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Abstract. In this paper, we develop an efficient system to compute
shortest paths in real road networks. An optimal shortest path algo-
rithm is proposed based on a two-level hierarchical network structure. A
pre-computation technique is used to improve the time efficiency. To fur-
ther improve time efficiency and reduce memory requirement, we propose
an algorithm to minimize the number of boundary nodes by relocating
them between adjacent sub-networks. The performances of our approach
with different network partition methods (with or without minimization
of the number of boundary nodes) are compared in terms of both time
efficiency and memory requirement. The experimental results on the real
road network of Hong Kong demonstrated the efficiency of our method
and the usefulness of minimizing of the number of boundary nodes.

Keywords: systems for real life applications, decision support, short-
est path computation, hierarchical network structure.

1 Introduction

Efficient shortest path computations in real road networks are essential to Intel-
ligent Transportation System (ITS) and other vehicle routing services. However,
naive application of shortest path algorithms in real road networks always dete-
riorates because of the huge number of nodes. In the literature, various shortest
path algorithms [13], [12] are available for route finding, of which the most pop-
ular one is Dijkstra’s algorithm. Dijkstra’s algorithm has a runtime complexity
of O(E + V logV ) for a network with E edges and V nodes. It performs well on
a network with a small number of nodes. However, for a real road network with
tens of thousands of nodes, the performance drops dramatically in term of time
efficiency. Its application in the real road network thus requires some methods
to reduce the number of nodes in consideration.

In the literature, a lot of work has been focused on the idea of hierarchical struc-
tures [4], [10], [3], [1]. The road network is organized into a hierarchical struc-
ture with the help of existing topographical knowledge, and heuristic methods
are used to improve the time efficiency. Liu [10] partitioned the entire network
into many small sub-networks by major roads. The shortest path algorithm was
applied only to the sub-networks containing the origin or the destination and the
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major road network. Jagadeesh et al. [3] proposed a heuristic improvement by us-
ing Euclidean distances, instead of real distances, in the origin and destination
sub-network to improve the time efficiency. However, with these methods the re-
sults are not guaranteed to be optimal. Researchers have also developed optimal
models for shortest path computation based on hierarchical network structures [4],
[6]. Pre-computation was proposed as well to improve the time efficiency of short-
est path queries. But pre-computation leads to another problem, i.e., the memory
requirement is tremendous [11]. Ning et al. [4] stored all-pair shortest paths of
each fragment graph rather than the shortest paths of the whole network. This
approach balances time efficiency and memory requirement and is highly compli-
mentary.

In a hierarchical approach, the partition method is of great importance be-
cause it directly influences the time efficiency. Habbal et al. [2] proved that the
most favorable decomposition schemes are those in which the number of sub-
networks is relatively small, the sub-networks are of equal size, the number of
boundary nodes per sub-network is uniform and the total number of boundary
nodes is as small as possible. Ning et al. [4], [5] developed a link-sorting parti-
tion algorithm which is efficient for large map fragmentation, and proposed the
Spatial Partition Clustering (SPC) technique. Karypis and Kumar [8] presented
a multilevel algorithm for multi-constraint graph partitioning such that the par-
titions satisfy a balancing constraint while aiming at minimizing the edge-cut.

In this paper, we present an efficient system for shortest path computation and
queries in a real road network which guarantees the optimality. In our model, the
hierarchical structure is adopted to reduce the number of nodes in consideration
so as to improve the time efficiency. The pre-computation technique is applied to
facilitate shortest path queries. The road network is partitioned into a number
of sub-networks, and the trade-off between time efficiency and memory require-
ment is balanced by only storing all-pair shortest paths of each sub-network.
To further improve time efficiency and reduce memory requirement, we propose
an algorithm to minimize the number of boundary nodes by relocating them
between adjacent sub-networks. To evaluate the performance of our approach,
computational experiments were conducted on the Hong Kong road network
with 13626 nodes and 28735 edges. The edge-node ratio is 2.11.

