to
the ontology-based knowledgebases, as well as to the traditional static ontolog-
ical structures of drug-related knowledgebases. Although drug interactions are
represented by relations in a static manner, it is desirable that the interaction
processes themselves be captured within the logical reasoning/inference frame-
work.

The main objective of this paper is to design a logical inference engine for
a process-based biological ontology. And for that purpose, we will herein adopt
a molecular interaction-based process ontology modeling method for some drug
interactions (Drug Interaction Ontology: DIO) from [27] [28] [29]. In our previ-
ous work on DIO, we proposed certain schematic or abstract inferences based
on basic triadic relations in molecular-interactions, such as “Drug a facilitates
the generation of c under the action of enzyme b in a situated environment”
(facilitate(a, b, c), for short), or “Drug a inhibits the generation of c under the
action of enzyme b in a situated environment”.

While the use of such relations for interaction-processes provides a schematic
inference tool in Drug Interaction Ontology, and the relation-based reasoning
often hides the processes level, the question concerning the logical consolidation
for the inference engine of DIO has been left opened. In this paper, we introduce
a variant of resource-sensitive logic, linear logic, to explain the basic inference en-
gine used in our previous work on DIO, where the relational approach is reduced
to a more basic process approach, and accordingly the basic triadic relation for
molecular interactions, for example, is expressed as the logical description of in-
teraction processes, using a resource-sensitive logical implication such as “The
coexistence of resource a and of the environmental resource b implies product
c (in the linear logical expression (a, !b) � c).” Here, !b expresses a relatively
large amount of resources b in the sense that the resource consumption of b can
be ignored in the context of the reasoning.

6 For the applications of Description Logics to ontologies, see e.g. [11] [25].

618 Mitsuhiro Okada et al.

Various multiple interaction processes can then be described as a (linear
logical) formal deduction proof, where a composed interaction process could be
identified with a structurally composed logical proof. (In other words, a certain
part of the DIO process could be simulated by a formal deductive proof process.)
This suggests that some inquiries for the DIO-based ontological knowledgebase,
which could be treated by a logical proof-search engine of a variant of linear
logic. And indeed we shall argue hereinafter that a suitable formulation can be
given for the basic inferences on DIO (in [27] [28] [29] etc.) in a resource-sensitive
logic. Logical representations have been used in various areas of computer science
where theorem-proving approaches are applied in order to represent the processes
(cf. e.g. [9]). In particular, in this paper, we shall show that:

1. The relational-level oriented approach described by Yoshikawa et al. [27]
[28] is reduced to the process-level approach, by the use of a logical system
adopted for the linear logical (resource-sensitive logical) process-descriptions
of drug interactions;

2. A composed process-description (for drug interactions) can be formulated
by means of a composed logical proof of the resource-sensitive “linear
logic”;

3. For a negative expression, such as “inhibiting”, used in the reasoning of DIO,
we introduced a quantitative modality, in addition to the usual modality of
resource-sensitive logics, in order to adjust the standard resource-sensitive
process-description logic (such as linear logic) to the specific domain-oriented
inferences of DIO. The usual modality !A represents the existence of a rela-
tively large amount of resource A, hence the consumption of resource A can
be ignored when !A is used for some reusable environmental resources, such
as enzymes (cf., e.g. [19]). The typical use of the standard modality appears
as an environmental resource of an enzyme, where the consumption of an
environmental enzyme during the reaction can be ignored, and the enzyme
can be considered to exist before and after the reaction. On the other hand,
we introduced a non-logical domain-specific modality �, a domain specific
quantitative modality, which describes a significant decrease of resource A.
This modality is used for describing inhibition.

While the triadic relation (holding among the drug, environmental enzyme,
and product) was introduced as the basic relation in the DIO to derive drug-
drug interactions [28], in this paper we present a formal break-out of this basic
relation into the process level, where the triadic relation is now described as
a resource-sensitive linear logical formula. Then one might be able to fit the
inferences for the drug-drug interactions in a precise logical inference system. In
particular, this logical inference level is regarded as the process description level
(using the concurrent process description methodology of linear logic), while
preserving the basic DIO ontological modeling framework. (see Table 1) This
precise logical formalization shows a way for DIO to be designed/implemented
for practical uses, based on a logical inference engine.

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 619

Table 1. The Correspondence between the basic DIO relations and our logical
process descriptions

DIO Descriptions for
Molecular Interactions

Meaning Linear Logical Process
Descriptions

MI(a, b, c) An emerged molecule a (a, !b) � c
also written interacts with b, and c
facilitate(a, b, c) emerges as a result.

From this relation, “a facili-
tates the generation of c (un-
der the presence of b)” is in-
ferred.

bind more(a, b, a ∗ b) A molecular binding of a (a, b) � a ⊗ b
(previously written as and b, caused by the
bind more(a, b, a=b) in the
DIO literature)

emergence of a, is relatively
more frequently or durably
formed than the other bind-
ing complexes with b in the
scope of interest.

inhibit(A, B) The emergence of a resource
A may inhibit B.

A � �!B

a, b, c, ... denote molecular expressions, and A, B, C denote composed states of molec-
ular expressions (cf. section 3).

2 Preliminaries to Drug Interaction Ontology (DIO)
Modeling

2.1 Biomedical Ontologies

In the biomedical domain, several ontologies have been developed for different
purposes, and many of them were built through the so-called ”concept-centered”
or ”terminology-centered” approaches. To be sure, these ontologies and/or ter-
minology systems would be useful as repositories for the tasks involving a large
amount of complex technical terms and emerging new terms. However, the con-
cept/terminology centered approaches do not seem too efficient when applied
to computational inferences. As a solution to this problem, we might think of
adopting basic ontological schemes in the hope that this would help us develop
well-structured knowledgebases, which are applicable to biological pathway mod-
els, and which can deal with sophisticated medical information and so on.

One of such basic ontological schemes, BFO [21], the Basic Formal Ontology
developed by IFOMIS [12] for application in the medical domain, provides two
categories, SNAP and SPAN, both of which are formulated in predicate logic:
the former corresponds typically to continuants, and the latter to occurrents or
processes. Another scheme, “The Relation Ontology” which is reported in Re-
lations in Biomedical Ontologies [23], is designed to provide basic relations that
cover every granular level, namely as molecules to organisms, in the biomed-

620 Mitsuhiro Okada et al.

ical domain. Here, biological entities are largely divided into continuants and
processes, and the relation between the two is also defined as an instance-level
primitive one; P has participant C (P : process, C: continuant). (Some exam-
ples of continuants and molecular level processes are shown in the upper part of
Figure 1.)

