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Preface

This volume contains refereed papers devoted to coding and cryptography. These
papers are the full versions of a selection of the best extended abstracts accepted
for presentation at the International Workshop on Coding and Cryptography
(WCC 2005) held in Bergen, Norway, March 14-18, 2005. Each of the 118 ex-
tended abstracts originally submitted to the workshop were reviewed by at least
two members of the Program Committee. As a result of this screening process,
58 papers were selected for presentation, of which 52 were eventually presented
at the workshop together with four invited talks.

The authors of the presented papers were in turn invited to submit full ver-
sions of their papers to the full proceedings. Each of the full-version submissions
were once again thoroughly examined and commented upon by at least two
reviewers. This volume is the end result of this long process.

I am grateful to the reviewers who contributed to guaranteeing the high
standards of this volume, and who are named on the next pages. It was a plea-
sure for me to work with my program co-chair Pascale Charpin, whose experi-
enced advice I have further benefited greatly from during the preparation of this
volume. Discussions with Tor Helleseth and Angela Barbero were also useful in
putting the volume together. Finally, I would like to thank all the authors and
all the other participants of the WCC 2005 for making it in every sense a highly
enjoyable event.

March 2006 @yvind Ytrehus
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Second Support Weights for Binary Self-dual
Codes

Keisuke Shiromoto

Department of Information Systems
Aichi Prefectural University
Nagakute, Aichi 480-1198, Japan
keisuke@ist.aichi-pu.ac. jp

Abstract. In this work, we investigate the second generalized Hamming
weights for binary doubly-even self-dual codes from the point of view of
corresponding t-designs by the Assmus-Mattson theorem. In particular,
for extremal doubly-even self-dual codes, we shall give a bound on the
weights and determine the weights by using the block intersection num-
bers of corresponding t-designs. Moreover we study the support weight
enumerators for binary doubly-even self-dual codes and determine the
second support weight enumerators for binary extremal doubly-even self-
dual codes of length 56 and 96.

1 Introduction

Generalized Hamming weights for linear codes over finite fields were introduced
by Wei as an application in keyless cryptography ([16]). He also gave the char-
acterization of the performance of a linear code on the wire-tap channel II from
its weight hierarchy. The support weight enumerators for linear codes over finite
fields were first introduced in [5] as a generalization of the Hamming weight
enumerators, and many researchers have investigated the generalized Hamming
weights for various classes of linear codes (e.g. [15]).

As for the self-dual codes, Dougherty and Gulliver determined the second and
third generalized Hamming weights for binary self-dual codes of length up to 28
and of length 48 and 72 in [3]. Milenkovic, Coffey and Compton ([11]) determined
the third support weight enumerator for binary extremal doubly-even self-dual
codes of length 32. Chen and Coffey ([2]) studied the connection between the
trellis structures and the generalized Hamming weights of some binary extremal
self-dual codes.

The purpose of this work is to study the second generalized Hamming weights
for binary extremal doubly-even self-dual codes. For that purpose, we first con-
sider t-designs obtained from the codes by the Assmus-Mattson theorem. By
investigating the block intersection numbers of these ¢-designs, we shall give a
bound on the weights and determine the weights for some extremal self-dual
codes.

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 1-13, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 K. Shiromoto

2 Notation and Terminology

Let C be an [n,r] code over a finite field I, of ¢ elements. For a vector x =
(x1,...,2,) € Fy and a subset D C IFZ, we define the support of x, the support
of D, and the Hamming weight of x respectively as follows:

supp(e) = {i | z; # 0},
Supp(D) = | supp(=),
zeD
wt(z) = |supp()|.
We denote the set of [n,m] subcodes of C' by D,,,(C). For each g, 1 < g <,

the g-th generalized Hamming weight (GHW) dg4 of C' is defined by Wei ([16]) as
follows:

dy = dy(C) = min{[Supp(D)| : D € D, (C)}.

In particular, if ¢ = 1, then dy; = d is the minimum Hamming weight of C'. And
the following bound is known (cf. [16]):

(¢" = dr—1(C) < (¢" — q)d,(C). (1)

For each g, 1 < g <r, the g-th support weight enumerator of C' is defined as

Wég)(ax,y)z Z xn*ISupp(D)lyISUPp(D)I
DeDy(C)

— Zn:AEg)Infiyi7
=0
where
AP =|{D € Dy(C) : [Supp(D)| = i}|.

In particular, if » = 1, then Wél)(ac, y) + 1= We(z,y) is the Hamming weight
enumerator of C' and Agl) =A4,(C)=A;, i =1,2,...,n is the Hamming weight
distribution of C.

Let C* be the dual code of C. A self-dual code C is an [n,n/2] code such
that C = C*. If C is a binary code and the Hamming weights of all codewords
of C are divisible by 4, C is called a doubly-even code. It is well-known that the
length of any binary doubly-even self-dual code is divisible by 8. The following
bound is the most famous bound on the minimum Hamming weight for binary
[n,n/2,d] doubly-even self-dual code C ([9], [8]):

n
4.
24J +

If C meets the bound, that is, d = 4|n/24| + 4, then C is called an extremal
code.

d§4[
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A t-(v,k, N) design is a collection B of k-subsets (called blocks) of a set V of v
points, such that any t-subset of V' is contained in exactly A blocks. For t-(v, k, \)
design (V, B), there are

AGZ2)

k—s
(t—s)
blocks in B that contain all the points in any s-subset of V, 0 < s < ¢. In [1],

Assmus and Mattson proved the following theorem, which is called the Assmus-
Mattson Theorem.

As =

Theorem 1. Let C be an [n,r,d] code over F,, and let d* denote the minimum
Hamming weight of C+. Let w = n when q¢ = 2 and otherwise the largest integer

w satisfying
-2
w — (w—l—q ) <d,
qg—1

defining w similarly. Suppose there is an integer t with 0 < t < d that satisfies
the following condition: the number s of i (1 <i < n —t) such that A} # 0 is
at most d —t. Then for each i with d < i < w, the supports of codewords in C
of weight i, provided there are any, yield a t-design. Similarly, for each j with
d*+ < j < min{w", s}, the supports of codewords in C* of weight j, provided
there are any, form a t-design.

As a consequence of the above theorem, the binary doubly-even self-dual codes
hold ¢-designs (cf. [6]).

Theorem 2. Let C be a binary [24m + 8u, 12m + 4u, 4m + 4] extremal doubly-
even code for p = 0,1 or 2. Then the supports of codewords in C' of any fixed
weight except 0 hold t-designs for the following parameters:

(a) t=5ifu=0and m>1,
(b) t=34fpu=1and m >0, and
(¢) t=14fp=2and m>0.

3 Second Support Weights for Extremal Codes
For a binary [n,r] code C and its [n, 2] subcode D = {0, z,y,x + y}, we have

|Supp(D)| = [supp(x) Usupp(y) Usupp(z + y)| = [supp(z) U supp(y)|.

Thus we have that

d2(C) = min{|supp(x) Usupp(y)| : =,y € C'\ {0}, = # y}.

Let C be a binary [n,n/2,d = 4|n/24] + 4] doubly-even self-dual code. For
C,set V. =1{1,2,...,n} and let Bo = B be the set of the supports of all the
codewords of weight d in C. From Theorem 2, we see easily that (V,B) is a
t-(n,d, A = Aq (?)/(?)) design. For any two codewords x,y € C, since the inner
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product @ - y is 0 in Fy, the intersection between supp(x) and supp(y) should
be even. For a block B € B, we denote mfj by the number of blocks in B which
intersect B with 2j elements. We sometimes simply denote mo; for mQBj when
the numbers are independent of the choice of a block B. The system of equations
was proved in [10] for ¢t = 1,3 or 5 (see also [14] and [4]):

/2

> (ij)mi = As<‘j> (s=0,1,...,0).

=0

For any of two distinct codewords x,y € C' of weight d,

wt(x +y) = wt(x) + wt(y) — 2[supp(x) N supp(y)|
= 2d — 2[supp(z) N supp(y)| > d.

We have that [supp(z) N supp(y)| < d/2 and thus mg; = 0 for j = d/4 +
1,...,d/2 — 1 and mZ = 1. Therefore it follows immediately from the above
system of equations:

/4

3 (28j>m23j — (- 1)(;1) (s=0,1,....1). @)

J=0

Let m(C) be the size of the largest intersection between any two blocks,
that is,
m(C) = max{2j € {0,2,...,d/4} : m3; #0, B € B}.

From the above argument and the bound (1), we have the following bounds
on the second generalized Hamming weights for binary extremal doubly-even
self-dual codes.

Theorem 3. Let C be a binary [n,n/2,d = 4|n/24| + 4] doubly-even self-dual
code C'. Then we have that

n

GVJJFGSd?(C)SszL

o |+8-m(©),

We set that B = {Bj, Bs,...,Ba,}. The intersection matriz of C' on weight
d is defined by the A4 x A4 matrix M = (m; ;) such that

m;; = 2a if |B;N B;| =2a, a=0,1,...,d/2.

We note that the matrix M is a symmetric matrix, every ith row of M contains
exactly mi"' 72t”s and all of the diagonal elements are d. For example, let C be
a binary [8,4, 4] doubly-even self-dual code having generator matrix:

10001110
01001101
00101011
00010111

G:
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Then the supports of all codewords of weight 4 form a 3-(8,4,1) design. From
the system of equations (2), we have that mg = 1 and mg = 12. Therefore the
intersection matrix M of C is as follows:

[42222222222022]
24222222220222
22422222202222
22242222022222
22224220222222
22222402222222
22222042222222
22220224222222
22202222422222
22022222242222
20222222224222
02222222222422
22222222222240

122222222222204

Define the set A, as follows:
Ag:{SQV : ‘S|:S, SZBZ‘UB]‘, Bi,Bj € B, BZ#B]}

Using the intersection matrix of a binary extremal doubly-even self-dual code,
we have the following theorems.

Theorem 4. Let C be a binary [n,n/2,d = 4|n/24] + 4] doubly-even self-dual
code. If mo,m1,...,mgyse are uniquely determined by the system of equations
(2), then

(a) |Azg—2q| = Aaman/2 if a=1,...,d/4—1, and
(b) ‘A2d—20¢‘ = Admza/6 ifa = d/4

Proof. From the intersection matrix of C, for any a, o = 1,...d/4, the number
of all the pairs of two distinct blocks whose intersection is 2« points is Agmaq /2.

We first consider the case (a) and show that every union of two distinct blocks
whose intersection is 2cv points is different from others fora =1,...d/4—1. We
assume that there exist distinct blocks By, Ba, B3, B4 € B such that | By N Ba| =
|Bs N By| = 2a and By U By = B3 U By. Let A be the set of the intersection of
Bs and Bjy. Since the symmetric difference B1A(B3sABy) is also the support of
a codeword in C,

‘Blﬁ(BSAle” =3d — 4o — 2‘31 N (BgAB4)‘ > d.

Thus we have that d — 2a > |By N (B3AB4)| and so A C B;. Because of
|By N (B; \ A)| > d/2 — « for i = 3 or 4, we have that |B; N B;| > d/2 + a.
Therefore, it follows that

‘BlﬁB,‘ = ‘Bl| + ‘BZ| - 2‘31 ﬂBZ| <d- 2a(< d)
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A contradiction. Therefore the number of cardinality 2d — 2« distinct unions of
two distinct blocks in B is Agmaa /2.

Next we consider the case (b) and show that, for any cardinality 3d/2 union
U of two distinct blocks in B, the number of pairs of two distinct blocks B;
and B; in B with B; U B; = U is three. Let B; and By be two distinct blocks
in B such that |By N Bs| = d/2. Since B = B1AB; is also a block in B and
|By N B| = |Bz N B| =d/2, we have that

Bi1UBy =B UB=ByUB.

Conversely, we assume that there exist two distinct blocks Bs, By € B\ {Bji,
By, B} such that By U By = B3 U By. If B; intersects By with at most d/2 — 2
points, then Bs intersects Bs at least d/2 + 2 and so |[BoAB3| < d — 2. Thus
each Bj, j = 3 and 4, intersects each B;, i = 1 and 2 with d/2 points. Suppose
that |B3 N (B1 N Bz)| = ¢ > 1. Because of |Bs N B1| = |B3 N By| = d/2,
|Bs| = d/2+d/2—c=d— c. A contradiction. So there are no such pairs of two
distinct blocks in B. Therefore the number of cardinality 3d/2 distinct unions of

two distinct blocks in B is Agmg/2/6. O
Theorem 5. Let C' be a binary [n,n/2,d = 4|n/24| + 4] doubly-even self-dual
code. If mo,m1,...,mgyse are uniquely determined by the system of equations
(2), then

2
() AL),(C) = Aamgya/6,
(b) AL ,5(C) = Agmaja_a/2, and
(¢) AZ) , (C) > Agman/2 fora =1,2,...,d/4—2.
Proof. (c) From Theorem 4, there are at least Agma, /2 cardinality 2d — 2«
unions of the supports of two distinct codewords in C for « = 1,2,...,d/4 — 2.

(a), (b) Suppose that there exist two distinct codewords @,y € C such that
wt(x) > d+4, wt(y) > d+4 and |supp(x) Usupp(y)| < 3d/2+ 2. Then we have
that

jsupp(2) (1 5upp(y)| = wil) + wi(y) — fsupp(z) U supp(y)] > § +6.

and so

wt(z + y) = |[supp(z) Usupp(y)| — [supp(x) N supp(y)|
< (3d/2+2)— (d/2+6) =d—4.

Thus we may assume that wt(x) = d, wt(y) = d + 4 and |supp(z) U supp(y)| <
3d/2 + 2. If |supp(x) U supp(y)| = 3d/2 + 2, then wt(x + y) = d and so there
exist two distinct blocks in B whose union is supp(x) U supp(y). If [supp(x) U
supp(y)| = 3d/2, then wt(x + y) = d — 2. Therefore it finds that, for any two
dimensional subcode D of C' such that |Supp(D)| = 3d/2 or 3d/2+ 2, there exist
at least two distinct blocks in B which correspond to the supports of codewords
in D. O
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For a linear code C over [F, having generator matrix G, let C(M) be the linear
code over Fym having generator matrix G. The following equation is proved in
[7] (cf. [13]).

Lemma 6

Wc(m) ($7 y) = Z [m]] Wg) ($7 y)a
§=0
where [m]; = Hz;é(qm -q).

We denote the elements of Fy by 0,1, w, @. For vectors @ = (x1,...,2,),y =
(y1,---,yn) € Fy, the Hermitian inner product between x and y is defined by

(z,y) = Zmy’i,
i=1

where ~is given by 0 = 0,1 = 1 and @ = w. For an [n, k] code C over F,, the
Hermitian dual code is defined by

Ctn ={ycF} : (y,x) =0, for all x € C}.
If C = C*+#, then C is called a Hermitian self-dual code.

Lemma 7. Let C be a binary [n,n/2,d] self-dual code with generator matriz G.
Then C? is an [n,n/2,d] Hermitian self-dual code over Fy.

Proof. Let gq,9g,,...,9,/2 be the rows of G. For any (not necessarily distinct)
two codewords & = Z”:/f ;g Y = Z;ﬁ Big; € C®? a;,3; € Fy for all i and

K3
7, the Hermitian inner product

n/2 n/2
(@,y)=> ailg, Y Big;)
i=1 j=1
n/2 n/2
= Z Z ai/@j<givgj>
i=1 j=1
n/2 n/2
= Z Zaiﬂj(gi ) Qj)
i=1 j=1
is 0 in Fy, where (g, - g;) denotes the inner product in Fy. Thus it finds that

C® C (CP@)Lu. On the other hand, since the dimension of C(2) is also n/2,
we have that |[C(?)| = 47/2. Therefore it follows that C®) = (C®)L#. From
Lemma 6, we have that A;(C®) =-.. = A, 1(C®) =0 and A4(CP) # 0. So
the minimum Hamming weight of C'?) is d. |

The following result is well-known as the Gleason theorem (cf. [12], [6] and [8]).
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Lemma 8. Let C be an [n,n/2] code over F,. Then if ¢ =2 and C is a doubly-
even self-dual code, then

Ln/24]
Weolz,y) = > ai(a®+ 'y + 555 @ty (2 — )",
=0

and if g =4 and C is a Hermitian self-dual code, then

/o]
Weo(z,y) = Y bi(a® +3y°)" > (y* (@ — y*)?),
=0

where the a; and b; are integers.

Proposition 9
1
Wé?) (‘Tv y) = 6 {WC(Z) ((E, y) - 3WC($7 y) + 2} .

Proof. Applying Lemma 6 with ¢ = 2 and m = 2, the equation immediately
follows. U

By combining Lemma 7, Lemma 8 and Proposition 9, we have the following
result.

Theorem 10. If C is a binary [n,n/2] doubly-even self-dual code, then

[n/6]

1 n/2—3i i
W) = 4 D bila® +30°)" 2 R - 7))
=0
Ln/24] , ,
-3 Z ai(ajs_|_14x4y4+y8)n/8—3z(x4y4(x4_y4)4)z+2
1=0

4 Second Generalized Hamming Weights for Some
Extremal Codes

Using the system of the equations (2), we can calculate the block intersection
numbers m,; for some extremal doubly-even self-dual codes of length n. Therefore,
we can also determine the second generalized Hamming weights for these codes
by considering the numbers m(C').

Lemma 11. Let C be a binary [n,n/2,d = 4|n/24] + 4] doubly-even self-dual
code. Then do(C) =6 for n = 8,16 and d2(C) = 12 for n = 24,32.

Proof. See [3], [6] and [2]. ]

Lemma 12. The second generalized Hamming weight for any [40, 20, 8] doubly-
even self-dual code C' is 12.
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Proof. The supports of codewords of weight 12 in C' form a 1-(40, 12, 57) design.
Because of Ay = 285 and A\; = 57, we have that

mg + mo + my = 284
27’)’7,2 + 4m4 = 448,

from the system of equations (2). Suppose that m4 = 0. Then it follows that
msy = 224 and mg = 60. Thus, there are two points v; and vy in a block B such
that at least mg/(g) = 8 blocks of B that intersect B in exactly v; and vy. Since
there are only 40 — 8 = 32 points in V which are not contained in B, at least
two of these blocks intersect in more than two points. Therefore m4 # 0, and so
dz(C) = 12 from Theorem 3. |

Lemma 13. The second generalized Hamming weight for the [48,24,12] doubly-
even self-dual code C' is 18.

Proof. The set of all supports of codewords of weight 12 in C' forms a 5-
(48,12, 8) design. So we can uniquely determine that mo = 630, mo = 8316, m4 =
7425 and mg = 924 # 0 from the system of equations (2). O

Lemma 14. The second generalized Hamming weight for any [56, 28, 12] doubly-
even self-dual code C' is 18.

Proof. The set of all supports of codewords of weight 12 in C forms a 3-
(56,12,65) design. Thus we can uniquely determine that mg = 621, ms =
4800, m4 = 2580 and mg = 188 # 0. O

Lemma 15. The second generalized Hamming weight for any [64, 32, 12] doubly-
even self-dual code C' is 18 or 20.

Proof. The set of all supports of codewords of weight 12 in C' forms a 1-
(64,12,558) design. From the system of equations (2), if mg = 0, then 367 <
my < 1671 since mg > 0 and my > 0. Thus we have that mg # 0 or my £ 0. O

Remark 16. We have not found any code C whose second generalized Ham-
ming weight is 20 by computer search. We still conjecture that da(C) = 18.

Lemma 17. If there exists a [72,36,16] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 24.

Proof. The set of all supports of codewords of weight 16 in C' forms a 5-
(72,16, 78) design. Then we have that mg = 2310 # 0 by the similar argument
to Lemma 13 (see also, [4]). ]

Proposition 18. The second generalized Hamming weight for any [80,40, 16]
doubly-even self-dual code C' is 24 or 26.

Proof. The set of all supports of codewords of weight 16 in C' forms a 3-
(80,16,665) design. Suppose that mg = 0. Then it follows that mo = 3132, mq =
43200, m4 = 40800 and mg = 10432 # 0. Thus we have that mg # 0 or mg # 0.

]
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Lemma 19. The second generalized Hamming weight for any [88,44, 16] doubly-
even self-dual code C' is 24 or 26.

Proof. The set of all supports of codewords of weight 16 in C' forms a 1-
(88,16,5848) design. Suppose that mg = 0. Moreover we assume that mg = 0.
Then it follows that 14598 < my4 < 23388 from mg > 0 and mo > 0. Thus it
finds that there are at least [m4/("0)] > [14598/('7)] = 9 blocks in B which
contain any 4 points vy, va, v3,v4 in a block B. Since there are only 88 — 16 = 72
points in V' which are not contained in B, these blocks intersect others in except
for vy, v9,v3 and vy. Therefore we have that mg #£ 0. a

Lemma 20. If there exists a [96,48,20] doubly-even self-dual code C, then the
second generalized Hamming weight for C' is 30.

Proof. The set of all supports of codewords of weight 20 in C' forms a 5-
(96,20,816) design. Then we can uniquely determine that mg = 32505, my =
708300, m4 = 1561845, mg = 792900, mg = 116025, m19 = 5480 # 0. 0

Lemma 21. If there exists a [104,52,20] doubly-even self-dual code C, then the
second generalized Hamming weight for C' is 30 or 32.

Proof. The set of all supports of codewords of weight 20 in C' forms a 3-
(104,20, 7125) design. Suppose that mi9 = 0. Then it follows that 9891 < mg <
82470 since mg > 0 and mg > 0. Therefore we have that mg # 0. a

Lemma 22. If there ezists a [112,56,20] doubly-even self-dual code C, then the
second generalized Hamming weight for C' is 30, 32 or 34.

Proof. The set of all supports of codewords of weight 20 in C forms a 1-
(112,20, 63525) design. Suppose that mi9 = 0 and mg = 0. Moreover we assume
that mg = 0. Then it follows that 279501 < my4 < 317620 from my > 0 and
ms > 0. Thus it finds that there are at least [m4/(%)] > [279501/(%)] = 58
blocks in B which contain any 4 points vy, v2,v3,v4 in a block B. Since there
are only 112 — 20 = 92 points in V which are not contained in B, these blocks
intersect others in except for vy, v9, v3 and vg. Therefore we have that mg #£ 0. O

Lemma 23. If there exists a [120, 60, 24] doubly-even self-dual code C, then the
second generalized Hamming weight for C' is 36 or 38.

Proof. The set of all supports of codewords of weight 24 in C' forms a 5-
(120,24, 8855) design. Suppose that mq2 = 0. Then we can uniquely determine
that mig = 419520 # 0. O

Lemma 24. If there exists a [128,64,24] doubly-even self-dual code C, then the
second generalized Hamming weight for C' is 36, 38 or 40.

Proof. The set of all supports of codewords of weight 24 in C forms a 3-
(128,24,78430) design. Suppose that mi2 = 0 and m19 = 0. Then it follows that
1048255 < mg < 1713855 and so mg # 0. a
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Table 1.
n d t-(v,k,\) designs da references
8 4 3(841) 6 [3], etc.
16 4 1-(164,7) 6 3], etc.
24 8  5-(24,8]1) 12 [6], [3], etc.
32 8 3-(328,7) 12 2]
40 8 1-(40,8,57) 12
48 12 5-(48,12,8) 18 3], [2]
56 12 3-(56,12,65) 18
64 12 1-(64,12,558) 18 or 20
72 16 5-(72,16,78) 24 (3]

80 16  3-(80,16,665) 24 or 26
88 16 1-(88,16,5848) 24 or 26
96 20 5-(96,20,816) 30

104 20 3-(104,20,7125) 30 or 32
112 20 1-(112,20,63525) 30, 32 or 34
120 24 5-(120,24,8855) 36 or 38
128 24 3-(128,24,78430) 36, 38, or 40
136 24 1-(136,24,705510) <42
144 28 5-(144,28,98280) 42 or 44

Lemma 25. If there exists a [136, 68, 24] doubly-even self-dual code C, then the
second generalized Hamming weight for C is at most 42.

Proof. The set of all supports of codewords of weight 24 in C' forms a 1-
(136,24,705510) design. Suppose that mi3 = 0, mig = 0 and mg = 0. Moreover
we assume that mg = 0. Then it follows that 4468219 < my < 4233054. Thus
it finds that there are at least [ma/(%)] > [4468219/(%)] = 421 blocks in
B which contain any 4 points v1,v2,v3,v4 in a block B. Since there are only
136 — 24 = 112 points in V' which are not contained in B, these blocks intersect
others in except for vy, v9,v3 and vy. Therefore we have that mg # 0. a

Lemma 26. If there exists a [144,72,28] doubly-even self-dual code C, then the
second generalized Hamming weight for C is 42 or 44.

Proof. The set of all supports of codewords of weight 28 in C' forms a 5-
(144,28,98280) design. Suppose that mi4s = 0. Then we have that 53222 <
mis < 7521276 and so mis # 0. a

We summarize the results in the following theorem on the second generalized
Hamming weight for each extremal code of length n.

Theorem 27. If there exists a binary [n,n/2,d = 4|n/24|+4] doubly-even self-
dual code C for 8 <n < 144, then the second generalized Hamming weight do of
C is given in Table 1.

The second support weight enumerators for a [48,24,12] and a putative
[72, 36, 16] binary doubly-even self-dual code were found in [3]. So we shall focus
on the second support weight enumerators for the other binary doubly-even self-
dual codes. Since my, ..., mg for a binary [56, 28, 12] doubly-even self-dual codes
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Table 2.
AP (Co4) i
2938244480 30
186629461200 32
7045835998400 34
199291263806160 36
4574744637832000 38
87439630245125320 40
AP (Cs6) i 1407670349998923200 42
256620 18 19162822065941055600 44
10565100 20 220954897445587326528 46
300998880 22 2159581817482038356700 48
5632389945 24 17897349267021111990720 50
77887280016 26 125726758328799425384400 52
810987952320 28 748033353865421165001280 54
6320994271776 30 3763971884492563244750520 56
37317157650045 32 15984923398507198732221120 58
165332448557640 34 57139317625768079355422960 60
545437564471800 36 171327331504711070574027840 62
1326807463581600 38 420083154858222192050233225 64
2342437785741690 40 892073054496261690811488832 66
2938066233999120 42 1534674972545912449195676400 68
2543737485612960 44 2161889920680257626892426688 70
1459873538104800 46 2473993764265941647156926200 72
524139462502110 48 2275231592226313773450849600 74
107830495153836 50 1659721559142483086102143440 76
10978269398460 52 945096197886559621218329280 78
413623584640 54 411834641673293162669223180 80
2530030237 56 133929962826423251810998080 82

31465473895466131097318000 84
5113677593380965527379136 86
541023784763938828424200 88
34041973190568146168384 90
1097865261838779477200 92
13562254143959639360 94
26894375014056762 96

and mg,...,myo for a putative binary [96,48,20] doubly-even self-dual codes
are uniquely determined by the system of equations (2), we have the following
results by combining Theorem 5 and Theorem 10.

Corollary 28. If Csg is a binary [56,28,12] doubly-even self-dual code and Cog
is a putative binary [96, 48, 20] doubly-even self-dual code, then the support weight
enumerators for Csg and Cog are determined in Table 2, respectively.

Proof. From Theorem 5, it follows that Ag)(C%) =0 fori = 0,...,8,
AP (Cs6) = 256620 and A2 (Cs6) = 10565100, and ALY (Cog) = 0 for i =0, ...,
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14, AQ) (Cog) = 2938244480 and A (Cog) = 186629461200. So we can uniquely

determine the coefficients b; in Theorem 10 for Csg and Cyg. a
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Abstract. We study the capability of rank codes to correct so-called
symmetric errors beyond the LdglJ bound. If d > "'2*'1, then a code
can correct symmetric errors up to the maximal possible rank [ "} . If
d < 7, then the error capacity depends on relations between d and n. If
(d+37)tn, 5=0,1,...,m — 1, for some m, but (d +m)|n, then a code
can correct symmetric errors up to rank L‘”’;’l ]. In particular, one can
choose codes correcting symmetric errors up to rank d — 1, i.e., the error
capacity for symmetric errors is about twice more than for general errors.

1 Introduction

Let Fy be a base field and let Fiy» be an extension of degree n of Fj,.

The rank norm rank(M) of a matriz M € F*" is defined as the algebraic
rank of this matrix, i.e., the mazimal number of rows (or, columns) which are
linearly independent over Fj,. The rank distance between M; and M is defined
as d(My, My) = rank(M; — Ma). A matriz code M C F7*™ is any set of matrices
with code distance d(M) = d = min{d(M;, Ma)| My, M2 € M; My # Ma}.

The rank norm r(g) of a vector g =g1,92,...,9n, & € FJ., is defined as the
mazimal number of coordinates g; which are linearly independent over the base
field Fy.

A wector code V C F, is any set of vectors with code distance d(V) = d =
min{rgi — g2 | g1,92 € V; g1 # g2}

Let go = g1,92,---,9n, gj € Fyn, be a basis of Fy» over Fy;. Then any vector
m = (mi,ma,...,my) € Fy can be uniquely represented as

m = (my,ma,...,my) =M =g1,92,...,9. M, (1)

where M is the n X n-matrix in F,. One refers to the matrix M as the matrix
go-representation of the vector m. Note that r(m) = rank(M).

Let the vector m and the matrix M be defined by Eq. (1). Let M? be the
transposed matrix. Then the vector

mtz(ﬁ’bl,ﬁ’),27...7’l’7ln):goMt:gl,gg,...7gth (2)

is called go-transposed of m.
If m = m?, or, equivalently, M = M?, then m is called the go-symmetric
vector.

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 14-21, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Given a vector code V and a basis g, one can get a corresponding matrix
code M in the gp-representation as V = gy M, and vice versa.

Let Vi be an (n,k,d) linear vector code with maximal rank distance d =
n —k+ 1 (an MRD code). Let My, be be the corresponding matrix code in
the go-representation. Codes Vj, containing a subcode of gg-symmetric vectors
(respectively, matrix codes My, containing a subcode of symmetric matrices) are
of particular interest. It is known that such codes can correct not only all the
errors of rank up to [dglj but also many gg-symmetric errors of rank beyond
this bound [1].

The number of correctable symmetric errors depends on n and d. In this paper,
we investigate the error capacity of codes with respect to different relations
between n and d.

If k < (n+1)/2, equivalently, d > ";1, then all the go-symmetric errors up
to rank [ "' | can be corrected, i.e., beyond the |(d —1)/2] bound.

If d < 7, then the error capacity depends on relations between d and n.
If, for some m, (d + m)|n, but (d+j) tn, j = 0,1,...,m — 1, then a code
can correct symmetric errors up to rank Ld“;_lj. In particular, one can choose
codes correcting symmetric errors up to rank d — 1, i.e., the error capacity for
symmetric errors is about twice the error capacity for general errors.

2 Codes Containing Symmetric Subcodes

Let
80 =91,92--,9n, gj € Fyn, (3)

be a basis of Fy» over F. Associate with gg the n x n-matrix

(91 g gn ]
g

ol g e | (‘”
FRVRE

We use the notation [i] := ¢*, if i > 0 and [i] := ¢" T, if i < 0. It is well known
(see, e.g., [4]) that the matrix G,, is non singular.

Definition 1. A basis gg = ¢1,92,...,9n s called a weak self-orthogonal
basis if
G,Gl = A,

where A is a diagonal matriz in Fyn, not necessarily a multiple of the identity
matriz L,.
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Lemma 1 ([3]). Weak self-orthogonal bases always exist.

Lemma 2 ([3]). A linear (n,k,d) MRD code Vy with the standard generator
matriz of the form

g1 g2 9n
ol gl

Gl g g ©
(e-1) :q'g;_l] o ”L’;‘”

contains an (n,1,n) subcode consisting of symmetric matrices n G-
representation if g = g1, 9o, - - ., gn @S a weak self-orthogonal basis. This subcode
1s generated by the first row of the matrix Gy,.

The code V is said to be generated by the basis gg.

Let My, be the matrix go-representation of the vector code Vi, M% be the
transposed matrix code. The corresponding vector code V}, consists of vectors
which are gg-transposed vectors of Vy.

Lemma 3 ([3]). The parity check matriz of the code Vi is given by the last
n — k rows of the matriz (4), i. e.,

k k k
R
k k k

H, = | gl gyt gt (6)
gykd]gyfﬂi [n—1]

The parity check matriz ﬁn_k of the transposed code V} is as follows:

A
H, =g & - gd | (7)

n—k n—k n—k

g o

3 Correcting Symmetric Rank Errors

Let g € V};, be a code vector. Assume that a received vector is

y=g+e, (8)
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where e is an error in vector representation. The code V) can correct errors e of
rank up to |(d — 1)/2]. Usually one calculates a syndrome

s;=yH,_,=(g+eH, ,=eH _, 9)

and applies one of the fast decoding algorithms (e.g., see, [5, 6]).

We start just with this procedure. If decoding is successful, then end. This
means that the rank r(e) of an error e is not greater than [ %" |. Otherwise we
conclude that r(e) > [*;!].

Nevertheless we can assume that an error vector e is a go-symmetric one, i. e.,
e = e', and continue decoding. Transpose the received vector (8) and calculate
the syndrome for the transposed code V}:

S = ytﬁi_k =(g'+ et)ﬁi—k = etﬁi_k = eﬁi_k- (10)

Then we use both s; and s5 to find an error e possible beyond the | 43! | bound.
If e is a gg-symmetric error, then end. Otherwise the decision is made that an
error is uncorrectable.

From the point of view of coding theory, this means that one considers a rank
code with an equivalent parity check matrix of the form

Hn—k
Hepo = . (11)

Hn—k

We have to find the rank distance of a code V.4, defined by the parity check
matrix (11). If rank distance of Veq,, is D, then one can correct symmetric errors
up to rank | P71 ].

The value of D depends on relations between the code rank distance d of the
code Vj, and code length n.

The case k < (n+1)/2, or, d > "', was investigated completely in [1]. The
equivalent parity check matrix can be rewritten after a permutation of rows and
deletion of identical rows in the form

hy ho e hy,
Hequ = h[ll] h’[21] e hLl] ; (12)
h[lnfz] h[2n72] hszz]
where h; = g}l], j=1,2,...,n. Hence the code rank distance of V.4, is exactly

D = n. Therefore all the gy-symmetric errors up to rank L"Elj can be corrected,
i.e., beyond the |(d — 1)/2] bound.

Consider the case k > "2, or, d < . Denote g}k] =hj, j=1,2,...,n. Then
the equivalent parity check matrix can be rewritten after a permutation of rows

in the form
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hi  ho I
plT pl! hy!
h[1d72] h[2d72] hki72]
H.,, = (13)
pi? plt hi!
h[1d+1] h[2d+1] hkiﬂ]
_h[12d72] p2a-2 L pf2d=2]

It was pointed out in [1] that this parity check matrix defines a code Veq, of
rank distance D, where d = n—k+ 1 < D < 2d — 1. The precise value of D
depends on d and n. Here we find these precise values.

