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Abstract. Retaining consistency for large knowledge bases is a difficult
task. This holds especially in the case where the knowledge base comprise
temporal knowledge and where the knowledge comes from independent
and unreliable sources. In this paper we propose the use of temporal log-
ics, i.e., CTL, to describe the background theory and the corresponding
Kripke Structure to store the temporal knowledge. Moreover, we intro-
duce a declarative formalization of belief revision which is necessary to
keep the knowledge base in a consistent state. Finally, we discuss how the
structure of CTL formulas can be used to implement belief revision. The
research described in the paper is motivated by a project that deals with
automating the analysis of meetings, e.g., to provide meeting summaries,
where cameras, microphones, and other sources of knowledge has to be
integrated.

Keywords: Knowledge-processing, KBS methodology, temporal
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1 Introduction

The handling of information that comes from different independent sources is a
difficult task. One reason for this observation is the fact that the given informa-
tion is inconsistent because different sources deliver contradicting information.
In computer science this problem becomes worst when considering the following
situation. Given a set of sensors which are used for gaining information from a
certain situation. Each of these sensors delivers a specific view on the situation.
Because of reliability issues and different methodologies used the views are very
likely to be inconsistent. Consider for example a meeting situation where several
people are interacting (see Figure 1) together. During the meeting the partic-
ipants present ideas, discuss them, and agree or disagree on results. Usually a
meeting is more or less structured. Now assume that we want to have a system
that allows for automatically analyzing a meeting with the purpose of providing
a meeting summary or to allow for answering questions regarding the meeting
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and its content. Figure 2 presents the structure of such a system. The meeting
analysis system (MAS) has two different sensing devices and a number of other
information sources like meeting invitations and schedules, or presentation ma-
terials to be used during the meeting. The sensing devices are an audio device
which delivers the audio signals together with estimations of the position of the
audio source and a video system which allows for recognizing meeting partici-
pants and their positions. Moreover, we assume the existence of a system that
converts audio data into a textual representation.

In order to provide meeting summaries or to answer given questions the MAS
has to store all information gained from the sensing devices, the modules attached
to the system, and available background knowledge. Because of unreliable sensors
and conversion routines like speech-to-text the observed information is very un-
likely to be consistent with the background knowledge. Hence, providing a consis-
tent world model which should be the final result of the information integration
module is difficult. Beside consistency we face the problem that the observed in-
formation is not complete with respect to the available information a human can
gain when listening to the audio and watching the available video information.

The objective of this paper is to provide a knowledge representation schema
together with reasoning mechanisms that allow for:

1. checking and ensuring consistency, and
2. preserving as much information as possible and gaining new one.

Fig. 1. A classical meeting situation

Fig. 2. Information sources
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Based on this knowledge representation schema other applications like auto-
mated meeting analyzing tools are possible. Such applications require some sort
of query language that enable the extraction of the needed information from the
consistent knowledge base.

2 Representing the World

The information integration module (Fig. 2) obtains events and state informa-
tion that represent the current state of a meeting from the attached sensors like
audio or video. This information usually comprises a proposition like the number
of participants which are detected by the video system together with some mea-
sure indicating the confidence about the proposition. Although the confidence
can be high the proposition does not have to be true in the real world at the
current point in time. Moreover, due to the fact that audio and video sensors
exchange information directly they may deliver contradicting input to the in-
formation integration module. These contradictions which may not be detected
at a certain state but later have to be identified and removed. The removal of
contradictions can be done by removing propositions from world states such that
the world state together with the underlying background theory are consistent
again. Unfortunately, there can be several solutions for one problem and we have
to deal with alternative world states in order to avoid loosing any information
gathered by the sensors.

A knowledge representation schema that is capable to represent all informa-
tion about an evolving situation like the mentioned meeting situation together
with alternatives has to fulfill the following requirements:

1. Consider the storage of temporal knowledge.
2. Allow representation of background knowledge.
3. Handle alternative scenarios within the same schema.
4. Enable consistency checks.

Regarding background knowledge we want to specify sentences like the following.

“It cannot be the case that the number of participants changes over time when
nobody is leaving the room.”

“If a person is identified and the name is associated, then the name of the
person does not change in future states.”

Hence, the formalization of background knowledge itself requires to capture
temporal aspects.

