
SEaM: Analyzing Schedule Executability
Through Simulation

Riccardo Rasconi�, Nicola Policella, and Amedeo Cesta

ISTC-cnr
Institute for Cognitive Science and Technology

National Research Council of Italy
name.surname@istc.cnr.it

Abstract. Increasing attention is being dedicated to the problem of schedule ex-
ecution management. This has encouraged research focused on the analysis of
strategies for the execution of plans in real working environments. To this aim,
much work has been recently done to devise scheduling procedures which in-
crease the level of robustness of the produced solutions. Yet, these results repre-
sent only the first step in this direction: in order to improve confidence in the theo-
retical results, it is also necessary to conceive experimental frameworks where the
devised measures may find confirmation through empirical testing. This approach
also has the advantage of unveiling possible counter-intuitive insights of the pro-
posed scheduling strategies, which otherwise might remain concealed. This paper
presents: (a) an experimental platform designed to tackle the problem of schedule
execution with uncertainty; (b) an analysis of a variety of schedule execution tests
performed under variable environmental conditions.

1 Introduction

One of the most relevant issues in Scheduling regards schedule support at execution
time; the dynamism and unpredictability which inherently permeate real-world appli-
cation domains, make the ability to cope with unexpected events during the schedule
execution phase an absolutely primary concern. The growing attention dedicated to this
specific issue in research areas such as OR and AI is proved by the increasing number
of single results and surveys [1, 2, 3, 4]. Notwithstanding the relatively recent develop-
ments, the whole topic still offers much room for investigation.

The aim of our work is to compare different approaches to schedule execution under
uncertainty in a fair and controlled way, specifically focusing on Project Scheduling
Problems [5]. These problems are characterized by a rich internal structure. They are
based on a network of activities, among which it is possible to identify complex tem-
poral relations that can be used to model a number of variably rigid causal links which
normally constrain the tasks in a project. As a further source of complexity, several het-
erogeneous resources with different capacities serve the activities according to complex
modalities.

This paper presents an experimental framework which allows us to carry out a series
of reproducible experiments which aim at examining the behavior of schedules under

� PhD Student at DIST - University of Genova.

M. Ali and R. Dapoigny (Eds.): IEA/AIE 2006, LNAI 4031, pp. 410–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SEaM: Analyzing Schedule Executability Through Simulation 411

execution, upon the occurrence of different kinds of unexpected disturbances. To show
the possibilities opened by the framework we present a set of comparison on different
state-of-the-art constraint based techniques. The experiments we present yield differ-
ent results depending on a number of crucial factors, which range from the particular
technique used to synthesize the initial solution (baseline schedule), to the type of re-
scheduling methodology employed for solution revision.

The paper is organized as follows: Section 2 briefly introduces the schedule execu-
tion problem we tackle, as well as the reference scheduling problem the whole frame-
work is based upon; Section 3 describes the whole experimental infrastructure, giving
special attention to the types of flexible solutions we use as baseline schedules and to the
execution algorithm used to simulate their execution; Section 4 briefly introduces how
uncertainty is modeled in the framework, while Section 5 describes the experiments and
the obtained results. Section 6 concludes the paper.

2 The Scheduling Problem Under Uncertainty

In general terms, solving a scheduling problem for a given set of activities (or tasks)
that have to be executed, basically means to find a suitable temporal allocation for
each activity, so as to guarantee “good” performance relative to the optimization of an
objective function, usually the project total completion time (makespan).

What follows is a brief description of the particular problem that we will refer to
throughout all the paper, known as Resource-Constrained Project Scheduling Problem
with minimum and maximum time lags (RCPSP/max) [6], which is basically composed
of the following elements:

– Activities.A = {a1, . . . , an} represents the set of activities or tasks. Every activity
ai is characterized by a processing time pi;

– Resources. R = {r1, . . . , rm} represents the set of the resources necessary for
the execution of the activities. Execution of each activity ai can require an amount
reqik of one or more resources rk for the whole processing time pi;

– Constraints. The constraints are rules that limit the possible allocations of the ac-
tivities. They can be divided into two types: (1) the temporal constraints impose
limitations on the times the activities can be scheduled at; (2) the resource con-
straints limit the maximum capacity of each resource; at no time, the total demand
level of any resource being assigned to one or more activities can exceed its maxi-
mum capacity.

