
A Welch–Berlekamp Like Algorithm for Decoding

Gabidulin Codes

Pierre Loidreau

Ecole Nationale Supérieure de Techniques Avancées
Pierre.Loidreau@ensta.fr

Abstract. In this paper, we present a new approach of the decoding
of Gabidulin codes. We show that, in the same way as decoding Reed-
Solomon codes is an instance of the problem called polynomial recon-
struction, the decoding of Gabidulin codes can be seen as an instance of
the problem of reconstruction of linearized polynomials. This approach
leads to the design of two efficient decoding algorithms inspired from the
Welch–Berlekamp decoding algorithm for Reed–Solomon codes. The first
algorithm has the same complexity as the existing ones, that is cubic in
the number of errors, whereas the second has quadratic complexity in
2.5n2 − 1.5k2.

1 Introduction

Gabidulin codes are the analogs for rank metric of Reed–Solomon codes for Ham-
ming metric. Namely, they consist of evaluation of q–polynomials of bounded de-
gree over a set of elements of a finite field, [3]. These codes are optimal codes, both
in Hamming and in rank metric and can be used in building cryptosystems, with
a much smaller public-key size than McEliece type cryptosystems whose security
relies on the difficulty of decoding in Hamming metric [5]. Several polynomial-
time decoding algorithms were designed until now enabling to decode Gabidulin
codes up to their rank error-correcting capability. It is interesting to note that
all of them have an equivalent decoding algorithm in Hamming metric for Reed–
Solomon codes, such as extended Euclidian, and Berlekamp–Massey algorithms,
[3,4,11,10].

Concerning Reed-Solomon codes there is still another decoding algorithm
based on the analogy between decoding Reed–Solomon codes and solving some
instances of the polynomial reconstruction problem [12]. Inspired by such an
analogy we reformulated the problem of decoding Gabidulin codes into the prob-
lem of q–polynomial reconstruction. In the following, we show that the problem
of decoding Gabidulin codes can be related to this problem in a simple way. We
then derive two polynomial-time decoding algorithms solving this problem. They
can be seen as the analogs in rank metric of Welch–Berlekamp algorithms, [1].

2 Rank Metric and Gabidulin Codes

Rank metric was introduced in 1985 by E.M. Gabidulin [3]. Given a vector
c = (c1, . . . , cn) of elements of a finite field GF (qm), the rank over GF (q) of c

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 36–45, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes 37

is defined as the rank of the n × m q-ary matrix obtained by expanding each
coordinate of c over a basis of GF (qm)/GF (q). It is denoted Rk(c | GF (q)).

In the same way, given a code over GF (qm), the minimum rank distance of
the code is the quantity

d = Minc∈C\{0}(Rk(c | GF (q)))

Let C be a linear code with parameters (n, k), and minimum rank distance d
over GF (qm). In rank metric the problem of bounded distance decoding of a
code can be formulated as such

Decoding(y, C, t)
Find, when it exists, c ∈ C, and e where Rk(e | GF (q)) ≤ t such that y = c+e,

where y is the received vector over GF (qm), C is a code over GF (qm), and t is
a positive integer. Provided t is less than or equal to the rank error-correcting
capability of the code C, either there is no solution or the solution is unique.

Some general purpose decoding algorithms were constructed, for example in
[2] but the best ones were designed by Ourivski and Johannson in [9]. Both are
based on writing a set of quadratic equations satisfied by the error-vector, and
linearizing a part of it by some extended search over a definite vector space.
Provided one wants to correct t rank errors over GF (qm)/GF (q) in a code of
length n, dimension k, their complexity is given by:

– First strategy: O((mt)3q(t−1)(k+1)) operations in GF (q).
– Second strategy: O((k + t)q(t−1)(m−t)) operations in GF (q).

It is highly exponential. Therefore, given a code C, we are not generally able
to solve the Decoding problem for the code C, even for small parameters.
This property enables to design Public-Key cryptosystems based on codes with
theoretically a smaller public-key size than in Hamming metric [5].