We think it is important to deal with the relation between continuant and
process in a more precise or ontological manner; because the manipulations of
their inter-relation is an essential part of communication in the discipline. We
have to keep in mind that the main topic in the discipline includes such questions
as “How are new biological substances endogenously produced as a result of a
certain stimulus (an emergence of continuants)?”, or “How are certain biological
reactions/phenomena brought about or regulated?”. Causality expressions are
often used in tandem with terms describing the inter-relation, and such terms as
“facilitate” (a term indicating the positive direction), or “inhibit” (a term indi-
cating the negative direction) are used to refer to their manipulations. However,
as far as our investigation indicates, there is no ontology that defines “facili-
tate”/“inhibit” or “facilitator”/“inhibitor” in the context of relations between
continuants and processes, beyond the terminological level.

2.2 Drug Interaction Ontology as Molecular Level Process Ontology

Basic Formula of Molecular Interaction Our previous work on Drug In-
teraction Ontology (DIO) [27] [28] [29] can be regarded as an attempt to put
forward an ontology for primitive processes at the molecular level, using three
role relations between continuants participating in the process. As shown in Ta-
ble 1, a molecular interaction is in general represented as a triadic (role) relation
of continuants; MolecularInteraction(a, b, c) or MI(a, b, c). They can be read
as “An emerged molecule a interacts with b, and c emerges as a result”, where a
denotes an input or trigger, b denotes an (environmentally situated) object, and
c denotes an output or resultant product, respectively. In other words, a (input)
and b (object) are necessary participants to bring about the process (enablers),
while c (output) is an emerged continuant as a result of the process. A difference
between input and object is that the latter is a relatively “situated” continuant
in the field/place of interest (e.g. a pool of reactions such as inside the cell). In
other words, the output continuant, by its semantic definition, may be a trigger
or constitute an input of another molecular interaction process.

The triadic relation for molecular interaction, MI(a, b, c), can also be read as
“The emergence of a facilitates the emergence of c, which is mediated by situated
b”. It can also be written as facilitate(a, b, c). The latter part “mediated by
situated b” could be sometimes omitted. In such case, it may also be written as
facilitate (a, c).

In the Drug Interaction Ontology model, we defined different types of interac-
tions by comparing the existing pattern (e.g. a change of molecular population,
a change of location pattern) of participants. In this paper, we will deal with
the enzymatic catalytic reaction (substrate-enzyme reaction) and the so-called

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 621

“enzyme inhibition” reaction (inhibitor-enzyme reaction). Several instances of
these relations, both of which are subclasses of MI(a, b, c), will be used later.

Fig. 1. Inferences Using Continuants and Processes

Transient Complex This triadic model encapsulates details of filling events
during the time course of the process. For example, formation of transient com-
plexes and (in some cases) their dissociation processes are encapsulated. In
physico-chemical molecular interactions, a certain kind of transient binding com-
plex is formed, but its lifetime may be very short. It might be represented by
something like MI transient(a, b, a ∗ b), if we consider the formation of a tran-
sient complex is the end of the reaction process. Some binding complexes last
for a relatively long time and are called “molecular bindings” or “formation
of assemblies”, which we deal with here as subclasses of the triadic molecular
interaction.

The efficiency of the formation of transient complexes depends largely on the
quantitative chances of encountering every enabler molecule and affinity prop-
erty. An encounter of molecules may be largely influenced by the local molecular
population (concentration) and by other factors, such as the existence of com-
petitive interaction counterparts. The latter factor is influenced not only by
intrinsic molecular affinities, but also by other environmental conditions, which
might modulate the properties. Unlike chemical reactions, which can occur under
artificially controlled settings, biological reactions usually take place in an envi-
ronment filled with many concomitant continuants and processes, under physi-
ological conditions.

622 Mitsuhiro Okada et al.

As it would be almost impossible to describe every detail of an event including
all continuants and in a given biological environment, what we represent as the
triadic molecular interaction model, by its defined meanings, is a dynamic event
which deviates from a basal biological state. The emergence of continuants as
an input (or trigger) or an output (or resultant product) indicates a change
of biological state compared to the basal one or to the one prior to each such
emergence.

Efficiency of Interaction Processes: bind more Relation In accordance
with the semantic nature of the model discussed above, we here introduce the
bind more relation to describe the relative quality of reaction processes. The
relation includes in it the influence of competitive formation of a transient com-
plex. The bind more(a, b, a∗b) that is “The molecular binding of a and b, (a∗b),
caused by the emergence of a”, is relatively more frequently or durably formed
than the other binding complexes with b in the scope of interest. This relative
quality of binding is abstracted from the quantitative information concerning
key players (concentration, affinity parameters, etc) as well as other biological
conditions which cannot be defined in every detail. To some extent, however,
this relation could be led by comparing pharmacokinetic / biochemical parame-
ters, using the concentrations obtained by an ordinal administration dose. In our
two examples below, one is known as a “mechanism-based inhibition” which is
a tighter binding than any other ordinary substrate, and thus the bind more re-
lation is clearly manifest as reported in the literature. In the other example case
too, the bind more relation is adopted since the binding complex lasts longer
than most of the ordinary substrates.

Inhibiting Relation In the literature of the bio-medical domain, narrative
expressions such as “a inhibits b” are often used while ignoring the types of
interactions. In Drug Interaction Ontology, direct molecular interaction is re-
garded as a subclass of triadic molecular interaction MI(a, b, c), and represented
as MI xi(a, b, c).7 Here, the relation inhibit(a, b) means “The emergence of a
decreases b”. The inhibitory relations in other complex type of interactions, or
in combination of more than two triadic interactions, are called “inferred inhi-
bitions” in DIO.

2.3 Examples

Drug Interaction Between 5-FU and SRV 8

Figure 2 (quoted from [27] with some modifications), is a pathway map which
is manually created in order to explain the causal effect of the anticancer drug
5-FU (the upper map) and the effect of the concomitant use of SRV (the lower

7 x is a variable, which indicates interaction modalities such as enzymatic reactions,
transformations, etc.

8 5-FU: an anticancer drug, 5-fluorouracil, SRV: an antiviral drug, sorivudine

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 623

map). The arrows indicate the reactions, connecting node molecules (e.g. bio-
transformation) corresponding to input and output. The names near the arrow
lines indicate mediators of reactions (e.g. enzymes). The broken line arrows in-
dicate aggregates of molecular interactions, while the solid line arrow indicate
one unit of molecular interaction in the triadic molecular interaction model.

In this paper, we deal with two types of interactions only. Both occur in the
lower map and involve the participation of the enzyme DPD. The first inter-
action, 5-FU −→� H2FUra (mediated by DPD) is modelled by the expression
MIes(5-FU , DPD, H2FUra). MIes(a, b, c) is a subclass of MI(a, b, c) and an
abbreviation of “The emergence of a substrate a triggers a reaction catalyzed by
a situated enzyme b and a is converted to c as a result”.

The second interaction, shown in the lower map something like BV U −→�
DPD (down arrow), is represented by the expression MIei(BV U,DPD,BV U ∗
DPD).
MIei (a, b, c) is another subclass of MI(a, b, c). It can be also read as “The
emergence of a triggers a reaction owing to which a situated enzyme b is less
populated or less capable of reaction as a result, compared to the state prior
to the reaction”. In this example, an irreversible binding formation (BV U ∗
DPD) is confirmed. It can also be read as bind more(BV U,DPD,BV U ∗DPD)
in this example. It is based on the nature of the so-called “mechanism based
inhibition” as opposed to the enzyme-substrate reaction in case of the usual oral
administration dose under physiological conditions.