This class of problems is interesting because it allows to model a broad range of real
domains, that is, domains in which complex causal relations between activities and co-
ordination between multiple steps must be enforced. These problems are characterized
by a rich variety of time and resource constraints. The price for such expressiveness
is that RCPSP/max is a complex problem; in fact, both optimization and feasibility are
NP-hard1.

1 The reason for the NP-hardness lies in the presence of maximum time-lags, which inevitably
imply the satisfaction of deadline constraints, thus transforming feasibility problems for
precedence-constrained scheduling into scheduling problems with time windows.

412 R. Rasconi, N. Policella, and A. Cesta

Clearly, our goal is not limited to solving the RCPSP/max: in fact, regardless of the
complexity related to finding a solution of a scheduling problem, other kinds of difficul-
ties arise when we try to execute it in real working environments. The unpredictability
which affects real world domains inherently entails a high level of uncertainty on the
execution conditions. Therefore, unless some intelligent actions are taken during either
the initial solving process and/or the execution phase, the solution is bound to lose its
consistency, and therefore its usefulness.

Execution uncertainty in scheduling can be dealt with either proactively or reac-
tively. The key point in the proactive approach is to synthesize solutions that are able to
absorb the effects of unexpected events, thus minimizing the need to reschedule, while
the reactive approach requires to exploit local or global online adjustments to the sched-
ule, in order to re-gain consistency. As we will see, the difference between these two
strategies is often very subtle; the objective of this paper is to investigate the possibili-
ties offered by trading-off among simple adjustments, fixes to the baseline schedule, and
new calls to problem solvers. To this aim, we have built an experimental environment
targeted at studying how increasingly robust baselines can influence the reactive phase.
Clearly, acting proactively requires a greater effort during the initial solving process
in order to grant robustness to the solution, while acting reactively generally makes
the execution phase more demanding, because of the higher number of necessary re-
schedulings. In order to make the reactive approach computationally lighter, it is pos-
sible to bind the scope of the reaction within an arbitrarily wide neighborhood of the
schedule conflicting area (local reaction). The global approach in general guarantees to
find a higher quality solution with respect to a local method, though it exhibits a lack
in reactivity, requiring more time for system reconfiguration. This paper addresses the
issue of local vs. global re-scheduling within a particular set of constraint-based algo-
rithms which are global in nature, but are forced to act locally by over-constraining the
updated problem that the scheduler is called to reason upon.

It is worth noting that the problem of execution has been addressed in AI planning by
several works [7, 8, 9], nevertheless those solutions are not directly applicable to project
scheduling and differs from those described in this paper.

3 SEaM: The Scheduling Execution and Monitoring Framework

Fig. 1(a) shows the complete platform that we have set up in order to produce the exper-
iments. It is composed of three blocks: the solver and the generator work off-line and
have the job of, respectively, computing the initial solution (the baseline schedule), and
generating the exogenous events, intended to disturb the schedule during its execution;
the third block, called SEaM (for Schedule Execution and Monitoring), works on-line,
and is responsible for performing a complete simulation of the execution of the initial
solution. The disturbing events synthesized by the generator are injected during the
simulated execution at specified times, and their effects are counteracted by the SEaM
module, which is in charge of maintaining schedule consistency by exploiting a number
of different re-scheduling policies.

The core of our work is represented by SEaM which is depicted in more detail in
Fig. 1(b). This component accepts in input: (1) the initial solution (i.e. the schedule that

SEaM: Analyzing Schedule Executability Through Simulation 413

(a) (b)

Fig. 1. The platform for comparing execution strategies (a), and detail of the SEaMmodule (b)

will be executed), in terms of the initial scheduling problem plus the constraints pro-
duced in the solving process, and (2) the exogenous events which have been produced
by the event generator. Subsequently, the Progress Monitor module manages the sched-
ule execution by simulating the advancement of time and dispatching the activities at
their earliest possible start time, so as to minimize the global makespan. When an un-
expected temporal event is acknowledged, the current problem is updated and passed
to the Rescheduler which is in charge of producing the new solution that will act as
the next baseline to continue execution. The cycle proceeds until either the execution
is succesfully completed or a failure in delivering a new solution in encountered: in the
latter case, the simulation is aborted. The figure shows also an additional module, the
“Execution Analyzer”, that is responsible for monitoring the whole execution process
and finally generates the reports that describe the outcome of the experiments.

