
M. Ali and R. Dapoigny (Eds.): IEA/AIE 2006, LNAI 4031, pp. 780 – 789, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Agent-Based Prototyping of Web-Based Systems

Aneesh Krishna, Ying Guan, Chattrakul Sombattheera, and Aditya K. Ghose

Decision Systems Laboratory, School of IT and Computer Science
University of Wollongong, NSW 2522, Australia

{aneesh, yg32, cs50, aditya}@uow.edu.au

Abstract. Agent-oriented conceptual modelling in notations such as the i*
framework [13] have gained considerable currency in the recent past. Such
notations model organizational context and offer high-level social/ anthropo-
morphic abstractions (such as goals, tasks, softgoals and dependencies) as
modelling constructs. It has been argued that such notations help answer
questions such as what goals exist, how key actors depend on each other and
what alternatives must be considered. Our contribution in this paper is to show
an approach to executing high-level requirements models represented in the i*
agent-oriented conceptual modelling language. We achieve this by translating
these models into sets of interacting agents implemented in the 3APL language.
This approach enables us to analyze early phase system models by performing
rule-/consistency-checking at higher-levels of abstraction. We show how this
approach finds special application in the analysis of high-level models of a
web-based system.

1 Introduction

Web-based systems are playing a more and more important role in the modern society
nowadays. Based on the persistent nature and the colossal user population, a variety
of existing software engineering approaches need to be adapted for web engineering.
The design and development of a web-based system may include many business,
technology and user challenges. Understanding and satisfying the critical
requirements of these challenges will decide the success of a web-based systems
commercial application. Web-based systems are more scalable and available to
remote users, enabling utilities to better support decentralized operations during high-
activity periods. A web-based system is a form of distributed systems architecture,
essentially a collection of services. Web based system provides consistent
interoperability and reuses existing services where possible. Implementing a web-
based system can involve developing applications that use services and making
applications available as services. Web services are self-describing software
applications that can be advertised, located, and used across the Internet using a set of
standards such as SOAP, WSDL [3] and UDDI [12]. Web services are built on the
distributed environment of the Internet.

Agents are components that aim to communicate models motivated from real life
[2]. The development of agent-based systems offers a new and existing paradigm for
the creation of sophisticated programs in a dynamic and open environment, particularly
in distributed domains such as a web-based systems and electronic commerce [10].

 Agent-Based Prototyping of Web-Based Systems 781

Current works on web services are closely entwined with work on agent-based
systems. Agent-oriented techniques show a potential for web services, where agents
are needed both to offer services and to make best use of the resources available [2].
Early-phase Requirement Engineering (RE) activities of web services are usually
performed informally and without much tool support. The agent-oriented conceptual
modelling notation as exemplified by the i* framework [13] is a popular means of
modelling proposed system requirements. Each component of a web service can be
regarded as an agent and the whole web service can be viewed as composed of agent
system. Hence, we feel that agent-oriented conceptual modelling technique i*
framework is suitable for modelling a web service. The i* framework allows analysts
to create agent-based prototypes of the proposed web services based on the preliminary
requirements from the stakeholders. Such notations model organizational context and
offer high level of social/anthropomorphic abstractions (such as goals, tasks, softgoals
[4] and dependencies) as modelling constructs. It has been argued that such notations
help to answer questions such as; what goals exist, how key actors depend on each
other and what alternatives must be considered.

The objective of this paper is to show how agent-oriented conceptual modelling
techniques (exemplified by the i* framework) can be used to model web-based
systems, and how these models can be executed by mapping i* models into 3APL [9]
agents. This approach makes use of the advantages of i* for the early-phase of
requirement engineering and validates the model by mapping it into an executable
specification to see the design result in an emulation program.

The remainder of this paper is organized in the following manner. In Section 2,
steps for modelling agent-based prototyping of web-based systems are given. We
shall provide the executable specifications for the i* framework in section 3. Section
3 also provides an example to illustrate the approach and section 4 presents some
concluding remarks.