We recall the following necessary and sufficient conditions that a parity check
matrix H defines a code with rank distance d.

Lemma 4 ([5]). Let H be an r x n parity check matriz in GF(q"). Let Vs be
the set of n X s matrices in the base field GF(q) of full rank s. The matriz H
defines a code with rank distance d if and only if, for any matriz Ys € Vs, s =
1,2,...,d—1, we have

rank(HY ;) = s,

and there exists a matriz Yq € Yy such that
rank(HY ;) =d — 1 < d.

Proof. Let H be a parity check matrix of a code with rank distance d. Since
for any code d — 1 < r, then for any matrix Ys € Vs, s = 1,2,...,d — 1,
rank(HY ;) > s. Assume that rank(HY ;) > s for some Y. Then there exists a
non zero s-vector y such that yY{H! = 0. But a non zero n-vector y Y has rank
at most s < d and can not be a code vector. Thus rank(HY ;) = s. On the other
hand, a code vector of rank d exists. Hence, the relation rank(HY 4) =d—1 < d
must be satisfied.

The inverse statement is evident. O

Apply this Lemma to the parity check matrix Hegy,.
First, we consider simple examples. Let £ = n— 1. Thus the original rank code
V. is of rank distance d = 2. The equivalent parity check matrix is as follows:

hi hy - hy
H.y, = : (14)
B2 B2 2

Lemma 5. Let n be odd. Then the parity check matriz (14) defines a code of
rank distance D = 3.
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Proof. Multiply to the right the matrix (14) by a n x 2 matrix Yy € )» in F, of
rank 2. Then we obtain the matrix

fi fa
7

where fi; € Fyn and fo € Fyn are linearly independent over F,. Calculate the
determinant of Z:

7= , (15)

2 2 2 q2_1
det(Z) = f1 £ — fofd" = fi 1 (1—@;) ) (16)

Note that f1/f2 # 1 and the field F,;» does not contain elements of order ¢* — 1
because n is odd. Therefore, the matrix Z is nonsingular and by Lemma 4 the
matrix (14) defines a code of rank distance D = 3. |

In this case, the original code of rank distance 2 can correct symmetric errors of
rank 1.

Let n = 2m be even and k = n — 1. Then it is possible to choose a matrix
(15) in such a manner that f; and fo are linearly independent over Fj but an
element f1/f2 has order g% — 1. Thus the conditions of Lemma 4 do not satisfy.
The equivalent parity check matrix (14) defines a code of rank distance D = 2.
Nevertheless one can show that list decoding gives a list of errors of rank 1 and
a symmetric error of rank 1 is always in this list.

In general, we have for some s and Y, € Vs:

fl f2 fs

1 1 1
B
f1[d72] 2[d72] o S[de]

H(Ys) = Heuns = ) (17)

f[d] d] L. pldl

1 2 s

d+1 d+1 d+1
g g

2d—2 2d—2 2d—2
Ll i

where f1, fa,- -+, fs are linearly independent over the base field GF(q). We ex-
amine rank(H.q, Y) for s from 1 to 2d — 2.

1. We can consider the matrix H(Y) as a parity check matrix of a code V(Y)
of length s. Dimension of V(Y ) depends on rank of H(Y). If conditions of
Lemma 4 are satisfied, then rank(Heg, Ys) = s and dim(V(Y)) = 0.

2. It is clear that rank distance D of the code V.4, satisfy D > d since already
the first d — 1 rows of the parity check matrix (13) provide rank distance at
least d. Hence we have to consider only cases s > d.
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3. Let s = d. Suppose that d | n. Then GF(q?) ¢ GF(q"). We can choose
a matrix Yy such that elements fi, fo,---, fq form a basis of GF(q?).
Then f][d] = f;, j = 1,2,...,d. Hence we see that rank(H(Yy)) =
d—1, dim(V(Y4)) = 1. So by Lemma 4 the the parity check matrix Heg,
defines a code with rank distance D = d.

On the other hand, if d { n, then dim(V(Y4)) = 0. Otherwise the upper part
of H(Y ), namely

and the lower part of H(Y )

d d d

T A A
d d d

F gl pld] (19)
2d—2 2d—2 2d—2

fRa ppaA L gl

would define the same one-dimensional code that it is impossible. Thus the
matrix Heq, defines the MRD code of distance D > d + 1.
4. In a similar manner we can prove.

Lemma 6. Let (d 4+ m)|n, but (d+j)tn, j =0,1,...,m —1, then the
parity check matriz Heq, defines a code with rank distance D > d 4+ m.

5. Finally, the following statement is valid.

Lemma 7. Let (d+j)1n, j=0,1,...,2d —2, then the parity check matriz
H.,., defines a code with mazimal rank distance D = 2d — 1.

Corollary 1. If n is a prime, then the parity check matriz Heg,, from (13) for
all d defines a MRD code of rank distance D = 2d — 1.

4 Conclusion

We have investigated the error capacity of linear (n, k,d) MRD codes generated
by weak self-orthogonal bases. These codes allow to correct not only all errors
of rank not greater than | (d — 1)/2] but also many specific (namely, symmetric)
errors beyond this bound.

In particular, if d > ";1
n—1

, then codes can correct symmetric errors up to rank

2

If d < 7, one can choose codes correcting symmetric errors up to rank d — 1,
i.e., the error capacity for symmetric errors is about twice more than for general
erTors.
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Abstract. We present an algorithm for error and erasure correction of
interleaved Reed—Solomon codes. Our algorithm is based on an algo-
rithm recently proposed by Bleichenbacher et al. This algorithm is able
to correct many error patterns beyond half the minimum distance of the
interleaved Reed—Solomon code. We extend the algorithm in a way, that
it is not only able to correct errors, but can correct both, errors and
erasures simultaneously. Furthermore we present techniques to describe
the algorithm in an efficient way. This can help to reduce the complexity
when implementing the algorithm.

1 Introduction

Recently, a decoding algorithm for interleaved Reed—Solomon codes has been
introduced in [1]. For constructing an interleaved Reed—Solomon code, I code-
words of a Reed—Solomon code RS (g;n, k,d) with length n, dimension k, and
minimum distance d =n — k + 1 consisting of symbols from the Galois field F,
are used. These codewords are arranged row-wise into an [ x n matrix C. All
matrices obtainable in this way constitute a code of length N = [ - n, dimension
K =1-k, and minimum distance d with symbols from F,. Equivalently, these
matrices can be interpreted as codewords from a code of length n, dimension
k, and minimum distance d with symbols from the field F,. We denote such
a code by TRS(¢;n, k,d). Assume that a codeword ¢ € TRS(¢';n, k,d) C F?,
has been corrupted by an additive error vector e € F of Hamming weight
0 = wt(e). If we would decode the resulting vector y = ¢+ e by using a Bounded
Minimum Distance (BMD) decoder for all I codewords of the underlying Reed—
Solomon codewords independently, we would be able to correct the errors as long
as 0 < [*7']. With the decoder from [1], we will be able with high probability
to decode y, as long as

0< .l (n—Fk)% O . (1)
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From (1) we see, that depending on the choice of I, the maximum correcting
radius Opy.x lies within the range Ldglj < BOmax < d—1 (except for the trivial case
d = 1). However, it should be mentioned, that this decoding algorithm corrects
errors with respect to the field Fg:, not with respect to F,. Consequently, the
errors should not occur independently in the symbols of the underlying Reed—
Solomon codes, but affect columns of C with symbols from F,. We have such
a situation, e.g., with concatenated codes using interleaved outer codes [2]. The
decoding algorithm proposed in [1] can be seen as generalization of the Welch—
Berlekamp algorithm described in [3]. The basic idea is to localize the errors
in all words of the underlying Reed—Solomon codes simultaneously instead of
searching them independently in any word. After the positions of the errors are
determined, the values of the transmitted symbols are calculated for all [ Reed—
Solomon codewords independently. This results in a linear system of equations
which is uniquely solvable with high probability, as long as (1) is fulfilled. In
the following section we describe, how such a linear system of equations can be
obtained. Then we present a technique to decompose this system of equations
into two parts, one to locate the errors and another to calculate the error values.
This enables us to solve the decoding problem more efficiently and describe it in a
concise way. Based on this description, we propose an extension of the algorithm,
capable of decoding erroneous symbols and erased symbols simultaneously. Since
the positions of the erased symbols have not to be located, erasures can be
processed with respect to the field I, instead of F;. This means, that erasures
can be corrected even if they occur independently in the several words of the
underlying Reed—Solomon codes.

2 Interleaved Reed—Solomon Codes

In order to obtain a decoder for correcting errors and erasures, we start with defin-
ing Reed—Solomon codes and briefly describing the algorithm proposed in [1].

Definition 1 (Reed—Solomon (RS) code). Let

k—1
{C(x)} = {Z Cix', C; € ]Fq}
1=0

be the set of all polynomials of degree smaller than k with coefficients C; from
Fy. Further, let aq,...,ap be n distinct elements from Fy, ie., oy, 05 € Fy,
i # j — o; # aj. Then, a Reed-Solomon code C = RS (q;n, k,d) can be defined
as the set of vectors

Crs={c|ci=C(a;), Clx) e {C(x)}, i=1,...,n} .

The minimum Hamming distance of such a code is d =n — k + 1.

Assume that a codeword ¢ € C is corrupted by adding some error vector
e =(e1,...,e,) with weight wt(e) = 6. In oder to correct this error, the decoder
has to reconstruct the vector ¢ from the observed vector y = ¢ + e. There is a



24 G. Schmidt, V.R. Sidorenko, and M. Bossert

one-to-one relation between ¢ and the polynomial C(z). Therefore, the decoder
can alternatively reconstruct the polynomial C'(z) instead of . Since the decoder
observes 6 corrupted and n — 6 uncorrupted symbols,we have

C(ay) # yi Vi € supp(e)
Clai) =y Vie{l,...,n} \ supp(e),

where supp(e) is the set of indices of the non-zero components in e.Now, let

A)=p- J] (@—a)=1+ Az + -+ dga°

i€supp(e)

be some polynomial which is zero at all positions where the vector y differs from
¢, and let 3 be chosen such, that A(0) = 1. Since [supp(e)| = wt(e), the degree
of A(z) is deg(A(z)) = 6. Further let I'(z) = C(x) - A(x) = Iy + Iz + -+ +
Tpyr_129+F=1. With this, we can write

Iloq) = yi - M) i - (2)

In this way, we obtain a linear system of n equations with 26 + k& unknowns
which are the coefficients of I'(z) and A(z). If 6 is small enough, i.e., § < ";*,
this linear system of equations has a unique solution and I'(z) and A(z) can
uniquely be determined. Since the roots of A(z) correspond to the positions of
the erroneous symbols in y, we can locate the erroneous positions by determin-
ing A(x). Therefore A(z) is called error locator polynomial. The calculation of
C'(x) = ig; gives rise to ¢, i.e., an estimation for the uncorrupted codeword

c. As proposed in [1], this decoding method can be generalized for decoding
interleaved Reed—Solomon codes.

Definition 2 (Interleaved Reed—Solomon code). Let ¢, i = 1,...,1 be
l codewords from a Reed-Solomon code RS (¢;n,k,d) arranged row-wise in the
I X n matrix

with elements from F,. With it, we define the set of matrices
Cins = {C\c(i) € RS (g0 k,d), i = 1,...,1} .

We interpret any matriz in this set as row vector of length n with elements
from the field F ., and call Cirs an interleaved Reed-Solomon code of length n,
dimension k and minimum distance d with symbols from Fy and denote it by
IRS(¢';n, k,d).

Assume that some codeword C' € Cirg is corrupted by some error pattern E
consisting of symbols from F, i.e., assume that the decoder observes a word
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Y = C + E with elements from F,. Equivalently, ¥ can be considered as
matrix with elements from [, containing the received words y® =) e =
(y£€)7...,y,(f)) in its rows. Since a non-zero element E; in E = (Ey,...,Ey)
affects a column of symbols of the underlying Reed—Solomon codewords, we can
perform decoding based on this underlying code but use a common error locator
polynomial A(x) for all I codewords. In this way, we obtain a linear system of
equations
n

rO@) =y A" L., TO®) = y© - Aes)|” (3)

i=1 i=1

with I'“)(z) = C)(x)- A(x). This system of equations has [ -n equations and [ -
(0+k)+06 unknowns. It cannot have a unique solution, if the number of equations
is smaller than the number of unknowns. Consequently, since we want to have a
unique decoding result, the maximum error correcting radius is upper bounded
by (1). Furthermore, since the equations obtained from the I codewords of the
Reed—Solomon code could be linearly dependent, we cannot ensure a unique
solution, if the number of errors is in the range | “;' | <6 <,/ (n—k). However,

141
we will demonstrate later that a unique solution exists with high probability.

3 Error Location and Correction

The linear system of equations specified by (3) can be stated as matrix equation

Ax=b. (4)

T
The vector = (I’(l)7 e r® , A) consists of the unknown coefficients I''") =

(Fée), e Fe(?kfl) of the polynomials I'“)(x) and the unknown coefficients A =
(A1,...,Ag) of the polynomial A(x). The matrix A and the vector b can be

represented by

Go. . o0-1W gy
0G...0 —L? 7

- .. . . 7andb: . )
SN -
00..G—-L y®

where the n x (f 4+ k) matrix G and the [ different n x 6 matrices L) are of
the form G = (g#,y) = (al‘;_l) and L) = (ZW,) = ( y)a@. The vector A is
uniquely determined by (4), provided that (1) holds and rank(A) = [- (6 +k)+6.

To reduce the decoding complexity, we describe a method to extract a linear
system of equations with [ - (n — 8 — k) equations and 6 unknowns to calculate
A(x). For this purpose, we have a closer look at the matrix G. We observe, that
it consists of the first 6 + k columns of the n x n Vandermonde matrix

V, = (UW,> = (az_l) . (5)
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Let I denote an identity matrix and let V ! be an n x n matrix, such that
V. !.V, = I. Then, the matrix product V, ! - G has the structure

o (T
v, -G_<0>

with an (6 4+ k) x (0 + k) identity matrix I and an (n — 6 — k) x (0 + k) zero
matrix 0. Consequently, by defining the matrix

v,t o ... 0

-1 -.

| 0 V.
: o0
0o ...oVv!

and multiplying it from the left to both sides of (4), we obtain

Az =1b (6)
with

) Wi g7
I0...0-W,-L LR
00...0 —W,-LW Wy -y
OI...O—Wl-L(z) Wl.y(2)T
A-UA=|00...0-W;,-L® , and b=Ub = Wo-y®"
00...1 -Wy LV W, -y®7"
00...0 —-W,- LV Wy -y

Here, the matrix W consists of the first (8 + k) rows of V! and Wy consists
of the last (n—60—k) rows of V! ie, V1 = (%; ). Considering the structure

n
of A we observe, that it consists of [ stripes. The last n — 8 — k rows in any
stripe have non-zero entries only in the last § columns, which correspond to the
unknown coefficients of A(x). Consequently, we can use these rows to create a
smaller linear system of equations

B- AT =5 (7)

with
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This system of equations has [-(n— 60— k) equations and 6 unknowns. If (1) holds
and rank(B) = 6, the coefficient vector A can be determined from it. After this,
the coefficients I'“) can be calculated by

T
r® = (wi-y® w10 A7) (8)

It is shown in [4], that the inverse V;* of a Vandermonde matrix V,, can be
given in a closed form by

Vit = (o) =07 (a070). ©)

if aq,...,a, € [Fy are the roots of 2™ — 1 and n is relatively prime to g. This
condition holds for Reed—Solomon codes of length n = ¢ — 1. Whenever we
have V! in the form of (9), we can use this structure to further simplify the
calculation of A and I') without ever calculating V. ! explicitly. We use p =

n—k—0and o = (ai,ad,...,al) to write the matrix product W - LY in
the form
art Dy ety 0T ety 0T
P O 1) 40 (p+0-1) 0T
WQ‘L(Z): aly o Yy oo y 7
a@yOT @y gt y0T

)T

where a(Dy(©)" is the scalar product between the vector a(? and the received

vector y(z)T. We observe, that the matrix
Z=Y -V, = (ZM’V) = (a(Vfl)y(u)T) (10)
contains all these scalar products. Consequently, the matrix product W - L®

can be represented as Toeplitz Matriz composed from elements of the ¢-th row
of Z. With this, we can represent

Z1,p+1 Z1,p42 - - - Z1,p+6

Z1,2 21,3 ... 21,041

Zlp+1 Rlp+2 - -+ Zlp+6

21,2 21,3 --- 21,0+1

as a matrix composed of [ Toeplitz matrices with elements from Z. The vector

8= (21pr--r2101] - |21y 211) (12)
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can also be written by means of elements from Z. To calculate the coefficients
F(Z), we consider the structure of the matrix product

aWy®T  o@y0" g @y0T

W] . L(Z) _ a(O)y(é)T a(n—l)y(f)T o a("_g'*‘l)y(@)T

a2y O Q10T | qeto+1)y0T
and the structure of the product

a®y®”
(n=1) 40T
T (84 Y
W,y =

artDyO"

Carefully examining (8) having this special structure in mind and regarding the
fact that Ay = 1, we observe, that the i-th coefficient of the polynomial I"®) can
be calculated by

0 0
S T
Fi(Z) _ 2 :Aja(n—l"r])y(z) = E Ajzf,nfiJrj . (13)
=0 Jj=0

With this considerations, we are now ready to describe a decoding procedure,
which is able to reconstruct a codeword ¢ from an observed vector y, provided
that @ satisfies (1) and the linear system of equations (4) has a unique solution.
Uniqueness is guaranteed for 6 < L”;kj by the properties of the underlying
Reed—Solomon code. If 6 is larger, a unique solution cannot longer be guaranteed
but exists with high probability.

For the sake of simplicity we assume here, that a1,...,a, € F, are the roots
of " — 1 and n is relatively prime to q. We have this case, if we consider Reed—
Solomon codes of length n = g—1. In a first step, we use the observed word Y to
calculate the matrix Z according to (10). The elements of this matrix can be used
to create the matrix B and the vector s according to (11) and (12) respectively.
In the next step, we have to solve the linear system of equations (7) constituted
by B and s with respect to A. The problem here is, that the dimensions of B
and s depend on the number of errors §. The system is solvable, if rank(B) =
rank((B]s)), where (B|s) is the matrix obtained by concatenating the matrix
B and the column vector s. If there are no errors, i.e., § = 0, the vector s has
to be the all-zero vector. Hence, whenever we observe s = 0, we do not have to
decode anything. If we have s # 0, we know, that 8 > 0. In this case, we assume
6 = 1 and check the rank of B and (B]|s). If we have rank(B) # rank((B|s)), we
know, that the system has no solution and our assumption is wrong. In this case,
we increase 6 by one and inspect the ranks again. We repeat this procedure, until
we find the smallest possible 6 for which rank(B) = rank((B|s)). Furthermore,
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if rank(B) = 6 holds, we know that the solution of (7) will be unique. Therefore,
if rank(B) < 6, there does not exist a unique solution and consequently our
decoding attempt fails. If we have rank(B) = 6, we solve (7) to obtain A,
which in turn gives rise to the error locator polynomial A(z). Once we found
A(z) we can use (13) to calculate the coefficents of the polynomials I'“)(z) for

£=1,...,1. In the last step, we calculate the polynomials
~ p(f)(x)
O(z) = (=1,...,1 14
CO@w =" ) V=1l (14)

and map them to the corresponding codeword Cc Cirs to obtain our decoding
result.

4 Error and Erasure Correction

Now we assume, that the received codewords are not only corrupted by errors,
but also by erasures. Unlike errors, the positions of the erasures can be detected
in the received word. Hence, we only need to locate the errors, not the erasures.
Consequently, we can correct erasures not only with respect to the field F, but
also with respect to the smaller field F,. In the following, we describe a method
for correcting errors in the field IF; and erasures in the field F, simultaneously.
Let & denote an erased symbol, i.e., let £ ¢ F, be some special symbol not
included in Fy. Furthermore, let the addition of £ and some a € F,; be defined
by a+€& = £+ a = £. Now, assume that the decoder observes a word Y, which is
corrupted by some error pattern E consisting of symbols from F:. In addition
to this, assume that Y is also corrupted by some erasure pattern

e

where €M, ... €® € {0,£}" are | vectors with zeros and erased symbols. In

other words, the decoder observes the word Y = C + E + £, which is the sum
of a valid codeword C, an error pattern E, and an erasure pattern £. As before,
we also can interpret

l

as matrix with elements from {F,U¢} containing the received words y) =

YA YA
W9y,

To find a decoding method for errors and erasures, we again look at the linear
system of equations stated in (4). We consider the ¢-th stripe containing the
matrix L) and the corresponding observed vector y*). For any symbol yi(z)

there exists exactly one row in the /-th stripe which depends on this symbol.
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If we observe an erasure, i.e., a symbol yy) with the value £, we do not know

anything about the transmitted symbol. Therefore we just erase the i-th row
in the /-th stripe of A and the corresponding symbol in b. To describe this
formally, we first define the operator N (y) = {i:y; € F,} as set of indices of
the non-erasure positions in some vector y. Furthermore, let

m;
M:

my

be a matrix with n rows and y some vector of length n. Define the projection
T . .
PN(y) [M] = (milT,...,miKT) s {Zl,...,ZK}ZN(y)

to be a matrix composed of the k = |[N(y)| rows of M corresponding to N (y).
With this projection, we obtain the matrices G\ = Py [G] and ' =
PN(y(f)) [L]7 i.e.,

¢ _ ‘ ¢
a' = (%w) = (af# 1) and L' = (l;w) = (yé}aé’ﬂ) . (15)
¢ ‘ ¢
10 _ (yz(l)’.“?y( )
all non-erased symbols of the corresponding observed vectors y©). Now we can
state our error and erasure correcting problem as a linear system of equations

Furthermore, we define the punctured vectors y ) containing

(=

Alz=1V (16)
with
a® o ... 0 -V o
|0 ¢'®. .. 0o -r'® e b g7
0o o ..gO_po y@T

T
The vector & = (F(l), ceey F(l), A) coincides with the one defined previously

in (4). Now, let () = n— [N (y®| be the number of erased positions in the (-th
observed vector y©. In order to determine the 6 + k unknown coefficients of the
polynomial I")(z), the rank of G’ has to be at least 0 + k. Therefore, to be
able to obtain a unique decoding result, the necessary condition

0+e¥) <d—1ve=1,...,1 (17)

has to hold. Furthermore, (16) cannot have a unique solution, when the number
of rows of A’ is smaller than the number of columns. Therefore in order to have
a unique solution we additionally have to state the necessary condition

5 l

<
O+ 11514

(n—k) (18)
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with € = 22:1 £, Considering the structure of the matrices G’ ® we observe

that they again have a Vandermonde like structure, i.e., G’ ) consists of the
first @ + k columns of the k¥ x k Vandermonde matrix

Vo) = (UM’V) = (a;jfl) (19)

with k = |N (y“))|. To emphasize that the corresponding Vandermonde matrix
is composed of the elements ..., {i1,...,ix} = N(y®), we denote it
in slightly misusing the notation by V (). Let fol(y(m be the inverse of
VN(y@)), then we can use the matrix

Vigosy 0 . 0
—1 .
U’ = 0 Ve
: .0
—1
0 0 Vi,
to calculate
T
1o...o-w®.p/W wi Y
00...0 WM. Wiy
or...o-w.r® w® @7
A=U'A=|00...0-WP - L'P | andb =Uv = | Ww® 4@ |
00..1 -wi{.p/® wh 0T
l l
00...0 —w{.r'® w07

and obtain the linear system of equations
A x=b. (20)
As in the previous section, W(le) consists of the first (6 + k) rows of fol(y“))

and W;e) of the remaining n — 6 — k — ¥ rows. Consequently, we obtain again
a matrix with [ stripes, where the last n — 6 — k — e rows of the ¢-th stripe
only have non-zero entries in the last 6 columns. However, unlike in the case
of decoding without erasures, the number of this rows can be different in any

stripe, since the size of Wée) depends on (). Nevertheless, we can take these

rows to form the linear system of equations
B AT =5 (21)
with
wi . p® W 7
B = - : , and s’ = : . (22)
ng) .. 'O Wél) _.y,(z)T



32 G. Schmidt, V.R. Sidorenko, and M. Bossert

Note, that if #+£() = d—1, the corresponding matrix W ) and also W(Z) 'Y
do not consist of any lines. However, even in this case Equatlon (21) can have
a unique solution as long as Condition (18) is still fulfilled. More precisely, we
find a solution for A in any case, in which we have rank(B’) = 6. If we find a
solution, the coefficients I'® can be obtained from the equation

T
T
o _ (Wga O L0 o AT> (23)

provided that Condition (17) holds. Unfortunately, in the presence of erasures,
the Kk = |N(y(z))| elements «;,,...,q;, constituting the Vandermonde matrix
V Ar(yt0ry mostly do not fulfill the properties to give its inverse in the form of (9).
Therefore, we need a more general way to obtain the inverse fol(y“)). For the
sake of a concise notation, let 8, = a;, Vi, € N(y¥), and let k = [N (y®)].
It is described in [5], that the inverse of the Vandermonde matrix V yr(yc) =

(Uu,z/) = (ﬁl’fl) is given by

T
- (_l)y_lnlgfy(ﬁlw'ﬂﬁfi)
VN(ym) (Uu V) = " ’ (24)
IT Bk = Bu)
k=1
k#p
where IT# (1, . . ., Bx) is defined in analogy to an elementary symmetric function

by
I} (B, ..., Be) = > By - B, -

1<k < <kr<n
k1,....kr#p

The numerator (—1)*"I._,(B1,..., ) of (24) is just the coefficient p,, of

¥~ ! in the polynomial

K
H ﬂk - $ = Pu,1 +pu,2x + - +p#,nl‘n_1
k;;t

Furthermore we observe, that the denominator of (24) is just p,(z) evaluated
for = 5. Consequently, we can write (24) in the less cumbersome form

T
o))

From this equation we can easily show, that fol(y(g)) is an inverse for V ;).
For this purpose, we verify, that

T T
VX/1(y<é>)VN(y<“) = |:V.X/1(y(l)):| [VN(W))] =I= (Zw>
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yields the identity matrix. At this matrix product, the element i; ; is obtained
by calculating the scalar product from the i-th row of [fol(y(g))]T and the j-th

column of [VN(y(e))]T:

—_— ~ Dik Cgh—1 _ - pi,kﬁf_l _ pi(By)
o _kzlpi(ﬁi) g _; pi(B:)  pi(Bi)

Due to the fact, that p;(x) is zero for € {81 ..., Bi-1, Bit1,- .., 0.} and non-
zero only for x = (3;, we have

)1 i=y
14,4 0 it
From this we conclude, that fol(y(g)) inverts V yr(y ).

To complete this section, we deduce an error and erasure decoding algorithm
from the discussed facts. First, we create for all £ = 1,. .., the punctured vectors
y'(z) from the observed word Y. Then we use (25) to obtain the matrices Wy).
With this, we can calculate the vector s’ according to (22). If we observe s’ = 0
we know, that Y is not corrupted by any errors and we set A(z) = 1. If s’ # 0,
we assume 6 = 1 and use (15) to calculate L’ ) Then, we create B’ according
to (22). In the same way as before, we inspect rank(B’) and rank((B’|s’)) and
increase 6 if necessary until we have rank(B’) = rank((B’|s’)). Then we check,
whether rank(B’) = 0 holds, i.e., whether there exists a unique solution. If no
unique solution exists, we cancel the decoding attempt with a failure. Otherwise,
we obtain A as solution of (21), which gives rise to the error locator polynomial
A(z). After this, we use (23) to obtain the coefficients I'® of the polynomials
I'“)(z). The last step is performed in the same way as before. We use (14) to
calculate the polynomials C (m)(e) and map them to the corresponding codeword
6’, which is our decoding result.

5 Probability for a Unique Decoding Result

The probability for a decoding failure is upper bounded in [1] by Py < 6/q. In
[6], this bound has recently been improved to Py < exp (1 / ql*2) /q. The problem
with this bound is, that it does not depend on 6, the number of errors actually
occurred. Consequently, it only gives us a tight bound in the case § = 0. In
[7] the following bound on Py is given, which depends on 6:

LN —k—0)te PN (4 1) (man—0
q q (n )+ q q(+)(max )
P < q . = a . . 2
fw)‘(ql—l) qg-—1 ¢ -1 q—1 26)

We use Monte Carlo methods, to verify the tightness of these bounds. For this
purpose, we randomly generate error patterns E &€ ]FZL with fixed Hamming
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Table 1. Probability Py to get a decoder failure

IRS((2%)2;15,7,9)) IRS((2°)3;31,15,17))
emax 6 12
6 5 6 7 11 12 13
F#experiments w/o unique solution 8 6.62-10° 1-107 0 3.21-10° 107
Py ~8-1077 6.62-1072 1 <1-1077 3.21-1072% 1
Bound from [6] 6.65-1072 3.22-1072
Bound (26) 1.02-107%6.67-1072 1 3.08-107%3.23-1072 1

weights wt(E) = 6. For any weight 6, 107 experiments are performed. In each
experiment we randomly generate a codeword C € ZRS(q,n, k,d) and add some
random error vector E, wt(E) = 6. Then we count the number of experiments,
in which our decoder is not able to find a unique solution. This yields an estima-
tion for the probability P;. We perform these experiments for the two different

codes IRS((24)3 ;15,7,9), and IT\’,S((25)3 ;31,15,17). The results are shown in
Table 1. We observe, that the bounds from [6] and [7] are quite tight if § equals
to the maximum error correction radius fmax = +l1 - (n — k). For 0 < |Omax],
we are hardly able to observe any decoding failures, as predicted by (26).

6 Conclusions

In this paper, we extended the algorithm described in [1] to be able to correct
errors and erasures simultaneously. Furthermore, we presented techniques for
improving the efficiency of interleaved Reed—Solomon decoding compared to [1].
We achieve this improvement by reducing the linear system of equations used
in [1] to state the decoding problem to a smaller system of equations for locat-
ing the errors. In this way we can reduce the computational complexity of the
decoding algorithm. This reduction is obtained by multiplying a transformation
matrix based on inverse Vandermonde matrices. In most cases, this multiplica-
tion has not to be carried out explicitly, because the structure of the problem
allows it to directly give closed forms for the desired system of equations and also
for the auxiliary polynomials F(Z)(m). This is possible by applying the results
from [4].

Based on this, we describe an algorithm which is not only able to correct
errors, but both, errors and erasures simultaneously. Unlike errors, which af-
fect a complete symbol y; € F of the interleaved Reed-Solomon code, we can
have erased positions yi(z) € F, with respect to the symbols of the underly-
ing Reed—Solomon code. This is explained by the fact, that the positions of
the erasures are known, i.e., they do not have to be located first. In presence
of erasures, the structure of our linear system of equations is modified such,
that obtaining the required inverse Vandermonde matrices gets a little more
involved. Therefore, we also describe a more general method to obtain the re-
quired inverse matrix based on [5]. This method is suited for our error and erasure
decoder.
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Abstract. In this paper, we present a new approach of the decoding
of Gabidulin codes. We show that, in the same way as decoding Reed-
Solomon codes is an instance of the problem called polynomial recon-
struction, the decoding of Gabidulin codes can be seen as an instance of
the problem of reconstruction of linearized polynomials. This approach
leads to the design of two efficient decoding algorithms inspired from the
Welch-Berlekamp decoding algorithm for Reed—Solomon codes. The first
algorithm has the same complexity as the existing ones, that is cubic in
the number of errors, whereas the second has quadratic complexity in
2.5n% — 1.5k>.

1 Introduction

Gabidulin codes are the analogs for rank metric of Reed—Solomon codes for Ham-
ming metric. Namely, they consist of evaluation of g—polynomials of bounded de-
gree over a set of elements of a finite field, [3]. These codes are optimal codes, both
in Hamming and in rank metric and can be used in building cryptosystems, with
a much smaller public-key size than McEliece type cryptosystems whose security
relies on the difficulty of decoding in Hamming metric [5]. Several polynomial-
time decoding algorithms were designed until now enabling to decode Gabidulin
codes up to their rank error-correcting capability. It is interesting to note that
all of them have an equivalent decoding algorithm in Hamming metric for Reed—
Solomon codes, such as extended Fuclidian, and Berlekamp—Massey algorithms,
[3,4,11,10].

Concerning Reed-Solomon codes there is still another decoding algorithm
based on the analogy between decoding Reed—Solomon codes and solving some
instances of the polynomial reconstruction problem [12]. Inspired by such an
analogy we reformulated the problem of decoding Gabidulin codes into the prob-
lem of g—polynomial reconstruction. In the following, we show that the problem
of decoding Gabidulin codes can be related to this problem in a simple way. We
then derive two polynomial-time decoding algorithms solving this problem. They
can be seen as the analogs in rank metric of Welch-Berlekamp algorithms, [1].

2 Rank Metric and Gabidulin Codes

Rank metric was introduced in 1985 by E.M. Gabidulin [3]. Given a vector
c = (c1,...,¢,) of elements of a finite field GF(¢™), the rank over GF(q) of ¢

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 36-45, 2006.
© Springer-Verlag Berlin Heidelberg 2006



A Welch—Berlekamp Like Algorithm for Decoding Gabidulin Codes 37

is defined as the rank of the n x m g-ary matrix obtained by expanding each
coordinate of ¢ over a basis of GF(¢™)/GF(q). It is denoted Rk(c | GF(q)).

In the same way, given a code over GF(¢"™), the minimum rank distance of
the code is the quantity

d= Mincec\{o}(Rk(C | GF(q)))

Let C be a linear code with parameters (n, k), and minimum rank distance d
over GF(¢™). In rank metric the problem of bounded distance decoding of a
code can be formulated as such

Decoding(y, C,t)
Find, when it exists, c € C, and e where Rk(e | GF(q)) <t such thaty = c+e,

where y is the received vector over GF(¢™), C is a code over GF(¢™), and t is
a positive integer. Provided t is less than or equal to the rank error-correcting
capability of the code C, either there is no solution or the solution is unique.

Some general purpose decoding algorithms were constructed, for example in
[2] but the best ones were designed by Ourivski and Johannson in [9]. Both are
based on writing a set of quadratic equations satisfied by the error-vector, and
linearizing a part of it by some extended search over a definite vector space.
Provided one wants to correct ¢ rank errors over GF(¢™)/GF(q) in a code of
length n, dimension k, their complexity is given by:

— First strategy: O((mt)3qt=V*+1) operations in GF(q).
— Second strategy: O((k + t)g*=1(m=t) operations in GF(q).

