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Abstract. Intermittent demand appears at random, with many time
periods having no demand,which is probably the biggest challenge in
the repair and overhaul industry. Exponential smoothing is used when
dealing with such kind of demand. Based on it, more improved methods
have been studied such as Croston method. This paper proposes a novel
method to forecast the intermittent parts demand based on fuzzy sup-
port vector machines (FSVM) in regression. Details on data clustering,
performance criteria design, kernel function selection are presented and
an experimental result is given to show the method’s validity.

1 Introduction

A fundamental aspect of supply chain management is accurate demand forecast-
ing. We address the problem of forecasting intermittent (or irregular) demand.
Intermittent demand appears at random, with many time periods having no de-
mand [1]. Moreover, when a demand occurs, the request is sometimes for more
than a single unit. Items with intermittent demand include service (spare) parts
and high-priced capital goods, such as heavy machinery. Such items are often
described as “slow moving”. Demand that it intermittent is often also “lumpy”,
meaning that there is great variability among the nonzero value. An example
of the difference between intermittent demand data and product demand data
that is normal, or “smooth”, is illustrated in the tables below:

Table 1. Intermittent Demand Data

Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Demand 0 0 19 0 0 0 4 18 17 0 0 0 0 0 3 0 0

Table 2. Normal, Smooth Demand Data

Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Demand 17 20 18 25 30 68 70 41 32 35 66 26 23 25 25 28 36
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Intermittent demand creates significant problems in the manufacturing and
supply environment as far as forecasting and inventory control are concerned.
It is not only the variability of the demand size, but also the variability of
the demand pattern that make intermittent demand so difficult to forecast [2].
The literature, that includes a relatively small number of proposed forecasting
solutions to this demand uncertainty problem, can be found in [3-6]. The single
exponential smoothing and the Croston methods are the most frequently used
methods for forecasting low and intermittent demands [4,6]. Croston [4] proposed
a method that builds demand estimates taking into account both demand size
and the interval between demand incidences. Despite the theoretical superiority
of such an estimation procedure, empirical evidence suggests modest gains in
performance when compared with simpler forecasting techniques; some evidence
even suggests losses in performance. On the other hand, Bartezzaghi et al. [3] in
their experimental simulation found that EWMA appears applicable only with
low levels of lumpiness. Willemain et al. [6] concluded that the Croston method
is significantly superior to exponential smoothing under intermittent demand
conditions.

Recently, support vector machines (SVMs) was developed by Vapnik and his
co-workers [7,8]. With the introduction of Vapnik’s -insensitive loss function,
SVMs have been extended to solve non-linear regression estimation problems
and they have been shown to exhibit excellent performance [7,8].

Since SVMs are formulated for two-class problems, some input points may
not be exactly assigned to one of these two classes. Some are more important
to be fully assigned to one class so that SVM can separate these points more
correctly. Some data points corrupted by noises are less meaningful and the
machine should better to discard them. SVM lacks this kind of ability. To solve
this problem, Fuzzy support vector machines (FSVM) apply a fuzzy membership
to each input point of SVM such that different input points can make different
contributions to the learning of decision surface and can enhances the SVM in
reducing the effect of outliers and noises in data points [9-11].

Our research focuses on the application of FSVM in regression to make a
new attempt to novel forecasting method toward the intermittent demand. The
results of experiment indicate that FSVM is effective in improving the accuracy
of intermittent demand forecasting compared with the Croston method which
has been a widely used method in intermittent demand forecasting.

This paper consists of five sections. Section 2 reviews the most widely used
approach for forecasting intermittent demand and indicates its limitation and
the direction of further improvement. General principles of FSVM and its ap-
plication in regression are presented in Section 3, together with the general
procedures of applying it. Section 4 presents an experiment concerned with the
detailed procedures of how to employing FSVM in regression, involving data set
selection, data preprocessing and clustering, kernel function selection and so on.
Conclusions and discussion for further research hints are included in the last
section.
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2 Reviews on Forecasting Intermittent Demand Methods

Generally efforts on forecasting the intermittent demand could fall into two
categories. One is to find the distribution function and the other is time series
forecasting.

2.1 Demand Distribution Estimation

The inventory control method proposed here relies on the estimation of the
distribution of demand for low demand parts. It is necessary to use demand
distributions rather than expected values of demand because the intermittent
patterns characteristic of low demand parts require a probabilistic approach to
forecasting that can be incorporated into an inventory management program.
Using the demand distributions, it is possible to manage the inventory to max-
imize readiness given a fixed inventory budget. Other optimization goals are
possible as well.