2 Modelling Web-Based Systems

Most of the available modelling techniques tend to address “late-phase” requirements
while the vast majority of critical modelling decisions are arguably taken in early-
phase requirements engineering [13]. Agent-oriented conceptual modelling offers an
interesting approach in modelling the early-phase requirements. The i* modelling
framework is a semi-formal notation built on agent-oriented conceptual modelling.
The central concept in i* is the intentional actor agent. Intentional properties of an
agent such as goals, beliefs, abilities and commitments are used in modelling
requirements. The actor or agent construct is used to identify the intentional
characteristics represented as dependencies involving goals to be achieved, tasks to be
performed, resources to be furnished or softgoals (optimization objectives or
preferences) to be satisfied. The i* framework also supports the modelling of rationale
by representing key internal intentional characteristics of actors/agents. The i*
framework consists of two modelling components: Strategic Dependency (SD)
Models and Strategic Rationale (SR) Models. The SD model consists of a set of
nodes and links. Each node represents an “actor”, and each link between the two
actors indicates that one actor depends on the other for something in order that the

782 A. Krishna et al.

former may attain some goal. An SR model represents the internal intentional
characteristics of each actor/agent via task decomposition links and means-end links.
The task decomposition links provide details on the tasks and the (hierarchically
decomposed) sub-tasks to be performed by each actor/agent while the means-end
links relate goals to the resources or tasks required to achieve them. The SR model
also provides constructs to model alternate ways to accomplish goals by asking why,
how and how else questions. Readers are encouraged to read [13] for details on i*
framework.

Early Requirements Analysis: During the requirements elicitation phase,
stakeholders and goals for individual service are first identified, then the functional
and non-functional requirements of each of them are defined and finally the
relationships between them are identified. In [6], the authors have proposed an
approach based on the Tropos methodology [1], for designing web services. Our
proposal is different from theirs in the sense that, we focus on to modeling web-based
systems in the early requirement phase, and validate these models by executable
specifications, while in [6], the authors have proposed the methodology for the whole
requirement phase and they aim on implementing the web services.

We shall use the example of online shopping service throughout the rest of this
paper to illustrate how to model a web service using i* framework and consequently
how these models can be executed. The online shopping service sells a range of
products. Customers can buy goods through a website. After an order is placed, the
retailer contacts the payment system to validate customer credits and also charge the
customer from the customer’s account. Once payment is processed, the retailer
notifies the product management system to provide the necessary information. The
product management system collects goods and ships them to the transport centre
together with the delivery information. Eventually, the transport centre delivers the
ordered products to the customer. Upon completion of the delivery, the retailer will
get the confirmation of delivery. The modelling process includes following steps.

Step 1: Identify actors: Five actors are identified during this step. Customer/Web
server, shops online through the website. Retail system, provides service for selling
the products. Product management system offers goods and handles delivery.
Transport system, delivers goods to the Customer. Payment system validates the
Customer’s credits and charges their account.
Step 2: Identify goals: After identifying the actors of a web service, their goals are
defined simultaneously. In this case, the actor Customer/ Web server has the goal own
product online and the actor Retailer system’s goal is to sell product.
Step 3: Identify dependency relationships: The actor or agent construct is used to
identify the intentional characteristics represented as dependencies involving goals to
be achieved, tasks to be performed, resources to be furnished or softgoals
(optimization objectives or preferences) to be satisfied [6]. Combining the results
from steps 1 and 2, the output of this process is a Strategic Dependency (SD) model.
Specifically, the customer has a goal to own products, shopping confirmation and
softgoal to obtain products at the lowest price and assure the security of credit. He
depends on the retail system to receive shopping confirmation. Conversely, the retail
system depends on the web server to provide the order information for further
transactions. The retail system also depends on the payment system and the product

