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Abstract. The problem of multiple observers sitting on terrain (MOST) is an 
important part in visibility-based terrain reasoning (VBTR), but it is difficult 
because of the unacceptable computing time. Recent developments in this field 
focus on involving spatial optimization techniques, such as a heuristic 
algorithm. In this paper, a new method is developed based on the Improved 
Simulated Annealing (ISA) algorithm through the analysis of different terrain 
characters. A new annealing function and a new state function are designed to 
make the improved algorithm fit the problem better. Experiment results show 
that without loss of precision, use of the ISA algorithm reduces time cost 
50%~70% when compared with the traditional SA. 

1   Introduction 

Consider a given terrain, with an observer O at a certain height H. Define the 
viewshed as the specific terrain visible from O that lies within O’s Region Of Interest 
(ROI), of radius R. The Multiple Observers Sitting on Terrain (MOST) problem 
consists of  finding the fewest possible observers to make the united-viewshed of those 
observers cover a certain ratio area, given the kind of the observer (person, radar, etc.) 
and the characteristic of the observer (height, the radius of viewshed, etc.).  The MOST 
problem has many applications, such as locating a telecommunication base station [2, 
4, 8], protecting endangered species [3, 6], and locating wind turbines [15]. 

The current solving method for the MOST problem is to use a greedy algorithm, 
which compares all possible observer sets, in order to find the best one. The biggest 
disadvantage of this method is the fact that the computing cost rises exponentially 
with the increasing complexity of the problem, overrunning the computing capability 
of the existing computer. In order to solve this problem, W. Franklin et al. provided a 
toolkit which is based on the visibility-indexes of small cells and the swap algorithm 
[10, 11]; Rana [19] developed a method which only considers significant features of 
the terrain such as peaks or ridges; and Y.H. Kim [13] also provided a method based 
on the terrain features and heuristic algorithms such as a simulated annealing 
algorithm, a genetic algorithm and a swap algorithm. Y.H. Kim has also claimed that 
the traditional SA algorithm is the best one among all tested algorithms when 
considering the balance between time cost and accuracy [14].  
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In this paper, an optimal method that is based on an Improved Simulated 
Annealing (ISA) algorithm is developed. Experiment results show that without loss of 
precision, use of the ISA algorithm reduces time cost 50%~70% when compared with 
the traditional SA. 

2   Modeling and Time Complexity Analysis 

Suppose that the real terrain T is in an XYZ coordinate space. DEM is defined by a 
set of points ),,( zyxp ppp≡  where (xp, yp) is the coordinate of one point in the X-Y 

plane, and zp is the corresponding elevation of (xp, yp). Two points p1 and p2 are 
mutually visible (inter-visible) if every point q ≡(x,y,z)=p1+t(p2-p1),0<t<1, lies 
above the corresponding point pq of the terrain, i.e. z>zq [7, 9].  

Suppose on the terrain which has n points, the number of the observers in an 
observer set be s . Then define the arbitrary observer set Ok which satisfies the 
condition above as: 
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Define the observer set’s united viewshed as: 
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where the v(ok,i) is the view-shed of the observer oi in the observer set Ok. The 
definition of MOST problems is 
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where MAX(V(Ok)) is to get the maximum value of the united-viewshed of Ok. 
To analyze the time complexity of MOST problems, suppose each observer’s 

radius of viewshed R be n points and use a greedy algorithm. There are two main 
steps: 
    A：Compute the viewshed of each point on the terrain using the method described  

above. The time complexity is O(n2), according to [5].     
    B：Select all possible combinations of s observers from the n points, and for each 

combination, calculate the united-viewshed. The number of selections is 
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When n is very large and n>>s, this approximates to ns.Caculating the united-
viewshed is O(n) for one combination. So the total time complexity is ns* O(n), which 
approximates to O(ns+1).Because usually the s>=2 commonly, O(ns+1) is by far the 
larger of the two terms, the overall time complexity is O(ns+1). 

