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Preface

This volume contains refereed papers devoted to coding and cryptography. These
papers are the full versions of a selection of the best extended abstracts accepted
for presentation at the International Workshop on Coding and Cryptography
(WCC 2005) held in Bergen, Norway, March 14–18, 2005. Each of the 118 ex-
tended abstracts originally submitted to the workshop were reviewed by at least
two members of the Program Committee. As a result of this screening process,
58 papers were selected for presentation, of which 52 were eventually presented
at the workshop together with four invited talks.

The authors of the presented papers were in turn invited to submit full ver-
sions of their papers to the full proceedings. Each of the full-version submissions
were once again thoroughly examined and commented upon by at least two
reviewers. This volume is the end result of this long process.

I am grateful to the reviewers who contributed to guaranteeing the high
standards of this volume, and who are named on the next pages. It was a plea-
sure for me to work with my program co-chair Pascale Charpin, whose experi-
enced advice I have further benefited greatly from during the preparation of this
volume. Discussions with Tor Helleseth and Ángela Barbero were also useful in
putting the volume together. Finally, I would like to thank all the authors and
all the other participants of the WCC 2005 for making it in every sense a highly
enjoyable event.

March 2006 Øyvind Ytrehus
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San Ling, Ferruh Özbudak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Locally Invertible Multivariate Polynomial Matrices
Ruben G. Lobo, Donald L. Bitzer, Mladen A. Vouk . . . . . . . . . . . . . . . . . 427

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443



Second Support Weights for Binary Self-dual
Codes

Keisuke Shiromoto

Department of Information Systems
Aichi Prefectural University

Nagakute, Aichi 480-1198, Japan
keisuke@ist.aichi-pu.ac.jp

Abstract. In this work, we investigate the second generalized Hamming
weights for binary doubly-even self-dual codes from the point of view of
corresponding t-designs by the Assmus-Mattson theorem. In particular,
for extremal doubly-even self-dual codes, we shall give a bound on the
weights and determine the weights by using the block intersection num-
bers of corresponding t-designs. Moreover we study the support weight
enumerators for binary doubly-even self-dual codes and determine the
second support weight enumerators for binary extremal doubly-even self-
dual codes of length 56 and 96.

1 Introduction

Generalized Hamming weights for linear codes over finite fields were introduced
by Wei as an application in keyless cryptography ([16]). He also gave the char-
acterization of the performance of a linear code on the wire-tap channel II from
its weight hierarchy. The support weight enumerators for linear codes over finite
fields were first introduced in [5] as a generalization of the Hamming weight
enumerators, and many researchers have investigated the generalized Hamming
weights for various classes of linear codes (e.g. [15]).

As for the self-dual codes, Dougherty and Gulliver determined the second and
third generalized Hamming weights for binary self-dual codes of length up to 28
and of length 48 and 72 in [3]. Milenkovic, Coffey and Compton ([11]) determined
the third support weight enumerator for binary extremal doubly-even self-dual
codes of length 32. Chen and Coffey ([2]) studied the connection between the
trellis structures and the generalized Hamming weights of some binary extremal
self-dual codes.

The purpose of this work is to study the second generalized Hamming weights
for binary extremal doubly-even self-dual codes. For that purpose, we first con-
sider t-designs obtained from the codes by the Assmus-Mattson theorem. By
investigating the block intersection numbers of these t-designs, we shall give a
bound on the weights and determine the weights for some extremal self-dual
codes.

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 1–13, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 K. Shiromoto

2 Notation and Terminology

Let C be an [n, r] code over a finite field Fq of q elements. For a vector x =
(x1, . . . , xn) ∈ Fq and a subset D ⊆ Fn

q , we define the support of x, the support
of D, and the Hamming weight of x respectively as follows:

supp(x) = {i | xi �= 0},
Supp(D) =

⋃
x ∈ D

supp(x),

wt(x) = |supp(x)|.

We denote the set of [n,m] subcodes of C by Dm(C). For each g, 1 ≤ g ≤ r,
the g-th generalized Hamming weight (GHW) dg of C is defined by Wei ([16]) as
follows:

dg = dg(C) = min{|Supp(D)| : D ∈ Dg(C)}.

In particular, if g = 1, then d1 = d is the minimum Hamming weight of C. And
the following bound is known (cf. [16]):

(qr − 1)dr−1(C) ≤ (qr − q)dr(C). (1)

For each g, 1 ≤ g ≤ r, the g-th support weight enumerator of C is defined as

W
(g)
C (x, y) =

∑
D∈Dg(C)

xn−|Supp(D)|y|Supp(D)|

=
n∑

i=0

A
(g)
i xn−iyi,

where

A
(g)
i = |{D ∈ Dg(C) : |Supp(D)| = i}|.

In particular, if r = 1, then W (1)
C (x, y) + 1 = WC(x, y) is the Hamming weight

enumerator of C and A(1)
i = Ai(C) = Ai, i = 1, 2, . . . , n is the Hamming weight

distribution of C.
Let C⊥ be the dual code of C. A self-dual code C is an [n, n/2] code such

that C = C⊥. If C is a binary code and the Hamming weights of all codewords
of C are divisible by 4, C is called a doubly-even code. It is well-known that the
length of any binary doubly-even self-dual code is divisible by 8. The following
bound is the most famous bound on the minimum Hamming weight for binary
[n, n/2, d] doubly-even self-dual code C ([9], [8]):

d ≤ 4
⌊ n
24

⌋
+ 4.

If C meets the bound, that is, d = 4�n/24� + 4, then C is called an extremal
code.
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A t-(v, k, λ) design is a collection B of k-subsets (called blocks) of a set V of v
points, such that any t-subset of V is contained in exactly λ blocks. For t-(v, k, λ)
design (V,B), there are

λs =
λ
(
v−s
t−s

)(
k−s
t−s

)
blocks in B that contain all the points in any s-subset of V , 0 ≤ s ≤ t. In [1],
Assmus and Mattson proved the following theorem, which is called the Assmus-
Mattson Theorem.

Theorem 1. Let C be an [n, r, d] code over Fq, and let d⊥ denote the minimum
Hamming weight of C⊥. Let w = n when q = 2 and otherwise the largest integer
w satisfying

w −
(
w + q − 2
q − 1

)
< d,

defining w⊥ similarly. Suppose there is an integer t with 0 < t < d that satisfies
the following condition: the number s of i (1 ≤ i ≤ n − t) such that A⊥

i �= 0 is
at most d − t. Then for each i with d ≤ i ≤ w, the supports of codewords in C
of weight i, provided there are any, yield a t-design. Similarly, for each j with
d⊥ ≤ j ≤ min{w⊥, s}, the supports of codewords in C⊥ of weight j, provided
there are any, form a t-design.

As a consequence of the above theorem, the binary doubly-even self-dual codes
hold t-designs (cf. [6]).

Theorem 2. Let C be a binary [24m+ 8μ, 12m+ 4μ, 4m+ 4] extremal doubly-
even code for μ = 0, 1 or 2. Then the supports of codewords in C of any fixed
weight except 0 hold t-designs for the following parameters:

(a) t = 5 if μ = 0 and m ≥ 1,
(b) t = 3 if μ = 1 and m ≥ 0, and
(c) t = 1 if μ = 2 and m ≥ 0.

3 Second Support Weights for Extremal Codes

For a binary [n, r] code C and its [n, 2] subcode D = {0,x,y,x + y}, we have

|Supp(D)| = |supp(x) ∪ supp(y) ∪ supp(x + y)| = |supp(x) ∪ supp(y)|.

Thus we have that

d2(C) = min{|supp(x) ∪ supp(y)| : x,y ∈ C \ {0}, x �= y}.

Let C be a binary [n, n/2, d = 4�n/24� + 4] doubly-even self-dual code. For
C, set V = {1, 2, . . . , n} and let BC = B be the set of the supports of all the
codewords of weight d in C. From Theorem 2, we see easily that (V,B) is a
t-(n, d, λ = Ad

(
d
t

)
/
(
n
t

)
) design. For any two codewords x,y ∈ C, since the inner
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product x · y is 0 in F2, the intersection between supp(x) and supp(y) should
be even. For a block B ∈ B, we denote mB

2j by the number of blocks in B which
intersect B with 2j elements. We sometimes simply denote m2j for mB

2j when
the numbers are independent of the choice of a block B. The system of equations
was proved in [10] for t = 1, 3 or 5 (see also [14] and [4]):

d/2∑
j=0

(
2j
s

)
mB

2j = λs

(
d

s

)
(s = 0, 1, . . . , t).

For any of two distinct codewords x,y ∈ C of weight d,

wt(x + y) = wt(x) + wt(y) − 2|supp(x) ∩ supp(y)|
= 2d− 2|supp(x) ∩ supp(y)| ≥ d.

We have that |supp(x) ∩ supp(y)| ≤ d/2 and thus mB
2j = 0 for j = d/4 +

1, . . . , d/2 − 1 and mB
d = 1. Therefore it follows immediately from the above

system of equations:

d/4∑
j=0

(
2j
s

)
mB

2j = (λs − 1)
(
d

s

)
(s = 0, 1, . . . , t). (2)

Let m(C) be the size of the largest intersection between any two blocks,
that is,

m(C) = max{2j ∈ {0, 2, . . . , d/4} : mB
2j �= 0, B ∈ B}.

From the above argument and the bound (1), we have the following bounds
on the second generalized Hamming weights for binary extremal doubly-even
self-dual codes.

Theorem 3. Let C be a binary [n, n/2, d = 4�n/24�+ 4] doubly-even self-dual
code C. Then we have that

6
⌊ n
24

⌋
+ 6 ≤ d2(C) ≤ 8

⌊ n
24

⌋
+ 8 −m(C).

We set that B = {B1, B2, . . . , BAd
}. The intersection matrix of C on weight

d is defined by the Ad ×Ad matrix M = (mi,j) such that

mi,j = 2α if |Bi ∩Bj | = 2α, α = 0, 1, . . . , d/2.

We note that the matrix M is a symmetric matrix, every ith row of M contains
exactly mBi

2t ”2t”s and all of the diagonal elements are d. For example, let C be
a binary [8, 4, 4] doubly-even self-dual code having generator matrix:

G =

⎡⎢⎢⎣
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎤⎥⎥⎦ .
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Then the supports of all codewords of weight 4 form a 3-(8, 4, 1) design. From
the system of equations (2), we have that m0 = 1 and m2 = 12. Therefore the
intersection matrix M of C is as follows:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 2 2 2 2 2 2 2 2 2 0 2 2
2 4 2 2 2 2 2 2 2 2 0 2 2 2
2 2 4 2 2 2 2 2 2 0 2 2 2 2
2 2 2 4 2 2 2 2 0 2 2 2 2 2
2 2 2 2 4 2 2 0 2 2 2 2 2 2
2 2 2 2 2 4 0 2 2 2 2 2 2 2
2 2 2 2 2 0 4 2 2 2 2 2 2 2
2 2 2 2 0 2 2 4 2 2 2 2 2 2
2 2 2 0 2 2 2 2 4 2 2 2 2 2
2 2 0 2 2 2 2 2 2 4 2 2 2 2
2 0 2 2 2 2 2 2 2 2 4 2 2 2
0 2 2 2 2 2 2 2 2 2 2 4 2 2
2 2 2 2 2 2 2 2 2 2 2 2 4 0
2 2 2 2 2 2 2 2 2 2 2 2 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Define the set Δs as follows:

Δs = {S ⊆ V : |S| = s, S = Bi ∪Bj , Bi, Bj ∈ B, Bi �= Bj}.

Using the intersection matrix of a binary extremal doubly-even self-dual code,
we have the following theorems.

Theorem 4. Let C be a binary [n, n/2, d = 4�n/24�+ 4] doubly-even self-dual
code. If m0,m1, . . . ,md/2 are uniquely determined by the system of equations
(2), then

(a) |Δ2d−2α| = Adm2α/2 if α = 1, . . . , d/4 − 1, and
(b) |Δ2d−2α| = Adm2α/6 if α = d/4.

Proof. From the intersection matrix of C, for any α, α = 1, . . . d/4, the number
of all the pairs of two distinct blocks whose intersection is 2α points is Adm2α/2.

We first consider the case (a) and show that every union of two distinct blocks
whose intersection is 2α points is different from others for α = 1, . . . d/4− 1. We
assume that there exist distinct blocks B1, B2, B3, B4 ∈ B such that |B1 ∩B2| =
|B3 ∩ B4| = 2α and B1 ∪ B2 = B3 ∪ B4. Let A be the set of the intersection of
B3 and B4. Since the symmetric difference B1�(B3�B4) is also the support of
a codeword in C,

|B1�(B3�B4)| = 3d− 4α− 2|B1 ∩ (B3�B4)| ≥ d.

Thus we have that d − 2α ≥ |B1 ∩ (B3�B4)| and so A ⊆ B1. Because of
|B1 ∩ (Bi \ A)| ≥ d/2 − α for i = 3 or 4, we have that |B1 ∩ Bi| ≥ d/2 + α.
Therefore, it follows that

|B1�Bi| = |B1| + |Bi| − 2|B1 ∩Bi| ≤ d− 2α(< d).
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A contradiction. Therefore the number of cardinality 2d− 2α distinct unions of
two distinct blocks in B is Adm2α/2.

Next we consider the case (b) and show that, for any cardinality 3d/2 union
U of two distinct blocks in B, the number of pairs of two distinct blocks Bi

and Bj in B with Bi ∪ Bj = U is three. Let B1 and B2 be two distinct blocks
in B such that |B1 ∩ B2| = d/2. Since B = B1�B2 is also a block in B and
|B1 ∩B| = |B2 ∩B| = d/2, we have that

B1 ∪B2 = B1 ∪B = B2 ∪B.

Conversely, we assume that there exist two distinct blocks B3, B4 ∈ B \ {B1,
B2, B} such that B1 ∪ B2 = B3 ∪B4. If B3 intersects B1 with at most d/2 − 2
points, then B3 intersects B2 at least d/2 + 2 and so |B2�B3| ≤ d − 2. Thus
each Bj , j = 3 and 4, intersects each Bi, i = 1 and 2 with d/2 points. Suppose
that |B3 ∩ (B1 ∩ B2)| = c ≥ 1. Because of |B3 ∩ B1| = |B3 ∩ B2| = d/2,
|B3| = d/2 + d/2− c = d− c. A contradiction. So there are no such pairs of two
distinct blocks in B. Therefore the number of cardinality 3d/2 distinct unions of
two distinct blocks in B is Admd/2/6. �


Theorem 5. Let C be a binary [n, n/2, d = 4�n/24�+ 4] doubly-even self-dual
code. If m0,m1, . . . ,md/2 are uniquely determined by the system of equations
(2), then

(a) A(2)
3d/2(C) = Admd/2/6,

(b) A(2)
3d/2+2(C) = Admd/2−2/2, and

(c) A(2)
2d−2α(C) ≥ Adm2α/2 for α = 1, 2, . . . , d/4 − 2.

Proof. (c) From Theorem 4, there are at least Adm2α/2 cardinality 2d − 2α
unions of the supports of two distinct codewords in C for α = 1, 2, . . . , d/4 − 2.

(a), (b) Suppose that there exist two distinct codewords x,y ∈ C such that
wt(x) ≥ d+4, wt(y) ≥ d+4 and |supp(x)∪ supp(y)| ≤ 3d/2+2. Then we have
that

|supp(x) ∩ supp(y)| = wt(x) + wt(y) − |supp(x) ∪ supp(y)| ≥ d

2
+ 6,

and so

wt(x + y) = |supp(x) ∪ supp(y)| − |supp(x) ∩ supp(y)|
≤ (3d/2 + 2) − (d/2 + 6) = d− 4.

Thus we may assume that wt(x) = d, wt(y) = d+ 4 and |supp(x) ∪ supp(y)| ≤
3d/2 + 2. If |supp(x) ∪ supp(y)| = 3d/2 + 2, then wt(x + y) = d and so there
exist two distinct blocks in B whose union is supp(x) ∪ supp(y). If |supp(x) ∪
supp(y)| = 3d/2, then wt(x + y) = d − 2. Therefore it finds that, for any two
dimensional subcode D of C such that |Supp(D)| = 3d/2 or 3d/2+2, there exist
at least two distinct blocks in B which correspond to the supports of codewords
in D. �
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For a linear code C over Fq having generator matrix G, let C(m) be the linear
code over Fqm having generator matrix G. The following equation is proved in
[7] (cf. [13]).

Lemma 6

WC(m)(x, y) =
m∑

j=0

[m]j W
(j)
C (x, y),

where [m]j =
∏j−1

i=0 (qm − qi).

We denote the elements of F4 by 0, 1, ω, ω̄. For vectors x = (x1, . . . , xn),y =
(y1, . . . , yn) ∈ Fn

4 , the Hermitian inner product between x and y is defined by

〈x,y〉 =
n∑

i=1

xiȳi,

where ¯ is given by 0̄ = 0, 1̄ = 1 and ¯̄ω = ω. For an [n, k] code C over F4, the
Hermitian dual code is defined by

C⊥H = {y ∈ Fn
4 : 〈y,x〉 = 0, for all x ∈ C}.

If C = C⊥H , then C is called a Hermitian self-dual code.

Lemma 7. Let C be a binary [n, n/2, d] self-dual code with generator matrix G.
Then C(2) is an [n, n/2, d] Hermitian self-dual code over F4.

Proof. Let g1, g2, . . . , gn/2 be the rows of G. For any (not necessarily distinct)

two codewords x =
∑n/2

i=1 αigi, y =
∑n/2

j=1 βjgj ∈ C(2), αi, βj ∈ F4 for all i and
j, the Hermitian inner product

〈x,y〉 =
n/2∑
i=1

αi〈gi,

n/2∑
j=1

βjgj〉

=
n/2∑
i=1

n/2∑
j=1

αiβ̄j〈gi, gj〉

=
n/2∑
i=1

n/2∑
j=1

αiβ̄j(gi · gj)

is 0 in F4, where (gi · gj) denotes the inner product in F2. Thus it finds that
C(2) ⊆ (C(2))⊥H . On the other hand, since the dimension of C(2) is also n/2,
we have that |C(2)| = 4n/2. Therefore it follows that C(2) = (C(2))⊥H . From
Lemma 6, we have that A1(C(2)) = · · · = Ad−1(C(2)) = 0 and Ad(C(2)) �= 0. So
the minimum Hamming weight of C(2) is d. �

The following result is well-known as the Gleason theorem (cf. [12], [6] and [8]).
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Lemma 8. Let C be an [n, n/2] code over Fq. Then if q = 2 and C is a doubly-
even self-dual code, then

WC(x, y) =
�n/24�∑

i=0

ai(x8 + 14x4y4 + y8)n/8−3i(x4y4(x4 − y4)4)i,

and if q = 4 and C is a Hermitian self-dual code, then

WC(x, y) =
�n/6�∑
i=0

bi(x2 + 3y2)n/2−3i(y2(x2 − y2)2)i,

where the ai and bi are integers.

Proposition 9

W
(2)
C (x, y) =

1
6
{WC(2)(x, y) − 3WC(x, y) + 2} .

Proof. Applying Lemma 6 with q = 2 and m = 2, the equation immediately
follows. �


By combining Lemma 7, Lemma 8 and Proposition 9, we have the following
result.

Theorem 10. If C is a binary [n, n/2] doubly-even self-dual code, then

W
(2)
C (x, y) =

1
6

⎧⎨⎩
�n/6�∑
i=0

bi(x2 + 3y2)n/2−3i(y2(x2 − y2)2)i

−3
�n/24�∑

i=0

ai(x8 + 14x4y4 + y8)n/8−3i(x4y4(x4 − y4)4)i + 2

⎫⎬⎭ .
4 Second Generalized Hamming Weights for Some

Extremal Codes

Using the system of the equations (2), we can calculate the block intersection
numbersmi for some extremal doubly-even self-dual codes of length n. Therefore,
we can also determine the second generalized Hamming weights for these codes
by considering the numbers m(C).

Lemma 11. Let C be a binary [n, n/2, d = 4�n/24� + 4] doubly-even self-dual
code. Then d2(C) = 6 for n = 8, 16 and d2(C) = 12 for n = 24, 32.

Proof. See [3], [6] and [2]. �


Lemma 12. The second generalized Hamming weight for any [40, 20, 8] doubly-
even self-dual code C is 12.
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Proof. The supports of codewords of weight 12 in C form a 1-(40, 12, 57) design.
Because of λ0 = 285 and λ1 = 57, we have that

m0 +m2 +m4 = 284
2m2 + 4m4 = 448,

from the system of equations (2). Suppose that m4 = 0. Then it follows that
m2 = 224 and m0 = 60. Thus, there are two points v1 and v2 in a block B such
that at least m2/

(8
2

)
= 8 blocks of B that intersect B in exactly v1 and v2. Since

there are only 40 − 8 = 32 points in V which are not contained in B, at least
two of these blocks intersect in more than two points. Therefore m4 �= 0, and so
d2(C) = 12 from Theorem 3. �


Lemma 13. The second generalized Hamming weight for the [48, 24, 12] doubly-
even self-dual code C is 18.

Proof. The set of all supports of codewords of weight 12 in C forms a 5-
(48, 12, 8) design. So we can uniquely determine thatm0 = 630,m2 = 8316,m4 =
7425 and m6 = 924 �= 0 from the system of equations (2). �


Lemma 14. The second generalized Hamming weight for any [56, 28, 12] doubly-
even self-dual code C is 18.

Proof. The set of all supports of codewords of weight 12 in C forms a 3-
(56, 12, 65) design. Thus we can uniquely determine that m0 = 621,m2 =
4800,m4 = 2580 and m6 = 188 �= 0. �


Lemma 15. The second generalized Hamming weight for any [64, 32, 12] doubly-
even self-dual code C is 18 or 20.

Proof. The set of all supports of codewords of weight 12 in C forms a 1-
(64, 12, 558) design. From the system of equations (2), if m6 = 0, then 367 ≤
m4 ≤ 1671 since m0 ≥ 0 and m2 ≥ 0. Thus we have that m6 �= 0 or m4 �= 0. �


Remark 16. We have not found any code C whose second generalized Ham-
ming weight is 20 by computer search. We still conjecture that d2(C) = 18.

Lemma 17. If there exists a [72, 36, 16] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 24.

Proof. The set of all supports of codewords of weight 16 in C forms a 5-
(72, 16, 78) design. Then we have that m8 = 2310 �= 0 by the similar argument
to Lemma 13 (see also, [4]). �


Proposition 18. The second generalized Hamming weight for any [80, 40, 16]
doubly-even self-dual code C is 24 or 26.

Proof. The set of all supports of codewords of weight 16 in C forms a 3-
(80, 16, 665) design. Suppose thatm8 = 0. Then it follows that m0 = 3132,m2 =
43200,m4 = 40800 and m6 = 10432 �= 0. Thus we have that m8 �= 0 or m6 �= 0.

�
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Lemma 19. The second generalized Hamming weight for any [88, 44, 16] doubly-
even self-dual code C is 24 or 26.

Proof. The set of all supports of codewords of weight 16 in C forms a 1-
(88, 16, 5848) design. Suppose that m8 = 0. Moreover we assume that m6 = 0.
Then it follows that 14598 ≤ m4 ≤ 23388 from m0 ≥ 0 and m2 ≥ 0. Thus it
finds that there are at least �m4/

(16
4

)
� ≥ �14598/

(16
4

)
� = 9 blocks in B which

contain any 4 points v1, v2, v3, v4 in a block B. Since there are only 88− 16 = 72
points in V which are not contained in B, these blocks intersect others in except
for v1, v2, v3 and v4. Therefore we have that m6 �= 0. �


Lemma 20. If there exists a [96, 48, 20] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 30.

Proof. The set of all supports of codewords of weight 20 in C forms a 5-
(96, 20, 816) design. Then we can uniquely determine that m0 = 32505,m2 =
708300,m4 = 1561845, m6 = 792900,m8 = 116025,m10 = 5480 �= 0. �


Lemma 21. If there exists a [104, 52, 20] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 30 or 32.

Proof. The set of all supports of codewords of weight 20 in C forms a 3-
(104, 20, 7125) design. Suppose that m10 = 0. Then it follows that 9891 ≤ m8 ≤
82470 since m0 ≥ 0 and m6 ≥ 0. Therefore we have that m8 �= 0. �


Lemma 22. If there exists a [112, 56, 20] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 30, 32 or 34.

Proof. The set of all supports of codewords of weight 20 in C forms a 1-
(112, 20, 63525) design. Suppose that m10 = 0 and m8 = 0. Moreover we assume
that m6 = 0. Then it follows that 279501 ≤ m4 ≤ 317620 from m0 ≥ 0 and
m2 ≥ 0. Thus it finds that there are at least �m4/

(20
4

)
� ≥ �279501/

(20
4

)
� = 58

blocks in B which contain any 4 points v1, v2, v3, v4 in a block B. Since there
are only 112 − 20 = 92 points in V which are not contained in B, these blocks
intersect others in except for v1, v2, v3 and v4. Therefore we have thatm6 �= 0. �


Lemma 23. If there exists a [120, 60, 24] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 36 or 38.

Proof. The set of all supports of codewords of weight 24 in C forms a 5-
(120, 24, 8855) design. Suppose that m12 = 0. Then we can uniquely determine
that m10 = 419520 �= 0. �


Lemma 24. If there exists a [128, 64, 24] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 36, 38 or 40.

Proof. The set of all supports of codewords of weight 24 in C forms a 3-
(128, 24, 78430) design. Suppose that m12 = 0 and m10 = 0. Then it follows that
1048255 ≤ m8 ≤ 1713855 and so m8 �= 0. �
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Table 1.

n d t-(v, k, λ) designs d2 references
8 4 3-(8,4,1) 6 [3], etc.
16 4 1-(16,4,7) 6 [3], etc.
24 8 5-(24,8,1) 12 [6], [3], etc.
32 8 3-(32,8,7) 12 [2]
40 8 1-(40,8,57) 12
48 12 5-(48,12,8) 18 [3], [2]
56 12 3-(56,12,65) 18
64 12 1-(64,12,558) 18 or 20
72 16 5-(72,16,78) 24 [3]
80 16 3-(80,16,665) 24 or 26
88 16 1-(88,16,5848) 24 or 26
96 20 5-(96,20,816) 30
104 20 3-(104,20,7125) 30 or 32
112 20 1-(112,20,63525) 30, 32 or 34
120 24 5-(120,24,8855) 36 or 38
128 24 3-(128,24,78430) 36, 38, or 40
136 24 1-(136,24,705510) ≤ 42
144 28 5-(144,28,98280) 42 or 44

Lemma 25. If there exists a [136, 68, 24] doubly-even self-dual code C, then the
second generalized Hamming weight for C is at most 42.

Proof. The set of all supports of codewords of weight 24 in C forms a 1-
(136, 24, 705510) design. Suppose that m12 = 0, m10 = 0 and m8 = 0. Moreover
we assume that m6 = 0. Then it follows that 4468219 ≤ m4 ≤ 4233054. Thus
it finds that there are at least �m4/

(24
4

)
� ≥ �4468219/

(24
4

)
� = 421 blocks in

B which contain any 4 points v1, v2, v3, v4 in a block B. Since there are only
136− 24 = 112 points in V which are not contained in B, these blocks intersect
others in except for v1, v2, v3 and v4. Therefore we have that m6 �= 0. �


Lemma 26. If there exists a [144, 72, 28] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 42 or 44.

Proof. The set of all supports of codewords of weight 28 in C forms a 5-
(144, 28, 98280) design. Suppose that m14 = 0. Then we have that 53222 ≤
m12 ≤ 7521276 and so m12 �= 0. �


We summarize the results in the following theorem on the second generalized
Hamming weight for each extremal code of length n.

Theorem 27. If there exists a binary [n, n/2, d = 4�n/24�+4] doubly-even self-
dual code C for 8 ≤ n ≤ 144, then the second generalized Hamming weight d2 of
C is given in Table 1.

The second support weight enumerators for a [48, 24, 12] and a putative
[72, 36, 16] binary doubly-even self-dual code were found in [3]. So we shall focus
on the second support weight enumerators for the other binary doubly-even self-
dual codes. Since m0, . . . ,m6 for a binary [56, 28, 12] doubly-even self-dual codes
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Table 2.

A
(2)
i (C56) i

256620 18
10565100 20
300998880 22
5632389945 24
77887280016 26
810987952320 28
6329994271776 30
37317157650045 32
165332448557640 34
545437564471800 36
1326807463581600 38
2342437785741690 40
2938066233999120 42
2543737485612960 44
1459873538104800 46
524139462502110 48
107830495153836 50
10978269398460 52
413623584640 54
2530030237 56

A
(2)
i (C96) i

2938244480 30
186629461200 32
7045835998400 34

199291263806160 36
4574744637832000 38
87439630245125320 40

1407670349998923200 42
19162822065941055600 44
220954897445587326528 46
2159581817482038356700 48
17897349267021111990720 50
125726758328799425384400 52
748033353865421165001280 54
3763971884492563244750520 56
15984923398507198732221120 58
57139317625768079355422960 60
171327331504711070574027840 62
429083154858222192050233225 64
892973054496261690811488832 66
1534674972545912449195676400 68
2161889920680257626892426688 70
2473993764265941647156926200 72
2275231592226313773450849600 74
1659721559142483086102143440 76
945096197886559621218329280 78
411834641673293162669223180 80
133929962826423251810998080 82
31465473895466131097318000 84
5113677593380965527379136 86
541023784763938828424200 88
34041973190568146168384 90
1097865261838779477200 92
13562254143959639360 94

26894375014056762 96

and m0, . . . ,m10 for a putative binary [96, 48, 20] doubly-even self-dual codes
are uniquely determined by the system of equations (2), we have the following
results by combining Theorem 5 and Theorem 10.

Corollary 28. If C56 is a binary [56, 28, 12] doubly-even self-dual code and C96
is a putative binary [96, 48, 20] doubly-even self-dual code, then the support weight
enumerators for C56 and C96 are determined in Table 2, respectively.

Proof. From Theorem 5, it follows that A(2)
2i (C56) = 0 for i = 0, . . . , 8,

A
(2)
18 (C56) = 256620 and A(2)

20 (C56) = 10565100, and A(2)
2i (C96) = 0 for i = 0, . . . ,
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14, A(2)
30 (C96) = 2938244480 and A(2)

32 (C96) = 186629461200. So we can uniquely
determine the coefficients bi in Theorem 10 for C56 and C96. �
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Abstract. We study the capability of rank codes to correct so-called
symmetric errors beyond the d−1

2 bound. If d ≥ n+1
2 , then a code

can correct symmetric errors up to the maximal possible rank �n−1
2 �. If

d ≤ n
2 , then the error capacity depends on relations between d and n. If

(d + j) � n, j = 0, 1, . . . , m − 1, for some m, but (d + m) | n, then a code
can correct symmetric errors up to rank � d+m−1

2 �. In particular, one can
choose codes correcting symmetric errors up to rank d − 1, i.e., the error
capacity for symmetric errors is about twice more than for general errors.

1 Introduction

Let Fq be a base field and let Fqn be an extension of degree n of Fq.
The rank norm rank(M) of a matrix M ∈ Fn×n

q is defined as the algebraic
rank of this matrix, i.e., the maximal number of rows (or, columns) which are
linearly independent over Fq. The rank distance between M1 and M2 is defined
as d(M1,M2) = rank(M1−M2). A matrix code M ⊂ Fn×n

q is any set of matrices
with code distance d(M) = d = min{d(M1,M2)|M1,M2 ∈ M; M1 �= M2}.

The rank norm r(g) of a vector g = g1, g2, . . . , gn, g ∈ Fn
qn , is defined as the

maximal number of coordinates gj which are linearly independent over the base
field Fq.

A vector code V ⊂ Fn
qn is any set of vectors with code distance d(V) = d =

min{rg1 − g2 | g1, g2 ∈ V ; g1 �= g2}.
Let g0 = g1, g2, . . . , gn, gj ∈ Fqn , be a basis of Fqn over Fq. Then any vector

m = (m1,m2, . . . ,mn) ∈ Fn
qn can be uniquely represented as

m = (m1,m2, . . . ,mn) = g0M = g1, g2, . . . , gnM, (1)

where M is the n × n-matrix in Fq. One refers to the matrix M as the matrix
g0-representation of the vector m. Note that r(m) = rank(M).

Let the vector m and the matrix M be defined by Eq. (1). Let M t be the
transposed matrix. Then the vector

mt = (m̃1, m̃2, . . . , m̃n) = g0M
t = g1, g2, . . . , gnM

t (2)

is called g0-transposed of m.
If m = mt, or, equivalently, M = M t, then m is called the g0-symmetric

vector.

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 14–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Given a vector code V and a basis g0, one can get a corresponding matrix
code M in the g0-representation as V = g0M, and vice versa.

Let Vk be an (n, k, d) linear vector code with maximal rank distance d =
n − k + 1 (an MRD code). Let Mk be be the corresponding matrix code in
the g0-representation. Codes Vk containing a subcode of g0-symmetric vectors
(respectively, matrix codes Mk containing a subcode of symmetric matrices) are
of particular interest. It is known that such codes can correct not only all the
errors of rank up to

⌊
d−1
2

⌋
but also many g0-symmetric errors of rank beyond

this bound [1].
The number of correctable symmetric errors depends on n and d. In this paper,

we investigate the error capacity of codes with respect to different relations
between n and d.

If k ≤ (n + 1)/2, equivalently, d ≥ n+1
2 , then all the g0-symmetric errors up

to rank �n−1
2 � can be corrected, i.e., beyond the �(d− 1)/2� bound.

If d ≤ n
2 , then the error capacity depends on relations between d and n.

If, for some m, (d + m) |n, but (d + j) � n, j = 0, 1, . . . ,m − 1, then a code
can correct symmetric errors up to rank �d+m−1

2 �. In particular, one can choose
codes correcting symmetric errors up to rank d − 1, i.e., the error capacity for
symmetric errors is about twice the error capacity for general errors.

2 Codes Containing Symmetric Subcodes

Let
g0 = g1, g2, . . . , gn, gj ∈ Fqn , (3)

be a basis of Fqn over F. Associate with g0 the n× n-matrix

Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g[1]n

g
[2]
1 g

[2]
2 · · · g[2]n

· · · · · · · · · · · ·
g
[n−1]
1 g

[n−1]
2 · · · g[n−1]

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

We use the notation [i] := qi, if i ≥ 0 and [i] := qn+i, if i < 0. It is well known
(see, e.g., [4]) that the matrix Gn is non singular.

Definition 1. A basis g0 = g1, g2, . . . , gn is called a weak self-orthogonal
basis if

GnGT
n = Λ,

where Λ is a diagonal matrix in Fqn , not necessarily a multiple of the identity
matrix In.
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Lemma 1 ([3]). Weak self-orthogonal bases always exist.

Lemma 2 ([3]). A linear (n, k, d) MRD code Vk with the standard generator
matrix of the form

Gk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g[1]n

g
[2]
1 g

[2]
2 · · · g[2]n

· · · · · · · · · · · ·
g
[k−1]
1 g

[k−1]
2 · · · g[k−1]

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

contains an (n, 1, n) subcode consisting of symmetric matrices in g0-
representation if g0 = g1, g2, . . . , gn is a weak self-orthogonal basis. This subcode
is generated by the first row of the matrix Gk.

The code Vk is said to be generated by the basis g0.
Let Mk be the matrix g0-representation of the vector code Vk, Mt

k be the
transposed matrix code. The corresponding vector code Vt

k consists of vectors
which are g0-transposed vectors of Vk.

Lemma 3 ([3]). The parity check matrix of the code Vk is given by the last
n− k rows of the matrix (4), i. e.,

Hn−k =

⎡⎢⎢⎢⎢⎣
g
[k]
1 g

[k]
2 · · · g[k]

n

g
[k+1]
1 g

[k+1]
2 · · · g[k+1]

n

· · · · · · · · · · · ·
g
[n−1]
1 g

[n−1]
2 · · · g[n−1]

n

⎤⎥⎥⎥⎥⎦ . (6)

The parity check matrix Ĥn−k of the transposed code Vt
k is as follows:

Ĥn−k =

⎡⎢⎢⎢⎢⎣
g
[1]
1 g

[1]
2 · · · g[1]n

g
[2]
1 g

[21]
2 · · · g[2]n

· · · · · · · · · · · ·
g
[n−k]
1 g

[n−k]
2 · · · g[n−k]

n

⎤⎥⎥⎥⎥⎦ . (7)

3 Correcting Symmetric Rank Errors

Let g ∈ Vk be a code vector. Assume that a received vector is

y = g + e, (8)
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where e is an error in vector representation. The code Vk can correct errors e of
rank up to �(d− 1)/2�. Usually one calculates a syndrome

s1 = yHt
n−k = (g + e)Ht

n−k = eHt
n−k (9)

and applies one of the fast decoding algorithms (e.g., see, [5, 6]).
We start just with this procedure. If decoding is successful, then end. This

means that the rank r(e) of an error e is not greater than �d−1
2 �. Otherwise we

conclude that r(e) > �d−1
2 �.

Nevertheless we can assume that an error vector e is a g0-symmetric one, i. e.,
e = et, and continue decoding. Transpose the received vector (8) and calculate
the syndrome for the transposed code V t

k :

s2 = ytĤt
n−k = (gt + et)Ĥt

n−k = etĤt
n−k = eĤt

n−k. (10)

Then we use both s1 and s2 to find an error e possible beyond the �d−1
2 � bound.

If e is a g0-symmetric error, then end. Otherwise the decision is made that an
error is uncorrectable.

From the point of view of coding theory, this means that one considers a rank
code with an equivalent parity check matrix of the form

Hequ =

⎛⎝Hn−k

Ĥn−k

⎞⎠ . (11)

We have to find the rank distance of a code Vequ defined by the parity check
matrix (11). If rank distance of Vequ is D, then one can correct symmetric errors
up to rank �D−1

2 �.
The value of D depends on relations between the code rank distance d of the

code Vk and code length n.
The case k ≤ (n+ 1)/2, or, d ≥ n+1

2 , was investigated completely in [1]. The
equivalent parity check matrix can be rewritten after a permutation of rows and
deletion of identical rows in the form

Hequ =

⎡⎢⎢⎢⎢⎣
h1 h2 · · · hn

h
[1]
1 h

[1]
2 · · · h[1]

n

· · · · · · · · · · · ·
h

[n−2]
1 h

[n−2]
2 · · · h[n−2]

n

⎤⎥⎥⎥⎥⎦ , (12)

where hj = g
[1]
j , j = 1, 2, . . . , n. Hence the code rank distance of Vequ is exactly

D = n. Therefore all the g0-symmetric errors up to rank �n−1
2 � can be corrected,

i.e., beyond the �(d− 1)/2� bound.
Consider the case k ≥ n+2

2 , or, d ≤ n
2 . Denote g[k]

j = hj , j = 1, 2, . . . , n. Then
the equivalent parity check matrix can be rewritten after a permutation of rows
in the form
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Hequ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 · · · hn

h
[1]
1 h

[1]
2 · · · h[1]

n

· · · · · · · · · · · ·
h

[d−2]
1 h

[d−2]
2 · · · h[d−2]

n

h
[d]
1 h

[d]
2 · · · h[d]

n

h
[d+1]
1 h

[d+1]
2 · · · h[d+1]

n

· · · · · · · · · · · ·
h

[2d−2]
1 h

[2d−2]
2 · · · h[2d−2]

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

It was pointed out in [1] that this parity check matrix defines a code Vequ of
rank distance D, where d = n − k + 1 ≤ D ≤ 2d − 1. The precise value of D
depends on d and n. Here we find these precise values.

We recall the following necessary and sufficient conditions that a parity check
matrix H defines a code with rank distance d.

Lemma 4 ([5]). Let H be an r × n parity check matrix in GF (qn). Let Ys be
the set of n × s matrices in the base field GF (q) of full rank s. The matrix H
defines a code with rank distance d if and only if, for any matrix Ys ∈ Ys, s =
1, 2, . . . , d− 1, we have

rank(HYs) = s,

and there exists a matrix Yd ∈ Yd such that

rank(HYd) = d− 1 < d.

Proof. Let H be a parity check matrix of a code with rank distance d. Since
for any code d − 1 ≤ r, then for any matrix Ys ∈ Ys, s = 1, 2, . . . , d − 1,
rank(HYs) ≥ s. Assume that rank(HYs) > s for some Ys. Then there exists a
non zero s-vector y such that yYt

sH
t = 0. But a non zero n-vector yYt

s has rank
at most s < d and can not be a code vector. Thus rank(HYs) = s. On the other
hand, a code vector of rank d exists. Hence, the relation rank(HYd) = d−1 < d
must be satisfied.

The inverse statement is evident. �

Apply this Lemma to the parity check matrix Hequ.

First, we consider simple examples. Let k = n−1. Thus the original rank code
Vk is of rank distance d = 2. The equivalent parity check matrix is as follows:

Hequ =

⎡⎣h1 h2 · · · hn

h
[2]
1 h

[2]
2 · · · h[2]

n

⎤⎦ . (14)

Lemma 5. Let n be odd. Then the parity check matrix (14) defines a code of
rank distance D = 3.
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Proof. Multiply to the right the matrix (14) by a n× 2 matrix Y2 ∈ Y2 in Fq of
rank 2. Then we obtain the matrix

Z =

⎡⎣f1 f2

f q2

1 f q2

2

⎤⎦ , (15)

where f1 ∈ Fqn and f2 ∈ Fqn are linearly independent over Fq. Calculate the
determinant of Z:

det(Z) = f1f
q2

2 − f2f q2

1 = f1f
q2

2

(
1 −

(
f1
f2

)q2−1
)

(16)

Note that f1/f2 �= 1 and the field Fqn does not contain elements of order q2 − 1
because n is odd. Therefore, the matrix Z is nonsingular and by Lemma 4 the
matrix (14) defines a code of rank distance D = 3. �

In this case, the original code of rank distance 2 can correct symmetric errors of
rank 1.

Let n = 2m be even and k = n − 1. Then it is possible to choose a matrix
(15) in such a manner that f1 and f2 are linearly independent over Fq but an
element f1/f2 has order q2 − 1. Thus the conditions of Lemma 4 do not satisfy.
The equivalent parity check matrix (14) defines a code of rank distance D = 2.
Nevertheless one can show that list decoding gives a list of errors of rank 1 and
a symmetric error of rank 1 is always in this list.

In general, we have for some s and Ys ∈ Ys:

H(Ys) = HequYs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 f2 · · · fs

f
[1]
1 f

[1]
2 · · · f [1]

s

· · · · · · · · · · · ·
f

[d−2]
1 f

[d−2]
2 · · · f [d−2]

s

f
[d]
1 f

[d]
2 · · · f [d]

s

f
[d+1]
1 f

[d+1]
2 · · · f [d+1]

s

· · · · · · · · · · · ·
f

[2d−2]
1 f

[2d−2]
2 · · · f [2d−2]

s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where f1, f2, · · · , fs are linearly independent over the base field GF (q). We ex-
amine rank(HequYs) for s from 1 to 2d− 2.

1. We can consider the matrix H(Ys) as a parity check matrix of a code V(Ys)
of length s. Dimension of V(Ys) depends on rank of H(Ys). If conditions of
Lemma 4 are satisfied, then rank(HequYs) = s and dim(V(Ys)) = 0.

2. It is clear that rank distance D of the code Vequ satisfy D ≥ d since already
the first d− 1 rows of the parity check matrix (13) provide rank distance at
least d. Hence we have to consider only cases s ≥ d.
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3. Let s = d. Suppose that d | n. Then GF (qd) ⊂ GF (qn). We can choose
a matrix Yd such that elements f1, f2, · · · , fd form a basis of GF (qd).
Then f

[d]
j = fj , j = 1, 2, . . . , d. Hence we see that rank(H(Yd)) =

d − 1, dim(V(Yd)) = 1. So by Lemma 4 the the parity check matrix Hequ

defines a code with rank distance D = d.
On the other hand, if d � n, then dim(V(Yd)) = 0. Otherwise the upper part
of H(Yd), namely ⎡⎢⎢⎢⎢⎣

f1 f2 · · · fd

f
[1]
1 f

[1]
2 · · · f [1]

d

· · · · · · · · · · · ·
f

[d−2]
1 f

[d−2]
2 · · · f [d−2]

d

⎤⎥⎥⎥⎥⎦ (18)

and the lower part of H(Yd)⎡⎢⎢⎢⎢⎣
f

[d]
1 f

[d]
2 · · · f [d]

d

f
[d+1]
1 f

[d+1]
2 · · · f [d+1]

d

· · · · · · · · · · · ·
f

[2d−2]
1 f

[2d−2]
2 · · · f [2d−2]

d

⎤⎥⎥⎥⎥⎦ (19)

would define the same one-dimensional code that it is impossible. Thus the
matrix Hequ defines the MRD code of distance D ≥ d+ 1.

4. In a similar manner we can prove.

Lemma 6. Let (d + m) |n, but (d + j) � n, j = 0, 1, . . . ,m − 1, then the
parity check matrix Hequ defines a code with rank distance D ≥ d+m.

5. Finally, the following statement is valid.

Lemma 7. Let (d+ j) � n, j = 0, 1, . . . , 2d− 2, then the parity check matrix
Hequ defines a code with maximal rank distance D = 2d− 1.

Corollary 1. If n is a prime, then the parity check matrix Hequ from (13) for
all d defines a MRD code of rank distance D = 2d− 1.

4 Conclusion

We have investigated the error capacity of linear (n, k, d) MRD codes generated
by weak self-orthogonal bases. These codes allow to correct not only all errors
of rank not greater than �(d− 1)/2� but also many specific (namely, symmetric)
errors beyond this bound.

In particular, if d ≥ n+1
2 , then codes can correct symmetric errors up to rank

n−1
2 .
If d ≤ n

2 , one can choose codes correcting symmetric errors up to rank d− 1,
i.e., the error capacity for symmetric errors is about twice more than for general
errors.
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Abstract. We present an algorithm for error and erasure correction of
interleaved Reed–Solomon codes. Our algorithm is based on an algo-
rithm recently proposed by Bleichenbacher et al. This algorithm is able
to correct many error patterns beyond half the minimum distance of the
interleaved Reed–Solomon code. We extend the algorithm in a way, that
it is not only able to correct errors, but can correct both, errors and
erasures simultaneously. Furthermore we present techniques to describe
the algorithm in an efficient way. This can help to reduce the complexity
when implementing the algorithm.

1 Introduction

Recently, a decoding algorithm for interleaved Reed–Solomon codes has been
introduced in [1]. For constructing an interleaved Reed–Solomon code, l code-
words of a Reed–Solomon code RS (q;n, k, d) with length n, dimension k, and
minimum distance d = n− k + 1 consisting of symbols from the Galois field Fq

are used. These codewords are arranged row-wise into an l × n matrix C. All
matrices obtainable in this way constitute a code of length N = l · n, dimension
K = l · k, and minimum distance d with symbols from Fq. Equivalently, these
matrices can be interpreted as codewords from a code of length n, dimension
k, and minimum distance d with symbols from the field Fql . We denote such
a code by IRS(ql;n, k, d). Assume that a codeword c ∈ IRS(ql;n, k, d) ⊂ Fn

ql

has been corrupted by an additive error vector e ∈ Fn
ql of Hamming weight

θ = wt(e). If we would decode the resulting vector y = c+e by using a Bounded
Minimum Distance (BMD) decoder for all l codewords of the underlying Reed–
Solomon codewords independently, we would be able to correct the errors as long
as θ ≤ �d−1

2 �. With the decoder from [1], we will be able with high probability
to decode y, as long as

θ ≤ l
l+1 · (n− k) � θmax . (1)

� The work of Vladimir R. Sidorenko is supported by Deutsche Forschungsgemein-
schaft (DFG), Germany

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 22–35, 2006.
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From (1) we see, that depending on the choice of l, the maximum correcting
radius θmax lies within the range �d−1

2 � ≤ θmax < d−1 (except for the trivial case
d = 1). However, it should be mentioned, that this decoding algorithm corrects
errors with respect to the field Fql , not with respect to Fq. Consequently, the
errors should not occur independently in the symbols of the underlying Reed–
Solomon codes, but affect columns of C with symbols from Fq. We have such
a situation, e.g., with concatenated codes using interleaved outer codes [2]. The
decoding algorithm proposed in [1] can be seen as generalization of the Welch–
Berlekamp algorithm described in [3]. The basic idea is to localize the errors
in all words of the underlying Reed–Solomon codes simultaneously instead of
searching them independently in any word. After the positions of the errors are
determined, the values of the transmitted symbols are calculated for all l Reed–
Solomon codewords independently. This results in a linear system of equations
which is uniquely solvable with high probability, as long as (1) is fulfilled. In
the following section we describe, how such a linear system of equations can be
obtained. Then we present a technique to decompose this system of equations
into two parts, one to locate the errors and another to calculate the error values.
This enables us to solve the decoding problem more efficiently and describe it in a
concise way. Based on this description, we propose an extension of the algorithm,
capable of decoding erroneous symbols and erased symbols simultaneously. Since
the positions of the erased symbols have not to be located, erasures can be
processed with respect to the field Fq instead of Fql . This means, that erasures
can be corrected even if they occur independently in the several words of the
underlying Reed–Solomon codes.

2 Interleaved Reed–Solomon Codes

In order to obtain a decoder for correcting errors and erasures, we start with defin-
ing Reed–Solomon codes and briefly describing the algorithm proposed in [1].

Definition 1 (Reed–Solomon (RS) code). Let

{C(x)} =

{
k−1∑
i=0

Cix
i, Ci ∈ Fq

}

be the set of all polynomials of degree smaller than k with coefficients Ci from
Fq. Further, let α1, . . . , αn be n distinct elements from Fq, i.e., αi, αj ∈ Fq,
i �= j → αi �= αj. Then, a Reed–Solomon code C = RS (q;n, k, d) can be defined
as the set of vectors

CRS = {c | ci = C(αi), C(x) ∈ {C(x)} , i = 1, . . . , n} .

The minimum Hamming distance of such a code is d = n− k + 1.
Assume that a codeword c ∈ C is corrupted by adding some error vector

e = (e1, . . . , en) with weight wt(e) = θ. In oder to correct this error, the decoder
has to reconstruct the vector c from the observed vector y = c + e. There is a
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one-to-one relation between c and the polynomial C(x). Therefore, the decoder
can alternatively reconstruct the polynomial C(x) instead of c. Since the decoder
observes θ corrupted and n− θ uncorrupted symbols,we have

C(αi) �= yi ∀ i ∈ supp(e) ,
C(αi) = yi ∀ i ∈ {1, . . . , n} \ supp(e) ,

where supp(e) is the set of indices of the non-zero components in e.Now, let

Λ(x) = β ·
∏

i∈supp(e)

(x− αi) = 1 + Λ1x+ · · · + Λθx
θ

be some polynomial which is zero at all positions where the vector y differs from
c, and let β be chosen such, that Λ(0) = 1. Since |supp(e)| = wt(e), the degree
of Λ(x) is deg(Λ(x)) = θ. Further let Γ (x) = C(x) · Λ(x) = Γ0 + Γ1x + · · · +
Γθ+k−1x

θ+k−1. With this, we can write

Γ (αi) = yi · Λ(αi)|ni=1 . (2)

In this way, we obtain a linear system of n equations with 2θ + k unknowns
which are the coefficients of Γ (x) and Λ(x). If θ is small enough, i.e., θ ≤ n−k

2 ,
this linear system of equations has a unique solution and Γ (x) and Λ(x) can
uniquely be determined. Since the roots of Λ(x) correspond to the positions of
the erroneous symbols in y, we can locate the erroneous positions by determin-
ing Λ(x). Therefore Λ(x) is called error locator polynomial. The calculation of
Ĉ(x) = Γ (x)

Λ(x) gives rise to ĉ, i.e., an estimation for the uncorrupted codeword
c. As proposed in [1], this decoding method can be generalized for decoding
interleaved Reed–Solomon codes.

Definition 2 (Interleaved Reed–Solomon code). Let c(i), i = 1, . . . , l be
l codewords from a Reed–Solomon code RS (q;n, k, d) arranged row-wise in the
l × n matrix

C =

⎛⎜⎝c(1)

...
c(l)

⎞⎟⎠
with elements from Fq. With it, we define the set of matrices

CIRS =
{
C | c(i) ∈ RS (q;n, k, d) , i = 1, . . . , l

}
.

We interpret any matrix in this set as row vector of length n with elements
from the field Fql , and call CIRS an interleaved Reed–Solomon code of length n,
dimension k and minimum distance d with symbols from Fql and denote it by
IRS(ql;n, k, d).

Assume that some codeword C ∈ CIRS is corrupted by some error pattern E
consisting of symbols from Fql , i.e., assume that the decoder observes a word
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Y = C + E with elements from Fql . Equivalently, Y can be considered as
matrix with elements from Fq containing the received words y(�) = c(�) + e(�) =
(y(�)

1 , . . . , y
(�)
n ) in its rows. Since a non-zero element Ei in E = (E1, . . . , En)

affects a column of symbols of the underlying Reed–Solomon codewords, we can
perform decoding based on this underlying code but use a common error locator
polynomial Λ(x) for all l codewords. In this way, we obtain a linear system of
equations

Γ (1)(αi) = y
(1)
i · Λ(αi)

∣∣∣n
i=1

, . . . , Γ (l)(αi) = y
(l)
i · Λ(αi)

∣∣∣n
i=1

(3)

with Γ (�)(x) = C(�)(x) ·Λ(x). This system of equations has l ·n equations and l ·
(θ+k)+θ unknowns. It cannot have a unique solution, if the number of equations
is smaller than the number of unknowns. Consequently, since we want to have a
unique decoding result, the maximum error correcting radius is upper bounded
by (1). Furthermore, since the equations obtained from the l codewords of the
Reed–Solomon code could be linearly dependent, we cannot ensure a unique
solution, if the number of errors is in the range �d−1

2 � < θ ≤ l
l+1 (n−k). However,

we will demonstrate later that a unique solution exists with high probability.

3 Error Location and Correction

The linear system of equations specified by (3) can be stated as matrix equation

Ax = b . (4)

The vector x =
(
Γ (1), . . . ,Γ (l),Λ

)T

consists of the unknown coefficients Γ (�) =

(Γ (�)
0 , . . . , Γ

(�)
θ+k−1) of the polynomials Γ (�)(x) and the unknown coefficients Λ =

(Λ1, . . . , Λθ) of the polynomial Λ(x). The matrix A and the vector b can be
represented by

A =

⎛⎜⎜⎜⎝
G 0 . . . 0 −L(1)

0 G . . . 0 −L(2)

...
...

. . .
...

...
0 0 . . . G −L(l)

⎞⎟⎟⎟⎠ , and b =

⎛⎜⎜⎜⎜⎝
y(1) T

y(2) T

...
y(l) T

⎞⎟⎟⎟⎟⎠ ,

where the n × (θ + k) matrix G and the l different n × θ matrices L(�) are of
the form G =

(
gμ,ν

)
=
(
αν−1

μ

)
and L(�) =

(
lμ,ν

)
=
(
y
(�)
μ αν

μ

)
. The vector Λ is

uniquely determined by (4), provided that (1) holds and rank(A) = l ·(θ+k)+θ.
To reduce the decoding complexity, we describe a method to extract a linear

system of equations with l · (n− θ − k) equations and θ unknowns to calculate
Λ(x). For this purpose, we have a closer look at the matrix G. We observe, that
it consists of the first θ + k columns of the n× n Vandermonde matrix

V n =
(
vμ,ν

)
=
(
αν−1

μ

)
. (5)
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Let I denote an identity matrix and let V −1
n be an n × n matrix, such that

V −1
n · V n = I. Then, the matrix product V −1

n · G has the structure

V −1
n · G =

(
I
0

)
with an (θ + k) × (θ + k) identity matrix I and an (n − θ − k) × (θ + k) zero
matrix 0. Consequently, by defining the matrix

U =

⎛⎜⎜⎜⎜⎝
V −1

n 0 . . . 0

0 V −1
n

. . .
...

...
. . .

. . . 0
0 . . . 0 V −1

n

⎞⎟⎟⎟⎟⎠
and multiplying it from the left to both sides of (4), we obtain

Ãx = b̃ (6)

with

Ã = UA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 . . . 0 −W 1 · L(1)

0 0 . . . 0 −W 2 · L(1)

0 I . . . 0 −W 1 · L(2)

0 0 . . . 0 −W 2 · L(2)

...
...

. . .
...

...
0 0 . . . I −W 1 · L(l)

0 0 . . . 0 −W 2 · L(l)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and b̃ = Ub =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W 1 · y(1)T

W 2 · y(1)T

W 1 · y(2)T

W 2 · y(2)T

...

W 1 · y(l)T

W 2 · y(l)T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, the matrix W 1 consists of the first (θ + k) rows of V −1
n and W 2 consists

of the last (n−θ−k) rows of V −1
n , i.e., V −1

n =
(

W 1
W 2

)
. Considering the structure

of Ã we observe, that it consists of l stripes. The last n − θ − k rows in any
stripe have non-zero entries only in the last θ columns, which correspond to the
unknown coefficients of Λ(x). Consequently, we can use these rows to create a
smaller linear system of equations

B · ΛT = s (7)

with

B = −

⎛⎜⎜⎜⎝
W 2 · L(1)

W 2 · L(2)

...
W 2 · L(l)

⎞⎟⎟⎟⎠ , and s =

⎛⎜⎜⎜⎜⎝
W 2 · y(1)T

W 2 · y(2)T

...
W 2 · y(l)T

⎞⎟⎟⎟⎟⎠ .
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This system of equations has l ·(n−θ−k) equations and θ unknowns. If (1) holds
and rank(B) = θ, the coefficient vector Λ can be determined from it. After this,
the coefficients Γ (�) can be calculated by

Γ (�) =
(
W 1 · y(�)T + W 1 · L(�) · ΛT

)T

. (8)

It is shown in [4], that the inverse V −1
n of a Vandermonde matrix V n can be

given in a closed form by

V −1
n =

(
vμ,ν

)
= n−1

(
α−(μ−1)

ν

)
, (9)

if α1, . . . , αn ∈ Fq are the roots of xn − 1 and n is relatively prime to q. This
condition holds for Reed–Solomon codes of length n = q − 1. Whenever we
have V −1

n in the form of (9), we can use this structure to further simplify the
calculation of Λ and Γ (�) without ever calculating V −1

n explicitly. We use ρ =
n− k − θ and α(i) =

(
αi

1, α
i
2, . . . , α

i
n

)
to write the matrix product W 2 · L(�) in

the form

W 2 · L(�) =

⎛⎜⎜⎜⎜⎝
α(ρ+1)y(�)T

α(ρ+2)y(�)T
. . . α(ρ+θ)y(�)T

α(ρ)y(�)T
α(ρ+1)y(�) . . . α(ρ+θ−1)y(�)T

...
...

. . .
...

α(2)y(�)T α(3)y(�)T
. . . α(θ+1)y(�)T

⎞⎟⎟⎟⎟⎠ ,

where α(i)y(�)T
is the scalar product between the vector α(i) and the received

vector y(�)T
. We observe, that the matrix

Z = Y · V n =
(
zμ,ν

)
=
(
α(ν−1)y(μ)T

)
(10)

contains all these scalar products. Consequently, the matrix product W 2 · L(�)

can be represented as Toeplitz Matrix composed from elements of the �-th row
of Z. With this, we can represent

B = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,ρ+1 z1,ρ+2 . . . z1,ρ+θ

...
...

. . .
...

z1,2 z1,3 . . . z1,θ+1
...

...
...

zl,ρ+1 zl,ρ+2 . . . zl,ρ+θ

...
...

. . .
...

zl,2 zl,3 . . . zl,θ+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

as a matrix composed of l Toeplitz matrices with elements from Z. The vector

s = (z1,ρ, . . . , z1,1| . . . |zl,ρ, . . . , zl,1)T (12)
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can also be written by means of elements from Z. To calculate the coefficients
Γ (�), we consider the structure of the matrix product

W 1 · L(�) =

⎛⎜⎜⎜⎜⎝
α(1)y(�)T α(2)y(�)T

. . . α(θ)y(�)T

α(0)y(�)T α(n−1)y(�)T
. . . α(n−θ+1)y(�)T

...
... . . .

...
α(ρ+2)y(�)T

α(ρ+1)y(�)T
. . . α(ρ+θ+1)y(�)T

⎞⎟⎟⎟⎟⎠ ,

and the structure of the product

W 1 · y(�)T
=

⎛⎜⎜⎜⎜⎝
α(0)y(�)T

α(n−1)y(�)T

...
α(ρ+1)y(�)T

⎞⎟⎟⎟⎟⎠ .

Carefully examining (8) having this special structure in mind and regarding the
fact that Λ0 = 1, we observe, that the i-th coefficient of the polynomial Γ (�) can
be calculated by

Γ
(�)
i =

θ∑
j=0

Λjα
(n−i+j)y(�)T

=
θ∑

j=0

Λjz�,n−i+j . (13)

With this considerations, we are now ready to describe a decoding procedure,
which is able to reconstruct a codeword c from an observed vector y, provided
that θ satisfies (1) and the linear system of equations (4) has a unique solution.
Uniqueness is guaranteed for θ ≤ �n−k

2 � by the properties of the underlying
Reed–Solomon code. If θ is larger, a unique solution cannot longer be guaranteed
but exists with high probability.

For the sake of simplicity we assume here, that α1, . . . , αn ∈ Fq are the roots
of xn − 1 and n is relatively prime to q. We have this case, if we consider Reed–
Solomon codes of length n = q−1. In a first step, we use the observed word Y to
calculate the matrix Z according to (10). The elements of this matrix can be used
to create the matrix B and the vector s according to (11) and (12) respectively.
In the next step, we have to solve the linear system of equations (7) constituted
by B and s with respect to Λ. The problem here is, that the dimensions of B
and s depend on the number of errors θ. The system is solvable, if rank(B) =
rank((B|s)), where (B|s) is the matrix obtained by concatenating the matrix
B and the column vector s. If there are no errors, i.e., θ = 0, the vector s has
to be the all-zero vector. Hence, whenever we observe s = 0, we do not have to
decode anything. If we have s �= 0, we know, that θ > 0. In this case, we assume
θ = 1 and check the rank of B and (B|s). If we have rank(B) �= rank((B|s)), we
know, that the system has no solution and our assumption is wrong. In this case,
we increase θ by one and inspect the ranks again. We repeat this procedure, until
we find the smallest possible θ for which rank(B) = rank((B|s)). Furthermore,
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if rank(B) = θ holds, we know that the solution of (7) will be unique. Therefore,
if rank(B) < θ, there does not exist a unique solution and consequently our
decoding attempt fails. If we have rank(B) = θ, we solve (7) to obtain Λ,
which in turn gives rise to the error locator polynomial Λ(x). Once we found
Λ(x) we can use (13) to calculate the coefficents of the polynomials Γ (�)(x) for
� = 1, . . . , l. In the last step, we calculate the polynomials

Ĉ(�)(x) =
Γ (�)(x)
Λ(x)

∀ � = 1, . . . , l , (14)

and map them to the corresponding codeword Ĉ ∈ CIRS to obtain our decoding
result.

4 Error and Erasure Correction

Now we assume, that the received codewords are not only corrupted by errors,
but also by erasures. Unlike errors, the positions of the erasures can be detected
in the received word. Hence, we only need to locate the errors, not the erasures.
Consequently, we can correct erasures not only with respect to the field Fql , but
also with respect to the smaller field Fq. In the following, we describe a method
for correcting errors in the field Fql and erasures in the field Fq simultaneously.
Let ξ denote an erased symbol, i.e., let ξ /∈ Fq be some special symbol not
included in Fq. Furthermore, let the addition of ξ and some α ∈ Fq be defined
by α+ξ = ξ+α = ξ. Now, assume that the decoder observes a word Y , which is
corrupted by some error pattern E consisting of symbols from Fql . In addition
to this, assume that Y is also corrupted by some erasure pattern

E =

⎛⎜⎝ε(1)

...
ε(l)

⎞⎟⎠ ,

where ε(1), . . . , ε(l) ∈ {0, ξ}n are l vectors with zeros and erased symbols. In
other words, the decoder observes the word Y = C + E + E, which is the sum
of a valid codeword C, an error pattern E, and an erasure pattern E. As before,
we also can interpret

Y =

⎛⎜⎝y(1)

...
y(l)

⎞⎟⎠
as matrix with elements from {Fq ∪ ξ} containing the received words y(�) =
(y(�)

1 , . . . , y
(�)
n ).

To find a decoding method for errors and erasures, we again look at the linear
system of equations stated in (4). We consider the �-th stripe containing the
matrix L(�) and the corresponding observed vector y(�). For any symbol y(�)

i

there exists exactly one row in the �-th stripe which depends on this symbol.
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If we observe an erasure, i.e., a symbol y(�)
i with the value ξ, we do not know

anything about the transmitted symbol. Therefore we just erase the i-th row
in the �-th stripe of A and the corresponding symbol in b. To describe this
formally, we first define the operator N (y) = {i : yi ∈ Fq} as set of indices of
the non-erasure positions in some vector y. Furthermore, let

M =

⎛⎜⎝m1
...

mn

⎞⎟⎠
be a matrix with n rows and y some vector of length n. Define the projection

PN (y) [M ] =
(
mi1

T , . . . ,miκ

T
)T
, {i1, . . . , iκ} = N (y)

to be a matrix composed of the κ = |N (y)| rows of M corresponding to N (y).
With this projection, we obtain the matrices G′(�) = PN (y(�)) [G] and L′(�) =
PN (y(�)) [L], i.e.,

G′(�) =
(
gμ,ν

)
=
(
αν−1

iμ

)
and L′(�) =

(
lμ,ν

)
=
(
y
(�)
iμ
αν

iμ

)
. (15)

Furthermore, we define the punctured vectors y′(�) = (y(�)
i1
, . . . , y

(�)
iκ

) containing
all non-erased symbols of the corresponding observed vectors y(�). Now we can
state our error and erasure correcting problem as a linear system of equations

A′x = b′ (16)

with

A′ =

⎛⎜⎜⎜⎜⎝
G′(1) 0 . . . 0 −L′(1)

0 G′(2) . . . 0 −L′(2)

...
...

. . .
...

...
0 0 . . . G′(l) −L′(l)

⎞⎟⎟⎟⎟⎠ , and b =

⎛⎜⎜⎜⎜⎜⎝
y′(1) T

y′(2) T

...

y′(l) T

⎞⎟⎟⎟⎟⎟⎠ .

The vector x =
(
Γ (1), . . . ,Γ (l),Λ

)T

coincides with the one defined previously

in (4). Now, let ε(�) = n−
∣∣N (y(�)

∣∣ be the number of erased positions in the �-th
observed vector y(�). In order to determine the θ+k unknown coefficients of the
polynomial Γ (�)(x), the rank of G′(�) has to be at least θ + k. Therefore, to be
able to obtain a unique decoding result, the necessary condition

θ + ε(�) ≤ d− 1 ∀ � = 1, . . . , l (17)

has to hold. Furthermore, (16) cannot have a unique solution, when the number
of rows of A′ is smaller than the number of columns. Therefore in order to have
a unique solution we additionally have to state the necessary condition

θ +
ε

l+ 1
≤ l

l+ 1
(n− k) (18)
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with ε =
∑l

�=1 ε
(�). Considering the structure of the matrices G′(�), we observe

that they again have a Vandermonde like structure, i.e., G′(�) consists of the
first θ + k columns of the κ× κ Vandermonde matrix

V N (y(�)) =
(
vμ,ν

)
=
(
αν−1

iμ

)
(19)

with κ =
∣∣N (y(�))

∣∣. To emphasize that the corresponding Vandermonde matrix
is composed of the elements αi1 , . . . , αiκ , {i1, . . . , iκ} = N (y(�)), we denote it
in slightly misusing the notation by V N (y(�)). Let V −1

N (y(�)) be the inverse of
V N (y(�)), then we can use the matrix

U ′ =

⎛⎜⎜⎜⎜⎜⎝
V −1

N (y(1)) 0 . . . 0

0 V −1
N (y(2))

. . .
...

...
. . . . . . 0

0 . . . 0 V −1
N (y(l))

⎞⎟⎟⎟⎟⎟⎠
to calculate

Ã′ = U ′A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 . . . 0 −W
(1)
1 · L′(1)

0 0 . . . 0 −W
(1)
2 · L′(1)

0 I . . . 0 −W
(2)
1 · L′(2)

0 0 . . . 0 −W
(2)
2 · L′(2)

...
...

. . .
...

...
0 0 . . . I −W

(l)
1 · L′(l)

0 0 . . . 0 −W
(l)
2 · L′(l)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and b̃′ = U ′b′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W
(1)
1 · y(1)T

W
(1)
2 · y(1)T

W
(2)
1 · y(2)T

W
(2)
2 · y(2)T

...

W
(l)
1 · y(l)T

W
(l)
2 · y(l)T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and obtain the linear system of equations

Ã′ · x = b̃′ . (20)

As in the previous section, W
(�)
1 consists of the first (θ + k) rows of V −1

N (y(�))

and W
(�)
2 of the remaining n− θ− k− ε(�) rows. Consequently, we obtain again

a matrix with l stripes, where the last n − θ − k − ε(�) rows of the �-th stripe
only have non-zero entries in the last θ columns. However, unlike in the case
of decoding without erasures, the number of this rows can be different in any
stripe, since the size of W

(�)
2 depends on ε(�). Nevertheless, we can take these

rows to form the linear system of equations

B′ · ΛT = s′ (21)

with

B′ = −

⎛⎜⎜⎝
W

(1)
2 · L′(1)

...
W

(l)
2 · L′(l)

⎞⎟⎟⎠ , and s′ =

⎛⎜⎜⎝
W

(1)
2 · y′(1)T

...

W
(l)
2 · y′(l)T

⎞⎟⎟⎠ . (22)
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Note, that if θ+ε(�) = d−1, the corresponding matrix W
(�)
2 and also W

(�)
2 ·L′(�)

do not consist of any lines. However, even in this case Equation (21) can have
a unique solution as long as Condition (18) is still fulfilled. More precisely, we
find a solution for Λ in any case, in which we have rank(B′) = θ. If we find a
solution, the coefficients Γ (�) can be obtained from the equation

Γ (�) =
(

W
(�)
1 · y′(�)T

+ W
(�)
1 · L′(�) · ΛT

)T

(23)

provided that Condition (17) holds. Unfortunately, in the presence of erasures,
the κ =

∣∣N (y(�))
∣∣ elements αi1 , . . . , αiκ constituting the Vandermonde matrix

V N (y(�)) mostly do not fulfill the properties to give its inverse in the form of (9).
Therefore, we need a more general way to obtain the inverse V −1

N (y(�)). For the

sake of a concise notation, let βμ = αiμ∀iμ ∈ N (y(�)), and let κ =
∣∣N (y(�))

∣∣.
It is described in [5], that the inverse of the Vandermonde matrix V N (y(�)) =(
vμ,ν

)
=
(
βν−1

μ

)
is given by

V −1
N (y(�)) =

(
vμ,ν

)
=

⎛⎜⎜⎜⎜⎝(−1)ν−1Πμ
κ−ν(β1, . . . , βκ)

κ∏
k=1
k �=μ

(βk − βμ)

⎞⎟⎟⎟⎟⎠
T

, (24)

where Πμ
r (β1, . . . , βκ) is defined in analogy to an elementary symmetric function

by
Πμ

r (β1, . . . , βκ) =
∑

1≤k1<···<kr≤κ
k1,...,kr �=μ

βk1 . . . βkr .

The numerator (−1)ν−1Πi
κ−ν(β1, . . . , βκ) of (24) is just the coefficient pμ,ν of

xν−1 in the polynomial

pμ(x) =
κ∏

k=1
k �=μ

(βk − x) = pμ,1 + pμ,2x+ · · · + pμ,κx
κ−1 .

Furthermore we observe, that the denominator of (24) is just pμ(x) evaluated
for x = βμ. Consequently, we can write (24) in the less cumbersome form

V −1
N (y(�)) =

(
vμ,ν

)
=
(
pμ,ν

pμ(βμ)

)T

. (25)

From this equation we can easily show, that V −1
N (y(�)) is an inverse for V N (y(�)).

For this purpose, we verify, that

V −1
N (y(�))V N (y(�)) =

[
V −1

N (y(�))

]T [
V N (y(�))

]T
= I =

(
ii,j

)
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yields the identity matrix. At this matrix product, the element ii,j is obtained
by calculating the scalar product from the i-th row of [V −1

N (y(�))]
T and the j-th

column of [V N (y(�))]T :

ii,j =
ν∑

k=1

pi,k

pi(βi)
· βk−1

j =
ν∑

k=1

pi,kβ
k−1
j

pi(βi)
=
pi(βj)
pi(βi)

.

Due to the fact, that pi(x) is zero for x ∈ {β1 . . . , βi−1, βi+1, . . . , βν} and non-
zero only for x = βi, we have

ii,j =

{
1 i = j

0 i �= j
.

From this we conclude, that V −1
N (y(�)) inverts V N (y(�)).

To complete this section, we deduce an error and erasure decoding algorithm
from the discussed facts. First, we create for all � = 1, . . . , l the punctured vectors
y′(�) from the observed word Y . Then we use (25) to obtain the matrices W

(�)
2 .

With this, we can calculate the vector s′ according to (22). If we observe s′ = 0
we know, that Y is not corrupted by any errors and we set Λ(x) = 1. If s′ �= 0,
we assume θ = 1 and use (15) to calculate L′(�). Then, we create B′ according
to (22). In the same way as before, we inspect rank(B′) and rank((B′|s′)) and
increase θ if necessary until we have rank(B′) = rank((B′|s′)). Then we check,
whether rank(B′) = θ holds, i.e., whether there exists a unique solution. If no
unique solution exists, we cancel the decoding attempt with a failure. Otherwise,
we obtain Λ as solution of (21), which gives rise to the error locator polynomial
Λ(x). After this, we use (23) to obtain the coefficients Γ (�) of the polynomials
Γ (�)(x). The last step is performed in the same way as before. We use (14) to
calculate the polynomials Ĉ(x)(�) and map them to the corresponding codeword
Ĉ, which is our decoding result.

5 Probability for a Unique Decoding Result

The probability for a decoding failure is upper bounded in [1] by Pf ≤ θ/q. In
[6], this bound has recently been improved to Pf ≤ exp

(
1/ql−2

)
/q. The problem

with this bound is, that it does not depend on θ, the number of errors actually
occurred. Consequently, it only gives us a tight bound in the case θ = θmax. In
[7] the following bound on Pf is given, which depends on θ:

Pf (θ) ≤
(
ql − 1

q

ql − 1

)θ

· q
−l·(n−k−θ)+θ

q − 1
=

(
ql − 1

q

ql − 1

)θ

· q
−(l+1)(θmax−θ)

q − 1
. (26)

We use Monte Carlo methods, to verify the tightness of these bounds. For this
purpose, we randomly generate error patterns E ∈ Fn

ql with fixed Hamming
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Table 1. Probability Pf to get a decoder failure

IRS((24)3; 15, 7, 9)) IRS((25)3; 31, 15, 17))

θmax 6 12
θ 5 6 7 11 12 13

#experiments w/o unique solution 8 6.62 · 105 1 · 107 0 3.21 · 105 107

Pf ≈ 8 · 10−7 6.62 · 10−2 1 < 1 · 10−7 3.21 · 10−2 1
Bound from [6] 6.65 · 10−2 3.22 · 10−2

Bound (26) 1.02 · 10−6 6.67 · 10−2 1 3.08 · 10−8 3.23 · 10−2 1

weights wt(E) = θ. For any weight θ, 107 experiments are performed. In each
experiment we randomly generate a codeword C ∈ IRS(q, n, k, d) and add some
random error vector E, wt(E) = θ. Then we count the number of experiments,
in which our decoder is not able to find a unique solution. This yields an estima-
tion for the probability Pf . We perform these experiments for the two different
codes IRS(

(
24
)3 ; 15, 7, 9), and IRS(

(
25
)3 ; 31, 15, 17). The results are shown in

Table 1. We observe, that the bounds from [6] and [7] are quite tight if θ equals
to the maximum error correction radius θmax = l

l+1 · (n − k). For θ < �θmax�,
we are hardly able to observe any decoding failures, as predicted by (26).

6 Conclusions

In this paper, we extended the algorithm described in [1] to be able to correct
errors and erasures simultaneously. Furthermore, we presented techniques for
improving the efficiency of interleaved Reed–Solomon decoding compared to [1].
We achieve this improvement by reducing the linear system of equations used
in [1] to state the decoding problem to a smaller system of equations for locat-
ing the errors. In this way we can reduce the computational complexity of the
decoding algorithm. This reduction is obtained by multiplying a transformation
matrix based on inverse Vandermonde matrices. In most cases, this multiplica-
tion has not to be carried out explicitly, because the structure of the problem
allows it to directly give closed forms for the desired system of equations and also
for the auxiliary polynomials Γ (�)(x). This is possible by applying the results
from [4].

Based on this, we describe an algorithm which is not only able to correct
errors, but both, errors and erasures simultaneously. Unlike errors, which af-
fect a complete symbol yi ∈ Fql of the interleaved Reed–Solomon code, we can
have erased positions y(�)

i ∈ Fq with respect to the symbols of the underly-
ing Reed–Solomon code. This is explained by the fact, that the positions of
the erasures are known, i.e., they do not have to be located first. In presence
of erasures, the structure of our linear system of equations is modified such,
that obtaining the required inverse Vandermonde matrices gets a little more
involved. Therefore, we also describe a more general method to obtain the re-
quired inverse matrix based on [5]. This method is suited for our error and erasure
decoder.
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Abstract. In this paper, we present a new approach of the decoding
of Gabidulin codes. We show that, in the same way as decoding Reed-
Solomon codes is an instance of the problem called polynomial recon-
struction, the decoding of Gabidulin codes can be seen as an instance of
the problem of reconstruction of linearized polynomials. This approach
leads to the design of two efficient decoding algorithms inspired from the
Welch–Berlekamp decoding algorithm for Reed–Solomon codes. The first
algorithm has the same complexity as the existing ones, that is cubic in
the number of errors, whereas the second has quadratic complexity in
2.5n2 − 1.5k2.

1 Introduction

Gabidulin codes are the analogs for rank metric of Reed–Solomon codes for Ham-
ming metric. Namely, they consist of evaluation of q–polynomials of bounded de-
gree over a set of elements of a finite field, [3]. These codes are optimal codes, both
in Hamming and in rank metric and can be used in building cryptosystems, with
a much smaller public-key size than McEliece type cryptosystems whose security
relies on the difficulty of decoding in Hamming metric [5]. Several polynomial-
time decoding algorithms were designed until now enabling to decode Gabidulin
codes up to their rank error-correcting capability. It is interesting to note that
all of them have an equivalent decoding algorithm in Hamming metric for Reed–
Solomon codes, such as extended Euclidian, and Berlekamp–Massey algorithms,
[3,4,11,10].

Concerning Reed-Solomon codes there is still another decoding algorithm
based on the analogy between decoding Reed–Solomon codes and solving some
instances of the polynomial reconstruction problem [12]. Inspired by such an
analogy we reformulated the problem of decoding Gabidulin codes into the prob-
lem of q–polynomial reconstruction. In the following, we show that the problem
of decoding Gabidulin codes can be related to this problem in a simple way. We
then derive two polynomial-time decoding algorithms solving this problem. They
can be seen as the analogs in rank metric of Welch–Berlekamp algorithms, [1].

2 Rank Metric and Gabidulin Codes

Rank metric was introduced in 1985 by E.M. Gabidulin [3]. Given a vector
c = (c1, . . . , cn) of elements of a finite field GF (qm), the rank over GF (q) of c

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 36–45, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is defined as the rank of the n × m q-ary matrix obtained by expanding each
coordinate of c over a basis of GF (qm)/GF (q). It is denoted Rk(c | GF (q)).

In the same way, given a code over GF (qm), the minimum rank distance of
the code is the quantity

d = Minc∈C\{0}(Rk(c | GF (q)))

Let C be a linear code with parameters (n, k), and minimum rank distance d
over GF (qm). In rank metric the problem of bounded distance decoding of a
code can be formulated as such

Decoding(y, C, t)
Find, when it exists, c ∈ C, and e where Rk(e | GF (q)) ≤ t such that y = c+e,

where y is the received vector over GF (qm), C is a code over GF (qm), and t is
a positive integer. Provided t is less than or equal to the rank error-correcting
capability of the code C, either there is no solution or the solution is unique.

Some general purpose decoding algorithms were constructed, for example in
[2] but the best ones were designed by Ourivski and Johannson in [9]. Both are
based on writing a set of quadratic equations satisfied by the error-vector, and
linearizing a part of it by some extended search over a definite vector space.
Provided one wants to correct t rank errors over GF (qm)/GF (q) in a code of
length n, dimension k, their complexity is given by:

– First strategy: O((mt)3q(t−1)(k+1)) operations in GF (q).
– Second strategy: O((k + t)q(t−1)(m−t)) operations in GF (q).

It is highly exponential. Therefore, given a code C, we are not generally able
to solve the Decoding problem for the code C, even for small parameters.
This property enables to design Public-Key cryptosystems based on codes with
theoretically a smaller public-key size than in Hamming metric [5].

In the seminal paper, Gabidulin presented a new family of codes defined by a
vector g = (g1, . . . , gn) of elements of GF (qm) linearly independent over GF (q).
A generating matrix of such a code Gabk(g) is the matrix G such that

G =

⎛⎜⎝ g1 · · · gn

...
. . .

...
gqk−1

1 · · · gqk−1

n

⎞⎟⎠ ,

These codes are called Gabidulin codes and are denoted Gabk(g). They have
minimum rank distance d = n − k + 1 and possess fast-polynomial time decod-
ing algorithm. Namely, if we instantiate the problem Decoding(y, C, t) with a
Gabidulin code of minimum distance d and with t ≤ �(d − 1)/2�, there are fast
polynomial time decoding algorithms solving the problem. They are similar to
corresponding decoding algorithms for Reed-Solomon codes:

– Extended Euclidian like : ≈ t(m + 2n + t2) multiplications in GF (qm), see
[11,4];

– Berlekamp–Massey like: ≈ t(m + 2n+ 6t + t2/2) multiplications in GF (qm),
see [10].
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3 The Reconstruction of q–Polynomials

q–polynomials (also called linearized polynomials) are polynomials of the form

P (x) =
t∑

i=0

pix
qi

, ∀i, pi ∈ GF (qm), pt �= 0.

the integer t is called q–degree of P and is denoted degq(P ).
Gabidulin codes play the same role in rank metric as Reed-Solomon codes in

Hamming metric. Namely, they are evaluation codes of q–polynomials, as defined
by Øre [7,8], on a set of n elements taken from GF (qm), linearly independent over
the base field GF (q). Therefore it is natural to link a so-called Reconstruction
Problem for q–polynomials to the decoding problem in rank metric. Here is the
statement of the problem as presented in [6].

Reconstruction(y = (y1, . . . , yn),g = (g1, . . . , gn), k, t)
Find the set (V, f) where V is a non-zero q–polynomial of q-degree ≤ t and where
f is a q–polynomial of q-degree < k, such that

V (yi) = V [f(gi)], for all i = 1, . . . , n.

This problem can be related to the problem of bounded distance decoding
Gabidulin codes, by the following theorem.

Theorem 1. From any solution to Reconstruction(y,g, k, t), where
the gi’s are linearly independent over GF (q) one gets a solution to
Decoding(y, Gabk(g), t) in polynomial time.

Proof. Let L be the set of solutions of Reconstruction(y,g, k, t). Let (V1, f1) ∈
L. Then for all i = 1 . . . , n we have V1(yi) = V1[f1(gi)]. By linearity of V1, we
get V1(yi − f1(gi)) = 0, for all i = 1 . . . , n. This is equivalent to the fact that for

all i = 1 . . . , n, the field element ei
def
= yi − f1(gi) belong to a vector space over

GF (q) of dimension at most the q-degree of V1, that is t. Therefore, the vector
e = (e1, . . . , en) is of rank at most t and (c, e) where c = (f1(g1), . . . , f1(gn)) is
a solution of Decoding(y, Gabk(g), t). All these transformation can clearly be
computed in polynomial time. �

Therefore, designing algorithms for reconstructing q–polynomials will enable us
to solve the decoding problem in rank metric.

4 Solving the Reconstruction Problem

Suppose we are given,

– A vector y = (y1, . . . , yn) of elements taken over the field GF (qm);
– A vector g = (g1, . . . , gn) of elements taken over the field GF (qm), that are

linearly independent over GF (q);
– Integers k, t;
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To solve Reconstruction(y,g, k, t), we need to find the q-polynomials V of
q–degree less than or equal to t, and f of q–degree less than k such that

V (yi) = V [f(gi)], for all i = 1, . . . , n. (1)

It is a quadratic system of n equations in t+1+k variables. Basically we have
no clue on how to solve this system. A way would be to compute the Gröbner
basis of the system by adding the field equations, and then extract the finite
number of solutions by computing the number of points of the obtained variety.
However we have no precise complexity results on the difficulty the computation.

It is the reason why we consider the following system: Find (V, N), a pair of
q-polynomials, such that⎧⎨⎩V (yi) = N(gi), ∀i = 1, . . . , n

degq(V ) ≤ t,
degq(N) ≤ k + t − 1,

(2)

This system is a linear system whose unknowns are the k + 2t + 1 coefficients of
N and V . The following proposition gives a relation between the sets of solutions
of the two systems

Proposition 1. Any solution (V, p) of ( 1) provides a solution (V, N = V ◦ p)
to (2).

Proof. Let (V0, p0) be a solution of (1), then the pair (V0, N0 = V0 ◦ p0) is a
solution of (2).

Moreover, in some cases there is reciprocity.

Proposition 2. If t ≤ (n − k)/2) and if there is at least a non-zero solution
to 1), then the dimension of the vector space of solutions of (2) has dimension
equal to 1, and any non zero solution to (2) provides a solution to (1).

Proof. Suppose that the dimension of the vector space of solutions of (2) is 0.
Then the unique solution to the system is (0, 0). But from Proposition 1 it implies
that the only solution to (1) is equally (0, 0).

Now let us consider a non-zero solution (V0, p0) of 1) then any solution V, N
of (2) satisfies the following system of equations:

V0 [N(gi) − V ◦ p0(gi)] = 0, ∀i = 1, . . . , n

the q–polynomial V0 [N − V ◦ p0] (x) has q–degree less than or equal to k + 2t−
1. Since t ≤ (n − k)/2, this implie that it has degree less than or equal to
n − 1. Therefore as q–polynomials, we have V0 [N − V ◦ p0] (x) = 0, and since
q–polynomials form an integral domain for composition, we get that N = V ◦p0.
Moreover, this gives easily that there is some α ∈ GF (qm) such that (V, N) =
α(V0, V0 ◦ p0). Hence the set of solutions to (1) has the form (αV0, p0).
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5 New Decoding Algorithms

Suppose we receive a vector y = c + e where c ∈ Gabk(g) and e has rank less
than or equal to the error-correcting capability of the code. From Proposition 2
it follows that, we only need to find one solution of the linear system (2) to get
the unique solution of Reconstruction(y,g, k, t). Once we get this solution we
can decode easily by merely computing a Euclidian division of q-polynomials.

Namely the decoding algorithm can be described as such:

1. Find a two q-polynomials (V0, N0) which are solution of (2);
2. Compute the Euclidian division of N0 by V0 and set f = N0/V0. We have

yi = f(gi) + ei,

for all i = 1, . . . , n.

The rest of the section is devoted to the description two different algorithms
solving system (2).

The second step of the algorithm is not considered here since it was al-
ready shown by Øre that the division could be computed in polynomial time.
In [7], he designed an algorithmic way of computing the Euclidian division of
q–polynomials.

The complexity of computing the Euclidian division between N0 and V0 is
(k − 1)t multiplications in GF (qm).

5.1 A Natural Algorithm

Let V def
= (v0, . . . , vt)T , where the vi’s are the coefficients of the q-polynomial V

and N def
= (n0, . . . , nk+t−1)T where the ni are the coefficients of the q-polynomial

N . Set

S =

⎛⎜⎜⎝
g1 · · · g

[k+t−1]
1 y1 · · · y

[t]
1

...
. . .

...
...

. . .
...

gn · · · g
[k+t−1]
n yn · · · y

[t]
n

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭n

Solving (2) is equivalent to solving the system

S ×
(
N
V

)
= 0. (3)

In the unknowns N and V . Therefore it costs roughly (k + 2t)3 operations over
GF (q). It is far too much to be efficiently implemented, compared to the already
existing decoding algorithms.

By considering (3), it is clear that a part of the matrix S is independent of
the received word, depending only on the parameters of the Gabidulin code.

Let us write

S =
(

G1 Y1

G2 Y2

)
,
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where G1 =
(
g
[j]
i

)k+t,k+t−1

i=1,j=0
is the upper left (k+t)×(k+t) matrix of S. Since, by

definition, the gi’s are linearly independent, G1 an invertible matrix. Therefore
solving (3) is equivalent to solving{

N = U × (Y1V),
((T × Y1) + Y2)V = 0,

(4)

where U = −G−1
1 and T = −G2G

−1
1 can be precomputed. The complexity of

this algorithm is thus (k + t)(k + t2 + 2t) + t3/2 operations over GF (qm). Even
this complexity is not satisfactory compared to the complexity of the existing
algorithms, see section 2.

5.2 A Trickier Algorithm

We will now design another algorithm solving the polynomial reconstruction
problem. Although less natural it is also more efficient. Our goal consists in
finding q–polynomials V (y) of q–degree less than or equal to t and N(x) of
q–degree less than k + t satisfying system (2), i.e.

V (yi) − N(gi) = 0, ∀i = 1, . . . , n.

The idea is to construct two sequences of polynomials (V (i)
0 (y), N (i)

0 (x)) and
(V (i)

1 (y), N (i)
1 (x)), satisfying for i ≤ n the following property denoted by P(i)

∀k ≤ i,

{
V

(i)
0 (yk) − N

(i)
0 (gk) = 0,

V
(i)
1 (yk) − N

(i)
1 (gk) = 0,

If we manage to bound the degrees of the polynomials such that⎧⎨⎩degq

(
V

(n)
0

)
≤ t

degq

(
N

(n)
0

)
≤ k − 1 + t

or

⎧⎨⎩degq

(
V

(n)
1

)
≤ t

degq

(
N

(n)
1

)
≤ k − 1 + t

then we have won.
Since the label i runs over n positions, if we increase the degrees of the poly-

nomials at each step then we will not be able to satisfy the condition on the
degrees. Therefore a way must be found to keep the degrees as low as possible.

Suppose that we have constructed a sequence of polynomials satisfying P(j),
for all j = 0, . . . , i < n. We show how to build polynomials satisfying P(i + 1).
First we evaluate the following quantities.

s
(i)
0

def
= V

(i)
0 (yi+1) − N

(i)
0 (gi+1),

s
(i)
1

def
= V

(i)
1 (yi+1) − N

(i)
1 (gi+1).

These quantities correspond to some defect in what we expect. Namely, if both
of them is equal to zero, then P(i + 1) is immediately satisfied.

There are basically two manners to build polynomials satisfying P(i + 1).
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– First and most simple is to evaluate

N
(i+1)
0 (x) = N

(i)
0 (x)p − s

(i)
0 N

(i)
0 (x),

V
(i+1)
0 (y) = V

(i)
0 (y)p − s

(i)
0 V

(i)
0 (y),

This corresponds for q–polynomials to the interpolation of the multivariate
polynomial Q(x, y)

def
= V (y) − N(x) on the point [(yi+1, gi+1), 0]. We check

that for all k = 1 . . . i+1, we have V
(i+1)
0 (yk)−N

(i+1)
0 (xk) = 0. It is important

to note that this method increases the q–degree of non-zero polynomials by 1.
– The second one corresponds to cross evaluation. We set

N
(i+1)
1 (x) = s

(i)
0 N

(i)
1 (x) − s

(i)
1 N

(i)
0 (x),

V
(i+1)
1 (y) = s

(i)
0 V

(i)
1 (y) − s

(i)
1 V

(i)
0 (y).

This transformation implies that degq(N
(i+1)
1 ) ≤ Max(degq(N

(i)
1 ), degq

(N (i)
0 )), with equality if the degrees of N

(i)
1 and N

(i)
0 ) are different.

Therefore this does not increase the degrees and one can check that for all
k = 1 . . . i + 1, V

(i+1)
1 (yk) − N

(i+1)
1 (xk) = 0.

This is the heart of the decoding algorithm we design. Basically there will
be steps where we increase the degrees of the polynomials by maintaining the
degrees of the others constant.

Description of the Algorithm. The algorithm is described in Table ??. We
chose not to build the sequences (N (i)

0 , V
(i)
0 ) and (N (i)

1 , V
(i)
1 ), but to modify the

considered polynomials. Hence we can save space. This implies that at every step
i both pairs of polynomials (N0, V0) and (N1, V1) satisfy the property P(i).

The algorithm consists of three steps:

– Precomputation step:
• Compute Int(g1, . . . , gk), where Int(g1, . . . , gk) denotes the unique

monic polynomial of q–degree k such that (Int(g1, . . . , gk)(gi) = 0, for
all i = 1, . . . , k.

• Compute the list Pi, i = 1, . . . , k of the k Lagrange interpolation poly-
nomials of q–degree k − 1, that is

∀ i = 1, . . . , k,

{
Pi(gj) = 0, mboxifj �= i,
Pi(gi) = 1.

This set of q–polynomials form a basis of the vector space of q–
polynomials of q–degree k − 1.

For computation, we can use algorithms described by Øre in his paper for
example.

– Initialisation step:
• Set V0 = 0, and N0 = Int(g1, . . . , gk).
• Set V1(y) = y and

N1 =
k∑

i=1

yiPi.
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From the properties of the polynomials Pi, the polynomial N1 has q–
degree k − 1 and satisfies the relations

∀ i = 1, . . . , k, N1(gi) = yi.

– Alternate increasing degree step: This is the most delicate part of the al-
gorithm. Indeed this part consists of checking the degrees of the pairs of
polynomials. We now exchange the roles of N0 and N1 and V0 and V1, so
that we will always increase the degree of N0 and V0 by one at each step. If
we set s = �(i − k)/2�, after the ith step we have
• degq(N0) = k + s;
• degq(V0) = s if i − k is even and degq(V0) = s + 1 if i − k is odd;
• degq(N1) = k + s− 1 if i− k is even and degq(N1) = k + s if i− k is odd;
• degq(V1) = s.

Therefore after the final step n the pair of polynomials (N1, V1) satisfy the
condition for being a solution to system (2), since degq(N1) = k + �(n −
k)/2� − 1 and degq(V1) = �(n − k)/2�.

5.3 Complexity Analysis of the Algorithm

The most complex operation is multiplying elements in finite fields compared to
squaring and additioning.

– Initialisation step: the only polynomial that cannot be precomputed is N1
consisting of a linear combination of interpolation polynomials. Hence, the
complexity of computing N1 is k2 multiplications in GF (qm).

– Alternate Incresing Degree step: Let us evaluate the complexity of the algo-
rithm at step i ≥ k + 1
• Computation of s0 and s1: In any case, it is easy to check that either

in the even of in the odd case, the computation it takes exactly 2i − 1
multiplications.

• Computing s0N1(x)−s1N0(x) and s0V1(y)−s1V0(y) costs equally 2i−1
multiplications.

• Computing N0(x)q − s0N0(x), and V0(x)q − s0V0(x) costs i multiplica-
tions.

Therefore, at every step k + 1 ≤ i ≤ n, one has to compute 5i − 2 multipli-
cations. Hence the total number of multiplications for this step is:

n∑
i=k+1

5i − 2 =
5
2
(n2 − k2) +

n − k

2
− 2,

multiplications in GF (qm).

The overall complexity gives about 5
2n2 − 3

2k2 + n−k
2 multiplications.
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Table 1. Algorithm for solving the linear system

Input: A Gabidulin code Gabk(g) of length n, and a vector y = (y1, . . . , yn) at rank
distance less than or equal to t = �(d − 1)/2� from Gabk(g).
Output: A pair of polynomials (N1, V1) satisfying system (2)

1. Initialisation step:
– V0(y) ← 0 and V1(y) ← y,
– N0(x) ← Int(g1, . . . , gk) and N1(x) ← ∑k

i=1 yiPi.
2. Alternate increasing degree step

For i ∈ {k + 1, . . . , n} do
– s0 ← V0(yi) − N0(gi) and s1 ← V1(yi) − N1(gi),
– Exchange N0 and N1, V0 and V1, s0 and s1

– Compute
(a) N1(x) ← s0N1(x) − s1N0(x),
(b) V1(y) ← s0V1(y) − s1V0(y),
(c) N0(x) ← N0(x)q − s0N0(x),
(d) V0(y) ← V0(y)q − s0V0(y).

3. Return (N1, V1).

6 Conclusion

We implemented both algorithms as well as the extended Euclidian algorithm
in Magma language. It appears, that the first approach is not faster than the
extended Euclidian, and has approximately the same complexity, a little less
efficient nevertheless.

Computer simulations made in MAGMA show that our second algorithm with
complexity 5/2n2 − 3/2k2 is almost always faster than the extended Euclidian.
The thing is that the complexity of the latter is roughly in O(t3 + 2nt). This
implies that whenever, t is great, the complexity is cubic, whereas when t is
small, then the dimension k can be high, Thus reducing the complexity of our
algorithm.
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Abstract. This paper is devoted to the study of the weights of bi-
nary irreducible cyclic codes. We start from McEliece’s interpretation of
these weights by means of Gauss sums. Firstly, a dyadic analysis, using
the Stickelberger congruences and the Gross-Koblitz formula, enables
us to improve McEliece’s divisibility theorem by giving results on the
multiplicity of the weights. Secondly, in connection with a Schmidt and
White’s conjecture, we focus on binary irreducible cyclic codes of index
two. We show, assuming the generalized Riemann hypothesis, that there
are an infinite of such codes. Furthermore, we consider a subclass of this
family of codes satisfying the quadratic residue conditions. The param-
eters of these codes are related to the class number of some imaginary
quadratic number fields. We prove the non existence of such codes which
provide us a very elementary proof, without assuming G.R.H, that any
two-weight binary irreducible cyclic code c(m, v) of index two with v
prime greater that three is semiprimitive.

1 Introduction

In a recent paper [9], Wolfmann has proved that a two-weight binary cyclic code
is necessarily irreducible. On the other hand, it is well-known that there exist
two infinite classes of irreducible cyclic codes with at most two nonzero weights:
the subfield codes and the semiprimitive ones. Apart from these two families,
11 exceptional codes have been found by Langevin (see [4]) and, Schmidt and
White (see [6]). It has been conjectured in the later paper that this is the whole
story. This question is investigated in this paper in the case of the characteristic
two.

In the first part of this article, we recall the McEliece interpretation of the
weights of an irreducible cyclic code by means of linear combinations of Gauss
sums. McEliece’s divisibility theorem plays a significant role in the study of
weight distributions of irreducible cyclic codes. In particular, Schmidt and White
deduce a necessary and sufficient condition for an irreducible cyclic code to be
a two-weight code.

In the second part, we use the Stickelberger congruences and the Gross-Koblitz
formula to obtain two new results that improve McEliece’s theorem. We study
the Boolean functions that appear in the dyadic expansion of the weight of a

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 46–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On the Weights of Binary Irreducible Cyclic Codes 47

codeword. The estimation of their algebraic degree leads us to results on the
divisibility concerning multiplicities by means of Ax’s and Katz’s theorems.

In the last part, we are interested in Schmidt and White’s conjecture on
irreducible cyclic c(m, v) codes. Since they proved that it holds for codes of
index two (conditionally on the Generalized Riemann Hypothesis), we focus our
attention on this class of codes. We prove that, conditionally on G.R.H., there are
an infinity of binary irreducible cyclic c(m, v) codes of index two with v prime.
This result can be seen as an analogue of the Artin conjecture on primitive roots.
Thus, this family of codes seems to be interesting in view Schmidt and White’s
result. Then, we use a result of Langevin in [4] to prove that there does not exist
any two-weight irreducible cyclic c(m, v) code of index two with v > 3 prime
and v ≡ 3 (mod 4). This provides us an elementary proof, without assuming
G.R.H, of a particular instance of the Schmidt and White conjecture, namely
that any two-weight binary irreducible cyclic c(m, v) code of index two with v
prime greater that 3 is semiprimitive.

2 McEliece’s Theorem

Let L be a finite field of order q = 2m. Let n be a divisor of q − 1 and write
v = (q−1)/n. Let ζ be a primitive n-th root of unity in L. Consider the following
map Φ:

Φ : L −→ Fn
2

a �−→
(
TrL/F2(aζ

−i)
)n−1
i=0

where TrL/F2 is the trace of the field L over F2. The image Φ(L) of L by Φ is an
irreducible cyclic code of length n, denoted c(m, v), see [6] for the material about
these codes. Its dimension is equal to the multiplicative order of 2 modulo n,
denoted ordn(2). Any binary irreducible cyclic code can be viewed as a c(m, v)
code, so let us consider such codes. For an element t of L, let us denote by w(t)
the weight of Φ(t). The well-known McEliece formula gives the weight of Φ(t) in
term of Gauss sums

w(t) =
n

2(q − 1)
(
q +

∑
χ∈Γ\{1}

τL(χ)χ̄(t)
)

(1)

where Γ is the subgroup of multiplicative characters of L∗ that are orthogonal to
ζ, see [6]. The Gauss sum τL(χ) is implicitly defined with respect to the canonical
additive character, say μL, of L. By definition,

τL(χ) = −
∑

x∈L∗
χ(x)μL(x).

Note that a change of additive character produces a permutation of weights. As
in [6], let us denote by θ the greatest integer such that, for all non trivial χ ∈ Γ ,
2θ divides τL(χ). The famous Stickelberger theorem (see next section) claims

θ = min
0<j<v

S(jn)
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where S(k) denotes the sum of the bits in the binary expansion of the natural
integer k.

Theorem 1 (McEliece). All the weights of the irreducible cyclic code c(m, v)
are divisible by 2θ−1. Moreover, one of them is not divisible by 2θ.

Sketch of the proof. It suffices to group together the terms of minimal 2-adic
valuation in (1) to get the first part of the theorem. The second part comes from
the independence (modulo 2) of the multiplicative characters of L.

A two-weight code is a code with two nonzero Hamming weights. The McEliece
formula appears as the Fourier inversion formula of the map t �→ f(t) =
qz(t) − n, where z(t) denotes the number of zero components of the codeword
Φ(t). Moreover if G denotes the group of order n in L∗, the map f(t) is de-
fined over the quotient group V = L∗/G. Let us set f := ordv(2), and since
nv = 2m − 1, f divides m and we set m = fs.

Theorem 2 (Schmidt-White). The irreducible cyclic code c(m, v) is a two-
weight code if and only if there exists an integer k satisfying the three conditions

(i) k divides v − 1
(ii) k2sθ ≡ ±1 (mod v)
(iii) k(v − k) = (v − 1)2s(f−2θ)

Sketch of the proof. Using Fourier analysis, one can prove that

D = {t ∈ V | 2θ divides w(t)}
is a difference set of order 2f−2θ implying (iii). This set or its complementary
is a (v, k, λ) difference set satisfying (i) & (ii). Surprisingly, the three conditions
are sufficient.

Traditionally, one says that 2 is semiprimitive modulo v when −1 is in the group
generated by 2 in (Z/vZ)∗. In this case, all the Gauss sums are rationals, equal
to

√
q whence θ = f/2, and the code c(m, v) is a two-weight code with k = 1.

Each of these assertions characterizes the semiprimitivity.

3 Dyadic Weight Formula

In this section, we analyse dyadicaly the function

f(t) =
∑

1�=χ∈Γ

τL(χ)χ̄(t) = 2θ
+∞∑
i=0

fi(t)2i (2)

where the fi are Boolean functions i.e. map L into {0, 1}. By definition, see [7],
the degree of a Boolean function f defined over a F2-space E of dimension m is
equal to the smallest degree of a polynomial p ∈ F2[X1, X2, . . . , Xm] such that

∀(x1, x2, . . . , xm) ∈ Fm
2

p(x1, x2, . . . , xm) ≡ f(x1β1 + x2β2 + · · · + xmβm) (mod 2),

where (β1, β2, . . . , βm) is any basis of L considered has a vector space over F2.
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In the first part of this section, we use the Stickelberger’s congruences to
determine the algebraic degree of f0. In the second part, we will use the Gross-
Koblitz formula to give an upper bound on the degree of f1. For this, we realize
the finite field L as the quotient ring Z2[ξ]/(2), where ξ is a (q−1)-root of unity
in an algebraic extension of Q2 the field of 2-adic numbers. The Teichmüller
character of L, denoted by ω, is the multiplicative character of L defined by the
relation

ω(ξ (mod 2)) = ξ.

It is important to remark that t �→ ω(t) (mod 2) is nothing but the identity of
L∗. The Gross-Koblitz formula below (see [3]) claims the existence of an additive
character ψ such that, for any residue a modulo q − 1, the following holds:

τL(ω̄a, ψ) = (−2)S(a)
f−1∏
j=0

Γ2
(
1 − 〈 2ja

q − 1
〉
)

(3)

where S(a) = a0 + a1 + . . .+ af−1 is the sum of the bits of a =
∑f−1

i=0 ai2i, 〈x〉
is the fractional part of x, and Γp the 2-adic gamma function defined by

∀k ∈ N, Γ2(k) = (−1)k
∏

j<k, 2� |j
j, ∀s ∈ Z2, Γ2(s) = lim

k→s
Γ2(k).

3.1 The Function f0

The first approximation of the 2-adic gamma function gives the famous Stickel-
berger’s congruences

τL(ω̄a, ψ) ≡ 2S(a) (mod 21+S(a)).

We introduce the set
J = {j | S(jn) = θ},

so that

f0(t) ≡
∑
j∈J

tjn (mod 2).

Using any F2-basis of L, the function f0 becomes a mapping from Ff
2 into F2.

Since all the exponents jn have a constant 2-ary weight equal to θ, the algebraic
degree of f0 is less or equal to θ. The previous McEliece theorem claims that
the weights are divisible by 2θ−1. The next result gives precisions concerning the
multiplicities of the weights. Let us recall that by Ax’s theorem (see [1]), for any
polynomial f ∈ F2[X1, X2, . . . , Xm] of degree k, the number of solutions in Fm

2
of the equation :

f(x1, x2, . . . , xm) = 0

is divisible by 2�
m
k �−1 where �r� denotes the smallest integer greater or equal to r.
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Theorem 3. The number of codewords of weight of dyadic valuation θ − 1 is
divisible by 2�f/θ�−1.

Proof. The weight of Φ(t) has valuation θ − 1 if and only if f0(t) = 1. By Ax’s
theorem the number of solutions is divisible by 2�f/θ�−1 since the degree of the
Boolean function f0 is less or equal to θ.

Example 1. The weights of the binary [23, 11] (subcode of the Golay code) are :
0, 8, 12 and 16 whence θ = 3 and Theorem 3 claims that the number of codewords
of weight 12 is divisible by 2�11/3�−1 = 8. According to [8], this number is
56 × 23 = 8 × 161.

Remark 1. In the case of a two-weight code, the condition (3) of the theorem
of Schmidt and White implies a divisibility by a large power of 2. It seems very
interesting to study more precisely the function f0.

3.2 The Function f1

The first values of the 2-adic gamma function are: Γ2(0) = 1, Γ2(1) = −1,
Γ2(2) = +1, Γ2(3) = −1, and Γ2(4) = 3 ≡ −1 (mod 4). In particular,

Γ2(
(
1 − 〈 a

q − 1
〉
)
≡ Γ2(1 + a0 + a12) ≡ (−1)1+a0+a0a1 (mod 4)

and we get the congruence

τL(ω̄a, ψ) ≡ (−1)Q(a)2S(a) (mod 22+S(a)) (4)

where Q(a) = f + a0a1 + a1a2 + . . .+ af−1a0. To improve our approximation of
f(t), we introduce the set K = {k ∈ N | 1 ≤ k < v, S(kn) = θ + 1} and the
partition Jε = {j ∈ J | Q(jn) ≡ ε (mod 2)}. We have

f0(t) + 2f1(t) ≡
∑
j∈J0

ωjn(t) −
∑
j∈J1

ωjn(t) + 2
∑
k∈K

ωkn(t) (mod 4).

The Boolean function f1 depends on the sets K and J1 but also of the “carry
function” g(t) corresponding to the relation∑

j∈J

ωjn(t) ≡ f0(t) + 2g(t) (mod 4).

By classical 2-adic tricks, we get:

g(t) =
1
2
(∑

j∈J

ωjn(t) − (
∑
j∈J

ωjn(t))2
)

≡
∑
j<j′

ω(j+j′)n(t) (mod 2).
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Reducing modulo 2, gluing all pieces together, we get:

f1(t) =
∑
j<j′

t(j+j′)n +
∑
j∈J1

tjn +
∑
k∈K

tkn.

Let us recall that Katz’s divisibility theorem (see [2]) implies that for any pair
of polynomials f1 and f2 ∈ F2[X1, X2, . . . , Xm] of degree k1 ≤ k2, the number
of solutions in Fm

2 of the system of equations :{
f1(x1, x2, . . . , xm) = 0
f2(x1, x2, . . . , xm) = 0

is divisible by 2�
m−k1−k2

k2
� where �r� denotes the largest integer smaller or equal

to r.

Theorem 4. Let w0 be an integer. The number of codewords with weight of the
form w 2θ−1 with w ≡ w0 (mod 4) is divisible by 2�

f−3θ
2θ �.

Proof. Let a+ 2b+ · · · be the 2-adic decomposition of w0. The weight of Φ(t) is
of the form w 2θ−1 if and only if t is a solution of the system

f0(t) = a, f1(t) = b.

The result is a consequence of the above Katz divisibility theorem since the
algebraic degrees of f0 and f1 are respectively less or equal to θ and 2θ.

Example 2. A sufficient condition to obtain a non trivial result is n > 1 and
5θ < f . The first instance is the [11, 10]-code (v = 93, θ = 2) and the second
one is the [6765, 20]-code (n = 6765, v = 155, θ = 4). According to [8], the
weight distribution is given by Tab. (1). All the weight are divisible by 8, and
the number Aw of codewords of weight w satisfy:∑

w≡0 (mod 4)

Aw = 1 + 25n ≡ 0 mod 2,

∑
w≡1 (mod 4)

Aw = (5 + 45)n ≡ 0 mod 2,

∑
w≡2 (mod 4)

Aw = (5 + 20 + 20 + 5)n ≡ 0 mod 2,

∑
w≡3 (mod 4)

Aw = (4 + 25 + 1)n ≡ 0 mod 2.

Table 1. Weight distribution of the [6765, 20] irreducible cyclic code. The number of
codewords of weight w is equal to μ × n, w̄ denotes the congruence of w

8 modulo 4.

w 3272 3280 3320 3352 3376 3392 3400 3408 3448 3504
w̄ 1 2 3 3 2 0 1 2 3 2
μ 5 5 4 25 20 25 45 20 1 5
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4 Two-Weight Binary Irreducible Cyclic Codes

4.1 Primes Which Generate Squares and Index 2 Codes

Is there infinitely many primes v such that 2 generates the squares modulo
v ? Before answering this question, recall that the Artin conjecture asserts
that 2 is a primitive root for infinitely many primes (the conjecture is proved
by Hooley assuming the Generalized Riemann Hypothesis). In other words,
there is infinitely many primes v such that the order of 2 modulo v is equal
to v − 1.

We consider here an analogue question : is there infinitely many primes v
such that 2 generates exactly the squares modulo v ? We can give an another
formulation of this question : is there infinitely many primes v such that the
order of 2 modulo v is equal to v−1

2 or equivalently such that 2 has index 2
modulo v ? Indeed, these problems are equivalent since the group (Z/vZ)∗ is
cyclic and the subgroup of squares has index 2 (v odd).

For a positive integer x, let H(x) be the cardinality of the set

{v ≤ x | v prime and ordv(2) =
v − 1

2
}.

Murata has proved (see [5]) that G.R.H. implies that for every ε > 0,

H(x) =
3
8
δπ(x) +O

(2εx log log x
log2 x

)
,

where

δ =
∏

� prime

(
1 − 1

�(�− 1)

)
is the Artin constant.

Then, under G.R.H., we can use the previous result of Murata to conclude
positively to our question: there is infinitely many primes v such that 2 has index
2 modulo v.

Recall that a code c(m, v) is said to have index 2 if the multiplicative order
of 2 modulo v is equal to ϕ(v)/2, where ϕ is the Euler function. In particular,
we have shown that:

Proposition 1. Conditionally on G.R.H., there are infinitely many index 2 bi-
nary irreducible cyclic codes c(m, v) with v prime.

Remark 2. Recall that an index 2 binary irreducible cyclic codes c(m, v) with v
prime has at most three different nonzero weights. Thus, these codes are good
candidates to be two-weight codes. By the way, we can state that, conditionally
on G.R.H., there are infinitely many binary cyclic codes with at most three
different nonzero weights.



On the Weights of Binary Irreducible Cyclic Codes 53

4.2 The Residue Quadratic Case and the Semiprimitivity

For the study of a special class of three-weight codes, Langevin in [4] introduced
more restrictive conditions on our integer v which lead us to the quadratic residue
case for v, namely the index 2 case with the additional conditions that v is an
odd prime greater than 3 with v ≡ 3 (mod 4). In other words, the integer v
satisfies the quadratic residue conditions if:

(i) v is a prime greater than 3,
(ii) ordv(2) = v−1

2 ,
(iii) v ≡ 3 (mod 4).

This case is of particular interest because of an explicit relation between the
class number h of the imaginary quadratic number field Q(

√
−v) and the Gauss

sums (see [4]).

Proposition 2. There does not exist a two-weight binary irreducible cyclic code
satisfying the quadratic residue conditions.

Proof. Let s be the integer introduced in the section (2). By theorem 3.3 of [4],
we know that the code c(m, v) has at most two weights if and only if

v + 1
4

= 2hs. (5)

The previous relation implies that:

2hs+2 ≡ 1 (mod v).

This implies that the order of 2 modulo v divides hs + 2. But, by hypothesis,
we have ordv(2) = (v − 1)/2. Then, taking the logarithm in (5), we have the
inequalities:

v − 1
2

≤ hs+ 2 = log(
v + 1

4
) + 2 (6)

implying v = 7. But this leads to a code with only one nonzero weight: the
proposition follows.

The conjecture of Schmidt and White in even characteristic states that an irre-
ducible cyclic code c(m, v) is a two-weight code if and only if it is a semiprimitive
code. They proved it, conditionally on G.R.H. for all index 2 codes. We can now
prove it also for all index 2 codes with v prime greater than 3 but without
assuming G.R.H.

Theorem 5. A binary irreducible cyclic code c(m, v) of index 2 with v prime
greater than 3 is a two-weight code if and only if it is a semiprimitive code.

Proof. The odd prime v is congruent to 1 or 3 modulo 4. The last congruence
comes to the quadratic residue case and the previous proposition implies that
the code has three weights. The first congruence v ≡ 1 (mod 4) implies that −1
is a square modulo v and thus is a power of 2 modulo v since 2 has index 2
modulo v and then generates the squares. Thus, the code is semiprimitive.

The converse is a well-known result: the semiprimitivity implies that the code
has two weights.
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Abstract. We construct a family of simple 3-(2m, 8, 14(2m − 8)/3) de-
signs, with odd m ≥ 5, from all Z4-Goethals-like codes Gk with k = 2l

and l ≥ 1. In addition, these designs imply also the existence of the other
design families constructed from the Z4-Goethals codes G1 by Ranto. In
the existence proofs we count the number of solutions to certain systems
of equations over finite fields and use Dickson polynomials and variants
of cyclotomic polynomials and identities connecting them.

1 Introduction

A t-(v, k, λ) design is a pair (X,B), where X is a v-element set of points and B
is a collection of k-element subsets of X (called blocks) with the property that
every t-element subset of X is contained in exactly λ blocks. A design is simple
if all the blocks are distinct. In this paper all designs considered are simple.

From the Z4-Goethals code G1 Shin, Kumar, and Helleseth [14] constructed a
3-(2m, 7, 14(2m−8)/3) design for oddm ≥ 5 by taking the supports of codewords
of Hamming weight 7. The supports of codewords of Hamming weight 8 in G1
were analyzed by Ranto [12] and he constructed several families of 3-designs
from the different subsets of these supports.

In [13] Ranto verified partly with computer calculations that the designs
with the same parameters as introduced in [12] can be also found from the
Z4-Goethals-like codes Gk with k ∈ {2, 4, 8, 16}.

In this paper we prove that for all the designs constructed from G1 so far we
can find a design with the same parameters from Z4-Goethals-like code Gk with
k = 2l, l ≥ 1. In addition, we conjecture that they are pairwise nonequivalent.

For a survey on t-designs and Z4-codes, see [8].
Let F be the finite field with q = 2m elements where m ≥ 5 is odd. The

parameter k for the codes Gk should satisfy gcd(k,m) = 1 (see Definition 5).

Theorem 1 (Main theorem). Supports in Gk which are disjoint unions of two
nonparallel 2-flats form a 3-

(
q, 8, 14

3 (q − 8)
)

design for all k = 2l, l ≥ 1.

� Part of the results have been published in the dissertation of the second author [13].
�� Research supported in part by the Academy of Finland (grant 108238).
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Proof of the main theorem is postponed to Sect. 5. The proofs for the next
corollaries are similar to those described in [12] for the case k = 1. More details
can be found in [13].

Corollary 1. The supports of size 7 in G2l form a 3-
(
q, 7, 14

3 (q − 8)
)

design.

Corollary 2. Certain subsets of supports of size 8 in G2l form 3-(q, 8, λ) designs
where λ has values

32q2 − 985q + 5892
60

,
(q − 8)(q − 32)(q − 49)

120
, and

56
15

(q − 8)(q − 12) .

Corollary 3. The supports of size 8 in G2l form a 3-(q, 8, λ) design with

λ =
q4 − 25q3 + 693q2 − 10030q+ 44712

120
.

All the evidence known to us so far validate the following conjecture. Interested
reader is referred to [13, Sect. 5.3] for some partial results concerning it.

Conjecture 1. All the designs above are pairwise nonequivalent for every k.

In Sect. 2 we present some useful properties of Dickson polynomials. The key
part of this paper is in Sect. 3 where we define recursively some polynomial sets
and find identities relating them. In Sect. 4 we describe some preliminaries of
Z4-codes needed to read the proof of the main theorem in Sect. 5. Finally, we
make some concluding remarks.

2 Dickson Polynomials

Definition 1. A Dickson polynomial (of the first kind) of degree n in indeter-
minate x and with parameter u is

Dn(x, u) =
�n/2�∑
i=0

n

n− i

(
n− i
i

)
(−u)ixn−2i .

Let σ1 = x1 + x2, σ2 = x1x2, and Sn = xn
1 + xn

2 be the first and second el-
ementary symmetric polynomials and the sum of nth powers in two variables.
Dickson polynomials arise from Waring’s formula [10, Theorem 1.1] in the fol-
lowing manner:

Sn = xn
1 + xn

2 =
�n/2�∑
i=0

n

n− i

(
n− i
i

)
(−σ2)iσn−2i

1 = Dn(σ1, σ2) .

All the polynomials studied in this paper have their coefficients in F or its
algebraic closure F containing F22k and hence the primitive (2k +1)-th root ρ of
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unity. We need a special case where n = 2k + 1 and by [2, Lemma 2.1] we know
that

D2k+1(x, u) = x2k+1 + ux2k−1 + u2x2k−3 + u4x2k−7 + · · · + u2k−1
x . (1)

With this identity it is quite clear that we have

D2k+1(x, u + v) = D2k+1(x, u) +D2k+1(x, v) + x2k+1 . (2)

Clearly, when u = 0 the Dickson polynomial Dn(x, 0) = xn is a permutation
polynomial of F if and only if gcd(n, q− 1) = 1. The following theorem (see e.g.
[10, Theorem 3.2]) settles the cases when u ∈ F∗.

Theorem 2. If u ∈ F∗, the Dickson polynomial Dn(x, u) is a permutation poly-
nomial of F if and only if gcd

(
n, q2 − 1

)
= 1.

We need a factorization result of D2k+1(x, u) in the next section and therefore
specialize [10, Theorem 3.12 (i)].

Theorem 3. Let βi = ρi + ρ−i. Then we have in F22k [x, y, u]

D2k+1(x, u) +D2k+1(y, u) = (x+ y)
2k−1∏
i=1

(x2 + βixy + y2 + β2
i u) .

We conclude this section with one separate well known lemma. The usual trace
function Trm : F2m → F2 is defined by

Trm(x) = x+ x2 + x4 + · · · + x2m−1
.

Lemma 1. The quadratic equation x2 + x = a with a ∈ F has two roots in F,
if Trm(a) = 0, and no roots in F if Trm(a) = 1.

Equation x2 + bx = a, where b �= 0, can be transformed to (x/b)2 + x/b = a/b2,
and the condition in the previous lemma becomes Trm

(
a/b2

)
= 0.

3 Variants of Cyclotomic Polynomials

In order to count the number of solution to one specific equation we need to
introduce several polynomials.

Definition 2. We define three sets of polynomials in F2[s] from which the last
ones are the usual cyclotomic polynomials.

w0(s) = s and wn+1(s) = wn(s)2 +
(
s2

n

+ 1
)
wn(s) + s2

n+1
+ 1 ,

f0(s) = s+ 1 and fn+1(s) = fn(s)2 + fn(s) + 1 ,

Qn(s) =
∏

1≤i≤n
gcd(i,n)=1

(s− ρi
n) where ρn is a primitive n-th root of unity.



58 J. Lahtonen, K. Ranto, and R. Vehkalahti

Table 1. Examples of polynomials

(n, i) fn(s) wn(s) Qi(s)
(0, 1) 1 + s s 1 + s
(1, 3) 1 + s + s2 1 + s + s2 w1(s)
(2, 5) 1 + s + s4 1 + s + s2 + s3 + s4 w2(s)
(3, 15) 1 + s + s2 + s4 + s8 1 + s + s3 + s4 + s5 + s7 + s8 w3(s)
(4, 17) 1 + s + s16 1 + s + s2 + · · · + s16 w4(s)
(5, 51) 1 + s + s2 + s16 + s32 1 + · · · + s5 + · · · + s32 1 + · · · + s4 + · · · + s32

As an example we give some polynomials in Table 1. For the proof of the next
lemma, see [13, Lemma 5.6].

Lemma 2. The polynomials wn(s) have the following properties:

1. wn(s) =
∑n

i=1

(
n
i

)
ti(s)2

n−i

where ti(s) =
∑2i

j=0 s
j;

2. wn(s) �= 0 for every s ∈ F;
3. Trm

(
wn+1(s)/wn(s)2

)
= 1 for every s ∈ F;

4. w2l−1(s)2 · (s+ 1) = D22l+1(s+ 1, 1) is a permutation polynomial of F.

These properties are needed in the proof of Theorem 4. Actually, the polynomials
wn(s) and fn(s) are related to each other with the following transformation.

Lemma 3. Let p(s) ∈ F[s] and define p(s) to be the resiprocal polynomial of
p(s + 1), i.e., p(s) = sdeg(v(s))v(1/s) with v(s) = p(s + 1). Then we have the
following identities:

1. wn(s) = fn(s) for all n ≥ 0;
2. p(s) = 0 if and only if p(s) = 0;
3. p(s)r(s) = p(s) r(s);
4. p(s) + r(s) = p(s) + r(s) if deg(p(s)) = deg(r(s));
5. (s+ 1)n = 1 for all n ≥ 0;
6. deg

(
p(s)

)
= deg(p(s)) if and only if p(1) �= 0.

Definition 3. Let Wk(s,T ) and Fk(s,T ) be compositions (with respect to the
variable T and from right to left) of k − 1 quadratic linearized polynomials and
Pk(s,T ) a linearized polynomial given below

Wk(s,T ) =
(
T 2 + wk−1(s)T

)
◦
(
T 2 + wk−2(s)T

)
◦ · · · ◦

(
T 2 + w1(s)T

)
Fk(s,T ) =

(
T 2 + fk−1(s)T

)
◦
(
T 2 + fk−2(s)T

)
◦ · · · ◦

(
T 2 + f1(s)T

)
Pk(s,T ) =

k−1∑
i=0

(
s2

k+1−2i+1
+ 1
)

T 2i

.