It is known that the former process is inhibited (or made less effective) when
the latter reaction is also occurring. Intuitively “BV U inhibits (mediated by
DPD) H2FUra formation”, that is it inhibits 5-FU ’s detoxification process.
In section 4, we will provide a logical reasoning system representing the inhibit
relation.

Drug Interaction Between CPT-11 and Ketoconazole The drug inter-
action between CPT -11 and Ketoconazole was treated by Yoshikawa et al as
an example of the model [27]. An illustration of the pathway map of that in-
teraction is shown in Section 4. This example is also adopted to explain of the
drug-drug interaction behind the effect of the concomitant use of CPT -11 and
Ketoconazole. A summary biochemical statement in this example may be ex-
pressed as “transformation of CPT -11 is interfered by Ketoconazole through
the modulation of the enzyme CY P3A4”. Its pharmacological semantics may
be read as “The activity of the anticancer drug CPT -11 is elevated”, or “The
toxicity of CPT -11 is elevated” for short.

In this paper, we deal with local biochemical semantics by extracting only
two molecular interactions that are conjoined to each other. One is CPT -11
−→� APC, which is mediated by CY P3A4, MIes (CPT -11,CY P3A4, APC).
The other is Ketoconazole −→� CY P3A4, MIei(Ketoconazole, CY P3A, Keto-
conazole ∗ CY P3A4). Although the interaction modality of Ketoconazole with
CY P3A4 differs from that in the above “mechanism-based inhibiton”, the bind-
ing between Ketoconazole and CY P3A4 holds longer and tighter than the bind-

624 Mitsuhiro Okada et al.

Fig. 2. 5-FU Associated Pathways and the Influence of Addition of SRV

ing between CPT -11 and CY P3A4. Therefore, the bind more relation could also
be applied in this case. These reactions will be taken up in Section 4 as examples
of our logical representation of drug interactions.

3 Preliminaries to Linear Logical Inference Systems for
Process Descriptions

In this section we introduce our process description language, a fragment of linear
logic.9 First, we introduce the vocabulary of our process description language as
follows:
(1) Logical connectives: A⊗B (“the molecular binding of A and B”),

(A , B) (“The co-existence of A and B”),
A � B (“If A is added, B is generated”),
!A (“A exists as an environmental resource”),

(2) Additional non-logical
modal connective: �A (“A decreases”),

(3) Molecular expressions: A,B,C, . . . , A0, A1, A2, . . .
Molecular variables: a, b, c, . . . , a0, a1, a2, . . .

The outermost parentheses are often deleted. For example, A ⊗ B � C is a
molecular expression. (((A, B), C), ...) can be abbreviated as (A,B,C, . . .) or
9 We give a linear logical preliminary explanation, which would be minimal informa-

tion for understanding this paper, more detailed and formal introduction may be
found in e.g. [19],[4]. (See also [3],[18],[20].)

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 625

just A,B,C, A1, . . . , An $ B1, . . . , Bm is called a sequent, which may be
paraphrased informally “If A1, . . . , An co-exist then B1, . . . , Bm are generated
by consuming A1, . . . , An”. A finite sequence of formulas (possibly the empty
sequence) is denoted by Γ,Δ, Parentheses occurring in a formula may be
deleted when this causes no ambiguity. A sequent is an expression of the form
Γ $ Δ.
There are two kinds of inference rules:

Γ1 $ Δ1

Γ ′ $ Δ′ ,
Γ1 $ Δ1 Γ2 $ Δ2

Γ ′ $ Δ′ .

The former has only one upper sequent Γ1 $ Δ1, while the latter has two upper
sequents Γ1 $ Δ1 and Γ2 $ Δ2. Both have only one lower sequent Γ ′ $ Δ′. We
also consider a special kind of inference rules for which there is no upper sequent.
Such a special kind of inference rule is called an “axiom sequent”.

In the traditional logics, including the classical predicate logic and construc-
tive logic, the following logical inference is admitted as a valid inference:

C −→ A C −→ B
C −→ A and B .

Here, A −→ B is read “If A then B”. Then, the above inference thus says: From
the two assumptions “If C then A” and “If C then B”, one can reason “If C
then A and B”. This is obviously true for the usual mathematical reasoning. For
example,

f(x) < a −→ b < x f(x) < a −→ x < c

f(x) < a −→ b < x and x < c .

However, when we try to apply this inference rule to the two premises; “If one
has one dollar then one gets a chocolate package” and “If one has one dollar
then one gets a candy package”, then one may have the following inference:

one has $1 −→ one gets a chocolate one has $1 −→ one gets a candy
one has $1 −→ one gets a chocolate and a candy .

A naive reading of this inference leads to a wrong conclusion “If one has one
dollar then one gets both a chocolate package and a candy package”. In fact, the
following are implicitly assumed when the traditional logical rules are applied
to some statements; (1) the statements are independent of temporality, i.e., the
logic treats only “eternal” knowledge which is independent of time. (2) the logi-
cal implication “−→” is independent of any consumption relation or any causal
relation. These assumptions are appropriate when we treat the ordinary math-
ematics. Hence, the traditional logical inferences can be used for mathematical
reasoning in general. However, when we would like to treat concurrency-sensitive
matters or the resource-consumption relation we need to be careful with the ap-
plication of the logical inference rules. The above example illustrates one such

626 Mitsuhiro Okada et al.

situation. In particular, when we would like to study the mathematical structures
of information or computation in computer science, information science, etc.,
we often need to elaborate the traditional logical inferences since concurrency-
sensitive setting and concepts for the consumption of computational resources
or of resources for information processing are often essential in computer science
and the related fields. Linear logic proposed by Girard is considered one of the
basic logical systems which would provide a logical framework for such a new
situation occurring in computer science and its related fields.10 For example,
instead of the traditional logical connective ∧ (“and”), linear logic provides two
different kinds of logical connectives ⊗ and &, where A ⊗ B means “A and B
hold in parallel (at the same time)” while A&B means “Either A or B can be
chosen to hold (as you like) but only one of them at once”.

The traditional logical implication −→ is replaced by the linear implication
�, where A � B means “By the consumption of A, B is generated”. With the
explicit appearance of the resource consumption relation, the conjunction “A
and B” naturally yields the co-existence of A and B. We use “comma” (“A,B”)
to denote the coexistence A and B. We also introduce a stronger notion of co-
existence, namely, that of the molecular binding “A⊗B”.11

Following [27], we take as a basic primitive relation the specific triadic re-
lation, called “the facilitate relation (facilitate(A,B,C))”. (“A drug A under
the environmental resource !B (such as enzymes) generates C” is expressed as
(A, !B) � C in the logical sequent from the two transitions.) In this paper, we
express this relation on a process description level as a linear logical $ relation;
The logical inference rule for “,” is:

C $ A D $ B
(C,D) $ (A,B)

When we apply “If one has $1 then one gets a chocolate package” and “If one
has $1 then one gets a candy package” to the two premises of the left inference
rule for “,” , then we obtain as a conclusion “one has {$1, $1} � one gets (a
chocolate , a candy)”, which means “If one has two $1’s (namely, $2) then one
gets both a chocolate package and a candy package at the same time”.

