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Abstract. We present a soft computing techniques based option for as-
sessing the quality of colour prints. The values of several print distortion
attributes are evaluated by employing data clustering, support vector
regression, and image analysis procedures and then aggregated into an
overall print quality measure using fuzzy integration. The experimental
investigations performed have shown that the print quality evaluations
provided by the measure correlate well with the print quality rankings
obtained from the experts. The developed tools are successfully used in
a printing shop for routine print quality control.

1 Introduction

Offset lithographic printing is the most widely used commercial printing tech-
nology. Multicolour pictures in offset lithographic printing are represented by
cyan (C), magenta (M), yellow (Y), and black (K) dots of varying sizes on thin
metal plates. The two left-most images in Fig. 1 provide an example of an image
taken from an offset-printed picture and an enlarged view of a small area of the
picture, respectively. The four-colour dots are clearly seen in this figure. An im-
age comprised of such dots is usually called a halftone image. Since four colours
are used in the printing process, four halftone images are created.

Fig. 2 illustrates the flowchart of the graphical process resulting into a news-
paper page. A colour camera and a scanner are the main tools used to obtain
colour images that are later used in offset colour printing. The images, called
original in this paper, are usually recorded in the RGB colour space, see Fig. 2.
Since C, M, Y, and K colours are used to print colour pictures, the so-called colour
separation process, converting images from the RGB to the CMYK colour space,
is applied. Next, by applying some half-toning procedure, each of the obtained C,
M, Y, and K images is converted into the halftone counterpart. Printing plates
are then easily obtained from the halftone images by applying the so-called
computer-to-plate (CTP) technology. The colour observed in a small local area
of such pictures depends on the actual proportions of the amount of the four
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Fig. 1. A newspaper picture and an enlarged view of a small part of the picture (left).
An example of the double grey-bar (middle). Two images exemplifying various quality
aspects of printed dots (right).

 

Fig. 2. The flowchart of the graphical process

inks deployed on that local area of paper—the CMYK values,—which have to be
estimated by performing some measurements on the printed result (observe the
question mark in Fig. 2). To obtain high quality prints, a relatively high preci-
sion of maintaining the beforehand determined ink proportions is required. The
ability to print dots of the desired constant quality—size, shape, the degree of pe-
riodicity, ink density—is a key factor in obtaining the desired ink proportions in
a small local area. The two rightmost images presented in Fig. 1 illustrate qual-
ity variations of printed dots. Thus, to assure high quality prints, a procedure
for automatic print quality assessment is required. To enable the measurements
required for assessing the print quality, a small test area is usually printed. Fig. 1
(middle) presents an example of such an area, the co-called double grey-bar.

Nonetheless of the current practice of using manual inspection of overall qual-
ity of complex colour prints in the printing industry, image analysis techniques
are increasingly used for assessing various quality aspects of prints. Since man-
ual procedures are tedious, time consuming, and the results are subjective as
they depend on personal skills and mood, automated printing quality inspection
systems are highly appreciated.

In general, various parameters are used to characterize print quality. The ones
used most often are: � dot deformation—roundness, the degree of periodicity;
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� dot gain—the difference between the supposed average dot size and the actual
measured average dot size; � ink density deviation from the required density
level; � edge sharpness—the clarity of detail; � the number of missing dots (the
parameter is only important in rotogravure printing).

A system attempting to simulate human print quality assessment for simple
prints made by laser and ink jet printers is presented in [1]. Using simple print
features characterizing noise level, edge sharpness, and tonal contrast the system
is trained to categorize the prints into the ”bad quality” and ”good quality”
classes. Another approach to the categorization of prints into the two classes was
proposed in [2]. The categorization is based on moment invariants computed from
a colour image histogram. A simple technique for measuring graininess when
assessing print quality is presented in [3]. In [4], an approach to estimating the
proportions of the four printing inks in a halftone image area was developed and
used for printing quality monitoring in offset lithographic printing. Although
there is a great interest in having a print quality measure integrating various
quality aspects, the attempts to devise such a measure are very infrequent [5].