The chief obstacle to reliable demand distribution estimation is the paucity of
historical data available for any typical set of low demand parts. Demand typi-
cally occurs in small integer numbers of parts. Some parts may have only 3 or 4
non-zero demands among a large number of zero demand periods. This amount
of data is not sufficient to construct a robust probability demand distribution.
If a probabilistic model of the demand is available, such as a Weibull model or
Poisson model, then it is possible to estimate the demand distribution directly
from the model. If an empirical estimate of the demand distribution must de-
rived, through bootstrapping or other means, it is necessary to group the data
in a way that generates enough non-zero data points to produce robust demand
distribution estimates.

2.2 Croston Method

Croston method falls into the time series forecasting category and is the most
widely used method, which could be illustrated as follows.

Let Yt be the demand occurring during the time period t and Xt be the
indicator variable for non-zero demand periods; i.e., Xt = 1 when demand occurs
at time period t and Xt = 0 when no demand occurs. Furthermore, let jt be
number of periods with nonzero demand during interval [0, t] such that jt =∑t

i=1 Xi, i.e., jt is the index of the the non-zero demand. For ease of notation,
we will usually drop the subscript t on j . Then we let Y ∗

j represent the size of
the j th non-zero demand and Qj the inter-arrival time between Y ∗

j−1 and Y ∗
j .

Using this notation, we can write Yj = XtY
∗
j .

Croston method separately forecasts the non-zero demand size and the inter-
arrival time between successive demands using simple exponential smoothing
(SES), with forecasts being updated only after demand occurrences. Let Zj and
Pj be the forecasts of the (j + 1)th demand size and inter-arrival time respec-
tively, based on data up to demand j. Then Croston method gives
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Zj = (1 − α) Zj−1 + αY ∗
j (1)

Pj = (1 − α) Pj−1 + αPj (2)

The smoothing parameter α takes values between 0 and 1 and is assumed to
be the same for both Y ∗

j and Qj . Let l = jn denote the last period of demand.
Then the mean demand rate, which used as the h-step ahead forecast for the
demand at time n + h is estimated by the ratio

Ŷn+h = Zl / Pl (3)

The assumptions of Croston method could be derived that (1) the distribu-
tion of non-zero demand sizes Y ∗

j is iid normal;(2) the distribution of inter-arrival
times Qj is iid Geometric; and (3)demand sizes Y ∗

j and inter-arrival times Qj are
mutually independent. These assumptions are clearly incorrect, as the assump-
tion of iid data would result in using the simple mean as the forecast, rather
than simple exponential smoothing, for both processes. This is the basic reason
for more correction and modification toward Croston method.

3 FSVM for Forecasting

In this section we briefly review the description about the idea and formulations
of FSVM in regression problem. In regression problem, the effects of the training
points are different. It is often that some training points are more important
than others, so we apply a fuzzy membership 0 ≤ si ≤ 1 associated with each
training point xi. This fuzzy membership si can be regarded as the attitude
of the corresponding training point toward the mapping function and the value
(1−si) can be regarded as the attitude of meaningless. In a result, the traditional
SVM was extended as FSVM.

Given a set S of data points with associated fuzzy membership

(x1, y1, s1) (xi, yi, si) (4)

where xi ∈ Rn is the input vector,yi ∈ R is the desired value, and a fuzzy
membership σ ≤ si ≤ 1 with i = 1, ..., n and sufficient small σ > 0 . The FSVM
regression solves and optimization problem:

min
ω,p,ξ,ξ∗

C

n∑

i=1

si(ξi + ξ∗i ) +
1
2
ωT ω

Subject to

⎧
⎪⎨

⎪⎩

yi − ωT φ(xi) − bi ≤ ε + ξi, ξi ≥ 0
ωT φ(xi) + bi − yi ≤ ε + ξ∗i , ξ∗i ≥ 0

i = 1, ..., n

(5)

where φ is the high dimensional feature space which is non-linearly mapped from
the input space x , ξi is the upper training error ( ξ∗i is lower), subject to the
varepsilon -insensitive tube:

|y − (ωT φ(x) + b)| ≤ ε (6)
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The parameters that control the regression performance are the cost of error C ,
the width of the tube ε , the mapping function φ(x) and the fuzzy membership
si . Usually, it is more convenient to solve the dual of Eq.(5) by introducing
Lagrange multipliers α∗

i , αi , and leads to a solution of the form

f(x, αi, α
∗
i ) =

n∑

i=1

(αi − α∗
i )K(x, xi) + b,

0 ≤ α∗
i , αi ≤ siC

(7)

