
Diagnosing Program Errors with Light-Weighted

Specifications

Rong Chen1 and Franz Wotawa2,�

1 College of Computer Science and Technology, Dalian Maritime University,
Linghai 1, 116026 Dalian, China

2 Technische Universität Graz, Institut for Software Technology,
Inffeldgasse 16b/2, A-8010 Graz, Austria

{chen, wotawa}@ist.tugraz.at

Abstract. During the last decade many computer-aided debugging tools
have been developed to assist users to detect program errors in a software
system. A good example are model checking tools that provide counterex-
amples in case a given program violates the specified properties. However,
even with a detailed erroneous run, it remains difficult for users to under-
stand the error well and to isolate its root cause quickly and cheaply. This
paper presents object store models for diagnosing program errors with
light-weighted specifications. The models we use can keep track on object
relations arising during program execution, detect counterexamples that
violate user-provided properties, and highlight statements responsible for
the violation. We have used the approach to help students to locate and
correct the program errors in their course works.

1 Introduction

Building reliable software is often an onerous task in the real development pro-
cess. Quite often, bugs in software systems can take days or weeks to debug.
To reduce human debugging time, many computer-aided debugging systems
[8, 2, 5, 1, 12, 3] have been developed to help users find program errors in various
cases. In particular, program verification tools [1, 3] aid users to check whether
a software system meets the properties. They detect program errors in various
cases and reveal the violation of properties by providing the user with detailed
counterexamples. However, manual inspection of program failures is time con-
suming, even with a detailed trace of a failure in hand.

A tool that helps programmers quickly diagnose program failures is desirable
in terms of time to the market and costs for software development. We are
interested in Fault localization that provides a way to aid users in moving from a
trace of failure to an understanding of the error, and even perhaps to a correction
of the error. A basic notion shared by researchers in the area of fault localization
[4, 12, 1, 6, 9] is that to explain something is to identify its cause[6].

� The work presented in this paper was funded by the National Natural Science Foun-
dation of China (NSFC) Project 60203015 and the Austrian Science Fund (FWF)
P15265-N04.

M. Ali and R. Dapoigny (Eds.): IEA/AIE 2006, LNAI 4031, pp. 639–649, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

640 R. Chen and F. Wotawa

Several approaches have been proposed to localize program errors automati-
cally. Among them are counterexample explanation [1, 6], specification-assisted
error localization [4], delta debugging [12], and model-based software debug-
ging (MBSD) [9, 11]. Counterexample explanation identifies the root cause of a
detected bug by examining the differences between an erroneous run and the
correct run which is close to the erroneous one. In delta debugging [12] possible
error locations are highlighted by conducting a modified binary search between
a failing and a succeeding run of a program. The Archie system [4] localize the
error of data structure inconsistency by minimizing the distance between the
error and its manifestation as observably incorrect behavior.

We have developed a Model-Based Software Debugging (MBSD) which applies
a model-based diagnosis technique [10] to fault localization. Given a program and
a test case to witness the failure, the MBSD compiles the input program into
component networks where each statement is mapped to a component whose
behavior captures the statement’s semantics. The logic behind the MBSD is
that components are blamed since assuming the correctness of their statements
leads to a failing run. In the MBSD framework, the functional dependency model
(FDM) [11] and the value-based model (VBM) [9] handle the code very well and
successfully localize the statements responsible for the incorrect program behav-
ior, but they diagnose property violations poorly because they cannot handle
the structural properties and their implications very well.

In this paper we propose a program model for diagnosing property violations
with light-weighted specifications. This model handles run-time object relations
and their compile-time abstractions. It provides users a means to specify struc-
tural properties and returns a quality diagnosis of property violations.

The rest of the paper is organized as follows. In Section 2 we introduce our
approach by using a motivating example. Then we introduce the specification in
Section 3 and the generation of the program model in Section 4. The experimen-
tal results given in Section 5 reveal that the program model provides a useful
means for diagnosing common structural errors for some classes of programs.
Finally, we summarize the paper.