 Agent-Based Prototyping of Web-Based Systems 783

management system to fulfill charging customer Task dependency and the resource
dependency providing products to customer respectively. Simultaneously, the
payment system needs the customer credit information to charge customer. The
product management system depends on the retail system to offer order information,
which includes product information, and delivery information, and also depends on
the Transport system to ship goods to customer on the condition that delivery
information is provided together with goods (to be transported) to the transport
system.
Step 4: Conduct means-end analysis and task-decomposition analysis: In the i*
framework, the Strategic Rationale (SR) model provides a more detailed level of
modelling by looking “inside” actors to model internal intentional relationships.
Intentional elements (goals, tasks, resources, and softgoals) appear in the SR model
not only as external dependencies, but also as internal elements linked by task-
decomposition and means-ends relationships (Figure 1). Task decomposition links
provide details on the tasks and the (hierarchically decomposed) sub-tasks to be
performed by each actor while the means-end links relate goals to the resources or
tasks required to achieve them. The SR model also provides constructs to model
alternate ways to accomplish goals by asking why, how and how else questions.
During this step, goals are further decomposed. Tasks can also be decomposed into
subtasks. The output of this step is a SR diagram for each actor. For example, the
Customer/Web Server actor has an internal task to perform ShoppingOnline. This task
can be performed by subtasks SelectProduct and PlaceOrder (these are related to the
parent task via task decomposition links). The SelectProduct task is further
decomposed into subtasks BrowseCatalog and SearchProduct.

Following the four steps that were mentioned, models of the proposed web service
are generated. Our next step is to show how these agent-oriented models can be
executed. In our proposal, we use 3APL as the programming language for generating
executable specifications.

3 Mapping i* Model to 3APL Agents

3APL (An Abstract Agent Programming Language) [9] [5] is a programming
language for implementing cognitive agents. Agents written in 3APL language consist
of goals, belief, practical reasoning rules and capabilities. A goal is a state of the
system that the agent wants to achieve. A Belief is used to represent the current
mental state of the agent. Practical reasoning rules are the means for the agent to
manipulate the goals. Capabilities are the actions that can be performed by the agent.
An action can only be performed if certain beliefs hold, this is called precondition of
an action. In this paper, we adopt 3APL platform [5] to support our work. Our work is
mainly based on 3APL definitions from [9] [5].

Definition 1 A 3APL agent is defined as a tuple n, B, G, P, A , where n is the name
of the agent, B is a set of beliefs (Beliefbase), G is a set of goals (Goalbase), P is a set of
practical reasoning rules (Rulebase) and A is a set of basic actions (Capabilities).

In [5], a set of programming constructs for goals are defined, namely BactionGoal,
PreGoal, TestGoal, SkipGoal, SequenceGoal, IfGoal, WhileGoal and JavaGoal, which
can be used in the body part of a practical reasoning rule and make 3APL more flexible.

784 A. Krishna et al.

Fig. 1. Strategic Rationale Model of Online shopping service

In a 3APL agent, P is a set of rules in the form: πh <-ϕ | πb.
In this formula, πh and πb belong to a goal variable set, and ϕ is a belief. When the

agent has goal πh and believes ϕ then πh is replaced by πb.
For a 3APL agent, Beliefbase is dynamic. It is updated with executing basic

actions from the set of capabilities. The structure of a basic action is shown below:

{ϕ1} Action(X) {ϕ2}

ϕ1 is the pre-condition and ϕ2 is the post-condition. Precondition and post-condition
are belief formulas. It is possible to have an action that does not have any pre-
condition or post condition. The execution of an action will result in the update of
beliefbase through replacing preconditions by postconditions. The beliefbase can also
be extended with a Prolog program (facts and rules) using the LOAD option [5]. In
addition, beliefs can be generated from the communications between two agents (sent
and received). 3APL has a mechanism to support the communications between
agents. A message mechanism is defined in [5] to fulfill the communication between
agents. The messages themselves have a specific structure, Receiver/ Sender,
Performative are three compulsory elements in a message. Usually, there are three
type of message: send(Receiver, Performative, Content), sent(Receiver, Performative,
Content), and received(Sender, Performative, Content). This agent communication
mechanism is described in details in [5]. In this paper we will not elaborate more on
the syntax of 3APL, readers who may want more details are directed to [9] [5].

 Agent-Based Prototyping of Web-Based Systems 785

We view an i* model as a pair 〈 SD, SR 〉 where SD is a graph denoted by
〈 Actors, Dependencies 〉 where Actors is a set of nodes (one for each actor) and
Dependencies is a set of labeled edges. These edges can be of 4 kinds: goal
dependencies(denoted by DG(SD)), task dependencies(denoted by DT(SD)), resource
dependencies(denoted by DR(SD)) and softgoal dependencies(denoted by DS(SD)).
Each edge is defined as a triple 〈 To, Td, ID 〉 , where To denotes the depender, Td
denotes the dependum and ID is the label on the edge that serves as a unique name
and includes information to indicate which of the four kinds of dependencies that
edge represents. SR is a set of graphs, each of which describes an actor. We adopt the
concept of an environment simulator agent (ESA) defined in [11].