It is highly exponential. Therefore, given a code C, we are not generally able
to solve the Decoding problem for the code C, even for small parameters.
This property enables to design Public-Key cryptosystems based on codes with
theoretically a smaller public-key size than in Hamming metric [5].

In the seminal paper, Gabidulin presented a new family of codes defined by a
vector g = (g1, - .., gn) of elements of GF(¢™) linearly independent over GF(q).
A generating matrix of such a code Gaby(g) is the matrix G such that

These codes are called Gabidulin codes and are denoted Gab(g). They have
minimum rank distance d = n — k 4+ 1 and possess fast-polynomial time decod-
ing algorithm. Namely, if we instantiate the problem Decoding(y, C,t) with a
Gabidulin code of minimum distance d and with ¢ < |(d — 1)/2], there are fast
polynomial time decoding algorithms solving the problem. They are similar to
corresponding decoding algorithms for Reed-Solomon codes:

— Eastended Euclidian like : ~ t(m + 2n + t?) multiplications in GF(¢™), see
[11,4];

— Berlekamp-Massey like: ~ t(m + 2n + 6t + t* /2) multiplications in GF(¢™),
see [10].
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3 The Reconstruction of g—Polynomials

g—polynomials (also called linearized polynomials) are polynomials of the form
t
P(l’) = Zp’iqua V’L, pi € GF(qm)a Dt # 0.
i=0

the integer ¢ is called g—degree of P and is denoted deg,(P).

Gabidulin codes play the same role in rank metric as Reed-Solomon codes in
Hamming metric. Namely, they are evaluation codes of g—polynomials, as defined
by Ore [7,8], on a set of n elements taken from GF'(¢™), linearly independent over
the base field GF(q). Therefore it is natural to link a so-called Reconstruction
Problem for g—polynomials to the decoding problem in rank metric. Here is the
statement of the problem as presented in [6].

Reconstruction(y = (y1,..-,9n), 8 = (g1, -, 9n), k, 1)
Find the set (V, f) where V' is a non-zero g—polynomial of q-degree < t and where
f is a q—polynomial of q-degree < k, such that

V(yi) =V[f(g:)], foralli=1,... n.

This problem can be related to the problem of bounded distance decoding
Gabidulin codes, by the following theorem.

Theorem 1. From any solution to Reconstruction(y,g,k,t), where
the g¢i’s are linearly independent over GF(q) one gets a solution to
Decoding(y, Gabi(g),t) in polynomial time.

Proof. Let L be the set of solutions of Reconstruction(y, g, k,t). Let (V1, f1) €
L. Then for all i = 1...,n we have Vi(y;) = Vi[f1(g:)]. By linearity of V1, we
get Vi(yi — f1(gi)) =0, for all ¢ = 1...,n. This is equivalent to the fact that for

all  =1...,n, the field element e; def yi; — f1(gi) belong to a vector space over
GF(q) of dimension at most the ¢g-degree of V1, that is ¢. Therefore, the vector
e=(e1,...,ey,) is of rank at most ¢ and (c,e) where ¢ = (f1(g1),..., f1(gn)) is
a solution of Decoding(y, Gabi(g),t). All these transformation can clearly be
computed in polynomial time. a

Therefore, designing algorithms for reconstructing g—polynomials will enable us
to solve the decoding problem in rank metric.

4 Solving the Reconstruction Problem

Suppose we are given,

— A vectory = (y1,...,yn) of elements taken over the field GF(¢™);

— A vector g = (g1,...,9n) of elements taken over the field GF(¢™), that are
linearly independent over GF(q);

— Integers k, t;
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To solve Reconstruction(y, g, k,t), we need to find the g-polynomials V' of
g—degree less than or equal to ¢, and f of g—degree less than k such that

V(yi) =V[f(g:)], foralli=1,... n. (1)

It is a quadratic system of n equations in ¢+ 1+ k variables. Basically we have
no clue on how to solve this system. A way would be to compute the Grobner
basis of the system by adding the field equations, and then extract the finite
number of solutions by computing the number of points of the obtained variety.
However we have no precise complexity results on the difficulty the computation.

It is the reason why we consider the following system: Find (V, N), a pair of
g-polynomials, such that

V(y;) =N(g:), Vi=1,....n
degy(V) <t, (2)
degy(N) <k+t—1,

This system is a linear system whose unknowns are the k 4 2¢ + 1 coefficients of
N and V. The following proposition gives a relation between the sets of solutions
of the two systems

Proposition 1. Any solution (V,p) of (1) provides a solution (V,N =V o p)
to (2).

Proof. Let (Vy,po) be a solution of (1), then the pair (Vo, Ng = Voo pg) is a
solution of (2).

Moreover, in some cases there is reciprocity.

Proposition 2. Ift < (n — k)/2) and if there is at least a non-zero solution
to 1), then the dimension of the vector space of solutions of (2) has dimension
equal to 1, and any non zero solution to (2) provides a solution to (1).

Proof. Suppose that the dimension of the vector space of solutions of (2) is 0.
Then the unique solution to the system is (0, 0). But from Proposition 1 it implies
that the only solution to (1) is equally (0, 0).

Now let us consider a non-zero solution (Vp,po) of 1) then any solution V, N
of (2) satisfies the following system of equations:

Vo [N(g:) = Vopo(g:)]=0,Vi=1,...,n

the g—polynomial Vj [N — V o pg] (x) has g—degree less than or equal to k + 2¢ —
1. Since t < (n — k)/2, this implie that it has degree less than or equal to
n — 1. Therefore as g—polynomials, we have Vo [N — V o pg] () = 0, and since
g—polynomials form an integral domain for composition, we get that N = V opy.
Moreover, this gives easily that there is some o € GF(¢™) such that (V,N) =
a(Vo, Vo o po). Hence the set of solutions to (1) has the form (aVy,po).
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5 New Decoding Algorithms

Suppose we receive a vector y = ¢ + e where ¢ € Gabi(g) and e has rank less

than or equal to the error-correcting capability of the code. From Proposition 2

it follows that, we only need to find one solution of the linear system (2) to get

the unique solution of Reconstruction(y, g, k, t). Once we get this solution we

can decode easily by merely computing a Euclidian division of ¢g-polynomials.
Namely the decoding algorithm can be described as such:

1. Find a two g-polynomials (Vj, Np) which are solution of (2);
2. Compute the Euclidian division of Ny by Vj and set f = Ny/Vy. We have

foralli=1,...,n.

The rest of the section is devoted to the description two different algorithms
solving system (2).

The second step of the algorithm is not considered here since it was al-
ready shown by Ore that the division could be computed in polynomial time.
In [7], he designed an algorithmic way of computing the Euclidian division of
g—polynomials.

The complexity of computing the FEuclidian division between Ny and Vj is
(k — 1)t multiplications in GF(¢™).

5.1 A Natural Algorithm

Let V% (vo,...,v;)T, where the v;’s are the coefficients of the g-polynomial V'
and N &/ (no, ... ,nkre—1)" where the n; are the coefficients of the g-polynomial
N. Set
grogt Ty
S=| i 1 i gn
In ~-~ng+t_1] Un yiﬂ

Solving (2) is equivalent to solving the system

Sx<¥>-& (3)

In the unknowns N and V. Therefore it costs roughly (k + 2t)® operations over
GF(q). It is far too much to be efficiently implemented, compared to the already
existing decoding algorithms.

By considering (3), it is clear that a part of the matrix S is independent of
the received word, depending only on the parameters of the Gabidulin code.

Let us write
g G 1
TGy Yy )
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G\ EHE R
where G = (gij ) is the upper left (k+t) x (k+t) matrix of S. Since, by
i=1,j=0
definition, the g;’s are linearly independent, (G; an invertible matrix. Therefore

solving (3) is equivalent to solving

N =U x (Y1V), 4
(T x Y1) + Y2)V =0, (4)

where U = —Gl_l and T = —GgGl_1 can be precomputed. The complexity of
this algorithm is thus (k + ¢)(k + t? + 2t) + t3/2 operations over GF(¢™). Even
this complexity is not satisfactory compared to the complexity of the existing
algorithms, see section 2.

5.2 A Trickier Algorithm

We will now design another algorithm solving the polynomial reconstruction
problem. Although less natural it is also more efficient. Our goal consists in
finding g—polynomials V(y) of g—degree less than or equal to ¢t and N(z) of
g—degree less than k + ¢ satisfying system (2), i.e.

V(y:))—N(g:)=0, Vi=1,...,n.

The idea is to construct two sequences of polynomials (Vo(i) (y),Néi)(z)) and
(Vl(z)(y)7 Nll)(az)), satisfying for i < n the following property denoted by P(7)

b < i V0" ) = NP (ge) = 0,
=V (we) - NP (gr) =0,

If we manage to bound the degrees of the polynomials such that

degq Vo(n)) <t degq Vl(n)> <t
or

deg, M@)gk—1+t deg, Nﬁ»gk—l+t

then we have won.

Since the label ¢ runs over n positions, if we increase the degrees of the poly-
nomials at each step then we will not be able to satisfy the condition on the
degrees. Therefore a way must be found to keep the degrees as low as possible.

Suppose that we have constructed a sequence of polynomials satisfying P(j),
for all j =0,...,7 < n. We show how to build polynomials satisfying P(i 4+ 1).
First we evaluate the following quantities.

i) def (i i
58" Z Vi i) = N (gi),
i) def (i i
s L VO i) = N (gig).
These quantities correspond to some defect in what we expect. Namely, if both

of them is equal to zero, then P (i + 1) is immediately satisfied.
There are basically two manners to build polynomials satisfying P(i + 1).
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— First and most simple is to evaluate

Ng™ () = N (@) — s/ Vg (),
Ve w) =1 @) - s Ve ),
This corresponds for g—polynomials to the interpolation of the multivariate
polynomial Q(x,y) = V(y) — N(x) on the point [(yit1,gi+1),0]. We check
that forallk = 1...i+1, we have Vo(iﬂ)(yk)—NéiH)(a:k) = 0. It is important
to note that this method increases the g—degree of non-zero polynomials by 1.
— The second one corresponds to cross evaluation. We set

N (@) = () N (2) — sV NG (w),
V) = sV W) - 57 W),
This transformation implies that degq(Nl(iH)) < Max(degq(Nl(i)), degq
(Néi))), with equality if the degrees of Nl(i) and Néi)) are different.
Therefore this does not increase the degrees and one can check that for all
k=1 0+1 V"™ () - N =o.

This is the heart of the decoding algorithm we design. Basically there will
be steps where we increase the degrees of the polynomials by maintaining the
degrees of the others constant.

Description of the Algorithm. The algorithm is described in Table 77. We
chose not to build the sequences (Nél), 0(2)) and (Nl(l), 1(2)), but to modify the
considered polynomials. Hence we can save space. This implies that at every step
i both pairs of polynomials (No, V) and (N1, Vi) satisfy the property P(7).
The algorithm consists of three steps:
— Precomputation step:

e Compute Int(gi,...,gr), where Int(gi,...,gr) denotes the unique
monic polynomial of g-degree k such that (Int(g1,...,9x)(g;) = 0, for
alli=1,... k.

e Compute the list P;, i« = 1,...,k of the k Lagrange interpolation poly-
nomials of g—degree k — 1, that is

Pi(gj) = 0, mbozifj # i,
Pi (gl) =1.

This set of g—polynomials form a basis of the vector space of g—
polynomials of g—degree k — 1.

Vz':l,...,k,{

For computation, we can use algorithms described by @re in his paper for
example.
— Initialisation step:
e Set Vo =0,and Ny = Int(g1,-..,9%)-

e Set Vi(y) =y and
k
Ny = Z YiPi.
i=1
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From the properties of the polynomials P;, the polynomial N; has ¢
degree k — 1 and satisfies the relations

Vi=1,....k, Ni(g) =y

— Alternate increasing degree step: This is the most delicate part of the al-
gorithm. Indeed this part consists of checking the degrees of the pairs of
polynomials. We now exchange the roles of Ny and N7 and V; and Vi, so
that we will always increase the degree of Ny and Vj by one at each step. If
we set s = | (i — k)/2], after the ith step we have

o dege(No) =k +s;

o degs(Vo) = s it i — k is even and degy(Vo) = s+ 1 if i — k is odd;

o degy(N1) =k+s—1ifi—Fkis even and deg,(N1) = k+ s if i — k is odd,;

o degy(V1) =s.
Therefore after the final step n the pair of polynomials (N7, V1) satisfy the
condition for being a solution to system (2), since degq(N1) = k + [(n —
£)/2) — 1 and deg,(Vi) = |(n — k)/2).

5.3 Complexity Analysis of the Algorithm

The most complex operation is multiplying elements in finite fields compared to
squaring and additioning.

— Initialisation step: the only polynomial that cannot be precomputed is Ny
consisting of a linear combination of interpolation polynomials. Hence, the
complexity of computing Ny is k2 multiplications in GF(¢™).

— Alternate Incresing Degree step: Let us evaluate the complexity of the algo-
rithm at step ¢ >k + 1

e Computation of sg and s1: In any case, it is easy to check that either
in the even of in the odd case, the computation it takes exactly 2i — 1

multiplications.

e Computing soN1(z) — s1No(z) and soVi(y) — s1Vo(y) costs equally 27 —1
multiplications.

e Computing No(2)? — soNo(x), and Vp(x)? — soVp(z) costs ¢ multiplica-
tions.

Therefore, at every step k + 1 < ¢ < n, one has to compute 57 — 2 multipli-
cations. Hence the total number of multiplications for this step is:

- 5 n—k

j—2="(n?—k? -2
_§:5Z o (1 )+, ’
1=k+1

multiplications in GF(¢™).

The overall complexity gives about jn? — 3% + "7 * multiplications.
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Table 1. Algorithm for solving the linear system

INPUT: A Gabidulin code Gaby(g) of length n, and a vector y = (y1,...,yn) at rank
distance less than or equal to t = [(d — 1)/2] from Gabi(g).
OuTPUT: A pair of polynomials (N1, V1) satisfying system (2)

1. Initialisation step:
— Vo(y) < 0 and Vi(y) < v,
— No(x) <« Int(g,...,gx) and Ny(z) «— Zle yiPi.
2. Alternate increasing degree step
Forie{k+1,...,n} do
— 80 « Vo(yi) — No(gs) and s1 « Vi(y:) — N1(g:),
— Exchange Ny and Ni, Vp and Vi, sp and s
— Compute
(a) Ni(z) < soN1(z) — s1No(z),
(b) Vi(y) — soVi(y) — s1Vo(y),
(¢) No(z) < No(z)" — soNo(z),
(d) Vo(y) < Vo(y)? — soVo(y).
3. Return (N1, W1).

6 Conclusion

We implemented both algorithms as well as the extended Fuclidian algorithm
in Magma language. It appears, that the first approach is not faster than the
extended Euclidian, and has approximately the same complexity, a little less
efficient nevertheless.

Computer simulations made in MAGMA show that our second algorithm with
complexity 5/2n? — 3/2k? is almost always faster than the extended Euclidian.
The thing is that the complexity of the latter is roughly in O(¢® + 2nt). This
implies that whenever, ¢ is great, the complexity is cubic, whereas when ¢ is
small, then the dimension k can be high, Thus reducing the complexity of our
algorithm.
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Abstract. This paper is devoted to the study of the weights of bi-
nary irreducible cyclic codes. We start from McEliece’s interpretation of
these weights by means of Gauss sums. Firstly, a dyadic analysis, using
the Stickelberger congruences and the Gross-Koblitz formula, enables
us to improve McEliece’s divisibility theorem by giving results on the
multiplicity of the weights. Secondly, in connection with a Schmidt and
White’s conjecture, we focus on binary irreducible cyclic codes of index
two. We show, assuming the generalized Riemann hypothesis, that there
are an infinite of such codes. Furthermore, we consider a subclass of this
family of codes satisfying the quadratic residue conditions. The param-
eters of these codes are related to the class number of some imaginary
quadratic number fields. We prove the non existence of such codes which
provide us a very elementary proof, without assuming G.R.H, that any
two-weight binary irreducible cyclic code ¢(m,v) of index two with v
prime greater that three is semiprimitive.

1 Introduction

In a recent paper [9], Wolfmann has proved that a two-weight binary cyclic code
is necessarily irreducible. On the other hand, it is well-known that there exist
two infinite classes of irreducible cyclic codes with at most two nonzero weights:
the subfield codes and the semiprimitive ones. Apart from these two families,
11 exceptional codes have been found by Langevin (see [4]) and, Schmidt and
White (see [6]). It has been conjectured in the later paper that this is the whole
story. This question is investigated in this paper in the case of the characteristic
two.

In the first part of this article, we recall the McEliece interpretation of the
weights of an irreducible cyclic code by means of linear combinations of Gauss
sums. McEliece’s divisibility theorem plays a significant role in the study of
weight distributions of irreducible cyclic codes. In particular, Schmidt and White
deduce a necessary and sufficient condition for an irreducible cyclic code to be
a two-weight code.

In the second part, we use the Stickelberger congruences and the Gross-Koblitz
formula to obtain two new results that improve McEliece’s theorem. We study
the Boolean functions that appear in the dyadic expansion of the weight of a

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 46-54, 2006.
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codeword. The estimation of their algebraic degree leads us to results on the
divisibility concerning multiplicities by means of Ax’s and Katz’s theorems.

In the last part, we are interested in Schmidt and White’s conjecture on
irreducible cyclic ¢(m,v) codes. Since they proved that it holds for codes of
index two (conditionally on the Generalized Riemann Hypothesis), we focus our
attention on this class of codes. We prove that, conditionally on G.R.H., there are
an infinity of binary irreducible cyclic ¢(m, v) codes of index two with v prime.
This result can be seen as an analogue of the Artin conjecture on primitive roots.
Thus, this family of codes seems to be interesting in view Schmidt and White’s
result. Then, we use a result of Langevin in [4] to prove that there does not exist
any two-weight irreducible cyclic ¢(m,v) code of index two with v > 3 prime
and v = 3 (mod 4). This provides us an elementary proof, without assuming
G.R.H, of a particular instance of the Schmidt and White conjecture, namely
that any two-weight binary irreducible cyclic ¢(m,v) code of index two with v
prime greater that 3 is semiprimitive.

2 McEliece’s Theorem

Let L be a finite field of order ¢ = 2™. Let n be a divisor of ¢ — 1 and write
v = (¢—1)/n. Let ¢ be a primitive n-th root of unity in L. Consider the following
map &:

¢:L—Fy
—3 n—1
a — (TrL/F2 (aC ))i:O

where Try, /g, is the trace of the field L over Fy. The image @(L) of L by @ is an
irreducible cyclic code of length n, denoted ¢(m, v), see [6] for the material about
these codes. Its dimension is equal to the multiplicative order of 2 modulo n,
denoted ord,,(2). Any binary irreducible cyclic code can be viewed as a ¢(m,v)
code, so let us consider such codes. For an element ¢ of L, let us denote by w(t)
the weight of @(¢). The well-known McEliece formula gives the weight of &(t) in
term of Gauss sums

"=yt 3 m00x) (1)

where I' is the subgroup of multiplicative characters of L* that are orthogonal to
¢, see [6]. The Gauss sum 77, () is implicitly defined with respect to the canonical
additive character, say pur, of L. By definition,

() =— Y x(@)ur(z).
rxeL*

Note that a change of additive character produces a permutation of weights. As
in [6], let us denote by 6 the greatest integer such that, for all non trivial x € I',
29 divides 77(x). The famous Stickelberger theorem (see next section) claims

§ = min S5(jn)
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where S(k) denotes the sum of the bits in the binary expansion of the natural
integer k.

Theorem 1 (McEliece). All the weights of the irreducible cyclic code ¢(m,v)
are divisible by 2°=1. Moreover, one of them is not divisible by 29.

Sketch of the proof. It suffices to group together the terms of minimal 2-adic
valuation in (1) to get the first part of the theorem. The second part comes from
the independence (modulo 2) of the multiplicative characters of L.

A two-weight code is a code with two nonzero Hamming weights. The McEliece
formula appears as the Fourier inversion formula of the map ¢t — f(t) =
qz(t) — n, where z(t) denotes the number of zero components of the codeword
&(t). Moreover if G denotes the group of order n in L*, the map f(¢) is de-
fined over the quotient group V = L*/G. Let us set f := ord,(2), and since
nv=2"—1, f divides m and we set m = fs.

Theorem 2 (Schmidt-White). The irreducible cyclic code ¢(m,v) is a two-
weight code if and only if there exists an integer k satisfying the three conditions

(i) k divides v — 1

(ii) k2%% = £1 (mod v)
(iii) k(v —k) = (v —1)25(/=29)
Sketch of the proof. Using Fourier analysis, one can prove that

D = {t eV |2 divides w(t)}

is a difference set of order 2/72% implying (iii). This set or its complementary
is a (v, k, ) difference set satisfying (i) & (ii). Surprisingly, the three conditions
are sufficient.

Traditionally, one says that 2 is semiprimitive modulo v when —1 is in the group
generated by 2 in (Z/vZ)*. In this case, all the Gauss sums are rationals, equal
to \/q whence 6 = f/2, and the code c(m,v) is a two-weight code with k = 1.
Each of these assertions characterizes the semiprimitivity.

3 Dyadic Weight Formula

In this section, we analyse dyadicaly the function

+oo
F =Y mlox) =2 fi(t)2' 2)
=0

1#xerl
where the f; are Boolean functions i.e. map L into {0, 1}. By definition, see [7],
the degree of a Boolean function f defined over a Fs-space E of dimension m is
equal to the smallest degree of a polynomial p € Fo[X7, Xs,. .., X;] such that
V(ﬂjl,xg, .. .,a:m) € an
p($171'27 s 7xm) = f(xlﬁl + xQﬁQ + Z'mﬁm) (mOd 2)7

where (51, 82, ..., 0m) is any basis of L considered has a vector space over Fa.
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In the first part of this section, we use the Stickelberger’s congruences to
determine the algebraic degree of fj. In the second part, we will use the Gross-
Koblitz formula to give an upper bound on the degree of f;. For this, we realize
the finite field L as the quotient ring Zs[€]/(2), where £ is a (¢ — 1)-root of unity
in an algebraic extension of Qs the field of 2-adic numbers. The Teichmiiller
character of L, denoted by w, is the multiplicative character of L defined by the
relation

W€ (mod 2)) =¢.

It is important to remark that ¢ — w(t) (mod 2) is nothing but the identity of
L*. The Gross-Koblitz formula below (see [3]) claims the existence of an additive
character ¢ such that, for any residue a modulo ¢ — 1, the following holds:

(@) = a>Hr21— () (3)

where S(a) = ag+ a1 + ...+ as_1 is the sum of the bits of a = ZZ o @i2, (x)
is the fractional part of x, and I', the 2-adic gamma function defined by

VkeN, Iy(k) "I 4 Vs€Za, In(s) = lim I (k).
j<k.2fj e

3.1 The Function fo

The first approximation of the 2-adic gamma function gives the famous Stickel-
berger’s congruences

(0% ) = 25(@  (mod 21+5(@),

We introduce the set
J={j|S(n) =0},
so that

Z tin (mod 2).

jeJ

Using any Fs-basis of L, the function fy becomes a mapping from Fg into Fs.
Since all the exponents jn have a constant 2-ary weight equal to 6, the algebraic
degree of fy is less or equal to 6. The previous McEliece theorem claims that
the weights are divisible by 2°~!. The next result gives precisions concerning the
multiplicities of the weights. Let us recall that by Ax’s theorem (see [1]), for any
polynomial f € Fy[X7, Xo,..., X,,] of degree k, the number of solutions in F3*
of the equation :

flzi,ze,...,2m) =0

is divisible by 2% 1= where [r] denotes the smallest integer greater or equal to r.
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Theorem 3. The number of codewords of weight of dyadic valuation 6 — 1 is
divisible by 217/01-1,

Proof. The weight of &(t) has valuation 6 — 1 if and only if fy(¢) = 1. By Ax’s
theorem the number of solutions is divisible by 2[//¢1-1 since the degree of the
Boolean function fj is less or equal to 6.

Ezample 1. The weights of the binary [23,11] (subcode of the Golay code) are :
0, 8,12 and 16 whence 8 = 3 and Theorem 3 claims that the number of codewords
of weight 12 is divisible by 2/11/31=1 = 8. According to [8], this number is
56 x 23 = 8 x 161.

Remark 1. In the case of a two-weight code, the condition (3) of the theorem
of Schmidt and White implies a divisibility by a large power of 2. It seems very
interesting to study more precisely the function f.

3.2 The Function f;

The first values of the 2-adic gamma function are: I3(0) = 1, I»(1) = —1,
In(2) = +1, I2(3) = —1, and I3(4) =3 = —1 (mod 4). In particular,

n((1- (, “ ) = D1+ a0 +a2) = (<1) 7050 (mod 4)

and we get the congruence

710, 9) = (-1)9@25@  (mod 22+5() )

where Q(a) = f 4+ apa1 +a1a2 + ... + af_1a9. To improve our approximation of
f(t), we introduce the set K = {k e N |1 <k <wv, S(kn)=0+ 1} and the
partition Je = {j € J | Q(jn) = ¢ (mod 2)}. We have

fo®) +2f1(t) Zwm — Zoﬂ"(t)—i—?Zwk"(t) (mod 4).
J€Jo Jjen keK

The Boolean function f; depends on the sets K and J; but also of the “carry
function” g(t) corresponding to the relation

Zuﬂ" = fo(t) +2¢(t) (mod 4).
jeJ

By classical 2-adic tricks, we get:

= L (C w0~ (LW 1))

jeJ jeJ

=) " wlHIm(E)  (mod 2).

J<y’
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Reducing modulo 2, gluing all pieces together, we get:

fi(t) = Z $U+ Z Hn 4 Z hn
J<J’ JEJ1 keK
Let us recall that Katz’s divisibility theorem (see [2]) implies that for any pair
of polynomials f; and fo € Fao[X1, X3,..., X;n] of degree k1 < ko, the number
of solutions in F3" of the system of equations :

fl(‘flux?v"‘virm) =0
f2($17$27"°7$m) =0

m—ky—k
is divisible by ol™ ) where |r| denotes the largest integer smaller or equal
to r.

Theorem 4. Let wy be an integer. The number of codewords with weight of the
—30
form w2971 with w = wy (mod 4) is divisible by 2l 72" 1

Proof. Let a+2b+--- be the 2-adic decomposition of wy. The weight of §(t) is
of the form w27~ if and only if ¢ is a solution of the system

fo(t) = a, f1 (t) = b

The result is a consequence of the above Katz divisibility theorem since the
algebraic degrees of fy and f; are respectively less or equal to 6 and 26.

Ezxample 2. A sufficient condition to obtain a non trivial result is n > 1 and
50 < f. The first instance is the [11,10]-code (v = 93, § = 2) and the second
one is the [6765,20]-code (n = 6765, v = 155, § = 4). According to [8], the
weight distribution is given by Tab. (1). All the weight are divisible by 8, and
the number A,, of codewords of weight w satisfy:

Z Ay =1+25n =0 mod 2,
w=0 (mod 4)

> Ay=(5+45)n =0 mod 2,
w=1 (mod 4)

> Ay=(5+20+20+5)n =0 mod 2,
w=2 (mod 4)

Z Ay, =(4+25+1)n =0 mod 2.

w=3 (mod 4)

Table 1. Weight distribution of the [6765, 20] irreducible cyclic code. The number of
codewords of weight w is equal to u X n, @ denotes the congruence of § modulo 4.

w 3272 3280 3320 3352 3376 3392 3400 3408 3448 3504
w 1 2 3 3 2 0 1 2 3 2
w5 5 4 25 20 25 45 20 1 5
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4 Two-Weight Binary Irreducible Cyclic Codes

4.1 Primes Which Generate Squares and Index 2 Codes

Is there infinitely many primes v such that 2 generates the squares modulo
v 7 Before answering this question, recall that the Artin conjecture asserts
that 2 is a primitive root for infinitely many primes (the conjecture is proved
by Hooley assuming the Generalized Riemann Hypothesis). In other words,
there is infinitely many primes v such that the order of 2 modulo v is equal
tov —1.

We consider here an analogue question : is there infinitely many primes v
such that 2 generates exactly the squares modulo v ? We can give an another
formulation of this question : is there infinitely many primes v such that the
order of 2 modulo v is equal to ”51 or equivalently such that 2 has index 2
modulo v ? Indeed, these problems are equivalent since the group (Z/vZ)* is
cyclic and the subgroup of squares has index 2 (v odd).

For a positive integer x, let H(x) be the cardinality of the set

-1
{v < x| v prime and ord,(2) = v 5 1.

Murata has proved (see [5]) that G.R.H. implies that for every e > 0,

3 2¢x loglog x
H(ax):séw(a;)+0( o s )

where

o= 11 (1_6(61—1))

¢ prime

is the Artin constant.

Then, under G.R.H., we can use the previous result of Murata to conclude
positively to our question: there is infinitely many primes v such that 2 has index
2 modulo v.

Recall that a code ¢(m,v) is said to have index 2 if the multiplicative order
of 2 modulo v is equal to ¢(v)/2, where ¢ is the Euler function. In particular,
we have shown that:

Proposition 1. Conditionally on G.R.H., there are infinitely many index 2 bi-
nary irreducible cyclic codes c(m,v) with v prime.

Remark 2. Recall that an index 2 binary irreducible cyclic codes ¢(m,v) with v
prime has at most three different nonzero weights. Thus, these codes are good
candidates to be two-weight codes. By the way, we can state that, conditionally
on G.R.H., there are infinitely many binary cyclic codes with at most three
different nonzero weights.
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4.2 The Residue Quadratic Case and the Semiprimitivity

For the study of a special class of three-weight codes, Langevin in [4] introduced
more restrictive conditions on our integer v which lead us to the quadratic residue
case for v, namely the index 2 case with the additional conditions that v is an
odd prime greater than 3 with v = 3 (mod 4). In other words, the integer v
satisfies the quadratic residue conditions if:

(i) v is a prime greater than 3,
(ii) ord,(2) = ;!

2 b
(iii) v =3 (mod 4).
This case is of particular interest because of an explicit relation between the
class number h of the imaginary quadratic number field Q(v/—v) and the Gauss
sums (see [4]).

Proposition 2. There does not exist a two-weight binary irreducible cyclic code
satisfying the quadratic residue conditions.

Proof. Let s be the integer introduced in the section (2). By theorem 3.3 of [4],
we know that the code ¢(m, v) has at most two weights if and only if

L= 2hs, (5)

The previous relation implies that:
22 = 1 (mod v).

This implies that the order of 2 modulo v divides hs + 2. But, by hypothesis,
we have ord,(2) = (v — 1)/2. Then, taking the logarithm in (5), we have the
inequalities:

—1 1
) §hs+2=log(v1_ ) +2 (6)

implying v = 7. But this leads to a code with only one nonzero weight: the
proposition follows.

The conjecture of Schmidt and White in even characteristic states that an irre-
ducible cyclic code ¢(m, v) is a two-weight code if and only if it is a semiprimitive
code. They proved it, conditionally on G.R.H. for all index 2 codes. We can now
prove it also for all index 2 codes with v prime greater than 3 but without
assuming G.R.H.

Theorem 5. A binary irreducible cyclic code c¢(m,v) of index 2 with v prime
greater than 3 is a two-weight code if and only if it is a semiprimitive code.

Proof. The odd prime v is congruent to 1 or 3 modulo 4. The last congruence
comes to the quadratic residue case and the previous proposition implies that
the code has three weights. The first congruence v = 1 (mod 4) implies that —1
is a square modulo v and thus is a power of 2 modulo v since 2 has index 2
modulo v and then generates the squares. Thus, the code is semiprimitive.

The converse is a well-known result: the semiprimitivity implies that the code
has two weights.
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Abstract. We construct a family of simple 3-(2™,8,14(2™ — 8)/3) de-
signs, with odd m > 5, from all Z4-Goethals-like codes G with k = 2!
and [ > 1. In addition, these designs imply also the existence of the other
design families constructed from the Z4-Goethals codes G1 by Ranto. In
the existence proofs we count the number of solutions to certain systems
of equations over finite fields and use Dickson polynomials and variants
of cyclotomic polynomials and identities connecting them.

1 Introduction

A t-(v,k, X) design is a pair (X, B), where X is a v-element set of points and B
is a collection of k-element subsets of X (called blocks) with the property that
every t-element subset of X is contained in exactly A blocks. A design is simple
if all the blocks are distinct. In this paper all designs considered are simple.

From the Z4-Goethals code Gy Shin, Kumar, and Helleseth [14] constructed a
3-(2™,7,14(2™—8)/3) design for odd m > 5 by taking the supports of codewords
of Hamming weight 7. The supports of codewords of Hamming weight 8 in G;
were analyzed by Ranto [12] and he constructed several families of 3-designs
from the different subsets of these supports.

In [13] Ranto verified partly with computer calculations that the designs
with the same parameters as introduced in [12] can be also found from the
Z,-Goethals-like codes Gy, with k € {2,4,8,16}.

In this paper we prove that for all the designs constructed from G; so far we
can find a design with the same parameters from Z4-Goethals-like code G, with
k=2 1> 1. In addition, we conjecture that they are pairwise nonequivalent.

For a survey on t-designs and Z4-codes, see [§].

Let F be the finite field with ¢ = 2™ elements where m > 5 is odd. The
parameter k for the codes Gy should satisfy ged(k, m) = 1 (see Definition 5).

Theorem 1 (Main theorem). Supports in Gy, which are disjoint unions of two
nonparallel 2-flats form a 3-(q, 8, 134 (¢ — 8)) design for allk =2', 1> 1.

* Part of the results have been published in the dissertation of the second author [13].
** Research supported in part by the Academy of Finland (grant 108238).
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Proof of the main theorem is postponed to Sect. 5. The proofs for the next
corollaries are similar to those described in [12] for the case k = 1. More details
can be found in [13].

Corollary 1. The supports of size 7 in Gy form a 3—(q, 7, 1; (g — 8)) design.

Corollary 2. Certain subsets of supports of size 8 in Gy form 3-(q, 8, \) designs
where A has values
32¢% — 985¢ + 5892 (g — 8)(q — 32)(q — 49) 56

_ ~12) .
60 120 , and 15(61 8)(q )

Corollary 3. The supports of size 8 in G form a 3-(q,8,\) design with

¢ —25¢% 4+ 693¢% — 10030q + 44712

A 120

All the evidence known to us so far validate the following conjecture. Interested
reader is referred to [13, Sect. 5.3] for some partial results concerning it.

Conjecture 1. All the designs above are pairwise nonequivalent for every k.

In Sect. 2 we present some useful properties of Dickson polynomials. The key
part of this paper is in Sect. 3 where we define recursively some polynomial sets
and find identities relating them. In Sect. 4 we describe some preliminaries of
Z,-codes needed to read the proof of the main theorem in Sect. 5. Finally, we
make some concluding remarks.