On the other hand, the infinite amount of a resource of A is expressed as !A,
with the help of modal operator ! in linear logic. (!A is such a resource that one
can consume A as many times as one wants without any loss of !A.) By using this
modal operator ! one can express the traditional logical truth (i.e., eternal truth)
within the framework of linear logic. Hence, linear logic contains the traditional
logic (with the help of modal operator), and linear logic is considered a refined
(or fine-grained) form of the traditional logic, rather than a logic different from
the traditional logic.

10 There are some other approaches in which the traditional first order logic is refined
in order to capture actions and changes of states. Situation calculus proposed by J.
McCarthy[15] is one such approach.

11 Although in the original notation of linear logic, the symbol ⊗ is used for the parallel
operator, we use a slight different symbolism for it in this paper. (See [19], [4].)

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 627

Note that the linear logical implication A � B means that “By consuming
A, B is generated.” Hence, when A exists and A � B holds, then B can be
actually generated at the expense of the resource A.
On the other hand, the traditional logical implication, as in the one used in the
above mathematical reasoning, does not consume the premise. That is to say,
the traditional implication A→ B means that when A holds and A � B holds,
then B holds, where A continues to hold even after B is obtained from A and
A→ B. (For a precise list of the formal inference rules, see the Appendix at the
end of paper.)

The linear logical modal operator !A usually stands for an infinite amount
of a resource A. If an inference resource A is not resource-sensitive, it may be
interpreted that such a resource can be repeatedly used without any loss, i.e., in
the traditional logical sense “A holds” may be interpreted as “There are infinitely
many amount of A available”, that is, !A, in our symbolism.

The traditional implication may be expressed by the linear implication (the
resource-consumptional implication) with the bang operator !; and thus A→ B,
for example, may be represented by the linear logical formula (!A) → B.

Accordingly, the standard rules for the bang-modal operator ! are formulated
as follows:

! -left
(dereliction-left)

A,Γ $ Δ
!A,Γ $ Δ

(contraction-left)

!A, !A,Γ $ Δ
!A,Γ $ Δ

In the DIO-style reasoning, users sometimes wish to obtain certain inhibiting-
information. For example, consider the following setting. The production of a is
normally generated by a drug b. But, with the use of another drug c in the same
environment, the production of a is inhibited, or in other words, the amount of
the production of a is substantially decreased due to the use of c.

To deal with such a case, we introduce a new modal operator, which is called
the quantitative modality, in symbol �.

628 Mitsuhiro Okada et al.

It represents our thinking about the inhibiting-effects in the DIO-style rea-
soning.

�-left

A,Γ $ Σ
�A,Γ $ �Σ

�-right

Γ $ Σ, !A
Γ $ Σ,A,�!A

Now a careful reader might wonder about the consistency of such rules. The
introduction of such inference rules, however, does not affect the consistency of
the logical inference rules, as given by the following form of the Proposition.

Proposition: Modality rules for � are consistent.

Proof
By deleting the weak modality symbol, the new rules are still derived rules of the
fragment of the original linear logic. This means that the consistency problem
of our logical inference system with the new quantitative modal operator is
reduced to the consistency problem of the original linear logic. Since the original
linear logic is known to be consistent, our new rules for the quantitative modal
operator are consistent. �

4 A Linear Logical Formulation of Basic Relations in DIO

4.1 Basic Relations

The triadic relation facilitate(a, b, c) which is explained in section 2.2 is con-
sidered as a consumption process (i.e. input or object may be consumed in this
process and generate output). We have formulated this consumption relation by
a linear logical consumption relation. For convenience, we used the following
abbreviations:

a1 : input
a2 : object
a3 : output

Now the triadic relation of facilitate(a1, a2, a3) is logically described as follows:

(a1, !a2) � a3

Then using linear logical inferences, one can obtain the following general
abstract Lemma.

Lemma 1
!a2, facilitate(a1, a2, a3) $ a1 � a3

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 629

This means that if there is an environmental resource !a2 and if facili-
tate(a1, a2, a3) holds, then if a1 is added, a3 is generated (addition of a1

generates a3).

Proof: the following is a formal linear logical proof of this Lemma.

a1 $ a1 !a2 $!a2

a1, !a2 $ (a1, !a2)
parallel

a3 $ a3

a1, !a2, ((a1, !a2) � a3) $ a3
� left

!a2, ((a1, !a2) � a3) $ a1 � a3
� right

We show some examples of concrete applications of the above Lemma.

Example 4.1.1: CPT-11 is catalyzed by CE and converted to SN38
It is known that this actually holds in a certain part of the human liver. CPT -11
is an anti-cancer drug, which is also known as Irinotecan12, CE13 is an enzyme
which exists ordinarily in the human liver, and SN3814 is a drug-derived
substance which is generated as a result of CE mediated catalytic reaction.
We regard a1 as CPT -11, a2 as CE, and a3 as SN38. And by this Lemma, if

1. !a2 exists as an environmental resource; and
2. facilitate(a1, a2, a3) actually holds.

Therefore, the two premises of the Lemma !a2 and facilitate(a1, a2, a3) hold.
Hence, the Lemma tells that if CPT -11 is given, SN38 is generated.

Example 4.1.2: 5-FU is catalyzed by DPD and converted to H2FUR
It is known that this actually holds in a certain part of the living human body.
5-FU 15 is an anti-cancer drug, used to treat some types of cancer. And DPD
16 is an enzyme that exists mainly in the liver. On the other hand, H2FUR
is a drug-derived substance that is generated as a result of catalytic reaction
mediated by DPD.
As in Example 4.1.1, we regard a1 as 5-FU , a2 as DPD, and a3 as H2FUR. By
Lemma 1, if

1. !a2 exists as an environmental resource; and
2. facilitate(a1, a2, a3) actually holds.

Then facilitate(a1, a2, a3) can be deduced in a logical proof.

12 topoisomerase-I inhibitor,
7-ethyl-10-[4-1(piperidino)-1-piperidino]-carbonyloxycamptothecin

13 carboxylestherase
14 7-ethyl-10-hydroxycamptothecin
15 5-fluorouracil
16 dihydropyrimidine dehydrogenase

630 Mitsuhiro Okada et al.

4.2 Biomolecular Bindings Relations

To describe biomolecular bindings, the ⊗ (called tensor) symbol is used as a
connective.

Rule: Biomolecular Binding
We express biomolecular bindings as follows:

(a1, a2) � a1 ⊗ a2

This means that if a1 and a2 exist, and it is known that they will actually bind
together, then the consumption of a1 and a2 will generate the bound molecule
a1 ⊗ a2.