Remark 1. Let τ = x2 and τ0 = x. The linearized polynomials in F[x] form an
algebra F{τ} where the multiplication is the composition in F[x], see e.g. [3].
We could write Wk(s,T ) as (τ +wk−1(s)τ0) . . . (τ +w1(s)τ0) (with x = T ) and
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polynomials fn(s) as (τ + τ0)n + 1 (with x = s). From this τ -form we see easily
that f2l−1(s) + 1 = (τ + τ0)2

l−1 =
∑2l−1

i=0 τ i = Tr2l(s) in F[s].

In the proof of the main theorem we end up with (9), i.e. the equation Pk(s,T ) =∑k
i=1 a

2i

. We should count the solutions satisfying the conditions mentioned in
the next theorem. The key idea here is that in the cases k = 2l the polynomi-
als P (s,T ) and (s + 1)Wk(s,T ) are identical and the composition structure of
Wk(s,T ) makes counting the number of solutions possible.

Let Fa = F \ {0, 1, a, a+ 1} for any a ∈ F \ {0, 1}.

Theorem 4. For every l ≥ 1 and a ∈ F \ {0, 1} the equation (s+1)W2l(s,T ) =∑2l

i=1 a
2i

has exactly (q − 8)/2 solutions (s,T ) ∈ Fa × F with Trm

(
T/s2

)
= 0.

Proof. We give only a sketch of proof and an interested reader can find the whole
proof from [13, Theorem 5.10].

By the definition of W2l(s,T ) the equation splits into a chain of 2l − 1 nested
equations

(s+ 1)
[
U2

2l−1 + w2l−1(s)U2l−1
]

=
2l∑

i=1

a2i

U2
2l−2 + w2l−2(s)U2l−2 = U2l−1

...

U2
2 + w2(s)U2 = U3

U2
1 + w1(s)U1 = U2 .

The first equation has two roots in F for q/2−4 values of s ∈ Fa because of two
facts: for every s ∈ {0, 1, a, a+ 1} the equation has two roots in F and the trace
condition from Lemma 1 includes a permutation polynomial by Lemma 2.

When we substitute these roots to the next equation this second equation has
two roots for exactly one of the previous roots by Lemma 2. And so on; we can
always “drop down” one of the two roots. The last equation has two solutions U1
but exactly one of them satisfies the condition Trm

(
U1/s

2
)

= 0. �


To prove the next theorem we need one lemma.

Lemma 4. For any b ∈ F2k we have the following identities

Wk(s, b2s2 + bs+ b2) = Fk(s, bs2 + bs+ b2)

= (fk−1(b) + 1)(fk(s) + 1) + fk−1(b2) + 1

= Trk(b)(fk(s) + 1) + Trk(b2), if k = 2l .
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Proof. The last equality is clear by Remark 1. The first two identities can be
proved by induction with the following steps.

Wk+1(s, b2s2 + bs+ b2)

= (T 2 + wk(s)T ) ◦ (Wk(s, b2s2 + bs+ b2)

= Wk(s, b2s2 + bs+ b2)2 + wk(s)Wk(s, b2s2 + bs+ b2)

= Wk(s, b2s2 + bs+ b2)
2

+ fk(s)Wk(s, b2s2 + bs+ b2)

= Fk+1(s, bs2 + bs+ b2)

= (T 2 + fk(s)T ) ◦ [(fk−1(b) + 1)(fk(s) + 1) + fk−1(b2) + 1]

= (fk−1(b)2 + 1)(fk(s)2 + 1) + fk−1(b2)2 + 1

+ (fk−1(b) + 1)(fk(s)2 + fk(s)) + fk(s)fk−1(b2) + fk(s)

= (fk−1(b)2 + fk−1(b))(fk(s)2 + fk(s)) + fk−1(b2)2 + fk−1(b2)

= (fk(b) + 1)(fk+1(s) + 1) + fk(b2) + 1 . �


Theorem 5. For every l ≥ 1 the equation P2l(s,T ) = (s+ 1)W2l(s,T ) holds.

Proof. By (1) we have

Pk(s,T ) = D2k+1(s,T ) +D2k+1(1,T ) + s2
k+1 + 1

and Theorem 3 gives us a factorization

Pk(s,T ) = (s+ 1)

⎛⎝2k−1∏
i=1

(
s2 + βis+ 1 + β2

i T
)

+
(
s2

k

+ s2
k−1 + · · · + s+ 1

)⎞⎠
= (s+ 1)

⎛⎝2k−1∏
i=1

(
1
β2

i

s2 +
1
βi
s+

1
β2

i

+ T

)
+

2k−1∏
i=1

(
s2 + βis+ 1

)⎞⎠
since

∏
βi is the coefficient of s2

k−1
in the rightmost product and it is equal to

1. It is also clear, that Trk(βi) = 1 since s2 + βis+ 1 do not have roots in F2k .
Pk(s,T ) is a linearized polynomial with respect to the variable T and above

we have divided it to an affine polynomial plus a constant term. The roots of
the affine part are easily seen and the roots of Pk(s,T ) are differences of them,
i.e. (

1
β2

1
+

1
β2

i

)
s2 +

(
1
β1

+
1
βi

)
s+

(
1
β2

1
+

1
β2

i

)
, i = 1, . . . , 2k−1

are some of them. Actually, with an identity

A :=
{

1
β1

+
1
βi

∣∣∣∣ i = 1, . . . , 2k−1
}

= {α ∈ F2k | Trk(α) = 0}
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it is clear that the roots form a suitable size subspace and we have all the roots.
All in all, the decomposition can be presented in a simpler form

Pk(s,T ) = (s+ 1)
∏
α∈A

(
T + α2s2 + αs+ α2) .

If we can show that every root of Pk(s,T ) is a root ofWk(s,T ) we are done since
the polynomials have the same degree. By Lemma 4 and k = 2l we have

Wk(s, α2s2 + αs+ α2) = Trk(α)(fk(s) + 1) + Trk(α2) = 0

for every α ∈ A which by Lemma 3 finishes the proof. �


Now we explain the phrase “variants of cyclotomic polynomials”.

Corollary 4. As polynomials in F2[s] we have identities

(s+ 1)
2l−1∏
i=0

wi(s) = s

2l−1∏
i=0

fi(s) = s
∏

i|22l−1

Qi(s) = s+ s2
2l

.

Proof. For cyclotomic polynomials Qi(s) the identity is well known. Compare
the coefficient of T in polynomial P2l(s,T ) by definition and by previous theorem

s2
2l

− 1 = (s+ 1)w1(s)w2(s) . . . w2l−1(s)

and multiplying both sides with w0(s) = s gives the result for wn(s)’s. With
Lemma 3 we get the relation for fn(s)’s. �


In addition, the degrees of polynomials wn(s), fn(s), and Qn(s) and the degrees
of their irreducible factors over F2 seem to coincide.

4 Coding Theory Preliminaries

Below we have an example of extended binary cyclic codes of length q. Parity-
check matrices of these codes can be described with a primitive element α of F.

Definition 4. Let m ≥ 3 be odd. The extended binary two-error-correcting
BCH-like code Bk of length q = 2m is defined by a parity-check matrix⎛⎝1 1 1 1 . . . 1

0 1 α α2 . . . αq−2

0 1 α2k+1 α(2k+1)2 . . . α(2k+1)(q−2)

⎞⎠
where 1 ≤ k ≤ (m− 1)/2 and gcd(m, k) = 1.
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The code B1 is the usual two-error-correcting extended BCH code. The codes Bk

are pairwise nonequivalent [1, Sect. 4.3] and have parameters [q, q − 2m− 1, 6].
The dual code B⊥

k has only 3 weights in the range 1 ≤ i ≤ q − 3 and by the
famous Assmus–Mattson theorem the supports of codewords of Hamming weight
6 in Bk form a 3-(q, 6, (q − 8)/6) design.

We consider linear Z4-codes of length q which are subgroups of Zq
4 with com-

ponentwise addition. Let R = GR(4,m) be a Galois ring of characteristic 4 with
q2 = 4m elements. The multiplicative group of units R∗ contains a unique cyclic
subgroup 〈β〉 of order q − 1. Every element of R can be expressed uniquely as
A+ 2B, where A,B ∈ T and

T = {0, 1, β, . . . , βq−2} .

Let μ : Z4 → F2 denote the modulo 2 reduction map. We extend μ to R and Zq
4

in a natural way, and then μ(T ) = F and μ(Zq
4) = Fq

2.

Definition 5. Let m ≥ 3 be odd. The Z4-Goethals-like code Gk of length q = 2m

is defined by a parity-check matrix⎛⎝1 1 1 1 . . . 1
0 1 β β2 . . . βq−2

0 2 2β2k+1 2β(2k+1)2 . . . 2β(2k+1)(q−2)

⎞⎠
where 1 ≤ k ≤ (m− 1)/2 and gcd(m, k) = 1.

The codes G1 and Gk were introduced in [4] and [6], respectively, with the results
stated in the next theorem (see also [7] for the fact 1.). These codes are pairwise
nonequivalent [11] and have 22q−3m−2 codewords which means that their binary
Gray images have four times as many codewords as BCH codes of the same
length and minimum distance.

Remark 2. The restriction 1 ≤ k ≤ (m − 1)/2 comes from the fact Gk = Gm−k.
There are 90 pairs (m, k) of suitable parameters for Z4-Goethals code Gk with
5 ≤ m ≤ 29. 86 of these pairs can be presented in the form (m, k) where
2l ≡ ±k (mod m) for some l ≥ 1. In theorem 1 and its corollaries we have the
restriction k = 2l which means that we can prove the existence of the designs in
almost all codes Gk with 5 ≤ m ≤ 29. The smallest parameters with which we
can not get the designs in this paper are (17, {3, 5, 6, 7}) and the next ones are
(31, {3, 5, 6, . . .}).

By [5, Lemma 2] a word (cX)X∈T ∈ Zq
4, with Cj = {μ(X) | cX = j} for j ∈ Z4,

is a codeword of Gk if and only if it satisfies the following equations over F:∑
x∈F

cx = 0 (in Z4)
∑

x∈C1∪C3

x = 0

∑
x,y∈C1∪C3

x<y

x y =
∑

x∈C2∪C3

x2
∑

x∈C1∪C3

x2k+1 = 0 .
(3)
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where ≤ is some total order on F. As we have equations over F we think from
now on that the codewords are indexed with the elements of F.

Theorem 6. 1. dL(Gk) = 8;
2. μ(Gk) = {μ(c) | c ∈ Gk} = Bk;
3. Gk ∩ 2Zq

4 = {2d | μ(d) ∈ H} where H is the extended Hamming code;
4. the automorphism group of Gk contains the doubly transitive group of affine

permutations
x �→ ax+ b, a ∈ F∗, b ∈ F .

5 Proof of the Main Theorem

The supports of codewords of Hamming weight 8 in all Z4-Goethals-like codes Gk

have the same structure as was found in the codes G1 by Ranto [12] . In particular,
we have in every Gk codewords of cwe-type (complete weight enumerator) X6Z2

which means codewords with six 1’s and two 3’s. Among the supports of these
codewords we have a special class of supports considered in the main theorem:
they are disjoint unions of two nonparallel 2-flats when we think them as subsets
of F equipped with the m-dimensional affine geometry. In addition, it is easy
to see [13] that the two 3’s occur in different 2-flats. This set of supports is
nonempty whenever m ≥ 5 and explains this restriction in the results. The
interested reader is referred to [12, 13] for more details.

To prove the main theorem we have to show that any three distinct coordinate
positions are included in equally many supports of the special type described
above. By the automorphisms described in Theorem 6 we can assume that these
positions are 0, 1, and an arbitrary element a ∈ F\{0, 1}. We divide the supports
into different groups according to the way the fixed positions 0, 1, and a are
divided among the 2-flats and also according to the positions of the two 3’s.
Altogether, there are 22 such groups.

Table 2. Needed combinations of three fixed positions

1 1 1 3 1 1 1 3
Case x1 x2 x3 x4 y1 y2 y3 y4 Frequency
(0a) 0 1 a (q−8)/6

(1a) 0 1 a 2(q−8)
3(1b) 0 1 a

(2a) 0 1 a q−8
2(2b) 1 0 a

(3a) 0 1 a q−8
6(3b) 1 0 a

We can use automorphisms x �→ x+1 and x �→ x/a to reduce the case analysis
and the 7 cases which we really have to count are shown in Table 2. The number
of supports belonging to each combination with a fixed a is also shown. The
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cases left out are: 3 cases similar to (0a) with the same frequency and 2 copies
of block (1a)-(3b) with the same frequencies.

Next we verify the different frequencies and by summing them up we claim
that λ is equal to 14(q − 8)/3 and the supports, indeed, form a 3-design.

5.1 Syndrome Equations

Next we consider the equations which the support {x1, x2, x3, x4, y1, y2, y3, y4}
from Table 2 should satisfy. The sets {x1, x2, x3, x4} and {y1, y2, y3, y4} form the
two 2-flats and 3’s are thought to be in the positions x4 and y4. By (3) and the
2-flat structure the following equations should hold:

σ1(x1, x2, x3, x4) = σ1(y1, y2, y3, y4) = 0
σ2(x1, x2, x3) = σ2(y1, y2, y3) (4)

S2k+1(x1, x2, x3, x4) = S2k+1(y1, y2, y3, y4).

where σk(a1, . . . , an) =
∑

1≤i1<···<ik≤n ai1 . . . aik
is the kth elementary symmet-

ric polynomial and Sk(a1, . . . , an) =
∑n

i=1 a
k
i is the sum of kth powers.

If the variables xi and yi are distinct, the corresponding support is of the
desired type. The only possible overlapping of the variables xi and yi satisfying
(4) is the case where the 2-flats are equal and x4 = y4; that is, they form the
support {0, 1, a, a+1} of cwe-type Y 4 (four 2’s). This kind of supports correspond
to codewords of the extended binary Hamming code H, see Theorem 6, and they
form a 3-(q, 4, 1) design by Assmus–Mattson theorem. Hence the solutions of (4)
have one extra codeword which must be excluded.

5.2 Case (0a)

As mentioned after Definition 4 there are (q − 8)/6 codewords of Hamming
weight 6 in Bk that contain the three fixed coordinates. These codewords can be
uniquely lifted to codewords in Gk of cwe-type X6Y : the codeword of Bk satisfies
two of the four equations in (3) and suitably positioning a single 2 makes the
remaining two equations hold, too. This 2-symbol can not be within the original
support of size 6 as dL(Gk) = 8.

We can lift the same codeword as above in three different ways to a codeword
of cwe-type X4Y Z2 in Gk such that the three fixed coordinates are all 1’s: choose
two 3-positions from the three positions which are not fixed and find the unique
position for 2. We have all in all (1+3)(q− 8)/6 = 2(q− 8)/3 such codewords of
cwe-type X6Y and X4Y Z2. The geometric connection between the supports of
size 7 and the supports in the main theorem is described in [12, 13] and in the
case (0a) this connection is now recalled in Table 3.

We counted the frequency in the left hand side of Table 3, i.e. verified Corol-
lary 1 in relevant cases first. In the table some 3-flat codewords from Gk are
shown to be differences of codewords connected to Theorem 1 and Corollary 1.
If a support of a codeword includes a 2-flat, elements of one 2-flat are underlined.
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Table 3. Structural dependence of blocks in Theorem 1 and Corollary 1 in Case (0a)

Corollary 1 → Theorem 1
Fix Comb Freq
111 1112

2(q−8)
3

3
¯
3
¯
3
¯
13
¯
111 1

1
¯
1
¯
1
¯

33
¯
111

111 1332
3
¯
1
¯
1
¯
33
¯
113 1

1
¯
1
¯
1
¯

13
¯
113

Theorem 1 → Corollary 1
Fix Comb Freq
1
¯
1
¯
1
¯

3
¯
1113

q−8
6

13
¯
3
¯
3
¯
3
¯
111 1

111 2111
1
¯
1
¯
1
¯

3
¯
1113

13
¯
3
¯
1
¯
1
¯
133 3

111 2 133

From one codeword in Corollary 1 we get one codeword in the main theorem;
to the other direction we get 4 codewords from one codeword. Therefore the
frequency in the right hand side must be (q − 8)/6 which concludes this case.

5.3 Cases (1a) and (1b)

Next we study the case (1a), so x1 = 0, x2 = 1, x4 = x3 + 1, y1 = a, and
y4 = a+ y2 + y3.

The syndrome equations (3) imply that x3 = a(y2 + y3) + y2y3 and

1 + x2k+1
3 + (x3 + 1)2

k+1 = a2k+1 + y2k+1
2 + y2k+1

3 + (a+ y2 + y3)2
k+1 .

Substituting the first equation to the second we get

W (U + V ) = UV

where W = a+ a2k

, U = y2 + y2k

2 , and V = y3 + y2k

3 for any k.
It is well known that the mapping u �→ u+ u2k

is two-to-one and its image is
T0 = {u ∈ F | Trm(u) = 0}. Now we have for all k the following equation

W (U + V ) = UV W,U, V ∈ T0 . (5)

In [12] it was noticed that the number of solutions does not depend on a
when k = 1. Therefore the number of solutions of (5) does not depend on W
and this holds now for all k. One value ofW = a+a2k

corresponds to a and a+1
simultaneously but this is not a problem since there are equally many codewords
for the values a and a+1 as can be seen via the automorphism x �→ x+1. Hence
the number of solutions of (5) does not depend on a and by [12] it is equal to
2(q − 8)/3.

In the case (1b) we have x1 = 0, x2 = 1, x4 = x3 + 1, y4 = a, and y1 =
a+ y2 + y3. By (4) we derive x3 = a(y2 + y3) + y2y3 + (y2 + y3)2 and

W (U + V ) = UV + (U + V )2 W,U, V ∈ T0 .

With the same argument as above the number of solutions depends neither on k
nor on a. Considering U and V as roots of a quadratic equation T 2+(U+V )T =
UV we see also that the value of
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Trm

(
W

U + V

)
determines whether the solution (U, V ) belongs to the case (1a) or (1b).

5.4 Cases (2a) and (2b)

In the case (2a) we have x1 = 0 and x4 = 1, and in the case (2b) x1 = 1 and
x4 = 0, and in both cases y1 = a. We denote x = x2, σ1 = y2 +y3, and σ2 = y2y3
which implies x3 = x+ 1 and y4 = a+ σ1 by (4). One of the equations

x+ x2 = aσ1 + σ2 (2a)

1 + x+ x2 = aσ1 + σ2 (2b)
(6)

holds and now the third equation in (4) transforms to

x+ x2k

= a2k+1 + y2k+1
2 + y2k+1

3 + (a+ σ1)2
k+1 . (7)

Suppose now that k is even. With a telescopic identity

x+ x2k

=
k−1∑
i=0

(
x+ x2)2i

=
k−1∑
i=0

(
1 + x+ x2)2i

we can consider the cases (2a) and (2b) simultaneously and writing (7) down
with a Dickson polynomial we derive

k−1∑
i=0

(aσ1 + σ2)2
i

= a2k+1 +D2k+1(σ1, σ2) + (a+ σ1)2
k+1 .

We substitute σ2 = T + aσ1 + a2 and get
k−1∑
i=0

(
T + a2)2i

= a2k+1 +D2k+1
(
σ1,T + aσ1 + a2)+ (a+ σ1)2

k+1 . (8)

By (2) and a2k+1 + (a+ σ1)2
k+1 = D2k+1

(
σ1, aσ1 + a2

)
we have

k−1∑
i=0

(
T + a2)2i

= D2k+1(σ1,T ) + σ2k+1
1 .

By regrouping the terms we arrive at the equation

Pk(σ1,T ) =
k−1∑
i=0

(
σ2k+1−2i+1

1 + 1
)

T 2i

=
k∑

i=1

a2i

. (9)

Now we suppose that k = 2l with some l ≥ 1. By Theorems 4 and 5 the
above equation has (q − 8)/2 solutions (σ1,T ) ∈ Fa × F with Trm(T/σ2

1) =
Trm(σ2/σ

2
1) = 0 which gives us the variables y2 and y3. The restriction σ1 ∈ Fa

is for avoiding the extra codeword mentioned in Subsection 5.1. The variable x
can be solved from exactly one of the equations (6). The other solution x + 1
refers to the same codeword and all in all we have (q−8)/2 codewords containing
the three coordinates 0, 1, and a.
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5.5 Cases (3a) and (3b)

The setting in these cases differs from the previous subsection such that (6) is
replaced by

x+ x2 = aσ1 + σ2 + σ2
1 (3a)

1 + x+ x2 = aσ1 + σ2 + σ2
1 (3b)

(10)

so there is one additional term σ2
1 in both equations. The ideas are exactly the

same as above. By substituting σ2 = T + aσ1 + a2 + σ2
1 we replace (8) by

k−1∑
i=0

(
T + a2)2i

= a2k+1 +D2k+1
(
σ1,T + aσ1 + a2 + σ2

1
)

+ (a+ σ1)2
k+1

and using twice equality (2) we have

k−1∑
i=0

(
T + a2)2i

= D2k+1(σ1,T ) + (k + 1)σ2k+1
1 .

When k is even we get the same equation (9) as above and when k is a power of
2 we can also calculate the number of roots.

Theorem 4 holds also in these cases with the difference that Trm(σ2/σ
2
1) =

Trm(T/σ2
1) + 1 and hence the solutions here are exactly those which were ruled

out in the last step of that theorem. Again the variable x can be solved from
one of the equations (10) but this time every codeword is counted three times:
we can choose two positions referring to σ1 and σ2 in three ways. All in all we
have (q − 8)/6 codewords containing the three coordinates 0, 1, and a.

6 Conclusions and Further Research

We have shown that for all the designs which have been found from the code
G1 so far we can find a design with the same parameters from the code Gk

when k = 2l. The decomposition technique described in this paper does not
work for parameters k �= 2l: for example, one can easily check that P6(s,T ) �=
(s+1)W6(s,T ). Recently [9], the authors managed to prove the existence of the
designs for every k with a different analysis of the polynomial Pk.

It should be possible to prove more about the nonequivalence of these designs.
This is related to the question of BCH-like codes Bk and whether or not their
minimum weight codewords generate the code, see [13, Sect. 5.3]. In addition,
several other open problems can be found from [13].
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Abstract. Li and Xia have recently investigated the design of space-
time codes that achieve full spatial diversity for quasi-synchronous coop-
erative communications. They show that certain of the binary space-time
trellis codes derived from the Hammons-El Gamal stacking construction
are delay tolerant and can be used in the multilevel code constructions by
Lu and Kumar to produce delay tolerant space-time codes for PSK and
QAM signaling. In this paper, we present a generalized stacking criterion
for maximal rank-d binary codes and develop new explicit constructions.
We also present several multilevel space-time code constructions for cer-
tain AM-PSK constellations that generalize the recent Lu-Kumar unified
construction. Following the approach by Li and Xia, we show that, if the
binary constituent codes used in these AM-PSK constructions are de-
lay tolerant, so are the multilevel codes, making them well-suited for
quasi-synchronous cooperative diversity applications.

1 Introduction

It is well-known that wireless communications over Rayleigh fading channels can
benefit from the simultaneous use of multiple antennas at both the transmitter
and receiver to convey information either more reliably or at higher rates than
would be possible for single antenna systems. In certain applications, however,
it may be infeasible or not cost effective to equip terminals with the additional
hardware. Therefore, there has been significant recent research interest in apply-
ing multiple-input multiple-output (MIMO) techniques to cooperative networks.
In such networks, the individual terminals may be poorly equipped, but they can
overcome their limitations by pooling resources with other terminals.

Since the cooperative terminals do not necessarily share a common reference,
Li and Xia [12] argue that cooperative diversity schemes are fundamentally asyn-
chronous and therefore the design of space-time codes should address the case
of asynchronicity explicitly. Li and Xia investigate the design of space-time trel-
lis codes that yield full spatial diversity for any number of quasi-synchronous
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under Grant No. CCR-0325781.
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c© Springer-Verlag Berlin Heidelberg 2006



70 A.R. Hammons Jr.

cooperating relays. They have shown that certain of the trellis codes derived
from the Hammons-El Gamal stacking construction are delay tolerant—in the
sense that full diversity is preserved despite random delays among the various
transmissions—and thus suitable for cooperative diversity schemes. They provide
necessary (but not sufficient) conditions for the trellis codes to be delay tolerant.
They have also shown that, when these codes are used in the multilevel Lu-Kumar
construction for PSK and QAM modulation, the resulting space-time codes also
achieve full spatial diversity in quasi-synchronous cooperative operations.

This paper extends the previous work. First, from the generalized binary
rank criterion, we develop a generalized stacking construction that applies to
maximal rank-d binary codes. These include, as special cases, the family of
Gabidulin codes described by Lu and Kumar. We also present various multi-
level space-time code constructions for certain AM-PSK constellations that gen-
eralize the Lu-Kumar multi-level construction. These are intimately related to
various constructions first developed by the author for noncooperative multiple-
input multiple-output (MIMO) communication systems [7] [8]. Following the
approach by Li and Xia, we show that, if the binary constituent codes used in
these AM-PSK constructions are delay tolerant and therefore suitable for use in
cooperative diversity schemes, so are the multilevel codes.

2 Background

Let C be a code of length MT , with M ≤ T , over the discrete alphabet Ω. The
codewords of C are presented as M × T matrices in which the (m, t)-th entry
am,t ∈ Ω represents the information symbol that is modulated and transmitted
from the m-th transmit antenna at transmission interval t. If all of the pairwise
differences between distinct modulated code word matrices have rank at least d
over C, then the space-time code is called an M × T rank-d code. In the special
case that all of the nontrivial pairwise differences between modulated code words
are of full rank M , the space-time code is called an M × T full-rank code.

There is a tradeoff [2] between achievable transmission rate and achievable
transmit diversity level for space-time codes. Full-rank space-time codes can
achieve transmission rates no greater than one symbol per transmission interval.
For rank d space-time codes, the maximum transmission rate isM−d+1 symbols
per transmission interval. Equivalently, the size of an M × T rank-d space-time
code cannot exceed qT (M−d+1), where q is the size of the signaling constellation
Ω. Codes meeting this upper limit are referred to as maximal.

In [3], Hammons and El Gamal developed a method of algebraic space-time
code design for BPSK and QSPK modulation in which the rank of modulated
code words over the field C is inferred from the rank of their projections as
matrices over the binary field IF. This work was extended and further refined by
Liu et al. [4] and Lu and Kumar [6].

The connection between modulated space-time codes, with entries from
ZZ[θ] ⊂ C, where θ be a complex root of unity, and binary codes over IF = GF (2)
is through the isomorphism ZZ[θ]/(1− θ) ∼= IF. We will let μ : ZZ[θ] → IF denote
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the corresponding projection modulo 1−θ. It is straightforward to show [6] that,
if C is a complex matrix with entries from ZZ[θ] whose binary projection μ(C )
is of rank d over IF, then C is also of rank at least d over C. We refer to this as
the generalized binary rank criterion.

3 Stacking Construction for Maximal Rank-d Binary
Codes

We first introduce a generalization of the Hammons-El Gamal stacking construc-
tion [3] applicable to the design of binary maximal rank-d codes. We will use the
following notation. Given a set of linear transformations T1,T2, . . . ,TM : IFK →
IFT and a binary matrix A ∈ IFM×M , we form a new set of linear transformations
TA

1 ,T
A
2 , . . . ,T

A
M according to the relation⎡⎢⎢⎢⎣

TA
1

TA
2
...

TA
M

⎤⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎣
T1
T2
...

TM

⎤⎥⎥⎥⎦ .
These are called the A-modified linear transformations.

Theorem 1 (Generalized Stacking Construction). Let K, M , R, and T
be positive integers with K = RT and M ≤ T . Let T1,T2, . . . ,TM be linear
transformations from IFK to IFT . The code S consists of all binary matrices of
the form

c =

⎡⎢⎢⎢⎣
x̄T1
x̄T2
...

x̄TM

⎤⎥⎥⎥⎦ ,
where x̄ ∈ IFK .

Suppose that, for all nonsingular A ∈ IFM×M , the intersection of the
null spaces of any set of R or more of the A-modified transformations
TA

1 ,T
A
2 , . . . ,T

A
M is trivial. Then S is a binary maximal rank d = M − R + 1

code.

Proof. The rate of the code is log(|S|)/T = R. Hence, by the rate-diversity
tradeoff, it must be shown that the difference between any two BPSK-modulated
code word matrices is of rank at least d over the complex numbers. The binary
rank criterion states that it is sufficient to show that every non-zero code word
of S has rank at least d over IF. Suppose to the contrary that, for some x̄ �= 0̄,
we have

c =

⎡⎢⎢⎢⎣
x̄T1
x̄T2
...

x̄TM

⎤⎥⎥⎥⎦
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has rank s < d over IF. Then, there is a nonsingular matrix A such that Ac
has exactly M − s rows that are identically zero. Equivalently, x̄ is a nontrivial
member of the null spaces of M − s of the A-modified transformations. Since
M − s ≥ R, this contradicts the assumption that the intersection of every set of
R or more of the A-modified transforms is trivial. �


Explicit examples of the generalized stacking construction are easily found. For
example, the companion matrix construction of [3] [5] produces an M × M
maximal full-rank binary code using transformations that correspond to multi-
plication by linearly independent field elements in a Galois field. Our objective
is to generalize that construction to provide a family of maximal rank-d binary
codes. We first need the following lemma.

Lemma 1. Let β1, β2, . . . , βT be a basis for GF (2T ), and let σ denote the Frobe-
nius automorphism of GF (2T ). Then the matrix

Λ =

⎡⎢⎢⎢⎣
β1 σ(β1) σ2(β1) · · · σT−1(β1)
β2 σ(β2) σ2(β2) · · · σT−1(β2)
...

...
...

. . .
...

βT σ(βT ) σ2(βT ) · · · σT−1(βT )

⎤⎥⎥⎥⎦
is nonsingular over GF (2T ) and has determinant 1. Furthermore, every � × �
contiguous submatrix of Λ is nonsingular over GF (2T ).

Proof. The first statement is Lemma 18 of Chapter 4 in [1]. Consider the �× �
submatrix

Λm,n =

⎡⎢⎢⎢⎣
y1 σ(y1) · · · σ�−1(y1)
y2 σ(y2) · · · σ�−1(y2)
...

...
. . .

...
y� σ(y�) · · · σ�−1(y�)

⎤⎥⎥⎥⎦ ,
where yi = σn(βm+i−1) for i = 1, 2, . . . , �. Suppose that ā = (a1, a2, . . . , a�) ∈
(GF (2T ))� satisfies Λm,nā

T = 0̄. Then y1, y2, . . . , y� are roots of the polynomial

f(x) = a1x+ a2x
2 + · · · + a�x

2�−1.

We note that the sum of any two roots of f(x) is also a root. Since y1, y2, . . . , y�

are linearly independent over IF, every binary linear combination of them pro-
duces a distinct root of f(x). Therefore, f(x) is a polynomial of degree at most
2�−1 with at least 2� distinct roots in GF (2T ). We conclude that f(x) is the zero
polynomial, ā is the zero vector, and Λm,n is nonsingular as claimed. �


For the generalized companion matrix construction, we need the following nota-
tion. Let B = {β1, β2, · · · , βT } be a basis for the finite field GF (2T ) over IF. For
any γ ∈ GF (2T ), let γ̄ denote its vector of coordinates with respect to the basis
B. Furthermore, let Tγ : GF (2T ) −→ GF (2T ) denote the mapping x �→ xγ, and
let Mγ denote the T × T matrix representation of Tγ having the property that
x̄Mγ = ȳ iff Tγ(x) = y.
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Theorem 2 (Companion Matrix Construction). Let M , R, and T be pos-
itive integers with R ≤ M ≤ T , and let d = M − R + 1. Choose β1, β2, . . . , βM

to be linearly independent elements in GF (2T ). Let S denote the code given
by the generalized stacking construction applied to the RT × T binary matrices
G1,G2, . . . ,GM , where

Gi =

⎡⎢⎢⎢⎣
Mβi

Mσ(βi)
...

MσR−1(βi)

⎤⎥⎥⎥⎦ .
Then S is an M × T maximal rank-d binary code.

Proof. Suppose that

c =

⎡⎢⎢⎢⎣
x̄G1
x̄G2

...
x̄GM

⎤⎥⎥⎥⎦
is a code word in S having rank less than d. Then there is a nonsingular binary
matrix A for which Ac has R rows that are identically zero. Without loss of
generality, we may assume that the first R rows are zero—that is,

x̄GA
1 = x̄GA

2 = · · · = x̄GA
R = 0, (1)

where

GA
i =

M∑
j=1

ai,jGj

and ai,j is the (i, j)-th element of A. Letting x̄ =
(
x̄1 x̄2 · · · x̄R

)
, where the

x̄i ∈ IFT , we have that (1) is equivalent to

x̄1My1 + x̄2Mσ(y1) + · · · + x̄RMσR−1(y1) = 0
x̄1My2 + x̄2Mσ(y2) + · · · + x̄RMσR−1(y2) = 0

...
x̄1MyR + x̄2Mσ(yR) + · · · + x̄RMσR−1(yR) = 0,

where yi =
∑M

j=1 ai,jβj ∈ GF (2T ). Identifying T -tuple x̄i as the coordinates of
xi ∈ GF (2T ), we therefore have

(
x1 x2 · · · xR

)
as a solution to the following

matrix equation over GF (2T ):⎡⎢⎢⎢⎣
y1 σ(y1) · · · σR−1(y1)
y2 σ(y2) · · · σR−1(y2)
...

...
. . .

...
yR σ(yR) · · · σR−1(yR)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
...
xR

⎤⎥⎥⎥⎦ = 0̄.
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By Lemma 1, this matrix is non-singular, implying x1 = x2 = · · · = xR = 0.
Hence, c = 0. �


Remark 1. The choice of a polynomial basis, βi = αi−1 where α is primitive
in GF (2T ), gives the Gabidulin maximal rank-d binary codes discussed in Lu
and Kumar [6]. The Lu-Kumar representation is different, however, and the
connection with the stacking construction is not obvious in their approach. Bases
other than polynomial bases (e.g. normal bases) may also be used, so the new
construction of Theorem 2 is more general than the Gabidulin construction.

Remark 2. In [3], full-rank binary convolutional codes are derived as examples of
the Hammons-El Gamal stacking construction. In [6], Lu and Kumar generalize
the construction to produce maximal rank-d binary convolutional codes with
generator matrix

G =

⎡⎢⎢⎢⎣
g0,0(D) g1,0(D) · · · gM−1,0(D)
g0,1(D) g1,1(D) · · · gM−1,1(D)

...
...

. . .
...

g0,R−1(D) g1,R−1(D) · · · gM−1,R−1(D)

⎤⎥⎥⎥⎦ ,
where gm,r = (Dm)2

r

(mod f(D)) and f(D) is a primitive polynomial of degree
T ≥M . Identifying D with the primitive element α in GF (2T ), we see that the
columns of the matrix G correspond precisely to the transformations used in the
general companion matrix construction for the special case of βi = αi−1. Hence,
the general form of the companion matrix construction in Theorem 2 leads to
the following class of maximal rank-d convolutional codes.

Corollary 1. Let M , R, and T be positive integers with R ≤ M ≤ T , and let
d = M − R + 1. Let α be primitive in GF (2T ) with minimal polynomial f(D).
Choose β1, β2, . . . , βM to be linearly independent elements in GF (2T ) over IF,
with binary expansions

βi =
T−1∑
j=0

bi,jα
j .

Let S denote the convolutional code with generator matrix

G =

⎡⎢⎢⎢⎣
g0,0(D) g1,0(D) · · · gM−1,0(D)
g0,1(D) g1,1(D) · · · gM−1,1(D)

...
...

. . .
...

g0,R−1(D) g1,R−1(D) · · · gM−1,R−1(D)

⎤⎥⎥⎥⎦ ,
where gm,r = (gm(D))2

r

(mod f(D)) and gm(D) = bm,0 + bm,1D + · · · +
bm,T−1D

T−1. Then S is an M × T maximal rank-d binary code.

Remark 3. The corollary is a restatement of Theorem 22 in [6].
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4 Diversity-Preserving Multilevel Constructions

The generalized binary rank criterion and general stacking construction lead to
natural multi-level space-time code designs for traditional constellations, includ-
ing the following signaling alphabets:

– 2K-PAM, consisting of the points

s =
K−1∑
k=0

2k(−1)ak ,

for ā = (a0, a1, . . . , aK−1) ∈ IFK .
– 4K-QAM, consisting of the points

s = (1 + i)
K−1∑
k=0

2kiak+2bk ,

for ā = (a0, a1, . . . , aK−1) and b̄ = (b0, b1, . . . , bK−1) in IFK .
– 2K-PSK, consisting of the points

s = θa,

where a ∈ ZZ2K =
{
0, 1, 2, . . . , 2K − 1

}
and θ is a complex, primitive 2K-th

root of unity.
– 2K+1-AM-PSK, consisting of the points

s = raθb,

where a ∈ IF, b ∈ ZZ2K =
{
0, 1, 2, . . . , 2K − 1

}
, θ is a complex, primitive

2K-th root of unity, and r > 1.

The set of M × T matrices over an alphabet Ω will be denoted by ΩM×T .
When A =

[
ai,j

]
is a matrix with entries in ZZ2K , we write θA for the matrix

whose (i, j)-th entry is θai,j . For matrices A and B , the matrix A � B is their
Hermitian (i.e., componentwise) product.

4.1 Unified AM-PSK Construction

Theorem 3. Let A1,A2, . . . ,AL be M × T binary codes with M ≤ T of ranks
d1, d2, . . . , dL respectively. Let K and U be positive integers, and let

{ Cu,k : 0 ≤ u < U, 0 ≤ k < K }

be a collection of M×T binary codes of ranks du,k respectively. From these, form
the following set of 2K-ary codes:

Cu =

{
C u =

K−1∑
k=0

2k C u,k : C u,k ∈ Cu,k

}
(0 ≤ u < U).
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Let κ be a non-zero complex number, η ∈ 2ZZ[θ], and θ be a complex primitive
2K-th root of unity. Choose ν ∈ ZZ[θ] such that ν ≡ 0 (mod 1 − θ), ηU−1 | ν in
ZZ[θ], and ν/ηU−1 ≡ 0 (mod 1 − θ). Set ri = 2νi + 1 for i = 1, 2, . . . , L.

Then the modulated space-time code defined by

S =

{
S =

(
L⊙

i=1

r
A i

i

)
� κ

U−1∑
u=0

ηuθCu : A i ∈ Ai and Cu ∈ Cu

}
achieves transmit diversity at least d, where

d = min{di, du,k : 1 ≤ i ≤ L, 0 ≤ u < U, 0 ≤ k < K}.
Proof. One must show that, whenever S and S ′ are distinct code word matrices
in S, the difference ΔS = S − S ′ is of rank at least d over C.

Consider the partial products of S defined by

σ0 = κ

U−1∑
u=0

ηuθC u ,

σ� =

(
�⊙

i=1

r
A i

i

)
� σ0, (1 ≤ � ≤ L).

Then

σ� = σ�−1 + (r� − 1)A � � σ�−1

= σ0 + (r1 − 1)A 1 � σ0 + (r2 − 1)A 2 � σ1 + · · · + (r� − 1)A � � σ�−1.

Similarly, σ′0, σ
′
1, . . . , σ

′
L denote the partial products of S ′.

We now have

ΔS = (σ0 − σ′0) + 2ν D , (2)

where

D =
L∑

i=1

νi−1 (A i � σi−1 − A ′
i � σ′i−1

)
. (3)

To show that ΔS is of rank at least d over C, there are two cases to consider.

Case 1 . σ0 = σ′0
Let � be the smallest index i for which A i �= A ′

i. Then σi = σ′i for i < �.
From (2) and (3), we have

ΔS

2ν�
=

L−�∑
i=0

νi
(
A �+i � σ�+i−1 − A ′

�+i � σ′�+i−1
)
.

Since all but the first term are multiples of ν, we see

ΔS

2ν�
≡ A� ⊕ A ′

� (mod 1 − θ).

By the binary rank criterion and choice of code A�, ΔS is of rank at least d� ≥ d
over C.
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Case 2 . σ0 �= σ′0
Let (u∗, k∗) denote the lexicographically first index pair (u, k) for which

C u,k �= C ′
u,k. Then

ΔS = κηu∗
θ P �

(
θ2

k∗
Q − θ2

k∗
Q ′)

+ 2ν D + κηu∗+1E ,

where

E =
U−u∗−2∑

i=0

ηi
(
θC u∗+i+1 − θC

′
u∗+i+1

)
,

P =
k∗−1∑
i=0

2iC u∗,i , Q =
K−k∗−1∑

i=0

2iC u∗,k∗+i , and Q ′ =
K−k∗−1∑

i=0

2iC ′
u∗,k∗+i .

Then

ΔS

κηu∗(1 − θ2k∗
)

= θ P �
(
θ2

k∗
Q − θ2

k∗
Q ′

1 − θ2k∗

)
+
(

2
1 − θ2k∗

) (
ν

ηu∗

)
D

+
(

η

1 − θ2k∗

)
E .

The terms in parentheses on the right hand side are either scalars in ZZ[θ] or
matrices with entries in ZZ[θ]. The two rightmost summands are congruent to 0
(mod 1− θ). It is straightforward to show that (1− θ2�

) | (θ2
� m − θ2� n) in ZZ[θ]

and that

θ2
� m − θ2� n

1 − θ2� ≡ m̄⊕ n̄ (mod 1 − θ),

where m̄ and n̄ denote the modulo 2 projections ofm and n, respectively. Hence,

ΔS

κηu∗(1 − θ2k∗
)
≡ C u∗,k∗ ⊕ C ′

u∗,k∗ (mod 1 − θ).

By the binary rank criterion, ΔS is of rank at least du∗,k∗ ≥ d over C, which
completes the proof. �


Remark 4. The radii ri may be specified more generally [7] [9] as follows. First
choose non-zero η ∈ 2ZZ[θ]. Then choose ε1, ε2, . . . , εL ∈ ZZ[θ] satisfying both

εi ≡ 0 (mod 1 − θ) for all i = 1, 2, . . . , L

and

ηU−1 | ε1 in ZZ[θ] with ε1/ηU−1 ≡ 0 (mod 1 − θ).

Finally, define νi =
∏i

�=1 ε�, and set ri = 2νi + 1 for i = 1, 2, . . . , L. The proof
carries through as before.
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Remark 5. When L = 0, by proper choice of parameters, one produces space-
time codes that achieve the rate-diversity tradeoff for 2m-PAM, 4m-QAM, and
2m-PSK constellations. For PAM, one chooses η = 2, K = 1, U = m, κ = 1,
θ = −1; for QAM, one chooses η = 2, K = 2, U = m, κ = 1 + i, θ = i; and for
PSK, one chooses η = 2, K = m, U = 1, κ = 1, θ = e2πi/2m

. When all of the
constituent codes are maximal rank-d binary codes, the resulting construction
is the Lu-Kumar unified construction [6]. When L > 0 and the PSK parameters
are selected, one gets space-time codes for AM-PSK modulations consisting of
multiple rings of PSK. These are discussed in more detail in [7] [8] [9] [10].

4.2 Special a Constructions

In [7] [9], the author introduced the so-called “Special A” construction for rate-
diversity optimal space-time codes in which one or more of the binary matrices
A i in the Unified AM-PSK Construction are derived as functions of the nonbi-
nary matrices C u. The canonical examples of which are the binary-component
projection mappings. (This construction was further explored by Lu [11].) Gen-
eralizing Theorem 3 in the same way, we have the following construction.

Theorem 4. Let A1,A2, . . . ,AL be M × T binary codes of rank d1, d2, . . . , dL,
respectively, with M ≤ T . Let K and U be positive integers, and let

{ Cu,k : 0 ≤ u < U, 0 ≤ k < K }

be a collection of M×T binary codes of rank du,k, respectively. From these, form
the following set of 2K-ary codes:

Cu =

{
C u =

K−1∑
k=0

2k C u,k : C u,k ∈ Cu,k

}
(0 ≤ u < U).

Let κ be a non-zero complex number, and θ be a complex primitive 2K-th root
of unity. Choose non-zero η ∈ 2ZZ[θ] and ε1, ε2, . . . , εL+� ∈ ZZ[θ] such that εi ≡ 0
(mod 1 − θ) for all i = 1, 2, . . . , L + �. Furthermore, we require that ηU−1 | ε1
in ZZ[θ] and ε1/ηU−1 ≡ 0 (mod 1 − θ). Set νi =

∏i
k=1 εk and ri = 2νi + 1 for

i = 1, 2, . . . , L+ �.
For i = 1, 2, . . . , �, let Ψi : C0 × C1 × · · · × CU−1 → Bi be functions that map

U -tuples of non-binary code word matrices to binary M ×T matrices, the ranges
Bi being arbitrary.

Then the modulated space-time code defined by

S =
{

S =

(
L⊙

i=1

r
A i

i

)
�
(

L⊙
i=1

r
B i

L+i

)
� κ

U−1∑
u=0

ηuθCu

: A i ∈ Ai, B i = Ψi(C 0, C 1, . . . , C U−1) ∈ Bi, and Cu ∈ Cu}

achieves transmit diversity at least d, where

d = min{di, du,k : 1 ≤ i ≤ L, 0 ≤ u < U, 0 ≤ k < K}.
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4.3 Linear Transformations

Let τ : IFν → IFν be a linear transformation. For ν = KU , we define the induced
vector component mappings via the action

τ : x̄ ∈ IFKU �→ (τ0(x̄), τ1(x̄), . . . , τU−1(x̄)) ∈ IFK × · · · × IFK .

In this notation, the scalar components of τ are then indexed by the pairs (u, k)
so that

τu(x̄) = (τu,0(x̄), τu,1(x̄), . . . , τu,K−1(x̄)).

We may extend this map to a linear transformation τ : (IFM×T )ν →
(IFM×T )ν , acting on ν-tuples of M × T binary matrices by applying it com-
ponentwise. Let Ā = (A0, A1, . . . , Aν−1) ∈ (IFM×T )ν , where Ai is an M × T

matrix whose (m, t)-th entry is a(i)
m,t. Then τ(Ā) = (τ0(Ā), τ1(Ā), . . . , τν−1(Ā)),

where τi(Ā) is the matrix whose (m, t)-th entry is the i-th component of
τ(a(0)

m,t, a
(1)
m,t, . . . , a

(ν−1)
m,t ).

Theorem 5 (Hammons [10]). Let A be an M ×T rank-d binary code. Let K
and U be positive integers. Let κ be a non-zero complex number, θ be a complex
primitive 2K-th root of unity, and η be a non-zero element of 2ZZ[θ]. Let τ :
IFKU → IFKU be a nonsingular linear transformation.

Then the modulated space-time code defined by

Sτ =

{
S = κ

U−1∑
u=0

ηuθ(τu(Ã)) : Ã = (Ā0, Ā1, . . . , ĀU−1) ∈ AKU

}
achieves transmit diversity d.

Proof. Let S = κ
∑U−1

u=0 η
uθ(τu(Ã)) and S ′ = κ

∑U−1
u=0 η

uθ(τu(Ã′)) be distinct
code words in S. Let (u∗, k∗) denote the lexicographically first index pair (u, k)
for which τu,k(Ã) �= τu,k(Ã′). Then

ΔS = S − S ′ = κηu∗
θ P �

(
θ2

k∗
Q − θ2

k∗
Q ′)

+ κηu∗+1E ,

where

P =
k∗−1∑
i=0

2iτu∗,i(Ã) , Q =
K−k∗−1∑

i=0

2iτu∗,k∗+i(Ã) , Q ′ =
K−k∗−1∑

i=0

2iτu∗,k∗+i(Ã′) ,

and E =
U−u∗−2∑

i=0

ηi
[
θ(τu∗+i+1(Ã)) − θ(τu∗+i+1(Ã′))

]
.

Then

ΔS

κηu∗(1 − θ2k∗
)

= θ P �
(
θ2

k∗
Q − θ2

k∗
Q ′

1 − θ2k∗

)
+
(

η

1 − θ2k∗

)
E .



80 A.R. Hammons Jr.

The terms in parentheses on the right hand side are either scalars in ZZ[θ] or
matrices with entries in ZZ[θ]. The rightmost summand is congruent to 0 (mod
1 − θ). Hence,

ΔS

κηu∗(1 − θ2k∗
)
≡ τu∗,k∗(Ã) ⊕ τu∗,k∗(Ã′) (mod 1 − θ).

Both τu∗,k∗(Ã) and τu∗,k∗(Ã′) are code words in A; hence, their sum has rank
at least d over IF. By the binary rank criterion, ΔS is of rank at least d over C,
which completes the proof. �


4.4 Non-binary Extensions

The constructions all generalize in a straightforward manner to the case of pK-
PAM, pK-PSK, p2K-QAM, and related constellations, when p ≥ 2 is prime.

Theorem 6. Let p ≥ 2 be prime. Let A be an M × T rank-d code over the
alphabet IFp. Let K and U be positive integers. Let κ be a non-zero complex
number, θ be a complex primitive pK-th root of unity, and η be a non-zero element
of pZZ[θ]. Let σ : IFKU

p → IFKU
p be a nonsingular linear transformation.

Then the modulated space-time code defined by

Sσ =

{
S = κ

U−1∑
u=0

ηuθ
K−1
k=0 pkσu,k(Ã) : Ã = (Ā0, Ā1, . . . , ĀU−1) ∈ AKU

}

achieves transmit diversity d.

Proof. If θ is a complex primitive pν-th root of unity, then ZZ[θ]/(1 − θ) ∼= IFp;
and, for 0 ≤ � < ν,

θp� m − θp� n

1 − θp� ≡ m̄⊕p n̄ (mod 1 − θ),

where m̄ and n̄ denote the modulo p projections of m and n, respectively, and
⊕p denotes modulo p addition. (See [6] for details.) Thus, the underlying algebra
and technical details of the proof are the same as in the p = 2 case. �


4.5 Rate-Diversity Optimal Space-Time Codes

The multilevel space-time code constructions presented in sections IV.A through
IV.C are diversity preserving. In particular, per Theorems 3 through 6, when
the constituent binary codes are rank-d codes, so are the multilevel codes. When
the constituent binary codes are maximal rank-d codes, it turns out that the
multilevel codes in fact achieve the rate-diversity trade-off. See [9] and [10] for
further details.
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5 Applications to Cooperative Diversity

We consider the cooperative communications model in which a source node com-
municates to a destination node in a two-step process. In the first step, the source
broadcasts its message conventionally to both the destination node and any po-
tential relay nodes. In the second step, the relay nodes use a decode-and-forward
strategy and retransmit the message simultaneously to the destination node.
Since the retransmissions are intended to overlap in both time and frequency,
the relay nodes cooperatively implement a space-time channel code.

Unlike conventional space-time coding, however, not all of the relays may
successfully decode the original transmission, so the number of transmitters is
a random variable. Fortunately, this does not substantially affect the design of
the cooperative space-time code [12]. In addition, the relays can be dispersed
geographically; so propagation delays and timing uncertainties may result in the
destination node receiving certain of the transmissions later than others. If the
relative timing delays exceed a symbol interval, the performance of the space-
time code can be adversely impacted. In particular, the space-time code may no
longer achieve full spatial diversity [12].

Following the Li-Xia approach [12] to the design of cooperative space-time
codes, we assume that each relay terminal knows an upper bound on the worst-
case differential delay and transmits fill symbols corresponding to binary 0’s
at the beginning and end of each code word to cover the potential mismatch.
The problem then becomes to design the space-time code so that full diversity is
achieved irrespective of the transmission delays—that is, the code word matrices
must be of full rank even when the rows of the matrix are slipped out of alignment
by arbitrary amounts (up to the maximum specified delay).

These ideas are illustrated by the following examples.

Example 1. Consider the full-rank companion matrix construction using the
standard basis B = {1, α, α2} for GF (8), where α is primitive and α3+α+1 = 0.
The corresponding maximal rank-3 code S consists of the binary matrices:

c =

⎡⎣ a b c
c a+ c b
b b+ c a+ c

⎤⎦ , ∀a, b, c ∈ IF.

One notes that det c = a+ b + c+ ab+ ac + bc+ abc, which is equal to zero if
and only if a = b = c = 0, confirming that S achieves full rank (3-level spatial
diversity) in accordance with the stacking construction.

Suppose that, in the cooperative scenario, the first transmission (first row) is
delayed by one symbol compared to the second and third transmissions. In this
case, we say that the relative delay profile for these transmissions is Δ = (1, 0, 0).
Then the binary code word matrices effectively become

cΔ =

⎡⎣ 0 a b c
c a+ c b 0
b b+ c a+ c 0

⎤⎦ .
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We denote the set of all 3 × 4 matrices derived from S in accordance with
delay profile Δ as the code SΔ.

For a = 1 and b = c = 0, we have

cΔ =

⎡⎣0 1 0 0
0 1 0 0
0 0 1 0

⎤⎦ ∈ SΔ,

which has rank 2 instead of 3. Thus, the code SΔ is not delay tolerant.

Example 2. Consider the binary code S produced by the stacking construction
using the transformations described by the matrices

M1 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ and M2 =

⎡⎢⎢⎣
0 1 1 0
0 0 1 1
1 1 0 1
1 0 1 0

⎤⎥⎥⎦ ,
It is easy to see that S consists of the 16 code word matrices of the form

c =
[

a b c d
c+ d a+ c a+ b+ d b+ c

]
,

where a, b, c, d ∈ IF. One first notes that neither of the rows of c is identically
zero unless a = b = c = d = 0. Thus, to show that any delayed variant of c
has full rank, it suffices to check that the sum of its two rows is also nonzero
whenever one of a, b, c, or d is nonzero. A relative delay of two symbols results
in the code word matrices of the form[

0 0 a b c d
c+ d a+ c a+ b+ d b+ c 0 0

]
or [

a b c d 0 0
0 0 c+ d a+ c a+ b+ d b+ c

]
.

It is easy to check that, in either case, they all have rank 2 unless a = b = c =
d = 0. By enumerating all the delayed variants of c, one discovers that, for all
delay profiles Δ, the space-time code SΔ achieves full spatial diversity.

Li and Xia [12] have recently shown that certain of the full-rank binary trel-
lis codes derived from the stacking construction are delay tolerant—in the
sense that full diversity is preserved despite random delays among the vari-
ous transmissions—and thus suitable for cooperative diversity schemes. They
provide necessary (but not sufficient) conditions for the trellis codes to be delay
tolerant. They have also shown that, when these codes are used in the multilevel
Lu-Kumar construction for PSK and QAM modulation (special cases of the Uni-
fied AM-PSK Construction of Theorem 3), the resulting space-time codes also
achieve full spatial diversity in quasi-synchronous cooperative operations.
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In sections IV.A through IV.C, we have presented several generalizations of
the Lu-Kumar multilevel construction. We may summarize the results of Theo-
rems 3 through 6 as follows: If F is a family of M × T binary codes achieving
at least d-level spatial diversity, then the corresponding multilevel code SF built
from F in accordance with the theorem also achieves spatial diversity at least d.

This implies that the constructions preserve preserve delay tolerance—that
is, the delay tolerance of the multilevel code is at least as great as that of the
constituent binary codes. Thus, we have the following general result.

Theorem 7 (Preservation of Delay Tolerance). The multilevel Unified
AM-PSK Construction and its Special A and Linear Transformation Varia-
tions are suitable for asynchronous cooperative diversity schemes if the binary
constituent codes used in these constructions are so suitable. Specifically, if the
binary constituent codes provide d-level spatial diversity under BPSK modula-
tion for a given delay profile, then the multilevel AM-PSK space-time code also
achieves d-level spatial diversity for the same delay profile.

Proof. Consider a delay profile Δ = (δ1, δ2, . . . , δM ) in which δi denotes the rel-
ative delay of the signal received from the i-th transmit antenna. Let δmin (= 0)
and δmax respectively denote the minimum and maximum of the relative delays.
From the receiver’s perspective, the space-time code being used is effectively
SΔ
F , the set of matrices of dimension M × (T + δmax) produced by transforming

the M × T code word matrices of SF in accordance with the delay profile Δ
as indicated in Examples 1 and 2. Let FΔ denote the family of binary codes
similarly transformed in accordance with Δ.

By Theorems 3 through 6, if the binary codes of FΔ achieve spatial diversity
at least d, so does the multilevel space-time code SFΔ . But SΔ

F = SFΔ , so the
result is proven. �


Remark 6. The binary code of Example 1 is not delay tolerant, whereas the
binary code of Example 2 is fully delay tolerant. By Theorem 7, the multilevel
codes built in accordance with Theorems 3 through 6, using the binary code of
Example 2 as the constituent codes, will also be fully delay tolerant.

6 Conclusion

In this paper, we have presented a generalized stacking construction for maximal
rank-d binary codes and have developed explicit examples including a generalized
companion matrix construction. The generalized companion matrix construction
includes as special cases the family of Gabidulin codes described by Lu and Ku-
mar [6]. We have also presented several multilevel space-time code constructions
for certain AM-PSK constellations that generalize the Lu-Kumar unified con-
struction [6]. Following the approach by Li and Xia [12], we have shown that,
if the binary constituent codes used in these AM-PSK constructions are delay
tolerant, so are the multilevel codes. Together these results provide a flexible
architecture for space-time coding that is well-suited for quasi-synchronous co-
operative communications.
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Geometric Conditions for the Extendability of
Ternary Linear Codes

Tatsuya Maruta� and Kei Okamoto

Department of Mathematics and Information Sciences,
Osaka Prefecture University

Sakai, Osaka 599-8531, Japan

Abstract. We give the necessary and sufficient conditions for the ex-
tendability of ternary linear codes of dimension k, 4 ≤ k ≤ 6, with
minimum distance d ≡ 1 or 2 (mod 3) from a geometrical point of view.
We also give the necessary and sufficient conditions for the extendability
of ternary linear codes with diversity (θk−2, 3k−2), (θk−2 +3k−3, 4 ·3k−3),
(θk−2 − 3k−3, 5 · 3k−3) for k ≥ 6, where θj = (3j+1 − 1)/2.

1 Introduction

Let V (n, q) denote the vector space of n-tuples over GF(q), the field of q elements.
A linear code C of length n, dimension k and minimum (Hamming) distance d
over GF(q) is referred to as an [n, k, d]q code. The weight of a vector x ∈ V (n, q),
denoted by wt(x), is the number of nonzero coordinate positions in x. Let Ai be
the number of codewords of C with weight i. We only consider non-degenerate
codes having no coordinate which is identically zero.

The code obtained by deleting the same coordinate from each codeword of
C is called a punctured code of C. If there exists an [n + 1, k, d + 1]q code C′

which gives C as a punctured code, C is called extendable (to C′) and C′ is an
extension of C. See [1-4,8] for the known results about the extendability of q-ary
linear codes.

Let C be an [n, k, d]3 code with k ≥ 3, gcd(3, d) = 1. The diversity (Φ0, Φ1)
of C is given as the pair of integers:

Φ0 =
1
2

∑
3|i,i�=0

Ai, Φ1 =
1
2

∑
i�≡0,d (mod 3)

Ai,

where the notation x|y means that x is a divisor of y. Let Dk be the set of all
possible diversities of C. Dk has been determined in [5] for k ≤ 6 and in [6] for
k ≥ 7. For k ≥ 3, let D∗

k and D+
k be as follows:

D∗
k = {(θk−2, 0), (θk−3, 2 · 3k−2), (θk−2, 2 · 3k−2), (θk−2 + 3k−2, 3k−2)},

D+
k = Dk \ D∗

k,
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where θj = (3j+1 − 1)/2. It is known that D∗
k is included in Dk and that C is

extendable if (Φ0, Φ1) ∈ D∗
k ([5]). We define Φe as follows:

Φe =
1
2

∑
d<i≡d(mod 3)

Ai.

Since C is extendable when (Φ0, Φ1) ∈ D∗
k, it suffices to investigate the extend-

ability of C when (Φ0, Φ1) ∈ D+
k . It is also known that D+

3 = {(4, 3)} and that
an [n, 3, d]3 code with diversity (4,3) is extendable if and only if Φe > 0 ([5]). So,
we consider the following problem:

Problem. Find the necessary and sufficient conditions for the extendability of
an [n, k, d]3 code with gcd(3, d) = 1, k ≥ 4, whose diversity is in D+

k .

2 Geometric Preliminaries

We denote by PG(r, q) the projective geometry of dimension r over GF(q). A
j-flat is a projective subspace of dimension j in PG(r, q). 0-flats, 1-flats, 2-flats,
3-flats and (r − 1)-flats are called points, lines, planes, solids and hyperplanes
respectively as usual. We denote by Fj the set of j-flats of PG(r, q) and denote
by θj the number of points in a j-flat, i.e. θj = |PG(j, q)| = (qj+1 − 1)/(q − 1),
where |T | denotes the number of elements in T for a given set T .

For an [n, k, d]q code C with a generator matrix G, the columns of G can
be considered as a multiset of n points in Σ = PG(k − 1, q) denoted by Ḡ. An
i-point is a point of Σ which has multiplicity i in Ḡ. Let Σi be the set of i-points
in Σ. For any subset S of Σ we define the multiplicity of S with respect to C as

mC(S) =
γ0∑

i=1

i·|S∩Σi|,

where γ0 =max{i | an i-point exists}.
Then we obtain the partition Σ = Σ0 ∪Σ1 ∪ · · · ∪Σγ0 such that

n = mC(Σ),
n− d = max{mC(π) | π ∈ Fk−2}.

Conversely such a partition of Σ as above gives an [n, k, d]q code in the natural
manner. Since (n+ 1) − (d+ 1) = n− d, we get the following.

Lemma 1. C is extendable if and only if there exists a point P ∈ Σ such that
mC(π) < n− d for all hyperplanes π through P .

Let Σ∗ be the dual space of Σ (considering Fk−2 as the set of points of Σ∗).
Then Lemma 1 is equivalent to the following:

Lemma 2. C is extendable if and only if there exists a hyperplane Π of Σ∗

such that
Π ⊂ {π ∈ Fk−2 | mC(π) < n− d}.
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Now, let C be an [n, k, d]3 code with diversity (Φ0, Φ1), gcd(3, d) = 1, k ≥ 3, and
let F∗

j be the set of j-flats of Σ∗, i.e., F∗
j = Fk−2−j , 0 ≤ j ≤ k − 2. We define

F0, F1, Fe, F and F̄ as follows:

F0 = {π ∈ F∗
0 | mC(π) ≡ n (mod 3)},

F1 = {π ∈ F∗
0 | mC(π) �≡ n, n− d (mod 3)},

Fe = {π ∈ F∗
0 | mC(π) < n− d, mC(π) ≡ n− d (mod 3)},

F = F0 ∪ F1, F̄ = F ∪ Fe.

Then we have Φ0 = |F0|, Φ1 = |F1|, Φe = |Fe| since |{π ∈ Fk−2 | mC(π) = i}| =
An−i/(q − 1). Lemma 2 implies the following:

Lemma 3. C is extendable if and only if F̄ contains a hyperplane of Σ∗.

We consider the extendability of C from this geometrical point of view. A t-flat
Π of Σ∗ with |Π ∩ F0| = i, |Π ∩ F1| = j is called an (i, j)t flat. A (1, 0)0 flat is
just a point of F0. An (i, j)1 flat, an (i, j)2 flat and an (i, j)3 flat are called an
(i, j)-line, an (i, j)-plane and an (i, j)-solid respectively.

Remark. We defined F0, F1, Fe as subsets of Σ∗. Alternatively, one can de-
fine F0, F1, Fe as subsets of PG(k − 1, 3) as follows. Let G = [g0, g1, · · · , gk−1]T

be a generator matrix of C, gj ∈ V (n, 3), where MT stands for the trans-
pose of a matrix M . Then any codeword c ∈ C can be written as v · G =∑k−1

i=0 vigi for some v = (v0, v1, · · · , vk−1) ∈ V (k, 3). Since there are 2Φe vectors
v = (v0, v1, · · · , vk−1) ∈ V (k, 3) such that

wt(v ·G) ≡ d (mod 3), wt(v ·G) > d (2.1)

and since 2 ·v also satisfies (2.1), one can select Φe vectors v ∈ V (k, 3) satisfying
(2.1) any two of which are linearly independent, say R1, · · · , RΦe . Similarly, one
can find Φ0 vectors v ∈ V (k, 3) with wt(v · G) ≡ 0 (mod 3), say P1, · · · , PΦ0 ,
and Φ1 vectors v ∈ V (k, 3) with wt(v · G) �≡ 0, d (mod 3), say Q1, · · · ,QΦ1 ,
so that any two of P1, · · · , PΦ0 ,Q1, · · · ,QΦ1 are linearly independent. Then the
vectors P1, · · · , PΦ0 , Q1, · · · ,QΦ1, R1, · · · , RΦe are considered as distinct points
of PG(k − 1, 3), and F0, F1, Fe are defined as:

F0 = {P1, · · · , PΦ0}, F1 = {Q1, · · · ,QΦ1}, Fe = {R1, · · · , RΦe}.
Let Λ1 be the set of all possible (i, j) for which an (i, j)-line exists in F∗

1 .
Then we have

Λ1 = {(1, 0), (0, 2), (2, 1), (1, 3), (4, 0)},
see [5]. Assume 2 ≤ t ≤ k − 1 and let Π ∈ F∗

t . Denote by c(t)i,j the number of

(i, j)t−1 flats in Π and let ϕ(t)
s = |Π ∩Fs|, s = 0, 1. The pair (ϕ(t)

0 , ϕ
(t)
1 ) is called

the diversity of Π and the list of c(t)i,j ’s is called its spectrum. Let Λt be the set

of all possible (ϕ(t)
0 , ϕ

(t)
1 ). Λt and the corresponding spectra are determined as

in Table 1 for t = 2 and as in Table 2 for t = 3. For t ≥ 2 we set Λ−
t as

Λ−
t ={(θt−1, 0), (θt−2, 2·3t−1), (θt−1, 2·3t−1), (θt−1+3t−1, 3t−1), (θt−1, 3t), (θt, 0)}.

It is known that Λ−
t is included in Λt for all t ≥ 2 ([5]).
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Table 1.

ϕ
(2)
0 ϕ

(2)
1 c

(2)
1,0 c

(2)
0,2 c

(2)
2,1 c

(2)
1,3 c

(2)
4,0

4 0 12 0 0 0 1
1 6 2 9 0 2 0
4 3 4 3 6 0 0
4 6 0 3 6 4 0
7 3 1 0 9 1 2
4 9 0 0 0 12 1

13 0 0 0 0 0 13

Table 2.

ϕ
(3)
0 ϕ

(3)
1 c

(3)
4,0 c

(3)
1,6 c

(3)
4,3 c

(3)
4,6 c

(3)
7,3 c

(3)
4,9 c

(3)
13,0

13 0 39 0 0 0 0 0 1
4 18 2 36 0 0 0 2 0

13 9 4 3 27 0 6 0 0
10 15 0 10 15 15 0 0 0
16 12 0 0 12 12 16 0 0
13 18 0 3 0 27 6 4 0
22 9 1 0 0 0 36 1 2
13 27 0 0 0 0 0 39 1
40 0 0 0 0 0 0 0 40

Lemma 4 ([5]). For t ≥ 2, the spectrum corresponding to each diversity in Λ−
t

is uniquely determined as follows:

(1) (c(t)θt−2,0, c
(t)
θt−1,0) = (θt − 1, 1) for (ϕ(t)

0 , ϕ
(t)
1 ) = (θt−1, 0);

(2) (c(t)θt−2,0, c
(t)
θt−3,2·3t−2 , c

(t)
θt−2,3t−1) = (2, θt−θ1, 2) for (ϕ(t)

0 , ϕ
(t)
1 ) = (θt−2, 2·3t−1);

(3) (c(t)θt−3,2·3t−2 , c
(t)
θt−2,2·3t−2 , c

(t)
θt−2+3t−2,3t−2 , c

(t)
θt−2,3t−1) = (3, θt−θ2, 6, 4) for (ϕ(t)

0 ,

ϕ
(t)
1 ) = (θt−1, 2 · 3t−1);

(4) (c(t)θt−2,0, c
(t)
θt−2+3t−2,3t−2 , c

(t)
θt−2,3t−1 , c

(t)
θt−1,0) = (1, θt − θ1, 1, 2) for (ϕ(t)

0 , ϕ
(t)
1 ) =

(θt−1 + 3t−1, 3t−1);
(5) (c(t)θt−2,3t−1 , c

(t)
θt−1,0) = (θt − 1, 1) for (ϕ(t)

0 , ϕ
(t)
1 ) = (θt−1, 3t);

(6) c(t)θt−1,0 = θt for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt, 0).

An s-flat S in Π is called the axis of Π (of type (a, b)) if every hyperplane of Π
not containing S has the same diversity (a, b) and if there is no hyperplane of
Π through S whose diversity is (a, b). Then the spectrum of Π satisfies c(t)a,b =
θt−θt−1−s and the axis is unique if it exists. The axis is helpful to characterize the
geometrical structure of Π . For example, (2) of Lemma 4 yields that there exist
two (θt−2, 0)t−1 flats and two (θt−2, 3t−1)t−1 flats through a fixed (θt−2, 0)t−2
flat which is the axis of Π . The following lemma is obtained from Lemma 4.

Lemma 5. Let Π be a t-flat in Σ∗, t ≥ 2.

(1) Π is a (θt−1, 0)t flat if and only if Π contains a (θt−1, 0)t−1 flat which is
the axis of type (θt−2, 0).

(2) Π is a (θt−1, 3t)t flat if and only if Π contains a (θt−1, 0)t−1 flat which is
the axis of type (θt−2, 3t−1).

(3) Π is a (θt−2, 2 · 3t−1)t flat if and only if Π contains a (θt−2, 0)t−2 flat which
is the axis of type (θt−3, 2 · 3t−2).

(4) Π is a (θt−1 + 3t−1, 3t−1)t flat if and only if Π contains a (θt−2, 0)t−2 flat
which is the axis of type (θt−2 + 3t−2, 3t−2).
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It is easy to see the geometrical structure of Π whose diversity is in Λ−
t except

for the type of (3) in Lemma 4. As for the type (3) of Lemma 4, see [5] for t = 2
and Section 4 for t ≥ 3.

Set Λ+
t = Λt \ Λ−

t . The diversities in Λ+
t and the corresponding spectra for

t ≥ 4 are determined as follows.

Lemma 6 ([6]).
(1) When t is odd (≥ 5):

Λ+
t = {(θt−1, 3t−1)}∪{(θt−1−3T+1+s, θt−1 +θT+s+1), (θt−1+3T+1+s, θt−1−

θT+s) | 0 ≤ s ≤ T } ∪ {(θt−1, θt−1 − θT+s), (θt−1, θt−1 + θT+s + 1) | 1 ≤ s ≤ T },
where T = (t − 3)/2. The spectrum corresponding to each diversity is uniquely
determined as follows:
(A-1) c(t)

θt−2−3T+1,θt−2+θT +1 = θt−1 − 3T+1, c(t)θt−2,θt−2−θT
= c

(t)
θt−2,θt−2+θT +1 =

θt−1 + θT + 1 for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1 − 3T+1, θt−1 + θT + 1);

(A-2) c(t)θt−2,θt−2−θT
= c

(t)
θt−2,θt−2+θT +1 = θt−1 − θT , c(t)

θt−2+3T+1,θt−2−θT
= θt−1 +

3T+1 for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1 + 3T+1, θt−1 − θT );

(A-3) (c(t)θt−2,0, c
(t)
θt−3,2·3t−2 , c

(t)
θt−2,3t−2 , c

(t)
θt−2+3t−2,3t−2) = (4, 3, θt − θ2, 6)

for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1, 3t−1);

(A-4) c(t)θt−2−3T+1+s,θt−2+θT+s+1 = θt−1−2s − 3T+1−s, c(t)θt−2,θt−2−θT+s
=

c
(t)
θt−2,θt−2+θT+s+1 = θt−1−2s + θT−s + 1, c(t)θt−2−3T+s,θt−2+θT−1+s+1 = θt − θt−2s

for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1 − 3T+1+s, θt−1 + θT+s + 1), 1 ≤ s ≤ T ;

(A-5)c(t)θt−2,θt−2−θT+s
= c(t)θt−2,θt−2+θT+s+1 =θt−1−2s−θT−s, c

(t)
θt−2+3T+1+s,θt−2−θT+s

= θt−1−2s+3T+1−s, c(t)
θt−2+3T+s,θt−2−θT−1+s

= θt−θt−2s for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1+

3T+1+s, θt−1 − θT+s, 1 ≤ s ≤ T ;

(A-6) c(t)θt−2,θt−2−θT+s
= θt−2s, c

(t)
θt−2−3T+s,θt−2+θT−1+s+1 = θt−2s − θT+1−s,

c
(t)
θt−2+3T+s,θt−2−θT−1+s

= θt−2s +θT+1−s +1, c(t)θt−2,θt−2−θT −1+s
= θt −θt+1−2s for

(ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1, θt−1 − θT+s), 1 ≤ s ≤ T ;

(A-7) c(t)θt−2−3T+s,θt−2+θT−1+s+1 = θt−2s − θT+1−s, c
(t)
θt−2+3T+s,θt−2−θT−1+s

=

θt−2s +θT+1−s +1, c(t)θt−2,θt−2+θT+s+1 = θt−2s, c
(t)
θt−2,θt−2+θT −1+s+1 = θt−θt+1−2s

for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1, θt−1 + θT+s + 1), 1 ≤ s ≤ T .

(2) When t is even (≥ 4):

Λ+
t = {(θt−1, 3t−1)} ∪ {(θt−1, θt−1 − θU+1+s), (θt−1, θt−1 + θU+1+s + 1) | 0 ≤

s ≤ U} ∪ {(θt−1 − 3U+1+s, θt−1 + θU+s + 1), (θt−1 + 3U+1+s, θt−1 − θU+s) | 1 ≤
s ≤ U + 1},
where U = (t − 4)/2. The spectrum corresponding to each diversity is uniquely
determined as follows:
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(B-1) c(t)θt−2,θt−2−θU+1
= θt−1, c

(t)
θt−2−3U+1,θt−2+θU+1 = θt−1 − θU+1,

c
(t)
θt−2+3U+1,θt−2−θU

= θt−1 + θU+1 + 1 for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1, θt−1 − θU+1);

(B-2) c(t)θt−2−3U+1,θt−2+θU+1 = θt−1−θU+1, c
(t)
θt−2+3U+1,θt−2−θU

= θt−1 +θU+1 +1,

c
(t)
θt−2,θt−2+θU+1+1 = θt−1 for (ϕ(t)

0 , ϕ
(t)
1 ) = (θt−1, θt−1 + θU+1 + 1);

(B-3) (c(t)θt−2,0, c
(t)
θt−3,2·3t−2 , c

(t)
θt−2,3t−2 , c

(t)
θt−2+3t−2,3t−2) = (4, 3, θt − θ2, 6)

for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1, 3t−1);

(B-4) c(t)
θt−2−3U+1+s,θt−2+θU+s+1 = θt−2s − 3U+2−s, c(t)θt−2,θt−2−θU+s

=

c
(t)
θt−2,θt−2+θU+s+1 = θt−2s + θU+1−s + 1, c(t)θt−2−3U+s,θt−2+θU−1+s+1 = θt − θt+1−2s

for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1 − 3U+1+s, θt−1 + θU+s + 1), 1 ≤ s ≤ U + 1;

(B-5) c(t)θt−2,θt−2−θU+s
= c

(t)
θt−2,θt−2+θU+s+1 = θt−2s − θU+1−s,

c
(t)
θt−2+3U+1+s,θt−2−θU+s

= θt−2s + 3U+2−s, c(t)
θt−2+3U+s,θt−2−θU−1+s

= θt − θt+1−2s

for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1 + 3U+1+s, θt−1 − θU+s), 1 ≤ s ≤ U + 1;

(B-6) c(t)θt−2,θt−2−θU+1+s
= θt−1−2s, c

(t)
θt−2−3U+1+s,θt−2+θU+s+1 = θt−1−2s−θU+1−s,

c
(t)
θt−2+3U+1+s,θt−2−θU+s

= θt−1−2s + θU+1−s + 1, c(t)θt−2,θt−2−θU+s
= θt − θt−2s for

(ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1, θt−1 − θU+1+s), 1 ≤ s ≤ U ;

(B-7) c(t)θt−2−3U+1+s,θt−2+θU+s+1 = θt−1−2s − θU+1−s, c
(t)
θt−2+3U+1+s,θt−2−θU+s

=

θt−1−2s + θU+1−s + 1, c(t)θt−2,θt−2+θU+1+s+1 = θt−1−2s, c
(t)
θt−2,θt−2+θU+s+1 = θt −

θt−2s for (ϕ(t)
0 , ϕ

(t)
1 ) = (θt−1, θt−1 + θU+1+s + 1), 1 ≤ s ≤ U .

3 Main Results

In this section, we give the geometric conditions and the main theorems on the
extendability of ternary linear codes. For k ≥ 4, let (Ck-0), (Ck-1) and (Ck-2)
be the following conditions:

(Ck-0) there exists a (θk−4, 0)k−3 flat δ1 in Σ∗ satisfying δ1 \ F0 ⊂ Fe,
(Ck-1) (Ck-0) holds and there exists a (θk−4, 3k−3)k−3 flat δ2 in Σ∗ such that

δ1 ∩ δ2 is a (θk−4, 0)k−4 flat,
(Ck-2) there exist two (θk−4, 0)k−3 flats δ1, δ2 in Σ∗ such that δ1 ∩ δ2 is a

(θk−4, 0)k−4 flat with (δ1 ∪ δ2) \ (δ1 ∩ δ2) ⊂ Fe.

We denote by 〈χ1, χ2, · · ·〉 the smallest flat containing subsets χ1, χ2, · · · of Σ∗.
For k = 4 we consider two more conditions:

(C4-3) there are three non-collinear points R1, R2, R3 ∈ Fe such that the three
lines 〈R1, R2〉, 〈R2, R3〉, 〈R3, R1〉 are (0, 2)-lines,
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(C4-4) there are three non-collinear points Q1,Q2,Q3 ∈ F1 such that the three
lines 〈Q1,Q2〉, 〈Q2,Q3〉, 〈Q3,Q1〉 are (0, 2)-lines each of which contains two
points of Fe.

For k ≥ 5, let (Ck-3) and (Ck-4) be the following conditions:

(Ck-3) there exist three (θk−5, 0)k−4 flats δ1, δ2, δ3 through a fixed (θk−5, 0)k−5
flat L such that 〈δ1, δ2〉, 〈δ2, δ3〉, 〈δ3, δ1〉 form distinct (θk−5, 2 ·3k−4)k−3 flats
and that (δ1 ∪ δ2 ∪ δ3) \ L ⊂ Fe holds,

(Ck-4) there exist a (θk−5, 0)k−5 flat L, three (θk−5, 3k−4)k−4 flats δ′1, δ
′
2, δ

′
3

through L, and six (θk−5, 0)k−4 flats δ1, · · · , δ6 through L such that 〈δ′i, δ′j〉
forms a (θk−5, 2 · 3k−4)k−3 flat containing two of δ1, · · · , δ6 for 1 ≤ i < j ≤ 3
and that (∪6

i=1δi) \ L ⊂ Fe holds.

For k = 5 we consider two more conditions:

(C5-5) there exist a (4,0)-line l and four skew (1,0)-lines l1, l2, l3, l4 such that
each of l1, ..., l4 meets l and that 〈l1, l2, l3, l4〉 ∈ F∗

3 and (∪4
i=1li) \ l ⊂ Fe

hold,
(C5-6) there exist a (2, 1)-line l0 containing two points P1, P2 ∈ F0 and two

(1, 0)-lines l1, l2 (resp. l′1, l′2) through P1 (resp. P2) such that l = 〈l1, l2〉 ∩
〈l′1, l′2〉 and mi = 〈Q0,Qi〉 are (0, 2)-lines for i = 1, 2, where l0 ∩ F1 = {Q0},
l ∩ F1 = {Q1,Q2} and that (∪2

i=1(li ∪ l′i ∪mi)) \ F ⊂ Fe holds.

We define the conditions (Ck-5) and (Ck-6) for k ≥ 6 as follows:

(Ck-5) there exist a (θk−4, 0)k−4 flat δ, a (θk−6, 0)k−6 flat H in δ and four
(θk−5, 0)k−4 flats δ1, · · · , δ4 such that δ1 \ δ, · · · , δ4 \ δ are mutually disjoint
and that δ1 ∩ δ, · · · , δ4 ∩ δ are distinct (k − 5)-flats through H and that
〈δ1, · · · , δ4〉 ∈ F∗

k−2 and (∪4
i=1δi) \ δ ⊂ Fe hold,

(Ck-6) there exist a (θk−5 + 3k−5, 3k−5)k−4 flat δ0 (containing the (θk−5, 0)k−5
flats L1, L2 and the (θk−6, 3k−5)k−5 flat L0), two (θk−5, 0)k−4 flats δ1, δ2
(resp. δ′1, δ′2) through L1 (resp. L2) such that δ = 〈δ1, δ2〉 ∩ 〈δ′1, δ′2〉, δ3 =
〈L0,M1〉 and δ4 = 〈L0,M2〉 form (θk−6, 2 · 3k−5)k−4 flats and that (δ′1 ∪ δ′2 ∪
(∪4

i=0δi)) \ F ⊂ Fe holds, where M1 and M2 are the (θk−6, 3k−5)k−5 flats in
δ.

For k = 6 we consider extra two conditions:

(C6-7) there exist a (4,9)-plane δ, a (4,0)-line l = {P1, · · · , P4} in δ, and three
non-coplanar (1,0)-lines li1, li2, li3 through Pi with Δi = 〈li1, li2, li3〉 for each
i (1 ≤ i ≤ 4) such that Δ1, · · · , Δ4 are distinct solids through δ and that
(∪4

i=1 ∪3
j=1 lij) \ l ⊂ Fe holds,

(C6-8) there exist a (4,0)-plane δ, a (4,0)-line l = {P1, · · · , P4} in δ, and three
non-coplanar (1,0)-lines li1, li2, li3 through Pi none of which lie on δ with
Δi = 〈li1, li2, li3〉 for each i (1 ≤ i ≤ 4) such that Δ1, · · · , Δ4 are distinct
solids through δ and that (δ ∪ (∪4

i=1 ∪3
j=1 lij)) \ l ⊂ Fe holds.
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:a point of F0

:a point of F1

:a point of Fe

(C5-6)

l

l1 l2

l1' l2'

Q0

Q1 Q2

l0

P1

P2

Let C be an [n, k, d]3 code with diversity (Φ0, Φ1) ∈ D+
k , d ≡ 1 or 2 (mod 3),

k ≥ 3. Since D+
3 = {(4, 3)}, D+

4 = {(13, 9), (10, 15), (16, 12)} and D+
k = Λ+

k−1 for
k ≥ 5 ([5],[6]), we have |Dk| = 2k − 1 for all k ≥ 3. It is known that an [n, 4, d]3
code with diversity (Φ0, Φ1) ∈ D+

4 is not extendable if Φe < 3 for k = 4 ([5]). The
conditions (C4-0)-(C4-4) are used to check the extendability of [n, 4, d]3 codes.

Theorem 1 ([6]). Let C be an [n, 4, d]3 code with diversity (Φ0, Φ1) ∈ D+
4 ,

gcd(3, d) = 1. Then C is extendable if and only if one of the conditions indicated
in Table 3 holds.

For the case when k = 5, C is not extendable if Φe < 9 when (Φ0, Φ1) �= (40, 36)
or if Φe < 12 when (Φ0, Φ1) = (40, 36) ([5]). Otherwise, we need to check whether
one of the conditions (C5-0)-(C5-6) holds or not according to the diversity of C.

Theorem 2 ([7]). Let C be an [n, 5, d]3 code with diversity (Φ0, Φ1) ∈ D+
5 ,

gcd(3, d) = 1. Then C is extendable if and only if one of the conditions indicated
in Table 4 holds.

Table 3.

(Φ0, Φ1) conditions
(13,9) (C4-1), (C4-4)
(10,15) (C4-2), (C4-3), (C4-4)
(16,12) (C4-0), (C4-3)

Table 4.

(Φ0, Φ1) conditions
(40,27) (C5-1), (C5-4)
(31,45) (C5-2), (C5-3), (C5-4), (C5-6)
(40,36) (C5-4), (C5-5), (C5-6)
(40,45) (C5-3), (C5-5), (C5-6)
(49,36) (C5-0), (C5-3), (C5-5)

For k = 6, C is not extendable if Φe < 27 when (Φ0, Φ1) ∈ {(121,81), (94,135),
(121,135), (148,108)} or if Φe < 36 when (Φ0, Φ1) ∈ {(121,108), (112,126),
(130,117)} ([5]). Otherwise, we need to check whether one of the conditions
(C6-0)-(C5-8) holds or not according to the diversity of C.

Theorem 3. Let C be an [n, 6, d]3 code with diversity (Φ0, Φ1) ∈ D+
6 , gcd(3, d) =

1. ThenC is extendable if and only if one of the conditions indicated inTable 5 holds.
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Table 5.

(Φ0, Φ1) conditions
(121, 81) (C6-1), (C6-4)
( 94,135) (C6-2), (C6-3), (C6-4), (C6-6)
(121,108) (C6-4), (C6-5), (C6-6), (C6-8)
(112,126) (C6-6), (C6-7), (C6-8)
(130,117) (C6-5), (C6-7), (C6-8)
(121,135) (C6-3), (C6-5), (C6-6), (C6-7)
(148,108) (C6-0), (C6-3), (C6-5)

The result for (Φ0, Φ1) = (121, 81), (94, 135), (148, 108) in Theorem 3 can be
generalized to the following Theorems 4-6 respectively.

Theorem 4. Let C be an [n, k, d]3 code with diversity (θk−2, 3k−2), gcd(3, d) =
1, k ≥ 5. Then C is extendable if and only if either the conditions (Ck-1) or
(Ck-4) holds.

Theorem 5. Let C be an [n, k, d]3 code with diversity (θk−2 − 3k−3, 5 · 3k−3),
gcd(3, d) = 1, k ≥ 6. Then C is extendable if and only if one of the conditions
(Ck-2), (Ck-3), (Ck-4), (Ck-6) holds.

Theorem 6. Let C be an [n, k, d]3 code with diversity (θk−2 + 3k−3, 4 · 3k−3),
gcd(3, d) = 1, k ≥ 6. Then C is extendable if and only if one of the conditions
(Ck-0), (Ck-3), (Ck-5) holds.

4 Proof of Theorems 3 – 6

Theorem 2 can be proved using the following lemma.

Lemma 7 ([7]). Let Δ be a solid in Σ∗.
(1) Δ is a (13, 9)-solid with Δ \ F ⊂ Fe if and only if Δ satisfies (C5-4).
(2) Δ is a (10, 15)-solid with Δ \ F ⊂ Fe if and only if Δ satisfies (C5-6).
(3) Δ is a (16, 12)-solid with Δ \ F ⊂ Fe if and only if Δ satisfies (C5-5).
(4) Δ is a (13, 18)-solid with Δ \ F ⊂ Fe if and only if Δ satisfies (C5-3).

It is easy to see that the point L in (C5-3) (resp. in (C5-4)) is the axis of a
(13, 18)-solid (resp. a (13, 9)-solid). The following lemma is obtained from the
proof of Lemma 7(2), see [7].

Lemma 8. Let Δ be a (10, 15)-solid and assume (C5-6) holds in Δ except for
the condition that mi = 〈Q0,Qi〉 is a (0, 2)-line for i = 1, 2. Then m1 and m2
are necessarily (0, 2)-lines in Δ.

We give the geometric characterizations of some 4-flats in Σ∗ before proving
Theorem 3.

Lemma 9. For a 4-flat Π in Σ∗, Π is a (40, 54)4 flat with Π \ F ⊂ Fe if and
only if (C6-3) holds in Π.
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Lemma 10. For a 4-flat Π in Σ∗, Π is a (40, 27)4 flat with Π \F ⊂ Fe if and
only if (C6-4) holds in Π.

Lemma 11. For a 4-flat Π in Σ∗, Π is a (49, 36)4 flat with Π \F ⊂ Fe if and
only if (C6-5) holds in Π.

See Lemmas 15,16,18 for the proofs of Lemmas 9,10,11, respectively.

Lemma 12. For a 4-flat Π in Σ∗, Π is a (31, 45)4 flat with Π \F ⊂ Fe if and
only if (C6-6) holds in Π.

Proof. (“only if” part:) Assume that Π is a (31, 45)4 flat with Π \F ⊂ Fe. Then
the spectrum of Π is (c(4)4,18, c

(4)
13,9, c

(4)
10,15, c

(4)
13,18) = (10, 15, 81, 15) by Lemma 6,

see (B4) with t = 4, s = 1. Take two (4,18)-solids Δ1, Δ2 in Π meeting in a
(1,6)-plane δ, where δ contains exactly two (1,3)-lines, say M1,M2. Let Li be
the axis of Δi, which is a (4,0)-line in Δi for i = 1, 2 by Lemma 5. Then there
are exactly two (4,0)-planes through Li in Δi, say δ1, δ2 for i = 1 and δ′1, δ

′
2 for

i = 2. Put H = L1 ∩L2. Then H is the point of F0 in δ. Since Π has no (13,0)-
plane, δ0 = 〈L1, L2〉 is a (7,3)-plane by Table 1. Let L0 be the (1,3)-line in δ0.
It suffices to show that δ3 = 〈L0,M1〉 and δ4 = 〈L0,M2〉 are (1,6)-planes. Take
a point Pi(�= P ) on Li for i = 1, 2 and let l be a (0,2)-line in δ which consists
of Q1,Q2 ∈ F1 and R1, R2 ∈ Fe. Then 〈Pi, l〉 is a (1,6)-plane, for there are two
(4,9)-planes and two (4,0)-planes through Li in Δi. Note that the line 〈P1, P2〉
in δ0 is a (2,1)-line. Containing two (1,3)-lines 〈P1,Q1〉, 〈P2,Q1〉 and a (2,1)-
line 〈P1, P2〉, 〈P1,Q1, P2〉 is a (4,6)-plane. Meanwhile, containing two (1,0)-lines
〈P1, R1〉, 〈P2, R1〉 and a (2,1)-line 〈P1, P2〉, 〈P1, R1, P2〉 is a (4,3)-plane. Hence,
containing three type of planes 〈P1, l〉, 〈P1,Q1, P2〉, and 〈P1, R1, P2〉, it follows
from Table 2 that 〈l, P1, P2〉 is a (10,15)-solid. Then, by Lemma 8, 〈Q0,Qi〉 is a
(0,2)-line, where Q0 = L0 ∩ 〈P1, P2〉. Hence δ3 and δ4 are (1,6)-planes.

(“if” part:) Assume (C6-6) holds in Π . Put H = L1 ∩ L2 and let Δ be a
solid in Π not containing H . Setting l0 = Δ ∩ δ0, l = Δ ∩ δ, Q0 = Δ ∩ L0 and
Pi = Δ ∩ Li, li = Δ ∩ δi, l′i = Δ ∩ δ′i, Qi = Δ ∩Mi for i = 1, 2, the condition
(C5-6) holds in Δ. Hence Δ is a (10,15)-solid by Lemma 7(2) and Π satisfies
c
(4)
10,15 ≥ θ4 − θ3 = 81. This implies that Π is a (31, 45)4 flat. �


From the proof of Lemma 12, the point H = L1 ∩ L2 in the condition (C6-6)
is the axis of a (31, 45)4 flat Π . Now, let Δ0 be a (13,18)-solid in Π with the
axis H0 and let δ′ be a (1,6)-plane in Δ0. Then the point of F0 in δ′ is H0 since
every (1,6)-plane in Δ0 contains the axis of Δ0. Note that there are exactly two
(4,18)-solids through δ0. It follows from the “only if” part of the previous proof
that H0 coincides with H . Hence we have the following.

Corollary 1. The axis of any (13, 18)-solid in a (31, 45)4 flat Π coincides with
the axis of Π.

Lemma 13. For a 4-flat Π in Σ∗, Π is a (40, 45)4 flat with Π \F ⊂ Fe if and
only if (C6-7) holds in Π.
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Proof. (“only if” part:) Assume that Π is a (40,45)4 flat with Π \F ⊂ Fe. Then
the spectrum of Π is (c(4)10,15, c

(4)
16,12, c

(4)
13,18) = (36, 45, 40) by Lemma 6, see (B2).

For a (4,9)-plane δ in Π , there are exactly four (13,18)-solids, say Δ1, · · · , Δ4,
through δ in Π . Let l be the axis of δ, which is the (4,0)-line in δ. For 1 ≤ i ≤ 4,
let Pi be the axis of Δi and let li1, li2, li3 be the three (1,0)-lines through Pi in
Δi. Then Pi is a point of l since every (4,9)-plane in Δi contains the axis of Δi.
Suppose P1 = P2. Since 〈l11, l12〉 is a (1,6)-plane in Δ1 and since there are no
(1,0)-lines three of which are meeting in a point of F0 in a (10,15)-solid from
Lemma 7(2), 〈l11, l12, l21〉 is a (13,18)-solid in Π . On the other hand, there is
only one (13,18)-solid through a fixed (1,6)-plane in Π , a contradiction. Hence
we have l = {P1, P2, P3, P4}, so that (C6-7) holds.

(“if” part:) Assume (C6-7) holds in Π . Then, Δi is a (4,18)-solid or a (13,18)-
solid, for there are three non-coplanar (1,0)-lines through a fixed point of F0 in
Δi and there is a (4,9)-plane δ in Δi. Since Π has exactly 45(= (18− 9)× 4+9)
points of F1, Π is a (31,45)4 flat or a (40,45)4 flat. Suppose Π is a (31,45)4
flat. Then we may assume that Δ1, Δ2, Δ3 are (13,18)-solids and that Δ4 is a
(4,18)-solid. Since all of the planes through l in Δi other than δ are (7,3)-planes,
the three (1,0)-lines contained in these three (7,3)-planes are just li1, li2, li3, and
Pi is the axis of Δi for 1 ≤ i ≤ 3. This is contradictory to Corollary 1. Hence Π
is a (40,45)4 flat. �

The following Lemma can be proved similarly to the proof of Lemma 13.
Lemma 14. Let Π be an (i0, i1)4 flat in Σ∗ with (i0, i1) �= (40, 0). Then Π is
a (40, 36)4 flat with Π \ F ⊂ Fe if and only if (C6-8) holds in Π.

Proof of Theorem 3. We prove Theorem 3 only for the case (Φ0, Φ1) =
(94, 135). Other cases can be proved by similar arguments using Lemmas 9-14.
(“only if” part:) Assume that C is extendable. Then there is an (i, j)4 flat Π in
Σ∗ satisfying Π \ F ⊂ Fe. We have (i, j) ∈ {(13, 54), (40, 27), (31, 45), (40, 54)}
by Lemma 6. If Π is a (13,54)4 flat, then (C6-2) holds since there are exactly
two (13,0)-solids and two (13,27)-solids through a fixed (13,0)-plane (see Lemma
4(2)). If Π is a (40,54)4 flat, a (40,27)4 flat or a (31,45)4 flat, then (C6-3), (C6-4)
or (C6-6) holds respectively by Lemmas 9,10,12.

(“if” part:) Recall that an (i, j)4 flat in Σ∗ satisfies (i, j) ∈ {(13, 54), (40,27),
(31,45), (40, 54)} when (Φ0, Φ1) = (94, 135). We first assume that (C6-3) holds
and letΠ1 be the 4-flat containing δ1, δ2, δ3. Then Π1 is a (40,54)4 flat containing
27 points of Fe by Lemma 9. Hence C is extendable by Lemma 3. It can be also
proved similarly that C is extendable if either (C6-4) or (C6-10) holds by Lemmas
10,12. Now, assume that (C6-2) holds and let Π2 be the 4-flat containing δ1, δ2.
Then Π2 is a (40,27)4 flat or a (13,54)4 flat by Lemmas 4,6 since Π2 contains at
least two (13,0)-solids. If Π2 is a (40,27)4 flat, then for any (13,0)-plane δ there
are exactly one (13,0)-solid and three (22,9)-solids through δ in Π2, contradicting
(C6-2). So Π2 is a (13,54)4 flat containing 54 points of Fe. Hence C is extendable
by Lemma 3. �


Lemma 15. Let Π be a t-flat in Σ∗ with t ≥ 3. Then Π is a (θt−1, 2 · 3t−1)t

flat with Π \ F ⊂ Fe if and only if (Ct+2-3) holds in Π.
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Proof. (“only if” part:) Assume that Π is a (θt−1, 2 · 3t−1)t flat. Then the spec-
trum of Π is given as (3) of Lemma 4:

(c(t)θt−3,2·3t−2 , c
(t)
θt−2,2·3t−2 , c

(t)
θt−2+3t−2,3t−2 , c

(t)
θt−2,3t−1 = (3, θt − θ2, 6, 4).

For a (θt−3, 0)t−2 flat δ1, it follows from (2)-(5) of Lemma 4 that there are
exactly two (θt−3, 2·3t−2)t−1 flats, sayΔ1, Δ2, and two (θt−2+3t−2, 3t−2)t−1 flats
through δ1 in Π . Let L be the axis of δ1, which is a (θt−3, 0)t−3 flat by Lemma
5(1). Then there is a (θt−3, 0)t−2 flat, say δ2 (resp. δ3) through L other than δ1
in Δ1 (resp. Δ2). A (t− 1)-flat containing at least two (θt−3, 0)t−2 flats in Π is
only a (θt−3, 2 · 3t−2)t−1 flat by Lemma 4, whence 〈δ2, δ3〉 is a (θt−3, 2 · 3t−2)t−1
flat. Since |(δ1 ∪ δ2 ∪ δ3) \L| = 3(θt−2 − θt−3) = θt − (θt−1 + 2 · 3t−1) = |Π \ F |,
we have (δ1 ∪ δ2 ∪ δ3) \ L ⊂ Fe. Hence (Ct+2-3) holds.

(“if” part:) We proceed by induction on t. The conclusion holds for t = 3
by Lemma 7(4). Now, assume that t ≥ 4 and that (Ct+2-3) holds in Π . Take
a hyperplane π of Π not containing L and put Li = π ∩ δi, i = 1, 2, 3, H =
π∩L. Since 〈Li, Lj〉 contains two (θt−4, 0)t−3 flats meeting in a (θt−4, 0)t−4 flat,
〈Li, Lj〉 is a (θt−4, 2 · 3t−3)t−2 flat or a (θt−3, 0)t−2 flat for 1 ≤ i < j ≤ 3. On the
other hand, 〈δi, δj〉 contains no (θt−3, 0)t−2 flat other than δi, δj by Lemma 4(2).
So, each 〈Li, Lj〉 is a (θt−4, 2 · 3t−3)t−2 flat. Applying the inductive assumption
to π = 〈L1, L2, L3〉, π is a (θt−2, 2 · 3t−2)t−1 flat. Hence, counting the points
of F0 and F1 in the four (t − 1)-flats through 〈L1, L2〉, we have |Π ∩ F0| =
(θt−2 − θt−4)3 + θt−3 = θt−1, |Π ∩F1| = (2 · 3t−2 − 2 · 3t−3)3 + 2 · 3t−2 = 2 · 3t−1.
This completes the proof. �


Lemma 16. Let Π be a t-flat in Σ∗ with t ≥ 3. Then Π is a (θt−1, 3t−1)t flat
with Π \ F ⊂ Fe if and only if (Ct+2-4) holds in Π.

Proof. (“only if” part:) Assume that Π is a (θt−1, 3t−1)t flat. Then the spectrum
of Π is given as (A3) or (B3) of Lemma 6:

(c(t)θt−2,0, c
(t)
θt−3,2·3t−2 , c

(t)
θt−2,3t−2 , c

(t)
θt−2+3t−2,3t−2) = (4, 3, θt − θ2, 6).

For a (θt−3, 3t−2)t−2 flat δ′1 in Π there are exactly two (θt−3, 2 · 3t−2)t−1 flats,
say Δ2, Δ3, and two (θt−2 + 3t−2, 3t−2)t−1 flats through δ′1 in Π by Lemmas
4,6. Let L be the axis of δ′1, which is a (θt−3, 0)t−3 flat in δ′1 by Lemma 5(2).
Then there are two (θt−3, 3t−2)t−2 flats through L other than δ′1, say δ′2 in Δ2
and δ′3 in Δ3, and four (θt−3, 0)t−2 flats δ1, · · · , δ4 through L with δ1, δ2 ⊂ Δ2,
δ3, δ4 ⊂ Δ3. It follows from Lemmas 4,6 and the spectrum of Π that a (t − 1)-
flat containing two (θt−3, 3t−2)t−2 flats in Π is a (θt−3, 2 · 3t−2)t−1 flat. Hence
〈δ′2, δ′3〉 is a (θt−3, 2 · 3t−2)t−1 flat containing two (θt−3, 0)t−2 flats, say δ5, δ6.
Thus (Ct+2-4) holds.

(“if” part:) The proof is by induction on t. For t = 3, our assertion follows
by Lemma 7(1). Now, assume that t ≥ 4 and that (Ct+2-4) holds in Π . Take a
hyperplane π of Π not containing L and put Li = π ∩ δ′i, i = 1, 2, 3, H = π ∩L.
By a similar argument to the proof of the previous lemma, we can deduce that
〈Li, Lj〉 (1 ≤ i < j ≤ 3) is a (θt−4, 2 · 3t−3)t−2 flat. Applying the inductive
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assumption to π = 〈L1, L2, L3〉, π is a (θt−2, 3t−2)t−1 flat. A t-flat contain-
ing (θt−3, 2 · 3t−2)t−1 flats and (θt−2, 3t−2)t−1 flats is a (θt−1, 3t−1)t flat or a
(θt−1 − 3t−2, θt−1 + θt−3 + 1)t flat. Since Π contains 2 · 3t−1 points of Fe, Π is
a (θt−1, 3t−1)t flat. �


It follows from the proofs of Lemmas 15,16 that the (θt−3, 0)t−3 flat L in (Ct+2-
3) (resp. in (Ct+2-4)) is the axis of a (θt−1, 2 · 3t−1)t flat (resp. a (θt−1, 3t−1)t

flat). Hence we get the following.

Corollary 2. Let Π be a t-flat in Σ∗, t ≥ 3.
(1) Π is a (θt−1, 3t−1)t flat if and only if Π contains a (θt−3, 0)t−3 flat which is
the axis of type (θt−2, 3t−2).
(2) Π is a (θt−1, 2 · 3t−1)t flat if and only if Π contains a (θt−3, 0)t−3 flat which
is the axis of type (θt−2, 2 · 3t−2).

As for the axis of a (θt−1, 3t−1)t flat, the following lemma also holds.

Lemma 17. For t ≥ 3, let Π be a (θt−1, 3t−1)t flat in Σ∗ with the axis L.
(1) The axis of any (θt−3, 2 · 3t−2)t−1 flat in Π coincides with L.
(2) Let δ be a (θt−2, 0)t−2 flat and let Δ be a (θt−2 + 3t−2, 3t−2)t−1 flat through
δ in Π. Then the (θt−3, 0)t−2 flat δ0 in Δ contains L.
(3) Let Δ1, Δ2, Δ3 be the (θt−2, 3t−2)t−1 flats in Π through a fixed (θt−3, 0)t−2
flat δ. Then the axes of Δ1, Δ2, Δ3 are the same (θt−4, 0)t−4 flat in L.
(4) Every (θt−3, 3t−2)t−2 flat in Π contains L.

Proof. (1) and (4) are obtained from Corollary 2(1) and the proof of Lemma 16.
(2) Let H be the axis of Δ. Then δ0 contains H by Lemma 5(4). Since there is a
(θt−3, 2 · 3t−2)t−1 flat through δ0 in Π , we have H = L by (1) of this lemma.
(3) LetL′ be the axis of δ and put S = L∩L′. For a (θt−3, 2·3t−2)t−1 flatΔ,Δ∩Δi

is a (θt−4, 2 · 3t−3)t−2 flat through S. Hence S is the axis of Δi for i = 1, 2, 3. �


Lemma 18. Let Π be a t-flat in Σ∗ with t ≥ 4. Then Π is a (θt−1 + 3t−2, 4 ·
3t−2)t flat with Π \ F ⊂ Fe if and only if (Ct+2-5) holds in Π.

Proof. (“only if” part:) Assume that Π is a (θt−1 + 3t−2, 4 · 3t−2)t flat. The
spectrum of Π is given as

(c(t)θt−2,3t−2 , c
(t)
θt−2+3t−3,4·3t−3 , c

(t)
θt−2,2·3t−2 , c

(t)
θt−2+3t−2,3t−2) = (12, θt − θ3, 12, 16),

see (A-5) with s = T and (B-5) with s = U+1 of Lemma 6. For a (θt−2, 0)t−2 flat
δ in Π , there are exactly four (θt−2+3t−2, 3t−2)t−1 flats, sayΔ1, · · · , Δ4, through
δ in Π . Let δi be the (θt−3, 0)t−2 flat in Δi and let Li be the (θt−3, 0)t−3 flat δi∩δ
which is the axis of δi for 1 ≤ i ≤ 4. If Li = Lj, then 〈δi, δj〉 is a (θt−2, 3t−2)t−1
flat since it contains at least two (θt−3, 0)t−2 flats in Π , 1 ≤ i < j ≤ 4. This
contradicts that there is exactly one (θt−3, 0)t−2 flat through a fixed (θt−3, 0)t−3
flat in a (θt−2, 3t−2)t−1 flat. Hence Li �= Lj for 1 ≤ i < j ≤ 4. Put L1 ∩Lj = H ,
where j > 1. Let Δ be one of the (t − 1)-flats in Π through δ1 other than Δ1.



98 T. Maruta and K. Okamoto

Then Δ is a (θt−2, 3t−2)t−1 flat. Let δ′j be the (θt−3, 3t−2)t−2 flat through Lj

in Δj . Then Δ ∩ δ′j = (Δ ∩Δj) ∩ δ′j is a (θt−4, 3t−3)t−3 flat containing H since
Δ ∩Δj is a (t− 2)-flat through L1. Hence H is the axis of Δ by Lemma 17(4).
This yields that L1 ∩ L2 = L1 ∩ L3 = L1 ∩ L4. Hence (Ct+2-5) holds.

(“if” part:) Assume (Ct+2-5) holds and letΠ be the t-flat containing δ1, · · · , δ4.
Then Δi = 〈δi, δ〉 is a (θt−2, 0)t−1 flat or a (θt−2 + 3t−2, 3t−2)t−1 flat for 1 ≤
i ≤ 4. If x of Δ1, · · · , Δ4 are (θt−2 + 3t−2, 3t−2)t−1 flats, then Π is a (θt−2 +
3t−2x, 3t−2x)t flat with x = 3 or 4 since (θt−2 +3t−2x, 3t−2x) �∈ Λt for x ≤ 2. We
also have x �= 3 by Lemma 17(2). Hence Π is a (θt−1 + 3t−2, 4 · 3t−2)t flat. �


Now, assume that Π is a (θt−1 − 3t−2, 5 · 3t−2)t flat. Then the spectrum of Π is
given by Lemma 6 as

(c(t)θt−3,2·3t−2 , c
(t)
θt−2,3t−2 , c

(t)
θt−2−3t−3,5·3t−3 , c

(t)
θt−2,2·3t−2) = (10, 15, θt − θ3, 15),

see (A-4) with s = T and (B-4) with s = U + 1. Take two (θt−3, 2 · 3t−2)t−1 flats
Δ1, Δ2 in Π meeting in a (θt−4, 2 · 3t−3)t−2 flat. Let Li be the axis of Δi, which
is a (θt−3, 0)t−3 flat by Lemma 5 for i = 1, 2. Then it can be proved that the
(θt−4, 0)t−4 flat H = L1 ∩ L2 forms the axis of Π of type (θt−2 − 3t−3, 5 · 3t−3).
A similar argument to the proof of Lemma 12 yields the following lemma by
induction on t.

Lemma 19. Let Π be a t-flat in Σ∗ with t ≥ 4. Then Π is a (θt−1 − 3t−2, 5 ·
3t−2)t flat with Π \ F ⊂ Fe if and only if (Ct+2-6) holds in Π.

The following result for t = 4 is obtained from the proof of Lemma 12.

Corollary 3. For t ≥ 4, let Π be a (θt−1−3t−2, 5·3t−2)t flat and assume (Ct+2-
6) holds in Π except for the condition that δ3 = 〈L0,M1〉 and δ4 = 〈L0,M2〉 are
(θt−4, 2 · 3t−3)t−2 flats. Then δ3 and δ4 are necessarily (θt−4, 2 · 3t−3)t−2 flats in
Π.

Finally we give the proof of Theorem 5. Theorems 4 and 6 can be proved similarly
using Lemmas 15-19.

Proof of Theorem 5
(“only if” part:) Assume that C is extendable. Then there is an (i, j)k−2 flat Π
in Σ∗ satisfying Π \ F ⊂ Fe by Lemma 3. From Lemma 6 we have

(i, j) ∈ {(θk−4, 2 · 3k−3), (θk−3, 3k−3), (θk−3 − 3k−4, 5 · 3k−4), (θk−3, 2 · 3k−3)},

see (A-4) with s = T and (B-4) with s = U + 1. If Π is a (θk−4, 2 · 3k−3)k−2
flat, then (Ck-2) holds since there are exactly two (θk−4, 0)k−3 flats and two
(θk−4, 3k−3)k−3 flats through a fixed (θk−4, 0)k−4 flat in Π . If Π is a (θk−3, 2 ·
3k−3)k−2 flat, a (θk−3, 3k−3)k−2 flat or a (θk−3 − 3k−4, 5 · 3k−4)k−2 flat, then
(Ck-3), (Ck-4) or (Ck-6) holds respectively by Lemmas 15,16,19.

(“if” part:) Assume that (Ck-2) holds and let Π1 be the (k−2)-flat containing
δ1, δ2. Then Π1 is a (θk−3, 3k−3)k−2 flat or a (θk−4, 2 · 3k−3)k−2 flat since Π1
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contains at least two (θk−4, 0)k−3 flats. If Π1 is a (θk−3, 3k−3)k−2 flat, then for
any (θk−4, 0)k−4 flat δ there are exactly one (θk−4, 0)k−3 flat and three (θk−4 +
3k−4, 3k−4)k−3 flats through δ in Π1, contradicting (Ck-2). So Π1 is a (θk−4, 2 ·
3k−3)k−2 flat containing 2 · 3k−3 points of Fe. Hence C is extendable by Lemma
3. Next, assume that one of the conditions (Ck-3), (Ck-4), (Ck-6) holds. We take
a (k − 2)-flat Π as Π = 〈δ1, δ2, δ3〉 for (Ck-3), Π = 〈δ′1, δ′2, δ′3〉 for (Ck-4) and
Π = 〈δ1, δ2, δ3, δ4〉 for (Ck-6). Then Π \F ⊂ Fe holds by Lemmas 15,16,19, and
C is extendable by Lemma 3. �
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Abstract. In this paper, we describe a broad class of problems arising
in the context of designing codes for DNA computing. We primarily fo-
cus on design considerations pertaining to the phenomena of secondary
structure formation in single-stranded DNA molecules and non-selective
cross-hybridization. Secondary structure formation refers to the tendency
of single-stranded DNA sequences to fold back upon themselves, thus
becoming inactive in the computation process, while non-selective cross-
hybridization refers to unwanted pairing between DNA sequences in-
volved in the computation process. We use the Nussinov-Jacobson algo-
rithm for secondary structure prediction to identify some design criteria
that reduce the possibility of secondary structure formation in a code-
word. These design criteria can be formulated in terms of constraints on
the number of complementary pair matches between a DNA codeword
and some of its shifts. We provide a sampling of simple techniques for
enumerating and constructing sets of DNA sequences with properties
that inhibit non-selective hybridization and secondary structure forma-
tion. Novel constructions of such codes include using cyclic reversible
extended Goppa codes, generalized Hadamard matrices, and a binary
mapping approach. Cyclic code constructions are particularly useful in
light of the fact we prove that the presence of a cyclic structure reduces
the complexity of testing DNA codes for secondary structure formation.

1 Introduction

The field of DNA-based computation was established in a seminal paper by Adle-
man [2], in which he described an experiment involving the use of DNA molecules
to solve a specific instance of the directed travelling salesman problem. DNA se-
quences within living cells of eukaryotic species appear in double helices (alter-
natively, duplexes), in which one strand of nucleotides is chemically attached to
its complementary strand. However, in DNA-based computation, only relatively
short single-stranded DNA sequences, referred to as oligonucleotides, are used.
The computing process simply consists of allowing these oligonucleotide strands
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to self-assemble to form long DNA molecules via the process of hybridization.
Hybridization is the process in which oligonucleotides with long regions of com-
plementarity bond with each other. The astounding parallelism of biochemical
reactions makes a DNA computer capable of parallel-processing information on
an enormously large scale. However, despite its enormous potential, DNA-based
computing is unlikely to completely replace electronic computing, due to the
inherent unreliability of biochemical reactions, as well as the sheer speed and
flexibility of silicon-based devices [30]. Nevertheless, there exist special applica-
tions for which they may represent an attractive alternative or the only available
option for future development. These include cell-based computation systems for
cancer diagnostics and treatment [3], and ultra-high density storage media [17].
Such applications require the design of oligonucleotide sequences that allow for
operations to be performed on them with a high degree of reliability.

The process of self-assembly in DNA computing requires the oligonucleotide
strands (codewords) participating in the computation to selectively hybridize in
a manner compatible with the goals of the computation. If the codewords are
not chosen appropriately, unwanted (non-selective) hybridization may occur. For
many applications, even more detrimental is the fact that an oligonucleotide se-
quence may self-hybridize, i.e., fold back onto itself, forming a secondary struc-
ture which prevents the sequence from participating in the computation process
altogether1. For example, a large number of read-out failures in the DNA storage
system described in [17] was attributed to the formation of hairpins, a special
secondary structure formed by oligonucleotide sequences. The number of com-
putational errors in a DNA system designed for solving an instance of a 3-SAT
problem [5] were reduced by generating DNA sequences that avoid folding and
undesired hybridization phenomena. Similar issues were reported in [4], where a
DNA-based computer was used for breaking the Digital Encryption Standard.

Even if hybridization can be made error-free and no detrimental folding of
sequences occurs, there remain other reliability issues to be dealt with. One
such issue is DNA duplex stability [6],[18]: here, a hybridized pair of sequences
has to remain in a duplex formation for a sufficiently long period of time in order
for the extraction and sequence “sifting” processes to be performed accurately.
It was observed in [6] that the stability of duplexes depends on the combinatorial
structure of the sequences, more precisely, on the combination of adjacent pairs
of bases present in the oligonucleotide strands.

It must be pointed out that the problem of designing sets of codewords that
have properties suitable for DNA computing purposes can be considered to be
partially solved from the computational point of view. There exist many software
packages, such as the Vienna package [29] and the mfold web server [32], that can
predict the secondary structure of a single-stranded DNA (or RNA) sequence.
But such procedures can often be computationally expensive when large numbers
of sequences are sought, or if the sequences are long. Furthermore, they do not

1 This is not a problem with all DNA-based systems; there exist DNA-based computer
logic circuits for which specific folding patterns are actually required by the system
architecture itself [25].
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provide any insight into the combinatorial nature of the problems at hand. Such
insight is extremely valuable from the perspective of functional genomics, for
which one of the outstanding principles is that the folding structure of a sequence
is closely related to its biological function [7].

Until now, the focus of coding for DNA computing [1],[8],[10],[14],[18],[23] was
on constructing large sets of DNA codewords with fixed base frequencies (con-
stant GC-content) and prescribed minimum distance properties. When used in
DNA computing experiments, such sets of codewords are expected to lead to
very rare hybridization errors. The largest families of linear codes avoiding hy-
bridization errors were described in [10], while bounds on the size of such codes
were derived in [18] and [14]. As an example, it was shown in [10] that there exist
94595072 codewords of length 20 with minimum Hamming distance d = 5 and
with exactly 10 G/C bases. In comparison, without disclosing their design meth-
ods, Shoemaker et al. reported [24] the existence of only 9105 DNA sequences of
length 20, at Hamming distance at least 5, free of secondary structure at tem-
peratures of 61 ± 5 oC. Since ambient temperature and chemical composition
have a significant influence on the secondary structure of oligonucleotides, it is
possible that this number is even smaller for other environmental parameters.

The aim of this paper is to provide a broad description of the kinds of prob-
lems that arise in coding for DNA computing, and in particular, to stress the
fact that DNA code design must take secondary structure considerations into
account. We provide the necessary biological background and terminology in
Section 2 of the paper. Section 3 contains a detailed description of the sec-
ondary structure considerations that must go into the design of DNA codes.
By studying the well-known Nussinov-Jacobson algorithm for secondary struc-
ture prediction, we show how the presence of a cyclic structure in a DNA code
reduces the complexity of the problem of testing the codewords for secondary
structure. We also use the algorithm to argue that imposing constraints on the
number of complementary base pair matches between a DNA sequence and some
of its shifts could inhibit the occurrence of sequence folding. In Section 4, con-
sider the enumeration of sequences satisfying some of these shift constraints.
Finally, in Section 5, we provide a sampling of techniques for constructing cyclic
DNA codes with properties that are believed to limit non-selective hybridization
and/or self-hybridization. Among the many possible approaches for code design,
those resulting in large families with simple descriptions are pursued.

2 Background and Notation

We start by introducing some basic definitions and concepts relating to DNA
sequences. The oligonucleotide2 sequences used for DNA computing are oriented
words over a four-letter alphabet, consisting of four bases — two purines, adenine
(A) and guanine (G), and two pyrimidines, thymine (T) and cytosine (C). A
2 Usually, the word ‘oligonucleotide’ refers to single-stranded nucleotide chains consist-

ing of a few dozen bases; we will however use the same word to refer to single-stranded
DNA sequences composed of any number of bases.
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DNA strand is oriented due to the asymmetric structure of the sugar-phosphate
backbone. It is standard to designate one end of a strand as 3′ and the other as
5′, according to the number of the free carbon molecule. Only strands of opposite
orientation can hybridize to form a stable duplex. A DNA code is simply a set
of (oriented) sequences over the alphabet Q = {A,C,G,T}.

Each purine base is the Watson-Crick complement of a unique pyrimidine
base (and vice versa) — adenine and thymine form a complementary pair, as do
guanine and cytosine. We describe this using the notation A = T, T = A, C =
G, G = C. The chemical ties between the two WC pairs are different — C and
G pair through three hydrogen bonds, while A and T pair through two hydrogen
bonds. We will assume that hybridization only occurs between complementary
base pairs, although certain semi-stable bonds between mismatched pairs form
relatively frequently due to biological mutations.

Let q = q1q2 . . . qn be a word of length n over the alphabet Q. For 1 ≤ i ≤ j ≤
n, we will use the notation q[i,j] to denote the subsequence qiqi+1 . . . qj . Further-
more, the sequence obtained by reversing q, i.e., the sequence qnqn−1 . . . q1, will
be denoted by qR. The Watson-Crick complement, or reverse-complement, of q
is defined to be qRC = qn qn−1 . . . q1, where qi denotes the Watson-Crick com-
plement of qi. For any pair of length-n words p = p1p2 . . . pn and q = q1q2 . . . qn
over the alphabet Q, the Hamming distance dH(p, q) is defined as usual to be the
number of positions i at which pi �= qi. We further define the reverse Hamming
distance between the words p and q to be dR

H(p,q) = dH(p,qR). Similarly, their
reverse-complement Hamming distance is defined to be dRC

H (p,q) = dH(p,qRC).
For a DNA code C, we define its minimum (Hamming) distance, minimum reverse
(Hamming) distance, and minimum reverse-complement (Hamming) distance in
the obvious manner:

dH(C) = min
p,q∈C,p �=q

dH(p,q), dR
H(C) = min

p,q∈C
dR

H(p,q)

dRC
H (C) = min

p,q∈C
dRC

H (p,q)

We also extend the above definitions of sequence complements, reversals, dH , dR
H

and dRC
H to sequences and codes over an arbitrary alphabet A, for an appropri-

ately defined complementation map from A onto A. For example, for A = {0, 1},
we define complementation as usual via 0 = 1 and 1 = 0.

Hybridization between a pair of distinct DNA sequences is referred to as
cross-hybridization, to distinguish it from self-hybridization or sequence folding.
The distance measures defined above come into play when evaluating cross-
hybridization properties of DNA words under the assumption of a perfectly rigid
DNA backbone. As an example, consider two DNA codewords 3′−AAGCTA−
5′ and 3′ − ATGCTA − 5′ at Hamming distance one from each other. For
such a pair of codewords, the reverse complement of the first codeword, namely
3′−TAGCTT− 5′, will show a very large affinity to hybridize with the second
codeword. In order to prevent such a possibility, one could impose a minimum
Hamming distance constraint, dH(C) ≥ dmin, for some sufficiently large value of
dmin. On the other hand, in order to prevent unwanted hybridization between two
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DNA codewords, one could try to ensure that the reverse-complement distance
between all codewords is larger then a prescribed threshold, i.e. dRC(C) ≥ dRC

min.
Indeed, if the reverse-complement distance between two codewords is small, as
for example in the case of the DNA strands 3′ − AAGCTA − 5′ and 3′ −
TACCTT−5′, then there is a good chance that the two strands will hybridize.

Hamming distance is not the only measure that can be used to assess DNA
cross-hybridization patterns. For example, if the DNA sugar-phosphate back-
bone is taken to be a perfectly elastic structure, then it is possible for bases
not necessarily at the same position in two strands to pair with each other.
Here, it is assumed that bases not necessarily at the same position in two
strands can pair with each other. For example, consider the two sequences 3′ −
A(1)

1 A(1)
2 C(1)

1 C(1)
2 A(1)

3 G(1)
1 A(1)

4 A(1)
5 −5′ and 3′−G(2)

3 G(2)
2 T(2)

3 T(2)
2 A(2)

1 G(2)
2 G(2)

1

T(2)
1 −5′. Under the “perfectly elastic backbone”model, hybridization between the

subsequences of not necessarily consecutive bases, 3′−A(1)
2 C(1)

1 C(1)
2 A(1)

3 A(1)
4 −5′

and 5′ − T(2)
1 G(2)

1 G(2)
2 T(2)

2 T(2)
3 − 3′, is plausible. The relevant distance measure

for this model is the Levenshtein distance [15], which for a pair of sequences p and
q, is defined to be smallest number, dL(p,q), of insertions and deletions needed
to convert p to q. A study of DNA codes with respect to this metric can be found
in [8]. The recent work of D’yachkov et al. [9] considers a distance measure that is
a slight variation on the Levenshtein metric, and seems to fit better in the DNA
coding context than the Hamming or Levenshtein metrics.

Another important code design consideration linked to the process of oligonu-
cleotide hybridization pertains to the GC-content of sequences in a DNA code.
The GC-content, wGC(q), of a DNA sequence q = q1q2 . . . qn is defined to be
the number of indices i such that qi ∈ {G,C}. A DNA code in which all code-
words have the same GC-content, w, is called a constant GC-content code. The
constant GC-content requirement assures similar thermodynamic characteristics
for all codewords, and is introduced in order to ensure that all hybridization op-
erations take place in parallel, i.e., roughly at the same time. The GC-content
is usually required to be in the range of 30–50% of the length of the code.

One other issue associated with hybridization that we will mention is that
of the stability of the resultant DNA duplexes. The duplexes formed during
the hybridization phase of the computation process must remain paired for the
entire duration of the long “post-processing” phase in which the sequences are
extracted and sifted through to determine the result of the computation. As
observed in [6], the stability of DNA duplexes depends closely on the sequence
of bases in the individual strands; thus, it should be possible to take duplex
stability into account while designing DNA codes. We will, however, not touch
upon this topic further in this paper.

3 Secondary Structure Considerations

Probably the most important criterion in designing codewords for DNA comput-
ing purposes is that the codewords should not form secondary structures that
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Fig. 1. DNA/RNA secondary structure model (reprinted from [19])

cause them to become computationally inactive. A secondary structure is formed
by a chemically active oligonucleotide sequence folding back onto itself by com-
plementary base pair hybridization. As a consequence of the folding, elaborate
spatial structures are formed, the most important components of which are loops
(including branching, internal, hairpin and bulge loops), stem helical regions, as
well as unstructured single strands3. Figure 1 illustrates these structures for an
RNA strand4. It has been shown experimentally that the most important factors
influencing the secondary structure of a DNA sequence are the number of base
pairs in stem regions, the number of base pairs in a hairpin loop region as well
as the number of unpaired bases.