2 Dickson Polynomials

Definition 1. A Dickson polynomial (of the first kind) of degree n in indeter-
minate x and with parameter u is

/2 n (n—1 - ;
D, (z,u) = Z n—i( ; )(—u)zm”m .

=0

Let 01 = 1 + 22, 02 = x129, and S, = a7 + x4 be the first and second el-
ementary symmetric polynomials and the sum of nth powers in two variables.
Dickson polynomials arise from Waring’s formula [10, Theorem 1.1] in the fol-
lowing manner:

(/2] ,

n (n—i i n_o2i

Sn=af +xy = Z n—i< { )(_‘72)20? = Dn(01,02) .
=0

All the polynomials studied in this paper have their coefficients in F or its
algebraic closure F containing Fy2x and hence the primitive (2% 4+ 1)-th root p of



3-Designs from Z4-Goethals-Like Codes 57

unity. We need a special case where n = 2% +1 and by [2, Lemma 2.1] we know
that

Dok q1(z,u) = g2+ + uz? 1 + u2z2 3 + utz? T + et W (1)
With this identity it is quite clear that we have
Do g1 (2, u +v) = Dok 1(2,u) + Dar gy (z,0) + 22 (2)

Clearly, when u = 0 the Dickson polynomial D,,(x,0) = 2™ is a permutation
polynomial of F if and ouly if ged(n, g — 1) = 1. The following theorem (see e.g.
[10, Theorem 3.2|) settles the cases when u € F*.

Theorem 2. Ifu € F*, the Dickson polynomial D,,(z,u) is a permutation poly-
nomial of F if and only if gcd (n,q2 - 1) =1.

We need a factorization result of Doryq(z,u) in the next section and therefore
specialize [10, Theorem 3.12 (i)].
Theorem 3. Let 3; = p' + p~*. Then we have in Fyx[x,y,u]

2k—1

Dok y1(z,u) + Dok 1 (y,u) = (x 4+ y) H (2% + Biwy + y* + Biu) .
i=1

We conclude this section with one separate well known lemma. The usual trace
function Try, : Fom — Fg is defined by

27n71

Trp(z) =z +2*+2* +- -+

Lemma 1. The quadratic equation x> + x = a with a € F has two roots in F,
if Try,(a) =0, and no roots in F if Try,(a) = 1.

Equation 22 + bz = a, where b # 0, can be transformed to (z/b)? + x/b = a/b?,
and the condition in the previous lemma becomes Try, (a/b?) = 0.

3 Variants of Cyclotomic Polynomials

In order to count the number of solution to one specific equation we need to
introduce several polynomials.

Definition 2. We define three sets of polynomials in Fa[s] from which the last
ones are the usual cyclotomic polynomials.

wo(s) =s and Wni1(8) = wn(s)? + (8211 + 1) wp(s) + PEAE
fols) =s+1  and Fr1(s) = fu(s)? + fuls) + 1,
Qn(s) = H (s —pl) where p, is a primitive n-th root of unity.
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Table 1. Examples of polynomials

(n,4) fa(s) wn (s) Qi(s)
(0,1) 1+s s 1+s
(1,3) 1+ s+ 52 1+s+ s wi(s)
(2,5) 1+s+s 1+s+s%45%+6 wa(s)
(3,15) 14+s+s>+s*4+5° 14+s+s+s'+6"+5 +5 ws(s)
(4,17) 1+s+s'C 1+s+s2 4.+ wa(s)
(5,51) 1 +s4+5>+60 452 14+ 454 4552 14 454 4%

As an example we give some polynomials in Table 1. For the proof of the next
lemma, see [13, Lemma 5.6].

Lemma 2. The polynomials w,(s) have the following properties:

1. wy(s) =30, (”)t-(s)zn% where t;(s) = Z?:o s9;

2. wy(s) # 0 for everysGF

3. Tm(wnH( )/wn(s)?) =1 for every s € F;

4. wor_1(8)? - (s+1)= D221+1(s +1,1) is a permutation polynomial of F.

These properties are needed in the proof of Theorem 4. Actually, the polynomials
wp(s) and f,(s) are related to each other with the following transformation.

Lemma 3. Let p(s) € F[s] and define p(s) to be the resiprocal polynomial of
p(s + 1), i.e., p(s) = 598N y(1/s) with v(s) = p(s + 1). Then we have the
following identities:

wp(s) = fn(s) for all n > 0;

p(s) = 0 if and only if p(s) = 0;

pls)r(s) = p(s) r(s);

p(s) +r(s) = p(s) +7(s) if deg(p(s)) = deg(r(s));
(s+1)» =1 foralln>0;

deg (p(s)) = deg(p(s)) if and only if p(1) # 0.

Definition 3. Let Wy(s,T) and Fy(s,T) be compositions (with respect to the
variable T and from right to left) of k — 1 quadratic linearized polynomials and
Py(s,T) a linearized polynomial given below

Wi(s,T) = (T? + wi—1(s)T) o (T? + wy—2(s)T) 0+ 0o (T? + wy(s)T)

Fi(8,T) = (T? + fr—1()T) o (T + fr—a(s)T) 0 -+ 0 (T? + f1(s)T)
k—1

Py(s,T) = Z (82k+172i+1 I 1) T2i .
=0

Remark 1. Let 7 = 2% and 7° = z. The linearized polynomials in F[z] form an
algebra F{7} where the multiplication is the composition in F[z], see e.g. [3].
We could write Wy (s, T) as (7 + wg—1(5)7°) ... (7 + w1(s)7°) (with 2 = T') and

S i fo e =
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polynomials f,(s) as (7 +7°)" +1 (With x = s). From this 7-form we see easily
that for_1(s) + 1= (1 + )21 = 2 1 ri = Try(s) in Fs).

In the proof of the main theorem we end up with (9), i.e. the equation Py (s, T) =
Zf 1 @*". We should count the solutions satisfying the conditions mentioned in
the next theorem. The key idea here is that in the cases k = 2! the polynomi-
als P(s,T) and (s + 1)Wy(s,T) are identical and the composition structure of
Wi (s, T) makes counting the number of solutions possible.

Let F* =F\{0,1,a,a+ 1} for any a € F\ {0, 1}.

Theorem 4. For everyl > 1 and a € F\{0,1} the equation (s+1)Wy(s,T) =

1

Z?:l a2 has ezactly (q — 8)/2 solutions (s, T) € F* x F with Try, (T/s*) =0.

Proof. We give only a sketch of proof and an interested reader can find the whole
proof from [13, Theorem 5.10].

By the definition of W (s, T') the equation splits into a chain of 2! — 1 nested
equations

(s +1) [U3i 1 + wy_1(8)Up ] ZGT

U22l_2 + wzl_g(s)Uzl_Q = U2l_1

U22 + wQ(S)UQ = U3
U12 —|—w1(s)U1 =U,y .

The first equation has two roots in F for ¢/2 — 4 values of s € F* because of two
facts: for every s € {0,1,a,a+ 1} the equation has two roots in F and the trace
condition from Lemma 1 includes a permutation polynomial by Lemma 2.
When we substitute these roots to the next equation this second equation has
two roots for exactly one of the previous roots by Lemma 2. And so on; we can
always “drop down” one of the two roots. The last equation has two solutions Uy
but exactly one of them satisfies the condition Try, (U1/s?) = 0. O

To prove the next theorem we need one lemma.

Lemma 4. For any b € Fyr we have the following identities

Wi (s, b252 4 bs + b2) = Fy(s, bs® + bs + b?)
= (fr—1(0) + D (fa(s) + 1) + fra (b°) + 1
= Trp(b)(fr(s) + 1) + Trp(0?), if k=2".
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Proof. The last equality is clear by Remark 1. The first two identities can be
proved by induction with the following steps.

Wit1(s, %252 + bs + b?)

= (T2 + wi(s)T) o (W (s,b2s2 + bs + b2)

= Wi(s,0252 4 bs + b2)? + wi(s)Wi(s, b%s% + bs + b?)

= Wg(s,b%s2 + bs + 62)2 + fiu(8)Wi(s,b%s% + bs + b?)

= Fit1(s,bs® + bs + b°)

= (T? + fr(s)T) o [(fr—1(0) + ) (f(s) + 1) + fe—1(6*) + 1]

= (fr—1(0)* + D(fr(s)? + 1) + fra(b?)> +1

+ (fe1(0) + 1)(fr(8)? + fie(s)) + Fr(s) fe—1(6%) + fie(s)

= (fe=1(0)* + o1 (D)) (fu(s)? + fu(5)) + fa-1(6*)* + fro1(b?)

= (fr(0) + 1)(frs1(s) + 1) + fu(b?) + 1 . 0
Theorem 5. For everyl > 1 the equation Py (s,T) = (s + 1)Wai(s,T) holds.
Proof. By (1) we have

Pu(8,T) = D1 (8,T) + Doy (1,T) + 5% 1 + 1

and Theorem 3 gives us a factorization

2k—l
Py(s,T) = (s +1) H(52+ﬂi5+1+ﬂi2T)+(32k+32k_1+"'+8+1)
=1
2k—l 2k—l
1 11 )
:(s—|—1) H( 232_|_ ‘S+ 2+T)—|—H(8 —|—ﬂ18+1)
i=1 &5 Pi & i=1

since [] 0; is the coefficient of s2*"" in the rightmost product and it is equal to
1. It is also clear, that Try(3;) = 1 since s2 + ;5 + 1 do not have roots in Fyx.

Py (s,T) is a linearized polynomial with respect to the variable T' and above
we have divided it to an affine polynomial plus a constant term. The roots of
the affine part are easily seen and the roots of Py(s,T) are differences of them,

i.e.
1 1 9 (1 1) (1 1) . k1
+ s° 4+ + s+ + , 1=1,...,2
(ﬂ% 512) 81 B TB

are some of them. Actually, with an identity

1 1
A=
{51+5i

i:l,...,2k_1} ={a € Fy | Tri(a) =0}
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it is clear that the roots form a suitable size subspace and we have all the roots.
All in all, the decomposition can be presented in a simpler form

Py(s,T)=(s+1) H (T + s + as + o?)
acA

If we can show that every root of Py (s,T) is a root of Wy(s,T') we are done since
the polynomials have the same degree. By Lemma 4 and k = 2! we have

Wi(s,a2s2 + as + a?) = Tri(a)(fr(s) + 1) + Tri(a?) =0
for every @ € A which by Lemma 3 finishes the proof. ad
Now we explain the phrase “variants of cyclotomic polynomials”.
Corollary 4. As polynomials in Fa[s] we have identities
2!—1 2!—1 ,
s+ [Jw=s[[ fit=s I Qu(s)=s+s" .
i=0 i=0 il22t —1

Proof. For cyclotomic polynomials @Q;(s) the identity is well known. Compare
the coefficient of T" in polynomial Py (s, T) by definition and by previous theorem

sQZl —1=(s4+ Dwi(s)wa(s) ... wau_q(s)

and multiplying both sides with wg(s) = s gives the result for w,(s)’s. With
Lemma 3 we get the relation for f,(s)’s. O

In addition, the degrees of polynomials wy,(s), fn(s), and @, (s) and the degrees

of their irreducible factors over F5 seem to coincide.

4 Coding Theory Preliminaries

Below we have an example of extended binary cyclic codes of length g. Parity-
check matrices of these codes can be described with a primitive element « of F.

Definition 4. Let m > 3 be odd. The extended binary two-error-correcting
BCH-like code By, of length g = 2™ 1is defined by a parity-check matriz

11 1 1 - 1
01 « a? - ad=2
01a2"+ o402 o +1)(a-2)

where 1 <k < (m —1)/2 and ged(m, k) = 1.
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The code B is the usual two-error-correcting extended BCH code. The codes By,
are pairwise nonequivalent [1, Sect. 4.3] and have parameters [¢,q — 2m — 1, 6].
The dual code Bj- has only 3 weights in the range 1 < i < ¢ — 3 and by the
famous Assmus—Mattson theorem the supports of codewords of Hamming weight
6 in By form a 3-(g,6, (¢ — 8)/6) design.

We consider linear Zy-codes of length ¢ which are subgroups of Z] with com-
ponentwise addition. Let R = GR(4,m) be a Galois ring of characteristic 4 with
g% = 4™ elements. The multiplicative group of units B* contains a unique cyclic
subgroup (f) of order ¢ — 1. Every element of R can be expressed uniquely as
A+ 2B, where A, B € T and

T={0,1,8,...,87%} .

Let p : Zy — F3 denote the modulo 2 reduction map. We extend p to R and Z]
in a natural way, and then x(7) = F and p(Z]) = Fi.

Definition 5. Let m > 3 be odd. The Z4-Goethals-like code Gy of length ¢ = 2™
1s defined by a parity-check matrix

11 1 1 .. 1
01 g 32 .. pBI—2
02 2ﬂ2k+1 Qﬂ(2k+1)2 o Qﬂ(2k+1)(q—2)

where 1 <k < (m —1)/2 and ged(m, k) = 1.

The codes Gy and G, were introduced in [4] and [6], respectively, with the results
stated in the next theorem (see also [7] for the fact 1.). These codes are pairwise
nonequivalent [11] and have 22¢-3m~2 codewords which means that their binary
Gray images have four times as many codewords as BCH codes of the same
length and minimum distance.

Remark 2. The restriction 1 < k < (m — 1)/2 comes from the fact Gy, = Gp—.
There are 90 pairs (m, k) of suitable parameters for Z,-Goethals code G with
5 < m < 29. 86 of these pairs can be presented in the form (m,k) where
2! = 4k (mod m) for some [ > 1. In theorem 1 and its corollaries we have the
restriction k = 2! which means that we can prove the existence of the designs in
almost all codes G with 5 < m < 29. The smallest parameters with which we
can not get the designs in this paper are (17,{3,5,6,7}) and the next ones are
(31,{3,5,6,...}).

By [5, Lemma 2| a word (cx)xer € Z3, with C; = {u(X) | ex = j} for j € Zy,
is a codeword of Gy, if and only if it satisfies the following equations over F':

chzo (in Zy4) Z x=0

rzeF reCLUC3
2 2k 41 ®)
E Ty = E T E > =0 .
z,yeC1UC3 zeCrUCs xeC1UC3

<y
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where < is some total order on F. As we have equations over F we think from
now on that the codewords are indexed with the elements of F.

Theorem 6. 1. dp(Gr) =8;
2. u(Gr) = {ule) | ¢ € Gy} = By
3. G, N2Z% ={2d | u(d) € H} where H is the extended Hamming code;
4. the automorphism group of G contains the doubly transitive group of affine
permutations
T +— axr + b, acF", beF .

5 Proof of the Main Theorem

The supports of codewords of Hamming weight 8 in all Z4-Goethals-like codes Gy,
have the same structure as was found in the codes G; by Ranto [12] . In particular,
we have in every G codewords of cwe-type (complete weight enumerator) X672
which means codewords with six 1’s and two 3’s. Among the supports of these
codewords we have a special class of supports considered in the main theorem:
they are disjoint unions of two nonparallel 2-flats when we think them as subsets
of F equipped with the m-dimensional affine geometry. In addition, it is easy
to see [13] that the two 3’s occur in different 2-flats. This set of supports is
nonempty whenever m > 5 and explains this restriction in the results. The
interested reader is referred to [12,13] for more details.

To prove the main theorem we have to show that any three distinct coordinate
positions are included in equally many supports of the special type described
above. By the automorphisms described in Theorem 6 we can assume that these
positions are 0, 1, and an arbitrary element a € F\ {0, 1}. We divide the supports
into different groups according to the way the fixed positions 0, 1, and a are
divided among the 2-flats and also according to the positions of the two 3’s.
Altogether, there are 22 such groups.

Table 2. Needed combinations of three fixed positions

Case 1 T2 T3 T4 Y1 Y2 Y3 Y4 Frequency
(0a) 0 1 «a (q—8)/6
(1&) 0 1 a 2(q—8)
(1by 0 1 a 3

(2a) 0 1 a .
(2b) 1 0 a 2

(3a) 0 1 a .
(3b) 1 0 a 6

We can use automorphisms z — x+1 and « — x/a to reduce the case analysis
and the 7 cases which we really have to count are shown in Table 2. The number
of supports belonging to each combination with a fixed a is also shown. The



64 J. Lahtonen, K. Ranto, and R. Vehkalahti

cases left out are: 3 cases similar to (0a) with the same frequency and 2 copies
of block (1a)-(3b) with the same frequencies.

Next we verify the different frequencies and by summing them up we claim
that A is equal to 14(¢ — 8)/3 and the supports, indeed, form a 3-design.

5.1 Syndrome Equations

Next we consider the equations which the support {z1, 22,23, T4, y1, Y2, Y3, Ya }
from Table 2 should satisfy. The sets {x1, z2, 23,24} and {y1, y2, y3,ys} form the
two 2-flats and 3’s are thought to be in the positions x4 and y4. By (3) and the
2-flat structure the following equations should hold:

01($17$2ax3ax4) = ‘71(111792’1/3794) =0
o2(x1, 22, 23) = 02(Y1, Y2, Y3) (4)
Sok1(x1, T2, 73, 74) = Sory1(Y1, Y2, Y3, Ya)-

where o (a1, ..., an) = 3144 <...cip <p Qis - - - @iy, 1S the kth elementary symmet-
ric polynomial and Sk (a1,...,a,) = Yo, a¥ is the sum of kth powers.

If the variables x; and y; are distinct, the corresponding support is of the
desired type. The only possible overlapping of the variables z; and y; satisfying
(4) is the case where the 2-flats are equal and x4 = y4; that is, they form the
support {0, 1, a, a+1} of cwe-type Y (four 2’s). This kind of supports correspond
to codewords of the extended binary Hamming code H, see Theorem 6, and they
form a 3-(q, 4, 1) design by Assmus—Mattson theorem. Hence the solutions of (4)
have one extra codeword which must be excluded.

5.2 Case (0a)

As mentioned after Definition 4 there are (¢ — 8)/6 codewords of Hamming
weight 6 in Bj, that contain the three fixed coordinates. These codewords can be
uniquely lifted to codewords in Gy, of cwe-type X°Y: the codeword of By, satisfies
two of the four equations in (3) and suitably positioning a single 2 makes the
remaining two equations hold, too. This 2-symbol can not be within the original
support of size 6 as dr,(G) = 8.

We can lift the same codeword as above in three different ways to a codeword
of cwe-type X4Y Z? in Gy, such that the three fixed coordinates are all 1’s: choose
two 3-positions from the three positions which are not fixed and find the unique
position for 2. We have all in all (1+3)(¢—8)/6 = 2(q — 8)/3 such codewords of
cwe-type X%Y and XY Z2. The geometric connection between the supports of
size 7 and the supports in the main theorem is described in [12,13] and in the
case (0a) this connection is now recalled in Table 3.

We counted the frequency in the left hand side of Table 3, i.e. verified Corol-
lary 1 in relevant cases first. In the table some 3-flat codewords from Gj are
shown to be differences of codewords connected to Theorem 1 and Corollary 1.
If a support of a codeword includes a 2-flat, elements of one 2-flat are underlined.
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Table 3. Structural dependence of blocks in Theorem 1 and Corollary 1 in Case (0Oa)

Corollary 1 — Theorem 1 Theorem 1 — Corollary 1
Fix Comb  Freq Fix Comb  Freq
111 1112 111 31113

33313111 1 13333111 1
111 33111 2(q—8) 111 2111 q—8
111 1332 3 111 31113 6
31133113 1 13311133 3
111 13113 111 2 133

From one codeword in Corollary 1 we get one codeword in the main theorem;
to the other direction we get 4 codewords from one codeword. Therefore the
frequency in the right hand side must be (¢ — 8)/6 which concludes this case.

5.3 Cases (1a) and (1b)

Next we study the case (la), so 1 = 0, 22 = 1, x4 = 23 + 1, y1 = a, and
Ya = a+y2 +ys.
The syndrome equations (3) imply that x5 = a(y2 + y3) + y2ys and

L] o (ag + D7 = 0 g g @ )P
Substituting the first equation to the second we get
WU+V)=U0V

where W =a+a®, U =ys+ 92", and V = y3 + 2" for any k.
It is well known that the mapping u +— u + u?" is two-to-one and its image is
To ={u € F | Try(u) = 0}. Now we have for all k the following equation

WU+V)=UV W, UVEeT, . (5)

In [12] it was noticed that the number of solutions does not depend on a
when k& = 1. Therefore the number of solutions of (5) does not depend on W
and this holds now for all k. One value of W = a+a2" corresponds to a and a+1
simultaneously but this is not a problem since there are equally many codewords
for the values @ and a+ 1 as can be seen via the automorphism x — x+ 1. Hence
the number of solutions of (5) does not depend on a and by [12] it is equal to
2(q - 8)/3.

In the case (1b) we have 1 = 0, 20 = 1, 24 = 3 + 1, y4 = a, and y; =
a+y2 +y3. By (4) we derive x3 = a(y2 + y3) + v2y3 + (y2 + y3)? and

WU+V)=UV+U+V)? WUVET, .

With the same argument as above the number of solutions depends neither on &
nor on a. Considering U and V' as roots of a quadratic equation T2+ (U + V)T =
UV we see also that the value of
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W
Trp,
' <U+V)

determines whether the solution (U, V') belongs to the case (1a) or (1b).

5.4 Cases (2a) and (2b)

In the case (2a) we have 1 = 0 and x4 = 1, and in the case (2b) z; = 1 and
x4 = 0, and in both cases y; = a. We denote x = 2, 01 = y2+y3, and g9 = y2ys3
which implies 3 = z + 1 and y4 = a + o1 by (4). One of the equations

r+ 2% = aoy + oy (2a) (©)
1+ +2° =ao; + oy (2Db)

holds and now the third equation in (4) transforms to
p+a? =T 2 (a4 o) (7)

Suppose now that k is even. With a telescopic identity

x4 2% :§($+x2)21 :§(1+x+x2)21‘,
i=0 i=0

we can consider the cases (2a) and (2b) simultaneously and writing (7) down
with a Dickson polynomial we derive

k—1
Z(agl +03)% = a4 Daiy1(01,02) + (a + 01)2k+1 .
i=0
We substitute oy = T + aoy + a? and get
k—1 5 . .
Z (T+4a®)" =a®> ™ + Doryy (01, T +ao1 +a®) + (a+01)> T . (8)
i=0
By (2) and a2 4 (a + 01)2k+1 = Dyryq (01,a01 + a®) we have
k—1 ” .
Z (T + a2) = Do (01, T) + 02 1.
i=0
By regrouping the terms we arrive at the equation

m%ﬂzz@ﬁ*W+QW=Zﬁ. (9)
i=0 =1

Now we suppose that k = 2! with some [ > 1. By Theorems 4 and 5 the
above equation has (¢ — 8)/2 solutions (01,T) € F* x F with Tr,,(T/o?) =
Try,(02/0%) = 0 which gives us the variables y2 and y3. The restriction o1 € F¢
is for avoiding the extra codeword mentioned in Subsection 5.1. The variable x
can be solved from exactly one of the equations (6). The other solution x + 1
refers to the same codeword and all in all we have (¢—8)/2 codewords containing
the three coordinates 0, 1, and a.
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5.5 Cases (3a) and (3b)

The setting in these cases differs from the previous subsection such that (6) is
replaced by
z+ 2% = a0y + 09 + 0} (3a)

10
l+z+2%=ao) +02+075 (3b) (10)

so there is one additional term o2 in both equations. The ideas are exactly the
same as above. By substituting oo = T + aoy + a? + o} we replace (8) by

E
—

(T + a2)21 =2t 4 Doryy (01, T +aoy +a® +07) + (a+ 01)2’”'1

I
<

%

and using twice equality (2) we have

E
[

— .

(T + a®) = Dor (01, T)+ (k+ 1)0%’%1 .

Il
o

i

When k is even we get the same equation (9) as above and when k is a power of
2 we can also calculate the number of roots.

Theorem 4 holds also in these cases with the difference that Tr,,(02/0?) =
Tr,,(T/0%) + 1 and hence the solutions here are exactly those which were ruled
out in the last step of that theorem. Again the variable x can be solved from
one of the equations (10) but this time every codeword is counted three times:
we can choose two positions referring to o1 and o2 in three ways. All in all we
have (¢ — 8)/6 codewords containing the three coordinates 0, 1, and a.

6 Conclusions and Further Research

We have shown that for all the designs which have been found from the code
G1 so far we can find a design with the same parameters from the code Gy
when k = 2'. The decomposition technique described in this paper does not
work for parameters k # 2': for example, one can easily check that Ps(s,T) #
(s+1)Ws(s,T). Recently [9], the authors managed to prove the existence of the
designs for every k with a different analysis of the polynomial Pj.

It should be possible to prove more about the nonequivalence of these designs.
This is related to the question of BCH-like codes By and whether or not their
minimum weight codewords generate the code, see [13, Sect. 5.3]. In addition,
several other open problems can be found from [13].
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Abstract. Li and Xia have recently investigated the design of space-
time codes that achieve full spatial diversity for quasi-synchronous coop-
erative communications. They show that certain of the binary space-time
trellis codes derived from the Hammons-El Gamal stacking construction
are delay tolerant and can be used in the multilevel code constructions by
Lu and Kumar to produce delay tolerant space-time codes for PSK and
QAM signaling. In this paper, we present a generalized stacking criterion
for maximal rank-d binary codes and develop new explicit constructions.
We also present several multilevel space-time code constructions for cer-
tain AM-PSK constellations that generalize the recent Lu-Kumar unified
construction. Following the approach by Li and Xia, we show that, if the
binary constituent codes used in these AM-PSK constructions are de-
lay tolerant, so are the multilevel codes, making them well-suited for
quasi-synchronous cooperative diversity applications.

1 Introduction

It is well-known that wireless communications over Rayleigh fading channels can
benefit from the simultaneous use of multiple antennas at both the transmitter
and receiver to convey information either more reliably or at higher rates than
would be possible for single antenna systems. In certain applications, however,
it may be infeasible or not cost effective to equip terminals with the additional
hardware. Therefore, there has been significant recent research interest in apply-
ing multiple-input multiple-output (MIMO) techniques to cooperative networks.
In such networks, the individual terminals may be poorly equipped, but they can
overcome their limitations by pooling resources with other terminals.

Since the cooperative terminals do not necessarily share a common reference,
Li and Xia [12] argue that cooperative diversity schemes are fundamentally asyn-
chronous and therefore the design of space-time codes should address the case
of asynchronicity explicitly. Li and Xia investigate the design of space-time trel-
lis codes that yield full spatial diversity for any number of quasi-synchronous
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cooperating relays. They have shown that certain of the trellis codes derived
from the Hammons-El Gamal stacking construction are delay tolerant—in the
sense that full diversity is preserved despite random delays among the various
transmissions—and thus suitable for cooperative diversity schemes. They provide
necessary (but not sufficient) conditions for the trellis codes to be delay tolerant.
They have also shown that, when these codes are used in the multilevel Lu-Kumar
construction for PSK and QAM modulation, the resulting space-time codes also
achieve full spatial diversity in quasi-synchronous cooperative operations.

This paper extends the previous work. First, from the generalized binary
rank criterion, we develop a generalized stacking construction that applies to
maximal rank-d binary codes. These include, as special cases, the family of
Gabidulin codes described by Lu and Kumar. We also present various multi-
level space-time code constructions for certain AM-PSK constellations that gen-
eralize the Lu-Kumar multi-level construction. These are intimately related to
various constructions first developed by the author for noncooperative multiple-
input multiple-output (MIMO) communication systems [7] [8]. Following the
approach by Li and Xia, we show that, if the binary constituent codes used in
these AM-PSK constructions are delay tolerant and therefore suitable for use in
cooperative diversity schemes, so are the multilevel codes.

2 Background

Let C be a code of length MT, with M < T, over the discrete alphabet (2. The
codewords of C are presented as M x T matrices in which the (m,t)-th entry
Gm,t € {2 represents the information symbol that is modulated and transmitted
from the m-th transmit antenna at transmission interval ¢. If all of the pairwise
differences between distinct modulated code word matrices have rank at least d
over C, then the space-time code is called an M x T rank-d code. In the special
case that all of the nontrivial pairwise differences between modulated code words
are of full rank M, the space-time code is called an M x T full-rank code.

There is a tradeoff [2] between achievable transmission rate and achievable
transmit diversity level for space-time codes. Full-rank space-time codes can
achieve transmission rates no greater than one symbol per transmission interval.
For rank d space-time codes, the maximum transmission rate is M —d+1 symbols
per transmission interval. Equivalently, the size of an M x T rank-d space-time
code cannot exceed ¢7M—4+1) where ¢ is the size of the signaling constellation
(2. Codes meeting this upper limit are referred to as maximal.

In [3], Hammons and El Gamal developed a method of algebraic space-time
code design for BPSK and QSPK modulation in which the rank of modulated
code words over the field C is inferred from the rank of their projections as
matrices over the binary field IF. This work was extended and further refined by
Liu et al. [4] and Lu and Kumar [6].

The connection between modulated space-time codes, with entries from
Z10] C C, where 6 be a complex root of unity, and binary codes over IF = GF(2)
is through the isomorphism Z[0]/(1 — 0) 2 IF. We will let u : Z[0] — IF denote
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the corresponding projection modulo 1—6. It is straightforward to show [6] that,
if C is a complex matrix with entries from ZZ[f] whose binary projection pu(C')
is of rank d over IF, then C is also of rank at least d over C. We refer to this as
the generalized binary rank criterion.

3 Stacking Construction for Maximal Rank-d Binary
Codes

We first introduce a generalization of the Hammons-El Gamal stacking construc-
tion [3] applicable to the design of binary maximal rank-d codes. We will use the
following notation. Given a set of linear transformations Ty, T5, . .., Ty : FX —

FT and a binary matrix A € IFM*M e form a new set of linear transformations
TA TS, ..., TH according to the relation
TA T
TA T,
| =A
TH Ty

These are called the A-modified linear transformations.

Theorem 1 (Generalized Stacking Construction). Let K, M, R, and T
be positive integers with K = RT and M < T. Let T1,Ts,..., Ty be linear
transformations from X to IFT . The code S consists of all binary matrices of
the form

zTy

b

T
where T € FX.

Suppose that, for all nonsingular A € FM*M the intersection of the
null spaces of any set of R or more of the A-modified transformations
TA T, ..., T is trivial. Then S is a binary mazimal rank d = M — R + 1
code.

Proof. The rate of the code is log(|S|)/T = R. Hence, by the rate-diversity
tradeoff, it must be shown that the difference between any two BPSK-modulated
code word matrices is of rank at least d over the complex numbers. The binary
rank criterion states that it is sufficient to show that every non-zero code word
of S has rank at least d over IF. Suppose to the contrary that, for some Z # 0,
we have

zTy

T

T
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has rank s < d over IF. Then, there is a nonsingular matrix A such that Ac
has exactly M — s rows that are identically zero. Equivalently, Z is a nontrivial
member of the null spaces of M — s of the A-modified transformations. Since
M — s > R, this contradicts the assumption that the intersection of every set of
R or more of the A-modified transforms is trivial. O

Explicit examples of the generalized stacking construction are easily found. For
example, the companion matrix construction of [3] [5] produces an M x M
maximal full-rank binary code using transformations that correspond to multi-
plication by linearly independent field elements in a Galois field. Our objective
is to generalize that construction to provide a family of maximal rank-d binary
codes. We first need the following lemma.

Lemma 1. Let 31, 3s, ..., 7 be a basis for GF(2T), and let o denote the Frobe-
nius automorphism of GF(2T). Then the matriz

Bi o(Br) o2(Br) -+ oL H(Bh)
B2 o(B2) 02(B2) -+ o7 (B2)

BT G@T) 02@7“) UTfl.(ﬁT)

is nonsingular over GF(2T) and has determinant 1. Furthermore, every £ x £
contiguous submatriz of A is nonsingular over GF(27).

Proof. The first statement is Lemma 18 of Chapter 4 in [1]. Consider the £ x £
submatrix

y1o(ys) -+ o' (y1)
A y2 o(y2) -+ o' (1)

ye o(ye) -+ o (ye)

where y; = 0™ (Bm+i—1) for i = 1,2,... L. Suppose that a = (a1,as2,...,as) €
(GF(2T))* satisfies Ay, na® = 0. Then yy,ya, . . ., y¢ are roots of the polynomial

f(2) = a1 + agw® + - + age® L.

We note that the sum of any two roots of f(x) is also a root. Since y1,¥ya2, - - ., ys
are linearly independent over IF, every binary linear combination of them pro-
duces a distinct root of f(x). Therefore, f(x) is a polynomial of degree at most
2¢=1 with at least 2¢ distinct roots in GF(2T). We conclude that f(z) is the zero
polynomial, @ is the zero vector, and A, , is nonsingular as claimed. a

For the generalized companion matrix construction, we need the following nota-
tion. Let B = { 81, B2, -+, Br } be a basis for the finite field GF(2T) over IF. For
any v € GF(27T), let 4 denote its vector of coordinates with respect to the basis
B. Furthermore, let T), : GF(27) — GF(27) denote the mapping = — zv, and
let M, denote the T" x T matrix representation of T, having the property that
M, =g ift T, (z) = .
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Theorem 2 (Companion Matrix Construction). Let M, R, and T be pos-
itive integers with R < M < T, and let d = M — R+ 1. Choose (1,32, -..,Bm
to be linearly independent elements in GF(27). Let S denote the code given
by the generalized stacking construction applied to the RT x T binary matrices
G1,Go,..., Gy, where

My,

M, 5,
G, = ‘(ﬂ )
Mgr-1(s,)
Then S is an M x T mazimal rank-d binary code.
Proof. Suppose that
TG
TGy
zGum
is a code word in § having rank less than d. Then there is a nonsingular binary

matrix A for which Ac has R rows that are identically zero. Without loss of
generality, we may assume that the first R rows are zero—that is,

iGP =7Gs =-.. =2GH =0, (1)

where
M
A
GP =3 ai;G,
=1

and a;; is the (i,7)-th element of A. Letting # = (Z1 Z2 --- Zr ), where the
z; € IFT, we have that (1) is equivalent to

i’lMyl + ‘@QMJ(yl) + -4+ "ERMG-R—l(yl) =0

i‘lMyz + ‘@QMJ(yz) + -+ "ERMO.R—l(yz) =0

i‘1MyR + i‘QMG(yR) + -4 IZ'RMG-R—l(yR) =0,

where y; = Zj\il ai ;B; € GF(27). Identifying T-tuple Z; as the coordinates of
z; € GF(27), we therefore have (x1 23 --- 2r) as a solution to the following
matrix equation over GF (27):

y1 o(yr) - o () T
Y2 o(y2) -+ 0 Yy2) T2

Il
.O\

Yyr o(Yyr) --- 0
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By Lemma 1, this matrix is non-singular, implying 1 = 22 = --- = g = 0.
Hence, c = 0. a

Remark 1. The choice of a polynomial basis, 3; = a'~! where « is primitive
in GF(2T), gives the Gabidulin maximal rank-d binary codes discussed in Lu
and Kumar [6]. The Lu-Kumar representation is different, however, and the
connection with the stacking construction is not obvious in their approach. Bases
other than polynomial bases (e.g. normal bases) may also be used, so the new
construction of Theorem 2 is more general than the Gabidulin construction.

