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Abstract. In designing classifiers for automatic speech recognitions, one
of the problems the user faces is to cope with an unwanted variability in
the environment such as changes in the speaker or the acoustics. To over-
come this problem, various adaptation schemes have been proposed in
the literature. In this short paper, rather than selecting a single acoustic
model as being representative of a category, we adaptively find the opti-
mal or near-optimal number of hidden Markov models during the Baum-
Welch (BW) learning process through splitting and merging operations.
This scheme is based on incorporating the split-merge operations into
the HMM parameter re-estimation process of the BW algorithm. In the
splitting phase, an acoustic model is divided into two sub-models based
on a suitable criterion. On the other hand, in the merging phase, two
models are combined into a single one. The experimental results demon-
strate that the proposed mechanism can efficiently resolve the problem
by adjusting the number of acoustic models while increasing the classifi-
cation accuracy. The results also demonstrate that the advantage gained
in the case of multi-modally distributed data sets is significant.

Keywords: Automatic Speech Recognitions (ASR), Hidden Markov
Models (HMM), Baum-Welch (BW) Algorithm, Splitting - Merging
Techniques.

1 Introduction

Hidden Markov Models (HMMSs) have been proven to be one of the most suc-
cessful statistical modeling methods in the area of automatic speech recognition
systems (ASR), especially of continuous speech recognition [7]. One of the prob-
lems in designing classifiers for ASR is that of coping with unwanted variability
as is encountered when there are changes in the environment concerning the
speaker or the acoustics. To overcome this problem, various adaptation schemes
such as the deleted interpolation [2], the speaker adaptation [I], the corrective
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training [3], and the model clustering and splitting [6], have been proposed in the
literature. Rather than selecting a single acoustic model (e.g., an HMM uni)
as representative of a particular category, the above schemes permit more than
one acoustic model to be assigned to a category. However, typically the num-
ber of acoustic models is randomly determined in advance, and is decided by the
number of pattern classes, or by resorting to a clustering of the training samples.
The most popular training method for the parameter estimation of the acoustic
module is the Baum-Welch (BW) algorithm based on the Maximum Likelihood
(ML) criterion [7]. Other approaches are omitted here in the interest of brevity,
but can be found in the literature including [4].

Motivated by the methods mentioned above, we investigate an adaptive learn-
ing method for HMM-based classifiers by using a splitting-merging technique.
Our idea is to incorporate the split-merge operations into the BW learning pro-
cess without resorting to any particular transformation. In the proposed method,
the training data set is automatically clustered into multiple subsets through the
split-merge operations of the BW learning process. With the merging operation,
we combine similar data points which are close to their nearest neighbors, into
a cluster. As opposed to this, in the splitting phase, we distribute two distant
points into different clusters. As a criterion of merging or splitting, we utilize
the differences in magnitude between the output probabilities of the models for
the sample points and their representative values.

The main contribution of this paper is to demonstrate that the performance
of HMM-based classifiers can be increased by employing an adaptive learning
method - which is crucial in multi-modally distributed data sets. This has been
done by incorporating a splitting-merging technique into the BW learning pro-
cess and by demonstrating its power in classification accuracy. The reader should
observe that this philosophy is quite distinct from those used in the recently-
proposed SAT (Speaker Adaptive Training) [I] or the CAT (Cluster Adaptive
Training) [5] strategies.

2 Adaptive Learning of HMM-Based Classifiers

We consider that the problem of attempting to recognize C different speech
pattern classes. Then, an HMM-based classifier is designed with C' HMMs to
separate the C pattern classes. Each of the HMMs evaluate the output probabil-
ity on the basis of the observed input vector strings. It then selects the largest
output probability product and assigns the unknown input pattern to the cor-
responding class.

Consider a Markov chain with N states {q1,- -, gy} and transition probabil-
ities P{q; — ¢;} = ai;. Let s(t) denote the state at time ¢. At eacht =1,---,T,
one of M output symbols or observations, vy, - - -, vas, is generated with a prob-
ability P{uvg|s(t) = ¢;} = byx. A hidden Markov model X is specified by the
N x N matrix A = [a;;], the N x M matrix B = [b;], and the initial description

! In this paper, the “HMM unit” or “HMM module” represent a computational acous-
tic unit, which evaluates the output probability of an HMM-based classifier.
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m; = P{s(0) = ¢;}. Given a model A\ = (A, B, ), the probability of a sequence
of observations, vy, -, vy, (each y, € {1,---,M}), XA can be calculated by
the Forward-Backward algorithm. In the case of the ML estimate criterion, the
goal of the training is then to find the best set of parameters, A*, such that
N = argmax , Px{y{ }. The approach to iteratively maximize Py{y{ } is referred
to as Baum-Welch (BW) algorithm. Starting from initial guessed, the model
parameters A are iteratively updated according to the Forward-Backward algo-
rithm so that Py{y{} is maximized at each iteration. Details of the algorithms
are omitted here, but can be found in the well-known pieces of literature.