A knowledge representation schema that captures all requirements is the tem-
poral logic Computation Tree Logic* (CTL*) [7]. CTL* (and in particular its
fragments Linear Time Temporal Logic (LTL) and CTL) have been success-
fully used for verification of hardware and more recently software [4, 10]. For
our purpose CTL can be used to formalize the background theory. The consis-
tency check is done by checking the background theory against the current world
model which is basically a state transition diagram. Each state comprises a set
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Fig. 3. Parts of a evolving world model

of proposition that are true. States are connected via directed edges. Going from
one state to its successor state corresponds to advancing time. Each state cor-
responds to a time interval in the real world where the given set of propositions
do not change. Figure 3 shows a part of a world model.

Formally, the world model is represented as a Kripke Structure K = (A,S0, S,
R, L) where A is a finite set of atomic propositions, S is a finite set of states,
S0 ⊆ S is a set of initial states, R ⊆ S × S is a relation which represents the
edges between the states, and L : S �→ 2A is a mapping assigning each state
of S a set of atomic propositions true in that state. L is called label function.
For example, the label function L for the leftmost state in Fig. 3 comprises the
propositions Person(p1), Location(p1, leftback) and others.

In order to be self contained we briefly introduce CTL and its semantics. In
CTL we distinguish between state formulas and path formulas. Path formulas
allow to speak about temporal issues whereas state formulas represent knowledge
about one state. CTL formulas can use the branching time operators A and E
which stand for every respectively some computational path and linear-time
operators as well as operators from standard propositional logic. The linear time
operators are X (next time), U (until), and V (unless). Formally, CTL formulas
are state formulas which are inductively defined as follows:

1. Any atomic proposition a ∈ A is a state formula.
2. If φ and ρ are state formulas, then ¬φ, φ∧ ρ, and φ∨ ρ are state formulas.
3. If φ and ρ are state formulas, then Xφ, φUρ, and φVρ are path formulas.
4. If φ is a path formula, then Eφ and Aφ are state formulas.

Other operators like F (finally) and G (globally) can be expressed as Fφ ↔
true U φ and Gφ↔ false V φ respectively.

For example, saying that a particular person cannot have different names
during the meeting is represented by the following CTL formula:

AG¬ (Name(X,Y )∧Name(X,Z)∧Y 	= Z)

We also can express the fact that knowing a person’s name in one state allows
us to derive the person’s name in the next state.

AG (Name(X,Y ) → XName(X,Y ))
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The previous CTL formula can be used to check consistency of different infor-
mation sources. The latter one is for completing the knowledge base once some
information is missing.

The semantics of CTL is expressed by the entailment relation K, s |= φ which
means that formula φ is true in a state s ∈ S of a Kripke Structure K. To
formalize the entailment relation we first introduce the notation of paths. A
path π of a Kripke Structure K is an infinite sequence of states 〈s0, s1, s2, . . .〉
such that each successive pair of states (si, si+1) is an element of R, i.e., there
exists an edge between si and si+1 in the Kripke Structure. π(i) denotes the
i-th element of π (i ≥ 0), and πj denotes a suffix of π starting at element j, i.e.,
πj = 〈π(j), π(j + 1), . . .〉.

1. K, s |= a if a ∈ L(s), for any atomic proposition a ∈ A.
2. K, s |= ¬φ if K, s 	|= φ
3. K, s |= φ∧ ρ if K, s |= φ and K, s |= ρ
4. K, s |= φ∨ ρ if K, s |= φ or K, s |= ρ
5. K, s |= A φ if K,π |= φ for all paths π with π(0) = s.
6. K, s |= E φ if there exists a path π with π(0) = s such that K,π |= φ.
7. K,π |= φ if K,π(0) |= φ
8. K,π |= X φ if K,π1 |= φ
9. K,π |= φ U ρ if there exists an integer k ≥ 0 such that K,πk |= ρ and
K,πj |= φ for all 0 ≥ j < k.

10. K,π |= φ V ρ if for every integer k ≥ 0, K,πj 	|= φ for all 0 ≥ j < k implies
K,πk |= ρ .

If K, s0 |= φ for all initial states s0 ∈ S0, then we write K |= φ. We say that φ
is contradicting the Kripke Structure if K 	|= φ.