3.1 Solution Representation: Flexible Schedules vs. POSs

Going back to Fig. 1(a), we can observe that the module in charge of enacting the strat-
egy in order to deal with uncertainty is the off-line solver, which produces the baseline
schedule. In contrast to most off-line schedulers, which deliver fixed-time solutions
where the decision variables are represented by the start times of each activity, our
approach is based on the general concept of “temporal flexibility” [10]. A temporally
flexible solution can be described as a network of activities whose start times (and end
times) are associated with a set of feasible values (feasibility intervals). Underlying the
activity network there exists a second network (Temporal Constraint Network – TCN
[11]), composed of all the start and end points of each activity (time points), bound
to one another through specific values which limit their mutual distances. The search
schema used in our approach focuses on decision variables which represent conflicts
in the use of the available resources; the solving process proceeds by ordering pairs of
activities until all conflicts in the current problem representation are removed. This ap-
proach is usually referred to as the Precedence Constraint Posting (PCP) [10], because it

414 R. Rasconi, N. Policella, and A. Cesta

revolves around imposing precedence constraints (the solution constraints) on the TCN
to solve the resource conflicts, rather than fixing rigid values to the start times.

In [12] it is shown that though the previous schedule representation inherently pro-
vides a certain level of resilience at execution time, it guarantees both a time and re-
source consistent solution only if specific values from the feasibility intervals are chosen
for the time points, as described in the following definition:

Definition 1 (Flexible schedule). A flexible schedule for a problem P is a network of
activities, (readily interpretable as a temporal graph), such that a feasible solution for
the problem is obtained by allocating each activity at the temporal lower bound allowed
by the network.

For our experiments, flexible schedules are produced through the ISES procedure de-
scribed in [13]. This algorithm has proved to be effective on RCPSP/max problems. In
order to overcome the limitation imposed by the flexible schedule of having only one
consistent solution, a generalization of the TCN produced by a PCP phase is proposed
in works such as [12, 14], in which methods for defining a set of both time and re-
source feasible solutions are presented. This new representation is called Partial Order
Schedule [14]:

Definition 2 (Partial Order Schedule). A Partial Order Schedule (POS) for a prob-
lem P is an activity network, such that any possible temporal solution is also a resource-
consistent assignment.

a d

c

b

(a) Problem

a d

c

b

(b) Flexible schedule

a d

c

b

(c) POS

Fig. 2. A problem and different solution representations

A POS is a special case
of a flexible solution and
it can be obtained by re-
placing the solution con-
straints with a new set
of constraints that impose
a stronger condition on
the TCN (chaining con-
straints). Fig. 2 shows an
example of different types of scheduling solutions: the problem (a) is composed of four
activities a, b, c, and d, all using the same resource, (maximum capacity = 2). Solution
(b) represents a flexible schedule where the resource conflict has been solved by adding
the solution constraint d ≺ c; solution (c) represents a POS where two chaining con-
straints have been added: b ≺ c and d ≺ c. It should be noted that the importance
of choosing the RCPSP/max stems from the need to perform a fair comparison between
flexible schedules and partial order schedules. In fact, in the absence of maximum time
lags, a POS always represents an infinite and “complete” set of solutions, as it always
allows to avoid a re-scheduling phase (propagating the changes that have occurred is
sufficient). In the case of flexible schedules instead, propagation alone is not generally
sufficient, as any unexpected change might introduce resource conflicts.