2 Methodology

2.1 Partitioning Tools

To partition the real road network appropriately, we studied the SPC method,
the multilevel partitioning algorithm and a computer-aided partition method
with topographical knowledge. SPC is a link-sorting based partitioning method,
exploiting unique properties of transportation networks such as spatial coordi-
nates and high locality. The algorithm is based on the plane-sweep technique
commonly used in multi-dimensional spatial data operations. For the details
of the algorithm, refer to [5]. In our implementation, the nodes, instead of the
links, are partitioned into clusters, and the nodes of the same cluster are grouped
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together to form a sub-network. After all the nodes have been grouped into sub-
networks, the entire network is successfully partitioned into a set of sub-networks
and each node belongs to exactly a single sub-network. We also studied multi-
level partitioning algorithms presented by Karypis and Kumar [8], [9], [7], and
used the multilevel partitioning tool, METIS. METIS is a powerful software
package for partitioning large graphs, partitioning large meshes, and computing
fill-reducing orderings of sparse matrices.

The computer-aided partitioning method (CAP) is facilitated by human
knowledge on the topographical respect of the real map. Through this approach,
we divide the entire map into several sub-networks by manually selected boundary
nodes. The selection of boundary nodes is subject to topographical knowledge of
the map. When selecting the boundary nodes, we hope to isolate the regions with
fewer roads connected with outside. For example, the Hong Kong Island is favor-
able to be isolated as a sub-map, which is connected with Kowloon through only
3 tunnels. So is the Lan Tau Island, which is linked with outside by the Tsing Ma
Bridge. However, when it is difficult to further partition a dense sub-network, we
have to select more boundary nodes. In such cases, it is necessary for us to study
the specific region and then select as few boundary nodes as possible.

Moreover, a computer program was written to help us choosing the boundary
nodes. The boundary nodes are selected one after another. After a boundary
node is selected (or un-selected), the program displays the total number of sub-
networks with current set of boundary nodes. For each sub-network, the program
reports its size and the number of boundary nodes contained in it. This informa-
tion is provided to help us deciding whether our previous choices of boundary
nodes are good or not. With the help of the computer program and human
knowledge, the Hong Kong road network was successfully partitioned into 74
components, each containing 52 to 309 nodes.

2.2 Optimal Shortest Path Computation Based on a Hierarchical
Network Structure

We propose a shortest path algorithm based on a 2-level hierarchical network
structure constructed by the SPC, METIS or computer-aided partitioning
method. Our algorithm guarantees the optimality of the results. In order to ex-
plain the algorithm, we describe first the 2-level hierarchical network structure.
After partitioning, the original network G(V ,E) is divided into sub-networks:
SG1, SG2, . . . , SGn, called the low-level networks. In each sub-network, the
nodes with an outgoing edge to or an incoming edge from other sub-networks is
defined as boundary nodes. For example, consider Figure 1 where a digraph G
and its sub-networks SG1, SG2 and SG3 are shown. The boundary node set of
SG1, SG2 and SG3 is {E, F}, {G, H, J, L} and {M, N, O}, respectively.

We define the local shortest path between two boundary nodes computed
within each sub-network as SPi(boundary1, boundary2, distance), where i cor-
responds to SGi, the sub-network which the two boundary nodes belong to.
Firstly, we apply Dijkstra’s algorithm in each low-level network to compute all
SPi(boundary1, boundary2, distance)’s and store them. In Figure 1, for example,
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Fig. 1. A digraph G and its subgraph SG1, SG2 and SG3
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Fig. 2. The high-level network constructed from SG1, SG2 and SG3

the local shortest path from boundary node E to F, computed within SG1, is
SP1(E, F, 1), the shortest path from G to H in SG2 is SP2(G, H, 8), from M to
N in SG3 is SP3(M, N, 10), and so on.

