
M. Ali and R. Dapoigny (Eds.): IEA/AIE 2006, LNAI 4031, pp. 800 – 808, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On Solving Edge Detection by Emergence

M. Batouche, S. Meshoul, and A. Abbassene

PRAI Group, LIRE Laboratory,
Mentouri University of Constantine

{batouche, meshoul, abbassene}@wissal.dz

Abstract. Emergence is the process of deriving some new and coherent
structures, patterns and properties in a complex system. Emergent phenomena
occur due to interactions (non-linear and distributed) between the elements of a
system over time. An important aspect concerning the emergent phenomena is
that they are observable on a macroscopic level, whereas they are produced by
the interaction of the elements of the system on a microscopic level. In this
paper, we attempt to grab some emergence and complexity principles in order
to apply them for problem solving. As an application, we consider the edge
detection problem a key task in image analysis. Problem solving by emergence
consists in discovering the local interaction rules, which will be able to produce
a global solution to the problem that the system faces. More clearly, it consists
in finding the local rules which will have some awaited and adequate global
behavior, to solve a given problem. This approach relies on evolving cellular
automata using a genetic algorithm. The aim is to find automatically the rules
that allow solving the edge detection problem by emergence. For the sake of
simplicity and convenience, the proposed method was tested on a set of binary
images,. Very promising results have been obtained.

1 Introduction

Many systems in nature produce complex patterns, which emerge from the local
interactions of relatively simple individual components. Notably this type of emergent
pattern formation often occurs without the existence of a central control [4]. Such
systems consist of many components, with local interactions only and no central
control. Examples of emergent pattern formation in such systems include the foraging
and nest-building behavior of social insects, spiral waves in cultures of amoebae,
synchronized oscillations in the brain, etc.

To simulate the behavior of complex systems, cellular automata (CA) have been
used as a powerful mathematical [5]. CA have the advantage of being easy to
understand and implement. To exploit all the power of CA (and consequently all the
power of complex systems), one must take into account some paramount
characteristics, especially the concept of emergence [4].

Emergence is the direct result of the complexity of interactions inside the system.
The elements (components) of the system interact locally, the interactions between
them are simple, but the significant number of elements and the feedback loop
phenomenon (duplex interaction between the system and its environment) produces a
complex and interesting behavior (see figure 1).

 On Solving Edge Detection by Emergence 801

These local interactions occur on a micro level. But the observed phenomena
occurring at the macro level (emergent) seem to not have any relationship with local
interactions (surprising emergent phenomenon). Taking CA as modeling tools, we
associate the system local interactions to the CA transition rules. These rules use local
information to produce the future state of each cell [3]. CA can have very elaborate
behaviors and even carry out calculations. It was proven than CA is a universal
machine equivalent to a Turing machine [5].

If one wants to exploit all the power of this tool, he will have to understand the
emergence phenomenon. The question is: What are the rules that provide the right
global system behavior? This question is known as the “Inverse Problem” (see figure 2).
A possible solution of the “Inverse Problem” is to use an optimization strategy, in order
to find the appropriate CA that solves a given task. The search space would be the
space of local interaction rules. Search is guided by a quality measure calculated at
the global level, which would reflect the adequacy of the system to the problem [1]. A
possible manner to deal with this problem is to use Genetic Algorithms (GAs) search
scheme. The mixture of Cellular Automata and Genetic Algorithms known as
Evolving Cellular Automata (EvCA) [6] provides a powerful and multi-purpose tool.

In this work, we try to solve the edge detection problem [9] in an emergent
manner. We want to find a CA that will have a global behavior corresponding to edge
detection task. Edge detection is a key problem in image analysis [9]. It is typically
the primary task of any automatic image understanding process. The aim is to find
border pixels between dissimilar regions using an Evolutionary Cellular Automaton.
The local rule of this Cellular Automaton emerges (versus handmade) from the
evolution of a population of candidate cellular automata by means of a Genetic
Algorithm optimization strategy. A simple and efficient CA rule for border detection
is revealed by the GA. This rule is run over a cellular automaton initialized by the
pixel intensities of the image to be segmented. In this way, a simple, intrinsic parallel
algorithm for border detection emerges.