3.2 The Execution Algorithm

The details of the execution algorithm are illustrated in Algorithm 1. The algorithm is
divided in an off-line and an on-line section; in the former, the initial solution can be

SEaM: Analyzing Schedule Executability Through Simulation 415

Algorithm 1. Solve a scheduling problem P and Execute one of its solution S
Input: problem P, policies parameter retract and pos
Output: Execution report

// off-line phase
S← offlineScheduler(P)
if S does not exist then

STOP (SOLVER FAILURE)

if pos then
S← createPOS(S)

// on-line phase
while a disturb E exists do

if retract then
if propagation(E, S) fails ∨ S is not resource consistent then

S← removeChoice (S)
S← onlineScheduler(S)
if S does not exist then

STOP (EXECUTION FAILURE)

if pos then
S← createPOS(S)

else
if propagation(E,S) fails then

STOP (EXECUTION FAILURE)

if S is not resource consistent then
S← onlineScheduler(S)
if S does not exist then

STOP (EXECUTION FAILURE)

computed by the offlineScheduler() either as a flexible schedule (case FS) or
as a POS (case POS) through the createPOS() procedure, depending on the value
of the flag pos. In the latter, and regardless how the initial solution is produced, it is
put into execution according to different modalities, depending on the value of the flag
retract. At each step of the execution cycle, the environment is sensed for possi-
ble disturbs. Afterwards, if retract = true, the execution algorithm firstly removes
all the constraints imposed in the previous solving process (removeChoice()), and
secondly looks for a new solution (onlineScheduler()), possibly creating a new
POS. Note that the onlineScheduler() procedure implements the Rescheduler
dotted box in Figs. 1(a) and 1(b). If retract = false, a new solution is searched leav-
ing the previously imposed solution constraints untouched. In both cases, the algorithm
initially checks for temporal consistency after each disturb is acknowledged through the
propagation() procedure. Temporal consistency is in fact a condition that must be
satisfied at all times, in order to continue schedule execution. The simulation is carried
on until all the activities of the schedule are successfully executed, a temporal inconsis-
tency is detected or the rescheduler fails to find an alternative solution.

4 Modeling the Uncertainty

The elements of uncertainty which usually impair the consistency of a schedule, may
belong to one of the following types: (1) temporal changes, which exclusively pertain
the temporal aspects of the problem; (2) resource variations, which modify the resource
availability during the execution of a schedule; (3) causal changes, which involve the

416 R. Rasconi, N. Policella, and A. Cesta

introduction of new constraints among the activities; (4) variations in the number of
activities that have to be executed. In the present study, we focus our attention on the
temporal aspects connected to the unpredictability of real environments: in particular,
we will limit ourselves to the generation of temporal events, such as sudden delays of
the activity start times and/or unexpected lengthening of the activity processing times,
as depicted in Fig. 3:

delay of the activity start time: edelay = 〈ai, Δst, taware〉
activity ai undergoes a delay of Δst time units, at t = taware;

change of activity processing time: ep = 〈ai, Δp, taware〉
activity ai’s processing time pi is extended by Δp time units, at t = taware.

It is outside the scope of this paper to give a complete account on the event genera-
tion: the interested reader should refer to [15] for further details. Yet, the aspect worth
highlighting here is the rationale we have pursued in studying the generation of unex-
pected events. In fact, though in the present work we produce the disturbances on top
of the scheduling benchmark set described in [16], it should be remarked that the event-
generating procedure we have devised is quite general, and can be used on a variety of
different reference problems.

In the production of a benchmark set, we identified a number of fundamental fea-
tures which characterize each unexpected event, such as the event type, the event qual-
ity (or magnitude), as well as the its temporal distance from the previous event. The
spacing of different exogenous events in each instance has been realized by adding the
parameter taware in the definition of each event. This element specifies the “absolute”
instant where the specific event is supposed to occur. By using the taware parameter
it is possible to temporally sort all the generated events and to “fire” them in order of
occurrence.

Fig. 3. Temporal changes: activities can last more than expected or they can undergo delays

5 Experimental Results

The comparison presented in this section is based on the analysis of known standard
scheduling benchmarks in RCPSP/max combining each of them with four reactive
scheduling benchmarks (world simulations). In this paper we present the results ob-
tained from the j30 set [16]. This particular problem benchmark consists of one set of
270 scheduling problem instances of size 30 × 5 (number of activities × number of
resources). Each instance of the reactive scheduling benchmark is composed of a set of
unexpected events: each problem in the scheduling benchmark is associated with four
instances of world simulations of different size (1, 2, 3, and 5 events each)2. In other

2 All events represent either a delay on the start time, or a delay on the end time of the activities,
and they are produced with the same probability throughout all the world simulations.