Remark 2. In [3], full-rank binary convolutional codes are derived as examples of
the Hammons-El Gamal stacking construction. In [6], Lu and Kumar generalize
the construction to produce maximal rank-d binary convolutional codes with
generator matrix

go,0(D)  g10(D) -+ gm-1,0(D)

G go1(D)  g11(D) - gu-11(D)

9o,r—1(D) g1,r—1(D) -+ grmr—1,r—1(D)

where g,,.» = (D™)?" (mod f(D)) and f(D) is a primitive polynomial of degree
T > M. Identifying D with the primitive element o in GF(27), we see that the
columns of the matrix G correspond precisely to the transformations used in the
general companion matrix construction for the special case of 5; = o*~!. Hence,
the general form of the companion matrix construction in Theorem 2 leads to
the following class of maximal rank-d convolutional codes.

Corollary 1. Let M, R, and T be positive integers with R < M < T, and let
d= M — R+ 1. Let a be primitive in GF(2T) with minimal polynomial f(D).
Choose 31, B2, ..., Bu to be linearly independent elements in GF(2T) over T,
with binary erpansions

T—1
Bi=_bijol.
§=0
Let § denote the convolutional code with generator matriz

goo(D)  gio(D) -+ gu-10(D)
go1(D)  g11(D) -+ gm-11(D)

go,r—1(D) g1,r—1(D) - -+ gm—1,r—1(D)

where 9m,r = (gm<D))2r (mOd f(D)) and gm(D) = bm,O + bm,lD + -+
bm’T,lDTfl. Then S is an M x T mazimal rank-d binary code.

Remark 8. The corollary is a restatement of Theorem 22 in [6].
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4 Diversity-Preserving Multilevel Constructions

The generalized binary rank criterion and general stacking construction lead to
natural multi-level space-time code designs for traditional constellations, includ-
ing the following signaling alphabets:

— 2K_PAM, consisting of the points
K—1
s= > 28(=1)",
k=0

for a = (ao,al, e, G,K_l) S IFK
— 4K_QAM, consisting of the points

K-1
s=(L+1d) Yy 2kt
k=0
for a = (0,()70,17 e aK,l) and b = (b()7 bi,..., bel) in FX.
— 2K_PSK, consisting of the points
s =0%,

where a € Zox = {0, 1,2,...,2K — 1} and @ is a complex, primitive 2% -th
root of unity.
— 2B+ AM-PSK, consisting of the points

s =rogb,
where a € F, b € Zyx = {0,172,...72K - 1}7 0 is a complex, primitive
2K_th root of unity, and r > 1.

The set of M x T matrices over an alphabet {2 will be denoted by 2M*T.

When A = [aivj] is a matrix with entries in ZZyx, we write 94 for the matrix
whose (4, j)-th entry is 6%-i. For matrices A and B, the matrix A ® B is their
Hermitian (i.e., componentwise) product.

4.1 Unified AM-PSK Construction

Theorem 3. Let A1, As,..., Ar be M x T binary codes with M < T of ranks
di,da,...,dy respectively. Let K and U be positive integers, and let

{Cuk : 0<u<U 0<k<K}

be a collection of M xT' binary codes of ranks d,, j, respectively. From these, form
the following set of 25X -ary codes:

K-—1
Cu:{Cu:ZQkCU)k: Cu’kECU)k} 0<u<U,).
k=0
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Let k be a non-zero complex number, n € 2ZZ[0], and 0 be a complex primitive
2K _th root of unity. Choose v € Z[0] such that v =0 (mod 1 —0), nV=1 | v in
Z[0), and v/nV "1 =0 (mod 1 —0). Setr; =20 +1 fori=1,2,..., L.

Then the modulated space-time code defined by

L4 U—-1
S= {sz (@ri > ©rY "% : A;€ A and cuecu}
i=1 u=0
achieves transmit diversity at least d, where
d=min{d;,dy:1<i<LO0<u<U0<k<K}.

Proof. One must show that, whenever S and S’ are distinct code word matrices
in S, the difference AS = S — S’ is of rank at least d over C.
Consider the partial products of S defined by

U-1
o0 =K Z 77"90“,
u=0

¢
o0 = (@riAi> ® o9, (1<e¢<L).
1=1

Then

op=0p1+(re—1)Ar O o1
=00+ (M —1)A100+(r2—1)As0o1+---+(re—1)Ar© gp_1.

Similarly, o(, 01, ..., 0} denote the partial products of S’.
We now have
AS = (o9 —0p)+2vD, (2)
where
L .
D:Zl/zi1 (AiG)O'i,l—A;@J;_l). (3)

i=1
To show that A S is of rank at least d over C, there are two cases to consider.
Case 1. og = 0},

Let ¢ be the smallest index i for which A; # A}. Then o; = o] for i < .
From (2) and (3), we have

AS L—/¢ 4
ol Z’jl (Arri ©0erio1 = Al ©0p4i).
1=0

Since all but the first term are multiples of v, we see
AS
ot = Ay @ A (mod 1 —0).

By the binary rank criterion and choice of code Ay, A S is of rank at least dy > d
over C.
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Case 2. o # o,
Let (u*,k*) denote the lexicographically first index pair (u,k) for which
Cur # C, - Then

AS = myu*ﬁp ® (92“@ —92“@/) +2vD —|—f<;77"*+1E,

where
U—u*—2
— i Cu* i C{“* i
E = n(a b g ,+,+1>’
=0
k*—1 K—k*—1 K—k*—1
, , . -

P=> 2Cui Q= > 2Cuypp,and Q' = Y 20C. 4,

1=0 1=0 =0
Then

35 oro (PO (2 Yy,
k(1 — 627y 1— 62 1—62 ) \npv

U
+<1—92’“*) b

The terms in parentheses on the right hand side are either scalars in ZZ[f] or
matrices with entries in ZZ[f]. The two rightmost summands are congruent to 0
(mod 1 —6). It is straightforward to show that (1 —62") | (62 ™ — 62'") in ZZ[6]
and that

=m®n (mod1-—48),

where m and 7. denote the modulo 2 projections of m and n, respectively. Hence,

AS

e = Cyg ® Oy d1-6).
I{nu*(l—GQk ) 7k EB ,k (mo )

By the binary rank criterion, AS is of rank at least dy» = > d over C, which
completes the proof. O

Remark 4. The radii r; may be specified more generally [7] [9] as follows. First
choose non-zero n € 2ZZ[0]. Then choose €1, €a, ..., e € Z[f] satistying both

€ =0 (mod1—-0)foralli=12...,L
and
V=1 | e in Z[0] with e;/nY "1 =0 (mod 1 — 6).

Finally, define v; = Hé:l €r, and set r; = 2v; + 1 for i = 1,2,..., L. The proof
carries through as before.
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Remark 5. When L = 0, by proper choice of parameters, one produces space-
time codes that achieve the rate-diversity tradeoff for 2™-PAM, 4™-QAM, and
2m-PSK constellations. For PAM, one chooses n = 2, K = 1, U = m, k = 1,
0 = —1; for QAM, one chooses n =2, K =2, U =m, k =1+1, § = i; and for
PSK, one chooses n =2, K =m, U =1, k = 1, § = ¢*™/2" When all of the
constituent codes are maximal rank-d binary codes, the resulting construction
is the Lu-Kumar unified construction [6]. When L > 0 and the PSK parameters
are selected, one gets space-time codes for AM-PSK modulations consisting of
multiple rings of PSK. These are discussed in more detail in [7] [8] [9] [10].

4.2 Special a Constructions

In [7] [9], the author introduced the so-called “Special A” construction for rate-
diversity optimal space-time codes in which one or more of the binary matrices
A ; in the Unified AM-PSK Construction are derived as functions of the nonbi-
nary matrices C',. The canonical examples of which are the binary-component
projection mappings. (This construction was further explored by Lu [11].) Gen-
eralizing Theorem 3 in the same way, we have the following construction.

Theorem 4. Let Ay, As,..., A be M x T binary codes of rank dy,ds,...,dr,
respectively, with M < T. Let K and U be positive integers, and let

{Cur : 0<u<U 0<k<K}

be a collection of M x T binary codes of rank d., ., respectively. From these, form
the following set of 2% -ary codes:

K-—1
Cu:{Cu:ZQkCU)k: Cu’kECU)k} 0<u<U,).
k=0

Let k be a non-zero complex number, and 8 be a complex primitive 2% -th root
of unity. Choose non-zeron € 27Z[0] and €1, €, ..., ep4¢ € Z[0] such that e; =0
(mod 1 —0) for all i = 1,2,..., L+ (. Furthermore, we require that nV ! | ¢
in Z[0] and e1/nY "t =0 (mod 1 —0). Set v; = H2:1 €x and r; = 2v; + 1 for
i=1,2,...,L+¢.

Fori=1,2,...,¢, let ¥; : Co x Cy x -+ x Cy_1 — B; be functions that map
U -tuples of non-binary code word matrices to binary M x T matrices, the ranges
B; being arbitrary.

Then the modulated space-time code defined by

Loy L g U-1
S:{ S: (@Tz z) ® (@TL-‘,-;) @Hznuecu
i=1 i=1 u=0

 Ase A, Bi=Vi(Co,Cy,...,Cy_1) € B;, and Cy € Cy}
achieves transmit diversity at least d, where

d=min{d;,dy,:1<i<LO0<u<U0<k<K}
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4.3 Linear Transformations

Let 7 : IFY — TF” be a linear transformation. For v = KU, we define the induced
vector component mappings via the action

r:2 e FEYU s (70(2), 71(Z), ..., 70-1(Z)) e FX x ... x K,

In this notation, the scalar components of 7 are then indexed by the pairs (u, k)
so that

Tu(j) = (Tuvo(.f‘),TuJ(.f), e Tu,K—l(j))-

We may extend this map to a linear transformation 7 : (IF‘MXT)" —
(IEM*TY acting on v-tuples of M x T binary matrices by applying it com-
ponentwise. Let A = (A, A1,..., A,_1) € (FM*T) where A; is an M x T
matrix whose (m,t)-th entry is aif;{t. Then 7(A) = (10(A), 71(A), ..., 7_1(A)),
where 7;(A) is the n;latrix whose (m,t)-th entry is the i-th component of

(a(o) oV (v—1 ).

m,tr “m,tr Y mt

Theorem 5 (Hammons [10]). Let A be an M x T rank-d binary code. Let K
and U be positive integers. Let k be a non-zero complex number, 6 be a complex
primitive 25 -th root of unity, and n be a non-zero element of 27Z[0]. Let T :
FEY  FEY be a nonsingular linear transformation.

Then the modulated space-time code defined by

U-1
ST = {S =k Y 1"0(ru(A): A= (Ao, Ay,..., Ay_1) € AKU}
u=0

achieves transmit diversity d.

Proof. Let § =YV~ “—0 ' n40(ru(A)) and S = Kzu o Y nt0(1u (A7) be distinct
code words in S. Let (u*, k") denote the lexicographically first index pair (u, k)
for which 7, 1 (A) # 7y k(A"). Then

AS =85 =m0l o (6" Q-6 Q)4 B,

where
k*—1 K—k*—1 K—k*—1

P = Z 27 i(A), Z 2w g i A Z 27 ke ri(A')

U—u*—2

and B = 3 0 [0 i1 () — 07 i (4))]

=0

AS 02" Q _ g2 Q
. =00 - +( "k*)E
En¥ (1 —602") 1—62 1—62

Then
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The terms in parentheses on the right hand side are either scalars in ZZ[f] or
matrices with entries in ZZ[f]. The rightmost summand is congruent to 0 (mod
1 —6). Hence,

AS - -
oo = Tur g (A) © Tyr g (A od 1-—0).
(1 ey = T () @ T (A) - (mod 1-6)
Both 7y« 4~ (A) and 7« 3~ (A’) are code words in A; hence, their sum has rank
at least d over IF. By the binary rank criterion, A S is of rank at least d over C,
which completes the proof. a

4.4 Non-binary Extensions

The constructions all generalize in a straightforward manner to the case of p’-
PAM, p%-PSK, p*5-QAM, and related constellations, when p > 2 is prime.

Theorem 6. Let p > 2 be prime. Let A be an M x T rank-d code over the
alphabet IF,,. Let K and U be positive integers. Let k be a mon-zero complex
number,  be a complex primitive p' -th root of unity, andn be a non-zero element
of pZZ|0]. Let o : IFII){U — IF‘{,{U be a nonsingular linear transformation.

Then the modulated space-time code defined by

U-1
S7 = {S =K Z nuesz:_(lekU7"‘k(A) : 121 = (1407141, ce 7IéiU_l) S AKU}

u=0

achieves transmit diversity d.

Proof. 1f 0 is a complex primitive p”-th root of unity, then ZZ[0]/(1 — 0) = IF,,;
and, for 0 </ < v,

epé m o __ Gpl n

Y =m®p,n (modl-—0),

where m and 7 denote the modulo p projections of m and n, respectively, and
@, denotes modulo p addition. (See [6] for details.) Thus, the underlying algebra
and technical details of the proof are the same as in the p = 2 case. a

4.5 Rate-Diversity Optimal Space-Time Codes

The multilevel space-time code constructions presented in sections IV.A through
IV.C are diversity preserving. In particular, per Theorems 3 through 6, when
the constituent binary codes are rank-d codes, so are the multilevel codes. When
the constituent binary codes are maximal rank-d codes, it turns out that the
multilevel codes in fact achieve the rate-diversity trade-off. See [9] and [10] for
further details.
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5 Applications to Cooperative Diversity

We consider the cooperative communications model in which a source node com-
municates to a destination node in a two-step process. In the first step, the source
broadcasts its message conventionally to both the destination node and any po-
tential relay nodes. In the second step, the relay nodes use a decode-and-forward
strategy and retransmit the message simultaneously to the destination node.
Since the retransmissions are intended to overlap in both time and frequency,
the relay nodes cooperatively implement a space-time channel code.

Unlike conventional space-time coding, however, not all of the relays may
successfully decode the original transmission, so the number of transmitters is
a random variable. Fortunately, this does not substantially affect the design of
the cooperative space-time code [12]. In addition, the relays can be dispersed
geographically; so propagation delays and timing uncertainties may result in the
destination node receiving certain of the transmissions later than others. If the
relative timing delays exceed a symbol interval, the performance of the space-
time code can be adversely impacted. In particular, the space-time code may no
longer achieve full spatial diversity [12].

Following the Li-Xia approach [12] to the design of cooperative space-time
codes, we assume that each relay terminal knows an upper bound on the worst-
case differential delay and transmits fill symbols corresponding to binary 0’s
at the beginning and end of each code word to cover the potential mismatch.
The problem then becomes to design the space-time code so that full diversity is
achieved irrespective of the transmission delays—that is, the code word matrices
must be of full rank even when the rows of the matrix are slipped out of alignment
by arbitrary amounts (up to the maximum specified delay).

These ideas are illustrated by the following examples.

Example 1. Consider the full-rank companion matrix construction using the
standard basis B = {1, o, o?} for GF(8), where « is primitive and o®+a+1 = 0.
The corresponding maximal rank-3 code S consists of the binary matrices:

a b c

c a+c b , Va,b,ceTF.

b b+c a+c

One notes that det ¢ = a + b+ ¢ + ab + ac + be + abe, which is equal to zero if
and only if a = b = ¢ = 0, confirming that S achieves full rank (3-level spatial
diversity) in accordance with the stacking construction.

Suppose that, in the cooperative scenario, the first transmission (first row) is
delayed by one symbol compared to the second and third transmissions. In this
case, we say that the relative delay profile for these transmissions is A = (1,0, 0).
Then the binary code word matrices effectively become

0 a b c
¢t = c a+c b 0
b b+c a—+c 0
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We denote the set of all 3 x 4 matrices derived from S in accordance with
delay profile A as the code S2.
For a =1 and b = ¢ = 0, we have

0100
cA=10100]| e 84,
0010

which has rank 2 instead of 3. Thus, the code S2 is not delay tolerant.

Ezxample 2. Consider the binary code S produced by the stacking construction
using the transformations described by the matrices

1000 0110
0100 0011

Mi=1gg10| 2nd M2=|7744]:
0001 1010

It is easy to see that S consists of the 16 code word matrices of the form

a b c d

¢= c+d a+c a+b+d b+c |’

where a, b, c,d € IF. One first notes that neither of the rows of c is identically
zero unless a = b = ¢ = d = 0. Thus, to show that any delayed variant of c
has full rank, it suffices to check that the sum of its two rows is also nonzero
whenever one of a, b, ¢, or d is nonzero. A relative delay of two symbols results
in the code word matrices of the form

0 0 a b c d
c+d a+c a+b+d b+c 0 0

or

a b c d 0 0
0 0 c+d a+c a+b+d b+c

It is easy to check that, in either case, they all have rank 2 unless a = b =c¢ =
d = 0. By enumerating all the delayed variants of ¢, one discovers that, for all
delay profiles A, the space-time code S achieves full spatial diversity.

Li and Xia [12] have recently shown that certain of the full-rank binary trel-
lis codes derived from the stacking construction are delay tolerant—in the
sense that full diversity is preserved despite random delays among the vari-
ous transmissions—and thus suitable for cooperative diversity schemes. They
provide necessary (but not sufficient) conditions for the trellis codes to be delay
tolerant. They have also shown that, when these codes are used in the multilevel
Lu-Kumar construction for PSK and QAM modulation (special cases of the Uni-
fied AM-PSK Construction of Theorem 3), the resulting space-time codes also
achieve full spatial diversity in quasi-synchronous cooperative operations.
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In sections IV.A through IV.C, we have presented several generalizations of
the Lu-Kumar multilevel construction. We may summarize the results of Theo-
rems 3 through 6 as follows: If F is a family of M x T binary codes achieving
at least d-level spatial diversity, then the corresponding multilevel code Sz built
from F in accordance with the theorem also achieves spatial diversity at least d.

This implies that the constructions preserve preserve delay tolerance—that
is, the delay tolerance of the multilevel code is at least as great as that of the
constituent binary codes. Thus, we have the following general result.

Theorem 7 (Preservation of Delay Tolerance). The multilevel Unified
AM-PSK Construction and its Special A and Linear Transformation Varia-
tions are suitable for asynchronous cooperative diversity schemes if the binary
constituent codes used in these constructions are so suitable. Specifically, if the
binary constituent codes provide d-level spatial diversity under BPSK modula-
tion for a given delay profile, then the multilevel AM-PSK space-time code also
achieves d-level spatial diversity for the same delay profile.

Proof. Consider a delay profile A = (61,62, ...,0p) in which é; denotes the rel-
ative delay of the signal received from the i-th transmit antenna. Let 6yyin (= 0)
and 8,ax respectively denote the minimum and maximum of the relative delays.
From the receiver’s perspective, the space-time code being used is effectively
S2, the set of matrices of dimension M X (T + 6max) produced by transforming
the M x T code word matrices of Sz in accordance with the delay profile A
as indicated in Examples 1 and 2. Let F4 denote the family of binary codes
similarly transformed in accordance with A.

By Theorems 3 through 6, if the binary codes of F2 achieve spatial diversity
at least d, so does the multilevel space-time code Sza. But S2 = Sza, so the
result is proven. O

Remark 6. The binary code of Example 1 is not delay tolerant, whereas the
binary code of Example 2 is fully delay tolerant. By Theorem 7, the multilevel
codes built in accordance with Theorems 3 through 6, using the binary code of
Example 2 as the constituent codes, will also be fully delay tolerant.

6 Conclusion

In this paper, we have presented a generalized stacking construction for maximal
rank-d binary codes and have developed explicit examples including a generalized
companion matrix construction. The generalized companion matrix construction
includes as special cases the family of Gabidulin codes described by Lu and Ku-
mar [6]. We have also presented several multilevel space-time code constructions
for certain AM-PSK constellations that generalize the Lu-Kumar unified con-
struction [6]. Following the approach by Li and Xia [12], we have shown that,
if the binary constituent codes used in these AM-PSK constructions are delay
tolerant, so are the multilevel codes. Together these results provide a flexible
architecture for space-time coding that is well-suited for quasi-synchronous co-
operative communications.
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Geometric Conditions for the Extendability of
Ternary Linear Codes

Tatsuya Maruta* and Kei Okamoto

Department of Mathematics and Information Sciences,
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan

Abstract. We give the necessary and sufficient conditions for the ex-
tendability of ternary linear codes of dimension k, 4 < k < 6, with
minimum distance d =1 or 2 (mod 3) from a geometrical point of view.
We also give the necessary and sufficient conditions for the extendability
of ternary linear codes with diversity (0x—_2,3%72), (Qx_2+3773,4.3F73),
(0o —3"73,5.3°73) for k > 6, where 6; = (397! —1)/2.

1 Introduction

Let V (n, q) denote the vector space of n-tuples over GF(q), the field of g elements.
A linear code C of length n, dimension k£ and minimum (Hamming) distance d
over GF(q) is referred to as an [n, k, d], code. The weight of a vector & € V(n, q),
denoted by wt(x), is the number of nonzero coordinate positions in . Let A; be
the number of codewords of C' with weight 7. We only consider non-degenerate
codes having no coordinate which is identically zero.

The code obtained by deleting the same coordinate from each codeword of
C is called a punctured code of C. If there exists an [n + 1,k,d + 1], code C’
which gives C' as a punctured code, C' is called extendable (to C’) and C’ is an
extension of C. See [1-4,8] for the known results about the extendability of g-ary
linear codes.

Let C be an [n, k,d]s code with k > 3, gcd(3,d) = 1. The diversity (Po,P1)
of C'is given as the pair of integers:

1 1
gzs0 = 9 Z Ai7 @1 = 9 ' Z Ai7
314,50 i#0,d (mod 3)

where the notation x|y means that z is a divisor of y. Let Dy be the set of all
possible diversities of C'. Dy has been determined in [5] for k¥ < 6 and in [6] for
k>7.For k > 3, let Dj, and ’DkJr be as follows:

D}f; - {(9k727 0)7 (ekfi’n 2- 3k72)7 (9k727 2. 3k72)7 (9k72 + 3]{:727 3k72)}7
D =Di\ Dy,

* This research has been partially supported by Grant-in-Aid for Scientific Research
of Japan Society for the Promotion of Science under Contract Number 17540129.

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 85-99, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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where 0; = (37! — 1)/2. It is known that Dj is included in Dy and that C' is
extendable if ($g, P1) € D; ([5]). We define &, as follows:

1
=, D, A

d<i=d(mod 3)

Since C is extendable when (@g, 1) € Dy, it suffices to investigate the extend-
ability of C' when (g, ®;1) € D; . It is also known that D5 = {(4,3)} and that
an [n, 3, d]s code with diversity (4,3) is extendable if and ounly if @, > 0 ([5]). So,
we consider the following problem:

Problem. Find the necessary and sufficient conditions for the extendability of
an [n, k, d]3 code with ged(3,d) = 1, k > 4, whose diversity is in D .

2 Geometric Preliminaries

We denote by PG(r,q) the projective geometry of dimension r over GF(q). A
j-flat is a projective subspace of dimension j in PG(r, q). O-flats, 1-flats, 2-flats,
3-flats and (r — 1)-flats are called points, lines, planes, solids and hyperplanes
respectively as usual. We denote by F; the set of j-flats of PG(r,¢) and denote
by 6, the number of points in a j-flat, i.e. 8; = [PG(j,q)| = (¢/T' = 1)/(¢ — 1),
where |T'| denotes the number of elements in T for a given set T

For an [n,k,d], code C' with a generator matrix G, the columns of G can
be considered as a multiset of n points in ¥ = PG(k — 1,q) denoted by G. An
i-point is a point of X which has multiplicity i in G. Let X; be the set of i-points
in Y. For any subset S of X' we define the multiplicity of S with respect to C' as

Yo
me(S) = i-|SN|,

i=1

where 79 =max{% | an i-point exists}.
Then we obtain the partition X' = Xy U Xy U---U X, such that
n=mg(X),
n—d=max{mc(n) | 7 € Fr_a}.

Conversely such a partition of X' as above gives an [n, k, d], code in the natural
manner. Since (n+ 1) — (d+ 1) = n — d, we get the following.
Lemma 1. C is extendable if and only if there exists a point P € X such that
me(m) < n —d for all hyperplanes 7 through P.
Let X* be the dual space of X' (considering Fi_o as the set of points of X*).
Then Lemma 1 is equivalent to the following:

Lemma 2. C is extendable if and only if there exists a hyperplane II of X*
such that
I C {71' € Fr—2 ‘ me(m) < n—d}.
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Now, let C' be an [n, k,d]3 code with diversity (Pg, P1), ged(3,d) = 1, k > 3, and
let .7-";‘ be the set of j-flats of X*, i.e., ]—";‘ = Fr—2-5,0 < j < k—2. We define
Fy, Iy, F., F and F as follows:
Fo={m e F; | me(r) =n (mod 3)},
Fy={meF; | mc(r) #n, n—d (mod 3)},
F.={reF; | mc(r)<n—d, mc(r)=n—d (mod 3)},
F=FUF, F=FUF,.
Then we have &g = |Fy|, P1 = |Fi|, Pe = |Fe| since |{m € Fi_2 | mc(n) =i} =
An—i/(¢—1). Lemma 2 implies the following:
Lemma 3. C is extendable if and only if F contains a hyperplane of X*.

We consider the extendability of C' from this geometrical point of view. A ¢-flat
IT of X* with |II N Fy| =i, [II N Fy| = j is called an (4, 7): flat. A (1,0), flat is
just a point of Fy. An (i,7); flat, an (7, j)o flat and an (¢, j)3 flat are called an
(i,4)-line, an (i, 7)-plane and an (i, j)-solid respectively.

Remark. We defined Fy, Fy, F. as subsets of X*. Alternatively, one can de-
fine Fy, Fy, F. as subsets of PG(k — 1,3) as follows. Let G = [g0, 91, gx—1]T
be a generator matrix of C, g; € V(n,3), where MT stands for the trans-
pose of a matrix M. Then any codeword ¢ € C' can be written as v - G =

Zf;ol v;g; for some v = (vg, vy, -, vk—1) € V(k,3). Since there are 2&, vectors
v = (vo,v1,---,vk—1) € V(k,3) such that
wt(v-G) =d (mod 3), wt(v-G) >d (2.1)

and since 2- v also satisfies (2.1), one can select $, vectors v € V(k, 3) satisfying
(2.1) any two of which are linearly independent, say Ry, ---, Rg,. Similarly, one
can find @y vectors v € V(k,3) with wt(v-G) = 0 (mod 3), say Py, -, Pg,,
and &; vectors v € V(k,3) with wt(v - G) # 0,d (mod 3), say Q1,-+,Qas,,
so that any two of Py, -+, Pp,,Q1,---,Qa, are linearly independent. Then the
vectors Py, -+, Pp,, Q1, -, Qs,, R1, -+, Re, are considered as distinct points
of PG(k — 1,3), and Fy, Fi, F, are defined as:

FO :{Plv"'v-P@o}; F1 :{Qlu'.'7Q¢1}7 Fe:{Rlv"'7R¢e}'
Let A; be the set of all possible (7,7) for which an (7, j)-line exists in F7.

Then we have

A1 ={(1,0),(0,2),(2,1),(1,3),(4,0)},
see [5]. Assume 2 < ¢ < k — 1 and let IT € F;. Denote by c( ) the number of
(4,7)t—1 flats in IT and let <p9 |HﬂF |, s =0,1. The pair (@é ),wg )) is called
the diversity of IT and the list of c Vs is called its spectrum. Let A; be the set

of all possible (900 ,901 ) Az and the corresponding spectra are determined as
in Table 1 for ¢t = 2 and as in Table 2 for t = 3. For ¢t > 2 we set A, as

A;:{(Qtflv 0)7 (9t727 2'3t_1)7 (975717 2'3t_1)7 (9t71 +3t_17 3t_1)7 (9,5,1, 3t)7 (9757 0)}
It is known that A; is included in A, for all ¢ > 2 ([5]).
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Table 1. Table 2
PR Tt I U By BV TV )
4 012 0 0 0 1 13 039 0 0 0 0 O 1
1 6 2 9 0 2 0 4 18 23 0 0 0 2 0
4 3 4 3 6 0 0 13 9 4 327 0 6 O 0
4 6 0 3 6 4 0 10 15 0 10 15 15 0 O 0
7 3 1 0 9 1 2 16 12 0 0 12 12 16 O 0
4 9 0 0 0 12 1 13 18 0 3 0 27 6 4 0
13 0 0 0 0 0 13 22 9 1 0 0 03 1 2
13 27 0 0 O O 0O 39 1
40 0O O O O O 0 0 40

Lemma 4 ([5]). Fort > 2, the spectrum corresponding to each diversity in A,
18 uniquely determined as follows:

(1) (), 0ret o) = (6: = 1,1) for (9, 1) = (61-1,0);

(2) (), 00t geancl) ) = (2,0,-601,2) for (98, o)) = (6-2,23'1);

(3) (e, pgmar € pgian ) s gianCy) L gies) = (3,0,—02,6,4) for (o).

) = (6,-1,2- 3*1>
(4) (e 00t g gianCy) gy o) = (1,6: = 01,1,2) for (9, ¢1") =
(Qt 1+3t 1 3t 1)

(5) (e 4 1,c§310> wt—n)for(soé“,wl) (0-1,3Y);
6) i) =6 for (o, ") = (6:,0).

An s-flat S in I is called the azis of II (of type (a,b)) if every hyperplane of IT
not containing S has the same diversity (a,b) and if there is no hyperplane of
IT through S whose diversity is (a,b). Then the spectrum of IT satisfies cff)b =
0;—0;_1_s and the axis is unique if it exists. The axis is helpful to characterize the
geometrical structure of I7. For example, (2) of Lemma 4 yields that there exist
two (0;_2,0);_; flats and two (6;_2,3'"1);_; flats through a fixed (6;_2,0);_2
flat which is the axis of II. The following lemma is obtained from Lemma 4.

Lemma 5. Let II be a t-flat in X*, t > 2.

(1) IT is a (0y-1,0); flat if and only if II contains a (0;—1,0);—1 flat which is
the azis of type (0;—2,0).

(2) IT is a (0,_1,3"); flat if and only if II contains a (6;_1,0);_1 flat which is
the axis of type (0;_o, 37 1).

(3) IT is a (0;_2,2-3'"1); flat if and only if IT contains a (0;_2,0)¢_o flat which
is the axis of type (0;_3,2 - 3172).

(4) IT is a (0,1 + 3171,371); flat if and only if II contains a (0;_2,0);_o flat
which is the axis of type (0y_o + 3172,3t72).
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It is easy to see the geometrical structure of II whose diversity is in A, except
for the type of (3) in Lemma 4. As for the type (3) of Lemma 4, see [5] for ¢ = 2
and Section 4 for ¢t > 3.

Set A = A, \ A; . The diversities in A and the corresponding spectra for
t > 4 are determined as follows.

Lemma 6 ([6]).
(1) When t is odd (> 5):

AF = {01,371 U{(Op1 =375 0, 4074 s+ 1), (01 +3TT1F, 0,4 —
Orys) | 0<s <THU{(Or—1,0t-1—Oris), (0r—1,00 1 +0r s +1) | 1 <s<T},

where T = (t — 3)/2. The spectrum corresponding to each diversity is uniquely
determined as follows:

t t
(A 1) C9f 2—3T+1 6, 2+9T+1 =01 — 3T+1’ Cét)—Z;Qt—Z*QT = Cét)—279t—2+0T+1 =
Oi—1+ 07+ 1 for ((po ,<pg )) = (04—1 — 3T 0,1 +0r + 1);
t t
(A 2) Cet 2,0i_2—01 ét)—Z;et—2+9T+1 = b1 — 0, Cét)_2+3T+1701;_2—0T =01+
3T+ for (o), o)) = (61 + 871,001 — 07);
(A 3) (Cet 2,00 Cétt) 5,2-3t—2) Cétt) 2,3t—27 Cét) o432 3t— 2) = (473a0t - 02,6)

for (g, 91)) = (01-1.31);
(A_4) (t) et_1_2‘9_3T+1 s (t)

Co,_y—3T+1+s Ot_o+0ris+1 T » o, 5.0, 50— Or4s
(t)

(t)
0t Z;Qt 2+9T+s+1 0t—1—2$ + GT_S + 1’ 09t7273T+S,9t72+0T71+5+1 = et - 0t—23
for (04, 01") = (-1 — 374, 0,1 + 074 +1), 1< s <T;

HO) _ (t)

(A- 5)% 2,00—2—07s — CO,_ 2,0t72+9T+s+1—9t 1-2s =015, Co, 2+3T+1+S Ot—2—0115
_ T+1-s (0 (t)

= 0125 +3" 70 0" arie g vh, = O =01 a5 for (‘Po vp1) = (Bt

3T+1+S79t71 - 9T+s; 1 S S S T

(t) _ (t) _
(A‘G) 09t72’9t72,9T+s = 9t—2s; Cgt72,3T+s)gt72+9T71+s+1 =0i_05 — 0T+1—s;
(t)

t
CQt 2+3T+‘5 9t—279T—1+s = 0t—23 +0T+1_S + 1’ cét)72;9t7270T—1+s = 9t _9t+1_28 for
(e, ") = (1,001 — Or1), 1< s <T;

(t) _ (t)
(A 7) 09 2—=3T+5.0y o407 14s+1 Or—25 — 9T+1_S’ Cet72+3T+S79t7279T71+s
(t) _ (t) _
O1—25 +0711-5 + 1, C0y_0,0i_ o071+l — 012, €0, 2,00 o0 14541 — 01— 0125
t
fO’f' (300 7@& )) = (etflvetfl + 0T+s + ]-)7 1 S S S T.