For a collection of interacting entities, one measure commonly used for as-
sessing the system’s property is the free energy. The stability and form of a
secondary configuration is usually governed by this energy, the general rule-of-
thumb being that a secondary structure minimizes the free energy associated
with a DNA sequence. The free energy of a secondary structure is determined
by the energy of its constituent pairings, and consequently, its loops. Now, the
energy of a pairing depends on the bases involved in the pairing as well as all
bases adjacent to it. Adding complication is the fact that in the presence of other
neighboring pairings, these energies change according to some nontrivial rules.

Nevertheless, some simple dynamic programming techniques can be used to
approximately determine base pairings in a secondary structure of a oligonu-
cleotide DNA sequence. Among these techniques, the Nussinov-Jacobson (NJ)
folding algorithm [22] is one of the simplest and most widely used schemes.

3.1 The Nussinov-Jacobson Algorithm

The NJ algorithm is based on the assumption that in a DNA sequence q1q2 . . . qn,
the energy of interaction,α(qi, qj), between the pair of bases (qi, qj) is independent
3 We do not consider more complicated structures such as the so-called “pseudoknots”;

the general problem of determining secondary structure including pseudoknots is
known to be NP-complete.

4 Oligonucleotide DNA sequences are structurally very similar to RNA sequences,
which are by their very nature single-stranded, and consist of the same bases as
DNA strands, except for thymine being replaced by uracil (U).
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of all other base pairs. The interaction energies α(qi, qj) are negative quantities
whose values usually depend on the actual choice of the base pair (qi, qj). One
frequently used set of values for RNA sequences is [7]

α(qi, qj) =

⎧⎨⎩−5 if (qi, qj) ∈ {(G,C), (C,G)}
−4 if (qi, qj) ∈ {(A,T), (T,A)}
−1 if (qi, qj) ∈ {(G,T), (T,G)}.

The value of −1 used for the pairs (G,T) and (T,G) indicates a certain fre-
quency of bonding between these mismatched pairs. We will, however, focus our
attention only on pairings between Watson-Crick complements. In addition, in
order to simplify the discussion, we will restrict our attention to a uniform inter-
action energy model with α(qi, qj) = −1 whenever qi and qj are Watson-Crick
complements and α(qi, qj) = 0 otherwise.

Let Ei,j denote the minimum free energy of the subsequence qi . . . qj . The
independence assumption allows us to compute the minimum free energy of the
sequence q1q2 . . . qn through the recursion

Ei,j = min
{
Ei+1,j−1 + α(qi, qj),
Ei,k−1 + Ek,j , i < k ≤ j, (1)

where Ei,i = Ei,i−1 = 0 for i = 1, 2, ..., n. The value of E1,n is the minimum
free energy of a secondary structure of q1q2 . . . qn. Note that E1,n ≤ 0. A large
negative value for the free energy, E1,n, of a sequence is a good indicator of the
presence of a secondary structure in the physical DNA sequence.

The NJ algorithm can be described in terms of free-energy tables, an example
of which is shown in Figure 2. In a free-energy table, the entry at position (i, j)
(the top left position being (1,1)), contains the value ofEi,j . The table is filled out
by initializing the entries on the main diagonal and on the first lower sub-diagonal
of the matrix to zero, and calculating the energy levels according to the recursion
in (1). The calculations proceed successively through the upper diagonals: entries
at positions (1, 2), (2, 3), ..., (n− 1, n) are calculated first, followed by entries at
positions (1, 3), (2, 4), ..., (n−2, n), and so on. Note that the entry at (i, j), j > i,
depends on α(i, j) and the entries at (i, l), l = i, . . . , j−1, (l, j), l = i+1, . . . , n−1,
and (i + 1, j − 1). The complexity of the NJ algorithm is O(n3), since each of
the O(n2) entries requires O(n) computations [19].

The minimum-energy secondary structure itself can be found by the backtrack-
ing algorithm [22] which retraces the steps of the NJ algorithm (for a description
of the backtracking algorithm, the reader is referred to [19]). Figure 2 shows the
minimum-energy structure of the sequence GGGAAATCC, as determined by
the backtracking algorithm. The trace-back path through the free-energy table
is indicated by the boldface entries in the table.

From a DNA code design point of view, it would be of considerable interest
to determine a set of amenable properties that oligonucleotide sequences should
possess so as to either facilitate testing for secondary structure, or exhibit a very
low probability for forming such a structure. We next make some straightforward,
yet important, observations about the NJ algorithm that provide us with some
guidelines for DNA code design.
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G G G A A A T C C
G 0 0 0 0 0 0 -1 -2 -3
G 0 0 0 0 0 0 -1 -2 -3
G * 0 0 0 0 0 -1 -2 -2
A * * 0 0 0 0 -1 -1 -1
A * * * 0 0 0 -1 -1 -1
A * * * * 0 0 -1 -1 -1
T * * * * * 0 0 0 0
C * * * * * * 0 0 0
C * * * * * * * 0 0

G

G

G

A

A A

T

C

C

Fig. 2. Free-energy table for the sequence GGGAAATCC, along with its secondary
structure as obtained by backtracking through the table

3.2 Testing for Secondary Structure

One design principle that arises out of a study of the NJ algorithm is that DNA
codes should contain a cyclic structure. The key idea behind this principle is
based on the observation that once the free-energy table, and consequently, the
minimum free energy of a DNA sequence q has been computed, the correspond-
ing computation for any cyclic shift of q becomes easy. This idea is summarized
in the following proposition.

Proposition 1. The overall complexity of computing the free-energy tables of a
DNA codeword q1q2 . . . qn and all of its cyclic shifts is O(n3).

Sketch of Proof . It is enough to show that the free-energy table of the cyclic shift
q∗ = qnq1 . . . qn−1 can be obtained from the table of q = q1 . . . qn in O(n2) steps.
The sets of subsequences contained within the positions 1, . . . , n − 1 of q and
within the positions 2, . . . , n of q* are the same. This implies that only entries
in the first row of the energy table of q* have to be computed. Computing each
entry in the first row involves O(n) operations, resulting in a total complexity
of O(n2). �

The above result shows that the complexity of testing a DNA code with M
length-n codewords for secondary structure is reduced from O(Mn3) to O(Mn2),
if the code is cyclic. It is also worth pointing out that a cyclic code structure can
also simplify the actual production of the DNA sequences that form the code.

Example 1. The minimal free energies of the sequence shown in Figure 3(a)
and all its cyclic shifts lie in the range −0.24 to −0.41 kcal/mol. None of these
sequences has a secondary structure. On the other hand, for the sequence in
Figure 3(b), all its cyclic shifts have a secondary structure, and the minimal free
energies are in the range −1.05 to −1.0 kcal/mol. The actual construction of
these sequences is described in Example 3 in Section 5.2. Their secondary struc-
tures have been determined using the Vienna RNA/DNA secondary structure
package [29], which is based on the NJ algorithm, but which uses more accurate
values for the parameters α(qi, qj), as well as sophisticated prediction methods
for base pairing probabilities.
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Fig. 3. Secondary structures of two DNA codewords at a temperature of 37oC

3.3 Avoiding Formation of Secondary Structure

While testing DNA sequences for secondary structure is one aspect of the code
design process, it is equally important to know how to design codewords that
have a low tendency to form secondary structures. The obvious approach here
would be to identify properties of the sequence of bases in an oligonucleotide
that would encourage secondary structure formation, so that we could then try
to construct codewords which do not have those properties. For example, it seems
intuitively clear that if a sequence q has long, non-overlapping segments s1 and
s2 such that s1 = sRC

2 , then there is a good chance that q will fold to enable
s1 to bind with sR

2 thus forming a stable structure. Actually, we can slightly
strengthen the above condition for folding by requiring that s1 and s2 be spaced
sufficiently far apart, since a DNA oligonucleotide usually does not make sharp
turns, i.e., does not bend over small regions. In any case, the logic is that a
sequence that avoids such a scenario should not fold. Unfortunately, this is not
quite true: it is not necessarily the longest regions of reverse-complementarity
in a sequence that cause a secondary structure to form, as demonstrated by
the example in Figure 4. The longest regions of reverse-complementarity in the
sequence in the figure are actually the segments of length 7 at either end, which
do not actually hybridize with each other within the secondary structure.

A subtler approach to finding properties that inhibit folding consists of
identifying components of secondary structures that have a destabilizing ef-
fect on the structure. Since the DNA sugar-phosphate backbone is a semi-rigid
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Fig. 4. Secondary structure of the sequence CGTAA. . .TTACG
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structure, it is reasonable to expect that long loops (especially hairpin loops)
tend to destabilize a secondary structure, unless they are held together by an
even longer string of stacked base-pairs, which is an unlikely occurrence.

To identify what could induce a hairpin loop to form in a DNA sequence, we
enlist the help of the free-energy tables from the NJ algorithm. As an illustrative
example, consider the table and corresponding secondary structure in Figure 2.
The secondary structure consists of three stacked base-pairs, and a hairpin loop
involving two A’s. The three stacked base-pairs correspond to the three diagonal
steps (−3 → −2, −2 → −1 and −1 → 0) made in the trace-back path indicated
by boldface entries in the table; the hairpin loop corresponds to the vertical
segment formed by the two 0’s in the trace-back path. In general, a vertical
segment involving m ‘0’ entries from the first m upper diagonals indicates the
presence of a hairpin loop of length m. For sufficiently large m, such a loop
would have a destabilizing effect on any nearby stacked base-pairs, leading to an
unravelling of the overall structure.

Thus, if the firstm upper diagonals of the free-energy table of a DNA sequence
q = q1q2 . . . qn contain only zero-valued entries, then a hairpin loop of size m is
necessarily present in the secondary structure. Consequently, it is very likely that
even if base pairing is possible, the overall structure will be unstable5. It is easy to
verify that the firstm upper diagonals in the free-energy table contain only zeros
if and only if q and any of its first m− 1 shifts contain no complementary base
pairs at the same positions, i.e., qi �= qi+j for 1 ≤ j ≤ m− 1 and 1 ≤ i ≤ n− j.

Relaxing the above argument a little, we see that from the stand-point of
designing DNA codewords without secondary structure, it is desirable to have
codewords for which the sums of the elements on each of the first few diagonals in
their free-energy tables are either all zero or of some very small absolute value.
This requirement can be rephrased in terms of requiring a DNA sequence to
satisfy a “shift property”, in which a sequence and its first few shifts have few
or no complementary base pairs at the same positions.

In the following section, we define a shift property of a sequence more rigor-
ously, and provide some results on the enumeration of DNA sequences satisfying
certain shift properties.

4 Enumerating DNA Sequences Satisfying a Shift
Property

Recall that for q ∈ Q = {A,C,G,T}, q denotes the Watson-Crick complement
of q.

Definition 1. Given a DNA sequence q = q1q2 . . . qn, we define for 0 ≤ i ≤
n − 1, the ith matching number, μi(q), of q to be the number of indices � ∈
{1, 2, . . . , n− i} such that q� = qi+�.
5 The no sharp turn constraint implies that one can restrict its attention only to the

fifth, sixth, ..., m-th upper diagonals, but for reasons of simplicity, we will consider
only the previously described scenario.
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A shift property of q is any sort of restriction imposed on the matching num-
bers μi(q).

Enumerating sequences having various types of shift properties is useful because
doing so yields upper bounds on the size of DNA codes whose codewords satisfy
such properties. We present a few such combinatorial results here.

Given s ≥ 1, let gs(n) denote the number of sequences, q, of length n for
which μi(q) = 0, i = 1, ..., s. For n ≤ s, we take gs(n) to be gn−1(n).

Lemma 2. For all n > 1, gn−1(n) = 4(2n − 1).

Proof. It is clear that a DNA sequence is counted by gn−1(n) iff it contains no
pair of complementary bases. Such a sequence must be over one of the alphabets
{A,G}, {A,C}, {T,G} and {T,C}. There are 4(2n − 1) such sequences, since
there are 2n sequences over each of these alphabets, of which An, Tn, Gn and
Cn are each counted twice. �


Lemma 3. For all n > s,

gs(n) = 2gs(n− 1) + gs(n− s).

Proof. Let Gs(n) denote the set of all sequences q of length n for which μi(q) =
0, i = 1, ..., s. Thus, |Gs(n)| = gs(n). Note that for any q ∈ Gs(n), q[n−s,n]
cannot contain a complementary pair of bases, and hence cannot contain three
distinct bases. Let E(n) denote the set of sequences q1q2 . . . qn ∈ Gs(n) such
that qn−s+1 = qn−s+2 = · · · = qn, and let U(n) = Gs(n) \ E(n). We thus have
|E(n)| + |U(n)| = gs(n). Each sequence in E(n) is obtained from some sequence
q1q2 . . . qn−s+1 ∈ Gs(n − s + 1) by appending s − 1 bases, qn−s+2, . . . , qn, all
equal to qn−s+1. Hence, |E(n)| = |Gs(n− s+ 1)| = gs(n− s+ 1), and therefore,
|U(n)| = gs(n) − gs(n− s+ 1).

Now, observe that each sequence q1q2 . . . qn ∈ Gs(n) is obtained by appending
a single base, qn, to some sequence q1q2 . . . qn−1 ∈ Gs(n−1). If q1q2 . . . qn−1 is in
fact in E(n− 1), then there are three choices for qn. Otherwise, if q1q2 . . . qn−1 ∈
U(n− 1), there are only two possible choices for qn. Hence,

gs(n) = 3 |E(n− 1)| + 2 |U(n− 1)|
= 3 gs(n− s) + 2 (gs(n− 1) − gs(n− s))

This proves the claimed result. �


From Lemmas 2 and 3, we obtain the following result.

Theorem 4. The generating function Gs(z) =
∑∞

z=1 gs(n)z−n is given by

Gs(z) = 4 · z
s−1 + zz−2 + · · · + z + 1

zs − 2zs−1 − 1
.
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It can be shown that for s > 1, the polynomial ψs(z) = zs − 2zs−1 − 1 in the
denominator of Gs(z) has a real root, ρs, in the interval (2,3), and s − 1 other
roots within the unit circle. It follows that gs(n) ∼ βs(ρs)n for some constant
βs > 0. It is easily seen that ρs decreases as s increases, and that lims→∞ ρs = 2.

Theorem 5. Given an s ∈ {1, 2, . . . , n − 1}, the number of length-n DNA se-
quences q such that μs(q) = m, is

(
n−s
m

)
4s3n−s−m.

Proof. Let Bs(n,m) be the set of length-n DNA sequences q such that μs(q) =
m. A sequence q = q1q2 . . . qn is in Bs(n,m) iff the set I = {i : qi = qi−s}
has cardinality m. So, to construct such a sequence, we first arbitrarily pick
q1, q2, . . . , qs and an I ⊂ {s + 1, s + 2, . . . , n}, |I| = m, which can be done in
4s
(
n−s
m

)
ways. The rest of q is constructed recursively: for i ≥ s+1, set qi = qi−s

if i ∈ I, and pick a qi �= qi−1 if i /∈ I. Thus, there are 3 choices for each i ≥ s+1,
i /∈ I, and hence a total of

(
n−s
m

)
4s3n−s−m sequences q in Bs(n,m).

The enumeration of DNA sequences satisfying any sort of shift property be-
comes considerably more difficult if we bring in the additional requirement of
constant GC-content. The following result can be proved by applying the pow-
erful Goulden-Jackson method of combinatorial enumeration [11, Section 2.8].
The result is a direct application of Theorem 2.8.6 and Lemma 2.8.10 in [11],
and the details of the algebraic manipulations involved are omitted.

Theorem 6. The number of DNA sequences q of length n and GC-content w,
such that μ1(q) = 0, is given by the coefficient of xnyw in the (formal) power
series expansion of

Φ(x, y) =
(

1 − 2x
1 + x

− 2xy
1 + xy

)−1

.

5 Some DNA Code Constructions

Having in previous sections described some of the code design problems in the
context of DNA computing, we present some sample solutions in this section.
We mainly focus on constructions of cyclic codes, since as mentioned earlier, the
presence of a cyclic structure reduces the complexity of testing DNA codes for
secondary structure formation, and also simplifies the DNA sequence fabrication
procedure. We have seen that other properties desirable in DNA codes include
large minimum Hamming distance, large minimum reverse-complement distance,
constant GC-content, and the shift properties introduced in Sections 3.3 and 4.
The codes presented in this section are constructed in such a way as to possess
some subset of these properties. There are many such code constructions possible,
so we pick some that are easy to describe and result in sufficiently large codes.
Due to the restrictions imposed on the code design methods with respect to
testing for secondary structure, the resulting codes are sub-optimal with respect
to the codeword cardinality criteria [10].
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5.1 DNA Codes from Cyclic Reversible Extended Goppa Codes

The use of reversible cyclic codes for the construction of DNA sequences was
previously proposed in [1] and [23]. Here, we will follow a more general approach
that allows for the construction of large families of DNA codes with a certain
guaranteed minimum distance and minimum reverse-complement distance, based
on extended Goppa codes over GF (22) [28].

Recall that a code C is said to be reversible if c ∈ C implies that cR ∈ C
[16, p. 206]. It is a well-known fact that a cyclic code is reversible if and only
if its generator polynomial g(z) is self-reciprocal, i.e., zdeg(g(z))g(z−1) = ±g(z).
Given an [n, k, d] reversible cyclic code, C, overGF (22) with minimum distance d,
consider the code Ĉ obtained by first eliminating all the self-reversible codewords
(i.e., codewords c such that cR = c), and then choosing one half of the remaining
codewords such that no codeword and its reverse are selected simultaneously. If
r is the number of self-reversible codewords in C, then Ĉ is a nonlinear code with
(4k − r)/2 codewords of length n, and furthermore, dH(Ĉ) ≥ d and dR

H(Ĉ) ≥ d.
The value of r can be determined easily, as shown below.

Proposition 7. A reversible cyclic code of dimension k over GF (q) contains
q�k/2� self-reversible codewords.

Proof. If a = a0a1 . . . an−1 is a self-reversible codeword, then the polynomial
a(z) = a0 + a1z + . . . an−1z

n−1 is self-reciprocal. Let g(z) be the generator
polynomial for the code, so that a(z) = ia(z)g(z) for some polynomial ia(z) of
degree at most k − 1. Since g(z) and a(z) are self-reciprocal, so is ia(z). Hence,
ia(z) is uniquely determined by the coefficients of its �k/2� least-order terms zi,
i = 0, 1, . . . , �k/2�− 1, and there are exactly q�k/2� choices for these coefficients.

�


The code Ĉ defined above can be thought of as a DNA code by identifying
GF (22) with the DNA alphabet Q = {A,C,G,T}. Let D be the code obtained
from Ĉ by means of the following simple modification: for each c ∈ C, replace
each of the first �n/2� symbols of c by its Watson-Crick complement. It is clear
that D has the same number of codewords as Ĉ, and that dH(D) ≥ d as well. It
can also readily be seen that if n is even, then dRC

H (D) = dR
H(Ĉ), and if n is odd,

then dRC
H (D) may be one less than dR

H(Ĉ). In any case, we have dRC
H (D) ≥ d− 1.

We apply the above construction to a class of extended Goppa codes that are
known to be reversible and cyclic. We first recall the definition of a Goppa code.

Definition 2. [16, p. 338] Let L = {α1, ..., αn} ⊆ GF (qm), for q a power of a
prime and m,n ∈ Z+. Let g(z) be a polynomial of degree δ < n over GF (qm)
such that g(z) has no root in L. The Goppa code, Γ (L), consists of all words
(c1, ..., cn), ci ∈ GF (q) such that

∑n
i=1

ci

z−αi
≡ 0 mod g(z). Γ (L) is a code of

length n, dimension k ≥ n−mδ and minimum distance d ≥ δ + 1.

The polynomial g(z) in the definition above is referred to as the Goppa poly-
nomial. We shall consider Goppa codes derived from Goppa polynomials of the
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form g(z) = [(z − β1)(z − β2)]a, for some integer a. Two choices for the roots
β1, β2 and the corresponding location sets L are of interest: (i) β1, β2 ∈ GF (qm),
L = GF (qm) − {β1, β2}, n = qm − 2; (ii) L = GF (qm), with β1, β2 ∈ GF (q2m),
such that β2 = βqm

1 , β1 = βqm

2 , and n = qm.
It was shown in [28] that for such a choice of g(z) and for an ordering of

the location set L satisfying αi + αn+1−i = β1 + β2, the extended Goppa codes
obtained by adding an overall parity check to Γ (L) in the above cases are re-
versible and cyclic. The extended code has the same dimension as Γ (L), but
the minimum distance is now at least 2a+ 2. Applying the DNA code construc-
tion described earlier to such a family of extended Goppa codes over GF (4), we
obtain the following theorem.

Theorem 8. For arbitrary positive integers a,m, there exist cyclic DNA codes
D such that dH(D) ≥ 2a+ 2 and dRC

H (D) ≥ 2a+ 1, having the following param-
eters:

(i) length n = 4m +1, and number of codewords M ≥ 1
2 (422m−2ma−422m−1−ma);

(ii) length n = 4m − 1, and number of codewords M ≥ 1
2 (422m−2(ma+1) −

422m−1−(ma+1)).

Example 2. Let L = GF (22), with q = 22,m = 1, and let β1 = α, β2 = α4,
for a primitive element α of GF (24). We take the Goppa polynomial to be
g(z) = (z − β1)(z − β2), so that a = 1. The extended Goppa code over GF (22)
obtained from these parameters is a code of length 5, dimension 2 and minimum
distance 4.

We list out the elements of GF (22) as {0, 1, θ, 1 + θ}, and make the identi-
fication 0 ↔ G, 1 ↔ C, θ ↔ T, 1 + θ ↔ A, The DNA code D constructed
as outlined in this section has dH(D) = dR

H(D) = 4 and dRC
H (D) = 3, and con-

sists of the following six codewords: CGTTC, CAAAT, CTCCA, GCCTT,
GGAGA, ACTAA.

5.2 DNA Codes from Generalized Hadamard Matrices

Hadamard matrices have long been used to construct constant-weight [16, Chap.
2] and constant-composition codes [26]. We continue this tradition by providing
constructions of cyclic codes with constant GC-content, and good minimum
Hamming and reverse-complement distance properties.

A generalized Hadamard matrix H ≡ H(n,Cm) is an n × n square
matrix with entries taken from the set of mth roots of unity, Cm =
{e−2πi �/m, � = 0, ...,m− 1}, that satisfies HH∗ = nI. Here, I denotes the iden-
tity matrix of order n, while ∗ stands for complex-conjugation. We will only
concern ourselves with the case m = p for some prime p. A necessary condi-
tion for the existence of generalized Hadamard matrices H(n,Cp) is that p|n.
The exponent matrix, E(n,Zp), of H(n,Cp) is the n× n matrix with entries in
Zp = {0, 1, 2, . . . , p − 1}, obtained by replacing each entry (e−2πi)� in H(n,Cp)
by the exponent �.
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A generalized Hadamard matrix H is said to be in standard form if its first
row and column consist of ones only. The (n−1)× (n−1) square matrix formed
by the remaining entries of H is called the core of H , and the corresponding
submatrix of the exponent matrix E is called the core of E. Clearly, the first
row and column of the exponent matrix of a generalized Hadamard matrix in
standard form consist of zeros only. It can readily be shown (see e.g., [13]) that
the rows of such an exponent matrix must satisfy the following two properties: (i)
in each of the nonzero rows of the exponent matrix, each element of Zp appears
a constant number, n/p, of times; and (ii) the Hamming distance between any
two rows is n(p − 1)/p. We will only consider generalized Hadamard matrices
that are in standard form.

Several constructions of generalized Hadamard matrices are known (see [13]
and the references therein). A particularly nice general construction is given by
the following result from [13].

Theorem 9. [13, Theorem II] Let N = pk − 1 for p prime and k ∈
Z+. Let g(x) = c0 + c1x + c2x

2 + ... + cN−kx
N−k be a monic polyno-

mial over Zp, of degree N − k, such that g(x)h(x) = xN − 1 over Zp, for
some monic irreducible polynomial h(x) ∈ Zp[x]. Suppose that the vector
(0, c0, c1, . . . , cN−k, cN−k+1, . . . , cN−1), with ci = 0 for N − k < i < N , has the
property that it contains each element of Zp the same number of times. Then the
N cyclic shifts of the vector g = (c0, c1, . . . , cN−1) form the core of the exponent
matrix of some Hadamard matrix H(pk,Cp).

Thus, the core of E ≡ E(pk,Zp) (and hence, H(pk,Cp)) guaranteed by the above
theorem is a circulant matrix consisting of all the N = pk − 1 cyclic shifts of its
first row. We refer to such a core as a cyclic core. Each element of Zp appears
in each row of E exactly (N + 1)/p = pk−1 times, and the Hamming distance
between any two rows is exactly (N + 1)(p − 1)/p = (p − 1)pk−1. Thus, the
N rows of the core of E form a constant-composition code consisting of the N
cyclic shifts of some word of length N over the alphabet Zp, with the Hamming
distance between any two codewords being (p− 1)pk−1.

DNA codes with constant GC-content can obviously be constructed from
constant-composition codes over Zp by mapping the symbols of Zp to the symbols
of the DNA alphabet, Q = {A,C,G,T}. For example, using the cyclic constant-
composition code of length 3k − 1 over Z3 guaranteed by Theorem 9, and using
the mapping that takes 0 to A, 1 to T and 2 to G, we obtain a DNA code D
with 3k −1 codewords and a GC-content of 3k−1. Clearly, dH(D) = 2 ·3k−1, and
in fact, since G = C and no codeword in D contains the symbol C, we also have
dRC

H (D) ≥ 3k−1. We summarize this in the following corollary to Theorem 9.

Corollary 10. For any k ∈ Z+, there exist DNA codes D with 3k−1 codewords
of length 3k − 1, with constant GC-content equal to 3k−1, dH(D) = 2 · 3k−1,
dRC

H (D) ≥ 3k−1. and in which each codeword is a cyclic shift of a fixed generator
codeword g.
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Example 3. Each of the following vectors generates a cyclic core of a Hadamard
matrix [13]:

g(1) = (22201221202001110211210200),

g(2) = (20212210222001012112011100).

DNA codes can be obtained from such generators by mapping {0, 1, 2} onto
{A,T,G}. Although all such mappings yield codes with (essentially) the same
parameters, the actual choice of mapping has a strong influence on the sec-
ondary structure of the codewords. For example, the codeword in Figure 3(a)
was obtained from g(1) via the mapping 0 → A, 1 → T, 2 → G, while the code-
word in Figure 3(b) was obtained from the same generator g(1) via the mapping
0 → G, 1 → T, 2 → A.

5.3 Code Constructions Via a Binary Mapping

The problem of constructing DNA codes with some of the properties desirable
for DNA computing can be made into a binary code design problem by mapping
the DNA alphabet onto the set of length-two binary words as follows:

A → 00, T → 01, C → 10, G → 11. (2)

The mapping is chosen so that the first bit of the binary image of a base uniquely
determines the complementary pair to which it belongs.

Let q be a DNA sequence. The sequence b(q) obtained by applying coordi-
natewise to q the mapping given in (2), will be called the binary image of q.
If b(q) = b0b1b2 . . . b2n−1, then the subsequence e(q) = b0b2 . . . b2n−2 will be re-
ferred to as the even subsequence of b(q), and o(q) = b1b3 . . . b2n−1 will be called
the odd subsequence of b(q). Thus, for example, for q = ACGTCC, we have
b(q) = 001011011010, e(q) = 011011 and o(q) = 001100. Given a DNA code
C, we define its even component E(C) = {e(p) : p ∈ C}, and its odd component
O(C) = {o(p) : p ∈ C}.

It is clear from the choice of the binary mapping that the GC-content of
a DNA sequence q is equal to the Hamming weight of the binary sequence
e(q). Consequently, a DNA code C is a constant GC-content code if and
only if its even component, E(C), is a constant-weight code. Other properties
of a DNA code can also be expressed in terms of properties of its even
and code components (for example, see Lemma 11 below). Thus if we have
binary codes B1 and B2 with suitable properties, then we can construct a
good DNA code, whose binary image is equivalent to B1 × B2, that has B1
and B2 as its even and odd components. We present two such constructions here.

Construction B1. Let B be a binary code consisting of M codewords of
length n and minimum distance dmin, such that c ∈ B implies that c ∈ B. For
w > 0, consider the constant-weight subcode Bw = {u ∈ B : wH(u) = w}, where
wH(·) denotes Hamming weight. Choose w > 0 such that n ≥ 2w+�dmin/2�, and
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consider a DNA code, Cw, with the following choice for its even and odd com-
ponents:

Ew = {ab : a,b ∈ Bw}, O = {abRC : a,b ∈ B, a <lex b},

where <lex denotes lexicographic ordering. The a <lex b in the definition of O
ensures that if abRC ∈ O, then baRC /∈ O, so that distinct codewords in O
cannot be reverse-complements of each other.

The code Ew has |Bw|2 codewords of length 2n and constant weight n. Fur-
thermore, dH(Ew) ≥ dmin and dR

H(Ew) ≥ dmin, the first of these inequalities
following from the fact that Bw is a subset of codewords in B. To prove the
second inequality, note that for any two distinct codewords ab and cd, we have

dH(ab,dRCcR) = dH(a,dRC) + dH(b, cR) = dH(a,dRC) + dH(c,bRC).

Since b and d both have weight w, it follows that bRC and dRC have weight
n− w. Due to the constraint on the weight w, we have dH(a,dRC) ≥ �dmin/2�,
and similarly, dH(c,bRC) ≥ �dmin/2�. Therefore, for all a,b, c,d ∈ Bw, we must
have dH(ab,dRCcR) ≥ 2�dmin/2� ≥ dmin.

The code O has M(M −1)/2 codewords of length 2n. Clearly, dH(O) ≥ dmin,
since the component codewords of O are taken from B. Similarly, dRC

H (O) ≥ dmin,
to prove which we only have to observe that for any pair of codewords abRC

and cdRC , dH(abRC ,dcRC) = dH(a,d) + dH(c,b) ≥ dmin.

Therefore, the DNA code

C =
wmax⋃

w=dmin

Cw,

with wmax = (n − �dmin/2�)/2, has 1
2 M(M − 1)

∑wmax
w=dmin

|Aw|2 codewords of
length 2n, and satisfies dH(B) ≥ dmin and dRC

H (B) ≥ dmin.
The following lemma (whose simple proof we omit) records a trivial result

that is useful for our next construction. For notational ease, given binary words
x = (xi) and y = (yi), we define x⊕y = (xi+yi), the sum being taken modulo-2,
and x ∗ y = (xiyi).

Lemma 11. Let q be a length-n sequence over the DNA alphabet Q. For i ∈
{1, 2, . . . , n − 1}, defining σi = e(q[1,n−i]) ⊕ e(q[i+1,n]), and τi = o(q[1,n−i]) ⊕
o(q[i+1,n]), we have

μi(q) = wH(σi ∗ τi)

where σi denotes the complement of the binary sequence σi.

Construction B2. Let C be the DNA code obtained by choosing the set of
non-zero codewords of a cyclic simplex code of length n = 2m − 1 for both the
even and odd code components. Recall that a cyclic simplex code of dimension
m is a constant-weight code of length n = 2m − 1 and minimum-distance 2m−1,
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composed of the all-zeros codeword and the n distinct cyclic shifts of any non-
zero codeword [12, Chapter 8]. It is clear that the DNA code C is a cyclic code
contains (2m − 1)2 codewords of length 2m − 1 and GC-content 2m−1.

We claim that C has the property that for all i ∈ {1, 2, . . . , n− 1} and q ∈ C,
μi(q) ≤ 2m−2. To see this, observe first that for any q ∈ C, σi and τi, defined
as in Lemma 11, are just truncations of codewords from the simplex code. Since
the simplex code is a constant-weight code, with minimum distance 2m−1, each
pair of codewords shares exactly 2m−2 positions containing 1’s. This implies that
for each pair of simplex codewords, there are exactly 2m−2 positions in which
one codeword contains all 1’s, while the other contains all 0’s. Such positions are
precisely what is counted by wH(σi ∗ τi) in Lemma 11 which proves our claim.

Example 4. Consider the DNA code resulting from Construction B2 using the
cyclic simplex code generated by the codeword 1110100. The DNA code contains
49 codewords of length 7. The minimum Hamming distance of the code is 4, and
the codewords all have GC-content equal to 4. A selected subset of codewords
from this code is listed below:

TGGCTCA, TCCGTGA, CACGGTC, TAGCCTG,
CATGGCT, GATCCGT, GGGAGAA, GGAGAAG.

The last two codewords consist of the bases G and A only, and clearly satisfy
μi = 0 for all i ≤ 7. On the other hand, for the first three codewords we have
μ1 = 1, while for the next three codewords we see that μ1 = 2 (meeting the
upper bound claimed in the construction). Evaluation of this code using the
Vienna secondary structure package [29] shows that none of the 49 codewords
exhibits a secondary structure.

As a final remark, we note that the problem of constructing a DNA code that can
be efficiently tested for secondary structure using the NJ algorithm can also be
reformulated in terms of specifications for the even code component. If the even
component code is cyclic, and each codeword in the even component is combined
with codewords from the odd component, then “approximate” testing can be
performed in the following manner. The codeword from the even component
code x1, . . . , xn, xi ∈ {0, 1} is tested by the NJ algorithm following the steps
outlined in Section 3.1, except that the pairing energies are found according to

α(xi, xj) =
{
−1 if xi xj ∈ {00, 11}

0 if xi xj ∈ {01, 10}.

The result of the NJ algorithm for the even component codeword represents
the worst-case scenario for DNA sequence folding. If the free energy of some
even component codeword, b, exceeds a certain threshold (which can be deter-
mined by a combination of probabilistic and experimental results), all the DNA
sequences q such that e(q) = b are subjected to an additional test by the al-
gorithm. If the free energy of b is below a given threshold, then one can be
reasonably sure that none of the DNA sequences q that have b as their even
subsequence will form a secondary structure.



118 O. Milenkovic and N. Kashyap

References

1. T. Abualrub and A. Ghrayeb, “On the construction of cyclic codes for DNA com-
puting,” preprint.

2. L.M. Adleman, “Molecular computation of solutions to combinatorial problems,”
Science, vol. 266, pp. 1021–1024, Nov. 1994.

3. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar and E. Shapiro, “An autonomous molec-
ular computer for logical control of gene expression,” Nature, vol. 429, pp. 423–429,
May 2004.

4. D. Boneh, C. Dunworth, and R. Lipton, “Breaking DES using a molecular com-
puter,” Technical Report CS-TR-489-95, Department of Computer Science, Prince-
ton University, USA, 1995.

5. R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund and L. Adleman,
“Solution of a 20-variable 3-SAT problem on a DNA computer,” Science, vol. 296,
pp. 492–502, April 2002.

6. K. Breslauer, R. Frank, H. Blocker, and L. Marky, “Predicting DNA duplex stabil-
ity from the base sequence,” Proc. Natl. Acad. Sci. USA, vol. 83, pp. 3746–3750,
1986.

7. P. Clote and R. Backofen, Computational Molecular Biology – An Introduction,
Wiley Series in Mathematical and Computational Biology, New York, 2000.

8. A. D’yachkov, P.L. Erdös, A. Macula, V. Rykov, D. Torney, C-S. Tung, P. Vilenkin
and S. White, “Exordium for DNA codes,” J. Comb. Optim., vol. 7, no. 4, pp.
369–379, 2003.

9. A. D’yachkov, A. Macula, T. Renz, P. Vilenkin and I. Ismagilov, “New results on
DNA codes,” Proc. IEEE Int. Symp. Inform. Theory (ISIT’05), Adelaide, Aus-
tralia, pp. 283–287, Sept. 2005.

10. P. Gaborit and O.D. King, “Linear constructions for DNA codes,” Theoretical
Computer Science, vol. 334, no. 1-3, pp. 99–113, April 2005.

11. I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, Dover, 2004.
12. J.I. Hall, Lecture notes on error-control coding, available online at

http://www.mth.msu.edu/∼jhall/.
13. I. Heng and C.H. Cooke, “Polynomial construction of complex Hadamard matrices

with cyclic core,” Applied Mathematics Letters, vol. 12, pp. 87–93, 1999.
14. O.D. King, “Bounds for DNA codes with constant GC-content,” The Electronic

Journal of Combinatorics, vol. 10, no. 1, #R33, 2003.
15. V.I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals,” Dokl. Akad. Nauk SSSR, vol. 163, no. 4, pp. 845–848, 1965 (Russian).
English translation in Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.

16. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1977.

17. M. Mansuripur, P.K. Khulbe, S.M. Kuebler, J.W. Perry, M.S. Giridhar and N.
Peyghambarian, “Information storage and retrieval using macromolecules as stor-
age media,” University of Arizona Technical Report, 2003.

18. A. Marathe, A. E. Condon and R. M. Corn, “On combinatorial DNA word design,”
J. Comput. Biol., vol. 8, pp. 201–219, 2001.

19. S. Mneimneh, “Computational Biology Lecture 20: RNA secondary struc-
tures,” available online at engr.smu.edu/∼saad/courses/cse8354/lectures/
lecture20.pdf.

20. O. Milenkovic, “Generalized Hamming and coset weight enumerators of isodual
codes,” accepted for publication in Designs, Codes and Cryptography.



On the Design of Codes for DNA Computing 119

21. O. Milenkovic and N. Kashyap, “DNA codes that avoid secondary structures,”
Proc. IEEE Int. Symp. Inform. Theory (ISIT’05), Adelaide, Australia, pp.
288–292, Sept. 2005.

22. R. Nussinov and A.B. Jacobson, “Fast algorithms for predicting the secondary
structure of single stranded RNA ,” Proc. Natl. Acad. Sci. USA, vol. 77, no. 11,
pp. 6309–6313, 1980.

23. V. Rykov, A.J. Macula, D. Torney and P. White, “DNA sequences and quaternary
cyclic codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT’01), Washington
DC, p. 248, June 2001.

24. D.D. Shoemaker, D.A. Lashkari, D. Morris, M. Mittman and R.W. David, “Quanti-
tative phenotye analysis of yeast deletion mutants using a highly parallel molecular
bar-coding strategy,” Nature Genetics, vol. 16, pp. 450–456, Dec. 1996.

25. M.N. Stojanovic, D. Stefanovic, “A deoxyribozyme-based molecular automaton,”
Nature Biotechnology vol. 21, pp. 1069–1074, 2003.
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Abstract. The recently developed algebraic attacks apply to all key-
stream generators whose internal state is updated by a linear transition
function, including LFSR-based generators. Here, we describe this type
of attacks and we present some open problems related to their complex-
ity. We also investigate the design criteria which may guarantee a high
resistance to algebraic attacks for keystream generators based on a linear
transition function.

1 Introduction

In an additive stream cipher, the ciphertext is obtained by adding bitwise the
plaintext to a pseudo-random sequence called the keystream. The keystream
generator is a finite state automaton whose initial internal state is derived from
the secret key and from a public initial value by a key-loading algorithm. At
each time unit, the keystream digit produced by the generator is obtained by
applying a filtering function to the current internal state. The internal state
is then updated by a transition function. Both filtering function and transition
function must be chosen carefully in order to make the underlying cipher resistant
to known-plaintext attacks. In particular, the filtering function must not leak
too much information on the internal state and the transition function must
guarantee that the sequence formed by the successive internal states has a high
period.

Stream ciphers are mainly devoted to applications which require either an ex-
ceptional encryption rate or an extremely low implementation cost in hardware.
Therefore, a linear transition function seems to be a relevant choice as soon as
the filtering function breaks the inherent linearity. Amongst all possible linear
transition functions, those based on LFSRs are very popular because they are ap-
propriated for low-cost hardware implementations, produce sequences with good
statistical properties and can be easily analyzed. LFSR-based generators have
been extensively studied. It is known that the involved filtering function must
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satisfy some well-defined criteria (such as a high nonlinearity, a high correlation-
immunity order,...), and the designers of such generators now provide evidence
that their ciphers cannot be broken by the classical attacks.

However, the recent progress in research related to algebraic attacks, intro-
duced by Courtois and Meier [11], seems to threaten all keystream generators
based on a linear transition function. In this context, it is important to deter-
mine whether such ciphers are still secure or not. Here, we investigate some
related open problems, concerning the complexity of algebraic attacks (and of
their variants) and concerning the design criteria of LFSR-based stream ciphers
which guarantee a high resistance to these cryptanalytic techniques.

2 Basic Principle of Algebraic Attacks

Here, we focus on binary keystream generators based on a linear transition func-
tion, which can be described as follows. We denote by xt the n-bit internal state
of the generator at time t. The filtering function f is first assumed to be a
Boolean function of n variables, i.e., at time t the generator outputs only one
bit, st = f(xt). The transition function is supposed to be linear and is denoted
by L : Fn

2 → Fn
2 . Therefore, we have

st = f(Lt(x0)) ,

where x0 is the initial state. We only consider the case where both the filtering
function and the transition function are publicly known, i.e., independent from
the secret key. Two popular constructions known as nonlinear filter generators
and combination generators fit the previous model.

The basic principle of algebraic attacks goes back to Shannon’s work [26,
Page 711]: these techniques consist in expressing the whole cipher as a large
system of multivariate algebraic equations, which can be solved to recover the
secret key. A major parameter which influences the complexity of such an attack
is then the degree of the underlying algebraic system. When the transition is
linear, any keystream bit can obviously be expressed as a function of degree
deg(f) in the initial state bits. Therefore, it is known for a long time that the
filtering function involved in such a stream cipher must have a high degree.

However, as pointed out by Courtois and Meier [11], the keystream generator
may be vulnerable to algebraic attacks even if the degree of the algebraic function
is high. Actually, the attack applies as soon as there exist relations of low degree
between the output and the inputs of the filtering function f . Such relations
correspond to low degree multiples of f , i.e., to relations g(x)f(x) = h(x) for
some g where h has a low degree. But, it was proved in [21, 24] that, in the
case of algebraic attacks over F2, the existence of any such relation is equivalent
to the existence of a low degree annihilator of f or of (1 + f), in the sense
of Definition 1. Indeed, if g(x)f(x) = h(x) with deg(h) ≤ d, we obtain, by
multiplying this equation by f(x), that

g(x) [f(x)]2 = h(x)f(x) = g(x)f(x) = h(x) ,

leading to h(x) [1 + f(x)] = 0.
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Definition 1. Let f be a Boolean function of n variables. The annihilator ideal
of f , denoted by AN(f), is the set of all Boolean functions g of n variables such
that

g(x)f(x) = 0, ∀x ∈ Fn
2 .

Moreover, for any degree d, we denote by ANd(f) the set of all annihilators of
f with degree at most d:

ANd(f) = {g ∈ AN(f), deg(g) ≤ d} .

Since the keystream bit at time t is defined by st = f ◦ Lt(x0), we deduce
that:

– if st = 1, any function g in AN(f) leads to g ◦ Lt(x0) = 0;
– if st = 0, any function h in AN(1 + f) leads to h ◦ Lt(x0) = 0.

Therefore, if we collect the relations associated to all functions of degree at
most d in AN(f)∪AN(f + 1) for N known keystream bits, we obtain a system
of equations of degree d depending on n variables, x1, . . . , xn, which correspond
to the bits of the initial state:{

g ◦ Lt(x1, . . . , xn) ∀g ∈ ANd(f), ∀ 0 ≤ t < N such that st = 1
h ◦ Lt(x1, . . . , xn) ∀h ∈ ANd(1 + f), ∀ 0 ≤ t < N such that st = 0 (1)

The n-bit initial state can then be recovered by solving this multivariate poly-
nomial system.

3 Complexity of Algebraic Attacks

Solving a multivariate polynomial system such as (1) is a typical problem stud-
ied in computer algebra. In order to get a rough estimate of the complexity
of algebraic attacks for determining the suitable parameters for the keystream
generator, we only focus on the simplest technique, called linearization. It con-
sists in identifying the system with a linear system of

∑d
i=1

(
n
i

)
variables, where

each product of i bits of the initial state (1 ≤ i ≤ d) is seen as a new variable.
The entire initial state is then recovered by a Gaussian reduction (or by more
sophisticated techniques) whose time complexity is roughly(

d∑
i=1

(
n

i

))ω

� nωd ,

where ω is the exponent of the matrix inversion algorithm, i.e., ω � 2.37 [9].
However, the previous estimation of the attack complexity is based on two

hypotheses. It is first assumed that almost all monomials of degree d appear in
System (1). This clearly corresponds to the worst situation for the attacker, but
we can wonder whether some weak choices for the transition function L and for
the filtering function f can provide a system involving a small proportion of all
possible monomials only, leading to a faster attack.
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Open problem 1. Determine the number of monomials in x1, . . . , xn involved
in System (1), depending on the choice of L and f .

A probably much stronger assumption in the usual complexity estimation is that
the system can always be solved: it is usually supposed that the knowledge of

N � 2nd

d! (dimAd(f) + dimAd(1 + f))

keystream bits lead to a system with
∑d

i=1

(
n
i

)
linearly independent equations.

It then raises the following open issue.

Open problem 2. Determine the rank of System (1) depending on the choice
of functions L and f .

Obviously, this question has an influence on the number of keystream bits re-
quired for the attack. But, a more crucial point is that the attack using equations
of degree d may be infeasible even if a huge keystream segment is available. This
situation occurs when the system generated by N keystream bits is underdeter-
mined for any value of N . A natural related question is to determine whether the
equations corresponding to a given annihilator g are different for all keystream
bits, i.e., whether there exists some T less than the period of {Lt, t ≥ 0} such
that g ◦ LT (x) = g(x) for all x ∈ Fn

2 . It is clear that such an integer T divides
the period of {Lt, t ≥ 0}. This observation leads to the following result when L
corresponds to the next-state function of an LFSR.

Proposition 1. Let L be the next-state function of an LFSR of length n with
primitive feedback polynomial. Let g be a Boolean function of n variables. If
2n − 1 is a prime, then all functions g ◦ Lt, for 0 ≤ t ≤ 2n − 1, are distinct.

But, when (2n − 1) is not a prime, there always exist filtering functions f such
that some of their annihilators g ∈ AN(f), g �= 0, lead to a sequence {g◦Lt, 0 ≤
t ≤ 2n − 1} with a small period, as pointed out in the following toy example.

Example 1. Let us consider the LFSR of length 4 with primitive feedback poly-
nomial P (x) = x4 + x+ 1 and the 4-variable filtering function f defined by

f(x1, . . . , x4) = x3 + x4 + x1x2 + x2x3 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 .

Then, the function g(x1, . . . , x4) = 1 + x2 + x3 + x4 + x2x4 + x3x4 belongs to
AN(f) and it satisfies

g ◦ Lt(x1, . . . , x4) = g ◦ Lt mod 5(x1, . . . , x4)

for all t. Actually, when F4
2 is identified with the finite field with 16 elements

defined by the primitive polynomial P , we have g(x) = g(xα5), where α is a root
of P .

However, when a function g in AN(f) has such a strong periodic structure, this
also holds for the filtering function, implying that the keystream can be easily
distinguished from a random sequence.
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Proposition 2. Let f be a Boolean function of n variables and let g be a nonzero
function in AN(f) ∪ AN(1 + f). If g ◦ LT = g for some integer T , then there
exists t0 < T such that all keystream bits st0+iT , i ≥ 0 are equal for at least one
initial state. Moreover, if L corresponds to the next-state function of an LFSR
with primitive feedback polynomial, then all st0+iT , i ≥ 0 are equal for some
t0 < T for all nonzero initial states when deg(g) �= n.

Proof. Since g is not the zero function, there exists some a ∈ Fn
2 such that

g(a) = 1, implying g ◦ LiT (a) = 1 for all i ≥ 0. Because g belongs to AN(f)
(resp. AN(1 + f)), we deduce that f (resp. (1 + f)) vanishes at points LiT (a),
for all i ≥ 0. Therefore, the keystream generated from initial state x0 is such
that st0+iT , i ≥ 0 are equal for some t0 < T as soon as an internal state a
with g(a) = 1 can be reached from x0. For an LFSR with maximum period,
all internal states are generated for each nonzero x0, except the all-zero state.
Thus, the property holds unless g is the function of degree n which vanishes at
all points except 0.

However, the previous propositions only investigate the possibility that all equa-
tions derived from a given annihilator may be equal. The question of their linear
dependency is still open. We can nevertheless conjecture from the previous dis-
cussion that, if the rank of the system involved in an algebraic attack highly
differs from the rank of a random system, the corresponding keystream genera-
tor is probably vulnerable to a distinguishing attack.

If we assume that System (1) behaves like a random system with respect to
both previously discussed properties, it clearly appears that the relevant pa-
rameter in the context of algebraic attacks against such stream ciphers is the
so-called algebraic immunity of the filtering function.

Definition 2. The algebraic immunity of a Boolean function f , denoted by
AI(f), is the lowest degree achieved by a nonzero function in AN(f)∪AN(1+f).

It is worth noticing that the previous definition may be inappropriate when we
consider algebraic attacks against other families of ciphers, for instance against
block ciphers or combiners with memory. In such cases, the annihilator ideals of
f and of (1 + f) may play very different roles [3].

In our case, the time-complexity of algebraic attacks based on linearization is
roughly

O
(
nωAI(f)

)
where ω � 2.37

and the associated data-complexity, i.e., the required number of keystream bits,
is O

(
nAI(f)

)
, but it is probably reduced when the number of functions of de-

gree AI(f) in AN(f) ∪ AN(1 + f) increases. Thus, we can derive from this
approximation a lower bound on the algebraic immunity of the filtering function
which must be satisfied in order to resist algebraic attacks. If we suppose that
the size of the internal state is minimal with respect to key-size k, i.e., that
n = 2k (it is known that the size of the internal state must be at least twice the
key size in order to resist time-memory-data trade-off attacks), the complexity
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of the attack is greater than the complexity of an exhaustive search on the key
when

AI(f) ≥ 0.42
[

k

1 + log2 k

]
.

For instance, in a filter generator with a 128-bit key and a 256-bit internal state,
the algebraic immunity of the filtering function must be at least 7.

But, the secure minimum value for the algebraic immunity is probably higher
since more efficient techniques than linearization can be used for solving the al-
gebraic system. Actually, this problem has been extensively studied in computer
algebra and it is well-known that some methods based on Gröbner basis algo-
rithms efficiently apply. The most recent and powerful algorithms, F4 and F5, are
due to Faugère [19, 27, 20]. It was recently proved [18, 5] that F4 is more efficient
than the extended linearization algorithm (XL) proposed by Courtois, Klimov,
Patarin and Shamir [12]; XL actually computes a Gröbner basis in the particu-
lar context of algebraic attacks. And Algorithm F5 is strictly more efficient than
all previous ones. Another technique, called XSL, has also been presented by
Courtois and Pieprzyk [14] but its complexity and its implementation feasibility
are still controversial.

Some recent results on the complexities of F4 and F5 can be found in [6, 7].
However, it is worth noticing that all these results only hold in the so-called
semi-regular case. Therefore, the major problem is to determine whether the
system involved in algebraic attacks behaves like a random system or not with
respect to the previously mentioned algorithms. We would like to emphasize that
it does not make sense to use some complexity results for the semi-regular case if
we do not have any hint on the behaviour of the system. For instance, the public
challenge on the asymmetric cryptosystem Hidden Field Equations (HFE) was
broken by Faugère with F5 whereas the attack was infeasible according to its
complexity in the generic case [22].

Open problem 3. Does System (1) behave like a semi-regular system in the
sense of [6]?

4 Algebraic Immunity of Filtering Functions

Obviously, the algebraic immunity of the filtering function highly influences the
complexity of the attack even if the estimation of the time complexity for solving
the underlying system is still an open problem.

4.1 General Properties of the Algebraic Immunity

The set AN(f) of all annihilating functions of f is obviously an ideal in the
ring of all Boolean functions, and it is generated by (1 + f). It consists of the
22n−wt(f) functions of n variables which vanish on the support of f , i.e., on all
x such that f(x) = 1, where wt(f) denotes the size of the support of f . The
number of functions of degree at most d in AN(f) is equal to 2κ where κ is the
dimension of the kernel of the matrix obtained by restricting the Reed-Muller
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code of length 2n and order d to the support of f . In other words, the rows of
this matrix correspond to the evaluations of the monomials of degree at most d
on {x, f(x) = 1}. Since this matrix has

∑d
i=0

(
n
i

)
rows and wt(f) columns, its

kernel is non-trivial when
d∑

i=0

(
n

i

)
> wt(f) .

Similarly, AN(1 + f) contains some functions of degree d or less if

d∑
i=0

(
n

i

)
> 2n − wt(f) .

Thus, as pointed out in [15], the algebraic immunity of an n-variable function is
related to its Hamming weight. Most notably, for odd n, only balanced functions
can have optimal algebraic immunity. A trivial corollary is also that, for any n-
variable Boolean function, we have AI(f) ≤ �n/2�.

Another interesting property is that the highest possible algebraic immunity
for a function is related to the number of its 0-linear structures. Let S0(f) be the
set of all 0-linear structures for f , i.e., S0(f) = {a ∈ Fn

2 , f(x + a) = f(x), ∀x}.
Then,

AI(f) ≤
⌈n− dim(S0(f))

2

⌉
.

This bound is important for instance in the case of filtered LFSRs, since the
filtering function usually depends only on a small subset of the internal state bits.
We deduce from the previous discussion that if an m-variable Boolean function
is used for filtering the n-bit internal state of the generator, the complexity of
the algebraic attack will be at most n

ωm
2 . Therefore, the cipher resists algebraic

attacks only if the number m of variables of the filtering function satisfies

m ≥ 0.84
[

k

1 + log2(k)

]
,

where k is the key-size and where the initial state is supposed to be twice longer
than the key. For instance, a filter generator with a 128-bit key and a 256-bit
internal state must use a filtering function of at least 16 variables. Here again,
the secure number of variables is probably higher than the previous bound which
is based on the complexity of linearization.

4.2 Algebraic Immunity of Random Balanced Functions

For 5-variable functions, it is possible to compute the algebraic immunity of all
Boolean functions using the classification due to Berlekamp and Welch (because
algebraic immunity is invariant under composition by a linear permutation). We
here focus on balanced functions because they are the only ones that may have
optimal algebraic immunity for n odd. We can compute the algebraic immunity
of all 601, 080, 390 balanced functions of 5 variables:
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AI(f) 1 2 3
nb. of balanced f 62 403,315,208 197,765,120
proportion of balanced f 10−7 0.671 0.329

Another interesting quantity is the number of linearly independent annihila-
tors of degree at most 2 for all balanced functions of 5 variables:

dim(AN2(f)) 0 1 2 3 4 5
proportion of balanced f 0.329 0.574 0.094 0.002 2 · 10−5 10−7

An important observation is that both setsAN2(f) andAN2(1+f) have the same
dimension for all balanced functions except for one function and its complement
(up to linear equivalence). This raises the following open problem.

Open problem 4. For balanced Boolean functions f , is there a general rela-
tionship between AN(f) and AN(1 + f)?

Similar simulations can be performed as far as the functions of n variables are
classified into equivalence classes under composition by a linear permutation. But,
such a classification only exist for n = 6 and for cubic functions up to 8 variables.

Even if some well-known constructions of cryptographic Boolean functions
have been proved to have a low algebraic immunity, probabilistic arguments
tend to show that the proportion of balanced functions with low algebraic im-
munity is very small. It has been proved in [24] that the probability that a
balanced function of n variables has algebraic immunity less than 0.22n tends
to zero when n tends to infinity. An upper bound on the probability that a bal-
anced function has an annihilator of degree less than d is also given. This bound
involves a part of the weight enumerator of RM(d, n) and any new information
on its complete weight distribution can clearly improve the result. However, both
following problems are still open.

Open problem 5. Determine the average value of the algebraic immunity for
a balanced function of n variables.

Open problem 6. Determine the proportion of balanced Boolean functions of
n variables with optimal algebraic immunity.

4.3 Boolean Functions with Optimal Algebraic Immunity

A first relationship between the annihilators of f and of 1 + f can be exhibited
for functions with optimal algebraic immunity. Actually, all annihilators of a
balanced n-variable function f have maximal degree �n+1

2 � if and only if the
support of f corresponds to a subset of 2n−1 columns of the Reed-Muller code
of length 2n and order �n−1

2 � with maximal rank. When n is odd, such a set is an
information set for the Reed-Muller code of order n−1

2 which has dimension 2n−1.
Then, a relationship between deg(AN(f)) and deg(AN(1 + f)) can be derived
from the fact that this code is a self-dual code.

Proposition 3. Let C be a linear self-dual code. If I is an information set for
C, then its complement is an information set too.
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Proof. Let I be an information set for C. Then, there exists a generator matrix for
C which can be decomposed into G = (Id,M)I where the first part corresponds
to the positions in I. Let us now assume that the complement of I is not an
information set for C. This means that there exists a nonzero codeword of the
form c = (c′, 0)I in C. Since C is self-dual, c belongs to the dual code. Therefore,
Gc = 0, implying that some columns of the identity matrix sum up to zero, a
contradiction.

We can immediately derive the following result.

Theorem 1. Let n be an odd integer and f be a balanced Boolean function of
n variables. Then, f has optimal algebraic immunity n+1

2 if and only if AN(f)
does not contain any nonzero function of degree strictly less than n+1

2 .

A few classes of Boolean functions with optimal algebraic immunity have been
recently exhibited. An iterative construction which provides an infinite family of
balanced Boolean functions with optimal algebraic immunity is presented in [16].
Another example of functions with optimal algebraic immunity is the majority
symmetric function depending on an odd number of variables, i.e., the function
which outputs 1 if and only if the Hamming weight of its input vector is greater
than or equal to n+1

2 . This property was first proved in [23, Theorem 1] in terms
of information sets for the self-dual Reed-Muller code, and it is also mentioned
in [17].

4.4 Algebraic Immunity and Other Cryptographic Criteria

Besides the Hamming weight of the function, its nonlinearity is also related to
its algebraic immunity [15]. It can be proved that, for any linear function ϕ, the
algebraic immunity of f + ϕ is at most AI(f) + 1. Therefore, any function f of
n variables with algebraic immunity at least d satisfies

NL(f) ≥
d−2∑
i=0

(
n

i

)
.

It follows that any function with optimal algebraic immunity has a high nonlin-
earity, more precisely

NL(f) ≥
{

2n−1 −
(

n
n−1

2

)
if n is odd

2n−1 − 1
2

(
n
n
2

)
−
(

n
n
2 −1

)
if n is even

A high nonlinearity and a high algebraic immunity are then compatible criteria.
Another important consequence is that the nonlinearity of a function may be
a sufficient criterion to decide whether it has low algebraic immunity (but the
converse is not true).

Another cryptographic property that implies that a function does not have
a maximal algebraic immunity is the notion of normality. A function is said to
be k-normal (resp. k-weakly normal) if there exists an affine subspace of dimen-
sion k on which the function is constant (resp. affine). Since the minimum weight
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codewords of RM(r, n) are those whose support is an affine subspace of dimen-
sion n− r, we deduce that any k-normal function f of n variables has algebraic
immunity at most n− k. Similarly, any k-weakly normal function has algebraic
immunity at most n−k+1. Non-normal (and non-weakly normal) functions may
be good candidates if we want to construct functions with optimal nonlinearity.

The existence of links between algebraic immunity and other cryptographic
criteria remains unknown. For instance, the relation between the distance of
a function to all low-degree functions (i.e., its distance to RM(d, n)) and its
algebraic immunity is still unclear. Correlation-immunity does not seem to be
a priori incompatible with optimal algebraic immunity: there exists a 1-resilient
function of 5 variables with optimal algebraic immunity. However, the link with
all known criteria must be investigated further.

4.5 Algebraic Immunity of Known Constructions

Some bounds have been established on the algebraic immunity of the crypto-
graphic functions obtained by applying classical constructions. First, the alge-
braic immunity of a function can be derived from the algebraic immunities of its
restrictions to a given hyperplane and to its complement [15]. For instance, if

f(x1, . . . , xn) = (1 + xn)f1(x1, . . . , xn−1) + xnf2(x1, . . . , xn−1) ,

we have:

– if AI(f1) �= AI(f2), then AI(f) = min(AI(f1), AI(f2)) + 1;
– if AI(f1) = AI(f2), then AI(f) ∈ {AI(f1), AI(f1) + 1}.

Therefore, it is obvious how to construct a function of 2t variables with opti-
mal algebraic immunity from two functions of (2t− 1) variables with respective
algebraic immunities equal to t and to (t − 1). But, constructing a function of
(2t+1) variables with optimal algebraic immunity from two functions of 2t vari-
ables is much more difficult since both restrictions must have optimal algebraic
immunity and they must also satisfy some additional conditions.

Some bounds on the algebraic immunities of some classical constructions, such
as the Maiorana-McFarland family, can be found in [24, 15, 25].

4.6 Computing the Algebraic Immunity of a Boolean Function

The basic algorithm for computing the algebraic immunity of an n-variable func-
tion consists in performing a Gaussian elimination on the generator matrix of
the punctured RM(�n−1

2 �, n) restricted to the support of f . This matrix has

wt(f) columns and k(�n−1
2 �, n) =

∑�n−1
2 �

i=0

(
n
i

)
rows. Therefore, the algorithm

requires k2(�n−1
2 �, n)wt(f) operations, which is close to 23n−3 when f is bal-

anced. As noted in [24], the complexity can be significantly reduced if we only
want to check whether a function has annihilators of small degree d, since we
do not need to consider all positions in the support of f . Indeed, considering a
number of columns which is only slightly higher that the code dimension k(d, n)



130 A. Canteaut

is usually sufficient for proving that a function does not admit any annihilator of
degree d. A technique for reducing the size of the matrix over which the Gaus-
sian elimination is performed is presented in [24]. The idea is that the elements
in the support of f with low Hamming weight provide simple equations that
can be removed from the matrix by a substitution step. However, due to the
lack of simulation results, it is very hard to evaluate the time complexity of the
substitution step in practice.

Gröbner bases algorithms such as F5 provide other techniques for computing
the size of the annihilator ideal. But they need to be compared with the basic
techniques in this particular context.

5 Resistance to Fast Algebraic Attacks

At CRYPTO 2003, Courtois presented some important improvements on alge-
braic attacks, called fast algebraic attacks [10]. The refinement first relies on the
existence of some low degree relations between the bits of the initial state and
not only one but several consecutive keystream bits. In other words, the attacker
wants to find some low degree relations g between the inputs and outputs of

Fm: Fn
2 → Fm

2
x �→ (f(x), f(L(x)), . . . , f(Lm−1(x))

where L is the linear transition function. This function is very similar to the so-
called augmented function defined in [1]. The fact that the augmented function
may be much weaker than the filtering function, i.e., than F0 with the previous
notation, has been pointed out by Anderson [1] in the context of correlation
attacks. However, finding the low degree relations between the n inputs and
m outputs of Fm becomes infeasible when m increases. The direct algorithm
used for a function S with n inputs and m outputs consists in finding the low
degree annihilators for the characteristic function ΦS of S, which is the Boolean
function of (n+m) variables defined by

ΦS(x1, . . . , xn, y1, . . . , ym) = 1 if and only if yi = Si(x1, . . . , xn), ∀i .

Due to its high complexity, it can only be used for small values of m. For in-
stance, if we consider a Boolean function of 20 variables, it may have algebraic
immunity 10. But, there always exist relations of degree at most 7 involving
4 consecutive keystream bits together. The problem is that determining whether
relations of degree less than or equal to 6 exist in this case requires the com-
putation of the kernel of a matrix of 120 GBytes. And even checking whether
relations of degree 3 exist involves a 2.7 GByte-matrix. Mounting algebraic at-
tacks based on the augmented function is then related to the following problem.

Open problem 7. Find an algorithm which determines the low-degree relations
for the augmented function.
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More generally, we can wonder whether the particular form of the augmented
function has an influence on the degree of the annihilator ideal of its charac-
teristic function. For instance, the existence of a general relationship between
the algebraic immunity of a Boolean function and the algebraic immunity of the
associated augmented function is still unclear. The fact that the augmented func-
tion is a very special case of multi-output functions may lead to new theoretical
results or to dedicated algorithms in that case. For instance, a very particular
property of the augmented function is that all its Boolean components are lin-
early equivalent. This raises the following open question, which is clearly related
to algebraic attacks against block ciphers which use power functions as S-Boxes,
like the AES.

Open problem 8. Does the linear equivalence between all output components
of a multi-output function influence its algebraic immunity?

Since the computation of low degree relations involving several keystream bits is
usually infeasible, Courtois proposed to focus on particular subclasses of relations
that can be obtained much faster. The relations considered in the attack are given
by linear combinations of relations of the form

g(x0, . . . , x�−1, st, . . . , st+m)

where the terms of highest degree do not involve any keystream bits. Then, an
additional precomputation step consists in determining the linear combinations
of the previous relations which cancel out the highest degree monomials. Some
algorithms for this step have been proposed in [10, 2]. This technique helps to
decrease the degree of the relations used in the attack for different practical
examples. But, here again, we do not have any theoretical result connecting the
algebraic immunity of the function and the existence of such low degree linear
combinations.

6 Using More Sophisticated Filtering Functions

Many stream ciphers do not use a simple Boolean filtering function; they prefer
more sophisticated mappings in order to render the attacks more difficult or in
order to increase the throughput of the generator.

Multi-output Boolean functions. A basic technique for increasing the speed of
the generator consists in using a filtering function with several outputs. Such
functions are called vectorial Boolean functions, or S-boxes by analogy with
block ciphers. But, as pointed out in [28], the resistance of the generator to
fast correlation attacks usually decreases with the number of output bits of
the function. For a single output function, the attack exploits the fact that the
output may be approximated by an affine function of the input variables. But,
for a function S with m outputs, the attacker can apply any Boolean function g
of m variables to the output vector (y1, . . . , ym) and he or she can perform



132 A. Canteaut

the attack on the resulting sequence z = g(y1, . . . , ym). Therefore, the relevant
parameter is not the nonlinearity of the vectorial function, which is the lowest
Hamming distance between any linear combination of the components of S and
the affine functions, but the so-called unrestricted nonlinearity [8], which is the
lowest distance between any function g ◦ S and the affine functions, where g
varies in the set of all nonzero Boolean functions of m variables.

For similar reasons, the algebraic immunity of a vectorial function tends to
decrease with the number of output bits. For an S-box with n inputs and m out-
puts, there exists a relation of degree at most d in the input variables (and of
any degree in the output variables) if

d∑
i=0

(
n

i

)
> 2n−m .

A particular case of generators based on multi-output Boolean functions are
the word-oriented ciphers. In order to increase the performance of software im-
plementations, many ciphers use LFSRs over an extension field F2m and the
associated filtering function is usually a mapping from Fn

2m into F2m . This tech-
nique is used in many recent stream ciphers, e.g. in SNOW 2.0. The associated
filtering function can obviously be seen as a vectorial Boolean function with
mn inputs and m outputs. Consequently, all results previously mentioned apply,
but the major open issue here is to determine whether word-oriented attacks can
be mounted which exploit the particular structure of the function defined as a
polynomial over F2m .

Functions with memory. In some keystream generators, the filtering function is
replaced by a finite automaton with some memory bits. An example is the E0
keystream generator used in the Bluetooth wireless LAN system, which uses a
combining function with 4 inputs and 4 memory bits. However, (fast) algebraic
attacks [4] can still be applied on such systems. Armknecht and Krause proved
that, for any filtering function of n variables with M memory bits, there always
exists a relation of degree at most �n(M+1)

2 � between (M+1) consecutive output
bits and the bits of the initial state, for a given initial assignment of the memory
bits. Obviously, relations of lower degree may exist. For instance, the function
used in E0 provides a relation of degree 4 involving 4 consecutive output bits,
which leads to an algebraic attack of running-time around 267 [4]. General results
on algebraic attacks against combiners with memory can be found in [3, 13].

The main open issue related to the use of such sophisticated functions is to
improve the efficiency of the algorithms for computing their algebraic immunity
for a large number of input variables. Another related open problem is to find
some general constructions which guarantee a high resistance to all these attacks.
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1 Introduction

Let IFq be a finite field with q = 2r elements and let γ be a generator of the
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q
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study properties of Boolean functions which provide information on the discrete
logarithm. Namely, let B(U0, U1, . . . , Ur−1) be a Boolean function satisfying

B(k0, k1, . . . , kr−1) =
{

0, if indγ(ξk) is even,
1, if indγ(ξk) is odd, (1)

where ξk = k0β0 + k1β1 + · · · + kr−1βr−1 ∈ IF∗
q and ki ∈ {0, 1} for some fixed

ordered basis {β0, β1, . . . , βr−1} of IFq over IF2. Hence, B provides the least
significant bit of indγ(ξ) for ξ ∈ IF∗

q .
For finite fields of odd characteristic such Boolean functions were studied in

[8, 9, 13]. The proofs involve sums over the quadratic character. Since there is
no quadratic character in fields of even characteristic the proofs are not directly
extendable to characteristic two. However, this case is particularly interesting
for cryptographic applications (see e.g. [10]). Here we use a compensation for
dealing with quadratic characters to extend some selected results of [8, 9, 13] to
characteristic two.

In Section 3 we estimate the maximal Fourier coefficient max
a∈IFr

2

B̂(a) of B,

where
B̂(a) :=

∑
u∈IFr

2

(−1)B(u)+<a,u> (2)

and < a, u > denotes the standard inner product. This provides a lower bound
for the non-linearity NL(B) of B, i.e., the minimum Hamming distance to affine
functions, because of the relation

NL(B) = 2r−1 − 1
2

max
a∈IFr

2

|B̂(a)|.

For the significance of this notion see [2, 3, 4, 5, 6, 14, 16].
In Section 4 we prove bounds on the sparsity, i.e., the number of nonzero

coefficients, and degree of B.
Interestingly, our upper bound on the maximal Fourier coefficient is better

than the analog result for finite fields of odd characteristic (O(q1/2 log q) vs.
O(q7/8 log q)). In contrast, our lower bound on the sparsity is weaker, which
seems to be unnatural.

2 Preliminary Results

Let χ be a primitive (multiplicative) character of IFq and put η := χ−1(γ). Define
the function ψ : IF∗

q → C (cf. [1]) by

ψ(X) :=
2

q − 1

⎛⎝q−2∑
j=1

1
ηj + 1

χj(X) +
1
2

⎞⎠ .
The following Lemma shows that ψ characterizes the least significant bit of the
discrete logarithm.
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Lemma 1. For ξ ∈ IF∗
q we have

ψ(ξ) =
{

1, indγ(ξ) is even,
−1, otherwise.

Proof. We start with the well-known relation

1
q − 1

q−2∑
j=0

χj(ξ) =
{

1, ξ = 1,
0, otherwise, ξ ∈ IF∗

q . (3)

Then (3) implies for 0 ≤ m ≤ q − 2,

1
q − 1

q−2∑
j=0

ηjmχj(ξ) =
{

1, indγ(ξ) = m,
0, otherwise. (4)

Now we get

ψ(ξ) =
2

q − 1

⎛⎝q−2∑
j=1

1
ηj + 1

χj(ξ) +
1
2

⎞⎠
=

2
q − 1

⎛⎝q
2

+
q−2∑
j=1

χj(ξ)
η2jq/2 − 1
η2j − 1

⎞⎠− 1

=
2

q − 1

q−2∑
j=0

χj(ξ)
q/2−1∑

l=0

η2jl − 1

=
q/2−1∑

l=0

2
q − 1

q−2∑
j=0

η2jlχj(ξ) − 1

and the result follows by (4). �
For the following bound on Gaussian sums see [11, Theorem 2G] and [11, The-
orem 2C’].

Lemma 2. Let χ be a nontrivial multiplicative character and ψ be a nontrivial
additive character of IFq. Let f(X) ∈ IFq[X ] be a polynomial which is not an
ord(χ)-th power with m distinct roots in its splitting field. Then for y ∈ IFq we
have ∣∣∣∣∣

q−1∑
k=0

χ(f(ξk))ψ(yξk)

∣∣∣∣∣ ≤
{
mq1/2, y �= 0,
(m− 1)q1/2, y = 0.

For the following bound on incomplete character sums see [15, Section 3, p. 469].

Lemma 3. Let χ be a nontrivial multiplicative character of IFq and f(X) ∈
Fq[X ] a monic polynomial which is not an ord(χ)-th power and has m distinct
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zeros in its splitting field over IFq. Then we have for any additive subgroup V of
IFq and a ∈ IF∗

q , ∣∣∣∣∣∣
∑
ξ∈V

χ(af(ξ))

∣∣∣∣∣∣ ≤ mq1/2.

The following bound will be useful for the proofs.

Lemma 4. Let η be a complex primitive (q − 1)-th root of unity. For q ≥ 4 we
have

q−2∑
j=1

∣∣∣∣ 1
ηj + 1

∣∣∣∣ < 0.785(q − 1) log2(q − 1).

Proof. We have

∣∣∣∣ 1
ηj + 1

∣∣∣∣ =
∣∣∣∣ 1
η−j + 1

∣∣∣∣ =
∣∣∣∣ η−j − 1
η−2j − 1

∣∣∣∣ = ∣∣∣∣η−2jq/2 − 1
η−2j − 1

∣∣∣∣ =

∣∣∣∣∣∣
q/2−1∑

l=0

η−2jl

∣∣∣∣∣∣ .
Using [7, Theorem 1] we have

q−2∑
j=1

∣∣∣∣∣∣
q/2−1∑

l=0

η−2jl

∣∣∣∣∣∣ =
q−2∑
j=1

∣∣∣∣ sin(πjq/(2(q − 1)))
sin(πj/(q − 1))

∣∣∣∣
≤ 4
π2 (q − 1) ln(q − 1) + 0.38(q − 1) + 0.608

+0.116
gcd(q/2, q − 1)2

q − 1

from which the result follows as gcd(q/2, q − 1) = 1. �

3 A Bound for the Maximum Fourier Coefficient

In this section we prove an upper bound for the maximal Fourier coefficient B̂
of B given by (2).

Theorem 1. Let B be defined as in (1). Then we have for q ≥ 4

max
a∈IFr

2

|B̂(a)| < 2q1/2 log2(q − 1).

Proof. Since (−1)B(k1,...,kr) = ψ(ξk) for ξk �= 0 we have for any a ∈ IFr
2

B̂(a) =
2r−1∑
k=1

ψ(ξk)(−1)〈k,a〉 + (−1)B(0,...,0),
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where 〈k, a〉 = 〈(k0, . . . , kr−1), (a0, . . . , ar−1)〉. Put

S(a) =
2r−1∑
k=0

ψ(ξk)(−1)〈k,a〉

where we additionally define ψ(0) = 0. Then

|B̂(a)| ≤ |S(a)| + 1.

Note that the mapping ψa : ξk ∈ IF2r �→ (−1)〈k,a〉 is an additive character of
IF2r . We get

|S(a)| =

∣∣∣∣∣
2r−1∑
k=0

ψ(ξk)ψa(ξk)

∣∣∣∣∣
=

∣∣∣∣∣∣
2r−1∑
k=0

2
q − 1

⎛⎝q−2∑
j=1

1
ηj + 1

ψj(ξk) +
1
2

⎞⎠ψa(ξk)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2r−1∑
k=0

1
q − 1

ψa(ξk) +
2r−1∑
k=0

2
q − 1

q−2∑
j=1

1
ηj + 1

ψj(ξk)ψa(ξk)

∣∣∣∣∣∣
≤
∣∣∣∣∣
2r−1∑
k=0

1
q − 1

ψa(ξk)

∣∣∣∣∣+ 2
q − 1

q−2∑
j=1

∣∣∣∣ 1
ηj + 1

∣∣∣∣
∣∣∣∣∣
2r−1∑
k=0

ψj(ξk)ψa(ξk)

∣∣∣∣∣ .
So it follows from Lemma 2 and Lemma 4 that

|S(a)| ≤
{

1.57 log2(q − 1)q1/2, a �= 0,
2r/(q − 1), a = 0,

which yields the result. �

Corollary 1. Let B be defined as in (1). Then we have for q ≥ 4

NL(B) ≥ 2r−1 − q1/2 log2(q − 1).

4 Lower Bounds on Sparsity and Degree of B

The aim of this section is to provide a lower bound on the sparsity of
Boolean functions satisfying (1). This bound holds for an arbitrary basis
{β0, β1, . . . , βr−1} of the finite field showing that there is no Boolean function
of extremely low sparsity providing the least significant bit of the discrete loga-
rithm. However, the bound is much lower than one would expect. We also show
that for some special basis a much larger bound can be proven.

Theorem 2. Let B(U0, U1, . . . , Ur−1) be a Boolean function satisfying (1). For
q ≥ 4 we have

spr(B) >
log2 q

6 log2 log2 q
− 2.
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Proof. Define the integer a by 2a > spr(B) + 1 ≥ 2a−1. For each 1 ≤ m < 2a

with binary expansion m =
∑a−1

i=0 mi2i, m0, . . . ,ma−1 ∈ {0, 1}, we consider the
function

Bm(U0, U1, . . . , Ur−a−1) := B(U0, U1, . . . , Ur−a−1,m0,m1, . . . ,ma−1).

The number of distinct monomials in U0, . . . , Ur−a−1 occurring in all the Bm

cannot exceed spr(B). Since 2a − 1 > spr(B) we find a non-trivial linear combi-
nation

2a−1∑
m=1

cmBm(U0, U1, . . . , Ur−a−1), c1, . . . , c2a−1 ∈ IF2

which vanishes identically.
The function ψ introduced in Section 2 satisfies

ψ(ξk) = (−1)B(k0,k1,...,kr−1), 1 ≤ k < 2r,

by Lemma 1. Now we vary the first r − a variables to obtain bounds on 2a. For
0 ≤ k < 2r−a we have

2a−1∏
m=1

ψ(ξk+2r−am)cm = (−1)
2a−1
m=1 cmBm(k0,k1,...,kr−a−1) = 1.

Let H be the Hamming weight of (c1, c2, . . . , c2a−1) and denote by N the set of
integers m ∈ [1, 2a − 1] for which cm = 1. We sum over all possible k and use
the definition of ψ to get

2r−a =
2r−a−1∑

k=0

2a−1∏
m=1

ψ(ξk+2r−am)cm

=
2r−a−1∑

k=0

2a−1∏
m=1

⎛⎝ 2
q − 1

⎛⎝q−2∑
j=1

1
ηj + 1

χj(ξk+2r−am) +
1
2

⎞⎠⎞⎠cm

=
(

2
q − 1

)H H∑
s=0

(
1
2

)H−s ∑
m1,...,ms∈N

q−2∑
j1,...,js=1

1∏s
i=1(ηji + 1)

2r−a−1∑
k=0

s∏
i=1

χji(ξk+2r−am).

By Lemmas 3 and 4 we obtain

2r−a ≤
(

2
q − 1

)H H∑
s=0

(
1
2

)H−s ∑
m1,...,ms∈N

q−2∑
j1,...,js=1

1∏s
i=1(ηji + 1)

sq1/2

<

(
2

q − 1

)H H∑
s=0

(
1
2

)H−s (
H

s

)
(0.785(q − 1))s logs

2(q − 1)sq1/2
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≤ q1/2
(

2
q − 1

)H

H
(
0.785(q − 1) log2(q − 1) + 1/2

)H

≤ 2aq1/2
(

1.57 log2(q − 1) +
1

q − 1

)2a

.

Since otherwise the bound is trivial we may assume 2a ≤ r. Thus we get

q1/2

r2
≤ q1/2

22a
≤ (1.57 log2(q − 1) + 1/3)2

a

,

which allows to obtain

spr(B) ≥ 2a−1 − 1

> 0.5
(
log2(q

1/2/r2)/ log2(1.57 log2(q − 1) + 1/3)
)
− 1

and by observing that

log2(1.57 log2(q − 1) + 1/3) ≤ 1.5 log2(log2 q) for q ≥ 4

the result follows. �

Remark 1. Our estimate is much weaker than the comparable result for odd
characteristic (see [8, 13]). The main reason is of technical nature, namely ψ, the
compensation for the quadratic character in the proof, is not multiplicative and
the product introduces 2a factors which results in an exponent of 2a instead of
a factor of 2a.

Much stronger bounds can be shown if one uses a special basis. However, a
possible attacker using a Boolean function is not restricted to use a special basis.
We now consider a fixed basis given by βi = γi, 0 ≤ i ≤ r−1. To distinguish the
Boolean function working for this special basis we denote it by Bγ . We point out
that obviously one can always use a linear change of variables between the bases
{1, γ, . . . , γr−1} and {β0, . . . , βr−1} to represent the field elements with respect
to a different basis. However, there is no reason that for a different basis the
degree of B cannot be smaller.

We use a proof technique introduced in [8, 12, 13]. Up to now no application
in even characteristic was possible.

Proposition 1. Let Bγ be a Boolean function satisfying (1). We have

deg(Bγ) ≥ r − 1 and spr(Bγ) ≥ q/4.

Proof. Define the Boolean function F by

F (U0, . . . , Ur−2) := Bγ(U0, . . . , Ur−2, 0) +Bγ(0, U0, . . . , Ur−2).

As (0, k0, . . . , kr−2) represents
∑r−2

i=0 kiγ
i+1 = γ

∑r−2
i=0 kiγ

i, i.e., γ times the
first input, we have that exactly one of

∑r−2
i=0 kiγ

i and γ
∑r−2

i=0 kiγ
i has even
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discrete logarithm. Hence, for each nonzero vector (k0, . . . , kr−2) one has
F (k0, . . . , kr−2) = 1. Evaluating F (0, 0, . . . , 0) gives 0 independent of the am-
biguous value of Bγ(0, 0, . . . , 0). Hence, F is non-constant and we get

F (U0, . . . , Ur−2) =
r−2∏
i=0

(1 + Ui) + 1.

From the definition of F we have

deg(Bγ) ≥ deg(F ) = r − 1

and
spr(Bγ) ≥ �0.5 spr(F )� = �0.5(2r−1 − 1)� = 2r−2 = q/4,

which completes the proof. �
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Abstract. The security of the RSA public key cryptosystem depends on
the intractability of the integer factoring problem. This paper shall give
some theoretical support to the assumption of hardness of this number
theoretic problem.

We obtain lower bounds on degree, weight, and additive complexity
of polynomials interpolating functions related to the integer factoring
problem, including Euler’s totient function, the divisor sum functions,
Carmichael’s function, and the RSA-function.

These investigations are motivated by earlier results of the same flavour
on the interpolation of discrete logarithm and Diffie-Hellman mapping.

Keywords: polynomials, degree, weight, additive complexity, factoring
problem, RSA-problem, Euler’s totient function, divisor sum function,
Carmichael’s function.

1 Introduction

Computationally difficult number theoretic problems like the discrete logarithm
problem or the integer factoring problem play a fundamental role in public key
cryptography. The Diffie-Hellman key exchange depends on the intractability
of the discrete logarithm problem and the RSA cryptosystem is based on the
hardness of the integer factoring problem (see e. g. [27, Chapter 3]).

In the monograph [40] (or its predecessor [38]) and the series of papers
[2, 3, 4, 8, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 37, 43, 44, 45]
several results on discrete logarithm problem and Diffie-Hellman problem
supporting the assumption of their hardness were proven. In particular, it was
shown that there are no low degree or sparse interpolation polynomials of
discrete logarithm and Diffie-Hellman mapping for a large set of given data. In
the present paper we prove analog results for functions related to the integer

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 144–154, 2006.
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factoring problem. We restrict ourselves to the case of factoring ’RSA-integers’
N = pq with two odd primes p < q.

In Section 3 we investigate real and integer interpolation polynomials of map-
pings allowing to factor N , including Euler’s totient function

ϕ(pq) = (p− 1)(q − 1),

Carmichael’s function

λ(pq) =
ϕ(pq)

gcd(p− 1, q − 1)
,

and divisor sum functions

σn(pq) = (pn + 1)(qn + 1)

with a small positive integer n, and ’factoring functions’

ψn,m(pq) = pnqm

with small different nonnegative integers n and m.
In Section 4 we prove a lower bound on degree and weight of an integer

polynomial representing the RSA-function

f(x) ≡ xd mod pq, x ∈ S,

for a subset S of Z∗
pq = {1 ≤ x < pq : gcd(x, pq) = 1} and some integer d with

gcd(d, (p− 1)(q − 1)) = 1.
We collect some auxiliary results on polynomials in the next section.

2 Preliminaries

A proof of the following useful relation between the number of zeros and the
degree of a multivariate polynomial, which extends the well-known relation for
univariate polynomials, can be found in [11, Lemma 6.44.].

Lemma 1. Let D be an integral domain, n ∈ N, S ⊆ D, and f ∈
D[X1, . . . , Xn] be a polynomial of total degree d, with at least N zeros in Sn.
If f is not the zero polynomial, then we have

d ≥ N

|S|n−1 .

The additive complexity C±(f) of a polynomial f(X) is the smallest number
of ’+’ and ’−’ signs necessary to write down this polynomial. In [33, 34] the
number of different zeros of a real polynomial was estimated in terms of its
additive complexity.
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Lemma 2. For a nonzero polynomial f(X) ∈ R[X ] having N different real zeros
we have

C±(f) ≥
(

1
5

log(N)
)1/2

,

where log(N) is the binary logarithm.

In [35, 36] the following improvement was obtained for integer polynomials.

Lemma 3. For a nonzero polynomial f(X) ∈ Z[X ] having N different rational
zeros we have

log(N) = O(C±(f) log(C±(f))).

The weight w(f) of a polynomial f is the number of its nonzero coefficients.
For polynomials over a finite field Fq of q elements we have the following lower
bound on the weight (see [40, Lemma 2.5]).

Lemma 4. Let f(X) ∈ Fq[X ] be a nonzero polynomial of degree at most q − 2
with N different zeros in F∗

q. Then we have

w(f) ≥ q − 1
q − 1 −N .

Obviously, for any univariate polynomial f we have

C±(f) ≤ w(f) − 1 ≤ deg(f).

3 Interpolation of Factoring Functions

For example, the knowledge of the value

ϕ(N) = (p− 1)(q − 1)

of Euler’s totient function at an integer N = pq with unknown primes p and q
is sufficient to determine p and q by solving the quadratic equation

X2 + (ϕ(N) −N − 1)X +N = 0. (1)

In general, let g(X) and h(X) be (known) real rational functions, such that the
product g(X)h(N/X) is not constant. Then from the knowledge of the values in
N = pq of a function f with the property

f(N) = g(p)h(q) = g(p)h(N/p)

we can determine the unknown factors p and q of N by solving an algebraic
equation which is derived from

g(X)h(N/X) = f(N) (2)

by clearing denominators and negative powers of X .
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If we could interpolate the function f by a polynomial of low degree or low
additive complexity and the degree of the algebraic equation derived from (2)
were small, then we could efficiently factorize N . Hence, it becomes important
to prove lower bounds on degree and additive complexity of such interpolation
polynomials.

First we prove lower bounds on degree and additive complexity of a real
polynomial with some special prescribed values.

Proposition 1. For M ≥ 3 let

0 < a1 < a2 < . . . < aM

be a set of ordered reals,

g : {a1, a2, . . . , aM−1} → R,

h : {a2, a3, . . . , aM} → R,

real valued functions, and G the unique interpolation polynomial of g of degree
at most M − 2. Let f ∈ R[X ] be a polynomial satisfying

f(aiaj) = g(ai)h(aj), 1 ≤ i < j ≤M.

If there exist 1 ≤ i < j ≤M − 1 such that

G

(
aiaj

aM

)
h(aM ) �= g(ai)h(aj) (3)

then we have
deg(f) ≥M − 1,

C±(f) ≥
(

1
5

log(M − 1)
)1/2

− C±(G) − 1,

and if f(aMX) − h(aM )G(X) ∈ Q[X ] and a1, . . . , aM−1 ∈ Q then we have

C±(f) + C±(G) = Ω

(
log(M)

log log(M)

)
.

Proof. The polynomial

F (X) = f(aMX) −G(X)h(aM ) (4)

is not identically zero by (3) and has zeros at a1, . . . , aM−1. So we have

max(deg(f),M − 2) ≥ max(deg(f), deg(G)) ≥ deg(F ) ≥M − 1

by Lemma 1 and thus deg(f) ≥M − 1. By Lemma 2 and observing that

C±(F ) ≤ C±(f) + C±(G) + 1
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we obtain our second assertion. The third assertion follows by Lemma 3 if we
multiply (4) with the least common denominator of the coefficients of F . �
Condition (3) in Proposition 1 is necessary and natural. For example, if the given
values are

g(ai) = h(ai) = an
i , i = 1, . . . ,M,

with M ≥ n + 2, they determine the interpolation polynomial f(X) = Xn of
degree n ≤ M − 2 having additive complexity 0. However, the interpolation
polynomial of g is G(X) = Xn and we have

G

(
aiaj

aM

)
h(aM ) = an

i a
n
j = g(ai)h(aj), 1 ≤ i < j ≤M − 1,

contradicting (3).
On the other hand, if g and h are polynomials of small degree with respect

to M , then (3) being not valid implies that g(X)h(Y ) = g(XY/aM )h(aM ) by
Lemma 1. Hence, for each fixed curve Y = N/X the polynomial g(X)h(N/X)
is constant and (2) cannot be used to determine the factorization of N .

Proposition 1 provides lower bounds on degree and additive complexity of
real polynomials f interpolating several well-known functions, as generalizations
of Euler’s totient function

ϕn(pq) = (pn − 1)(qn − 1), n �= 0, (5)

and generalized divisor sums

σn(pq) = (pn + 1)(qn + 1), n �= 0, (6)

but also ’factoring functions’ ψn,m of the form

ψn,m(pq) = pnqm, n �= m, (7)

where n and m are nonnegative integers and p and q are primes with p < q.

Theorem 1. For M ≥ 3 let p1 < p2 < . . . < pM be a set of primes and F a
function of the form (5), (6), or (7). Let f ∈ R[X ] be a polynomial satisfying

f(pipj) = F (pipj), 1 ≤ i < j ≤M.

Then we have
deg(f) ≥M − 1

and

C±(f) ≥
(

1
5

log (M − 1)
)1/2

− 2.

Proof. Since the functions

fn(X) =
(( a
X

)n

− 1
)

(Xn − 1), a > 0, n = 1, 2, . . . ,
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are decreasing for x >
√
a we have for all 1 ≤ i < j < k ≤M ,((

pipj

pk

)n

− 1
)

(pn
k − 1) < (pn

i − 1)(pn
j − 1)

and (3) is satisfied in case of generalizations of Euler’s totient function. Since

fn(X) =
(( a
X

)n

+ 1
)

(Xn + 1), a > 0, n = 1, 2, . . . ,

are increasing for x >
√
a we have((

pipj

pk

)n

+ 1
)

(pn
k + 1) > (pn

i + 1)(pn
j + 1)

and (3) is satisfied in case of generalized divisor sums. Trivially, we have(
pipj

pk

)n

pm
k �= pn

i p
m
j

for all n �= m and (3) is satisfied in case of ’factoring functions’. Now the Theorem
follows by Proposition 1. �
Proposition 1 does not apply to the Carmichael function

λ(N) =
ϕ(N)

gcd(p− 1, q − 1)
, N = pq,

with two odd primes p �= q, which can also be used to factorize N .
We first study how λ can be used to factor N .

Proposition 2. Let N = pq be a product of two unknown odd primes p < q
and put Δ = �N/λ(N)�. Then either Δ = p or p and q are the solutions of the
quadratic equation

X2 + (Δλ(N) −N − 1)X +N = 0.

Proof. Put g = gcd(p− 1, q − 1). Then we have

N

λ(N)
− 2g
p− 1

< g <
N

λ(N)
− 2g
q − 1

.

If g = p − 1, then we have N/λ(N) = p + p/(q − 1), such that Δ = p. If
g ≤ (p− 1)/2, then the above inequalities give N/λ(N) − 1 < g < N/λ(N) and
thus Δ = g. Hence in this case we have

ϕ(N) = Δλ(N)

and can determine p and q from the quadratic equation (1). �
Next we prove an analog of Theorem 1 for the Carmichael function. Let τ(x)
denote the number of positive divisors of an integer x.
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Theorem 2. For M ≥ 3 let p1 < p2 < . . . < pM be a set of primes and
f ∈ R[X ] be a polynomial satisfying

f(pipj) =
(pi − 1)(pj − 1)

gcd(pi − 1, pj − 1)
, 1 ≤ i < j ≤M.

Put T = min1≤i≤M τ(pi − 1). Then we have

deg(f) ≥ M − 1
T

and

C±(f) ≥
(

1
5

log
(
M − 1

T

))1/2

− 2.

Proof. Choose 1 ≤ k ≤M with

τ(pk − 1) = min
1≤i≤M

τ(pi − 1).

For each divisor d of pk − 1 we define a polynomial

Fd(X) = f(pkX) − (X − 1)(pk − 1)
d

.

Then each pi with 1 ≤ i ≤ M and i �= k is a zero of at least one Fd. These
polynomials are not identically zero. Otherwise, for three different primes
pi, pj , pk, Fd(pipj/pk) = 0 yields a monic quadratic equation in pk with constant
term pipj, and the only possible integral solutions pk have to be divisors of
pipj , which is impossible by assumption. Now the result follows analogously to
the proof of Proposition 1 by the pigeon hole principle. �

Remark. The dependence of the result on T may indicate that factoring integers
N = pq is easier if p−1 and q−1 are smooth which fits to the expected running
time of Pollard’s p − 1 factoring algorithm. On the other hand the expected
running time of the (in general faster) number field sieve does not depend on
the factorization of p− 1 and q − 1.

4 Interpolation of the RSA-Function

The RSA problem is the following: Given a positive integer N that is a product
of two distinct odd primes p and q, a positive integer e such that gcd(e, (p −
1)(q − 1)) = 1, and an integer c, find an integer m such that me ≡ c mod N . In
other words, if d is an (unknown) integer with ed ≡ 1 mod (p−1)(q−1) then we
have to evaluate the mapping f(x) = xd in c. The following result excludes the
existence of very simple interpolation polynomials of this mapping in the case
of low public exponent e.
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Theorem 3. Let N = pq be the product of two odd primes with p < q. Choose
integers d, e > 1 such that ed ≡ 1 mod (p − 1)(q − 1). Let S ⊆ Z∗

N be a set
of size s ≥ 2. If f(X) =

∑m
i=0 aiX

i ∈ Z[X ] is a polynomial with degree m <
(q − 1)/e and gcd(a0, . . . , am, N) = 1 which satisfies

f(x) ≡ xd mod N for all x ∈ S,

then we have

deg(f) ≥ max
(

s

e(p− 1)
,
s1/2

e

)
and w(f) ≥

(
s

(p− 1)(q − 1) − s

)1/e

.

Proof. Put F (X) = f(X)e −X . Since s ≥ 2 and e > 1 the interpolation polyno-
mial f(X) is not constant and we have

deg(F ) = e deg(f).

For n ≥ 1 let Zn(F ) denote the number of different zeros of F mod n lying in Z∗
n.

We have Zpq(F ) = Zp(F )Zq(F ) by the Chinese Remainder Theorem. ¿From our
conditions on f we infer that deg(F ) < q − 1. Thus

s ≤ Zp(F )Zq(F ) ≤ (p− 1)Zq(F ) ≤ (p− 1) deg(F ) = e(p− 1) deg(f).

If s < (p− 1)2 then we may assume deg(F ) = e deg(f) < p− 1 and get

s ≤ Zp(F )Zq(F ) ≤ (deg(F ))2 = (e deg(f))2.

By Lemma 4 and the same arguments we get

w(F ) ≥ q − 1
q − 1 − Zq(F )

≥ q − 1
q − 1 − s/(p− 1)

=
(p− 1)(q − 1)

(p− 1)(q − 1) − s ,

and the last statement is a consequence of w(F ) ≤ (w(f))e + 1. �
If d is small then e has to be large and the lower bounds become very weak. In
this case the attack of [42] for small d (see also [5, Section 3]) solves the RSA-
problem. It should be also mentioned that for low public exponents e attacks on
RSA are known [6, 7, 13].

5 Some Related Results

In [1] it was shown that if the discrete logarithm problem in Z∗
N can be solved

in polynomial time, then N can be factored in polynomial time, and the Diffie-
Hellman problem in Z∗

N is at least as difficult as the problem of factoring N .
Most of the results on the discrete logarithm and the Diffie-Hellman mapping
modulo a prime in [40] can be extended to composite moduli. Such results can
also be regarded as complexity lower bounds on functions related to the factoring
problem of the same flavour as in this paper.
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The linear complexity of several sequences related to the factoring problem
including RSA-generator, Blum-Blum-Shub-generator, and two prime generator
was investigated in [4, 9, 12, 39].

Finally, we mention that an analog of Theorem 3 for the LUC cryptosystem
can be easily proven, where instead of monomial Xd Dickson polynomials are
used (see [28, 29, 41]).
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Abstract. We study two topics on degrees of polynomials which
interpolate cryptographic functions. The one is concerned with elliptic
curve discrete logarithm (ECDL) on curves with an endomorphism
of degree 2 or 3. For such curves, we obtain a better lower bound of
degrees for polynomial interpolation of ECDL. The other deals with
degrees of polynomial interpolations of embeddings of a subgroup of the
multiplicative group of a finite field to an elliptic curve.

Keywords: Elliptic curves, polynomial interpolation, division polyno-
mials.

1 Introduction

Lange and Winterhof gave many results on degrees of polynomial interpolations
of functions related to discrete logarithm based cryptosystems including elliptic
curve cryptography in their series of papers [3], [4], [5]. We give two more results
by using their technique. The one is concerned with their result on polynomial
interpolation for elliptic curve discrete logarithms (ECDL). Let E/Fp be an
elliptic curve and let P be a point of order l. We denote the X-coordinate of nP
by xn for n �∈ lZ. Then the following inequality holds for a degree of a polynomial
which interpolates ECDL with the base point P .

Theorem (Lange and Winterhof[5, Proposition 2]). Let F (X) ∈ Fp[X ], p ≥ 7,
satisfy

F (xn) = n and F (x2n) = 2n, n ∈ S
for a subset S ⊂ { 1, . . . , [l/4] }. Then we have

degF ≥ #S
4
.

The constant 1
4 comes from the degree of the multiplication by 2 map, which

is 4. Some elliptic curves have endomorphisms of smaller degree. In Section 2, we
replace the multiplication by 2 map by endomorphisms of degree two or three
and obtain a better lower bound (but smaller range of S) for such curves.

The other result deals with so-called pairing inversion. Let q be a power of
p and consider an arbitrary elliptic curve E/Fq. Let B ∈ E(Fq) and put its

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 155–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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order l. Assume that l is odd and that Fq contains a primitive l-th root ζ of
unity. (Hence l must be prime to p.) Using the Weil paring or the Tate pairing,
we can compute a group isomorphism 〈B〉 → 〈ζ〉. As is shown by Verheul[9,
Sect. 3], the computational complexity for evaluating its inverse isomorphism
t : 〈ζ〉 → 〈B〉 is related to the computational complexity of elliptic curve
discrete log problems. Here ξ(P ) stands for the X-coordinate of P ∈ E − {O}.
Let S ⊂ Z/lZ − {0}. Assume that #S > 2 and that a univariate polynomial f
interpolates the map t over S in the sense that

f(ζn) = ξ(nB) and f(ζ2n) = ξ(2nB)

for all n ∈ S. We show in Section 3 that deg f ≥ 1
5#S for odd p and

deg f ≥ 1
2#S for p = 2. The idea of proof is flipping the method of the proof

for Lange and Winterhof[5, Proposition 2] inside out.

Notation. Let E be an elliptic curve defined over some perfect field. We assume
E is given by the Weierstrass model. We denote the X-coordinate function and
the Y -coordinate function by ξ and η, respectively. Let τ := −ξ/η be its local
parameter at the point O at infinity. The order of zero of a rational function
f at P ∈ E is denoted by ordP f . As usual, we understand that −ordP f is the
order of pole at P when ordP f < 0. For a prime p and its power q, we let
Gal(Fq/Fp) act on Fq[X ] coefficient wise. We denote the p-th power Frobenius
automorphism by σ.

2 Endomorphisms of Small Degree

We begin with a simple (perhaps well known) lemma which is used later. After
we have done with it, we list elliptic curves with an endomorphism of small
degree and give a new bound for degree of polynomial interpolation for such
curves.

Lemma 1. Let ϕ ∈ End(E) be separable. Let P ∈ Kerϕ. Then, ordP ξ ◦ϕ = −2.

Proof. Let V−P be the translation by −P map, i.e., V−P (A) = A − P . Then
τP := τ ◦ V−P is a local parameter at P . Since ϕ is separable, we have an
expansion τ ◦ϕ = cτ +O(τ2) with a non-zero constant c. Recall ξ = τ−2 +O(1)
(see e.g. Silverman[7, Chap. 4]). So, ξ ◦ ϕ = c−2τ−2 + O(1). Applying V−P on
the right, we see ξ ◦ ϕ ◦ V−P = c−2τ−2 ◦ V−P + O(1). Since P ∈ Kerϕ, it holds
that

ξ◦ϕ = ξ◦ϕ◦V−P = c−2τ−2
P +O(1). �


Now, there are 7 pairs consisting of an imaginary quadratic algebraic integer βi

(up to multiplication by units) whose norm is 2 or 3 and an order Z[ωi] contain-
ing βi. Explicitly, they are: β1 := 1 +

√
−1, β2 :=

√
−2, β3 := 1 +

√
−2, β4 :=

β5 :=
√
−3, β6 := −1+

√
−7

2 , β7 := −1+
√
−11

2 , and ω1 :=
√
−1, ω2 := ω3 :=

√
−2,
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ω4 := −1+
√
−3

2 , ω5 :=
√
−3, ω6 := β6, and ω7 := β7. Then, { 1, ωi } forms an

integral base of an order of Q(βi). Using the continued fraction method described
in Stark[8], we can find an elliptic curve Ei/Q whose endomorphism ring is Z[ωi]
and an explicit formula for the X-coordinate component for multiplication by
βi. Let Y 2 = X3+AiX+Bi be the Weierstrass equation of Ei. For c ∈ Z[ωi], we
denote by [c] the endomorphism of Ei satisfying τ ◦ [c] = cτ +O(τ2). Let Ψi(X),
Θi(X) ∈ Q(ωi)[X ] be polynomials such that the X-coordinate of [βi](x, y) is
Θi(x)/Ψi(x) for (x, y) ∈ Ei, or in the language of rational functions,

ξ ◦ [βi] =
Θi(ξ)
Ψi(ξ)

.

We normalize them so that Θi is monic. For completeness, we list them:

βi Ai Bi Θi(x)/Ψi(x)

1 +
√−1 5 0

x2 + 5
2ωx√−2 −30 56

x2 − 4x + 18
−2x + 8

1 +
√−2 −30 56

x3 + (−4 + 2ω)x2 − (46 + 28ω)x + 112 + 80ω

(βx − 4 − ω)2
√−3 0 7

x3 + 28
(βx)2

√−3 −15 22
x3 − 6x3 + 33x − 56

β2(x − 3)2
−1 +

√−7
2

−35 98
x2 − (4 + ω)x + (7 + 21ω)

−(2 + ω)x + 6 + 5ω
−1 +

√−11
2

−264 1694
x3 − (24 + 4ω)x2 + (396 + 308ω)x − 2200 − 2464ω

(βx + 6 − 10ω)2

(To ease notation, the subscripts for ωi and βi are omitted in the last column.)
Put νi := NQ(ωi)/Q(βi). One can observe that degΘi = νi and deg Ψi = νi −
1. Moreover, Θi(X) and Ψi(X) are relatively prime in Q(ωi)[X ] and all the
coefficients belong to Z[ωi]. In particular, they are algebraic integers. These
facts can be proved in general (see e.g. Stark[8]) but for our purpose, the above
table is enough.

Remark 1. In the above table, we also observe Ψi is square for νi = 3. This is
not a coincidence. In fact Ψi is, up to a constant, ψ2

βi
in the notation of [6] when

νi is odd.

In what follows, we omit the subscript i for simplicity. Let p ≥ 5 be a prime which
splits in End(E) and choose (and fix) a prime ideal p dividing p. We add a bar
for objects obtained by the reduction modulo p. Assume moreover E has a good
reduction at p. Note E is an elliptic curve defined over Fp. Let Q ∈ E(Fq) be
a point of order l. Assume [β] preserves 〈Q〉. For cryptographically interesting
cases (e.g. l is a prime grater than

√
q + 1), this condition is automatically

satisfied. Let λ be an integer satisfying [β]Q = λQ.
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Theorem 1. Let S ⊂ { 1, . . ., [l/2] }. Suppose there exists f ∈ Fq[X ] such that

f(ξ(nQ)) = n and f(ξ(λnQ)) = λn (2.1)

for all n ∈ S. Then deg f ≥ 1
ν #S.

Proof. The equation (2.1) implies

f(ξ([β]nQ)) = λf(ξ(nQ)).

For n ∈ S, the X-coordinate of nQ is a solution of

Ψ(T )deg ff

(
Θ(T )
Ψ(T )

)
= λΨ (T )deg ff(T ). (2.2)

Both the left side and the right side are polynomials of degree ν deg(f). We need
to show that (2.2) is not an identity. Note

ordP (ξ − ξ(P )) =

⎧⎨⎩ 1 (P �∈ E[2])

2 (P ∈ E[2], P �= O)

for any P ∈ E−{O}. Thus, we see ordPΨ ◦ξ = 2 for P ∈ Ker[β] regardless of the
parity of ν. Lemma 1 implies ordPΘ ◦ ξ = 0, i.e., Θ(ξ(P )) �= 0. Hence, the left
side of (2.2) is non-zero at P whereas the right side of (2.2) is zero at P . Thus
(2.2) is not an identity and it has #S roots. Therefore we have deg f ≥ 1

ν #S. �

Remark 2. Contrary to the case of multiplication by two, when n runs over
S, the values ξ(nQ) and ξ(n[β]Q) may not be distinct. Hence, a polynomial f
satisfying (2.1) does not always exist. A numerical example: take Y 2 = X3 +5X
as E, and put p := 17, p := (4−

√
−1) and Q := (2, 1). Then l = 13. On the other

hand, [
√
−1](x, y) = (−x, 4y) for (x, y) ∈ E and [1 +

√
−1]Q = (8, 12) = 6Q.

We simply use λ := 6. Consider a polynomial interpolation for S := {1, 2}.
Then the condition (2.1) implies f(ξ(Q)) = 1, f(ξ(6Q)) = 6, f(ξ(2Q)) = 2 and
f(ξ(12Q)) = 12. Since the order of Q is 13, the first condition and the last one
are clearly incompatible.

One sufficient condition for its existence is as follows: l ≥ 5 is a prime and for
each n ∈ S, either l � (λn ±m) for all m ∈ S or λn ∈ S. This restricts the size
of S rather small.

We can apply the above technique of using a small degree endomorphism
to the polynomial interpolation of Diffie-Hellman mapping due to Kiltz and
Winterhof[2, Th. 9]. The (computational) Diffie-Hellman problem on 〈Q〉 is to
find a feasible algorithm which receives mQ and nQ and returns mnQ. For a
given S ⊂ (Z/lZ)×2, we evaluate the total degree of polynomial F satisfying

F (ξ(mQ), ξ(nQ)) = ξ(mnQ)

for all (m,n) ∈ S. In order to obtain a lower bound of degree of F , we need the
following simple lemma on the degree of a multivariate polynomial, as in [2]. We
use the same notation as above except for that now S is two dimensional.
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Lemma 2. Let R be an integral domain and let A be a finite subset of R. Let
U(X1, . . . , Xn) ∈ R[X1, . . . , Xn] be a non-zero polynomial of total degree d. Put
the number of zeros of U in An to m. Then, m ≤ d(#A)n−1.

Proof. See von zur Gathen and Gerhard[10, Lemma 6.44]. �


Theorem 2. Let Q ∈ E(Fq) be a point of order l. We assume that l is prime
to ν and that l ≥ ν + 3. Assume [β] preserves 〈Q〉 and define λ ∈ Z/lZ by
[β]Q = λQ. Let S ⊂ (Z/lZ)×2. Suppose F (X,Y ) ∈ Fq[X,Y ] satisfies

F (ξ(mQ), ξ(nQ)) = ξ(mnQ)

for all (m,n) ∈ S. Put S′ := {(m,n) ∈ (Z/lZ)×2 : (m,λn) ∈ S }. Then,

degF ≥ #(S ∩ S′)
4[l/2](2ν − 1)

. (2.3)

Proof. The proof is similar to that of Kiltz and Winterhof[2, Th. 9]. Since l
is prime to ν, there exist integers v and w satisfying vl + wν = 1. This gives
rise to the equality vl + w(Tr([β]) − [β])[β] = 1 in End(E). Evaluating this at
Q, we obtain w(Tr([β]) − λ)λQ = Q. Therefore, λ ∈ (Z/lZ)× and [β] is an
automorphism on 〈Q〉.

For any m and n, we have

F (ξ(mQ), ξ(λnQ)) = F (ξ(mQ), ξ([β]nQ)) = F

(
ξ(mQ),

Θ(ξ(nQ))
Ψ(ξ(nQ))

)
.

On the other hand,

F (ξ(mQ), ξ(λnQ)) =ξ(λmnQ) = ξ([β]mnQ) =
Θ(ξ(mnQ))
Ψ(ξ(mnQ))

=
Θ(F (ξ(mQ), ξ(nQ)))
Ψ(F (ξ(mQ), ξ(nQ)))

for all (m,n) ∈ S ∩ S′. Put d := degY F and

U(X,Y ) := Ψ(F (X,Y ))Ψ(Y )d

(
F

(
X,
Θ(Y )
Ψ(Y )

)
− Θ(F (X,Y ))
Ψ(F (X,Y ))

)
.

Then U is a bivariate polynomial and degU ≤ (2ν − 1) degF and
U(ξ(mQ), ξ(nQ)) = 0 for all (m,n) ∈ S ∩ S′. Now we prove that U is a non-
zero polynomial. First of all we show λ �= ±1. Otherwise, ([β] ± 1)Q = O and
thus NQ(β)/Q(β ± 1) ≡ 0 mod l. But the left hand side is ν ± TrQ(β)/Q(β) + 1
which is positive and not greater than ν + 3 (see the table for the possible
values of β). Hence λ �= ±1. This implies that F cannot be a constant unless
S ∩ S′ = ∅. In the case S ∩ S′ = ∅, the inequality (2.3) holds trivially. So we
assume degF ≥ 1 in what follows. Then, (2.3) holds in case of #S ≤ 2(l − 1).
Therefore we have only to prove (2.3) under the condition #S ≥ 2l − 1.
This in particular implies that there exist (m1, n0), (m2, n0) ∈ S satisfying
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m1 �= ±m2. Then, F (ξ(m1Q), ξ(n0Q)) �= F (ξ(m2Q), ξ(n0Q)), which ensures
degX F (X, ξ(n0Q)) ≥ 1. Hence there exists α in the algebraic closure of Fq sat-
isfying F (α, ξ(n0Q)) = γ where γ is a root of Ψ(x) = 0. Note Ψ(ξ(n0Q)) �= 0
since otherwise n0Q ∈ Ker[β], a contradiction. Recall that gcd(Ψ(x), Θ(x)) = 1
over Fq[x]. Therefore, Θ(γ) �= 0 and by

U(α, ξ(n0Q)) = −Ψ(ξ(n0Q))dΘ(γ) �= 0

we conclude that U is a non-zero polynomial. Put A := { ξ(mQ) : m ∈
(Z/lZ)× }. The correspondence (Z/lZ)2 ! (m,n) → (ξ(mQ), ξ(nQ)) ∈ A2 is
at most four to one. By Lemma 2, we obtain #(S∩S′)

4 ≤ (2ν−1)[l/2] deg(F ). �


Remark 3. In the above proof, in case of #S ≤ 2(l− 1), the polynomial U may
be zero. Indeed, for S = { (±1, n) : n ∈ (Z/lZ)× }, we see F (X,Y ) = Y and
U(X,Y ) = 0. Note S = S′ regardless of λ in this case.

3 Pairing Inversion

Let p be a prime and q a power of p. Throughout this section, we denote by E
an elliptic curve

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

defined over Fq by the Weierstrass equation. Let B ∈ E(Fq) be a point of odd
order l where l is prime to p. Assume F×

q contains the primitive l-th root ζ
of the unity. (Otherwise, replace q by its suitable power). Then (replacing ζ if
necessary) we have a group isomorphism 〈B〉 → 〈ζ〉 which sends B to ζ by using
the Weil pairing or the Tate pairing. Here we consider polynomial interpolations
concerning the inverse isomorphism t : 〈ζ〉 → 〈B〉. Our aim is to give a lower
bound of degree of a polynomial f satisfying f(z) = ξ ◦ t(z) for some elements
z in 〈ζ〉.

Theorem 3. Let S be a subset of Z/lZ−{0} whose cardinality is greater than 2.
Assume f(T ) ∈ Fq[T ] satisfies

f(ζn) = ξ(nB) and f(ζ2n) = ξ(2nB) (3.1)

for all n ∈ S. Then

deg f ≥

⎧⎪⎨⎪⎩
1
5
#S (p ≥ 3),

1
2
#S (p = 2).

Proof. First, we note 2nB �∈ E[2] for all n ∈ S since l is odd. For P := (x, y) ∈
E − E[2], we have

ξ(2P ) =
U(x)
V (x)
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where

U(X) = X4 − b4X2 − 2b6X − b8, V (X) = 4X3 + b2X2 + 2b4X + b6

and b2, . . ., b8 are constants depending on a1, . . ., a6. Then (3.1) implies

f(ζ2n) =
U(f(ζn))
V (f(ζn))

for all n ∈ S, or equivalently,

V (f(T ))f(T 2)−U(f(T )) = 0 (3.2)

has solutions T = ζn for n ∈ S.
In case that p is odd: We have deg V (X) = 3 and degU(X) = 4. So, the

degree of the left side of (3.2) is exactly 5 deg f . Hence 5 deg f ≥ #S.
In case of p = 2: In this case, degV ≤ 2 and the left side of (3.2) may vanish.

We need to prove that this does not happen. Explicitly, b2 = a2
1, b4 = a1a3,

b6 = a2
3, b8 = a2

1a6 + a1a3a4 + a2a
2
3 − a2

4. (Actually, we don’t need the explicit
form of b8. What we need on b8 is the relation between b8 and the discriminant
of E.) Thus V (X) = (a1X + a3)2 and U(X) = X4 + a1a3X

2 + b8. We see

f(T 2)(a1f(T ) + a3)2 = (f(T )2 + σ−1(a1a3)f(T ) + σ−1(b8))2

has solutions T = ζn for n ∈ S. (Recall that σ stands for the Frobenius auto-
morphism.) Then

(a1σ
−1(f)(T )+f(T ))f(T )+a3σ

−1(f)(T ) = σ−1(a1a3)f(T )+σ−1(b8) (3.3)

has solutions T = ζn for n ∈ S. It’s sufficient to show that (3.3) is not an identity.
Assume a1σ

−1(f)(T )+ f(T ) is a constant, say, c. Then f(T ) = a1σ
−1(f)(T )+ c

and we have

(ca1 + a3 + σ−1(a1a3)a1)σ−1(f)(T ) = c2 + σ−1(a1a3)c+ σ−1(b8).

Since #S > 2, the condition (3.1) implies that f is not a constant. Hence

ca1 +a3 +a1σ
−1(a1a3) = 0, (3.4)

c4 +a1a3c
2 +b8 = 0. (3.5)

Then
b22b8= a4

1b8
(3.5)
= (a1c)4 + a3

1a3(a1c)2

(3.4)
= a4

3 + a6
1a

2
3 + a3

1a
3
3 + a3

1a3a
3
1a3 = a4

3 + a3
1a

3
3.

On the other hand, the discriminant Δ of E is

Δ =b22b8 + b26 + b2b4b6

=a4
3 + a3

1a
3
3 + a4

3 + a3
1a

3
3

=0.
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This contradicts that E is an elliptic curve. Thus deg(a1σ
−1(f)(T ) + f(T )) ≥ 1

and the degree of the left side of (3.3) is at least deg f +1. Therefore (3.3) is not
an identity and it has at most 2 deg f solutions. Hence #S ≤ 2 deg f . �


Remark 4. We cannot drop the condition #S > 2. Indeed, it is trivial to see
that the case l = 3 and S = {1, 2} yields a counter example.

We can generalize the statement for p = 2 as follows. The proof is essentially
the same.

Theorem 4. Let p ≥ 3 be a prime. Let B, l and S be as in Theorem 3. Assume
f(X) ∈ Fq[X ] satisfies

f(ζn) = ξ(nB) and f(ζpn) = ξ(pnB) (3.6)

for all n ∈ S. Then deg f ≥ 1
p#S.

Proof. For m ∈ N, let ψm be the m-th division polynomial and put θm(X) =
Xψ2

m(X) − (ψm−1ψm+1)(X). Then,

ξ ◦ [p] = θp(ξ)/ψp(ξ)2.

As before, T = ζn is a solution of

f(T p)ψp(f(T ))2 = θp(f(T )) (3.7)

for n ∈ S. Recall that θp(x) and ψp(x) are relatively prime and both of them are
inseparable by Cassels[1]. Thus there exist αp, βp ∈ Fq[X ] satisfying θp(X) =
αp(X)p and ψp(X) = βp(X)p. Thus,

(σ−1(f))(T )βp(f(T ))2 = αp(f(T )) (3.8)

has solutions T = ζn for n ∈ S. Since θp(X) and ψp(X) are relatively prime, so
are αp(X) and βp(X). Moreover f is not a constant by the assumption #S > 2.
Thus (3.8) is not an identity. Note degαp ≤ p and deg βp ≤ p−1

2 since p is odd.
Therefore we have #S ≤ p deg f . �
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Abstract. In this paper we analyse properties of the message expansion
algorithm of SHA-1 and describe a method of finding differential patterns
that may be used to attack reduced versions of SHA-1. We show that the
problem of finding optimal differential patterns for SHA-1 is equivalent
to the problem of finding minimal weight codeword in a large linear code.
Finally, we present a number of patterns of different lengths suitable for
finding collisions and near-collisions and discuss some bounds on minimal
weights of them.

1 Introduction

Most of the modern hash functions used in practice are dedicated ones designed
using principles of MD4 [18, 19]. The first attack on MD4 appeared only a year
after the publication of the algorithm [7]. Both MD4 and its improved version,
called MD5 [20], were broken by Dobbertin [10, 8]. Another hash function from
the MD family, called RIPEMD [3] was also shown by Dobbertin [9] to be inse-
cure. The shortest variant of HAVAL [29] has been broken by Van Rompay et
al. [21]. Recent results obtained by Wang et al. [24, 25] show that is is possible
to find collisions for MD4, MD5, HAVAL-128 and RIPEMD within hours on a
generic PC. It looks like the message expansion algorithm based on permuting
message words and applying them in a different order in each round is a weak
point of all these algorithms as it does not provide enough diffusion of differences.

Another group of hash functions are hash functions from the SHA family.
The idea of an extended Feistel permutation that was used in the design of the
MD family, is also driving the design of the SHA family but with more complex
message expansion algorithms. The first member of that family was SHA-0 [11].
It was promptly replaced by an improved version, SHA-1 [15]. Security concerns
that led to the re-design of SHA-0 appeared to be true, as in 1998 Chabaud and
Joux presented a theoretical attack on SHA-0 [6], which was later implemented
and improved allowing to find collisions [12, 13]. Now, one of the most interesting
questions in the field of hash function analysis is how secure is the present
standard SHA-1, which is different from SHA-0 by only one rotation in the
message expansion process.

The same technique used to attack SHA-0 could be applied to launch an attack
on SHA-1 provided that there exists a good enough differential pattern. Biham

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 164–177, 2006.
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and Chen [2] were able to find patterns that allowed to find collisions for SHA-1
variants reduced to first 34 and 36 steps. Their attack can be extended provided
that one can find good differential patterns for longer variants of SHA-1.

In this paper we investigate the problem of finding good differential patterns
for SHA-1. First we start with a different presentation of the message expan-
sion algorithm. Next, we show that the problem of finding differential patterns
suitable for attacking SHA-1 is equivalent to a problem of finding low-weight
codewords in a linear code.

We present the results of our search for the best patterns which can be used
in the differential attack and we estimate some bounds on the minimal weight
of such patterns.

2 The Differential Attack on SHA

In this section we briefly recall the structure of SHA-1 and describe the basic
framework of the differential attack applicable to SHA-0/1.

2.1 Description of the SHA-1 Compression Function

The SHA-1 compression function [15] hashes 512 bit input messages to 160
bit digests. Firstly, 512 bits of the message are divided into 16 32-bit words
W0,W1, . . . ,W15. The rest of 80 words is generated out of the first 16 words
according to the following recurrence formula

Wi = ROL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) for 16 ≤ i ≤ 79 , (1)

where ROLk denotes rotation of a word by k positions left. If this is the first
application of the compression function, five 32-bit registers A, B, C, D, E are
initialized to values A0 = 0x67452301, B0 = 0xefcdab89, C0 = 0x98badcfe,
D0 = 0x10325476, E0 = 0xc3d2e1f0 accordingly.

Next, the algorithm applies 80 steps (i = 0, . . . , 79). Each step is of the fol-
lowing form:

Ai+1 = ROL5(Ai) � fi(Bi, Ci, Di) � Ei �Wi �Ki , (2)
Bi+1 = Ai ,

Ci+1 = ROL30(Bi) ,
Di+1 = Ci ,

Ei+1 = Di ,

where � denotes addition modulo 232 and Ai, Bi, Ci,Di and Ei denote the values
of the registers after i-th iteration. Functions fi and constants Ki used in each
iteration are given in Table 1. The output of the compression function is the
concatenation of bits of A0 �A80, B0 �B80, C0 �C80, D0 �D80 and E0 �E80.
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Table 1. Functions and constants used in SHA-1

step number i fi(B, C, D) Ki

0 – 19 (B ∧ C) ⊕ (¬B ∧ D) 0x5a827999
20 – 39 B ⊕ C ⊕ D 0x6ed9eba1
40 – 59 (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D) 0x8f1bbcdc
60 – 79 B ⊕ C ⊕ D 0xca62c1d6

2.2 The Differential Attack of Chabaud and Joux

Chabaud and Joux presented in [6] a differential attack on SHA-0. The funda-
mental observation they made is that a change in the j–th bit of the word Wi

can be corrected by complementary changes in the following bits:

◦ bit (j + 6) mod 32 of Wi+1,
◦ bit j of word Wi+2,
◦ bit (j + 30) mod 32 of Wi+3,
◦ bit (j + 30) mod 32 of Wi+4,
◦ bit (j + 30) mod 32 of Wi+5,

provided that functions fi+1, . . . , fi+4 and additions � behave like linear func-
tions. That is, a single change of the input to f results in a change of the output
of f , a change in two inputs of f leaves the result unchanged and differences
propagate through additions without carries. They showed that a one bit dis-
turbance can be corrected by such a pattern with probability between 2−2 and
2−5 depending on functions fi, . . . , fi+4, if the disturbance is introduced in the
second bit (j = 1).

If a disturbance is introduced in the position j �= 1, then there is an additional
factor of 2−3 caused by 50% chance of inducing a carry in additions in steps i+3,
i+ 4, i+ 5.

The attack is possible due to the property of the message expansion function
which does not mix bits in different positions. Thanks to that it was possible to
consider the message expansion algorithm as a bit-wise one. Enumeration of all
216 possible bit patterns in the position 1 allowed for choosing a disturbance pat-
tern in the first bit position that led to a global differential pattern δ producing
a collision with probability 2−61.