This paper is concerned with an attempt to develop such a measure for as-
sessing the quality of offset lithographic prints. Several attributes characterizing
distortion level of colour prints are estimated by employing data clustering, sup-
port vector regression, and image processing techniques and then aggregated into
a print quality measure via Choquet fuzzy integral. To assess the offset print-
ing quality we use the following print distortion attributes: the deviation of the
amount of C,M,Y,K inks from the desired level, the noise level, the coefficient
of variation of the shape factor of printed dots, the coefficient of variation of the
size of the dots, and the coefficient of variation of ink density.

2 Estimating the Distortion Attributes

An image taken from a double grey-bar, as that shown in Fig. 1, is used as an
information source to estimate the print distortion attributes. To evaluate the
last three attributes, separate printed dots need to be detected and analyzed,
while only a global analysis is required to estimate the first two. Next, we describe
the main topics of the approach.

2.1 Estimating the Deviation of the Amount of Inks

The desired amount of the C, M, Y, and K inks in known in advance. Thus,
estimation of the deviation amounts to estimation of the actual amounts of
the inks. The average RGB values registered on the ”black” part of the double
grey-bar is the input information for estimating the amount of K. The amount
of C, M, and Y is estimated from the average RGB values registered on the
”coloured” part of the bar. Consequently, two mappings: RGB ⇒ CMY and
RGB ⇒ K need to be determined. Since we use the approximately uniform
L∗a∗b∗ colour space in the analysis, the mappings sought are L∗a∗b∗ ⇒ CMY
and L∗a∗b∗ ⇒ K. The L∗a∗b∗ values are easily obtained from RGB by applying
the well known equations [6].
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We use the support vector regression to discover the mappings sought. Let
us assume that we have N colour patches spread over the whole colour gamut
in question with known L∗a∗b∗—x—and CMY —y—values, the training set
S = {(x1,y1), ..., (xN ,yN )}. We collect the x vectors into the N × 3 matrix
X and the y vectors into the N × 3 matrix Y. Since we use the 1-norm ε-
insensitive support vector regression, the optimization task is then to find α∗ by
maximizing [7]

W (α) =
N∑

i=1

αiyi − ε

N∑

i=1

|αi| −
1
2

N∑

i,j=1

αiαjκ(xi,xj) (1)

subject to
N∑

i=1

αi = 0, −C ≤ αi ≤ C, i = 1, ..., N (2)

with κ(xi,xj) being a kernel, yi is the target, and C > 0 is the regulariza-
tion constant. Observe that a one-dimensional output is assumed in the above
equations. The function f implementing the 1-norm ε-insensitive support vector
regression is then given by

f(x) =
N∑

j=1

α∗
jκ(xj ,x) + b∗ (3)

where

b∗ = −ε + yi −
N∑

j=1

α∗
jκ(xi,xj) (4)

for i such that 0 < α∗
i < C.

In this study, we used polynomial κp(xi,xj) and Gaussian κg(xi,xj) kernels:

κp(xi,xj) = (1 + xT
i xj)d (5)

κg(xi,xj) = exp{−||xi − xj ||2/σ} (6)

with d and σ being parameters of the kernels. The mapping L∗a∗b∗ ⇒ K is
found likewise, except that the output is one-dimensional.

The C, M, Y, and K values range between 0 and 100, where 0 means no ink
and 100 stands for the area entirely covered by ink. Having the C, M, Y, and
K values estimated, the distortion attribute Q1 is then given by the average
difference between the desired and the estimated actual values of the amount of
inks.

2.2 Estimating the Noise Level

The “black” part of the bar is utilized to estimate the noise level. The estima-
tion is based on the analysis of the Fourier power spectrum P (u, v) =‖ F (u, v)
‖2= R2(u, v) + I2(u, v) of a “dot image” f(x, y), with F (u, v) being the Fourier
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transform of f(x, y), and R(u, v) and I(u, v) are the real and imaginary compo-
nents of F (u, v), respectively. First, the central part of the power spectrum is
eliminated and three highest power peaks are then found in the upper part—the
first and the second quadrants—of the power plain.

Next, the power spectrum in the neighbourhood of each detected peak is
normalized to build a probability density function p(ξ). Finally, the averaged
entropy, given by Eq.(7), is computed and used as a distortion attribute Q2 to
quantify the noise level.