(2) When t is even (> 4):

Af ={(0:-1,3" ) U{(01—1,0i—1 — Ous145), (Or—1,01—1 + 0145 +1) | 0 <
s<UYU{(Or—1 =350, 1 + O0ups + 1), (01 +3V 150, 1 —0pps) | 1 <
s<U+1},

where U = (t — 4)/2. The spectrum corresponding to each diversity is uniquely
determined as follows:
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(t) _ (t) _
(B‘l) 60t72,9t7270U+1 0 1, Cg —3U+19,_ 2+9U+1 =01 — 9U+17

cé?_2+3U+1,0t_2—0U O1—1 4 0u11 + 1 for (o)), 1) = (011,001 — Ou11);

t t
(B-2) Cét)7273U+1 0 ot6u+1 — Or—1 _9U+17 Cét) 213U+ 0, 00y O 1+0yy1+1,

Céilz,9t72+eu+1+1 O¢—1 for (‘Po 7801 ) (01-1,0i—1 +0uy1 +1);

(B 3) (Céf) 2,07 Cétf) 3,2.3t=2) Céf) 2,3t=2 C'(gf) o43t—2 3t— 2) = (47379t - 9276)
fOT’ (()00 7@&75)) - (et—lﬁ 3t 1);
(B 4) (t ) _ 3U+2-s (t)

’ CGt—?yet—2_9U+s =
R (t)
€, a,ef 2+0U+ 11 =02 HOus + 1657 guieg, svop iy, = 00 Oroas
for (@, o) = (0,1 —3U+1+s 0, + 0y +1), 1<s<U+1;

—3U+1+5 0, _o40y4s+1 = 0i-25

(t) _ @ _
(3_5) €0, 2,00 2—0u4+s — CO12,0i_atOuseatl O1—25 — Ouy1-s,
(t) _ U+2—s (1) _ 9 _
o, 2+3U+1+g Or—2—0uts Or—2s +3 ’ Cet72+3U+S79t7279U71+s =0t — Or41-25

for (‘Po v@gt)) (01 + 310, 1 —0y4s), 1<s<U+1;

(t) (t) _
(B‘G) Co,_ 2,0i—2—0U414s 0t—1—2s; Cgt_2_3U+1+s79t_2+9U+S+1 =0_1-2 _0U+1—s;

(t) (t) _
Cor_ot8U+1+s0, 50y s = Ot-1-2s + 015 + 1, €01—2,0,—2—0u4e — Or — Or—25 for

(@é)ﬂﬂg)) = (011,01 — Out14s), 1 <s<U;

(t) _ (t)
(B-7) Cet—2—3U+1+S79t—2+9U+s+1 - 91571725 - 0U+175; Cet—2+3U+1+S,9t—2—9u+s -
t) _ (t) _
Or—1-2s + Oup1-s + 1, €0, 2,0, 2+0ut11o+1 — Or—1-2s, €0, 2,0, o+0utstl — 0; —
t
Oi—2s for (‘Po ,<p§ ) = (0i—1,0i—1 +Out14s+1), 1 <s<U.

3 Main Results

In this section, we give the geometric conditions and the main theorems on the
extendability of ternary linear codes. For k > 4, let (Cj-0), (Ci-1) and (Cg-2)
be the following conditions:

(Ck-0) there exists a (0;_4,0),—3 flat 61 in I* satisfying 6, \ Fy C Fg,

(Ci-1) (Cx-0) holds and there exists a (0x_4, 3% 3)x_3 flat 6o in £* such that
61 Nbyis a (Qk_4, O)k_4 flat,

(Ck-2) there exist two (0x—4,0)k—3 flats 81, 62 in X* such that §; N &7 is a
(9k7470)k74 flat with ((51 @] 62) \ ((51 N (52) C Fe..

We denote by (x1, X2, --) the smallest flat containing subsets 1, x2,- - of X*.
For k = 4 we consider two more conditions:

(C4-3) there are three non-collinear points Ry, Rg, R3 € F,, such that the three
lines (R1, Ra), (Ra, R3), (Rs, R1) are (0, 2)-lines,
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(C4-4) there are three non-collinear points Q1, Q2, Q3 € F; such that the three
lines (@1, Q2), (Q2,Q3), (R3,Q1) are (0,2)-lines each of which contains two
points of Fy.

For k > 5, let (Cg-3) and (Cg-4) be the following conditions:

(Ck-3) there exist three (0;_5,0)r—_4 flats 61, 82, 83 through a fixed (0x—_5,0)x—5
flat L such that (81, 82), (82,063), (83,61) form distinct (fx_5,2-3%4),_3 flats
and that (61 Udy U (‘53) \L C F, hOldS7

(Cy-4) there exist a (fx_5,0),_5 flat L, three (0x_5,3"4),_4 flats &}, 85, &%
through L, and six (0;_5,0),—4 flats 61, -+, 8¢ through L such that (&, 6;)
forms a (6;_s5,2-3%*%);_3 flat containing two of &;,---,8 for 1 <i < j <3
and that (U%_,6;) \ L C F, holds.

For k = 5 we consider two more conditions:

(C5-5) there exist a (4,0)-line ! and four skew (1,0)-lines Iy, l2,13,14 such that
each of ly,...,l4 meets [ and that (I1,l2,13,l4) € F5 and (U'_,;) \ I C F.
hold,

(C5-6) there exist a (2,1)-line Iy containing two points P, P, € Fy and two
(1,0)-lines i1,1l2 (resp. I1,15) through Py (resp. P2) such that | = (l3,12) N
(11,15) and m; = (Qo, Q;) are (0,2)-lines for i = 1,2, where Io N F1 = {Qo},
INF ={Q1,Q2} and that (U?_,(l; Uli Um;)) \ F C F, holds.

We define the conditions (Cg-5) and (Cg-6) for k > 6 as follows:

(Ck-5) there exist a (0y_4,0),—4 flat 6, a (0x_6,0)x—¢ flat H in é and four
(0k—5,0)k—4 flats 61, -+, 04 such that 61 \ 6,---,064 \ 6 are mutually disjoint
and that 61 N é,---,84 N 6 are distinct (k — 5)-flats through H and that
(61,+++,64) € Fj_5 and (UL,68;) \ 6 C F hold,

(Cx-6) there exist a (f_5 + 37,3 75),_4 flat 6y (containing the (6x_5,0)r_5
flats L1, Ly and the (Qk_6,3k_5)k_5 flat Lo), two (Gk_5,0)k_4 flats 61, 62
(resp. 6%, 065) through L; (resp. La) such that § = (61,62) N (67,65), 63 =
(Lo, My) and &4 = (Lo, Ma) form (0,2 -357);_4 flats and that (8] U8, U
(UL6:)) \ F C F, holds, where M; and My are the (6;_g, 3F=5)_5 flats in
6.

For k = 6 we consider extra two conditions:

(Ce-7) there exist a (4,9)-plane 6, a (4,0)-line [ = {Py, -+, P;} in 6, and three
non-coplanar (1,0)-lines l;1, li2, ;3 through P; with A; = (l;1,l;2, l;3) for each
i (1 < i < 4) such that Aq,---, Ay are distinct solids through 6 and that
(U?:l Ui;‘:l ll]) \l C F, holds,

(Cg-8) there exist a (4,0)-plane 8, a (4,0)-line [ = {Py,---, P4} in ¢, and three
non-coplanar (1,0)-lines l;1, 2, lis through P; none of which lie on § with
A; = (li, Lo, lig) for each i (1 < i < 4) such that Ay,---, A are distinct
solids through & and that (6 U (Uj_, U3_, 1;;)) \ I C F; holds.
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(Cs-6)

O:a point of Fo
O:a point of Fi
@:a point of Fe

Let C be an [n, k,d]3 code with diversity (€9, 91) € D}, d =1 or 2 (mod 3),
k > 3. Since D = {(4,3)}, D = {(13,9),(10,15), (16,12)} and D} = A} , for
k > 5 ([5],[6]), we have |Dy| = 2k — 1 for all k£ > 3. It is known that an [n, 4,d]s
code with diversity (g, ®1) € Dj is not extendable if @, < 3 for k = 4 ([5]). The
conditions (Cy4-0)-(Cy-4) are used to check the extendability of [n, 4, d]s codes.

Theorem 1 ([6]). Let C be an [n,4,d]3 code with diversity (®o,d1) € DF,
gcd(3,d) = 1. Then C' is extendable if and only if one of the conditions indicated
in Table 3 holds.

For the case when k =5, C' is not extendable if &, < 9 when (@¢, P1) # (40, 36)
orif &, < 12 when (Pg, P1) = (40, 36) ([5]). Otherwise, we need to check whether
one of the conditions (C5-0)-(C5-6) holds or not according to the diversity of C.

Theorem 2 ([7]). Let C be an [n,5,d]s code with diversity (®o,d1) € DI,
gcd(3,d) = 1. Then C' is extendable if and only if one of the conditions indicated
in Table 4 holds.

Table 3. Table 4.

(Po, P1) conditions (@0, 1) conditions
(13,9) (Ca-1), (Ca-4) (40,27) (Cs-1), (Cs-4)
(10,15) (C4-2), (C4-3), (Cs-4) (31,45) (Cs-2), (C5-3), (Cs-4), (C5-6)
(16,12) (C4-0), (C4-3) (40,36) (Cs 4), (Cs-5), (Cs5-6)
(40,45)  (C5-3), (C5-5), (C5-6)
(49,36) (Cs5-0), (Cs-3), (C5 5)

For k = 6, C is not extendable if @, < 27 when (P, P1) € {(121,81), (94,135),
(121,135), (148,108)} or if B, < 36 when (Po,®1) € {(121,108), (112,126),
(130,117)} ([5]). Otherwise, we need to check whether one of the conditions
(Cg-0)-(Cs-8) holds or not according to the diversity of C.

Theorem 3. Let C be an [n,6,d|3 code with diversity (®o,P1) € Dy, ged(3,d) =
1. Then C' is extendable if and only if one of the conditions indicated in Table 5 holds.
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Table 5
(o, P1) conditions
(121, 81) (Ce-1), (Ce-4)
(194,135) (Cs-2), (Co-3), (Co-4), (Co-6)
(121,108) (Cs-4), (Cs-5), (Ce-6), (Ce-8)
(112,126) (Ce-6), (Cs-7), (Cs-8)
(130,117) (Cs-5), (Cs-7), (Cs-8)
(121,135) (Cs-3), (Cs-5), (Ce-6), (Ce-T7)
(148,108) (Ce-0), (Cs-3), (Cs-5)

The result for (Pq,P1) = (121,81),(94,135),(148,108) in Theorem 3 can be
generalized to the following Theorems 4-6 respectively.

Theorem 4. Let C be an [n,k,d|3 code with diversity (0—2,3%72), ged(3,d) =
1, k > 5. Then C is extendable if and only if either the conditions (Cg-1) or
(Ck-4) holds.

Theorem 5. Let C be an [n,k,d)3 code with diversity (0_o — 35735 . 3k=3),
gcd(3,d) =1, k > 6. Then C' is extendable if and only if one of the conditions
(Ck-2), (C-3), (Ck-4), (Ck-6) holds.

Theorem 6. Let C be an [n,k,d)3 code with diversity (0_o + 3573 4. 38=3),

gcd(3,d) =1, k > 6. Then C' is extendable if and only if one of the conditions
(Ck—O), (Ck—3), (Ck—5) holds.

4 Proof of Theorems 3 — 6

Theorem 2 can be proved using the following lemma.

Lemma 7 ([7]). Let A be a solid in X*.

(1) A is a (13,9)-solid with A\ F C F, if and only if A satisfies (Cs-4).

(2) A is a (10,15)-solid with A\ F C F, if and only if A satisfies (C5-6).

(3) A is a (16,12)-solid with A\ F C F, if and only if A satisfies (C5-5).

(4) A is a (13,18)-solid with A\ F C F, if and only if A satisfies (C5-3).

It is easy to see that the point L in (Cs-3) (resp. in (Cs-4)) is the axis of a
(13,18)-solid (resp. a (13,9)-solid). The following lemma is obtained from the
proof of Lemma 7(2), see [7].

Lemma 8. Let A be a (10, 15)-solid and assume (Cs-6) holds in A except for
the condition that m; = (Qo, Q:) is a (0,2)-line for i = 1,2. Then my and ma
are necessarily (0,2)-lines in A.

We give the geometric characterizations of some 4-flats in X* before proving
Theorem 3.

Lemma 9. For a 4-flat IT in X*, IT is a (40,54)4 flat with II \ F C F, if and
only if (C¢-3) holds in II.
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Lemma 10. For a 4-flat IT in X*, IT is a (40,27)4 flat with I\ F C Fe if and
only if (Cg-4) holds in II.

Lemma 11. For a 4-flat IT in X%, II is a (49,36)4 flat with II \ F C F, if and
only if (Cg-5) holds in II.

See Lemmas 15,16,18 for the proofs of Lemmas 9,10,11, respectively.

Lemma 12. For a 4-flat IT in X*, II is a (31,45)4 flat with II \ F C F, if and
only if (C¢-6) holds in II.

Proof. (“only if” part:) Assume that IT is a (31,45)4 flat with IT\ F C F,. Then
the spectrum of II is (051%287c§§{97c§%{15,c%))lg) = (10, 15, 81, 15) by Lemma 6,
see (B4) with ¢t = 4,5 = 1. Take two (4,18)-solids A;, Ay in IT meeting in a
(1,6)-plane 8, where § contains exactly two (1,3)-lines, say My, M. Let L; be
the axis of A;, which is a (4,0)-line in A; for ¢ = 1,2 by Lemma 5. Then there
are exactly two (4,0)-planes through L; in A;, say 61,82 for i = 1 and 67, 6} for
i =2.Put H= Ly N Ly. Then H is the point of Fy in §. Since IT has no (13,0)-
plane, 89 = (L1, Lo) is a (7,3)-plane by Table 1. Let Ly be the (1,3)-line in &.
It suffices to show that 63 = (Lo, M1) and 64 = (Lo, Ma) are (1,6)-planes. Take
a point P;(# P) on L; for i = 1,2 and let [ be a (0,2)-line in §6 which consists
of Q1,Q2 € Fy and Ry, Ry € F,. Then (P;,1) is a (1,6)-plane, for there are two
(4,9)-planes and two (4,0)-planes through L; in A;. Note that the line (Py, P5)
in 6o is a (2,1)-line. Containing two (1,3)-lines (Pr,@1), (P2, Q1) and a (2,1)-
line (Py, Ps), (P1,Q1, P2) is a (4,6)-plane. Meanwhile, containing two (1,0)-lines
<P1, ]%1>7 <P2, R1> and a (2,1)—line <P1, P2>7 <f)17 Rl, P2> is a (4,3)—p1ane. Hence,
containing three type of planes (Pi,1), (P1,Q1, P2), and (Py, Ry, P,), it follows
from Table 2 that (I, P1, P,) is a (10,15)-solid. Then, by Lemma 8, (Qq, Q;) is a
(0,2)-line, where Qo = Lo N (P1, P). Hence 63 and 64 are (1,6)-planes.

(“if” part:) Assume (Cg-6) holds in IT. Put H = L; N Ly and let A be a
solid in IT not containing H. Setting lp = ANédg, | = AN, Qo = AN Ly and
Pi = AﬂLi, lz = Aﬁc‘ii, l; = Aﬁc‘ig, Qz = AﬁMi for i = 1,2, the condition
(Cs-6) holds in A. Hence A is a (10,15)-solid by Lemma 7(2) and IT satisfies
c%))ls > 04 — 65 = 81. This implies that IT is a (31,45), flat. ]

From the proof of Lemma 12, the point H = Ly N Ly in the condition (Cg-6)
is the axis of a (31,45)4 flat IT. Now, let Ay be a (13,18)-solid in IT with the
axis Hy and let &’ be a (1,6)-plane in Ag. Then the point of Fy in 6’ is Hy since
every (1,6)-plane in Ay contains the axis of Ag. Note that there are exactly two
(4,18)-solids through &¢. It follows from the “only if” part of the previous proof
that Hy coincides with H. Hence we have the following.

Corollary 1. The axis of any (13,18)-solid in a (31,45)4 flat IT coincides with
the azis of II.

Lemma 13. For a 4-flat IT in X*, IT is a (40,45)4 flat with I\ F C Fe if and
only if (Cg-T) holds in II.
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Proof. (“only if” part:) Assume that IT is a (40,45)4 flat with IT\ F' C F,. Then
the spectrum of IT is (0%)71570%)712, c%)ylg) = (36, 45, 40) by Lemma 6, see (B2).
For a (4,9)-plane é in II, there are exactly four (13,18)-solids, say Aj,---, Ay,
through ¢ in IT. Let [ be the axis of é, which is the (4,0)-line in §. For 1 < i <4,
let P; be the axis of A; and let l;1,l;2, ;3 be the three (1,0)-lines through P; in
A;. Then P; is a point of [ since every (4,9)-plane in A; contains the axis of A;.
Suppose P; = Py. Since (l11,112) is a (1,6)-plane in A; and since there are no
(1,0)-lines three of which are meeting in a point of Fy in a (10,15)-solid from
Lemma 7(2), (l11,l12,121) is a (13,18)-solid in II. On the other hand, there is
only one (13,18)-solid through a fixed (1,6)-plane in II, a contradiction. Hence
we have | = { Py, P2, P5, Py}, so that (Cg-7) holds.

(“if” part:) Assume (Cg-7) holds in IT. Then, A; is a (4,18)-solid or a (13,18)-
solid, for there are three non-coplanar (1,0)-lines through a fixed point of Fy in
A; and there is a (4,9)-plane ¢ in A;. Since IT has exactly 45(= (18 —9) x 4+ 9)
points of Fy, IT is a (31,45)4 flat or a (40,45)4 flat. Suppose IT is a (31,45)4
flat. Then we may assume that Aq, Ay, Az are (13,18)-solids and that Ay is a
(4,18)-solid. Since all of the planes through [ in A; other than § are (7,3)-planes,
the three (1,0)-lines contained in these three (7,3)-planes are just l;1, l;2, l;3, and
P; is the axis of A; for 1 <4 < 3. This is contradictory to Corollary 1. Hence IT
is a (40,45),4 flat. O

The following Lemma can be proved similarly to the proof of Lemma 13.

Lemma 14. Let IT be an (ig,i1)s flat in X* with (ig,i1) # (40,0). Then II is
a (40,36)4 flat with II \ F C F, if and only if (Cs-8) holds in II.

Proof of Theorem 3. We prove Theorem 3 only for the case (Do, P1) =
(94, 135). Other cases can be proved by similar arguments using Lemmas 9-14.
(“only if” part:) Assume that C is extendable. Then there is an (4, j)4 flat IT in
X* satisfying IT \ F C F,. We have (i,7) € {(13,54), (40,27), (31, 45), (40,54)}
by Lemma 6. If IT is a (13,54)4 flat, then (Cg-2) holds since there are exactly
two (13,0)-solids and two (13,27)-solids through a fixed (13,0)-plane (see Lemma
4(2)). If IT is a (40,54)4 flat, a (40,27)4 flat or a (31,45)4 flat, then (Cg-3), (Cg-4)
or (Cg-6) holds respectively by Lemmas 9,10,12.

(“if” part:) Recall that an (7, 7)4 flat in X* satisfies (¢,7) € {(13,54), (40,27),
(31,45), (40,54)} when (Do, P1) = (94,135). We first assume that (Cs-3) holds
and let IT; be the 4-flat containing 61, 62, 63. Then I1; is a (40,54), flat containing
27 points of F, by Lemma 9. Hence C' is extendable by Lemma 3. It can be also
proved similarly that C' is extendable if either (Cg-4) or (Cg-10) holds by Lemmas
10,12. Now, assume that (Cg-2) holds and let ITy be the 4-flat containing 61, 62.
Then II5 is a (40,27)4 flat or a (13,54)4 flat by Lemmas 4,6 since 15 contains at
least two (13,0)-solids. If II is a (40,27)4 flat, then for any (13,0)-plane é there
are exactly one (13,0)-solid and three (22,9)-solids through é in I75, contradicting
(C6-2). So I is a (13,54)4 flat containing 54 points of Fi,. Hence C is extendable
by Lemma 3. O

Lemma 15. Let IT be a t-flat in X* with t > 3. Then II is a (6;_1,2 - 3'71),
flat with IT \ F' C F. if and only if (C42-3) holds in II.
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Proof. (“only if” part:) Assume that IT is a (6;_1,2-3~1); flat. Then the spec-
trum of I7 is given as (3) of Lemma 4:
(C((ai)_g,zsf«—% C(gi)_2,2~3t—2’ C((ai)_2+3f—2,3f—2’ Céi)_rz,sf«—l = (3,0: — 62,6,4).

For a (6;—3,0);—2 flat 61, it follows from (2)-(5) of Lemma 4 that there are
exactly two (6;_3,2-3'72),_; flats, say Ay, Ag, and two (§;_o+3'72,3172),_; flats
through 67 in IT. Let L be the axis of 61, which is a (0;_3,0);_3 flat by Lemma
5(1). Then there is a (6;—3,0):—2 flat, say 82 (resp. 83) through L other than 6,
in Ay (resp. Ag). A (¢t — 1)-flat containing at least two (6;_3,0);_o flats in IT is
only a (6;_3,2-3'=2);_; flat by Lemma 4, whence (82,63) is a (0;_3,2-3'72);_4
flat. Since ‘(61 Uédy U 63) \L‘ = 3(9t72 - Qt,g) =0; — (9t71 +2- 3t71) = |H \ F|,
we have (61 U2 U 63) \ L C Fe.. Hence (Cy42-3) holds.

(“if” part:) We proceed by induction on ¢. The conclusion holds for ¢ = 3
by Lemma 7(4). Now, assume that ¢ > 4 and that (C;y2-3) holds in IT. Take
a hyperplane m of II not containing L and put L; = 7 Né;, ¢ = 1,2,3, H =
mNL. Since (L;, L;) contains two (6;—4,0);—3 flats meeting in a (6;—4,0)¢—4 flat,
(Li, Lj) is a (64—4,2- 3173)y o flat or a (f;_3,0);_» flat for 1 <i < j < 3. On the
other hand, (6;,6;) contains no (6;_3,0),_o flat other than é;,6; by Lemma 4(2).
So, each (L;, L;) is a (0;_4,2 - 3'73),_5 flat. Applying the inductive assumption
to m = (Ly, Lo, L3), mis a (0;_2,2 - 3"2),_; flat. Hence, counting the points
of Fy and Fy in the four (¢ — 1)-flats through (L1, L), we have |II N Fy| =
(Or—2—01-4)3+0;3="0,1, |[IINF|=(2-372-2.30"3)3+2.372=2.30"1,
This completes the proof. a

Lemma 16. Let IT be a t-flat in X* with t > 3. Then II is a (6;_1,3'"1); flat
with II \ F C Fe if and only if (Cy32-4) holds in II.

Proof. (“only if” part:) Assume that IT is a (f;—1,3'"1); flat. Then the spectrum
of II is given as (A3) or (B3) of Lemma 6:
(C((ftt),z,ovCéi),3,2-3f—2vc((9tt),2,3f—2’ Cétt),erS"—?,S"—?) = (4,3,0, — 62,6).

For a (6;_3,3'"2);_5 flat 8] in I there are exactly two (0;_3,2 - 3'72),_; flats,
say Ag, Az, and two (6;_2 + 3'72,3!72),_; flats through &} in IT by Lemmas
4,6. Let L be the axis of ¢], which is a (6;—3,0),_3 flat in 6] by Lemma 5(2).
Then there are two (6;_3,3'72);_5 flats through L other than &, say &} in A,
and &% in Ag, and four (6;_3,0);_2 flats 61, -+, 84 through L with 8,62 C Ag,
63,64 C As. It follows from Lemmas 4,6 and the spectrum of IT that a (¢ — 1)-
flat containing two (6;_3,3'"2);_o flats in IT is a (0y_3,2 - 3'72),_1 flat. Hence
(64,65) is a (0y_3,2 - 372),_; flat containing two (6;_3,0);_o flats, say 85, 5.
Thus (Ct+2—4) holds.

(“if” part:) The proof is by induction on t. For ¢t = 3, our assertion follows
by Lemma 7(1). Now, assume that ¢ > 4 and that (Cy42-4) holds in IT. Take a
hyperplane 7 of IT not containing L and put L; =7 N¢,,i=1,2,3, H=mN L.
By a similar argument to the proof of the previous lemma, we can deduce that
(LiyLj) (1 < i < j <3)isa (04,2 377),_5 flat. Applying the inductive
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assumption to m = (L1, Lo, L3), 7 is a (6;—2,3'72),_1 flat. A t-flat contain-
ing (0;_3,2-3""2),_; flats and (6;_2,3'72);_; flats is a (6;_1,3'"!); flat or a
(01 — 3720, 1 + 6, 3+ 1); flat. Since IT contains 2 - 3'~! points of F,, IT is
a (0y_1,3"71), flat. O

It follows from the proofs of Lemmas 15,16 that the (6;_3,0);—3 flat L in (Cy1o-
3) (resp. in (Cyi2-4)) is the axis of a (6;—1,2 - 371); flat (vesp. a (6;—1,3""1);
flat). Hence we get the following.

Corollary 2. Let II be a t-flat in X*, t > 3.

(1) IT is a (8;—1,3'=1); flat if and only if II contains a (0;_3,0);—3 flat which is
the awis of type (0;_2,3'72).

(2) IT is a (0;—1,2-3'"1); flat if and only if IT contains a (0;_3,0);_3 flat which
is the axis of type (0y_2,2 - 372).

As for the axis of a (0;_1,3'!); flat, the following lemma also holds.

Lemma 17. Fort >3, let IT be a (0;_1,3'"Y); flat in X* with the axis L.

(1) The axis of any (0;_3,2-3'"2);_1 flat in II coincides with L.

(2) Let & be a (0;_2,0);_o flat and let A be a (6;_o + 372,372,y flat through
6 in I1. Then the (0;—3,0):—o flat 69 in A contains L.

(3) Let Ay, Ag, A be the (0;—2,3'2),_1 flats in II through a fized (0;—3,0);_o
flat 6. Then the azes of A1, Ag, As are the same (04_4,0)1—4 flat in L.

(4) Every (0;_3,3'=2);_o flat in II contains L.

Proof. (1) and (4) are obtained from Corollary 2(1) and the proof of Lemma 16.
(2) Let H be the axis of A. Then 6§y contains H by Lemma 5(4). Since there is a
(0;—3,2 - 312),_1 flat through &y in I, we have H = L by (1) of this lemma.

(3) Let L’ be the axis of § and put S = LNL'. Fora (6;_3,2-3'72),_1 flat A, ANA;
isa (0;_4,2-3"73);,_5 flat through S. Hence S is the axis of A; fori =1,2,3. O

Lemma 18. Let IT be a t-flat in X* with t > 4. Then IT is a (0;—1 + 3t2.4.
3t=2), flat with I1 \ F C F, if and only if (Ct42-5) holds in II.

Proof. (“only if’ part:) Assume that IT is a (f;—1 + 32,4 - 3t=2), flat. The
spectrum of I7 is given as
(Cét,,)_z,sf«—%Cg)t,,)_2+3t—3,4.3f—37 Cg)t,,)_z,z.:;f—?v Cét,,)_2+3f«—2,3f«—2) = (12,0, — 05,12,16),

see (A-5) with s = T" and (B-5) with s = U+1 of Lemma 6. For a (0;_2,0);— flat
8 in II, there are exactly four (6;_o+3'72,3!72),_; flats, say Ay, - -, A4, through
6in II. Let é; be the (6;_3,0);_2 flat in A; and let L; be the (6;_3,0);—3 flat 6;N6
which is the axis of §; for 1 <i < 4.1If L; = L;, then (6;,0;) is a (0¢—2,3"72);_4
flat since it contains at least two (0;—3,0);—2 flats in IT, 1 < i < j < 4. This
contradicts that there is exactly one (6;_3,0);—2 flat through a fixed (6;_3,0):—3
flat in a (6;_2,3'"2),_; flat. Hence L; # Lifor1<i<j<4. PutLiNL;=H,
where j > 1. Let A be one of the (¢ — 1)-flats in IT through 6; other than A;.
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Then A is a (6;—2,3"?);1 flat. Let &} be the (6;3,3'"?); o flat through L;
in Aj. Then AN6; = (ANA;)NE, is a (6;-4,3"7); 3 flat containing H since
ANA;jisa (t —2)-flat through L. Hence H is the axis of A by Lemma 17(4).
This yields that L1 N Ly = L1 N Ls = L1 N Ly. Hence (Cy42-5) holds.

(“if” part:) Assume (Cy;42-5) holds and let IT be the t-flat containing 61, - - -, d4.
Then A; = (6;,6) is a (6;_2,0);_1 flat or a (6;_o + 3172,3!72), ; flat for 1 <
i < 4. If x of Ay,--+, Ay are (6;_o + 3172,3172),_; flats, then IT is a (6;_o +
31722, 31721), flat with & = 3 or 4 since (0;_o +3'2x,3'22) & A, for x < 2. We
also have z # 3 by Lemma 17(2). Hence I is a (0,1 + 3'72,4-3"7%), flat. O

Now, assume that IT is a (§;_1 — 3'72,5-3'=2), flat. Then the spectrum of IT is
given by Lemma 6 as

(Cétt)—3;2'3t_27 CéilZ’gt—2a Cétt)72,3t—3)5_3t—3a Céilz)Q.St—2) - (103 157 et - 033 15)7

see (A-4) with s = T and (B-4) with s = U + 1. Take two (6;_3,2-3"72),_; flats
Ay, As in IT meeting in a (0;_4,2-3'73);_o flat. Let L; be the axis of A;, which
is a (0;—3,0);—3 flat by Lemma 5 for ¢ = 1,2. Then it can be proved that the
(0;—4,0)¢_4 flat H = Ly N Ly forms the axis of IT of type (6;_ — 3!73,5-3t73).
A similar argument to the proof of Lemma 12 yields the following lemma by
induction on t.

Lemma 19. Let IT be a t-flat in X* with t > 4. Then II is a (0;—1 — 32,5 -
3t=2), flat with I1 \ F C F, if and only if (Ct42-6) holds in II.

The following result for ¢ = 4 is obtained from the proof of Lemma 12.

Corollary 3. Fort >4, let IT be a (0;_1—3'"2,5-3'=2); flat and assume (Cy -
6) holds in I except for the condition that 65 = (Lo, M1) and 64 = (Lo, M2) are
(04—4,2-3"73),_5 flats. Then 63 and 64 are necessarily (0;—4,2-3'73);_o flats in
1I.

Finally we give the proof of Theorem 5. Theorems 4 and 6 can be proved similarly
using Lemmas 15-19.

Proof of Theorem 5
(“only if” part:) Assume that C' is extendable. Then there is an (4, j)r—2 flat IT
in X* satisfying IT \ F C F, by Lemma 3. From Lemma 6 we have

(7’7]) € {(9k747 2. 3k_3)7 (9]4,,37 3k_3)7 (9k73 - 3k_47 5 3k_4)7 (9k737 2. 3k_3)}7

see (A-4) with s = T and (B-4) with s = U + 1. If IT is a (05_4,2 - 3*73);_»
flat, then (Cg-2) holds since there are exactly two (fx—4,0)r—3 flats and two
(0 _4,3%3);_3 flats through a fixed (0_4,0)x_4 flat in I7. If IT is a (6)_3,2 -
3F3)._o flat, a (Op_3,3"3)p_o flat or a (fx_3 — 3¥4,5 - 3¥1),_, flat, then
(Ci-3), (Cg-4) or (Cg-6) holds respectively by Lemmas 15,16,19.

(“if” part:) Assume that (Cg-2) holds and let IT; be the (k—2)-flat containing
81,0. Then Iy is a (0y_3,3*3)x_o flat or a (04,2 - 3573),_o flat since IT;
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contains at least two (fg_4,0)r_3 flats. If IT; is a (0x_3,3%73)x_o flat, then for
any (0g—_4,0)x—4 flat 6 there are exactly one (fx—4,0),—3 flat and three (0x—_4 +
3k=4 3k=4), 5 flats through 6 in I1;, contradicting (Cg-2). So IT; is a (04,2 -
3%=3)4_o flat containing 2 - 3*=3 points of F,.. Hence C' is extendable by Lemma
3. Next, assume that one of the conditions (Cy-3), (Cg-4), (C-6) holds. We take
a (k —2)-flat IT as IT = (61, 62,03) for (Cy-3), IT = (8}, 85,65) for (Cp-4) and
IT = (61, 62,83, 04) for (Cy-6). Then IT \ F C F, holds by Lemmas 15,16,19, and
C' is extendable by Lemma 3. O
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Abstract. In this paper, we describe a broad class of problems arising
in the context of designing codes for DNA computing. We primarily fo-
cus on design considerations pertaining to the phenomena of secondary
structure formation in single-stranded DNA molecules and non-selective
cross-hybridization. Secondary structure formation refers to the tendency
of single-stranded DNA sequences to fold back upon themselves, thus
becoming inactive in the computation process, while non-selective cross-
hybridization refers to unwanted pairing between DNA sequences in-
volved in the computation process. We use the Nussinov-Jacobson algo-
rithm for secondary structure prediction to identify some design criteria
that reduce the possibility of secondary structure formation in a code-
word. These design criteria can be formulated in terms of constraints on
the number of complementary pair matches between a DNA codeword
and some of its shifts. We provide a sampling of simple techniques for
enumerating and constructing sets of DNA sequences with properties
that inhibit non-selective hybridization and secondary structure forma-
tion. Novel constructions of such codes include using cyclic reversible
extended Goppa codes, generalized Hadamard matrices, and a binary
mapping approach. Cyclic code constructions are particularly useful in
light of the fact we prove that the presence of a cyclic structure reduces
the complexity of testing DNA codes for secondary structure formation.

1 Introduction

The field of DNA-based computation was established in a seminal paper by Adle-
man [2], in which he described an experiment involving the use of DNA molecules
to solve a specific instance of the directed travelling salesman problem. DNA se-
quences within living cells of eukaryotic species appear in double helices (alter-
natively, duplezes), in which one strand of nucleotides is chemically attached to
its complementary strand. However, in DNA-based computation, only relatively
short single-stranded DNA sequences, referred to as oligonucleotides, are used.
The computing process simply consists of allowing these oligonucleotide strands

* This work was supported in part by a research grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada. Portions of this work were pre-
sented at the 2005 IEEE International Symposium on Information Theory (ISIT’05)
held in Adelaide, Australia.
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to self-assemble to form long DNA molecules via the process of hybridization.
Hybridization is the process in which oligonucleotides with long regions of com-
plementarity bond with each other. The astounding parallelism of biochemical
reactions makes a DNA computer capable of parallel-processing information on
an enormously large scale. However, despite its enormous potential, DNA-based
computing is unlikely to completely replace electronic computing, due to the
inherent unreliability of biochemical reactions, as well as the sheer speed and
flexibility of silicon-based devices [30]. Nevertheless, there exist special applica-
tions for which they may represent an attractive alternative or the only available
option for future development. These include cell-based computation systems for
cancer diagnostics and treatment [3], and ultra-high density storage media [17].
Such applications require the design of oligonucleotide sequences that allow for
operations to be performed on them with a high degree of reliability.