The problem we encounter in learning the HMM is to select the number of
acoustic models required to optimize the HMM-based classifier for automatic
speech recognition, as well as to estimate the parameter sets. We propose a
systematic method for efficiently selecting the optimal or near-optimal number
of HMM modules for each class. The selection is itself an iterative process and is
achieved even as the HMM parameter set is estimated using the BW algorithm.

The procedure of the proposed algorithm can be formalized as follows:

1. Initialization : For every data sample, j, we initially train an HMM pa-
rameter set, A;, with the Baum-Welch algorithm. After this learning, the output
probability, Py, (for each j), is used as the representative value, Py, of the
sample data point in the following steps;

2. Splitting : For every cluster, k, we train a model, A, with the BW algorithm.
In this learninﬁ, if the difference in magnitude between the output probability of
a sample 4, Py, (7), and its representative value, Py,,, is greater than a threshold
value p, namely, if || Py, (i) — Py,,|| > p, then the data element ¢ which has the
greatest value in the cluster k is split as a new cluster, and the number of clusters
is increased;

3. Merging : After clustering all of samples into clusters according to their
output probabilities, we again train a HMM to get a parameter set for each
cluster. In this learning, we consider all samples ¢ and j of any two clusters,
k and [, respectively. If the magnitudes of the different representative values,
Py,, and Py, , and the output probabilities, Py, (i) and Px, (j), are smaller than
the p, namely, if [|Px, (i) — Py, || < p and ||Px,(j) — Py,o|| < p, then the two
clusters, k and [, are merged into “a” cluster, and the number of clusters is
decreased;

4. Termination : If Splitting or Merging step does not occur any more, then
the process terminates. Otherwise, the above Steps 2 and 3 are repeated.

50

2 In the discrete HMM, it is important to have a reasonable set of initial estimates.
Empirical studies showed that we can use a uniform distribution to generate initial
estimates.

3 The learning has two versions: Top-down and Bottom-up. In the Top-down approach,
we start the learning with ‘a’ cluster, in which all training samples are included.
In the Bottom-up approach, on the other hand, initially the number of clusters is
equivalent to the number of data samples. In this paper, we tested the experiments
using the Top-down approach.
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Table 1. The experimental learning steps for two speech data sets C1 = {V4;}5—, and
Cy = {Vg,i}?zo. In the notation of “a : b”, the a’s (which are integer values) are the
serial numbers of the clusters, and the b’s (real values) are the different magnitudes of
the representative values and the output probabilities. The details of these terms can
be found in the text.

#of [datalVio Vii Vie Viz Via Vis Vie Viz Vig Vig
epoch|class|V2 o Vo1 Voo Vaosz Vau Vos  Vog Var  Vag  Vapo

1 Cyp [1: 93.8 1: 63.6 1: 73.1 1: 70.9 1: 38.1 1: 40.1 1: 47.8 1: 41.8 1: 57.9 1: 33.9
Cy [1: 52.7 1: 44.8 1: 62.3 1: 51.5 1: 49.8 1: 26.6 1: 66.8 1: 56.9 1: 69.8 1: 39.7
2 Ch |2: 62.7 2: 38.4 2: 43.5 2: 44.7 2: 15.4 2: 28.2 1: 40.6 2: 20.1 2: 41.4 2: 21.6
Cy [1: 51.1 1: 36.5 1: 65.8 1: 52.7 1: 39.8 1: 15.4 1: 48.0 1: 37.9 1: 47.1 1: 25.1
3 Ch |2: 62.7 2: 38.4 2: 43.5 2: 44.7 2: 15.4 2: 28.2 1: 35.8 2: 20.1 2: 41.4 2: 21.6
Cs (1: 51.31: 35.73: 0.0 1:52.41:38.31:13.41: 44.4 1: 33.7 1: 43.4 1: 22.9
4 Cyp |4: 0.0 2:37.6 2: 40.5 2: 44.6 2: 14.5 2: 27.3 1: 48.0 2: 21.4 2: 37.0 2: 21.9
1:

Co 51.31:35.73: 0.0 1:52.41:38.31:13.41:44.41:33.71: 43.4 1: 22.9

3 Experimental Results

The proposed algorithm has been tested and compared with conventional ones.
This was first done by performing experiments on a naturally spoken data set,
cited from the ETRI (Electronics and Telecommunications Research Institute,
http://www.etri.re.kr/). The ETRI data set consists of a total of 1,150 speech
patterns, which correspond to the 115 kinds of bi-syllabic words spoken by ten
speakers, five males and five females. The details of the pre-processing phases
are omitted here, but can be found in the related manuals.