2.3 Improvements

It is possible to improve the attack of Joux and Chabaud by reducing proba-
bilistic behaviour of some initial corrections using a better strategy of selecting
messages rather than picking random ones. Biham and Chen proposed in [1] the
method of so-called neutral bits. They showed that having a message that be-
haves correctly for at least 16 first steps after adding a difference δ, it is possible
to construct a big set of pairs (M,M ⊕ δ) that have much better probability of
a successful correction than the pairs produced from random messages.
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3 Analysis of the Message Expansion Algorithm of
SHA-1

An additional rotation in the message expansion formula (1) makes finding cor-
rective patterns used in [6] impossible, because now differences propagate to
other positions. For SHA-1, a one-bit difference in one of the 16 initial blocks
propagates itself to at least 107 bits of the expanded message W . This is illus-
trated in Fig. 1. However, we were able to find a difference pattern with only
44 bit changes in the expanded message. This suggests that it is interesting to
investigate the message expansion algorithm of SHA-1 in a greater detail and
check to what extent the differential attack can be applied also to SHA-1.

i = 0 i = 16 i = 32 i = 48 i = 64 i = 79

Fig. 1. Propagation of one bit difference in SHA-1 message expansion

The important property of the message expansion process given by the for-
mula (1) is that it is a bijective function producing 16 new words out of 16 old
ones. This implies that it is possible to reconstruct the whole expanded message
given any 16 consecutive words of it, in particular the first 16. Moreover, if we
consider it on a bit level as a function A : IF512 → IF512, it is easy to see that A
is IF2-linear as the only operations used are word rotations (which are permu-
tations of bits) and bitwise XOR operations. Then the expansion of the initial
message1 m ∈ IF512 can be expressed as a long vector

E1(m) =

⎡⎢⎢⎢⎢⎣
m
A(m)
A2(m)
A3(m)
A4(m)

⎤⎥⎥⎥⎥⎦ ∈ IF2560 . (3)

The set of correction masks is built from a disturbance pattern by rotations
and delaying the pattern by 1, 2, . . . , 5 words in the same way as described in [6].
In order to find disturbance patterns which can give rise to correction patterns
one has to look for bit patterns b ∈ IF2560 that satisfy the following conditions:

1 We consider m to be a column vector.
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C1. the pattern b has to be of the form (3), i.e. b is the result of the expansion
operation,

C2. the pattern b ends with 5 · 32 = 160 zero bits (the last five words are zero),
because each disturbance is corrected in the next 5 steps, so no disturbance
may occur after the word 74,

C3. after delaying a pattern by up to 5 words (that is, shifting bits of b down
(right) by 5 · 32 = 160 positions) the shifted pattern must also be the result
of the expansion of its first 512 bits, that is

[ 0 . . .0︸ ︷︷ ︸
160 bits

b0 b1 . . . b2399]T = E1([0 . . . 0 b0 . . . b351]T ) .

C4. b has both the minimal Hamming weight and the maximal number of non-
zero bits in position 1.

3.1 Basic Construction

Conditions C1 – C3 imply that in fact we are looking for longer bit sequences of
85 words such that the first 5 words are zero, the next 11 words are chosen in such
a way that while the rest of the words are the result of the expansion of the first
16, the last 5 words are zero again. After denoting the first 5 zero words with
indices −5, . . . ,−1, in positions 0, . . . , 79 we get a disturbance pattern which
allows for a construction of the corrective pattern.

Using the matrix notation, we are looking for a vector m ∈ IF512 such that
A4m has 160 trailing zero bits and also A−1m has 160 trailing zeros. As the
transformation A is a bijection, this is equivalent to finding a vector

v = [v0, v1, . . . , v351, 0, . . . , 0]T ∈ IF512 ,

such that the last 160 bits of A−5(v) contain only zeros, what can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
...

x351

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 . . . . . . . . . a0,511

...
...

a352,0 . . . a352,351
...

. . .
...

...
a511,0 . . . a511,351 . . . a511,511

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v0
v1
...
v351
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where A−5 = ( ai,j ) 0≤i,j≤511.
This condition means that truncated vectors v̄ = [v0, v1, . . . , v351]T ∈ IF352

have to belong to the null-space of the matrix Ω of the form

Ω =

⎡⎢⎣a352,0 . . . a352,351
...

. . .
...

a511,0 . . . a511,351

⎤⎥⎦ , (5)
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created as a copy of the lower left part of the matrix A−5. It means that the
set of all vectors satisfying properties 1– 2 is a linear subspace of IF2560 with
elements of the form

c = [ A−4(v)T || A−3(v)T || A−2(v)T || A−1(v)T || vT ] , (6)

where v = [ v̄T || 0 . . . 0 ]T ∈ IF512 and v̄ ∈ Ker(Ω).
The set of all such vectors c is in fact a linear code C of length n = 2560 and,

as we have verified that the rank of the matrix Ω is equal to 192, of dimension
k = 192.

To maximize the probability of a successful correction by the differential pat-
tern, it is necessary to search for the words of minimal Hamming weight and,
if possible, for those words with the maximal number of non-zero bits in the
position 1.

This is essentially a problem of finding the minimum distance of a linear code,
which is known to be NP-hard [22], so there is no easy way of finding optimal
corrective patterns. However, there are a number of probabilistic methods [14, 4]
that allow for efficient finding of low-weight codewords in big linear codes.

The second part of the condition C4 can be partially achieved using the fact
that the expansion process is invariant with respect to the word rotation. The
result of the expansion of 16 input words already rotated by a number of bits is
the same as the rotation of the result of the expansion of 16 words performed
without rotation. Thanks to that, having a pattern of minimal weight it is easy
to transform it to a pattern with the maximal number of ones in the position 1
using the word-wise rotation by an appropriate number of positions. Of course,
in general this is the problem of finding codewords with the minimal weighted
weight, however, our experiments show that this simplified approach gives very
good results.

3.2 Reduced Variants

The generalization of the construction presented above can be applied to find
good differential patterns for reduced versions of SHA-1.

Assume that we want to find a differential pattern for SHA-1 reduced to
16 < s ≤ 80 steps (2). Condition C1 implies that the vector A−1(m) has to
have 160 trailing zero bits. If we denote the last 160 rows of the matrix A−1 as
A−1[352 :: 511] then this condition can be written as

0 = A−1[352 :: 511] ·m . (7)

To formulate a simple description of constraints inferred from condition C2,
it is convenient to note that the whole message expansion process can be seen
as a linear transform E1 : IF512 → IF2560 represented by a matrix of the form

E1 =

⎡⎢⎢⎢⎢⎣
I512

A
A2

A3

A4

⎤⎥⎥⎥⎥⎦ ,
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where I512 is the identity matrix and A is the linear transform described in
Section 3. Now, if we want to find a differential pattern for s steps, 5 words
of the expanded message in positions s − 4, s − 3, . . . , s have to be zero. In
the matrix notation, 160 entries in the vector E1 ·m have to be zero, precisely
these in positions (s − 4) · 32, . . . , s · 32 + 31. If we denote the matrix created
by selecting rows of the matrix E1 with indices 32(s − 4), . . . , 32s + 31 by
E1[32(s− 4) :: 32s+ 31], then condition C2 can be written as:

0 = E1[32(s− 4) :: 32s+ 31] ·m . (8)

Putting together Equations (7) and (8) we obtain the final result. A message
m ∈ IF512 gives rise to the corrective pattern if and only if m ∈ Ker(Ψs), where

Ψs =
[

A−1[352 :: 511]
E1[32(s− 4) :: 32s+ 31]

]
(9)

is a matrix of dimensions 320×512 built by placing rows ofE1[32(s−4) :: 32s+31]
below rows of A−1[352 :: 511].

4 Search for the Best Patterns

We have shown that the problem of finding disturbance patterns with minimal
weights can be seen as a problem of finding minimal weight codewords in a linear
code. To find them, we use a simplified version of the algorithm by Leon [14]
presented in [5]. We use the parameter p = 3 to search for all combinations
of up to three rows and for each code we apply at least 100 repetitions of the
procedure. The results are presented in Table 2. For each variant of SHA-1 (of
length 32 - 85) the second column contains the minimal weight of the pattern
found. The results marked with (*) are better than those obtained by Biham
and Chen [2]. The patterns we investigate are suitable for attacking only last
steps of SHA-1. As the first 20 steps of SHA-1 employ the IF Boolean function,
the first 16 words of a disturbance pattern cannot have ones in the same bit
position in the two consecutive words. Thus for variants longer than 64, we give
only lower bounds on the weight of patterns satisfying the IF condition.

We decided to compute a lower bound because the algorithm we used ensures
that there is no codeword of a lower weight with a very high probability. This
result is unlikely to be extended in a straightforward way to the case of search
for restricted patterns satisfying the IF condition. A way out is finding the lower
bound on weights of restricted patterns using unrestricted ones.

According to Biham and Chen [2], it is possible to eliminate the probabilistic
behaviour of up to 20 first rounds. Thus the third column (denoted by wt20+)
contains minimal weights of patterns where weights of the first 20 steps are not
counted.

We are also interested in patterns that do not allow for finding the full col-
lisions but still are suitable for finding near-collisions as this may possibly lead
to an easier way of finding multi-block collisions. To obtain them we relax the
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Table 2. Hamming weights of the best patterns found. Column wt contains total
Hamming weights of patterns, wt20+ – weights of patterns with ignored 20 first steps,
column wtn shows total weights of incomplete patterns for near-collisions (patterns
ending with only 4 zero blocks).

steps wt wt20+ wtn steps wt wt20+ wtn steps wt wt20+ wtn

32 9 2 9 50 35 14 35 68 > 122 > 78 > 90
33 9 2 9 51 35 15 35 69 > 127 > 81 > 127
34 9 2 9 52 35 16 35 70 > 142 > 80 > 124
35 28 4 24 53 35 16 35 71 > 157 > 94 > 142
36 24 5 24 54 78 36 75 72 > 172 > 93 > 139
37 25 5 25 55 80 39* 73 73 > 139 > 111 > 139
38 30 8 30 56 79 41 72 74 > 139 > 98 > 139
39 39 8* 35 57 72 42 72 75 > 142 > 90 > 142
40 41 11 38 58 73 42 55 76 > 187 > 111 > 187
41 41 12 41 59 91 51 66 77 > 184 > 108 > 184
42 41 13 34 60 66 44 66 78 > 198 > 115 > 177
43 41 17 41 61 66 44 66 79 > 220 > 115 > 220
44 50 15 42 62 66 45 66 80 > 172 > 106 > 172
45 45 15 45 63 107 64 87 81 > 255 > 117
46 56 23 42 64 > 101 > 60 > 96 82 > 242 > 142
47 56 24* 35 65 > 113 > 66 > 98 83 > 215 > 163
48 35 14 35 66 > 98 > 58 > 98 84 > 161 > 101
49 35 14 35 67 > 127 > 69 > 122 85 > 340 > 177

condition that requires that the last five words must contain zeros only and we
allow for non-zero entries in one more block. Weights of the best patterns found
this way are listed in the column wtn.

It is interesting to see that the minimal weights we are able to find are growing
in quite an irregular fashion. In fact, after a rapid jump after reaching 35 steps
and a steady growth up till the step 47, there is an unexpected downfall to
the weight 35 in the step 48. The same pattern, presented in Fig. 6, is suitable
for attacks up to 53 steps. After 53 steps, weights get much higher and as we
consider patterns without restrictions imposed by the IF function in the first 20
steps of SHA-1, the best pattern for the full SHA-1 will most likely have weight
considerably higher than 172.

However, when we relax all the conditions and look only for patterns that
result from the expansion process, we are able to find differences with the weight
only 44 for the full length message expansion. Such a difference is presented in
Table 4.

5 Bounds on Minimal Weights of Short Patterns

Let us discuss some bounds on minimal weights of corrective patterns. Consider
the inverse of the transformation (1). It can be written as
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i = 0 i = 16 i = 32 i = 48 i = 64 i = 79

Fig. 2. Inverse propagation of one bit difference applied in the last segment of SHA-1

Wi = Wi+2 ⊕Wi+8 ⊕Wi+13 ⊕ROR1(Wi+16), 0 ≤ i < 64 , (10)

where the last 16 words W64,. . . ,W79 are set arbitrarily.
Although this formula describes essentially the same transformation, if we

consider the fact that the rotation is now applied to only one variable distant
by 16 steps, the difference propagation of the expansion process described by
Equation (10) is much worse than the original function. In fact, the difference
of one bit in one of the last 16 words generates up to 4 changes positioned 55 to
82 bits, what is illustrated in Fig. 2. It is interesting to note that this peculiar
behaviour does not depend on the number of positions by which a word is rotated
in the algorithm but is rather inherent to the structure of recurrence relations
similar to (1).

To estimate the minimal number of ones in the expansion process we divide the
set of ones in two groups: these in the same position as the initial bit and those in
different positions. The size of the first group can be easily found experimentally,
as there are only 216 of all bit sequences generated by the following relation

wi =

{
mi for 0 ≤ i < 16,
wi+2 ⊕ wi+8 ⊕ wi+13, for i ≥ 16

and much less of them with the first five and the last five elements equal to zero.
Minimal weights of such sequences of different lengths are presented in Table 3.
Note that to estimate the number of ones for a differential pattern of length s,

Table 3. Minimal weights of sequences of length s + 5 with 5 leading and 5 trailing
zeros generated by the formula wi = wi+2 ⊕ wi+8 ⊕ wi+13

s 32–34 35–38 39,40 41 42,43 44–47 48,49 50 51
min. weight 8 9 11 13 11 14 16 17 16

s 52,53 54–56 57–64 65–67 68–71 72 73–75 76,77 78–85
min. weight 17 18 19 23 22 26 24 29 30
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Table 4. A full length difference of weight 44 for unrestricted message expansion of
SHA-1

0x00000002 0x00000001 0x00000000 0x00000000 0x00000008
0x00000002 0x00000000 0x00000000 0x00000000 0x00000020
0x00000000 0x00000002 0x00000002 0x00000000 0x00000000
0x00000000 0x00000002 0x00000000 0x00000000 0x00000000
0x00000001 0x00000001 0x00000002 0x00000000 0x00000040
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x80000002 0x00000000 0x00000002 0x00000000 0x00000028
0x00000002 0x00000002 0x00000000 0x00000000 0x00000080
0x80000002 0x00000003 0x00000002 0x00000004 0x00000018
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000002 0x00000002 0x00000000 0x00000000 0x00000100
0x00000000 0x00000002 0x00000000 0x00000008 0x00000020
0x00000003 0x00000000 0x00000000 0x00000000 0x000000a0
0x00000000 0x00000000 0x00000000 0x00000000 0x00000200
0x00000002 0x00000002 0x00000000 0x00000010 0x00000020
0x00000002 0x00000000 0x00000000 0x00000000 0x00000000

Table 5. The best differential pattern for the first 34 steps of SHA-1

W[ 0]= 0x00000002 W[16]= 0x00000000 W[32]= 0x00000000
W[ 1]= 0x00000000 W[17]= 0x00000000 W[33]= 0x00000000
W[ 2]= 0x00000002 W[18]= 0x00000000
W[ 3]= 0x00000000 W[19]= 0x00000000
W[ 4]= 0x00000002 W[20]= 0x00000002
W[ 5]= 0x00000000 W[21]= 0x00000000
W[ 6]= 0x00000003 W[22]= 0x00000002
W[ 7]= 0x00000000 W[23]= 0x00000000
W[ 8]= 0x00000000 W[24]= 0x00000000
W[ 9]= 0x00000002 W[25]= 0x00000000
W[10]= 0x00000000 W[26]= 0x00000000
W[11]= 0x00000000 W[27]= 0x00000000
W[12]= 0x00000000 W[28]= 0x00000000
W[13]= 0x00000000 W[29]= 0x00000000
W[14]= 0x00000002 W[30]= 0x00000000
W[15]= 0x00000000 W[31]= 0x00000000

the minimal weight of a sequence of length s + 5 has to be considered with 5
leading and 5 trailing zero bits.

The size of the other group of bits cannot be easily estimated. We only can say
that it contains at least one element for sequences longer than 16. This makes
our estimation work only for variants that are not too long.

As an example, we can consider the differential pattern for 34 steps. The first
set for sequences of length 34 contains at least 8 non-zero bits. The second set
must contain at least one bit. Thus, we have shown that the pattern presented
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Table 6. The best differential pattern for the last 53 steps of SHA-1

W[32]=0x00000002 W[48]=0x80000000 W[64]=0x00000002
W[33]=0x80000000 W[49]=0x00000002 W[65]=0x00000000
W[34]=0x40000003 W[50]=0x80000001 W[66]=0x00000001
W[35]=0x00000000 W[51]=0x00000000 W[67]=0x00000000
W[36]=0x00000001 W[52]=0x00000002 W[68]=0x00000000
W[37]=0x80000002 W[53]=0x00000002 W[69]=0x00000002
W[38]=0x80000000 W[54]=0x00000000 W[70]=0x00000000
W[39]=0x00000002 W[55]=0x00000000 W[71]=0x00000000
W[40]=0x00000001 W[56]=0x00000002 W[72]=0x00000002
W[41]=0x00000000 W[57]=0x00000000 W[73]=0x00000000
W[42]=0x80000002 W[58]=0x00000003 W[74]=0x00000000

W[27]=0x00000000 W[43]=0x00000002 W[59]=0x00000000 W[75]=0x00000000
W[28]=0x00000000 W[44]=0x80000002 W[60]=0x00000002 W[76]=0x00000000
W[29]=0x00000000 W[45]=0x00000000 W[61]=0x00000002 W[77]=0x00000000
W[30]=0x40000000 W[46]=0x80000001 W[62]=0x00000002 W[78]=0x00000000
W[31]=0x00000000 W[47]=0x00000000 W[63]=0x00000000 W[79]=0x00000000

in Table 5 is the optimal one for that length. This is the same pattern used by
Biham and Chen to find collisions for 34 steps of SHA-1 [2].

6 Conclusions

In this paper we have presented a new characterization of the message expansion
process of SHA-1 using linear codes over IF2. This immediately has allowed
us to prove that the problem of finding the best differential pattern for SHA-
1 is equivalent to the problem of finding the minimum weight codeword in a
particular linear code.

Although this problem is hard in general and codes describing message expan-
sion are very long, thanks to an unexpected behaviour of the codes in question,
we were able to find differential patterns for reduced versions of SHA-1 of lengths
between 34 and 85 steps experimentally.

Our study has shown that minimal weights for reduced variants may vary in
an unexpected way. Nevertheless, the longest variant, for which the differential
attack of Joux and Chabaud with necessary improvements seems to be possible,
is the version of the last 53 steps of SHA-1. We have presented the actual dif-
ferential for this variant and have improved in a few places weights for shorter
variants given by Biham and Chen in [2].

In an effort to establish lower bounds on weights of differences, we have de-
rived some bounds on minimal weights of short differential patterns and have
proved that the 34-step differential characteristics used by Biham and Chen is
the optimal one for this length. It is interesting to note that all these results are
quite general and can be applied to any message expansion structure that uses
transformations linear over IF2.
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The problem of the resistance of SHA-1 against Chabaud-Joux attack was
also studied independently by Rijmen and Oswald [17]. They considered different
linear approximations of non-linear Boolean functions and presented results of
their search for low-weight differences using a dedicated algorithm they designed.
Their results agree with ours, they also report 44 as the minimal weight of the
message expansion difference and claim that variants of SHA-1 up to 53 steps
can be attacked using disturbance-corrections strategy.

7 Addendum

The year 2005 was very exciting for researchers working on cryptographic hash
functions. Shortly after WCC’2005 workshop, Wang et al. presented their final
results of the analysis of MD4 [23] and MD5 [27]. Soon after that, they used
their techniques of modular differentials to control propagation of differences and
message modification to increase the probability of a differential in a practical
attack on SHA-0 with the complexity of 239 hash evaluations [28] and the first
theoretical attack on the full SHA-1 [26].

Their attack on SHA-1 is based on multi-block near-collisions. Using modular
differentials they were able to overcome the problem of consecutive disturbances
in the first round by using an irregular differential and controlling differences
“by hand” in the first 20 steps. Finding near-collisions instead of full collisions
essentially made conditions C2 and C3 (conditions 1 and 2 in Table 2 of their
paper [26]) unnecessary and enabled them to use a very low weight disturbance
pattern which was a shifted version of the pattern presented in our Table 4.

Another result concerning SHA-1, interesting in the context of this paper,
was presented by Pramstaller at al. [16]. Roughly speaking, they represented
the differences in chaining variables of a linearized variant of SHA-1 as a lin-
ear function of a message difference and tried to find low-weight differences of
chaining variables treated as a huge linear code. Later, they derived a set of
conditions that made the original function behave like the linear approximation
for a selected low-weight difference.

We are sure that coming months will bring even more new results on the
analysis of cryptographic hash functions.
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Abstract. In this paper we look at the Gabidulin version of the
McEliece cryptosystem (GPT). In order to avoid Gibson’s attacks on
GPT, several variants have been proposed. We cryptanalyze the vari-
ant with column scrambler and the one using reducible rank codes.
Employing Gibson’s attacks as a black box, we get an efficient attack
for the parameter sets proposed for GPT with column scrambler. As a
countermeasure to our attack, we propose a new variant of the GPT
cryptosystem.

1 Introduction

The security of cryptosystems based on error correcting codes is connected to
the hardness of the general decoding problem. In 1991 Gabidulin, Paramonov
and Tretjakov proposed a variant of the McEliece scheme (GPT) [6] using rank
distance codes instead of Goppa codes. For the Hamming-metric fast (but expo-
nential) general decoding algorithms are known, but despite of recent advances,
there does not exist one for the rank-metric [9]. Thus, smaller public-key sizes
may be used for the GPT than for the McEliece cryptosystem using Goppa
codes.

Gibson developed two structural attacks for the GPT cryptosystem ([7], [8])
and proved the parameter sets proposed in [6] and [4] to be insecure. Even
though, the cryptosystem remained unbroken for large public-keys, as both at-
tacks are exponential in runtime.

Several variants of GPT have been proposed in order to avoid structural at-
tacks (see [2], [1] and [5]). In this paper we take advantage of some nice properties
of Gabidulin codes to build structural attacks for two of these variants, namely
the “GPT with column scrambler” [2] and the variant using “reducible rank
codes” [5].

The paper is structured as follows: First we give a short introduction to rank
distance codes and the original GPT cryptosystem. Then we present the two
variants this paper addresses and show how to attack the first one. Based on our
observations we propose a generalized variant of GPT and finally extend our
observations to give a guideline to a possible structural attack for GPT using
reducible rank codes.
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2 Rank Distance Codes

Rank distance codes were presented by Gabidulin in [3]. They are linear codes
over the finite field Fqm for q (power of a) prime and m ∈ N. As their name
suggests they use a special concept of distance.

Definition 1. Let x = (x1, · · · , xn) ∈ Fn
qm and b1, · · · , bm a basis of Fqm over

Fq. We can write xi =
∑m

j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq. The rank
norm ‖ · ‖r is defined as follows:

‖x‖r := rank
(
(xij)1≤i≤n, 1≤j≤m

)
.

The rank norm of a vector x ∈ Fn
qm is uniquely determined (independent of the

choice of basis) and induces a metric, called rank distance.

Definition 2. An (n, k)-code C over a finite field F is a k-dimensional subvec-
torspace of the vector space Fn. We call the code C an (n, k, d) rank distance code
if d = minx,y∈C ‖x − y‖r. The matrix C ∈ Fk×n is a generator matrix for the
(n, k) code C over F, if the rows of C span C over F. The matrix H ∈ Fn×(n−k)

is called check matrix for the code C if it is the right kernel of C. The code
generated by H� is called dual code of C and denoted by C⊥.

In [9] Ourivski and Johansson presented an algorithm which solves the general
decoding problem in O

(
(md−1

2 )3q(d−3)(k+1)/2
)

operations over Fq for (n, k, d)
rank distance codes over Fqm . A special class of rank distance codes are the
Gabidulin codes for which an efficient decoding algorithm exists [3]. We will
define these codes by their generator matrix.

Definition 3. Let g ∈ Fn
qm be a vector s.t. the components gi, i = 1, · · · , n are

linearly independent over Fq. This implies that n ≤ m. The (n, k, d) Gabidulin
code G is the rank distance code with generator matrix

G =

⎛⎜⎜⎜⎝
g1 g2 · · · gn

gq
1 gq

2 · · · gq
n

...
. . .

...
gqk−1

1 gqk−1

2 · · · gqk−1

n

⎞⎟⎟⎟⎠ ∈ Fk×n
qm . (1)

An (n, k) Gabidulin code G corrects
⌊

n−k
2

⌋
errors and has a minimum distance of

d = n− k+1. The dual code of an (n, k) Gabidulin code is a (n, n− k) Gabidulin
code (see [4]). The vector g is said to be the generator vector of the Gabidulin code
G. A decoding algorithm based on the “right Euclidean division algorithm” runs
in O

(
d log2

2 d+ dn
)

operations over Fqm for (n, k, d) Gabidulin codes [4].
Throughout this paper we will use the following notation. We write G = 〈G〉

if the linear (n, k)-code G over the field F has the generator matrix G. We will
identify x ∈ Fn with (x1, · · · , xn) , xi ∈ F for i = 1, · · · , n. For any (ordered)
subset {j1, · · · jm} = J ⊆ {1, · · ·n} we denote the vector (xj1 , · · · , xjm) ∈ Fm

with xJ . Similarly, we denote by M·J the submatrix of a k×n matrixM consist-
ing of the columns corresponding to the indices of J and MJ′· =

((
M�)

·J′
)�

for
any (ordered) subset J ′ of {1, · · · , k}. Block matrices will be given in brackets.
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3 The GPT Cryptosystem

In this section, we briefly introduce the GPT cryptosystem presented in [6]. In
order to better understand the impact of Gibson’s attacks we introduce a new
security parameter s.

– System Parameters: q, n,m, k, t, s ∈ N, where n ≤ m, t < n−k−1
2 and

s ≤ min {k, t}.
– Key Generation: First generate the following matrices over Fqm :

G: k × n generator matrix of an (n, k, d) Gabidulin code G over Fqm .
S: k × k random non-singular matrix (the row scrambler).
X: k × n random matrix with rank s over Fqm and rank t over Fq.

Then, compute the k× n matrix G′ = S (G+X) and e = n−k
2 − t. Further

let DG be an efficient decoding algorithm for G.

– Public Key: (G′, e)
– Private Key: (DG , X, S) or (G,X, S) where G is of the form in (1).
– Encryption: To encode a plaintext x ∈ Fk

qm choose a vector z ∈ Fn
qm of

rank norm e at random and compute the ciphertext c as follows:

c = xG′ + z .

– Decryption: To decode a ciphertext c apply the decoding algorithm DG
for G to it. Since c is at distance less than (n − k)/2 from G, we obtain the
codeword

xSG = DG (c) .

Now, we can compute the plaintext x.

The matrix X is called distortion matrix. As ‖mSX‖r ≤ t the decryption
works correctly. In all examples and figures we will choose n = m and q = 2.
Figure 1 shows public key sizes and approximate workfactors (operations over
Fq) for en- and decryption.

Parameters Size Public WF WF
m k Key (Bytes) Encryption Decryption
36 18 2, 916 220 220

48 24 6, 912 221 222

64 32 16, 384 223 224

128 64 131, 027 227 227

Fig. 1. Parameter sets for the Gabidulin PKC
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4 Gibson’s Attacks

Gibson presented two structural attacks on the GPT cryptosystem ([7], [8]).
They recover an (alternative) private-key from the public-key. We are going to
use both attacks as a black box for our new attack. Let 〈G〉 be an (n, k) Gabidulin
code over Fqm , S ∈ Fk×k

qm non-singular and Y ∈ Fk×n
qm of rank s over Fqm and rank

0 ≤ t ≤ n over Fq. Then Gibson’s attacks return on input of G′ = S (G+ Y )
three matrices Ĝ, X̂ ∈ Fk×n

qm and Ŝ ∈ Fk×k
qm , s.t.

(i) Ĝ is a generator matrix of an (n, k) Gabidulin code over Fqm ,
(ii) G′ = Ŝ

(
Ĝ+ X̂

)
and

(iii) the rank of X̂ over Fq is not bigger than t.

Gibson’s first attack [7] was developed for the case that the GPT parameter s
is 1, but may be adapted to the case where s �= 1 (see [4]). It has runtime

O
(
m3 (n− k)3 qms

)
. (2)

In [8] Gibson presented a different attack, which is more efficient for larger values
of s. It requires that k + t + 2 ≤ n (this is a very weak condition) and runs in
time

O
(
k3 + (k + t) f · qf(k+2) + (m− k) t · qf

)
, (3)

where f ≈ max (0, t− 2s, t+ 1 − k). Note, that this attack runs in polynomial
time if f = 0 and otherwise is still fast. The success of both attacks is based
on some assumptions, which are fulfilled with high probability for random G, S
and Y . Figure 2 shows the behavior of the attacks for some sample parameter
sets.

Parameters WF Gibson’s WF Gibson’s WF attack
m k s t e attack [7] attack [8] by J&O [9]
36 18 1 6 3 274 297 255

48 24 1 7 5 290 2149 2120

64 32 2 10 6 2173 2224 2188

128 64 5 20 12 2693 2684 2744

Fig. 2. Attacking the GPT cryptosystem with Gibson’s attacks

5 GPT Variants

Apart from a solver for the general decoding problem, structural attacks today
are the most severe threat to the GPT cryptosystem. In order to avoid Gibson’s
attacks, it is possible to choose different parameter sets, since both attacks have
exponential runtime. However there have been other attempts to make structural
attacks harder to apply or to avoid them completely.
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5.1 Applying a Column Scrambler

In order to hide the structure of the public key even more, we may multiply a
column scrambler T (a non-singular matrix over the base field Fq) from the right
to it. Removing the influence of T at decryption does not change the rank of the
error vector. Unfortunately Gibson’s attacks are still applicable, because GT is
a matrix of the form given in equation (1), too. In 2001, Ourivski and Gabidulin
suggested to add more redundancy to the code [2], i.e. choose G′ in the public
key as

G′ = S
[
Y G+X

]
T (4)

with Y ∈ Fk×l
qm . Gibson’s attacks remain applicable if we guess a set N of n

columns out of the matrix G′ s.t. (
[
0 G

]
T )·N has rank n over Fq. This can be

done with high probability if T was chosen at random. For carefully chosen Y
and T there is no way to choose N s.t.

([
Y X

]
T
)
·N is of rank ≤ t. The attacker

would still have to guess part of the error even after employing one of Gibson’s
attacks. This seems impossible, if the search space is big enough. According to
[2], a secure choice of parameters could be q = 2, m = 32, k = 20, l = 8, t = 3
and e = 3 with a public key size of approximately 3, 200 bytes.

5.2 Using Reducible Rank Codes

The idea to use reducible rank codes (RRC) was first presented in [5]. We want
to introduce a slightly different definition.

Definition 4. Let Ci = 〈Ci〉, i = 1, · · · , w be a family of linear error correcting
codes over Fqm where Ci is an (ni, ki, di) code. Then the (linear) code G given
by the generator matrix of the form

G =

⎡⎢⎢⎢⎣
C1 0 · · · 0
G21 C2 · · · 0
...

. . .
...

Gw1 Gw2 · · · Cw

⎤⎥⎥⎥⎦
for some matrices Gij ∈ Fki×nj

qm is called reducible code. Further, G has length
n =

∑w
i=1 ni, dimension k =

∑w
i=1 ki and minimum distance d = min1≤i≤w (di).

Error correction may be done in sections, starting from the right. If all codes Ci,
i = 1, · · ·w are rank distance codes, we call G a reducible rank code. In [5] all
the codes permutation equivalent to such codes are called RRC as well.

Using reducible rank codes for the McEliece cryptosystem is quite a natural
extension. In [5] the authors propose to use two (ni, ki) Gabidulin codes over
Fqm , named 〈Gi〉, i ∈ {1, 2}, and a special matrix Y ∈ Fk2×n1

qm to build a reducible
rank code. The public key of the cryptosystem may thus be described as

G′ = S

([
G1 0
Y G2

]
+X

)
T , (5)
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where S ∈ Fk×k
qm and T ∈ Fn×n

q are non-singular and the rank over Fq of the
columns ofX corresponding to Gi is less than ti for i = 1, 2. According to [5], the
error correction capability of the code defined by G′ is e = mini=1,2

{
ni−ki

2 − ti
}
,

and every parameter set with ni ≥ 24 and e ≥ 4 is considered to provide sufficient
security, even if X = 0.

6 Extending Gibson’s Attacks

In this section we will take advantage of some well known facts and reassemble
them to enhance Gibson’s attacks by using them as black boxes. First, we show
how to correct more errors with a GPT public key as previously claimed to be
possible, then we apply our observation to the GPT cryptosystem with column
scrambler.

Theorem 1. Let 〈G〉 be an (n, k) Gabidulin code over Fqm , X ∈ Fk×n
qm of rank

t ≤ n− k over Fq. Then there exist an invertible Matrix U ∈ Fn×n
q , a generator

matrix Ĝ of an (n− t, k) Gabidulin code over Fqm and X̂ ∈ Fk×t
qm s.t.

(G+X)U =
[
X̂ Ĝ

]
.

Further a matrix U satisfying the above condition can be found in O
(
n3
)

oper-
ations over Fq if X is known.

Before we prove the theorem we want to give an example of its application.
According to [2] an acceptable choice of parameters for the cryptosystem of
section 5.1 could be q = 2, n = m = 25, k = 15, l = 5, t = 3 and e =
2 with a public key size of approximately 1, 400 bytes. Let (G,X,Y, S,T ) be
the private key corresponding to the public key (G′, e) of an instance of the
GPT cryptosystem with column scrambler, where G′ has the form described in
equation (4). An attacker could try to apply one of Gibson’s attacks to a set
J of m columns of G′. This will leave him with a set of three matrices of the
following form:

(i) Ġ a generator matrix of a (m, k) Gabidulin code over Fqm ,
(ii) Ṡ ∈ Fk×k

qm an invertible matrix and
(iii) Ẏ ∈ Fk×m

qm a distortion matrix of rank t+ l over Fq.

The attacker knows that Ṡ ( Ġ+ Ẏ ) = G′
·J . Applying theorem 1 to our example

we can correct errors of rank 1, whereas we would have to correct an error of rank
2. The attacker could try to guess part of the error vector, s.t. the remaining
error has rank 1. There are only qm+m−l−t = 242 different error vectors of rank
1 and length m− l − t in our example. This number is small enough to allow a
random guess, so the choice of parameters above is insecure. Now we prove the
theorem.
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Proof. (Theorem 1) We exploit the fact that it is easy to determine the linear
dependency of the columns of X over Fq. Let Z ∈ Fk×t

qm be a set of t linearly
independent columns ofX . Without loss of generality, we may assume that these
are the first t columns. We may solve the linear equation Zui = X·i with ui ∈ Ft

q

for i = t+ 1, · · · , n in time O
(
n3
)
. Let Ū := [ut+1|ut+2| · · · |un] and Idκ denote

the κ-dimensional identity matrix. Then the last n− t columns of

(G+X) ·
[
Idt −Ū
0 Idn−t

]
=
[
G·{1,··· ,t} + Z G ·

[
−Ū

Idn−t

]]
form a generator matrix of an (n − t, k) Gabidulin code. Defining the (k × t)
Matrix X̂ as X̂ := G·{1,··· ,t} + Z proves the theorem.

It follows that the code generated by G+X has an efficient decoding algorithm
which decodes errors of rank up to n−k−t

2 if X is known. Now we apply this
result to break the GPT cryptosystem with column scrambler by viewing it as
an instance of the original GPT cryptosystem.

Theorem 2. Any instance of the GPT cryptosystem with column scrambler with
parameters q, n, m, k, t, s and l is equivalent to an instance of the GPT cryp-
tosystem in its basic version with parameters q, n̂ = n+ l, m̂ = �(n+ l)/m� ·m,
k, t̂ = t + l and ŝ ≤ min (k, s+ l). The GPT with column scrambler may be
broken in time O

(
Gibson’s attack for parameters q, n̂, m̂, k, t̂, ŝ

)
.

Proof. Let (G′, e = (n−k)/2− t) with G′ = S
[
Y G+X

]
T be the public key of

an instance of the GPT cryptosystem with column scrambler with parameters
given above and secret key (G,S,T ). If we define a := �(n+ l)/m�, then every el-
ement of Fqm may be viewed as an element of Fqam . Let (g1, · · · , gn) be a genera-
tor vector of 〈G〉. Then we can choose ĝ1, · · · , ĝl ∈ Fqam s.t. ĝ1, · · · , ĝl, g1, · · · , gn

are linearly independent over Fq. Let 〈 Ĝ 〉 be the (n+ l, k) Gabidulin code with
generator vector (ĝ1, · · · , ĝl, g1, · · · , gn) and Ĝ of the form in equation (1). If we
define

X̂ :=
[
Y − Ĝ·{1,··· ,l} X

]
,

then we have

S
(
ĜT + X̂T

)
= S

(
Ĝ+ X̂

)
T = G′ ∈ Fk×(n+l)

qam .

This proves the first part of the theorem. We know that the rank of X̂T over
Fq is less than l + t and k + l + t + 2 ≤ n̂, thus we may apply both Gibson’s
attacks to recover (alternative) S, X̂T and ĜT . By theorem 1, we are now able
to correct all error vectors of rank less than (m+ l− k− l− t)/2 > (m− k)/2− t
efficiently.

We will call the attacks described in theorem 2 “extended Gibson” attacks. Note
that we don’t have any control of ŝ using GPT with column scrambler. The
size of this parameter of the corresponding GPT instance over an extension
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Parameters WF extended WF attack
m k l s ŝ t e Gibson [8] by J&O [9]
32 20 8 1 9 3 3 226 259

36 18 4 1 3 6 3 226 255

48 24 5 1 4 7 5 228 2120

64 32 6 2 5 10 6 230 2289

128 64 10 5 10 20 12 235 2744

Fig. 3. Attacking GPT with column scrambler

field of Fqm is very likely to be near its upper bound and thus making Gibson’s
second attack very fast. Figure 3 shows the workfactors of the new attack on
GPT with column scrambler, where ŝ refers to the expected parameter for the
corresponding GPT cryptosystem parameter set.

7 A New Variant of the GPT Cryptosystem

As a consequence from theorem 1, the public key parameter e of the GPT cryp-
tosystem may be chosen larger, than it was proposed originally. The result is a
generalized variant for the GPT cryptosystem (GGPT), which includes a col-
umn scrambler and new bounds for t and e. While the size of the public key
remains the same (compare figure 1), the runtime for decryption decreases to
O
(
n2
)

operations over Fqm .

– System Parameters: q, n,m, k, t, s ∈ N, where n ≤ m, t < n − k − 1 and
s ≤ min {k, t}.

– Key Generation: First generate the following matrices over Fqm :
G: k × n generator matrix of an (n, k, d) Gabidulin code over Fqm ,
S: k × k random non-singular matrix (the row scrambler),
X: k × t random matrix of rank s over Fqm and rank t over Fq

and T an n×n random, non-singular matrix over Fq (the column scrambler).
Then compute the k × n matrix

G′ = S
[
G·{1,··· ,t} +X G·{t+1,··· ,n}

]
T

and e = n−k−t
2 . Further let DG be an efficient decoding algorithm for the

Gabidulin code G generated by the matrix G·{t+1,··· ,n}.
– Public Key: (G′, e)
– Private Key: (DG , S,T ) or (G,S,T ) where G is of the form in (1).
– Encryption: To encode a plaintext x ∈ Fk

qm choose a vector z ∈ Fm
qm of

rank norm e at random and compute the ciphertext c as follows:

c = xG′ + z .
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– Decryption: To decode a ciphertext c apply the decoding algorithm DG for
G to c′ =

(
cT−1

)
{t+1,··· ,n}. Since c′ has a rank distance less than n−k−t

2 to
G, we obtain the codeword

xSG{t+1,··· ,n} = DG (c′) .

Now, we can compute the plaintext x.

Note, that all instances of the GPT cryptosystem, as well as the ones of the
GPT cryptosystem with column scrambler may be viewed as instances of the
new variant. Figure 4 shows the workfactors of the attacks for some parameter
sets of GGPT. Parameter sets were chosen taking into account recent results,
which came to light after the WCC05 conference [10].

Parameters WF extended WF extended WF attack
m k s t e Gibson [7] Gibson [8] by J&O [9]
64 8 1 40 8 2111 2403 287

80 8 2 56 8 2210 2544 288

156 8 8 132 8 21306 21279 291

Fig. 4. Parameter sets for GGPT

8 Attacking GTP with Reducible Rank Codes

In this section, we want to give a hint on how to build a structural attack on
the GPT cryptosystem with reducible rank codes. We will show, that if the row
scrambler S is generated at random (with no more conditions than being non-
singular), the problem of recovering a secret key for GPT with reducible rank
codes can be reduced to the problem of recovering a secret key for instances of
the GPT variant from the previous section, if the following assumption holds:

Assumption 1. Let (G′, e) be the public key of a random instance of GGPT
with parameters q, n,m, k, t and s. Further, let (G,S,T ) and

(
Ĝ, Ŝ, T̂

)
be two

valid secret keys corresponding to (G′, e), then with high probability

( T̂ T−1 )N1N2
= 0 ,

where N1 := {1, · · · , t} and N2 := {t+ 1, · · · , n}.

With other words, we assume, that for most instances of the GPT variant from
the previous section, all possible secret keys are closely related to each other:
ĜN2 ( T̂ T−1 )N2N2

= GN2 . This assumption is corroborated by an observation
of Gibson ([7], [8]) for small parameter sets. Gibson states, that the secret key
seems to be unique (after some normalization) for most instances of the GPT
cryptosystem.
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Theorem 3. Let A be an oracle which recovers a private key from the public key
for any instance of GGPT and assume, that assumption 1 holds. Then we may
use A to recover an alternative private key from the public key for an instance
of the GPT cryptosystem with RRC with high probability if every entry of S was
chosen uniformly from Fqm .

Proof. We will give an outline of a proof for the case where the secret RRC is
built from two Gabidulin codes of the same dimension. It may be easily extended
to all other cases. Let G1 and G2 be generator matrices of two (ni, k), i ∈ {1, 2}
Gabidulin codes over Fqm . Let (G′, e) be the public key corresponding to the
private key (G1, G2, X,Y, S and T ) of an instance of the GPT with RRC, where
G′ is of the form given in equation (5).

First we guess a set J ⊆ {1, · · · , 2k} s.t. the matrix SJK2 with K2 :=
{k + 1, · · · , 2k} is invertible. If S is a truly random generated matrix, then the
probability that the condition is fulfilled for a random J is not too bad (≥ 0.99)
in practice. Let K1 := {1, · · · , k}, then we know:

G′
J· =

([
SJK1G1 + SJK2Y SJK2G2

]
+ (S ·X)J·

)
T

= SJK2

([
S−1

JK2
SJK1G1 + Y G2

]
+ S−1

JK2
(S ·X)J·

)
T

= SJk2

[
S−1

JK2

(
SJK1G1 + (S ·X)JK1

)
+ Y G2 + S−1

JK2
(S ·X)JK2

]
T .

Thus, G′
J· forms an instance of GGPT. As S−1

JK2
(S ·X)JK2

is of sufficient small
column rank over Fq, we may query A to obtain an alternative secret key
( Ĝ2, Ŝ2, T̂ ) for G′

J· and can compute:

G′T̂−1 = S

([
G1 0
Y G2

]
+X

)
T T̂−1 = S

([
G1 0
Y G2

]
T T̂−1 +XT T̂−1

)
.

By assumption 1, the last 2e + k columns of XT T̂−1 and
[
G1 0

]
T T̂−1 are

zero with high probability. Thus, we are able to compute an invertible matrix
Ŝ ∈ F2k×2k

qm , s.t. the last 2e columns of ( Ŝ−1G′T̂−1 )JC · are zero. It follows,
that the first N = n1 + n2 − 2e− k columns of ( Ŝ−1G′T̂−1 )JC · build another
instance of the GPT variant from the previous section. Thus, on the query
( Ŝ−1G′T̂−1 )JC{1,··· ,N}, the oracle A returns three matrices Ḡ, S̄, T̄ ∈ FN×N

q ,
such that

Ŝ−1G′T̂−1
[
T̄−1 0
0 Id2e+k

]
=
[
Z1 G1 0
Z2 Z3 G2

]
for some (2e+ k, k) Gabidulin codes 〈Gi〉, i = 1, 2 and some matrices Z1, Z2 ∈
F2k×(n1+n2−4e−2k)

qm and Z3 ∈ Fk×(2e+k)
qm . (Here, the matrices Gi, i = 1, 2 are not

necessarily in the form of equation (1).) Now, one can see, that we can correct
errors of rank e efficiently in the code defined by G′, employing the knowledge
of T̂ , T̄ and Ŝ.

Note that the attack proposed in this section runs in oracle-polynomial-time.
However, extended Gibson attacks can not be combined with the result of the-
orem 3 to build an efficient attack on GPT with RRC.
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Reduction of Conjugacy Problem in Braid
Groups, Using Two Garside Structures
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Abstract. We study the Conjugacy Search Problem used in braid-based
cryptography. We develop an algorithm running in Garside groups gener-
alizing braid groups. The method permits, in some case, to reduce dras-
tically the size of the secret in braid groups. We use the fact that braid
groups admit two different Garside structures to improve the efficiency
of the reduction. This paper emphasizes the importance of the particular
way used to produce Conjugacy Search Problem instances. The chosen
method influences directly the reduction and then also the security.

1 Introduction

Braid groups, introduced by Artin in [2], are non-abelian groups. Conjugacy
Search Problems are assumed to be hard, at least on some set of instances, and
this is the basis for braid-based cryptography since 1999 [1, 11, 6]. Our work
reveals the role played by the random generator of braid. A lot of work exists
in the literature on the cryptanalysis of braid cryptosystems. However, they
question essentially the choice of instances rather than the protocols themselves.
Braid-based cryptography must solve a fundamental problem : to find efficient
random generators of braid. In this work, we consider two random generators
and show their influence on our reduction method.

Our work is devoted to the Conjugacy Search Problem formally : recover a,
knowing (x, axa−1). In practice, cryptosystems use essentially a variant of this
cryptographic primitive.

The size of a braid group is defined by its number of strands. The size of a braid
can be measured by the number of generators or the number of canonical factors
which permits to write it. Our method produces an attractive factorization of
the secret a in the form of a divisor (d ≺ a) and a multiple (a ≺ m). The
goal is to reduce the length of the secret given by the number of generators.
In this way, we produce two reduced conjugacy instances : (x, d−1axa−1d) and
(x,m−1axa−1m). The efficiency of this reduction is related to the residual length
of the new secrets d−1a and m−1a.

Obviously, our reduction is a length attack. It is based on the canonical length.
This work generalizes another work from the same author that applies only to
Artin’s presentation [12] (see also [9]).

We develop an algorithm which runs in a generalization of braid groups :
Garside groups. The interesting fact is that braid groups admit two different

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 189–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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�
�

�
�(x, axa−1)

�
Reduction

�
d ≺ a ≺ m

��� �	(x,m−1axa−1m)
��� �	(x, d−1axa−1d)

Fig. 1. Reduction of a conjugacy instance

Garside structures : Artin’s presentation and the presentation of Birman, Ko and
Lee [2, 3]. Then, we apply our algorithm to each Garside structure to improve
the efficiency of the reduction. Both presentations can be used in parallel or
sequentially.

The algorithm takes as input a conjugacy instance in a Garside group and
some information on the secret which can not be considered as security param-
eters. It is deterministic and polynomial. The complexity is directly related to
the complexity of an effective normal form. Though we do not have a theoretical
result about the quality of the output divisor and multiple, we can compute
them and give experimental results.

For instance, let BKL100, be a braid group with 100 strands on BKL’s pre-
sentation, and let a classical random generator which produces some braids with
a canonical length of 15. With our method, the size of the secret, on average, is
reduced from 750 to 8. In some situations, this reduction reaches 1/1000. It is im-
portant to consider that this efficiency depends on the representation of braids.
We apply our method on several proposed instances in the literature. Many of
them seem broken. However, the protocols themselves are not concerned but
our method shows the importance of being careful with the choice of the used
random generator of braid. Then, we give criteria to forestall that. This study
attempts to establish a more efficient way to use braid-based cryptography.

In Section 2, we introduce the Garside groups that are generalization of braid
groups. Then, in Section 3, we present our algorithm that applies to Garside
structure. Afterwards, in Section 4, we recall briefly braid-based cryptography.
In Section 5, we show how to use our algorithm in braid groups. We analyze in
Section 6 the efficiency with simulations.

2 Garside Groups

This introduction to Garside group derives from [5, 7, 8, 14].

Definition 1. A monoid is a couple (M, •), where M is a set, • is a associative
law of composition and M has a neutral element for •, 1.
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Let M be a monoid, we define a partial order : a ≺ b if ∃c ∈ M such that ac = b.
One says that a is a left divisor of b or that b is a right multiple of a. In the
same way, a right division is defined, denoted by ≺r.

Definition 2. Let M be a monoid. The element x ∈ M is an atom if x �= 1
and if x = yz ⇒ (y = 1 or z = 1). The monoid M is an atomic monoid if it
is generated by its atoms and, moreover, for every x ∈M , ∃Nx ∈ N such that x
can not be written as a product of more than Nx atoms.

Definition 3. A monoid M is left-cancellative if :

∀x, y, z ∈M, xy = xz ⇒ y = z.

Definition 4. A monoid M is a Gaussian monoid if it is atomic, cancellative
and every pair of elements in M admits a greatest common divisor and a least
common multiple.

In the case of Gaussian monoid, the gcd and lcm are unique. We denote by ∧
the left greatest common divisor and by ∨ the right least common multiple.

Let a, b ∈M, d = a ∧ b ⇔ ∀c ∈M c ≺ a and c ≺ b iff c ≺ d
m = a ∨ b ⇔ ∀c ∈M a ≺ c and b ≺ c iff m ≺ c

Definition 5. A Garside element is an element in the monoid, Δ, the left divi-
sors of which coincide with its right divisors and form a finite subset generating
the monoid. A Garside monoid is a Gaussian monoid which admits a Garside
element.

Let S be the set of left divisors of Δ, which are called canonical factors.

Definition 6. A group G is a Garside group if there exists a Garside monoid
of which G is the group of fractions.

The Words Problem appears in Garside groups ; this problem is solved by a
normal form which defines a canonical writing for each element of the group.

Definition 7. Let M be a Garside monoid and G be its group of fraction. For
a in G, the infimum and the supremum of a are respectively

inf(a) = max{r ∈ Z ; Δr ≺ a} and sup(a) = min{r ∈ Z ; a ≺ Δr}

The canonical length of a is defined by cl(a) = sup(a) − inf(a).

Definition 8. Let M be a Garside monoid and G be its group of fraction.
For a in G, the (left) Δ-normal form of a is the unique decomposi-
tion Δpa1a2 · · ·acl(a) with p = inf(a), a1 = Δ ∧ (Δ−pa) and ai = Δ ∧
((Δpa1a2 · · · ai−1)−1a) for 1 < i ≤ cl(a).
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We end this section by introducing notations :

Notation 9. Let a be an element in a Garside group G ; we denote by a∗ the
dual element of a, defined by a−1Δsup(a). Moreover, we define both functions :

τ : G −→ G
x �−→ Δ−1xΔ

∂ : S −→ S
q �−→ q−1Δ

The function ∂ is a bijection on S, τ is an automorphism on M . We note
that τ = ∂2 on S.

Let Δpa1a2 · · · ak be the left Δ-normal form of a, an element of a Garside
group G ; thus the left Δ-normal form of a−1 is given by :

a−1 = Δ−(p+k)τ−p−k (∂(ak)) τ−p−k+1 (∂(ak−1)) · · · τ−p−1 (∂(a1)) (1)

3 Scheme of the Reduction

The objective is to reduce the Conjugacy Search Problem, giving some informa-
tion on the secret. Let G be the group of fractions of the Garside monoid M .
Let a, x be elements of G. The aim is to determine a, called secret, knowing
only (x, x′ =axa−1). Our solution is an algorithm, RedConj, that builds a left
divisor and a right multiple of the secret :

find (d, m) ∈ G such that d ≺ a ≺ m

The algorithm RedConj is based on two algorithms : the algorithm Right-
MGarside determines a right multiple of the secret ; in a similar way, the
algorithm LeftDGarside determines a left divisor of the secret. The proofs of
these algorithms can be found in [12, 13]. Principles of the procedure :

The algorithm is an iterative process reducing the canonical length. It
uses the left-right symmetry between a and a−1 to reduce on the left
and on the right x′ = axa−1. At each step, we begin by determining a
rough right multiple of a1a2 · · · ai, considering x′ on its left ; afterwards,
if the canonical length of x′ is again large enough, then we simplify x′

to the right to obtain a better multiple.

Format of Input Data for RightMGarside, LeftDGarside. We assume
that the canonical length and the infimum of the secret are known ; in braid-
based cryptography, we consider that they are not security parameters (see [12]).

Input data : (X, l1, l2,α,β) ∈ M × N2 × Z2

such that ∃T , y ∈ M ;

⎧⎨⎩X = τα(T )yτα+β(T �)
l1 = cl(y), l2 = cl(T )
inf(T ) = inf(y) = 0
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Algorithm 10. RightMGarside (X, l1, l2,α,β)

Input : Let X ∈ M, l1, l2 ∈ N and α, β ∈ Z.
Init : A := 1, Y := τ−α(X), l := 0, cond := true

Compute the left Δ-normal form Y1Y2 · · · Ysup(Y ) of Y
B := Y1Y2 · · · Yl2

Loop : While cond and l < l2 do
l := l + 1, A := AY1,
Z := Y −1

1 Y τβ+l2−l ∂(Y1)−1

Y := Y −1
1 Y

If Z �∈ M then cond := false
Else Compute the left Δ-normal form Z1Z2 · · · Zsup(Z) of Z

If sup(Z) = l1 + 2(l2 − l) + 1 then
A := Aτ−β−l2+l(Zsup(Z))−1

Z := τ−β−l2+l(Zsup(Z))ZZ−1
sup(Z)

EndIf
Y := the left Δ-normal form of Z

EndIf
EndWhile
If l < l2 then A := AY2Y3 · · · Yl2−l+1 EndIf

Output : A ∧ B

Let m be the output of the algorithm RightMGarside satisfying the input
format ; therefore T ≺ m and sup(T ) = sup(m).

Algorithm 11. LeftDGarside (X, l1, l2,α,β)

Input : Let X ∈ M, l1, l2 ∈ N and α, β ∈ Z.
Init : A := e, Y := τ−α(X), l := 0, cond := true

Compute the right Δ-normal form Y1Y2 · · · Ysup(Y ) of Y
B := Ysup(Y )−l2+1 · · · Ysup(Y )

Loop : While cond and l < l2 do
l := l + 1, A := Ysup(Y )A,

Z := τ l−β−l2 ∂−1(Ysup(Y ))−1 Y Y −1
sup(Y )

Y := Y Y −1
sup(Y )

If Z �∈ M then cond := false
Else Compute the right Δ-normal form Z1Z2 · · · Zsup(Z) of Z

If sup(Z) = l1 + 2(l2 − l) + 1 then
A := τβ+l2−l(Z1)−1A

Z := Z−1
1 Zτβ+l2−l(Z1)

EndIf
Y := the right Δ-normal form of Z

EndIf
EndWhile
If l < l2 then A := Ysup(p)−l2+l+1 · · · Ysup(Y )A EndIf
C := τ−β (A ∧ B)

Output : Δsup(C)C−1
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Property 12. [12] Let a, b ∈ M a Garside monoid :
a ≺ b ⇔ b� ≺r a�Δsup(b)−sup(a)

The process of LeftDGarside is similar to the one of RightMGarside but
it works on the right, using the right Δ-normal form. It produces first a left
multiple of T ∗ ; afterwards, the previous property gives{

T � ≺r m
sup(T �) = sup(m) ⇒ Δsup(m)m−1 ≺ T

Thus the output of LeftDGarside is a left divisor of T .

Algorithm 13. RedConj (x, x′, r, p)

Input : Let x,x′ ∈ G, r, p ∈ Z.
Init : X := Δp−inf(x)x′

l1 := cl(x), l2 := p
α = inf(x) − r − p, β = − inf(x)

M := RightMGarside(X, l1, l2, α, β)
D := LeftDGarside(X, l1, l2, α, β)

Output : (ΔrD, ΔrM)

Let a, x be elements of G. We consider the conjugacy instance (x, x′ = axa−1)
and denote (d, m) the output of the algorithm RedConj having as input the
4-tuple (x, x′, inf(a), cl(a)). Therefore d is a left divisor of a and m is a right
multiple of a with the same supremum.

That comes from the following expression :

x′ = axa−1 = Δinf(x)−cl(a)τ inf(x)−sup(a)(T )τ− sup(a)(z)τ− sup(a)(T �)

with T = Δ− inf(a)a, z = Δ− inf(x)x. We note that inf(T ) = 0 = inf(z) and
a−1 = T �Δ− sup(a).

Measure of the Efficiency of This Reduction

• The complexity of the algorithms RightMGarside, LeftDGarside and
RedConj is

O (l ∗ O( Δ-normal form )) (2)

where l is the canonical length of the secret. Indeed, the most expensive operation
is the computation of the normal form and the length of the loop depends clearly
on the canonical length of the secret. In braid groups, the computation of the
Δ-normal form is efficient, thus this one of the algorithm RedConj is too.
• This method takes as input a ”conjugacy instance” and returns a left divisor
and a right multiple of the secret : d ≺ a ≺ m. The efficiency of the reduction is
controlled by two parameters :

– the absolute knowledge, ak(a) = min(l(m) − l(a), l(a) − l(d)),
– the relative knowledge, rk(a) = l(m) − l(d).
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The relative positions of writings can be represented by :

d a m

︸ ︷︷ ︸
d−1m

d−1a︷ ︸︸ ︷ a−1m︷ ︸︸ ︷ ak(a) = min(l(d−1a), l(a−1m))

rk(a) = l(d−1m)

→

→

The absolute knowledge is not known, because we do not know l(a) ; it repre-
sents the number of generators to complete the secret, by adding the divisor or
removing the multiple. In practice, this number permits to measures the cost of
completing the search of the secret. The relative knowledge is known and gives
an overestimation of the absolute knowledge, ak ≤ rk

2 .
The cost of a supplementary exhaustive attack determines if a conjugacy

instance is broken or not. For a rough method, the cost is :

O (#G(M)ak ∗ C(test of identity)
)
. (3)

4 Outline of Braid-Based Cryptography

The main cryptographic primitive in braid groups is the Conjugacy Search Prob-
lem and its variants. Here, we consider only the Conjugacy Search Problem and
its simultaneous variant (for k = 1 or 2):

Simultaneous Conjugacy Problem : (SCP)

Instance : Let (xi, yi)i∈[1,k] ∈ Gk such that ∃a ∈ G with ∀i ∈ [1, k], yi = axia
−1.

Objective : Find b ∈ G such that ∀i ∈ [1, k], yi = bxib
−1.

In practice, the particular problem used for braid-based cryptosystems is the
Generalized Conjugacy Problem of the Diffie-Hellman type based on the Gen-
eralized conjugacy problem. These problems are also affected by this reduction
[12].

Braids Random Generator
There are essentially two possible representations of a braid : the decomposition
of a word as a product of group generators and their inverses ; and the one of
normal forms, like the left Δ-normal form, as a product of canonical elements.

Now, we present two random generators of braid :

PARG Positive Artin’s Random Generators : the number of genera-
tors, l, is fixed ; we make l random draws on G (set of group generators)
and we add on the left a factor of the type Δk, k ∈ Z.

CRG Canonical Random Generators : the canonical length is fixed, l ;
we make l random draws on S. Afterwards, we reduce the n-braid to its left
Δ-normal form. While the canonical length is smaller than l, we complete
with some other random draws. After, we add a factor Δk on the left.
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5 Double Garside Structures in Braid Groups

The significant fact in braid groups is that they admit two different Garside
monoids of which they are the group of fractions. The new idea is to use the
two presentations to improve the efficiency of our algorithm. The two Garside
presentations of the braid group with n strands are :

• Artin’s presentation - 1947 [2]

Bn =
〈

σ1,σ2, . . . ,σn−1
σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| ≥ 2

〉
#G(Bn) = n− 1 number of generators

ΔBn = (σ1σ2...σn−1)(σ1σ2...σn−2)...(σ1σ2)σ1
#SBn = n!

• Birman Ko and Lee’s presentation - 1998 [3]

BKLn =
〈
ats (n ≥ t > s ≥ 1)

atsarq = arqats if (t− r)(t− q)(s− r)(s− q) > 0
atsasr = atrats = asratr if n ≥ t > s > r ≥ 1

〉

#G(BKLn) = n(n−1)
2

ΔBKLn = an,n−1an−1,n−2...a2,1

#SBKLn = (2n)!
n!(n+1)! = Cn ∈ [3n, 4n](∈ o(n!))

Remark 14. We can easily pass from one to the other with polynomial com-
plexity [4]

σi = ai+1,i and at,s = (σt−1 · · ·σs+1)σs

(
σ−1

s+1 · · ·σ−1
t−1

)
Applying Garside Algorithm
Our algorithm is based on the canonical length ; it exploits the density of the
writing in the Δ-normal form. Then, after one reduction, it is useless to begin
again with the same structure on the new instance produced by the output
divisor : (x, d−1axa−1d). It is here that the double Garside structure bring a
pleasant alternative : we can change the presentation before iteration, or we can
use both presentations in parallel.

• Parallel process: Consider a conjugacy instance ; we reduce it on both pre-
sentations at the same time. Next we transform to BKL’s presentation to get
some better divisor and multiple, see Figure 2. We can not transform to Artin’s
presentation because the relation ≺ is not respected in this way : a braid admit-
ting a positive word in BKL’s presentation does not necessarily admit a positive
word in Artin’s presentation.
• Sequential process: This method exploits information successively on both
presentations. We use the output divisor and multiple, obtained in one presen-
tation, to produce two new instances :
(x,D−1axa−1D) and (x,M−1axa−1M). Next, we reduce them in the other pre-
sentation. Then, we obtain some better results. See Figure 3.
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Braid group
public instance : (axa−1, x)

secret : a
� �

BKL’s presentation

�

RedConj

�

D ≺ a ≺ M

Artin’s presentation

�

RedConj

�

d ≺ a ≺ m

�

d ∨ D ≺ a ≺ m ∧ M
���

Artin’s generator is BKL’s generator
(b ≺ c)Artin ⇒ (b ≺ c)BKL

Fig. 2. Parallel process of the reduction

�
�

�
�Instance (x, axa−1)

�

BKL’s process

�

D ≺ a ≺ M

��� �	Instance (x,M−1axa−1M)

�

Artin’s process

�

m1 ≺ M−1a ≺ m2

��� �	Instance (x,D−1axa−1D)

�

Artin’s process

�

d1 ≺ D−1a ≺ d2

�

Dd1 ∨ Mm1 ≺ a ≺ Dd2 ∧ Mm2

Fig. 3. Sequential process of the reduction
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6 Analysis of Efficiency – Simulations

In this Section, we present three tables of results. We give the complexity of the
supplementary exhaustive attack. These experimental results average several
hundred simulations.

In Table 1 and 2, we propose instances in BKL’s presentation to produce
the efficiency of the reduction. We consider both random generators : Canoni-
cal Random Generator and Positive Artin’s Random Generator. The
complexity is given by log2

(
n(n−1)

2

)
∗ ak.

We compare three ways to use our algorithm :

– simply our algorithm
– the parallel process
– the sequential process

We ascertain that both processes (parallel and sequential) complement one
another. The representation of the braid has an influence on the efficiency of
the reduction. For a braid produced by CRG in BKL’s presentation, simply our
algorithm is very efficient. The output data are not improved by the parallel
process ; only the sequential algorithm let to improve them. In the case of a
braid produced by the PARG, its normal structure is not also dense. The both
processes bring a distinct improvement and the parallel one seems more efficient.

The efficiency of our algorithm is remarkable. For both random generator, we
reduce the size of the secret from several hundred groups generators to only few
dozen or even less. The Simultaneous Conjugacy Problem is greatly affected. We
attain our aim : we give an efficient method to work in braid groups and we
show that the choice of the random generator is preponderant in the security of
protocol.

In Table 3, we apply the sequential reduction on Artin’s presentation to sev-
eral existing instances from cryptographic literature. Many are broken, but it

Table 1. Reduction on the SCP using the CRG on BKL’s presentation

n cl(a) = cl(x) SCP type l(a) l(a) − l(d) l(m) − l(a) ak(a) complexity
60 9 1 simple 265.6 6.7 6.6 5.2 56.1

parallel 6.7 6.6 5.2 56.1
sequential 5.2 5.1 3.8 41.0

2 simple 1.2 1.2 0.6 <10
parallel 1.2 1.2 0.6 <10

sequential 0.7 0.6 0.5 <10
100 15 1 simple 743.0 10.0 10.1 8.3 101.8

parallel 10.0 10.1 8.3 101.8
sequential 8.3 8.3 6.6 80.9

2 simple 1.7 1.7 1.0 12.2
parallel 1.7 1.7 1.0 12.2

sequential 1.2 1.2 0.8 <10
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Table 2. Reduction on the SCP using the PARG on BKL’s presentation

n l(a) = l(x) SCP type l(a) − l(d) l(m) − l(a) ak(a)
60 1000 1 simple 244.5 1722.1 244.5

parallel 19.7 1659.0 19.7
sequential 40.2 200.2 39.9

2 simple 240.5 1645.6 240.8
parallel 6.4 1645.6 6.4

sequential 8.7 96.3 8.7
100 1500 1 simple 299.7 3499.2 299.7

parallel 34.6 3489.0 34.6
sequential 73.3 403.0 73.3

2 simple 274.2 3427.4 274.2
parallel 11.3 3427.4 11.3

sequential 16.7 198.1 16.7

Table 3. Sequential reduction using the CRG on Artin’s presentation

ref problem n cl(a) cl(x) l(a) rk(a) ak(a) complexity
[4] GCP 100 15 15 9206.3 31.0 11.5 56.9

150 20 20 27790.9 44.7 18.0 98.6
200 30 30 74157.1 57.8 23.7 138.7

[11] GCP 50 5 3 752.3 18.1 6.1 25.4
90 12 10 5943.0 28.8 10.7 51.8

[16] CSP 30 15 15 3410.8 27.9 9.3 44.6
GCP 60 15 15 3261.6 20.9 7.2 31.5

[10](1) SCP2 20 4 3 459.5 2.6 0.7 < 10
24 4 3 654.9 2.5 0.8 < 10
28 4 3 887.3 2.7 0.9 < 10

((1): we do not use the Random Super Summit Braid Generator but only the Canonical
Random Generator)

is rather the Canonical Random Generator which is faulty. Some existing
protocols are secure ; however, we must find a procedure to produce some good
instances.

The complexity is given by log2 (min(n− 1, rk)) ∗ ak for the Conjugacy
Search Problem and by log2

(
min( (n−1)

2 , rk)
)
∗ak for the Generalized Conjugacy

Problem.

7 Conclusion

The interest of this paper is the new proposed method to work in braid groups.
We propose an efficient algorithm to reduce the conjugacy problem and its vari-
ants : producing a divisor and a multiple of the secret. Moreover, we use the two
Garside presentations of braid groups to improve the efficiency of the algorithm.
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Even though we present many interesting results, the used random generators
are not yet perfect [15]. The representation of braids and their random gener-
ators have to be improved to get further results in braid-based cryptography.
We began this work in [12], but this development implicates the new proposed
canonical random generator. This new work permits to complete an existing list
of properties to get an efficient way to produce secure instances. We must meet
the following requirements :

– the required properties for the secret a, must be satisfied by its inverse as
well.

– l(a) ≈ l(Δ)cl(a)
2 , where l denotes the number of generators and cl denotes its

canonical length.
– the length of the the first canonical factors must be large (� l(Δ)

2 ) whereas
the one of the last factors must be short (� l(Δ)

2 ).
– the required properties for the secret must not depend on the presentation.

A further study could be done on the creation of a random generator of braid
verifying all existing criteria.

Independently, the new method introduced in this paper on the parallel and
sequential work can be improved. A sequential iterative process study could be
considered in the future.

Acknowledgments. The author would like to thank François Arnault, Thierry
Berger and Philippe Gaborit for their valuable observations.
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Abstract. A key assignment scheme is a protocol to assign encryption
keys and some private information to a set of disjoint user classes in a
system organized as a partially ordered hierarchy. The encryption key
enables each class to protect its data by means of a symmetric cryp-
tosystem, whereas, the private information allows each class to compute
the keys assigned to classes lower down in the hierarchy.

In this paper we consider a particular kind of a hierarchy: the com-
plete rooted tree hierarchy. We propose a key assignment scheme which
is not based on unproven specific computational assumptions and that
guarantees security against an adversary controlling a coalition of classes
of a certain size. Moreover, the proposed scheme is optimal both with
respect to the size of the information kept secret by each class and with
respect to the randomness needed to set up the scheme.

1 Introduction

The hierarchical access control problem deals with the specification of users’
access permission and is defined in a scenario where the users of a computer
system are organized in a hierarchy formed by a certain number of disjoint
classes, called security classes. A hierarchy arises from the fact that some users
have more access rights than others. The hierarchical access control problem
can be solved by using a key assignment scheme, that is, a method to assign
an encryption key and some private information to each class. The encryption
key will be used by each class to protect its data by means of a symmetric
cryptosystem. The private information will be used by each class to compute
the keys assigned to all classes whose secret data can be accessed by that class.
The assignment is carried out by a central authority, the CA, which is active
only at the distribution phase.

Akl and Taylor [1] first proposed an elegant solution for the general problem
where the hierarchy on security classes is an arbitrary partial order. In their
scheme each class is assigned a key that can be used, along with some public
parameters generated by the CA, to compute the key assigned to any class lower
down in the hierarchy. Subsequently, many researchers have proposed schemes
that either have better performances or allow insertion and deletion of classes in
the hierarchy (see [2, 8, 9, 11, 12, 13, 14, 15]).

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 202–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The most used approach to key assignment schemes is based on unproven
specific assumptions (see [1, 5, 2, 8, 9, 11, 12, 13, 14, 15]). For example, Sandhu [15]
proposed a key assignment scheme based on the existence of secure symmetric
cryptosystems and of one-way functions. Such a scheme has been designed for
a particular kind of partially ordered hierarchy, the rooted tree hierarchy. The
case of a rooted tree hierarchy has also been considered by other researchers (see
[9, 11, 12]). A different approach, based on information theory and not depending
on any unproven specific assumption has been proposed in [4, 6] to design and
analyze unconditionally secure key assignment schemes.

In this paper we follow the unconditionally secure approach and propose a
key assignment scheme for a particular kind of partially ordered hierarchy, the
complete rooted tree hierarchy. The paper is organized as follows: in Section 2 we
recall the definition of unconditionally secure key assignment schemes given in
[4]. In Section 2.1 we prove lower bounds on the size of the private information
held by any class and on the amount of random bits needed to set up any key
assignment scheme. In Section 3 we describe a key assignment scheme for any
rooted tree hierarchy which guarantees security against a single class. Such a
scheme has been proposed in [4] and will be used in Section 4 as a starting point
to construct a key assignment scheme for any complete tree hierarchy which
is secure against a coalition of classes having an arbitrary size. The proposed
scheme is optimal both with respect to the size of the private information held
by any class and with respect to the amount of random bits needed to set up
the scheme.

2 The Model

We consider a scenario where the users of a computer system are divided into
a certain number of disjoint classes, called security classes. The set of rules
that specify the information flow between different user classes in the system
defines an access control policy. An access control policy can be represented by
a directed graph G = (V,E), where the vertex set V corresponds to the set of
security classes and there is a directed edge (u, v) ∈ E if and only if class u can
access class v. For each u ∈ V , we define the accessible set of u as the set of classes
that can be accessed by u, including u itself, i.e., Au = {v ∈ V : (u, v) ∈ E}.
For any subset of classes X ⊆ V , we denote by A

X
the set ∪v∈XAv. We also

define the forbidden set of u as the set of classes that cannot access class u, i.e.,
Fu = {v ∈ V : u �∈ Av}.

A key assignment scheme for the access control policy G = (V,E) is a method
by which a trusted third party, called the central authority (CA), assigns a key
and some private information to each class in V . For any class u ∈ V , we denote
by pu the private information sent by the CA to users in class u and by ku the
key assigned to class u, respectively. Moreover, we denote by Pu and Ku the
sets of all possible values that pu and ku can assume, respectively. Given a set
of classes X = {u1, · · · ,u�}, where u1 < u2 < · · · < u�, we denote by P

X
and K

X

the sets Pu1 × · · · × Pu�
and Ku1 × · · · ×Ku�

, respectively.
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In this paper, with a boldface capital letter, say Y, we denote a random
variable taking values on a set, denoted by the corresponding capital letter Y ,
according to some probability distribution {PrY(y)}y∈Y . The values such a ran-
dom variable can take are denoted by the corresponding lower case letter. Given
a random variable Y, we denote by H(Y) the Shannon entropy of {PrY(y)}y∈Y

(we refer the reader to [3] for a complete treatment of Information Theory).
We consider key assignment schemes where the key assigned to each class is

unconditionally secure with respect to an adversary controlling a coalition of
classes of a limited size. Our schemes are characterized by a security parameter
r, the size of the adversary coalition. The maximum value that the security
parameter r can assume is equal to the cardinality of the maximum forbidden
set, since any adversary coalition for class u can contain at most |Fu| classes. An
r-secure key assignment scheme for an access control policy is defined as follows.

Definition 1. ([4]) Let G = (V,E) be the directed graph that represents an
arbitrary access control policy and let 1 ≤ r ≤ maxu∈V |Fu|. An r-secure key
assignment scheme for G is a method to assign a key to each class in such a way
that the following two properties are satisfied:

1. Any class allowed to access another class can compute the key assigned
to that class. Formally, for any u ∈ V and any v ∈ Au, it holds that
H(Kv|Pu) = 0.

2. Any coalition of at most r classes not allowed to access another class have
absolutely no information about the key assigned to that class. Formally, for
any u ∈ V and any X ⊆ Fu such that |X | ≤ r, it holds that H(Ku|PX

) =
H(Ku).

In Definition 1 we did not make any assumption on the entropies of the random
variables Ku and Kv, for different classes u, v ∈ V . For example, we could have
either H(Ku) >H(Kv) or H(Ku) ≤ H(Kv). Our results apply to the general
case of arbitrary entropies of keys, but for clarity we state the next results for
the simpler case that all entropies of keys are equal, i.e. H(Ku) = H(Kv) for all
u, v ∈ V . We denote this common entropy by H(K).

2.1 Lower Bounds

In this section we show lower bounds on the size of the private information held
by each class and on the amount of random bits needed to set up any r-secure
key assignment scheme. We need the next definition.

Definition 2. ([4]) Let G = (V,E) be the directed graph that represents an
arbitrary access control policy. In any r-secure key assignment scheme for G,
a sequence of classes v1, . . . , vm is called r-almost covered if, either m = 1, or
m > 1 and for any j = 2, . . . , m, there exists a set Xj ⊆ Fvj such that |Xj | ≤ r
and {v1, . . . , vj−1} ⊆ AXj

.

The next theorem shows a lower bound on the size of the private information
held by each class in any r-secure key assignment scheme.
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Theorem 1. ([4]) Let G = (V,E) be the directed graph that represents an ar-
bitrary access control policy. In any r-secure key assignment scheme for G, for
any u ∈ V , if there exists an r-almost covered sequence v1, . . . , vm in Au, then
it holds that H(Pu) ≥ m ·H(K).

As shown by Knuth and Yao [10], the entropy of a random source is related to
the average number of independent unbiased random bits necessary to simulate
the source. In the following, given a directed graph G = (V,E) representing an
arbitrary access control policy, we denote by H(P

V
) the amount of randomness

needed by the CA to set up any r-secure key assignment scheme for G.

Theorem 2. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. In any r-secure key assignment scheme for G, if there exists
an r-almost covered sequence of length m in V , then it holds that H(P

V
) ≥

m ·H(K).

Key Assignment Schemes for Rooted Tree Hierarchies. In this section
we consider key assignment schemes for an important kind of access control
policy: the rooted tree hierarchy. Given a rooted tree T = (V,E), for any class
u ∈ V , we denote by hu the height of the class u, defined by hu = 1 if u is a leaf
class and hu = 1 + maxgu

i=1 hui otherwise, where gu is the degree of u and, for
i = 1, . . . , gu, ui denotes the i-th child of u. We also denote by h the height of
the tree, i.e., the height of the root class.

For any two classes u, v ∈ V , class u has access to v’s private data if and
only if u is an ancestor of v. Therefore, the accessible set Au of class u ∈ V
consists of the classes in the subtree rooted at u, whereas, the forbidden set Fu

consists of the classes that are not ancestors of u. The next lemma shows how
to compute the length of an r-almost covered sequence in the accessible set Au,
for any u ∈ V and any 1 ≤ r ≤ maxu∈V |Fu|.

Lemma 1. ([4]) Let T = (V,E) be a rooted tree hierarchy and let 1 ≤ r ≤
maxu∈V |Fu|. In any r-secure key assignment scheme for T , for any u ∈ V ,
there exists an r-almost covered sequence in Au, whose length L(r,hu) is defined
by the following recurrence

L(r,hu) =
{

1 if u is a leaf class;
1 +

∑min{r,gu}
i=1 L(r − min{r, gu} + i,hui) otherwise.

(1)

From (1), it is easy to see that L(r,hu) ≥ L(r′,hu), for any r′ = 1, . . . , r − 1.
The next lemma shows that, given a class u ∈ V , any 1-almost covered sequence
in Au having length hu is a 1-almost covered sequence of maximum length.

Lemma 2. ([4]) Let T = (V,E) be a rooted tree hierarchy. In any 1-secure key
assignment scheme for T , for any class u ∈ V , the length of any 1-almost covered
sequence in Au is less than or equal to hu.

The next theorem is an immediate consequence of Theorem 1 and Lemma 1.
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Theorem 3. ([4]) Let T = (V,E) be a rooted tree hierarchy and let 1 ≤ r ≤
maxu∈V |Fu|. In any r-secure key assignment scheme for T , for any class u ∈ V ,
it holds that H(Pu) ≥ L(r,hu) ·H(K).

Remark 1. From Lemma 2 and Theorem 3, the size of the private information
held by each class u ∈ V in any 1-secure key assignment scheme for T is lower
bounded by hu · H(K). In particular, if we consider the root class, it follows
that the number of random bits needed by the CA to set up any 1-secure key
assignment scheme for T is lower bounded by h ·H(K).

Complete Rooted Tree Hierarchies. In the following we consider g-complete
rooted tree hierarchies, i.e., such that all leaves of the tree are at the same
level and all internal nodes have the same degree g. Given a g-complete rooted
tree hierarchy T = (V,E), for each class u ∈ V , the cardinality of the forbidden
set Fu is equal to the number of classes in V , that is,

∑h−1
i=0 g

i, minus the number
of ancestors of u minus one (the class u), that is, h− hu + 1. Therefore, we have
that |Fu| =

∑h−1
i=0 g

i − (h− hu + 1) = gh

g−1 − (h− hu + 1). In particular, for the

root class we have |Froot| = g(gh−1−1)
g−1 . Therefore, the maximum value that the

security parameter r can assume in a key assignment scheme for a g-complete
rooted tree hierarchy is equal to g(gh−1−1)

g−1 , which is equal to the number of nodes
in the tree minus one (the root class).

The next lemma will be a useful tool to show a lower bound on the size of the
private information held by each class in any r-secure key assignment scheme
for a g-complete rooted tree hierarchy, when 1 < r ≤ g.

Lemma 3. Let T = (V,E) be a g-complete rooted tree hierarchy and let 1 < r ≤
g. In any r-secure key assignment scheme for T , for any class u ∈ V , it holds
that

L(r,hu) =
hu∑
i=1

L(r − 1, i).

Proof. The proof is by induction on hu. Let u be a leaf class. From (1), it follows
that L(r, 1) = 1 = L(r − 1, 1).

Assume by inductive hypothesis that L(r,h′u) =
∑h′

u
i=1 L(r − 1, i), for any

1 < h′u < hu. Since g ≥ r, from (1) we get

L(r,hu) = 1 +
r∑

i=1

L(i,hu − 1)

= 1 +
r−1∑
i=1

L(i,hu − 1) + L(r,hu − 1)

= L(r − 1,hu) + L(r,hu − 1) (from (1))

= L(r − 1,hu) +
hu−1∑
i=1

L(r − 1, i) (from the inductive hypothesis)
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=
hu∑
i=1

L(r − 1, i).

Hence, the lemma holds. ��
In the next lemma we will use the following equality where a and b are integers,
(see equation (5.9) of [7, pag. 159]):

b∑
j=0

(
a + j

j

)
=
(

a + b+ 1
b

)
. (2)

Lemma 4. Let T = (V,E) be a g-complete rooted tree hierarchy and let 1 ≤ r ≤
g. In any r-secure key assignment scheme for T , for any class u ∈ V , it holds
that

L(r,hu) =
(
r + hu − 1
hu − 1

)
.

Proof. The proof is by induction on r. Let r = 1. From (1) it follows that
L(1,hu) = 1 + L(1,hu − 1) = hu.

Assume by inductive hypothesis that L(r′,hu) =
(
r′+hu−1

hu−1

)
, for any 1 < r′ < r.

We have that

L(r,hu) =
hu∑
i=1

L(r − 1, i) (from Lemma 3)

=
hu∑
i=1

(
r − 1 + i− 1

i− 1

)
(from the inductive hypothesis)

=
hu−1∑
j=0

(
r − 1 + j

j

)

=
(
r + hu − 1
hu − 1

)
(from equality (2), setting a = r − 1 and b = hu − 1).

Hence, the lemma holds. ��
The next theorem is an immediate consequence of Theorem 1 and Lemma 4.

Theorem 4. Let T = (V,E) be a g-complete rooted tree hierarchy and let 1 ≤
r ≤ g. In any r-secure key assignment scheme for T , for any class u ∈ V , it
holds that H(Pu) ≥ (r+hu−1

hu−1

) ·H(K).

In particular, if we consider the root class, it follows that the number of random
bits needed by the CA to set up any r-secure key assignment scheme for a g-
complete rooted tree hierarchy, where 1 ≤ r ≤ g, is lower bounded by

(
r+h−1

h−1

) ·
H(K). The above bounds are both tight. Indeed, in Section 4 we will show an
r-secure key assignment scheme for a g-complete tree hierarchy which meets the
bounds.
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3 A 1-Secure Key Assignment Scheme for Any Rooted
Tree Hierarchy

In this section we describe a 1-secure key assignment scheme for any rooted tree
hierarchy. Such a scheme has been proposed in [4] and will be used in Section 4
as a starting point to construct r-secure key assignment schemes. Let T = (V,E)
be a rooted tree hierarchy with height h and let q ≥ h be a prime number. The
scheme works as follows: first, the CA randomly chooses a sequence s of h distinct
integers in Zq. These integers will be used to compute the key ku and the private
information pu associated to each class u ∈ V . Afterwards, for each class u ∈ V ,
the CA sends the private information pu to u by means of a secure channel. Such
information will be used by each internal class u ∈ V to compute the key assigned
by the CA to any class v ∈ Au, by iteratively computing the key assigned to any
class in the path from u to v. The 1-secure scheme is shown in Figure 1.

Input: A rooted tree T = (V, E).

Let h be the height of T and let q ≥ h be a prime number.

Randomly choose a sequence s of h distinct integers in Zq.

{(u, pu, ku) : u ∈ V } ← Basic Scheme(T, s, q)

For any u ∈ V , privately send pu to u.

Fig. 1. A 1-secure key assignment scheme for any rooted tree hierarchy

The scheme used to compute the key ku and the private information pu

for each class u ∈ V , referred to as the Basic Scheme(T , s, q), is described in
Figure 2. In the key generation phase, starting from the root class, the key for
each internal class u is used by the CA to compute the keys for its children
u1 . . . ,ugu , where gu is the degree of u. In the private information generation

Basic Scheme(T, s, q)

Let h be the height of T and let s = (y1, . . . , yh).

/*Key generation phase*/
Let root be the root of T , then kroot ← yh.
For j = h downto 2 do

For any u ∈ V with hu = j do
For any i = 1, . . . , gu, do kui ← ku + i · yhui

mod q.

/*Private information generation phase*/
For any leaf class u ∈ V do pu ← ku.
For any internal class u ∈ V do pu ← ((y1, . . . , yhu−1) ◦ ku).

Return {(u, pu, ku) : u ∈ V }.

Fig. 2. The basic scheme used by the 1-secure scheme of Figure 1
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phase, the CA assigns to each class u the private information pu, which consists
of a sequence of hu integers in Zq. The last value of such a sequence is the key
ku. Indeed, if u is a leaf class, then pu = ku, whereas, if u is an internal class,
then pu = ((y1, . . . , yhu−1) ◦ ku), where the symbol ◦ denotes the concatenation
of two sequences and (y1, . . . , yhu−1) is the sequence of integers needed by u to
compute the keys for all classes in its accessible set.

It is easy to see that the scheme is optimal both with respect to the size
of the private information held by each class and with respect to the number
of random bits needed by the CA to set up the scheme. Indeed, the size of the
private information pu assigned to class u is equal to hu log q bits and the amount
of random bits is equal to h log q bits, whereas, the size of the key ku is equal to
log q bits. Hence, the larger the prime number q ≥ h, the larger the size of the
key, of the private information held by each class and of the number of random
bits needed to set up the scheme.

4 An r-Secure Key Assignment Scheme for Any
Complete Rooted Tree Hierarchy

In this section we show an r-secure key assignment scheme for any g-complete
rooted tree hierarchy. The problem of designing an r-secure scheme for a g-
complete rooted tree hierarchy T = (V,E) with height h is reduced to the prob-
lem of designing an (r − 1)-secure scheme for the truncated tree Tj = (Vj ,Ej),
for j = 1, . . . ,h, where Tj is the subtree of T obtained by truncating T at the
j-th level, that, is the subtree containing the first j levels of T . The keys and
the private information computed by the (r − 1)-secure schemes on such trun-
cated trees are then combined to produce the keys and the private information
computed by the r-secure scheme on T . The recursion bottoms up when r = 1:
in this case we use the 1-secure scheme presented in Section 3.

The r-secure scheme works as follows: first, the CA randomly chooses a se-
quence s of

(
r+h−1

h−1

)
distinct integers in Zq, where q ≥ (r+h−1

h−1

)
is a prime number.

These integers will be used to compute the key ku and the private information
pu associated to each class u ∈ V . The larger the prime number q, the larger
the size of the key and of the private information held by each class. Afterwards,
for each class u ∈ V , the CA sends the private information pu to u by means

Input: A g-complete rooted tree T = (V, E) with height h and an integer
1 ≤ r ≤ g(gh−1−1)

g−1 .

Let q ≥ r+h−1
h−1 be a prime number.

Randomly choose a sequence s of r+h−1
h−1 distinct integers in Zq.

{(u, pu, ku) : u ∈ V } ← Scheme(T, r, s, q).

For any u ∈ V , privately send pu to u.

Fig. 3. An r-secure key assignment scheme for any g-complete rooted tree hierarchy
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Scheme(T, r, s, q)

If r = 1, then
{(u, pu, ku) : u ∈ V } ← Basic Scheme(T, s, q)
Return {(u, pu, ku) : u ∈ V }

Let h be the height of T .

Partition the sequence s into h subsequences s[r−1;1], . . . , s[r−1;h] such that, for any
j = 1, . . . , h, the subsequence s[r−1;j] contains r−2+j

r−1 distinct integers.

For any j = 1, . . . , h, let Tj = (Vj , Ej) be the subtree of T obtained by truncating T
at the j-th level.

For j = 2 to h do
{(u, p

[r−1;j]
u , k

[r−1;j]
u ) : u ∈ Vj} ← Scheme(Tj , r − 1, s[r−1;j], q)

/*Key generation phase*/
Let root be the root class of T , then kroot ← s[r−1;1].
For j = h downto 2 do

For any u ∈ V with hu = j do
For any i = 1, . . . , g, do kui ← ku + i · k

[r−1;�u+1]
ui mod q.

/*Private information generation phase*/
For any leaf class u ∈ V do pu ← ku.
For any internal class u ∈ V do pu ← p

[r−1;�u+1]
u ◦ · · · ◦ p

[r−1;h]
u ◦ ku.

Return {(u, pu, ku) : u ∈ V }.

Fig. 4. The scheme used by the r-secure scheme of Figure 3

of a secure channel. Such information will be used by each class to compute the
keys assigned to all classes in its accessible set. The r-secure scheme is shown in
Figure 3. The scheme used to compute the key and the private information for
each class is referred to as the Scheme(T , r, s, q) and is described in Figure 4. If
r = 1, the Scheme(T , r, s, q) reduces to the Basic Scheme(T , s, q).

If r > 1, the scheme proceeds as follows: First, the CA partitions the sequence
s into h subsequences s[r−1;1], . . . , s[r−1;h], such that, for any j = 1, . . . ,h, the
sequence s[r−1;j] contains

(
r−2+j

r−1

)
distinct integers. Notice that from equation

(2), setting b = h− 1 and a = r − 1, we have

h∑
j=1

(
r − 2 + j

r − 1

)
=

h−1∑
i=0

(
r − 1 + i

i

)
=
(
r + h− 1
h− 1

)
. (3)

Afterwards, for any j = 1, . . . ,h, the CA runs the Scheme on inputs Tj , r −
1, s[r−1;j], and q, where Tj = (Vj ,Ej) is the subtree of T obtained by truncating
T at the j-th level. For any j = 2, . . . ,h, let k[r−1;j]

u and p[r−1;j]
u be the key and the

private information assigned by such a scheme to a class u in the truncated tree
Tj. Starting from the key k

[r−1;j]
u and the private information p

[r−1;j]
u assigned

to the class u ∈ Tj by the Scheme on inputs Tj , r − 1, s[r−1;j] and q, for any
j = 2, . . . ,h, the CA computes the key ku and the private information pu for
any class u in the tree T .
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In the key generation phase the CA assigns to the root class of T the value
s[r−1;1], corresponding to the first subsequence of s, which contains a single
element. Starting from the root class, the key ku for each internal class u at
level �u is used to compute the key for its children u1 . . . ,ug, which are at level
�u + 1. In particular, for any i = 1, . . . , g, the computation of the key kui also
involves the use of the key k

[r−1;�u+1]
ui assigned to ui by the Scheme on inputs

T�u+1, r − 1, s[r−1;�u+1], and q.
In the private information generation phase the CA assigns to each class u the

private information pu, which consists of a sequence of integers in Zq. The last
value of such a sequence is the key ku. Indeed, if u is a leaf class, then pu = ku,
whereas, if u is an internal class, then pu = p

[r−1;�u+1]
u ◦ · · · ◦ p[r−1;h]

u ◦ ku, where
the symbol ◦ denotes the concatenation of two sequences. Each internal class
u ∈ V can use its private information pu to compute the key assigned by the
CA to any class v ∈ Au, by iteratively computing the key assigned to any class
in the path from u to v.

4.1 Analysis of the Scheme

In this section we analyze the scheme proposed in the previous section. We first
remark some properties and give some useful definitions in order to prove cor-
rectness and security properties. Afterwards, we show that the proposed scheme
is optimal both with respect to the size of the private information held by each
class and with respect to the randomness needed by the CA to set up the scheme.

We first notice that the scheme of Figure 4 recursively calls itself on different
trees and with different security parameters, as shown in the following. Given
a tree T having height h, we define the execution hierarchy as the tree whose
height is equal to r and whose nodes are represented by boxes corresponding to
the truncated trees T2, . . . ,Th (see the left hand side of Figure 5). The root box
Th corresponds to the entire tree T . Moreover, for any j = 2, . . . ,h, any internal
box corresponding to the truncated tree Tj has j − 1 children, corresponding to
the truncated trees T2, . . . ,Tj, respectively.

In the following we define the initialization sequences, the keys and the private
information receivedby the classesduring the executions of the schemes on the trees
corresponding to all the boxes in the execution hierarchy. For each i = 2, . . . , r− 1
and j1, j2, . . . , ji ∈ {1, . . . ,h}, we define s[r−i;j1,j2,...,ji] as the sequence of integers
used to set up the scheme on Tji , where the security parameter is equal to r − i
and for each α = r − 1, . . . , r − i+ 1, the scheme is executed on Tjα with security

Th

T2

T2

ThT3

T3T2 T3T2 Th

s

s[2;2]

s[1;2,2]

s[2;h]s[2;3]

s[1;3,3]s[1;3,2] s[1;h,3]s[1;h,2] s[1;h,h]

Fig. 5. The execution hierarchy and the corresponding sequences for r = 3
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parameter equal to α. The right hand side of Figure 5 shows the sequences used to
set up the schemes on the trees corresponding to each box of the execution hier-
archy drawn on the left hand side of Figure 5. Moreover, for each i = 2, . . . , r − 1
and j1, j2, . . . , ji ∈ {1, . . . ,h}, we define the keys and the private information re-
ceivedbya classuduring the executionof the schemeonTji with securityparameter
equal to r−i starting by the sequence s[r−i;j1,j2,...,ji], respectively as,k[r−i;j1,j2,...,ji]

u

and p[r−i;j1,j2,...,ji]
u . We also define k[r−i;j1,j2,...,ji]

u and p[r−i;j1,j2,...,ji]
u as k[r−i,ji]

u and
p
[r−i;ji]
u if j1 = j2 = . . . = ji. For the sake of notational consistency, in the following

we refer to ku and pu as k[r;h]
u and p[r;h]

u , respectively.
Now, we are ready to show that each class, starting from its private informa-

tion, can compute the keys assigned to all classes in its accessible set.

Theorem 5. Let T = (V,E) be a g-complete rooted tree hierarchy with height h
and let 1 ≤ r ≤ g(gh−1−1)

g−1 . In the r-secure scheme each class u can compute the

key assigned to each class v ∈ Au by using its private information p
[r;h]
u .

Proof. The proof is by induction on r. For r = 1 the proof follows from the
correctness of the 1-secure scheme (see [4]).

Assume by inductive hypothesis that, given a g-complete rooted tree T =
(V,E) with height h, in the r-secure scheme, where 2 ≤ r < r′, each class u can
compute the key assigned to each class v ∈ Au by using its private information
p
[r;h]
u .
Let r = r′. It is easy to see that, for any v ∈ Au, the key k

[r;h]
v is a function

of the key k[r;h]
u and of the keys k[r−1;�w]

w , for any class w along the path from u

to v. Since p[r;h]
u contains p[r−1;�w]

u , from the inductive hypothesis it follows that
u can compute the key k[r−1;�w]

w assigned to each class w along the path from u

to v. Moreover, p[r;h]
u also contains the key k

[r;h]
u assigned to u by the r-secure

scheme. Therefore, u can compute the key k[r;h]
v assigned by the r-secure scheme

to each class v ∈ Au, by using its private information p
[r;h]
u . ��

In order to prove Property 2. of Definition 1, we need the following definition.

Definition 3. Let T = (V,E) be a g-complete rooted tree hierarchy with height
h and let 1 ≤ r ≤ g(gh−1−1)

g−1 . A set of classes {v1, v2, . . . , vr} is called an r-strong
coalition for a class u if and only if vi ∈ Fu and u ∈ Awi , where wi is the parent
of vi, for each i = 1, . . . , r.

The next lemmas will be useful tools to show our results.

Lemma 5 (POLYNOMIAL PROPERTY). Let T = (V,E) be a g-complete
rooted tree hierarchy with height h and let 1 ≤ r ≤ g(gh−1−1)

g−1 . Let u ∈ V be an
internal class and let ui be the i-th child of u, for some i ∈ {1, . . . , g}. In the
r-secure scheme, it holds that kui = qu(i), where

qu(x) = k[r;h]
u +

r−1∑
j=1

xr−j · k[j;�u+1]
u + xr · y�u+1 mod q
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is a polynomial of degree r and y�u+1 is the last element of the sequence used in
the initialization phase of the 1-secure scheme on T�u+1.

Proof. From the key generation phase in the r-secure scheme, it holds that

k[r;h]
ui

= k[r;h]
u + i · k[r−1;�u+1]

ui
mod q

= k[r;h]
u + i · k[r−1;�u+1]

u + i2 · k[r−2;�u+1]
ui

mod q
= . . .

= k[r;h]
u +

r−1∑
j=2

ir−j · k[j;�u+1]
u + ir−1 · k[1;�u+1]

ui
mod q

= k[r;h]
u +

r−1∑
j=1

ir−j · k[j;�u+1]
u + ir · y�u+1 mod q.

The last equality follows from the key generation phase of the 1-secure scheme,
since k[1;�u+1]

ui = k
[1;�u+1]
u + i · y�u+1. ��

Notice that, for each class u, the key ku is a function of the key held by the
root class and of the sequences s[r−1;2], . . . , s[r−1;�u]. Moreover, in the private
information generation phase, any child of u receives its key and some values
in s[r−1;�u+1], . . . , s[r−1;h]. Since the h subsequences s[r−1;1], . . . , s[r−1;h] are ob-
tained by partitioning the sequence s of distinct integers randomly chosen by
the CA, the following property holds:

CHILD POWER PROPERTY. Let T = (V,E) be a g-complete rooted tree
hierarchy with height h and let 1 ≤ r ≤ g(gh−1−1)

g−1 . In the r-secure scheme,
given any internal class u ∈ V , each of its children holds a unique information
(corresponding to its own key) which can be used to compute the key k[r;h]

u .

Lemma 6. Let T = (V,E) be a g-complete rooted tree hierarchy with height h,
let 1 ≤ r ≤ g(gh−1−1)

g−1 and let C be an (r + 1)-strong coalition of classes in T�u

for a class u. In the r-secure scheme the coalition C is able to compute the key
k

[r;h]
u .

Proof. The proof is by induction on r. Let r = 1 and C = {v1, v2}. We have to
distinguish three cases.

1. Let v1 and v2 be siblings of u and let z be their parent. From the key
generation phase in the 1-secure scheme, the keys of the classes in u, v1 and
v2 are a function of kz and y�u . Hence, the coalition is able to compute kz

and y�u . Afterwards, the coalition is also able to compute the key ku.
2. Let �v1 > �v2 and let z be the parent of v1. Since v2 holds the value y�v1

and the key of z is a function of the key of v1 and y�v1
, the coalition is

able to compute the key kz. Notice that z is also an ancestor of u. Since v2
holds the sequence (y�z+1, . . . y�u), from the key generation phase in the 1-
secure scheme, it is easy to see that the coalition is also able to compute the
key ku.
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3. Let �v1 = �v2 > �u and let z be the parent of v1 and v2. Since kv1 and kv2 are
a function of the value y�v1

and the key of z, the coalition is able to compute
both the key kz and the value y�v1

. Since v1 and v2 also hold the sequence
(y�v1+1, . . . y�u), from the key generation phase in the 1-secure scheme, it is
easy to see that the coalition is also able to compute the key ku.

Assume by inductive hypothesis that given a g-complete rooted tree hierarchy,
in the r-secure scheme, where 2 ≤ r < r′, any (r + 1)-strong coalition of classes
in T�u for a class u is able to compute the key k[r;h]

u .
Let r = r′. We have to analyze the following two cases:

1. Let the coalition be constituted by r + 1 siblings of u and let z be their
parent. From the POLYNOMIAL PROPERTY, the keys of the classes in the
coalition are the evaluations of the polynomial qz(x) of degree r, in r + 1
different points. Hence, the coalition is able to compute the key k[r;h]

u .
2. Let the coalition be constituted by i siblings of u and by a set C′ of r+1− i

classes in T�u−1, for some i = 0, . . . , r. Let z be the parent of u. From the
POLYNOMIAL PROPERTY, the keys of the siblings of u correspond to i

equations in the r + 1 unknowns k[r;h]
z , y�u, k[1;�u]

z , . . . , k
[r−1;�u]
z . From the

private information generation phase, the coalition holds y�u. Moreover, for
i �= r, from the inductive hypothesis it follows that the r + 1 − i classes in
C′ are able to compute the r− i keys k[1;�u]

z , . . . , k
[r−i;�u]
z . Since the coalition

has i equations in the i unknowns kz , k
[r−i+1;�u]
u , . . . , k

[r−1;�u]
u , it is able to

compute the key k[r;h]
u . ��

Since the private information held by each class is contained in the private
information held by each of its ancestors, in order to show that any coalition in
the forbidden set Fu cannot compute the key of a class u, it is enough to consider
only strong coalitions for u.

Theorem 6. Let T = (V,E) be a g-complete rooted tree hierarchy with height
h and let 1 ≤ r ≤ g(gh−1−1)

g−1 . In the r-secure scheme, an r-strong coalition for a

class u is not able to compute the key k[r;h]
u with probability greater than or equal

to 1/q.

Proof. The proof is by induction on r. For r = 1 the proof follows from the
security of the 1-secure scheme (see [4]).

Assume by inductive hypothesis that given a g-complete rooted tree hierarchy,
in the r-secure scheme, where 2 ≤ r < r′, any r-strong coalition for a class u
is not able to compute the key of u with probability greater than or equal
to 1/q.

Let r = r′, the proof follows by induction on the level �u of a class u. Let �u =
1, i.e., u is the root class. Any r-strong coalition for u is constituted by r children
of u. From the CHILD POWER PROPERTY, each class in the coalition holds a
unique information (corresponding to its own key) which can be used to compute
the key k

[r;h]
u . From the POLYNOMIAL PROPERTY, the keys of the classes in
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the coalition are the evaluations of qu(x) in r different points. Hence, in order to
compute k[r;h]

u , the coalition has a system of r equations in r+ 1 unknowns. For
any of the qr possible choices for the r-tuple (y�u+1, k

[1;�u+1]
u , . . . , k

[r−1;�u+1]
u ),

there are qr−1 corresponding values for the key k
[r;h]
u . Hence, the probability

that the coalition computes the key k[r;h]
u assigned to the class u is equal to 1/q.

Assume by inductive hypothesis that any r-strong coalition for a class u where
1 < �u < � is not able to compute the key of u with probability greater than or
equal to 1/q.

Let u be a class at level �u = �. We have to analyze the following three cases:

Case 1. The coalition is constituted by r children of u. With identical argu-
mentation used to show the basic case where �u = 1, we can prove that the
probability that the coalition computes the key k

[r;h]
u assigned to class u is

equal to 1/q.
Case 2. The coalition is constituted by classes in T�u . Let z be the parent of u.

It is easy to see that the coalition is also an r-strong coalition for z. Assume
by contradiction that the coalition is able to compute the key of u with
probability greater than or equal to 1/q. Let C′ be the set constituted by
the class u and the 0 ≤ i ≤ r classes in the coalition that are also children
of z. Let C′′ be the set constituted by the classes in the coalition whose
levels are less than or equal to �z. From the POLYNOMIAL PROPERTY,
the keys of the classes in C′ correspond to i + 1 equations in the r + 1
unknowns k[r;h]

z , y�u , k[1;�u]
z , . . ., k[r−1;�u]

z . Hence, if i = r, the coalition is
able to compute k[r;h]

z . Otherwise, from the private information generation
phase, the coalition holds y�u and, from Lemma 6, the r− i classes in C′′ are
able to compute the r− i− 1 keys k[1;�u]

z , . . . , k
[r−i−1;�u]
z . Since the coalition

has i+1 equations in the i+1 unknowns kz , k
[r−i;�u]
z , . . . , k

[r−1;�u]
z , it is able

to compute k[r;h]
z . This contradicts the inductive hypothesis because the level

of z is less than �.
Case 3. The coalition is constituted by 1 ≤ i ≤ r − 1 children of u and by a

set C of r − i classes in T�u. From the CHILD POWER PROPERTY, each
child of u holds a unique information (corresponding to its own key) which
can be used to compute the key of u. From the POLYNOMIAL PROPERTY,
it follows that those keys correspond to i equations in the r + 1 unknowns
k

[r;h]
u , y�u+1, k

[1;�u+1]
u , . . . , k

[r−1;�u+1]
u . The classes in C hold the value y�u+1

and since they represent an (r− i)-strong coalition in T�u for u, from Lemma
6, they are able to compute the r − i − 1 keys k[1;�u+1]

u , . . . , k
[r−i−1;�u+1]
u

with probability greater than or equal to 1/q. Hence the coalition has i

equations in the i + 1 unknowns k[r;h]
u , k

[r−i;�u+1]
u , . . . , k

[r−1;�u+1]
u . In order

to compute the key k
[r;h]
u , the classes in C should be able to compute at

least one of those i+ 1 keys, with probability greater than or equal to 1/q.
From Case 2., the classes in C are not able to compute the key k

[r;h]
u and

from the inductive hypothesis they are not able to compute any information
in (k[r−i;�u+1]

u , . . . , k
[r−1;�u+1]
u ). For any of the qi+1 possible choices for the
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(i + 1)-tuple (k[r;h]
u , k

[r−i;�u+1]
u , . . . , k

[r−1;�u+1]
u ), there are qi corresponding

values for the key k[r;h]
u . Hence, the probability that the coalition computes

the key k[r;h]
u assigned to class u is equal to 1/q. ��

It is easy to see that the r-secure scheme is optimal with respect to the random-
ness needed to set up the scheme when 1 ≤ r ≤ g. The next theorem shows that
the scheme is also optimal with respect to the size of the private information
held by each class.

Theorem 7. Let T = (V,E) be a g-complete rooted tree hierarchy with height h
and let 1 ≤ r ≤ g(gh−1−1)

g−1 . The number of integers contained in the private infor-
mation distributed to each class u by the r-secure scheme is equal to

(
r+hu−1

hu−1

)
.

Proof. The proof is by induction on r. For r = 1, it holds that
(
r+hu−1

hu−1

)
= hu.

Assume by inductive hypothesis that, for any r′ = 2, . . . , r − 1 the private
information p

[r′;j]
u contains

(
r′+j−h+hu−1

j−h+hu−1

)
integers. Since pu = p

[r−1;�u+1]
u ◦ · · · ◦

p
[r−1;h]
u ◦ ku, the number of integers contained in pu is equal to

1 +
h∑

j=�u+1

(
r + j − h+ hu − 2
j − h+ hu − 1

)
= 1 +

h∑
j=h−hu+2

(
r + j − h+ hu − 2
j − h+ hu − 1

)
(since �u = h− hu + 1)

=
hu−1∑
i=0

(
r − 1 + i

i

)
=
(
r + hu − 1
hu − 1

)
.

The last equality follows from equation (2), setting b = hu −1 and a = r−1. ��
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Abstract. One-way hash chains have been used in many micropay-
ment schemes due to their simplicity and efficiency. In this paper we
introduce the notion of multi-dimensional hash chains, which is a new
generalization of traditional one-way hash chains. We show that this con-
struction has storage-computational complexity of O(log2 N) per chain
element, which is comparable with the best result reported in recent lit-
erature. Based on multi-dimensional hash chains, we then propose two
cash-like micropayment schemes, which have a number of advantages in
terms of efficiency and security. We also point out some possible improve-
ments to PayWord and similar schemes by using multi-dimensional hash
chains.

1 Introduction

One-way hash chains are an important cryptographic primitive and have been
used as a building block of a variety of cryptographic applications such as access
control, one-time signature, electronic payment, on-line auction, etc.

In particular, there are many micropayment schemes based on one-way hash
chains, including PayWord [8], NetCard [1], micro-iKP [5] and others.

By definition, micropayments are electronic payments of low value. Other
schemes designed for payments of high value normally use a digital signature
to authenticate every payment made. Such an approach is not suitable for mi-
cropayments because of high computational cost and bank processing cost in
comparison with the value of payment.

The use of hash chains in micropayment schemes allows minimizing the use
of digital signature, whose computation is far slower than the computation of a
hash function (according to [8], hash functions are about 100 times faster than
RSA signature verification, and about 10,000 times faster than RSA signature
generation). Moreover, because a whole hash chain is authenticated by a single
digital signature on the root of chain, successive micropayments can be aggre-
gated into a single larger payment, thus reducing bank processing cost.

There are a variety of improvements to hash chains. For example, in the
PayTree payment scheme [7], Jutla and Yung generalized the hash chain to a
hash tree. This construction allows the customer to use parts of a tree to pay
different vendors. Recently, researchers have proposed a number of improved

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 218–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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hash chains, which are more efficient in terms of computational overhead and
storage requirement [3, 6, 11, 4].

This paper is organized as follows. In section 2 we introduce the notion of
multi-dimensional hash chains (MDHC for short). We also analyze efficiency of
this construction and show that RSA modular exponentiations could be used
as one-way hash functions of a MDHC. Section 3 describes two cash-like mi-
cropayment schemes based on MDHC, which have a number of advantages in
terms of efficiency and security. In section 4 we also examine some possible im-
provements to PayWord and similar schemes. Finally, section 5 concludes the
paper.

2 Multi-Dimensional Hash Chain

2.1 Motivation

The notion of MDHC originates from one-way hash chains and one-way accu-
mulators [2]. Here we briefly describe these two constructions.

A hash chain is generated by applying a hash function multiple times. Suppose
that we have a one-way hash function y = h(x) and some starting value xn.
A hash chain consists of values x0, x1, x2, ..., xn where xi = h(xi+1) for i =
0, 1, ...,n− 1. The value x0 = hn(xn) is called the root of hash chain. The figure
below depicts a hash chain of size n:

 

-  
 

nx

 
1  

h  h  h  

0x  2x  nx  1x  

Fig. 1. A one-way hash chain

In contrast, a one-way accumulator is the output of multiple hash functions,
each of them applied only once:

y = h1(h2(...(hm(x)))) . (1)

In order to ensure that the output is uniquely determined regardless of the
application order, functions h1,h2, ...,hm must be in pairs commutative, i.e.
hi(hj(x)) = hj(hi(x)) for any x.

Combining the two constructions described above, we can define a multi-
dimensional hash chain as the result of multiple applications of different com-
mutative hash functions, so the root of an m-dimensional hash chain is:

X0 = hn1
1 (hn2

2 (...(hnm
m (XN )))) . (2)

It is necessary to note that MDHC differs from other generalizations of normal
hash chain such as hash tree, which is used in PayTree scheme. In particular such
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trees are generated from multiple leaf nodes, while a MDHC is generated from
a single starting value (i.e. the value XN above).

2.2 Definitions

We begin with necessary definitions.

Definition 1. Two functions h1,h2 : X → X are called commutative if h1
(h2(x)) = h2(h1(x)) for any x ∈ X.

Definition 2. A one-way function h : X → Y is called one-way independent of
one-way functions h1,h2, ...,hm of the same domain if for any x ∈ X, computing
h−1(x) is intractable even if values h−1

1 (x), h−1
2 (x), ..., h−1

m (x) are known.

We now define MDHC as follows.

Definition 3. Let h1,h2, ...,hm be m one-way hash functions that are in pairs
commutative and every of them is one-way independent from all others. An
m-dimensional hash chain of size (n1,n2, ...,nm) consists of values xk1,k2,...,km

where:
xk1,k2,...,ki,...,km = hi(xk1,k2,...,ki+1,...,km) (3)

for i = 1, 2, ..., m and ki = 0, 1, ...,ni .
The value XN = xn1,n2,...,nm is called the starting node, and the value X0 =

x0,0,...0 is called the root of the MDHC, which is uniquely determined from XN

due to commutativity of hash functions:

X0 = hn1
1 (hn2

2 (...(hnm
m (XN )))) =

m∏
i=1

hni

i (XN ) . (4)

As an illustration, the figure below depicts a two-dimensional hash chain of size
(3,2):

 

=  3,2x

 
NX  

=  0,0x

 
0X  1,0x  

1h  
2h  

0,1x  

Fig. 2. A two-dimensional hash chain
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2.3 Efficiency Analysis

In recent literature, there are a number of improvements to one-way hash chains
that aim to be more efficient in terms of computational overhead and storage re-
quirement. A widely used metric for one-way hash chain efficiency is the storage-
computational complexity, which is the product of the traversal overhead and
the storage required to compute consecutive nodes of the hash chain.

It is easy to see that a linear hash chain size of n has storage-computational
complexity of O(n). In fact, if we precompute and store all nodes (storage
of O(n)), then no computation is needed when a node is requested (traver-
sal of O(1)). Alternatively, we can store only the starting value, and compute
every node from the beginning each time it is requested. This approach requires
storage of O(1) and O(n) computations. Also, if we store each of t nodes, then
storage of O(n/t) and O(t) computations are required. So, in any case, the
storage-computational complexity of the linear hash chain is O(n).

In [3, 6, 11] the authors have proposed new techniques that make traversal
and storage more efficient, which require O(log2 n) computations and O(log2 n)
storage, resulting in storage-computational complexity of O(log 2

2 n). Recently,
Hu et al. [4] have presented a new hierarchical construction for one-way hash
chains that requires O(log2 n) storage and only O(1) traversal overhead.

In our case of m-dimensional hash chain of size n (for simplicity we assume
all dimensions have the same size n1 = n2 = ... = nm = n), the number of
nodes is N = (n+ 1)m. If we store only the starting node of the chain (storage
of O(1)) then maximal number of calculations required to compute any node
is nm = n logn+1N , or log2N if we select n = 1. In that case the storage-
computational complexity of MDHC is O(log2N), which is equivalent to the
results in [4].

The advantage of MDHC is its simple implementation that does not rely on
the so-called pebbling technique, which is used in the constructions mentioned
above. However, the main limitation of this construction is the fact that hash
functions have to meet the conditions described in the definition of MDHC. The
RSA modular exponentiation is known to meet these conditions, but it is not as
fast as the traditional hash functions, e.g. MD5 or SHA.

2.4 RSA Modular Exponentiation

Let consider the function of RSA modular exponentiation:

y = xc mod M (5)

where c is some constant value and M is an RSA modulus, which is a product
of two large primes of equal bit length p and q.

According to [2], the RSA modular exponentiation functions with appropri-
ately selected exponents could meet MDHC requirements.

First, obviously these functions are in pairs commutative:

hi(hj(x)) = xci cj mod M = hj(hi(x)) . (6)
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Second, one-wayness of these functions is derived from the RSA assumption
[9], which states that the problem of finding the modular root x = y1/c mod M
is intractable.

Finally, regarding one-way independence of functions, Shamir [12] showed that
if c is not a divisor of the product c1 c2 ... cm then the modular roots y1/c1 mod
M, y1/c2 mod M, ..., y1/cm mod M are insufficient to compute the value of
y1/c mod M .

Therefore we can use the functions of RSA modular exponentiation as one-way
hash functions to construct multi-dimensional hash chains.

In that case we have following recursive expression:

xk1,k2,...,ki,...,km = (xk1,k2,...,ki+1,...,km)ci mod M (7)

for i = 1, 2, ..., m , ki = 0, 1, ...,ni and where c1, c2, ..., cm are exponents of RSA
functions h1,h2, ...,hm respectively.

Note that if one knows the factorization of M (i.e. knows p and q), then one
can compute X0 quickly by using following expression:

X0 = XN

m

i=1
c

ni
i mod E

mod M (8)

where E = ϕ(M) = (p− 1)(q − 1), and ϕ denotes the Euler’s totient function.
The expression above consists of only one modular exponentiation with mod-

ulus M and log2N modular multiplications with modulus E. Since a multipli-
cation is far faster than an exponentiation, this expression allows us to compute
X0 from XN in a very effective manner.

3 Cash-Like Schemes Based on MDHC

Cash-like payment schemes use the notion of electronic coin, which is an authen-
ticated (by the bank) bit string that is easy to verify, but hard to forge. Examples
of such coin are hash collisions (as in MicroMint [8]), or digital signatures (as in
Ecash [10]).

Let’s recall the definition of MDHC. If we select the size of the hash chain
with n = 1 then all nodes Xi = x0,0,...,1,...0 (with all kj �=i = 0, except ki = 1)
have the same hash value: hi(Xi) = X0. So we can use a pair (Xi,hi) as an
electronic coin since:

– It is easy to verify by just one hashing.
– It is hard to forge because hash functions hi are one-way, and their one-way

independence assures that coin forgery is impossible even if one knows other
coins with the same root X0.

As a proof of that concept, we suggest two micropayment schemes based on
MDHC with the RSA modular exponentiation. We refer to these as S1 and S2
schemes.
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3.1 The S1 Scheme

We assume that there are three parties involved in a micropayment scheme,
namely a bank (B), a customer (C) and a vendor (V). B is trusted by both C
and V.

Setup:

– B selects an RSA modulus M = pq where p and q are large safe primes of
equal bit length. A prime p is called safe if p = 2p′ + 1 where p′ is also an
odd prime.

– B chooses m constant values c1, c2, ..., cm that satisfy the condition of one-
way independence, i.e. each ci is not a factor of

∏
j �=i cj . These values to-

gether with modulus M are public parameters and can be used for multiple
coin generations.

– To generate m coins, B picks a random value XN and computes:

C = c1c2...cm mod E where E = (p− 1)(q − 1) , (9)

X0 = h1(h2(...(hm(XN )))) = X C
N mod M , (10)

Xi = h1(h2(...(hi−1(hi+1(...(hm(XN ))))))) = X
C c−1

i mod E
N mod M (11)

for i = 1, ..., m .
Now B has m coins (Xi, ci).

– B keeps X0 in a public list of coin roots.
– For prevention of double-spending B keeps another list of all unspent coins.

In addition, B can also generate vendor-specific as well as customer-specific
coins by using some bit portions of constants ci to form vendor ID and
customer ID, similar to the technique used in MicroMint scheme.

– C buys a sufficiently large number of coins from B before making purchases.

Payment:

– C pays a coin (Xi, ci) to vendor V.
– V verifies the coin by computing X0 = Xci

i mod M , and checks if X0 is in
the list of coin roots. Note that this list is relative small and does not change
frequently so C could keep it locally.

– To assure that a coin was not double-spent, V either checks the list of unspent
coins on-line with B, or checks (off-line) the list of coins he already received
if the coin is vendor-specific.

Redemption:

– V deposits the coins he got from customers to B and receives an amount
corresponding to number of coins.

At the end of the coin validity period, C can sell unused coins back to B or
exchange them for new coins.
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The proposed above scheme has several advantages:

– Coins are hard to forge under the RSA assumption.
– Payment can be made off-line by using vendor-specific coins.
– If customer-specific coins are not used, the scheme is anonymous and un-

traceable because coins contain no customer information and there are no
links between coins.

However, the disadvantages of this scheme are:

– Generation and verification of coins is not very efficient. Each coin requires
one modular exponentiation to generate or verify it, which is much slower
than normal hash calculation.

– The list of unspent coins can be very big, though this is a common problem
of most coin-based schemes.

To overcome these disadvantages, we propose a modified scheme with larger
size hash chains (i.e. with n > 1). In this scheme, B generates m chains of coins
at once, rather than m single coins. Each coin chain is similar to the hash chain
used in the PayWord scheme.

3.2 The S2 Scheme

Setup:

– B selects public parameters M and c1, c2, ..., cm in the same way as in the
S1 scheme. Let n be the size of the hash chains (for simplicity we assume all
dimensions have the same size i.e. n1 = n2 = ... = nm = n).

– B picks a random value XN and computes:

C = cn1 c
n
2 ...c

n
m mod E where E = (p− 1)(q − 1) , (12)

X0 = X C
N mod M , (13)

Xi = X
C c−n

i mod E
N mod M for i = 1, 2, ..., m . (14)

Now B has m coin chains (Xi, ci). Each of those chains contains exactly n
coins (xi,j , ci, j) for j = 1, 2, ...,n where:

xi,j = x ci

i,j+1 mod M for i = 1, 2, ..., m and j = 0, 1, ...,n− 1 , (15)

xi,n = Xi and xi,0 = X0 . (16)

The coins from one coin chain must be paid to the same vendor.
– For double-spending prevention, now there is no need to keep track of all

unspent coins. Instead, B keeps the list of first coins of all unused chains.
– As in the S1 scheme, coin chains can be vendor-specific as well as customer-

specific.
– C buys coin chains from B before making purchases.
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Payment:

– C pays a vendor V the coins from a coin chain. The first coin of the chain
(xi,1, ci, 1) is verified by computing X0 = xi,0 = x ci

i,1 mod M and lookup of
X0 in the list of chain roots. It is also checked for double-spending by lookup
in the list of unused chains. Any subsequent coin is verified by checking that
it hashes to the previous coin in the chain, as in the PayWord scheme:

hi(xi,j+1) = x ci

i,j+1 mod M ≡ xi,j . (17)

Redemption:

– V deposits the last coin (i.e. the coin with highest index j) of each coin
chain he got from customers to B and receives an amount corresponding to
number of coins.

Comparing with the S1 scheme, this modified scheme retains all advantages
of S1, but storage requirement is reduced by factor of n. In fact, B keeps track
of only the first coins of n-coin chains.

Another advantage of this scheme is more efficient coin generation. Because B
knows the factorization of M, he can compute the starting node of a coin chain by
just one modular exponentiation. Thus the cost of this computational expensive
operation is shared over all coins of the chain. Similarly, B can also verify coin
chains that he got from vendors by computing one modular exponentiation per
chain.

Generally speaking, the S2 scheme combines the advantages of two different
approaches. A first approach uses unrelated coins that are convenient for pay-
ments to multiple vendors. Another approach uses chains of coins that are easy
to generate and verify. In our scheme different coin chains are unrelated, while
coins within a chain are generated and verified only by repeated hashing.

4 Improve PayWord Scheme by Using MDHC

The PayWord scheme has been proposed in [8]. It is based on one-way hash
chains described in Sect. 2. In this scheme, before making purchases a customer
C generates a hash chain x0, x1, ...xn (that is a chain of paywords) and sends his
signature of the root x0 to the vendor V. The customer then makes a payment
to V by revealing the next payword, which can be verified by checking that it
hashes to the previous payword.

The PayWord scheme allows a vendor to aggregate successive payments from
a customer by sending only last payword he got from the customer to the bank
for redemption. However, a vendor cannot aggregate payments of different cus-
tomers, nor can a customer use the same chain of paywords to make payments
to different vendors, because there is no way to merge different hash chains.

By using MDHC, we can improve PayWord scheme in a number of ways.
Below we briefly describe two of such possible improvements. Note that some
irrelevant details in these descriptions are omitted for convenience.
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4.1 Multiple Denominations

In the original PayWord scheme the size of the hash chain must be large enough.
For example, if each micropayment is worth 1 cent and total payment is up to
$100, then a chain with size of 10,000 must be generated, which requires 10,000
hash calculations.

We can reduce the number of hash calculations by using MDHC instead of
linear hash chain. The idea is that every dimension of MDHC will be associated
with different weight (or denomination) according to some number system (e.g.
decimal or binary).

Suppose we have an m-dimensional hash chain with size of n. If one step in
the (i+1)th dimension is equivalent to (n+1) steps in ith dimension, then a node
xk1,k2,...,km corresponds to the value:

k1 + k2(n+ 1) + k3(n+ 1)2 + ...+ km(n+ 1)m−1 . (18)

The maximal value that could be represented by this hash chain is N =
(n+ 1)m − 1 and the number of hash calculations required to generate the hash
chain is n logn+1(N + 1). In the case of a binary number system (i.e. n = 1) it
is log2(N + 1).

Returning to the example above, the hash chain now requires just 14 calcula-
tions to generate.

Similarly, verification of the payword also requires significantly less calcula-
tions than in the case of the original PayWord scheme.

4.2 Multiple Vendors

In the PayWord scheme a hash chain can be used for payments to only one
vendor. A customer must generate different hash chains for payment to different
vendors.

We can overcome this drawback by using MDHC as well. Let every vendor
Vi in the payment system is assigned a different hash function hi (i.e. a public
parameter ci in the case of RSA modular exponentiation).

Now, in order to make payment to m different vendors, a customer generates
an m-dimensional hash chain with their public parameters ci and signs its root.
The customer then makes a payment to Vi by revealing the next payword in the
ith dimension, starting from the root of hash chain.

In particular, if the current payword is xk1,k2,...,ki,...,km , the next payword in
ith dimension will be xk1,k2,...,ki+1,...,km .

At the end of the day, vendors deposit the last paywords they got to the bank
for redemption. The bank picks the last payword (which is the one with highest
indices) among paywords with certain root (which all come from one customer).
Finally, the bank credits vendors Vi by the amount equivalent to ki, and debits
the customer’s account accordingly.

There could be other possible improvements to the PayWord scheme by using
MDHC. For example we can aggregate payments of different customers into a
single MDHC that is generated by the bank, or we can construct a payment
scheme with multiple currencies, etc.
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5 Conclusion

The proposed multi-dimensional hash chain is a simple and efficient construc-
tion for one-way hash chains. Whereas a traditional one-way hash chain has a
storage-computational complexity of O(n), our construction achieves a complex-
ity of O(log2 n), which is comparable with the best result among other recently
proposed constructions.