Example 4.2.1: Ketoconazole binds to CYP3A4
Ketoconazole, an anti-fungal drug, is known to be slowly metabolized by
CY P3A4 forming stable complexes. CY P3A417 is one of the so-called drug
metabolizing enzymes which mainly exist in the human liver.
We express this as follows:

(Ketoconazole, CY P3A4) � Ketoconazole⊗ CY P3A4

This means that if Ketoconazole and CY P3A4 co-exist, Ketoconazole and
CY P3A4 will bind together.

Example 4.2.2: BVU binds to DPD
BV U (bromovinil uracil) is a drug-derived substance and binds to an enzyme
DPD. We express this as follows:

(BV U,DPD) � BV U ⊗DPD

This means that if BV U and DPD co-exist, BV U and DPD will bind together.

4.3 Inhibiting Relations

For inhibiting relations, we use the quantitative modality operator � as
introduced in Table 1.

Modality Rule I: �right

Γ $ Σ, !a
Γ $ Σ, a,�!a

�right

17 cytochrome P-450 isoform 3A4

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 631

An environmental resource !a can be considered as the sum of a and �!a. This
means that if a part of !a is used in the environmental resource !a, then the
environmental resource is consumed, and the amount of usable environmental
resource !a will decrease. This inference rule will be used to express the basic
“inhibition” relation in DIO; a use of !a which results in a product which may
inhibit !a.
Modality Rule II: �left

a, Γ $ b1, b2, ..., bn
�a, Γ $ �b1,�b2, ...,�bn

�left

If the effects of A decrease under the same context of Γ , the effect of Products
of {b1, b2, ..., bn} may be affected. We define inhibit(A,B) as A � B, using �.
Using the above rules, we can infer the inhibiting relations. For convenience, we
also use the following abbreviations.

a1 : Drug1
a2 : Enzyme
a3 : Product
a4 : Drug2

Lemma 2:

(a4, a2) � (a4 ⊗ a2), !a2 $ inhibit(a4, !a2)

This means that if there is an environmental resource !a2 and if bind(a, b)
actually holds, then if a4 is added, the bound molecule a4 ⊗ a2 and the de-
creased a2 are generated. (The addition of a1 and a4 generates the decreased a2.)

Proof:

a4 $ a4

!a2 $!a2

!a2 $ �!a2, a2
�right

a4, !a2 $ �!a2, (a4, a2) a4 ⊗ a2 $ a4 ⊗ a2

(a4, a2) � (a4 ⊗ a2), a4, !a2 $ a4 ⊗ a2,�!a2
� left

(a4, a2) � (a4 ⊗ a2), a4, !a2 $ �!a2
weakening-right

(a4, a2) � (a4 ⊗ a2), !a2 $ a4 � �!a2
� right

Example 4.2.1: Ketoconazole may decrease the amount of CYP3A4

We use the following abbreviations.

a2 : CY P3A4
a4 : Ketoconazole

632 Mitsuhiro Okada et al.

We can see,

1. !a2 really exists as an environmental resource; and
2. a2 and a4 are actually bound together, namely bind(a4, a2) holds.

Therefore, the two premises of Lemma 2 hold. Then it can be proved that “a4

may decrease the amount of a2”.

Example 4.2.2: BVU may decrease the amount of H2FUR

In the same way as in Example 4.2.1, we use the following correspondence Table.

a2 : DPD
a4 : BV U

We can see,

1. !a2 really exists as an environmental resource; and
2. a2 and a4 are actually bound together, namely bind(a4, a2)

holds. Then, the two premises of Lemma 2 hold. Therefore, it can be proved
that “a4 may decrease the amount of a2”.

By using Lemma 2, we can infer Lemma 3 below.

Lemma 3:

bind(a4, a2), !a2, facilitate(a1, a2, a3) $ inhibit((a1, a4),�a3)

This means that if bind(a, b) actually holds, and if there is an environmental
resource !a2, and if facilitate(a1, a2, a3) actually holds, then if a1 and a4 are
added, the decreased a3 is generated (the addition of a1 and a4 generates the
decreased a3).

Proof:

From Lemma2
bind(a4, a2), a4, !a2 � �!a2

� left
!a2, a1, facilitate(a1, a2, a3) � a3

�!a2, a1, facilitate(a1, a2, a3) � �a3
�left

bind(a4, a2), a1, a4, !a2, facilitate(a1, a2, a3) � �a3
cut

bind(a4, a2), !a2, facilitate(a1, a2, a3) � (a1, a4) � �a3
� right

,

where bind(a4, a2) is the abbreviation of (a4, a2) � (a4 ⊗ a2), facilitate(a1, a2, a3)
stands for (a1, !a2) � a3.

Example 4.3.1: Ketoconazole may inhibit the generation of APC

We use the following correspondence Table.

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 633

a1 : CPT -11

a2 : CY P3A4
a3 : APC
a4 : Ketoconazole

APC18 is a drug-derived substance which is generated in this bio-molecular process.
We can see,

1. !a2 really exists as an environmental resource; and
2. facilitate(a1, a2, a3) actually holds; and
3. a4 and a2 are actually bound together, namely bind(a4, a2) holds.

Then the premises of Lemma 3 hold. Therefore, it can be proved that “a4 may inhibit
the generation of a3 in the presence of a1”.

Remark I: Non-monotonic Reasoning. Notice that non-monotonic reasoning
is used in these inferences regarding the presence of a4 (Ketoconazole in the above
example) in the resource. The proof of a3 is replaced by a proof of �a3 under the
assumptions of facilitate(a1, a2, a3) and giving a1 with !a. This is one of the essential
features of inhibition-related reasoning in DIO.

Remark II: Domain Specificity of the Quantitative Modality �A.
Although the introduction of the quantitative modality �A keeps the consistency
of the logical proof system (as was shown in Proposition 1 in Section 3), this new
modality is very domain-specific and destroys the basic universal structure of logical
syntax, namely the cut-eliminability. In fact, the above proof of Lemma 2 serves as a
counter-example of the cut-elimination theorem.

Example 4.3.2: BVU may inhibit the generation of H2FUR

In the same way as in Example 4.3.1, we use the following correspondence Table.

a1 : 5-FU
a2 : DPD

a3 : H2FUR
a4 : BV U

We can see,

1. !a2 really exists as environmental resource; and

2. facilitate(a1, a2, a3) actually holds; and
3. a2 and a4 actually bind together; namely, bind(a4, a2)

actually holds. Then the premises of Lemma 3 hold. Therefore, it can be proved that
“a4 may inhibit the generation of a3 in the presence of a1”.