Q2 = H = − 1
3 logNN

3∑

j=1

NN∑

i=1

pj(ξi) log[pj(ξi)] (7)

where NN is the size of the neighbourhood. Higher entropy H values are usually
computed for images of less regular dots.

2.3 Detecting the Printed Dots

We solve the task through unsupervised colour image segmentation. A relatively
simple fuzzy-clustering-based image segmentation technique can be used to seg-
ment an image taken from the ”black” part of the bar [8]. However, a more
involved analysis is required to accurately segment the coloured part of the bar.
Eight combinations: cyan, magenta, yellow, white, green (cy), blue (cm), red
(my), and black (cmy) are possible when printing C, M, and Y dots on each
other. Thus, the coloured part is segmented into these eight colour classes. Hav-
ing the segmentation results, the C, M, and Y dots are easily recovered.

We segment an image by applying the mean shift procedure [9]. Pixels of a
colour image create a density distribution in the L∗a∗b∗ space. Pixels of similar
colours create modes of the distribution. If we can associate with each pixel of
the image the closest local mode of the distribution, we can use this information
to segment the image. The mean shift procedure provides this association.

Let us assume that {xi}, i = 1, ..., N is a set of image pixels and Sh(x) denotes
a hyper-sphere of radius h centered on x and containing Nx pixels. Then Mh(x)
given by

Mh(x) =
1

Nx

∑

xi∈Sh(x)

xi − x (8)

is called the sample mean shift [9]. The mean shift vector points towards the
maximum increase of the density. Thus, the mean shift procedure, obtained
by successive computation of Mh(x) and translation of the window Sh(x) by
Mh(x) produces a path leading to a local density mode—convergence point.
Each pixel is associated with a convergence point representing a local density
mode in the 3-dimensional space. The convergence points of the procedure serve
as seed points for performing image segmentation. To obtain homogenous regions
in the segmented image, sufficiently close convergence points are merged. We do
the segmentation in the concatenated 5–dimensional spatial-range space. There
are two dimensions—x, y—in the spatial and three—L∗a∗b∗—in the range space.
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Having the printed dots detected, the distortion attribute Q3, related to dot
size, is given by the coefficient of variation of the size

Q3 = σS/mS (9)

with σS and mS being the standard deviation and the mean value of the dot
size S, respectively.

2.4 Estimating the Ink Density

We measure ink density with a colour camera via the local kernel ridge regression
based reconstruction of a reflectance spectrum of a sample being measured [10].
Having the spectrum, the ink density D is evaluated as

D = − lg
∑

R(λ)S(λ)F (λ)∑
S(λ)F (λ)

(10)

where λ stands for a wavelength, R(λ) is the reflectance spectrum of a sample,
S(λ) is the relative power distribution of the light source, and F (λ) is the spectral
transmittance of the densitometer filter. The ink density is estimated for each
printed dot and the distortion attribute Q4, related to ink density, is then given
by the coefficient of variation of the density Q4 = σD/mD.

2.5 Shape Factor

The dot shape factor ϑ we use is given by

ϑ = Sd/Pd (11)

where Sd and Pd are the dot area and perimeter, respectively. The distortion
attribute Q5, related to dot shape, is given by the coefficient of variation of the
shape factor Q5 = σϑ/mϑ.

3 Fuzzy Integration of Distortion Attributes

In practice, distortion attributes are usually highly correlated. Therefore, when
aggregating them into a quality measure it is desirable to assign weights not only
to individual attributes, but also to groups of them. Aggregation based on fuzzy
integrals—fuzzy integration—possesses this valuable property. In such schemes,
different attributes are fused into a final quality measure by a fuzzy integral
with respect to a fuzzy measure. A fuzzy measure represents weights on each
attribute and also weights on each group of attributes.