2 A Motivating Example

We present in this section an example to show how a generated program model
assist users in understanding the essence of a failing run that violates required
properties.

To motivate and illustrate our technique, we use a Java program in Figure 1,
which operates on a linked list. The list is implemented by the class LinkedList
that provides methods to insert elements, remove elements, and reverse elements.
This simple data structure comes with a structural constraint as follows:

Property 1. List l is always acyclic.

The code is truly simple. However we have already seeded a bug in the code.
What can go wrong is that the insert(v) does not respect Property 1; it creates
a cyclic list when it is ever called on a list with a single element.

Diagnosing Program Errors with Light-Weighted Specifications 641

class LinkedList {
LinkedList next;
Object value;
...
LinkedList(Object o){

next = null;
value = o;
}

boolean nextIsEmpty(){
return (this.next == null)
}

...

void insert(Object v) {
LinkedList c = this;
LinkedList p = this;
while (!c.nextIsEmtpy()&&(v>c.value)){

p = c;
c = c.next;

}
if (p.nextIsEmpty()||(v!=p.value)){

p.next = new LinkedList();
p = p.next;
p.value = v;
p.next = c;

}
}

}

Fig. 1. A Java example of LinkedList

Invoking the buggy insert(v) method on a list possibly corrupts the list. How-
ever, the corrupted list can grow further with new elements. So we have to wait
even longer until the corrupted list manifests itself as observably incorrect be-
havior.

To see where it goes wrong, we write a demo(b) method in Figure 2(a), where
the corrupted list l manifests itself as an infinite loop because the size() method
is going through the entire list to calculate the length.

Our approachon fault localization is anapplicationof the standardModel-Based
Diagnosis [10]. Formally, a diagnosis system is a tuple (SD ,STMNTS ,SPEC),
where SD is a logical description of the program behavior, STMNTS the set of
statements, and SPEC denotes the light-weighted specification of correctness. For
instance, a test case specifies the input data and the expected output data. The
program fault on the other hand is a set of system components, i.e., statements or
expressions, which are responsible for the failure.

To illustrate the resulting description, Figure 2(b) displays the graphical repre-
sentation of the system description of the statements 1 ∼ 5, where each statement

void demo(boolean b){
1. LinkedList l = new LinkedList(2);
2. if (b) {

3. l.insert(20);
4. l.insert(3);
5. l.insert(5);
}

/∗@l.next.next.next.next!=l@∗/
/∗@¬ cyclic(l) @∗/
6. l.size();
}

(a) The code

l1

1. l=new LinkList(2) 4. l.insert(3)

l4

5. l.insert(5)
l5

3. l.insert(20)
l3

2. if (b) {...}

b

l2
cyclic(l2)

X

(b) The program model

Fig. 2. A Java example of LinkedList

642 R. Chen and F. Wotawa

is mapped to a component, and connection li holds the value of the list l after
statement i. These components are connected because they manipulate the same
list. In this way, the program model is defined by the structure of a component
network and behaviors of all components. While the structural part corresponds
to syntactic entities, the behavior part implements the language semantics.

The diagnosis process is a process of searching for possible bug locations by as-
suming how statements might behave. We represent the correctness assumptions
about the behavior of statements in terms of predicates assigning appropriate
modes to the statements. Formally, the diagnosis process is a searching process
to find a set of assumptions that is consistent with the given specification:

Definition 1 (Mode Assignment)
A mode assignment for statements {S1, ..., Sn} ⊆ STMNTS , each having an
assigned set of modes ms and a default mode default such that default ∈ mc(Si)
for each Si ∈ STMNTS , is a set of predicates {m1(S1), ..., mn(Sn)} where mi ∈
mc(Si) and mi �= default (Si).

Consider the demo(b) method, statements have the modes ¬AB (not abnormal)
and AB (abnormal), referring to the assumption of correct and incorrect behav-
ior respectively. The goal of the diagnosing process is to find a set of assumptions
that is consistent with the given specification.