In the seminal paper, Gabidulin presented a new family of codes defined by a
vector g = (g1, . . . , gn) of elements of GF (qm) linearly independent over GF (q).
A generating matrix of such a code Gabk(g) is the matrix G such that

G =

⎛
⎜⎝

g1 · · · gn

...
. . .

...
gqk−1

1 · · · gqk−1

n

⎞
⎟⎠ ,

These codes are called Gabidulin codes and are denoted Gabk(g). They have
minimum rank distance d = n − k + 1 and possess fast-polynomial time decod-
ing algorithm. Namely, if we instantiate the problem Decoding(y, C, t) with a
Gabidulin code of minimum distance d and with t ≤ �(d − 1)/2�, there are fast
polynomial time decoding algorithms solving the problem. They are similar to
corresponding decoding algorithms for Reed-Solomon codes:

– Extended Euclidian like : ≈ t(m + 2n + t2) multiplications in GF (qm), see
[11,4];

– Berlekamp–Massey like: ≈ t(m + 2n+ 6t + t2/2) multiplications in GF (qm),
see [10].

38 P. Loidreau

3 The Reconstruction of q–Polynomials

q–polynomials (also called linearized polynomials) are polynomials of the form

P (x) =
t∑

i=0

pix
qi

, ∀i, pi ∈ GF (qm), pt �= 0.

the integer t is called q–degree of P and is denoted degq(P).
Gabidulin codes play the same role in rank metric as Reed-Solomon codes in

Hamming metric. Namely, they are evaluation codes of q–polynomials, as defined
by Øre [7,8], on a set of n elements taken from GF (qm), linearly independent over
the base field GF (q). Therefore it is natural to link a so-called Reconstruction
Problem for q–polynomials to the decoding problem in rank metric. Here is the
statement of the problem as presented in [6].

Reconstruction(y = (y1, . . . , yn),g = (g1, . . . , gn), k, t)
Find the set (V, f) where V is a non-zero q–polynomial of q-degree ≤ t and where
f is a q–polynomial of q-degree < k, such that

V (yi) = V [f(gi)], for all i = 1, . . . , n.

This problem can be related to the problem of bounded distance decoding
Gabidulin codes, by the following theorem.

Theorem 1. From any solution to Reconstruction(y,g, k, t), where
the gi’s are linearly independent over GF (q) one gets a solution to
Decoding(y, Gabk(g), t) in polynomial time.

Proof. Let L be the set of solutions of Reconstruction(y,g, k, t). Let (V1, f1) ∈
L. Then for all i = 1 . . . , n we have V1(yi) = V1[f1(gi)]. By linearity of V1, we
get V1(yi − f1(gi)) = 0, for all i = 1 . . . , n. This is equivalent to the fact that for

all i = 1 . . . , n, the field element ei
def
= yi − f1(gi) belong to a vector space over

GF (q) of dimension at most the q-degree of V1, that is t. Therefore, the vector
e = (e1, . . . , en) is of rank at most t and (c, e) where c = (f1(g1), . . . , f1(gn)) is
a solution of Decoding(y, Gabk(g), t). All these transformation can clearly be
computed in polynomial time. �	
Therefore, designing algorithms for reconstructing q–polynomials will enable us
to solve the decoding problem in rank metric.

4 Solving the Reconstruction Problem

Suppose we are given,

– A vector y = (y1, . . . , yn) of elements taken over the field GF (qm);
– A vector g = (g1, . . . , gn) of elements taken over the field GF (qm), that are

linearly independent over GF (q);
– Integers k, t;

A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes 39

To solve Reconstruction(y,g, k, t), we need to find the q-polynomials V of
q–degree less than or equal to t, and f of q–degree less than k such that

V (yi) = V [f(gi)], for all i = 1, . . . , n. (1)

It is a quadratic system of n equations in t+1+k variables. Basically we have
no clue on how to solve this system. A way would be to compute the Gröbner
basis of the system by adding the field equations, and then extract the finite
number of solutions by computing the number of points of the obtained variety.
However we have no precise complexity results on the difficulty the computation.