We isolate all the boundary nodes, each two of which within the same sub-
network are linked with two additional edges equivalent to the local shortest
paths between them. Then add the outgoing or incoming edges to the corre-
sponding boundary nodes. Thus we construct the high-level network, which is
the connector of all the sub-networks. The high-level network together with the
low-level sub-networks forms the 2-level network structure. The high-level net-
work constructed from SG1, SG2 and SG3 of Figure 1 is given in Figure 2, where
the newly-added edges are represented by dashed arrows.

Apply the all-pair shortest path algorithm (that is, apply Dijkstra’s algorithm
repetitively) in the high-level network, and all-pair global shortest paths of the
high-level network are determined, including the global shortest paths between
each pair of boundary nodes that belong to the same sub-network. The shortest
path between two boundary nodes computed in the high-level network is denoted
as SPh(boundary1, boundary2, distance). The results are stored in memory. For
example, the distance from M to N in the high-level network is SPh(M, N, 9),
by going though L of SG2.
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Fig. 3. The updated SG3 with newly-added edges

Then we return to the low-level networks. Each pair of boundary nodes
in the same sub-network SGi are linked with an additional edge of weight
SPh(boundary1, boundary2, distance), if SPh(boundary1, boundary2, distance)
is less than SPi(boundary1, boundary2, distance). For example, the updated SG3

is given in Figure 3, where the newly-added edges are represented by dashed
arrows. After that we apply all-pair shortest path algorithm in each updated
sub-network to compute global shortest paths between any two nodes of the
sub-network. The results are then stored in memory. At the point, the global
all-pair shortest paths for the high-level network and for each sub-network have
been computed and stored. Thus, the all-pair shortest path initialization pro-
cess is completed. Since there is a trade-off between time efficiency and memory
requirement, we do not store all-pair shortest paths of the whole road network
in our system. Instead, we only store all-pair shortest paths in each low-level
network and the high-level network, which saves memory significantly without
greatly compromising the time efficiency.

To retrieve the shortest path between two given nodes, s (the origin) and t
(the destination), we should first check whether they are boundary nodes and
where they are located. In the following, we denote the global shortest path from
the origin to the destination as SP (s, t, distance), and the set of boundary nodes
of a sub-network SGi as BNi. There are 4 scenarios listed as follows.

Case 1: If the two nodes are both boundary nodes, SP (s, t, distance) =
SPh(s, t, distance). For this case, retrieve the result from the high-level network.

Case 2: If the two nodes are located in the same low-level network, SGi,
SP (s, t, distance) has already been computed and stored in SGi. For this case,
retrieve the result from SGi.

Case 3: If s is inside a low-level network SGi and t is a boundary node,
we create a directed graph G′ = (V ′, E′), where V ′ contains s, BNi and t. For
each boundary node, v, in BNi, there is a directed edge in E′ from s to v with
weight SP (s, v, distance), and another directed edge from v to t with weight
SP (v, t, distance). Then we apply Dijkstra’s algorithm to obtain the shortest
path from s to t in G′. Vise versa for the case that s is a boundary node but
t is not. The auxiliary graph G′ for computing SP (P, L, distance) is given in
Figure 4, from which we get SP (P, L, 8).

Case 4: If s is inside a low-level network SGi and t is inside a different low-
level network SGj , we create a directed graph G′ = (V ′, E′), where V ′ contains
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Fig. 4. The auxiliary graph G′ for SP (P, L, distance)

s, BNi, BNj and t. For each boundary node, v, in BNi, there is a directed edge
in E′ from s to v with weight SP (s, v, distance). For each boundary node, v′, in
BNj , there is a directed edge in E′ from v′ to t with weight SP (v′, t, distance).
In addition, there is a directed edge from v to v′ with weight SP (v, v′, distance).
Then we apply Dijkstra’s algorithm to obtain the shortest path from s to t in G′.

It is straight-forward to extend the above retrieval algorithm to retrieve the
shortest paths from s to a set of destination nodes, {t1, t2, . . . , tn}. Thus, the
description is omitted here.

