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Abstract. Emergence is the process of deriving some new and coherent 
structures, patterns and properties in a complex system. Emergent phenomena 
occur due to interactions (non-linear and distributed) between the elements of a 
system over time. An important aspect concerning the emergent phenomena is 
that they are observable on a macroscopic level, whereas they are produced by 
the interaction of the elements of the system on a microscopic level. In this 
paper, we attempt to grab some emergence and complexity principles in order 
to apply them for problem solving. As an application, we consider the edge 
detection problem a key task in image analysis. Problem solving by emergence 
consists in discovering the local interaction rules, which will be able to produce 
a global solution to the problem that the system faces. More clearly, it consists 
in finding the local rules which will have some awaited and adequate global 
behavior, to solve a given problem. This approach relies on evolving cellular 
automata using a genetic algorithm. The aim is to find automatically the rules 
that allow solving the edge detection problem by emergence. For the sake of 
simplicity and convenience, the proposed method was tested on a set of binary 
images,. Very promising results have been obtained. 

1   Introduction 

Many systems in nature produce complex patterns, which emerge from the local 
interactions of relatively simple individual components. Notably this type of emergent 
pattern formation often occurs without the existence of a central control [4]. Such 
systems consist of many components, with local interactions only and no central 
control. Examples of emergent pattern formation in such systems include the foraging 
and nest-building behavior of social insects, spiral waves in cultures of amoebae, 
synchronized oscillations in the brain, etc.  

To simulate the behavior of complex systems, cellular automata (CA) have been 
used as a powerful mathematical [5]. CA have the advantage of being easy to 
understand and implement. To exploit all the power of CA (and consequently all the 
power of complex systems), one must take into account some paramount 
characteristics, especially the concept of emergence [4].  

Emergence is the direct result of the complexity of interactions inside the system. 
The elements (components) of the system interact locally, the interactions between 
them are simple, but the significant number of elements and the feedback loop 
phenomenon (duplex interaction between the system and its environment) produces a 
complex and interesting behavior (see figure 1). 
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These local interactions occur on a micro level. But the observed phenomena 
occurring at the macro level (emergent) seem to not have any relationship with local 
interactions (surprising emergent phenomenon). Taking CA as modeling tools, we 
associate the system local interactions to the CA transition rules. These rules use local 
information to produce the future state of each cell [3]. CA can have very elaborate 
behaviors and even carry out calculations. It was proven than CA is a universal 
machine equivalent to a Turing machine [5]. 

If one wants to exploit all the power of this tool, he will have to understand the 
emergence phenomenon. The question is: What are the rules that provide the right 
global system behavior? This question is known as the “Inverse Problem” (see figure 2). 
A possible solution of the “Inverse Problem” is to use an optimization strategy, in order 
to find the appropriate CA that solves a given task. The search space would be the 
space of local interaction rules. Search is guided by a quality measure calculated at 
the global level, which would reflect the adequacy of the system to the problem [1]. A 
possible manner to deal with this problem is to use Genetic Algorithms (GAs) search 
scheme. The mixture of Cellular Automata and Genetic Algorithms known as 
Evolving Cellular Automata (EvCA)  [6] provides a powerful and multi-purpose tool. 

In this work, we try to solve the edge detection problem [9] in an emergent 
manner. We want to find a CA that will have a global behavior corresponding to edge 
detection task. Edge detection is a key problem in image analysis [9].  It is typically 
the primary task of any automatic image understanding process. The aim is to find 
border pixels between dissimilar regions using an Evolutionary Cellular Automaton. 
The local rule of this Cellular Automaton emerges (versus handmade) from the 
evolution of a population of candidate cellular automata by means of a Genetic 
Algorithm optimization strategy. A simple and efficient CA rule for border detection 
is revealed by the GA. This rule is run over a cellular automaton initialized by the 
pixel intensities of the image to be segmented. In this way, a simple, intrinsic parallel 
algorithm for border detection emerges. 

 

Fig. 1. Emergence of a global property from local interactions 

 

Fig. 2. The "Inverse Problem", Inversing the "Emergence Arrow" 
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2   Problem Formulation 

A border is a frontier between two homogeneous areas of the image. A homogeneous 
zone is a part of the image containing pixels which exhibit similar characteristics 
(intensity, color, texture…). Inter-Zones contrast must be relatively strong. The 
border between two homogeneous areas constitutes what we call an "Edge" [2, 9]. In 
the "image processing" literature [9], we find many "edge detection" methods based 
on various algorithms. The mainstream of these methods are based on directional 
derivative calculations [9]. Other methods abolishing derivative calculations use 
preliminary knowledge concerning the nature and characteristics of the treated image, 
but these requirements limit the applicability of the method [2]. 

We propose here to construct an alternative method based on the evolution of CA 
population that uses simple local rules [5]. The aim is to obtain after an evolving 
process guided by a fitness function (edge detection quality value), a cellular 
automata able to segment an image and to detect significant edges by emergence. 