Fig. 1. Emergence of a global property from local interactions

Fig. 2. The "Inverse Problem", Inversing the "Emergence Arrow"

802 M. Batouche, S. Meshoul, and A. Abbassene

2 Problem Formulation

A border is a frontier between two homogeneous areas of the image. A homogeneous
zone is a part of the image containing pixels which exhibit similar characteristics
(intensity, color, texture…). Inter-Zones contrast must be relatively strong. The
border between two homogeneous areas constitutes what we call an "Edge" [2, 9]. In
the "image processing" literature [9], we find many "edge detection" methods based
on various algorithms. The mainstream of these methods are based on directional
derivative calculations [9]. Other methods abolishing derivative calculations use
preliminary knowledge concerning the nature and characteristics of the treated image,
but these requirements limit the applicability of the method [2].

We propose here to construct an alternative method based on the evolution of CA
population that uses simple local rules [5]. The aim is to obtain after an evolving
process guided by a fitness function (edge detection quality value), a cellular
automata able to segment an image and to detect significant edges by emergence.

3 Cellular Automata Principles

The Cellular Automata were invented by Stanislaw Ulam (1909-1984) and John von
Neumann (1903-1957) at the end of the Forties in Los Alamos National Laboratory
(United States) [5]. A CA is a D dimensional grid (lattice) composed of agents called
cells. These cells interact and evolve in time, changing their states in a discontinuous
way. The transition rules of each automaton (cell) are local and simple. They take into
account only the state of the neighbor cells [3]. A Cellular Automaton is a discrete
and dynamical system made up of a regular lattice of cells. Formally, it is a quintuplet
A = (L, D, S, NR, R). L is the D dimensional cellular lattice. At each discrete moment
t, each cell can have only one state of the finite state set S. At each time step, all the
cells update their states simultaneously. The transition process is driven by a local
update rule R, which is the same for all cells (1). This rule takes the local
neighborhood N of the cell (states of neighbor cells), and produce the future state of
the cell [3].

()()t
ji

t
ji SNRS ,
1

, =+ . (1)

4 Genetic Algorithms Principles

Genetic Algorithms GA [6] are stochastic search methods inspired by the "evolution
species theory". The GA maintains a population of potential solutions, represented by
chromosomes (genotype). Each chromosome constitutes the genetic code of an
individual (phenotype) of that population [1]. The survival of an individual is
conditioned by its adaptation to the environment (survival of the fittest – according to
its adequacy with the role given to him). A fitness value is affected to each individual,
which quantifies its capacity of adaptation. This fitness is proportional to the
percentage of accomplishing a task (partially solving a problem). The fitness function

 On Solving Edge Detection by Emergence 803

 P0 Initial Population;

 Calculate_individual_fitness(P0);

 WHILE not_end DO

 P_tmp P0 ∪ mutate(P0) ∪ crossover(P0);

 Calculate_individual_fitness(P_tmp);

 P0 select_best_fitness_from(P_tmp);

 END

Fig. 3. Simplified Genetic Algorithm

is the individual selection criterion. The theory of the evolution suggests that some
ratio of present generation (ancestor) can be selected to build the next generation
(offspring). The new population is generated by the application of the genetic
operators (crossover and mutation) [6]. An evolution process is applied trying to
attain the optimal solution (or an approximate one). This solution will appear by
combination and selection of individuals of the generations of candidate solutions.
This process of optimization is frequently used to find approximate satisfactory
solutions. Figure 3 shows the general scheme of a genetic algorithm.

5 Evolving Cellular Automata (EvCA)

The Evolving Cellular Automata (EvCA) is a methodology that takes advantage from
the notion of evolutionary strategies. We apply this method as an optimization
scheme, in the process of searching the best CA rule that is able to perform some
computational task. An initial CA population, composed of chromosomes coding the
local transition rule of each CA of the population, is randomly generated. After
which, the GA evolve this initial population (Generation Zero), by applying the
genetic operators: mutation and crossover. The selection of the individuals of the next
generation is conditioned by the value of the fitness function [6]. This cyclic process
makes the emergence of a set of interesting individuals. These individuals have a high
fitness, and are thus most suited. They constitute the elite. One of them will be the
chosen final solution [6]. It is important to choose well the chromosome’s coding
method, which corresponds to the local rule of the CA. Another serious point is the
choice of the mutation and crossover operators. But the keystone remains the choice
of the fitness function, which completely conditions the behaviour of the GA and the
convergence of the evolution process towards an acceptable solution.