From analyses above, we can find that the time complexity of MOST problems is 
rising exponentially with the increase of the terrain area and the number of observers. 
With a problem of even moderate size, this suggests that the method based on a 
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greedy algorithm will never be computationally tractable. Therefore, a new optimal 
method must be developed to find a solution of MOST which is both accurate and 
computationally feasible. 

3   An Optimal Method for MOST 

From the discussions above, it is clear to see that the key point of the solution for 
MOST is efficient comparison and selection of the multiple observers set. 

Unfortunately, the selection of the best observer set from all possible ones is 
unfeasible. However, the MOST problem also can be treated as an optimal problem 
under some certain boundary conditions. Analogues to the solution of other optimal 
problems, using heuristic algorithms can make the solution feasible and get a nearly 
best observer set. Two typical heuristic algorithms, Simulated Annealing algorithm 
(SA) and Genetic Algorithm (GA), have been applied and the former one has been 
proven to be more suitable for MOST problems [14].  

3.1   Principles of Simulated Annealing 

Kirkpatrick et al. [16] introduced the conception of annealing in combinatorial 
optimization. This conception is based on a strong analogy between combinatorial 
optimization and the physical process of crystallization. This process has inspired 
Metropolis et al. [18] to propose a numerical optimization procedure known as 
Metropolis algorithm, which works as follows. 

Starting from an initial situation whose ‘energy level’ is f(0), a small perturbation 
of the state is made in the system. This brings the system into a new state with energy 
level f(1). If f(1) is smaller than f(0), then the state change is accepted. Otherwise, if 
f(1) is greater than f(0), then the change is accepted with a certain probability. The 
probability of acceptance is given by the Metropolis criterion [1]: 
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where tk is a control or freezing parameter. The Simulated Annealing process is ended 
when the temperature has become a small value [12]. 

A crucial element of the procedure is the gradual decrease of the freezing parameter 
tk.Usually, this is done using a constant multiplication factor: 

λ k
k tt •= 0  (5) 

where 10 << λ , k are the annealing iteration times in temperature stage decreasing, 
and t0 is the initial temperature stage of the system. This effectively means that 
jumping to higher energy becomes less and less likely towards the end of the iteration 
procedure [18]. 

In the application of MOST, the energy level f(·) is a cost function which correlates 
with a state at a certain temperature stage. The initial temperature stage t0, is obtained 
from the equation 
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where |Δmax| is the maximum difference of cost corresponding with a group of 
randomly selected states, and pr is the initial accept probability, which is usually 0.5. 
The total number of iterations L per temperature stage is chosen by keeping the 
temperature stage constant until the cost function has reached a constant value or until 
it is oscillating around this constant value [20]. The annealing iteration times k  are 
chosen by setting the final temperature stage to a minimal constant value. 

3.2   Optimal Method Based on Improved SA 

In this study, we developed an optimal method based on Improved Simulated 
Annealing (ISA) algorithm which consists of three steps as follows. 

Step 1: According to the desired number of the observers s, partition the terrain into 
k average-sized smaller blocks and make each block contain s/k observers. The 
distribution of observers should be fairly uniform across the terrain. 

Step 2: Pick s/k observers randomly and independently in each block. Compute 
each observer’s viewshed and the united-viewshed coverage ratio of the observer set 
after the individual viewsheds have been combined. 

Step 3: Let the result of Step 2 be the initial state, and apply the ISA to get the 
approximately best observer set. In our optimal method, we select 50 observer sets 
randomly, and get the original temperature stage of SA algorithm described in 3.1.  

Table 1. The statistical information of six samples 

 Min Max Diff Mean SD 
Sample 1 693．1 754．2 61.1 712．2 84．28 
Sample 2 939．3 2531．5 1592.2 1731．2 250．34 
Sample 3 1197．6 2452．1 1254.5 1636．8 470．6 
Sample 4 250．0 461．3 211.3 364．4 1272．6 
Sample 5 2153．5 2570．1 416.6 2372．7 2030．2 
Sample 6 930．4 2481．7 1551.3 2023．6 3677．1 

3.3   The Improved Simulated Annealing Algorithm for MOST 

For the MOST problem, we have done two analyses: The first analysis is the 
relationship between the distance separating two observers and the average increase 
of united-viewshed for these two observers compared to one observer. The second 
analysis is the relationship between the distance separating two observers and the 
ratio of the increased view-shed coverage for two observers, compared to one 
observer. In our analysis and in the following experiments, we assume that the 
observer height is H=1.6m, which is equal to the height of people’s eyes. 