3   Cellular Automata Principles 

The Cellular Automata were invented by Stanislaw Ulam (1909-1984) and John von 
Neumann (1903-1957) at the end of the Forties in Los Alamos National Laboratory 
(United States) [5]. A CA is a D dimensional grid (lattice) composed of agents called 
cells. These cells interact and evolve in time, changing their states in a discontinuous 
way. The transition rules of each automaton (cell) are local and simple. They take into 
account only the state of the neighbor cells [3]. A Cellular Automaton is a discrete 
and dynamical system made up of a regular lattice of cells. Formally, it is a quintuplet 
A = (L, D, S, NR, R). L is the D dimensional cellular lattice. At each discrete moment 
t, each cell can have only one state of the finite state set S. At each time step, all the 
cells update their states simultaneously. The transition process is driven by a local 
update rule R, which is the same for all cells (1). This rule takes the local 
neighborhood N of the cell (states of neighbor cells), and produce the future state of 
the cell [3]. 
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4   Genetic Algorithms Principles 

Genetic Algorithms GA [6] are stochastic search methods inspired by the "evolution 
species theory". The GA maintains a population of potential solutions, represented by 
chromosomes (genotype). Each chromosome constitutes the genetic code of an 
individual (phenotype) of that population [1]. The survival of an individual is 
conditioned by its adaptation to the environment (survival of the fittest – according to 
its adequacy with the role given to him). A fitness value is affected to each individual, 
which quantifies its capacity of adaptation. This fitness is proportional to the 
percentage of accomplishing a task (partially solving a problem). The fitness function 
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  P0  Initial Population; 

  Calculate_individual_fitness(P0); 

  WHILE not_end DO 

  P_tmp  P0 ∪ mutate(P0) ∪ crossover(P0); 

  Calculate_individual_fitness(P_tmp); 

  P0     select_best_fitness_from(P_tmp); 

  END 

Fig. 3. Simplified Genetic Algorithm 

is the individual selection criterion. The theory of the evolution suggests that some 
ratio of present generation (ancestor) can be selected to build the next generation 
(offspring). The new population is generated by the application of the genetic 
operators (crossover and mutation) [6]. An evolution process is applied trying to 
attain the optimal solution (or an approximate one). This solution will appear by 
combination and selection of individuals of the generations of candidate solutions. 
This process of optimization is frequently used to find approximate satisfactory 
solutions. Figure 3 shows the general scheme of a genetic algorithm. 

5   Evolving Cellular Automata (EvCA) 

The Evolving Cellular Automata (EvCA) is a methodology that takes advantage from 
the notion of evolutionary strategies. We apply this method as an optimization 
scheme, in the process of searching the best CA rule that is able to perform some 
computational task. An initial CA population, composed of chromosomes coding the 
local transition rule of each CA of the population, is randomly generated. After 
which, the GA evolve this initial population (Generation Zero), by applying the 
genetic operators: mutation and crossover. The selection of the individuals of the next 
generation is conditioned by the value of the fitness function [6]. This cyclic process 
makes the emergence of a set of interesting individuals. These individuals have a high 
fitness, and are thus most suited. They constitute the elite. One of them will be the 
chosen final solution [6]. It is important to choose well the chromosome’s coding 
method, which corresponds to the local rule of the CA. Another serious point is the 
choice of the mutation and crossover operators. But the keystone remains the choice 
of the fitness function, which completely conditions the behaviour of the GA and the 
convergence of the evolution process towards an acceptable solution. 

6   The Proposed Method 

The proposed approach takes advantage of the capacity of Cellular Automata (CA) 
for generating and transforming a wide variety of patterns to implement the 
computational task of edge detection. Performing a computation with a CA means 
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that the input to the computation (image to segment) is encoded as the initial 
configuration; the output (segmented image) is decoded from the configuration 
reached by the dynamics some later time step. The intermediate dynamical steps, that 
transform the input to the output, are taken as the steps in the computation. The 
computation emerges from the CA rule being obeyed locally by each cell [3]. Since it 
is very difficult to specify by hand a priori the particular dynamical rule suitable for a 
desired computation, an evolutionary process is applied in their search [4, 7, 8]. This 
calculation (edge detection task) must be an emerging phenomenon, produced by the 
execution of simple local rules by each cell of CA [3]. The proposed method can be 
summarized as follows. An Evolutionary Algorithm (Genetic Algorithm) is applied in 
the search for adequate CA dynamical rules that perform edge detection over a set of 
reference images and their segmented counterparts. The fitness function is a measure 
of quality of the edge detection process that results from the application of the CA on 
the set of reference images. The evolutionary process starts from a random initial 
population of CA rules. The result is a set of evolved local transition rules defining a 
CA edge detector. 

6.1   The Rule Format 

We represent the CA rule performing the edge detection task, as the concatenation of 
immediate neighborhood cells states of the cell to be updated (including this). And we 
add the next state of the central cell after update [7]. 