SEaM: Analyzing Schedule Executability Through Simulation 417

words, every scheduling problem will be put into four simulated executions, where each
execution will be disturbed by, respectively, 1, 2, 3 and 5 exogenous events.

Table 1 shows the results of the executions on the j30 scheduling benchmark. We
evaluate the different combinations of off-line/on-line policies — FS-NR (Flexible
Schedule with No-Retraction), FS-R (Flexible Schedule with Retraction), POS-NR
(POS with No-Retraction) and POS-R (POS with Retraction). In order to make the
comparison more complete, we add a further execution mode based on the use of fixed
time solutions where each activity is assigned a single start time instead of a set of al-
ternatives. For each column in the table, we take into account the following aspects: the
number of disturbances injected during each single execution (number of disturbs), the
percentage (with respect to the number of initially solved problems) of the schedules
which successfully completed the execution (% executed), the average makespan of the
successfully executed schedules (mk), the average makespan deviation of the schedules
before and after the execution (Δ mk), the percentage of the performed re-scheduling
actions with respect to the number of the injected disturbances (% resched.), the av-
erage CPU time, in msecs, to compute the initial solution (CPU Off-line), the average
CPU time spent to perform all re-schedulings during the execution (CPU On-line), the
sensitivity of activity start time w.r.t. the execution process (ψ): this measure gives an
assessment of how much the initial solution has been affected by the occurrence of the
exogenous events during the execution3.

With the exception of the % executed column, all data in the table are computed on
the intersection set of all the succesfully executed problems.

5.1 Result Analysis

One of the most striking results that we observe regards the different abilities in pre-
serving the executability of a solution. The outcome shows that the use of partial order
schedules tends to lower the success rate in terms of completed executions (% executed
column), mainly due to the dramatic increase in the number of rejected disturbs dur-
ing the execution. This apparent anomaly can be explained as follows: the creation of
a POS inherently involves a higher level of “constrainedness” in the TCN, in order
to guarantee a resource conflict-free solution. This circumstance inevitably makes the
TCN more reluctant in accepting new contraints, in the specific case, the constraints
which model the exogenous events. Also, note how this effect gets worse as the number
of the exogenous events increases (88,04% in the POS-NR case with 1 event, against
58,15% with 5 events).

Another important characteristic to be observed is the extremely low rate of neces-
sary reschedulings exhibited by the POS-R/POS-NR policies (% resched. column): this
result is all but surprising and confirms the theoretical expectations which motivated
the study on the POS . As shown, the need for schedule revision in case of POS uti-
lization sensibly decreases by more than 75% in case of 5 disturbs. Note also the 100%

3 This parameter is currently computed as follows ψ =
∑N

i=1

|stf (ai)−st0(ai)|
N

. This measure
gives an assessment of how much the initial solution has been affected by the occurrence of
the exogenous events during the execution. The lower the value, the more the solution proved
to be stable.

418 R. Rasconi, N. Policella, and A. Cesta

reschedulings figure relative to the case of fixed time schedules: in this case, a schedule
revision is always needed: this is also confirmed by the extremely high CPU on-line
values.

Table 1. j30 Execution Results

method number of % mk Δmk % CPU CPU ψ
disturbs executed resched. off-line on-line

FS-R 91.85% 103.43 4.29 27.27% 4478 77 2.55
POS-R 89.13% 102.63 3.60 5.19% 4613 15 1.84
FS-NR 1 91.85% 102.56 3.43 27.27% 4481 15 1.68

POS-NR 88.04% 102.14 3.10 5.19% 4612 2 1.55
fixed time 90.76% 106.29 7.16 100.00% 4480 300 5.04