Definition 2 (Diagnosis)
A set Δ⊆ STMNTS is a diagnosis for a diagnosis problem (SD ,STMNTS ,SPEC)
iff SD ∪ SPEC ∪ {¬AB(S) | S ∈ STMNTS \Δ} is consistent.

Given the test case, input and output values are propagated forward and back-
ward throughout the network. A contradiction is raised in the diagnosis system
when (1) a variable gets two or more different values from different components,
or (2) a certain property is violated at the output ports but not at the input
ports. A conflict is defined by a set of components causing the contradictions.

Choosing ¬AB mode as the default mode, we cannot assume statements 1
∼ 5 in our example work correctly because the output list l2 after statement
2 violates Property 1, i.e., ¬cyclic(l) in Figure 2(b). To diagnosis this failing
execution trace [1, 2, 3, 4, 5], we start from the last statement 5, go back through
all statements [1, 2, 3, 4, 5], compute the witness cyclic(l) at each statement,
and thus to see where the data structure inconsistency actually originates. A
contraction is thus raised at connection l3, marked by X in Figure 2(b). This is
because component l .insert(20) receives an acyclic list but sends a cyclic list.
So we cannot assume statements 1, 2 and 3 work correctly at the same time.
Thus we have three single fault diagnoses {AB (1)}, {AB (2)}, and {AB (3)}.
The diagnoses pinpoint the flaw in the insert(v) method, i.e., the list become
cyclic when it is used to insert the second element. This is informative for the
user, giving a hint on how the flaw could be corrected.

Incontrast, theVBMis less informative.Anassertion l .next .next .next .next ! = l
isusedtospecifytheexpectedbehaviorofthedemo(b)method.Surelythisassertion
is violated.TheVBM’sdiagnosis is that all statements 1, 2, 3, 4, 5 arepossibly faulty

Diagnosing Program Errors with Light-Weighted Specifications 643

because they influence thevalueof theassertion.Ofcourse, thediagnosis isnot false,
but it obscures the original source of error.

3 Specification over Object Store

Structural properties are formulas defined over object relations. Since objects
have types, object relations are thus typed.

Definition 3 (Object Relation)
An object relation R with type (T1 → ... → Tk), denoted by R : T1 → ... → Tk ,
is a set of tuples (o1, ..., ok) such that for 1 ≤ i ≤ k, object oi is of type Ti.

Let’s call an object relation with k-tuples a k-relation . 1-relations and 2-relations
are said to be unary and binary .

Example 1. We think of a unary relation as a table with a single column, a
binary relation as a table with two columns.

1. Let x be a program variable that references an object o of type T . Then x : T
is a unary relation of type T , which is a singleton set {(o)}.

2. Let A be a set of objects of type T . Then A : T is a unary object relation of
type T , which is a set {(o) | o ∈ A}.

3. The next field of a LinkedList makes a binary relation next : LinkedList
→ LinkedList .

A data structure explicitly declares various binary relations. For any field f of
an object x, f is a binary relation because x.f can access at most one object.
So we have:

Corollary 1. Let x.f be a field access that represents an object. f is a binary
relation.

Set operators and relational operators provide us a means to derive new relations.
The relational operators in our concern are concatenate and join1.

Definition 4 (Concatenate Operator)
Let p : T1 → ... → Tk and q : T ′

1 → ... → T ′
m be two relations. The concatenate

p ⊕ q of relations, with type (T1 → ... → Tk → T ′
2 ... → T ′

m), is a set {(p1, ...,
pk, q2, ..., qm) | (p1, ..., pk) ∈ p, there is a tuple (q1, ..., qm) ∈ q, such that pk = q1

and Tk = T ′
1}.

Definition 5 (Join Operator)
Let p : T1 → ... → Tk and q : T ′

1 → ... → T ′
m be two relations. The join p ◦ q of

relations, with type (T1 → ... → Tk−1 ,→ T ′
2 ... → T ′

m), is a set {(p1, ..., pk−1,
q2, ..., qm) | (p1, ..., pk) ∈ p, there is a tuple (q1, ..., qm) ∈ q, such that pk = q1

and Tk = T ′
1}.