3.3.1   The Improved New State Function 
In order to get the relationships between the distance separating two observers and the 
average united-viewshed increase compared to one observer, three steps are included.  
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1. Select the first observer on the terrain randomly, and compute its viewshed. 
2. Select the second observer randomly and let the new observer lie within the first 

one’s neighbor domain whose radius is R. In our analysis, the R is average to 250 
sample points (500 m). Compute the united-viewshed of the two observers, and 
then calculate the difference between the united viewshed and the viewshed of 
the single observer, as found in step 1. We refer to this resulting term as the 
“united-viewshed increase”. 

3. Repeat steps 1 and 2 50,000 times. Finally, get the relationships between the 
distances separating the two observers and their average united-viewshed 
increase compared to one observer’s viewshed. 

Repeat steps1 through 3 for six terrain samples, and get the result (See in Figure 1). 
The value given to the united-viewshed is the ratio between the number of the visible 
points in the united-viewshed and the total number of the points on the terrain. 

 

Fig. 1. The relationships between the distance separating two observers and their average 
united-viewshed increase compared to one observer’s viewshed 

The Figure 1 shows that the relationship curve between the distance separating two 
observers and their average united-viewshed increase compared to one observer’s 
viewshed on different terrains is similar. That is, the united-viewshed increases with 
the distance between two observers. The rate of increase becomes slower and slower.  

From the analysis above, we can see that if the observers are near, the average 
united-viewshed coverage of observer set decreases substantially. Therefore, the re-
design of a new state function of SA algorithm should not only consider the average 
united-viewshed coverage ratio of new observer set but also consider the distance 
between observers. Accordingly, the new state function of new observer set Ok in an 
improved SA algorithm )(okϕ contains two parts:  

nkogofo kkk L2,1),()()( =+=ϕ  (7) 
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function. The degrees of punish increase as the average distance between observers 
decreases. Therefore, if the average distance is small, the new observer set solution 
cannot be accepted, and it prevents the occurrence of ‘the assembling of the 
observers’. 

3.3.2   The Improved Annealing Function 
In order to show the relationship between the distance separating two observers and 
the variance ratio about the viewshed coverage of two observers compared to one, we 
compute the increase ratio at a certain distance based on the result in 3.3.1.  The result 
is seen in Figure 2. The variance ratio is valued as the standard deviation (SD) of the 
united-viewshed increase.  

 

Fig. 2. The relationships between the distance separating two observers and the variance ratio 
about the viewshed coverage of two observers compared to one 

Figure 2 shows that the variance of the united-viewshed mentioned in 3.3.1 
increases with the distance between two observers, but the rate of increase slows. It is 
desirable to increase the annealing iteration times at a high temperature stage in order 
to help find the global optimal observer set, and to decrease the annealing iteration 
times at a low temperature stage for time cost savings. Therefore, it is necessary to 
redesign the annealing function to make it fit the MOST problem better. 

Consider the annealing function of the traditional SA algorithm tk [17], where t0 is 
the original temperature stage, λ is the annealing factor, and k is the annealing 
iteration times. In order to increase the annealing iteration times at a high temperature 
and decrease the annealing iteration times at a low temperature, we introduce a 
temperature control function which can accommodate the origin annealing function in 
the traditional SA algorithm, and get the new annealing function t k′ , that is: 



 An Optimal Method for MOST 379 

( )[ ]⎪⎩

⎪
⎨
⎧

−⋅−
⋅=′

tc

tc
t

k

k
k

11

)(
1

1

α γ

α γ

  
5.0

5.0

>
<=

t

t

k

k

 (8) 

where  ( )5.02
1

α⋅=c . 