FS-R 87.50% 106.99 8.02 34.21% 4106 150 4.32
POS-R 80.43% 104.91 6.03 4.51% 4242 20 2.92
FS-NR 2 88.59% 104.90 5.93 34.21% 4105 34 2.87

POS-NR 80.98% 104.83 5.95 4.51% 4239 4 2.83
fixed time 82.61% 107.35 8.38 100.00% 4109 501 5.57

FS-R 85.33% 109.55 9.73 26.90% 4506 190 5.40
POS-R 76.63% 108.11 8.36 5.85% 4647 37 4.30
FS-NR 3 83.15% 108.00 8.18 26.61% 4515 40 3.98

POS-NR 75.00% 107.83 8.09 5.85% 4646 8 4.02
fixed time 78.26% 109.95 10.12 100.00% 4512 848 6.45

FS-R 75.00% 119.30 16.19 26.43% 4282 267 8.48
POS-R 57.61% 116.44 13.37 5.24% 4414 73 6.48
FS-NR 5 74.46% 117.12 14.01 22.86% 4277 59 6.91

POS-NR 58.15% 115.86 12.79 5.00% 4410 12 6.15
fixed time 76.63% 118.33 15.23 100.00% 4286 1161 8.68

A very interesting as-
pect can be observed by
comparing the CPU on-
line values between the
Retraction and No Retrac-
tion strategies. In general,
the Retraction methods
require a higher CPU
on-line load because the
removal of the solution
constraints inevitably re-
introduces some resource
conflicts that must be
solved by rescheduling.
But the intriguing result
lies in the fact that this
difference in the CPU on-
line rates stands despite
the comparable amount of
performed reschedulings.
Let us look at the dif-
ference between the FS-R
and FS-NR rates: it can be seen that, in the 5 events case, we have 267 ms. (FS-R)
against 59 ms. (FS-NR), although the number of performed reschedulings is very close
(≈ 23% ÷ 26%)! The same effect can be observed between the POS-R and POS-NR
cases: 73 ms. against 12 ms., notwithstanding the same (≈ 5%) number of reschedul-
ings. This circumstance can be explained as follows: NR execution modes retain all the
temporal constraints of the previous solution: hence, the rescheduler is bound to work
on a smaller search space, finding the next solution almost immediately. The table also
shows how inefficient the executions of fixed time solutions are (see the CPU on-line
values).

One last word on schedule stability: the Δmk and ψ columns give a measure of the
ability of a solution to remain stable during the execution. The former column takes
into account solution continuity in terms of makespan preservation, while the latter ac-
counts for stability in terms of maintainace of the activities’ start times. As it can be
seen, the highest stability during execution is obtained with the NR as opposed to R
methodologies, because they maintain the structure of the initial solution for the whole
execution. The most unstable solutions are produced in the fixed time case, as a di-
rect consequence of the complete lack of temporal flexibility. In the cases where it is
essential to maintain a high level of solution continuity, the No-Retraction methods are
therefore to be preferred.

SEaM: Analyzing Schedule Executability Through Simulation 419

6 Conclusions

It is straightforward to assume that in order to face project scheduling problems, it is
necessary to consider both the off-line solving phase, as well as a dynamical manage-
ment, where the behaviour of the produced schedule is followed and analyzed through-
out its whole lifespan. This paper discusses alternative approaches to the production,
execution, monitoring and repairing of pre-defined schedules enforced in a constraint-
based framework. We presented a platform, named SEaM, that simulates the execution
of a baseline schedule, by maintaining an internal representation of the solution and up-
dating this representation in order to (a) take into account the occurrence of exogenous
events and (b) counteracting the effects of such events through proper rescheduling.

The SEaM allows us to obtain different insights on the combination of two aspects:
(a) the use of different off-line scheduling techniques to increase proactive robustness
and (b) the use of complementary re-scheduling policies to react to unexpected events.
In particular we analyze two alternatives to the classical fixed time schedule – flexible
schedules, containing a single point solution, and partial order schedules or POSs.
Moreover, we distinguish between the incremental modification of the initial schedule
vs. the retraction of previously made decisions followed by a new resolution.