We show that multi-dimensional hash chains can be very useful in micropay-
ment schemes. In particular, we suggest two cash-like micropayment schemes
based on MDHC with RSA modular exponentiation as one-way hash function.
The first scheme utilizes coins that are hard to forge under the RSA assumption.
This scheme could be also off-line and untraceable. The second scheme has addi-
tional advantages including very efficient coin generation/verification and much
less storage requirements.

We also point out some possible improvements to PayWord and similar
schemes by using MDHC, including payword chains with multiple denomina-
tions, and a scheme that allows payment to multiple vendors using the same
payword chain.

An open issue for our construction is whether another one-way hash function
can be found that meets MDHC requirements, and at the same time is more
efficient than RSA modular exponentiation.
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Abstract. We show how to recover the affine parts of the secret key
for a certain class of HFE-Cryptosystems. Further we will show that
any system with branches can be decomposed in its single branches in
polynomial time on average. The attack on the affine parts generalizes
the results from [1, 11] to a bigger class of systems and is achieved by
a different approach. Despite the fact that systems with branches are
not used anymore (see [11, 6]), our second attack is a still of interest, as
it shows that branches belong to the list of algebraic properties, which
cannot be hidden by composition with secret affine transformations. We
derived both algorithms by considering the cryptosystem as objects from
the theory of nonassociative algebras and applying classical techniques
from this theory. This general framework might be a useful tool for future
investigations of HFE-Cryptosystems, e.g. to detect further invariants,
which are not hidden by composition with affine transformations.
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1 Introduction

At Eurocrypt’88 Imai and Matsumoto (see [7]) proposed a promising cryptosys-
tem called C∗ based on multivariate polynomials, especially useful for smart-
cards. To speed up computation and to enhance security, they introduced the
idea of branches. C∗ was broken independently by Dobbertin in ’93 (unpublished,
see [4, 5]) and by Patarin in ’95 (see [11]). To repair these systems Dobbertin
studied bijective power functions of higher degree, whereas Patarin introduced
the HFE-Cryptosystem and also faster variants, which make use of branches (see
[11, 12, 13]). The disadvantage of the latter systems is, if an attacker is able to
separate the branches, he also benefits from the speed up, because he can attack
the single branches separately.
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In the beginning probabilistic polynomial time attacks to separate the
branches were only known for very special systems like C∗. Later more gen-
eral probabilistic attacks with exponential running time (exponential in the size
of the branches, see [6, 11]) were discovered. As a consequence only systems with
branches of moderate size could be considered to be secure. Thus the speed up
of computation was no longer given and such systems were not used anymore.
It remained an open question, if there exists an efficient algorithm to recover
big branches for an arbitrary HFE-Cryptosystem. In Section 4 we consider this
question from the perspective of nonassociative algebras. This will yield to an
algorithm to recover the branches for an arbitrary system in polynomial time on
average and thus proving that the answer is no. This gives another item on list
of algebraic properties, which cannot be hidden by the HFE-principle.

Section 3 is concerned with the secret affine transformations used to construct
the trapdoor. It is an open problem, if the security is affected when linear map-
pings are chosen instead of affine. At first we briefly describe what we understand
by eliminating the affine parts. By applying classical techniques from the theory
of nonassociative algebras we show, that the affine parts can be eliminated for
certain classes of HFE-systems, including systems like Sflash. This generalizes
the results in [1, 11], but we make use of a different approach.

Putting an HFE-system into the perspective of nonassociative algebras re-
quires some technical efforts in the beginning. We will see, that this view finally
simplifies finding the invariats that yield to our attacks. We are confident that
there might be other invariants, which can be discovered this way.

2 Preliminaries

We assume that the reader is familiar with the theory of finite fields and mul-
tivariate polynomials as can be found in [10] for example. In the following we
briefly sum up some facts about representations of mappings over finite fields and
HFE-Cryptosystems. A detailed description about encryption and signing with
HFE-Cryptosystems can be found in [11, 13]. More details about representations
of mappings are given in [8].

With Fq, q = pm, we denote the finite field of characteristic p and with
Fqn the extension of degree n. We will often consider Fqn as an n-dimensional
Fq-vector space and via a choice of a basis we will identify it with the vector
space Fn

q . Elements (a1, . . . , an) of Fn
q will often be denoted by a. The univariate

polynomial ring is denoted by Fqn [X ] and the multivariate polynomial ring by
Fqn [x1, . . . , xn].

Any mapping over Fqn can be uniquely represented by a polynomial

P (X) =
qn−1∑
i=0

aiX
i, ai ∈ Fqn

and of course every such polynomial P (X) induces a mapping by a �→ P (a), a ∈
Fqn . Any mapping from Fn

q into Fn
q can be uniquely represented by a vector of

polynomials
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(p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)), pi ∈ Fq[x1, . . . , xn]

with the property, that if a monomial βxl1
1 · · ·xln

n occurs in pk, then li < q for
i = 1, . . . ,n. We will call such a vector reduced. Of course, as above, every such
vector induces a mapping on Fn

q .
For any choice of a basis b1, . . . , bn of Fqn , there exists for every mapping F

over Fqn a unique mapping f = (f1, . . . , fn) over Fn
q with

F (a) = F (
n∑

i=1

αibi) =
n∑

i=1

fi(α)bi

and vice versa.
Thereby the unique polynomial P (X) of degree d ≤ qn − 1 with F (a) = P (a)

is called the univariate representation of F . The uniquely determined reduced
vector (p1(x), . . . , pn(x)) with f(a) = (p1(a), . . . , pn(a)) is called the multivariate
representation of F .

We define the degree of a vector of polynomials as max{deg(pi)|i = 1, . . . ,n}.
With this definition the above correspondence is degree preserving in the sense,
that if the univariate representation has degree d, then the multivariate repre-
sentation has degree q-weight of d. We briefly explain, what we understand by
the q-weight. Let d =

∑l
i=0 ciq

i, 0 ≤ ci < q the q-adic representation of d. Then
the q-weight is the sum

∑l
i=0 ci.

Affine mappings S on Fn
q will be as usual denoted by Ax + c, where A de-

notes an n× n-matrix, x = (x1, . . . , xn) and c ∈ Fn
q . To keep the description in

the rest of this paper as simple as possible, we consider the result of a matrix-
vector-multiplication as a row vector. Thus Ax + c is already the multivariate
representation of the affine mapping S. With this notation the multivariate rep-
resentation of the composition S ◦ f , where f is a mapping over Fn

q with multi-
variate representation p := (p1, . . . , pn) is given by Ap+ c. Moreover a reduced
vector (p1, . . . , pn) will sometimes be identified with the corresponding mapping.

Now we very briefly describe a basic HFE-Cryptosystem with branches. The
secret key consists of:

1. n = n1 + · · · + nl, a partition of n.
2. Field extensions Fqnk over a fixed base field Fq for k = 1, . . . , l. The fields will

be represented by the choice of an irreducible polynomial Fq[X ] to construct
Fqnk and an Fq-basis, which determines the isomorphism between Fnk

q and
Fqnk .

3. l HFE-polynomials of degree dk, that is polynomials of the form Hk(X) =∑n−1
i,j=0 βij,kX

qi+qj

+
∑

i αi,kX
qi

,
where βij,k,αi,k ∈ Fqnk , k = 1, . . . , l.

4. Two affine bijective transformations S(x) = Ax + c,T (x) = Bx + d of Fn
q .

This constitutes the secret key. The public key is derived by computing the
multivariate representation for each of the Hk denoted by
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(h1(x1, . . . , xn1), . . . ,hn1(x1, . . . , xn1))
(hn1+1(xn1+1, . . . , xn1+n2), . . . ,hn1+n2(xn1+1, . . . , xn1+n2))

...
(hn−nl+1(xn−nl+1, . . . , xn), . . . ,hn(xn−nl+1, . . . , xn))

(1)

Each of these ni-tuples constitutes a branch. Combining these ni-tuples gives an
n-tuple of polynomials (h1, . . . ,hn) in n variables. The public key (p1, . . . , pn)
is given by the composition T ◦ (h1, . . . ,hn) ◦ S and consists of n quadratic
polynomials in n variables. This implies that the base field Fq is public. Note,
that the polynomials in different branches have different sets of variables and
these are mixed up by S,T .

The public key is the multivariate representation of a composition of map-
pings, where mappings over Fqni , i = 1, . . . , l are involved. This implies, that
an encryption can also be considered as chain of compositions like it is given in
the following diagram. This different point of view is important for our analysis.
Thereby Ψ denotes the canonical isomorphism from Fn

q into Fn1
q × · · · × Fnl

q and
φi the canonical isomorphism from Fni

q into Fqni given by the chosen basis.

Fn1
q

φ1→ Fqn1
H1→ Fqn1

φ−1
1→ Fn1

q

Fn
q

S→ Fn
q

Ψ
↗
↘ ...

...

Ψ−1

↘
↗ Fn

q
T→ Fn

q

Fnl
q

φl→ Fqnl

Hl→ Fqnl

φ−1
l→ Fnl

q

Now it becomes apparent, that if an attacker is able to recover the branches,
he is able to attack every branch.

A basic HFE-Cryptosystem is a system where l = 1. The nowadays proposed
schemes are variants of this basic system as for example Sflash orQuartz (see [3, 2]).

In some descriptions the univariate polynomials have a constant term. Since
these can be captured by T , we skipped it in our description (see also the next
section). In the sequel the multivariate and univariate representations are con-
sidered with respect to the bases chosen by the designer. For our attacks we do
not need to know these bases since we will show, that all necessary information
can be computed from the public key.

Now we are going to show how to construct a nonassociative Fq-algebra from
an HFE-Cryptosystem. This will be the foundation for the algorithms presented
later. By a nonassociative Fq-algebra U we understand an Fq-vectorspace with
a multiplication, which is so that

λ(xy) = (λx)y = x(λy) for all λ ∈ Fq, x, y ∈ U ,

and which is also bilinear (i.e. (x + y)z = xz + yz, z(x + y) = zx + zy). The
associative law is not being assumed. An introduction to this subject can be
found in [14].

Given an HFE-PolynomialH(X) =
∑n−1

i,j=0 βijX
qi+qj

+
∑n−1

i=0 αiX
qi

we define
a multiplication on Fqn as follows:

M(a, b) := H(a + b) −H(a) −H(b), a, b ∈ Fqn .
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Since M is given by the sum
∑n−1

i,j=0 βij(aqi

bq
j

+ bq
i

aqj

) this multiplication in-
duces indeed an nonassociative and commutative algebra. Again we can derive
n polynomials mi in x1, . . . , xn and y1, . . . , yn, which give the multivariate rep-
resentation of the mapping M . This is achieved similar to the univariate case,
but here we have the defining relation

M(
n∑

i=1

αibi,

n∑
i=1

βibi) =
n∑

i=1

mi(α,β)bi,

where b1, . . . , bn is a basis of Fqn . If L1,L2 denote the linear part of the secret
key of an HFE-Cryptosystem considered over Fqn , then

M ′(a, b) := L2(M(L1(a),L1(b)) induces a second algebra.

Note, that the multivariate representation of M ′ can be calculated from the
public key by computing pi(x + y) − pi(x) − pi(y). We will see, that this still
holds when the secret transformations S,T are affine (see Section 4).

3 Eliminating the Affine Parts of S,T

Recall that a polynomial q(x1, . . . , xn) is called homogeneous of degree d, if all
monomials that occur have the exact degree d. We start with a lemma, which is
crucial for our algorithm. It shows that the affine parts of S,T are not mixed up
properly by the application of S,T , if the polynomial H(X) is also homogenous
in the sense, that all monomials that occur are of the form βijX

qi+qj

.

Lemma 1. Let Fq �= F2. Further let S(x) = Ax + c,T (x) = Bx + d be bijec-
tive affine mappings over Fqn with univariate representation L1 + c,L2 + d and
H(X) =

∑n−1
i,j=0 βijX

qi+qj

.
If p1, . . . , pn denotes the public key of the resulting cryptosystem, then pi(x) =

qi(x) + li(x) + ai, where ai is a constant, li is linear and qi is homogeneous
of degree 2. Furthermore (q1, . . . , qn) is the multivariate representation of L2 ◦
H ◦ L1.

Proof. Let (h1, . . . ,hn) denote the multivariate representation of H . Then the
public key, which is the multivariate representation of (L2 + d) ◦ H ◦ (L1 + c),
equals the reduced vector of the composition T ◦(h1, . . . ,hn)◦S. Due to the shape
of H(X) the polynomials hi are homogeneous of degree 2, since the base field is
not F2. Otherwise the reduction involved in the computation of the multivariate
representation would imply to substitute x2

i by xi and the hi could also contain
monomials of degree 1.

By comparing the public key p1, . . . , pn with the reduced vector of T ◦ (h1,
. . . ,hn) ◦ S one sees, that pi = qi(x) + li(x) + ai, where (q1, . . . , qn) represents
L2 ◦H ◦ L1. From this the result follows as requested.

We restrict to explain our attack for a simple mapping with one branch, i.e. a
basic HFE-Cryptosystem with a simple hidden polynomial. The attack for an
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arbitrary system follows straight forward from this special case, but a general
description would be very technical. Therefore we will only give briefly some
remarks about the generalization at the end of this section.

Thus, we will restrict to show how to eliminate the affine parts of S,T , if
the base field Fq equals F2m , where m > 2 and H(X) = βXqi+qj

, i �= j. By
eliminating we understand that we will compute d and A−1(c), because once d
and A−1(c) are known it is easy to transform the system T ◦ (h1, . . . ,hn) ◦ S
into B ◦ (h1, . . . ,hn) ◦A. Note, that if (y, x) is a plaintext/ciphertext pair of the
first system, then (y− d, x+A−1(c)) is the corresponding pair of the second one
and vice versa. Thus the task to decrypt an intercepted ciphertext of the system
with affine transformations can be reduced to the task to decrypt a ciphertext
of the according system without the translation vectors.

What we showed above is surprising, because one would expect that the elimi-
nation of the translations would imply the knowledge of c and not only of A−1(c).
This is not the case for our approach. One can show that an algorithm to com-
pute c would yield to an algorithm to compute A. Consequently eliminating the
translations and computing c are different problems and very likely of a different
complexity.

Without loss of generality we assume that H(X) = Xqi+1, i �= 0. Otherwise
consider ((L2 + d) ◦ (βXqj

)) ◦ (Xqn−j ◦ (Xqi+qj

)) ◦ (L1 + c), which gives an
equivalent system, i.e. a system with different S,T but exactly the same public
key and a hidden polynomial of the desired form. In the general description of
HFE-systems we mentioned that the constant term in the hidden polynomial
can be skipped. With the above notion of an equivalent system one can easily
explain why this is true. Similarly as above one shows, that an HFE-system with
a hidden polynomial H(X) possessing a constant term is equivalent to a system,
where the hidden polynomial has no constant term.

For H(X) = Xqi+1, i �= 0 we have M(a, b) = aqi

b+bq
i

a. A natural question in
the theory of nonassociative algebras is to determine all annihilating elements,
i.e. to determine all a ∈ Fqn such that the corresponding mappings M(a, ·) or
M(·, a) (the so called left or right multiplications) vanish on Fqn . Recall that
in our case M and M ′ are always commutative and therefore we can restrict to
consider left multiplications. We begin with a simple lemma.

Lemma 2. Let i �∈ {0,n}, i.e. Xqi �= X.

1. If M(a, b) = aqi

b+ bq
i

a = 0 for all b ∈ Fqn , then a = 0.
2. If M ′(a, b) = 0 for all b ∈ Fqn , then a = 0.

Proof. For a �= 0 the polynomial aqi

X+Xqi

a has less than qn zeros. This proofs
the first assertion. The second part follows immediately from the fact that the
linear mappings involved in the definition of M ′ are always bijective.

Now we will show how to relate the problem of eliminating the translations to
the problem of finding annihilating elements.
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The public polynomials are the multivariate representation of P (X) := (L2 +
d)◦Xqi

X◦(L1+c). From this we can compute the multivariate representation of

P (X + Y ) + P (X) = L2(L1(X)qi
L1(Y ) + L1(Y )qi

L1(X) + L1(c)qi
L1(Y ) + L1(Y )qi

L1(c))

+L2(L1(Y )qi
L1(Y )).

A Usage of Lemma 1 gives the multivariate representation of the last term
L2(L1(Y )qi

L1(Y )). So we can eliminate this term by subtracting it. This way
we get the multivariate representation of

L2(L1(Y )qi

(L1(X) + c) + L1(X + c)qi

L1(Y )) = M ′(X + L−1
1 (c),Y ).

From Lemma 2 we have that M ′(a + L−1
1 (c),Y ) is the zero mapping iff a =

L−1
1 (c). This yields to the following algorithm to eliminate the translations.

1. Compute the multivariate representation

(q1(x1, . . . , xn, y1, . . . , yn), . . . , qn(x1, . . . , xn, y1, . . . , yn))

of M ′(a +L−1
1 (c),Y ) by calculating pi(x1 + y1, . . . , xn + yn)+ pi(x1, . . . , xn)

and eliminating the multivariate part describing L2(L1(Y )qi

L1(Y )).
2. Compute qi(x, e1) for i = 1, . . . ,n, where e1 denotes the first canonical basis

vector (1, 0, . . . , 0). This gives an inhomogeneous system of n linear equa-
tions. If it has rank n compute the unique solution, which gives A−1(c). If
the rank is < n, add the next n equations qi(x, e2) and so on, until rank n
is reached.

3. Once c′ := A−1(c) is computed, compute p′i(x) = pi(x + c′) for all i. This
gives the multivariate representation of (L2 + d) ◦Xqi

X ◦ L1.
4. Compute p′i(0) for all i. This gives the vector d, which can be finally elimi-

nated.

This algorithm is dominated by the running time for the Gaussian elimination
for a system with at most n2 linear equations in n variables. Hence the running
time is O(n4).

If this algorithm is applied to a more general HFE-system as for example
a system with hidden polynomial H(X) :=

∑n−1
i,j=0 βijX

qi+qj

, i �= j then the
annihilating elements a have to fulfill

M(a, b) =
∑
ij

βija
qi

bq
j

+ bq
i

aqj

= 0 for all b ∈ Fqn .

For a �= 0 this yields to a polynomial of the form∑
ij

βij(aqi

Xqj

+Xqi

aqj

),

which has to be constantly zero. When sorted by X this polynomial has the
shape

∑
l∈I rl(a)Xql

, where all the rl are polynomials in a and I a proper index
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set. Thus a is an annihilating element iff rl(a) = 0 for all l ∈ I. By construction
this is the case for a = 0 and it is reasonable to assume that in most of the
cases this is the only solution. This means it makes sense to assume, that the
multiplication M or M ′ respectively of an HFE-Cryptosystem has the properties
from lemma 2. We get the following theorem.

Theorem 1. Given an arbitrary HFE-Cryptosystem, or a ′′−′′-system like
Sflash, over a field Fq �= F2 with secret affine transformations S = Ax + c and
T = Bx + d, then c, d can be eliminated with O(n4) field operations on average.

4 A Fast Algorithm for Separating the Branches

In [11] and [12] a probabilistic polynomial time algorithm to separate the
branches is described assuming the underlying HFE-polynomials admit special
syzygies. This algorithm is based on the Coppersmith-Patarin attack on Dragon-
Schemes (see [12]). We will introduce an algorithm which is also based on the
Coppersmith-Patarin attack with a similar running time, but does not require
syzygies anymore and is therefore applicable to any HFE-Cryptosystem.

We denote as usual with S(x) = Ax + c,T (x) = Bx + d the affine transfor-
mations used to build up the HFE-Cryptosystem. The crucial step of our attack
(which is the same as in [11, 12]) is the computation of a matrix C = AΛA−1,
where

Λ =

⎛⎜⎜⎜⎜⎜⎜⎝
Λ1 0 0 · · · 0
0 Λ2 0 · · · 0
... 0 Λ3 · · · 0
...

... 0
. . . 0

0 0 · · · 0 Λl.

⎞⎟⎟⎟⎟⎟⎟⎠
Thereby l denotes the number of branches and Λk the representation matrix of
a linear mapping x �→ λkx,λk ∈ Fqnk , where Fqnk is the field belonging to the
k-th branch, 1 ≤ k ≤ l.

Then from C a matrix G is derived, such that

AG =

⎛⎜⎜⎜⎜⎜⎜⎝
W1 0 0 · · · 0
0 W2 0 · · · 0
... 0 W3 · · · 0
...

... 0
. . . 0

0 0 · · · 0 Wl

⎞⎟⎟⎟⎟⎟⎟⎠ , where Wi is a block matrix.

To compute G classical linear algebra related to the theorem of Cayley-Hamilton
and Jordan-Normal forms is needed, which is not very surprising due to the
structure of C. We skip the details, because this is done in Shamir’s attack on
the Oil&Vinegar-Schemes [9] and also in [11, 12].
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Once G is known the separation is rather straightforward as we will briefly
indicate now. As mentioned in Section 2, for the k-th branch there exists a unique
set of variables

Vk = {x k−1
j=1 nj+1, . . . , x k

j=1 nj
}.

At first one computes p′i(x) := pi(Gx) for i = 1, . . . ,n. The polynomials p′i have
the property, that if xsxt is a monomial occuring in p′i then xs, xt ∈ Vk for a
proper k (see also the composition a few lines below). Thus the monomials in p′i
reveal the sets Vk and moreover can be grouped according to the unique set Vk

containing their variables. Below we noted down the composition pi(Gx) as the
composition of column vectors. This deviates from our usual notation, but the
effect of the composition with G is this way much better visualized.

(T ◦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(x1, . . . , xn1)
...

hn1(x1, . . . , xn1)
...

hn−nl+1(xn−nl+1, . . . , xn)
...

hn(xn−nl+1, . . . , xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
◦ S) ◦G =

T ◦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(x1, . . . , xn1)
...

hn1(x1, . . . , xn1)
...

hn−nl
(xn−nl+1, . . . , xn)

...
hn(xn−nl+1, . . . , xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
◦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1(x1, . . . , xn1) + c1
...

ln1(x1, . . . , xn1) + cn1

...
ln−nl+1(xn−nl+1, . . . , xn) + cn−nl−1

...
ln(xn−nl+1, . . . , xn) + cn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The above composition shows that this way the different sets Vk are indeed
revealed.

Once this composition is computed one gets by applying Gaussian elimination
to p′1, . . . , p′n the desired polynomials, where the first n1 polynomials have only
variables from V1, the next n2 polynomials have variables from the set V2 and
so on. This is possible due to the above described property of the monomials in
p′i. This completes the separation.

It might happen that the composition with G does not reveal all branches,
but more clusters of branches. In this case the clusters are attacked separately
afterwards, and the separation is refined step by step.

To prove that such a G can be computed with high probability, we put the key
idea from the Coppersmith-Patarin attack into the perspective of nonassociative
algebras. In [12] it was used, that the only linear mappings L over a field Fqn with

L(xy) = xL(y) for all x, y ∈ Fqn (2)
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are multiplications with a field element in Fqn . In the theory of nonassociative
algebras one calls the set of linear mappings L fulfilling equation 2 the multipli-
cation centralizer.

Our generalization is as follows. At first we define a proper multiplication.
Then we introduce the notion of a mixed multiplication centralizer and prove
that from this a matrix C can be computed, such that A−1CA is a block matrix.
In the following we show how the multiplications M and M ′ from Section 2
extend to systems with branches.

For every field Fqnk we have a multiplication Mk(a, b), k = 1, . . . , l. We get the
desired multiplication M(a, b) on Fqn as follows. We consider the multiplication
on
∏l

k=1 Fqnk defined by

((a1, . . . , al), (b1, . . . , bl)) �→ (M1(a1, b1), . . . ,Mb(al, bl)).

The multiplication M on Fqn is given by

Ψ−1 ◦M1 × · · · ×Ml ◦ Ψ,

where Ψ is the embedding of Fqn into the product of fields. With (m1, . . . , mn)
we denote the multivariate representation of M . The multiplication M ′ on Fqn

is given by M ′(a, b) := L2(M(L1(a),L1(b))). The polynomials

m′
i(x, y) := pi(x + y) − pi(x) − pi(y)

are the multivariate representation of M ′. If S,T are affine it is easy to see, that
we get the representation by skipping the constant parts after the computation of
pi(x+y)−pi(x)−pi(y). This becomes apparent, if one computes the linearization
P (X + Y ) − P (X) − P (Y ) for the univariate representation P (X) in the same
vein as in section 3.

We define the mixed multiplication centralizer to be the set of all linear map-
pings C,C′ fulfilling

C′(m′
1(x, y), . . . , m′

n(x, y)) = (m′
1(x,Cy), . . . , m′

n(x,Cy)).

This can also be written as

C′B(m1(Ax,Ay), . . . , mn(Ax,Ay)) = B(m1(Ax,ACy), . . . , mn(Ax,ACy)).(3)

From this we see, that if C,C′ lie in the mixed centralizer, i.e. they solve the
equation (3), then ACA−1,B−1C′B solve

Z ′((m1, . . . , mn)) = (m1(x,Zy), . . . , mn(x,Zy)), (4)

and if Z,Z ′ solve (4), then A−1ZA,BZ ′B−1 solve equation (3). Hence the so-
lutions are conjugated to each other. The centralizer of M ′ can be computed
from the public key with Gaussian elimination, when the elements cij , c′ij are set
as unknowns and plaintext/ciphertext pairs are plugged in to get equations in
the unknowns. Now we analyze the mixed centralizer and show that it has the
desired property. For special cases it can be completely determined. We give an
example for fields of characteristic 2.
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Theorem 2. Given the base field F2m . Let M be the multiplication as above
derived from univariate polynomials Hk = X2mik+1, where ik �∈ {0,nk} and
gcd(2mik + 1, 2mnk − 1) = 1 for k = 1, . . . , l. Then the centralizer consists of all
pairs (A−1ZA,BZB−1), where Z is the representation matrix of the mapping

a �→ Ψ−1((λ1 · Ψ(a)1, . . . ,λl · Ψ(a)l)),

a ∈ F2n and λk ∈ F2mgcd(ik,nk) for k = 1, . . . , l.

Proof. We only give a sketch of the proof.
At first we restrict to one branch. W. log. we consider the first branch. Let

L1,L2 be linear mappings over F2mn1 such that L2(M1(a, b)) = M1(a,L1(b))
with a, b ∈ F2mn1 . By choosing b = a the corresponding equation simplifies to

M1(a, (L1(a)) = a(L1(a))2
mi1 + a2mi1

L1(a) = 0.

For a �= 0 this equivalent to
(

L1(a)
a

)2mi1

= L1(a)
a . Thus, L1(a)

a = θa ∈ F2mgcd(n1,i1)

and L1(a) = θaa. Due to our assumption on i1 this intermediate field does not
equal F2mn1 .

Assume we are given two elements e1, e2, that are linear independent with re-
spect to the intermediate field F2mgcd(n1,i1) . It follows that L1(e1) = θe1e1,L1(e2)
= θe2e2 and

L1(e1 + e2) = θe1+e2(e1 + e2) = L1(e1) + L1(e2) = θe1e1 + θe2e2.

Since the elements are linear independent every linear combination is unique and
thus θe1+e2 = θe1 = θe2 . By substituting e1 by αe1 with α ∈ F2mgcd(n1,i1) one
gets, that

L1(αe1) = αθe1e1.

Via this two properties one concludes by considering an F2mgcd(n1,i1) -basis that
there exist a θ ∈ F2mgcd(n1,i1) , such that

L1(αb) = αθb

for any element b of this basis and α ∈ F2mgcd(n1,i1) . This proves that L1(x) =
θx. By noting that the image of M1(a, b) contains an F2m-basis of F2mn1 one
concludes rather straightforward that L2 = L1.

To show that the centralizer for product of fields is as stated in the theorem
is tedious and technical. So we skip this part and end our proof.

Understanding the centralizer of an arbitrary HFE-Cryptosystem with
branches is a hard problem. But it is easy to see that all block matrices Z,
where every block Λk represents a multiplication with an element from the base
field Fq, lie in the centralizer of M . It is very likely and confirmed by our exper-
iments that these are the only elements when H(X) is not as simple as above.
Thus we have the following reasonable conjecture.
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Conjecture 1. The elements C of the centralizer for an arbitrary system with l
branches are the matrices A−1ZA with

Z =

⎛⎜⎜⎜⎜⎜⎜⎝

Λ1 0 0 · · · 0
0 Λ2 0 · · · 0
... 0 Λ3 · · · 0
...

... 0
. . . 0

0 0 · · · 0 Λl

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thereby Λk denotes the representation matrix of a multiplication with λk ∈ Fq.

Remark 1. The conjecture does not state anything about C
′
. As C

′
is only

needed to compute C but not to complete the actual separation, no further
knowledge about the structure is necessary.

The separation requires the factorization of the characteristic polynomial of C.
Assuming Conjecture 1 the matrices C can be diagonalized with only a few
possible Eigenvalues. Consequently the factorization is feasible.

The number of recovered branches depends on the number of different Eigen-
values. If only clusters of branches are recovered, the algorithm can be applied
separately to the different clusters. We have the following result.

Theorem 3. The branches for an arbitrary system can be recovered with O(n6)
field operations on average.

Remark 2. From the proof of theorem 2 we see, that for this special mappings
we can compute the matrix C by computing all matrices with m′

i(x,Cx) = 0
for all x ∈ F2nm . From experiments we have that this seems to remain true for
arbitrary HFE-systems over arbitrary characteristic. This variant is a bit faster
as the number of required plaintext/ciphertext pairs obviously does not increase
and the number of variables in the Gaussian elimination is reduced as C′ does
not have to be computed anymore. Thus it makes sense to start with this variant
and extend to the more complex algorithm, if necessary.

5 Conclusion

We showed that if the base field of a given HFE-Cryptosystem is not F2 then
the security is not affected if the secret transformations are chosen to be linear
instead of affine. This was achieved by considering the HFE-system as a nonas-
sociative algebra and showing that from this point of view the affine parts can be
eliminated. It is very interesting to investigate if this approach can be modified
to reveal the secret key. Furthermore we showed that for an arbitrary system
with branches the branches can be separated in polynomial time on average.
Again this was achieved by employing the theory of nonassociative algebras.

Both results were based on the assumption that certain conditions are satisfied
with a very high probability by the algebra we get from a randomly chosen HFE-
Cryptosystem. Therefore it is a very challenging task to find conditions on the
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hidden polynomial H(X), which yield to algebras fulfilling this assumptions.
Clearly finding answers to one of the above problems would yield to a much
better understanding about the security of HFE-Crypto systems.
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Abstract. The Matsumoto-Imai (MI) cryptosystem was the first mul-
tivariate public key cryptosystem proposed for practical use. Though MI
is now considered insecure due to Patarin’s linearization attack, the core
idea of MI has been used to construct many variants such as Sflash,
which has recently been accepted for use in the New European Schemes
for Signatures, Integrity, and Encryption project. Linearization attacks
take advantage of the algebraic structure of MI to produce a set of equa-
tions that can be used to recover the plaintext from a given ciphertext. In
our paper, we present a solution to the problem of finding the dimension
of the space of linearization equations, a measure of how much work the
attack will require.

1 Introduction

In the last two decades, public key cryptography has become an indispensable
part of most modern communication systems. However, due to the threat that
quantum computers pose to cryptosystems based on “hard” number theory prob-
lems, there has recently been great effort put into the search for alternative public
key cryptosystems. Multivariate cryptosystems provide a promising alternative
since solving a set of multivariate polynomial equations over a finite field appears
to be difficult, analogous to integer factorization, though it is unknown precisely
how difficult either problem is.

One of the first implementations of a multivariate public key cryptosystem
was suggested by Matsumoto and Imai [8]. Fixing a finite field k of characteristic
two and cardinality 2q, they suggested using a bijective map M defined over K,
a degree n extension of k. By identifying K with kn, we see that M induces a
multivariate polynomial map M̃ . We can “hide” this map by composing on the
left by L1 and on the right by L2, where the Li : kn −→ kn are invertible affine
linear maps. This gives a map M̄ : kn −→ kn defined by

M̄ (x1, . . . , xn) = L1 ◦ M̃ ◦ L2 (x1, . . . , xn) = (y1, . . . , yn) .
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The map originally suggested by Matsumoto and Imai is the map

M : X �−→ X1+2qθ

,

where gcd(2qθ + 1, 2qn − 1) = 1. The resulting system is the Matsumoto-Imai
(C∗ or MI) cryptosystem. The public key for MI is the system of n quadratic
polynomials y1, . . . , yn.

Even for a large finite field K, MI is efficient. Unfortunately this scheme was
proven insecure under an algebraic attack [9] that produces so-called “lineariza-
tion equations.” These linearization equations can be swiftly generated from the
public key and known plaintext/ciphertext pairs, and have the form:∑

aijxiyj +
∑

bixi +
∑

cjyj + d = 0,

where x1, . . . , xn are the plaintext variables corresponding to the ciphertext vari-
ables y1, . . . , yn. Once we have found enough of these equations, and hence the
aij , bi, cj and d, we can substitute in the ciphertext to produce a system of lin-
ear equations in the plaintext variables. Patarin showed that there are enough
linearization equations to produce enough linearly independent linear equations
in the plaintext variables, which can then be used to find the plaintext.

After introducing his linearization attack, Patarin posed the general question
of how we can find the maximum number of linearly independent lineariza-
tion equations for MI. The answer to this question is necessary for a complete
understanding of both MI and the linearization attack, and may provide valu-
able insight into related systems derived from MI, such as the Sflash signature
schemes [1, 2], PMI and PMI+ [3, 4], HFE [10] and others. In this paper, we use
the method developed in [6] to attack the HFE cryptosystem (another general-
ization of MI), to find the exact dimension of the space of linearization equations.

The complete result, given in Theorems 2 and 3, involves a number of excep-
tional cases. Let us summarize here the result ignoring the case n = 2θ, which
has no cryptographic applications, and some exceptional cases when n is 2, 3 or
6. Let δ be the dimension of the space of linearization equations. If q > 1, then

δ =

{
2n
3 , if θ = n/3 or 2n/3;
n, otherwise.

On the other hand, if q = 1,

δ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2n
3 , if θ = n/3 or 2n/3;

2n, if θ = 1,n− 1 or (n± 1)/2;
3n
2 , if n = 2θ ± 2;
n, otherwise.

Computer simulations for the cases n ≤ 15 have confirmed these results.
Before getting into the technical details we outline the idea of the proof. Let

X ∈ K and let Y = X2qθ+1. Then Y 2qθ−1 = X(2qθ+1)(2qθ−1). Multiplying each
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side by XY , we obtain Y 2qθ

X = Y X22qθ

. Since K has characteristic two, Y 2qθ

and X22qθ

are linear functions of Y and X respectively. This equation is thus
a version of a linearization equation for K. Using the identification of K with
kn and looking at coordinate components yields a set of n (not necessarily in-
dependent) linearization equations in the above sense. Moreover, for any integer
m = 0, 1, . . . ,n− 1, we further have

(XY 2qθ − Y X22qθ

)2
qm

= 0.

Looking at coordinate components yields further linearization equations. When
q > 1, it turns out that all linearization equations arise in this way. When q = 1,
there are additional identities that arise for certain exceptional values of θ. For
instance, if θ = 1, then XY = X4.

The proof proceeds in the following way. We first define a notion of lineariza-
tion equation for K and use a simple algebraic trick (exactness of the tensor
product) to show that the dimension of the space of linearization equations is
the same over both k and K. We then show that the equations above span all
possible linearization equations for K and count carefully the dimension of this
space.

Note that we only need to do this calculation for M . The composition with the
invertible affine linear maps Li does not affect the dimension of the associated
space of linearizations equations.

2 The Linearization Problem

We begin by placing the problem in a general context. Let V be a vector space
over k and denote by Fun(V,V ) the set of functions from V to V . If V is the
plaintext/ciphertext space of a cryptosystem, then a cipher is an element M ∈
Fun(V,V ).

More generally, for any pair of sets V and W , denote by Fun(V,W ), the set
of all functions from V to W . Define a function

ψM : Fun(V × V, k) → Fun(V, k)

by
ψM (f)(v) = f(v,Mv).

Recall that for any pair of vector spaces V and W , the set Fun(V,W ) is again a
vector space in the usual way:

(λf)(v) = λf(V ), (f + g)(v) = f(v) + g(v).

Thus both Fun(V × V, k) and Fun(V, k) are vector spaces. It is easily checked
that ψM is a linear transformation between these spaces. Denote by A(V ) the
subspace of Fun(V, k) consisting of affine linear functions (polynomials of degree
less than or equal to one). Note that there is a natural embedding of A(V )⊗A(V )
into Fun(V × V, k) given by (f ⊗ g)(v, v′) = f(v)g(v′).
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Definition 1. The subspace LM = kerψM |A(V )⊗A(V ) is defined to be the space
of linearization equations associated to M .

Let’s see how this definition ties up with the usual definition of linearization
equation. Let {fi | i = 0, 1, . . . ,n − 1} be a basis for the dual space V ∗. Then
A(V ) has a basis consisting of the fi and the constant function 1. So the (n+1)2

elements fi⊗fj, fi⊗1, 1⊗fj, 1⊗1 form a basis for A(V )⊗A(V ) and an arbitrary
element of A(V ) ⊗ A(V ) is a bi-affine linear function of the form:

η =
∑

aij(fi ⊗ fj) +
∑

bi(fi ⊗ 1) +
∑

cj(1 ⊗ fj) + d(1 ⊗ 1).

Let x ∈ V have coordinates xi = fi(x) and let y = M(x) have coordinates
yi = fi(y). Thus η ∈ LM if and only if for all x ∈ V ,

ψM (η)(x) =
∑

aijxiyj +
∑

bixi +
∑

cjyj + d = 0.

That is, η ∈ LM if and only if ψM (η)(x) = 0 is a linearization equation in the
usual sense.

We are now in a position to state the problem that we solve in this article.

Linearization problem. Let q be a positive integer, let k be a finite field of
order 2q, and let K be an extension field of k with [K : k] = n. Let θ be an
integer such that 1 ≤ θ < n, and let M : K → K be the map M(X) = X1+2qθ

.
Find dimLM , the dimension of the space of linearization equations associated
to M .

Note that the condition gcd(2qθ + 1, 2qn − 1) = 1 is required in the MI cryp-
tosystem, though this assumption is not needed in order to calculate the dimen-
sion of LM .

3 Lifting to K

In order to simplify the calculations, we work inside the larger algebra Fun(K ×
K,K) which we can realize as a homomorphic image of the polynomial ring
K[X,Y ]. Let us recall some general facts about this algebra. Since K is finite
of cardinality 2qn, the natural homomorphism K[X ] → Fun(K,K) is surjec-
tive and its kernel is the ideal (X2qn −X). Similarly, the natural homomorphism
K[X,Y ] → Fun(K×K,K) is also surjective and has kernel (X2qn −X,Y 2qn −Y ).
Let G be the Galois group Gal(K, k). One of the key observations used in [6], is
the following standard result from Galois theory (see for instance [5, Theorem 2]).

Lemma 1. Denote by Funk(K,K) ⊂ Fun(K,K) the subspace of k-linear endo-
morphisms of K. Then Funk(K,K) is naturally isomorphic as a vector space to
the group algebra KG.

Similarly the subset of linear functions Funk(K ×K,K) ⊂ Fun(K ×K,K) can
be identified with K(G×G). The group G is cyclic, generated by the polynomial
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functionX2q

. The space of affine linear functions fromK×K toK can be viewed,
by extension of coefficients, as K ⊗ A(K) ⊗ A(K). From the above discussion,
the elements of K ⊗ A(K) ⊗ A(K), viewed as polynomial functions, have the
form

n−1∑
i,j=0

Aij ⊗X2qi ⊗X2qj

+
n−1∑
i=0

Bi ⊗X2qi ⊗ 1 +
n−1∑
j=0

Cj ⊗ 1 ⊗X2qj

+D ⊗ 1 ⊗ 1,

for some Aij ,Bi,Cj ,D ∈ K. As above, for any M ∈ Fun(K,K), we may define a
map ψ̂M : Fun(K ×K,K) → Fun(K,K) by ψ̂M (f)(x) = f(x,M(x)). Set L̂M =
ker ψ̂M |K⊗A(K)⊗A(K). This yields the following exact commutative diagram:

0 −−−−→ LM −−−−→ A(K) ⊗ A(K)
ψM−−−−→ Fun(K, k)⏐⏐A ⏐⏐A ⏐⏐A ⏐⏐A

0 −−−−→ L̂M −−−−→ K ⊗ A(K) ⊗ A(K)
ψ̂M−−−−→ Fun(K,K)

Observe that the bottom line is the image of the top line under the exact functor
K ⊗−. For Fun(K,K) is naturally isomorphic to K ⊗Fun(K, k) and under this
identification ψ̂M identifies with K ⊗ ψM , the image of ψM under the functor
K ⊗−. The exactness of K ⊗− implies that ker(K ⊗ψM ) ∼= K ⊗ ker(ψM ) (see,
for instance [7]); so L̂M

∼= K ⊗ LM . Hence dimk LM = dimK L̂M .

4 Statement of Main Theorems

To find the dimension of the space of linearization equations we must find the
dimension of the kernel of the map

ψ̂M : K ⊗ A(K) ⊗ A(K) → Fun(K,K).

This amounts to finding linearly independent identities of the form

n−1∑
i,j=0

AijX
2qi

Y 2qj

+
n−1∑
i=0

BiX
2qi

+
n−1∑
j=0

CjY
2qj

+D = 0,

where Y = X2qθ+1, X2n

= X and Y 2n

= Y and Aij ,Bi,Cj ,D ∈ K. As noted
above, it is easy to see that Y = X2qθ+1 implies that Y 2qθ

X = Y X22qθ

and
hence more generally that

(XY 2qθ − Y X22qθ

)2
qm

= 0,

for m = 0, . . . ,n − 1. Generically these will be distinct identities. However,
if n = 3θ or 3θ/2, the identities XY 2qθ − Y X22qθ

, X2qθ

Y 22qθ − Y 2qθ

X , and
X22qθ

Y − Y 22qθ

X2qθ

are evidently dependent, yielding only 2n/3 independent
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identities. The case n = 2θ is an exceptional, highly degenerate case. In this
situation, Y 2qθ

= Y , yielding (n2 + n)/2 identities of the form

(Y 2qθ+l − Y 2ql

)X2qm

= 0,

for l = 0, . . . n/2 − 1 and m = 0, . . . n− 1.
When q > 1, these identities are independent and span the set of all identities.

Theorem 2. If q > 1, then the dimension of the space of linearization equations
is given by

dim L̂M =

⎧⎪⎨⎪⎩
2n/3, if θ = n/3 or 2n/3;
(n2 + n)/2, if θ = n/2;
n, otherwise.

When q = 1, further identities occur for special values of θ.

– When θ = 1, XY = XX2+1 = X4 yielding n identities of the form (XY −
X4)2

m

= 0 for m = 0, . . . ,n− 1.
– When θ = n− 1, Y 2 = (X2n−1+1)2 = X2n

X2 = X3, yielding n identities of
the form (XY 2 −X4)2

m

= 0 for m = 0, . . . ,n− 1.
– When n = 2θ + 1, Y 2θ+1

= (X2θ+1)2
θ+1

= X22θ+1+2θ+1
= X2θ+1+1 = Y X2θ

yielding n identities of the form (Y X2θ −Y 2θ+1
)2

m

= 0 for m = 0, . . . ,n−1.
– When n = 2θ−1, Y 2θ

= (X2θ+1)2
θ

= X22θ+2θ

= X2θ(X22θ−1
)2 = X2θX2 =

XY , yielding n identities of the form (Y 2θ−XY )2
m

= 0 for for m = 0, . . . ,n−
1.

– When n = 2θ + 2, Y 2θ+2
X = X22θ+2+2θ+2+1 = X2θ+2+2 = X2θ+1

Y 2, yield-
ing n/2 identities of the form (Y 2θ+2

X − X2θ+1
Y 2)2

m

= 0 for m = 0, . . . ,
n/2 − 1.

– When n = 2θ−2, Y 2θ−1
X2θ−1

= (X2θ+1)2
θ−1

X2θ−1
= X22θ−1+2θ

= X2+2θ

=
XY , yielding n/2 identities of the form (Y 2θ−1

X2θ−1 − XY )2
m

for m =
0, . . . ,n/2 − 1.

Again these turn out to be all identities and they are linearly independent.

Theorem 3. If q = 1, the dimension of the space of linearization equations is
as follows. When θ = n/3 or 2n/3,

dim L̂M =

⎧⎪⎨⎪⎩
7, if n = 6, θ = 2 or 4;
8, if n = 3, θ = 1 or 2;
2n
3 , otherwise.

When θ = n/2,

dim L̂M =

{
5, if n = 2, θ = 1;
(n2 + n)/2, otherwise.
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When θ �= n/3, 2n/3,n/2,

dim L̂M =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10, if n = 4 and θ = 1 or 3;
2n, if θ = 1,n− 1 or (n± 1)/2;
3n
2 , if θ = n/2 ± 1;
n, otherwise.

5 Proofs of Main Theorems

An arbitrary element of K ⊗ A(K) ⊗ A(K) is of the form

n−1∑
i,j=0

Aij ⊗X2qi ⊗X2qj

+
n−1∑
i=0

Bi ⊗X2qi ⊗ 1 +
n−1∑
j=0

Cj ⊗ 1 ⊗X2qj

+D ⊗ 1 ⊗ 1

and its image under ψ̂M is

n−1∑
i,j=0

AijX
2qi

(X2qθ+1)2
qj

+
n−1∑
i=0

BiX
2qi

+
n−1∑
j=0

Cj(X2qθ+1)2
qj

+D,

where because of the relation (X2qn − X) in Fun(K,K), we may consider the
exponents as elements of Z2qn−1. If such a polynomial is in the kernel, its constant
term must be zero, so it suffices to look at terms of the form

n−1∑
i,j=0

Aij ⊗X2qi ⊗X2qj

+
n−1∑
i=0

Bi ⊗X2qi ⊗ 1 +
n−1∑
j=0

Cj ⊗ 1 ⊗X2qj

.

Lemma 4. Let M = {X2qi ⊗X2qj

,X2qi ⊗1, 1⊗X2qj | i, j = 0, . . . n−1}. Then
dim L̂M = n2 + 2n− |ψ̂M (M)|.

Proof. Let N = {X2qi | i = 0, . . . n − 1}. Then N ∪ {1} forms a basis for
K⊗A(K) and M∪{1⊗1} forms a basis for K⊗A(K)⊗A(K). It is clear from
the defintion of ψ̂M that ψ̂M (1 ⊗ 1) = 1 and that ψ̂M (M) ⊂ N . Hence

rank(ψ̂M ) = |ψ̂M (M ∪ {1 ⊗ 1})| = |ψ̂M (M)| + 1

Hence

dim L̂M = dim(K ⊗ A(K) ⊗ A(K)) − rank(ψ̂M )

= (n+ 1)2 − |ψ̂M (M)| + 1

= n2 + 2n− |ψ̂M (M)|

Thus the problem reduces to the calculation of |ψ̂M (M)|. In the case q > 1, this
calculation is fairly straightforward, but when q = 1, it is a little more intricate.
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We can reset the problem in the following way. Define Z1
n and Z2

n to be two
copies of Zn. Define

φ : (Zn × Zn) ∪ Z1
n ∪ Z2

n → Z2qn−1

by

φ(i, j) = 2qi + 2qj + 2q(θ+j), for (i, j) ∈ (Zn × Zn)

φ(k) = 2qk for k ∈ Z1
n

φ(l) = 2ql + 2q(θ+l) for l ∈ Z2
n

Clearly |ψ̂M (M)| = |Im φ|.
The elements of Z2qn−1 can be represented uniquely in a 2q-ary expansion of

length less than or equal to n. It is convenient to represent this expansion as a
circular graph with n vertices representing the place holders and the digits of
the expansion as labels on these vertices. For example in the case when n = 8,
the element 02100301 is represented by the labelled graph in figure 1.

2

0

1

0

3

0

0

1

Fig. 1. The representation of the number with 2q-ary expansion 02100301

Theorem 5. If q > 1, then

|Im φ| =

⎧⎪⎨⎪⎩
n2 + 4n/3, if n = 3θ, 3θ/2;
(n2 + 3n)/2, if n = 2θ;
n2 + n, otherwise.

Proof. The elements of Im φ considered as diagrams consist of

1. diagrams with all labels 0 except one label of 1
2. diagrams with all labels 0 except two labels of 1, spaced θ apart.
3. diagrams with all labels 0 except one label of 1 and one label of 2, spaced θ

apart.
4. diagrams with all labels 0 except three labels of 1, of which at least one pair

is spaced θ apart.
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There are n diagrams of type (1). There are n diagrams of type (2) except
if n = 2θ in which case there are only n/2 diagrams. There are 2n diagrams of
type (3), unless n = 2θ, in which case there are only n diagrams.

Consider diagrams of type (4). Consider first diagrams with exactly one pair
of labeled vertices spaced θ apart and assume that n �= 2θ. For each such pair,
there are n−4 possible locations for the third labeled vertex if n �≡ 3θ and n−3
locations if n ≡ 3θ. Thus there are n(n − 4) and n(n − 3) total such diagrams
respectively. If n = 2θ, there are n/2 such pairs and n− 2 locations for the third
vertex, so there are n(n− 2)/2 diagrams.

If n does not divide 3θ and n �= 2θ, then we can have exactly two pairs of
vertices spaced by θ. There are n such diagrams. If n|3θ, we can have all three
vertices spaced by θ and there are n/3 of these diagrams.

Thus when n = 2θ, |Im φ| = n+ n/2 + n+ n(n− 2)/2 = (n2 + 3n)/2 . When
3θ ≡ 0 (mod n), |Im φ| = n+ n+ 2n+ (n2 − 3n) + n/3 = n2 + 4n/3. Otherwise
|Im φ| = n+ n+ 2n+ (n2 − 4n) + n = n2 + n.

Theorem 6. Suppose that q = 1. If 3θ ≡ 0 (mod n), then

|Im φ| =

⎧⎪⎨⎪⎩
41, if n = 6, θ = 2 or 4;
7, if n = 3, θ = 1 or 2;
n2 + 4n

3 , otherwise.

If 2θ = n, then

|Im φ| =

{
3, if n = 2;
(n2 + 3n)/2, otherwise.

Otherwise,

|Im φ| =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

14, if n = 4 and θ = 1 or 3;
n2, if θ = 1;
n2, if θ > 1 and n = 2θ ± 1 or θ + 1;
n2 + n

2 , if n = 2θ ± 2;
n2 + n, otherwise.

Proof. The elements of Im φ considered as diagrams consist of essentially the
same cases as in the previous proof except that a vertex with a label of 2 trans-
forms into the next vertex moving clockwise around the diagram, labeled with
a 1. Thus the possible configurations are now:

1. diagrams with all labels 0 except one label of 1
2. diagrams with all labels 0 except two labels of 1, spaced θ, θ − 1 or θ + 1

apart.
3. diagrams with all labels 0 except three labels of 1, of which at least one pair

is spaced θ apart.

The counting of diagrams of type (1) and (3) is the same as in above. Similarly
for the diagrams of type (2) spaced θ apart there are again n of these if n �= 2θ
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and n/2 if n = 2θ. In the generic case there are an additional n digrams with
each of the other two spacing options. However, there are now a number of
exceptional cases when a pair of θ, θ − 1 or θ + 1 coincide, or one of them
equals n/2.

If θ = 1, then the θ− 1 spacing does not occur and when θ = n− 1, the θ+ 1
spacing does not occur.

If n = 2θ + 2, then θ + 1 is n/2 so there are only n/2 diagrams with this
spacing. So there are 5n/2 diagrams of type (2) in total. Similarly, if n = 2θ− 2.

If n = 2θ ± 1, then the three spacing options become only two and there are
2n diagrams of type (2).

The numbers stated in the result are then obtained by adding up the number
of diagrams of each type as in the previous proof.

Subtracting these numbers from n2 + 2n yields the dimension of the space of
linearization equations given in the previous section.
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Laboratoire de Mathématiques Nicolas Oresme
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Abstract. A secret handshake mechanism allows two entities, members
of a same group, to authenticate each other secretly. This primitive was
introduced recently by Balfanz, Durfee, Shankar, Smetters, Staddon and
Wong and, so far, all the schemes proposed are based on discrete log
systems. This paper proposes three new secret handshake protocols se-
cure against active impersonator and detector adversaries. Inspired by
two RSA-based key agreement protocols introduced by Okamoto and
Tanaka in 1989 and Girault in 1991, our schemes are, in the random
oracle model, provably secure against active adversaries under the as-
sumption that the RSA problem is intractable.

1 Introduction

The concept of secret handshakes was introduced in 2003 [1] by Balfanz, Dur-
fee, Shankar, Smetters, Staddon and Wong. The present paper focuses on the
proposal of three new practical constructions of secret handshake protocol and
the security treatment of them: the schemes are secure against active adversaries
assuming the hardness of the RSA problem (and one of its weaker variants for
one scheme). These are the first constructs which can be instantiated with the
RSA primitive (and thus give a first step towards a problem raised in [5] by
Castelluccia, Jarecki and Tsudik)

Background. A secret handshake scheme is a cryptographic primitive recently
introduced by Balfanz et al. [1] which allows two members of the same group to
identify each other secretly, in the sense that each party reveals his/her affiliation
to the latter only if the other party is a member of the same group. These
protocols model in silico the secret handshake in the folklore of the in vivo
exclusive societies, or guilds.

The protocol proposed in [1] is a simple adaptation of the non-interactive key-
agreement scheme of Sakai, Ohgishi and Kasahara [19]. It uses one-time creden-
tials to insure that instances of the handshake protocol performed by the same
party cannot be linked. In [22], Xu and Yung proposed secret handshake schemes
that achieve unlinkability with reusable credentials. However, their schemes offer
weaker anonymity to the users who furthermore must be aware of the informa-
tion of other groups. Recently, Castelluccia et al. [5] showed how to build secret

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 252–274, 2006.
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handshake protocols using a novel tool they called CA-oblivious public-key en-
cryption which is an encryption scheme such that neither the public key, nor
the ciphertext reveal any information about the Certification Authority. Their
schemes are secure under a standard cryptographic assumption: the hardness of
the classical computational Diffie-Hellman problem. However, they also rely on
one-time credentials to reach the unlinkability property. In the first announce-
ment of their results, Castelluccia et al. stated that they know how to get CA
oblivious encryption scheme based on RSA, but the claim was incorrect and, so
far, there do not exist protocols based on RSA which offer full anonymity. In
[5], the authors explicitly stated as an open problem the construction of a secret
handshake protocol based on RSA. The investigation of this issue is the main
purpose of the present paper.

Underlying Technique. As mentioned above, in Balfanz et al.’s scheme, complet-
ing the secret handshake is essentially equivalent to computing a key in Sakai
et al.’s non-interactive key agreement protocol, that is particular to the two in-
teracting group members. The basic framework of our constructions builds on
very similar ideas from identity-based and self-certified key agreements proto-
cols. In 1984, Shamir [20] introduced the concept of identity-based cryptosys-
tems in which the public keys can be arbitrary bit strings and in particular
can be defined as a part of the publicly known identification information. In
1991, Girault [9] refined the concept and introduced self-certified public keys
which are computed by both the authority and the user, so that the certificate
is “embedded” in the public key itself, and does not take the form of a separate
value.

Our first scheme, that we call OT-SH, is based on an identity-based key
agreement protocol proposed in 1989 by Okamoto and Tanaka [16] and whose
security relies on the RSA problem [11]. The second and the third construc-
tion, called Gi+SH and Gi×SH, relies on the non-interactive self-certified key
agreement scheme proposed by Girault in his seminal paper [9] whose secu-
rity is also based on the difficulty of solving RSA [15]. Adding suitable nonces
and hash functions in these schemes (along the lines drawn in [8]), we ob-
tained secret handshake protocols whose security against active impersonator
and detector adversaries relies, in the ROM, on the difficulty of solving the
RSA problem (with the notable exception of the impersonator resistance of
Gi+SH which relies on the hardness of the so-called Difference RSA problem
[13]). The scheme OT-SH takes four rounds (as the one in [5] based on CA-
oblivious encryption), whereas the schemes Gi-SH and Gi×SH take only three
rounds (as the original proposal from [1], and the Diffie-Hellman-based scheme
from [5]). In fact, these protocols are very similar to Balfanz et al.’s original
proposal.

Finally, a protocol providing authentication without key exchange is suscep-
tible to an enemy who waits until the authentication is complete and then takes
over one end of the communications line. Therefore, we extend the new schemes
such that at the end of the handshake, the parties can set up a temporary session
key for securing further communication between them.
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2 Preliminaries

2.1 Notations

The set of n-bit strings is denoted by {0, 1}n and the set of all finite binary
strings is denoted by {0, 1}∗. Concatenation of two strings x1 and x2 is denoted
by x1‖x2 and the empty string is denoted ε.
ϕ denotes the Euler totient function and λ denotes the Carmichael reduced

totient function. For any positive integer k, Prime(k) denotes the set of prime
numbers in [[2k, 2k+1]] and 2Factors(k) the set of integers n such that n = pq with
p < q < 2p and p, q ∈ Prime(k). An element of 2Factors(k) for any k is called an
RSA-modulus.

Let A be a probabilistic Turing machine running in expected polynomial time
(a PPTM, for short), and let x be an input for A. The probability space that
assigns to a string σ the probability that A, on input x, outputs σ is denoted
by A(x). Given a probability space S, a PPTM that samples a random element
according to S is denoted by x

R←− S. For a finite set X , x
R←− X denotes a

PPTM that samples an element uniformly at random from X .
A two-party protocol is a pair of interactive probabilistic Turing machines

(A,B). An execution of the protocol (A,B) on input x for A and y for B is an
alternating sequence of A-rounds and B-rounds, each producing a message m
to be delivered to the other party. We denote by “� m” the transmission of m
from one party to the other. The sequence of such message exchanges is called a
transcript of this execution of the protocol. If, for all x and y, the length of the
transcript, as well as the expected running time of A and B on inputs x and y
respectively, are polynomial in the length of x and y, then (A,B) is a polynomial
time two-party protocol.

2.2 Underlying Problems

The security of asymmetric cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. The best known public-key primitive
is the RSA function. In order to highlight the fact that our schemes apply to any
RSA key generator, we do not pin down any particular generator, but instead
parameterize definitions and security results by a choice of generator.

Definition 1. An RSA-group generator is a PPTM that takes a security param-
eter k as input and outputs a 6-tuple (n, p, q, e, d, g) where n = pq ∈ 2Factors(k),
e ∈ [[3, 2k]], ed ≡ 1 mod ϕ(n) and g ∈ (Z/nZ)∗ of order λ(n).

The RSA assumption says, roughly speaking, that given a large RSA modulus
n, an exponent e and α in (Z/nZ)∗, it is hard to find x in (Z/nZ)∗ such that
xe = α mod n. The difference RSA assumption was introduced by Naor in [13].
This non-standard hypothesis deals with the hardness of finding two RSA preim-
ages such that the difference of their images is a given quantity α. The adver-
sary A has access to a sequence of m − 1 pairs (xi, yi) ∈ [(Z/nZ)∗]2 such that
xe

i −ye
i = α mod nwhere A chooses yi. It should find a new (xm, ym) ∈ [(Z/nZ)∗]2
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such that xe
m − ye

m = α mod n. We denote by (α+ (·)e)d the oracle that takes in-
put y ∈ (Z/nZ)∗ and returns (α+ye)d mod n. An adversary solving the difference
RSA problem is given oracle access to (α+ (·)e)d.

Definition 2. Let Gen be an RSA-group generator and let A be a PPTM. We
consider the following random experiments, where k ∈ N is a security parameter:

Experiment Exprsa
Gen,A(k)

(n, p, q, e, d, g) R←− Gen(k)
α

R←− (Z/nZ)∗

x
R←− A(n, e,α)

Return 1 if xe = α mod n,
0 otherwise

Experiment Expdiff−rsa
Gen,A (k)

(n, p, q, e, d, g) R←− Gen(k)
α

R←− (Z/nZ)∗

(x, y) R←− A(α+(·)e)d

(n, e, y)
Return 1 if the following hold and 0 otherwise

(1) xe − ye = α mod n
(2) y was not queried to (α + (·)e)d

We define the success of A via Succrsa
Gen,A(k) = Pr[Exprsa

Gen,A(k) = 1]. ( resp.
Succdiff−rsa

Gen,A (k) = Pr[Expdiff−rsa
Gen,A (k) = 1]).

Let q, τ ∈ NN. A is a a τ -RSA-adversary if for all positive integer k, the
experiment Expdiff−rsa

Gen,A (k) ends in expected time less than τ(k). A is a (q, τ)-
DIFF-RSA-adversary if for all positive integer k, the experiment Exprsa

Gen,A(k)
ends in expected time less than τ(k) and in this experiment A makes at most
q(k) queries to the oracle (α+ (·)e)d.

Let ε ∈ [0, 1]N. Gen is said to be (τ, ε)-RSA-secure if for any τ-RSA-adversary
A and any positive integer k, Succrsa

Gen,A(k) is smaller than ε(k). Gen is said
to be (q, τ, ε)-DIFF-RSA-secure if for any (q, τ)-DIFF-RSA-adversary A and any
positive integer k, Succdiff−rsa

Gen,A (k) is smaller than ε(k).

Finally, the weaker composite Diffie-Hellman assumption, related with those de-
scribed above, is defined as follows:

Definition 3. Let Gen be an RSA-group generator and let A be a PPTM. We
consider the following random experiments, where k ∈ N is a security parameter:

Experiment Expcomp−cdh
Gen,A (k)

(n, p, q, e, d, g) R←− Gen(k)
(x, y) R←− ([[1, 22k+1]])2 ; α ← gx ; β ← gy

γ
R←− A(n, g,α,β)

Return 1 if γ = gxy, 0 otherwise

Let τ ∈ NN. A is a τ -COMP-CDH-adversary if for all positive integer k, the
experiment Expcomp−cdh

Gen,A (k) ends in expected time less than τ(k). We define the
success of A via Succcomp−cdh

Gen,A (k) = Pr[Expcomp−cdh
Gen,A (k) = 1]. Let τ ∈ NN and

ε ∈ [0, 1]N. Gen is said to be (τ, ε)-COMP-CDH-secure if for any τ-COMP-CDH-
adversary A and any positive integer k, Succcomp−cdh

Gen,A (k) is smaller than ε(k).
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2.3 Ensuring That Handshakes Do Not Reveal the Group

A simple observation that seems to be folklore is that standard RSA does not
provide anonymity, even if all moduli in the system have the same length. One
approach to anonymizing RSA, suggested by Desmedt [7], is to add random mul-
tiples of the modulus n to the ciphertext. This padding removes any information
about the size of n and does not interfere with the reduction of the value modulo
n. In the following, we assume that such a technique is adopted and that the
adversary gains no information on the RSA modulus involved in some protocol
(in a statistical sense) from the encoding used in the transcript.

2.4 Proofs of Knowledge of a Discrete Logarithm

In the design of his key agreement protocol, Girault [9] needs a zero-knowledge
proof of knowledge of a discrete logarithm in a group of unknown order.

To achieve our security reductions, the executions of the protocol have to
be simulated in the ROM. Therefore, in the design of our scheme, we rely on a
procedure allowing to prove in a non-transferable way the knowledge of a discrete
logarithm without revealing information on their value. We make use of non-
interactive designated verifier zero-knowledge proof of knowledge of the discrete
logarithm of y in base g (of unknown order). The notation is DVPK(a : y = ga).
We refer the reader to [9, 10] for further details.

3 Definition of Secret Handshakes

3.1 Syntactic Definition

Roughly speaking, in a secret handshake scheme, there are group authorities
having a public key and a matching secret key (CreateGroup). They can provide
any user with a pair of keys based on its identity (AddMember) and they man-
age a certificate revocation list for the group (RemoveMember). The users can
then identify themselves in a protocol (Handshake) in which the parties involved
begin by knowing only the claimed identities and their own secret key provided
by their authority (not necessarily the same). The formal definition of secret
handshake schemes proposed by Castelluccia et al. and Xu and Yung in [5, 22]
is the following:

Definition 4 ([5, 22]). A secret handshake protocol SH is a 5-tuple
(Setup, CreateGroup, AddMember, RemoveMember, Handshake) such that

– SH.Setup is a PPTM which takes an integer k as input. The outputs are the
public parameters. k is called the security parameter.

– SH.CreateGroup is a PPTM which takes the public parameters as input and
outputs a pair of group keys (pkG, skG). It may also output a data structure
CRL called a certificate revocation list which is originally empty.

– SH.AddMember is a polynomial time two-party protocol (Member, Group)
where
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1. SH.AddMember.Member takes the public parameters, a bit string ID and
a group public key pkG as inputs;

2. SH.AddMember.Group takes the public parameters, ID and the matching
group secret key skG as inputs.

SH.AddMember.Member outputs a pair of member keys (pkID, skID) associ-
ated with [pkG, ID].

– SH.RemoveMember is a PPTM which takes the public parameters, a bit string
ID, a group pair of keys (pkG, skG) and the corresponding current CRL as
inputs. It outputs an updated CRL which includes the newly revoked certifi-
cate ID.

– SH.Handshake is a polynomial time two-party protocol (Init, Match) where
1. SH.Handshake.Init takes the public parameters, a pair of (IDI, IDM), a

group public key pkGI , (pkIDI
, skIDI) a pair of member keys associated

with [pkGI , IDI] and a member public key pkIDM
as inputs;

2. SH.Handshake.Match takes the public parameters, the pair (IDI, IDM), a
group public key pkGM and (pkIDM

, skIDM) a pair of member keys asso-
ciated with [pkGM , IDM] and pkIDI

as inputs.
The algorithms jointly output Accept if pkGI = pkGM ∧{IDI, IDM}∩CRL = ∅
and Reject otherwise.

3.2 The Random Oracle Debate

The proof of security for our schemes takes place in the random oracle model,
introduced in [2]. In this model, cryptographic protocols are designed and proved
secure under the additional assumption that publicly available functions, that
are chosen truly at random, exist. These random oracles can only be accessed in
a black-box way, by providing an input and obtaining the corresponding output.
It has been pointed out that a proof of security in the ROM does not guarantee
the existence of an instantiation of the random oracle under which the scheme
is secure [4]. However, security proofs in the ROM remain “strong indicators”
of the security of an analyzed protocol. Note that, to prove the security of the
new schemes, there is no need to assume that all the involved hash functions
act as random oracles. Indeed, it is possible to model one of them as a non-
programmable random oracle. The NPROM is known to be strictly weaker than
the ROM [14]. In view of the previous remark, it is a legitimate desire to construct
protocols relying as little as possible on random oracles. Therefore, even if our
security analysis is carried out in the ROM, we will nevertheless modelize some
hash functions as (weaker) non-programmable random oracle.

3.3 Security Requirements

This subsection recalls the security model formally defined in [5, 22]. Roughly
speaking, a secret handshake protocol must satisfy the following properties:

1. completeness: if two members engage in the protocol SH.Handshake with valid
pair of keys associated with the same group public key, then both parties
output Accept at the end of the protocol;
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2. impersonator resistance: given a group public key, it is computationally in-
feasible without the knowledge of some secret key associated with it to suc-
cessfully execute the protocol SH.Handshake with a member of this group;

3. detector resistance: given a group public key pkG and a member public key
pkID, it is computationally infeasible to determine whether pkID is associated
with pkG without the knowledge of a secret key associated with pkG;

4. indistinguishability to eavesdropper: given two member public keys associated
with the same group public key, it is computationally infeasible to distinguish
a successful handshake between these members from an unsuccessful one.

In this paper, we consider active adversaries against the impersonator resis-
tance (IMP-ACT), the detector resistance (DET-ACT) and the indistinguisha-
bility (IND-ACT) of our schemes. The attacker is allowed to run the protocols
several times: she can see all exchanged messages, can delete, alter, inject and
redirect messages, can initiate communications with another party and can reuse
messages from past communications. The adversary is able to trigger several ex-
ecutions of the protocol Handshake. She is also able to interleave these instances,
asynchronously and concurrently, with executions with rightful members of the
group. The attacker is also allowed to corrupt some users and to ask for addi-
tional member keys at any time, and she can do so adaptively.

As usual an adversary is formalized by a PPTM A that is allowed access to
different oracles modeling the capacities mentioned above:

– OCG: it activates a new group authority via algorithm SH.CreateGroup. We
assume that a group authority is not under A’s control before the new group
is established.

– OAM: given as input the identity of a group authority, it executes the protocol
SH.AddMember. The algorithm admits an honest user and assigns it with a
unique pseudonym ID.

– OHS: given as inputs two pseudonyms IDI and IDM , it activates the proto-
col SH.Handshake between the corresponding members, where none, one or
both of them may have been corrupt. A corrupt user will execute what the
adversary is pleased of.

– ORM: given as input the identity of a group authority and a bit string ID, it
executes SH.RemoveMember to insert ID in the corresponding CRL.

– OCo: given as input the identity of a group authority G and possibly a
pseudonym ID associated with G, the oracle returns, to A, the current inter-
nal state information (including all secrets) of G or ID’s associated member.
Once a group or a member is corrupt it will execute what A is pleased of, un-
til such a corruption is detected. If the corruption of a member is detected,
it is excluded from its group via the algorithm SH.RemoveMember. If the
corruption of a group is detected, it is excluded from the system.

Resistance to impersonation attacks. This property captures the requirement
that an adversary who does not belong to or does not corrupt a member of
a group G managed by an uncorrupt group authority, has only a negligible
probability of convincing an honest user of G that she is also a member of
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G. We consider an adversary A in the ROM. She takes the public parameters
as input, and outputs a triple (G�, ID�, d�). A has access to the random ora-
cle(s) OH and to the oracles OCG, OAM, OHS, ORM, and OCo. She succeeds
if ID� belongs to G�; G� remains uncorrupt during A’s execution; all corrupt
users from G� are excluded from G� (in particular ID� is uncorrupt) and if the
protocol SH.Handshake(A, ID�) returns Accept when d� = 0 or if the protocol
SH.Handshake(ID�,A) returns Accept when d� = 1 (i.e. A initiates the final
handshake if and only if d� = 0).

Definition 5. Let SH be a secret handshake scheme and let A be a PPTM. We
consider the following random experiment, where k ∈ N is a security parameter:

Experiment Expimp-act
SH,A (k)

P R←− SH.Setup(k)
(G�, ID�, d�) ← AOH,OCG,OAM,OHS,ORM,OCo(P)
Return 1 if the following hold and 0 otherwise

(1) G� was obtained by a OCG query
(2) ID� was obtained by a OAM(G�) query
(3) neither OCo(G�) nor OCo(G�, ID�) was queried
(4) if OCo(G�, ID) for some ID is queried, then ORM(G�, ID) is queried
(5) if d� = 0, then SH.Handshake(A, ID�) returns Accept

if d� = 1, then SH.Handshake(ID�,A) returns Accept

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN. A is a (qH, qCG, qAM, qHS, qRM, qCo, τ)-
IMP-ACT-adversary if for all positive integer k, the experiment Expimp-act

SH,A (k)
ends in expected time less than τ(k) and in this experiment A makes at most
qx(k) queries to the oracle Ox for x in {H, CG, AM, HS, RM, Co}. We define the
success of the adversary A, via Succimp−act

SH,A (k) = Pr
[
Expimp−act

SH,A (k) = 1
]
.

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN and let ε ∈ [0, 1]N. The scheme SH is
said to be (qH, qCG, qAM, qHS, qRM, qCo, τ, ε)-resistant to impersonation against
active adversary, if for any (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary
A and any positive integer k, the function Succimp−act

SH,A (k) is smaller than ε(k).

Resistance to detection attacks. This property captures the requirement that
an adversary who does not belong to or does not corrupt a member of a group
G managed by an uncorrupt group authority, has only a negligible advantage
in distinguishing an interplay with an honest member of G from one with a
simulator. We consider an adversary A in the random oracle model, which runs
in two stages. In the find stage, she takes the public parameters P as input,
and outputs a triple (G�, ID�, d�), with some state information I�. In the guess
stage, she gets the information I�, executes SH.Handshake with the challenger
and outputs a bit b�.

The adversary A has access to the random oracle(s) OH and to the oracles
OCG, OAM, OHS, ORM, and OCo. In the guess stage, the challenger picks a bit
b at random, and the protocol SH.Handshake is executed with ID� if b = 0, or
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executed with a simulator SIM delivering values sampled uniformly at random
in the suitable encoding space, if b = 1. A succeeds if ID� belongs to G�; G�

remains uncorrupt during A’s execution; all corrupt users from G� are excluded
from G� (in particular ID� is uncorrupt) and if d� = b.

Definition 6. Let SH be a secret handshake scheme and let A be a PPTM. We
consider the following random experiment, where k ∈ N is a security parameter:

Experiment Expdet-act-b
SH,A (k)

P R←− SH.Setup(k)
(G�, ID�, d�, I�) ← AOH,OCG,OAM,OHS,ORM,OCo(find,P)
Ud� ← AOH,OCG,OAM,OHS,ORM,OCo(find, I�)
if b = 0 then U1−d� ← ID�, else U1−d� ← SIM
Execute SH.Handshake(U0,U1)
b� ← AOH,OCG,OAM,OHS,ORM,OCo(guess, I�)
Return 1 if the following hold and 0 otherwise

(1) G� was obtained by a OCG query
(2) ID� was obtained by a OAM(G�) query
(3) neither OCo(G�) nor OCo(G�, ID�) was queried
(4) if OCo(G�, ID) for some ID is queried, then ORM(G�, ID) is queried
(5) b� = b

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN. A is a (qH, qCG, qAM, qHS, qRM, qCo, τ)-
DET-ACT-adversary if for all positive integer k, the experiment Expdet-act

SH,A (k)
ends in expected time less than τ(k) and in this experiment A makes at most
qx(k) queries to the oracle Ox for x in {H, CG, AM, HS, RM, Co}. We define the
advantage of the adversary A, via

Advdet−act
SH,A (k) =

∣∣∣Pr
[
Expdet−act−0

SH,A (k) = 1
]
− Pr

[
Expdet−act−1

SH,A (k) = 1
]∣∣∣ .

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN and let ε ∈ [0, 1]N. The scheme SH
is said to be (qH, qCG, qAM, qHS, qRM, qCo, τ, ε)-resistant to detection against ac-
tive adversaries, if for any (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary
A and any positive integer k, the function Advdet−act

SH,A (k) is smaller than ε(k).

Indistinguishability to eavesdropper. This property captures the requirement
that an adversary has only a negligible advantage of distinguishing a successful
handshake between uncorrupt members of a group G managed by an uncorrupt
group authority from an unsuccessful one. We consider an adversary A in the
ROM, which runs in two stages. In the find stage, she takes the public parame-
ters P as input, and outputs a triple (G�, ID�

I , ID
�
M ) with some state information

I�. In the guess stage, she gets the information I� and Υ �, generated by the
challenger depending on a random bit b. If b = 0, then Υ � is the transcript of an
execution of SH.Handshake between (ID�

I , ID
�
M ), otherwise Υ � is a bit string sam-

pled uniformly at random in the transcript space. Eventually A(guess) outputs
a bit d�.
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The adversary A has access to the random oracle(s) OH and to the oracles
OCG, OAM, OHS, ORM, and OCo. It succeeds if d� = b, if ID�

I and ID�
M belongs

to G�, and if G�, ID�
I and ID�

M remain uncorrupt during A’s execution.

Definition 7. Let SH be a secret handshake scheme and let A be a PPTM. We
consider the following random experiment, where k ∈ N is a security parameter:

Experiment Expind-act-b
SH,A (k)

P R←− SH.Setup(k)
(G�, ID�

I , ID
�
M , I�) ← AOH,OCG,OAM,OHS,ORM,OCo(P)

if b = 0 then Υ � ← SH.Handshake(ID�
I , ID

�
M ) else Υ � R←− TranscriptSpace

Return 1 if the following hold and 0 otherwise
(1) G� was obtained by a OCG query
(2) ID�

I and ID�
M were obtained by a OAM(G�) query

(3) neither OCo(G�) nor OCo(G�, ID�) was queried
(4) d� = b

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN. A is a (qH, qCG, qAM, qHS, qRM, qCo, τ)-
IND-ACT-adversary if for all positive integer k, the experiment Expind-act-b

SH,A (k)
(b ∈ {0, 1}) ends in expected time less than τ(k) and in this experiment A makes
at most qx(k) queries to the oracle Ox for x in {H, CG, AM, HS, RM, Co}. We
define the advantage of the adversary A, via

Advind−act
SH,A (k) =

∣∣∣Pr
[
Expind−act−real

SH,A (k) = 1
]
− Pr

[
Expind−act−random

SH,A (k) = 1
]∣∣∣ .

Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN and let ε ∈ [0, 1]N. The scheme SH is
said to be (qH, qCG, qAM, qHS, qRM, qCo, τ, ε)-indistinguishable against active ad-
versaries, if for any (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary A and
any positive integer k, the function Advind−act

SH,A (k) is smaller than ε(k).

4 The New Protocols

Let Gen be an RSA-group generator. For any integer k ∈ N (resp. r ∈ N), let
[{0, 1}∗ −→ {0, 1}k] (resp. [{0, 1}∗ −→ {0, 1}r]) be a hash function family and
Hk (resp. Gr) be a random member of this family. Let f : N −→ N, we denote in
the following r = f(k) (this map is derived from the security proofs; in practice,
for a security requirement of 280 operations, we use the values k = 1024 and
r = 160). For all tuple (n, p, q, e, d, g) output by Gen, and all bit strings ID in
{0, 1}∗, with overwhelming probability the integer x, whose binary encoding is
Hk(ID), is invertible modulo n. For the sake of simplification, we suppose that
this always happens. Moreover, let us recall that an appropriate mechanism is
used in order to ensure that encodings of integers modulo n do not reveal the
value of n.
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4.1 Heuristic of the Constructions

As described above, the adversaries are afforded enormous power. Therefore, it
appears prudent to follow general principles in the design of secret handshake
protocols (paraphrased from [8]):

– asymmetry principle: asymmetry in a protocol is desirable.
Symmetries in a protocol should be used with caution, due to both the
possibility of reflection attacks, and attacks in which responses from one
party can be re-used within a protocol.

– chronology principle: messages within a particular protocol run should be
logically linked or “chained” in some manner.
This principle is aimed at precluding replay attacks and interleaving attacks.

– “add your own salt” principle: a party should be able to incorporate into
the data being operated on a reasonable amount of data which he himself
randomly selects.
In other words, a protocol should not require a party to carry out a crypto-
graphic operation on inputs which may be entirely under the control of an
adversary. The objective is to prevent the so called chosen-ciphertext attacks.

Moreover, mutual authentication is hardly an end in itself: a party goes
through a secret handshake protocol in order to then conduct some transaction
that is allowed only to member of his group. In an open setting, the authenti-
cation by itself is largely useless because an adversary can “hijack” the ensuing
session. Therefore, to have secure transactions, some information from the hand-
shake protocol must be used to authenticate flows in the transaction. We will
come back to this issue in section 7, but note hic et nunc that this session key
exchange should be designed with caution:

– link principle: authentication and key exchange should be linked.
If mutual authentication and key exchange are independent, then an attacker
could allow two parties to carry out authentication unhindered, and could
take over one’s party role in key exchange.

4.2 Description of OT-SH

Okamoto and Tanaka’s Identity-Based Key Agreement Scheme. The
identity-based key exchange protocol proposed by Okamoto and Tanaka in 1989
[16] is described as follows: on input a security parameter k, a trusted authority
(the Private Key Generator, PKG) runs the RSA-group generator Gen, publishes
(n, e, g), and keeps (p, q, d) secret. Let Alice and Bob be two entities of which
identification information is IDA and IDB, respectively.

Alice keeps sA = Hk(IDA)−d mod n computed by the PKG as her own secret
(and so does Bob with sB = Hk(IDB)−d mod n). The scheme is then basically
the Diffie-Hellman scheme implemented over (Z/nZ)∗ (see figure 1). The security
of this scheme remained open until 1998 when a solution was given by Mambo
and Shizuya [11].
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Alice Bob
kA

R←− [[1, n]]
cA ← sAgkA mod n

cA−−−−−−−−−−−−−−−−→
kB

R←− [[1, n]]
cB←−−−−−−−−−−−−−−−− cB ← sBgkB mod n

K = (Hk(IDB)ce
B)kA mod n K = (Hk(IDA)ce

A)kB mod n

Fig. 1. Description of Okamoto-Tanaka identity-based key exchange protocol

Description of OT-SH. Our first new secret handshake scheme OT-SH is a
simple variant of the previous protocol. The Setup algorithm establishes as public
parameters the RSA-group generator and the hash functions Hk and Gr . The
algorithm CreateGroup is identical to the PKG key generation and the protocol
AddMember to a user registration. The 4-round protocol Handshake is designed
thanks to appropriate used of nonces and hash values (following the principles
exemplified in the previous section) in the key exchange protocol. The scheme
is described with all details in figure 2.

Algorithm Setup
Input: k ∈ N
Output: P
P = (k, Gen, Hk)

Algorithm CreateGroup
Input: P
Output: (pkG, skG)

(n, p, q, e,d, g) R←− Gen(k)
pkG ← (n, e, g) skG ← d

Protocol AddMember
Common Input: P ,pkG = (n, e, g), ID
Member Input: ε
Group Input: skG = d
Output: (pkID, skID)
pkID ← ε

skID ← (Hk(ID))−d mod n

Protocol Handshake
Common Input: P , IDI, IDM, pkIDI , pkIDM

Init Input: pkGI = (nI, eI, gI), skIDI Match Input: pkGM = (nM, eM, gM), skIDM

Output: (bI, bM) ∈ {Accept, Reject}2

① Init’s round: kI
R←− {0, 1}nI , cI ← skIDI · gkI

I mod nI � cI

❶ Match’s round: kM
R←− {0, 1}nM , cM ← skIDM · g

kM
M mod nM � cM

② Init’s round: VI ← Gr (Hk(IDM) · c
eI
M)kI mod nI‖IDI‖IDM‖cI‖cM‖0 � VI

❷ Match’s round
If Gr (Hk(IDI) · c

eM
I )kM mod nM‖IDI‖IDM‖cI‖cM‖0 = VI

then bM = Accept ; VM ← Gr((Hk(IDI) · ceM
I )kM mod nM‖IDI‖IDM‖cI‖cM‖1)

else bM = Reject ; VM
R←− {0, 1}r � VM

• Init’s execution ending
If Gr (Hk(IDM) · c

eI
M)kI mod nI‖IDI‖IDM‖cI‖cM‖1 = VM

then bI ← Accept else bI ← Reject

Fig. 2. Description of the scheme OT-SH

4.3 Description of Gi+SH and Gi×SH

Girault’s Self-certified Key Agreement Scheme. In 1991, Girault [9] pro-
posed a key agreement which allows to obtain a shared secret key without
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exchange of messages (but it does require that the public keys of each party
are known to the other), based on his new idea of self-certified public key. Rig-
orous security of this protocol (and variants) has been made clear only recently
[15] by Oh, Mambo, Shizuya and Won. With the notations from section 4.2,
Alice picks uniformly at random sA ∈ Z/nZ, computes S = gsA mod n and
sends SA together with a designated verifier proof of knowledge of sA to the
authority. If the proof is valid, the authority computes Alice’s public key PA

as the RSA signature of the difference (resp. quotient) of SA and Hk(IDA):
PA = (SA − Hk(IDA))d mod n (resp. PA = (SA/Hk(IDA))d mod n), there-
fore gsA = P e

A + Hk(IDA) mod n (resp. gsA = P e
A · Hk(IDA) mod n). Sim-

ilarly, Bob’s public key is PB such that gsB = P e
B + Hk(IDB) mod n (resp.

gsB = P e
B · Hk(IDB) mod n) and sB is known only to Bob. Alice and Bob can

thereafter simply exchange an authenticated key by choosing

K = (P e
A + Hk(IDA))sB = (P e

B + Hk(IDB))sA mod n(
resp. K = (P e

A · Hk(IDA))sB = (P e
B · Hk(IDB))sA mod n

)
This protocol is clearly related to Diffie-Hellman’s one, but contrary to it, makes
Alice sure that she shares K with Bob and conversely.

Description of Gi+SH and Gi×SH. The new secret handshake schemes Gi-
SH and Gi×SH are completely analogous to the one proposed in [1] by Balfanz et
al.: the non-interactive key-agreement protocol of Sakai et al. being replaced by
Girault’s additive and multiplicative scheme (respectively). They are described
in figure 3.

Remark 1. Note that, in the schemes Gi⊕SH (with ⊕ = + or ⊕ = ×), after the
run of the protocol Gi⊕SH.AddMember, the group authority does not learn the
secret key of the member and thus in contrast to the previous scheme, cannot
impersonate that member. However, in [18], Saeednia described a shortcoming of
Girault’s self-certified model that may be exploited by the authority to compute
users’ secret keys. This attack applies as well on Gi⊕SH, but it is easy to make
this attack ineffective by taking additional precautions. This might be interesting
for high-security needs (e.g. in traitor tracing).

5 Security Results

The following theorems state that the advantage of any active impersonator,
detector or distinguisher adversary against the schemes OT-SH and Gi⊕SH in
the ROM can be upper-bounded via an explicit function related to the success
of solving the RSA problem, the difference RSA problem or the composite Diffie-
Hellman problem in Gen. More precisely, the hash function Hk is modeled by a
random oracle, while the hash function Gr is modeled by a non-programmable
random oracle (more precisely, we only suppose that Gr has the evaluation point
knowledge (EPK) property: it is not possible to learn the value of what Gr(σ)
without knowing the bit string σ).
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Algorithm Setup
Input: k ∈ N
Output: P
P ← (k, Gen, Hk)

Algorithm CreateGroup
Input: P
Output: (pkG, skG)

(n, p, q, e, d, g) R←− Gen(k) ; pkG ← (n, e, g) ; skG ← d

Protocol AddMember
Common Input: P ,pkG, ID Group Input: skG

Output: (pkID, skID)

① Member’s round: skID
R←− [[2k , 2k+1]], S ← gskID , p R←− DVPK(γ|S = gγ) � (S, p)

❶ Group’s round: Verify p ; pkID ← (S � Hk(ID))d mod n � pkID

Protocol Handshake
Common Input: P , IDI, IDM, pkIDI , pkIDM

Init Input: pkGI = (nI, eI, gI), skIDI

Match Input: pkGM = (nM, eM, gM), skIDM

Output: (bI, bM) ∈ {Accept, Reject}2

① Init’s round: rI
R←− {0, 1}r � rI

❶ Match’s round: rM
R←− {0, 1}r ;

VM ← Gr (pkIDI
eM ⊕ Hk(IDI))skIDM mod nM‖IDI‖IDM‖rI‖rM‖0 � (rM, VM)

② Init’s round: KI ← (pkIDM
eI ⊕ Hk(IDM))skIDI mod nI

If Gr [KI‖IDI‖IDM‖rI‖rM‖0] = VM

then bI ← Accept; VI ← Gr [KI‖IDI‖IDM‖rI‖rM‖1]
else bI ← Reject; VI

R←− {0, 1}r � VI

• Match’s execution ending
If Gr (pkIDI

eM ⊕ Hk(IDI))skIDM mod nM‖IDI‖IDM‖rI‖rM‖1 = VI

then bM ← Accept ; else bM ← Reject

Fig. 3. Description of the schemes Gi+SH and Gi×SH ((⊕,�) = (+, −) and (×, /))

In all cases but two, the proof is more or less routine: the main difficulty of
the analysis comes from the introduction of the RSA challenge into the public
base. Indeed in the reductionist security proofs, the element g, supposed to be of
maximal order in (Z/nZ)∗, is replaced by a random element of (Z/nZ)∗. Lemma
1 asserts that with probability close to exp(−1), among (k + 1)2 such random
elements there is an element with order λ(n).

Lemma 1. Let k ≥ 1 be an integer, and let n ∈ 2Factors(k). If an integer g is
drawn uniformly at random from [[1,n]], then Pr[ord(g) = λ(n)] > 1/(110 lnk).

Proof. This lemma is a simple consequence of [17, Theorem 15]. ��

We illustrate the application of this lemma in the proof of the impersonation
resistance of OT-SH (cf. Theorem 1). The impersonation resistance (as the de-
tection resistance) of Gi+SH rely on the difference RSA problem. Since this is
a less classical assumption, we carry out the arguments in full detail (cf. Theo-
rem 2). The remaining four security results are left to the reader and will follow
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similar proofs for the two given here. In the theorems, TExp(k) denotes the time
complexity for an exponentiation modulo a 2k + 1-bit integer.

5.1 Security of the Scheme OT-SH

Theorem 1. Let Gen be an RSA-group generator, let f : N → N and let OT-SH
be the secret handshake protocol instantiated with Gen and f .
Let qH, qCG, qAM, qHS, qRM, qCo, τ ∈ NN.

1. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary against OT-
SH, in the ROM. There exist a τ ′-RSA adversary B such that{

Succrsa
Gen,B(k) ≥ Succimp−act

OT-SH,A(k)/(110 ln(k) · qCG(k)qH(k))
τ ′(k) ≤ [τ(k) + (qH(k) + qCG(k) + qAM(k) + 3qHS(k) +O(1))TExp(k)]

for all positive integers k.
2. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary against OT-

SH, in the ROM. There exist a τ ′-RSA adversary B such that{
Succrsa

Gen,B(k) ≥ Advdet−act
OT-SH,A(k)/(220 ln(k) · qCG(k)qH(k))

τ ′(k) ≤ [τ(k) + (qH(k) + qCG(k) + qAM(k) + 3qHS(k) +O(1))TExp(k)]

for all positive integers k.
3. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary against OT-

SH, in the ROM, making at most qG(k) queries to the non-programmable
random oracle OG in the experiments Expind-act-b

OT-SH,A(k) (for b ∈ {0, 1} and
k ∈ N). There exist a τ ′-COMP-CDH adversary B such that{

Succcomp−cdh
Gen,B (k) ≥ Advind−act

OT-SH,A(k)/[2qG(k)]
τ ′(k) ≤ τ(k) + (qH(k) + 3qHS(k) +O(1))TExp(k)

for all positive integers k.

Proof. We prove only the first part of the theorem. Our method of proof is
inspired by Shoup [21]: we define a sequence of games Game0, . . . , Game5 starting
from the actual adversary A and modify it step by step until we reach a final
game whose success probability has an upper bound related to solving the RSA
problem. All the games operate on the same underlying probability space: the
setup, the public and private keys of the groups and the members, the coin tosses
of A and the random oracle.

Let k be a security parameter, let (n, p, q, e, d, g) be a 6-tuple generated by
Gen(k) and let α ∈ (Z/nZ)∗ be a random instance of the RSA problem. We
construct a reduction algorithm B which on input (n, e,α) outputs an element
x ∈ (Z/nZ)∗ aimed to satisfy xe = α mod n.

Game0 We consider a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary A,
against the scheme OT-SH instantiated with the RSA-group genera-
tor Gen, in the random oracle model. A takes the public parameters
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as input, and outputs a triple (G�, ID�, d�). A has access to the random
oracle OH and to the oracles OCG, OAM, OHS, ORM, and OCo. A suc-
ceeds if ID� belongs to G�, G� remains uncorrupt during A’s execution,
all corrupt users from G� are excluded from G� and if in the protocol
OT-SH.Handshake(A, ID�) (resp. OT-SH.Handshake(ID�,A)), the mem-
ber ID� returns Accept when d� = 0 (resp. when d� = 1).

In any game Gamei (i ∈ [[1, 5]]), we denote by Impi this event. With-
out loss of generality we can suppose that any time A makes a query
involving a pseudonym ID to one of the oracles OCG, OAM, OHS, ORM,
and OCo, A has previously queried ID to the random oracle OH. In par-
ticular, we suppose that A has queried ID∗ and IDA (the pseudonym
used by A in the final execution of OT-SH.Handshake) to the random
oracle OH. By definition, we have Pr[Imp0] = Succimp−act

OT-SH,A(k).
Game1 The algorithm B picks uniformly at random an index �1 ∈ [[1, qCG(k)]]

and aborts if the group G� was not obtained at the �1’s query to the
oracle OCG. We obtain Pr[Imp1] = Pr[Imp0]/qCG(k).

Game2 B simulates the OCG oracle. For the i-th query (i ∈ [[1, qCG(k)]] \ {�1}),
B executes Gen(k) and gets (ni, pi, qi, ei, di, gi). It outputs (ni, ei, gi) as
the answer to A’s i-th query for the group denoted by Gi and stores di.
For the �1-th query, B picks uniformly at random r′ ∈ (Z/nZ)∗, com-
putes r = re mod n and outputs (n, e, (rα)e). We denote by Λ the event
that (rα)e is of order λ(n) in (Z/nZ)∗. If Λ happens, then the distri-
bution of the group authorities keys is unchanged. Therefore, we have
Pr[Imp2|Λ] = Pr[Imp1].

Game3 The algorithm B picks uniformly at random an index �2 ∈ [[1, qH(k)]]. For
the i-th bit string ID queried to OH, B picks at random sID ∈ (Z/nZ)∗

and B sets hID = se2

ID if i �= �2, otherwise it sets hID = se
ID ·α. B returns hID

as the answer to the oracle call and stores the 4-tuple (ID,hID, sID, i) in
the Hk-List. B discards execution such that IDA was not the �2-th query
to the oracle H. We obtain Pr[Imp3] = Pr[Imp2]/qH(k).

Game4 Now, B simulates the OAM and the OCo oracles. The queries OAM(Gi)
for i ∈ [[1, qCG(k)]] are easily simulated since OT-SH.AddMember outputs
only a secret key associated with a pseudonym.

For all i ∈ [[1, qCG(k)]] \ {�1}, thanks to the knowledge of di, B can per-
fectly simulate the member key generation protocol for the groupGi, and
therefore can reply to A’s queries involving members ofGi. For a member
of G� with pseudonym ID queried to the OAM or the OCo oracle, we know
that ID �= IDA. Therefore B can retrieve sID in the Hk-List and computes
the d-th power of OH(ID)−1 = h−1

ID as s−e
ID . Thanks to the knowledge of

this value B can reply to A’s queries involving members of G�. This per-
fectly simulates the oracles, therefore we have Pr[Imp4|Λ] = Pr[Imp3|Λ].

Game5 Finally, B simulates the handshake protocols for members with
pseudonyms say IDI and IDM . The only difficulty happens when IDI =
IDA or IDM = IDA. In this case, B picks uniformly at random u ∈ [[1,n]],
sets cI = (rα)eu ·s−e

IDI
or cM = (rα)eu ·s−d

IDM
(respectively). The algorithm

B picks uniformly at random v ∈ [[1,n]], sets cA = s−1
IDAr

′(rα)v (so that
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[cA(sIDAα
d)] ∈ 〈g〉) and K = (ceAhIDA)u. Querying these suitable values

to the non-programmable random oracle Gr , B can perfectly simulate
the OHS. Therefore, we have Pr[Imp5|Λ] = Pr[Imp4|Λ].

To summarize, when the Game5 terminates, A outputs the triple (G�, ID�, d�)
such that G�’s public key is (n, e, (rα)e) and OH(ID�) = se2

ID� . Equiped with
the pseudonym IDA, A interacts with the reduction algorithm B emulating the
member with pseudonym ID� to execute the protocol OT-SH.Handshake(A, ID�)
(or OT-SH.Handshake(A, ID�) depending on d�).

From the simulation, we know that OH(IDA) = se
IDAα. Whatever the bit d�

is, B picks uniformly at random t ∈ [[1,n]] such that t is coprime to e and sets
cID� = (rα)tse

ID� in the execution of the handshake protocol.

• If the protocol is successful, thanks to the EPK property of Gr, B retrieves
in its transcript K and cIDA such that K = gek�kA , cIDA = gkAs−1

IDAα
−d and

cID� = gk�

(s−e2

ID� )d = gk�

s−e
ID� = (rαe)k�

s−e
ID� .

If Λ happens, then ek� ≡ t mod λ(n), ctIDA = gtkAs−t
IDAα

−dt = Ks−t
IDAα

−dt

and thus we have (ctIDAK
−1st

IDA)e = α−t. Finally, using the extended Eu-
clidean algorithm B finds integers u, v such that ev − tu = 1, and computes
x = (ctIDAK

−1s−t
IDA)uαv mod n such that[
(ctIDAK

−1s−t
IDA)uαv

]e
= α−tuαev = α mod n.

• Otherwise, B picks uniformly at random x ∈ [[1,n]].

The output of B is x and with probability at least Pr[Imp5|Λ] + 2−2k−1 it is
equal to the e-th root of the RSA challenge α. This probability is greater than
Succimp−act

OT-SH,A(k)/(qCG(k)qH(k)). By lemma 1, we get the claimed bounds for
Succrsa

Gen,B and τ ′. ��

5.2 Security of the Scheme Gi+SH

Theorem 2. Let Gen be an RSA-group generator, let f : N → N and let Gi+SH
be the secret handshake protocol instantiated with Gen and f .
Let qH, qG , qCG, qAM, qHS, qRM, qCo, τ ∈ NN.

1. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary against
Gi+SH, in the ROM. There exist a τ ′-DIFF-RSA adversary B such that{

Succdiff−rsa
Gen,B (k) ≥ Succimp−act

Gi+SH,A(k)/[exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]
τ ′(k) ≤ τ(k) + (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) +O(1))TExp(k)

for all positive integers k.
2. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary against

Gi+SH, in the ROM. There exist a (qAM + qCo, τ
′)-DIFF-RSA adversary B

such that{
Succdiff−rsa

Gen,B (k) ≥ Advdet−act
Gi+SH,A(k)/[2 exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]

τ ′(k) ≤ (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) +O(1))TExp(k)

for all positive integers k.
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3. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary against
Gi+SH, in the ROM, making at most qG(k) queries to the non-programmable
random oracle OG in the experiments Expind-act-b

Gi+SH,A(k) (for b ∈ {0, 1} and
k ∈ N). There exist a τ ′-COMP-CDH adversary B such that{

Succcomp−cdh
Gen,B (k) ≥ Advind−act

Gi+SH,A(k)/[2qG(k)]
τ ′(k) ≤ τ(k) + (qH(k) +O(1))TExp(k)

for all positive integers k.

Proof. Again, we prove only the first part of the theorem. Let k be a security pa-
rameter, let (n, p, q, e, d, g) be a 6-tuple generated by Gen(k) and let α ∈ (Z/nZ)∗

be a random instance of the RSA problem. We construct a reduction algorithm
B which on input (n, e,α) outputs a pair (x, y) ∈ [(Z/nZ)∗]2 aimed to satisfy
xe − ye = α mod n.

We follow essentially the previous proof with games Game0 and Game1 anal-
ogous to the corresponding games. With the same notation, we get

Pr[Imp1] = Succimp−act
GI+SH,A(k)/qCG(k).

Game2 B simulates the OCG oracle. For the i-th query (i ∈ [[1, qCG(k)]] \ {�}),
B executes Gen(k) and gets (ni, pi, qi, ei, di, gi). It outputs (ni, ei, gi) as
the answer to A’s i-th query for the group denoted by Gi and stores di.
For the �-th query, B outputs (n, e, ge2

) as G�’s public key. The distribu-
tion of the group authorities keys is unchanged, and therefore, we have
Pr[Imp2] = Pr[Imp1].

Following Coron’s technique [6], a random coin decides whether B introduces
the challenge α in the hash answer to the oracle OH, or an element with a known
preimage. Let δ ∈ [0, 1].

Game3 In this game, for each fresh bit string ID queried to OH, B picks at
random a bit tID

R←− Bδ, where Bδ is the probability distribution over
{0, 1} where 0 is drawn with probability δ and 1 with probability 1 − δ.
B stores in a list denoted by Hk-List a 4-tuple (ID,OH(ID),⊥, tID). B
discards execution which outputs a triple (G�, ID�, d�) such that tID� = 1
or tIDA = 0.

Since for each bit string ID queried to OH, the bit tID is picked indepen-
dently of the execution of the game Game4, we have Pr[Imp3|Λ] = δ(1−δ)
Pr[Imp2|Λ].

Game4 Now, B immediately aborts if A makes a query to OAM or OCo involving
a pseudonym ID such that tID > 0. Thus Pr[Imp4|Λ] = δqAM(k)+qCo(k)

Pr[Imp3|Λ].
Game5 In this game, B simulates the random oracle OH. For each fresh bit

string ID queried to OH, B picks uniformly at random mID ∈ [[1,n]].
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With probability p, it sets hID = me
ID · α and tID = 0; otherwise B picks

tID ∈ [[1,n]], coprime to e, and sets hID = ge·tID − me
ID. B returns hID as

the answer to the oracle call and stores the 4-tuple (ID,hID, mID, tID) in
the Hk-List. In the random oracle model, this game is clearly identical
to the previous one, therefore Pr[Imp5] = Pr[Imp4].

Game6 Now, B simulates the OAM and the OCo oracles.
For all i ∈ [[1, qCG(k)]] \ {�}, thanks to the knowledge of di, B can

perfectly simulate the member key generation protocol for the group Gi,
and therefore can reply to A’s queries involving members of Gi.

For queries OAM(G�), B picks uniformly at random a pseudonym ID
and queries OH on ID, B act as follows:
• If tID = 0, then B picks uniformly at random sID ∈ [[1,n]] and queries
TID = (−mID)−ege2sID to its oracle (α + (·)e)d. It gets the value UID,
and sets pID = −UID × mID mod n. It outputs pID as the public key
associated with G� and ID and stores (pID, sID) in a list denoted by
KeyList.

• Otherwise, B outputs mID as the public key associated with G� and
ID and stores (mID,⊥) in a KeyList.

The behaviour of B is identical for queries OAM(G�, ID) (with always
tID = 0 in this case).

Finally, for members of G� with pseudonym ID queried to the OCo
oracle, we know that tID = 0. B can retrieve sID in the KeyList. This
perfectly simulates the oracles, therefore we have Pr[Imp6] = Pr[Imp5].

Game7 Finally, B can easily simulates the handshake protocols for members with
pseudonyms say IDI and IDM . Again, the only non trivial case occurs
when tIDI

�= 0 and tIDM
�= 0. In this case, B sets K = gtIDI

·tIDM .
If we denote kIDI

= logge2 (pe
IDI

+hIDI
) and kIDM

= logge2 (pe
IDM

+hIDM
),

we get e2kIDI
= e · tIDI

mod λ(n) and e2kIDM
= e · tIDM

mod λ(n), and
therefore K = ge2kIkM . Querying this value with suitable nonces to the
non-programmable random oracle Gr, B can perfectly simulate the oracle
OHS, and we have Pr[Imp7] = Pr[Imp6].

Finally, when Game7 terminates, A outputs a triple (G�, ID�, d�) such that
G�’s public key is (n, e, ge2

), OH(ID�) = get�
ID − me

ID� and the public key
associated with G� and ID� is mID� . Equipped with the pseudonym IDA, A
interacts with B emulating the member with pseudonym ID� to execute the
handshake protocol. From the simulation, we know that OH(IDA) = me

IDAα.
Whatever the bit d� and the nonces are, if the protocol is successful, thanks
to the EPK property of Gr, B retrieves in its transcript pA the public key of
A and K = ge2s�sA where e2s� = e · tID� mod λ(n) and pe

A − ge2sA = me
IDAα.

We have K = getID� sA = (gesA)tID� , and using the extended Euclidean algo-
rithm B finds integers u, v such that tID�u + ev = 1, and sets x = pA/mIDA
and y = Ku(pe

A + me
IDAα)v/mIDA such that xe − ye = α mod n. It remains to

prove the bounds on Succdiff−rsa
Gen,B and τ ′. The computation follows readily the

one supplied in details in the previous proof. ��
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5.3 Security of the Scheme Gi×SH

Theorem 3. Let Gen be an RSA-group generator, let f : N → N and let Gi×SH
be the secret handshake protocol instantiated with Gen and f .
Let qH, qG , qG , qCG, qAM, qHS, qRM, qCo, τ ∈ NN.

1. LetA be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IMP-ACT-adversary againstGi×SH,
in the random oracle model. There exist a τ ′-RSA adversary B such that{

Succrsa
Gen,B(k) ≥ Succimp−act

Gi×SH,A(k)/[exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]
τ ′(k) ≤ τ(k) + (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) +O(1))TExp(k)

for all positive integers k.
2. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-DET-ACT-adversary against

Gi×SH, in the random oracle model. There exist a τ ′-RSA adversary B such
that{

Succrsa
Gen,B(k) ≥ Advdet−act

Gi×SH,A(k)/[2 exp(2)qCG(k)(qAM(k) + qCo(k) + 1)]
τ ′(k) ≤ τ(k) + (2qH(k) + 2qCG(k) + qAM(k) + qHS(k) +O(1))TExp(k)

for all positive integers k.
3. Let A be a (qH, qCG, qAM, qHS, qRM, qCo, τ)-IND-ACT-adversary against

Gi×SH, in the random oracle model, making at most qG(k) queries to the
non-programmable random oracle OG in the experiments Expind-act-b

Gi×SH,A(k) (for
b ∈ {0, 1} and k ∈ N). There exist a τ ′-COMP-CDH adversary B such that{

Succcomp−cdh
Gen,B (k) ≥ Advind−act

Gi×SH,A(k)/[2qG(k)]
τ ′(k) ≤ τ(k) + (qH(k) +O(1))TExp(k)

for all positive integers k. ��

6 Efficiency Issues

In this section, we compare the performance of all the secret handshake schemes
proposed up to now. For concreteness, we assume that our schemes are instan-
tiated with 1024-bits RSA moduli, and that the Diffie-Hellman protocols from
[5] are instantiated on a 160-bits prime order subgroup of a prime finite field
of size 1024 bits. We denote by CJT1 the scheme based on the CA-oblivious
encryption and by CJT2 the scheme using the additional proof of knowledge.
We assume that the scheme from [1], denoted BDSSSW, is instantiated with
the Tate pairing on an elliptic curve of MOV degree 6 on a ground base field of
size 171 bits and that computing this bilinear map using Miller’s algorithm [12]
is 10 times more expensive than computing a discrete exponentiation in a 160
bits subgroup of a prime finite field of size 1024 bits (whose computation time
is arbitrarily set to 1). In the table 1, we summarize the schemes’ complexity
in terms of bits exchanged during the protocol Handshake (in addition to the
identification information IDI and IDM) and the computational cost of the pro-
tocols AddMember and Handshake. The new schemes compare very favorably in
performance with respect to the discrete log systems proposed so far [1, 5] and
they can be used over a low bandwidth channel.
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Table 1. Efficiency comparison

Scheme BDSSSW [1] CJT1 [5] CJT2 [5] OT-SH Gi+SH Gi×SH
Underlying Problem CBDH CDH CDH RSA Diff-RSA RSA
Number of rounds 3 4 3 4 3 3

Bits exchanged 640 8512 6304 1344 640 640
Computational cost

AddMember 1.8 1 1 6.4 7.4 7.4
Handshake 22 8 6 4 2 2

7 Authenticated Key Exchange from Secret Handshakes

An authenticated key exchange protocol enables two parties to end up with
a shared secret key in a secure and authenticated manner (i.e. no adversary
can impersonate any party during the protocol or learn any information about
the value of the exchanged secret). At the end of the execution of the protocol
OT-SH.Handshake (resp. Gi⊕SH.Handshake), the parties can set up a temporary
session key for securing further communication between them:

session = Gr

[
(Hk(IDM) · ceM)kI mod n‖IDI‖IDM‖cI‖cM‖2]

= Gr

[
(Hk(IDI) · ceI )kI mod n‖IDI‖IDM‖cI‖cM‖2](

resp. session = Gr

[
(pkIDI

e ⊕ Hk(IDI))skIDM mod n‖IDI‖IDM‖nI‖nM‖2]
= Gr

[
(pkIDM

e ⊕ Hk(IDM))skIDI mod n‖IDI‖IDM‖nI‖nM‖2]
)

As mentioned in [3], a number of desirable attributes of key agreement pro-
tocols have been identified:

1. known session keys: a protocol still achieves its goal in the face of an
adversary who has learned some previous session keys.

2. (perfect) forward secrecy: if long-term secrets of one or more entities are
compromised, the secrecy of previous session keys is not affected.

3. unknown key-share: entity i cannot be coerced into sharing a key with
entity j without i’s knowledge.

4. key-compromise impersonation: the knowledge of i’s secret value does
not enable an adversary to impersonate other entities to i.

5. loss of information: compromise of information that would not ordinarily
be available to an adversary does not affect the security of the protocol.

6. key control: neither entity should be able to force the session key to a
preselected value.

In these scenarii, the adversary controls all communication between entities,
and can at any time ask an entity to reveal its long-term secret key. Furthermore
she may initiate sessions between any two entities, engage in multiple sessions
with the same entity at the same time, and in some cases ask an entity to
enter a session with itself. In the random oracle model, the key control security
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Table 2. Security properties of the new AKE-SH

Property OT-SH Gi+SH Gi×SH
known session keys ✔ ✔ ✔

forward secrecy ✔ ✘ ✘

unknown key-share ✔ ✔ ✔

key compromise impersonation ✔ ✔ ✔

loss of information ✔ ✘ ✘

requirement of the privacy-preserving authenticated key exchange derived from
OT-SH, Gi+SH and Gi×SH is unconditional (in the standard model, forcing
a session key to a preselected value is at least as hard as breaking the one-
wayness of Gr). The other security requirements against active adversaries are
summarized in table 2 (where the symbol ✘ means that the scheme does not
reach this security requirement, whereas the symbol ✔ means that in the random
oracle model the security requirement reduces to the composite Diffie Hellman
problem). The proofs are straightforward adaptations of the proofs of security
of the secret handshake protocols and therefore they are left to the reader.

8 Conclusion

A secret handshake protocol is a cryptographic primitive that allow members
of a group to authenticate each other secretly. In this paper, we designed three
efficient constructions for secret handshake based on the RSA assumption. These
constructs are the first fully anonymous protocols relying on the RSA primitive.
The new secret handshake protocols can handle roles just as easily as the one in
[1, 5]. An interesting open issue is to design simple and efficient fully anonymous
secret handshake schemes, relying as little as possible on random oracles (ideally
without any).
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Abstract. In this paper we try to shed a new insight on Verifiable
Secret Sharing Schemes (VSS). We first define a new “metric” (with
slightly different properties than the standard Hamming metric). Using
this metric we define a very particular class of codes that we call error-
set correcting codes, based on a set of forbidden distances which is a
monotone decreasing set. Next we redefine the packing problem for the
new settings and generalize the notion of error-correcting capability of
the error-set correcting codes accordingly (taking into account the new
metric and the new packing). Then we consider burst-error interleaving
codes proposing an efficient burst-error correcting technique, which is
in fact the well known VSS and Distributed Commitments (DC) pair-
wise checking protocol and we prove the error-correcting capability of
the error-set correcting interleaving codes.

Using the known relationship, due to Van Dijk, between a Monotone
Span Program (MSP) and a generator matrix of the code generated by
the suitable set of vectors, we prove that the error-set correcting codes
in fact has the allowed (opposite to forbidden) distances of the dual
access structure of the access structure that the MSP computes. We
give an efficient construction for them based on this relation and as a
consequence we establish a link between Secret Sharing Schemes (SSS)
and the error-set correcting codes.

Further we give a necessary and sufficient condition for the existence
of linear SSS (LSSS), to be secure against (Δ, ΔA)-adversary expressed
in terms of an error-set correcting code. Finally, we present necessary
and sufficient conditions for the existence of a VSS scheme, based on an
error-set correcting code, secure against (Δ, ΔA)-adversary.

Our approach is general and covers all known linear VSS/DC. It al-
lows us to establish the minimal conditions for security of VSSs. Our
main theorem states that the security of a scheme is equivalent to a pure
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geometrical (coding) condition on the linear mappings describing the
scheme. Hence the security of all known schemes, e.g. all known bounds
for existence of unconditionally secure VSS/DC including the recent re-
sult of Fehr and Maurer, can be expressed as certain (geometrical) coding
conditions.

1 Preliminaries

The concept of secret sharing was introduced by Shamir [20] as a tool to protect
a secret from getting exposed or from getting lost. It allows a so-called dealer to
share a secret among the members of a set P , which are usually called players or
participants, in such a way that only certain specified subsets of players are able
to reconstruct the secret (if needed) while smaller subsets have no information
about this secret at all (in a strict information theoretic sense).

We call the groups who are allowed to reconstruct the secret qualified and
the groups who should not be able to obtain any information about the secret
forbidden. The set of qualified groups is denoted by Γ and the set of forbidden
groups by Δ. Denote the participants by Pi, 1 ≤ i ≤ n and the set of all players
by P = {P1, . . . ,Pn}. The set Γ is called monotone increasing if for each set A in
Γ also each set containing A is in Γ. Similarly, Δ is called monotone decreasing,
if for each set A in Δ also each subset of A is in Δ. A monotone increasing set
Γ can be efficiently described by the set Γ− consisting of the minimal elements
in Γ, i.e. the elements in Γ for which no proper subset is also in Γ. Similarly, the
set Δ+ consists of the maximal sets in Δ. The tuple (Γ,Δ) is called an access
structure if Γ∩Δ = ∅. If the union of Γ andΔ is equal to 2P (so Γ is equal to Δc,
the complement of Δ), then we say that access structure (Γ,Δ) is complete and
we denote it just by Γ. In the sequel we shall only consider complete, monotone
access structures.

The dual Γ⊥ of an access structure Γ , defined on P , is the collection of sets
A ⊆ P such that P \A = Ac /∈ Γ .

It is common to model cheating by considering an adversary A who may
corrupt some of the players. The adversary is characterized by particular subset
ΔA of Δ, called adversary and privacy structures [12] respectively, which are
monotone decreasing structures. The players which belong to Δ are called also
curious and the players which belong to ΔA are called corrupt or bad.

One can distinguish between passive and active corruption, see Fehr and Mau-
rer [10] for recent results. Passive corruption means that the adversary obtains
the complete information held by the corrupt players, but the players execute
the protocol correctly. Active corruption means that the adversary takes full
control of the corrupt players. Active corruption is strictly stronger than passive
corruption. Both passive and active adversaries may be static, meaning that the
set of corrupt players is chosen once and for all before the protocol starts, or
adaptive meaning that the adversary can at any time during the protocol choose
to corrupt a new player based on all the information he has at the time, as long
as the total set is in ΔA.
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Denote the complement ΓA = 2P \ΔA = Δc
A. Its dual access structure Γ⊥

A

should be called the honest (or good) players structure, since for any set A of
corrupt players, i.e. in ΔA, the complement Ac = P \ A is the set of honest
players and vise versa. Note that the set {Ac : A ∈ ΔA} is the dual access
structure Γ⊥

A .
Some authors [11] consider also fail-corrupt players. To fail-corrupt a player

means that the adversary may stop the communication from and to that player
at an arbitrary time during the protocol. Once a player is caused to fail, he
will not recover the communication. However, the adversary is not allowed to
read the internal data of a fail-corrupt player, unless the player is also passively
corrupted at the same time. The collection of fail-corrupt players is denoted by
ΔF ⊆ Δ. Generally we will not consider such kind of corruption, so unless it
is exact mentioned we will assume that the adversary cannot fail-corrupt the
players.

Definition 1. [10] An (Δ,ΔA,ΔF )-adversary is an adversary who can (adap-
tively) corrupt some players passively and some players actively, as long as the
set A of actively corrupt players and the set B of passively corrupt players satisfy
both A ∈ ΔA and (A ∪ B) ∈ Δ. Additionally the adversary could fail-corrupt
some players in ΔF . When ΔF = ∅ we will denote it by (Δ,ΔA), in case ΔA = Δ
we will simply say ΔA-adversary.

This model is known as mixed adversary model. Note that in case of Secret
Sharing Schemes we have ΔA = ∅, while for Verifiable Secret Sharing Schemes
we haveΔA �= ∅. In the threshold case we write instead of (Δ,ΔA,ΔF )-adversary
simply (k, ka, kf )-adversary. Recently Hirt and Maurer [12] introduced the notion
of Q2(Q3) adversary structure.

Definition 2. [12] For a given set of players P and an adversary structure ΔA,
we say that the adversary structure is Q� if no � sets in ΔA cover the full set P
of players.

Definition 3. [17] For any two monotone decreasing sets Δ1,Δ2 operation ",
called element-wise union, is defined as follows: Δ1 "Δ2 = {A = A1 ∪A2;A1 ∈
Δ1,A2 ∈ Δ2}. For any two monotone increasing sets Γ1,Γ2 operation " is
defined as follows: Γ1 " Γ2 = {A = A1 ∪A2;A1 /∈ Γ1,A2 /∈ Γ2}c.

Definition 4. A secret sharing scheme based on an access structure (Γ,Δ) is a
pair (Share and Reconstruct) of protocols (phases) namely, the sharing phase,
where the players share a secret s ∈ K, and the reconstruction phase, where the
players try to reconstruct s, such that the following two properties hold:

– Privacy: The players of any set B ∈ Δ learn nothing about the secret s as a
result of the sharing phase.

– Correctness: The secret s could be computed by any set of players A ∈ Γ .

Recall that the SSS is called perfect if and only if Δc = Γ .
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2 A Class of Error-Correcting “Codes”

Let F be a finite field and let the set of secrets for the dealer D be K = Fp0 .
We will only consider the case p0 = 1, even though many of the considerations
remain valid in the general case too. Associate with each player Pi (1 ≤ i ≤ n) a
positive integer pi such that the sets of possible shares for player Pi is given by
Fpi . Denote by p =

∑n
i=1 pi and by N = p0 + p. For the sake of simplicity one

could assume that pi = 1 for 0 ≤ i ≤ n in that case p = n and N = n+ 1 hold.
Now we will recall some definitions from the theory of error-correcting codes.

Any non-empty subset C of FN is called a code, the parameter N is called the
length of the code. Each vector in C is called codeword of C. The Hamming sphere
(or ball) Be(x) of radius e around a vector x in FN is defined by Be(x) = {y ∈
FN : d(x,y) ≤ e}. One of the basic coding theory problems is the so-called
Sphere Packing Problem: given N and e, what is the maximum number of non-
intersecting spheres of radius e that can be placed in FN , the N -dimensional
Hamming space?

Sphere packing is related to error correction. The centers of these spheres are
at distance at least 2e + 1 apart from each other and constitute a code; these
centers are called codewords and each corresponds to a possible message that one
may want to transmit. Assume now that one of these messages is transmitted
and that at most e coordinates are corrupt during the transmission. To decode,
i.e., to decide which of the messages was actually sent, compute the Hamming
distance between the received vector and all the centers. Since at most e errors
occurred, the transmitted word will still be the nearest center, and all errors can
be corrected.

Define the minimum distance of a code C ⊆ FN as the smallest of all distances
between different codewords in C, i.e. dmin = mina,b∈C, a �=b d(a,b). It follows
from this definition that a code with minimum distance dmin can correct #(dmin−
1)/2$ errors, since spheres with this radius are disjoint (see [16, p.10, Theorem
2]). If dmin is even the code can detect dmin/2 errors, meaning that a received
word can not have distance dmin/2 to one codeword and distance less that dmin/2
to another one. However it may have distance dmin/2 to more codewords.

Something more actually can be said. Code C can decode errors and erasures
simultaneously. An erasure is an ambiguously received coordinate (the value is
not 0 or 1 but undecided). Let C be a code of length N with minimum distance
dmin and let e = #(dmin − 1)/2$. Then the code can correct b errors and c
erasures as long as 2b + c < dmin (for more details see [6]). In other words, we
should be able to retrieve the transmitted codeword if during the transmission
at most c of the symbols in the word are erased and at most b received symbols
are incorrect.

If C is a T -dimensional subspace of FN , then the code C is linear and is
denoted by [N,T , dmin]. Set C⊥ = {y | 〈y,x〉 = 0 for all x ∈ C}. The set C⊥ is
an (N − T )-dimensional linear subspace of FN and is called the dual code of C.

There are two methods to determine a linear code C: a generator matrix and
a parity check matrix. A generator matrix of a linear code C is any T ×N matrix
G whose rows form a basis for C. A generator matrix H of C⊥ is called a parity
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check matrix for C. Clearly, the matrix H is of size (N − T ) × N . Hence x ∈ C
if and only if HxT = 0, or in other words HGT = GHT = 0 holds.

When a sender wants to send a message (sometimes called information vector)
say x to the receiver he calculates a codeword of the code by multiplying the
information vector with the generator matrix, e.g. y = xG. The codeword y is
transmitted to the receiver. The receiver decodes the word z he received, which
is the codeword plus errors, i.e. z = y + err, if the number of errors is less
than a certain number (the error-correcting capabilities of the code). Recall that
for each codeword y the equality HyT = 0 holds, hence HzT = err (called
syndrome) holds.

Let for two vectors x = (x0,x1, . . . ,xn) and y = (y0,y1, . . . ,yn) in FN ,
where xi,yi ∈ Fpi , the set δp(x,y) is defined by δp(x,y) = {i : xi �= yi}. The
p-support of vector x, denoted by supp(x), is defined by supp(v) = {i : vi �= 0}.
Hence δp(x,y) = supp(x − y) ⊆ {0, . . . ,n}. Considering the properties of the
p-support of a vector, we notice some similarities to the properties of the norm.
(1) supp(x) = ∅ if and only if x = 0, (2) supp(jx) = supp(x) if j �= 0, and (3)
supp(x + z) ⊆ supp(x) ∪ supp(y). In their paper [10] Fehr and Maurer pointed
out that δp(x,y) behaves like a metric, as for all vectors x,y, z ∈ FN one has
that (1) δp(x,x) = ∅, (2) δp(x,y) = δp(y,x) (symmetry), and (3) δp(x, z) ⊆
δp(x,y) ∪ δp(y, z), but actually they do not explore this property. Our first step
is to use δp(x,y) instead of the Hamming distance and to explore the properties
of the so defined space.

Let Δ be a monotone decreasing collection of subsets of players. Then BΔ(x),
the Δ-neighborhood of pseudo-radii in Δ centered around the vector x ∈ FN , is
defined as follows:

BΔ(x) = {y ∈ FN : δp(x,y) ∈ Δ}.
In the special case when Γ is an e-threshold access structure (Δ = {A : |A| ≤ e}),
the Δ-neighborhood BΔ(x) is in fact the Hamming sphere Be(x). Now we can
generalize the classical sphere packing problem:

Generalized Sphere Packing Problem: Given N and Δ, what is the maxi-
mum number of non-intersecting Δ-neighborhoods that can be placed in the
N -dimensional space?

As usual we will call any non-empty subset C of FN a code. For a code C the
set of possible (allowed) distances is defined by

Γ (C) = {A : there exist a,b in C, a �= b such that δp(a,b) ⊆ A}
and the set of forbidden distances is defined by Δ(C) = Γ (C)c. It is easy to see
that Δ(C) is monotone decreasing and that Γ (C) is monotone increasing. Let
us call the so-defined codes error-set correcting codes. For the classical error-
correcting codes all pi = 1 and since the Hamming distance is “symmetric”
(because of equivalence of all coordinates) we set Δ(C) = {A : |A| < dmin} keep-
ing the symmetry. Nevertheless for some classical error-correcting codes there are
sets A such that |A| ≥ dmin and there are no codewords a and b with property
δP (a,b) ⊆ A. We can define the set of minimal codeword support differences as
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Γ (C)− = {A : there exist a,b in C, a �= b such that δp(a,b) = A

but, there is no c,d ∈ C, c �= d, δp(c,d) � A}. (1)

We will focus our attention only on linear codes, even though many of the con-
siderations remain valid in non-linear settings too. Using the relation between δp
and supp we could redefine the notion minimal codeword (introduced by Massey
[14]) as follows: The codeword x in C is minimal if supp(x) in Γ (C)−.

As noted before, the packing problem is fundamental in error correction. The
natural question that arises now is how the new packing problem is related to
the theory of error-correcting codes?

In coding theory, any subset of coordinates is equally likely to be in error
(and/or erasure). In the model we consider here some subsets of coordinates are
assumed to be more likely in error than others. A well-studied model where this
situation arises is the so-called bursty channel, in which errors occur in clusters.
Another related approach are the so-called D-codes [9] which have restricted
(to some interval) inner distance distribution. Now we will prove that the error-
set correcting codes have similar error-correcting capabilities as the classical
codes have.