The process of self-assembly in DNA computing requires the oligonucleotide
strands (codewords) participating in the computation to selectively hybridize in
a manner compatible with the goals of the computation. If the codewords are
not chosen appropriately, unwanted (non-selective) hybridization may occur. For
many applications, even more detrimental is the fact that an oligonucleotide se-
quence may self-hybridize, i.e., fold back onto itself, forming a secondary struc-
ture which prevents the sequence from participating in the computation process
altogether!. For example, a large number of read-out failures in the DNA storage
system described in [17] was attributed to the formation of hairpins, a special
secondary structure formed by oligonucleotide sequences. The number of com-
putational errors in a DNA system designed for solving an instance of a 3-SAT
problem [5] were reduced by generating DNA sequences that avoid folding and
undesired hybridization phenomena. Similar issues were reported in [4], where a
DNA-based computer was used for breaking the Digital Encryption Standard.

Even if hybridization can be made error-free and no detrimental folding of
sequences occurs, there remain other reliability issues to be dealt with. One
such issue is DNA duplex stability [6],[18]: here, a hybridized pair of sequences
has to remain in a duplex formation for a sufficiently long period of time in order
for the extraction and sequence “sifting” processes to be performed accurately.
It was observed in [6] that the stability of duplexes depends on the combinatorial
structure of the sequences, more precisely, on the combination of adjacent pairs
of bases present in the oligonucleotide strands.

It must be pointed out that the problem of designing sets of codewords that
have properties suitable for DNA computing purposes can be considered to be
partially solved from the computational point of view. There exist many software
packages, such as the Vienna package [29] and the mfold web server [32], that can
predict the secondary structure of a single-stranded DNA (or RNA) sequence.
But such procedures can often be computationally expensive when large numbers
of sequences are sought, or if the sequences are long. Furthermore, they do not

! This is not a problem with all DNA-based systems; there exist DNA-based computer
logic circuits for which specific folding patterns are actually required by the system
architecture itself [25].
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provide any insight into the combinatorial nature of the problems at hand. Such
insight is extremely valuable from the perspective of functional genomics, for
which one of the outstanding principles is that the folding structure of a sequence
is closely related to its biological function [7].

Until now, the focus of coding for DNA computing [1],[8],[10],[14],[18],[23] was
on constructing large sets of DNA codewords with fixed base frequencies (con-
stant GC-content) and prescribed minimum distance properties. When used in
DNA computing experiments, such sets of codewords are expected to lead to
very rare hybridization errors. The largest families of linear codes avoiding hy-
bridization errors were described in [10], while bounds on the size of such codes
were derived in [18] and [14]. As an example, it was shown in [10] that there exist
94595072 codewords of length 20 with minimum Hamming distance d = 5 and
with exactly 10 G/C bases. In comparison, without disclosing their design meth-
ods, Shoemaker et al. reported [24] the existence of only 9105 DNA sequences of
length 20, at Hamming distance at least 5, free of secondary structure at tem-
peratures of 61 £ 5 °C'. Since ambient temperature and chemical composition
have a significant influence on the secondary structure of oligonucleotides, it is
possible that this number is even smaller for other environmental parameters.

The aim of this paper is to provide a broad description of the kinds of prob-
lems that arise in coding for DNA computing, and in particular, to stress the
fact that DNA code design must take secondary structure considerations into
account. We provide the necessary biological background and terminology in
Section 2 of the paper. Section 3 contains a detailed description of the sec-
ondary structure considerations that must go into the design of DNA codes.
By studying the well-known Nussinov-Jacobson algorithm for secondary struc-
ture prediction, we show how the presence of a cyclic structure in a DNA code
reduces the complexity of the problem of testing the codewords for secondary
structure. We also use the algorithm to argue that imposing constraints on the
number of complementary base pair matches between a DNA sequence and some
of its shifts could inhibit the occurrence of sequence folding. In Section 4, con-
sider the enumeration of sequences satisfying some of these shift constraints.
Finally, in Section 5, we provide a sampling of techniques for constructing cyclic
DNA codes with properties that are believed to limit non-selective hybridization
and/or self-hybridization. Among the many possible approaches for code design,
those resulting in large families with simple descriptions are pursued.

2 Background and Notation

We start by introducing some basic definitions and concepts relating to DNA
sequences. The oligonucleotide? sequences used for DNA computing are oriented
words over a four-letter alphabet, consisting of four bases — two purines, adenine
(A) and guanine (G), and two pyrimidines, thymine (T) and cytosine (C). A

2 Usually, the word ‘oligonucleotide’ refers to single-stranded nucleotide chains consist-
ing of a few dozen bases; we will however use the same word to refer to single-stranded
DNA sequences composed of any number of bases.
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DNA strand is oriented due to the asymmetric structure of the sugar-phosphate
backbone. It is standard to designate one end of a strand as 3’ and the other as
5, according to the number of the free carbon molecule. Only strands of opposite
orientation can hybridize to form a stable duplex. A DNA code is simply a set
of (oriented) sequences over the alphabet Q = {A,C, G, T}.

Each purine base is the Watson-Crick complement of a unique pyrimidine
base (and vice versa) — adenine and thymine form a complementary pair, as do
guanine and cytosine. We describe this using the notation A =T, T=A, C =
G, G = C. The chemical ties between the two WC pairs are different — C and
G pair through three hydrogen bonds, while A and T pair through two hydrogen
bonds. We will assume that hybridization only occurs between complementary
base pairs, although certain semi-stable bonds between mismatched pairs form
relatively frequently due to biological mutations.

Let 9 = q192 . . . g be a word of length n over the alphabet Q. For 1 <i < j <
n, we will use the notation qp; ;; to denote the subsequence ¢;q; 1 . . . ¢;. Further-
more, the sequence obtained by reversing q, i.e., the sequence ¢,Gn—1 ... q1, will
be denoted by qf. The Watson-Crick complement, or reverse-complement, of q
is defined to be qf*¢ = g, gn_1 ...q1, where ¢; denotes the Watson-Crick com-
plement of ¢;. For any pair of length-n words p = p1p2...pn and q = q1q2 .. . qn
over the alphabet @), the Hamming distance dg (p, ¢) is defined as usual to be the
number of positions ¢ at which p; # ¢;. We further define the reverse Hamming
distance between the words p and q to be d%(p,q) = du(p, q'). Similarly, their
reverse-complement Hamming distance is defined to be d&¢ (p, q) = du (p, qF“).
For a DNA code C, we define its minimum (Hamming) distance, minimum reverse
(Hamming) distance, and minimum reverse-complement (Hamming) distance in
the obvious manner:

du(C) = win dy(p.q), djj(C) = min djj(p.q)
dii” (€) = min 7 (p.q)
We also extend the above definitions of sequence complements, reversals, dg, dﬁ
and df}c to sequences and codes over an arbitrary alphabet A, for an appropri-
ately defined complementation map from A onto A. For example, for A4 = {0,1},
we define complementation as usual via 0 =1 and 1 = 0.

Hybridization between a pair of distinct DNA sequences is referred to as
cross-hybridization, to distinguish it from self-hybridization or sequence folding.
The distance measures defined above come into play when evaluating cross-
hybridization properties of DNA words under the assumption of a perfectly rigid
DNA backbone. As an example, consider two DNA codewords 3 — AAGCTA —
5 and 3’ — ATGCTA — 5 at Hamming distance one from each other. For
such a pair of codewords, the reverse complement of the first codeword, namely
3 —TAGCTT -5/, will show a very large affinity to hybridize with the second
codeword. In order to prevent such a possibility, one could impose a minimum
Hamming distance constraint, dg(C) > dmin, for some sufficiently large value of
dmin. On the other hand, in order to prevent unwanted hybridization between two
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DNA codewords, one could try to ensure that the reverse-complement distance
between all codewords is larger then a prescribed threshold, i.e. d?¢(C) > dE¢ .
Indeed, if the reverse-complement distance between two codewords is small, as
for example in the case of the DNA strands 3’ — AAGCTA — 5" and 3’ —
TACCTT -5, then there is a good chance that the two strands will hybridize.

Hamming distance is not the only measure that can be used to assess DNA
cross-hybridization patterns. For example, if the DNA sugar-phosphate back-
bone is taken to be a perfectly elastic structure, then it is possible for bases
not necessarily at the same position in two strands to pair with each other.
Here, it is assumed that bases not necessarily at the same position in two
strands can pair with each other. For example, consider the two sequences 3’ —
APANcPePAPGPAPYAY —5 and ¥ -GG TP TP AP P G
TgQ) —5’. Under the “perfectly elastic backbone” model, hybridization between the
subsequences of not necessarily consecutive bases, 3" — A(Ql) Cgl) C(Ql)Aél) Afll) -5
and 5" — TgQ)GgQ)Gg)TEQ)T:(f) — 3, is plausible. The relevant distance measure
for this model is the Levenshtein distance [15], which for a pair of sequences p and
q, is defined to be smallest number, dr,(p,q), of insertions and deletions needed
to convert p to q. A study of DNA codes with respect to this metric can be found
in [8]. The recent work of D’yachkov et al. [9] considers a distance measure that is
a slight variation on the Levenshtein metric, and seems to fit better in the DNA
coding context than the Hamming or Levenshtein metrics.

Another important code design consideration linked to the process of oligonu-
cleotide hybridization pertains to the GC-content of sequences in a DNA code.
The GC-content, wac(q), of a DNA sequence q = q1g2. .. g, is defined to be
the number of indices ¢ such that ¢; € {G,C}. A DNA code in which all code-
words have the same GC-content, w, is called a constant GC-content code. The
constant GC-content requirement assures similar thermodynamic characteristics
for all codewords, and is introduced in order to ensure that all hybridization op-
erations take place in parallel, i.e., roughly at the same time. The GC-content
is usually required to be in the range of 30-50% of the length of the code.

One other issue associated with hybridization that we will mention is that
of the stability of the resultant DNA duplexes. The duplexes formed during
the hybridization phase of the computation process must remain paired for the
entire duration of the long “post-processing” phase in which the sequences are
extracted and sifted through to determine the result of the computation. As
observed in [6], the stability of DNA duplexes depends closely on the sequence
of bases in the individual strands; thus, it should be possible to take duplex
stability into account while designing DNA codes. We will, however, not touch
upon this topic further in this paper.

3 Secondary Structure Considerations

Probably the most important criterion in designing codewords for DNA comput-
ing purposes is that the codewords should not form secondary structures that
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Fig. 1. DNA/RNA secondary structure model (reprinted from [19])

cause them to become computationally inactive. A secondary structure is formed
by a chemically active oligonucleotide sequence folding back onto itself by com-
plementary base pair hybridization. As a consequence of the folding, elaborate
spatial structures are formed, the most important components of which are loops
(including branching, internal, hairpin and bulge loops), stem helical regions, as
well as unstructured single strands®. Figure 1 illustrates these structures for an
RNA strand?. It has been shown experimentally that the most important factors
influencing the secondary structure of a DNA sequence are the number of base
pairs in stem regions, the number of base pairs in a hairpin loop region as well
as the number of unpaired bases.

For a collection of interacting entities, one measure commonly used for as-
sessing the system’s property is the free energy. The stability and form of a
secondary configuration is usually governed by this energy, the general rule-of-
thumb being that a secondary structure minimizes the free energy associated
with a DNA sequence. The free energy of a secondary structure is determined
by the energy of its constituent pairings, and consequently, its loops. Now, the
energy of a pairing depends on the bases involved in the pairing as well as all
bases adjacent to it. Adding complication is the fact that in the presence of other
neighboring pairings, these energies change according to some nontrivial rules.

Nevertheless, some simple dynamic programming techniques can be used to
approzimately determine base pairings in a secondary structure of a oligonu-
cleotide DNA sequence. Among these techniques, the Nussinov-Jacobson (NJ)
folding algorithm [22] is one of the simplest and most widely used schemes.

3.1 The Nussinov-Jacobson Algorithm

The NJ algorithm is based on the assumption that in a DNA sequence ¢1 42 - - - ¢n,
the energy of interaction, a(g;, ¢;), between the pair of bases (¢;, ¢;) is independent

3 We do not consider more complicated structures such as the so-called “pseudoknots”;
the general problem of determining secondary structure including pseudoknots is
known to be NP-complete.

4 Oligonucleotide DNA sequences are structurally very similar to RNA sequences,
which are by their very nature single-stranded, and consist of the same bases as
DNA strands, except for thymine being replaced by uracil (U).
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of all other base pairs. The interaction energies a(g;, g;) are negative quantities
whose values usually depend on the actual choice of the base pair (g;, ;). One
frequently used set of values for RNA sequences is [7]

=5 if (Qi7Qj) € {(G7 C)7 (C7G)}
CV(Qan) = —4 if (Qian) € {(AvT)a (TaA)}
-1 if (Qian) € {(G7T)7 (TvG)}

The value of —1 used for the pairs (G, T) and (T, G) indicates a certain fre-
quency of bonding between these mismatched pairs. We will, however, focus our
attention only on pairings between Watson-Crick complements. In addition, in
order to simplify the discussion, we will restrict our attention to a uniform inter-
action energy model with «a(g;,q;) = —1 whenever ¢; and g; are Watson-Crick
complements and «(g;, ;) = 0 otherwise.

Let E;; denote the minimum free energy of the subsequence g;...q;. The
independence assumption allows us to compute the minimum free energy of the
sequence q1¢s - . . ¢, through the recursion

o B+ ala q5),

Eij = mln{ Eir1+Er;, 1<k<j, (1)
where F;; = E;;—1 = 0 for i = 1,2,...,n. The value of E;, is the minimum
free energy of a secondary structure of qigz . ..g,. Note that £y, < 0. A large
negative value for the free energy, E ,,, of a sequence is a good indicator of the
presence of a secondary structure in the physical DNA sequence.

The NJ algorithm can be described in terms of free-energy tables, an example
of which is shown in Figure 2. In a free-energy table, the entry at position (3, j)
(the top left position being (1,1)), contains the value of E; ;. The table is filled out
by initializing the entries on the main diagonal and on the first lower sub-diagonal
of the matrix to zero, and calculating the energy levels according to the recursion
in (1). The calculations proceed successively through the upper diagonals: entries
at positions (1,2),(2,3), ..., (n — 1,n) are calculated first, followed by entries at
positions (1,3), (2,4), ..., (n —2,n), and so on. Note that the entry at (i, j),j > 1,
depends on (4, j) and the entries at (¢,1),l =4,...,5—1,(1,5),l =i+1,...,n—1,
and (i + 1,5 — 1). The complexity of the NJ algorithm is O(n?), since each of
the O(n?) entries requires O(n) computations [19].

The minimum-energy secondary structure itself can be found by the backtrack-
ing algorithm [22] which retraces the steps of the NJ algorithm (for a description
of the backtracking algorithm, the reader is referred to [19]). Figure 2 shows the
minimum-energy structure of the sequence GGGAAATCC, as determined by
the backtracking algorithm. The trace-back path through the free-energy table
is indicated by the boldface entries in the table.

From a DNA code design point of view, it would be of considerable interest
to determine a set of amenable properties that oligonucleotide sequences should
possess so as to either facilitate testing for secondary structure, or exhibit a very
low probability for forming such a structure. We next make some straightforward,
yet important, observations about the NJ algorithm that provide us with some
guidelines for DNA code design.
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Fig. 2. Free-energy table for the sequence GGGAAATCC, along with its secondary
structure as obtained by backtracking through the table

3.2 Testing for Secondary Structure

One design principle that arises out of a study of the NJ algorithm is that DNA
codes should contain a cyclic structure. The key idea behind this principle is
based on the observation that once the free-energy table, and consequently, the
minimum free energy of a DNA sequence q has been computed, the correspond-
ing computation for any cyclic shift of q becomes easy. This idea is summarized
in the following proposition.

Proposition 1. The overall complexity of computing the free-energy tables of a
DNA codeword q1qs - . . q, and all of its cyclic shifts is O(n?).

Sketch of Proof. It is enough to show that the free-energy table of the cyclic shift
qQ* = ¢nq1 - - - Gn_1 can be obtained from the table of q = q; . .. ¢, in O(n?) steps.
The sets of subsequences contained within the positions 1,...,n — 1 of q and
within the positions 2,...,n of g* are the same. This implies that only entries
in the first row of the energy table of g* have to be computed. Computing each
entry in the first row involves O(n) operations, resulting in a total complexity

of O(n?). O

The above result shows that the complexity of testing a DNA code with M
length-n codewords for secondary structure is reduced from O(Mn?) to O(Mn?),
if the code is cyclic. It is also worth pointing out that a cyclic code structure can
also simplify the actual production of the DNA sequences that form the code.

Ezample 1. The minimal free energies of the sequence shown in Figure 3(a)
and all its cyclic shifts lie in the range —0.24 to —0.41 kcal/mol. None of these
sequences has a secondary structure. On the other hand, for the sequence in
Figure 3(b), all its cyclic shifts have a secondary structure, and the minimal free
energies are in the range —1.05 to —1.0 kcal/mol. The actual construction of
these sequences is described in Example 3 in Section 5.2. Their secondary struc-
tures have been determined using the Vienna RNA/DNA secondary structure
package [29], which is based on the NJ algorithm, but which uses more accurate
values for the parameters a(qg;, q;), as well as sophisticated prediction methods
for base pairing probabilities.
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(a) (b)

Fig. 3. Secondary structures of two DNA codewords at a temperature of 37°C

3.3 Avoiding Formation of Secondary Structure

While testing DNA sequences for secondary structure is one aspect of the code
design process, it is equally important to know how to design codewords that
have a low tendency to form secondary structures. The obvious approach here
would be to identify properties of the sequence of bases in an oligonucleotide
that would encourage secondary structure formation, so that we could then try
to construct codewords which do not have those properties. For example, it seems
intuitively clear that if a sequence q has long, non-overlapping segments s; and
sy such that s; = s&¢, then there is a good chance that q will fold to enable
s to bind with s thus forming a stable structure. Actually, we can slightly
strengthen the above condition for folding by requiring that s; and so be spaced
sufficiently far apart, since a DNA oligonucleotide usually does not make sharp
turns, i.e., does not bend over small regions. In any case, the logic is that a
sequence that avoids such a scenario should not fold. Unfortunately, this is not
quite true: it is not necessarily the longest regions of reverse-complementarity
in a sequence that cause a secondary structure to form, as demonstrated by
the example in Figure 4. The longest regions of reverse-complementarity in the
sequence in the figure are actually the segments of length 7 at either end, which
do not actually hybridize with each other within the secondary structure.

A subtler approach to finding properties that inhibit folding consists of
identifying components of secondary structures that have a destabilizing ef-
fect on the structure. Since the DNA sugar-phosphate backbone is a semi-rigid

Fig. 4. Secondary structure of the sequence CGTAA... TTACG
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structure, it is reasonable to expect that long loops (especially hairpin loops)
tend to destabilize a secondary structure, unless they are held together by an
even longer string of stacked base-pairs, which is an unlikely occurrence.

To identify what could induce a hairpin loop to form in a DNA sequence, we
enlist the help of the free-energy tables from the NJ algorithm. As an illustrative
example, consider the table and corresponding secondary structure in Figure 2.
The secondary structure consists of three stacked base-pairs, and a hairpin loop
involving two A’s. The three stacked base-pairs correspond to the three diagonal
steps (—3 — —2, —2 — —1 and —1 — 0) made in the trace-back path indicated
by boldface entries in the table; the hairpin loop corresponds to the vertical
segment formed by the two 0’s in the trace-back path. In general, a vertical
segment involving m ‘0’ entries from the first m upper diagonals indicates the
presence of a hairpin loop of length m. For sufficiently large m, such a loop
would have a destabilizing effect on any nearby stacked base-pairs, leading to an
unravelling of the overall structure.

Thus, if the first m upper diagonals of the free-energy table of a DNA sequence
d=q1g2 . . . ¢, contain only zero-valued entries, then a hairpin loop of size m is
necessarily present in the secondary structure. Consequently, it is very likely that
even if base pairing is possible, the overall structure will be unstable®. It is easy to
verify that the first m upper diagonals in the free-energy table contain only zeros
if and only if q and any of its first m — 1 shifts contain no complementary base
pairs at the same positions, .e., ¢; # ¢iyj for 1 <j<m—-1land 1 <i<n—j.

Relaxing the above argument a little, we see that from the stand-point of
designing DNA codewords without secondary structure, it is desirable to have
codewords for which the sums of the elements on each of the first few diagonals in
their free-energy tables are either all zero or of some very small absolute value.
This requirement can be rephrased in terms of requiring a DNA sequence to
satisfy a “shift property”, in which a sequence and its first few shifts have few
or no complementary base pairs at the same positions.

In the following section, we define a shift property of a sequence more rigor-
ously, and provide some results on the enumeration of DNA sequences satisfying
certain shift properties.

4 Enumerating DNA Sequences Satisfying a Shift
Property

Recall that for ¢ € Q@ = {A, C, G, T}, ¢ denotes the Watson-Crick complement
of q.

Definition 1. Given a DNA sequence q = q1qGz - - - qn, we define for 0 < i <
n — 1, the ith matching number, p;(q), of q to be the number of indices £ €
{1,2,...,n — i} such that qr = i1¢.

5 The no sharp turn constraint implies that one can restrict its attention only to the
fifth, sixth, ..., m-th upper diagonals, but for reasons of simplicity, we will consider
only the previously described scenario.
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A shift property of q is any sort of restriction imposed on the matching num-
bers pi(q).

Enumerating sequences having various types of shift properties is useful because
doing so yields upper bounds on the size of DNA codes whose codewords satisfy
such properties. We present a few such combinatorial results here.

Given s > 1, let gs(n) denote the number of sequences, q, of length n for
which p;(q) =0,i=1,...,s. For n < s, we take gs(n) to be g,—1(n).

Lemma 2. For alln > 1, g,—1(n) = 4(2" —1).

Proof. Tt is clear that a DNA sequence is counted by g,—_1(n) iff it contains no
pair of complementary bases. Such a sequence must be over one of the alphabets
{A,G}, {A,C}, {T,G} and {T, C}. There are 4(2"™ — 1) such sequences, since
there are 2" sequences over each of these alphabets, of which A", T", G" and
C"™ are each counted twice. O

Lemma 3. For alln > s,
gs(n) = 2gs(n — 1) + gs(n — s).

Proof. Let Gs(n) denote the set of all sequences q of length n for which u;(q) =
0,7 = 1,..,s. Thus, [Gs(n)| = gs(n). Note that for any q € Gs(n), dp,—s
cannot contain a complementary pair of bases, and hence cannot contain three
distinct bases. Let £(n) denote the set of sequences qiga...q, € Gs(n) such
that gn—st1 = @n_s+2 = -+ = ¢n, and let U(n) = Gs(n) \ £(n). We thus have
[E(n)| + [U(n)| = gs(n). Each sequence in £(n) is obtained from some sequence
4192 - - - qn—s+1 € Gs(n — s + 1) by appending s — 1 bases, ¢n—_st2,...,qn, all
equal to ¢n—s11. Hence, |E(n)| =|Gs(n — s+ 1)| = gs(n — s + 1), and therefore,
U(n)| = gs(n) — gs(n — s +1).

Now, observe that each sequence q1g2 ... ¢, € Gs(n) is obtained by appending
a single base, g, to some sequence ¢1¢a . ..¢qn—1 € Gs(n—1). lf q1g2...qn—1 is in
fact in £(n — 1), then there are three choices for g,,. Otherwise, if ¢1¢2...¢gn—1 €
U(n — 1), there are only two possible choices for g,. Hence,

gs(n) =3[Em—=1)| +2U(n —1)]
=39s(n =) +2(gs(n— 1) — gs(n — s))
This proves the claimed result. ad

From Lemmas 2 and 3, we obtain the following result.

n

Theorem 4. The generating function Gs(z) = > oo, gs(n)z~" is given by

Z571+ZZ72_~_._._~_Z+1
25— 2251 -1 '

Gy(z)=4-
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It can be shown that for s > 1, the polynomial 1(2) = z° — 22571 — 1 in the
denominator of G(z) has a real root, ps, in the interval (2,3), and s — 1 other
roots within the unit circle. It follows that gs(n) ~ Bs(ps)™ for some constant
Bs > 0. It is easily seen that ps decreases as s increases, and that lims_, o, ps = 2.

Theorem 5. Given an s € {1,2,...,n — 1}, the number of length-n DNA se-
quences q such that ps(q) = m, is ("75)433"_3_’”.

m

Proof. Let Bs(n,m) be the set of length-n DNA sequences q such that ps(q) =
m. A sequence q = ¢1¢2...¢q, is in Bg(n,m) iff the set I = {i : ¢; = qi—s}
has cardinality m. So, to construct such a sequence, we first arbitrarily pick
q1,G2,---,q9s and an I C {s+ 1,8+ 2,...,n}, |I| = m, which can be done in
45 (") ways. The rest of q is constructed recursively: for i > s+1, set ¢; = gi—s
if i € I, and pick a ¢; # ¢;—1 if ¢ ¢ I. Thus, there are 3 choices for each i > s+1,
i ¢ I, and hence a total of (" °)453"~5~™ sequences q in By(n, m).

The enumeration of DNA sequences satisfying any sort of shift property be-
comes considerably more difficult if we bring in the additional requirement of
constant GC-content. The following result can be proved by applying the pow-
erful Goulden-Jackson method of combinatorial enumeration [11, Section 2.8].
The result is a direct application of Theorem 2.8.6 and Lemma 2.8.10 in [11],
and the details of the algebraic manipulations involved are omitted.

Theorem 6. The number of DNA sequences q of length n and GC-content w,
such that p1(q) = 0, is given by the coefficient of x™y™ in the (formal) power
series expansion of

2x 22y >1

@ = ]__ —
(z,9) ( T,

5 Some DNA Code Constructions

Having in previous sections described some of the code design problems in the
context of DNA computing, we present some sample solutions in this section.
We mainly focus on constructions of cyclic codes, since as mentioned earlier, the
presence of a cyclic structure reduces the complexity of testing DNA codes for
secondary structure formation, and also simplifies the DNA sequence fabrication
procedure. We have seen that other properties desirable in DNA codes include
large minimum Hamming distance, large minimum reverse-complement distance,
constant GC-content, and the shift properties introduced in Sections 3.3 and 4.
The codes presented in this section are constructed in such a way as to possess
some subset of these properties. There are many such code constructions possible,
so we pick some that are easy to describe and result in sufficiently large codes.
Due to the restrictions imposed on the code design methods with respect to
testing for secondary structure, the resulting codes are sub-optimal with respect
to the codeword cardinality criteria [10].



112 O. Milenkovic and N. Kashyap

5.1 DNA Codes from Cyclic Reversible Extended Goppa Codes

The use of reversible cyclic codes for the construction of DNA sequences was
previously proposed in [1] and [23]. Here, we will follow a more general approach
that allows for the construction of large families of DNA codes with a certain
guaranteed minimum distance and minimum reverse-complement distance, based
on extended Goppa codes over GF(2?) [28].

Recall that a code C is said to be reversible if ¢ € C implies that ¢ € C
[16, p. 206]. It is a well-known fact that a cyclic code is reversible if and only
if its generator polynomial g(z) is self-reciprocal, i.e., 22°909(=) g(2=1) = £¢(z).
Given an [n, k, d] reversible cyclic code, C, over GF(22) with minimum distance d,
consider the code C obtained by first eliminating all the self-reversible codewords
(i.e., codewords c such that ¢® = ¢), and then choosing one half of the remaining
codewords such that no codeword and its reverse are selected simultaneously. If
7 is the number of self-reversible codewords in C, then C is a nonlinear code with
(4% — 1) /2 codewords of length n, and furthermore, dg (C) > d and d%(C) > d.
The value of r can be determined easily, as shown below.

Proposition 7. A reversible cyclic code of dimension k over GF(q) contains
q'*/21 self-reversible codewords.

Proof. If a = agay...ap—1 is a self-reversible codeword, then the polynomial
a(z) = ap + a1z + ...a,_12"" ' is self-reciprocal. Let g(z) be the generator
polynomial for the code, so that a(z) = i,(2)g(z) for some polynomial i,(z) of
degree at most k — 1. Since g(z) and a(z) are self-reciprocal, so is i, (2). Hence,
ia(2) is uniquely determined by the coefficients of its [k/2] least-order terms 2%,
i=0,1,...,[k/2] — 1, and there are exactly q'*/21 choices for these coefficients.

O

The code C defined above can be thought of as a DNA code by identifying
GF(2?) with the DNA alphabet Q = {A, C, G, T}. Let D be the code obtained
from C by means of the following simple modification: for each ¢ € C, replace
each of the first |n/2] symbols of ¢ by its Watson-Crick complement. It is clear
that D has the same number of codewords as C, and that dy (D) > d as well. It
can also readily be seen that if n is even, then dE(D) = d2(C), and if n is odd,
then d¢ (D) may be one less than d& (C). In any case, we have dE¢(D) > d —1.

We apply the above construction to a class of extended Goppa codes that are
known to be reversible and cyclic. We first recall the definition of a Goppa code.

Definition 2. [16, p. 338] Let L = {aa,...,an} C GF(¢™), for q¢ a power of a
prime and m,n € Z*. Let g(z) be a polynomial of degree & < n over GF(q™)
such that g(z) has no root in L. The Goppa code, I'(L), consists of all words
(€1,.s¢n), ¢ € GF(q) such that 3.7, ¢ =0 mod g(z). I'(L) is a code of
length n, dimension k > n —méd and manimum, distance d > 64+ 1.

The polynomial g(z) in the definition above is referred to as the Goppa poly-
nomial. We shall consider Goppa codes derived from Goppa polynomials of the
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form g(z) = [(z — B1)(z — B2)]*, for some integer a. Two choices for the roots
(1, B2 and the corresponding location sets L are of interest: (i) 81,82 € GF(q™),
L=GF(qm)— {ﬂnll,ﬂg}, n=q" -2 (ii) £ = GF(q™), with By, 82 € GF(¢*™),
such that 8o = 87 |, /1 =63 , and n = ¢™.

It was shown in [28] that for such a choice of g(z) and for an ordering of
the location set L satisfying a; + an+1-; = 61 + B2, the extended Goppa codes
obtained by adding an overall parity check to I'(£) in the above cases are re-
versible and cyclic. The extended code has the same dimension as I'(L), but
the minimum distance is now at least 2a + 2. Applying the DNA code construc-
tion described earlier to such a family of extended Goppa codes over GF(4), we
obtain the following theorem.

Theorem 8. For arbitrary positive integers a,m, there exist cyclic DNA codes
D such that dg (D) > 2a+2 and dEC (D) > 2a+ 1, having the following param-
eters:

(i) length n = 4™+ 1, and number of codewords M > } (422"1*27"“ —4

(i) length n = 4™ — 1, and number of codewords M > 5(4227”_2("”“) —
4227n—1_(ma+1)).

22m_17ma) .
)

Example 2. Let £ = GF(22), with ¢ = 22, m = 1, and let 3; = «, (2 = a?,
for a primitive element a of GF(2%). We take the Goppa polynomial to be
g(2) = (z — B1)(z — B2), so that a = 1. The extended Goppa code over GF(22)
obtained from these parameters is a code of length 5, dimension 2 and minimum
distance 4.

We list out the elements of GF(2%) as {0,1,6,1 + 0}, and make the identi-
fication 0 <~ G, 1 < C, 6 & T, 1+ 60 — A, The DNA code D constructed
as outlined in this section has dy (D) = d&(D) = 4 and d&%(D) = 3, and con-
sists of the following six codewords: CGTTC, CAAAT, CTCCA, GCCTT,
GGAGA, ACTAA.

5.2 DNA Codes from Generalized Hadamard Matrices

Hadamard matrices have long been used to construct constant-weight [16, Chap.
2] and constant-composition codes [26]. We continue this tradition by providing
constructions of cyclic codes with constant GC-content, and good minimum
Hamming and reverse-complement distance properties.

A generalized Hadamard matric H = H(n,C,,) is an n X n square
matrix with entries taken from the set of mth roots of unity, C,, =
{e=2mit/m ¢ =0,...,m — 1}, that satisfies HH* = nI. Here, I denotes the iden-
tity matrix of order n, while * stands for complex-conjugation. We will only
concern ourselves with the case m = p for some prime p. A necessary condi-
tion for the existence of generalized Hadamard matrices H(n,C,) is that p|n.
The exponent matriz, E(n,Z,), of H(n,C,) is the n X n matrix with entries in
Z, ={0,1,2,...,p — 1}, obtained by replacing each entry (6*2”)6 in H(n,C,)
by the exponent /.
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A generalized Hadamard matrix H is said to be in standard form if its first
row and column consist of ones only. The (n— 1) x (n — 1) square matrix formed
by the remaining entries of H is called the core of H, and the corresponding
submatrix of the exponent matrix E is called the core of E. Clearly, the first
row and column of the exponent matrix of a generalized Hadamard matrix in
standard form consist of zeros only. It can readily be shown (see e.g., [13]) that
the rows of such an exponent matrix must satisfy the following two properties: (i)
in each of the nonzero rows of the exponent matrix, each element of Z, appears
a constant number, n/p, of times; and (ii) the Hamming distance between any
two rows is n(p — 1)/p. We will only consider generalized Hadamard matrices
that are in standard form.

Several constructions of generalized Hadamard matrices are known (see [13]
and the references therein). A particularly nice general construction is given by
the following result from [13].

Theorem 9. [13, Theorem II] Let N = p* — 1 for p prime and k €
Zr. Let g(x) = co + c1w + c22® + ... + exy_xxNF be a monic polyno-
mial over Z,, of degree N — k, such that g(z)h(z) = zN — 1 over Z,, for
some monic irreducible polynomial h(x) € Zy[x]. Suppose that the vector

(0,¢0,C1y ey CN—ky CN—k+1,---,CN—1), With ¢; =0 for N —k < i < N, has the
property that it contains each element of Z, the same number of times. Then the
N cyclic shifts of the vector g = (co,c1,...,cn—1) form the core of the exponent

matriz of some Hadamard matriz H(p*,C,).

Thus, the core of E = E(p*,Z,) (and hence, H(p*, C,)) guaranteed by the above
theorem is a circulant matrix consisting of all the N = p* — 1 cyclic shifts of its
first row. We refer to such a core as a cyclic core. Each element of Z, appears
in each row of E exactly (N + 1)/p = p*~! times, and the Hamming distance
between any two rows is exactly (N + 1)(p — 1)/p = (p — 1)p*~!. Thus, the
N rows of the core of F form a constant-composition code consisting of the NV
cyclic shifts of some word of length IV over the alphabet Z,, with the Hamming
distance between any two codewords being (p — 1)pF~1.