6 The Proposed Method

The proposed approach takes advantage of the capacity of Cellular Automata (CA)
for generating and transforming a wide variety of patterns to implement the
computational task of edge detection. Performing a computation with a CA means

804 M. Batouche, S. Meshoul, and A. Abbassene

that the input to the computation (image to segment) is encoded as the initial
configuration; the output (segmented image) is decoded from the configuration
reached by the dynamics some later time step. The intermediate dynamical steps, that
transform the input to the output, are taken as the steps in the computation. The
computation emerges from the CA rule being obeyed locally by each cell [3]. Since it
is very difficult to specify by hand a priori the particular dynamical rule suitable for a
desired computation, an evolutionary process is applied in their search [4, 7, 8]. This
calculation (edge detection task) must be an emerging phenomenon, produced by the
execution of simple local rules by each cell of CA [3]. The proposed method can be
summarized as follows. An Evolutionary Algorithm (Genetic Algorithm) is applied in
the search for adequate CA dynamical rules that perform edge detection over a set of
reference images and their segmented counterparts. The fitness function is a measure
of quality of the edge detection process that results from the application of the CA on
the set of reference images. The evolutionary process starts from a random initial
population of CA rules. The result is a set of evolved local transition rules defining a
CA edge detector.

6.1 The Rule Format

We represent the CA rule performing the edge detection task, as the concatenation of
immediate neighborhood cells states of the cell to be updated (including this). And we
add the next state of the central cell after update [7].

This rule can be run when its neighborhood part matches with a pixel patch (of the
same size) in the image. Then we update the central pixel by the "next state" part of
the rule. The matching between the neighborhood and the image patch is done
modulo rotational operators (Rotate (0°, 90°, 180° and 270°); Flip-Flop (Horizontal,
Vertical)). The rules are said to be rotational symmetric:

Simple rules cannot represent all possible pixel patch configurations in the image.
Therefore, we assemble them into rules packets. In this manner, each individual in the
GA population is represented by a chromosome. The chromosome is simply the rules
packet.

We can introduce a weak matching criterion, by using a similarity threshold ε:

difference(rule, pixel patch) ≤ ε (2)

To make the CA determinist we introduce the following constraint: Each rule of
the rules packet must be different from other rules, modulo the rotational operators
and the similarity threshold.

Fig. 4. CA rule formed by the neighborhood and the next state

 On Solving Edge Detection by Emergence 805

Fig. 5. Rotational equivalence

Fig. 6. Rules packet that forms an individual of the population

6.2 The Crossover Operator

Due to the chromosome (rules packet) form, we introduce two different crossover
operators, a horizontal one and vertical one. They are applied in an equiprobable way.

6.2.1 Horizontal Crossover
This operator takes two parents rule packets and provides two children rule packets by
interchanging some rules between them. This makes it possible to combine the best
rules to obtain better individuals. This strategy keeps the cohesion and the stability of
the crossover operator. The horizontal crossover operator adjusts and ameliorates the
solutions obtained focussing on a local search area (exploitation).

6.2.2 Vertical Crossover
The vertical crossover operator exchanges rule parts between parent chromosomes.
This allows obtaining children rules packets appreciably different from the parents.
The vertical crossover operator explores a wider area of the search space. In this way,
it has a comparable behaviour to a mutation operator, which diversifies the search
process (exploration).

 Fig. 7. Horizontal crossover operator Fig. 8. Vertical crossover operator

806 M. Batouche, S. Meshoul, and A. Abbassene

6.3 Mutation Operator

Applying a mutation operator on a rule packet, can be done by changing the state of
some randomly chosen cell in a rule of the packet according to a probability function.
Of course precautions are taken to keep the integrity of the chromosome. It must
always be valid and runnable, and not present a rule duplication or contradiction.

6.4 The Fitness Function and the Selection Operator

To evaluate the segmentation quality of a rules packet, we execute it on CA. Taking
image pixel intensities as initial configuration. We compare the resulting pattern with
the beforehand segmented image (target edge). We use the following fitness:

 F = 1 / (Nb_Bad_Classified_Pixels + 1) (3)

This formula attains 1 (best fitness) when Nb_Bad_Classified_Pixels (wrongly
classified edge) approaches 0.