It is the reason why we consider the following system: Find (V, N), a pair of
q-polynomials, such that

⎧⎨
⎩

V (yi) = N(gi), ∀i = 1, . . . , n
degq(V) ≤ t,
degq(N) ≤ k + t − 1,

(2)

This system is a linear system whose unknowns are the k + 2t + 1 coefficients of
N and V . The following proposition gives a relation between the sets of solutions
of the two systems

Proposition 1. Any solution (V, p) of (1) provides a solution (V, N = V ◦ p)
to (2).

Proof. Let (V0, p0) be a solution of (1), then the pair (V0, N0 = V0 ◦ p0) is a
solution of (2).

Moreover, in some cases there is reciprocity.

Proposition 2. If t ≤ (n − k)/2) and if there is at least a non-zero solution
to 1), then the dimension of the vector space of solutions of (2) has dimension
equal to 1, and any non zero solution to (2) provides a solution to (1).

Proof. Suppose that the dimension of the vector space of solutions of (2) is 0.
Then the unique solution to the system is (0, 0). But from Proposition 1 it implies
that the only solution to (1) is equally (0, 0).

Now let us consider a non-zero solution (V0, p0) of 1) then any solution V, N
of (2) satisfies the following system of equations:

V0 [N(gi) − V ◦ p0(gi)] = 0, ∀i = 1, . . . , n

the q–polynomial V0 [N − V ◦ p0] (x) has q–degree less than or equal to k + 2t−
1. Since t ≤ (n − k)/2, this implie that it has degree less than or equal to
n − 1. Therefore as q–polynomials, we have V0 [N − V ◦ p0] (x) = 0, and since
q–polynomials form an integral domain for composition, we get that N = V ◦p0.
Moreover, this gives easily that there is some α ∈ GF (qm) such that (V, N) =
α(V0, V0 ◦ p0). Hence the set of solutions to (1) has the form (αV0, p0).

40 P. Loidreau

5 New Decoding Algorithms

Suppose we receive a vector y = c + e where c ∈ Gabk(g) and e has rank less
than or equal to the error-correcting capability of the code. From Proposition 2
it follows that, we only need to find one solution of the linear system (2) to get
the unique solution of Reconstruction(y,g, k, t). Once we get this solution we
can decode easily by merely computing a Euclidian division of q-polynomials.

Namely the decoding algorithm can be described as such:

1. Find a two q-polynomials (V0, N0) which are solution of (2);
2. Compute the Euclidian division of N0 by V0 and set f = N0/V0. We have

yi = f(gi) + ei,

for all i = 1, . . . , n.

The rest of the section is devoted to the description two different algorithms
solving system (2).

The second step of the algorithm is not considered here since it was al-
ready shown by Øre that the division could be computed in polynomial time.
In [7], he designed an algorithmic way of computing the Euclidian division of
q–polynomials.

The complexity of computing the Euclidian division between N0 and V0 is
(k − 1)t multiplications in GF (qm).

5.1 A Natural Algorithm

Let V def
= (v0, . . . , vt)T , where the vi’s are the coefficients of the q-polynomial V

and N def
= (n0, . . . , nk+t−1)T where the ni are the coefficients of the q-polynomial

N . Set

S =

⎛
⎜⎜⎝

g1 · · · g
[k+t−1]
1 y1 · · · y

[t]
1

...
. . .

...
...

. . .
...

gn · · · g
[k+t−1]
n yn · · · y

[t]
n

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

n

Solving (2) is equivalent to solving the system

S ×
(N

V
)

= 0. (3)

In the unknowns N and V . Therefore it costs roughly (k + 2t)3 operations over
GF (q). It is far too much to be efficiently implemented, compared to the already
existing decoding algorithms.

By considering (3), it is clear that a part of the matrix S is independent of
the received word, depending only on the parameters of the Gabidulin code.