18 7-ethyl-10-[4-N-(5-aminopentianoic acid)-1-piperidino]-carbonyloxycamptothecin

634 Mitsuhiro Okada et al.

4.4 Remark on Logically Higher-Level Reasoning

For the implementation of highly complicated pharmacological relations, we
claim that meta-level inferences on proofs, rather than assertions are required.
Our logical formalism could be used as a tool to classify relations into different
levels, in particular, we could clarify that some reasoning of DIO is not a reason-
ing at the assertion level, but that at the meta-logical level, namely at the level
of inferences on proofs. Here, we show an example of such a meta-level reasoning
in DIO.
Using the proof of Lemma 1 and the proof of Lemma 2, we can obtain the
Meta-reasoning I given below by a meta-level-reasoning. (Notice: meta-level
inference is shown by the bold line, and the inference requires two proofs
(or, under the linear logical) proofs-as-composed processes identification, two
composed processes as the premises of the inference.)

Meta-reasoning I

a1 � a1 !a2 �!a2

a1, !a2 � (a1, !a2) a3 � a3

a1, !a2, ((a1, !a2) � a3) � a3

!a2, ((a1, !a2) � a3) � a1 � a3

a6 � a6

!a4 �!a4

!a4 � �!a4, a4
�right

a6, !a4 � �!a4, (a6, a4) (a6, a4) � a6 ⊗ a4

a6, !a4 � a6 ⊗ a4, �!a4

!a4, a1, ((a1, !a4) � a5) � a5

�!a4, a1, ((a1, !a4) � a5) � �a5

a1, a6, !a4, ((a1, !a4) � a5) � a6 ⊗ a4, �a5

a1, a6, !a4, (a1, !a4 � a5) � �a5

!a4, (a1, !a4 � a5) � (a1, a6) � �a5

!a2, !a4, ((a1, !a2) � a3), ((a6, a4) � (a6 ⊗ a4)), ((a1, !a4) � a5) � (a1, a6) � �a3

For example, we take the Ketoconazole - CPT -11 interaction process as one
such example. We use the following correspondence Table.

a1 : CPT -11
a2 : CE
a3 : SN -38
a4 : CY P3A4
a5 : APC
a6 : Ketoconazole

And here, we explain this situation more briefly. CPT -11 generates SN -38 in
the situated environment of CE-enzyme, while CPT -11 generates APC in the
situated environment CY P3A4, in some region of the liver. Those facilitation
processes are described as linear-logical proofs in subsection 4.1, (which is repre-
sented by the left-upper proof in the Meta-reasoning I). On the other hand, the
existence of Ketoconazole inhibits CY P3A4, which we have formally described
as a linear logical proof with the quantitative modality � in the previous sub-
section, (which is represented by the right-upper proof in the Meta-reasoning I).
Then, one can reason about the interaction between the CPT -11 - CE - SN -38
facilitation process and the CPT -11 - CPY 3A4 - Ketoconazole - APC inhibi-
tion process, which results in a further facilitation of CPT -11 - CE - SN -38

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 635

process (due to the fact that the resource CPT -11 can be used for generating
SN -38 because of the assumption of CPT -11 for generating APC is inhibited).

Fig. 3. CPT -11 and Ketoconazole Interaction Process

5 Discussion and Conclusion

5.1 Discussion on the Symbolic Inference Methods and the
Simulation Methods for Drug-Interaction Knowledge

We introduced a fragment of a logical inference system for the symbolic reasoning
of drug interaction knowledge, where the usual treatment using the relations-
based (or equivalently predicates-based) reasoning is analyzed into more prim-
itive process description-based reasoning, using a variant of resource-sensitive
logic.

A symbolic logical reasoning encapsulates concrete numerical values and
the detailed (e.g. chemical) levels of processes, and it reasons about the drug-
interaction processes on a certain abstract level, which could make the compu-
tational processing less costly and which efficiently provides important informa-
tion. Of course, such abstract and symbolic approaches have some drawbacks:
the results of inquiries depend on the way of abstracting the real concrete situ-
ations in the organic cells, and it might sometimes cause the validation problem
concerning an abstract modeling process.

Here in DIO, we take the ontological methodology proposed by Yoshikawa
et al. [27] [28] [29], where some specific way of abstraction and some symbolic
way of reasoning/inferring are claimed to be ontologically essential and useful
for the knowledge of drug-interaction processes. On the other hand, following a
different approach, such as the simulation method based on numerical data from
verious in vitro experiments, it would be possible to realize a wide range of inter-
action processes, e.g. in a cell. However, for human response to drugs (including

636 Mitsuhiro Okada et al.

drug-drug interactions), the results obtained with the simulation model using
such numerical data have not been satisfactory so far, in view of quantitative
prediction.

Moreover, the setting of a simulation model is usually more complex and
computationally costly. In fact, it would be ideal if one could combine the two
approaches, the symbolic reasoning system and the simulation system, to ob-
tain useful information such as individual differences of drug responses. For
example, for a first estimation of possible drug-drug interactions or drug ef-
fects, one would like to use a symbolic reasoning/inference system, while when
some important side-effects of multiple use of drugs are found by the symbolic
reasoning/inference system, one would like to re-examine them with more com-
putational cost/resource by a simulation system taking into account quantitative
matters.

5.2 Concluding Remarks

We have utilized a variant of linear logic, namely a resource-sensitive logic, to
formulate some of the basic inferences used in our previous work on Drug Inter-
action Ontology (DIO). In particular, we have obtained the following results:

1. The original relational approach of DIO could be logically grounded in terms
of the logical description level of the interaction processes, by the use of linear
logical process descriptions.

2. The informal arguments for the basic information on facilitation,
inhibition, molecular binding, etc. used in the former work of DIO are now
described at the logical proof level.

3. A linear logical proof has a direct meaning in DIO as an interaction process.
A complex process corresponds to a composite proof-structure.

In the course of our formulation of the logical language for the interaction-
process descriptions, we introduced a new modality, the quantitative modality,
in order to reason about a certain negative effect (inhibition, i.e., decreasing
tendency of a product due to the interference of another co-existent compo-
nent). Our logic for representing process descriptions has the characteristics of
non-monotonic reasoning and resource- sensitive reasoning. And it seems both
characteristics are necessary for the reasoning about the process description level
of knowledge/information based on a drug-interaction ontology (DIO) model.

5.3 Future Work

We list here some items on which we plan to work in the future.

1. We plan to extend the basic part of our reasoning/inference system to a
further range of drug-interaction ontology and related biomedical ontologies.

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 637

2. We also plan to build a combined framework of the symbolic inference
method proposed in this paper and the simulation method mentioned earlier
in this section, to obtain an integrated framework for the drug-interaction
knowledge/information tool.