3 Constructing the World Model

We consider an information integration module that is connected with sensors.
The sensors send events at certain points in time. The first step that has to be
provided by the information integration module is to store the received events
as corresponding atomic propositions into a Kripke Structure. For this purpose
we assume that the sensors send an event E, or ¬E at time tE whenever a
specific feature is detected or vanishes respectively. Hence, if E is received by
the information integration model a corresponding atomic proposition is added
to the current state. If ¬E is received the corresponding atomic proposition is
removed from the current state. A new state is generated whenever time t from
one of the sensors advances. In this case the current state becomes the old one.
A new current state is generated. This state comprises all atomic formulas from
the old state. A directed edge between the old and the current state is added to
the Kripke Structure. Formally, the algorithm for constructing the initial world
model looks like follows:
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1. Initialization
(a) Initialize the Kripke Structure K = (A,S0, S,R, L). A is set to all atomic

propositions that are used in the given background theory, S0 := S :=
{s0}, L(s0) := ∅, R := ∅.

(b) Set the current state s to s0 and the current time t to 0.
2. Event handling: If an event or its negation ψ ∈ {E,¬E} is received from

one of the sensors, do the following:
(a) if tE > t then let the old state be the current one, i.e., o := s, generate

a new current state s, add (o, s) to R, set t := tE , and let L(s) := L(o).
Otherwise, do nothing.

(b) If ψ is of the form E, then add the corresponding atomic proposition aE

to L(s).
(c) If ψ is of the form ¬E, then remove the corresponding atomic proposition

aE from L(s).

Step 2 of the algorithm is executed as long as events come from the sensors or
whenever the algorithm is stopped by an external event, i.e., the user of the MAS
stops analyzing the meeting. The result of the algorithm is a Kripke Structure,
i.e., the initial world model, which captures all observations. Because of the
algorithm the initial world model has the same structure like a linked list. No
alternative paths are represented and neither consistency nor completeness (wrt.
the background knowledge) can be guaranteed.

4 Revising the World Model

The most important objective of the information integration module is to provide
a consistent and complete world model with respect to the given background
knowledge. For this purpose the initial world model has to be checked. In case
of detected inconsistencies we are interested in changing the Kripke structure
(i.e., the initial world model) such that the contradiction cannot be derived
anymore. Moreover, in the particular application context we have to find a Kripke
Structure which represents the model of the real world, e.g., a meeting, that is not
in contradiction with all given CTL formulas representing the background theory.
This problem is well known in literature and referred as belief revision problem.
Buccafurri and colleagues [3] presented a solution to the belief revision problem of
Kripke Structures. Their approach deals with changing the connections between
the states of the Kripke Structure, focusing mainly on the repair of concurrent
programs, and is based on other program repair approaches like Console and
colleague’s work [6].

Although the basic idea behind belief revision can be adapted to solve the
belief revision problem for temporal knowledge bases in our area, there is one
important difference which have to be taken into account. Changing the con-
nections between the states of the Kripke Structure is not enough. There is one
important reason that supports this observations. First, when starting to build
the knowledge base from observations the resulting Kripke Structure is hardly
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complete and consistent with respect to the given background knowledge. In
order to ensure consistency, atomic propositions have to be removed from the
states or new states representing alternative worlds and their corresponding con-
nections have to be constructed. Moreover, for ensuring completeness new atomic
propositions have to be added to the Kripke Structure. Hence, the label function
of states, the set of states and their connectivity relation have to be updated.

In order to define formally the belief revision we first introduce the concept
of update operators. An update operator either add an object to or remove
an object from a part of the Kripke Structure. Depending on the part of the
Kripke Structure, i.e., the states, the label function, or the state relation, we
have different operators.

L-updates. The L-update operator L+(s, a) (L−(s, a)) adds (removes) an ato-
mic proposition a from the label function L(s).

S-updates. The S-update operator S+(s) (S−(s)) adds (removes) the state s
from the set of states S of the Kripke Structure.

R-updates. The R-update operator R+(s, s′) (R−(s, s′)) adds (removes) the
tuple (s, s′) from the set R.

K|u denotes the application of an update operator u to a Kripke Structure
K. Note that the update operators cannot be applied in an arbitrary order. For
example trying to apply the L-update operator to a non-existing state will not
change the Kripke structure. Moreover, after introducing a state it has to be
connected to another state.

We now define an update U to a Kripke Structure K = (A,S0, S,R, L) as a
sequence 〈u1, . . . , un〉. The result of applying U to K is inductively defined by:

1. K|〈u1〉 = K|u1

2. K|〈u1, u2, . . . un〉 = (K|〈u1〉)|〈u2, . . . , un〉

We define an update U as sound and complete iff the following rules are
fulfilled:

– No single update operator of U tries to update a nonexistent part of the
Kripke Structure during its application.

– After applying the U the following property must hold for the resulting
Kripke Structure K ′. For all states s in K ′ there must be a path from the
initial state to s.