We report the run-time characteristics of the proposed algorithm for the
speech data set. First of all, Table [Il shows an intermediate part of the learning
steps (processes) for the two speech data sets C; = {V1;}_, and Cy = {Va,;})_,.
The speech data C; represents a Korean trisyllable phrase, “GaGeEa-”, which
means “at a store” in English, while the speech data C5 is for a Korean quadri-
syllabic phrase, “KwaGeoEaNun”, which means “in the past” in English. We
started the learning with a cluster each for both C; and Cs, i.e., by invok-
ing Top-down learning. Here, the employed discrete HMM was the ergodic one,
where the number of states and output symbols are 12 and 32, respectively. The
threshold value was set as p = 30 A

From Table [0l we can see that optimal or near optimal number of HMM
modules can be adaptively found in the learning process. We accomplished this
by employing the splitting-merging strategy. First of all, consider the results for

1 We selected this figure as the threshold value, p, after doing the experiment several
times. It is doubtful whether the same threshold will work for various classes of speech
recognition data. The choice of the threshold determines the number of clusters. A
more valid choice would most probably be based on using a choice of threshold which
would be some function of the data set to incorporate variability like noise conditions
and male-female disparity. This choosing problem which will most probably arise in
practical cases is currently being investigated.
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Table 2. The experimental results for the speech data set. Here, Acc’s are the classifi-
cation accuracies (%), and ¢ and 2 are the required processing CPU-times (in seconds)
for the learning and the classification, respectively. The details of these terms can be
found in the text.

# of # of # of| Averaged # of

Learning | States| Symbols| Clusters|Modules per a class| t1(sec)| Ace(%)| t2(sec)
8 32 115 1 901 86.51 40

CLM 8 64 115 1 1,526 92.64 70
8 128 115 1 2,750 94.66 128

8 32 313 3 1,322 86.16 110

PCM 8 64 357 3 2,158 90.28 216
8 128 427 4 3,875 92.29 474

8 32 788 7 2,150 96.15 277

ALM 8 64 955 8 4,279 98.42 578
8 128 1,033 9 8,272 98.95| 1,146

the first iteration (epoch), captioned ‘1’. All input patterns of C; and Cs classes
are regarded as those of the same cluster, namely, ‘1’. However, in the second
iteration, the cluster of having the highest value (in the absolute sense), is split
into a new cluster, and thus the V; ¢ of 93.8 is selected as a new cluster numbered
as ‘2. After this separation, the remaining words are classified into clusters ‘1’
or ‘2’ by invoking a clustering procedure. Identical comments can also be made
about the other iteration steps. The reader should observe that the number of
clusters, namely, four, can be automatically decided within only four iterations.
As a consequence, we can design an HMM-based classifier that consists of four
HMM modules even though the number of pattern classes is two.

Table [ shows the experimental results of the proposed method for the ETRI
speech data set. In CLM (the Conventional Learning Method), the classifiers that
were designed processed just one HMM module per category as done for con-
ventional classifiers. In PCM (the Pre-Clustering Learning Method), the number
of HMM modules is determined by invoking a clustering algorithm before train-
ing the models. On the other hand, in the proposed ALM (Adaptive Learnin
Method), the number of modules is adaptively decided in the learning processﬁgj

From Table 2] we can see that an optimal or near optimal number of HMM
modules for an HMM-based classifier can be selected adaptively. Consider the
results of the ALM method. Here, three kinds of HMM-based classifiers were
designed. The numbers of the states, namely, 8, are the same and the num-
bers of output symbols are 32, 64 and 128, respectively. The cluster numbers
obtained from this learning are 788, 955, and 1,033, respectively. The reader
should observe that these results are automatically determined (without a user-
intervention) from the split-merge processes. Then, a comparison of the Acc’s of
CLM, ALM, and PCM shows that the HMM-based classifiers adaptively trained
with ALM outperform the others. The comparison also shows that the results

5 Evaluation is performed by using the Resubstitution (R) method, in which the same
samples are used for both designing and testing the classifier.
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obtained by PCM (worth than CLM) are not improved, and even worsened by
the pre-clustering. Finally, it should be mentioned that the processing CPU-
times of the proposed method is “marginally” higher. Approximately 5 to 10
fold increasing in processing time for ALM compared to CLM is based on the
heavy iteration in the split-merge processes.

4 Conclusions

In designing classifiers for automatic speech recognitions, one of the difficult
problems encountered is one of coping with an unwanted variability in the en-
vironment such as changes in the speaker or the acoustics. In this paper, we
have proposed an adaptive learning mechanism to solve the problem using a
splitting-merging technique. Rather than independently performing the cluster-
ing and the learning (estimation) processes, we have suggested a new scheme in
which both processes are simultaneously incorporated. The experimental results
demonstrate that the proposed scheme can efficiently resolve the problem of
the unwanted variabilities by selecting an appropriate number of HMM acoustic
models. Especially we emphasize that this adaptive learning method can be used
advantageously for multi-modally distributed data sets. However the problems
of reducing the processing CPU-time for the adaptive learning, and that of op-
timizing the experimental parameters of the method, are still open.
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in the preparation of this manuscript.
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