In Eq. (7), αi and α∗
i satisfy the equalities αi ∗α∗

i = 0 ,αi ≥ 0 and α∗
i ≥ 0 where

i = 1,2,,n and are obtained by maximizing the dual function of Eq. (7) which
has the following form:

R (ai, a
∗
i ) =

n∑

i=1

yi (ai − a∗
i ) − ε

n∑

i=1

(ai + a∗
i )

−1
2

n∑

i=1

n∑

j=1

(ai − a∗
i )

(
aj − a∗

j

)
K (xi, xj) (8)

with the constraints

n∑

i=1

(ai − a∗
i ) ,

0 ≤ ai ≤ C, i = 1, 2, · · · , n
0 ≤ a∗

i ≤ C, i = 1, 2, · · · , n

(9)

Based on the Karush-Kuhn-Tucker (KKT) conditions of quadratic program-
ming, only a certain number of coefficients (ai − a∗

i ) in Eq.(5) will assume non-
zero values. The data points associated with them have approximation errors
equal to or larger than ε and are referred to as support vectors. Generally, the
larger the ε, the fewer the number of support vectors and thus the sparser the
representation of the solution.

K(xi, xj) is defined as the kernel function. The value of the kernel is equal to
the inner product of two vectors Xi and Xj in the feature space φ(xi) and φ(xj),
that is, K(xi, xj) = φ(xi)∗φ(xj).Any function satisfying Mercer’s condition can
be used as the kernel function.

From the implementation point of view, training SVMs is equivalent to solving
a linearly constrained quadratic programming (QP) with the number of variables
twice as that of the training data points. Generally speaking, application of
FSVM for forecasting follows the procedures: (1) Transform data to the format
of an FSVM and conduct simple scaling on the data; (2) Generate the fuzzy
membership; (3) Choose the kernel functions; (4) Use cross-validation to find
the best parameter and ; (5) Use the best parameter and to train the whole
training set; (6) Test.
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4 Experimental Setting

4.1 Data Sets

Forecasting and inventory management for intermittent demand parts is particu-
larly problematic because of the large number of low demand parts that must be
considered. As an experiment setting, of 5,000 unique non-repairable spare parts
for the Daya Bay Nuclear station in China, over half of those parts have been
ordered 10 time or less in the last ten years. While many of these low demand
parts are important for the safe operation of the nuclear reactor, it is simply
uneconomical to stock enough spares to guarantee that every low demand part
will be available when needed.

4.2 Clustering for Data Preprocessing

Clustering is the process of grouping parts with similar demand patterns. There
are several methods to cluster data, among which, agglomerative hierarchical
clustering and c-means clustering are two typical methods. We have found that
demand patterns can be robustly clustered by using cumulative demand pat-
terns. As the cumulative demand patterns avoids problems invoked by the in-
termittent pattern of incremental demand. Figure 1 shows one of prototype
cumulative demand patterns after clustering 4063 low demand spare parts into
10 clusters. Prototype patterns represent the typical demand pattern for each
cluster. The cluster size ranges from 34 parts to 241 parts plotted are the 25th
and 75th percentiles of demand gathered from the cumulative demand of the
individual parts in each cluster. Clustering was accomplished using a fuzzy c-
means (FCM) clustering routine [12]. The generalized objective function subject
to the same fuzzy c-partition constraints[13] is:

MinJm (U, V ) =
c∑

i=1

n∑

k=1

(μik)m ‖xk − vi‖2 (10)

During our experiment, one of the problems associated with clustering is the
difficulty in determining the number of clusters, c. Various validity measures
have been proposed to determine the optimal number of clusters in order to
address this inherent drawback of FCM [13]. In our experiment, the optimal
number of terms is defined as the one that has the lowest mean squared error
(MSE). The least MSE measure is also used to identify the most appropriate
form of membership functions. In summary, the application procedure of the
FCM has the following steps:(1) choose c (2 ≤ c ≤ n) , m (1 < m <∝) and ini-
tialize the membership matrix. (2) Read in the data set and find the maximum
and minimum values. (3) Calculate cluster centers but force the two clusters with
the largest and smallest values to take the maximum and minimum domain val-
ues. (4) Update the membership matrix (5) Compute the change of each value in
the membership matrix and determine whether the maximum change is smaller
than the threshold value chosen to stop the iterative process (set at 0.02 through-
out this study). If not, return to Step 3. (6) Redistribute erroneous membership
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Fig. 1. Cumulative demand pattern of Cluster 1

values to the other two more appropriate terms proportional to their current
membership values.

