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Abstract. In this research, we analyze the low-frequency noise power spectrum 
of drain current (Sid) in electrically stressed SiO2 film, and then propose the evo-
lutionary neural networks-based model named ENN-SBD to identify the highly 
nonlinear degraded characteristics of low frequency noise around the soft 
breakdown (SBD). The Sid data follow the 1/fγ relationship with different value 
of power exponent γ. The spatial oxide traps distribution is proposed to account 
for the different γ value. It is found that the Sid correlates closely with the gate 
fluctuations via the trapping and detrapping processes and hence it is feasible to 
build the model represents the behavior of soft breakdown. The results also in-
dicate that ENN-SBD has more precisely identification capability than typical 
Lorentzian spectrum method. Besides, it is superior to the backpropagation neu-
ral networks-based model (BNN-SBD) while the system identification is pro-
ceeding. This paper is helpful for breakdown detection and saving the cost of 
testing from quality assurance in the process of advanced CMOS technology. 

Keywords: Low-frequency noise, evolutionary neural networks, CMOS, soft 
breakdown, degraded characteristics. 

1   Introduction 

System modeling or system identification based on the conventional mathematical 
skills (e.g. differential equations) isn’t suited for dealing with uncertain, non-structure 
or ill-define systems [1], [2]. The degraded characteristics of low frequency noise 
around the soft breakdown are typical problems known as the highly nonlinear and 
data-oriented while modeling its degradation characteristics. In fact, it costs much in 
the testing processes of quality assurance, especially for advanced CMOS technology. 
The reliability of thin SiO2 film used as gate dielectrics is one of the most concerned 
issues for advanced CMOS technology. When the gate oxide thickness is less than 
5nm, there is new anomalous degradation and breakdown characteristics, called 
quasi-breakdown [3] or soft breakdown [4]. After the occurrence of SBD, the fluctua-
tion phenomena are observed in the time evolution of the gate voltage or the gate 
current. It has been reported that the gate fluctuations are due to the trapping and 
detrapping of electrons in gate oxides [5]. Moreover, in thinner oxides the so-called 
carrier-number fluctuation model is that the trapping and detrapping processes within 
the gate oxide can modulate the underlying channel potential [6].  
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However, neither the experimental evidence in support of the carrier-number fluc-
tuation model found yet nor the SBD model built. In this paper, during high-field 
stress we explore the noise power spectrum of drain current (Sid) characterization. In 
other words, the Sid data in fresh, stress-induced leakage current (SILC) and SBD 
mode are presented. We also discuss that for thinner gate oxide the Sid correlates with 
the gate current fluctuations and present the evolutionary neural networks-based SBD 
model. 

Neural networks have been played an important role in attacking bottlenecks of 
advanced semiconductor technologies because of its distinguishing characteristic [7], 
[8], [9], [10], [11]. Ling et al (2003) demonstrates that the self-evolving neural net-
works contain the capability of fault tolerance to filter out the noise and provide high 
degree of accuracy of nonlinear function used to produce the model identification 
[12]. In view of this, this paper has adopted the ENN model to perform the non-
parametric estimation with evolutionary process which systematical determines the 
optimal networks structure to obtain the global optimal solution instead of local opti-
mal solution using traditional neural networks, and hence to obtain soft breakdown 
model with degraded characteristics of low frequency noise. 

2   Evolutionary Neural Networks: Architectures and Algorithms  

As to the type of ENN model adopted, it should be one where the users can easily 
define its exogenous variables or can add new elements to the ENN for system identi-
fication. In addition, the user should not have to worry about the problems of setting 
initial values to the weights of neurons, the number of neurons, the number of hidden 
layers and the neuron connections, etc., as attention can be devoted to optimizing the 
structure of networks on their own through genetic algorithms in the neural network 
learning process. Genetic algorithms are very effective at finding near global optimal 
solutions to a highly nonlinear function and a wide variety of problems [13], [14].  

The ENN model used in this research is briefly described as follows. Chromosomes 
are used to express the neural network architecture and the parameters of the structure 
as presented in Fig. 1. 

 
 
 
 
 

Fig. 1. Structure of chromosomes 

The formation of each gene within a chromosome and the length of the chromosome 
can be determined depending on the cases. The network’s evolutionary process is 
demonstrated in Fig. 2, and includes a training cycle and an evolutionary cycle. The 
steps for each stage are summarized below: (1) Initiate networks: randomly produce 
the initial networks’ structure. (2) Training cycle: networks are built through genetic 
rules and a combination of weighted tuning. Training time is utilized in exchange for 
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Fig. 2. The architecture of evolutionary cycle with nested training cycle for the ENN 

the quality of an approximate optimal solution until the upper bound of the learning 
numbers can be reached. (3) Evolutionary cycle: the level of suitability of various 
networks for evaluating the fitness function is based on the mean square error, and the 
evolution of the networks then commences. In addition, based on the surviving net-
works which are decided by the suitability of the various networks, the reproduction, 
crossover and mutation of the surviving networks can be performed so as to generate 
a new generation of networks. (4) Return to Step (2) to conduct new generation net-
work training until a satisfactory learning result or a pre-set termination condition is 
reached. We conclude the four stage operations of ENN as a pseudo code in Fig. 3: 

Genetic Descriptions
(Genotype)

Neural Network Learning
(Behavior)

Neural Network
(Phenotype)

Selection Based on
(Training Error, Structural

Complexity & Forecast accuracy)

Procedure GeNe 
Begin

e = 0; 
 initial population Pc(e);
 fitness Pc(e);

While (termination criterion not
reached)

e= e + 1; 
 Select Pc(e) from Pc(e-1); 
 Crossover Pc(e);
 Mutate Pc(e);
 Fitness Pc(t);
 End.  