1 Essentially they generalize the standard product and join operators.

644 R. Chen and F. Wotawa

If we apply the concatenate operator and join operator on the same input rela-
tions, the join contains less columns. For example, a Tree class declares two bi-
nary relations: left : Tree → Tree and right : Tree → Tree. Whereas left ⊕ right
is a 3-relation that concatenates left and right , left ◦ right is a binary relation.
Moreover, let A : Tree be a unary relation holding a set of objects of type Tree,
the joint A ◦ left is a set of objects accessed by the objects in A through the field
left .

By repeatedly applying the join operator, we can compute the transitive
closure of a binary relation R, denoted by R∗. Given binary relations, we can
create new k-relations by concatenating them and joining them. Therefore, we
just keep track on binary relations when modeling the input program.

Putting them together, we write structural properties as formulas. For exam-
ple, Property 1 is represented by:

∀x ∈ l ◦ next∗ ⇒ x /∈ x ◦ next∗ (3.1)

which says that a list l is acyclic if there is no element in list l that can access
itself.

Object relations have their origins and histories; they are like variables in that
they have different values at different program points. So a relation is said to
be a parent relation if it is the origin of other relations. An object relation is
a child if it has a parent relation. Moreover, we introduce the term relation
variable.

Definition 6 (Relation Variable)
A relation variable is a variable T.f , where f is a binary relation f : T → T ′.
The value assigned to a relation variable is a set of pairs in the form (i1, i2)
where i1 and i2 are of type T and T ′ respectively.

Since we implement a set of methods to perform a consistency checking on a
relation variable, the violation of structural properties is detected if we know
the variable value.

Definition 7 (Object Store)
An Object Store is a collection of relation variables and their values.

4 Model Building Process

In this section, we present the algorithm for generating object store models.
Throughout this section, L is abbreviated for LinkedList .

To compile the program into models, we assume each syntactic entity has a
function buildOSM which maps itself into a component, links its input ports,
possibly propagate forwards static information, and returns its output connec-
tion. Statement by statement, we convert classes and methods successively and
return a set of components defining the diagnosis system.

The static information in our model are location pairs, denoted by pairs of
numbers that abstract the run-time objects and approximate the semantics of

Diagnosing Program Errors with Light-Weighted Specifications 645

ObjectCreation ::= buildOSM(v = new C, env)
v = new C c = newComp(assignment,new C, env)

for all vp ∈ parent(env, v)
c′ = newRelation(c, pointstoRelation, vp, env)
propagate(c′)

endfor

ObjectAssignment ::= buildOSM(v = w, env)
v = w c = newComp(assignment,w, env)

for all vp ∈ parent(env, v)
c′ = newRelation(c, pointstoRelation, vp, env)
propagate(c′)

endfor

FieldAccess ::= buildOSM(v.f, env)
v.f c = new Cfieldaccess

addComp(env, c)
in(c) = conn(env, v)
out(c) = conn(env, v.f)
for all vp ∈ parent(env, v)

c′ = newRelation(c, vp, objectRelation, env)
propagate(c′)

endfor

FieldAssignment ::= buildOSM(v.f = w, env)
v.f = w c = newComp(fieldassignment,w, env)

for all vp ∈ parent(env, v)
c′ = newRelation(c, objectRelation, vp, env)
propagate(c′)

endfor

IfStatement ::= buildOSM(if (Exp) S1 else S2, env)
if Expr c = new Cif

S1 addComp(env , c)
else cond = buildOSM (Exp, env)

S2 oldpath = path(env)
path(env) = path(env) + 1
Let env ′ be a copy of env
buildOSM (S2 , env ′)
path(env) = path(env) + 1
Let env ′′ be a copy of env
buildOSM (S1 , env ′′)
create an input port of c and connect it to cond
Let A = modifiedConn(env ′) ∪ modifiedConn(env ′′)
for all x ∈ A

if x ∈ modifiedConn(env ′)
create an input port of c and connect it to x

endif
if x ∈ modifiedConn(env ′′)

create an input port of c and connect it to x
endif
create an output port of c and connect it to a new

connection x′ named by x
remove x from modifiedConn(env)
add x′ into modifiedConn(env)

endfor
path(env) = oldpath

Fig. 3. Algorithm for model building

646 R. Chen and F. Wotawa

four syntactic entities: class creation, object variable assignment, field access
and field assignment. To describe the history of a relation, we introduce indexed
relation variables as follows:

Definition 8 (Indexed Relation Variable)
An indexed relation variable is NAME [PATH]IDX , where NAME is a relation
variable name, PATH is a sequence of numbers denoting execution branches,
and IDX is an index.

Similar to [9], the algorithm maps loops and method calls to hierarchic compo-
nents with inner sub-models. The loop component contains two sub-models: MC

and MB, where MC denotes the sub-model of the loop condition, and MB the
sub-model of the loop body (represented as a nested if-statement2.

We further assume that env represents the working environment of compo-
nents, connections, and the indices assigned to variables. The algorithm is sum-
marized in Figure 3, where c denotes a component and the following auxiliary
functions are used:

– Function addComp(env , c) adds a component c into the environment env .
– in(c) denotes the input connections of c.
– out(c) denotes the output connections of c.
– Function propagate(c) receives the static information from the input ports

of a component c, stores the input instance, unifies it with the value of the
parent relation, and propagates them to the output port of c.

– Function conn : (ENV ,EXP ∪ Var) → CONNS maps expressions or vari-
ables to connections by using an environment.

– Function parent : (ENV ,EXP) → CONNS looks up in the environment for
a set of parent relations named by the input expression3. If none, a parent
relation is created.

– Function modifiedConn(env) returns a set of connections denoting variables
with new values.

– path(env) is a number denoting the current branch.
– newComp(type, exp, env) is a function that returns a new component of type,

which is initialized by the following steps:
1: c = new Ctype

2: addComp(env , c)
3: out(c) = conn(env , exp)
4: in(c) = buildOSM (exp, env)
5: return c

– newRelation(c, vp , type, env) is a function that returns a new relation com-
ponent of type, which is initialized by the following steps:

2 The nesting size is obtained by computing all pairs shortest path in a dependency
graph (see [11]).

3 For an object variable w, the name is T.pt, where T is w’s class type. For a field
access v.f , the name is in the form of T.f where T is w’s class type.

Diagnosing Program Errors with Light-Weighted Specifications 647

1: c′ = new Ctype

2: addComp(env , c′)
3: out(c′) = conn(env , vp)
4: in(c′) = {vp} ∪ out(c) ∪ in(c)
5: return c′

5 Experimental Results

The experiments are performed on students’ programs for the identical assign-
ments in a programming course. Most of the assignments requires various data
structures such as linked list, stack, tree, etc. All programs involve various control
flows, virtual method invocation, and object-oriented language notations, such
as multiple objects, class creations, instance method calls, class and instance
variables, etc.

Given properties and test cases, fifty students are grouped into three groups:
G1, G2 and G3, where G1 members are asked to locate and eliminate the errors
in their programs using traditional debugging tools, while G2 and G3 are assisted
with the debugging tool we developed, using the VBM and object store models
respectively. Table 1 presents the average number of minutes used by each group
to locate and correct the identical program errors.

We also compare the performance of the VBM and object store models run-
ning against the identical programs with seeded errors in Table 2, where we
depict the elapse time for modeling (M-G column), the elapsed time for com-
puting diagnoses (T-D column), and the number of diagnosis (N-D column).
The right column lists the result obtained by diagnosing with a VBM. Com-
pared with the VBM, it is shown that the number of diagnosis candidates is
reduced and all diagnosis candidates are in the VBM’s diagnosis. This accounts
for why members in G3 use less time than those in G2 to locate and eliminate
the identical program errors.