Let us write

S =
(

G1 Y1

G2 Y2

)
,

A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes 41

where G1 =
(
g
[j]
i

)k+t,k+t−1

i=1,j=0
is the upper left (k+t)×(k+t) matrix of S. Since, by

definition, the gi’s are linearly independent, G1 an invertible matrix. Therefore
solving (3) is equivalent to solving

{N = U × (Y1V),
((T × Y1) + Y2)V = 0,

(4)

where U = −G−1
1 and T = −G2G

−1
1 can be precomputed. The complexity of

this algorithm is thus (k + t)(k + t2 + 2t) + t3/2 operations over GF (qm). Even
this complexity is not satisfactory compared to the complexity of the existing
algorithms, see section 2.

5.2 A Trickier Algorithm

We will now design another algorithm solving the polynomial reconstruction
problem. Although less natural it is also more efficient. Our goal consists in
finding q–polynomials V (y) of q–degree less than or equal to t and N(x) of
q–degree less than k + t satisfying system (2), i.e.

V (yi) − N(gi) = 0, ∀i = 1, . . . , n.

The idea is to construct two sequences of polynomials (V (i)
0 (y), N (i)

0 (x)) and
(V (i)

1 (y), N (i)
1 (x)), satisfying for i ≤ n the following property denoted by P(i)

∀k ≤ i,

{
V

(i)
0 (yk) − N

(i)
0 (gk) = 0,

V
(i)
1 (yk) − N

(i)
1 (gk) = 0,

If we manage to bound the degrees of the polynomials such that
⎧⎨
⎩

degq

(
V

(n)
0

)
≤ t

degq

(
N

(n)
0

)
≤ k − 1 + t

or

⎧⎨
⎩

degq

(
V

(n)
1

)
≤ t

degq

(
N

(n)
1

)
≤ k − 1 + t

then we have won.
Since the label i runs over n positions, if we increase the degrees of the poly-

nomials at each step then we will not be able to satisfy the condition on the
degrees. Therefore a way must be found to keep the degrees as low as possible.

Suppose that we have constructed a sequence of polynomials satisfying P(j),
for all j = 0, . . . , i < n. We show how to build polynomials satisfying P(i + 1).
First we evaluate the following quantities.

s
(i)
0

def
= V

(i)
0 (yi+1) − N

(i)
0 (gi+1),

s
(i)
1

def
= V

(i)
1 (yi+1) − N

(i)
1 (gi+1).

These quantities correspond to some defect in what we expect. Namely, if both
of them is equal to zero, then P(i + 1) is immediately satisfied.

There are basically two manners to build polynomials satisfying P(i + 1).

42 P. Loidreau

– First and most simple is to evaluate

N
(i+1)
0 (x) = N

(i)
0 (x)p − s

(i)
0 N

(i)
0 (x),

V
(i+1)
0 (y) = V

(i)
0 (y)p − s

(i)
0 V

(i)
0 (y),

This corresponds for q–polynomials to the interpolation of the multivariate
polynomial Q(x, y)

def
= V (y) − N(x) on the point [(yi+1, gi+1), 0]. We check

that for all k = 1 . . . i+1, we have V
(i+1)
0 (yk)−N

(i+1)
0 (xk) = 0. It is important

to note that this method increases the q–degree of non-zero polynomials by 1.
– The second one corresponds to cross evaluation. We set

N
(i+1)
1 (x) = s

(i)
0 N

(i)
1 (x) − s

(i)
1 N

(i)
0 (x),

V
(i+1)
1 (y) = s

(i)
0 V

(i)
1 (y) − s

(i)
1 V

(i)
0 (y).

This transformation implies that degq(N
(i+1)
1) ≤ Max(degq(N

(i)
1), degq

(N (i)
0)), with equality if the degrees of N

(i)
1 and N

(i)
0) are different.