4.3 Defining Fuzzy Membership

It is easy to choose the appropriate fuzzy membership. First, we choose σ > 0
as the lower bound of fuzzy membership. Second, we make fuzzy membership si

be a function of time ti
si = f(ti) (11)

We suppose the last point xn be the most important and choose xn = f(tn) =
1 , and the first point x1 be the most least important and choose s1 = f(t1) = σ.
If we want to let fuzzy membership be a linear function of the time, we can select

si = f(ti) = αti + b =
1 − σ

tn − t1
ti +

tnσ − t1
tn − t1

(12)

If we want to make fuzzy membership be a quadric function of the time, we
can select

si = f(ti) = α(ti − b)2 + c = (1 − σ)
(

ti − t1
tn − t1

)2

+ σ (13)

4.4 Kernel Function Parameters Selection

We use general RBF as the kernel function. The RBF kernel nonlinearly maps
samples into a higher dimensional space, so it, unlike the linear kernel, can
handle the case when the relation between class labels and attributes is nonlinear.
Furthermore, the linear kernel is a special case of RBF as (Ref.[14]) shows that
the linear kernel with a penalty parameter C̃ has the same performance as the
RBF kernel with some parameters (C, γ). In addition, the sigmoid kernel behaves
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like RBF for certain parameters[15].The second reason is the number of hyper-
parameters which influences the complexity of model selection. The polynomial
kernel has more hyper-parameters than the RBF kernel. Finally, the RBF kernel
has less numerical difficulties. One key point is 0 < Kij ≤ 1 in contrast to
polynomial kernels of which kernel values may go to infinity

(
γxi

T xj + r > 1
)

or zero
(
γxi

T xj + r < 1
)

while the degree is large.
There are two parameters while using RBF kernels: C and γ. It is not known

beforehand which C and γ are the best for one problem; consequently some kind
of model selection (parameter search) must be done. The goal is to identify good
(C, γ) so that the classifier can accurately predict unknown data (i.e., testing
data). Note that it may not be useful to achieve high training accuracy (i.e.,
classifiers accurately predict training data whose class labels are indeed known).
Therefore, a common way is to separate training data to two parts of which one
is considered unknown in training the classifier. Then the prediction accuracy
on this set can more precisely reflect the performance on classifying unknown
data. An improved version of this procedure is cross-validation.

We use a grid-search on C and γ using cross-validation. Basically pairs of
(C, γ) are tried and the one with the best cross-validation accuracy is picked.
We found that trying exponentially growing sequences of C and γ is a practical
method to identify good parameters (for example, C = 2−5, 2−3, · · · , 215; γ =
2−15, 2−13, · · · , 23 ).

4.5 Performance Criteria

The prediction performance is evaluated using the normalized mean squared
error (NMSE). NMSE is the measures of the deviation between the actual and
predicted values. The smaller the values of NMSE, the closer are the predicted
time series values to the actual values. The NMSE of the test set is calculated
as follows:

NMSE = 1
δ2n

n∑

i=1

(yi − ŷi)
2
, (14)

δ2 = 1
n−1

n∑

i=1

(yi − y)2 , (15)

where n represents the total number of data points in the test set. ŷi represents
the predicted value. y denotes the mean of the actual output values. Table 3
shows the NMSE values of different kernel functions compared with Croston
method and tells out the best prediction method under our numerical case.

4.6 Experimental Results

Still raise the example of Cluster 1, Figure 2 shows the experimental esults by
comparing the forecasting results of actual data, Croston method and FSVM
regression. By summing all the clusters’ result, SVMs regression method’s ac-
curacy is 11.6% higher than Croston method by the computation of standard
deviation.
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Table 3. NMSE Values of comparative methods

Methods NMSE

FSVMs RBF 0. 3720
FSVMs Linear 0. 5945
FSVMs Polynomial 0. 6054

Croston 0. 5730
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Fig. 2. Forecasting results comparison of Cluster 1

5 Conclusions

The use of FSVM in forecasting intermittent demand is studied in this paper.
The study concluded that FSVM provide a promising alternative to forecast
the intermittent demand. But further research toward an extremely changing
data situation should be done, which means the data fluctuation may affect the
performance of this method. In fact, we got confused with the experimental result
at the every beginning without the data clustering. Another further research
hint is the knowledge priority used in training the sample and determining the
function parameters. This is to say, parameters selection is free but affect the
performance a lot. A good parameter selection method should be worthy of
further research.
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