Table 1. Error corrections

Group Error 1 in Error 2 in Error 3 in
Shape Stack ExpressionTree

G1 5 3 11
G2 3.5 1 8
G3 2.5 0.5 4

Table 2. Comparison of the program
models

Program M-G T-D N-D VBM
[sec.] [sec.] [#] N-D

LinkedList 0.6 0.3 3 10
Stack 0.6 0.4 1 4

0.9 0.4 2 4
Shape 2.3 0.3 1 5

ExpressionTree 7.2 2.5 4 9
C f

6 Related Work

During the last decade many computer-aided debugging tools have been devel-
oped to assist users to find program errors in a software system. The error de-

648 R. Chen and F. Wotawa

tection techniques used by these tools are static and dynamic analysis, program
slicing, symbolic execution and model checking.

In [8] Jackson introduces Aspect, an efficient specification-assisted approach
for error detection. The Aspect specification is in the form of abstract depen-
dencies, and its scheme is to check dependencies required by the specification
against those implied by the source code. It is good at catching errors of missing
variables.

The PREfix tool [2] detects anomalies by symbolic execution of code. It uses
path-sensitive analysis to explore multiple execution paths in a function, with
the goal of finding path conditions under which undesirable properties like null
pointers hold. Carefully heuristics are needed to detect errors without generating
too many spurious reports.

ESC [5] uses a powerful tailored theorem prover to check code against user-
supplied annotations. It has been successfully applied to a particular class of
program errors such as out-of-bounds array access, null pointer dereferencing
and unsound use of locks.

Using program slicing and shape analysis, the Bandera project [3] is develop-
ing a toolkit that extracts finite state machines from code, which can thus be
used by model checkers. The SLAM project combines symbolic execution and
model checking to produce error traces in order to localize the fault in the source
code [1]. Groce and Visser [7] attempt to extract information from a single coun-
terexample produced by model checking in order to facilitate the understanding
of malfunctioning systems.

The Archie system [4] successfully localize the error of data structure incon-
sistency. But there is no guarantee that the original source of all data structure
corruption errors are captured in Archie because the consistency checker is in-
voked periodically.

7 Conclusion

In this paper, we present object store models to diagnose data structure in-
consistencies. Our approach handles both the structural properties and their
implications by reasoning about object relations arising from the program exe-
cution. We have used the approach to help students to locate and correct the
program errors in their course works.

We will work on extending the model to handle programs with exceptions,
threads and recursive method calls, and exploring how static analysis can assist
us to rank user-provided properties.

References

1. T. Ball, M. Naik, and S.K. Rajamani. From symptom to cause: localizing errors
in counterexample traces. In Proc. of POPL, pages 97–105. ACM Press, 2003.

2. William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Software Practice and Experience, 30(7):
775–802, 2000.

Diagnosing Program Errors with Light-Weighted Specifications 649

3. James C. Corbett. Using shape analysis to reduce finite-state models of concurrent
Java programs. ACM Transactions on Software Engineering and Methodology,
9(1):51–93, January 2000.

4. Brian Demsky and Martin Rinard. Automatic detection and repair of errors in
data structures. ACM SIGPLAN Notices, 38(11):78–95, 2003.

5. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. Technical Report SRC-RR-159, HP Laboratories, 1998.

6. A. Groce. Error explanation with distance metrics. In TACAS, volume 2988 of
Lecture Notes in Computer Science. Springer, 2004.

7. A. Groce and W. Visser. What went wrong: Explaining counterexamples. In 10th
International SPIN Workshop on Model Checking of Software, 5 2003.

8. Daniel Jackson. Aspect: Detecting Bugs with Abstract Dependences. ACM
TOSEM, 4(2):109–145, 1995.

9. W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa. Can ai help to improve
debugging substantially? debugging experiences with value-based models. In Proc.
ECAI, pages 417–421. IOS Press, 2002.

10. Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

11. D. Wieland. Model-Based Debugging of Java Programs Using Dependencies. PhD
thesis, Vienna University of Technology, Institute of Information Systems (184),
Nov. 2001.

12. Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2), 2002.

	Introduction
	A Motivating Example
	Specification over Object Store
	Model Building Process
	Experimental Results
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