Suppose that βγ
α = , it can be proved that 
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where Kmax is the maximum step that the annealing temperature stage can keep the 
same as the initial temperature stage t0. 

In order to control the annealing process, we introduce three boundary conditions: 

1. Suppose in the traditional SA algorithm, when annealing temperature stage 
decreases to 70% of the original temperature stage, the annealing iteration times 
are k1. Then in the improved SA, the annealing iteration times of achieving the 
same instance are 2·k1. 

2. Suppose in the traditional SA algorithm, when annealing temperature stage 
decreases to 10% of the original temperature stage, the annealing iteration times 
are k2. Then in the improved SA, the annealing iteration times of achieving the 

same instance are
2

2k . 

      According to the two conditions above, we can get 98.3≈γ
α  and kmax under 

different λ (see Table 2). 

Table 2. The Max Annealing iteration times kmax Under Different λ  

λ  0.5 0.6 0.7 0.8 0.9 

kmax
 1 1.35 1.9 3.1 6.6 

3. Suppose in the improved SA algorithm, when annealing temperature stage 
decreases to 80% of the original temperature stage, the annealing iteration times 
is kmax . 

           According to the three conditions above, we can get the α  and γ  under 

different λ (see Table 3). 

Table 3. Parameter α andγ  Under Different λ  

   λ  0.5 0.6 0.7 0.8 0.9 
α  11.43 10.81 9.09 11.43 12.06 
γ  2.86 2.70 2.27 2.86 3.03 
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Fig. 3. The annealing function comparing traditional SA and improved SA of λ=0.9 

In Figure 3, it is clear to see that the annealing iteration times of improved SA is 
much longer than the traditional SA in high temperature stages: 6 times, compared to 
1 time when the temperature decreases to 90% of the original temperature stage. In 
contrast, the instance in low temperature stage is opposite: 11 times, compared to 21 
times when the temperature decreases to 10% of the initial temperature stage. 

3.4   Experiment Result 

We use our optimal method to solve the MOST problem for six representative terrains 
(described in 3.2) in two experiments.  Each experiment is repeated 10 times for each 
terrain.  The traditional SA algorithm is used in Step 3 of the optimal method in the 
first experiment; the Improved SA (ISA) algorithm is used in the second experiment. 
The two algorithms stop when the temperature decreases to 10% of the original 
temperature stage. All the experiments are done by using a 2.4 GHz Pentium PC and 
1 Gbytes RAM to get the comparison of united-viewshed coverage and time cost 
between using SA and ISA. The experiment results are presented below: 

 

Fig. 4. 4 blocks ,1 observer per block, R=256 sample points, λ=0.9, H=1.6m 
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Fig. 5. 16 blocks , 8 observers per block, R=128 sample points, λ=0.9, H=1.6m 

The ISA provides great time cost savings compared to the SA because when the 
annealing temperature decreases to 10% of the original temperature stage, the ISA 
uses only 11 iterations, while the SA uses 21. While the time cost savings of the ISA 
is great, the loss of accuracy is prevented by the greater number of annealing 
iterations at a high temperature (6, compared to 1), and the new state function. Figure 
4 and figure 5 clearly show that without loss of precision, use of the ISA algorithm 
reduces time cost 50%~70% when compared with the traditional SA. The time cost 
savings become great as the number of observers increases. 

4   Conclusions and Future 

In visibility-based terrain reasoning, using a heuristic algorithm is an efficient method 
to solve the multiple observers sitting on terrain problem. However, if we use a 
general heuristic algorithm without any modification, it usually cannot get the best 
effect of the balance between precision and efficiency. Therefore, in this paper, an 
optimal method based on an Improved Simulated Annealing algorithm is developed 
after a problem-related analysis of six representative terrain samples.  This improved 
algorithm reduces the time redundancy of the traditional SA algorithm.   

Using the improved SA algorithm, it is hard to solve the MOST problem in a large 
terrain area with more observers and high precision in real time. More study is needed 
on the application of a multi-scale SA algorithm in multi-precision terrain data to 
solve MOST problems on large terrain. This method has great potential for the 
solution of MOST in real time. 
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