3.1 Fuzzy Measure and Fuzzy Integral

Let Z be a non-empty finite set—a set of distortion attributes in our case—and
2Z the power set of Z. A set function g : 2Z → [0, 1] is a fuzzy measure if •
g(∅) = 0; g(Z) = 1 and • if A, B ⊂ 2Z and A ⊂ B then g(A) ≤ g(B).
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The λ-fuzzy measure. Sugeno [11] introduced the so called λ-fuzzy measure,
which satisfies the following additional property

g(A ∪ B) = g(A) + g(B) + λg(A)g(B) (12)

for all A, B ⊂ Z and A ∩ B = ∅, and for some λ > −1. Let Z = {z1, z2, . . . , zL} be
a finite set, where L is the number of distortion attributes, and let gi = g({zi}).
When g is the λ-fuzzy measure, the values of g(Ai) can be computed recursively:

g(A1) = g({z1}) = g1, g(Ai) = gi + g(Ai−1) + λgig(Ai−1), for 1 < i ≤ L.

We use the discrete Choquet integral to make the fuzzy integration. The dis-
crete Choquet integral of a function h with respect to g is defined as

Cg(h(z1), . . . , h(zL)) =
L∑

i=1

[h(zi) − h(zi−1)]g(Ai) (13)

where indices i have been permuted so that 0 ≤ h(z1)...h(zL) ≤ 1, Ai =
{zi, ..., zL}; h(z0) = 0. In our case, the function h(z) is a function of values
of the distortion attributes. We adopted the following function h(Qi):

h(Qi) = exp{−θiQi} (14)

where θi is a parameter.
The gi value reflects the importance of the ith distortion attribute. In this

paper, the value was chosen to be proportional to the Spearman’s correlation
coefficient ρ between the quality rankings provided by the attribute and the
expert. To evaluate the ranking obtained from the overall quality measure, we
also used the Spearman’s correlation coefficient:

ρ =

∑T
t=1 R[M(t)]R[E(t)] − T

(
T+1

2

)2

√
∑T

t=1 R2[M(t)] − T
(

T+1
2

)2
√

∑T
t=1 R2[E(t)] − T

(
T+1

2

)2
(15)

where T is the number of images used, R[E(t)] and R[M(t)] are the quality rank
given to the tth image by the expert and the measure, respectively.

4 Experimental Investigations

The experimental tests performed concern an offset newspaper printing process.
An on-line printing process monitoring system has been used to capture the
images of test areas used in the experiments. The system is equipped with a
CCD colour camera of 1600× 1200 pixels. The camera can be positioned with a
high accuracy at any point across a newspaper page and is able to record high
quality well-focused colour images from a web running at up to 15 m/s speed.
An off-line version of the system is also available.
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4.1 Choice of Parameters

The width of the kernel σ = 0.2 and the polynomial degree d = 2 turned to be a
good choice for the kernel parameters. The value of the regression insensitivity
parameter ε was chosen based on the process knowledge and was set to ε =
0.015. The regularization constant C was found by cross-validation and was
equal to C = 50. Based on the values of the correlation coefficient ρ, the following
importance weights gi have been given to the the distortion attributes: g1 = 0.5,
g2 = 0.8, g3 = 0.2, g4 = 0.4, and g5 = 0.2. The values of θ1 = 2, θ2 = 5, θ3 = 2,
θ4 = 4, and θ5 = 2 worked well in all the tests performed.

4.2 Estimating the Amount of Ink

To learn the mappings L∗a∗b∗ ⇒ CMY and L∗a∗b∗ ⇒ K, a set of test colour
patches were printed keeping the same ink density. For each cyan, magenta, and
yellow inks, the average nominal ink coverage of a patch area—the dot size—was
varied in 20% steps, namely, 0, 20, 40, 60, 80, and 100%. An example of 216
such pathes, with C, M, and Y varying from 0 to 100%, is shown in Fig. 3. The
average ink coverage for the black ink was varied in 3% steps from 0 to 100%.
In total, 216 test colour and 34 black patches were designed. Data from five of
such prints were automatically recorded using the on-line system. One set of the
data has been used to estimate the regression parameters, while the other four
sets were allocated for testing.