3. We plan to apply our linear logical process description framework to further
ranges of process-based ontologies. It would be useful for the setting of pro-
cess ontology modeling to investigate the relationship between the traditional
relation/predicate-based descriptions (whose reasoning basically follows the
traditional first order logic) and our process-based descriptions (whose rea-
soning follows linear logic and its variants, as explained in this paper). In
fact, the formal (logical) process descriptions introduced in our linear logi-
cal language framework would be useful to define process-related interactive
relations, such as facilitate, bind more, inhibit, etc. , while, once precisely
defined, the precise formal definition and the precise operational meaning of
such relations may be encapsulated for some simple queries on DIO. In fact,
the statement of Lemma 1,2,3 has the form of horn clauses once those rela-
tions are defined by a linear logical formula. In such cases, one could make
use of the traditional predicate logical inference engine, while it is necessary
to return to the precise resource-sensitive (linear) logical inference engine for
more resource-sensitive queries. So, interconnecting the traditional relational
(and predicate-logical) approach and the linear logical approach would be
useful for the practical purpose of DIO. Logic programming language frame-
works have been well investigated in former work (by Dale Miller’s group
and others [10] [16]). Such logic programming frameworks might be useful
for this direction of research.

4. We have not developed semantics for our system yet, except for the under-
lying operational semantics of our proof-syntax (of [19]). We plan to develop
phase semantics by introducing the semantic denotation of �A (“significantly
small amount of A”).

References

1. Gene Ontology Consortium: Creating the Gene Ontology resource: design and im-
plementation. Genome Res 2001, (2001) 11:1425-1433

2. Gene Ontology Consortium: The Gene Ontology Editorial Style Guide.
http://www.geneontology.org/GO.usage.shtml

3. Girard, J.Y.: Linear Logic, In: Theoretical Computer Science 50 (1987) 1-102
4. Girard, J.Y.: Linear Logic: its syntax and semantics. In J.Y. Girard, Y. Lafont, and

L. Regnier, editors, Advances in Linear Logic. London Mathematical Society Lecture
Note Series, Cambridge University Press (1995)

5. Goguen, J: Data, Schema, Ontology, and Logic Integration.In Logic Journal of the
IGPL, edited by Walter Carnielli, Miguel Dionisio, and Paulo Mateus. volume 13,
no. 6, (2006, to appear)

6. Goguen, J: Information Integration in Institutions. In: Jon Barwise memorial volume
edited by Larry Moss, Indiana University Press, (2006, to appear)

7. Goguen, J: Ontology, Society, and Ontotheology. In: Formal Ontology in Information
Systems, edited by Achille Varzi and Laure Vieu, IOS Press, (2004) 95-103

638 Mitsuhiro Okada et al.

8. Grenona, P., Smith, B.: SNAP and SPAN: Towards Dynamic Spatial Ontology.
SPATIAL COGNITION AND COMPUTATION, vol(issue), start-end. Lawrence Erl-
baum Associates, Inc.

9. Hasebe, K., Jouannaud J.P., Kremer, A., Okada, M, Zumkeller, R.: Formal Verifica-
tion of Dynamic Real-Time State-Transition Systems Using Linear Logic. In: Proc.
Software Science Conference, Nagoya, Sept. (2003) 5 pages

10. Hodas, J.S., Miller, D.: Logic Programming in a Fragment of Intuitionistic Linear
Logic. In: Journal of Information and Computation, 110(2): 1 May (1994) 327-365

11. Horrocks, I.: Description logics in ontology applications. In: B. Beckert, editor,
Proc. of the 9th Int. Conf. on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX 2005), no 3702 in Lecture Notes in Artificial Intelli-
gence. Springer-Verlag (2005) 2-13

12. Institute for Formal Ontology and Medical Information Science. (IFOMIS).
http://www.ifomis.uni-saarland.de/

13. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb De-
liverable D18 - Ontology Library (final).
http://wonderweb.semanticweb.org/deliverables/D18.shtml

14. Mathijssen, R.H.J., van Alpen, R.J., Verweij, J., Walter, J.L., Nooter, K., Stoter,
G., Sparreboom, A.: Clinical Pharmacokinetics and Metabolism of Irinotecan (CPT-
11). Clinical Cancer Research. Vol.7, August (2001) 2182-2194

15. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence 4 (1969) 463-502

16. Dale Miller. A Survey of Linear Logic Programming Computational Logic: The
Newsletter of the European Network in Computational Logic, Volume 2, No.2, pp.63-
67, December (1995)

17. OBO. Open Biomedical Ontologies. http://obo.sourceforge.net/
18. Okada, M.: Linear Logic and Intuitionistic Logic. In: La revue internationale de

philosophie. no. 230, special issue “Intuitionism” (2004) 449-481
19. Okada, M.: An Introduction to Linear Logic: Phase Semantics and Expressiveness.

In: Theories of Types and Proofs, eds. M.Takahashi-M.Dezani-M.Okada, Memoirs of
Mathematical Society of Japan, vol.2 (1998) 255-295, second edition (1999)

20. Okada, M.: Girard’s Linear Logic and Applications (in Japanese, partly in English).
In: a JSSS Tutorial Lecture Note (41 pages), Software Science Society of Japan, (1993)

21. Smith, B., et al.: Basic Formal Ontology http://ontology.buffalo.edu/bfp
22. Smith, B., Kumar, A.: On Controlled Vocabularies in Bioinformatics: A Case Study

in the Gene Ontology, BIOSILICO: Drug Discovery Today, 2 (2004) 246?252.
23. Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall,

C., Neuhaus, F., Rector, A.L., Rosse,C.: Relations in biomedical ontologies. Genome
Biology (2005) 6:R46

24. Smith, B., Rosse,C.: The Role of Foundational Relations in the Alignment of
Biomedical Ontologies. In: M. Fieschi, et al. (eds.), Medinfo 2004. Amsterdam: IOS
Press, (2004): 444-448

25. Sattler, U.: Description Logics for Ontologies. In: Proc. of the International Con-
ference on Conceptual Structures (ICCS 2003), volume 2746 of Lecture Notes in
Artificial Intelligence. Springer Verlag (2003)

26. Stevens, R., Wroe, C., Lord P., Goble, C.: Ontologies in Bioinformatics. In: Hand-
book on Ontologies in Information Systems. Springer, (2003): 635-657

27. Yoshikawa, S., Satou, K., Konagaya, A.: Drug Interaction Ontology (DIO) for
Inferences of Possible Drug-drug Interactions. In: MEDINFO 2004, M. Fieschi et al.
(Eds) :IOS Press; (2004) : 454-458

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 639

28. Yoshikawa, S., Konagaya, A.: DIO: Drug Interaction Ontology - Application to
Inferences in Possible Drug-drug Interactions 2003, In: Proceedings of The 2003 In-
ternational Conference on Mathematics and Engineering Techniques in Medicine and
Biological Sciences (METMBS ’03), June 23 - 26, (2003). Las Vegas, Nevada, USA:
231-236

29. Yoshikawa, S., Satou, K., Konagaya, A.: Application of Drug Interaction Ontology
(DIO) for Possible Drug-drug Interactions. In: Proceedings of Chem-BioInformatics
Society (2003) : 320

Appendix I

Formal Rules for a Fragment of Linear Logic with Quantitative
Modality (LLQ)

The following are formal rules for a fragment of Linear Logic with Quantitative
Modality (LLQ), which is used in this paper. For further basic backgrounds of
linear logic and process-descriptions with linear logic, see [19]

Definition 1 (Inference rules for LLQ). Below, A and B represent arbi-
trary molecular expressions and Γ , Δ, Σ, Π represent arbitrary (finite) se-
quences of molecular expressions, including the case of an empty sequence. A
sequent A1, ..., An $ B1, ..., Bm means informally (A1, ..., An) � (B1, ..., Bm),
namely, if A1, ..., An are given at once, then B1, ..., Bn are generated by consum-
ing A1, ..., An.