2.3 Minimization of the Number of Boundary Nodes

From the algorithm described in the previous section, we realized that the num-
ber of boundary nodes affects both time efficiency and memory requirement.
Since the boundary nodes are the entry/exit points of the low-level networks,
the fewer they are, the fewer entry/exit points we need to consider in Case 3
and 4 of the retrieval algorithm. Moreover, in our implementation we pre-
compute and store all-pair shortest paths of the high-level network, of which the
nodes are exactly the boundary nodes. With fewer boundary nodes, less memory
is required for the high-level network. Therefore, we took minimization of the
number of boundary nodes into consideration and developed an algorithm for it.
The algorithm improves the partitions generated by the methods as described
in Section 2.1 by relocating the boundary nodes between different sub-networks.

Refer to Figure 1. The boundary node set of SG1, SG2 and SG3 is {E, F},
{G, H, J, L} and {M, N, O}, respectively. If we move a boundary node from
its native sub-network to another sub-network to which it is adjacent, we may
reduce the number of boundary nodes. For example, if we move the boundary
node L from SG2 to SG3, the resulting boundary node set for SG2 and SG3 is
{G, H, J, K} and {L, M}, respectively. The number of boundary nodes is then
reduced by 1.

To interpret the minimization algorithm formally, we define the adjacent nodes
of a boundary node, v, as the nodes which are directly linked with v by an incom-
ing or outgoing edge. An adjacent sub-network of v is a non-native sub-network
which contains at least one of its adjacent nodes. In the native sub-network of
v, there are two types of adjacent nodes: those adjacent nodes which are bound-
ary nodes themselves (denoted as native-boundary-nodes) and those which are not
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(native-regular-nodes). In an adjacent sub-network of v, there are also two types
of adjacent nodes: those linked with no other foreign boundary node except v
(single-linked-nodes) and those linked with other foreign boundary nodes (multi-
linked-nodes). If v is moved to an adjacent sub-network, the native-boundary-nodes
will remain as boundary nodes, while the native-regular-nodes will become new
boundary nodes. On the other hand, the single-linked-nodes in the target adjacent
sub-network will become non-boundary nodes, while the multi-linked-nodes will
remain as boundary nodes. v will become a non-boundary node only if it has only
one adjacent sub-network and does not have any native-boundary-node or native-
regular-node. Our minimization algorithm keeps on moving boundary nodes to
their adjacent sub-networks as long as the total number of boundary nodes is re-
duced. It terminates at a local optimum where no further reduction is possible.

3 Computational Results

3.1 Comparison of Different Partitioning Methods

The partitioning methods (SPC, METIS and CAP) were tested on the Hong
Kong road network. Figure 5 and 6 illustrate the all-pair shortest path com-
putation time and memory usage of METIS, as the number of partitions, np,
increases. The corresponding figures for SPC are omitted due to its poor per-
formance. The best results for METIS, SPC and CAP are given in Table 1,
where “+M” indicates that the partition method is enhanced by minimizing the
number of boundary nodes.

The results indicate that the best value of np is about 90 for METIS and 50 for
SPC. Table 1 clearly shows that METIS performed much better than SPC, while
CAP is better than METIS. The memory requirement of CAP+M is about 4.82%
less than METIS+M. More importantly, the all-pair shortest path computing time
of CAP+M is over 1 second (28.62%) less than METIS+M, demonstrating the
usefulness of topographic knowledge. Moreover, the results with minimization of
the number of boundary nodes are always better than those without minimization,
which demonstrates the strength of the minimization algorithm.
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Table 1. The best results with METIS, SPC and CAP

Partition scheme np All-pair time(s) np Memory usage(M)
METIS 90 4.234 90 73.158

METIS+M 90 3.875 100 67.637
SPC 30 10.953 50 132.548

SPC+M 50 6.609 50 96.941
CAP 74 3.000 74 65.861

CAP+M 74 2.766 74 64.378

3.2 Time Comparison for One-One Shortest Path Computation

For one-one shortest path computation, our approach based on METIS+M
(np = 90) and CAP+M was compared with direct application of Dijkstra’s
algorithm. Figure 7 gives their average distance retrieval time, with the number
of queries ranging from 1 to 100. The computation time of our approach is at
the level of 10−3s, much less than that of Dijkstra’s algorithm, which indicates
the superiority of our approach. In addition, the distance time of CAP+M is less
than that of METIS+M, indicating the advantage of topographic knowledge in
partitions. Similarly, for the path retrieval time, Dijkstra’s algorithm was much
worse than our approach, and CAP+M out-performed METIS+M again.