Theorem 1. An error-set correcting code C with set of forbidden distances Δ(C)
can correct all errors in Δ if and only if Δ "Δ ⊆ Δ(C).

Proof. First we will prove that the centers of a new sphere packing constitute a
code C with set of possible distances Γ (C) ⊆ Γ " Γ (and thus Δ "Δ ⊆ Δ(C)).
Indeed, let a,b be any two distinct centers of C. Any two sets A,B ∈ Δ are
in the Δ-neighborhoods of say a, resp. b. Since these neighborhoods are non-
intersecting we have that A∪B ⊂ δp(a,b). Hence δp(a,b) /∈ Δ"Δ. Conversely,
suppose that δp(a,b) ∈ Δ "Δ. Then there exist A,B ∈ Δ, such that A ∪ B =
δp(a,b). By the “triangle inequality” we have that δp(a,b) ⊆ δp(a,x)∪ δp(x,b),
and equality holds if δp(a,x) ∩ δp(b,x) = ∅. Now it is easy to see that there
exists x such that A ∪ B = δp(a,b) = δp(a,x) ∪ δp(b,x) and δp(a,x) ⊆ A,
δp(b,x) ⊆ B. This contradicts the fact that any Δ-neighborhoods of a and b
are non-intersecting. ��
Example 1. Consider the special case with threshold access structure, so Δ =
{A : |A| ≤ e}. Write as above BΔ(x) = Be(x) (the usual Hamming sphere). Now
Δ "Δ = {A : |A| ≤ 2e} = Δ(C) and so Γ (C) = {A : |A| ≥ 2e+ 1}. Hence the
minimum distance of C is dmin = 2e+ 1. In this case, Theorem 1 is equivalent
to the classical error-correcting theorem [16, 6].

Remark 1. Assume that a codeword from C was sent and that some subset of
errors A ∈ Δ occurred during the transmission. To decode the received vector z,
we compute the Δ-neighborhood BΔ(z) and check which codeword is in this Δ-
neighborhood. In fact, since the error-pattern is a set A in Δ and Δ"Δ ⊆ Δ(C),
there will be only one codeword in the Δ-neighborhood of z and so we can correct
the errors.

Something more actually is true: we can decode errors and erasures simulta-
neously in the generalized setting too. Let C be a code of length N with set of
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forbidden distances Δ(C). Suppose that Δ "Δ ⊆ Δ(C). Then C can correct all
errors in Δ. Moreover, for any Δc,Δb ⊆ Δ such that Δc " Δc " Δb ⊆ Δ(C),
the code C can correct all errors in Δc and erasures in Δb. In fact, the decoding
method coincides with the classical method of decoding errors and erasures, see
[6] for example.

3 A Burst-Correcting Technique

We will call a burst any error pattern consisting of several sub-vectors xi of
x = (x0,x1, . . . ,xn), which are not necessarily consecutively ordered. First,
we will present a standard burst-error correcting technique, which uses error-
correcting codes. The idea is to change the order of the coordinates of several
consecutive codewords in such a way that a burst is spread out over the various
codewords. Let C be a code of length n and let � be some positive integer.
Consider an � × n matrix which has codewords in C as their rows. Read this
matrix column-wise from top to bottom starting with the leftmost column. The
resulting codewords have length n� and form a so-called interleaved code derived
from C at depth �. If C can correct e-errors then the interleaved code can correct
bursts of length e�.

Let C be an error-set correcting code of length N , with a set of forbidden dis-
tances Δ(C) and d×N generator matrix G. The sender wants to send an informa-
tion matrix X ∈ Fd×d (assume for the sake of simplicity that X is symmetric).
Note that X could be asymmetric too, in which case X and XT are encoded.
Thus the sender calculates the (array) codeword Y as Y = XG, (Y ∈ FN×N).
Then applying the interleaving approach the sender reads the matrix column-
wise. From now on we will consider only interleaved codes at depth d.
Theorem 2. Let C be an error-set correcting code of length N , with set of for-
bidden distances Δ(C). Then the interleaving error-set correcting code derived
from C of length N can efficiently correct all burst-errors in Δ if and only if
Δ "Δ ⊆ Δ(C).

Proof. Since every row in the array codeword is a codeword of the error-set
correcting code C and the errors are spread we can correct them row by row (see
Theorem 1). On the other hand we will show that the known VSS/DC technique
called “pair-wise” checking, provides efficient detection of inconsistency in cases
with excess of information. Moreover this technique has an additional advantage
that all checks can be performed privately (which is of great importance in SSS).

The “pair-wise” technique is applied as follows. The receiver calculates a
symmetric consistency n × n matrix, verifying the equation GTY = GTXG =
Y TG. In other words he puts 1 on entry (i, j) if GT

i Yj = Y T
i Gj and 0 otherwise.

Using the consistency matrix (as in the VSS/DC protocols, e.g. [5, 17]) and
assuming an error pattern in Δ occurs it is easy to find a set in Γ (C) which is
consistent, therefore uniquely define the codeword. ��
Remark 2. The interleaving error-set correcting code derived from C of length N
can efficiently correct the burst-error patterns in Δc and burst-erasure patterns
Δb if and only if Δc "Δc "Δb ⊆ Δ(C).
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4 SSS as an Example of a Particular Class of “Codes”

First we give a formal definition of a Monotone Span Program.

Definition 5. [13] A Monotone Span Program (MSP) M is a quadruple
(F,M, ε,ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m
columns) over F, ψ : {1, . . . , m} → {1, . . . ,n} is a surjective (labelling) function
and ε = (1, 0, . . . , 0)T ∈ F d is called target vector.

As ψ labels each row with a number i from {1, . . . , m} that corresponds to player
Pψ(i), we can think of each player as being the “owner” of one or more rows.
Also consider a “function” ϕ from {P1, . . . ,Pn} to {1, . . . , m} which gives for
every player Pi the set of rows owned by him (denoted by ϕ(Pi)). In some sense
ϕ is “inverse” of ψ. For any set of players B ⊆ P consider the matrix consisting
of rows these players own in M , i.e. Mϕ(B). As is common, we shall shorten
the notation Mϕ(B) to just MB. The reader should stay aware of the difference
between MB for B ⊆ P and for B ⊆ {1, . . . , m}.

An MSP is said to compute a (complete) access structure Γ when ε ∈ im(MT
A )

if and only if A is a member of Γ . In other words, the players in A can reconstruct
the secret precisely if the rows they own contain in their linear span the target
vector of M, and otherwise they get no information about the secret. In other
words there exists a so-called recombination vector (column) λ such that MT

Aλ =
ε hence 〈λ,MA(s, ρ)T 〉 = 〈MT

A λ, (s, ρ)T 〉 = 〈ε, (s, ρ)T 〉 = s for any secret s and
any random vector ρ. It is easy to check that the vector ε /∈ im(MT

B ) if and only
if there exists a k ∈ Fd such that MBk = 0 and k1 = 1.

We stress here that

A ∈ Γ ⇐⇒ ∃ λ ∈ F|ϕ(A)| such that MT
Aλ = ε (2)

B /∈ Γ ⇐⇒ ∃ k ∈ Fd such that MBk = 0 and k1 = 1.

The first property guaranties correctness and the second privacy of the SSS.
Technically the property (2) means that when we consider the restricted matrix
MA for some subset A of P , the first column is linearly dependent to the other
columns if and only if A /∈ Γ . Sometimes we will slightly change the first property
rewriting it in the following way:

A ∈ Γ ⇐⇒ ∃ λ ∈ Fm such that MT λ = ε and supp(λ) ⊆ A. (3)

The latest in fact is the same vector λ as in (2), but expanded with zeroes.

Definition 6. ([8, Definition 3.2.2]) Let Γ− = {X1, . . . ,Xr}. Then the set of
vectors C = {ci ∈ Fm : 1 ≤ i ≤ r} is said to be suitable for the access structure
Γ if C satisfies the following properties called g(Γ ) respectively d−(Δ).

– supp(ci) = Xi for 1 ≤ i ≤ r;
– For any vector (μ1, . . . ,μr) in Fr, such that

∑r
i=1 μi �= 0, there exists a set

X ∈ Γ = Δc satisfying X ⊆ supp(
∑r

i=1 μici).
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It is easy to verify that the minimal codewords defined by Massey [14] are related
to the notion suitable set. In the next theorem due to Van Dijk an important
link between a parity check matrix of a code generated as a span of suitable
vectors and an MSP matrix is given.

Theorem 3. ([8, Theorem 3.2.5, Theorem 3.2.6]) Let Γ− = {X1, . . . ,Xr}.
Consider a set of vectors C = {ci : 1 ≤ i ≤ r}. Let H be a parity check matrix of
the code generated by the linear span of the vectors (1, ci) 1 ≤ i ≤ r and let H be
of the form H = (ε | H ′) (This can be assumed without loss of generality). Then
the MSP with the matrix M defined by MT = H ′ computes the access structure
Γ if and only if the set of vectors C is suitable for Γ .

There is a tight connection between an access structure and its dual. It turns
out that the codes generated by the corresponding sets of suitable vectors are
orthogonal.

Theorem 4. ([8, Theorem 3.5.4]) Let Γ− = {X1, . . . ,Xr} be an access struc-
ture and (Γ⊥)− = {Z1, . . . ,Zt} be its dual. Then there exists a suitable set
C = {ci : 1 ≤ i ≤ r} for Γ if and only if there exists a suitable set C⊥ = {hj :
1 ≤ j ≤ t} for Γ⊥.

Suppose there exists a suitable set C for Γ and a suitable set C⊥ for Γ⊥. Let
C∗ be the code defined by the linear span of vectors {(1, ci) : 1 ≤ i ≤ r} and let
C⊥ be the code defined by the linear span of vectors of {(1,hj) : 1 ≤ j ≤ t}. Then
the codes C∗ and C⊥ are orthogonal to each another.

Lemma 1. [19] Let Γ− = {X1, . . . ,Xr} be the access structure computed by
MSP M. Also let λi ∈ Fm be the recombination vectors that corresponds to Xi

see (2) and (3). Then the set of vectors C = {λi : 1 ≤ i ≤ r} defines a suitable
set of vectors for the complete access structure Γ .

Theorem 5. [19] Let M be an MSP program computing Γ , and M⊥ be an MSP
computing the dual access structure Γ⊥. Let code C⊥ have the parity check matrix
H⊥ = (ε | (M⊥)T ) and let code C have the parity check matrix H = (ε | MT ).
Then for any MSP M there exists an MSP M⊥ such that C and C⊥ are dual.

McEliece and Sarwate [15] reformulated the Shamir’s scheme in terms of Reed-
Solomon codes instead of in terms of polynomials, adding in this way error-
correcting properties. The general relationship between linear codes and secret
sharing schemes was established by Massey [14], Blakley and Kabatianskii [2].
In fact, the coding theoretic approach can be reformulated as the vector space
construction, which was introduced by Brickel in [3]. This approach was general-
ized to the so-called generalized vector space construction by Van Dijk [8]. Two
approaches of constructing secret sharing schemes based on linear codes could
be distinguished.

The first one uses an [n, k+1, dmin] linear code C. Let G be a generator matrix
of C, so it is (k + 1) × n matrix. The dealer D chooses a random information
vector x ∈ Fk+1, subject to x1 = s - the secret. Then he calculates the codeword
y corresponding to this information vector as y = xG, (y ∈ Fn). Then D gives
yj to player Pj to be his share.
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The second approach uses an [N = n+1, k+1, dmin] linear code C̃. Let G̃ be
a generator matrix of C̃, so it is (k + 1) × (n + 1). The dealer D calculates the
codeword y as y = xG̃, (y ∈ FN ), from a random information vector x ∈ Fk+1,
subject to y0 = s - the secret. Then D gives yj to player Pj to be his share.

The two kinds of approaches seem different but are related. In the first ap-
proach all the shares form a complete codeword of the code, while in the second
one all the shares form only part of a codeword. But as Van Dijk [8] proved one
can simply transform the matrices of the codes, setting G̃ = (ε | G). Hence one
can consider the code C to be obtained from the code C̃ by puncturing i.e. by
deleting a coordinate [16].

Now we will generalize these approaches to our error-set correcting codes. We
will denote the codes and their generator matrices for the first (and the second)
approaches by C and G (C̃ and G̃, respectively). Let C be a code of length p, with
set of forbidden distances Δ(C) and with d× p generator matrix G. Analogously
let C̃ be a code of length N , with set of forbidden distances Δ(C̃) and with d×N

generator matrix G̃. Recall that G̃ = (ε | G) holds.

Lemma 2. Let M = (F,M, ε,ψ) be an MSP computing an access structure
Γ . Let C̃ be an error-set correcting code of length N , with a set of forbidden
distances Δ(C̃) and with d ×N generator matrix G̃ of the form G̃ = (ε | MT ).
Then Δ(C̃) = Δ⊥ " {D}.
Proof. Let M be an MSP computing an access structure Γ and M⊥ be its dual
MSP. Using G = MT and G

⊥
= (M⊥)T compute the codes C̃ and C̃⊥. Van Dijk

[8] proved that codes C̃ and C̃⊥ are orthogonal to each other. Moreover Van Dijk
showed (see Definition 6 and Theorems 3 and 4) that matrix G̃ = (ε | MT )
is generated by vectors (1,hj) where hj are suitable vectors for the dual access
structure Γ⊥. It turns out that the codes C̃ and C̃⊥ are even dual (see Theorem
5). Thus by Lemma 1 and Definition 6 we have that supp(hj) ∈ (Γ⊥)−. In other
words the suitable vectors for Γ⊥ are the minimal codewords for the code C̃,
see definition (1). Hence we have Δ(C̃) = Δ⊥ " {D} to be the set of forbidden
distances for the code generated by G̃. ��
Note that the set Δ⊥ "{D} is not monotone decreasing, thus in order to ensure
this property we need stronger requirements to hold.

Definition 7. [19] An MSP is called Δ-non-redundant (denoted by Δ-rMSP)
when v ∈ ker(MT ) ⇐⇒ v �= 0 and sup(v) ∈ Γ (Γ = Δc).

Corollary 1. Let M⊥ be a Δ⊥-rMSP computing Γ⊥ and let M be the matrix
of the dual MSP M computing Γ . Let C̃ be an error-set correcting code with
a generator matrix G̃ of the form G̃ = (ε | MT ). Then the set of forbidden
distances Δ(C̃) is equal to Δ⊥ " {∅,D}.
Example 2. In the threshold case G̃ can be the generator matrix of the extended
Reed-Solomon MDS code [n+1, k+1,n−k+1], sinceG

T
can be the Vandermonde
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matrix with rows (1,α,α2, . . . ,αk). In other words the extended Reed-Solomon
code can be used to generate an (k,n) threshold scheme.

Remark 3. Lemma 2 gives an efficient way to construct error-set correcting codes
using MSPs. Note that we do not require any relation between Δ and ΔA (or
for k and ka).

Now using the results of Theorem 1 and Lemma 2 we obtain the following
corollary.

Corollary 2. An error-set correcting code C̃ corrects ΔA (ka in the threshold
case) errors and one erasure (e.g. {D}) if and only if ΔA "ΔA ⊆ Δ⊥ (analo-
gously 2ka < n− k).

Remark 4. The main difference between error-set correcting codes and SSS is
that the SSS provides privacy, meaning that Δ � ΔA (or k ≥ ka).

It was proven in [18] that Γ " Γ⊥ = {P} holds.

Remark 5. Recall that for a linear [N,T , dmin] code C, the Singleton bound
dmin ≤ N + 1 − T holds and that equality is achieved only for MDS codes. It is
well known that the dual code C⊥ is [N,N − T , d⊥min] and is MDS code if and
only if C is MDS code. Therefore the following inequality holds:

dmin + d⊥min ≤ N + 2 (4)

with equality only for MDS codes. Now we will show that the equality Γ "Γ⊥ =
{P} is a generalization of the classical coding bound (4).

Consider C̃ code and its dual C̃⊥. Then by Lemma 2 the relations Δ(C̃) =
Δ⊥"{D} andΔ(C̃⊥) = Δ"{D} hold. Thus for the punctured codes C and C⊥

we
have Δ(C) = Δ⊥ and Δ(C⊥

) = Δ. Therefore Δ(C)c"Δ(C⊥
)c = {P}. Thus, there

exist sets A and B such that A ∈ Δ(C)+, B ∈ Δ(C⊥
)+ and |A∪B| = n−1. Hence

(dmin(C)−1)+(dmin(C⊥
)−1) ≤ n−1 holds and thus dmin(C)+dmin(C⊥

) ≤ n+1.
Consider the threshold case. We have that C̃, C̃⊥, C and C⊥

are MDS codes. In
other words if C̃ is an [n+1, k+1,n+1−k] code then C̃⊥ is an [n+1,n−k, k+2]
code, C is an [n, k + 1,n − k] code and C⊥

is an [n,n − k, k + 1] code. Now it
is easy to check that we have the equality dmin(C) + dmin(C⊥

) = n+ 1 in that
case.

5 VSS as an Example of a Particular Class of Burst
“Codes”

A formal definition of VSS is as follows.

Definition 8. A Verifiable Secret Sharing scheme secure against (Δ,ΔA)-
adversary A is a pair (Share-Detect, Reconstruct) of protocols (phases). At the
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beginning of the Share-Detect phase the dealer D inputs to the protocol a secret
s ∈ K, at the end of Share-Detect phase each player Pi is instructed to output
either “accept” or “reject”. At the end of the Reconstruct phase each player Pi

is instructed to output a value in K. The protocol is unconditionally secure if the
following properties hold:

– Termination (Acceptance): If a honest player Pi outputs “reject” at the end
of Share-Detect then every honest player outputs “reject”; Moreover if the
dealer D is not corrupt, then every honest player Pi outputs “accept”;

– Correctness (Verifiability): If a group of honest players Pi outputs “accept”
at the end of Share-Detect, then at this time a value s′ ∈ K has been fixed
and at the end of Reconstruct all honest players will output the same value
s′. Moreover if the dealer is not corrupt s′ = s.

– Privacy (Unpredictability): If the secret s is chosen randomly from K, and
the dealer is not corrupt, then any forbidden coalition cannot guess at the
end of Share-Detect the value s with probability better than 1/|K|.

The distributed commitments can be seen as a reduced (weaken) version of
VSS, since the VSS schemes provide robustness that the players can reconstruct
alone the secret (without dealer’s help), while for DC schemes the secret can
not be reconstructed without the dealer’s help. Note that an SSS with error-
correcting capabilities could be considered as an VSS with honest dealer, since
the robustness is guaranteed using the interleaving technique. Therefore we will
first revisit the standard approaches described in the literature used to build
SSS from codes employing the interleaving technique.

The first approach uses an [n, k+1, dmin] linear code C. Let G be a generator
matrix of C, so its size is (k + 1) × n. Now the dealer D chooses a random
information matrix X ∈ F(k+1)×(k+1), except that s (the secret) is in its upper-
left corner. Then D calculates the (array) codeword Y corresponding to this
information matrix Y = XG, (Y ∈ Fn×n). Note that the rows in Y are the usual
codewords of C. Using the interleaving approach the dealer D gives columns Y(j)
to the player Pj as his share. Note that the first coordinate in Y(j) corresponds
to the first codeword which encodes the secret.

The second approach is very similar. Now C̃ is an [N = n + 1, k + 1, dmin]
linear code. Let G̃ be a generator matrix of C̃, so it is a (k+ 1)× (n+ 1) matrix.
The dealer D calculates the (array) codeword Y as Y = XG̃, (Y ∈ FN×N), from
a random information matrix X ∈ F(k+1)×(k+1), except that s (the secret) is in
the upper-left corner of Y . Again applying the interleaving approach the dealer
D gives columns Y(j) to player Pj as his share. Note that the first coordinate in
Y(j) corresponds to the first codeword which encodes the secret. The zero column
Y(0) is the dealer’s share.

It is straightforward to generalize these two approaches to error-set correcting
codes. In this case C is a code of length p, with a set of forbidden distances Δ(C)
and G is a d × p matrix. Analogously C̃ is a code of length N , with a set of
forbidden distances Δ(C̃) and G̃ is a d × N matrix. Recall that G̃ = (ε | G)
holds. Then X ∈ Fd×d and Y ∈ Fp×p for the first approach and Y ∈ FN×N for
the second. Note that X could be symmetric or asymmetric.
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The sharing procedure we have just described coincides with the sharing pro-
cedures of the standard VSS/DC protocols [1, 5, 17]. Note that the shares in
these protocols are distributed in exactly the same way using the interleaving
technique. We will say that the VSS (with honest dealer) is based on code C̃.
Now we will translate the results of Lemma 2 and Corollary 2 into the VSS
language.

Proposition 1. Let C̃ be an error-set correcting code of length N , with a set of
forbidden distances Δ(C̃). Let consider VSS (with honest dealer) based on this
code and (Δ,ΔA,ΔF )-adversary ((k, ka, kf )-adversary).

– Correctness:
Then VSS (with honest dealer) based on this code satisfy the correctness
property in Definition 8 if and only if the code C̃ is able to correct burst-error
pattern in ΔA (ka in threshold case) and burst-erasure pattern in ΔF " {D}
(kf + 1), i.e. ΔA "ΔA " {D} "ΔF ⊆ Δ(C̃) (2ka + kf + 1 < dmin).

– Privacy:
Then VSS (with honest dealer) based on this code satisfy the correctness
property in Definition 8 if and only if the code C̃ has Δ(C̃) as the set of
forbidden distances, i.e. Δ(C̃) = Δ⊥ " {D} (dmin = n− k + 1).

Proof. The result for a (Δ,ΔA)-adversary (i.e. withoutΔF ) follows directly from
Lemma 2 and Corollary 2.

It is straightforward to extend this model to include also fail-corrupt play-
ers. Recall that to fail-corrupt a player means that the adversary may stop the
communication from and to that player at an arbitrary moment during the pro-
tocol. From a coding point of view these players are erasures, so the bounds are
extended naturally to P /∈ ΔA "ΔA "Δ "ΔF (2ka + k + kf < n ). ��
In coding theory the Sender is always assumed to be honest, while in VSS/DC
protocol the Dealer could be corrupt. We could simulate the improper behavior
of the dealer in the following way.

Let C̃ be a code of length N , with set of forbidden distances Δ(C̃) and G̃ be
a d ×N generator matrix for the code. The sender chooses information matrix
X ∈ Fd×d (using the first approach). Then he computes the array codeword Y ∈
FN×N by Y = XG̃. But instead of distributing the columns of Y to the players as
their shares, the dealer introduces a burst-error pattern (not necessarily in ΔA)
obtaining matrix Z from Y in this way. Then he distributes Z as shares. Since
after receiving their shares the corrupt players could hand in wrong ones (i.e.
introducing another burst-error pattern in ΔA) in the reconstruction phase we
simulate this behavior as retransmitting Z to Z̃. Since we are able to correct only
the error-patterns in ΔA, we need to apply twice the decoding algorithm (pair-
wise checking protocol) in order to correct the errors. But even then we have the
problem that the sender could introduce errors not from ΔA and that the errors
he introduced together with the errors that the corrupt players introduced could
be not from ΔA. What the share-detection phase in the VSS/DC protocols (e.g.
[5, 17]) achieves more is that the dealer is forced (by the accusation-broadcast
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mechanism) to defend himself if inconsistent information (not in ΔA) is found.
Thus the honest players have (maybe after being broadcasted by the dealer)
consistent shares. This could be simulated by the assumption that Z and Y
differ in an error pattern which is a subset of the error pattern between Z and
Z̃. Therefore the difference between Y and Z̃ is an error pattern from ΔA. This
immediately gives the following requirements for the code in this retransmitting
scenario.

Theorem 6. Let C̃ be an error-set correcting code of length N , with a set of
forbidden distances Δ(C̃). Let consider VSS based on this code and (Δ,ΔA,ΔF )-
adversary ((k, ka, kf )-adversary).

– Correctness:
Then VSS based on this code satisfy the correctness property in Definition
8 if and only if the code C̃ is able to correct burst-error pattern in ΔA (ka

in the threshold case) and burst-erasure pattern in ΔF " {D} (kf + 1), i.e.
ΔA "ΔA " {D} "ΔF ⊆ Δ(C̃) (2ka + kf + 1 < dmin).

– Privacy:
Then VSS based on this code satisfy the correctness property in Definition
8 if and only if the code C̃ has Δ(C̃) as the set of forbidden distances, i.e.
Δ(C̃) = Δ⊥ " {D} (dmin = n− k + 1).

The last bounds coincide with the well known bounds in [1, 11, 5, 10], namely,
ΔA "ΔA "ΔF ⊆ Δ⊥ or equivalently P /∈ ΔA "ΔA "ΔF "Δ (in the threshold
case the bound becomes 2ka + kf + k < n).

We recall the following notions [16]: code C is called weakly self-dual if and
only if C � C⊥, and code C is called self-dual if and only if C = C⊥.

Remark 6. It is interesting to look at the following question: How are dual codes
and dual access structures linked? On one hand if the codes are weakly self-dual
we know the following facts:

– When C̃ (C) is weakly self-dual code, i.e. C̃ � C̃⊥, we have Γ (C̃) � Γ (C̃⊥),
but from Theorems 3 and 4, it follows that Γ (C̃) = Γ⊥ and Γ (C̃⊥) = Γ .
Hence we have Γ⊥ � Γ , i.e. Γ is a Q2 access structure.

– Let C̃ (C) be weakly self-dual code. Taking again into account Theorems 3
and 4, i.e. that H = (M⊥)T , and G = MT we obtain that D(M⊥)T = MT ,
for some non-invertible matrix D. This implies that Γ⊥ � Γ , i.e. Γ is a Q2

access structure. Note that G H
T

= 0 implies that MTM⊥ = E, where E
is a zero matrix except for the entry in the upper left corner which is 1.

On the other hand for dual-codes we obtain Γ = Γ⊥, i.e. the access structure
is self-dual, and D(M⊥)T = MT for some invertible matrix D (MTM⊥ = E
holds).

Thus weakly self-dual codes correspond to Q2 access structures, while self-
dual codes correspond to self-dual access structures, i.e. to minimal Q2 access
structures.
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Several interesting open questions arise.

– Given a Q2 access structure Γ does there always exist a weakly self-dual
error-set correcting code with set of allowed distances Γ ?

– Does for any self-dual access structure Γ exist a self-dual error-set correcting
code with set of allowed distances Γ ?

– One can generalize the notion of weight and distance distribution of an
error-set correcting code (see [16]). It is interesting to check whether the
Mac Williams theorem [16] for the weight enumerators of a code and its
dual can be generalized to this setting.

– It is well known that for a given access structure Γ (and correspondingly
MSP M) the numbers p0, p1, . . . , pn are the players individual information
rate. It would be interesting to see if the invariant theory can be applied to
the weight enumerator of self-dual error-set correcting codes (access struc-
tures) to find out which numbers are suitable and which are not.
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Abstract. In this paper series-parallel multisignature schemes for
multi-messages are investigated. We propose an ID-based series-parallel
multisignature scheme (ID-SP-M4M scheme) based on pairings in which
signers in the same subgroup sign the same message, and those in differ-
ent subgroups sign different messages. Our new scheme is an improve-
ment over the series-parallel multisignature schemes introduced by Doi,
Mambo and Okamoto [5] and subsequent results such as the schemes
proposed by Burmester et al. [4] and the original protocols proposed
by Tada [17, 18], in which only one message is to be signed. Our ID-
SP-M4M scheme is secure against forgery signature attack from parallel
insiders under the BDH assumption.

1 Introduction

The concept of multisignature schemes was introduced independently by Boyd
[3] and Okamoto [15]. A group of n participants generates a multisignature if
all n members have to contribute to sign messages. In a multisignature scheme,
it is required that the total signature size be smaller than n times of that in
the corresponding single signature scheme. Doi et al. [5] considered the case
when signers are in different positions and have different responsibilities which
often can be reflected by the signing order. In an order-specified multisignature
scheme, a multisignature can guarantee not only the set of signers, but also its
signing order. Usually, the following two cases are considered: (1) serial signing,
in which the signing order can be detected by a verifier from a multisignature;
(2) parallel signing, in which the signing order cannot be detected by a verifier
from a multisignature.

Multisignature schemes for various group structures composed of serial and
parallel signing have been well studied, for example, in [4, 5, 6, 7, 17, 18]. The
series-parallel multisignature schemes in [5, 6, 7], [4], and [17, 18] are based on
RSA, ElGamal and MOO (Modified Ohta-Okamoto [14]) schemes, respectively.
In [4, 5, 6, 7], the public keys corresponding to the signing order have to be reg-
istered in advance, while in the schemes proposed in [17, 18], such a task is not
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necessary. The schemes in [4, 5, 6, 7, 17] are order-specified, whereas the schemes
in [18] have the order-flexibility property for a message to be signed. However,
unfortunately, almost all of the schemes given above are intended for signing a
single message, though series-parallel multisignature schemes for multi-messages
are obviously more useful in the real world.

In any company, anyone has the right to launch proposals, but his power
is limited according to his rank. Certainly, the higher the rank he holds, the
stronger the power he has. If employees want to launch some proposal, then at
least two thirds, say, of all the employees should agree to sign it. On the other
hand, the employer can sign any message alone. For example, several employees
in some project sign a message which requests more members because of the
heavy work. The employer examines it, signs another message about the number
of new members he would like to recruit, and then submits it to the personnel
committee. Upon receipt of this multisignature, the personnel committee verifies
its validity, then starts to recruit new members. In this process, the two messages
are different.

Sometimes, the employer should sign his message before his employees sign
their message. Consider the company in the above example again. Because of the
expansion of business, the employer decides to make an investment in equipment,
for $10,000, say. He signs this message and then sends it to his employees. On
the budget of $10,000, the employees sign a message to order some equipment
they need from a firm. On receipt of this multisignature, the person in charge of
the firm checks the validity and then takes the order.

As indicated above, in the real world, there is a need to easily change order of
signers, add a new signer and exclude a signer. That neither the order of signers
nor the signers themselves need to be designated beforehand is an interesting
feature which a practical multisignature scheme should have.

In this paper, we propose an ID-based series-parallel multisignature scheme
for multi-messages from bilinear maps. This new scheme has the flexibility prop-
erty for both the number of signers and the order in series, and the public keys
corresponding to the signing order have not to be registered in advance. It is a
generalization of those schemes mentioned above, for the reason that the sign-
ers in different subgroups in the serial chain can sign different messages. This
property was called message flexibility in [13].

Mitomi and Miyaji [13] introduced a general model of multisignature schemes
(but without any parallel subgroup structure) with message flexibility, order
flexibility and order verifiability. By this model, the aim we want to achieve
seems to have been achieved. However, in their scheme, the verifier should verify
all the signatures signed by the signers one by one, which is clearly inefficient.
In our scheme, the verifier needs only to verify the multisignature once.

The case that the messages to be signed in serial signing are different and
the multisignature can be verified simultaneously is analogous to the aggregate
signature scheme investigated in [2]: given l signatures on l distinct messages
from l distinct signers, it is possible to aggregate all these signatures into one
single short signature. This single signature (and the l original messages) will
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convince the verifier that the l users did indeed sign the l original messages,
i.e., user i signed message mi for i = 1, ..., l. Clearly, our new scheme is also a
generalization of aggregate signature schemes for the reason that no aggregate
signature scheme has the parallel subgroup structure.

The rest of this paper is organized as follows. In Section 2, we recap some
definitions and difficult mathematical problems. In Section 3, we propose an
ID-based series-parallel multisignature scheme for multi-messages from pairings.
In Section 4, we give some comparisons among our scheme and previous works.
Finally concluding remarks are given in Section 5.

2 Preliminaries

Similarly to Sakai et al.’s [16] and Boneh et al.’s [1] ID-based cryptosystems, our
ID-SP-M4M scheme can be built from any bilinear map ê : G1 ×G1 −→ G2 as
long as the bilinear Diffie-Hellman (BDH) problem in 〈G1,G2, ê〉 is hard. Now
we briefly recap some basic concepts and properties related to bilinear maps
between groups, and then the BDH assumption.

2.1 Pairings on Elliptic Curves

LetG1 be an additive cyclic group generated by P , whose order is a large prime q,
and G2 be a multiplicative cyclic group of the same order q. We assume that the
discrete logarithm problems in both G1 and G2 are hard. Let ê : G1 ×G1 −→ G2
be a pairing which satisfies the following properties:

(1) Bilinear. ê(aQ, bR) = ê(Q,R)ab for all Q,R ∈ G1 and all a, b ∈ Z.
(2) Nondegenerate. If ê(Q,R) = 1 for all Q ∈ G1 then R = 0, and also if

ê(Q,R) = 1 for all R ∈ G1 then Q = 0.
(3) Computable. There is an efficient algorithm to compute ê(Q,R) for any

Q,R ∈ G1.

We note that the Weil and Tate pairings associated with supersingular elliptic
curves or abelian varieties can be modified to create such bilinear maps. Ac-
cording to [1], the modified Weil pairing can be adopted for the convenience of
description, although using the Tate pairing would be more efficient [9].

Let (G1, +) be a subgroup on some elliptic curve E(Fp) (e.g. E(Fp) : y2 =
x3+1, for a large prime number p ≡ 2 mod 3, with q being a large prime factor of
p+1, where the point at infinity is denoted as O, see Section 5.1 of [1] or Section
6.8 of [19]) with order q, where q is a large prime number. We note that (G1, +) is
a subgroup of the q-torsion point group E[q]. Let (G2,×) be the subgroup of F ∗

p2

of order q. The Weil pairing on the curve E(Fp) is a mapping e : G1 ×G1 −→ G2
(see Appendix A. of [1] or Section 11.2 of [19]). For any Q,R ∈ G1, the Weil
pairing satisfies e(Q,R) = 1. In other words, the Weil pairing is degenerate on
the group G1.

To get a nondegenerate map, the modified Weil pairing ê : G1 × G1 −→ G2
can be defined as follows: Let ω ∈ Fp2 be a primitive third root of unity. Define
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the map β : E(Fp2 ) −→ E(Fp2), (x, y) �−→ (ωx, y),β(O) = O. Then the modified
Weil pairing is defined as

ê(P,Q) = e(P,β(Q)),

which satisfies the nondegenerate property. Since G1,G2 are groups of prime or-
der, this implies that if P is a generator of G1, then ê(P,P ) is a generator of G2.

2.2 Security Assumption

Definition 1. The BDH problem and the computational Diffie-Hellman (CDH)
problem are defined as follows:

(1) The BDH problem in 〈G1,G2, ê〉: Given 〈P, aP, bP, cP 〉 for some a, b, c ∈
Zq \ {0} where P is a generator of G1, compute ê(P,P )abc ∈ G2.

(2) The CDH problem
- in the additive cyclic group G1 of order q: Given 〈P, aP, bP 〉 for some

a, b ∈ Zq \ {0} where P is a generator of G1, compute abP ∈ G1.
- in the multiplicative cyclic group G2 of order q: Given 〈g, ga, gb〉 for some

a, b ∈ Zq \ {0} where g is a generator of G2, compute gab ∈ G2.

Lemma 1 ([1, 9]). The BDH problem in 〈G1,G2, ê〉 is no harder than the CDH
problem in G1 or G2, and the CDH problem in Gi is no harder than the discrete
logarithm problem in Gi, i = 1, 2.

Moreover, it is known (see [1]) that it is difficult to compute X ∈ G1 for given
A ∈ G1 and ê(X,A) ∈ G2.

Definition 2 (BDH Assumption). We assume that the BDH problem is hard
in 〈G1,G2, ê〉, which means that there is no efficient algorithm to solve the BDH
problem with non-negligible probability.

Let SucBDH(P, aP, bP, cP ) denote the event that the BDH problem in 〈G1, G2,
ê〉 is solved, that is, if 〈P, aP, bP, cP 〉 for some a, b, c ∈ Zq \ {0} are known where
P is a generator of G1, then ê(P,P )abc ∈ G2 can be computed. An algorithm A
has advantage ε in solving the BDH problem if

Pr[SucBDH
A (P, aP, bP, cP )] = Pr[A(P, aP, bP, cP ) = ê(P,P )abc] ≥ ε.

Then the BDH assumption states that when q is a random k-bit prime, no
polynomially bounded algorithm A has a non-negligible advantage in solving the
BDH problem. Here the advantage ε is “non-negligible” means that ε ≥ 1/f(k)
for some polynomial f , where k is the security parameter.

3 An ID-Based Series-Parallel Multisignature Scheme for
Multi-Messages from Pairings

In this section, we describe an ID-based series-parallel multisignature scheme for
multi-messages (ID-SP-M4M scheme) from pairings on elliptic curves, in which
we require that the TA (trusted authority) should be absolutely trusted by the
users.
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3.1 Series-Parallel Graph

In this paper, we consider the following series-parallel structure (see Figure 1).
The signers in the jth subgroup sign the same message mj by parallel signing,
in which the signing order cannot be detected by the verifier from their mul-
tisignature. The signers from different subgroups sign different messages, say,
signsetj signs mj , where m1, m2, ..., ml may be different. The signing order of
the l subgroups signing these l messages by series signing can be verified by the
verifier from their multisignature. This property was called order verifiability in
[13]. Since the order needs not to be registered in advance in our scheme, the
series signing in our scheme is order-flexible.

Fig. 1. Series-parallel graph

Notations

� subgroupj: the set of users corresponding to the jth message mj ;
� valsetj: a valid subset of members in subgroupj;
� valsetj[I]: a valsetj to which user I belongs;
� signsetj: the jth signer set, i.e., the set of signing members from subgroupj,

which is a valsetj;
� Ilast(j) ∈ signsetj: the last signer in the jth subgroup;
� T (j): the multisignature of signsetj from the jth subgroup.

A subset of subgroupj is a valid subset if it has:
(1) the valid number of members: In a subgroup, the number of signers taking

part in the parallel signing is decided according to their ranks they hold. In
some case more than 2/3 of the members in the subgroup are required in a
parallel multisignature, i.e., |valsetj| ≥ 2

3 |subgroupj|;
(2) the valid static public key: valsetj’s public key

∑
I∈valsetj QI �= O, for 1 ≤

j ≤ l.



296 L. Wang et al.

3.2 Our Protocol

In an ID-SP-M4M scheme, signers are divided into l subgroups. The signers
coming from some valid subset of subgroupj sign the message mj , where mi and
mj are usually not identical for i �= j.

For a given security parameter k ∈ N , the TA generates the public system
parameters ℘ = (G1,G2, q, ê,P,Ppub,H1,H2) by running a BDH parameter gen-
erator (see [1]), choosing two cryptographic hash functions H1 : {0, 1}∗ −→ G1
and H2 : {0, 1}∗ −→ Zq \ {0}, secretly selecting s ∈R Zq \ {0} and comput-
ing Ppub = sP . Upon request, the TA generates and delivers the private key
Si = sH1(IDi) to user i with identity IDi.

Key Generation and Delivery

(1) System Key Generation: The TA generates the system public/private
key pair (Ppub, s), and publishes the system parameters

℘ = (G1,G2, q, ê,P,Ppub,H1,H2).

(2) Individual Static Key Generation: The TA generates a private key SI

for user I from his identity IDI and then distributes SI = sH1(IDI) to this
user in a secure way. Then user I has (H1(IDI),SI) as his public/private
key pair.

(3) Individual Dynamic Key Generation: User I secretly selects rI ∈R

Zq \ {0} and computes VI = rIP . Then ê(VI ,
∑

J∈valsetj
[I]
QJ) �= 1 for any

valsetj[I] ⊆ subgroupj, where QJ = H1(IDJ). In this way, user I obtains his
dynamic public/private key pair (VI , rI).

We note that signers should update their dynamic keys after they signed
any message. However, nothing should be updated if the user hasn’t signed any
message. The dynamic public key list of signsetj is denoted by V j

[A→Z], in which
the dynamic public keys of users in the jth subgroup are listed alphabetically
according to their IDs.
Signing

(1) Set initial phase: T (0) = T = O, and h0 = 1.
(2) The users in some valid subset of subgroupj form the set signsetj ∈{valsetj}.

They compute Q(j) =
∑

I∈signsetj QI and let T = T (j−1).
(3) User I ∈ signsetj signs the message mj in the following way:

TI = hj−1SI + rIhjQ
(j),

where hj = H2(mj ,V
j
[A→Z],T

(j−1)).

Note that the coordinates of V j
[A→Z] and T (j−1) should be changed into

strings before hashing. User I computes T ← T+TI and appends his identity
IDI in order to avoid any duplication and omission. Then he sends T to the
next signer in signsetj. Step (3) is repeated until signer Ilast(j) has signed
the message mj .

(4) Let T (j) = T . Signer Ilast(j) ∈ signsetj sends the multisignature of the first
j subgroups
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Sign = (mi,V
i
[A→Z],T

(i) | i = 1, ..., j)

to subgroupj+1 if j < l.
(5) Repeat (2), (3) and (4) for j = 1, 2, ..., l. Then signer Ilast(l) submits the

series-parallel multisignature

Sign = (mj ,V
j
[A→Z],T

(j) | j = 1, ..., l)

to the verifier.

Verification: On receipt of Sign, the verifier computes V (j) =
∑

I∈signsetj VI ,

Q(j) =
∑

I∈signsetj QI ,hj = H2(mj ,V
j
[A→Z],T

(j−1)), for j = 1, 2, ..., l, where
T (0) = O,h0 = 1, and then checks

ê(T (l),P ) ?
=

l∏
j=1

ê(Q(j),hj−1Ppub + hjV
(j)).

If the equality holds, then the verifier accepts the multisignature.
We can easily prove that the above ID-SP-M4M scheme can be checked by

the verifier efficiently as follows.

Theorem 1. In the newly proposed ID-SP-M4M scheme, the verifier can effi-
ciently check the validity of the multisignature to the messages m1, m2, ..., ml,
where m1, m2, ..., ml are signed in order by the signers in signset1, signset2, ...,
signsetl, respectively.

Proof: From the properties of pairing,

ê(T (l),P ) = ê(
l∑

j=1

(
∑

I∈signsetj

TI),P )

=
l∏

j=1

ê(
∑

I∈signsetj

(hj−1SI + rIhjQ
(j)),P )

=
l∏

j=1

ê(hj−1s
∑

I∈signsetj

QI + hj(
∑

I∈signsetj

rI)Q(j),P )

=
l∏

j=1

ê((hj−1s + hj(
∑

I∈signsetj

rI))Q(j),P )

=
l∏

j=1

ê(Q(j), (hj−1s + hj(
∑

I∈signsetj

rI))P )

=
l∏

j=1

ê(Q(j),hj−1Ppub + hj

∑
I∈signsetj

VI)

=
l∏

j=1

ê(Q(j),hj−1Ppub + hjV
(j)).
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In addition, the signature issued by the jth signer set is computed from the
signatures of the previous (j − 1) signer sets, which guarantees our ID-SP-M4M
scheme is order-verifiable. �

In Appendix, we introduce the attack model, forgery signature attack from parallel
insiders (ParaInsiForg Attack Model), and then prove that the above ID-SP-M4M
scheme is secure against the forgery signature attack from parallel insiders under
the BDH assumption.

4 Discussion

The scheme proposed in this paper is based on pairings. This technique was first
used by Sakai et al. [16] to construct an ID-based multisignature scheme. By
a slight modification, we can see that their scheme, M-SOK (Modified Sakai-
Ohgishi-Kasahara [16]), can become an ID-based series-parallel multisignature
scheme for multi-messages (ID-SP-M4M scheme). But similar to the scheme in
[2], their hash function used in the signature is from a string to a point on an
elliptic curve, which requires much more computation time than that from a
string to a number used in our scheme.

As was pointed out in Theorem 1, our ID-SP-M4M scheme is order-verifiable.
Meanwhile our scheme also has the order-flexibility property, since the verifier
only needs to collect all the static and dynamic public keys of the signer sets
for verification, which can be obtained from the multisignature. In fact, not only
the order, but also the number of signers are flexible in our scheme.

Comparisons of our new ID-SP-M4M scheme to all of the known series-parallel
multisignature schemes and the M-SOK scheme are listed in Table 1.

In the previous related works [4, 5, 6, 7, 17, 18], the scheme proposed by Tada
[18] is the only possible series-parallel multisignature scheme which can be mod-
ified to sign multi-messages in series by using the technique introduced in [11].
However, similar to all the other previous works [4, 5, 6, 7, 17], it is not an ID-
based scheme. Traditional PKI may not provide a good solution in many sce-
narios. For example, in a tether-less computing architecture, two mobile hosts
wanting to communicate might get disconnected from each other and also from
the Internet. As exchange of public keys is impossible in this disconnected

Table 1. Comparisons of Series-Parallel Multisignature Schemes

Related Multi- Order- System ID- Map to Point
Works Messages Flexibility Based ID Message

DMO [6, 7] No No RSA No - -
BDDMOTY [4] No No ElGamal No - -
Tada [18], [17] Possible,No Yes MOO No - -

M-SOK Possible Possible Pairing-Based Yes 1 1
Our ID-SP-M4M Yes Yes Pairing-Based Yes 1 0



ID-SP-M4M Schemes for Multi-Messages from Bilinear Maps 299

situation, ID-based cryptosystem fits in with it very well since the public key of
the other party can be derived from his identity.

Furthermore, from the efficiency consideration, we analyze our scheme and
Tada’s scheme [18] in the following two cases:

(1) Key size. Tada’s original scheme in [18] is order-specified. In order to have
order flexibility property, every signer has to prepare a number of private keys
which are in different recommended sizes. For example, suppose that there
are five signers in a signer set. To keep the security level at the same level for
the difficulty of the 1024-IF (integer factoring), apart from a basic private
key, each signer has to prepare other four keys with size 1604 bits, 1626 bits,
1641 bits and 1653 bits, respectively (refer to Table 3 in [10]). However, in
our scheme, for the same security level, the key size is not required to be
bigger than 1024 bits, and each signer needs only one static private key for
any possible signing order.

(2) Verification computation. The most popular pairing choices are the Weil
pairing and the Tate pairing, both of which are computable with Miller’s al-
gorithm, but the Tate pairing is usually more efficiently implementable than
the Weil pairing. According to some recent results (e.g., [12]), it is estimated
that the time for computation of a Weil pairing is approximately 10 times
of the exponentiation in G2. For this reason, the verification computational
cost in Tada’s scheme is less than that in our scheme if there are few sign-
ers. But the situation is changed when the number of signers is large. The
verification computational cost of Tada’s scheme increases approximately by
polynomial curve as the number of signers increases (refer to Table 4. in
[10]). However, in our scheme, when the number of signers in parallel in-
creases, the verification computational cost almost does not increase; when
the number of signers in series increases, the verification computational cost
increases linearly. More precisely, by ignoring the computation of addition
between two points in G1 and hash mapping, we estimate the verification
computational cost for a multisignature with l signsets in series as follows.
Let Ver, Pair and Mult denote computational costs of verification, pairing
and scalar multiplication to a point, respectively, then

Ver ≈ (l + 1)Pair + (2l − 1)Mult = (Pair + 2Mult) · l+ (Pair − Mult).

Therefore, our ID-SP-M4M scheme has a computational advantage in the case
that the multisignature is signed by a large number of signers.

5 Conclusion

In this paper, a series-parallel multisignature scheme based on pairings on elliptic
curves has been proposed. It is an improvement over the multisignature schemes
introduced by Doi, Mambo and Okamoto [5] and subsequently studied by other
researchers such as Burmester et al. [4] in which only one message is to be
signed. In our protocol, the signers in the same subgroup sign the same message,
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and those in different subgroups sign different messages. Apart from the above
message flexibility, our scheme also has the order flexibility and order verifiability
properties. This new scheme is secure against the forgery signature attack from
parallel insiders provided that the BDH problem is hard.
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Appendix: Security Analysis

1 Notions

A generally accepted formal framework for ordinary digital signatures has been
given by Goldwasser et al. [8]. Similarly, the definition of a multisignature scheme
is described as follows.

Definition 3 (Multisignature Scheme). A multisignature scheme (G,S,V)
is a triple of algorithms associated with two finite sets, Random(k), Mspace(k) ⊆
{0, 1}∗, for k ∈ N , where:

- G, called the key generation algorithm, is a probabilistic algorithm which on
input secret parameter 1k outputs a public/private key pair (pk, sk), where
k is the security parameter. For an ID-based multisignature scheme, user’s
identity ID (or the corresponding hashing value) acts as the public key pk.

- S, called the signing algorithm, is an algorithm that, on input of a message
M ∈ Mspace(k), the signer’s private key sk, the secret random number r ∈
Random(k) and the previous multisignature, outputs the signature Sign.

- V, called the verification algorithm, is an algorithm that, on input of public
keys pk Def.

= pk1, ..., pkL (or signers’ identities IDs in an ID-based scheme),
message(s) M(s), and a candidate multisignature Sign, returns 1 if the mul-
tisignature is valid, and 0 otherwise.

Informally, a multisignature scheme is secure against a forgery attack means that
there is no polynomial time bounded algorithm F that can forge a multisignature
such that the verification algorithm V outputs 1 with a non-negligible probability.

The GMR definition [8] identifies four types of forgery against digital signa-
ture schemes. They are in order of decreasing strength: total break, universal
forgery, selective forgery, and existential forgery. The attacks from adversaries
include passive attacks and active attacks for cryptographic signature schemes.
An attack is called passive if it is restricted to the access of the verifying key
and a number of signed messages (known message attack). An attack is called
active if it also accesses the signer to ask for signatures on messages chosen by
the attacker (chosen message attack). The attack is successful if the attacker can
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come up with a signature for a new message, i.e., one for which the signer has not
provided a signature before. A stronger active attack is one where each message
may be chosen by taking into account the signer’s responses to all previously
chosen messages (adaptive chosen message attack). Security requirements are
then defined as security against a certain type of forgery under a certain type
of attack. We define the Forgery Signature Attack from Parallel Insiders (ParaIn-
siForg attack) model in the next subsection. The security under ParaInsiForg
attack corresponds to the security against selective forgery under chosen mes-
sage attack.

2 Security Against the Forgery Signature Attack from Parallel
Insiders

We consider one attack model in which all signers in some valid subset signsetj

of subgroupj, except one honest signer I in signsetj and those out of subgroupj,
may collude in the attack. The attackers give partial signatures of the message
mj to the honest signer I, where mj is the successor to m1, m2, ..., mj−1, and they
obtain a valid partial signature TI of mj from I, whose dynamic public/private
key pair is (VI , rI). With this information, the attackers try to obtain the signer
I’s forgery signature T ′

I of m′
j corresponding to the same previous messages

m1, m2, ..., mj−1. We call this attack the forgery signature attack from parallel
insiders. These attackers’ success is denoted by

Suc
(m1,...,mj−1,m′

j)←(m1,...,mj−1,mj)
ParaInsiForg (m′

j �= mj),

and the attackers are successful if there exists m′
j �= mj such that the signer

I’s forgery signature T ′
I can efficiently pass the verification with a non-negligible

probability.
Due to the limited space, here we only give a brief discussion about the

security of our ID-SP-M4M scheme under the BDH assumption.

Theorem 2. The newly proposed ID-SP-M4M scheme is secure against the
forgery signature attack from parallel insiders (ParaInsiForg attack) provided
that the BDH problem is hard in 〈G1,G2, ê〉.
Proof (sketch): In the ParaInsiForg attack model, the multisignature corre-
sponding to the previous (j − 1) subgroups is unchanged. Then TI = hj−1SI +
rIhjQ

(j), and T ′
I = hj−1SI + (T ′

I − hj−1SI) = hj−1SI + rIh
′
jQ

(j). In order that
the attack might be successful, from the additive property of the multisignature
generation, we know that the following equality should be satisfied:

ê(T ′
I ,P ) = ê(TI ,P ),

which implies that
ê(rIh′jQ

(j),P ) = ê(rIhjQ
(j),P ),

ê(Q(j),h′jVI) = ê(Q(j),hjVI),

ê(Q(j), (h′j − hj)VI) = 1.
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Therefore,

Pr[Suc
(m1,...,mj−1,m′

j)←(m1,...,mj−1,mj)
ParaInsiForg (m′

j �= mj)]=Pr[ê(Q(j), (hj −h′j)VI) = 1].

This probability is negligible since we assumed that the BDH problem is hard
in 〈G1,G2, ê〉.

We go into details. Let SucBDH(P, aP, bP, cP ) denote the event that the BDH
problem is solved (see the BDH Assumption in Section 2.2), then

Pr[SucBDH(P,Ppub,Q
(j), (hj − h′j)VI)]

= Pr[ê(Q(j), (hj − h′j)VI) = 1]

·Pr[SucBDH(P,Ppub,Q
(j), (hj − h′j)VI)|ê(Q(j), (hj − h′j)VI) = 1]

+Pr[ê(Q(j), (hj − h′j)VI) �= 1]

·Pr[SucBDH(P,Ppub,Q
(j), (hj − h′j)VI)|ê(Q(j), (hj − h′j)VI) �= 1].

Note that Ppub,Q
(j), (hj − h′j)VI ∈ G1. So there exist a, b ∈ Zq \ {0} such that

Q(j) = aP and (hj − h′j)VI = bP , whereas Ppub = sP . When ê(Q(j), (hj −
h′j)VI) = ê(aP, bP ) = ê(P,P )ab = 1, the BDH problem 〈P,Ppub,Q

(j), (hj −
h′j)VI〉 can be solved since ê(P,P )sab = (ê(P,P )ab)s = 1. It implies that

Pr[SucBDH(P,Ppub,Q
(j), (hj − h′j)VI)|ê(Q(j), (hj − h′j)VI) = 1] = 1.

Therefore,

Pr[SucBDH(P,Ppub,Q
(j), (hj − h′j)VI)]

= Pr[ê(Q(j), (hj − h′j)VI) = 1] + Pr[ê(Q(j), (hj − h′j)VI) �= 1]

·Pr[SucBDH(P,Ppub,Q
(j), (hj − h′j)VI)|ê(Q(j), (hj − h′j)VI) �= 1]

≥ Pr[ê(Q(j), (hj − h′j)VI) = 1].

Clearly, if
Pr[Suc

(m1,...,mj−1,m′
j)←(m1,...,mj−1,mj)

ParaInsiForg (m′
j �= mj)]

is non-negligible, then

Pr[SucBDH(P,Ppub,Q
(j), (hj − h′j)VI)]

is also non-negligible. �
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Abstract. In this paper we present a new public key cryptosystem
whose security relies on the intractability of the problem of reconstruct-
ing p–polynomials. This is a cryptosystem inspired from the Augot–
Finiasz cryptosystem published at Eurocrypt 2003. Though this system
was broken by Coron, we show However, in our case, we show how
these attacks can be avoided, thanks to properties of rank metric and
p–polynomials. Therefore, public-keys of relatively small size can be pro-
posed (less than 4000 bits).

1 Introduction

At EUROCRYPT 2003, a cryptosystem based on the so-called problem of poly-
nomial reconstruction was presented by Augot and Finiasz [1]. However, this
system was broken soon after by Coron, by modifying the Welch–Berlekamp de-
coding algorithm for Reed–Solomon codes. He managed to argue that in most
cases, the system could be broken in Polynomial-time by recovering the valid
plaintext from the ciphertext [4]. More recently a result by Kiayias and Yung
showed that it was not possible to choose an other way of rescuing the system
such as adding more errors and then using Sudan list-decoding algorithm [8]. A
different attempt was to use properties of the Trace operator to scramble the
structure and design a secure cryptosystem. Once again it was shown that this
system could be broken [2,4].

In this paper we design a cryptosystem based on a new problem called
p–polynomials reconstruction problem. Whereas the classical polynomial recon-
struction problem is closely related to the decoding of Reed–Solomon codes, this
problem is closely related to the problem of decoding Gabidulin codes [9]. We
show how the attacks investigated in the case of the original Augot–Finiasz cryp-
tosystem can be prevented. Namely, the efficiency of the attacks mainly depends
on the metric used in the design of the system. We also construct a public-key
cryptosystem with a public-key size of at most 4000 bits, and a security to the
state of the art attacks.

The outline of the paper is the following. In section 2, we briefly recall the
definitions of rank metric and linear polynomials, mostly in order to fix the no-
tations. In section 3, we present a first, simple adaptation of the Augot-Finiasz
system, and we show its vulnerability. In section 4, we introduce the trace oper-
ator, and we use it to build the cryptosystem which is the main subject of the
paper. Lastly, in section 5, we discuss about the security of this second system.

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 304–315, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Gabidulin Codes and p–Polynomials

Let p be a prime number (practically p = 2), q = pm, and GF (q) be the field
with q elements. p-polynomials (also called Linearized polynomials) over GF (q)
were widely investigated by Øre in 1933, 1934 [10,11]. They are polynomials of
the form:

P (X) = akXpk

+ . . .+ a�X
p�

+ . . .+ a1X
p + a0X,

where a0, . . . , ak are elements of GF (q). If ak �= 0, the integer k is called the

p-degree of P . From now on we will denote [�]
def
= p�. For any vector x ∈ GF (q)n,

we denote P (x)
def
= (P (x1), . . . ,P (xn)).

Definition 1. Let c = (c1, . . . , cn) be a vector of length n over the field GF (q) =
GF (pm). The rank of c, denoted Rk(c) is the rank of the m × n p-ary matrix
obtained by expanding each coordinate of c over a basis of GF (pm)/GF (p).

Using this definition, we can build the rank distance between two words, by
computing the rank (which can move from 0 to n) of their difference. Then, we
obtain the rank metric over words of length n in GF (q).

The rank metric is used as a substitute of the Hamming metric, for crypto-
graphic goals mostly. Many properties of the rank metric were widely studied,
and it is not the goal of this paper to review them all.

We now assume k ≤ n ≤ m. Let g ∈ GF (q)n a vector of rank n. The
Gabidulin code of length n, dimension k and generating vector g is the set of
words obtained by the evaluation of a p-polynomial of degree at most k−1 over g:

Gabk(g)
def
= {(P (g1), . . . ,P (gn)) = P (g) , degp(P ) ≤ k − 1}.

By this construction, it can be shown that the code Gabk(g) has minimum rank
distance n − k. Hence it is an optimal code for rank metric [6]. Moreover there
exist polynomial-time decoding algorithms that can correct up to the error-
correcting capability of the code [7,9,13,14].

3 An Augot–Finiasz Type Cryptosystem

In this section we show how to design a cryptosystem similar to the Augot–
Finiasz cryptosystem. We also show that Coron’s attacks can equally be adapted,
although their complexity is not any more linear in the weight of the error-vector,
but exponential.

3.1 Construction of the System

Parameters
Let n ≤ m, and k < n, be integers and let g = (g1, . . . , gn) ∈ GF (q)n be a vector
of linearly independent elements over GF (p).
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Key Generation
The conceiver of the system picks randomly a p–polynomial P over GF (q) of
p–degree k − 1. He chooses randomly a vector E of length n and of rank W >
(n − k)/2.

– The public key is K = P (g) + E.
– The secret key consists of the pair (P,E).

Encryption
The message m = (m0, . . . ,mk−2) ∈ GF (q)k−1 can be transformed into the p-
polynomial m(x) =

∑k−2
i=0 mix

[i]. The sender chooses randomly α ∈ GF (q), and
an error-vector e of rank ω ≤ (n − k − W )/2. The ciphertext y is:

y = m(g) + αK + e.

Decryption
The receiver projects y on the subspace of GF (q)n of dimension n − W that
is orthogonal to the vector space generated by the coordinates of E. Since he
knows E, he equally knows or can easily compute a non-singular p-ary matrix R
such that ER’s n − W first positions are equal to 0. Hence since R is p-linear,
then P (g)R = P (gR), and

yR = m(g)R + αP (g)R + αER + eR = (m+ αP )(gR) + αER + eR.

Let ỹR be the vector of length n−W obtained by removing the last W positions
of yR. We obtain that

ỹR = (m+ αP )(g̃R) + ẽR.

But Rk(ẽR) ≤ Rk(eR) ≤ Rk(e) ≤ w ≤ n−W−k
2 . Therefore, since (m+ αP ) has

p-degree less than k,
By decoding ỹR in the Gabidulin code Gabk(gR) one recovers Q = m+αP .

Since P has p–degree exactly k − 1, and since m has degree at most k − 2, the
field element αPk−1 is the leading coefficient of Q. Thus the receiver gets α and
finally recovers m = Q − αP .

3.2 Investigation on the Security of the System

The security of the system relies on the fact that given the public-key

K = P (g) + E,

it is not computationally feasible to recover (P,E). Since any other possible
candidate (R,F) such that K = R(g) + F would lead to wrong decoding, an
attacker would have to list all possibilities and try them one by one. It is a
kind of list decoding of Gabidulin codes up to the rank W . We can show that
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such a list-decoding is strictly equivalent to finding all p–polynomial V with
degp(V ) ≤ W and f with degp(f) < k such that

∀i = 1, . . . ,n V (Ki) = V (f(gi)). (1)

This means that we would have to solve the following problem

Reconstruction(K,g = (g1, . . . , gn), k,W )
Find the set (V, f) where V is a non-zero p–polynomial of p-degree ≤ W and
where f is a p–polynomial of p-degree < k, such that V (gi) = V [f(gi)], for all
i = 1, . . . ,n.

In rank metric we have no equivalent of the Johnson bound, but our simula-
tion results tend to show that this problem is hard to solve. Actually, we used
the MAGMA computational algebra system, which is optimized for fast com-
putations over finite fields. Over small sizes (p = 2,n = 3), it is possible to
compute the exhaustive list of solutions to the Reconstruction problem. But the
size of this list increases dramatically (seemingly exponentionnaly) as soon as
W is larger than the error-correcting capability of Gabk(g). Therefore solving
this problem can be considered as being hard, as it implies the manipulation of
an oversized list.

The problem on which the security of the Augot-Finiasz cryptosystem relies is
also a hard problem. The system was nevertheless broken by Coron who showed
that one could generally recover plaintexts by finding roots of a polynomial of
degree ω + 1,[4]. This new system does not suffer from the weakness shown by
Coron for the original system. Namely, by following the same idea, an attacker
would have to find the roots of a polynomial (not a p-polynomial) of degree
(qω+1 − 1)/(q − 1). Therefore this system would provide a much better security
than the original one.

Our system suffers from an other weakness, which was shown in [5]. Given a
received ciphertext y an attacker wants to find m,α, e such that:

y = m(g) + αK + e,

with degp(m) ≤ k − 2 and Rk(e) ≤ n−k−W
2 .

Using a kind of Welch–Berlekamp technique, as in [4], solving this system is
equivalent to finding m,α,V such that:

V (y) = V ◦m(g) + V (αK), (2)

with degp(m) ≤ k − 2 and degp(V ) ≤ ω.
Instead of solving this system, we study a more general system. We search

N,V,V ′ such that:
V (y) = N(g) + V ′(K),

with degp(N) ≤ k + ω − 2, degp(V ) ≤ ω, and degp(V ′) ≤ ω. Considering the
coefficients of N,V,V ′ as unknowns, it is a linear system with n equations and
k+3ω+1 unknowns. Therefore, it can be solved in polynomial time. Since there
is by construction at least one solution to the system, and since we can show
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that k + 3ω + 1 < n, this implies that the matrix of the system is degenerate,
and the solution space often is of small dimension, typically 1. If it is the case
we can find a solution to system (2).

4 System Using the Trace Operator

In this section we were inspired by the attempt to repair the original system by
means of the trace operator which was introduced in [2]. In Hamming metric,
Coron showed that this could not work. In rank metric however, such attacks
cannot be adapted.

Definition 2. The Trace operator from GF (qu) to GF (q) is defined by :

∀x ∈ GF (qu),Tr(x) = x+ xq + xq2
+ . . .+ xqu−1

We can extend this definition to vectors :

Tr(x)
def
= (Tr(x1), . . . ,Tr(xn))

and to linearized polynomials over GF (qu) :

Tr(
k∑

i=0

piX
[i])

def
=

k∑
i=0

Tr(pi)X [i]

We will require the following proposition :

Proposition 1. If (g1, . . ., gn) ∈ GF (q)n, and P is a p-polynomial over GF (qu),
then Tr(P (g)) = (Tr(P ))(g).

proof
Let j ∈ [1,n]. Since gj ∈ GF (q), ∀x ∈ GF (qu), we have :
Tr(xgj) = gjTr(x) (by GF (q)-linearity).
So Tr(P (gj)) = Tr(

∑k
i=0 pig

[i]
j ) =

∑k
i=0 g

[i]
j Tr(pi) = Tr(P )(gj).

Hence Tr(P (g)) = (Tr(P ))(g).

This leads to the design of a cryptosystem based on the trace operator.

4.1 Design of the System

Parameters
– We consider g = (g1, . . . , gn) a vector formed of elements of GF (q) that are

linearly independent over GF (p);
– An extension field GF (qu) of GF (q);
– An integer k;
– An integer W > n−k

2 . This implies that the linearized reconstruction problem
is difficult as it was discussed in section 3.2.
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Key generation
We generate randomly a p–polynomial P with coefficients in GF (qu), of p-degree
k−1, such that the coefficients pk−1, . . . , pk−u form a basis of GF (qu) over GF (q).

We also generate an error vector E, with coefficients in GF (qu), of rank W .

– The public key is K = Tr(P (g)) + E ∈ GF (qu)n.
– The secret key is the pair (P,E).

Encryption
Let m ∈ GF (q) be a plaintext written as a p–polynomial of degree at most
k − u − 1, that is m(X) = m0X +m1X

p + . . .+mk−u−1X
pk−u−1

. We generate
randomly α ∈ GF (qu) and e an error vector in GF (q) of rank ω ≤ (n−W −k)/2.
The ciphertext is:

y = m(g) + Tr(αK) + e ∈ GF (q)n

The encryption can be done in O(nk) multiplications in GF (q).

Decryption
Without loss of generality we can assume that the receiver knows an invertible
p-ary matrix R, such that the first n − W columns of ER are equal to zero.

Since p-polynomials and the trace operator are GF (p)-linear transformations,
we have that Tr(αP (g))R = Tr(αP (gR)). Since g has coefficients in GF (q),
the vector gR has also coefficients in GF (q) and by proposition 1, this implies
that Tr(αP (gR)) = Tr(αP )(gR). Therefore:

yR = m(g)R + Tr(αP (g))R + Tr(αER) + eR,

⇔ yR = (m+ Tr(αP ))(gR) + Tr(αER) + eR.

Let ỹR be the vector obtained by removing the last W positions of yR. We
have:

ỹR = (m+ Tr(αP ))(g̃R) + ẽR.

But Rk(ẽR) ≤ Rk(eR) ≤ Rk(e) ≤ w ≤ n−W−k
2 .

Hence, by decoding ỹR in the code Gabk(g̃R), one recovers the linear polynomial
Q = m + Tr(αP ). Since the p-degree of m is at most k − u − 1, and since
pk−1, . . . , pk−u form a basis of GF (qu) over GF (q), the receiver recovers α, and
then m = Q − Tr(αP ).

Using precomputation, the complexity of the decryption phase is then
O(ω2(k + ω) + (k + ω2) + u2 + kn) multiplications in GF (q).

5 Security of the System

In the case of Hamming metric, Coron, showed that the cryptosystems could
be broken in polynomial-time. It was even shown by Kiayias and Yung that it
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was illusionary to try to repair the system by adding more errors and then using
Sudan algorithm rather than classical decoding algorithms for Reed-Solomon
codes [8].

Here, one attack can be translated directly from Coron’s approach implying
that the parameters have to be carefully chosen, but the second one is too much
related with properties of Hamming metric to be adapted to rank metric.

Let γ1, . . . , γu be a basis of GF (qu) over GF (q). If we write α =
u∑

t=1
αtγt, we

have: Tr(αK) =
u∑

t=1
αtTr(γtK). Let Kt = Tr(γtK), for t = 1 . . .u.

The vectors Kt are vectors in GF (q) easily computable from the public key
K. Knowing y,g,K1, . . . ,Ku, recovering the plaintext consists of solving:

∃e,m,α1, . . . ,αu,

⎧⎨⎩y = m(g) +
u∑

t=1
αtKt + e,

degp(m) ≤ k − u − 1,Rk(e) ≤ ω.
(3)

The rest of this section consists of investigating three ways of solving
system (3).

5.1 Decoding Attacks

The decoding attack is a cipher-text only attack. The ciphertext can be seen
under the form

y = cG + e,

where c = (m0, . . . ,mk−u−1,α1, . . . ,αu), and

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 · · · gn

...
. . .

...
g
[k−u−1]
1 · · · g

[k−u−1]
n

K1
...

Ku

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hence it can be reduced to a problem of decoding the linear code of dimension
k generated by G up to the rank distance ω. To do this we do not know a better
decoder than a general purpose decoder. The most efficient one was designed
by Ourivski and Johannson and works in O((qω3)p(k+1)(ω−1)), operations in the
base field, [12].

5.2 Attack by Linearization

This attack is made on the ciphertext. The attacker writes the encryption equa-
tion, and uses it to obtain a linear system over GF (q).
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Proposition 2. Assuming k +(u+2)ω ≤ n, an attacker can recover the plain-
text from a given ciphertext in polynomial time with very high probability. If
n > k + (u + 2)ω, then the same attack can be made in O(n3qn−k−(u+2)ω) mul-
tiplications with very high probability.

proof
We consider another kind of Welch–Berlekamp approach. Namely, solving system
(3) is equivalent to solving:

∃m,α1, . . . ,αu,V,

⎧⎨⎩V (y) = V ◦m(g) +
u∑

t=1
αtV (Kt),

degp(m) ≤ k − u − 1, degp(V ) ≤ ω

By linearizing the equations, we now obtain the following system:

∃V,R1, . . . ,Ru,N,

⎧⎪⎪⎨⎪⎪⎩
V (y) = N(g) +

u∑
t=1

Rt(Kt),

degp(V ) ≤ ω, degp(Rt) ≤ ω,
degp(N) ≤ k + ω − u − 1

If one writes the unknown coefficients of polynomials V,R1, . . . ,Ru,N in a
vectorial form, one has to solve :

M

⎛⎜⎜⎜⎜⎜⎝
V
R1
...
Ru

N

⎞⎟⎟⎟⎟⎟⎠ = 0

where :

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y1 . . . y
[ω]
1 −K11 . . . −K

[ω]
11 . . . −Ku1 . . . −K

[ω]
u1 −g1 . . . −g

[k+ω]−u−1
1

...
...

...
...

...
...

...
...

yj . . . y
[ω]
j −K1j . . . −K

[ω]
1j . . . −Kuj . . . −K

[ω]
uj −gj . . . −g

[k+ω]−u−1
j

...
...

...
...

...
...

...
...

yn . . . y
[ω]
n −K1n . . . −K

[ω]
1n . . . −Kun . . . −K

[ω]
un −gn . . . −g

[k+ω]−u−1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
using the notation [i] = pi.

M is n × (k + (u + 2)ω + 1)-matrix in GF (q), we can compute its kernel in
polynomial time to find all the solutions for polynomials V,R1, . . . ,Ru,N .

Because there exists a non-trivial solution, the kernel of M is of dimension
at least 1. Aside from this condition, practical experiments lead us to think that
M is very likely to have maximum rank. Thus, we simply deduce the dimension
of ker(M) from the size of M , and we almost always have : dim(ker(M)) =
max(1, k + (u + 2)ω + 1 − n).
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From the space of solutions for V,R1, . . . ,Ru,N , we now have to extract a
suitable non-trivial solution form,α1, . . . ,αu,V , and then thism is the plaintext.

If k + (u + 2)ω ≤ n, then with high probability dim(ker(M)) = 1, and thus,
any solution of the linearized system allows us to find m by a mere left Euclidian
division, the whole attack made in polynomial time.

If this is not the case, one has to check each direction of the solution space,
which leads to an attack in roughly O(n3qn−k−(u+2)ω) multiplications, [5].

5.3 Algebraic Attacks

This part is devoted to finding the secret element α. Once one recovers the
element α ∈ GF (qu), it is trivial to recover the plaintext, by computing y −
Tr(αK) = m(g) + e and decoding this vector in the Gabidulin code.

To decrypt we have to solve the following system

yi − Tr(αKi) = m(gi) + ei, ∀i = 1, . . . ,n,

where the unknowns are e = (e1, . . . , en) of rank ω, α ∈ GF (qu), and the p-
polynomial m. Solving this system is still equivalent to solving

V (yi − Tr(αKi)) = V ◦m(gi), ∀i = 1, . . . ,n, (4)

where the unknowns are m, α and the coefficients of a p-polynomial V of degree
ω. Now to solve this system we consider the system

V (yi − Tr(αKi)) = N(gi), ∀i = 1, . . . ,n (5)

where the unknowns are the element α, and the coefficients of two p-polynomials
V of degree ω and N of degree k + ω − u − 1. If (α,V,m) is a solution of (4),
then (α,V,N = V ◦m) is a solution of (5). There are two manners to solve this
system:

Univariate case
Let us define the following n × (k + 2ω − u + 1) matrix

M(x) =

⎛⎜⎜⎝
y1 − Tr(xK1) · · · (y1 − Tr(xK1))[ω] g1 · · · g

[k+ω−u−1]
1

...
. . .

...
...

. . .
...

yn − Tr(xKn) · · · (yn − Tr(xKn))[ω] gn · · · g
[k+ω−u−1]
n

⎞⎟⎟⎠ ,

where [i] = pi.
Provided α is known, M(α) is the matrix of system (5). Since by construction

(k + 2ω − u + 1) ≤ n and since that we know that there is a non-zero solution,
the matrix M(α) is not of full rank. Therefore, the determinant of every square
submatrix M̃(x) of M(x) satisfies the equation

Det(M̃(α)) = 0.
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The Trace operator is a polynomial of degree qu−1, therefore any determinant
is a polynomial over GF (qu) of degree at most qu−1(pω+1 − 1)/(p − 1). Hence,
a way to find the value of α would be to search for common divisors between
some of the obtained determinants. However for practical cases, as we will see
further, the quantity qu−1(pω+1 − 1)/(p − 1) > 280.

Since such an approach is not very practical, we skip to another more inter-
esting case.

Multivariate case
If we set x =

∑u
j=1 γjxj , where γ1, . . . , γu is a basis of GF (qu)/GF (q), by setting

Ki,t
def
= Tr(γtKi) for t = 1, . . . ,u and i = 1, . . . ,n, we now define

M(x1, . . . , xu) def=

⎛⎜⎜⎝
y1 −∑u

t=1 K1,txt · · · (y1 −∑u
t=1 K1,txt)[ω] g1 · · · g

[k+ω−u−1]
1

...
. . .

...
...

. . .
...

yn −∑u
t=1 Kn,txt · · · (yn −∑u

t=1 Kn,txt)[ω] gn · · · g
[k+ω−u−1]
n

⎞⎟⎟⎠ .

Once again if α
def
=
∑u

t=1 γtαt, then M(α1, . . . ,αu) is the matrix of the linear
system (5). Hence, the determinant of every square submatrix M̃(x1, . . . , xu) of
M satisfies the equation

Det(M̃(α1, . . . ,αu)) = 0.

The determinants M̃(x1, . . . , xu) are multivariate polynomials of degree at most
(p(ω+1) −1)/(p−1). in u variables. We can construct up to

(
n

k+2ω−u+1

)
different

determinants by choosing exactly k + 2ω − u + 1 lines out of n.
We made some simulations in the MAGMA language by using the algorithms

finding first Gröbner bases and then solving the equations. Every time we suc-
ceeded in computing the Gröbner Basis of the system we obtained only one
solution that was exactly the element α of the private key.

Simulation results can be found in Table 1. For these computations we used
an OPTERON processor 2,2Ghz with 8Gb of memory.

Table 1. Simulations of attacks made on parameters n = 36, q = 236, k = 10, W = 14

Number of variables Error-Rank Degree Magma 2.11-2/F4
ω = 2 7 0.01s
ω = 3 15 0.340s

u = 2 ω = 4 31 9s
ω = 5 63 500s
ω = 6 127 11 hours
ω = 2 7 0.06s

u = 3 ω = 3 15 54s
ω = 4 31 15 hours
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5.4 Discussion About the Choice of Parameters

Now we propose the following set of parameters:

– Extension field: q = 236, and u = 3 which implies qu = 2108.
– Length of the code: n = 36.
– Public-key: vector of length 36 over GF (2108), that is 36 × 108 = 3888 bits.

The different attacks we described in the paper give the following results:

– Decoding attacks: The best general purpose decoding algorithm was designed
by Ourivski and Johannson [12]. The complexity of recovering a vector of
rank ω in a code of dimension k + u is equal to (nω)32(k+u+1)(ω−1) > 291

binary operations.
– Attacks by linearization: We have to check q(k+(u+2)ω−n) = 2144 solutions of

a linear system to recover the plaintext.
– Algebraic attacks: Table 1 shows that these parameters are well beyond what

is feasible for now. Namely the system to solve consists of ≈ 232 cubic equa-
tions of degree 127 over GF (236). In the univariate case, one has to compute
gcd’s of polynomials of degree 2100.

An implementation of the system in the MAGMA language on a 1200 MHz
processor gives the following average times (1000 tests). The decoding algorithm
used is described in [5,9].

– Key generation: 72 ms.
– Precomputation: 16 ms.
– Cipher: 23 ms.
– Decipher: 7.9 ms.

This corresponds to a the transmision of (k − u)m = 252 information bits,
encapsulated in a message of nm = 1296 bits, the useful transmission rate is so
about 11 kb/s on this computing speed. Therefore, we can greatly increase the
speed of the algorithms by using an efficient language, for example C language.
It is also possible to transmit more information by putting some information on
the error codeword. On how to do this, see for example [3].
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10. Ö. Øre. On a special class of polynomials. Transactions of the American Mathe-
matical Society, 35:559–584, 1933.
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Abstract. We investigate a monoid variant of the scheme based on
the word problem on groups proposed by Wagner and Magyarik at
Crypto’84, that has the advantage of being immune to reaction attacks so
far. We study the security of this variant. Our main result is a complexity-
theoretic one: we show that the problem underlying this cryptosystem,
say WM, is NP-hard. We also present an algorithm for solving WM. Its
complexity permits to shed light on the size of the parameters to choose
to reach a given level of security.

1 Introduction

At Crypto’84, Wagner and Magyarik [10] have outlined a general construction
for public key cryptosystems based on the word problem. They also proposed a
concrete example of such a system based on finitely presented groups. In 2004,
Gonzalez-Vasco and Steinwandt [5] have proven that this particular example
is vulnerable to a so-called reaction attack. In this attack, an adversary can,
by observing the reaction of a legitimate user, recover the secret key. It has
to be mentionned that this attack works under a small additional assumption
concerning the public key of the Wagner Magyarik scheme. We refer the reader
to [5] for further details.

Wagner and Magyarik also suggest in [10] to replace finitely presented groups
by finitely presented monoids, with similar expected performances. The purpose
of this paper is to investigate this variant. The main motivation is that, in such
a setting, this cryptosystem is so far immune to the reaction attack described
in [5]. This is due to the fact that, in the group variant, the recovering of the
secret key is done by means of recovering words that are congruent to the empty
word. In the monoid setting, such an approach no longer holds, as the only word
congruent to the empty word is the empty word itself.

The paper is organized as follows: after having described the monoid-based
Wagner Magyarik scheme1 (sections 3.1 and 3.2), we focus on the underlying
problem (section 3.3), that we call WM. We show that a problem proven to be
NP-hard in [1] - namely the one of finding a so-called interpretation morphism
mapping a finitely presented monoid to a free partially commutative one (TMMI
problem) - polynomially reduces to WM. A consequence of this is that WM
is NP-hard (there is no such complexity-theoretic result known for the WM
problem on groups), but what this reduction also proves is that TMMI is not
1 We will simply call it the “Wagner Magyarik scheme” in the sequel.

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 316–329, 2006.
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more difficult than WM, i.e. introducing such a morphism does not add any
difficulty. Next, we propose an algorithm for solving WM. In essence, given a
finitely presented monoid (Δ,R), this algorithm finds a Thue congruence S such
that R refines S and Δ∗/S is a free partially commutative monoid. As a side
effect, our algorithm can be seen as one that performs a sort of completion (more
precisely, finds a set S of which R is a refinement), in the particular case when
S is such that Δ∗/S is a free partially commutative monoid.

2 Preliminaries

We here introduce the necessary material in order to present the (monoid-based)
Wagner Magyarik scheme. Let Δ be a finite alphabet, and Δ∗ be the free monoid
over Δ, with λ representing the empty word. Let R be a subset of Δ∗ ×Δ∗. The
Thue congruence generated byR onΔ∗, denoted by ∗↔R, is the reflexive transitive
closure of the relation ↔R defined as follows: ∀u, v ∈ Δ∗, u ↔R v ⇔ ∃x, y ∈ Δ∗,
∃(�, r) ∈ R, such that u = x�y and v = xry or u = xry and v = x�y. (Thus we
shall always assume that if (u, v) ∈ R, then (v,u) �∈ R.) The congruence class of
z ∈ Δ∗ w.r.t. R is [z]R = {w ∈ Δ∗, w

∗↔R z}. The monoidΔ∗/
∗↔R, that we shall

denote equivalently by Δ∗/R, or by (Δ,R), is then a so-called finitely presented
monoid. The word problem for R on Δ∗ is then the following:

Given two words u, v ∈ Δ∗, do we have u ∗↔R v ?.

This problem has been proven undecidable for general instances (Δ,R) [9].
The set R induces a reduction relation on Δ∗ as follows: for x, y ∈ Δ∗, and

(�, r) ∈ R, the single reduction step is defined by: x�y →R xry. The reduction
relation induced by R, denoted by ∗→R, is then the (reflexive, antisymmetric and)
transitive closure of →R. We shall often say that we reduce a word w.r.t.R, mean-
ing that we reduce it w.r.t. ∗→R. The link between the congruence relation and the
reduction relation is obviously the following: ∀u, v ∈ Δ∗ u

∗→S v ⇒ u
∗↔S v.

Let now θ ⊆ Δ×Δ be a binary reflexive and symmetric relation on Δ. When-
ever (a, b) ∈ θ, each occurrence of ab (resp. ba) in any wordw ∈ Δ∗ can be replaced
by ba (resp. ab). If a word v ∈ Σ∗ is derived from a word w ∈ Σ∗ by such a se-
quence of replacements, then we denote it by v ≡θ w. It is clear that ≡θ as defined
is an equivalence relation. Taking the quotientΔ∗/ ≡θ, we obtain the so-called free
partially commutative monoid generated byΔ with respect to the concurrency rela-
tion θ. The word problem for free partially commutative monoids is the following:
Given two words v,w ∈ Δ∗, is v ≡θ w ? Relying on a result of [4], it has been shown
[3] that, for fixed Δ, the word problem in free partially commutative monoids is
decidable in linear time in the length of the inputs v and w.

3 A Monoid Variant of Wagner Magyarik System

3.1 The Scheme

Public key: a finitely presented monoid (Δ = {x1, . . . , xn},R), and two words
w0, w1 ∈ Δ∗, with w0 � ∗↔R w1.
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Secret key: a set of relations S ⊆ Δ∗ ×Δ∗, rendering the word problem in Δ∗/S
easy, with the property that

∀u, v ∈ Δ∗, u
∗↔R v ⇒ u

∗↔S v,

and satisfying also w0 � ∗↔S w1.
Encryption: to encrypt b ∈ {0, 1}, choose a word w ∈ Δ∗ with w

∗↔R wb.
Decryption: solve the easy word problem in Δ∗/S to find b such that w ∗↔S wb.

Typically, the set S is of the form S = S1 ∪ S2 ∪ S3, where S1 is a set of
rules of the form (x,λ) ∈ Δ × {λ}, S2 is a subset of Δ ×Δ, and S3 is a set of
commuting rules (xixj , xjxi), for xi, xj ∈ Δ. The fact that the word problem in
Δ∗/S is easy is due to its free partially commutative monoid structure. We shall
precise it further in the following section.

Note: in the original Wagner Magyarik scheme on groups, S is defined exactly
in the same way (u ∗↔R v ⇒ u

∗↔S v, w0 � ∗↔S w1, and the word problem
in the finitely presented group generated by S is polynomial-time solvable; in
particular, S is chosen of the form S = S1 ∪ S2 ∪ S3). The only difference is
that, as inverses are well-defined, it allows for a somewhat lighter handling of
congruences (by the fact that u ∗↔R v is equivalent to uv−1 ∗↔R λ). Indeed,
the main difference between Wagner Magyarik over monoids and over groups
does not lie in the description of the schemes, but rather in the fact that - due
to the non-existence of inverses - one cannot retrieve any useful information
about the private key from a reaction attack on Wagner Magyarik scheme on
monoids.

3.2 Some Features of the Set S

Let S = S1 ∪ S2 ∪ S3 be a secret key of a Wagner Magyarik scheme. Denote
by ∗↔S , the Thue congruence generated by S on Δ∗. The set S is such that
the word problem in Δ∗/S is easy in the sense that, after having removed the
generators involved in S1 (i.e. elimination relations of the form (x,λ)) and sim-
plified those involved in S2 (i.e. relations of the form (xi, xj)), we come up
with a free partially commutative monoid the concurrency relation of which is
S3. Note that it will indeed be the case in the decryption process: first reduce
w.r.t. S1 ∪ S2, then solve the easy word problem induced by the concurrency
relation S3.

Removing generators involved in S1 simply consists in replacing any x where
(x,λ) ∈ S1 by λ, and thus does not make any difficulty. On the other hand,
simplifying words by rules of S2 requires a little attention, so as not to in-
troduce any additional hardness, as the overall process of testing equivalence
w.r.t. S must remain easy. Therefore, we shall now show how to reduce in a
non ambiguous way w.r.t. the set S2. We set Δλ = {x ∈ Δ, (x,λ) ∈ S1}, and
Δ′ = Δ \Δλ. The set S2 consists of pairs (xi, xj), for some letters xi, xj ∈ Δ′,
i �= j (there is no relevance in considering S2 acting on the whole set Δ). Let
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∗→S2 be the reduction relation induced by S2. As the word problem in Δ∗/S is
easy, it must be the case that ∗→S2 contains no cycle, i.e. no sequence of the
form xi →S2 xj →S2 . . . →S2 xi with j �= i. Otherwise, one could be in an
infinite loop trying to reduce a word u ∈ Δ′∗ w.r.t. S2. As there are no cycle,
then every sequence of reductions u →S2 v →S2 . . . where u, v ∈ Δ′∗, must be
finite2. In particular, every sequence of reductions on letters xi →S2 xj →S2 . . .,
where xi, xj ∈ Δ′, must be finite. Thus, in each such sequence, there exits an
x ∈ Δ′ that cannot be further reduced by rules of S2 (i.e. for which there exists
no y ∈ Δ′, such that x →S2 y). We shall call such an x irreducible. Furthermore,
if, starting from some xi ∈ Δ′, there were to be two distinct (finite) sequences
of reductions xi →S2 xj →S2 . . . →S2 x and xi →S2 x′

j →S2 . . . →S2 x′,
with x �= x′, then one might not be able to decide the word problem in Δ∗/S,
because of ambiguity in the reduction w.r.t. S2. Thus, if such two sequences were
to exist, then it had to be the case that they become identical at some point,
and thus that x = x′. In other words, according to the accepted terminology,
(Δ′,S2) is a confluent semi-Thue system. This, together with the Noetherian
property, implies the uniqueness of an irreducible element to which any letter3

of Δ′ reduces. Thus, denoting by Δirr, the set of irreducible letters of Δ′, we
have that, for every letter xi ∈ Δ′, there exists a unique letter x ∈ Δirr, such
that xi

∗→S2 x. Note that this holds whether xi is such that there exists a letter
xj ∈ Δ′, with (xi, xj) ∈ S2, or not. If not, then xi cannot be reduced w.r.t. S2,
and in this case x is equal to xi itself.

Now let u ∈ Δ∗, and let u′′ be the word of Δ′∗ obtained from u by removing
every letter of Δλ (this amounts to reducing u w.r.t. the reduction relation ∗→S1

induced by S1). Now let u′ be the word of Δ∗
irr, such that u′′ ∗→S2 u′. As S1

and S2 act on disjoint alphabets, one can reduce u ∈ Δ∗ w.r.t to S1 then S2, or
vice-versa, and will obtain the same result. Thus, we shall denote by ∗→S1∪S2 , the
reduction relation obtained by applying ∗→S1 then ∗→S2 , or the converse. Note
that, for a word u ∈ Δ∗, if u′ denotes a word of Δ∗

irr such that u ∗→S1∪S2 u
′,

then u′ is not only irreducible w.r.t. to S2, but also w.r.t. to S1, for it admits no
letter of Δλ; thus such a u′ is unique.

Next, we define a map that we call ψ : Δ∗ → Δ∗
irr, by: ψ(δ) = λ if δ ∈ Δλ,

and for δ ∈ Δ′, ψ(δ) = x, where x ∈ Δirr is such that δ ∗→S2 x.
In the sequel, we shall make use of the following two results:

Property 1. Let u ∈ Δ∗ and u′ ∈ Δ∗
irr. Then

u
∗→S1∪S2 u

′ ⇔ ψ(u) = u′.

Proof. Let u ∈ Δ∗, and let u′′ ∈ Δ′∗, be the unique word such that u ∗→S1 u
′′

(thus, u′′ is fully reduced w.r.t. S1). We shall show:

u′′
∗→S2 u

′ ⇔ ψ(u′′) = u′. (1)

2 In other words, the reduction-step relation is Noetherian.
3 And any word of Δ′∗.
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The desired result will then follow, as reducing w.r.t. S1 ∪ S2 is the same as
reducing w.r.t. S1 then S2, and by the fact that we obviously have ψ(u′′) = ψ(u).
By definition, ∀δ ∈ Δ′, ψ(δ) is defined as the only δ0 ∈ Δirr, such that δ ∗→S2 δ0.
Thus, (1) plainly holds on letters of Δ′.

Now let u′ ∈ Δ∗
irr, with u′′

∗→S2 u
′. Write u′′ = u′′1 · · ·u′′� , and, for 1 ≤ j ≤ �,

set ψ(u′′j ) = vj ∈ Δirr. As ψ(u′′j ) = vj ⇔ u′′j
∗→S2 vj , 1 ≤ j ≤ �, it comes:

u′′ = u′′1 · · ·u′′� ,
∗→S2 v1 · · · v� = ψ(u′′1) · · ·ψ(u′′� ) = ψ(u′′). Unicity of irreducible

elements w.r.t. S2 yields u′ = ψ(u′′).
Conversely, let u′ = ψ(u′′). Write u′ = u′1 · · ·u′�, u′j ∈ Δirr, 1 ≤ j ≤ �. As

u′′ ∈ Δ′∗, no letter of u′′ maps to λ by ψ. Thus4 |ψ(u′′)| = |u′′|, and so |u′′| = �.
Let then u′′ = u′′1 · · ·u′′� . As ψ(u′′) = ψ(u′′1 ) · · ·ψ(u′′� ) = u′ = u′1 · · ·u′�, it follows
that5 ψ(u′′j ) = u′j , ∀1 ≤ j ≤ �, which, as (1) holds on letters, is equivalent to
u′′j

∗→S2 u
′
j , ∀1 ≤ j ≤ �. Finally, u′′1 · · ·u′′� ∗→S2 u

′
1 · · ·u′�, i.e. u′′ ∗→S2 u

′.

Observe that one has, for all u, v ∈ Δ∗, u
∗→S1∪S2 v ⇒ u

∗↔S v. This yields:

Property 2. Let u, v ∈ Δ∗, and u′, v′ ∈ Δ∗
irr, such that u

∗→S1∪S2 u′ and
v

∗→S1∪S2 v
′. Then

u
∗↔S v ⇔ u′

∗↔S3 v
′. (2)

Proof. For u, v ∈ Δ∗, let u′, v′ ∈ Δ∗
irr such that u ∗→S1∪S2 u

′ and v
∗→S1∪S2 v

′.
By the above observation,

u
∗↔S v ⇒ u′

∗↔S v′.

As u′ and v′ are irreducible w.r.t. S1 ∪ S2, only rules of S3 can intervene in the
rewriting u′ ∗↔S v′. Thus, u′ ∗↔S v′ ⇔ u′

∗↔S3 v
′, and the “if” part of (2) holds.

The converse is also true, as u′ ∗↔S3 v
′ implies u ∗→S1∪S2 u

′ ∗↔S3 v
′ ∗←S1∪S2 v,

and thus u ∗↔S v.

3.3 The Underlying Hard Problem

We shall here show that the (search) problem underlying the Wagner Magyarik
scheme on monoids is NP-hard. Let us call this problem WMs, and let WMd

denote the associated decision problem. To do so, we shall use a problem in-
troduced in [1], that we call6 Thue Monoid Morphism Interpretation (TMMI)
problem. We shall denote by TMMId, (resp. TMMIs), the decision (resp. search)
version of it. First, let us state WMd and TMMId.
WMd:

Input: an alphabet Δ, a Thue system R ⊆ Δ∗ ×Δ∗, and two words w0, w1 ∈ Δ∗

with w0 � ∗↔R w1.

4 |u| denoting the number of letters of the word u.
5 ∀1 ≤ j ≤ �, ψ(u′′

j ) �= λ and |ψ(u′′
j )| = 1.

6 This problem was not given any name by the authors of [1].
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Question: Does there exist a set S ⊆ Δ∗ ×Δ∗ of the form S = S1 ∪ S2 ∪ S3 with
Si defined as above, satisfying:

(i) ∀x, y ∈ Δ∗, x
∗↔R y ⇒ x

∗↔S y.

(ii) w0 � ∗↔S w1.

The search problem WMs is simply the one of effectively constructing such
a set S.
Note: as said before, the very structure ofS implies that the word problem inΔ∗/S
is easy. However, in the WM problem, the important thing is not that S have the
particular shape S = S1 ∪S2 ∪S3, but rather that the resulting monoid Δ∗/S be
a free partially commutative monoid where S is such that R refines S. We shall
make use of this observation to design an algorithm to break WM in section 4.

TMMId:
Input: a Thue system T on an alphabet Δ, and two words y0 and y1 ∈ Δ∗.
Question: Does there exist an alphabet Σ, a nontrivial interpretation morphism
g : Δ∗ → Σ∗, and a concurrency relation θ on Σ, having the following properties:
1. g(y0) �≡θ g(y1).
2. for each letter d ∈ Δ, g(d) is either a letter in Σ or the empty word λ.
3. there exists a letter d ∈ Δ such that g(d) is a letter in Σ.
4. for every two words u and v in Δ∗ with u ∗←→T v, we have g(u) ≡θ g(v).

The search problem TMMIs is the one of effectively constructing a solution
(Σ, g, θ).

The following result will permit us to prove the hardness of WMs.

Theorem 1. TMMId is poly-time many-one reducible to WMd.

Proof. We denote by LWM (resp. LTMMI), the language7 associated to WMd

(resp. TMMId). To prove the theorem, one needs to show that there exists a
polynomial-time computable function f from the instances of TMMId to the
instances of WMd, satisfying:

X ∈ LTMMI ⇔ f(X) ∈ LWM . (3)

Let (Δ = {x1, . . . , xn},R, y0, y1) ∈ LTMMI , and let (Σ, g, θ) be a solution of it.
Consider the instance (Δ,R,w0 = y0,w1 = y1) of WMd (i.e. f is the identity
mapping here). We shall construct a solution of this instance. This amounts to
show that f(Δ,R, y0, y1) ∈ LWM . Set Δλ = {x ∈ Δ, g(x) = λ}; {g(x), x ∈
Δ} = {σ1, . . . ,σk} ⊆ Σ (we need not suppose the equality), where the σ’s are
pairwise distinct; for each i, 1 ≤ i ≤ k, let Cσi = {x ∈ Δ, g(x) = σi}. Note that,
as ∀x ∈ Δ \Δλ, ∃!i, 1 ≤ i ≤ k, s.t. g(x) = σi, we have: Cσi ∩ Cσj = ∅ for i �= j,
and ∪1≤i≤k Cσi = Δ \Δλ.

For each i, 1 ≤ i ≤ k, let zi denote an element of Cσi . Set Δirr = {z1, . . . , zk}
and construct S as S1 ∪ S2 ∪ S3 with
7 i.e. the set of instances admitting a solution.
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S1 = {(x,λ), x ∈ Δ, g(x) = λ} = Δλ × {λ},
S2 = {(xi, xj), xi, xj ∈ Δ \Δλ, xi �= xj , g(xi) = g(xj)}, and
S3 = {(xixj , xjxi), xi, xj ∈ Δirr, xi �= xj , (g(xi), g(xj)) ∈ θ}.

Now we shall show that S = S1∪S2∪S3 is a solution of (Δ,R,w0,w1). It suffices
to show that (i) and (ii) of the WM problem statement hold. As (Σ, g, θ) is a
solution of (Δ,R, y0, y1), we have

u
∗↔R v ⇒ g(u) ≡θ g(v).

To show (i), it thus suffices to show that g(u) ≡θ g(v) implies u ∗↔S v. We shall
first prove:

∀u, v ∈ Δ∗, g(u) ≡θ g(v) ⇔ ψ(u) ∗↔S3 ψ(v), (4)

where ψ : Δ∗ → Δ∗
irr is defined on letters of Δ by:

ψ(δ) = λ if δ ∈ Δλ,
ψ(δ) = zi if δ ∈ Cσi .

Observe that we have ψ = τ ◦ g, where τ : g(Δ)∗ → Δ∗
irr is defined by τ(σi) =

zi, ∀1 ≤ i ≤ k, and τ(λ) = λ. It is clear that τ is a monoid isomorphism.
Let θg be the restriction of θ to pairs (a, b), with a, b ∈ g(Δ) ⊆ Σ, and set
τ(θg) = {(τ(a)τ(b), τ(b)τ(a)), (a, b) ∈ θg}. We then have τ(θg) = S3. Indeed:

(xixj , xjxi) ∈ S3 ⇔ (g(xi), g(xj)) ∈ θ ∩ g(Δ) × g(Δ), with xi, xj ∈ Δirr ⇔

(g(xi), g(xj)) ∈ θg, with xi, xj ∈Δirr ⇔(τ◦g(xi)τ◦g(xj),τ◦g(xj)τ◦g(xi))∈ τ(θg)

⇔ (ψ(xi)ψ(xj),ψ(xj)ψ(xi)) ∈ τ(θg).

As ψ(x) = x, ∀x ∈ Δirr, we get:

xi, xj ∈ Δirr , (xixj , xjxi) ∈ S3 ⇔ (xixj , xjxi) ∈ τ(θg), with xi, xj ∈ Δirr.

Let u, v ∈ Δ∗. It comes

g(u) ≡θ g(v) ⇔ g(u) ≡θg g(v) ⇔ τ ◦ g(u) ≡τ(θg) τ ◦ g(v) ⇔ ψ(u) ∗↔S3 ψ(v),

proving equivalence (4).
We shall need to use properties 1 and 2. To do so, we shall show that the re-

duction relation induced by S2 has the properties needed in order to apply those
results, namely, for all x ∈ Δ′∗ def

= (Δ \Δλ)∗, there exists a unique irreducible
(w.r.t. S2) word z ∈ Δ′∗, such that x

∗→S2 z. First note that, by construction of
Δirr and S2, no two letters of Δirr can be congruent w.r.t. S2.

Let x ∈ Δ′. Then, there exists a unique i, 1 ≤ i ≤ k, such that x ∈ Cσi .
Let zi be the unique element8 of Δirr ∩ Cσi . Then g(x) = σi = g(zi), so that
x →S2 zi. Thus, ∀x ∈ Δ′, ∃!z ∈ Δirr, such that x →S2 z, and, by transitivity of

8 Note that zi could be x itself.
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the reduction relation, ∀x ∈ Δ′∗, ∃!z ∈ Δ∗
irr, such that x

∗→S2 z. That is to say
that Δirr can be taken as the set of irreducible letters w.r.t. S2. Besides, for the
same reasons as in section 3.2, Δirr is also the set of irreducible letters w.r.t.
S1 ∪ S2. Now, the map ψ is defined exactly as the one of section 3.2, mapping
Δ∗ onto Δ∗

irr . Thus we are in a position to apply properties 1 and 2: for any
word u ∈ Δ∗, ψ(u) is the irreducible word to which u reduces w.r.t. S1 ∪S2, and
u

∗↔S v ⇔ ψ(u) ∗↔S3 ψ(v). This yields finally ∀u, v ∈ Δ∗, u
∗↔R v ⇒ g(u) ≡θ

g(v) ⇔ ψ(u) ∗↔S3 ψ(v) ⇔ u
∗↔S v, ending the proof of (i). Property (ii) follows

from (4), as9:

g(w0) �≡θ g(w1) ⇔ ψ(w0) � ∗↔S3 ψ(w1) ⇒ ψ(w0) � ∗↔S ψ(w1) ⇒ w0 � ∗↔S w1.

Let us now show the “only if” part of (3).
Let f(Δ,R, y0, y1) = (Δ,R,w0,w1), with w0 = y0, w1 = y1, be an instance10

of LWM . We want to show that then (Δ,R, y0, y1) ∈ LTMMI . Let S = S1∪S2∪S3
be a solution of (Δ,R,w0,w1). Define Δλ, Δ′ and Δirr from S1 and S2 as in
section 3.2, and, for x ∈ Δirr, set Cx = {xi ∈ Δ′, xi

∗→S2 x}.
We shall now construct a solution (Σ, g, θ) of the considered instance of

TMMId. Set Σ = Δirr. Define g : Δ∗ → Σ∗ with g(x) = λ if x ∈ Δλ, and
g(xi) = x if xi ∈ Cx. Note that g is exactly the map ψ.

Finally, set θ = {(xi, xj), (xixj , xjxi) ∈ S3} ⊆ Σ×Σ. Observe that θ consists
only in commuting rules, i.e. θ is a concurrency relation on Σ.

Assuming S1 �= Δ× {λ} (otherwise there can be no two words w0, w1 ∈ Δ∗,
with w0 � ∗↔R w1), it is plain that conditions 2. and 3. of the TMMId prob-
lem statement are fullfilled. To show 4., observe that, as S is a solution of
(Δ,R,w0,w1), we have: ∀u, v ∈ Δ∗, u

∗↔R v ⇒ u
∗↔S v.

As g = ψ, we get, using property 2: ∀u, v ∈ Δ∗, u
∗↔S v ⇔ g(u) ∗↔S3 g(v). But

then condition 4. follows, as, by definition of θ, g(u) ∗↔S3 g(v) ⇔ g(u) ≡θ g(v).
Condition 1. is an easy consequence of property 2: as (Δ,R,w0,w1) ∈ LWM , we
have w0 � ∗↔R w1, and, S being a solution of WMd, we have w0 � ∗↔S w1. Thus,
g(y0) �≡θ g(y1).

In [1], it has been shown that TMMId poly-time many one reduces to the sat-
isfiability problem SATd (the reduction actually being between solutions of cor-
responding search problems). For the sake of completeness, we quote the fol-
lowing results, proving the NP-completeness of TMMId and WMd, as well as
NP-hardness of WMs:

Proposition 1. TMMId ∈ NP.

Proof. It suffices to check that a solution of any instance (Δ,T , y0, y1) of11

LTMMI can be checked in time polynomial in the size of (Δ,T , y0, y1), namely
9 Remember that w0 = y0, and w1 = y1.

10 Any instance of TMMId is such that y0 � ∗↔R y1. Thus it makes sense to consider the
instance (Δ, R, w0 = y0, w1 = y1) of WMd.

11 Notation being as in the proof of theorem 1.
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in |Δ|+ ||T ||+ |y0|+ |y1|, where ||T || =
∑

(�,r)∈T (|�|+ |r|). Let us thus prove that
each of conditions 1. to 4. of the TMMId problem statement can be checked in
polynomial time.

First, conditions 2. and 3. can be checked by evaluating g(δ) for each δ ∈ Δ,
and see whether we get a letter of Σ or the empty word. This can be done
in O(|Δ|). It is easy to check that θ defines a concurrency relation on Σ: one
simply has to verify that θ only contains rules of the form (a, b), for a, b ∈ Σ.
This can be done in O(|Σ|2). Then, according to proposition 3 given in the ap-
pendix, we know that the congruence g(y0) �≡θ g(y1) can be tested in time O(|Σ|
2(|y0| + |y1|)).

To check condition 4., namely ∀u, v ∈ Δ∗, u
∗↔T v =⇒ g(u) ≡θ g(v), observe

that it is equivalent to

(u, v) ∈ T =⇒ g(u) ≡θ g(v). (5)

Indeed, (condition 4.) ⇒ (5) is straightforward. The converse follows from the
transitivity properties of ∗↔T and ≡θ: indeed, suppose (5) is true. Let u, v ∈ Δ∗,
with u ∗↔T v. Then there exists a finite sequence u0,u1, . . . ,uk, k ∈ N∗, of words
of Δ∗ such that

u0 = u ↔T u1 ↔T u2 ↔T . . . ↔T uk−1 ↔T uk = v.

For 0 ≤ j ≤ k−1, uj ↔T uj+1 means that there exists (�, r) ∈ T , and x, y ∈ Δ∗,
with uj = x�y and uj+1 = xry. This yields g(uj) = g(x)g(�)g(y) and g(uj+1) =
g(x)g(r)g(y). As (5) holds, we have g(�) ≡θ g(r), so that g(uj) ≡θ g(uj+1). Thus,
we have the corresponding sequence

g(u) ≡θ g(u1) ≡θ g(u2) ≡θ . . . ≡θ g(uk−1) ≡θ g(v),

so that condition 4. is true. This proves that condition 4. can be checked in
O(|Σ|2||T ||).
Corollary 1. TMMId is NP-complete.

Proof. It is an easy consequence of proposition 1 and the property proved in [1],
namely SATd ≤p

m TMMId.

Proposition 2. WMd ∈ NP.

Proof. The proof is essentially the same as the one of prop.1: Let (Δ,R,w0,w1)
be any instance of LWM . The size of (Δ,R,w0,w1) is |Δ| + ||R|| + |w0| + |w1|,
with ||R|| =

∑
(�,r)∈R(|�| + |r|). Let S be a solution of this instance. First, to

check S has the right form can be done in time O(|Δ|2). Once one has verified
this, one knows that S induces a free partially commutative monoid structure
on Δ∗.

Property (i) in WMd problem statement can be checked in time O(|Δ|2||R||),
as it is equivalent to (u, v) ∈ R =⇒ u

∗↔S v, and by the fact that Δ∗/S is a free
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partially commutative monoid. For the same reason, (ii) can be checked in time
O(|Δ|2(|y0| + |y1|)).

Corollary 2. (i) WMd is NP-complete.
(ii) WMs is NP-hard.

Proof. (i) follows from proposition 2, theorem 1 and corollary 1.
(ii) follows from theorem 1 and corollary 1.

4 An Algorithm for WM

In [7], an algorithm has been designed to solve TMMI, that is, to find a solution
of TMMI or conclude there is no. We shall here call this algorithm TMMI-Alg
and, for the sake of completeness, quote it in the appendix. In the previous
section, we have proposed a reduction from the TMMI problem to the WM
problem. Furthermore, this reduction is plainly tight, as the mapping between
instances of these two problems is indeed the identity. It then seems natural to
use TMMI-Alg to design an algorithm for WM.

In essence, the idea is as follows: for each integer i in the range [1, |Δ|], and
every possible morphism g from Δ∗ onto g(Δ∗), with g(Δ) of size i, we execute
algorithm TMMI-Alg until a solution is found or until i = |Δ| + 1.

WM-Alg
Input: (Δ,R,w0,w1), an instance of WM.
Output: a solution S = S1 ∪ S2 ∪ S3 of WM - if any - or Error.

i = 1
While i < |Δ| + 1 do

For g ∈ Hom(Δ∗,Δ∗) with |g(Δ)| = i do
run TMMI-Alg on (Δ, g, g(Δ),R,w0,w1)
If the output of TMMI-Alg is θ then set

{σ1, . . . ,σk} = g(Δ)
Cσi

= {x ∈ Δ, g(x) = σi} and, for each i, choose zi ∈ Cσi

Δirr = {z1, . . . , zk}
S1 = {(x,λ), x ∈ Δ, g(x) = λ}
S2 = {(xi, xj), xi, xj ∈ Δ, xi �= xj , g(xi) = g(xj) �= λ}
S3 = {(xixj , xjxi), xi, xj ∈ Δirr, xi �= xj , (g(xi), g(xj)) ∈ θ}
Return S = S1 ∪ S2 ∪ S3

EndIf
EndFor
i = i + 1

EndWhile
Return Error
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Proof of correctness of the algorithm

Theorem 2. Let R be a Thue system on an alphabet Δ. Then,

(i) If the algorithm outputs “Error”, then there is no solution to the WM problem
on the instance (Δ,R,w0,w1).
(ii) if the algorithm returns S, then S is a solution of WM on the instance
(Δ,R,w0,w1).

Proof. (i) If the algorithm outputs “Error”, then it is the case that there is
no integer i in the range [1,Δ] for which TMMI-Alg could find a solution on
the instance (Δ, g, g(Δ),R,w0,w1), for any morphism g with |g(Δ)| = i. In
other words, no concurrency relation could be found fitting (g,R), for any g ∈
Hom(Δ∗,Δ∗), |g(Δ)| = i, and any i ∈ [1,Δ]. This means that (Δ,R,w0,w1) �∈
LTMMI . According to theorem 1, this is equivalent to f(Δ,R,w0,w1) �∈ LWM ,
where f is the identity mapping used in the proof of theorem 1.

(ii) If the algorithm returns S, it means that there exists an integer i ∈ [1,Δ],
and a morphism g ∈ Hom(Δ∗,Δ∗), with |g(Δ)| = i, such that TMMI-Alg
finds a concurrency relation θ fitting its input (Δ, g, g(Δ),R,w0,w1). Accord-
ing to the theorem given in the appendix, this means that (Δ,R,w0,w1) ∈
LTMMI , the solution of this instance being (g, g(Δ), θ). The definitions of the
σis’, Cσi s’, Δirr, S set in the algorithm exactly follow the deriving of a solu-
tion of WM from a solution of TMMI given in the proof of theorem 1. Thus
f(Δ,R,w0,w1) = (Δ,R,w0,w1) ∈ LWM , and the set S is a solution of this
instance.

A note on the case i = |Δ|
In this case, g is an isomorphism on Δ (otherwise, it must be that |g(Δ)| < |Δ|).
Thus, the conditions of TMMI-Alg on the projections πa and π{a,b} (for a, b ∈
g(Δ)) of the images g(u) and g(v) (for rules (u, v) ∈ R) are true if, and only if,
they are true on u and v. In other words, the concurrency relation that we are
looking for can be constructed from rules of R only. Thus there is no need to
choose any g in the while loop, for i = |Δ|. We nevertheless put i < |Δ| + 1 as
a stopping conditon of the while loop, because the case i = |Δ| - i.e. instances
of WM admitting a solution corresponding to a solution of TMMI with g being
an isomorphism - obviously has to be handled.

Complexity considerations
The complexity of TMMI-Alg is O(i2|T |) operations, where i is the size of Σi =
gi(Δ), and where an operation is here an evaluation of π or of gi. In the worst
case (no solution, or a solution for |g(Δ)| = |Δ|), TMMI-Alg will be iterated∑|Δ|−1

i=1 |Hom(Δ,Σi)| times. With |Hom(Δ,Σi)| = (i+1)|Δ|, and using the rough
bound (i + 1)|Δ| ≤ |Δ||Δ|, for all 1 ≤ i ≤ |Δ| − 1, we get that the number of
iterations of the for loop of WM-Alg is O

(|Δ||Δ|+1
)
. Thus, to solve12 WM one

needs to perform O
(|R||Δ||Δ|+3

)
operations.

Note that the cryptographic instances of the WM problem all admit a solution.
Thus, in a cryptanalytic setting, it is always the case that there exists an integer
12 To find a solution or conclude that there is no.
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k, 1 ≤ k ≤ |Δ|, and a morphism g with |g(Δ)| = k, such that WM-alg returns
a set S solution of the considered instance. The complexity of the algorithm in
this context is then O

(|R|k3(k + 1)|Δ|).
Practical complexity : For instances of the TMMI problem admitting a solution
- say (g,Σ, θ), with k = |Σ| - observe that any isomorphism π ∈ Isom(Σ∗,Σ∗),
will also yield a solution, namely (π ◦ g,Σ,π(θ)), with

π(θ) = {(π(a),π(b)), (a, b) ∈ θ}.

Thus the expected number of iterations of the for loop of WM-Alg is Ck =∑k−1
i=1 (i+ 1)|Δ| + ((k+ 1)|Δ|/k!), yielding an overall complexity of O

(|R|k2Ck

)
.

Impact on the parameter choice
It seems difficult to devise suitable parameter sizes for Wagner Magyarik system
from the sole complexity of the algorithm above. This is due to the fact that
many questions still remain open concerning the practicality of the scheme; in
particular, the size of Δ and R for which the encryption procedure is both
efficient and secure. Thus, we think that an important direction of research (in
word problem-based cryptosystems in general) would be the investigation of
secure and efficient encryption. Then, the parameter sizes could be tuned w.r.t.
to the above complexity in order to twart attacks on the underlying problem.

5 Conclusion

Transposing a group-based scheme due to Wagner and Magyarik to the monoid
setting, we have proven a theoretical complexity result about its underlying
problem WM. Our proof also showed that a related scheme due to Abisha,
Thomas and Subramanian, based on an apparently harder problem (the one
of finding an interpretation morphism g), reduces to the problem underlying
Wagner Magyarik system. The algorithm to solve WM that we have presented
gives a hint on how to choose the parameter sizes in order to reach a given level
of security. To our knowledge, it is the first work that does so. More generally,
our algorithm can be viewed as a sort13 of completion procedure [6] that always
terminates, in the case when the input is a refinement of a string rewriting system
inducing a free partially commutative monoid.
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Appendix: An Algorithm to Break the TMMI Problem

Our algorithm relies heavily on the following result of Cori and Perrin, which is
indeed the core of the easiness of the word problem in free partially commutative
monoids.

In what follows,Σ is as usual a finite alphabet, and θ ⊆ Σ×Σ is a concurrency
relation on Σ. For B ⊆ Σ, let πB denote the monoid morphism from Σ∗ onto
B∗, defined by πB(b) = b if b ∈ B, πB(b) = λ if b ∈ Σ \B.

Proposition 3. [4] Let u, v ∈ Σ∗. We have u ≡θ v if, and only if:

(i) π{a}(u) = π{a}(v), ∀a ∈ Σ, and
(ii) π{a,b}(u) = π{a,b}(v), ∀(a, b) �∈ θ.

The proof can be found in [4].

The algorithm
We here only quote the algorithm and its correctness result. Underlying ideas,
as well as proof of correctness can be found in [7].

For each possible cardinality i of some alphabet Σi, and for every morphism
gi from Δ∗ onto Σ∗

i , we execute the algorithm below until a solution is found
or until i = |Δ| + 1. This algorithm constructs a concurrency relation - say θi -
fitting T and gi, if any, or outputs Error otherwise. If the algorithm returns Error,
it means that gi is not a suitable interpretation morphism; thus the algorithm
stops and has to be rerun with another gi. If, for a given i, no suitable gi has
been found, we increment i and rerun the algorithm. The index i is here in the
integer range [1, |Δ|].
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TMMI-Alg
Input: Δ, gi ∈ Hom(Δ∗, Σ∗

i ), Σi, T ⊆ Δ∗ × Δ∗, y0 and y1 ∈ Δ∗.
Output: A concurrency relation θi ⊆ Σi × Σi or Error.

θi ← ∅
For (u, v) ∈ T do

Compute gi(u) and gi(v)
For a ∈ Σi do

If π{a}(gi(u)) �= π{a}(gi(v)) then Error
EndFor
For (a, b) ∈ Σi × Σi do

If π{a,b}(gi(u)) �= π{a,b}(gi(v))
If (a, b) or (b, a) are not in θi then θi ← θi ∪ {(a, b)}

EndFor
EndFor
If gi(y0) ≡θi gi(y1) then Error

Return θi

Proof of correctness of the algorithm

Theorem 3. Let T be a Thue system on an alphabet Δ. Then

i) If, for each i, 1 ≤ i ≤ |Δ|, and for each gi ∈ Hom(Δ∗,Σ∗
i ), TMMI-Alg outputs

“Error”, then there is no solution to the TMMI problem for (Δ,T ).
ii) If there exists an i for which, on input (Δ, gi,Σi,T , y0, y1), TMMI-Alg returns
a concurrency relation θi, then (gi,Σi, θi) is a solution of the TMMI problem for
the instance (Δ,T , y0, y1).
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Abstract. We present constructions of polyphase sequences suitable
for the use as codewords in orthogonal frequency-division multiplex-
ing (OFDM) with strictly bounded peak-to-mean envelope power ratio
(PMEPR). Our first construction establishes that each polyphase se-
quence of length 2m lies in a complementary set, whose size depends on
a special property of its associated generalized Boolean function. Thus we
identify a large family of sequences with PMEPR at most 2k+1, where k
is a non-negative integer. Our second construction yields sequences that
lie in so-called almost complementary pairs and have PMEPR at most
3. A number of coding schemes for OFDM with low PMEPR is then
presented. These schemes extend and complement previously proposed
coding options.

1 Introduction

Davis and Jedwab [1] established a link between Golay’s complementary se-
quences [2] and certain second-order cosets of a generalized first-order Reed–
Muller code. The union of these cosets yields a powerful code, which can be
used to perform error correction and ensures a PMEPR not exceeding 2. Its
main disadvantage is that the code rate rapidly decreases for larger block lengths.
Therefore Davis and Jedwab proposed to include further cosets in order to in-
crease the rate of the codes at the cost of a slightly higher PMEPR [1]. This
raised the problem of finding explicit constructions for such cosets. Paterson [3]
provided a construction for further second-order cosets comprising sequences ly-
ing in so-called complementary sets of size 2k+1 (k > 0), and thus, the resulting
codes have PMEPR at most 2k+1. Parker and Tellambura [4] proposed an elab-
orate method to construct higher-order cosets comprised of complementary sets.
However their construction suffers from the lack of efficient encoding and decod-
ing algorithms. We propose a construction for complementary sets of a given size
lying in cosets of a given order. Our construction includes previous constructions
in [1] and [3] as special cases. In a straightforward way we then obtain a wide
range of coding options for OFDM with low PMEPR. In addition we address
the problem of constructing sequences that have low PMEPR and do not neces-
sarily lie in complementary sets. We present a construction for cosets comprised
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of so-called almost complementary pairs and establish that their PMEPR is at
most 3. In this way we prove a conjecture by Davis and Jedwab [1] and Nieswand
and Wagner [5] and identify more cosets with PMEPR at most 3. These results
further extend possible coding options for OFDM with low PMEPR.

2 Notation and Background

2.1 Problem Statement

We will study an OFDM system with n subcarriers. Let A = (A0A1 · · · An−1)
be a polyphase codeword of length n that is used to modulate the subcarriers.
Its corresponding OFDM signal can be mathematically described by

S(A)(θ) =
n−1∑
i=0

Aie
√
−12π(i+λ)θ , 0 ≤ θ < 1,

where λ is a positive constant. An important characteristic of such a signal (or
of the modulating codeword) is its PMEPR, which is defined to be

PMEPR(A) :=
1
n

sup
0≤θ<1

|S(A)(θ)|2.

Due to engineering reasons there is a high motivation to keep the PMEPR of
the transmitted OFDM signals low. A particular elegant solution to solve this
power-control issue is to use a special OFDM block code across the subcarriers
[6]. By defining the PMEPR for such a code C to be

PMEPR(C) := max
A∈C

PMEPR(A).

we can formulate the problem as follows. Find codes with high code rates and
high minimum distances for which the above-defined value is small.

2.2 Complementary Sequences for OFDM

We begin with recalling and extending some well-known relations between the
aperiodic auto-correlation and the PMEPR of a sequence (cf. e.g. [7], [1], [3]).
Let A = (A0A1 · · · An−1) and B = (B0 B1 · · · Bn−1) be two complex-valued
sequences. Then the aperiodic cross-correlation of A and B at a displacement
� ∈ Z is given by

C(A,B)(�) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n−�−1∑

i=0
Ai+�B

∗
i 0 ≤ � < n

n+�−1∑
i=0

AiB
∗
i−� −n < � < 0

0 otherwise,
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where ()∗ denotes complex conjugation. The aperiodic auto-correlation of A at
a displacement � ∈ Z is then conveniently written as

A(A)(�) := C(A,A)(�).

In the sequel the following lemma will be essential for the construction of
sequence sets for OFDM with low PMEPR.

Lemma 1. Suppose a set of N polyphase sequences of length n is given by
{A0A1 · · ·AN−1}. Then the PMEPR of each individual sequence in the set is
at most

N +
2
n

n−1∑
�=1

∣∣∣∣∣
N−1∑
i=0

A(Ai)(�)

∣∣∣∣∣.
In particular, if the set is a complementary set, each sequence has PMEPR at
most N [3].

Proof. It is well known (cf. e.g. [7], [1]) and straightforward to show that

|S(A)(θ)|2 = A(A)(0) + 2
n−1∑
�=1

+{A(A)(�) e
√
−1 2π�θ}.

Hence
N−1∑
i=0

|S(Ai)(θ)|2 =
N−1∑
i=0

(
A(Ai)(0) + 2

n−1∑
�=1

+{A(Ai)(�) e
√
−1 2π�θ}

)

= Nn+ 2
n−1∑
�=1

+
{

N−1∑
i=0

A(Ai)(�) e
√
−1 2π�θ

}

≤ Nn+ 2
n−1∑
�=1

∣∣∣∣∣
N−1∑
i=0

A(Ai)(�)

∣∣∣∣∣,
where we used the fact that A(A)(0) = n for polyphase sequences. The lemma
follows then with the definition of the PMEPR. ��
The above result motivates the construction of sequences lying in sets of se-
quences of small size, where the sum of the aperiodic auto-correlation sidelobes
of all sequences in the set is small for all nonzero shifts. In this paper we shall
particularly study two types of such sequences sets. The first one are the so-called
complementary sets, which are defined as follows.

Definition 2. A set of N sequences is called a complementary set of size N
if the aperiodic auto-correlations of its members sum up to zero except for the
zero displacement. If N = 2, the two sequences are commonly termed a Golay
complementary pair [2].

By Lemma 1 the PMEPR of each polyphase sequence lying in a complemen-
tary set of size N is at most N . A construction for such sequence sets will be
established in Section 3.
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Definition 3. A pair of sequences is called an almost complementary pair if
the sum of the aperiodic auto-correlations of its members is zero except for the
zero shift and for at most two more shifts (τ and −τ | 1 ≤ τ < n).

It follows from Lemma 1 that the PMEPR of a polyphase sequence lying in an
almost complementary pair is upper-bounded by 6. A tighter upper bound on
the PMEPR can be obtained by taking the height of the out-of-phase peak in
the auto-correlation sum into account. In Section 4 we shall construct almost
complementary pairs comprising sequences with PMEPR at most 3.

2.3 Generalized Boolean Functions and Associated Sequences

A generalized Boolean function f is defined as a mapping f : Zm
2 → Zq, where

throughout this paper q is assumed to be an even integer. Such a function can be
written uniquely in its algebraic normal form, i.e., f is the sum of 2m weighted
monomials

f = f(x0, x1, . . . , xm−1) =
2m−1∑
i=0

ci

m−1∏
α=0

xiα
α ,

where the weights c0, . . . c2m−1 are in Zq, and (i0 i1 . . . im−1) is the binary ex-
pansion of 0 ≤ i < 2m, such that i =

∑m−1
j=0 ij2j . The order of the ith monomial

is defined to be
∑m−1

j=0 ij , and the order, or algebraic degree, of a generalized
Boolean function f , denoted by deg(f), is equal to the highest order of the
monomials with a nonzero coefficient in the algebraic normal form of f .

A generalized Boolean function may be equally represented by sequences of
length 2m. We shall define the sequence (f0 f1 · · · f2m−1) as the Zq-valued se-
quence associated with f and the sequence (ξf0 ξf1 · · · ξf2m−1) as the polyphase
sequence associated with f . Here we denote fi = f(i0, i1, · · · , im−1), where
(i0 i1 · · · im−1) is the binary expansion of the integer 0 ≤ i < 2m.

In the remainder of this subsection we recall the technique of the restriction
of polyphase sequences of length 2m and its application to the expansion of
correlations of sequences. For details see [3] and [8].