Therefore this does not increase the degrees and one can check that for all
k = 1 . . . i + 1, V

(i+1)
1 (yk) − N

(i+1)
1 (xk) = 0.

This is the heart of the decoding algorithm we design. Basically there will
be steps where we increase the degrees of the polynomials by maintaining the
degrees of the others constant.

Description of the Algorithm. The algorithm is described in Table ??. We
chose not to build the sequences (N (i)

0 , V
(i)
0) and (N (i)

1 , V
(i)
1), but to modify the

considered polynomials. Hence we can save space. This implies that at every step
i both pairs of polynomials (N0, V0) and (N1, V1) satisfy the property P(i).

The algorithm consists of three steps:

– Precomputation step:
• Compute Int(g1, . . . , gk), where Int(g1, . . . , gk) denotes the unique

monic polynomial of q–degree k such that (Int(g1, . . . , gk)(gi) = 0, for
all i = 1, . . . , k.

• Compute the list Pi, i = 1, . . . , k of the k Lagrange interpolation poly-
nomials of q–degree k − 1, that is

∀ i = 1, . . . , k,

{Pi(gj) = 0, mboxifj �= i,
Pi(gi) = 1.

This set of q–polynomials form a basis of the vector space of q–
polynomials of q–degree k − 1.

For computation, we can use algorithms described by Øre in his paper for
example.

– Initialisation step:
• Set V0 = 0, and N0 = Int(g1, . . . , gk).
• Set V1(y) = y and

N1 =
k∑

i=1

yiPi.

A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes 43

From the properties of the polynomials Pi, the polynomial N1 has q–
degree k − 1 and satisfies the relations

∀ i = 1, . . . , k, N1(gi) = yi.

– Alternate increasing degree step: This is the most delicate part of the al-
gorithm. Indeed this part consists of checking the degrees of the pairs of
polynomials. We now exchange the roles of N0 and N1 and V0 and V1, so
that we will always increase the degree of N0 and V0 by one at each step. If
we set s = �(i − k)/2�, after the ith step we have
• degq(N0) = k + s;
• degq(V0) = s if i − k is even and degq(V0) = s + 1 if i − k is odd;
• degq(N1) = k + s− 1 if i− k is even and degq(N1) = k + s if i− k is odd;
• degq(V1) = s.

Therefore after the final step n the pair of polynomials (N1, V1) satisfy the
condition for being a solution to system (2), since degq(N1) = k + �(n −
k)/2� − 1 and degq(V1) = �(n − k)/2�.

5.3 Complexity Analysis of the Algorithm

The most complex operation is multiplying elements in finite fields compared to
squaring and additioning.

– Initialisation step: the only polynomial that cannot be precomputed is N1

consisting of a linear combination of interpolation polynomials. Hence, the
complexity of computing N1 is k2 multiplications in GF (qm).

– Alternate Incresing Degree step: Let us evaluate the complexity of the algo-
rithm at step i ≥ k + 1
• Computation of s0 and s1: In any case, it is easy to check that either

in the even of in the odd case, the computation it takes exactly 2i − 1
multiplications.

• Computing s0N1(x)−s1N0(x) and s0V1(y)−s1V0(y) costs equally 2i−1
multiplications.

• Computing N0(x)q − s0N0(x), and V0(x)q − s0V0(x) costs i multiplica-
tions.

Therefore, at every step k + 1 ≤ i ≤ n, one has to compute 5i − 2 multipli-
cations. Hence the total number of multiplications for this step is:

n∑
i=k+1

5i − 2 =
5
2
(n2 − k2) +

n − k

2
− 2,

multiplications in GF (qm).

The overall complexity gives about 5
2n2 − 3

2k2 + n−k
2 multiplications.