– Axiom sequent
Logical axiom sequent

A $ A

– Cut-rule

Γ $ Δ,A A,Σ $ Π
Γ,Σ $ Δ,Π

– Multiplicative (Parallel)
“,” (parallel)-right

Γ $ Δ,A Σ $ Π,B
Γ,Σ $ Δ,Π,A,B

– Linear Implication
�-left

Γ $ Δ,A B,Σ $ Π
A � B,Γ,Σ $ Δ,Π

�-right

A,Γ $ Δ,B
Γ $ Δ,A � B

640 Mitsuhiro Okada et al.

– Weakening
Weakening-right

Γ $ Δ,A
Γ $ Δ

(Note that the right commas are the parallel conjunctions in our sequent
calculus formulation, and the above weakening rule is a derived rule in the
standard weakening rule of linear logic (in cf. [19])).

– Modality

! -left
(dereliction-left)

A,Γ $ Δ
!A,Γ $ Δ

(contraction-left)

!A, !A,Γ $ Δ
!A,Γ $ Δ

– Quantitative Modality

�-left

A,Γ $ Σ
�A,Γ $ �Σ

�-right

Γ $ Σ, !A
Γ $ Σ,A,�!A

Appendix II

Scope of the DIO Model and Its Limitation

Pathway Model and Phenomenon in the Real World Our model for Drug
Interaction Ontology, the triadic molecular interaction model, can be considered
as an atomic component of the pathway model, which is used to describe not only
biological phenomena but also the mechanisms of drug action. It is often used to
explain the causality of drug action, side effects and other inducible phenomena.
A biological reaction in reality, however, is very complex, and a pathway model
itself is a kind of abstraction from information in nature. They both constitute
only part of the full stream of events, being provided to explain phenomena of
particular interest. In a pathway model for a given phenomenon, disregarded
reactions are those with unknown associations, or with less influential effect.
Obviously, undiscovered reactions are not included.

Drug Interaction Ontology and the Resource-Sensitive Logical Inferences 641

Usually, the time scale of reactions in a given pathway is implicit. The time
scale in general, corresponds to the ones in experiments, by which the possi-
bilities of reactions are identified and verified. These are mostly shorter than
a monthly or yearly range. Long term reactions such as the accumulation of
injury in mitochondrial DNA during the normal aging process are disregarded.
Likewise, very short-time events in quantum level (e.g. atomic, electronic) are
disregarded.

This model can be used for the (re)construction of a pathway model, by pro-
viding conjunction (inference) rules. This approach is different from the pathway
decomposition approach or the pathway first approach, where a molecular in-
teraction is tightly bound to its parent pathway model. An arbitrary molecular
interaction represented by a triadic relation could be potentially integrated as a
sub-process of different pathways, which would also be the case in the real world.
Another aspect of the molecular interaction network in real world phenomena
is its dynamic nature and complexity influenced by organism level regulations.
There would be multiple feedback regulations and loops in the network map.
Inferences using relative relations such as inhibit or facilitate, without using
quantitative information and a time scale, would have limitations in such com-
plicated network models.

Scope of the Molecular Binding Model Our triadic molecular interaction
model, described above, reflects the process of binding-based interactions, medi-
ated by a transient complex. There also exist non-binding type processes such as
a movement by natural diffusion, a bio-transformation without mediators, and
so on. These are outside the scope of this paper.

Molecular Level Granularity This interaction model is based on molecular
interactions while our relational database schema include location information
for each process participant. The relation is molecule part of or located in a
subcellular component, and/or molecule part of or located in tissue/organ com-
ponents. Some reactions, such as a transporter mediated process, are location
sensitive. On the other hand, the type of reactions examplified in this article is
not location sensitive. In our examples it is presumed that the participants and
the events are all allocated in the same field, and thus we disregard the attributes
of location. When we deal with location-sensitive reactions, however, inferences
including different biological granularity would need further formalism.

Application for Prediction of Real World Event As was pointed out
above, the pathway model itself has certain limitations in view of real world
events. In addition, it does not deal with numerical data, and is not capable
of a quantitative estimation of molecular events. We made some abstraction
from such information by introducing relative relation in terms of “bind more”.
The relative relations are also embedded in the semantics of triadic molecular
interaction itself: The emergence of an input triggers the execution of a process
and causes the emergence of a new product (output).

642 Mitsuhiro Okada et al.

Instead of dealing with numerical information, this model deals with a qual-
itative change of amount by providing semantics of a relative change to the
relations, such as activation (relatively increased level of execution) or inhibit
(relatively decreased level of execution). For a more precise prediction and for
more complicated pathway network models (such as those of loops), the use of
numerical data would be important. A practical solution might be a cooperative
inference between these methods and simulation methods.

	Frontmatter
	Meaning
	Sync or Swarm: Musical Improvisation and the Complex Dynamics of Group Creativity
	My Friend Joseph Goguen
	Metalogic, Qualia, and Identity on Neptune's Great Moon: Meaning and Mathematics in the Works of Joseph A. Goguen and Samuel R. Delany

	Meta-Logic
	Quantum Institutions
	Jewels of Institution-Independent Model Theory
	Semantic Web Languages -- Towards an Institutional Perspective
	Institutional 2-cells and Grothendieck Institutions
	Some Varieties of Equational Logic
	Complete Categorical Deduction for Satisfaction as Injectivity

	Specification and Composition
	Extension Morphisms for CommUnity
	Non-intrusive Formal Methods and Strategic Rewriting for a Chemical Application
	From OBJ to ML to Coq
	Weak Adhesive High-Level Replacement Categories and Systems: A Unifying Framework for Graph and Petri Net Transformations
	From OBJ to Maude and Beyond
	Constructive Action Semantics in OBJ
	Horizontal Composability Revisited
	Composition by Colimit and Formal Software Development

	Behaviour and Formal Languages
	Proving Behavioral Refinements of COL-specifications
	The Reactive Engine for Modular Transducers
	A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages
	Sheaves and Structures of Transition Systems
	Uniform Functors on Sets
	An Algebraic Approach to Regular Sets

	Models, Deduction, and Computation
	Elementary Algebraic Specifications of the Rational Complex Numbers
	From Chaos to Undefinedness
	Completion Is an Instance of Abstract Canonical System Inference
	Eliminating Dependent Pattern Matching
	Iterative Lexicographic Path Orders
	A Functorial Framework for Constraint Normal Logic Programming
	A Stochastic Theory of Black-Box Software Testing
	Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method
	Drug Interaction Ontology (DIO) and the Resource-Sensitive Logical Inferences

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