On the basis of well known project scheduling problem benchmarks, a set of exoge-
nous events are produced ad hoc for each problem instance in order to maximize the
possibility of dynamical event-acceptance. It is also worth remarking that the produced
events are independent from the particular off-line scheduler used to provide the initial
solution, as well as from the type of initial solution itself. The previous characteristics
make it possible to use the SEaM framework to perform reproducible experiments.

A set of results support the usefulness of this analysis. Part of the outcome represents
a direct confirmation of theoretical expectations from previous analysis; yet, the pres-
ence of counterintuitive insights in the results opens the way for further investigation
and new perspectives.

Acknowledgments. The authors’ work is partially supported by MIUR (Italian Ministry
for Education, University and Research) under projects ROBOCARE (L. 449/97) and
”Vincoli e Preferenze” (PRIN).

References

1. Davenport, A.J., Beck, J.C.: A Survey of Techniques for Scheduling with Uncertainty. ac-
cessible on-line at http://tidel.mie.utoronto.ca/publications.php on Feb, 2006. (2000)

2. Aytug, H., Lawley, M.A., McKay, K.N., Mohan, S., Uzsoy, R.M.: Executing production
schedules in the face of uncertainties: A review and some future directions. European Journal
of Operational Research 165 (2005) 86–110

3. Herroelen, W., Leus, R.: Robust and reactive project scheduling: a review and classification
of procedures. International Journal of Production Research 42 (2004) 1599–1620

4. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environments – a
survey. Constraints 10 (2005) 253–281

5. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-Constrained Project
Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational
Research 112 (1999) 3–41

420 R. Rasconi, N. Policella, and A. Cesta

6. Bartusch, M., Mohring, R.H., Radermacher, F.J.: Scheduling project networks with resource
constraints and time windows. Annals of Operations Research 16 (1988) 201–240

7. Schoppers, M.: Universal Plans for Reactive Robots in Unpredictable Environments. In:
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, IJCAI-87.
(2005)

8. Ambros-Ingerson, J., Steel, S.: Integrating Planning, Execution and Monitoring. In: Pro-
ceedings of the Seventh National Conference on Artificial Intelligence, AAAI-88. (1988)

9. Beetz, M., McDermott, D.: Improving Robot Plans During Their Execution. In: Proceedings
of the Second International Conference on AI Planning Systems, AIPS-94. (1994)

10. Cheng, C., Smith, S.F.: Generating Feasible Schedules under Complex Metric Constraints.
In: Proceedings of the 12th National Conference on Artificial Intelligence, AAAI-94, AAAI
Press (1994) 1086–1091

11. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49
(1991) 61–95

12. Cesta, A., Oddi, A., Smith, S.F.: Profile Based Algorithms to Solve Multiple Capacitated
Metric Scheduling Problems. In: Proceedings of the 4th International Conference on Artifi-
cial Intelligence Planning Systems, AIPS-98, AAAI Press (1998) 214–223

13. Cesta, A., Oddi, A., Smith, S.F.: An Iterative Sampling Procedure for Resource Constrained
Project Scheduling with Time Windows. In: Proceedings of the 16th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann (1999) 1022–1029

14. Policella, N., Oddi, A., Smith, S.F., Cesta, A.: Generating Robust Partial Order Schedules.
In: Principles and Practice of Constraint Programming, 10th International Conference, CP
2004. Volume 3258 of Lecture Notes in Computer Science., Springer (2004) 496–511

15. Policella, N., Rasconi, R.: Designing a Testset Generator for Reactive Scheduling. Intelli-
genza Artificiale (Italian Journal of Artificial Intelligence) II (2005) 29–36

16. Kolisch, R., Schwindt, C., Sprecher, A.: Benchmark Instances for Project Scheduling Prob-
lems. In Weglarz, J., ed.: Project Scheduling - Recent Models, Algorithms and Applications.
Kluwer Academic Publishers, Boston (1998) 197–212

	Introduction
	The Scheduling Problem Under Uncertainty
	SEaM: The Scheduling Execution and Monitoring Framework
	Solution Representation: Flexible Schedules vs. POSs
	The Execution Algorithm

	Modeling the Uncertainty
	Experimental Results
	Result Analysis

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