We define MAS is a pair 〈 Agents, ESA 〉 where Agents = {a1, ..., an}, each ai is a
3APL agent and ESA is a specially designated Environment Simulator Agent
implemented in 3APL which holds the knowledge about the actions that might be
performed by actors in SD model and the possible environment transformation after
the executions of those actions. The environment agent can verify fulfillment
properties (clearly defined in Formal Tropos [7]), which include conditions such as
creation conditions, invariant conditions, and fulfillment conditions of those actions
associated with each agent. Every action of each agent has those fulfillment
properties. ESA is used to check whether those actions of all agents in this system
satisfy corresponding conditions.

Each graph in an SR model is a triple 〈 SR-nodes, SR-edges, ActorID 〉 . The SR-
nodes consist of a set of goal nodes (denoted by NG), a set of task nodes (denoted by
NT), a set of resource nodes (denoted by NR) and a set of softgoal nodes (denoted by
NS). SR-edges can be of 3 kinds: means-ends links (denoted by the set MELinks), task-
decomposition link (denoted by the set TDLinks) and softgoal contribution link
(denoted by the set SCLinks). Each MELink and TDLink is represented as a pair,
where the first element is the parent node and the second element is the child node. A
SCLink is represented as a triple 〈 s, m, c 〉 , where the first element is the parent node,
the second element is the child node and the third element is the softgoal contribution
which can be positive or negative.

Any MAS 〈 Agents, ESA 〉 obtained from an i* model m= 〈 SD, SR 〉 , where
SD= 〈 Actors, Dependencies 〉 and SR is a set of triples of the form 〈 SR-nodes, SR-
edges, ActorID 〉 (we assume that a such a triple exists for each actor in Actors) with
SR-nodes= NG ∪ NT ∪ NR ∪ Ns and SR-edges=MELinks ∪ TDLinks ∪ SCLinks must
satisfy the following conditions [8]:

1. For all a in Actors, there exists an agent in Agents with the same name.
For example, in the Online Shopping System, Retail system is an actor in SR Model,
therefore, there is an agent named “Retail System” in this 3APL agents system.
2. For every goal node or task node n in the SR diagram for that actor, the
corresponding agent 〈 a, B, G, P, A 〉 in Agents must satisfy the property that goal(n)
or task(n) in the G.
For example, goal Sell product and task Handle Online Order are in the boundary of
actor Retail System, according to step 2, SellProduct() and HandelOnlinOrder() are in
the goalbase of agent RetailSystem.

786 A. Krishna et al.

3. For all a in Actors and for each p in NG (parent node) for which a link 〈 p, c 〉 in
MELink exists in the SR model for that actor, with c in NT (children node), the
corresponding agent 〈 a, B, G, P, A 〉 in Agents must satisfy the property that goal(p)<-
ϕ | SeqComp(T) is an element of P. Here T={c1,…,cn}, given that <p,c1>,…,<p, cn>
are all the task decomposition links that share the same parent p. SeqComp(T) is an
operation that generates the body of the procedural reasoning rule referred to above
by sequentially composing the goal or task children identified in each of the means-
ends links with the same parent p. The i* model in itself does not provide any
information on what this sequence should be. This needs to be provided by the analyst
or, by default, obtained from a left-to-right reading of the means-ends-links for the
same parent in an SR diagram.

For example, in the SR diagram of actor Retail System of figure 1, task Handle
Online Order and goal Sell Product are connected by a means-end link, therefore, rule
SellProduct()<-ϕ | HandelOnlineOrder() can be added into the Rulebase of agent
RetailSystem. Belief formula ϕ and parameters of goal and task can be specified
according to the real case.
4. For all a in Actors and for each p in NT for which a link 〈 p, c 〉 in TDLink exists in

the SR model for that actor (where c in (NT∪NG)), the corresponding agent 〈 a, B, G,

P, A 〉 in Agents must satisfy the property that goal(p)<- ϕ| SeqComp(T) is an element
of P. Here T={c1,…,cn}, given that <p,c1>,…,<p, cn> are all the task decomposition
links that share the same parent p. SeqComp(T) is as defined in rule 3.