0.E+00

1.E-01

2.E-01

3.E-01

4.E-01

5.E-01

6.E-01

0 20 40 60 80 100

The number of queries

T
h
e
 
d
i
s
t
a
n
c
e
 
t
i
m
e
 
(
s
)

METIS+M Dijkstra’s algorithm CAP+M

0.E+00

5.E-04

1.E-03

2.E-03

2.E-03

3.E-03

3.E-03

4.E-03

4.E-03

0 20 40 60 80 100

The number of queries

T
h
e
 
d
i
s
t
a
n
c
e
 
t
i
m
e
 
(
s
)

METIS+M CAP+M

Fig. 7. Comparison of the path time



An Efficient Shortest Path Computation System for Real Road Networks 719

3.3 Time Comparison for Some-Some and All-All Shortest Path
Computations

For some-some shortest path computation, we set the node pairs as 100-100,
200-200, 400-400, 600-600, 800-800, 1000-1000, 2000-2000, 4000-4000, 6000-6000,
8000-8000 and 10000-10000. The results of our approach with METIS+M and
CAP+M are compared with those of the Dijkstra’s algorithm in Table 2. The
all-all results are given in Table 3. From Table 2 and 3, it is clear that the
distance time of the Dijkstra’s algorithm is more than that of our approach with
METIS+M or CAP+M. Again, the distance time with CAP+M is less than
METIS+M.

Further analysis of Table 2 and 3 reveals that, for n-n distance queries, the
superiority of our approach decreases with the increasing of n. For example, the
ratio of CAP+M time to the Dijkstra time increases from 3.76% to 65.90%. The
underlining rationale is that each run of Dijkstra’s algorithm always computes
the shortest paths from a source node to all other nodes. Each 1-n query takes
nearly the same time, regardless of the value of n. When n is small, most of the
one-all shortest paths computed by the Dijkstra’s algorithm are un-used and our
approach with pre-computation is thus much more efficient. As n increases, the
n-n Dijkstra time increases linearly with regard to n. For each 1-n query, our
approach requires n 1-1 operations, if without optimization. By grouping queries
with destination nodes in the same sub-network, we are able to improve our 1-n
query processing. Even so, our retrieval time still increases much faster than the
Dijkstra time. This explains why the time saving of pre-computation gradually
decreases as n increases.

Table 2. Computation performance comparison for some-some shortest paths

Some-some METIS+M(s) CAP+M(s) Dijkstra’s algorithm(s)
100-100 0.093 0.047 1.250
200-200 0.235 0.187 2.500
400-400 0.734 0.500 4.969
600-600 1.281 0.922 7.453
800-800 1.891 1.406 10.000

1000-1000 2.578 1.969 12.406
2000-2000 6.969 5.453 24.781
4000-4000 19.969 15.797 49.031
6000-6000 38.328 30.453 73.532
8000-8000 62.375 49.828 98.094

10000-10000 92.078 72.843 122.485

Table 3. Computation performance comparison for all-all shortest paths

All-all METIS+M(s) CAP+M(s) Dijkstra’s algorithm(s)
13626-13626 137.14 110.813 168.141

4 Conclusion

In this paper, we developed an optimal shortest path algorithm, based on a
two-level hierarchical network structure, to compute shortest paths in real road
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networks. Pre-computation was used to improve the time efficiency. We also
proposed an algorithm to minimize the number of boundary nodes by relocating
them between adjacent sub-networks. The experimental results on Hong Kong
road network demonstrated the efficiency of our method and the usefulness of
minimizing of the number of boundary nodes.
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