This rule can be run when its neighborhood part matches with a pixel patch (of the 
same size) in the image. Then we update the central pixel by the "next state" part of 
the rule. The matching between the neighborhood and the image patch is done 
modulo rotational operators (Rotate (0°, 90°, 180° and 270°); Flip-Flop (Horizontal, 
Vertical)). The rules are said to be rotational symmetric: 

Simple rules cannot represent all possible pixel patch configurations in the image. 
Therefore, we assemble them into rules packets. In this manner, each individual in the 
GA population is represented by a chromosome. The chromosome is simply the rules 
packet. 

We can introduce a weak matching criterion, by using a similarity threshold ε: 

difference(rule, pixel patch)  ≤  ε (2) 

To make the CA determinist we introduce the following constraint: Each rule of 
the rules packet must be different from other rules, modulo the rotational operators 
and the similarity threshold. 

 

Fig. 4. CA rule formed by the neighborhood and the next state 
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Fig. 5. Rotational equivalence 

 

Fig. 6. Rules packet that forms an individual of the population 

6.2   The Crossover Operator 

Due to the chromosome (rules packet) form, we introduce two different crossover 
operators, a horizontal one and vertical one. They are applied in an equiprobable way. 

6.2.1   Horizontal Crossover  
This operator takes two parents rule packets and provides two children rule packets by 
interchanging some rules between them. This makes it possible to combine the best 
rules to obtain better individuals. This strategy keeps the cohesion and the stability of 
the crossover operator. The horizontal crossover operator adjusts and ameliorates the 
solutions obtained focussing on a local search area (exploitation). 

6.2.2   Vertical Crossover 
The vertical crossover operator exchanges rule parts between parent chromosomes. 
This allows obtaining children rules packets appreciably different from the parents. 
The vertical crossover operator explores a wider area of the search space. In this way, 
it has a comparable behaviour to a mutation operator, which diversifies the search 
process (exploration).  

 

                 Fig. 7. Horizontal crossover operator        Fig. 8. Vertical crossover operator 
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6.3   Mutation Operator 

Applying a mutation operator on a rule packet, can be done by changing the state of 
some randomly chosen cell in a rule of the packet according to a probability function. 
Of course precautions are taken to keep the integrity of the chromosome. It must 
always be valid and runnable, and not present a rule duplication or contradiction. 

6.4   The Fitness Function and the Selection Operator 

To evaluate the segmentation quality of a rules packet, we execute it on CA. Taking 
image pixel intensities as initial configuration. We compare the resulting pattern with 
the beforehand segmented image (target edge). We use the following fitness: 

     F = 1 / (Nb_Bad_Classified_Pixels + 1) (3) 

This formula attains 1 (best fitness) when Nb_Bad_Classified_Pixels (wrongly 
classified edge) approaches 0. 

The selection operator randomly chooses the most suited individuals from the 
current population (current generation). The probability of pulling some individual is 
proportional to the value of its fitness. Then, we apply the crossover and mutation 
operators on the selected individuals in order to build the new population (next 
generation). 

Another fitness function could be used. It quantifies more accurately the quality of 
the segmentation. So, let us consider the following quantities [2]: 

        TP : True  Positive, correctly classified pixels; 
        FP : False Positive, incorrectly classified pixels; 
        FN : False Negative, unclassified pixels. 

We calculate then the following values, Building Detection Percentage (BDP) 
(4), i.e. the percentage of correctly classified pixels in a particular class: 

BDP = TP / (TP + FN) (4) 

We compute the BDP ratio for "edge" and for "non-edge" class pixels, respectively 
BDP_Edge and BDP_background. The selected fitness function would be calculated 
as the multiplication of these two values: 

F = BDP_Edge x BDP_background. (5) 

7   Experimental Results 

The images of size 100x100 (figure 9) were obtained using GA on 500 generations. 
The size of the population was 50 packets (individuals); each packet contains 15 
symmetrical rules. The individual who scored the best fitness has a value of 95,637%. 

The fifteen (15) selected rules are represented as "neighborhood"  "future state". 
The rules are symmetrical and keep the same result when applied to the rotated image. 
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Initial Image Target Edge Result Edge 

   
 

   

Fig. 9. Sample results from training set 

Initial Image Target Edge Result Edge 

   

   

Fig. 10. Sample results from test 

 

Fig. 11. GA final rules packet 



808 M. Batouche, S. Meshoul, and A. Abbassene 

8   Conclusion 

The proposed methodology is a purely emergent one. It is based on the evolution and 
training principles. A CA was trained to solve "Edge Detection" by emergence. GAs 
were used to evolve cellular automata. The search process is enlightened by the 
optimization of a fitness function which symbolizes the segmentation quality. It is the 
criterion to be ameliorated during the search of a valid solution. Our future works will 
concern the extension of the method to more complex images such as 16 and 256 grey 
level images and also to color images. We could also explore the utilization of other 
evolutionary algorithms such as "Genetic Programming" or "Artificial Immune 
Systems". This approach seems promising and could be transposed to solve other 
general problems. Indeed, this methodology may be applied for building a powerful 
general "Framework", for solving broad-spectrum problems "by emergence". 
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