Note that, in the rules defined above, the execution orders of sub-tasks within the
Task-decomposition links are from left to right as default. Belief formulas of each
practical reasoning rule cannot be generated completely automatically; instead, those
beliefs are specified by designers.

Take task Handel Online Order as the parent task node for example, this task is
decomposed into three sub-tasks: Confirm Customer, Let Payment System Handle
Payment and Let Product Management System Send Product. Using the above rule,
will lead to:

HandleOnlineOrder() <- ϕ |
 BEGIN
 letpaymentsystemhandelpayment();
 confirmcustomer();
 letproductmanagementsystemsendproduct()
 END.

Note that, in the rules defined above, the execution orders of sub-tasks within the
Task-decomposition links are from left to right as default. Belief formulas of each
practical reasoning rule cannot be generated completely automatically; instead, those
beliefs are specified by designers.
5. For all a in Actors and for each triple 〈 s, m, c 〉 in SCLinks in the SR model for that
actor, the corresponding agent 〈 a, B, G, P, A 〉 in Agents must satisfy the property that
belief(m, s, c) is an element of B. We do not describe how beliefs about softgoal
contributions are used in agent programs for brevity – we will flag however that they
can plan a critical role in selecting amongst procedural reasoning rules.

For example, there are two ways to achieve goal Own Product for an actor, one is
Go Shopping, the other is Shopping Online. On the assumption that task GoShopping

 Agent-Based Prototyping of Web-Based Systems 787

has positive contribution to softgoals low effort, convenient and time saving while
task ShoppingOnline has positive effects on those three softgoals.
6. For all dependencies 〈 To, Td, ID 〉 in SD, there exist agents 〈 To, Bo, Go, Po,
Ao 〉 , 〈 Td, Bd, Gd, Pd, Ad 〉 in Agents, such that if 〈 To, Td, ID 〉 is in DG(SD), then
goal(ID) is an element of Go,

 Notice that these rules require that the creation conditions be communicated by the
depender agent to the ESA agent. The ESA monitors all of the actions/tasks
performed by each agent, all of the messages exchanged and all of the beliefs (usually
creation conditions for dependencies) communicated by individual agents for
consistency and for constraint violations (e.g. the FormalTROPOS-style conditions
associated with dependencies). When any of these is detected, the ESA generates a
user alert.
 We shall select one task-dependency and one resource-dependency related to agent
Retail System in order to illustrate rule 6. Actor Customer depends on actor Retail
System to perform task Buy Product Online and to provide Confirmation of buying.
According to rule 6, for agent Customer, BuyProductOnline() is in the Goalbase.
Rules shown below are in its Rulebase:

Request(confirmation) <-
 product(P) AND needconfirmation(P) |
 BEGIN
 send(retailsystem, request, requestProvide(confirmation));
 send(ESA, inform ,believe(needconfirmation))
 END
Task(BuyProductOnline) <-
 needtobuyproductonline |
 BEGIN
 send(retailsystem, request, requestPerform(BuyProductOnline));
 send(ESA, inform ,believe(ϕ)) END are in Rulebase.
For agent RetailSytem, two rules are generated for these two dependencies
relationships.
received(customer, request, requestProvide(confirmation)) |
 BEGIN
 send(customer, request, offer(confirmation));
 send(ESA, inform, believe(Offered(confirmation))
 END
received(customer, request, requestPerform (BuyProductOnline)) |
 BEGIN
 Perform(BuyProductOnline);
 send(ESA, inform, believe(Performed(BuyProductOnline))
 END

Notice that these rules require that the creation conditions be communicated by the
depender agent to the ESA agent. The ESA monitors all of the actions/tasks
performed by each agent, all of the messages exchanged and all of the beliefs (usually
creation conditions for dependencies) communicated by individual agents for
consistency and for constraint violations (e.g. the FormalTROPOS-style conditions
associated with dependencies). When any of these is detected, the ESA generates a
user alert.
 We shall select one task-dependency and one resource-dependency related to agent
Retail System in order to illustrate rule 6. Actor Customer depends on actor Retail

788 A. Krishna et al.

System to perform task Buy Product Online and to provide Confirmation of buying.
According to rule 6, for agent Customer, BuyProductOnline() is in the Goalbase.
Rules shown below are in its Rulebase:

Request(confirmation) <-
 product(P) AND needconfirmation(P) |
 BEGIN
 send(retailsystem, request, requestProvide(confirmation));
 send(ESA, inform ,believe(needconfirmation))
 END
Task(BuyProductOnline) <-
 needtobuyproductonline |
 BEGIN
 send(retailsystem, request, requestPerform(BuyProductOnline));
 send(ESA, inform ,believe(ϕ)) END are in Rulebase.