Fig. 3. The pseudo code of ENN 

The parameters of neural networks is automatic fine tuned consist of two major 
adaptive methods, including the genetic search through moving window from obser-
vations, forecast horizon, network architecture space and control parameters to select 
the best performers. Finally, the back-propagation learning in each network evaluates 
the selected architectures to complete the evolution cycle.  

We make good use of three criteria to measure the learning, testing and estimation 
accuracy in the ENN model so called performance indices, including R2, NRMSE and 
MAE.  The R2 measures the interpretive capability of the SBD model to the real ob-
servations which is given as Eq. (1). It’s more and more correlative to the real obser-
vations while R2 is closer to 1. The NRMSE (Normalized Root Mean Square Errors) 
and MAE (Mean Absolute Errors) here is set to be the objective function for minimiz-
ing the tracking errors between the model outcomes and observations for SBD using 
ENN, which is given as Eq. (2) and Eq. (3). 
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Where xi: input variables; yi: estimation results by ENN model (output variable); n: # 
of observations. 

3   Experiments and System Identification  

In the experiment part, the n-channel MOSFET used in the study was fabricated in a 
0.18 um process. In this process, the physical gate oxide thickness was determined to 
be 3.3 nm by using a C-V method. A constant gate voltage of 5.5V was adopted to 
stress the gate oxide, with source, drain, and substrate tied to ground. The high-field 
stress was interrupted several times for characterization of Sid. The Sid measurement 
set-up comprised a HP 35665A dynamic signal analyzer, BTA 9603 FET noise ana-
lyzer and HP4156B semiconductor parameter analyzer, as illustrated in the Fig. 4. 
The transistor with gate oxide area of 10 ×  10 um2 was measured at the inversion 
condition (VDS=0.1V and VGS=1V). The frequency range of Sid was from 1 Hz to 1K 
Hz. Three noise filters were used to eliminate the residual noise in all bias sources. 

In the modeling part, when considering the behavior of soft breakdown, the factors 
are induced into the ENN model. On account of the significant correlation on drain 
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Fig. 4. Schematic diagram of the drain current noise measurement system 
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current in electrically stressed SiO2 film between various frequencies for several stress 
times before hard breakdown during from 1 Hz to 16.5 Hz (see Panel A, Table 1) 
which is also can be verified as exhibiting in Fig. 5.  Fig. 5 shows that a significant 
correlation plot, that is, the normalization of noise power (=Sid/ID

2) versus the gate 
current IG, can serve as supporting evidence of the model since the Sid can be ade-
quately traced to the gate current. A striking phenomenon of the gate current reduc-
tion in the SILC mode can be drawn herein. We can attribute it to the accumulation of 
the tunneling electrons trapped in the oxide.  

Table 1. Correlation coefficient matrix for several stress times 

Panel A. 1 Hz ≤  Q ≤  16.5 Hz, Q: frequency 
 Fresh 10 sec 30 sec 

Fresh 1 0.5885* 0.7301* 
10 sec 0.5885* 1 0.7934* 
30 sec 0.7301* 0.7934* 1 

Panel B. 17 Hz ≤  Q ≤ 1K Hz, Q: frequency 
 Fresh 10 sec 30 sec 

Fresh 1 0.3316 0.1428 
10 sec 0.3316 1 0.3652 
30 sec 0.1428 0.3652 1 

On the contrary, they trap insignificant correlation while the frequency increases into 
1K Hz (see Panel B, Table 1). The auxiliary variables, IG(A), ID(A) and VG(V) is necessary to 
induced jointly in our model as Eq. (4) 

))(,,,,,()( xidGDGyid STSSTVIIQFSTS = , x ≠ y. (4) 

where, IG(A):gate current; ID(A): drain current; VG(V): gate voltage; Q: frequency; ST: 
stress time; Sid(STx): Sid for x second stress time; Sid(STy): Sid for y second stress time. 
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Fig. 5. A correlation plot between normalized drain current noise at 10 Hz frequency and gate 
current, all from the same bias condition of VDS=0.1V and VGS=1V 

Hence, the factors of premise part of ENN-SBD include IG(A), ID(A), VG(V), Q, ST, 
Sid(STx) and the consequence part is Sid(STy). In this study, we employ three criteria to 
stop training and testing. One is training epochs is equal to 50,000 times, the other is 
the training error doesn’t change in late 1,000 times, error tolerance is less than 10-24 
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or divergence happened. ENN would stop evolution and learning process automati-
cally provided either of these criteria stands. 