Definition 4. [3] Let f : Zm
2 → Zq be a generalized Boolean function in the

variables x0, x1, · · · , xm−1, and let F be its associated polyphase sequence. Sup-
pose

0 ≤ j0 < j1 < · · · < jk−1 < m

is a list of k indices and write x = (xj0 xj1 · · · xjk−1). We shall call the entries of
x the restricting variables. Let d = (d0 d1 · · · dk−1) ∈ Zk

2 , and let (i0 i1 · · · im−1)
be the binary expansion of the integer i. Then the restricted sequence F |x=d is
a sequence of length 2m with its elements (F |x=d)i being defined as

(F |x=d)i :=
{
Fi if (ij0 ij1 · · · ijk−1) = (d0 d1 · · · dk−1)
0 if (ij0 ij1 · · · ijk−1) �= (d0 d1 · · · dk−1)

,

where i = 0, 1, · · · , 2m − 1. For the case k = 0 we fix F |x=d = F .
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Following [3] it is a consequence of the above definition that

F =
∑
d∈Zk

2

F |x=d. (1)

A sequence that is restricted in k variables comprises 2m − 2m−k zero entries
and 2m−k nonzero entries. Those nonzero entries are determined by a function,
which is denoted as f |x=d and called a restricted function. This function is a
Boolean function in m − k variables and is obtained by replacing the variables
xjα by dα for all 0 ≤ α < k in the original function f . The restricted sequence
F |x=d is then found by associating a polyphase sequence of length 2m−k with
f |x=d and inserting 2m − 2m−k zeros at the corresponding positions. Similarly
to a disjunctive normal form of a Boolean function [9, Chapter 13], the original
function f can be reconstructed from the functions f |x=d by

f =
∑
d∈Zk

2

f |x=d

k−1∏
α=0

xdα

jα
(1 − xjα)(1−dα). (2)

The following lemma will be useful to expand correlations of sequences of
length 2m.

Lemma 5. [3],[8] Let f, g : Zm
2 → Zq be two generalized Boolean functions in

the variables x0, x1, · · · , xm−1, and let F and G be their associated polyphase
sequences, respectively. Let J = {j0, j1, · · · , jk−1} and I = {i0, i1, · · · , ik′−1} be
two sets of indices, such that I ∩ J = ∅ and I ∪ J ⊆ {0, 1, · · · , m − 1}. Write
x = (xj0 xj1 · · ·xjk−1 ) and x′ = (xi0 xi1 · · ·xik′−1

). Suppose d, d1, d2 are binary
words of length k and c, c1, c2 are binary words of length k′. Then we have

C(F |x=d1 ,G|x=d2)(�) =
∑
c1,c2

C(F |xx′=d1c1 ,G|xx′=d2c2)(�)

and

A(F |x=d)(�) =
∑

c

A(F |xx′=dc)(�) +
∑

c1 �=c2

C(F |xx′=dc1 ,F |xx′=dc2)(�).

2.4 Generalized Reed–Muller Codes

We recall (slightly modified) definitions and some basic properties of the gener-
alized Reed–Muller codes RMq(r, m) and ZRMq(r, m) (cf. [1] and [3]).

Definition 6. (a) For 0 ≤ r ≤ m the code RMq(r, m) is defined as the set of
sequences associated with a generalized Boolean function Zm

2 → Zq of order at
most r. (b) For q ≥ 4 and 1 ≤ r ≤ m the code ZRMq(r, m) is defined as the
set of sequences associated with a generalized Boolean function Zm

2 → Zq with
algebraic normal form containing monomials of order at most r − 1 and two
times the monomials of order r.
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Clearly for q ≥ 4 and 1 ≤ r ≤ m we have ZRMq(r, m) ⊂ RMq(r, m). Now recall
the classical definitions of the minimum Hamming distance dH and Lee distance
dL of a code C ⊆ Zn

q (see e.g. [9]), and notice that in the binary case (i.e. q = 2)
the minimum Hamming and Lee distances coincide. We have:

Result 7. [1], [3] The minimum Lee distances of RMq(r, m) and ZRMq(r, m)
are equal to 2m−r and 2m−r+1, respectively.

2.5 A Known Construction for Complementary Pairs

We recall a construction for complementary pairs from [3]. With each quadratic
form f over Zq in the variables xi0 , xi1 , · · · , xim−1 , generally given by∑

0≤j<k<m

qjkxij xik
+ L, qjk ∈ Zq

with L being an affine form over Zq, one can associate a labeled graph G(f).
The vertices of this graph are labeled with i0, i1, · · · , im−1, and the edge between
vertex ij and vertex ik is labeled with qjk. Such a graph is called a path (passing
through m vertices) if m = 1 (then the graph consists of a single vertex) or if
m ≥ 2 and f is of the form

q

2

m−2∑
α=0

xiπ(α)xiπ(α+1) ,

where π is a permutation of {0, 1, · · · , m − 1}. The indices iπ(0) and iπ(m−1) are
called end vertices of the path. We are now in the position to quote:

Result 8. [3] Let 0 ≤ j0 < j1 < · · · < jk−1 < m be a list of k indices, write
x = (xj0 xj1 · · · xjk−1), and let d ∈ Zk

2 . Suppose f : Zm
2 → Zq is a generalized

Boolean function in the variables x0, x1, · · · , xm−1, such that f |x=d is quadratic
and G(f |x=d) is a path (in m − k vertices). Let F and F ′ be the polyphase
sequences associated with f and f + (q/2)xa + c′, respectively. Then F |x=d and
F ′|x=d form a complementary pair. Here a is an end vertex of the path G(f |x=d)
and c′ ∈ Zq.

In particular, if k = 0, the above result identifies (m!/2)qm+1 polyphase se-
quences lying in complementary pairs [3, Corollary 11], [1, Theorem 3], where
in the latter reference q = 2h.

3 A Construction for Complementary Sets

Theorem 9. Let f : Zm
2 → Zq be a generalized Boolean function in m variables

x0, x1, · · · , xm−1. Define a list of k indices by

0 ≤ j0 < j1 < · · · < jk−1 < m
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and write x = (xj0 xj1 · · · xjk−1). Suppose that for each d ∈ Zk
2 the restricted

function f |x=d is quadratic and the graph G(f |x=d) is a path having an end
vertex ad. Then the polyphase sequences associated with the functions

f +
q

2

(
k−1∑
α=0

cα xjα + c′ e

)
c0, · · · , ck−1, c

′ ∈ Z2

form a complementary set of size 2k+1, where

e =
∑
d∈Zk

2

xad

k−1∏
α=0

xdα

jα
(1 − xjα)(1−dα).

Proof. Write c = (c0 c1 · · · ck−1) and denote the 2k+1 sequences in the set by
Fcc′ . We have to show that the sum of auto-correlations

∑
c, c′ A (Fcc′) (�) is zero

for � �= 0. We employ Lemma 5 and write∑
c, c′

A(Fcc′)(�) =
∑
c, c′

∑
d

A(Fcc′ |x=d)(�)︸ ︷︷ ︸
S1

+
∑
c, c′

∑
d1 �=d2

C(Fcc′ |x=d1 ,Fcc′ |x=d2)(�)︸ ︷︷ ︸
S2

.

We first focus on the term S1, which becomes

S1 =
∑

c

∑
d

(A(Fc0|x=d)(�) +A(Fc1|x=d)(�)) .

Recall that e|x=d = xad
is an end vertex of the graph G(f |x=d). Thus the func-

tions corresponding to Fc0|x=d and Fc1|x=d are

f |x=d +
q

2

k−1∑
α=0

cα dα and f |x=d +
q

2

k−1∑
α=0

cα dα +
q

2
xad

,

respectively. Notice that the sum over α is just a constant occuring in both
functions. Hence, by hypothesis and by Result 8, Fc0|x=d and Fc1|x=d form a
complementary pair. It follows that the inner term of S1 is zero for � �= 0, and
thus, also S1 itself is zero for � �= 0.

It remains to prove that the term S2 is zero. This part of the proof follows more
or less the same reasoning as the second part of the proof of [3, Theorem 12]. ��
Theorem 9 generalizes [3, Theorem 12] from complementary sets that contain se-
quences corresponding to quadratic generalized Boolean functions to complemen-
tary sets comprised of sequences associated with arbitrary generalized Boolean
functions. Hence Theorem 9 provides a general upper bound on the PMEPR of
polyphase sequences of length 2m. Moreover this bound remains the same for all
words in a coset of RMq(1, m).
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Corollary 10. Suppose that f : Zm
2 → Zq is a generalized Boolean function

in the variables x0, x1, · · · , xm−1. If there exists a set of k restricting variables
x = (xj0 xj1 · · · xjk−1 ) with

0 ≤ j0 < j1 < · · · < jk−1 < m,

such that for each d ∈ Zk
2 , the restricted function f |x=d is quadratic and the graph

G(f |x=d) is a path, then the polyphase sequences in the coset f+RMq(1, m) have
PMEPR at most 2k+1.

It should be noted that for large k the above corollary appears to be rather
weak. Using Corollary 10 and (2), it is now straightforward to find an explicit
construction for sequences having PMEPR at most 2k+1. Therefore partition
the m indices {0, 1, · · · , m − 1} into sets I = {i0, i1, · · · , im−k−1} and J =
{j0, j1, · · · , jk−1}. Let π0,π1, · · · ,π2k−1 be 2k permutations of {0, 1, · · · , m −
k − 1}, and let g0, · · · , gm−k−1, g

′ : Zk
2 → Zq be m − k + 1 generalized Boolean

functions. Then each sequence associated with

q

2

∑
d∈Zk

2

m−k−2∑
α=0

xiπd(α)xiπd(α+1)

k−1∏
β=0

x
dβ

jβ
(1 − xjβ

)(1−dβ)

+
m−k−1∑

α=0

xiαgα(xj0 , · · · , xjk−1) + g′(xj0 , · · · , xjk−1) (3)

satisfies Corollary 10 for a particular k and, hence, has PMEPR at most 2k+1. It
is apparent that each such a sequence lies inside RMq(k+2, m) and particularly
inside ZRMq(k + 2, m) if q ≥ 4.

In what follows we focus on a particular subset of the sequences associated
with forms of type (3). In this way we can obtain a wide range of coding options
for OFDM with low PMEPR that allow a trade-off between the size of the
sequence set and minimum distance.

Corollary 11. Let g0, · · · , gm−k−1, g
′ : Zk

2 → Zq be m − k + 1 generalized
Boolean functions. Suppose 2 ≤ r ≤ k + 1, deg(gα) ≤ r − 1 for α = 0, 1, · · ·m −
k − 1, and deg(g′) ≤ r. Then the polyphase sequences associated with the forms

q

2

m−k−2∑
α=0

xπ(α)xπ(α+1) +
m−k−1∑

α=0

xαgα(xm−k, · · · , xm−1) + g′(xm−k, · · · , xm−1),

where π is a permutation of {0, 1, · · · , m − k − 1}, have PMEPR at most 2k+1.
Moreover the sequences form cosets of RMq(1, m), which are contained inside
RMq(r, m). In particular these cosets are contained in ZRMq(r, m) if (i) q ≥ 4
and k = 0 or if (ii) q ≥ 4 and all coefficients of the monomials in the algebraic
normal forms of gα with degree equal to r − 1 and in the algebraic normal form
of g′ with degree equal to r are even.
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Now suppose that k is given. Then a simple counting argument shows that the
above corollary identifies 2KRM words inside RMq(r, m), where

KRM = log2
(m − k)!

2
+

[(
k

r

)
+ (m − k + 1)

r−1∑
i=0

(
k

i

)]
log2 q

and 2KZRM words inside ZRMq(r, m) with

KZRM = KRM −
(
k

r

)
− (m − k)

(
k

r − 1

)
.

4 A Construction for Almost Complementary Pairs

Theorem 12. Let k ≤ m − 3. Suppose J = {j0, j1, · · · , jk−1} and I =
{i0, i1, · · · , im−k−1} are two sets of indices, such that I ∩ J = ∅ and I ∪ J =
{0, 1, · · · , m−1}. Write x = (xj0 xj1 · · · xjk−1 ) and let d ∈ Zk

2 . Let f : Zm
2 → Zq

be a generalized Boolean function in the variables x0, x1, · · · , xm−1, such that
f |x=d is of the form

q

2

m−k−2∑
γ=0

xiπ(γ)xiπ(γ+1) + αxbxd + βxcxd +
m−k−1∑

γ=0

cγxiπ(γ) + c,

c0, · · · , cm−k−1, c,α,β ∈ Zq,

where π is a permutation of {0, 1, · · · , m − k − 1} and (a b c d) is either
(iπ(m−k−1) iπ(0) iπ(1) iπ(2)) or (iπ(0) iπ(m−k−1) iπ(m−k−2) iπ(m−k−3)). Let F and
F ′ be the polyphase sequences associated with the functions f and f ′ = f +
(q/2)xa + c′, respectively, where c′ ∈ Zq. Then, provided that α − β = 0 or
α+ β = 0, F |x=d and F ′|x=d form an almost complementary pair. In particular
we have

|A(F |x=d)(�) +A(F ′|x=d)(�)| =

⎧⎪⎨⎪⎩
2m−k � = 0
2m−k−1 � = ±τ, 1 ≤ τ < n

0 otherwise.

Proof. We take (a b c d) = (iπ(m−k−1) iπ(0) iπ(1) iπ(2)). With a similar reasoning
we can perform the proof for (a b c d) = (iπ(0) iπ(m−k−1) iπ(m−k−2) iπ(m−k−3)).

Substitute: G = F |x=d, G′ = F ′|x=d, g = f |x=d, and g′ = f ′|x=d, and keep
in mind that G and G′ are in general restricted sequences. We are interested in
the expression A(G)(�) +A(G′)(�), which is expanded using Lemma 5

A(G)(�) +A(G′)(�)
= A(G|xa=0)(�) +A(G|xa=1)(�) +A(G′|xa=0)(�) +A(G′|xa=1)(�)
+ C(G|xa=0,G|xa=1)(�) + C(G|xa=1,G|xa=0)(�)
+ C(G′|xa=0,G

′|xa=1)(�) + C(G′|xa=1,G
′|xa=0)(�). (4)
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Let us first consider the case k = m − 3, and take this as the base case for
the proof. Then we proceed to prove the theorem for k < m − 3 by induction
on k. For k = m − 3 we have a = d, and the list of restricting indices writes
J = {0, 1, · · · , m − 1}\{a, b, c}. The functions corresponding to the sequences
G|xa=0, G|xa=1, G′|xa=0, and G′|xa=1 are then

g|xa=0 = r g′|xa=0 = g|xa=0 + c′

g|xa=1 = r +
(
α+

q

2

)
xb + βxc + ca g′|xa=1 = g|xa=1 + c′ +

q

2

with
r =

q

2
xbxc + cbxb + ccxc + c.

Since we have g′|xa=0 = g|xa=0 + c′ and g′|xa=1 = g|xa=1 + c′ + q/2, it follows
that G′|xa=0 = ξc′

G|xa=0 and G′|xa=1 = −ξc′
G|xa=1. This implies that the

cross-correlations in (4) are related as follows

C(G|xa=0,G|xa=1)(�) = −C(G′|xa=0,G
′|xa=1)(�)

C(G|xa=1,G|xa=0)(�) = −C(G′|xa=1,G
′|xa=0)(�). (5)

Hence the cross-correlations in (4) sum up to zero for all �. We also conclude

A(G|xa=0)(�) +A(G|xa=1)(�) = A(G′|xa=0)(�) +A(G′|xa=1)(�). (6)

Next we consider the left-hand side of (6). Write u = ua ub uc, v = va vb vc,
Gu = G|xaxbxc=uaubuc , and gu = g|xaxbxc=uaubuc . Then, by Lemma 5, we have

A(G|xa=0)(�) +A(G|xa=1)(�) =
∑

u

A(Gu)(�) +
∑
u,v

ua=va
(ubuc)�=(vbvc)

C(Gu,Gv)(�). (7)

The functions corresponding to the sequences Gu are

g000 = c g100 = c

g010 = c+ cb g110 = c+ cb + α+
q

2
g001 = c+ cc g101 = c+ cc + β

g011 = c+ cb + cc +
q

2
g111 = c+ cb + cc + α+ β.

Each of the eight sequences Gu contains exactly one nonzero element occuring
at position

∑k−1
γ=0 dγ2jγ + ua2a + ub2b + uc2c. Thus we have

∑
u

A(Gu)(�) =
{

8 � = 0
0 � �= 0 . (8)

It follows also that the twelve cross-correlations of type C(Gu,Gv)(�) in the
second sum of (7) have exactly one nonzero element, which is located at
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(ub − vb)2b + (uc − vc)2c. We next collect the cross-correlations having nonzero
contributions at the same shift.

Shift 2b (ub = 1, vb = 0, uc = vc):

C(G000,G010)(2b)+C(G100,G110)(2b)+C(G001,G011)(2b)+C(G101,G111)(2b)

= ξ−cb + ξ
q
2−cb−α + ξ

q
2−cb + ξ−cb−α = 0

Shift 2c (ub = vb, uc = 1, vc = 0):

C(G000,G001)(2c)+C(G100,G101)(2c)+C(G010,G011)(2c)+C(G110,G111)(2c)

= ξ−cc + ξ−cc−β + ξ
q
2−cc + ξ

q
2−cc−β = 0

Shift 2b + 2c (ub = uc = 1, vb = vc = 0):

C(G000,G011)(2b + 2c) + C(G100,G111)(2b + 2c) = ξ
q
2−cc−cb + ξ−cc−cb−(α+β)

Shift 2b − 2c (ub = vc = 1, uc = vb = 0):

C(G001,G010)(2b − 2c) + C(G101,G110)(2b − 2c) = ξcc−cb + ξ
q
2+cc−cb−(α−β)

Moreover there are contributions at the shifts −2b, −2c, −2b − 2c, and −2b +2c,
which are just the complex conjugated values of those at shifts 2b, 2c, 2b + 2c,
and 2b − 2c, respectively. Now the additional condition α + β = 0 or α− β = 0
comes into play. Then the auto-correlations of G and G′ cancel out at either
2b + 2c or 2b − 2c. Considering (6), we have to count the auto-correlation in (8)
and all the contributions from the cross-correlations twice in order to calculate
the left-hand side of (4). By carefully counting the contributions, we observe
that the left-hand side of (4) is nonzero for at most two nonzero shifts and has
absolute values of at most 4 at those positions.

Now consider the case where x contains k < m − 3 restricting variables, and
suppose that the theorem is true for x containing k + 1 variables. We focus on
the expanded auto-correlations in (4). For k < m−3 the functions corresponding
to the sequences G|xa=0, G|xa=1, G′|xa=0, and G′|xa=1 are

g|xa=0 = p g′|xa=0 = g|xa=0 + c′

g|xa=1 = p+
q

2
xiπ(m−k−2) + ca g′|xa=1 = g|xa=1 + c′ +

q

2

with

p =
q

2

m−k−3∑
γ=0

xiπ(γ)xiπ(γ+1) + αxbxd + βxcxd +
m−k−2∑

γ=0

cγxiπ(γ) + c.

By the same reasoning leading to (5), it turns out that the cross-correlations
in (4) sum up to zero for all �. Using the above theorem as a hypothesis, we
know that the sequences G|xa=0 and G|xa=1 form an almost complementary
pair. Hence the sum of their auto-correlations has at most two nonzero values at
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nonzero shifts. The same accounts for the pair of sequences G′|xa=0 and G′|xa=1.
Note that the position and the phase of the nonzero components are independent
of the restricting variables, while their magnitudes depend on the number of
nonzero entries in the sequences G|xa=0, G|xa=1, G′|xa=0, and G′|xa=1. Hence
the auto-correlations in (4) always superimpose at the considered positions and
sum up to absolute values of at most 2m−k−1. ��
Setting k = 0 in the above theorem and applying Lemma 1, we obtain the
following simple corollary.

Corollary 13. For m > 2 let f : Zm
2 → Zq be given by

q

2

m−2∑
i=0

xπ(i)xπ(i+1) + αxπ(0)xπ(2) + βxπ(1)xπ(2),

where α,β ∈ Zq, π is a permutation of {0, 1, · · · , m−1}, and α+β = 0 or α−β =
0. Then the PMEPR of the polyphase sequence in the coset f + RMq(1, m) is at
most 3. These cosets lie inside RMq(2, m) and particularly inside ZRMq(2, m)
if q ≥ 4 and α and β are even.

A simple counting argument shows that Corollary 13 identifies (2q −
3)(m!/2)qm+1 sequences with PMEPR at most 3. Notice that (m!/2)qm+1 of
them have PMEPR bounded by 2, since they are also identified by setting k = 0
in Corollary 11. In particular, Corollary 13 applies to the 2m! qm+1 (q = 2h,
h ≥ 3) sequences for which it was conjectured in [1] and [5] that their PMEPR
is bounded by 3. Corollary 13 provides a proof for this conjecture and identifies
further sequences with PMEPR at most 3. We remark that for q = 2 Corol-
lary 13 merely restates the construction of complementary pairs in a pure sense
[1, Theorem 3] (where q = 2h), [3, Corollary 11].

5 OFDM Coding Schemes from Reed–Muller Codes

In what follows we apply Corollary 11 and Corollary 13 to construct a number
of coding options for OFDM with low PMEPR. Since these codes are unions of
cosets of RMq(1, m), well known algorithms are readily applicable to encode and
decode the codes (see [1], [10] and references therein). Alternatively in [11] the
structure of the codes obtained from Corollary 11 is further exploited in order
to simplify encoding and decoding. This is particularly efficient if the codes
contain a large number of cosets of RMq(1, m). We define the code rate and
the information rate of a code C of length n = 2m over a q-ary alphabet to be
#logq |C|$/n and #log2 |C|$/n, respectively.

We remark that all our coding options directly arise just from two simple
corollaries. This should be compared with the constructions in [1] and [3], which
rely on a variety of techniques, including a computational search in [1]. Never-
theless there is some overlap between our codes and those in [1] and [3]. In the
subsequent tables the superscript 1 means that the corresponding coding option
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Table 1. Binary Coding Options

n Option max. PMEPR # info bits code rate info rate dL

16 B11 2 8 0.50 0.50 4
B22 4 9 0.56 0.56 4
B3 8 12 0.75 0.75 2
B42 8 10 0.63 0.63 4

32 B11 2 11 0.34 0.34 8
B2 4 13 0.41 0.41 8
B3 8 17 0.53 0.53 4
B4 8 14 0.44 0.44 8

64 B11 2 15 0.23 0.23 16
B2 4 17 0.27 0.27 16
B3 8 23 0.36 0.36 8
B4 8 19 0.30 0.30 16

Table 2. Quaternary Coding Options

n Option max. PMEPR # info bits code rate info rate dL

16 Q11 2 13 0.41 0.81 8
Q2 3 15 0.47 0.94 4
Q34 4 17 0.53 1.06 4
Q42 4 14 0.44 0.88 8
Q5 8 24 0.75 1.50 2
Q6 8 22 0.69 1.37 4
Q72 8 15 0.47 0.94 8

32 Q11 2 17 0.27 0.53 16
Q2 3 20 0.31 0.63 8
Q34 4 23 0.36 0.72 8
Q4 4 19 0.30 0.59 16
Q5 8 33 0.52 1.03 4
Q6 8 30 0.47 0.94 8
Q7 8 20 0.31 0.63 16

64 Q11 2 22 0.17 0.34 32
Q2 3 24 0.19 0.38 16
Q34 4 29 0.23 0.45 16
Q4 4 24 0.19 0.38 32
Q5 8 43 0.34 0.67 8
Q6 8 39 0.30 0.61 16
Q7 8 26 0.20 0.41 32

is identical to the Davis–Jedwab construction [1], which can be restated by set-
ting k = 0 in Corollary 11. A 2 indicates that a better code has been reported in
[1], while a 3 means that the same code appears in [1]. These latter results are
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based on a computational search, which becomes infeasible for large n. Therefore
this situation occurs only for n = 16. Coding options marked by a 4 are weaker
than codes constructed in [3]. A 5 indicates that a better code can be obtained
using the techniques in [3], though the code itself has not been explicitely men-
tioned in [3]. All other coding options seem to be new or outperform previously
reported results at least for the lengths considered here.

Table 1 shows possible coding options for binary signaling. Option B1 is the
Davis–Jedwab construction. Option B2 is obtained from Corollary 11 by setting
k = 1, and Options B3 and B4 arise from Corollary 11 by setting k = 2 and
taking those codewords lying inside RM2(3, m) and RM2(2, m), respectively.
The choice between the Options B1, B2, and B4 allows a trade-off between
information rate and maximum PMEPR of the code, while the minimum Lee
distance is the same. Options B3 and B4 provide a trade-off between minimum
Lee distance and informations rate, while the PMEPR is constant.

Table 2 contains a list of coding options for quaternary signaling. Option Q1
is the Davis–Jedwab construction. Option Q2 is obtained from Corollary 13.
Option Q3 uses Corollary 11 with k = 1 to construct a code lying in RM4(2, m),
while Option Q4 takes its subcode in ZRM4(2, m). Option Q5 is a code inside
RM4(3, m) and obtained by setting k = 2 in Corollary 11. Option Q6 and Op-
tion Q7 are the subcodes lying in ZRM4(3, m) and ZRM4(2, m), respectively.
Notice that we may also construct a subcode of the code in Option Q5 inside
RM4(2, m), however, this code contains less codewords than that in Option Q6,
while the minimum distances and the maximum PMEPRs are the same. Mov-
ing to a quaternary constellation widely extends the possible coding options,
which results in an increased number of possible trade-offs between PMEPR,
information rate, and minimum distance. Moreover the information rate can be
increased up to twice that of the binary coding schemes. However this goes gen-
erally at the cost of a smaller minimum Euclidean distance of the codes, which
results in an increased transmission error probability.

Table 3 shows a number of coding options for octary phase-shift keying.
These options are obtained in a similar fashion as the quaternary coding op-
tions. Option O1 is the Davis–Jedwab construction, Option O2 uses Corollary
13 to construct a code inside RM8(2, m), while Option O3 takes its subcode
in ZRM8(2, m). Option O4 uses Corollary 11 with k = 1 to construct a code
inside RM8(2, m). Option O5 is obtained by taking its subcode contained in
ZRM8(2, m). Option O6 arises by setting k = 2 in Corollary 11 to construct a
code inside RM8(3, m), while Options O7 and O8 use its subcodes in ZRM8(3, m)
and ZRM8(2, m), respectively. Notice that although, based on numerical eval-
uation of the PMEPR, Option O3 was already mentioned in [1] and [12] for
n = 16, Corollary 13 settles the theory behind this coding option and validates
it for any m > 2. By moving to an octary constellation, the number of possible
coding options is further extended. Also the information rate can be increased
further, which in turn leads to a smaller minimum Euclidean distance of the
codes compared to their binary or quaternary counterparts.
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Table 3. Octary Coding Options

n Option max. PMEPR # info bits code rate info rate dL

16 O11 2 18 0.38 1.13 8
O2 3 22 0.46 1.38 4
O33 3 20 0.42 1.25 8
O44 4 25 0.52 1.56 4
O55 4 22 0.46 1.38 8
O6 8 36 0.75 2.25 2
O7 8 34 0.71 2.13 4
O8 8 25 0.52 1.56 8

32 O11 2 23 0.24 0.72 16
O2 3 27 0.28 0.84 8
O3 3 26 0.27 0.81 16
O44 4 33 0.34 1.03 8
O55 4 29 0.30 0.91 16
O6 8 49 0.51 1.53 4
O7 8 46 0.48 1.44 8
O8 8 33 0.34 1.03 16

64 O11 2 29 0.15 0.45 32
O2 3 33 0.17 0.52 16
O3 3 31 0.16 0.48 32
O44 4 41 0.21 0.64 16
O55 4 36 0.19 0.56 32
O6 8 63 0.33 0.98 8
O7 8 59 0.31 0.92 16
O8 8 42 0.22 0.66 32

6 Conclusion

We have established constructions of sequences lying in complementary sets of
a given size (Theorem 9) and in almost complementary pairs (Theorem 12). An
upper bound for the PMEPR of these sequences follows then immediately from
Lemma 1. These results led to a number of coding options for OFDM with low
PMEPR, which extend and complement existing schemes previously reported in
[1], [3], and [12]. Corollary 13 also provides an answer to an open problem stated
by Davis and Jedwab in [1]. Recent results have shown that this corollary in fact
arises in a more general context, and we refer to [13] for details.
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Abstract. This paper proposes a novel method of constructing almost
perfect polyphase sequences based on the shift sequence associated with
a primitive polynomial f(x) of degree 2J over finite field GF (p) (p odd
prime, J = 1, 2, · · ·) and a pair of almost perfect sequences completely
orthogonal. Almost perfect polyphase sequences of length 2(pJ + 1) are
constructed with phases as any positive even number. New families of
almost perfect polyphase sequences in other lengths are also provided. In
particular, several new families of almost perfect quadriphase sequences
of lengths m(pJ + 1) are attained, where m = 4 or 8, and pJ − 1 ≡ 0
(mod m).
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1 Introduction

The periodic autocorrelation function of a sequence is a measure for how much
the given sequence differs from its translates. Perfect sequences are complex pe-
riodic sequences such that all out-of-phase autocorrelation values are zero. Un-
fortunately, perfect binary sequences of length N > 4 and perfect quadriphase
sequences of length N > 16 are unknown. Therefore, in several recent publica-
tions the construction of “almost-perfect” binary sequences has been discussed.
Almost perfect (AP) sequences are complex periodic sequences such that all
out-of-phase autocorrelation values are zero except one, whose periodic autocor-
relation function (PACF) is as close to perfect as possible. Brown and Goodwin
[1] and later Wolfmann [2] presented AP binary sequences based on computer
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search. A general construction of these sequences has been given by Langevin [3]
and by Pott and Bradley [4]. Using odd-perfect almost binary sequences, Lüke
constructed a class of quadriphase sequences of length N = pJ + 1 ≡ 2 (mod
4) (p odd prime, J = 1, 2, · · ·) [5]. It remains unknown whether AP polyphase
sequences in any other length exist.

This paper proposes a novel method for constructing AP polyphase sequences.
It is a variant of Gong’s interleaved construction [6], [7], which uses two com-
pletely orthogonal AP sequences and a shift rule defined by a primitive poly-
nomial f(x) over GF (p) of degree 2J (with odd prime p and integer J) [8] to
generate a new sequence. By the proposed method, AP polyphase sequences of
length m(pJ +1) are constructed, where m = 2, 4, 6 or 8, and pJ −1 ≡ 0 (mod m).
For m = 2, the phases of the resulting sequences can be any positive even num-
bers. AP quadriphase sequences of length 4(pJ + 1) or 8(pJ + 1) can also be
generated in the case of pJ + 1 ≡ 2 (mod 4) or pJ + 1 ≡ 2 (mod 8), respec-
tively. Since the length of all sequences constructed by our method is divisible
by 4, all AP quadriphase sequences in this paper are new. Furthermore, other
AP polyphase sequences such as six-phase and eight-phase can be constructed
by the proposed method.

The remainder of this paper is organized as follows. Section 2 recalls some
definitions and introduces a basic method for constructing sequences. Section 3
constructs AP polyphase sequences using the proposed method. Section 4 con-
cludes the study.

2 Preliminaries and a Basic Construction Method

Throughout the paper all sequences we discuss, except shift sequences, are
complex-valued polyphase sequences.

Let a = (a0, a1, · · · , am−1) and b = (b0, b1, · · · , bm−1) be sequences of length
m. Their cross-correlation function Θa,b(τ) is defined as

Θa,b(τ) =
m−1∑
i=0

ai · b∗i+τ , τ = 0, 1, · · · (1)

where the symbol ∗ denotes the complex conjugate and the subscript addition is
performed modulo m. If a = b, then Θa(τ) is called the autocorrelation function
of a, denoted by Θa(τ).

The sequence a is said to be almost perfect if Θa(τ) = 0 for all τ �≡ 0 (mod
m) with exactly one exception.

A pair of AP sequences a and b are said to be completely orthogonal if
Θa,b(τ) = 0 for all τ .

Let p be a positive odd prime and n = pJ + 1 for a positive integer J . Let
GF (p2J ) represent the field with p2J elements, and α denote a primitive element
of GF (p2J ), which is constructed from a given primitive polynomial f(x) of
degree 2J over GF (p). For k ∈ Zp2J−1 define

ek =
{∞, if Tr2J

J (αk) = 0
r, if Tr2J

J (αk) = γr (2)
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where γ = αn and the trace function Tr2J
J : GF (p2J ) −→ GF (pJ ) is defined by

Tr2J
J (x) = x + xpJ

, and the sequence e = (e0, e1, · · · , en−1) is called the shift
sequence associated with the polynomial f(x). Formula (2) was introduced by
Games [8], and it is easy to see that en+k = 1 + ek for 0 ≤ k ≤ n− 1.

The shift sequence e has the following properties.

Lemma 1: [9] Let e = (e0, e1, · · · , en−1) be the shift sequence associated with the
primitive polynomial f(x) of degree 2J over GF (p). For fixed k ∈ Zn \ {0}, the
list of differences (ej+k − ej) (mod (n − 2)): j ∈ Zn contains each element of
Zn−2 exactly once and ∞ exactly twice. And the set {ej |j ∈ Zn} contains ∞
exactly once.

The left shift operator L on a is defined as L(a) = (a1, a2, · · · , am−1, a0). For
any integer i > 0, we make a convention that L0(a) = a and iteratively define
Li(a) = L(Li−1(a)).

A basic method to construct a sequence is given as follows:

(I) For a pair of completely orthogonal sequences a, b and a shift sequence
e = (e0, e1, · · · , en−1) constructed by formula (2), we can define an ordered set

A = {A0,A1, · · · ,An−1}, where Ai =
{
Lei(a), if ei �= ∞
b, otherwise . (3)

A is called the set associated with the sequences a, b and e.
(II) Let U = (Ui,j) be the m × n matrix whose j-th column is Aj . Listing

all entries of U row by row (from left to right and from top to bottom), we
obtain a sequence u = (u0,u1, · · · ,umn−1) of length mn. u is called the sequence
associated with the ordered set A, and U is the matrix form of u.

The original idea of this method was proposed by Gong in 1995 [6], and later
she used short p-ary periodic sequences with two-level autocorrelation function
and an interleaved structure to construct a set of long p-ary sequences with the
desired properties [7]. Different from Gong’s construction, a and b in formula (3)
are shift distinct (in the terminology of [6]).

The following formula on autocorrelation of sequence u is a basis on which we
prove the results in the paper.

Let 0 ≤ τ < mn and write τ = rn+ s with 0 ≤ r < m and 0 ≤ s < n.

Proposition 1:

Θu(τ) =
n−1∑
j=0

ΘAj ,As+j−ϕ(s+j)n(r + ϕ(s + j)) (4)

where ϕ(s + j) is 0 if s + j < n, and is 1 otherwise.

Proof: Let T = (T0,T1, · · · ,Tn−1) be the matrix form of Lτ (u). For 0 ≤ j < n,
the j-th entry in the sequence Lτ (u) is ak, where

k = (e(s+j)mod n + r + ϕ(s + j))mod m,
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for e(s+j)mod n �= ∞, or is b(r+ϕ(s+j)) mod m otherwise. It is exactly the first
element of Tj . So,

Tj = L(r+ϕ(s+j))mod m(As+j−ϕ(s+j)n).

Thus, one has
Θu(τ)

=
n−1∑
j=0

m−1∑
l=0

Uj,lT
∗
j,l

=
n−1∑
j=0

ΘAj ,As+j−ϕ(s+j)n(r + ϕ(s + j)). ��

3 Almost Perfect Polyphase Sequences

In this section, we will use the construction in Section 2 to construct almost
perfect polyphase sequences.

Theorem 1: Assume that a and b are a pair of AP sequences which are completely
orthogonal, and Θa(m

2 ) = −m. If m|(n− 2), then u is an AP sequence of length
mn.

Proof: By Proposition 1, one has

Θu(τ)
=

∑
ej �=∞,ej+s �=∞

Θa(ej+s − ej + r)+∑
ej �=∞,ej+s=∞

Θa,b(r + ϕ(s + j) − ej)+∑
ej=∞,ej+s �=∞

Θb,a(e(s+j)modn + r + ϕ(s + j))+∑
ej=∞,ej+s=∞

Θb(r + ϕ(s + j))

where 0 ≤ s, j ≤ n− 1.

When s = 0, by Lemma 1, one has

Θu(τ) = (n− 1)Θa(r) +Θb(r)

and then Θu(τ) = Θu(rn) = 0 if and only if r �≡ 0 (mod m
2 ).

When s �= 0,

Θu(τ)
=

∑
ej �=∞,ej+s �=∞

Θa(ej+s − ej + r) +
∑

ej �=∞,ej+s=∞
Θa,b(r + ϕ(s + j) − ej)+∑

ej=∞,ej+s �=∞
Θb,a(e(s+j)modn + r + ϕ(s + j)).
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Since m|(n− 2) and Θa(m
2 ) = −m,∑
ej �=∞,ej+s �=∞

Θa(ej+s − ej + r)

=
n−3∑
l=0

Θa(lmod m)

= n−2
m

m−1∑
l=0

Θa(l)

= n−2
m (Θa(0) +Θa(m

2 ))
= 0.

By Lemma 1, one has ∑
ej �=∞,ej+s=∞

Θa,b(r + ϕ(s + j) − ej)

=
∑

ej=∞,ej+s �=∞
Θb,a(e(s+j)modn + r + ϕ(s + j))

= 0

since a and b are completely orthogonal. Therefore, Θu(τ) = 0 for s �= 0.
Combining the above two cases, it is proved that u is an AP sequence. ��

Thus, if there is a pair of completely orthogonal AP sequences of length m such
that m|(pJ − 1) for some odd prime p and positive integer J , then one can
construct an AP sequence of length m(pJ + 1).

Corollary 1: If a = (1,−1) and b = (exp(2sπ
√
−1

t ), exp(2sπ
√
−1

t )) where t is a
positive even number and 0 ≤ s < t, then u is an AP t-phase sequence of length
2(pJ + 1) and its complete PACF is

Θu(τ) =

⎧⎨⎩ 2(pJ + 1), if τ ≡ 0 mod 2(pJ + 1)
−2(pJ + 1) + 4, if τ ≡ pJ + 1 mod 2(pJ + 1)

0, otherwise
(5)

In particular, u is an almost balanced binary sequence if s = 0 or s = 1, t = 2.

Binary AP sequences of length 2(pJ +1) have been constructed in [2] and [4].
Non-binary sequences constructed in this paper are new.

Example 1: Let p = 3, J = 2, a = (1,−1), b = (j, j) where

j ∈ {1,
√−1,−1,−√−1 } and e = (4, 2, 6, 6, 5,∞, 2, 4, 5, 2).

By Corollary 1,

u = (1, 1, 1, 1,−1, j, 1, 1,−1, 1,−1,−1,−1,−1, 1, j,−1,−1, 1,−1)

with the almost perfect PACF

Θu(τ) = (20, 0, 0, 0, 0, 0, 0, 0, 0, 0,−16, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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By means of an exhaustive computer search on the possible pairs of AP binary
and quadriphase sequences of length 4 ≤ m ≤ 32, which satisfy the requirement
in Theorem 1, only in length 4 and 8 quadriphase sequence pairs have been
found. By applying Theorem 1 to two of these pairs, the following corollary is
obtained.

Corollary 2: (1) Let a = (1, 1,−1,−1) and b = (1, j, 1, j) where j =
√−1. If

4|(pJ − 1), then u is an AP quadriphase sequence of length 4(pJ + 1) and has
only two elements different from ±1. Its complete PACF is

Θu(τ) =

⎧⎨⎩ 4(pJ + 1), if τ ≡ 0 mod 4(pJ + 1)
−4(pJ + 1) + 8, if τ ≡ 2(pJ + 1)mod 4(pJ + 1)

0, otherwise.
(6)

(2) Let a = (1, 1, j,−j,−1,−1,−j, j) and b = (1, 1, 1,−1, 1, 1, 1,−1). If
8|(pJ − 1), then u is an AP quadriphase sequence of length 8(pJ + 1) and its
complete PACF is

Θu(τ) =

⎧⎨⎩
8(pJ + 1), if τ ≡ 0 mod 8(pJ + 1)

−8(pJ + 1) + 16, if τ ≡ 4(pJ + 1)mod 8(pJ + 1)
0, otherwise.

(7)

Example 2: Let a = (1, 1,−1,−1), b = (1, j, 1, j), p = 17, J = 1 and

e = (14, 8, 13, 10, 11, 1, 3, 6, 15,∞, 8, 0, 14, 13, 8, 8, 12, 8).

By Corollary 2 (1),

u = (−1, 1, 1,−1,−1, 1,−1,−1,−1, 1, 1, 1,−1, 1, 1, 1, 1, 1,−1,
1,−1,−1, 1,−1, 1,−1, 1, j, 1, 1,−1,−1, 1, 1, 1, 1, 1,−1,
−1, 1, 1,−1, 1, 1, 1, 1,−1,−1, 1,−1,−1,−1,−1,−1, 1,

−1, 1, 1,−1, 1,−1, 1,−1, j,−1,−1, 1, 1,−1,−1,−1,−1)

with the almost perfect PACF

Θu(τ) = (72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Example 3: Let a = (1, 1, j,−j,−1,−1,−j, j), b = (1, 1, 1,−1, 1, 1, 1,−1), p = 3,
J = 2 and e = (4, 2, 6, 6, 5,∞, 2, 4, 5, 2). By Corollary 2 (2),

u = (−1, j,−j,−j,−1, 1, j,−1,−1, j,−1,−j, j, j,−j, 1,−j,−1,−j,
−j,−j,−1, 1, 1, j, 1,−1,−j, j,−1, j,−1, 1, 1, 1,−1,−1, j, 1,
−1, 1,−j, j, j, 1, 1,−j, 1, 1,−j, 1, j,−j,−j, j, 1, j, 1, j, j, j, 1,
−1,−1,−j, 1, 1, j,−j, 1,−j, 1,−1,−1,−1,−1, 1,−j,−1, 1)

with the almost perfect PACF

Θu(τ) = (80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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By Corollary 2, one can construct many new AP quadriphase sequences. For
example, the proposed method can generate AP quadriphase sequences with
length in {72, 80, 104, 152, 200}, which are not achievable by previous construc-
tion methods.

In addition, other AP polyphase sequences can be similarly constructed by
the proposed method.

Corollary 3: (1) Let a = (1,ω6, 1,−1,−ω6,−1) and b = (1, 1,ω2
6, 1, 1,ω2

6) where
ω6 is a complex primitive sixth root of unity. If 6|(pJ − 1), then u is an AP
six-phase sequence of length 6(pJ + 1) and its complete PACF is

Θu(τ) =

⎧⎨⎩
6(pJ + 1), if τ ≡ 0 mod 6(pJ + 1)

−6(pJ + 1) + 12, if τ ≡ 3(pJ + 1)mod 6(pJ + 1)
0, otherwise.

(8)

(2) Let a = (1,ω8,ω
2
8,−ω3

8 ,−1,−ω8,−ω2
8 ,ω

3
8) and b = (1, 1, 1,−1, 1, 1, 1,−1)

where ω8 is a complex primitive eighth root of unity. If 8|(pJ − 1), then u is an
AP eight-phase sequence of length 8(pJ + 1) and its complete PACF is

Θu(τ) =

⎧⎨⎩
8(pJ + 1), if τ ≡ 0 mod 8(pJ + 1)

−8(pJ + 1) + 16, if τ ≡ 4(pJ + 1)mod 8(pJ + 1)
0, otherwise.

(9)

Let a polyphase sequence s = (s0, s1, · · · , sm−1) and si (0 ≤ i ≤ l − 1) take
values in a symbol alphabet Q, the imbalance I(s) of s over Q is defined as

I(s) = maxq1,q2∈Q|N(q1) −N(q2)|
where N(q1) denotes the number of symbol q1 occuring in s. The sequence s is
called balanced if I(s) = 0. According to the proposed construction, since the
entries of b occur only once in u, the balance property of a dominantly determines
that of u. In the case of a being balanced, one has following result:

Proposition 2: If a is balanced, then one has I(u) = I(b).

Remark: (1) By Proposition 2, if a is balanced, the AP sequences constructed are
nearly balanced. Sequences derived from Corollaries 2(2) and 3(2) are such ones,
while those from Corollary 3(1) suffer a large imbalance. Sequences constructed
in Corollaries 1 and 2(1) are almost binary.

(2) An exhaustive computer search has shown that there does not exist any
other polyphase AP sequences of length 4 ≤ m ≤ 32, which satisfy the re-
quirement in Theorem 1, such that the resulting polyphase sequences u have a
better balance property than those sequences constructed as in Corollaries 2(2)
and 3(2).

(3) The AP sequences obtained in this paper depend on completely orthogonal
AP pairs, which were found by computer search. A general method to find them
is not provided in this paper. As pointed out by a reviewer, the condition that
each sequence is almost perfect and completely orthogonal with each other looks
quite strict if the length of each sequence is large. Thus, we consider it not
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optimistic to find an efficient method for generating completely orthogonal AP
pairs.

4 Conclusion

Polyphase sequences with almost perfect autocorrelation are attained by using
the shift sequence and the completely orthogonal pair. New families of almost
perfect quadriphase sequences in lengths 4(pJ + 1) and 8(pJ + 1) for appropri-
ate parameter p are found. It is possible to find new polyphase sequences by
employing other completely orthogonal pairs.

Acknowledgment. The authors thank anonymous reviewers for their helpful
comments.
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Linear Filtering of Nonlinear
Shift-Register Sequences
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Munich, Germany

Abstract. Nonlinear n-stage feedback shift-register sequences over the
finite field Fq of period qn − 1 are investigated under linear operations
on sequences. We prove that all members of an easily described class of
linear combinations of shifted versions of these sequences possess useful
properties for cryptographic applications: large periods, large linear com-
plexities and good distribution properties. They typically also have good
maximum order complexity values as has been observed experimentally.
A running key generator is introduced based on certain nonlinear feed-
back shift registers with modifiable linear feedforward output functions.

1 Introduction

This article deals with linearly filtered nonlinear shift-register sequences of span
n and period qn − 1. More precisely, the underlying shift register is a nonlinear
n-stage feedback shift register over Fq which for any nonzero initial state vector
produces a periodic sequence of period qn − 1. Here Fq denotes the finite field of
order q. A linear feedforward function is applied to the stages of the nonlinear
feedback shift register to produce the linearly filtered sequence. We show that
under easily controlled conditions on the linear filter function, the filtered se-
quence will have the same period and linear complexity as the original sequence
whose linear complexity typically is close to the period length. We prove that the
linearly filtered sequences possess good distribution properties. Furthermore, we
report experimental results regarding the maximum order complexity of linearly
filtered binary nonlinear shift-register sequences.

One purpose of linear filtering a nonlinear shift-register sequence is to increase
the maximum order complexity of the sequence up to a value of about twice
the logarithm of the period length, a value typical for random sequences (see
Jansen [8]). Another objective is to enter variability into a system deploying
primitive (see Definition 1) nonlinear feedback shift registers. As an illustration
we discuss in Section 5 a configurable running key generator based on primitive
binary shift registers endowed with modifiable (possibly key-dependent) linear
feedforward logics.

The here discussed concept of linearly filtering nonlinear feedback shift-
register sequences mirrors the complementary concept of nonlinearly filtering
linear shift register sequences. The latter concept has been treated in the
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literature extensively. The intent there is to generate sequences of large lin-
ear complexity out of maximal period linear feedback shift-register sequences.
This is approached by applying certain nonlinear functions to some shifted ver-
sions of the given linear feedback shift-register sequence. We mention the work
of Groth [7], Key [9], Siegenthaler, Forré and Kleiner [23], Fúster-Sabater and
Caballero-Gil [3], Massey and Serconek [13], Paterson [20], Rueppel [21], and
Lam and Gong [11]. Two outstanding contributions to the challenging task
of creating nonlinear feedback shift registers of maximum cycle lengths are
Mykkeltveit [15] and Mykkeltveit, Siu and Tong [16].

2 Preliminaries

Throughout this paper V denotes the Fq-vector space of all inifinite sequences
of elements of the finite field Fq. The sum of two sequences σ = (si)∞i=0 and
τ = (ti)∞i=0 in V is defined by σ + τ = (si + ti)∞i=0. The product of a sequence
σ ∈ V and a scalar c ∈ Fq is defined by cσ = (csi)∞i=0. A useful linear operator
on the vector space V is the shift operator T defined by Tσ = (si+1)∞i=0 for all
σ = (si)∞i=0 in V . If g is an arbitrary polynomial over Fq, then g(T ) is again a
linear operator on V .

A sequence σ ∈ V is called periodic if there is a positive integer r such that
si+r = si for i = 0, 1, . . . . The smallest positive integer r with this property is
called the period of σ, and we write per(σ) = r. Let σ ∈ V be periodic and let
g be a monic polynomial over Fq. We call g a characteristic polynomial of σ if
the linear operator g(T ) annihilates σ, i.e. g(T )σ = 0, where 0 denotes the zero
sequence of V (the sequence all of whose terms are 0). For instance, g(x) = xr−1
is a characteristic polynomial of σ, if σ is periodic with period r. For any periodic
sequence σ ∈ V ,

Jσ = {g ∈ Fq[x] : g(T )σ = 0}
is a nonzero ideal (called the T -annihilator of σ) in the principal ideal do-
main Fq[x]. The uniquely determined monic polynomial mσ ∈ Fq[x] with
Jσ = (mσ) = mσFq[x] is called the minimal polynomial of σ. Thus the char-
acteristic polynomials of σ are precisely the monic polynomials in Fq[x] that are
multiples of mσ.

The degree of mσ is called the linear complexity L(σ) of σ. The linear com-
plexity of σ is zero if and only if σ is the zero sequence. If L(σ) ≥ 1, then L(σ)
is the length of the shortest linear feedback shift register over Fq that can gen-
erate σ. The majority of periodic sequences in V of given period r have linear
complexities close to r (see Dai and Yang [2] and Meidl and Niederreiter [14]).

Another natural approach to the minimal polynomial of a periodic sequence
makes use of generating functions. Following Niederreiter [17], [19], we asso-
ciate with an arbitrary sequence σ = (si)∞i=0 of V its generating function
Gσ =

∑∞
i=0 six

−i−1, regarded as an element of the field Fq((x−1)) of formal
Laurent series over Fq in the indeterminate x−1. The field Fq((x−1)) contains
the field Fq(x) of rational functions as a subfield.
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Lemma 1. Let σ = (si)∞i=0 be a sequence of elements of Fq, and let g be a
monic polynomial over Fq with g(0) �= 0. Then σ is a periodic sequence in V
with characteristic polynomial g if and only if

∞∑
i=0

six
−i−1 =

h(x)
g(x)

(1)

with h ∈ Fq[x] and deg(h) < deg(g).

Proof. The assertion follows immediately by considering the coefficients in the
Laurent series expansion of g(x)

∑∞
i=0 six

−i−1. See Niederreiter [17], [19], or [18,
p. 218]. ��
The polynomial g in Lemma 1 is the minimal polynomial of σ precisely if the
rational function in (1) is in reduced form, i.e. gcd(h, g) = 1. If this is not the
case, then we can divide the numerator h and the denominator g by gcd(h, g) to
produce the reduced form. It follows that mσ = g/ gcd(h, g).

Notice that the polynomial h(x) = g(x)
∑∞

i=0 six
−i−1 depends only on g and

the first deg(g) terms of σ. Thus the above method is a way to compute the min-
imal polynomial of a periodic sequence from a known characteristic polynomial
and a suitable number of initial terms of the sequence. The method was first de-
scribed by Willett [24], supported by a rather complicated proof. The special case
for the characteristic polynomial g(x) = xr − 1 appeared earlier in Laksov [10].

Let g be a monic polynomial over Fq of positive degree n and with g(0) �= 0.
The sequence ρ = (ri)∞i=0 in V that has g as a characteristic polynomial and
whose first n terms are r0 = · · · = rn−2 = 0 and rn−1 = 1, is called the impulse
response sequence for g. We have g(x)

∑∞
i=0 rix

−i−1 = (xn+· · ·+g1x+g0)(x−n+
rnx−n−1 + · · · ) = 1, so that the generating function of ρ satisfies

∞∑
i=0

rix
−i−1 =

1
g(x)

, (2)

which in particular shows that g is also the minimal polynomial of ρ.

Lemma 2. Let σ be a periodic sequence in V and let the monic polynomial g
with deg(g) = n ≥ 1 and g(0) �= 0 be a characteristic polynomial of σ. Let ρ ∈ V
be the impulse response sequence for g, and let h be a polynomial over Fq with
deg(h) < deg(g). The rational generating function of σ is h/g if and only if
σ = h(T )ρ.

Proof. If we multiply the left-hand side of equation (2) by xj , where 0 ≤ j ≤
n − 1, we get the generating function of T jρ. If we multiply the right-hand
side of (2) by xj , we obtain the rational function xj/g(x). Hence the rational
generating function of the sequence T jρ is xj/g(x) for 0 ≤ j ≤ n− 1. Consider
the rational generating function of σ:

h(x)
g(x)

=
h0 + h1x + · · · + hn−1x

n−1

g(x)
= h0

1
g(x)

+ h1
x

g(x)
+ · · · + hn−1

xn−1

g(x)
.

This is equivalent to σ = h0ρ+ h1Tρ+ · · · + hn−1T
n−1ρ = h(T )ρ. ��
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If σ ∈ V is periodic with per(σ) = r ≥ 2, then the least positive integer n
such that the n-tuples si = (si, si+1, . . . , si+n−1), 0 ≤ i ≤ r − 1, are all distinct
is called the span or the maximum order complexity of σ. If σ ∈ V is a constant
sequence, then its maximum order complexity is defined to be zero.

The periodic sequences in V of span n ≥ 1 are precisely the output sequences
of nonsingular n-stage feedback shift registers over Fq. An n-stage feedback shift
register (FSR) over Fq is uniquely determined by its feedback function R : Fn

q →
Fq. A sequence σ = (si)∞i=0 in V whose terms satisfy the recurrence relation

si+n = R(si, si+1, . . . , si+n−1) for i = 0, 1, . . .

is called an output sequence of the FSR defined by R. The n-tuple s0 =
(s0, s1, . . . , sn−1) is referred to as the initial state vector of the sequence. The
FSR is called nonsingular if the mapping

M : (x0, . . . , xn−1) ∈ Fn
q �→ (x1, . . . , xn−1,R(x0, . . . , xn−1)) ∈ Fn

q

is bijective. Any output sequence of a nonsingular n-stage FSR over Fq is peri-
odic. The maximum possible period is r = qn as there are qn different n-tuples
of elements of Fq.

The FSR is called a linear feedback shift register (LFSR) over Fq if the feedback
function R is linear; otherwise the FSR is called a nonlinear feedback shift register
(NLFSR) over Fq. If R is linear, i.e.

R(x0, x1, . . . , xn−1) = a0x0 + a1x1 + · · · + an−1xn−1

with aj ∈ Fq for 0 ≤ j ≤ n− 1, then the associated polynomial g ∈ Fq[x] given
by

g(x) = xn −R(1, x, . . . , xn−1) = xn − an−1x
n−1 − · · · − a1x − a0

is called the characteristic polynomial of the LFSR. The name is justified by the
fact that g is a characteristic polynomial of any possible output sequence of the
LFSR.

Definition 1. An n-stage FSR over Fq (linear or nonlinear) is called primitive
if for any nonzero initial state vector of Fn

q the corresponding output sequence
has period qn − 1.

It is immediate that each primitive FSR is nonsingular. Furthermore, if R is
the feedback function of a primitive n-stage FSR over Fq and 0 ∈ Fn

q is the zero
vector, then R(0) = 0. As a consequence, the zero sequence is an output sequence
of any primitive FSR. The attribute primitive for the FSR’s under discussion is
justified for the following reason: A linear feedback shift register is primitive (in
the sense of Definition 1) if and only if its characteristic polynomial is a primitive
polynomial over Fq (see Lidl and Niederreiter [12, Chap. 8] and Golomb [6]). In
the literature, the nonzero output sequences of a primitive LFSR are also called
m-sequences, maximal period sequences, or pseudo-noise sequences.
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Any two nonzero output sequences σ and τ of some primitive n-stage FSR over
Fq are shifted versions of each other. That is, τ = T dσ for some 0 ≤ d ≤ qn − 2.
There are exactly

q−n(q!)qn−1

primitive n-stage FSR’s over Fq (see Van Aardenne-Ehrenfest and De Bruijn [1])
of which only φ(qn−1)/n are linear as there are that many primitive polynomials
over Fq of degree n. Here φ is Euler’s function.

Primitive LFSRs over Fq of length n can readily be constructed as long
as primitive polynomials over Fq of degree n are available. The design of sparse
primitive NLFSRs is a challenging task. By employing a small amount of theory
and a huge amount of computing power at the present time it is possible to con-
struct binary primitive NLFSRs in the lower thirties. For instance, the feedback
function

F (x0, x1, . . . , x31) = x0 + x2 + x6 + x7 + x12 + x17 + x20 + x27 + x30

+ x3x9 + x12x15 + x4x5x16

defines a binary primitive NLFSR of length 32. Recently, a synchronous stream
chipher based solely on binary primitive NLFSRs was proposed by Gammel,
Göttfert and Kniffler [5]. See also [4].

3 Periodicity and Linear Complexity

Let σ be a sequence of elements of Fq, and let f be a nonzero polynomial over
Fq. We call the sequence τ = f(T )σ a linearly filtered sequence derived from σ.
The polynomial f is referred to as the filter polynomial.

Lemma 3. Let σ = (si)∞i=0 be a periodic sequence in V with minimal polynomial
mσ ∈ Fq[x], and let f be a nonzero polynomial over Fq. The sequence τ = f(T )σ
is periodic and its minimal polynomial is given by mτ = mσ/ gcd(mσ, f).

Proof. The assertion holds if σ is the zero sequence. Otherwise, the minimal
polynomial of σ has positive degree. Let ρ ∈ V be the impulse response se-
quence for the polynomial mσ and consider h/mσ ∈ Fq(x), the reduced rational
generating function of σ. By Lemma 2, we have σ = h(T )ρ. It follows that
τ = f(T )[h(T )ρ] = (fh)(T )ρ. Let u be the uniquely determined polynomial
over Fq with fh ≡ u mod mσ and deg(u) < deg(mσ). Since mσ(T )ρ = 0, it
follows that τ = u(T )ρ. Another application of Lemma 2 shows that u/mσ

represents the generating function of τ . By reducing u/mσ to lowest terms,
we obtain the minimal polynomial of τ as mτ = mσ/ gcd(mσ,u). However, as
u ≡ fh mod mσ, and since the polynomials h and mσ are relatively prime, it
follows that gcd(mσ,u) = gcd(mσ, f). ��
Lemma 4. Let σ = (si)∞i=0 be a nonzero output sequence of a primitive n-stage
FSR over Fq. Then the minimal polynomial mσ ∈ Fq[x] of σ is the product
of distinct monic irreducible polynomials over Fq whose degrees divide n. The
polynomials x and x − 1 do not divide the minimal polynomial mσ.
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Proof. Let r = per(σ). The n-tuples si = (si, si+1, . . . , si+n−1), 0 ≤ i ≤ r − 1,
run exactly through all nonzero vectors of Fn

q . Therefore, each nonzero element
of Fq occurs exactly qn−1 times among the first coordinates of those n-tuples. It
follows that s0 + s1 + · · · + sr−1 = 0. Since σ is periodic with period r, we get

si+r−1 + · · · + si+1 + si = 0 for i = 0, 1, . . . ,

which means that

c(x) = xr−1 + xr−2 · · · + x + 1 =
xr − 1
x − 1

∈ Fq[x] (3)

is a characteristic polynomial of σ. We have c(1) = r · 1 = (qn − 1) · 1 = −1 �= 0.
Thus the element 1 is not a root of c(x), nor is 0. Consequently, the minimal
polynomial mσ(x), which divides c(x), is neither divible by x − 1 nor by x.
Equation (3) implies that mσ(x) divides xr+1 −x, which, since r+1 = qn, is the
product of all monic irreducible polynomials over Fq whose degrees divide n. ��
Let g be a monic polynomial over Fq of positive degree n. Consider the set
S(g) of all periodic sequences in V that have g as a characteristic polynomial:
S(g) = {σ ∈ V : g(T )σ = 0}. The set S(g) is a T -invariant, n-dimensional
subspace of the vector space V . It follows that for all σ ∈ S(g) and for all
f ∈ Fq[x], the linearly filtered sequence τ = f(T )σ is in S(g). The vector space
S(g) has a particularly simple structure if the polynomial g is primitive. In this
case, S(g) = {0,σ,Tσ, . . . ,T r−1σ}, where σ is an arbitrary sequence of S(g)
with a nonzero initial state vector and r = qn − 1. It follows that the linearly
filtered output sequence of a primitive LFSR is always a shifted version of the
original output sequence. As linearly filtering primitive LFSR-output sequences
does not produce “new” sequences we exclude the LFSR case from the following
investigations.

Theorem 1. Let σ = (si)∞i=0 be a nonzero output sequence of a primitive n-
stage NLFSR over Fq, and let f be a nonzero polynomial over Fq. Write f in
the form

f(x) = cxa(x − 1)bf1(x)e1 · · · fs(x)es ,

where c ∈ F∗
q = Fq \ {0}, f1, . . . , fs are distinct monic irreducible polynomials in

Fq[x] none of which is equal to x or x−1, e1, . . . , es are positive integers, a and b
are nonnegative integers. Let fi1 , . . . , fik

be all polynomials of {f1, . . . , fs} whose
degrees divide n. Then the linear complexity L(τ) of the sequence τ = f(T )σ
satisfies

L(σ) −
k∑

j=1

deg(fij ) ≤ L(τ) ≤ L(σ), (4)

where L(σ) denotes the linear complexity of σ and an empty sum has the value
0. In particular we have

L(σ) − deg(f) ≤ L(τ) ≤ L(σ). (5)
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Proof. By Lemma 4, the canonical factorization of mσ in Fq[x] has the form
mσ =

∏t
l=1 hl, where for all l = 1, . . . , t, we have deg(hl) divides n and hl(x) �=

x, x − 1. Hence gcd(mσ, f) divides g =
∏k

j=1 fij , where an empty product has
the value 1. It follows that the degree of mσ/ gcd(mσ, f) is lower bounded by
deg(mσ) − deg(g) and upper bounded by deg(mσ). An application of Lemma 3
completes the proof. ��
Corollary 1. Let σ ∈ V be as in Theorem 1. If the canonical factorization of
the filter polynomial f ∈ Fq[x] over Fq contains only irreducible factors equal
to x or x − 1, or whose degrees do not divide n, then, for τ = f(T )σ, we have
mτ = mσ, L(τ) = L(σ), and per(τ) = per(σ) = qn − 1.

Proof. By the provisions above and Lemma 4, we infer that gcd(mσ, f) = 1.
Therefore, according to Lemma 3, mτ = mσ. This implies L(τ) = L(σ) and
per(τ) = ord(mτ ) = ord(mσ) = per(σ) = qn − 1. ��
We are in particular interested in applying filter functions f whose degrees are
smaller than the lengths of the respective NLFSR’s. From a practical point of
view this is the most interesting case (think of a hardware implementation of
the shift register).

Corollary 2. Let n be a prime and let σ be a nonzero output sequence of a
primitive n-stage NLFSR over Fq. If f is a nonzero polynomial over Fq with
deg(f) < n and τ = f(T )σ, then

L(τ) ≥ L(σ) − min(q − 2,n− 1).

If additionally, f(c) �= 0 for all c ∈ Fq \ {0, 1}, then mτ = mσ, so that L(τ) =
L(σ) and per(τ) = per(σ) = qn − 1.

Proof. Since n is prime, the canonical factorization of mσ in Fq[x] can contain
only irreducible polynomials of degree 1 or n. Hence the assertion follows from
Lemma 3 and Theorem 1. ��
Proposition 1. Let σ = (si)∞i=0 be a nonzero output sequence of a primitive n-
stage NLFSR over Fq. Let f ∈ Fq[x] be a nonzero polynomial with deg(f) < n,
and let τ = f(T )σ. If the minimal polynomial mσ is divisible by at least one
primitive polynomial h ∈ Fq[x] of degree n, then per(τ) = qn − 1.

Proof. By Lemma 4, mσ = h1 · · ·ht, where h1, . . . ,ht ∈ Fq[x] are distinct monic
irreducible polynomials whose degrees divide n. It follows that ord(hj) divides
qn − 1 for 1 ≤ j ≤ t. Let us assume that h1 is primitive and has degree n. Since
0 ≤ deg(f) < n, mτ = mσ/ gcd(mσ, f) still contains the primitive polynomial
h1. Let—after a possible rearrangement of factors—the canonical factorization
of mτ be given by mτ = h1 · · ·hs, where s ≤ t. As ord(h1) = qn − 1, we obtain
per(τ) = ord(mτ ) = lcm(ord(h1), . . . , ord(hs)) = qn − 1. ��
Corollary 3. Let σ, τ ∈ V and f ∈ Fq[x] be as in Proposition 1. If the linear
complexity of σ satisfies L(σ) ≥ qn − 1 −φ(qn − 1), where φ is Euler’s function,
then per(τ) = qn − 1.
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Proof. The rth cyclotomic polynomial over Fq has degree φ(r) and, for
r = qn − 1, is the product of all (monic) primitive polynomials in Fq[x] having
degree n (see [12]). Thus, if L(σ) = deg(mσ) ≥ r − φ(r), at least one primitive
polynomial h ∈ Fq[x] of degree n must be present in the canonical factorization
of mσ over Fq. ��
The concept of linearly filtering nonlinear shift register sequences is, figuratively
speaking, the mirror image of the concept of nonlinearly filtering linear shift
register sequences. Consider an n-stage primitive feedback shift register over Fq.
Let us assume first that the shift register is linear. Let τ = (ti)∞i=0 be an arbitrary
periodic sequence of elements of Fq whose period divides qn − 1. (The period
might be equal to qn−1.) Assume that the LFSR is loaded with a nonzero initial
state and that σ = (si)∞i=0 is the corresponding output sequence. The n-tuples
si = (si, si+1, . . . , si+n−1), 0 ≤ i ≤ qn − 2, encompass all nonzero vectors of Fn

q .
We define a function F : Fn

q → Fq by setting F (si) = ti for 0 ≤ i ≤ qn − 2, and
F (0) = 0. Unless τ is a shifted version of σ, the function F will be nonlinear.
From the definition of F , it is immediate that, if we apply the filter function F
to the n stages of the LFSR, we will obtain the sequence τ . In other words,

τ = F (σ,Tσ, . . . ,T n−1σ).

Thus we have shown: All periodic sequences of elements of Fq whose periods
divide qn − 1, can be obtained out of a given primitive n-stage LFSR over Fq by
applying suitable (in general nonlinear) filter functions to the stages of the shift
register.

A primitive n-stage LFSR over Fq can be regarded as a primitive feedback shift
register over Fq whose nonzero output sequence has minimum linear complexity
n. The counterpart is a primitive n-stage feedback shift register over Fq whose
nonzero output sequence has maximum linear complexity qn − 2. Such a shift
register must necessarily be nonlinear. Let us denote the nonzero output sequence
of such an n-stage NLFSR by σ = (si)∞i=0. Since the linear complexity of σ
is qn − 2, the sequences σ,Tσ, . . . ,T qn−3σ are linearly independent over Fq.
Together with the constant sequence (1, 1, . . . ), they form a basis of the Fq-
vector space consisting of all periodic sequences of elements of Fq whose periods
divide qn − 1. Let τ be any such sequence with the restriction that the minimal
polynomial of τ is not divisible by x − 1. Then there exist uniquely determined
scalars ai ∈ Fq, 0 ≤ i ≤ qn − 3, such that

τ = a0σ + a1Tσ + · · · + aqn−3T
qn−3σ.

In other words, τ = f(T )σ with a uniquely determined polynomial f ∈ Fq[x] of
degree < qn − 2.

Thus we have shown: All periodic sequences of elements of Fq whose periods
divide qn − 1 and whose minimal polynomials are not divisible by x − 1, can be
obtained out of a given primitive maximum-linear-complexity n-stage NLFSR
over Fq by linearly filtering the output sequence of the shift register.
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4 Distribution Properties

Let σ be a nonzero output sequence of a primitive NLFSR over Fq, and let f be
a nonzero polynomial over Fq. We will show that up to a slight aberration for the
zero element the elements of Fq are equidistributed in the sequence τ = f(T )σ,
provided that the degree of the filter polynomial is not too large. Moreover, all
possible strings of elements of Fq up to a certain length (which depends on the
degree of the applied filter polynomial f) appear almost equally often within a
full portion of the period of τ . If f(x) = xeg(x) with e ≥ 0 and g ∈ Fq[x] with
g(0) �= 0, then the sequence f(T )σ is a shifted version of the sequence g(T )σ.
Therefore, w.l.o.g. we can restrict our attention to filter polynomials f which are
not divisible by x.

Theorem 2. Let σ = (si)∞i=0 a nonzero output sequence of a primitive n-stage
NLFSR over Fq. Let f ∈ Fq[x] with f(0) �= 0 and 0 ≤ deg(f) = k ≤ n − 1. Let
τ = (ti)∞i=0 = f(T )σ. For 1 ≤ m ≤ n − k and b = (b1, . . . , bm) ∈ Fm

q , let N(b)
be the number of i ∈ {0, 1, . . . , r − 1} for which (ti, ti+1, . . . , ti+m−1) = b. Then

N(b) =

{
qn−m for b �= 0,
qn−m − 1 for b = 0.

Proof. By assumption, f(x) = a0 + a1x + · · · + akxk with a0ak �= 0. Thus

ti = a0si + a1si+1 + · · · + aksi+k for i = 0, 1, . . . .

Let b = (b1, . . . , bm) ∈ Fm
q be fix. Consider the system of m linear equations in

n unknowns x0, x1, . . . , xn−1, given by
k∑

j=0

ajxj+h = bh+1, h = 0, 1, . . . , m − 1. (6)

Let A be the matrix of coefficients of the corresponding homogeneous system of
linear equations, so that

A =

⎛⎜⎜⎜⎝
a0 a1 . . . ak 0 0 0 . . . 0
0 a0 a1 . . . ak 0 0 . . . 0
...

...
. . . . . . . . .

...
0 0 . . . a0 a1 . . . ak . . . 0

⎞⎟⎟⎟⎠ .

Then A is an m × n matrix over Fq of rank m, since a0 �= 0. If b �= 0 then
the augmented matrix A′ = (A,bt), which is the m × (n + 1) matrix whose
first n columns are the columns of the matrix A and whose last column is the
transpose of b, has also rank m. Hence the system of linear equations in (6) has
qn−m distinct solution vectors (x0, . . . , xn−1) ∈ Fn

q .
If b = 0, then the zero vector of Fn

q is one of the qn−m solution vectors
of the system (6). As i runs through 0, 1, . . . , r − 1, all nonzero n-tuples occur
among s0, s1, . . . , sr−1 ∈ Fn

q , so that N(0) = qn−m − 1. If b �= 0, then all qn−m

solution vectors of (6) are nonzero and thus occur among s0, s1, . . . , sr−1, so that
N(b) = qn−m. ��
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5 A Running Key Generator

Consider k primitive binary NLFSR’s of pairwise relatively prime lengths n1, . . . ,
nk. For each j = 1, . . . , k, the jth NLFSR is endowed with a modifiable linear
feedforward logic described by a certain collection Cj of binary polynomials of
degrees less than nj . The key loading algorithm has to perform two tasks:

1. It loads each of the k NLFSR’s with a nonzero initial state vector;
2. For each j = 1, . . . , k, it selects a filter polynomial fj from the set Cj .

Let σj be the binary sequence the jth NLFSR would produce, due to the chosen
initial state vector, without filtering. Then τj = fj(T )σj is the sequence after
applying the chosen filter polynomial fj . The linearly filtered sequences τ1, . . . , τk
are combined termwise by a Boolean combining function F : Fk

2 → F2 to produce
the keystream ω = F (τ1, . . . , τk).

The internal state of the running key generator at time t consists of the
binary contents of the n1 + · · · + nk memory cells of the whole shift register
bundle. The output function of the running key generator depends on the k-
tuple (f1, . . . , fk) of filter polynomials that were chosen during key loading. A
well designed key loading algorithm guarantees that each possible combination
(f1, . . . , fk) of the filter polynomials will occur with the same probability if the
secret key is chosen at random from the uniform distribution. The number N of
different combinations of the filter polynomials is given by

N =
k∏

j=1

|Cj |,

where |Cj | denotes the cardinality of the set Cj . Thus the running key generator
has N different output functions and, therefore, can generate N translation
distinct keystream sequences. The latter is a desired property by an information
theoretical analysis of keystream generators carried out by Jansen [8, Chap. 7].
The rest of this section is devoted to the derivation of the minimal polynomial
of the keystream sequence ω.

First we recall some results of Selmer [22, Chap. 4]. Let f, g, . . . ,h ∈ Fq[x]
be nonconstant polynomials without multiple roots in their respective splitting
fields over Fq and with nonzero constant terms. Then f ∨g∨· · · ∨h is defined to
be the monic polynomial whose roots are the distinct products αβ · · ·γ, where
α is a root of f , β a root of g, and γ a root of h. The polynomial f ∨ g ∨ · · · ∨ h
is again a polynomial over the ground field Fq. This follows from the fact that
all conjugates (over Fq) of a root of f ∨ g ∨ · · · ∨ h are roots of f ∨ g ∨ · · · ∨ h.

Lemma 5. Let f, g, . . . ,h ∈ Fq[x] be polynomials over Fq without multiple roots
and with nonzero constant terms. The polynomial f ∨ g ∨ · · · ∨ h ∈ Fq[x] is
irreducible if and only if the polynomials f, g, . . . ,h are all irreducible and of
pairwise relatively prime degrees. In this case,

deg(f ∨ g ∨ · · · ∨ h) = deg(f)deg(g) · · · deg(h).
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If σ, τ, . . . , υ are periodic sequences in V with irreducible minimal polynomials
f , g, . . . , h ∈ Fq[x] of pairwise relatively prime degrees and with f(0)g(0) · · ·h(0)
�= 0, then f∨g∨· · ·∨h is the minimal polynomial of the product sequence στ · · ·υ.
Proof. See Selmer [22, Chap. 4].

Lemma 6. For each j = 1, . . . , k, let σj be a periodic sequence in V with mini-
mal polynomial mj ∈ Fq[x]. If the polynomials m1, . . . , mk are pairwise relatively
prime, then the minimal polynomial of the sum σ = σ1 + · · ·+ σk is equal to the
product m1 · · ·mk. Conversely, let σ be a periodic sequence in V whose minimal
polynomial m ∈ Fq[x] is the product of pairwise relatively prime monic polyno-
mials m1, . . . , mk ∈ Fq[x]. Then, for each j = 1, . . . , k, there exists a uniquely
determined periodic sequence σj with minimal polynomial mj ∈ Fq[x] such that
σ = σ1 + · · · + σk.

Proof. A proof of the first part of the lemma can be found on page 426 in Lidl and
Niederreiter [12]. To prove the second part, let h/m ∈ Fq(x) be the generating
function of σ in the sense of Lemma 1. Let

h

m
=

h1

m1
+ · · · + hk

mk
(7)

be the partial fraction decomposition of h/m. By the comments following
Lemma 1, deg(h) < deg(m) and gcd(h, m) = 1. This implies deg(hj) < deg(mj)
and gcd(hj , mj) = 1 for 1 ≤ j ≤ k. The rational functions hj/mj correspond to
uniquely determined periodic sequences σj ∈ V with minimal polynomials mj .
Equation (7) implies that σ = σ1 + · · · + σk. ��
Lemma 7. Let S,T , . . . ,U be pairwise relatively prime integers greater than 1.
Let σ = (sn)∞n=0, τ = (tn)∞n=0, . . . , υ = (un)∞n=0 be periodic binary sequences of
periods per(σ) = 2S − 1, per(τ) = 2T − 1, . . . , per(υ) = 2U − 1, respectively.
Assume that the canonical factorizations over F2 of the minimal polynomials of
σ, τ, . . . , υ are

mσ =
s∏

i=1

fi, mτ =
t∏

j=1

gj , . . . , mυ =
u∏

k=1

hk. (8)

Then the minimal polynomial of the product sequence στ · · · υ = (sntn · · ·un)∞n=0
is given by

mστ ···υ =
s∏

i=1

t∏
j=1

· · ·
u∏

k=1

(fi ∨ gj ∨ · · · ∨ hk). (9)

In fact, (9) represents the canonical factorization of the minimal polynomial of
στ · · · υ over F2.

Proof. It suffices to carry out the details of the proof for the product of two
sequences σ and τ . The general statement then follows by induction. Consider
the canonical factorization of the minimal polynomials mσ and mτ in (8). By
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hypothesis, r = per(σ) = 2S − 1 which implies that mσ divides xr − 1. Recall
that x(xr − 1) = x2S − x ∈ F2[x] is the product of all irreducible binary poly-
nomials whose degrees divide S. It follows that the irreducible factors f1, . . . , fs

are distinct and that deg(fi) divides S for 1 ≤ i ≤ s. Similarly, the irreducible
polynomials g1, . . . , gt are distinct and deg(gj) divides T for 1 ≤ j ≤ t. Further-
more, the first-degree irreducible polynomial p(x) = x does not occur among
the polynomials f1, . . . , fs and g1, . . . , gt. By Lemma 6, the sequences σ and τ
possess unique representations

σ =
s∑

i=1

σi and τ =
t∑

j=1

τj ,

where σi is a binary periodic sequence with minimal polynomial fi for 1 ≤ i ≤ s,
and τj is a binary periodic sequence with minimal polynomial gj for 1 ≤ j ≤ t.
It follows that

στ =
s∑

i=1

t∑
j=1

σiτj .

By hypothesis, gcd(S,T ) = 1. It follows that for each i ∈ {1, . . . , s} and j ∈
{1, . . . , t}, the corresponding irreducible polynomials fi and gj have relatively
prime degrees. Invoking Lemma 5, we conclude that for each i ∈ {1, . . . , s}
and j ∈ {1, . . . , t}, the sequence σiτj has the irreducible minimal polynomial
fi ∨ gj ∈ F2[x].

As will be shown below, the irreducible polynomials fi ∨ gj , 1 ≤ i ≤ s,
1 ≤ j ≤ t, are distinct. Another application of Lemma 6 shows that the minimal
polynomial of στ has the form

mστ =
s∏

i=1

t∏
j=1

(fi ∨ gj). (10)

It remains to show that the polynomials fi ∨ gj, 1 ≤ i ≤ s, 1 ≤ j ≤ t,
are distinct. To see this, let fi and f ′

i be any two factors from the canonical
factorization of mσ, and let gj and g′j be any two factors from the canonical
factorization of mτ . Assume to the contrary that the two irreducible polynomials
fi∨gj and f ′

i ∨g′j are equal. Note that two irreducible polynomials over the finite
field Fq are equal if and only if they have a common root (in some extension
field of Fq). Let γ be a common root of the polynomials fi ∨gj and f ′

i ∨g′j . Then
we can write γ in the form

γ = αβ = α′β′, (11)

where α, β, α′, and β′ are roots of the polynomials fi, gj, f ′
i , and g′j, respectively.

Since α is a root of the irreducible polynomial fi, we have α ∈ F2deg(fi) , which
is a subfield of F2S , as deg(fi) divides S. Similarly, we conclude that α′ ∈ F2S

and β,β′ ∈ F2T . From (11) we obtain α/α′ = β′/β. Clearly, α/α′ ∈ F2S and
β′/β ∈ F2T . Since S and T are relatively prime we have F2S ∩ F2T = F2, so
that α/α′ = β′/β = 1. Hence α = α′ and β = β′. This implies fi = f ′

i and
gj = g′j . ��
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Theorem 3. Let σ1, . . . ,σk be nonzero output sequences of k ≥ 1 primitive
binary NLFSR’s of pairwise relatively prime lengths n1, . . . ,nk. Let the canonical
factorization of the minimal polynomial of σj over F2 be given by

mσj =
dj∏

ij=1

hij for 1 ≤ j ≤ k.

Let F : Fk
2 → F2 be an arbitrary Boolean combining function with algebraic

normal form

F (x1, . . . , xk) = a0 +
∑

1≤i≤k

aixi +
∑

1≤i<j≤k

aijxixj + · · · + a12···kx1x2 · · ·xk.

Consider the linearly filtered sequences τj = fj(T )σj for 1 ≤ j ≤ k and the
combined sequence ω = F (τ1, . . . , τk). If for j = 1, . . . , k, the applied filter poly-
nomial fj ∈ F2[x] does not contain any irreducible factors �= x, x − 1 whose
degrees divide nj, then the minimal polynomial of ω is given by

mω =(x − 1)a0

(
d1∏

i1=1

hi1

)a1 ( d2∏
i2=1

hi2

)a2

· · ·
(

dk∏
ik=1

hik

)ak

·
(

d1∏
i1=1

d2∏
i2=1

(hi1 ∨ hi2)

)a12

· · ·
⎛⎝ dk−1∏

ik−1=1

dk∏
ik=1

(hik−1 ∨ hik
)

⎞⎠ak−1,k

· · ·
(

d1∏
i1=1

d2∏
i2=1

· · ·
dk∏

ik=1

(hi1 ∨ hi2 ∨ · · · ∨ hik
)

)a12···k

.

(12)

Proof. By Corollary 1, mτj = mσj for 1 ≤ j ≤ k. We have

ω = a0 +
∑

1≤i≤k

aiτi +
∑

1≤i<j≤k

aijτiτj + · · · + a12...kτ1τ2 . . . τk. (13)

For each summand we know the corresponding minimal polynomial from
Lemma 7. It remains to show that the minimal polynomials of the individ-
ual summands are pairwise relatively prime. Lemma 6 then yields the presented
formula for the minimal polynomial mω.

Consider any two different summands in the sum in (13). There exists at
least one τl that appears in one of the two summands but not in the other.
Consider the minimal polynomials of the two summands. By Corollary 1, we
have mτl

= mσl
, and therefore

mτl
=

dl∏
il=1

hil
.

According to Lemma 4, the irreducible factors hil
satisfy: (i) deg(hil

) divides
nl; (ii) deg(hil

) ≥ 2. Consider the minimal polynomials of the two summands. By
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Lemma 5, and since gcd(ni,nj) = 1 for i �= j, it follows that all irreducible factors
in the canonical factorization of the minimal polynomial of the summand that
does not contain τl have degrees relatively prime to nl. On the other hand, each
irreducible polynomial in the canonical factorization of the minimal polynomial
of the summand that contains τl is of the form (h(·) ∨ · · · ∨ hil

), and its degree
is a multiple of deg(hil

), by Lemma 5. Therefore, the degree of the polynomial
cannot be relatively prime to nl. It follows that the minimal polynomials of any
two summands in (13) are relatively prime. ��
By taking the degrees of both sides in the formula (12), we can express the linear
complexity of ω in terms of the linear complexities of the sequences σ1, . . . ,σk.

A typical value for the linear complexity of a nonzero output sequence of a
primitive binary n-stage NLFSR seems to be the maximum possible value 2n−2.
This is supported by extensive computer investigations of ours.

Corollary 4. Assume that the underlying primitive binary NLFSR’s are such
that the linear complexities of the nonzero output sequences σj attain the max-
imum possible values L(σj) = 2nj − 2 for 1 ≤ j ≤ k. Assume that the jth
NLFSR is initialized with any nonzero vector of Fnj

2 . Let for each j, the ap-
plied filter polynomial run through all 2nj − 1 nonzero polynomials of F2[x] with
0 ≤ deg(fj) < nj. Then the linear complexities of the corresponding possible
output sequences ω of the running key generator all satisfy

F (2n1 − n1 − 1, . . . , 2nk − nk − 1) ≤ L(ω) ≤ F (2n1 − 2, . . . , 2nk − 2).

Proof. By Corollary 3, we have per(τj) = 2nj − 1 for all nonzero fj ∈ F2[x] with
0 ≤ deg(fj) < nj, 1 ≤ j ≤ k. By Theorem 1, we have L(τj) ≥ L(σj)−deg(fj) ≥
2nj − nj − 1. The assertion now follows from Theorem 3. ��

6 Maximum Order Complexity

A sequence that is obtained by randomly choosing a string of r elements of
Fq which is then repeated ad infinitum to produce a periodic sequence of F∞

q

is expected to have maximum order complexity 2.logq(r)/ (see Jansen [8]). By
computer calculations we found that the mean value of the maximum order
complexity of linearly filtered nonzero output sequences of primitive binary n-
stage NLFSR’s is close to the ideal value 2n, provided that the applied filter
polynomial f satisfies 2 ≤ deg(f) < n.

Table 1 displays for a primitive binary NLFSR of length 12 the maximum
order complexity values of its linearly filtered sequences τ = f(T )σ. The applied
filter polynomial f ∈ F2[x] ranges over all binary polynomials with f(0) = 1
and deg(f) ≤ 11. Table 2 gives the mean values and standard deviations of
the maximum order complexities of linearly filtered nonzero output sequences
of primitive binary NLFSR’s of different lengths. The lengths n of the NLFSR’s
vary in the range 4 ≤ n ≤ 23. For n = 4, 5, 6 all binary primitive NLFSR’s were
taken into account. For each larger value of n, at least 300 randomly selected
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primitive binary NLFSR’s were considered. In each considered n-stage NLFSR
the applied filter polynomial f runs through all binary nonzero polynomials with
deg(f) ≤ n− 1.

Table 1. Minimum, maximum, and average values of the maximum order complexity
for linearly filtered nonzero output sequences of a primitive binary 12-stage NLFSR

deg(f) Min. Max. Average deg(f) Min. Max. Average
0 12 12 12.000 6 20 30 23.375
1 20 20 20.000 7 19 31 23.578
2 19 27 23.000 8 20 30 23.352
3 21 30 24.750 9 19 34 23.203
4 19 29 23.750 10 19 35 23.322
5 19 28 23.375 11 19 34 23.332

Table 2. Mean value and standard deviation of the maximum order complexity for
linearly filtered nonzero output sequences of primitive binary n-stage NLFSR’s

n Mean value Std. Dev. n Mean value Std. Dev.
4 5.99 1.64 14 27.64 2.91
5 8.16 2.28 15 29.65 2.63
6 10.55 2.36 16 31.83 3.06
7 12.77 2.39 17 33.58 2.40
8 15.03 2.95 18 35.57 2.30
9 17.37 3.82 19 37.80 2.72
10 19.35 3.08 20 40.18 2.80
11 21.42 2.75 21 42.42 3.39
12 23.62 3.10 22 43.42 2.01
13 25.74 3.40 23 45.49 2.26
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21. R.A. Rueppel: Analysis and Design of Stream Ciphers, Springer-Verlag, 1986.
22. E. S. Selmer: Linear Recurrence Relations over Finite Fields, Department of Math-

ematics, Univ. of Bergen, 1966.
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Abstract. In an effort to search for a new binary two-level autocorrela-
tion sequence, the decimation-Hadamard transform (DHT) based on spe-
cial classes of known binary sequences with two-level autocorrelation is
investigated. In the second order DHT of a binary generalized Gordon-
Mills-Welch (GMW) sequence, we show that there exist realizations which
can be theoretically determined by the second order DHT in its subfield.
Furthermore, we show that complete realizations of any binary two-level
autocorrelation sequence with respect to a quadratic residue (QR)
sequence by the second order DHT are theoretically determined.

1 Introduction

Recently, Gong and Golomb developed a new method to study and search for
two-level autocorrelation sequences for both binary and non-binary cases [6].
This method is iteratively to apply two operations: decimation and the
Hadamard transform based on general orthogonal functions, referred to as the
decimation-Hadamard transform (DHT). Basically, it was inspired from Dillon
and Dobbertin’s work [2] where the Hadamard transform was used for the anal-
ysis of a new two-level autocorrelation sequence. The r-th order iterative DHT
can transform one class of two-level autocorrelation sequences into another in-
equivalent class of such sequences, a process called realization [6]. Using the
second order iterative DHT and starting with a single binary m-sequence, Gong
and Golomb verified that one can obtain all the known two-level autocorrela-
tion sequences of period 2n − 1 which have no subfield factorization for odd
n ≤ 17 [6].

In this paper, the DHT based on binary generalized GMW sequences and
quadratic residue sequences is investigated. The binary generalized GMW se-
quence has the trace representation of an orthogonal function from F2n to F2
which is a composition of a component orthogonal function from F2m to F2 and
a trace function, where F2m is a subfield of F2n [7] [12]. In the DHT of the
sequence, we show that there exist the realizations which can be theoretically
determined by the realizations of a sequence corresponding to the component
orthogonal function in the subfield. In the realizations, we note that the DHT

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 371–385, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of a binary generalized GMW sequence in the finite field is inherited from the
DHT of its binary component sequence in the subfield.

In addition, using special properties of QR sequences, the realizations of any
binary two-level autocorrelation sequence with respect to a QR sequence by
the second order DHT are discussed. We show that the complete realizations
can be theoretically determined and a valid realization of any binary two-level
autocorrelation sequence with respect to a QR sequence is either a self-realization
or a QR sequence.

This paper is organized as follows. In Section 2, we give some preliminary
reviews of concepts and notations on sequences that we will use in this paper. In
Section 3, the realizations of the binary generalized GMW sequences by the sec-
ond order DHT are investigated. Mathematical proofs and experimental results
are provided. In Section 4, the realizations of any binary two-level autocorrela-
tion sequence based on a QR sequence are investigated. In Section 5, concluding
remarks are given.

2 Preliminaries

In this section, we present some preliminary reviews on concepts and notations
about sequences that we will frequently use in this paper. The following notation
will be used throughout this paper.

- Z is the integer ring, Zm the ring of integers modulo m, and Z∗
m = {r ∈

Zm|r �= 0}.
- FQ = GF (Q) is the finite field with Q elements and F∗

Q the multiplicative
group of FQ.

- For positive integers n and m, let m|n. The trace function from F2n to F2m

is denoted by Trn
m(x), i.e.,

Trn
m(x) = x + x2m

+ · · · + x2m( n
m

−1)
, x ∈ F2n ,

or simply as Tr(x) if m = 1 and the context is clear.

2.1 Correspondence Between Periodic Sequences and Functions
from F2n to F2

Let S be the set of all binary sequences with period t|(2n − 1) and F be the
set of all functions from F2n to F2. For any function f(x) ∈ F , f(x) can be
represented as

f(x) =
r∑

i=1

Trni
1 (Aix

ti), Ai ∈ F(2ni)

where ti is a coset leader of a cyclotomic coset modulo 2ni −1, and ni|n is the size
of the cyclotomic coset containing ti. For any sequence a = {ai} ∈ S, there exists
f(x) ∈ F such that ai = f(αi), i = 0, 1, · · · , where α is a primitive element of
F2n . Then, f(x) is called a trace representation of a. (a is also referred to as an
r-term sequence.)
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2.2 Autocorrelation

The autocorrelation of a is defined by

Ca(τ) =
t−1∑
i=0

(−1)ai+τ+ai , 0 ≤ τ ≤ t − 1 (1)

where τ is a phase shift of the sequence a and the indices are computed modulo
t, the period of a. If a has period 2n − 1 and

Ca(τ) =
{−1, if τ �≡ 0 mod 2n − 1

2n − 1, if τ ≡ 0 mod 2n − 1,

then we say that the sequence a has an (ideal) 2-level autocorrelation function.

2.3 Hadamard Transform and the Inverse Transform

Let f(x) be a polynomial function from F2n to F2. With a trace function Tr(x)
from F2n to F2, the Hadamard transform of f(x) is defined by

f̂(λ) =
∑

x∈F2n

(−1)Tr(λx)+f(x), λ ∈ F2n .

The inverse formula is given by

χ(f(λ)) =
1
2n

∑
x∈F2n

(−1)Tr(λx)f̂(x), λ ∈ F2n .

2.4 Orthogonal Function

Let f(x) be a function from F2n to F2 with f(0) = 0. If

Cf (λ) =
∑

x∈F2n

(−1)f(λx)+f(x) =
{

0, if λ �= 1
2n, if λ = 1

for λ ∈ F2n , then we say that f(x) is orthogonal over F. Orthogonal function
is a trace representation of a two-level autocorrelation sequence [6]. If f(x) is a
trace representation of a and autocorrelation function of a defined in (1) is Ca,
then

Ca(τ) = −1 + Cf (λ)

where λ = ατ ∈ F∗
2n .

2.5 Decimation-Hadamard Transform (DHT)

Let u(x) be orthogonal over F2 and f(x) be a function from F2n to F2. For an
integer v ∈ Z∗

2n−1, we define

f̂u(v)(λ) =
∑

x∈F2n

(−1)u(λx)+f(xv), λ ∈ F2n .
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Then, f̂u(v)(λ) is called the first-order decimation-Hadamard transform (DHT)
of f(x) with respect to u(x), the first order DHT for short. With this notation,
let t ∈ Z∗

2n−1. Then,

f̂u(v, t)(λ) =
∑

y∈F2n

(−1)u(λy)f̂u(v)(yt) =
∑

x,y∈F2n

(−1)u(λy)+u(ytx)+f(xv) (2)

is called the second order decimation-Hadamard transform of f(x) (with respect
to u(x)), the second order DHT for short. In DHT, the Hadamard transform is
generalized by the use of the orthogonal function u(x) instead of Tr(x).

If f̂u(v, t)(λ) ∈ {±2n} for all λ in F2n , the function c(x) from F2n to F2
determined by

(−1)c(λ) =
1
2n
f̂u(v, t)(λ),

is called a realization of f(x) with respect to u(x), and (v, t) is called a realizable
pair [6].

3 Realizations on Binary Generalized GMW Sequences

In this section, the decimation-Hadamard transform based on the binary gener-
alized Gordon-Mills-Welch (GMW) sequences is investigated.

Let n be a composite integer, m a proper factor of n, and h(x) an orthogonal
function from F2m to F2. For k with gcd(k, 2n − 1) = 1, a binary generalized
GMW sequence a = {ai} is defined by an evaluation of f(x) at αi [4], where α
is a primitive element in F2n and f(x) is given by

f(x) = h(x) ◦ Trn
m(xk) = h

(
Trn

m(xk)
)
.

Here, f(x) is an orthogonal function from F2n to F2. In particular, if h(x) =
Trm

1 (xv) for v with gcd(v, 2m − 1) = 1 and v �= 1, then the evaluation of f(x) is
a GMW sequence [7] [12]. For more details of GMW sequences, see [10] and [5].

For orthogonal functions h(x), e(x) and g(x) from F2m to F2, let g(x) be a
realization of h(x) with respect to e(x) by the second order DHT in F2m , i.e.,

(−1)g(μc) =
1

2m
· ĥe(a, b)(μ) =

1
2m

∑
x,y∈F2m

(−1)e(μy)+e(ybx)+h(xa)

or equivalently, ∑
x∈F2m

(−1)e(μbx)+h(xa) =
∑

x∈F2m

(−1)e(μx)+g(xc) (3)

for μ ∈ F2m . In this realization, (a, b) is called a realizable pair of h(x) with
respect to e(x) [6]. In this paper, we also use a triple (a, b, c) to indicate the
realization including the decimation value of g(x). From now on, the triple is
called a realizable triple.
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In Gong and Golomb’s work [6], it is determined that if (v, t) is a realizable
pair of h(x) with respect to e(x), there are at most six realizable pairs related
to this pair for the case of e(x) = h(x). In the following, we consider the result
in case of e(x) �= h(x), i.e., asymmetric case.

Lemma 1. Let (v, t, 1) be a realizable triple of h(x) with respect to e(x) which
realizes g(x) by the second order DHT in F2m , where e(x) �= h(x). Then, there
exists another realizable triple (−vt, t−1,−t−1) of h(x) with respect to e(x) which
realizes g(x).

Proof. If (v, t, 1) and (a, b, c) are realizable triples of h(x), then

2m · (−1)g(μ) =
∑

x,y∈F2m

(−1)e(μy)+e(ytx)+h(xv)

=
∑

z,w∈F2m

(−1)e(μc−1
z)+e(zbw)+h(wa).

Here, (a, b, c) can be a realizable triple if and only if there exists a variable change
from (x, y) to (w, z) in the function e(x) such that the above equality is true. In
this case, only two kinds of variable changes are possible for e(x) �= h(x), i.e.,

i) xv = wa, ytx = μc−1
z, μy = zbw and ii) xv = wa, ytx = zbw, μy = μc−1

z.

A nontrivial realizable triple (a, b, c) can be obtained only from i), and we can
easily check (a, b, c) = (−vt, t−1,−t−1). Thus, (−vt, t−1,−t−1) is a realizable
triple related to (v, t, 1) realizable triple. ��
In the following, we show the main theorem on the second order DHT of the
binary generalized GMW sequences.

Theorem 1. Let n be a composite integer and m a proper factor of n. Let
(v, t, 1) be a realizable triple of h(x) with respect to e(x) which realizes g(x) in
F2m . In other words,

1
2m

ĥe(v, t)(μ) = (−1)g(μ), μ ∈ F2m

where h(x), g(x) and e(x) are orthogonal functions from F2m to F2, respectively.
Let f(x),u(x) and c(x) be orthogonal functions from F2n to F2 defined by

f(x) = h(xv) ◦ Trn
m(x), u(x) = e(x) ◦ Trn

m(x), c(x) = g(x) ◦ Trn
m(x)

where v is a decimation factor in Z∗
2m−1 with gcd(v, 2m − 1) = 1. Then, there

exists a realizable triple (s−1,−s, s) of f(x) with respect to u(x) which realizes
c(x) by the second order DHT in F2n , where s ≡ −t−1 (mod 2m − 1). Precisely,

f̂u(s−1)(λ−s) = ĉu(s)(λ), λ ∈ F2n

or equivalently,

1
2n

f̂u(s−1,−s)(λ) = (−1)c(λs), λ ∈ F2n .
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Proof. Let’s consider a decimation of the first order DHT of f(x) with respect
to u(x) by the decimation pair (s−1, −s). Then,

f̂u(s−1)(λ−s) =
∑

x∈F2n

(−1)u(λ−sx)+f(xs−1
)

=
∑

x∈F2n

(−1)e(Trn
m(λ−sx))+h((Trn

m(xs−1
))v)

=
∑

θ∈F2n

(−1)e(Trn
m(θs))+h((Trn

m(λθ))v)

where λ−sx = θs. By decomposition of θ = σε with σ ∈ F2m , we have

f̂u(s−1)(λ−s) =
∑
ε∈Ψ

∑
σ∈F∗

2m

(−1)e(σaTrn
m(εs))+h(σv(Trn

m(λε))v) + 1

=
∑
ε∈Ψ

∑
σ∈F2m

(−1)e(σaTrn
m(εs))+h(σv(Trn

m(λε))v) − d + 1

where d = (2n − 1)/(2m − 1), s ≡ a (mod 2m − 1), and Ψ = {1,α,α2, · · · ,αd−1}
where α is a primitive element in F2n . Let

δε =
∑

σ∈F2m

(−1)e(σaTrn
m(εs))+h(σv(Trn

m(λε))v).

With (ζ,μ) = (Trn
m(εs),Trn

m(λε)) and the orthogonality of h(x) and e(x), we
obtain

δε =

⎧⎨⎩
0, if (ζ,μ) = (0, ∗) or (∗′, 0)
2m, if (ζ,μ) = (0, 0)
δ′ε, otherwise

where both ∗ and ∗′ are nonzero elements in F2m and δ′ε is defined for ε in
Γ = {ε ∈ Ψ |ζ �= 0 and μ �= 0)}. Furthermore, we can express δ′ε as follows.

δ′ε =
∑

ρ∈F2m

(−1)e ρa T rn
m(εs)

(T rn
m(λε))a +h(ρv) =

∑
w∈F2m

(−1)e w
T rn

m(εs)
(T rn

m(λε))a +h(wva−1
)

where ρ = σTrn
m(λε) and w = ρa. With η = Trn

m(λε)

(Trn
m(εs))a−1 , we get

δ′ε =
∑

w∈F2m

(−1)e(η−aw)+h(wva−1
).

If (v, t, 1) is a realizable triple of h(x) with respect to e(x) which realizes g(x),
then (−vt, t−1,−t−1) is also a realizable triple from Lemma 1. Thus, (va−1,−a, a)
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is a realizable triple for a ≡ −t−1 (mod 2m − 1) if (v, t, 1) is a realizable triple.
From (3),

δ′ε =
∑

w∈F2m

(−1)e(η−aw)+h(wva−1
) =

∑
w∈F2m

(−1)e(ηw)+g(wa)

=
∑

w∈F2m

(−1)
e w

Trn
m(λε)

(T rn
m(εs))a−1 +g(wa)

=
∑

y∈F2m

(−1)e(yTrn
m(λε))+g(yaTrn

m(εs))

where y = w

(Trn
m(εs))a−1 . Finally,

f̂u(s−1)(λ−s) =
∑
ε∈Ψ

δε − d + 1 =
∑
ε∈Γ

δ′ε +N · 2m − d + 1

=
∑
ε∈Γ

∑
y∈F2m

(−1)e(yTrn
m(λε))+g(yaTrn

m(εs)) +N · 2m − d + 1

=
∑
ε∈Ψ

∑
y∈F2m

(−1)e(yTrn
m(λε))+g(yaTrn

m(εs)) − d + 1

=
∑
ε∈Ψ

∑
y∈F2m

(−1)e(Trn
m(λyε))+g(Trn

m((yε)s)) − d + 1

=
∑

z∈F2n

(−1)e(Trn
m(λz))+g(Trn

m(zs)), (z = yε)

=
∑

z∈F2n

(−1)u(λz)+c(zs) = ĉu(s)(λ)

where N is the number of elements for (ζ,μ) = (0, 0) in Ψ , and c(x) = g(x) ◦
Trn

m(x). ��
Fig. 1 describes the relation of the orthogonal functions in Theorem 1 by the
second order DHT. In Fig. 1, c(x), a realization of f(x) in F2n is determined by
the extension of g(x), a realization of h(x) in F2m , where f(x) = h(xv) ◦Trn

m(x)

(s ≡ −t−1 (mod 2m − 1))
(s−1,−s, s)

2nd order DHT in F2n

2nd order DHT in F2m

h(x)

f(x)

e(x)
g(x)

(v, t, 1)

extension extension

u(x)
c(x)

and extension
decimation of v

Fig. 1. Relation of orthogonal functions in Theorem 1
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Table 1. Complete theoretical determination of realizations of GMW sequences for
n = 10 (h(x) = Tr5

1(x))

v f(x) t g(x) (s−1,−s, s) c(x)

3 3, 17 1 3 (23,221,89), (29,35,247), (61,109,151), (85,343,85), 3, 17
(89,125,23), (91,101,215), (151,47,61), (215,157,91),
(247,95,29), (511,1,511)

3 1, 5, 7 (7,73,439), (19,53,175), (25,367,41), (59,13,191), 1, 5, 7, 9,
(107,239,49), (149,115,103), (205,383,5), (245,119,71), 19, 25, 69
(379,83,235), (479,181,173)

5 11 (13,59,79), (53,19,251), (73,7,127), (83,379,37), 11, 13, 21, 73
(115,149,347), (119,245,43), (181,479,17),
(239,107,167), (367,25,223), (383,205,179)

5 5, 9 1 5 (23,221,89), (29,35,247), (61,109,151), (85,343,85), 5, 9
(89,125,23), (91,101,215), (151,47,61), (215,157,91),
(247,95,29), (511,1,511)

3 7 (7,73,439), (19,53,175), (25,367,41), (59,13,191), 7, 19, 25, 69
(107,239,49), (149,115,103), (205,383,5), (245,119,71),
(379,83,235), (479,181,173)

7 7, 19, 1 7 (23,221,89), (29,35,247), (61,109,151), (85,343,85), 7, 19, 25, 69
25, 69 (89,125,23), (91,101,215), (151,47,61), (215,157,91),

(247,95,29), (511,1,511)
11 5 (5,179,205), (41,223,25), (49,167,107), (71,43,245), 5, 9

(103,347,149), (173,17,479), (175,251,19), (191,79,59),
(235,37,379), (439,127,7)

11 11, 13, 1 11 (23,221,89), (29,35,247), (61,109,151), (85,343,85), 11, 13, 21, 73
21, 73 (89,125,23), (91,101,215), (151,47,61), (215,157,91),

(247,95,29), (511,1,511)
7 3 (17,173,181), (37,235,83), (43,71,119), (79,191,13), 3, 17

(127,439,73), (167,49,239), (179,5,383), (223,41,367),
(251,175,53), (347,103,115)

11 1, 5, 7 (5,179,205), (41,223,25), (49,167,107), (71,43,245), 1, 5, 7, 9,
(103,347,149), (173,17,479), (175,251,19), (191,79,59), 19, 25, 69
(235,37,379), (439,127,7)

15 15, 23, 27, 1 15 (23,221,89), (29,35,247), (61,109,151), (85,343,85), 15, 23, 27, 29,
29, 77, 85, (89,125,23), (91,101,215), (151,47,61), (215,157,91), 77, 85, 89, 147
89, 147 (247,95,29), (511,1,511)

represents a binary generalized GMW sequence with period 2n−1. Furthermore,
the corresponding realizable triples (s−1,−s, s) are determined by the realizable
triple (v, t, 1) in the subfield. In the DHT of a binary generalized GMW sequence
in a finite field, we see that there exist the realizations and realizable triples
which are theoretically determined by the realizations and realizable triples of
a binary component sequence in its subfield. In the realizations, therefore, the
DHT in a finite field is inherited from the DHT in its subfield in terms of a
binary generalized GMW sequence.

Tables 1 and 2 show complete lists of realizations and realizable triples deter-
mined from Theorem 1 for the binary GMW and generalized GMW sequences
for n = 10, respectively. In each case, both e(x) and u(x) represent m-sequences
with period 31. Note that u(x) can be any function whose subfield factorization
is possible. The value of s in each realizable triple is a coset leader satisfying
s ≡ −t−1 (mod 2m − 1) and gcd(s, 2n − 1) = 1. The numbers in each function
column under the label of a function represent trace exponents of the function.
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Table 2. Complete theoretical determination of realizations of generalized GMW se-
quences for n = 10 (h(x) = Tr5

1(x + x5 + x7))

v f(x) t g(x) (s−1,−s, s) c(x)

1, 5, 7 1, 5, 7, 9, 1 1, 5, 7 (23,221,89), (29,35,247), (61,109,151), (85,343,85), 1, 5, 7,
19, 25, 69 (89,125,23), (91,101,215), (151,47,61), (215,157,91), 9, 19, 25

(247,95,29), (511,1,511) 69
3 11 (7,73,439), (19,53,175), (25,367,41), (59,13,191), 11, 13, 21,

(107,239,49), (149,115,103), (205,383,5), (245,119,71), 73
(379,83,235), (479,181,173)

11 3 (5,179,205), (41,223,25), (49,167,107), (71,43,245), 3, 17
(103,347,149), (173,17,479), (175,251,19), (191,79,59),
(235,37,379), (439,127,7)

3, 11, 15 3, 17, 11, 1 3, 11, 15 (23,221,89), (29,35,247), (61,109,151), (85,343,85), 3, 17, 11,
13, 21, 73, (89,125,23), (91,101,215), (151,47,61), (215,157,91), 13, 21, 73,
15, 23, 27, (247,95,29), (511,1,511) 15, 23, 27,
29, 77, 85, 29, 77, 85,
89, 47 89, 47

In Table 1, h(x) = Tr51(x). Thus, f(x) = Tr51(x
v) ◦ Tr105 (x) represents a

binary GMW sequence with period 1023 for each v with gcd(v, 31) = 1 and
v �= 1. Table 1 shows that 10 realizable triples in each realization are determined
in F210 . Those exactly match the experimental results of the second order DHT
of f(x) with respect to u(x) in F210 . From Table 1, we note that all binary
GMW sequences and one binary generalized GMW sequence can be realized
by the second order DHT of the binary GMW sequences and those realizations
are theoretically determined by the realizations in the subfield F25 . In Table 2,
h(x) = Tr51(x + x5 + x7). Thus, f(x) = h(xv) ◦ Tr105 (x) represents a binary
generalized GMW sequence with period 1023 for each v with gcd(v, 31) = 1.
It is shown that 10 realizable triples in each realization are determined and all
binary generalized GMW sequences can be realized by the second order DHT of
the binary generalized GMW sequences, which matches the experimental results.

In the experiments of the second order DHT of the binary GMW and gener-
alized GMW sequences for n = 10, we interestingly observed that there are no
other realizations than the ones from Tables 1 and 2.

4 Realizations on Quadratic Residue (QR) Sequences

In this section, we study the realization of binary two-level autocorrelation se-
quences with respect to QR sequences by the second order DHT.

4.1 Basic Properties of QR Sequences

A QR sequence q = {qi} with period p ≡ 3 (mod 4) is defined by

qi =

⎧⎨⎩1, if i = 0 (mod p)
0, if i = QR (mod p)
1, if i = QNR (mod p).

(4)
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where ‘QR’ and ‘QNR’ represent quadratic residue and non-residue, respectively.
For more details of quadratic residues, see [9]. Similarly, we can consider another
distinct class of a QR sequence q′ = {q′i} with the same period.

q′i =

⎧⎨⎩
1, if i = 0 (mod p)
1, if i = QR (mod p)
0, if i = QNR (mod p).

(5)

The QR sequences with period p have two-level autocorrelation if and only if
p ≡ 3 (mod 4) [3]. Also, it has been known that there are only two cyclically
distinct QR sequences with the same period, i.e., one is q = {qi} in (4) and the
other is q(d) = {qdi} where d is QNR and q(d) = q′ in (5).

Any QR sequence has its own trace representation [11] [1]. Let p = 2n−1. If the
trace representation of the QR sequence q is u(x), then the trace representation
of q′ is u′(x) = u(xd) for any QNR d in Z∗

p. As the QR sequence is a two-
level autocorrelation sequence for p ≡ 3 (mod 4), both trace representations
u(x) and u′(x) are orthogonal functions, respectively. In this paper, the trace
representation of a QR sequence is called a quadratic residue (QR) function.

The cross-correlation of two distinct QR sequences with period 2n − 1 can be
derived by using a similar way in [8]. This is stated as follows.

Proposition 1. Let a = {ai} and b = {bi} be two shift distinct QR sequences
with period 2n − 1 and their trace representations u(x) and u′(x) (or u′(x) and
u(x)), respectively. The cross-correlation of these two QR sequences has three
values as shown below,

Ca,b(τ) =
2n−2∑
i=0

(−1)ai+bi+τ =

⎧⎨⎩
−2n + 3, if τ = 0
3, if τ = QR (or QNR)
−1, if τ = QNR (or QR).

From the auto- and cross-correlation property of QR sequences, the Hadamard
transform of a QR function with respect to itself or its distinct QR function is
easily derived.

Lemma 2. The Hadamard transform of u(x) with respect to g(x) = u(xd) is
defined by

ûg(y) =
∑

x∈F2n

(−1)u(x)+g(yx) =
∑

x∈F2n

(−1)u(x)+u(ydxd).

If d is QR, then

ûg(y) = ûu(y) =
{

2n, if y = 1
0, otherwise.

Otherwise,

ûg(y) = ûu′(y) =

⎧⎨⎩−2n + 4, if y = 1
4, if y = αi for QR (or QNR) i
0, if y = 0 or αi for QNR (or QR) i

where α is a primitive element in F2n.
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Proof. If d is QR, then g(x) = u(xd) = u(x). Thus, the result follows from the
fact that u(x) is orthogonal. If d is QNR, on the other hand, then g(x) = u(xd) =
u′(x). Since ûu′(y) = Ca,b(τ) + 1, where y = ατ for y �= 0, the result follows
from Proposition 1. ��

4.2 Realizations of Binary Two-Level Autocorrelation Sequences
with Respect to QR Sequences

Let f(x) be an orthogonal function and u(x) a QR function from F2n to F2. In
the second order DHT of f(x) with respect to u(x) defined by (2), if λ = 0,

f̂u(v, t)(0) = 2n (6)

from [6]. For λ in F∗
2n , we have

f̂u(v, t)(λ) =
∑

x,z∈F2n

(−1)u(z)+u(λ−tztx)+f(xv) (λy = z)

=
∑

y,z∈F2n

(−1)u(z)+u(ytzt)+f((λy)vt) (λ−tx = yt)

=
∑

y∈F2n

(−1)f((λy)vt)
∑

z∈F2n

(−1)u(z)+u(ytzt)

=
∑

y∈F2n

(−1)f((λy)vt) ûg(y)

(7)

where (v, t) is a decimation pair and g(x) = u(xt). First of all, we consider the
second order DHT in (7) when t is QR.

Lemma 3. Let f(x) be an orthogonal function and u(x) a QR function from F2n

to F2, respectively. With a decimation pair of (v, t), if t is QR, the realization of
f(x) with respect to u(x) by the second order DHT is a self-realization. Precisely,

f̂u(v, t)(λ) = 2n · (−1)f(λvt)

for λ in F2n .

Proof. In (7), g(x) = u(xt) = u(x) if t is QR. From Lemma 2, ûg(y) has nonzero
value 2n only at y = 1, and zero at all other y’s in F2n . Therefore, the result
follows from (6) and (7). ��
When t is QNR, on the other hand, ûg(y) becomes the Hadamard transform of
u(x) with respect to u′(x). In this case, we firstly consider the case where f(x)
is not a QR function.

Lemma 4. Let f(x) be an orthogonal function which is not a QR function and
u(x) a QR function from F2n to F2, respectively. If t is QNR, then the second
order DHT of f(x) with respect to u(x) with a decimation pair (v, t) does not
produce any realization for any v.
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In order to prove Lemma 4, we need the following property of the orthogonal
function f(x).

Lemma 5. If f(x) is an orthogonal function from F2n to F2 where 2n − 1 is
prime, then f(1) = 1.

Proof. Let {ai} be a sequence represented by f(x). Since f(x) is orthogonal,
{ai} is balanced with 2n−1 1’s and 2n−1 −1 0’s in one period. Furthermore, {ai}
satisfies the coset-constant property [4], i.e., a2i = ai. For a prime p = 2n − 1,
all nonzero cosets modulo p have the same size n, and {ai} is constant with 0
or 1 on a coset. This gives p−1

2 = 2n−1 − 1 1’s and p−1
2 0’s. Thus, a0 = f(1) = 1

in order to obtain 2n−1 1’s. ��

Proof (Proof of Lemma 4). In the second order DHT given in (7), f̂u(v, t)(λ)
should be ±2n for any λ in F∗

2n if it is a valid realization [6]. To prove Lemma 4,
therefore, it is sufficient to show that f̂u(v, t)(1) can be neither 2n nor −2n when
t is QNR.

On the contrary, assume f̂u(v, t)(1) = ±2n when f(x) is not a QR function
and t is QNR. Let δ and ρ be the numbers of QR and QNR indices satisfying
f(αivt) = 0 in a period of the sequence corresponding to f(x), i.e.,

δ = |{i| f(αivt) = 0 and i is QR in Z∗
2n−1}|,

ρ = |{i| f(αivt) = 0 and i is QNR in Z∗
2n−1}|.

From the balance property of f(x),

δ + ρ = 2n−1 − 1. (8)

From Lemma 2 and Lemma 5,

f̂u(v, t)(1) =
∑

y∈F2n

(−1)f(yvt) ûu′(y)

= (−1)f(1)(−2n + 4) + 4δ − 4(2n−1 − 1 − δ)
(9)

where we assume ûu′(y) = 4 at y = αi for QR i. If we assume that ûu′(y) = 4
at y = αi for QNR i, then we have ρ instead of δ in the above, which does not
change the final result.

Meanwhile, f(αivt) should be constant on each coset from the coset-constant
property of its corresponding sequence. Since each coset has the same size n and
corresponds to either QR or QNR, the difference between numbers of QR and
QNR indices of i satisfying f(αivt) = 0 should be divisible by n, i.e., |δ−ρ| = kn

for some integer k. From (9), δ = 2n−2 or 0 if f̂u(v, t)(1) = ±2n. In case of δ = 0,
ρ = 2n−1 − 1 from (8). Then, |δ − ρ| = 2n−1 − 1 is divisible by n if n is odd
prime. It means that f(αivt) is just a QR sequence and f(x) is a QR function.
In case of δ = 2n−2 and ρ = 2n−2 − 1, on the other hand, |δ − ρ| = 1 cannot be
divided by n. With such values of δ and ρ, f(αivt) might have different values
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on the same coset, which violates the coset-constant property. Thus, the case of
δ = 2n−2 and ρ = 2n−2 − 1 is impossible.

For a QNR t, therefore, f̂u(v, t)(1) can be ±2n only if f(x) is a QR function,
which contradicts our assumption. Hence, if f(x) is not a QR function, f̂u(v, t)(λ)
cannot have a valid realization when t is QNR. ��
From Lemma 4, there exist no realizations of a non-QR function f(x) with
respect to a QR function u(x) when a decimation factor t is QNR. In the proof
of Lemma 4, however, the realization of a QR function f(x) may exist even
though t is QNR. In this case, the realization depends on another decimation
factor v.

Lemma 6. Let f(x) and u(x) be the same QR functions from F2n to F2, i.e.,
f(x) = u(x). If t is QNR, then the second order DHT of f(x) with respect to
u(x) with a decimation pair (v, t) produces u(x) or no realization depending on
whether v is QR or QNR. In other words,

f̂u(v, t)(λ) =
{

2n · (−1)u(λ), if v is QR
no realization, if v is QNR

for λ in F2n .

Proof. If f(x) = u(x), then (7) becomes

f̂u(v, t)(λ) =
∑

z∈F2n

(−1)u(z)
∑

y∈F2n

(−1)u((λy)vt)+u(ztyt).

If v is QR, then u((λy)vt) = u((λtyt)v) = u(λtyt). Thus,

f̂u(v, t)(λ) =
∑

z∈F∗
2n

(−1)u(z)
∑

x∈F2n

(−1)u(x)+u(λtz−tx) =
∑

z∈F∗
2n

(−1)u(z) ûu(λtz−t)

where x = ztyt. Since u(x) is orthogonal, ûu(λtz−t) has nonzero value 2n only
at λz−1 = 1. Combined with (6), therefore,

f̂u(v, t)(λ) = 2n · (−1)u(λ).

If v is QNR, on the other hand, then u(xv) and u(x) correspond to two distinct
QR sequences. Thus,

f̂u(v, t)(λ) =
∑

z∈F∗
2n

(−1)u(z)
∑

x∈F2n

(−1)u(x)+u(λvtz−vtxv)

=
∑

z∈F∗
2n

(−1)u(z) ûu′((λz−1)t)
(10)

where x = ztyt. If f̂u(v, t)(λ) in (10) is evaluated at λ = 1, then

f̂u(v, t)(1) =(−1)u(1)ûu′(1) +
∑
j∈Θ

(−1)u(αj) · ûu′(α−jt)

+
∑
j∈Θc

(−1)u(αj) · ûu′(α−jt) = 3 · 2n − 8
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Table 3. Realizations of f(x) with respect to a QR function u(x)

(v, t) (QR, QR) (QR, QNR) (QNR, QR) (QNR, QNR)

f(x) = u(x) u(x) u(x) u′(x) None
f(x) = u′(x) u′(x) None u(x) u(x)
Other f(x) f(xvt) None f(xvt) None

where Θ = {j ∈ Z∗
2n−1|j is QR} and Θc = {j ∈ Z∗

2n−1|j is QNR}. Since
f̂u(v, t)(1) �= ±2n, it is enough to show that there exists no realization of
f(x) = u(x) when both v and t are QNR. ��
Lemma 7. Let f(x) and u(x) be distinct QR functions from F2n to F2, i.e.,
f(x) = u′(x). If t is QNR, then the second order DHT of f(x) with respect to
u(x) with a decimation pair (v, t) is given by

f̂u(v, t)(λ) =
{

2n · (−1)u(λ), if v is QNR
no realization, if v is QR

for λ in F2n .

Proof. This result follows by applying the similar procedure of the proof of
Lemma 6. ��
From Lemma 3, 4, 6, and 7, we have the main theorem on the realizations of
any binary two-level autocorrelation sequence with respect to a QR sequence.

Theorem 2. Let u(x) and u′(x) be QR functions representing distinct QR se-
quences with period 2n−1 and f(x) be an orthogonal function from F2n to F2. In
the second order DHT of f(x) with respect to u(x), the realizations of f(x) are
completely determined by f(x) and its decimation pair (v, t) as listed in Table 3.

In Table 3, each entry under (QR, QR) or the other three columns is the real-
ization of f(x) by the corresponding pair. For example, if (v, t) = (QR, QR) and
f(x) is not a QR function, then (v, t) realizes f(xvt), a self-realization. If (v, t) =
(QR, QNR) and f(x) = u′(x), then the entry ‘None’ represents that (v, t) does
not produce any realization.

From Theorem 2 and Table 3, we note that the complete realizations of any
binary two-level autocorrelation sequence with respect to a QR sequence are
theoretically determined, and a valid realization is either a self-realization or a
QR sequence.

5 Conclusion

The second order DHT of special classes of binary two-level autocorrelation
sequences has been investigated. Firstly, we showed that in the second order DHT
of a binary generalized GMW sequence in a finite field, there exist realizations
and corresponding realizable triples which can be theoretically determined by
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the realizations and realizable triples of its component sequence in the subfield.
In the realizations, the DHT in a finite field is inherited from the DHT in its
subfield in terms of a binary generalized GMW sequence. Secondly, we showed
that the complete realizations of any binary two-level autocorrelation sequence
with respect to a QR sequence can be theoretically determined, and a valid
realization is either a self-realization or a QR sequence.
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Abstract. In this paper, we discuss some methods of constructing
frequency/time hopping (FH/TH) sequences over GF (pk) by taking suc-
cessive k-tuples of given sequences over GF (p). We are able to character-
ize those p-ary sequences whose k-tuple versions now over GF (pk) have
the maximum possible linear complexities (LCs). Next, we consider the
FH/TH sequence generators composed of a combinatorial function gen-
erator and some buffers. We are able to characterize the generators whose
output FH/TH sequences over GF (pk) have the maximum possible LC
for the given algebraic normal form.

1 Introduction

In a peer-to-peer frequency/time hopping (FH/TH) spread spectrum communi-
cation system, an interceptor may try to synthesize the entire FH/TH pattern
from some frequency/time slots successively observed. That is, the interceptor
may try to synthesize the linear feedback shift register (LFSR) [1][2] that can
generate the next slots of the FH/TH pattern using, say, Berlekamp-Massey
(BM) algorithm [3] over a finite field.

Let L be the linear complexity (LC) [4][5] of an FH/TH sequence. When
the interceptor observes successive 2L frequency/time slots, he can successfully
synthesize the next frequency/time slots as long as the same FH/TH sequence is
used. Therefore, from the view point of the system designers, the system should
change from one FH/TH sequence to another before 2L slots of the sequence are
used, and the LC of the FH/TH sequences in use should be as large as possible.

Note that any FH/TH sequences are non-binary in general since there are
usually more than 2 frequency/time slots available. In fact, an FH/TH commu-
nication systems using a few hundreds, or even a few thousands frequency/time
slots are common in practice. It is well-known that the number of frequency/time
slots affects directly the processing gain [2] of the FH/TH spread spectrum com-
munication systems, at the price of the hardware complexity. Therefore, it is
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necessary to design non-binary sequences (i) with “large” LC, and (ii) over
“large” alphabet, but (iii) with “little” increase in the hardware complexity.

In this paper, we consider the simple way of constructing a non-binary (pk-ary)
sequence T over a large alphabet from a given (p-ary) sequence S over a small
alphabet, simply reading its successive k-tuples. By increasing the parameter
k, one may obtain a sequence over as large alphabet as one wishes. We believe
that this method is so simple to construct a pk-ary sequence compared with
a construction over GF (pk) because the multiplications over GF (pk) is much
more complex than those over GF (p) in the LFSR constructions which is general
methods in the hardware systems. In this view point, there will be no significant
increase in the complexity in actual hardware design. Therefore, this method
satisfies the last two conditions listed in the previous paragraph.

On the other hand, we have to be very careful in analyzing the LC of the new
sequences, including the definition of the LC of T over k-tuples overGF (p) which
is not a field any more. One way to solve this problem is to interpret the k-tuples
overGF (p) as elements ofGF (pk). In this case, it is not much surprising to observe
that two different basis may result in two different LC ofT (now overGF (pk)), and
hence, the LC of T depends on the choice of basis (of GF (pk) overGF (p)).