For agent RetailSytem, two rules are generated for these two dependencies
relationships.

received(customer, request, requestProvide(confirmation)) |
 BEGIN
 send(customer, request, offer(confirmation));
 send(ESA, inform, believe(Offered(confirmation))
 END
received(customer, request, requestPerform (BuyProductOnline)) |
 BEGIN
 Perform(BuyProductOnline);
 send(ESA, inform, believe(Performed(BuyProductOnline))
 END

Fig. 2 (provided below) is a snapshot for the Online Shopping 3APL agent System.
It provides insight into the communication messages and flow of the desired system.

Fig. 2. Communication messages

 Agent-Based Prototyping of Web-Based Systems 789

4 Conclusions

This paper has shown how agent-oriented conceptual modelling techniques such as i*
framework can be employed to model web-based systems. Along with this we have
suggested an approach to executing i* models by translating these into a set of
interacting agents (services) implemented in the 3APL language. This approach
makes use of the advantages of i* for the early-phase of requirement engineering and
validates the model by mapping it into an executable specification to see the design
result in an emulation program. We are working towards automating the approach
proposed in this paper. Furthermore, we also believe in the co-evolution approach in
which models are composed of i* model and 3APL agents. How to co-evolve i*
model and 3APL agents remains for future works.

References

1. Castro, J., Kolp, M., Mylopoulos, J., Towards requirements-driven information systems
engineering: the Tropos project, Information Systems Journal, 2002, 27(6), pp. 365-389

2. Chen, F., Yang, H., Guo, H., Xu, B. Agentification for web services, Proceedings of the
28th Annual International Computer Software and Applications Conference, 2004, pp. 514
– 519

3. Chinnici, R. Web Service Description Language (WSDL) Version 1.2, World Wide Web
Consortium, 2002, www.w3.org/TR/wsdl12/

4. Chung, L., Nixon, B., Yu, E., Mylopoulos, J. Non-Functional Requirements in Software
Engineering, Kluwer Academic Publishing, 2000

5. Dastani, M. 3APL Platform User Guide November 16, Utrecht University, 2004
6. Diana, L., Mylopoulos, M. Designing Web Services with Tropos, Proceedings of ICWS'04,

San Diego, USA, 2004. IEEE Computer Society Press
7. Fuxman, A., Liu, L., Pistore, M., Roveri, M., Mylopoulos, J. Specifying and Analyzing

Early Requirements in Tropos, Requirements Engineering Journal, 2004, 9(2), pp. 132-
150

8. Guan, Y., Ghose, A. K. Executable specifications for agent-oriented conceptual modeling.
Proceedings of the IEEE/WIC 2005 International Conference on Intelligent Agent
Technology, France, 2005

9. Hindriks, K. V., De Boer, F. S., Van der, H. W., Meyer, J. Agent programming in 3APL.
Autonomous Agents & Multi-Agent Systems, 1999, 2(4), pp. 357- 401

10. Lohse, G., Spiller, P. (1998) “Electronic shopping”, Communications of the ACM, July
1998, 41(7), pp. 81–87

11. Salim, F., Chang, C., Krishna, A., Ghose, A. K. Towards executable specifications:
Combining i* and AgentSpeak (L). Proceedings of 17th International Conference on
Software Engineering and Knowledge Engineering (SEKE-2005), Taipei, Taiwan, July,
2005

12. Universal Description, Discovery and Integration, Organization for Advancement of
Structured Information System, (2002), www.uddi.org/specification.html

13. Yu, E. Modelling Strategic Relationships for Process Reengineering. PhD Thesis,
Graduate Department of Computer Science, University of Toronto, Toronto, Canada,
1995, pp. 124

	Introduction
	Modelling Web-Based Systems
	Mapping i* Model to 3APL Agents
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