– The Kripke Structure must be consistent with the background theory T
which is a CTL formula, i.e., K, s0 |= T .

Of course, when given an initial model and a background theory, we are
only interested in finding sound and complete updates. Unfortunately, searching
for such an update is intractable because all possible combinations have to be
checked. In order to speed up computation we suggest the use of heuristics that
take care of the structure of the CTL formulas used in the background theory.
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For example, consider the previously introduced formulas

AG¬ (Name(X,Y )∧Name(X,Z)∧Y 	= Z) and
AG (Name(X,Y ) → XName(X,Y )) .

The first one is for checking consistency within a state whereas the latter
is for ensuring completeness of atomic propositions along a path. In this case,
the formular says that the name of the person remains the same in the next
state. If we detect an inconsistency with respect to these formulas, we have to
change the Kripke structure in order to distinguish two cases. Either the assigned
name in the first occurrence is correct or the name in a later state is correct. A
similar situation is depicted in Fig. 4(a). In this case the number of participants
(no part) is not allowed to change. A different correction is necessary for the
situation in Fig. 4(b) where the consistency within one particular state is not
ensured. In this example a detector delivers the observation that there is no
noise (no noise) but someone is speaking (speaks) which is obviously a case
that cannot occur. The solution for this situation would be to introduce a new
state to handle the inconsistency. Fig. 4(c) describes the situation where not
all information is provided by the sensors. This information has to be restored
by adding the necessary atomic propositions to the states. The computation of
an update using the ideas described above would comprise the following steps.
First, find out the reason for a detected inconsistency, e.g., a formula describing
consistency requirements for a state is responsible for the inconsistency. Second,
apply rules for adding new update operations. These rules have to correspond
to the detected reason. For example, if a state inconsistency is detected, then
it is necessary to introduce alternative states. These alternative states comprise

Fig. 4. Revising the knowledge base
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all atomic propositions like the original state, except those propositions that are
responsible for the conflict. For these propositions only one is allowed to occur
in the original state and its alternative states. Third, use the modified Kripke
Structure to check consistency again. If all consistencies are removed, the process
stops and the update together with the finally created Kripke Structure is given
back as result. Otherwise, a new reason has to be detected and so forth. Of course
without further restrictions there is no guarantee that the proposed computation
of the update halts. Future research has to deal with this issue.

5 Related Research

To our knowledge the use of Kripke Structures for representing world states to-
gether with CTL formulas for representing background knowledge is new. Pre-
vious research in this domain has mainly focused on using Kripke Structures
and CTL for verification purposes, e.g., [4, 10]. The update or belief revision of
Kripke Structures has been described before by Buccafurri et al. [3]. However,
the authors introduce update only for the state relationship which seems to be
enough for their purpose. Moreover, [3] is a very good source for reading about
the relationship between the Kripke Structure revision and abductive reasoning
for belief revision.

The work of Buccafurri et al. [3] makes use of the introduction of update
operators like the work done by Console et al. [6]. In their paper and successor
papers like [1, 2, 8] and most recently [9] the update operator is used in the
context of debugging, namely fault detection, correction, repair. In their work
there has been no necessity to handle temporal aspects which distinguishes their
papers from ours.

There are of course also relationships to diagnosis approaches. Both to con-
sistency-based diagnosis [11] or abductive diagnosis [5] since both approaches
deal with removing inconsistencies by using either assumptions or operations. It
would be of interest to show whether and how consistency-based diagnosis can
be used to improve finding a complete and sound update for a knowledge base.

6 Conclusion

In this paper we introduced the use of Kripke Structures for representing tem-
poral knowledge and CTL for formalizing background knowledge in domains
where temporal aspects are important like the meeting domain where our ex-
amples come from. We further introduced an algorithm that allows for com-
puting an initial knowledge base from event information provided by external
sources like sensors. Because of the fact that such an obtained knowledge is
neither correct nor complete with respect to a background theory, it is impor-
tant to update the Kripke Structure. This is even more important in situations
where the knowledge/observations come from unreliable sources like sensors.
Therefore, we first introduced conceptually the concept of updating the initial
knowledge which extends previous research. Second, we introduced heuristics for
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computing the update which is based on the structure of the formulas within
the background knowledge. A pattern matching approach would give us back
the required changes. There are open problems which have to be solved. It is
unclear whether the heuristics can be adapted and used for all formulas that
occur in practice. Furthermore, requirements that allow the use of the heuristics
have to be obtained. Moreover, a proof of concept study has to be carried out.
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