44 P. Loidreau

Table 1. Algorithm for solving the linear system

Input: A Gabidulin code Gabk(g) of length n, and a vector y = (y1, . . . , yn) at rank
distance less than or equal to t = �(d − 1)/2� from Gabk(g).
Output: A pair of polynomials (N1, V1) satisfying system (2)

1. Initialisation step:
– V0(y) ← 0 and V1(y) ← y,
– N0(x) ← Int(g1, . . . , gk) and N1(x) ← ∑k

i=1 yiPi.
2. Alternate increasing degree step

For i ∈ {k + 1, . . . , n} do
– s0 ← V0(yi) − N0(gi) and s1 ← V1(yi) − N1(gi),
– Exchange N0 and N1, V0 and V1, s0 and s1

– Compute
(a) N1(x) ← s0N1(x) − s1N0(x),
(b) V1(y) ← s0V1(y) − s1V0(y),
(c) N0(x) ← N0(x)q − s0N0(x),
(d) V0(y) ← V0(y)q − s0V0(y).

3. Return (N1, V1).

6 Conclusion

We implemented both algorithms as well as the extended Euclidian algorithm
in Magma language. It appears, that the first approach is not faster than the
extended Euclidian, and has approximately the same complexity, a little less
efficient nevertheless.

Computer simulations made in MAGMA show that our second algorithm with
complexity 5/2n2 − 3/2k2 is almost always faster than the extended Euclidian.
The thing is that the complexity of the latter is roughly in O(t3 + 2nt). This
implies that whenever, t is great, the complexity is cubic, whereas when t is
small, then the dimension k can be high, Thus reducing the complexity of our
algorithm.

References

1. E. R. Berlekamp and L. Welch. Error correction of algebraic block codes. US
Patent, Number 4,633,470, 1986.

2. F. Chabaud and J. Stern. The cryptographic security of the syndrome decoding
problem for rank distance codes. In K. Kim and T. Matsumoto, editors, Advances in
Cryptology - ASIACRYPT ’96, volume 1163 of LNCS. Springer-Verlag, November
1996.

3. E. M. Gabidulin. Theory of codes with maximal rank distance. Problems of
Information Transmission, 21:1–12, July 1985.

4. E. M. Gabidulin. A fast matrix decoding algorithm for rank-error correcting codes.
In G. Cohen, S. Litsyn, A. Lobstein, and G. Zémor, editors, Algebraic coding,
volume 573 of LNCS, pages 126–133. Springer-Verlag, 1991.

A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes 45

5. E .M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a non-
commutative ring and their application in cryptology. In D. W. Davies, editor,
Advances in Cryptology – EUROCRYPT’91, volume 547 of LNCS, pages 482–489.
Springer-Verlag, 1991.

6. P. Loidreau. Sur la reconstruction des polynômes linéaires : un nouvel algorithme
de décodage des codes de Gabidulin. Comptes Rendus de l’Académie des Sciences:
Série I, 339(10):745–750, 2004.

7. Ø. Ore. On a special class of polynomials. Transactions of the American Mathe-
matical Society, 35:559–584, 1933.

8. Ø. Ore. Contribution to the theory of finite fields. Transactions of the American
Mathematical Society, 36:243–274, 1934.

9. A. Ourivski and T. Johannson. New technique for decoding codes in the rank
metric and its cryptography applications. Problems of Information Transmission,
38(3):237–246, September 2002.

10. G. Richter and S. Plass. Error and erasure decoding of rank-codes with a modified
Berlekamp-Massey algorithm. In 5th Int. ITG Conference on Source and Channel
Coding (SCC 04), 2004.

11. R. M. Roth. Maximum-Rank array codes and their application to crisscross error
correction. IEEE Transactions on Information Theory, 37(2):328–336, March 1991.

12. M. Sudan. Decoding Reed-Solomon codes beyond the error-correction diameter. In
Proceedings of the 35th Annual Allerton Conference on Communication, Control
and Computing, pages 215–224, 1997.

	Introduction
	Rank Metric and Gabidulin Codes
	The Reconstruction of q--Polynomials
	Solving the Reconstruction Problem
	New Decoding Algorithms
	A Natural Algorithm
	A Trickier Algorithm
	Complexity Analysis of the Algorithm

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