4   Experimental Results and Discussions 

The time evolution of the gate current IG during constant voltage stress depicted in 
Fig. 6, showing two distinct events: SILC and SBD. After the occurrence of SBD, the 
gate current exhibits fluctuation phenomena as partially magnified in the insert of Fig. 6. 
The current fluctuations arise from the trapping and detrapping processes in and 
around SBD damaged region. Moreover, the high-field stress is interrupted several 
times to observe the characterization of Sid. 
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Fig. 6. Measured gate current versus stress time under a constant voltage stress  
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Fig. 7. Measured drain current noise power spectrum (Sid) for several stress times 

Fig. 7 shows the measured Sid for different stress times. The Sid data follow the 
1/fγrelationship with different value of power exponent γ. The spatial traps distribu-
tion within the gate oxide can account for different γvalue. The interpretation is  
similar to a literature model report [15]. Firstly, for Sid in the SILC mode the γ of 1 
indicates that the traps are spatially uniform distribution within the gate oxide. Also, 
the oxide traps number increases with the time. The amount of oxide traps reflects the 
Sid magnitude increase. Subsequently, we observe a typical Lorentzian spectrum 
component after the occurrence of SBD. This component mainly arises from the trap-
ping and detrapping processes in the localized oxide damage region, that is, a non-
uniform oxide traps distribution. The inference is analogous to a Lorentzian spectrum 
observation on the small area device [16]. The area of the localized oxide damage 
region of around 0.3 nm2 is proposed to account for this [17].  
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In addition, the time constant of the Lorentzian spectrum is estimated to be 3.5 ms, 
as shown in the Fig. 8. The time constant in Sid is associated with the net effect of the 
interaction between the oxide traps within the localized SBD damaged region and the 
underlying channel carrier, which is accounting for the carrier-number fluctuation 
model. 

Fig. 8 shows ten fitting models for soft breakdown identification for 50 sec tress 
time, including linear, logarithmic, power, interpolate, polynomial, moving average, 
exponential, cubic-spline, 1/fγ and ENN-SBD. This is consistent with the observation 
in Table 1. For most of the fitting models, they are all lose efficacy during the damage 
higher low-frequency region occurs area except the ENN. Besides, ENN has more 
precisely identification capability than typical Lorentzian spectrum method (1/fγ). 
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Fig. 8. Extracted the time constant of the Lorentzian spectrum from the data in Fig. 7 
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Fig. 10. Model comparisons between ENN-SBD and BPN-SBD for different frequency 
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In Fig. 9, there are 735 observations for each input/output variable. The moving 
window technique is employed to rolling the observations for batch learning in case 
of stress time is 50 sec.  The first 485 pairs (training set) was used for training the 
ENN while the remaining 200 pairs for testing (used for validating the identified 
model), and 50 pairs for estimating. The resulting 111 neurons are generated after 
stop learning. It is quit unusual to observe the phenomenon that RMSEtrain ≤  RMSEtest 
during the training process. Considering both the RMSE’s are very small, we conclude 
that: (1) the ENN has captured the essential components of the underlying dynamics; 
(2) the training data contains the effects of the initial conditions which might not be 
easy accounted for by the essential components identified by the ENN. As a compari-
son, we performed the same estimation by using the BPN with the same number of 
observations. 

Fig. 10 shows the model comparisons between ENN-SBD and BPN-SBD with 
various frequencies. Obviously, ENN-SBD has a better performance than BPN-SBD 
in spite of committing to convergence at the end. It might indicate that the ENN can 
easily capture the spirit of “rule of thumb” used by humans, from another angle, it’s 
more adaptive than BPN through genetic algorithms in the architecture. 

5   Conclusions and Extensions of Current Work 

First of all, during high-field stress, the origins of the Sid data in the SILC and SBD 
mode have been presented. The Sid data follow the 1/fγrelationship with different 
value of power exponent γ. The spatial oxide traps distribution has been proposed to 
account for the different γ value. In addition, the Lorentzian spectrum is associated 
with the net effect of the interaction between the oxide traps within the localized SBD 
damaged region and the underlying channel carrier, that is, accounting for the carrier-
number fluctuation model. It has pointed out that the Sid correlates closely with the 
gate fluctuations via the trapping and detrapping processes. Secondly, we have de-
scribed the ENN-SBD mechanisms with case studies for the behavior inference of the 
degraded characteristics of low frequency noise after soft breakdown. By employing a 
hybrid learning procedure, the proposed model can refine the architecture to describe 
a complex CMOS system and has better performance than original Lorentzian spec-
trum method and BPN mechanism. Fabs build our model could thereby perform the 
simulation work instead of hardware operation and testing to reduce the reverent 
testing time and the costs. 

Another important issue in the breakdown identification is how to modeling the 
hard breakdown which is even more difficult to estimate because it is tends to be an 
uncertainty problem. However, it would be more valuable to prevent the catastrophic 
hard breakdown occurs. 
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