Fig. 3. An image taken from the 216
colour patches

Colour Gaussian Polynom

C 1.12 (0.60) 1.17 (0.22)

M 1.09 (0.56) 1.18 (0.61)

Y 1.36 (0.77) 1.47 (0.59)

K 0.55 (0.37) 0.64 (0.39)

Fig. 4. The average prediction error of
the C, M, Y, and K values

To learn the mappings, the target values—the actual C, M, Y, and K values—
are to be known. Though the nominal C, M, Y, and K values used to print the
test patches are known, the actual values remain unknown, since halftone dots
grow during the printing process. We estimated these values from the RGB
values of the halftone series of the pure colours.

Fig. 4 presents the average absolute prediction error of the actual C, M, Y,
and K values for the test data set using the Gaussian and polynomial kernels. In
the parentheses, the standard deviation of the error is provided. Observe that C,
M, Y, and K values range from 0 to 100. The prediction accuracy obtained is high
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enough for the approach to be used in practical applications. It is worth noting
that evaluation of the prediction error is not an easy task, since the ground truth
is not known. The actual C, M, Y, and K values used to estimate the regression
parameters were evaluated using patches of single colours only (no overprints).
Let us assume that the actual value of C=28 has been evaluated for the nominal
C=20. It was then assumed that for all the overprints printed using the nominal
value of C=20, the actual value of C was always 28, irrespective the proportions
of the other two inks. It is clear that the assumption does not always holds in
practice. Thus, we can expect that the estimation errors are even smaller, as the
experience shows, than those observed in Fig. 4.

4.3 Assessing the Quality of Prints

The aim of the test was to compare the quality ranking given to different printed
issues by human experts and by the integral quality measure. The quality of eight
issues printed using different printing conditions and paper types has been ranked
by 14 experts and the average ranking was obtained. Each issue contained test
areas with the halftone bars. Images of the areas were recorded by the system and
used to calculate the distortion attributes. The Spearman’s correlation coefficient
between the average ranking obtained from the expert and the rankings provided
by the distortion attributes and the integral quality measure was then calculated.

Table 1 presents values of the correlation coefficient ρ computed for three
distortion attributes yielding the highest values of the coefficient as well as the
integral measure aggregating information available from all the attributes. The
coefficient was evaluated separately for C, M, Y, and K inks. The Table also
provides values of the probability p to obtain such correlation by chance.

Table 1. The Spearman’s correlation coefficient ρ and the probability p.

Colour
Amount of Ink Noise Density Integral

ρ p ρ p ρ p ρ p

C 0.905 0.0020 0.976 0.0000 0.738 0.0366 0.976 0.0000
M 0.952 0.0003 0.976 0.0000 0.976 0.0000 0.952 0.0003
Y 0.929 0.0009 0.976 0.0000 0.738 0.0366 0.952 0.0003
K 0.905 0.0020 0.619 0.1017 0.905 0.0020 0.976 0.0000

The values of the Spearman’s correlation coefficient computed for the rankings
substantiate good correlation between the quality rankings obtained from the
human experts and the overall quality measure. Lower values—not presented in
Table 1—of the correlation coefficient were computed using rankings provided by
the dot size and shape related attributes. A relatively low number of pixels, the
printed dots consisted of, caused a rather high variance of the two aforementioned
parameters. However, if the resolution is increased, the high variation of the dot
size and shape seem to be good indicators of deficiencies in the printing process.



710 A. Verikas, M. Bacauskiene, and C.-M. Nilsson

5 Conclusions

We presented a soft computing based option for assessing the quality of colour
prints. Several attributes characterizing global as well as local distortion level
of printed dots are estimated employing data clustering, support vector regres-
sion, and image processing techniques and then aggregated into an overall print
quality measure via Choquet fuzzy integral.

The noise level, deviation of the actual amount of ink deposited on the paper
from the desired level, and the variation coefficient of the average ink density
level of different printed dots are the three most informative distortion attributes.
Due to the relatively low resolution used to represent printed dots, the dot size
and the shape related distortion attributes were less informative. However, if
the resolution is increased, the high variation of the dot size and the shape
become useful indicators of deficiencies in the printing process. The experimental
investigations performed have shown that print quality evaluations provided by
the proposed integral print quality measure correlate well with the print quality
rankings obtained from the experts. The developed tools are successfully used
in a printing shop for a routine print quality control.
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