The selection operator randomly chooses the most suited individuals from the
current population (current generation). The probability of pulling some individual is
proportional to the value of its fitness. Then, we apply the crossover and mutation
operators on the selected individuals in order to build the new population (next
generation).

Another fitness function could be used. It quantifies more accurately the quality of
the segmentation. So, let us consider the following quantities [2]:

 TP : True Positive, correctly classified pixels;
 FP : False Positive, incorrectly classified pixels;
 FN : False Negative, unclassified pixels.

We calculate then the following values, Building Detection Percentage (BDP)
(4), i.e. the percentage of correctly classified pixels in a particular class:

BDP = TP / (TP + FN) (4)

We compute the BDP ratio for "edge" and for "non-edge" class pixels, respectively
BDP_Edge and BDP_background. The selected fitness function would be calculated
as the multiplication of these two values:

F = BDP_Edge x BDP_background. (5)

7 Experimental Results

The images of size 100x100 (figure 9) were obtained using GA on 500 generations.
The size of the population was 50 packets (individuals); each packet contains 15
symmetrical rules. The individual who scored the best fitness has a value of 95,637%.

The fifteen (15) selected rules are represented as "neighborhood" "future state".
The rules are symmetrical and keep the same result when applied to the rotated image.

 On Solving Edge Detection by Emergence 807

Initial Image Target Edge Result Edge

Fig. 9. Sample results from training set

Initial Image Target Edge Result Edge

Fig. 10. Sample results from test

Fig. 11. GA final rules packet

808 M. Batouche, S. Meshoul, and A. Abbassene

8 Conclusion

The proposed methodology is a purely emergent one. It is based on the evolution and
training principles. A CA was trained to solve "Edge Detection" by emergence. GAs
were used to evolve cellular automata. The search process is enlightened by the
optimization of a fitness function which symbolizes the segmentation quality. It is the
criterion to be ameliorated during the search of a valid solution. Our future works will
concern the extension of the method to more complex images such as 16 and 256 grey
level images and also to color images. We could also explore the utilization of other
evolutionary algorithms such as "Genetic Programming" or "Artificial Immune
Systems". This approach seems promising and could be transposed to solve other
general problems. Indeed, this methodology may be applied for building a powerful
general "Framework", for solving broad-spectrum problems "by emergence".

Acknowledgments

This work was supported by CMEP – PROGRAMME TASSILI under Project 05
MDU 642.

References

1. Bar-Yam, Y.: Dynamics of complex systems, The Advanced Book studies in nonlinearity
series, Westview Press, (2000)

2. Davis L. S.: A Survey of Edge Detection Techniques, Computer Graphics and Image
Processing, 12 (1975) 248-270

3. Ganguly, N., Sikdar, B. K., Deutsch, A., Canright, G., P.P.Chaudhuri, P. P.: A Survey on
Cellular Automata, Project BISON (IST-2001-38923), (2001)

4. Georgé, J. P. : Résolution de problèmes par émergence, PhD Thesis, Université Toulouse
III, July 2004.

5. Langton, C. G.: Studying artificial life with cellular automata, Physica D., 22 (1986) 120-
149

6. Mitchell, M., Crutchfield, J. P., Das, R.: Evolving Cellular Automata with Genetic
Algorithms: A Review of Recent Work, in Proceedings of the first International Conference
on Evolutionary Computation and Its Applications (EvCA'96, SFI) Moscow, (1996)

7. Moreno, J. A., Paletta, M. : Evolving Cellular Automata for Noise Reduction in Images, in
Proceedings of CAEPIA'2001, (2001)

8. Rosin, P. L.: Training Cellular Automata for Image Processing, in proceedings of the
Scandinavian Conference on Image Processing, SCIA'05, (2005) 195-204

9. Shapiro, L. G., Stockman, G. C.: Computer Vision, Prentice Hall inc. (2001)

	Introduction
	Problem Formulation
	Cellular Automata Principles
	Genetic Algorithms Principles
	Evolving Cellular Automata (EvCA)
	The Proposed Method
	The Rule Format
	The Crossover Operator
	Mutation Operator
	The Fitness Function and the Selection Operator

	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