We are here trying to rule out any possibility that the decrease in its LC using
some other basis than that used in the design might help the intercepter to track
the FH/TH sequence, assuming that the FH/TH sequence T with its LC equal
to L (using the basis used in the design process) is used for the duration of 2L−1
slots.

Given any one basis, it is clear that the LC of T is at most that of S. We
are able to characterize those p-ary sequences S whose k-tuple versions T now
over GF (pk) have the same minimal polynomials [4][5] as S, and therefore, the
same LC as S (that is the maximum possible), for any choice of basis of GF (pk)
over GF (p). This leads to the construction of pk-ary sequences with minimal
polynomials essentially over GF (p).

We apply the above characterization into two sequences with as large as pos-
sible period when the number of registers, r, is given: binary de Bruijn sequences
of period 2r [6] and p-ary m-sequences of period pr − 1.

We consider the FH/TH sequence generators composed of a combinatorial
function generator [7] and some buffers. We are able to characterize the FH/TH
sequence generators which guarantee that a combinatorial function sequences,
S, over GF (p) have the maximum possible LC for the given algebraic normal
form and that k-tuple versions T of S now over GF (pk) have the same mini-
mal polynomials as S, and therefore, the same LC as S (that is the maximum
possible) for any choice of basis of GF (pk) over GF (p).

2 Constructions of Sequences over GF (pk) with Minimal
Polynomials over GF (p)

Let GF (q) be the finite field with q elements, and let p be a prime. Consider a
given sequence S = {sn|n = 0, 1, 2, ...} over GF (p). Let k be a positive integer,
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and define a new sequence (an FH/TH sequence) T (k,S) = {tn|n = 0, 1, 2, ...}
based on S by the following:

tn = (sn, sn−1, . . . , sn−k+1) . (1)

Then, it is clear that the sequence T (k,S) is over GF (p)k, the k-tuple vector
space over GF (p). By using some but fixed basis such as a simple polynomial
basis given by

{αk−1, αk−2, . . . , α, 1}, (2)

where α is a primitive element of GF (pk), one can regard the sequence T (k,S)
being over a field GF (pk). This is a straightforward and simple way of enlarging
the size of alphabet over which a sequence is.

Proposition 1. The LFSR that generates a sequence S = {sn} over GF (p)
also generates T (k,S) over GF (pk) as defined in (1) regardless of the choice of
basis. The converse holds provided that the characteristic polynomial [4][5] that
generates T over GF (pk) is essentially over GF (p).

Proof. Obvious. ��
Example 1. A ternary sequence S with period 26 is given by

0 0 1 1 1 0 2 1 1 2 1 0 1 0 0 2 2 2 0 1 2 2 1 2 0 2 0 0 . . . .

Then the sequences T (3,S) and T (4,S) according to (1) are given by the fol-
lowing:

T (3,S) = 000 000 100 110 111 011 201 120 112 211 . . . ,

T (4,S) = 0002 0000 1000 1100 1110 0111 2011 1201 1120 2112 . . . .

Note that both T ’s as well as S are generated by the LFSR shown in Fig. 1 with
connection coefficients over GF (3).

Proposition 1 does not guarantee that the LFSR for T (k,S) over GF (pk), k ≥ 2,
is necessarily the shortest possible even if it is the shortest for S over GF (p),
but that the LC of T (k,S) is at most that of S. In fact, the shortest LFSR
for T (k,S) over GF (pk), k ≥ 2, (and hence the LC of T ) cannot be uniquely
determined unless a basis of GF (pk) is fixed. Following example shows this.

1 2

Fig. 1. The LFSR generating S and T ’s of Example 1
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Example 2. (a) A binary sequence S1 with period 63 is given by

110010000011111110101001001001101010111011011011101001111110010 . . . .

The LC of S1 over GF (2) is 62, but that of T (3,S1) over GF (23) is 60 with
respect to any polynomial basis as in (2). (b) A binary sequence S2 with period
63 is given by

010111111100110000011011111101010011111100011001110100101001011 . . . .

The LC of T (3,S2) over GF (23) is 55 or 53 with respect to the polynomial basis
as in (2) using x3 + x + 1 or x3 + x2 + 1, respectively.

A question at this point is the following: is it possible that the shortest LFSR
that generates S over GF (p) is indeed the shortest LFSR that generates T (k,S)
over GF (pk) with respect to some basis of GF (pk) over GF (p) for k ≥ 2 ? If it
is possible to characterize such p-ary sequences S, then T (k,S) over GF (pk) has
the same minimal polynomial as S and hence it is over GF (p).

Lemma 1. [4] (i) The minimal polynomial of a sequence over GF (q) divides any
characteristic polynomial of the LFSR that generates the sequence over GF (q).
Therefore, it is uniquely determined up to the multiplication by a constant. (ii) An
irreducible polynomial over GF (q) of degree d remains irreducible over GF (qk)
if and only if k and d are relatively prime.

Theorem 1. Let the minimal polynomial C(x) of S = {sn} over GF (p) be
given by C(x) =

∏
i∈I(fi(x))mi for some irreducible polynomials fi(x) of degree

di over GF (p), some positive integers mi, and some index set I. Let T (k,S)
over GF (pk) be defined as in (1) with respect to some but fixed basis for k ≥ 1.
Then, (i) the shortest LFSR that generates S is also the shortest LFSR that
generates T (k,S) over GF (pk), and therefore, their LCs are same, if k and di

are relatively prime for all i ∈ I. Furthermore, (ii) it is also the shortest LFSR
of T (k,S) over GF (pm), and therefore, their LCs are same, for any m ≥ k such
that m and di are relatively prime for all i ∈ I.

Proof. (i) The LFSR with C(x) also generate T (k,S) over GF (pk) by Proposi-
tion 1. Suppose that the degree of C(x) is not the least for T (k,S). Then the
shortest LFSR with characteristic polynomial C′(x) exists and C′(x) divides
C(x) by Lemma 1(i). C′(x) =

∏
i∈I(fi(x))si , where si is a non-negative integer,

0 ≤ si ≤ mi for all i ∈ I, and
∑

i∈I si <
∑

i∈I mi by Lemma 1(ii). On the other
hand, the polynomial C′(x) =

∏
i∈I(fi(x))si is over GF (p), and Proposition 1

(the converse part) implies that C′(x) is also a characteristic polynomial for S
over GF (p) which is a desired contradiction. (ii) Furthermore, if we regard each
term of T (k,S) over GF (pm) for any m ≥ k such that m and di are relatively
prime by inserting so many 0’s at some fixed positions, all the previous argu-
ments will be similarly applied. ��
The converse of Theorem 1 is not generally true. We are able to construct pk-
ary FH/TH sequences as in Theorem 1 whose LC are the same as the original
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(that is the maximum possible) with respect to any basis from p-ary sequences.
Thus, if the p-ary sequences have large LC, the resulting FH/TH sequences have
the same large LC as the original with respect to any basis. We would like to
emphasize the following two cases to which Theorem 1 applies.

Corollary 1. (i) For a p-ary m-sequence S of period pr − 1 with p a prime, the
shortest LFSR that generates S is also the shortest LFSR that generates T (k,S)
over GF (pk) as defined in (1) with respect to any basis if k is relatively prime
to r. Furthermore, it is also the shortest LFSR of T (k,S) over GF (pm) for any
m ≥ k which is relatively prime to r. (ii) If a binary sequence S has a period 2r

(for example, binary de Bruijn sequences), then the shortest LFSR that generates
S is also the shortest LFSR that generates T (k,S) over GF (2k) as defined in (1)
for any positive integer k. Furthermore, it is also the shortest LFSR of T (k,S)
over GF (2m) for any m ≥ k.

Proof. (i) Obvious. (ii) We note that the minimal polynomial C(x) of a binary
sequence S with period 2r is of the form (1 + x)τ for some positive integer τ [6].

��
For a binary de Bruijn sequence, S, with period 2r and large LC which is at
least 2r−1 + r [6], T (k,S) over GF (2k) as defined in (1) has the same large LC
as S by Corollary 1(ii). In addition, the symbol distribution of the T (k,S) in
one period is uniform, that is any symbol of the T (k,S) appears exactly 2r−k

times, r≥k, in one period. In reality, the finite field of characteristic 2 would
be a good choice for the algebraic structure of FH/TH sequences because the
computations over characteristic 2 are most efficiently implemented as hardware
systems and the usual practice follows this idea. In above three points, T (k,S)
from binary de Bruijn sequences would be good candidates for FH/TH sequences
in a peer-to-peer FH/TH spread spectrum communication system.

Example 3. A binary sequence S with period 16 is given by

0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 . . . .

An 8-ary sequence T (3,S) with k = 3 over GF (8) becomes

000 000 000 000 100 010 101 110 111 111 111 111 . . . .

An 8-ary sequence T ′(3,S) over GF (16) becomes

0000 0000 0000 0000 0100 0010 0101 0110 0111 0111 0111 0111 . . . .

Here, the symbol 0 is padded at the leftmost position of the every term of
T (3,S), and the resulting 4-tuples are regarded as the elements of GF (16). A
16-ary sequence T (4,S) becomes

0001 0000 0000 0000 1000 0100 1010 1101 1110 1111 1111 1111 . . . .

All these sequences have the same minimal polynomial and the corresponding
LFSR is shown in Fig. 2.
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Remark 1. Some interesting discussions are given in [8] and [9] which are meth-
ods of constructing pk-ary m-sequences using several p-ary m-sequences of the
same period. We note that the resulting m-sequences over GF (pk) do not have
the same minimal polynomial as the component p-ary m-sequences. In [9], for
example, if the minimal polynomial C(x) of the component p-ary m-sequence
over GF (p) has degree kn, then the minimal polynomial of resulting pk-ary
m-sequence over GF (pk) has degree n, and in fact, it is a factor of C(x) over
GF (pk).

Remark 2. Some interesting discussions are given in [10] which establish a lower
bound on the LC of a multisequence over GF (qk) in terms of the joint LC of its
k element sequences of period N over GF (q). We note that he characterize the
period, N , of which the LC of a multisequence is the same as the joint LC of
element sequences.

Now, let U = {un|n = 0, 1, 2, ...} be a p-ary k-tuple FH/TH sequence in gen-
eral. In order to determine its minimal polynomial and therefore, LC of U over
GF (pk), we need to fix one basis for BM algorithm. Following theorem charac-
terizes those U which do not need this.

Theorem 2. Let U = {un|n = 0, 1, 2, ...} be a p-ary k-tuple sequence in gen-
eral, where un = (u(1)

n , u
(2)
n , . . . , u

(k)
n ). Let a basis of GF (pk) over GF (p) be

fixed, and the minimal polynomial C(x) of U over GF (pk) using BM algorithm
be determined to be of the form

∏
i∈I(fi(x))mi , where fi(x) are irreducible poly-

nomials of degree di over GF (p), mi are positive integers, and I is some index
set. Then, C(x) is a uniquely determined minimal polynomial of U over GF (pk)
regardless of the choice of basis, if k and di are relatively prime for all i ∈ I.
Furthermore, C(x) is the unique minimal polynomial of U over GF (pm) for any
m ≥ k using any basis such that m and di are relatively prime for all i ∈ I.

Proof. Suppose C′(x) is the corresponding minimal polynomial of U now over
GF (pk) with respect to another basis. Then, C′(x) must divide C(x) overGF (pk)
by Lemma 1(i), since C(x) also generates U over GF (pk) with respect to an-
other basis. Using the same arguments as in the proof of Theorem 1, we have a
contradiction unless C′(x) = C(x). ��

Fig. 2. The shortest LFSR generating S and three T ’s of Example 3



392 Y.-P. Hong and H.-Y. Song

3 Frequency/Time Hopping Sequence Generators for
Large Linear Complexities

We pay attention to the construction of S over GF (p) with large LC. When
S(i) = {s(i)

n |n = 0, 1, 2, ...}, i = 1, 2, . . . ,N , are sequences overGF (p), a termwise
product sequence S =

∏N
i=1 S

(i) = {sn|n = 0, 1, 2, ...} over GF (p) based on
S(i), i = 1, 2, . . . ,N , is defined as

sn =
N∏

i=1

s(i)
n (multiplication in GF (p)) . (3)

It is well-known that the LC of a termwise product sequence defined above is at
most the product of the LCs of multiplied sequences.

Lemma 2. [5] Let Y = {yn} and Z = {zn} be sequences over GF (p) with some
irreducible minimal polynomials CY (x) and CZ(x) of degree l and m, respec-
tively. If l and m are relatively prime, then S = Y Z over GF (p) as defined
in (3) has the irreducible minimal polynomial of degree l × m.

Corollary 2. Let S = Y Z be a sequence over GF (p) as constructed in Lemma
2. If l×m and k are relatively prime, then T (k,S) over GF (pk) as defined in (1)
has the same minimal polynomial as S.

Proof. It is obvious by Lemma 2 and Theorem 1. ��
Example 4. The irreducible minimal polynomial of Y and Z over GF (2) is
CY (x) = x4+x+1 and CZ(x) = x3+x+1, respectively. The irreducible minimal
polynomial of S = Y Z overGF (2) as defined in (3) is x12+x9+x5+x4+x3+x+1
whose degree is 12 = 3×4 because gcd(3, 4) = 1. T (k,S) over GF (2k) as defined
in (1) has the same minimal polynomial as S for k relatively prime to 12.

We consider the general case of Lemma 2, that is the case of termwise product
sequences based on arbitrary number of sequences with general minimal poly-
nomials composed of irreducible factors.

Lemma 3. [5] Let S(i), i = 1, 2, . . . ,N , be sequence over GF (p) with a min-

imal polynomial CS(i)(x) of degree M (i), that divides xpm(i)
−1 − 1 for some

m(i) and contains no linear factor. For any pair of distinct roots, α and β,
of CS(i)(x), i = 1, 2, . . . ,N , αβ−1 /∈ GF (p). If m(i), i = 1, 2, . . . ,N , are pair-
wise relatively prime, then S =

∏N
i=1 S

(i) over GF (p) as defined in (3) has the
minimal polynomial of degree M =

∏N
i=1 M

(i).

The above lemma characterizes those LFSRs whose termwise product sequence
has the maximum possible LC, that is the product of the LCs of multiplied
sequences. We note that αβ−1 never be in GF (p) for any pair of distinct roots,
α and β, of a minimal polynomial CS(i)(x), i = 1, 2, . . . ,N , for the case of p = 2.
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Corollary 3. Let S =
∏N

i=1 S
(i) be a sequence over GF (p) as constructed in

Lemma 3. If
∏N

i=1 m(i) and k are relatively prime, then T (k,S) over GF (pk) as
defined in (1) has the same minimal polynomial as S.

Proof. Let CS(x) be the minimal polynomial of S, then the degree of any irre-
ducible factor of CS(x) is of the form

∏N
i=1 r

(i), where r(i)|m(i), by Lemma 3
and Theorem 1 completes the proof. ��
Example 5. The minimal polynomial of Y over GF (2) is CY (x) = x3 + x2 + 1
that divides x23−1 −1 and CY (1) = 1. The minimal polynomial of Z over GF (2)
is CZ(x) = x6+x3+x2+x+1 that divides x24−1−1 and CZ(1) = 1. The minimal
polynomial of S = Y Z over GF (2) as defined in (3) is x18 + x14 + x12 + x11 +
x10 +x9 +x6 +x4 +x3 +x2 +1 whose degree is 18 = 3×6 because gcd(3, 4) = 1.
T (k,S) over GF (2k) as defined in (1) have the same minimal polynomial as S
for k relatively prime to 3 × 4.

Now, we consider the FH/TH sequence generator composed of a combinatorial
function generator [7] and k buffers shown in Fig. 3. Let a combinatorial function
sequence, S, over GF (p) by a combinatorial function, f , (that would make S
have large LC) be represented in the algebraic normal form given by

sn = f(s(1)
n , s(2)

n , . . . , s(N)
n )

= a0 +
N∑

i=1

ais
(i)
n +

N∑
i=1

N∑
j=i+1

aijs
(i)
n s(j)

n + . . .+ a12...Ns(1)
n s(2)

n . . . s(N)
n ,

(4)

where S(i), i = 1, 2, . . . ,N , are sequences over GF (p) and the coefficients of f
are elements of GF (p). We note that the algebraic normal form as defined in
(4) cannot represent all combinatorial functions. The maximum possible LC of a
combinatorial function sequence, S, for the given algebraic normal form is given
by

M = F (M (1),M (2), . . . ,M (N)), (5)

Fig. 3. Frequency/Time hopping sequence generators for large linear complexities
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where F (M (1),M (2), . . . ,M (N)) is defined as (4) with a coefficient being 0 if it
is 0 or 1 otherwise and M (i) is the LC of S(i), i = 1, 2, . . . ,N , and operations of
F are over the integers.

R. A. Rueppel characterize those LFSRs such that a combinatorial function
sequence, S, has the maximum possible LC for the given algebraic normal form
[5]. In the previous section, we characterize those p-ary sequences, S, whose k-
tuple versions, T (k,S), now overGF (pk) have the maximum possible LCs. In this
view point, we focus on the relations between the above two characterizations.
We are able to characterize those LFSRs such that a resulting k-tuple sequence
(an FH/TH sequence), T (k,S), has the maximum possible LC, M as defined
in (5). That is, we are able to construct FH/TH sequences with large LCs by
the generators shown in Fig. 3.

Lemma 4. [5] Let S(i), i = 1, 2, . . . ,N , be sequences over GF (p) with minimal

polynomials CS(i)(x) of degree M (i), that divide xpm(i)
−1 − 1 for some m(i) and

contain no linear factor. For any pair of distinct roots, α and β, of CS(i)(x), i =
1, 2, . . . ,N , αβ−1 /∈ GF (p). If m(i), i = 1, 2, . . . ,N are pairwise relatively prime,
then S over GF (p) as defined in (4) has the minimal polynomial of degree M as
defined in (5) for the given algebraic normal form, f .

Corollary 4. Let S be a sequence over GF (p) as constructed in Lemma 4. If∏N
i=1 m(i) and k are relatively prime, then T (k,S) over GF (pk) as defined in (1)

has the same minimal polynomial as S.

Proof. Let CS(x) be the minimal polynomial of S, then the degree of any irre-
ducible factor of CS(x) is of the form

∏N
i=1 r

(i), where r(i)|m(i), by Lemma 4
and Theorem 1 completes the proof. ��
Example 6. The minimal polynomial of X , Y , Z over GF (2) is CX(x) = x6 +
x5 + x4 + x3 + x2 + x + 1, CY (x) = x6 + x3 + x2 + x + 1, CZ(x) = x10 + x8 +
x7 + x5 + x3 + x2 + 1 that divides x23−1 − 1, x24−1 − 1, x25−1 − 1 respectively
and contains no linear factor. The minimal polynomial of S over GF (2) defined
by sn = f(xn, yn, zn) = 1 + xn + yn + zn + xnyn + ynzn + znxn + xnynzn as (4)
is of degree 539 = M(6, 6, 10) = 1 + 6 + 6 + 10 + 6 · 6 + 6 · 10 + 10 · 6 + 6 · 6 · 10
as defined in (5) because 3, 4, and 5 are pairwise relatively prime. T (k,S) over
GF (2k) as defined in (1) have the same minimal polynomial as S for k relatively
prime to 3 · 4 · 5. For example, T (7,S) is a 128-ary FH/TH sequence whose LC
is 539.

We believe that FH/TH sequences as constructed in Corollary 4 must be a good
candidates of FH/TH patterns in a peer-to-peer FH/TH spread spectrum com-
munication system for the following good reasons: (i) with “large” LC, and (ii)
over “large” alphabet, but (iii) with “little” increase in the hardware complexity.

4 Concluding Remarks

We believe that the finite field of characteristic 2 would be a good choice for
the algebraic structure of FH/TH sequences because the computations over
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characteristic 2 are most efficiently implemented as hardware systems and the
usual practice follows this idea.

We have tried several other options but failed to extract any further rea-
sonable behavior of non-binary FH/TH sequences over GF (pk) whose minimal
polynomial and therefore, LC are uniquely determined regardless of the choice
of basis other than those given in Theorem 1. Theorem 2 is slightly more general
in that the p-ary k-tuple FH/TH sequences are not necessarily constructed as a
k-tuple version of a p-ary sequence.

We note that Corollary 4 characterize those FH/TH sequence generators such
that a combinatorial function sequence, S, and a resulting k-tuple sequence
(an FH/TH sequence), T (k,S), has the maximum possible LC for any given
algebraic normal form, f , to resist the only BM attack. So, it is proper that we
use the algebraic normal form, f , that has desired cryptographic properties such
as correlation immunity, resiliency, nonlinearity, and propagation [7][11][12][13]
to resist other attacks than the BM attack.

We note that the sequence terms of T (k,S) are highly correlated with each
other because tn is the right shifted version of tn−1 with the only new leftmost
component. This correlation between consecutive terms must be a vulnerable
point to some other attacks. But, Theorem 1 and all corollaries in this paper
also apply equally well to T (k,S) defined by

tn = (sn−σ(0), sn−σ(1), . . . , sn−σ(k−1)), (6)

where σ is any permutation on {0, 1, . . . , k− 1}. A further generalization is also
possible by using any integers instead of σ(i) for each i. Therefore, we are able to
solve the correlation problem between consecutive terms by the above method.

References

1. S. W. Golomb, Shift Register Sequences, Revised Edition, Aegean Park Press, La-
guna Hills, CA 92654, 1982.

2. M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum
Communications Handbook, Revised Edition, McGraw-Hill, Inc., 1994.

3. J. L. Massey, “Shift-Register Synthesis and BCH decoding,” IEEE Transactions
on Information Theory, vol. IT-15, no. 1, pp. 122-127, Jan. 1969.

4. R. Lidl and H. Niederreiter, Finite Fields, Second Edition, Encyclopedia of Math-
ematics and Its Applications, vol. 20, Cambridge University Press, 1997.

5. R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986.
6. A. H. Chan, R. A. Games, and E. L. Key, “On the Complexities of de Bruijn

Sequences,” Journal of Combinatorial Theory, Series A 33, pp. 233-246, 1982.
7. S. W. Golomb and G. Gong, Signal Design for Good Correlation for Wireless

Communication, Cryptography, and Radar, Cambridge University Press, 2005.
8. W. J. Park and J. J. Komo, “Relationships Between m-Sequences over GF (q) and

GF (qm),” IEEE Transactions on Information Theory, vol. 35, no. 1, pp. 183-186,
Jan. 1989.

9. G. Gong and G. Z. Xiao, “Synthesis and Uniqueness of m-Sequences over GF (qn)
as n-Phase Sequences over GF (q),” IEEE Transactions on Communications, vol.
42, no. 8, pp. 2501-2505, Aug. 1994.



396 Y.-P. Hong and H.-Y. Song

10. W. Meidl, “Discrete Fourier Transform, Joint Linear Complexity and Generalized
Joint Linear Complexity of Multisequences,” Lecture Notes in Computer Science,
vol. 3486, pp. 101-112, Mar. 2005.

11. T. Siegenthaler, “Correlation-Immunity of Nonlinear Combining Functions for
Cryptographic Applications,” IEEE Transactions on Information Theory, vol. IT-
30, no. 5, pp. 776-780, Sep. 1984.

12. W. Meier and O. Staffelbach, “Nonlinearity Criteria for Cryptographic Functions,”
Lecture Notes in Computer Science, vol. 434, pp. 549-562, 1990.

13. B. Preneel, W. V. Leekwijck, and L. V. Linden “Propagation Characteristics of
Boolean Functions,” Lecture Notes in Computer Science, vol. 473, pp. 161-173,
1990.



One and Two-Variable Interlace Polynomials: A
Spectral Interpretation

Constanza Riera and Matthew G. Parker
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Abstract. We relate the one- and two-variable interlace polynomials of
a graph to the spectra of a quadratic boolean function with respect to
a strategic subset of local unitary transforms. By so doing we establish
links between graph theory, cryptography, coding theory, and quantum
entanglement. We establish the form of the interlace polynomial for cer-
tain functions, provide new one and two-variable interlace polynomials,
and propose a generalisation of the interlace polynomial to hypergraphs.
We also prove conjectures from [15] and equate certain spectral metrics
with various evaluations of the interlace polynomial.

1 Introduction

The interlace polynomial was introduced by Arratia, Bollobás and Sorkin [2,3], as
a variant of Tutte and Tutte-Martin polynomials [6]. They defined the interlace
polynomial of a graph G, q(G), by means of a recurrence formula, involving local
complementation (LC) of the graph. Aigner and van der Holst, in [1], generalised
the concept by means of a related interlace polynomial, Q(G), and showed a new
and easier way of constructing both polynomials q(G) and Q(G) using a matrix
approach. They conclude that the polynomial q(z), when evaluated at z = 1,
gives the number of induced subgraphs of G with an odd number of perfect
matchings (including the empty set), and that Q(z), when evaluated at z = 2,
gives the number of (general) induced subgraphs with an odd number of (general)
perfect matchings, ”general” meaning here that loops are allowed to be part of
the matching.

In [4], Arratia, Bollobas and Sorkin defined an extension of the interlace
polynomial q, defined by themselves in [3], to a new polynomial q(x, y). Here
we propose a similar extension of Q as defined by Aigner and Van der Holst
in [1] to a new polynomial Q(x, y). We also propose the HN-interlace polynomial
QHN and its corresponding two-variable extension, QHN (x, y). Also, we define
the IN-interlace polynomial QIN (x, y).

A main goal of this paper is to re-state the problem of constructing an inter-
lace polynomial for a graph as a problem in transform theory. To be precise, the

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 397–411, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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interlace polynomial of a graph summarises the spectra of the Boolean function
associated with that graph, where the spectra are computed w.r.t. (with respect
to) a certain well-chosen set of Local Unitary (LU) transforms. This re-statement
allows us to propose new interlace polynomials, as mentioned above, to suggest
new applications for these polynomials, and even to extend the problem in a nat-
ural way to hypergraphs.We focus on LU transforms which are formed from tensor
products of the matrices I, H , and N , where,

H =
1√
2

(
1 1
1 −1

)
, is the Walsh-Hadamard kernel,

N =
1√
2

(
1 i
1 −i

)
, i2 = −1, is the Negahadamard kernel,

and I is the 2 × 2 identity matrix.
Definition 1. The set of 3n LU transforms, {I,H,N}n, is the set comprising
all transforms, U , of the form U =

∏
j∈RI

Ij
∏

j∈RH
Hj

∏
j∈RN

Nj , each of size
2n ×2n, where, say, Vj = I⊗ . . .⊗ I⊗V ⊗ I⊗ . . .⊗ I, with V in the jth position,
’⊗’ means the tensor product of matrices, and where the sets RI,RH, and RN,
partition the set of vertices {0, . . . ,n− 1} 1.
Transform subsets such as {I,H}n ...etc are then defined in the obvious way.

Define the n vertex graph, G, by its n × n adjacency matrix, Γ . We iden-
tify G with a quadratic Boolean function p(x0, x1, . . . , xn−1), where p(x) =∑

i<j Γijxixj [20]. This identification allows us to interpret q(G, 1) as the num-
ber of flat spectra of p(x) w.r.t. the transform set, {I,H}n, and Q(G, 2) as the
number of flat spectra of p(x) w.r.t. the transform set {I,H,N}n.

In section 3 we re-define the interlace polynomials q and Q using the modified
adjacency matrix of the graph w.r.t. {I,H}n and {I,H,N}n, respectively, as
defined in [20, 21], and use them to compute the interlace polynomial of the
clique (complete graph), and clique-line-clique.

In section 4 we define a new interlace polynomial, QHN , that summarises
spectra w.r.t. {H,N}n in the same way that the interlace polynomials q and Q
do with their respective sets. Our motivation for relating the concept of interlace
polynomial to {H,N}n is that this set is related to the Peak-to-Average Power
Ratio (PAR) w.r.t. both one and multi-dimensional continuous Discrete Fourier
Transforms, and hence to problems in telecommunications and physics for tasks
such as channel-sounding, spread-spectrum, and synchronization [19]. We com-
pute QHN for the clique, line, and clique-line-clique functions. The polynomial
QHN is also the basis for constructing Q for recursive structures.

By Glynn [11], a self-dual quantum error correcting code (QECC) [[n, 0, d]]
corresponds to a graph on n vertices, this being a so-called graph state [13]
which may be assumed to be connected if the code is indecomposable. It is
shown there that two graphs, G and G′, give equivalent self-dual quantum codes
if and only if they are LC-equivalent 2 (see definition 9). In this case, G and G′

1 For instance, if n = 4, RI = {1}, RH = {0, 3}, and RN = {2}, then U = H ⊗ I ⊗
N ⊗ H , where U is a 16 × 16 unitary matrix.

2 Referred to as ”Vertex-Neighbour-Complementation” (VNC)-equivalent in [11].
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also map to GF(4) additive codes with identical weight distributions [7]. As the
interlace polynomial, Q, is LC-invariant [1], it is also an invariant of the corre-
sponding QECC. This result implies that Q is invariant under the application
of certain LU transforms to the multipartite quantum state associated with the
QECC [18], for it turns out that LC-equivalence for graph states can be charac-
terised by LU-transformation via the set of transforms {I,H,N}n [20]. Therefore
Q can be used to summarise some important properties of an associated quan-
tum graph state. More specifically, an analysis of the spectra of a Boolean func-
tion provides measures of entanglement of the associated quantum multipartite
state, as defined by the QECC and/or its associated quadratic Boolean function
[13, 18, 20].

In section 5 we provide spectral interpretations of interlace polynomials, and
generalise to hypergraphs, i.e. to Boolean functions of algebraic degree greater
than 2. We prove conjectures proposed by Parker in [15] related to the line
function (path graph) and its affine offsets. In [12, 17], the Multivariate Merit
Factor (MMF) and Clifford Merit Factor (CMF) are defined, these being inverse
measures of the energy of the Boolean function w.r.t. {H,N}n and {I,H,N}n

respectively. By proving that the power spectrum of a quadratic Boolean function
w.r.t. {I,H,N}n is always one or two-valued, we show that MMF and CMF can
be derived from QHN (4) and Q(4), respectively.

In section 6 we propose the new two-variable interlace polynomial Q(x, y),
and derive some lemmas.

Our spectral approach allows us to interpret the interlace polynomial as a
descriptor for some of the spectral characteristics of a Boolean function, with
application to classical cryptography. For instance, one often wants to approxi-
mate a Boolean function, p, of n variables, by a simpler function. One way to do
this is to use an annihilator Boolean function, g, such that gp ≈ 0 or g(p+1) ≈ 0.
A generalisation of this is to look for a function g such that g(p+ a) ≈ 0, where
a is a low degree Boolean function. These approximations provide a generalised
measure of probabilistic algebraic immunity for a function, p. In particular, in
the context of transforms w.r.t. {I,H}n, with RI and RH integer sets that
partition {0, 1, . . . ,n − 1}, then g =

∏
j∈RI

(xj + cj) is a degree |RI| Boolean
function of |RI| variables, cj ∈ GF(2), and a = d +

∑
j∈RH

xj is a degree-one
Boolean function of |RH| variables, with d ∈ GF(2). In this case the transform
spectra w.r.t. {I,H}n quantify the accuracy of all possible (g, a) pairs of the
above form w.r.t. the approximation g(p+a) ≈ 0. The spectra, in turn, are sum-
marised by the interlace polynomial, q. Similarly, Q can be used to summarise
the accuracy of approximations w.r.t. {I,H,N}n, where a is now an affine func-
tion from GF(2)|RH|+|RN| → Z4. Q can also be used to assess the block cipher
attack scenario where one has full read/write access to a subset of plaintext
bits and access to all ciphertext bits [9]. Using similar arguments, QHN sum-
marises all possible Z4-linear approximations to a Boolean function, i.e. w.r.t.
{H,N}n [16]. Thus, the spectra w.r.t. {I,H,N}n or its subsets tell us more about
the Boolean function, p, than is provided by just the spectrum w.r.t. the Walsh-
Hadamard transform (WHT), and such spectra are conveniently summarised by
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their respective interlace polynomials. As seen in [20], just an enumeration of
the flat spectra of a function w.r.t. {I,H,N}n or its subsets provides a good
measure of the ’strength’ of the function in various contexts.

2 Definitions and Notation

We recapitulate here some definition and results of [20, 21]:

Definition 2. [23] A Boolean function p(x) : GF(2)n → GF(2) is bent iff
P = 2−n/2(

⊗n−1
i=0 H)(−1)p(x) has a flat spectrum, or, in other words, if P =

(Pk) ∈ C2n

is such that |Pk| = 1 ∀ k ∈ GF(2)n.

If the function is quadratic, we associate to it a simple non-directed n-vertex
graph, and in this case a flat spectrum is obtained iff Γ , the n × n adjacency
matrix of the graph, has maximum rank mod 2 [14]. In [20], we generalised
this concept, considering not only the Walsh-Hadamard transform

⊗n−1
i=0 H , but

the complete set of unitary transforms w.r.t. {I,H,N}n. We studied there the
number of flat spectra of a function w.r.t. {I,H,N}n, or in other words the
number of unitary transforms U ∈ {I,H,N}n such that PU = (PU,k) ∈ C2n

has
|PU,k| = 1 ∀ k ∈ GF(2)n, where

(PU,k) = U(−1)p(x) = (
∏

j∈RI

Ij
∏

j∈RH

Hj

∏
j∈RN

Nj)(−1)p(x) . (1)

We also considered the number of flat spectra w.r.t. some subsets of
{I,H,N}n, namely {H,N}n (when RI = ∅) and {I,H}n (when RN = ∅).
We proved there that a quadratic Boolean function will have a flat spectrum
w.r.t. a transform in {I,H,N}n iff a certain modification of its adjacency ma-
trix, Γ , concretely the matrix resultant of the following actions, has maximal
rank mod 2:

– for i ∈ RI, we erase the ith row and column of Γ .
– for i ∈ RN, we substitute 0 for 1 in position [i, i], i.e. we assign Γii = 1.
– for i ∈ RH, we leave the ith row and column of Γ unchanged.

This modified adjacency matrix is also helpful to compute the interlace poly-
nomial of a graph.

3 The Interlace Polynomial

We define polynomials q and Q, equivalently to definitions offered in [1], but
relate the interlace polynomial with the spectra of a graph w.r.t. {I,H}n and
{I,H,N}n.

Definition 3. The interlace polynomial q of a graph G in n variables is

qn(G; z) =
∑

U∈{I,H}n

(z − 1)co(ΓU ) , (2)
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where co(ΓU ) stands for the corank of the modified adjacency matrix of the graph
w.r.t. the transform U ∈ {I,H}n, ΓU , obtained by erasing from the adjacency
matrix of the graph the rows and columns whose indices are in RI (see [20]).

Remark: q(G; 1) is the number of flat spectra of the function w.r.t. {I,H}n.

Definition 4. The line function (or path graph), pl(x) is

pl(x) =
n−2∑
j=0

xjxj+1 + c · x + d , (3)

where x, c ∈ GF(2)n, x = (x0, . . . , xn−1), and d ∈ GF(2).

Definition 5. The clique function (complete graph) is

pc(x) =
∑

0≤i<j≤n−1

xixj , (4)

where x = (x0, . . . , xn−1) ∈ GF(2)n.

Remark: [3] The interlace polynomial q for the path graph satisfies, for n ≥ 2,
qn(z) = qn−1(z) + zqn−2(z), with q1(z) = 1, q2(z) = 2z; for the complete graph,
qn(z) = 2n−1z.

Definition 6. The n-clique-line-m-clique is

pn,m(x) =
∑

0≤i<j≤n−1

xixj + xn−1xn +
∑

n≤i<j≤n+m−1

xixj , (5)

where x = (x0, . . . , xn+m−1) ∈ GF(2)n+m.

We consider the clique-line-clique function to be structurally interesting due
to the results on page 31 of [8] which tend to suggest that the best QECCs
(and most entangled graph states) have a graph in their LC-orbit which can
be described as a nested-clique graph - more generally, nested-regular graph. So
an investigation of the clique-line-clique structure is an attempt to understand
these graphical structures more.

Lemma 1. For the n-clique-line-m-clique (5), qn(z) = 3 ·2n+m−4z2+2n+m−3z.

Definition 7. The interlace polynomial Q of a graph G in n variables is

Qn(G; z) =
∑

V ∈{I,H,N}n

(z − 2)co(ΓV ) , (6)

where co(ΓV ) means the corank of the modified adjacency matrix of the graph
w.r.t. V ∈ {I,H,N}n, ΓV , obtained by erasing the rows and columns whose in-
dices are in RI, as before, and then substituting 0 by vi ∈ GF(2) in the diagonal,
in those indices i ∈ RH ∪ RN, where vi = 1 iff i ∈ RN (see [20]).
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Remark: Q(G; 2) is the number of flat spectra of the function w.r.t. {I,H,N}n.

Remark: The formula of Q for the path graph is found in [1].

Lemma 2. For the complete graph (4),

Qn+1(z) = 2Qn(z) + zn, n ≥ 2, with Q1(z) = z .

The closed form is Qn = 2n−1(z − 1) + (z − 2)−1(zn − 2n).

Remark: When z = 2, we get (n + 1)2n−1, the number of flat spectra for the
complete graph w.r.t. {I,H,N}n [21].

Lemma 3. For the n-clique-line-m-clique (5), when n, m ≥ 3, the interlace
polynomial Q is:

Qn,m(z) = 2n+m−2 − 2n+m−4z + 3 · 2n+m−4z2 + zn−12m−2(z − 1)

+ zm−12n−2(z − 1) +
3 · 2m−1z + zm−1 − 2m

z − 2
(zn−1 − 2n−1)

+
3 · 2n−1z + zn−1 − 2n

z − 2
(zm−1 − 2m−1)

+
z + 4

(z − 2)2
(zn−1 − 2n−1)(zm−1 − 2m−1) .

4 The HN -Interlace Polynomial

We now define an interlace polynomial related to the set {H,N}n as q and Q
were related to the sets {I,H}n and {I,H,N}n respectively.

Definition 8. The HN-interlace polynomial for a graph G in n variables is

QHN
n (G; z) =

∑
W∈{H,N}n

(z − 2)co(ΓW ) , (7)

where co(ΓW ) means the corank of the modified adjacency matrix of the graph
w.r.t. W ∈ {H,N}n, ΓW , obtained by substituting 0 by vi ∈ GF(2) in the diag-
onal, in those indices i ∈ RH ∪ RN, where vi = 1 iff i ∈ RN (see [20]).

Remark:QHN (G; 2) is the number of flat spectra of the function w.r.t. {H,N}n.

Lemma 4. The HN-interlace polynomial for the path graph (3) is

QHN
n+1(z) = 2n −QHN

n (pl; z), with QHN
1 (pl; z) = z − 1 .

In closed form,

QHN
n (z) =

1
3
(
2n + (−1)n−1) z + (−1)n .
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Lemma 5. For the complete graph (4),

QHN
n+1(z) = QHN

n (z) + (z − 1)n + (−1)n(z − 3), with QHN
1 (z) = z − 1 .

In closed form,

QHN
n (z) =

{
1 + (z − 2)−1((z − 1)n − 1), for n even
z − 2 + (z − 2)−1((z − 1)n − 1), for n odd

Remark: When z = 2, we get n + 1+(−1)n

2 , the number of flat spectra for the
complete graph w.r.t. {H,N}n, as seen in [21].

Lemma 6. For the n-clique-line-m-clique (5), the HN-interlace polynomial is

QHN
n,m(z) = − 2 + 6χnχm + 3χn+1χm+1 + (2 − 2χnχm − χn+1χm+1)z

+
z + 1

(z − 2)2
(
(z − 1)n−1 − 1)((z − 1)m−1 − 1

)
+
z + 1 + zχm − 3χm

z − 2
((z − 1)n−1 − 1)

+
z + 1 + zχn − 3χn

z − 2
((z − 1)m−1 − 1) ,

where χk =
1 + (−1)k

2
.

5 Spectral Interpretations of the One-Variable Interlace
Polynomial

In definition 7 in section 3, the interlace polynomial Q was related to the set
of transforms {I,H,N}n. We now give further spectral interpretations of q, Q,
and QHN . This allows us to extend the interlace concept to hypergraphs (or
Boolean functions of higher degree than two). Given a graph G with adjacency
matrix Γ , its complement is defined to be the graph with adjacency matrix
Γ + I + 1 ( mod 2), where I is the identity matrix and 1 is the all-ones matrix.

Definition 9. [6,11,13] The action of Local Complementation (LC) on a graph
G at vertex v is defined as the graph transformation obtained by replacing the
subgraph G[N (v)] (i.e., the induced subgraph of the neighbourhood of the vth

vertex of G) by its complement.

Theorem 1. [1] The interlace polynomial Q is invariant under LC.

Proof. From definition 7 and [20], one can show that Q is invariant w.r.t.
{I,H,N}n. But, as seen in [20], this set defines the LC operation.
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Definition 10. [2,4] The action of pivot on a graph, G, at two connected ver-
tices, u and v, (i.e. where G contains the edge uv), is given by LC(v)LC(u)LC(v)
- that is the action of LC at vertex v, then vertex u, then vertex v again.

Theorem 2. [2] The interlace polynomial q is invariant under pivot.

Proof. By considering definition 3 it is possible to show that q is invariant w.r.t.
{I,H}n. One can then show that pivot can be defined by {I,H}n [22].

Theorem 3. The corank of the modified adjacency matrix is

co(ΓU ) = log2(max
k

|PU,k|2) ,

where PU,k are the entries of PU as defined in (1).

Proof. We prove the theorem for U ∈ {H,N}n, as the case for U ∈ {I,H,N}n

then follows trivially. First, we must recall the autocorrelation of a boolean
function p(x) w.r.t {H,N}n:

Ak =
∑

x∈GF (2)n

(−1)p(x)+p(x+k)+ n−1
i=0 χRN

(i)ki(xi+1)
,

where k = (k0, k1, . . . , kn−1) ∈ GF(2)n, and χRN
(i) is the characteristic function

of RN, i.e,

χRN
(i) =

{
1, i ∈ RN
0, i /∈ RN

We use extensively the Wiener-Kinchine property⎛⎜⎜⎜⎝
A0...0
A0...1

...
A1...1

⎞⎟⎟⎟⎠
U

−→
←−
U−1

⎛⎜⎜⎜⎝
|P0...0|2
|P0...1|2

...
|P1...1|2

⎞⎟⎟⎟⎠ (8)

Let co(ΓU ) = c. Then, from [20], we can deduce that exactly 2c of the autocor-
relation values Ak are different from zero, and furthermore that, for those k’s,
Ak = ±2n. Clearly, A0...0 = 2n.

We differentiate two cases. First, let U = H⊗· · ·⊗H . Then, in U there always
exists a row i with entries in ±1 ordered in such a way that, when multiplying
by (A0...0,A0...1, . . . ,A1...1)T , we get 2n/22c. By (8), this is |Pk|2, for some k.
Then, after normalization, we get 2c. Clearly, this value is the maximum value
that we can obtain, so the theorem is true for U = H ⊗ · · · ⊗H .

Now, let any U ∈ {H,N}n except H ⊗ · · · ⊗ H . By (8), we can obtain the
autocorrelation vector from the power spectrum as (A0...0,A0...1, . . . ,A1...1)T =
U−1(|P0...0|2, |P0...1|2, . . . , |P0...0|2)T . Because of the shape of N , in U−1 half of
the rows have purely imaginary entries. Since both the |Pk|2’s and the Ak’s
are real, we have that the corresponding Ak’s must be equal to zero. Triv-
ially, the rows in U−1 that have purely imaginary entries correspond to the



One and Two-Variable Interlace Polynomials: A Spectral Interpretation 405

columns in U with purely imaginary entries, the rest being real. Now, as in
the previous case, we can always find a row i such that, when multiplying by
(A0...0,A0...1, . . . ,A1...1)T , we get 2n/22c, and this is the maximum value we can
get.

Definition 11. [18, 16, 10, 8] The Peak-to-Average Power Ratio 3 of a vector
s ∈ C2n

, with respect to a set of 2n × 2n unitary transforms T, is

PART(s) = 2n max
U ∈ T
k ∈ Z

n
2

(|PU,k|2), where PU = (PU,k) = Us ∈ C2n

. (9)

Corollary 1. Let p(x) be a quadratic Boolean function, and let s = (−1)p(x).
Then, by theorem 3, the logarithm (base 2) of the Peak-to-Average Power Ratio
of s, log2(PART(s)), is equal to the degree of the interlace polynomial q, QHN ,
or Q, for T = {I,H}n, {H,N}n or {I,H,N}n, respectively.

Remark: It follows, trivially, that deg(q) ≤ deg(Q) and deg(QHN ) ≤ deg(Q). 4

Lemma 7. Let G be a graph which is the union of two disjoint graphs, G1 and
G2, in n and m variables respectively. Then, qn+m(G; z) = qn(G1; z)qm(G2; z),
Qn+m(G; z) = Qn(G1; z)Qm(G2; z) and QHN

n+m(G; z) = QHN
n (G1; z)QHN

m (G2; z).

It follows from corollary 1 and lemma 7 that PAR is multiplicative on the union
of disjoint graphs.

The ”GDJ sequences”, defined in [15], can be identified, without loss of gen-
erality, with the path graph. Using a result of [21], we prove Conjectures 1 – 3
of [15].

Lemma 8. (Conjecture 1 of [15]) PARH of the path graph is 1.0 for even n and
2.0 for odd.

Proof. The proof for the number of flat spectra w.r.t. the path graph [21] tells
us that

Dn = v0Dn−1 +Dn−2 mod 2 , (10)

where D is the determinant of the generic modified adjacency matrix of the
line on n variables w.r.t. {H,N}n. As in this case vi = 0 for all i, we get
that Dn = Dn−2, mod 2. Expanding for n even, Dn = D2 = 1; for n odd,
Dn = D1 = 0. From the proof of QHN for the path graph (lemma 4), we know
that the rank of the matrix cannot be lower than n− 1.
3 PARIHN can be used as a lower bound on PARl (where PARl is the PAR w.r.t.

the infinite set of local unitary transforms - see [18, 8]) and therefore as an upper
bound on the geometric measure 1 − Γ 2max (after normalisation), because PARl =
2n(1 − Γ 2max). The geometric measure is an entanglement monotone for quantum
states (see [25,24]).

4 It also follows from previous comments that n − deg(Q) can be used as an upper
bound on the log form of the geometric measure of quantum entanglement, Elog2 ,
as defined in [24], where Elog2 ≤ n − deg(Q).
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Lemma 9. (Conjecture 2 of [15]) PARN of the path graph is 1.0 for n �= 2 mod
3 and 2.0 for n = 2 mod 3.

Proof. From (10), and as in this case vi = 1 for all i, we get that Dn = Dn−1 +
Dn−2 mod 2. It is clear that D1 = 1, D2 = 0 and D3 = D2 +D1 = 1. For n > 3,
Dn = Dn−1 +Dn−2 = Dn−2 +Dn−3 +Dn−2 = Dn−3. Expanding the argument,
when n = 0 mod 3, Dn = D3 = 1; when n = 1 mod 3, Dn = D1 = 1; when
n = 2 mod 3, Dn = D2 = 0.

Corollary 1. (Conjecture 3 of [15]) ¿From lemmas 8 and 9 it follows that
PARH and PARN of the path graph are both 1.0 for n even, n �= 2 mod 3.

Lemma 10. PARN(s) = |q(−1)|. Furthermore, for quadratics, PARN is pivot-
invariant.

Proof. In [5] and [1] it is shown that q(−1) = (−1)r2n−r, where r is the rank
of Γ + I. From [20] and the results above it follows that PARN (s) = |q(−1)|.
The last part follows from [22], as we prove there that the pivot orbit lies within
{I,H}n, and q is invariant w.r.t. this set.

Theorem 4. Let p(x) be a quadratic Boolean function. Let s = (−1)p(x), and let
U ∈ T, where T = {I,H,N}n or one of its subsets. Then, the power spectrum
|PU |2 = (|PU,k|2), where PU = (PU,k) = Us ∈ C2n

is the spectrum of p under U ,
is either flat (one-valued) or two-valued. Furthermore, if it is two-valued, one of
the values is 0 and the other value is equal to 2co(ΓU ).

Proof. We prove that the power-spectrum is one or two-valued w.r.t. {H,N}n

as the case for {I,H,N}n then follows trivially. Firstly, we characterise the
possible sets of spectral values produced via the action of the transforms H0 and
N0 on any Boolean function. Then we show that, for a quadratic, the subsequent
actions of H1 or N1 on these partial spectra produce identically-structured sets
of values for the power spectra which can be one or two-valued with one value
equal to zero. Further action by H or N on the remaining tensor positions leaves
the structure of these sets invariant. The evaluation to the corank follows from
theorem 3.

Definition 12. (see [8]) An independent set (IS) of a graph G is a subset of
the set of vertices V such that no two vertices in the subset are adjoint.

Lemma 11. PARIH = 2max |IS|.

Proof. log2(PARIH) is, as we saw in theorem 3, the maximal value of the corank
of the modified adjacency matrix over all transforms in {I,H}n. But the corank
is maximal when the graph has been completely separated, and its value will tell
us the least possible number of fixings we have to do to get a completely disjoint
graph. But this is exactly the maximal size independent set, max|IS|, that is,
the maximal number of variables that such a graph can have.

Corollary 2. deg(q) = max |IS|.
Proof. By corollary 1 and lemma 11.
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Furthermore:

Theorem 5. [8] If the maximum independent set over all graphs in the LC
orbit of the graph G has size λ(G), then all functions corresponding to graphs in
the orbit will have PARIHN = 2λ(G).

Corollary 3. deg(Q) = λ(G).

Proof. By corollary 1 and theorem 5.

Definition 13. [12,17] The Multivariate Merit Factor (MMF) and the Clifford

Merit Factor (CMF) are MMF =
4n

2σ
, and CMF =

6n

2E
, where

2σ =
∑

U ∈ {H, N}n

k ∈ Z
n
2

|PU,k|4 − 4n, 2E =
∑

U ∈ {I, H, N}n

k ∈ Z
n
2

|PU,k|4 − 6n .

Corollary 4. MMF =
4n

2nQHN (4) − 4n
, and CMF =

6n

2nQ(4) − 6n
.

Proof. By theorems 3 and 4, and the fact that
∑

k |PU,k|2 = 2n.

σ and E are derived from their respective L4-norms, (e.g. L4-normIHN =
(2nQ(4))

1
4 ). We can generalise the result to express the Lp norms in terms of

the interlace polynomials.
Lemma 12. The Lp-norms w.r.t. {I,H,N}n, {H,N}n, and {I,H}n for all 1 ≤
p < ∞, are,

Lp-normIHN = (2nQ(2
p−2
2 + 2))

1
p ,

Lp-normHN = (2nQHN (2
p−2
2 + 2))

1
p

Lp-normIH = (2nq(2
p−2
2 + 1))

1
p ,

respectively.

Theorem 4, together with theorem 3, tell us that, for quadratics, the interlace
polynomial encapsulates much of the information about the spectrum. But for
higher degree Boolean functions (i.e. hypergraphs), the number of values of the
spectrum grows with the number of variables, and concretely, for each function,
with the number of variables we have to fix to get a quadratic function. So, for
higher-degree functions, we lose information by just considering the maximum
of the spectrum - we require a more detailed generalisation of the interlace
polynomial. We defer the complete solution of this problem to future work but
offer an initial generalisation to hypergraphs below from which, by theorem 3,
we can still compute the number of flat spectra and the PAR, and that preserves
the property Q(G) = Q(G1)Q(G2), if G1 and G2 are disjoint hypergraphs:

Definition 14. The interlace polynomial5 of a hypergraph is

Q =
∑

U∈{I,H,N}n

(z − 2)log2(maxk |PU,k|2)

5 Note that, in general, it will not be really a polynomial, because some of the ex-
ponents might be non-integer, and even irrational. In some cases, though, they are
rational, so we can, by multiplying by a certain (z − 2)l, get a polynomial.
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6 Two-Variable Interlace Polynomials

6.1 Interlace Polynomial q(x, y)

We offer a definition of q(x, y) equivalent to the one proposed in [4]:

Definition 15. The 2-variable interlace polynomial q(G; x, y) of a graph G in
n variables is defined as

q(G; x, y) =
∑

U∈{I,H}n

(x − 1)rk(ΓU )(y − 1)co(ΓU ) , (11)

where co(ΓV ) and rk(ΓV ) stand respectively for corank and rank of the modified
adjacency matrix of the graph w.r.t. V ∈ {I,H,N}n, ΓV , obtained by erasing
the rows and columns whose indices are in RI (see definition 3).

Remark: q(2, y) = q(y). Therefore, deg(q(2, y)) = log2(PARIH).

Lemma 13. q(x, 1) gives the number of flat spectra of the function w.r.t.
{I,H}n partitioned according to their weight in I’s. Furthermore, n−deg(q(x, 1))
is the least number of fixings that we have to do to get a flat spectrum.

Proof. From the definition

q(x, 1) =
∑

U,co(ΓU )=0

(x − 1)rk(ΓU ) .

Now, when co(ΓU ) = 0, it is clear that the matrix has full rank, and therefore
that rk(ΓU ) = n− |RI|. Thus, q(x, 1) tells you where to locate the flat spectra,
and the degree is maximal when the number of fixings is minimal.

Lemma 14. q(1, y) gives the number of independent sets partitioned according
to their size (i.e. according to their weight in I’s). Furthermore, deg(q(1, y)) gives
the maximal size of an independent set.

Proof.
q(1, y) =

∑
U,rk(ΓU )=0

(y − 1)co(ΓU ) .

But the only subgraph such that rk(ΓU ) = 0 is the empty graph. Thus, q(1, y)
tells us how to separate totally the graph and how many fixings we have to
make to do so, and as co(ΓU ) = n− |RI|, the degree of q(1, y) tells us the least
number of fixings we have to do to get a completely disjoint graph; i.e., how
many variables can have such a graph.

Lemma 15. deg(q(2, y)) = deg(q(1, y)).

Proof. As can be deduced from [4], the degree of q(1, y) is equal to max|IS|. The
lemma follows by taking into account lemma 11.
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Remark: q(x, y) gives us the bentness of the function. That is, if xn appears in
q(x, y), then the function is bent. Otherwise, it is not bent.

Lemma 16. The following equality holds:

qx(G; 1, 1) = #{U : rk(ΓU ) = 1, co(ΓU ) = 0} = 0 ,

where the subindex means derivative w.r.t. x.

Proof. The first equality follows trivially. The second equality follows from the
fact that rk(U) + co(U) = dim(U), and that any modified adjacency matrix
(w.r.t. {I,H}n) of dimension 1 is the 1 × 1 matrix (0), which has rank 0 and
corank 1.

6.2 Interlace Polynomial Q(x, y)

Definition 16. The 2-variable interlace polynomial Q(G; x, y) of a graph G in
n variables is defined as

Q(G; x, y) =
∑

V ∈{I,H,N}n

(x − 2)rk(ΓV )(y − 2)co(ΓV ) , (12)

where co(ΓV ) and rk(ΓV ) stand respectively for the corank and rank of the modi-
fied adjacency matrix of the graph w.r.t. V ∈ {I,H,N}n, ΓV , obtained by erasing
the rows and columns whose indices are in RI, as before, and then substituting
0 by vi ∈ GF(2) in those indices i ∈ RH ∪ RN, where vi = 1 iff i ∈ RN (see
definition 7).

Remark: Q(3, y) = Q(y) as defined in (6).

Lemma 17. Q(2, y) = q(1, y − 1).

Proof. Clearly,

Q(2, y) =
∑

V,rk(ΓV )=0

(y − 2)co(ΓV ) .

The only subgraph such that rk(ΓV ) = 0 is the empty graph. Moreover, rk(ΓV )
= 0 iff RN = ∅. Thus, Q(2, y) =

∑
V ∈{I,H}n,rk(ΓV )=0

(y − 2)co(Γ [S]) = q(1, y − 1).

Lemma 18. The following equalities hold:

Qx(G; 2, 2) = #{V : rk(ΓV ) = 1, co(ΓV ) = 0} = n ,
Qx,y(G; 2, 2) = #{V : rk(ΓV ) = 1, co(ΓV ) = 1} = #edges = # terms p(x) ,

where the subindex means derivative w.r.t. the corresponding variable.
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Proof. For both equations, the first equality follows trivially. For the first equa-
tion, the second equality comes from the fact that the modified adjacency matrix
cannot have rank 1 and corank 0 unless in the case V = Nj for some j, so there
are n possibilities. For the second equation, as all the modified adjacency matri-
ces are symmetric, then both the rank and the corank being 1 can only happen

in the case ΓV =
(

1 1
1 1

)
; that is, when V = NiNj for each edge ij. Now,

the number of edges is precisely the number of terms of the quadratic boolean
function p(x).

7 Conclusions

We have shown that one and two-variable interlace polynomials can be used
to summarise many of the spectral properties of quadratic boolean functions
with respect to a special subset of tensor transforms. We also derived interlace
polynomials for the clique and clique-line-clique functions. We then defined the
HN-interlace polynomial, and derived its form for the clique, the line, and the
clique-line-clique functions. We proved some conjectures of [15], and presented
other spectral interpretations of the interlace polynomial. We also generalised
the interlace polynomial to hypergraphs.
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Abstract. We generalize a recent improvement for the bounds of Weil
sums over Galois rings of characteristic p2 to Galois rings of any charac-
teristic pl. Our generalization is not as strong as for the case p2 and we
indicate the reason. We give a class of homogeneous weights, including
the homogeneous weight defined by Constantinescu and Heise, and we
show their relations. We also give an application of our improvements on
the homogeneous weights of some codewords.

1 Introduction

The Weil-Carlitz-Uchiyama bound on exponential sums over finite fields is a
well-known result that has found many useful applications in coding theory and
sequence design [An, B-M, He, Si, T]. An analog of this bound in the case of
Galois rings was obtained by Kumar et al. in [K-H-C]. An improved bound for
a related Weil-type exponential sum over Galois rings of characteristic 4 was
later obtained by Helleseth et al. [H-K-M-S], leading to sharp lower bounds
on the minimum distance of the binary Kerdock and Delsarte-Goethals codes.
Recently, an analog of this improved upper bound was obtained for Galois rings
of characteristic p2 (cf. [L-O]), for any prime p, along with some applications
[L-O2].

In this paper, we generalize the results of [L-O] to Galois rings of any charac-
teristic pl and explore their applications. While the general result is not as strong
as for the case of characteristic p2, the reason for this weakness is identified and,
when l ≥ 3, improvements upon the general result may be obtained in some
special cases. A new class of homogeneous weights, which includes the homoge-
neous weight introduced by Constantinescu and Heise [C-H], is given and their
relations studied. Just as the homogeneous weight of Constantinescu and Heise
is naturally connected to exponential sums, so are the new homogeneous weights
introduced in this paper. We also give an application of our improvements on
the homogeneous weights of some codewords. The improvement obtained in this

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 412–426, 2006.
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paper permits to establish new bounds on homogeneous weights of certain code-
words.

The paper is organized as follows. In Section 2 we introduce the new class of
homogeneous weights and study their relations. We consider the generalization
of the results of [L-O] and the applications in Section 3. We fix the following
conventions throughout the paper:

– p: a prime number
– m ≥ 2, l ≥ 2 : positive integers
– n = pm − 1
– N: the set of natural numbers
– Z: the ring of integers
– Fp, Fpm : finite fields of cardinality p and pm

– trm : Fpm → Fp: trace map from Fpm onto Fp

– Zp: the ring of p-adic integers
– Qp: the field of p-adic numbers
– Km: the unramified extension of Qp having all n-th roots of unity with

[Km : Qp] = m
– TrKm/Qp

: Km → Qp: trace map from Km onto Qp

– Γ = {0} ∪ {all n-th roots of unity in Km}
– OKm : the ring of integers of Km

– ξ: a primitive n-th root of unity in Km

– GR(pl, m): Galois ring of characteristic pl with cardinality plm

– Zpl : the ring of integers modulo pl

– Trm : GR(pl, m) → Zpl : trace map from GR(pl, m) onto Zpl

– η : OKm → OKm/pOKm
∼= Fpm : reduction modulo p map in OKm

– ηl : OKm → OKm/p
lOKm

∼= GR(pl, m): reduction modulo pl map in OKm

– Γm = ηl(Γ ): Teichmüller set in GR(pl, m)
– β = ηl(ξ): primitive n-th root of unity in GR(pl, m)
– ω = η(ξ): primitive n-th root of unity in Fpm

– μ : GR(pl, m) → GR(pl, m)/pGR(pl, m) ∼= Fpm : reduction modulo p map in
GR(pl, m)

Note that η = μ ◦ ηl.

2 Homogeneous Weights

In this section we introduce a class of homogeneous weights and we give a relation
among them.

For each u ∈ Zpl and 0 ≤ t ≤ l − 1, we have∑
x∈ptZ

pl

e
2πiux

pl =
{
pl−t if u ∈ pl−tZpl

0 if u �∈ pl−tZpl .

Therefore for 1 ≤ t ≤ l − 1

∑
x∈Z

pl\ptZ
pl

e
2πiux

pl =

⎧⎨⎩pl − pl−t if u = 0
−pl−t if u ∈ pl−tZpl \ {0}
0 if u �∈ pl−tZpl
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and

pl−1 − pl−t−1 − 1
p

∑
x∈Z

pl\ptZ
pl

e
2πiux

pl =

⎧⎨⎩
0 if u = 0
pl−1 if u ∈ pl−tZpl \ {0}
pl−1 − pl−t−1 if u �∈ pl−tZpl .

Definition 1. For 1 ≤ t ≤ l − 1, the weight w(l,t) on Zpl is defined as

w(l,t)(u) =

⎧⎨⎩
0 if u = 0
pl−1 if u ∈ pl−tZpl \ {0}
pl−1 − pl−t−1 if u �∈ pl−tZpl .

Note that

w(l,1)(u) =

⎧⎨⎩
0 if u = 0
pl−1 if u ∈ pl−1Zpl \ {0}
pl−1 − pl−2 if u �∈ pl−1Zpl

and

w(l,l−1)(u) =

⎧⎨⎩
0 if u = 0
pl−1 if u ∈ pZpl \ {0}
pl−1 − 1 if u �∈ pZpl .

The weight w(l,1) is the homogeneous weight defined by Constantinescu and
Heise [C-H].

For l ≥ 3 and 1 ≤ i ≤ l− 2, since pl−iZpl ⊆ pl−(i+1)Zpl we have

w(l,i+1)(u) − w(l,i)(u) =
0 if u ∈ pl−iZpl

pl−i−1 if u ∈ pl−(i+1)Zpl \ pl−iZpl

pl−i−1 − pl−i−2 if u �∈ pl−(i+1)Zpl .
(1)

Definition 2. For 1 ≤ t ≤ l − 1 and u ∈ Zpl , let u(t) ∈ {0, 1 . . . , pt − 1} be the
integer such that u(t) ≡ u mod pt. By convention we define u(l) = u. Note that
u(t) ∈ Zpt .

We observe that for 1 ≤ j ≤ l − 1 we have u ∈ pjZpl ⇐⇒ u(j) = 0; and for
2 ≤ j ≤ l we have u ∈ pj−1Zpl ⇐⇒ u(j) ∈ pj−1Zpj .

Definition 3. For l ≥ 3, 2 ≤ t ≤ l − 1 and 1 ≤ j ≤ t − 1, the weight w(t,j) on
Zpl is defined as

w(t,j)(u) = w(t,j)(u(t)),

where w(t,j)(u(t)) is determined using Definition 1 applied for Zpt .

For l ≥ 3, 1 ≤ i ≤ l − 2 and u ∈ Zpl , using (1) and Definition 3 we obtain

w(l,i+1)(u) = w(l,i)(u) + w(l−i,1)(u). (2)
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Theorem 1. Let u ∈ Zpl . For 2 ≤ t ≤ l we have

w(t,t−1)(u) = w(t,1)(u) + w(t−1,1)(u) + · · · + w(2,1)(u). (3)

Moreover for l ≥ 3 and 1 ≤ t ≤ l − 2 we have

w(l,t)(u) = w(l,l−1)(u) − w(l−t,l−t−1)(u). (4)

Proof. First we prove (3). The case t = 2 holds trivially. For t = 3, by (2) we
have w(3,2)(u) = w(3,1)(u) + w(2,1)(u). For t ≥ u, by a repeated application of
(2) t − 2 times, we obtain

w(t,t−1)(u) = w(t,t−2)(u) + w(2,1)(u)
= w(t,t−3)(u) + w(3,1)(u) + w(2,1)(u)
...

= w(t,1)(u) + w(t−1,1)(u) + · · · + w(2,1)(u).

It remains to consider (4). For l ≥ 3 and 1 ≤ t ≤ l− 2 let i = l− 2− t. We prove
(4) by induction on i for 0 ≤ i ≤ l − 3. For i = 0, we have t = l − 2 and by (2)

w(l,l−1)(u) = w(l,l−2)(u) + w(2,1)(u),
= w(l,t)(u) + w(l−t,l−t−1)(u),

and hence (4) holds. For l ≥ 4 and 0 ≤ i ≤ l− 4, assume that (4) holds for i, or
equivalently t = l− 2 − i. Now we complete the proof by showing that (4) holds
for i+ 1, or equivalently for t − 1. By (3) we have

w(l−t+1,l−t)(u) = w(l−t+1,1)(u) + w(l−t,1)(u) + · · · + w(2,1)(u),
w(l−t,l−t−1)(u) = w(l−t,1)(u) + · · · + w(2,1)(u),

and hence

w(l−t+1,l−t)(u) = w(l−t+1,1)(u) + w(l−t,l−t−1)(u). (5)

Adding w(l,t−1)(u) to both sides of (5) we get

w(l−t+1,l−t)(u) + w(l,t−1)(u) = w(l−t+1,1)(u) + w(l,t−1)(u)
+w(l−t,l−t−1)(u). (6)

Note that by (2)

w(l−t+1,1)(u) + w(l,t−1)(u) = w(l,t)(u). (7)

Therefore by (6) and (7) we have

w(l−t+1,l−t)(u) + w(l,t−1)(u) = w(l,t)(u) + w(l−t,l−t−1)(u). (8)

By the induction hypothesis at i we have

w(l,t)(u) + w(l−t,l−t−1)(u) = w(l,l−1)(u). (9)

Using (8) and (9) we complete the proof. ��
Remark 1. Using Theorem 1, for l ≥ 2 and 1 ≤ t ≤ l − 1, each w(l,t)(u) can be
written as a combination of w(2,1)(u), w(3,1)(u), . . . , w(l,1)(u) using only integer
coefficients.
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3 An Improvement of Bounds for Weil Sums

In this section we generalize the improvement of [L-O] to any characteristic pl

and we indicate the reason why our generalization is not as strong as the case
of characteristic p2.

Throughout this section the homogeneous weight w(l,1) of Section 2 will also
be denoted by whom. The Frobenius map Frob on GR(pl, m) sends u0 + pu1 +
· · ·+pl−1ul−1 ∈ GR(pl, m) with u0, . . . ,ul−1 ∈ Γm to up +pup

1 + · · ·+pl−1up
l−1 ∈

GR(pl, m). It is extended to the map on the polynomial ring GR(pl, m)[x] as
Frob

(∑t
i=0 gix

i
)

=
∑t

i=0 Frob(gi)xip. We recall that a polynomial g(x) ∈
GR(pl, m)[x] is called non-degenerate if it cannot be written in the form g(x) =
Frob(h(x)) − h(x) + u, where h(x) ∈ GR(pl, m)[x] and u ∈ GR(pl, m).

Let f(x) ∈ GR(pl, m)[x] be a non-degenerate polynomial and let f̂(x) =
f(x) − f(0) ∈ GR(pl, m)[x]. Let

c =
(
0, Trm(f̂(β)), Trm(f̂(β2)), . . . , Trm(f̂(βn))

)
∈ Zpm

pl ,

and for λ ∈ Zpl let c(λ) = (λ, . . . ,λ) + c ∈ Zpm

pl . Note that if Trm(f(0)) = α,
then

c(α) =
(
Trm(f(0)), Trm(f(β)), Trm(f(β2)), . . . , Trm(f(βn))

)
.

For i = 0, . . . , pl − 1 and λ ∈ Zpl , let Ni denote the number of coordinates of
c equal to i and let Ni(λ) denote the number of coordinates of c(λ) equal to i.
By convention we set Npl = N0. We first prove some technical lemmas.

Lemma 1. For 0 ≤ λ ≤ pl − 1, let λ̄ = λ(l−1), which is defined in Definition 2.
We have

pl−1∑
i=1

Ni(λ) = pm −Npl−λ, (10)

p−1∑
i=1

Nipl−1(λ) =

(
p−1∑
i=1

Nipl−1−λ̄

)
+Npl−λ̄ −Npl−λ, (11)

whom(c(λ)) ≡ pl−2

(
p∑

i=1

Nipl−1−λ̄

)
− pl−1Npl−λ mod pm (12)

and if λ̄ = 0,

whom(c(λ)) ≡ −pl−1Npl−λ − pl−2
pl−1∑
i=1

pl−1�i

Ni mod pm. (13)
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Proof. Note that (10) follows from the observations
∑pl−1

i=0 Ni(λ) = pm and
N0(λ) = Npl−λ. As λ ≡ λ̄ mod pl−1 we have

p−1∑
i=0

Nipl−1(λ) =
p−1∑
i=0

Nipl−1(λ̄). (14)

Using (14), N0(λ) = Npl−λ and N0(λ̄) = Npl−λ̄ we prove (11). We have

whom(c(λ)) = (pl−1 − pl−2)
pl−1∑
i=1

Ni(λ) + pl−2
pl−1∑
i=1

pl−1|i

Ni(λ). (15)

Using (10) and (11) we get

whom(c(λ)) ≡ −(pl−1 − pl−2)Npl−λ + pl−2

(
p−1∑
i=1

Nipl−1−λ̄

)

+pl−2Npl−λ̄ − pl−2Npl−λ mod pm

≡ pl−2

(
p∑

i=1

Nipl−1−λ̄

)
− pl−1Npl−λ mod pm.

In order to prove the remaining item, we assume that λ̄ = 0. From (12) we have

whom(c(λ)) ≡ pl−2

(
p∑

i=1

Nipl−1

)
− pl−1Npl−λ mod pm. (16)

We prove (13) using (16) and
∑p

i=1Nipl−1 +
∑pl−1

i=1
pl−1�i

Ni =
∑pl

i=1Ni = pm. ��

Lemma 2. We have
∑

λ∈Z
pl
whom(c(λ)) = pl(pl−1 − pl−2)pm and hence

whom(c) ≡ −
pl−1∑
λ=1

whom(c(λ)) mod pm.

Proof. We have

whom(c(λ)) = (pl−1 − pl−2)(pm −N0(λ)) + pl−2
p−1∑
i=0

Nipl−1(λ)

−pl−2N0(λ).

(17)

Moreover the following identities also hold:∑
λ∈Z

pl

(pm −N0(λ)) = pmpl −
∑

λ∈Z
pl

N0(λ) = pm(pl − 1), (18)



418 S. Ling and F. Özbudak

∑
λ∈Z

pl

p−1∑
i=0

Nipl−1(λ) =
p−1∑
i=0

∑
λ∈Z

pl

Nipl−1(λ) = ppm, (19)

and ∑
λ∈Z

pl

N0(λ) = pm. (20)

Using (17), (18), (19) and (20) we get∑
λ∈Z

pl

whom(c(λ)) = (pl−1 − pl−2)pm(pl − 1) + pl−2ppm − pl−2pm

= pl(pl−1 − pl−2)pm. ��
Lemma 3. Let F (x) ∈ Qp[x] be an integer-valued polynomial of degree at most
pl − 1. The corresponding map

F̃ : Zp/p
lZp → Zp/pZp

∼= Fp

α+ plZp �→ F (α) + pZp

is well defined. Moreover for any c ∈ Zp, we have

η(F (c)) = F̃ (ηl(c)).

Proof. As in the proof of [L-O, Lemma 2.9], we may assume F (x) =
(
x
r

)
, where

1 ≤ r ≤ pl − 1, and in this case for γ ∈ Zp we have

F (x + plγ) − F (x) =
(
plγ

1

)(
x

r − 1

)
+ · · · +

(
plγ

r − 1

)(
x

1

)
+
(
plγ

r

)
.

For 1 ≤ j ≤ pl − 1, writing(
plγ

j

)
=
plγ(plγ − 1) · · · (plγ − j + 1)

j!
= pβ(j,γ)u,

where u ∈ Zp \ pZp is a unit, it suffices to prove that β(j, γ) ≥ 1 in order to
prove that F̃ is well-defined.

Note that j! = pε(j)u1, where u1 ∈ Zp \ pZp is a unit and ε(j) = #j/p$ +
#j/p2$ + · · · + #j/pl−1$. Furthermore, plγ(plγ − 1) · · · (plγ − j + 1) = pδ(j,γ)u2,
where u2 ∈ Zp \ pZp is a unit and

δ(j, γ) ≥ l +
⌊
j − 1
p

⌋
+
⌊
j − 1
p2

⌋
+ · · · +

⌊
j − 1
pl−1

⌋
.

Since
⌊

j−1
pi

⌋
−
⌊

j
pi

⌋
≥ −1, it follows that

β(j, γ) = δ(j, γ) − ε(j) ≥ 1.

For the final statement, for any c ∈ Zp, note that

F̃ (ηl(c)) = F̃ (c+ plZp) = F (c) + pZp = η(F (c)). ��
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For 0 ≤ j ≤ pl−1 − 1, let

Fj(x) =
(

x + j

pl−1

)
.

Note that Fj is an integer-valued polynomial of degree pl−1. For 0 ≤ j ≤ pl−1−1,
using Lemma 3 we define the Fp-vector F̃j(c) of length pm obtained by applying
F̃j to c componentwise. For i = 0, . . . , p− 1 and 0 ≤ j ≤ pl−1 − 1, let Ni(F̃j(c))
denote the number of coordinates of F̃j(c) equal to i.

Lemma 4. For integers 1 ≤ i ≤ p− 1 and 0 ≤ j ≤ pl−1 − 1, we have

Ni(F̃j(c)) = Nipl−1−j +Nipl−1−j+1 + · · · +Nipl−1−j+(pl−1−1).

Proof. Using Lucas’s theorem on binomial coefficients (cf. [Lu]) we obtain for
0 ≤ x0, . . . , xl−1, xl ≤ p− 1 that(

x0 + x1p+ · · · + xl−1p
l−1 + xlp

l

pl−1

)
≡ xl−1 mod p.

Hence for 0 ≤ x0, . . . , xl−1 ≤ p− 1 and 0 ≤ j ≤ pl−1 − 1 we have in modulo p

Fj(x0 + x1p+ · · · + xl−1p
l−1) ≡

(
x0 + x1p+ · · · + xl−1p

l−1 + j

pl−1

)

≡
{

xl−1 if x0 + . . .xl−2p
l−2 + j ≤ pl−1 − 1,

xl−1 + 1 if x0 + . . .xl−2p
l−2 + j ≥ pl−1.

(21)

The proof follows from (21). ��
Using Lemma 4, let M be the

(
(p− 1)pl−1

) × (pl − 1) matrix with coefficients
from {0, 1} ⊆ Z such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1(F̃0(c))
...

Np−1(F̃0(c))
...
...

N1(F̃pl−1−1(c))
...

Np−1(F̃pl−1−1(c))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= M ·

⎡⎢⎢⎢⎣
N1
N2
...

Npl−1

⎤⎥⎥⎥⎦ . (22)

By reordering the rows of M we obtain the (p− 1)pl−1 × (pl − 1) matrix A

A =

⎡⎢⎢⎢⎣
1 1 . . . 1

1 . . . 1 1
. . .

1 . . . 1

⎤⎥⎥⎥⎦ ,
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where the nonzero entries in each row consist of pl−1 consecutive 1’s and they
are shifted by one position to the right in the next row.

Let C and B be the pl−1 × (pl−1 − 1) and (p− 1)pl−1 × (pl−1 − 1) matrices

C =
[−Ipl−1−1

1 · · · 1
]

, B =

⎡⎢⎢⎢⎣
C
C
...
C

⎤⎥⎥⎥⎦ ,

where Ipl−1−1 is the identity matrix of size pl−1 − 1. Using similar operations
as in the proof of [L-O, Lemma A.1], we obtain that the row space of A over Q
is equal to the row space of

[
I(p−1)pl−1 B

]
over Q and any linear combination

of the rows of
[
I(p−1)pl−1 B

]
with coefficients from Z is a linear combination of

the rows of A with coefficients from Z.
In the next proposition, for λ ∈ Zpl we relate the homogeneous weight

whom(c(λ)) of c(λ) to some corresponding p-ary codewords.

Proposition 1. For λ ∈ Zpl , there exists a(j,i)(λ) ∈ Z with 0 ≤ i ≤ p − 1 and
0 ≤ j ≤ pl−1 − 1 such that

whom(c(λ)) ≡ pl−2
pl−1−1∑

j=0

p−1∑
i=0

a(j,i)(λ)Ni(F̃j(c)) mod pm.

Proof. Using Lemma 2, it is enough to prove it for 1 ≤ λ ≤ pl − 1. Therefore we
assume that λ �= 0. Let 0 ≤ λ0, . . . ,λl−1 ≤ p − 1 and 0 ≤ λ̄ ≤ pl−1 − 1 be the
integers such that

λ = λ0 + λ1p+ · · · + λl−2p
l−2 + λl−1p

l−1, and
λ̄ = λ0 + λ1p+ · · · + λl−2p

l−2.

First we consider the case λ̄ �= 0. Let 1 ≤ γ ≤ pl−1 − 1 and 0 ≤ j ≤ p− 1 be the
integers given by γ = pl−1 − λ̄ and j = p− 1 − λl−1. We have

p∑
i=1

Nipl−1−λ̄ = Nγ +Nγ+pl−1 + · · · +Nγ+(p−1)pl−1 and (23)

Npl−λ = Nγ+jpl−1 . (24)

Let {f1, . . . , f (p−1)pl−1} and {e1, . . . , epl−1} be the standard bases of the vector

spaces Q(p−1)pl−1
and Qpl−1. Using (12), (23) and (24) we obtain that

whom(c(λ)) ≡ pl−2 (eγ + eγ+pl−1 + · · · + eγ+(p−1)pl−1 − peγ+jpl−1

)
·

⎡⎢⎣ N1
...

Npl−1

⎤⎥⎦ mod pm.
(25)
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It follows from the definition of the matrix B that we have

fγ+jpl−1 · [I(p−1)pl−1 B
]

= eγ+jpl−1 − e(p−1)pl−1+γ . (26)

Then we have

eγ + eγ+pl−1 + · · · + eγ+(p−1)pl−1 − peγ+jpl−1

≡
(
fγ + fγ+pl−1 + · · · + fγ+(p−2)pl−1 − pfγ+jpl−1

)
· [I(p−1)pl−1 B

]
.

(27)

For λ̄ �= 0, the proof follows from (22), (25) and (27).
Next we consider the case λ̄ = 0. Let 1 ≤ j ≤ p − 1 be the integer given by

pl − λ = jpl−1. Using (13) we obtain that

whom(c(λ)) ≡ −pl−2
(
(e1 + · · · + epl−1−1) + (epl−1+1 + · · · + e2pl−1−1)

+ · · · + (e(p−1)pl−1+1 + · · · + e(p−1)pl−1+pl−1−1)

+pejpl−1

)
·

⎡⎢⎣ N1
...

Npl−1

⎤⎥⎦ mod pm.

(28)

From the definition of the matrix B we have

f jpl−1 · [I(p−1)pl−1 B
]

= ejpl−1 +
(
e(p−1)pl−1+1 + · · · + e(p−1)pl−1+pl−1−1

)
.

(29)

Using (26) and (29) we get(
(e1 + · · · + epl−1−1) + (epl−1+1 + · · · + e2pl−1−1)

+ · · · + (e(p−1)pl−1+1 + · · · + e(p−1)pl−1+pl−1−1)
+pejpl−1

)
≡
(
(f1 + · · · + fpl−1+1) + (fpl−1+1 + · · · + f2pl−1−1)
+ · · · + (f (p−2)pl−1+1 + · · · + f (p−2)pl−1+pl−1−1)

+pf jpl−1

)
· [I(p−1)pl−1 B

]
mod pm.

(30)

We complete the proof using (22), (28) and (30). ��
Let â0(x), â1(x), . . . , âl−1(x) ∈ Γ [x] be the polynomials defined by

f̂(x) = â0(x) + pâ1(x) + · · · + pl−1âl−1(x).

Let I0, . . . , Il−1 ⊆ N \ {0} be the supports of the polynomials â0(x), . . . , âl−1(x)
respectively. For 0 ≤ t ≤ l− 1, let It,m ⊆ N \ {0} be the set

It,m = {pui | i ∈ It, 0 ≤ u ≤ m − 1}. (31)
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Let Am be the subset of N \ {0} defined as

Am =
pl−1⋃
k=1

{α1 + · · · + αk | α1, . . . ,αk ∈ I0,m ∪ · · · ∪ Il−1,m}. (32)

Let Am,0 be a complete set of representatives of the distinct p-cyclotomic cosets
of Am modulo n. For 0 ≤ i ≤ l − 1, let āi ∈ OKm [x] such that ηl(āi(x)) = âi(x)
and the support of āi(x) is the same as the support of âi(x). Let f̄(x) = ā0(x)+
pā1(x) + · · · + pl−1āl−1(x).

Proposition 2. For 0 ≤ j ≤ pl−1 − 1 and i ∈ Am,0, there exists γ(j,i) ∈ OKm

such that

η
(
Fj

(
TrKm/Qp

(f̄(ξu))
))

= trm

⎛⎝ ∑
i∈Am,0

η
(
γ(j,i)

)
ωiu

⎞⎠
for each u = 1, . . . ,n.

Proof. For 0 ≤ j ≤ pl−1 − 1, let

Hj(x) = Fj(TrKm/Qp
(f̄(x))).

Since Hj(0) = 0 and Hj(α) ∈ Zp for each α ∈ Γ , using [L-O, Proposition 2.10]
we obtain γ(j,i) ∈ OKm for i ∈ Am,0 such that

Fj

(
TrKm/Qp

(f̄(ξu))
)

= TrKm/Qp

⎛⎝ ∑
i∈Am,0

γ(j,i)ξ
iu

⎞⎠ .

The proof follows by applying η to the both sides. ��
Let the weight function wp : N → N be defined as the function sending a ∈ N to
the sum of its digits of the representation of a in base p. Let

W = max{ wp(α1) + · · · + wp(αpl−1)
| α1, . . . ,αpl−1 ∈ I0,m ∪ · · · ∪ Il−1,m} and (33)

lm =
⌈m

W

⌉
− 1, hm =

⌊m

W

⌋
.

Now we state some known results for which we refer the reader to [L-O] and
the references therein. Let a0(x), . . . , al−1(x) ∈ Γ [x] be the polynomials defined
by

f(x) = a0(x) + pa1(x) + · · · + pl−1al−1(x).

Recall that the weight function Df of the polynomial f(x) is

Df = max{pl−1 deg a0(x), pl−2 deg a1(x), . . . , deg al−1(x)}.
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There exists a multiset W of complex numbers such that |W| ≤ Df − 1 and for
any γ ∈ W we have |γ| = pm/2 and for any s ≥ 1∑

a∈Z
pl\{0}

∑
x∈Γms

e
2πiTrms(f(x))

pl = −
∑
γ∈W

γs. (34)

There exists an algebraic function field E/Fpm of genus g with L-polynomial
LE(x) =

∏2g
i=1(1 − θix) such that for any s ≥ 1

∑
a∈Z

pl\{0}

∑
x∈Γms

e
2πiTrms(af(x))

pl = −
2g∑

i=1

θs
i . (35)

There also exists an algebraic function field El−1/Fpm of genus gl−1 such that
El−1 is a subfield of E and the roots of its L-polynomial LEl−1(x) =

∏2gl−1
i=1 (1−

ψx) satisfy

∑
a∈pl−1Z

pl\{0}

∑
x∈Γms

e
2πiTrms(f(x))

pl = −
2gl−1∑
i=1

ψs
i (36)

for any s ≥ 1.
Now we are ready to give our main result.

Theorem 2. We have

a∈Z
pl\pl−1Z

pl
x∈Γm

e
2πi

Trm(af(x))
pl ≤ plm+l−1

phm(g − gl−1) 2p
m
2 −hm

plm+l−1 ,

and

a∈Z
pl\pl−1Z

pl
x∈Γm

e
2πi

Trm(af(x))
pl ≤ plm+l−1

phm pl−pl−1

2 (Df − 1) 2p
m
2 −hm

plm+l−1 .

Proof. By definition of whom, for α ∈ Zpl we have

whom(α) = pl−2(p− 1) − 1
p

∑
a∈Z

pl\pl−1Z
pl

e
2πi aα

pl . (37)

Let λ = Trm(f(0)). From (37) we have

whom(c(λ)) = pl−2(p− 1)pm − 1
p

∑
a∈Z

pl\pl−1Z
pl

∑
x∈Γm

e
2πi Trm(af(x))

pl . (38)

For 0 ≤ j ≤ pl−1−1 and i ∈ Am,0, letγ(i,j) ∈ OKm be obtainedusingProposition 2
such that

η
(
Fj

(
TrKm/Qp

(f̄(ξu))
))

= trm

⎛⎝ ∑
i∈Am,0

η
(
γ(j,i)

)
ωiu

⎞⎠
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for each u = 1, . . . ,n. For 0 ≤ j ≤ pl−1 − 1, let hj(x) =
∑

i∈Am,0
η
(
γ(j,i)

)
xi ∈

Fpm [x]. It follows from Lemma 3 that F̃j(c) = (0, trm(hj(ω)), . . . , trm(hj(ωn)))
for 0 ≤ j ≤ pl−1 − 1. Using [L-O, Proposition 2.4] we obtain that Ni(F̃j(c))
is divisible by plm for 1 ≤ i ≤ p − 1 and 0 ≤ j ≤ pl−1 − 1. As m ≥ lm, by
Proposition 1 and (38) we get

plm+l−1
∣∣∣ ∑

a∈Z
pl\pl−1Z

pl

∑
x∈Γm

e
2πiTrm(af(x))

pl (39)

and hence for any positive integer s, the sum in (39) is divisible by phms. Using
(34), (35), (36) and similar arguments as in the proof of [L-O, Corollary 3.6], we
obtain

a∈Z
pl\pl−1Z

pl
x∈Γm

e
2πi

Trm(af(x))
pl ≤ phm(g − gl−1) 2p

m
2 −hm , (40)

and

a∈Z
pl\pl−1Z

pl
x∈Γm

e
2πi

Trm(af(x))
pl ≤ phm pl − pl−1

2
(Df − 1) 2p

m
2 −hm . (41)

We complete the proof using (39), (40) and (41). ��
Remark 2. The definition ofW in (33) and the divisibility parameters lm and hm

depend directly on Proposition 2 and the “representing” set Am. It is desirable
to have a small representing set in the proposition such that we can reduce
W (and hence increase lm and hm). This is possible in a canonical way for all
polynomials in the case l = 2 due to an interesting reduction (see the proof of
[L-O, Proposition 2.11]). Therefore the set Am of [L-O, Definition 2.1] is much
“smaller” than the set Am of (32). It seems difficult to find such a canonical
reduction for the general case l ≥ 3.

For l ≥ 3, in some special cases, we can improve Theorem 2.

Example 3. For p = 2 and l = 3, assume that

f̂(x) = â0(x) + 4â2(x) ∈ GR(8, m)[x],

that is â1(x) = 0. Let I0 and I2 be the supports of â0(x) and â2(x) respectively.
Let I0,m, I2,m be the sets defined in (31) and Bm be the subset of N \ {0} given
by

Bm = (4I0,m ∪ 3I0,m ∪ 2I0,m ∪ I0,m) ∪ I2,m,

where tI0,m = {α1 + · · · + αt|α1, . . . ,αt ∈ I0,m} for 1 ≤ t ≤ 4. Using a similar
reduction as in the proof of [L-O, Proposition 2.11], we observe that a version
of Proposition 2 obtained by changing Am to Bm holds as well. Let

W̃ = max {4 max{wp(i)|i ∈ I0}, max{wp(i)|i ∈ I2}} ,

l̃m = . m
W

/−1 and h̃m = # m
W

$. Therefore we get an improved version of Theorem 2
by replacing lm and hm by l̃m and h̃m respectively.
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For u = (u1, . . . ,un) ∈ Zn
pl , let the weight w(l,1)(u) of u be defined as

w(l,1)(u) =
n∑

i=1

w(l,1)(ui).

Corollary 1. Let f(x) ∈ GR(pl, m)[x] be a non-degenerate polynomial and

u =
(
Trm(f(w)), Trm(f(w2)), . . . , Trm(f(wn))

) ∈ Zn
pl .

For the weight w(l,1)(u) we have

∣∣w(l,1)(u) − n
(
pl−1 − pl−2)− θ

∣∣ ≤ plm+l−2

⌊
phm(g − gl−1)

⌊
2p

m
2 −hm

⌋
plm+l−1

⌋
,

and

∣∣w(l,1)(u) − n
(
pl−1 − pl−2)− θ

∣∣ ≤ plm+l−2

⌊
phm pl−pl−1

2 (Df − 1)
⌊
2p

m
2 −hm

⌋
plm+l−1

⌋
,

where

θ =

⎧⎨⎩
pl−1 − pl−2 if Trm(f(0)) = 0,
−pl−2 if Trm(f(0)) ∈ pl−1Zpl \ {0},
0 if Trm(f(0)) �∈ pl−1Zpl .

Remark 3. Using the methods of this section and Theorem 1, we can also obtain
analogous bounds of Corollary 1 for the homogeneous weights w(l,t) with 2 ≤
t ≤ l− 1.

Acknowledgements

The research of the first author is partially supported by NTU Research Grant
No. M48110000.

The research of the second author is partially supported by the Turkish
Academy of Sciences in the framework of Young Scientists Award Programme
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Abstract. A new class of rectangular zero prime multivariate polyno-
mial matrices are introduced and their inverses are computed. These
matrices are ideal for use in multidimensional systems involving input-
output transformations. We show that certain multivariate polynomial
matrices, when transformed to the sequence space domain, have an in-
vertible subsequence map between their input and output sequences.
This invertible subsequence map can be used to derive the polynomial
inverse matrix together with a set of pseudo-inverses. All computations
are performed using elementary operations on the ground field without
using any polynomial operations.

1 Introduction

Multivariate polynomial matrices play a fundamental role in the theory of linear
multidimensional systems. They have a wide range of applications in circuits,
systems, controls, signal processing and recently in the theory of multidimen-
sional convolutional codes [1, 2, 3, 4, 5, 6, 7, 8]. Matrices that have inverses, are of
particular interest because many problems in multidimensional systems can be
formulated as finitely generated modules over a multivariate polynomial ring.
Three notions of primeness, namely, zero prime, minor prime and left factor
prime arise when describing the structure of polynomial matrices. Among these,
it is well known [2] that only zero prime matrices have inverses.

In this paper, we introduce a new class of rectangular zero prime multivariate
polynomial matrices and derive their inverses. Algorithms for the inversion of
zero prime matrices using Gröbner basis techniques, interpolation and Fourier
transforms exist [4,9]. However, we are motivated by the fact that in the design
of many applications involving multidimensional input-output transformations,
one is free to choose the transformation matrix [4, 6, 7]. In such situations, it is
highly desirable to be able to select matrices with solutions (inverses) such that
they satisfy the desired primeness properties. Our method allows for explicit
construction of invertible multidimensional transformations.

We show that certain multivariate polynomial matrices introduced in [10],
when transformed to the sequence space domain, have an invertible subsequence
map between their input and output sequences. We define these as “locally

Ø. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 427–441, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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invertible” and prove that they are zero prime. We use the invertible subse-
quence map to derive the polynomial inverse matrix together with a set of
pseudo-inverses (inverses with delay) and show that these computations can
be performed using elementary operations on the ground field without using any
polynomial operations.

2 Preliminaries

Let R = Fq [z1, . . . , zm] be a polynomial ring in m variables over a finite field
F with q elements. Let G(z) ∈ Rk×n be a rectangular polynomial matrix with
k rows and n columns, (k < n), having elements in R. We use the short form
notation z to represent the m variables z1, . . . , zm.

Definition 1. Let G(z) ∈ Rk×n be of rank k. Let M be the set of full-size
minors of G(z) and let I denote the ideal generated by M. The matrix G(z) is
said to be (a) left factor prime LFP if whenever G(z) is factored as a product
G(z) = T (z)G1(z) with T (z) ∈ Rk×k and G1(z) ∈ Rk×n, then determinant of
T (z) is a unit in R, (b) minor prime MP if the elements of M have no common
divisors in R except for units, and (c) zero prime ZP if I = R.

These primeness notions apply as follows [2].

Theorem 1. For m = 1, ZP≡MP≡LFP. For m = 2, ZP�≡MP≡LFP. For m ≥
3, ZP�≡MP�≡LFP. Always, ZP⇒MP⇒LFP.

Definition 2. A delay-free polynomial inverse of G(z) is a matrix G(z)−1 ∈
Rn×k such that G(z)G(z)−1 = I, where I is the identity matrix. A matrix
G(z)−1

(d1,...,dm) ∈ Rn×k is a polynomial inverse with delay or pseudo-inverse for

G(z) if G(z)G(z)−1
(d1,...,dm) = zd1

1 · · · zdm
m I. The exponent di > 0 is considered to

be the delay of the zith variable.

The proof of the following theorem using the Quillen-Suslin theorem and the
Cauchy-Binet formula can be found in [3].

Theorem 2. A matrix G(z) ∈ Rk×n has a delay-free polynomial inverse if and
only if it is ZP.

It is well known, see for example [7,8], that there is an F-isomorphism between the
multivariate polynomial ring R and the multidimensional (m-D) finite sequence
space

S = {ω : Nm → Fq} , (1)

where elements of F are attached to the coordinates (i1, . . . im) of the m-D pos-
itive integer lattice Nm. Here ω has finite support, that is ω(i1, . . . im) = 0 for
all but finitely many points (i1, . . . im) ∈ Nm. The isomorphism is defined as

ψ : S −→ R

ω �→ ∑
(i1,...,im)

ω (i1, . . . , im) zi1
1 · · · zim

m . (2)
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The coordinates of Nm are associated with monomials of R via the correspon-
dence (i1, . . . , im) ↔ zi1

1 · · · zim
m and an element of F at the coordinate (i1, . . . , im)

becomes the coefficient of the monomial zi1
1 · · · zim

m .
When there is more than one element of F attached to each coordinate of Nm,

we have the F-isomorphism

ψn : Sn −→ Rn

(ω1, . . . ,ωn) �→ (
ψ (ω1) , . . . ,ψ (ωn)

) . (3)

Let G(z) ∈ Rk×n be a polynomial matrix having elements g(z)(y)
x ∈ R. The

m-D sequence space representation of G(z) using the transformation

ψ−1(g(z)(y)
x

)
= g(y)

x , (4)

gives us the sequence generator G ∈ Sk×n with elements g(y)
x ∈ S.

G(z) =

⎡⎢⎢⎣
g(z)(1)1 , . . . , g(z)(n)

1
...

g(z)(1)k , . . . , g(z)(n)
k

⎤⎥⎥⎦ ψ−1

−−−→ G =

⎛⎜⎜⎝
g
(1)
1 , . . . , g

(n)
1

...
g
(1)
k , . . . , g

(n)
k

⎞⎟⎟⎠ (5)

Operations in R involving polynomial multiplication can be replaced by dis-
crete convolution in S. LetMi be the largest exponent of the zith variable among
the monomials of the polynomial entries g(z)(y)

x of G(z). The sequence g(y)
x of

G will be of length Mi + 1 along the ith dimension of the sequence space. The
output sequence v ∈ Sn corresponding to an input sequence u ∈ Sk is given by

v = u ∗G (6)

v(1) = u(1) ∗ g(1)
1 + · · · + u(k) ∗ g(1)

k

...

v(n) = u(1) ∗ g(n)
1 + · · · + u(k) ∗ g(n)

k .

The sequences v(1), . . . , v(n) are multiplexed to form the output sequence v ∈ Sn.
The convolution operation u(x) ∗ g(y)

x implies that for all (i1, . . . , im) ≥ 0,

v
(y)
(i1,...,im) =

Mm∑
lm=0

· · ·
M1∑

l1=0

u
(x)
((i1−l1),...,(im−lm))g

(y)
x(l1,...,lm), (7)

where addition and multiplication is performed in Fq and

u
(x)
((i1−l1),...,(im−lm)) � 0 ∀ ir < lr.

For the isomorphism ψ : S → R, since the transformation is discrete convolu-
tion in the domain S and polynomial multiplication in the range R, the law of
composition is ψ(ω1 ∗ ω2) = ψ(ω1)ψ(ω2).
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3 Local Invertibility

In this section we show that certain polynomial matrices of the form G(z) ∈
Rk×n, when transformed to their sequence space representation G ∈ Sk×n, have
a subsequence map between their input (Sk) and output (Sn) sequence spaces.
We prove that the sequence generator G has an inverse if the subsequence map
is invertible. We use the inverse subsequence map to obtain the inverse sequence
generator G−1 ∈ Sn×k, which can then be transformed using the map ψ into
the inverse polynomial matrix G(z)−1 ∈ Rn×k.

3.1 Sequence Ordering

A m-D sequence space S is defined (1) as having finite support with elements of
F attached to the coordinates (i1, . . . , im) of the m-D positive integer lattice Nm.
There is no restriction on the way in which elements of F are ordered at each
coordinate of the lattice. For values of m > 1, one has the option of ordering
the input symbols in Sk and the output symbols in Sn along the m axes of their
respective sequence spaces. This gives rise to the possibility of having different
choices of sequence space ordering. For a given polynomial matrix G(z) ∈ Rk×n,
since input sequences in Sk have k symbols and output sequences in Sn have n
symbols of F attached to each coordinate of their respective lattices, the rate k

n
is a natural candidate to predefine sequence space ordering. We formalize this
notion of sequence space ordering based on the rate k

n as follows.

Definition 3. For a given polynomial matrix G(z) ∈ Rk×n, if the rate k
n is

specified using the notation
k
n =

∏m

i=1
ki

ni
, (8)

then,
∏m

i=1 ki defines the ordering of the input sequence and
∏m

i=1 ni defines the
ordering of the output sequence. The input sequence is ordered by attaching ki

symbols, and the output sequence is ordered by attaching ni symbols, to each
coordinate of the lattice Nm along the ith dimension of their respective sequence
spaces.

3.2 Subsequence Mapping

Since we are dealing with rectangular matrices (n > k), the output sequence
v ∈ Sn obtained from v = u ∗ G, will be larger (have more symbols) than the
input sequence u ∈ Sk. Local invertibility finds an invertible map, if one exists,
between subsequences of the input and output sequence.

We begin this construction by letting G(z) ∈ Rk×n be any polynomial matrix,
not necessarily ZP, not even of full row rank. Let the rate k

n be factored as∏m
i=1

ki

ni
to predefine a sequence ordering of

∏m
i=1 ki in Sk and

∏m
i=1 ni in Sn as

described in Definition 3. Let G ∈ Sk×n be the equivalent sequence generator
of G(z). The condition u

(x)
((i1−l1),...,(im−lm)) � 0 ∀ ir < lr in (7) implies that

the boundaries of the input sequence u ∈ Sk have to be padded with kiMi
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zeros in the ith dimension. Now consider the production of output symbols in
each dimension during the convolution operation as shown in Table 1. The first
ki(Mi + 1) input symbols (which include kiMi padded zeros and ki valid input
symbols) produce ni output symbols in the ith dimension. In the next iteration

Table 1. Subsequence Mapping

Iteration Input Output
1 ki(Mi + 1) ni

2 ki(Mi + 2) 2ni

3 ki(Mi + 3) 3ni

· · ·
j ki(Mi + j) jni

ki additional input symbols produce ni additional output symbols and so on. If
we require the number of input and output symbols to be equal, we set

ki(Mi + j) = jni , (9)

for the jth iteration. Solving for j and substituting back in ki(Mi + j) or jni

gives us

wi =
kiniMi

ni − ki
. (10)

The quantity wi is called the subsequence mapping length and is interpreted as
follows: Even though output sequences are always larger than their corresponding
input sequences, given a reference coordinate of (l1, . . . , lm), a subsequence of
wi symbols starting at li of an input sequence in Sk will map to a subsequence
of wi symbols starting at li of its corresponding output sequence in Sn along
the ith dimension. The total number of symbols in this equal sized subsequence
map between the input and output sequence is

w =
∏m

i=1
wi. (11)

For example we have row vector subsequences of size w1 in 1-D, rectangular
subsequences of size w1 × w2 in 2-D, cuboid subsequences of size w1 × w2 × w3
in 3-D, orthotope (hypercube) subsequences of size

∏m
i=1 wi in m-D and so on.

Remark 1. If the parameters ni, ki and Mi are such that wi in (10) is not a
positive integer, then a subsequence map of equal length will not exist. This
requirement restricts the use of this technique to matrices whose rate k

n can be
factored such that ni > ki in each dimension. Furthermore, even if ni > ki, the
factorization should be such (ni − ki) | ki, or (ni − ki) | ni, or (ni − ki) | Mi.

We will now proceed to find out if this subsequence map is invertible. Consider
a set of w, m-D standard basis input subsequences br ∈ Sk, each of size

∏m
i=1 wi
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with order
∏m

i=1 ki. Let ĝr ∈ Sn be the corresponding m-D output subsequences
of equal size

∏m
i=1 wi with order

∏m
i=1 ni obtained using br ∗G.

Sk −→ Sn

br �→ ĝr
(12)

An inverse subsequence map will exist only if (12) is injective. Since S is isomor-
phic to R, linear independence of sequences in S implies that they are linearly
independent both F-linearly and with respect to shifts. Here, we are only look-
ing for symbol-wise linear independence “within” the subsequence map. This
can easily be done by serializing the m-D output subsequence map into 1-D
sequences and performing elementary row or column operations on them in F.
A m-D sequence can be serialized (or unfolded) into a 1-D sequence in many
ways. For example it can be unfolded in row-major form, column-major form
or by following the path traced by a space-filling curve as it passes through the
points of the m-D lattice and so on. The choice of the unfolding technique is not
important as long as it is bijective and one is consistent when folding (17) the
1-D sequence back into a m-D sequence. We denote unfolding with the following
bijective operator.

Uf : Nm −→ N1 (13)

The inverse subsequence map is found as follows: Each ĝr (12) of size
∏m

i=1 wi

and order
∏m

i=1 ni is unfolded into a 1-D sequence gr of length w and order n.

Uf (ĝr) = gr (14)

A w × w reduced encoding matrix Ĝ is constructed by using each gr as a row.

Ĝ = [g1, . . . ,gw]T (15)

The inverse of Ĝ (if one exists) can be found using elementary operations in F.

Ĝ−1 = [p1, . . . ,pw]T (16)

The rows of the inverse reduced encoding matrix Ĝ−1 represent the inverse sub-
sequence map. Each 1-D sequence pr of length w and order k is folded back into
a m-D subsequence p̂r of size

∏m
i=1 wi and order

∏m
i=1 ni using

U−1
f (pr) = p̂r , (17)

to obtain the inverse subsequence map

Sn −→ Sk

cr �→ p̂r
. (18)

The cr ∈ Sn (18) are m-D standard basis output subsequences, each of size∏m
i=1 wi with order

∏m
i=1 ni.

Definition 4. A polynomial matrix G(z) ∈ Rk×n is said to be locally invertible
if it has a nonsingular reduced encoding matrix.
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Since the subsequence map (12) is constructed using a standard basis as input,
it can be used to obtain an output subsequence corresponding to any input
subsequence. Let ui ∈ F be the w symbols that make up an input subsequence
û ∈ Sk of size

∏m
i=1 wi. The standard basis input subsequences in (12) can be

used to represent û as

û = u1b1 + u2b2 + · · · + uwbw. (19)

The corresponding output subsequence v̂ ∈ Sn of size
∏m

i=1 wi is given by

v̂ = u1ĝ1 + u2ĝ2 + · · · + uwĝw. (20)

Let vi ∈ F be the w symbols that make up v̂. The standard basis output subse-
quences in (18) can be used to represent v̂ as

v̂ = v1c1 + v2c2 + · · · + vwcw. (21)

Now, the input subsequence û can be recovered from the output subsequence v̂
using the inverse subsequence map. That is,

û = v1p̂1 + v2p̂2 + · · · + vwp̂w. (22)

We started this construction by letting G(z) be any polynomial matrix. Next
we show that if the reduced encoding matrix is nonsingular then G(z) is not
only of full row rank but also ZP.

Theorem 3. Let G ∈ Sk×n be a sequence generator with an invertible subse-
quence map of size

∏m
i=1 wi between its input and output sequences. Then, G has

a delay-free sequence inverse G−1 ∈ Sn×k, such that G ∗G−1 = I ∈ Sk×k.

Proof. It is sufficient to show that every input sequence u ∈ Sk can be recovered
free of delay from its corresponding unique output sequence v = u∗G ∈ C ⊂ Sn.

Since G has an subsequence map of size
∏m

i=1 wi, any input sequence u ∈
Sk can be constructed from overlapping subsequences û ∈ Sk of size

∏m
i=1 wi

that are shifted by ki symbols in the ith dimension. The corresponding output
subsequences v̂ ∈ Sn of size

∏m
i=1 wi (obtained from (20)) can be overlapped by

shifting by ni symbols in the same dimension to construct the output sequence
v ∈ C.

If the sequence generator map is not injective, then there exist sequences u1 �=
u2 ∈ Sk such that u1 ∗G = u2 ∗G = v ∈ C. If this is true, then there exist input
subsequences û1 �= û2 of size

∏m
i=1 wi that map to the same subsequence v̂ of size∏m

i=1 wi of the output sequence v. This is a contradiction to the statement that
the subsequence map is invertible, and we conclude that the sequence generator
map is injective.

Any output sequence v can be constructed from overlapping subsequences
v̂ ∈ Sn of size

∏m
i=1 wi that are shifted by ni symbols in the ith dimension. The

corresponding input subsequences û ∈ Sk of size
∏m

i=1 wi (obtained from (22))
can be overlapped by shifting by ki symbols in the same dimension to reconstruct
the input sequence u ∈ Sk. The injective mapping and delay-free inversion of
output sequences using the invertible subsequence map of the sequence generator
G completes the proof. ��
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Theorem 3 shows that subsequence (local) invertibility implies global invertibil-
ity. From the F-isomorphism defined in (2) follows immediately

Corollary 1. A locally invertible polynomial matrix is ZP.

Proof. If G(z) is a locally invertible polynomial matrix, then it has an invertible
subsequence map defined by its nonsingular reduced encoding matrix. Then from
Theorem 3, equation (2), and Theorem 2 it follows that G(z) is ZP. ��

3.3 The Reduced Encoding Matrix

The reduced encoding matrix defined in (15) can be formed by inspection. Since
a standard basis subsequence is used as an input in the subsequence map (12),
the output subsequences will just contain elements of the sequence generator.
The structure of the reduced encoding matrix depends on the ordering of the
sequence space (8) and the unfolding technique (13) used to form its rows. To
see this we first need to establish the following representation.

When k > 1, the sequences g(y)
x ∈ S of G from (5) can be represented in a

composite form, where, for a fixed y each g
(y)
x ; x = 1 to k is multiplexed into a

single sequence, ki symbols at a time along the ith dimension.

Gc =
{
g(1), . . . , g(n)

}
(23)

The ordering of the composite sequences g(y) ∈ Sk is now consistent with the
ordering

∏m
i=1 ki of the input sequence space Sk. Since the sequences g(y)

x are
of length of Mi + 1 symbols in the ith dimension, the length of the composite
sequence g(y) along that dimension is Li = ki(Mi + 1).

Definition 5. A sequence s ∈ Sl with order l =
∏m

i=1 li is said to be in reverse
composite form R(s) when it is reversed li symbols at a time along each of its
dimensions.

Let ζ + R(g(y)) be the symbol wise addition of an all-zero sequence ζ ∈ Sk of
size

∏m
i=1 wi and the composite generator sequence g(y) ∈ Sk of size

∏m
i=1 Li in

reverse composite form. Row-major unfolding of a sequence in Sk of finite size∏m
i=1 ti with order

∏m
i=1 ki is defined as

Ufr : Nm −→ N1

(i1, . . . , im) �→ i1 +
m−1∑
j=1

ij+1

j∏
l=1

tl

kl
.

(24)

In equation (12) since a standard basis is used as input, the output sub-
sequences ĝr will just contain symbols of the sequences g(y)

x . If the standard
basis sequences br ∈ Sk in (12) are labeled in row-major form and if the corre-
sponding ĝr in (14) are unfolded into 1-D sequences using row-major unfolding
Ufr(ĝr) = gr to form “rows” of the matrix Ĝ as described in (15), then the
resulting “columns” of Ĝ will be shifts of the 1-D sequences

Ufr

(
ζ + R(g(y))

)
. (25)
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The values m, ki and wi determine the amount by which the columns are shifted
and the reduced encoding matrix Ĝ will have an elegant nested structure as
described below.

The w × w reduced encoding matrix Ĝ has 1 + wm−Lm

km
columns made up of

the matrix Ĝm−1, with the jth column shifted down by (j−1)km

∏m−1
i=1 wi rows.

Ĝ =

⎡⎢⎢⎢⎢⎢⎢⎣
Ĝm−1... Ĝm−1... . . .

Ĝm−1...

⎤⎥⎥⎥⎥⎥⎥⎦ (26)

Similarly, for values of x ranging from (m − 1) to 2, the matrix Ĝx consists of
1 + wx−Lx

kx
columns made up of the matrix Ĝx−1, with the jth column shifted

down by (j − 1)kx

∏x−1
i=1 wi rows.

Ĝx =

⎡⎢⎢⎢⎢⎢⎢⎣
Ĝx−1... Ĝx−1... . . .

Ĝx−1...

⎤⎥⎥⎥⎥⎥⎥⎦ (27)

The matrix Ĝ1 has 1 + w1−L1
k1

columns made up of the matrix Ĝ0, with the jth
column shifted down by (j − 1)k rows.

Ĝ1 =

⎡⎢⎢⎢⎢⎢⎢⎣
Ĝ0... Ĝ0... . . .

Ĝ0...

⎤⎥⎥⎥⎥⎥⎥⎦ (28)

The fundamental matrix Ĝ0 has n columns consisting of the 1-D sequences
defined in (25). That is,

Ĝ0 =
[
Ufr

(
ζ + R(g(1))

)
, . . . , Ufr

(
ζ + R(g(n))

)]
. (29)

To summarize, the w × w reduced encoding matrix Ĝ is made up of m nested
column-matrices. The columns of these nested matrices are in turn just shifts of
the 1-D sequences Ufr

(
ζ + R(g(y))

)
.

Remark 2. The property of local invertibility can be used to construct ZP poly-
nomial matrices. For given values of n, k, m and Mi, if there exists a sequence
space ordering of

∏m
i=1 ki and

∏m
i=1 ni that yields a positive integer valued sub-

sequence mapping length of wi along each dimension, then one can construct the
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fundamental matrix Ĝ0 shown in (29) using randomly generated 1-D vectors of
the form a(y) = Ufr

(
ζ + R(g(y))

)
. That is,

Ĝ0 = [a(1), . . . , a(n)].

If the resulting reduced encoding matrix (26) inverts, then by Corollary 1 the
polynomial matrix G(z) obtained using

U−1
fr (a(y)) → ζ + R(g(y)) → ψk(g(y)) → g(z)y

x ,

will be ZP.

3.4 Polynomial Inverses

In Section 3.2 we saw that if the polynomial matrix G(z) ∈ Rk×n is locally
invertible, then, the transformation from Sn to Sk can be performed using the
inverse subsequence map. In this section we derive the inverse sequence generator
G−1 ∈ Sn×k from the inverse reduced encoding matrix and transform it using
the map ψ to obtain the inverse polynomial matrix G(z)−1 ∈ Rn×k.

The subsequence inversion in (22) can be performed using matrix multiplica-
tion with the inverse reduced encoding matrix (16) as follows

û = U−1
f

(Uf (v̂)Ĝ−1). (30)

When the subsequence inversion is viewed as shown above, each symbol attached
to a coordinate of the m-D input subsequence û is obtained by multiplying the 1-
D output subsequence Uf (v̂) with a column g−1

r of the inverse reduced encoding
matrix.

Ĝ−1 = [p1, . . . ,pw]T = [g−1
1 , . . . ,g−1

w ] (31)

The transformation using the inverse subsequence map produces a (wi − ki)
symbol overlap (see proof of Theorem 3) in each dimension between consecutive
overlapping input m-D subsequences in the input sequence space Sk. The w− k
columns of Ĝ−1 that are responsible for this overlap right-shift the symbols of the
input subsequence. The remaining k columns produce non-overlapping symbols
and correspond to the inverse composite sequence generator

G−1
c = {g(1)−1

, . . . , g(k)−1}. (32)

The columns of Ĝ−1 that represent G−1
c depend on the choice of sequence

space ordering and unfolding technique used in the construction of the reduced
encoding matrix. For a given sequence space ordering, if the reduced encod-
ing matrix Ĝ in (15) is constructed using row-major unfolding as described in
Section 3.3, then, the last k columns of Ĝ−1 (31) will correspond to the k non-
overlapping symbols of the m-D input subsequence generated during each step
of the subsequence inversion. Each of these columns have to be folded back into
m-D subsequences and then reversed to obtain the inverse composite generator
sequences g(y)−1

.
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U−1
f (g−1

r ) → R(g(y)−1
) → ψn(g(y)−1

) → g−1(z)
(x)
y

The polynomial representation of G−1
c using the isomorphism ψn gives us the

delay-free polynomial inverse G(z)−1 ∈ Rn×k with elements g−1(z)(x)
y ∈ R.

G(z)G(z)−1 = Ik×k (33)

The remaining w − k columns of Ĝ that are responsible for the overlap, pro-
duce right-shifts of ki along each axis of the m-D input sequence space Sk and
correspond to w−k

k unique pseudo-inverses G(z)−1
(d1,...,dm) ∈ Rn×k, such that

G(z)G(z)−1
(d1,...,dm) = zd1

1 · · · zdm
m Ik×k , (34)

with 0 ≤ di ≤ wi−ki

ki
and

∑m
i=1 di �= 0. The exponent di can be considered as

the delay in the ith dimension.

Example 1. Let R = F2[z1, z2] and G(z) ∈ R2×6 with M1 = 2 and M2 = 1.

G(z)=
[
z2
1z2 0 z2 z2

1 1 0
0 1+z2

1z2 0 z1z2 z1 1+z2
1+z2

]
The 2-D sequence generator G ∈ S2×6 transformed using ψ−1 is

G =

⎛⎜⎜⎝
0 0 0
0 0 1,

0 0 0
0 0 0,

0 0 0
1 0 0,

0 0 1
0 0 0,

1 0 0
0 0 0,

0 0 0
0 0 0

0 0 0
0 0 0,

1 0 0
0 0 1,

0 0 0
0 0 0,

0 0 0
0 1 0,

0 1 0
0 0 0,

1 0 1
1 0 0

⎞⎟⎟⎠
If we factor the rate 2

6 as 1
2 × 2

3 to predefine an ordering of
∏2

i=1 ki = 1 × 2 in
S2 and

∏2
i=1 ni = 2 × 3 in S3, then, the subsequence mapping lengths along i1

and i2 are
w1 = 1×2×2

2−1 = 4, w2 = 2×3×1
3−2 = 6.

The set of w = 24 standard basis input subsequences br ∈ S2, each of size 4 × 6
with order 1 × 2 map to output subsequences ĝr ∈ S6 of size 4 × 6 with order
2 × 3 as shown below.

b1 ĝ1 b2 ĝ2 b3 ĝ3 b24 ĝ24
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

�→

10 00
00 00
00 00
00 00
00 00
00 00

,

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

�→

01 00
00 00
00 00
00 00
00 00
00 00

,

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

�→

00 10
00 00
00 00
00 00
00 00
00 00

, · · · ,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

�→

00 00
00 00
00 00
00 01
00 00
00 01

Each 2-D output subsequence is unfolded Ufr(ĝr) = gr to form a row of Ĝ =
[g1, . . . ,g24]T . Because row-major unfolding is used, the resulting Ĝ shown in
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0
0 0 0 0 0 1

0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0
0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Ĝ24×24:The rows are 1-D sequences
in S6 with order 2×6 and the columns
are 1-D sequences in S2 with order 1×2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) Ĝ−1

24×24:The rows are 1-D sequences
in S2 with order 1×2 and the columns
are 1-D sequences in S6 with order 2×6

Fig. 1. The reduced encoding matrix and its inverse (blanks denote zeros)

Fig. 1(a) has the nested structure defined in Section 3.3. Since the reduced
encoding matrix is nonsingular (the inverse is shown in Fig. 1(b)), the polynomial
encoder G(z) is locally invertible. The last k = 2 columns g−1

23 and g−1
24 of

Ĝ−1 = [g−1
1 , . . . ,g−1

24 ] correspond to the inverse composite sequence generator

G−1
c = {g(1)−1

, g(2)−1} = {R(U−1
fr (g−1

23 )), R(U−1
fr (g−1

24 ))}.

The delay-free inverse G(z)−1 is obtained by folding these columns and reversing
them n1 = 2 and n2 = 3 symbols at a time as shown in Fig. 2. The remaining
w−k = 22 columns of Ĝ−1 produce forward shifts of k1 = 1 and k2 = 2 along the
i1 and i2 dimensions of the input sequence space and correspond to w−k

k = 11
pseudo-inverses G(z)−1

(d1,d2)
shown in Fig. 3.

U−1
fr (g−1

23 ) g(1)−1

00 00
00 01
01 10
01 10
00 10
00 10

→

00 00
01 00
10 01
10 01
10 00
10 00

→

10 01
10 00
10 00
00 00
01 00
10 01

ψ6

→

⎡⎢⎢⎢⎢⎢⎢⎣
1
z1
1
z2

1 + z2
z1z2

⎤⎥⎥⎥⎥⎥⎥⎦
,

U−1
fr (g−1

24 ) g(2)−1

00 00
00 00
10 00
00 01
10 00
00 00

→

00 00
00 00
00 10
01 00
00 10
00 00

→

01 00
00 10
00 00
00 00
00 00
00 10

ψ6

→

⎡⎢⎢⎢⎢⎢⎢⎣
0
1
z1
0

z1z2
0

⎤⎥⎥⎥⎥⎥⎥⎦
Fig. 2. Extracting the delay-free inverse from the inverse reduced encoding matrix
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G(z)−1
G(z)−1

(1,0) G(z)−1
(2,0) G(z)−1

(3,0) G(z)−1
(0,1) G(z)−1

(1,1)⎡⎢⎢⎢⎢⎢⎢⎣
1 0
z1 1
1 z1
z2 0

1+z2 z1z2
z1z2 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
z1 1

1+z2 z1
z1 1

z1z2 z2
z1+z1z2 z2

1 z1z2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 z1
0 1+z2
1 z1
1 z1z2
z2 z1z2
0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 1
0 z1
z1 0
z1 z2

z1z2 0
0 z1+z1z2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 z1
0 z2
1 0
0 z1z2
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 0
0 0
z1 1
0 0
0 z2
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

G(z)−1
(2,1) G(z)−1

(3,1) G(z)−1
(0,2) G(z)−1

(1,2) G(z)−1
(2,2) G(z)−1

(3,2)⎡⎢⎢⎢⎢⎢⎢⎣
1 0
0 0
0 z1
0 0
0 z1z2
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
z1 1
0 0
0 1
0 z2
0 z2
0 z1z2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 z1
0 z2
z2 z1
0 z1z2
0 z1z2
0 z2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 1
0 0

z1z2 0
0 z2
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
z2 z1
0 0
0 0
0 z1z2
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
z1z2 0

0 z1z2
0 1
0 0
0 z2
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 3. The polynomial representation of the inverse reduced encoding matrix

Example 2. This example demonstrates the construction of a ZP polynomial
matrix using local invertibility as suggested in Remark 2. Let m = 3, k = 1,n = 8
and M1 = M2 = M3 = 2. In the interest of simplifying the illustration in Fig. 4
we assume F = F2.

If we factor the rate k
n = 1

8 as 1
2 × 1

2 × 1
2 to predefine input sequence ordering

as
∏3

i=1 ki = 1×1×1 and output sequence ordering as
∏3

i=1 ni = 2×2×2, then
the subsequence mapping lengths along i1, i2 and i3 are w1 = w2 = w3 = 4.

Consider the reduced encoding matrix Ĝ64×64 shown in Fig. 4 constructed
using n = 8, randomly generated 1-D sequences of the form a(y) = Ufr(ζ +
R(g(y))). Here ζ is a all-zero 3-D subsequence of size

∏3
i=1 wi = 4 × 4 × 4 in S1

and g(y) is a element of Gc of size
∏3

i=1 Li = 3×3×3, where Li = ki(Mi+1) = 3.

If Ĝ is nonsingular (it is in this case) the polynomial matrix G(z) ∈ R1×8

obtained from the 1-D sequences a(y) will be ZP.

a(1) = [100(0)000(0)000(00000)110(0)000(0)000(00000)000(0)000(0)000]T

The zeros in braces represent blanks in the reduced encoding matrix.

U−1
fr (a(1)) = ζ + R(g(1)) R(g(1)) g(1)

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

i3 = 0 i3 = 1 i3 = 2

→
1 0 0
0 0 0
0 0 0

,
1 1 0
0 0 0
0 0 0

,
0 0 0
0 0 0
0 0 0

i3 = 0 i3 = 1 i3 = 2

→
0 0 0
0 0 0
0 0 0

,
0 0 0
0 0 0
0 1 1

,
0 0 0
0 0 0
0 0 1

i3 = 0 i3 = 1 i3 = 2

↓ψ1

z1z
2
2z3 + z2

1z
2
2z3 + z2

1z
2
2z

2
3
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. 3-D reduced encoding Matrix Ĝ64×64 (blanks denote zeros)

Since k = 1, there is no multiplexing involved and g(y) = g
(y)
x .

Gc = {g(1), . . . , g(8)} = G = (g(1)
1 , . . . , g

(8)
1 )

The sequence generator G ∈ S1×8 is transformed using the map ψ1 to obtain the
ZP polynomial matrix G(z) ∈ R1×8. Since k = 1, the inverse polynomial matrix
G(z)−1 ∈ R8×1 is obtained from the last column of inverse reduced encoding
matrix.

G(z)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1z
2
2z3 + z2

1z
2
2z3 + z2

1z
2
2z

2
3

z2 + z2
2z

2
3

z2
1z

2
2 + z1z2z3 + z2

1z2z3 + z2
1z2z

2
3

z2
2 + z2z

2
3

z2
1z2 + z2z3 + z2

1z
2
3

z2 + z2
3 + z2

2z
2
3

z2
1 + z2

1z
2
2z3 + z2

1z2z
2
3

1 + z2
1z2z3 + z2

2z3 + z2
1z

2
2z

2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

G(z)−1=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2 + z3 + z1z3 + z1z2z3
z2z3 + z1z3 + z1z2z3

z1 + z2z3
z1 + z3 + z1z3 + z1z2z3

z1z2
z1z2 + z2z3 + z1z2z3

z1z2z3
1 + z1z2z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
4 Conclusion

Locally invertible matrices introduced in this paper are a class of rectangular zero
prime multivariate polynomial matrices whose polynomial inverse can be easily
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computed by performing elementary operations in the ground field. We have
shown that for a given m-variate polynomial matrix with k rows and n columns,
if the rate k

n can be factored as
∏m

i=1
ki

ni
such that each wi in (10) is a positive

integer, then, there exists a subsequence map of size
∏m

i=1 wi between its input
and output sequences. The bijectivity of this m-D subsequence map can be tested
by unfolding the output subsequences to form a reduced encoding matrix. If the
reduced encoding matrix is nonsingular then the polynomial matrix is shown
to be zero prime. The polynomial inverse matrix and a set of pseudo-inverses
are then derived from the inverse subsequence map using the inverse reduced
encoding matrix. Since the reduced encoding matrix has a specific structure that
depends on the parameters of the polynomial matrix, it can used as a powerful
tool to construct invertible transformations of any dimension.
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