DNA codes with constant GC-content can obviously be constructed from
constant-composition codes over Z, by mapping the symbols of Z,, to the symbols
of the DNA alphabet, @ = {A, C, G, T}. For example, using the cyclic constant-
composition code of length 3% — 1 over Zs guaranteed by Theorem 9, and using
the mapping that takes 0 to A, 1 to T and 2 to G, we obtain a DNA code D
with 3% — 1 codewords and a GC-content of 3*~1. Clearly, dg (D) = 237!, and
in fact, since G = C and no codeword in D contains the symbol C, we also have
dBC(D) > 3k~1. We summarize this in the following corollary to Theorem 9.

Corollary 10. For any k € Z*, there exist DNA codes D with 3 —1 codewords
of length 3% — 1, with constant GC-content equal to 3*~', dy(D) = 2 - 3F71,
dBC(D) > 3k=1. and in which each codeword is a cyclic shift of a fized generator
codeword g.
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Ezample 3. Each of the following vectors generates a cyclic core of a Hadamard
matrix [13]:

g'?) = (22201221202001110211210200),
g'? = (20212210222001012112011100).

DNA codes can be obtained from such generators by mapping {0, 1,2} onto
{A, T, G}. Although all such mappings yield codes with (essentially) the same
parameters, the actual choice of mapping has a strong influence on the sec-
ondary structure of the codewords. For example, the codeword in Figure 3(a)
was obtained from g via the mapping 0 — A, 1 — T, 2 — G, while the code-
word in Figure 3(b) was obtained from the same generator g via the mapping
0—-G,1-T, 2— A.

5.3 Code Constructions Via a Binary Mapping

The problem of constructing DNA codes with some of the properties desirable
for DNA computing can be made into a binary code design problem by mapping
the DNA alphabet onto the set of length-two binary words as follows:

A —00, T—0l, C—10, G — 11. (2)

The mapping is chosen so that the first bit of the binary image of a base uniquely
determines the complementary pair to which it belongs.

Let g be a DNA sequence. The sequence b(q) obtained by applying coordi-
natewise to q the mapping given in (2), will be called the binary image of q.
If b(q) = bob1bs . . . bay—1, then the subsequence e(q) = bpbs . . . bay—2 will be re-
ferred to as the even subsequence of b(q), and o(q) = b1bs . . . ba,—1 will be called
the odd subsequence of b(q). Thus, for example, for ¢ = ACGTCC, we have
b(q) = 001011011010, e(q) = 011011 and o(q) = 001100. Given a DNA code
C, we define its even component £(C) = {e(p) : p € C}, and its odd component
O(C) = {o(p) : P C}.

It is clear from the choice of the binary mapping that the GC-content of
a DNA sequence q is equal to the Hamming weight of the binary sequence
e(q). Consequently, a DNA code C is a constant GC-content code if and
only if its even component, £(C), is a constant-weight code. Other properties
of a DNA code can also be expressed in terms of properties of its even
and code components (for example, see Lemma 11 below). Thus if we have
binary codes B; and Bs with suitable properties, then we can construct a
good DNA code, whose binary image is equivalent to B; x Bs, that has B
and Bs as its even and odd components. We present two such constructions here.

Construction B1. Let B be a binary code consisting of M codewords of
length n and minimum distance dyi,, such that ¢ € B implies that ¢ € B. For
w > 0, consider the constant-weight subcode By, = {u € B : wy(u) = w}, where
wp (+) denotes Hamming weight. Choose w > 0 such that n > 2w+ [din/2], and
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consider a DNA code, C,,, with the following choice for its even and odd com-
ponents:

Eyw=1{ab: a,be B,}, (’):{abRC : a,b € B, a<j b},

where <ox denotes lexicographic ordering. The a <jex b in the definition of O
ensures that if ab®® € O, then baf® ¢ O, so that distinct codewords in O
cannot be reverse-complements of each other.

The code &, has |B,|? codewords of length 2n and constant weight n. Fur-
thermore, dg(Ey) > dpin and d(E,) > dimin, the first of these inequalities
following from the fact that B, is a subset of codewords in B. To prove the
second inequality, note that for any two distinct codewords ab and cd, we have

dp(ab,df9c?) = dy(a,dR) + dy (b, cf) = dy(a, dBC) + dy(c, bEO).

Since b and d both have weight w, it follows that b?¢ and df*“ have weight
n —w. Due to the constraint on the weight w, we have dg(a,d®) > [dumin/2],
and similarly, dg (¢, bFY) > [dnin/2]. Therefore, for all a, b, c,d € B,,, we must
have dg (ab, d®¢c?) > 2[dmin/2] > dmin.

The code O has M (M —1)/2 codewords of length 2n. Clearly, di (O) > duin,
since the component codewords of O are taken from B. Similarly, d°(O) > dmin,
to prove which we only have to observe that for any pair of codewords abf®
and cdf® | dg(abf® dchY) = dy(a,d) + dg(c,b) > dmin.

Therefore, the DNA code

c= |J cu
wW=dmin
With Wmax = (1 — [dmin/2])/2, has § M(M —1) Yo |A,|* codewords of
length 2n, and satisfies dg (B) > dpin and dﬁC(B) > dmin-

The following lemma (whose simple proof we omit) records a trivial result
that is useful for our next construction. For notational ease, given binary words
x = (x;) and y = (y;), we define x®y = (x;+y;), the sum being taken modulo-2,
and x xy = (2;9;).

Lemma 11. Let q be a length-n sequence over the DNA alphabet Q. For i €
{]-7 2,...,mn— ]-}; deﬁmng 0 = e(q[l,n—i]) D e(q[i+1,n])7 and T; = O(q[l,n—i]) S2]
o(Q[i+1,n]), we have

pi(@) = wa (0 * ;)

where o; denotes the complement of the binary sequence o;.

Construction B2. Let C be the DNA code obtained by choosing the set of
non-zero codewords of a cyclic simplex code of length n = 2™ — 1 for both the
even and odd code components. Recall that a cyclic simplex code of dimension
m is a constant-weight code of length n = 2™ — 1 and minimum-distance 2™~ 1,
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composed of the all-zeros codeword and the n distinct cyclic shifts of any non-
zero codeword [12, Chapter 8]. It is clear that the DNA code C is a cyclic code
contains (2™ — 1)? codewords of length 2™ — 1 and GC-content 2™m~1.

We claim that C has the property that for alli € {1,2,...,n—1} and q € C,
pi(q) < 2m~2. To see this, observe first that for any q € C, o; and 7;, defined
as in Lemma 11, are just truncations of codewords from the simplex code. Since
the simplex code is a constant-weight code, with minimum distance 2™~!, each
pair of codewords shares exactly 2™ 2 positions containing 1’s. This implies that
for each pair of simplex codewords, there are exactly 2™~2 positions in which
one codeword contains all 1’s, while the other contains all 0’s. Such positions are
precisely what is counted by wg (o; * 7;) in Lemma 11 which proves our claim.

Ezample 4. Consider the DNA code resulting from Construction B2 using the
cyclic simplex code generated by the codeword 1110100. The DNA code contains
49 codewords of length 7. The minimum Hamming distance of the code is 4, and
the codewords all have GC-content equal to 4. A selected subset of codewords
from this code is listed below:

TGGCTCA, TCCGTGA, CACGGTC, TAGCCTG,
CATGGCT, GATCCGT, GGGAGAA, GGAGAAG.

The last two codewords consist of the bases G and A only, and clearly satisfy
i = 0 for all i < 7. On the other hand, for the first three codewords we have
w1 = 1, while for the next three codewords we see that 1 = 2 (meeting the
upper bound claimed in the construction). Evaluation of this code using the
Vienna secondary structure package [29] shows that none of the 49 codewords
exhibits a secondary structure.

As a final remark, we note that the problem of constructing a DNA code that can
be efficiently tested for secondary structure using the NJ algorithm can also be
reformulated in terms of specifications for the even code component. If the even
component code is cyclic, and each codeword in the even component is combined
with codewords from the odd component, then “approximate” testing can be
performed in the following manner. The codeword from the even component
code x1,...,x,, x; € {0,1} is tested by the NJ algorithm following the steps
outlined in Section 3.1, except that the pairing energies are found according to

‘ N -1 if =z Tj € {00711}
Ck(l'zuxj) - { 0 if T; Ty S {Ola 10}

The result of the NJ algorithm for the even component codeword represents
the worst-case scenario for DNA sequence folding. If the free energy of some
even component codeword, b, exceeds a certain threshold (which can be deter-
mined by a combination of probabilistic and experimental results), all the DNA
sequences q such that e(q) = b are subjected to an additional test by the al-
gorithm. If the free energy of b is below a given threshold, then one can be
reasonably sure that none of the DNA sequences q that have b as their even
subsequence will form a secondary structure.
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Abstract. The recently developed algebraic attacks apply to all key-
stream generators whose internal state is updated by a linear transition
function, including LFSR-based generators. Here, we describe this type
of attacks and we present some open problems related to their complex-
ity. We also investigate the design criteria which may guarantee a high
resistance to algebraic attacks for keystream generators based on a linear
transition function.

1 Introduction

In an additive stream cipher, the ciphertext is obtained by adding bitwise the
plaintext to a pseudo-random sequence called the keystream. The keystream
generator is a finite state automaton whose initial internal state is derived from
the secret key and from a public initial value by a key-loading algorithm. At
each time unit, the keystream digit produced by the generator is obtained by
applying a filtering function to the current internal state. The internal state
is then updated by a transition function. Both filtering function and transition
function must be chosen carefully in order to make the underlying cipher resistant
to known-plaintext attacks. In particular, the filtering function must not leak
too much information on the internal state and the transition function must
guarantee that the sequence formed by the successive internal states has a high
period.

Stream ciphers are mainly devoted to applications which require either an ex-
ceptional encryption rate or an extremely low implementation cost in hardware.
Therefore, a linear transition function seems to be a relevant choice as soon as
the filtering function breaks the inherent linearity. Amongst all possible linear
transition functions, those based on LFSRs are very popular because they are ap-
propriated for low-cost hardware implementations, produce sequences with good
statistical properties and can be easily analyzed. LFSR-based generators have
been extensively studied. It is known that the involved filtering function must
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satisfy some well-defined criteria (such as a high nonlinearity, a high correlation-
immunity order,...), and the designers of such generators now provide evidence
that their ciphers cannot be broken by the classical attacks.

However, the recent progress in research related to algebraic attacks, intro-
duced by Courtois and Meier [11], seems to threaten all keystream generators
based on a linear transition function. In this context, it is important to deter-
mine whether such ciphers are still secure or not. Here, we investigate some
related open problems, concerning the complexity of algebraic attacks (and of
their variants) and concerning the design criteria of LESR-based stream ciphers
which guarantee a high resistance to these cryptanalytic techniques.

2 Basic Principle of Algebraic Attacks

Here, we focus on binary keystream generators based on a linear transition func-
tion, which can be described as follows. We denote by x; the n-bit internal state
of the generator at time ¢. The filtering function f is first assumed to be a
Boolean function of n variables, i.e., at time ¢ the generator outputs only one
bit, s; = f(x:). The transition function is supposed to be linear and is denoted
by L : Fy — F7. Therefore, we have

st = f(L'(x0)) ,

where x( is the initial state. We only consider the case where both the filtering
function and the transition function are publicly known, i.e., independent from
the secret key. Two popular constructions known as nonlinear filter generators
and combination generators fit the previous model.

The basic principle of algebraic attacks goes back to Shannon’s work [26,
Page 711]: these techniques consist in expressing the whole cipher as a large
system of multivariate algebraic equations, which can be solved to recover the
secret key. A major parameter which influences the complexity of such an attack
is then the degree of the underlying algebraic system. When the transition is
linear, any keystream bit can obviously be expressed as a function of degree
deg(f) in the initial state bits. Therefore, it is known for a long time that the
filtering function involved in such a stream cipher must have a high degree.

However, as pointed out by Courtois and Meier [11], the keystream generator
may be vulnerable to algebraic attacks even if the degree of the algebraic function
is high. Actually, the attack applies as soon as there exist relations of low degree
between the output and the inputs of the filtering function f. Such relations
correspond to low degree multiples of f, i.e., to relations g(z)f(x) = h(zx) for
some g where h has a low degree. But, it was proved in [21,24] that, in the
case of algebraic attacks over Fs, the existence of any such relation is equivalent
to the existence of a low degree annihilator of f or of (1 + f), in the sense
of Definition 1. Indeed, if g(x)f(x) = h(x) with deg(h) < d, we obtain, by
multiplying this equation by f(z), that

9(@) [f(@)]* = h(x) f(z) = g(x) f(x) = h(x) ,
leading to h(z)[1 + f(x)] = 0.
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Definition 1. Let f be a Boolean function of n variables. The annihilator ideal
of f, denoted by AN(f), is the set of all Boolean functions g of n variables such
that

g@)f(z) =0, Vo € F} |

Moreover, for any degree d, we denote by AN4(f) the set of all annihilators of
f with degree at most d:

ANa(f) = {g € AN(f), deg(g) < d} .

Since the keystream bit at time ¢ is defined by s; = f o L¥(x¢), we deduce
that:

— if 8¢ = 1, any function g in AN(f) leads to g o L!(xg) = 0;
— if 8¢ = 0, any function h in AN(1+ f) leads to h o L*(x¢) = 0.

Therefore, if we collect the relations associated to all functions of degree at
most d in AN(f)UAN(f+1) for N known keystream bits, we obtain a system
of equations of degree d depending on n variables, x1, ..., x,, which correspond
to the bits of the initial state:

go Lt(xy,...,x,) Vg € AN4(f), V0 <t < N such that s, =1 (1)
hoL'(zy,...,x,) Yh € AN4(1+ f),V 0 <t < N such that s; =0

The n-bit initial state can then be recovered by solving this multivariate poly-
nomial system.

3 Complexity of Algebraic Attacks

Solving a multivariate polynomial system such as (1) is a typical problem stud-
ied in computer algebra. In order to get a rough estimate of the complexity
of algebraic attacks for determining the suitable parameters for the keystream
generator, we only focus on the simplest technique, called linearization. It con-
sists in identifying the system with a linear system of 2?21 (7) variables, where
each product of i bits of the initial state (1 < ¢ < d) is seen as a new variable.
The entire initial state is then recovered by a Gaussian reduction (or by more
sophisticated techniques) whose time complexity is roughly

(50) =

where w is the exponent of the matrix inversion algorithm, i.e., w ~ 2.37 [9)].

However, the previous estimation of the attack complexity is based on two
hypotheses. It is first assumed that almost all monomials of degree d appear in
System (1). This clearly corresponds to the worst situation for the attacker, but
we can wonder whether some weak choices for the transition function L and for
the filtering function f can provide a system involving a small proportion of all
possible monomials only, leading to a faster attack.
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Open problem 1. Determine the number of monomials in x1, ..., x, nvolved
in System (1), depending on the choice of L and f.

A probably much stronger assumption in the usual complexity estimation is that
the system can always be solved: it is usually supposed that the knowledge of

N~ o2nd
~d! (dimAg(f) + dimAg(1 + f))

keystream bits lead to a system with 37, (") linearly independent equations.
It then raises the following open issue.

Open problem 2. Determine the rank of System (1) depending on the choice
of functions L and f.

Obviously, this question has an influence on the number of keystream bits re-
quired for the attack. But, a more crucial point is that the attack using equations
of degree d may be infeasible even if a huge keystream segment is available. This
situation occurs when the system generated by N keystream bits is underdeter-
mined for any value of N. A natural related question is to determine whether the
equations corresponding to a given annihilator g are different for all keystream
bits, i.e., whether there exists some T less than the period of {L*,¢ > 0} such
that g o LT (z) = g(x) for all z € F3. It is clear that such an integer T' divides
the period of {L,t > 0}. This observation leads to the following result when L
corresponds to the next-state function of an LFSR.

Proposition 1. Let L be the next-state function of an LFSR of length n with
primitive feedback polynomial. Let g be a Boolean function of n wvariables. If
2" — 1 is a prime, then all functions go Lt, for 0 <t < 2" — 1, are distinct.

But, when (2™ — 1) is not a prime, there always exist filtering functions f such
that some of their annihilators g € AN(f), g # 0, lead to a sequence {goL?, 0 <
t < 2™ — 1} with a small period, as pointed out in the following toy example.

Example 1. Let us consider the LFSR of length 4 with primitive feedback poly-
nomial P(z) = z* + x + 1 and the 4-variable filtering function f defined by

f(1'1, ceey $4) =23+ T4 +T1X2 + T2X3 + T1L2X3 + T1T2Tg4 + X1X3T4 + T2X3X4 .

Then, the function g(x1,...,24) = 1 + x2 + x3 + x4 + Towy + 2324 belongs to
AN (f) and it satisfies

goL'(x1,...,wa) =go L' ™5 (1, .. 1)

for all ¢. Actually, when F3 is identified with the finite field with 16 elements
defined by the primitive polynomial P, we have g(x) = g(xa®), where a is a root
of P.

However, when a function g in AN (f) has such a strong periodic structure, this
also holds for the filtering function, implying that the keystream can be easily
distinguished from a random sequence.
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Proposition 2. Let f be a Boolean function of n variables and let g be a nonzero
function in AN(f)U AN(1+ f). If go LT = g for some integer T, then there
exists to < T such that all keystream bits s¢,4+i1,% > 0 are equal for at least one
initial state. Moreover, if L corresponds to the next-state function of an LFSR
with primitive feedback polynomial, then all si,1ir,i > 0 are equal for some
to < T for all nonzero initial states when deg(g) # n.

Proof. Since g is not the zero function, there exists some a € Fj such that
g(a) = 1, implying g o LT (a) = 1 for all i > 0. Because g belongs to AN(f)
(resp. AN(1 + f)), we deduce that f (resp. (1 + f)) vanishes at points LT (a),
for all ¢ > 0. Therefore, the keystream generated from initial state xq is such
that sy 4+i7,% > 0 are equal for some tp < T as soon as an internal state a
with g(a) = 1 can be reached from xg. For an LFSR with maximum period,
all internal states are generated for each nonzero xq, except the all-zero state.
Thus, the property holds unless g is the function of degree n which vanishes at
all points except 0.

However, the previous propositions only investigate the possibility that all equa-
tions derived from a given annihilator may be equal. The question of their linear
dependency is still open. We can nevertheless conjecture from the previous dis-
cussion that, if the rank of the system involved in an algebraic attack highly
differs from the rank of a random system, the corresponding keystream genera-
tor is probably vulnerable to a distinguishing attack.

If we assume that System (1) behaves like a random system with respect to
both previously discussed properties, it clearly appears that the relevant pa-
rameter in the context of algebraic attacks against such stream ciphers is the
so-called algebraic immunity of the filtering function.

Definition 2. The algebraic immunity of a Boolean function f, denoted by
AI(f), is the lowest degree achieved by a nonzero function in AN (f)UAN (1+f).

It is worth noticing that the previous definition may be inappropriate when we
consider algebraic attacks against other families of ciphers, for instance against
block ciphers or combiners with memory. In such cases, the annihilator ideals of
f and of (1 + f) may play very different roles [3].

In our case, the time-complexity of algebraic attacks based on linearization is
roughly

@ (n“AI(f)> where w ~ 2.37

and the associated data-complexity, i.e., the required number of keystream bits,
is O (nAI (f )), but it is probably reduced when the number of functions of de-
gree AI(f) in AN(f) U AN(1 4 f) increases. Thus, we can derive from this
approximation a lower bound on the algebraic immunity of the filtering function
which must be satisfied in order to resist algebraic attacks. If we suppose that
the size of the internal state is minimal with respect to key-size k, i.e., that
n = 2k (it is known that the size of the internal state must be at least twice the
key size in order to resist time-memory-data trade-off attacks), the complexity



Open Problems Related to Algebraic Attacks on Stream Ciphers 125

of the attack is greater than the complexity of an exhaustive search on the key
when .

apzonf, b .
For instance, in a filter generator with a 128-bit key and a 256-bit internal state,
the algebraic immunity of the filtering function must be at least 7.

But, the secure minimum value for the algebraic immunity is probably higher
since more efficient techniques than linearization can be used for solving the al-
gebraic system. Actually, this problem has been extensively studied in computer
algebra and it is well-known that some methods based on Groébner basis algo-
rithms efficiently apply. The most recent and powerful algorithms, F4 and F5, are
due to Faugere [19, 27, 20]. It was recently proved [18, 5] that F4 is more efficient
than the extended linearization algorithm (XL) proposed by Courtois, Klimov,
Patarin and Shamir [12]; XL actually computes a Grobner basis in the particu-
lar context of algebraic attacks. And Algorithm F5 is strictly more efficient than
all previous ones. Another technique, called XSL, has also been presented by
Courtois and Pieprzyk [14] but its complexity and its implementation feasibility
are still controversial.

Some recent results on the complexities of F4 and F5 can be found in [6, 7].
However, it is worth noticing that all these results only hold in the so-called
semi-regular case. Therefore, the major problem is to determine whether the
system involved in algebraic attacks behaves like a random system or not with
respect to the previously mentioned algorithms. We would like to emphasize that
it does not make sense to use some complexity results for the semi-regular case if
we do not have any hint on the behaviour of the system. For instance, the public
challenge on the asymmetric cryptosystem Hidden Field Equations (HFE) was
broken by Faugere with F5 whereas the attack was infeasible according to its
complexity in the generic case [22].

Open problem 3. Does System (1) behave like a semi-regular system in the
sense of [6]7

4 Algebraic Immunity of Filtering Functions

Obviously, the algebraic immunity of the filtering function highly influences the
complexity of the attack even if the estimation of the time complexity for solving
the underlying system is still an open problem.

4.1 General Properties of the Algebraic Immunity

The set AN(f) of all annihilating functions of f is obviously an ideal in the
ring of all Boolean functions, and it is generated by (1 4 f). It consists of the
22" —wt(f) functions of n variables which vanish on the support of f, i.e., on all
x such that f(z) = 1, where wt(f) denotes the size of the support of f. The
number of functions of degree at most d in AN(f) is equal to 2% where & is the
dimension of the kernel of the matrix obtained by restricting the Reed-Muller
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code of length 2™ and order d to the support of f. In other words, the rows of
this matrix correspond to the evaluations of the monomials of degree at most d
on {x, f(x) = 1}. Since this matrix has 3¢ () rows and wt(f) columns, its
kernel is non-trivial when .

Z <7Z) > wt(f) .

i=0

Similarly, AN (1 + f) contains some functions of degree d or less if

Ed: (’Z) > 9" —wit(f) .

=0

Thus, as pointed out in [15], the algebraic immunity of an n-variable function is
related to its Hamming weight. Most notably, for odd n, only balanced functions
can have optimal algebraic immunity. A trivial corollary is also that, for any n-
variable Boolean function, we have AI(f) < [n/2].

Another interesting property is that the highest possible algebraic immunity
for a function is related to the number of its O-linear structures. Let So(f) be the
set of all O-linear structures for f, i.e., So(f) = {a € Fy, f(z + a) = f(z), Vz}.

Then, .

This bound is important for instance in the case of filtered LFSRs, since the
filtering function usually depends only on a small subset of the internal state bits.
We deduce from the previous discussion that if an m-variable Boolean function
is used for filtering the n-bit internal state of the generator, the complexity of
the algebraic attack will be at most n 2" . Therefore, the cipher resists algebraic
attacks only if the number m of variables of the filtering function satisfies

k
> (.84
m =08 L+1og2<k>] ’

where k is the key-size and where the initial state is supposed to be twice longer
than the key. For instance, a filter generator with a 128-bit key and a 256-bit
internal state must use a filtering function of at least 16 variables. Here again,
the secure number of variables is probably higher than the previous bound which
is based on the complexity of linearization.

4.2 Algebraic Immunity of Random Balanced Functions

For 5-variable functions, it is possible to compute the algebraic immunity of all
Boolean functions using the classification due to Berlekamp and Welch (because
algebraic immunity is invariant under composition by a linear permutation). We
here focus on balanced functions because they are the only ones that may have
optimal algebraic immunity for n odd. We can compute the algebraic immunity
of all 601,080, 390 balanced functions of 5 variables:
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AI(f) 1 2 3
nb. of balanced f 62 403,315,208 197,765,120
proportion of balanced f 1077 0.671 0.329

Another interesting quantity is the number of linearly independent annihila-
tors of degree at most 2 for all balanced functions of 5 variables:

dim(AN,(f)) o 1 2 3 4 5
proportion of balanced f 0.329 0.574 0.094 0.002 2 - 10~510~7

An important observation is that both sets AN (f) and AN5(1+f) have the same
dimension for all balanced functions except for one function and its complement
(up to linear equivalence). This raises the following open problem.

Open problem 4. For balanced Boolean functions f, is there a general rela-
tionship between AN(f) and AN(1+ f)?

Similar simulations can be performed as far as the functions of n variables are
classified into equivalence classes under composition by a linear permutation. But,
such a classification only exist for n = 6 and for cubic functions up to 8 variables.

Even if some well-known constructions of cryptographic Boolean functions
have been proved to have a low algebraic immunity, probabilistic arguments
tend to show that the proportion of balanced functions with low algebraic im-
munity is very small. It has been proved in [24] that the probability that a
balanced function of n variables has algebraic immunity less than 0.22n tends
to zero when n tends to infinity. An upper bound on the probability that a bal-
anced function has an annihilator of degree less than d is also given. This bound
involves a part of the weight enumerator of RM (d, n) and any new information
on its complete weight distribution can clearly improve the result. However, both
following problems are still open.

Open problem 5. Determine the average value of the algebraic immunity for
a balanced function of n variables.

Open problem 6. Determine the proportion of balanced Boolean functions of
n variables with optimal algebraic immunity.

4.3 Boolean Functions with Optimal Algebraic Immunity

A first relationship between the annihilators of f and of 1 4+ f can be exhibited
for functions with optimal algebraic immunity. Actually, all annihilators of a
balanced n-variable function f have maximal degree |"J'] if and only if the
support of f corresponds to a subset of 2"~ columns of the Reed-Muller code
of length 2" and order L"Elj with maximal rank. When n is odd, such a set is an
information set for the Reed-Muller code of order "51 which has dimension 271
Then, a relationship between deg(AN(f)) and deg(AN(1 + f)) can be derived
from the fact that this code is a self-dual code.

Proposition 3. Let C be a linear self-dual code. If I is an information set for
C, then its complement is an information set too.
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Proof. Let I be an information set for C. Then, there exists a generator matrix for
C which can be decomposed into G = (Id, M); where the first part corresponds
to the positions in 7. Let us now assume that the complement of I is not an
information set for C. This means that there exists a nonzero codeword of the
form ¢ = (¢/,0); in C. Since C is self-dual, ¢ belongs to the dual code. Therefore,
Gc = 0, implying that some columns of the identity matrix sum up to zero, a
contradiction.

We can immediately derive the following result.

Theorem 1. Let n be an odd integer and f be a balanced Boolean function of
n variables. Then, f has optimal algebraic immunity ”erl if and only if AN(f)
does not contain any nonzero function of degree strictly less than ";1.

A few classes of Boolean functions with optimal algebraic immunity have been
recently exhibited. An iterative construction which provides an infinite family of
balanced Boolean functions with optimal algebraic immunity is presented in [16].
Another example of functions with optimal algebraic immunity is the majority
symmetric function depending on an odd number of variables, i.e., the function
which outputs 1 if and only if the Hamming weight of its input vector is greater
than or equal to ”JQFI. This property was first proved in [23, Theorem 1] in terms
of information sets for the self-dual Reed-Muller code, and it is also mentioned

in [17].

4.4 Algebraic Immunity and Other Cryptographic Criteria

Besides the Hamming weight of the function, its nonlinearity is also related to
its algebraic immunity [15]. It can be proved that, for any linear function ¢, the
algebraic immunity of f + ¢ is at most AI(f) + 1. Therefore, any function f of
n variables with algebraic immunity at least d satisfies

=2 n
NL(f) = ; <Z> :

It follows that any function with optimal algebraic immunity has a high nonlin-
earity, more precisely

N gn—1 _ (n;h) if n is odd
£(f) 2 21’171 _ % g‘) — (gn—l) if n is even

A high nonlinearity and a high algebraic immunity are then compatible criteria.
Another important consequence is that the nonlinearity of a function may be
a sufficient criterion to decide whether it has low algebraic immunity (but the
converse is not true).

Another cryptographic property that implies that a function does not have
a maximal algebraic immunity is the notion of normality. A function is said to
be k-normal (resp. k-weakly normal) if there exists an affine subspace of dimen-
sion k& on which the function is constant (resp. affine). Since the minimum weight
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codewords of RM (r,n) are those whose support is an affine subspace of dimen-
sion n — r, we deduce that any k-normal function f of n variables has algebraic
immunity at most n — k. Similarly, any k-weakly normal function has algebraic
immunity at most n—k+ 1. Non-normal (and non-weakly normal) functions may
be good candidates if we want to construct functions with optimal nonlinearity.

The existence of links between algebraic immunity and other cryptographic
criteria remains unknown. For instance, the relation between the distance of
a function to all low-degree functions (i.e., its distance to RM(d,n)) and its
algebraic immunity is still unclear. Correlation-immunity does not seem to be
a priori incompatible with optimal algebraic immunity: there exists a 1-resilient
function of 5 variables with optimal algebraic immunity. However, the link with
all known criteria must be investigated further.

4.5 Algebraic Immunity of Known Constructions

Some bounds have been established on the algebraic immunity of the crypto-
graphic functions obtained by applying classical constructions. First, the alge-
braic immunity of a function can be derived from the algebraic immunities of its
restrictions to a given hyperplane and to its complement [15]. For instance, if

f(‘rlv'”vmn) - (]- +xn)f1(‘rla"'1xn71) +-Tnf2($17"'7xn71) )
we have:

— if AI(f1) # AI(fs), then AI(f) = min(AI(f,), AI(f2)) + 1;
—if AI(f1) = AI(f), then AI(f) € {AI(f1), AI(f,) + 1}.

Therefore, it is obvious how to construct a function of 2¢ variables with opti-
mal algebraic immunity from two functions of (2¢ — 1) variables with respective
algebraic immunities equal to ¢ and to (¢ — 1). But, constructing a function of
(2t +1) variables with optimal algebraic immunity from two functions of 2¢ vari-
ables is much more difficult since both restrictions must have optimal algebraic
immunity and they must also satisfy some additional conditions.

Some bounds on the algebraic immunities of some classical constructions, such
as the Maiorana-McFarland family, can be found in [24, 15, 25].

4.6 Computing the Algebraic Immunity of a Boolean Function

The basic algorithm for computing the algebraic immunity of an n-variable func-
tion comnsists in performing a Gaussian elimination on the generator matrix of
the punctured RM(|™,' ], n) restricted to the support of f. This matrix has

n—1
wt(f) columns and k("' ],n) = ZZ-L:(’;’ J (") rows. Therefore, the algorithm
requires k(| ", "], n)wt(f) operations, which is close to 25"~% when f is bal-
anced. As noted in [24], the complexity can be significantly reduced if we only
want to check whether a function has annihilators of small degree d, since we
do not need to consider all positions in the support of f. Indeed, considering a
number of columns which is only slightly higher that the code dimension k(d, n)
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is usually sufficient for proving that a function does not admit any annihilator of
degree d. A technique for reducing the size of the matrix over which the Gaus-
sian elimination is performed is presented in [24]. The idea is that the elements
in the support of f with low Hamming weight provide simple equations that
can be removed from the matrix by a substitution step. However, due to the
lack of simulation results, it is very hard to evaluate the time complexity of the
substitution step in practice.

Grobner bases algorithms such as F5 provide other techniques for computing
the size of the annihilator ideal. But they need to be compared with the basic
techniques in this particular context.

5 Resistance to Fast Algebraic Attacks

At CRYPTO 2003, Courtois presented some important improvements on alge-
braic attacks, called fast algebraic attacks [10]. The refinement first relies on the
existence of some low degree relations between the bits of the initial state and
not only one but several consecutive keystream bits. In other words, the attacker
wants to find some low degree relations g between the inputs and outputs of

F:Fy - Fp
v = (f@), f(L(@), ..., F(L" ()

where L is the linear transition function. This function is very similar to the so-
called augmented function defined in [1]. The fact that the augmented function
may be much weaker than the filtering function, i.e., than Fy with the previous
notation, has been pointed out by Anderson [1] in the context of correlation
attacks. However, finding the low degree relations between the n inputs and
m outputs of F, becomes infeasible when m increases. The direct algorithm
used for a function S with n inputs and m outputs consists in finding the low
degree annihilators for the characteristic function @g of .S, which is the Boolean
function of (n + m) variables defined by

Ds(z1,. . Tn, Y1, -, Ym) = 1 if and only if y; = Si(z1,...,zn), Vi .

Due to its high complexity, it can only be used for small values of m. For in-
stance, if we consider a Boolean function of 20 variables, it may have algebraic
immunity 10. But, there always exist relations of degree at most 7 involving
4 consecutive keystream bits together. The problem is that determining whether
relations of degree less than or equal to 6 exist in this case requires the com-
putation of the kernel of a matrix of 120 GBytes. And even checking whether
relations of degree 3 exist involves a 2.7 GByte-matrix. Mounting algebraic at-
tacks based on the augmented function is then related to the following problem.

Open problem 7. Find an algorithm which determines the low-degree relations
for the augmented function.
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More generally, we can wonder whether the particular form of the augmented
function has an influence on the degree of the annihilator ideal of its charac-
teristic function. For instance, the existence of a general relationship between
the algebraic immunity of a Boolean function and the algebraic immunity of the
associated augmented function is still unclear. The fact that the augmented func-
tion is a very special case of multi-output functions may lead to new theoretical
results or to dedicated algorithms in that case. For instance, a very particular
property of the augmented function is that all its Boolean components are lin-
early equivalent. This raises the following open question, which is clearly related
to algebraic attacks against block ciphers which use power functions as S-Boxes,
like the AES.

Open problem 8. Does the linear equivalence between all output components
of a multi-output function influence its algebraic immunity?

Since the computation of low degree relations involving several keystream bits is
usually infeasible, Courtois proposed to focus on particular subclasses of relations
that can be obtained much faster. The relations considered in the attack are given
by linear combinations of relations of the form

g(x07 ooy Lp—1y Sty - - '7St+m)

where the terms of highest degree do not involve any keystream bits. Then, an
additional precomputation step consists in determining the linear combinations
of the previous relations which cancel out the highest degree monomials. Some
algorithms for this step have been proposed in [10,2]. This technique helps to
decrease the degree of the relations used in the attack for different practical
examples. But, here again, we do not have any theoretical result connecting the
algebraic immunity of the function and the existence of such low degree linear
combinations.

6 Using More Sophisticated Filtering Functions

Many stream ciphers do not use a simple Boolean filtering function; they prefer
more sophisticated mappings in order to render the attacks more difficult or in
order to increase the throughput of the generator.

Multi-output Boolean functions. A basic technique for increasing the speed of
the generator consists in using a filtering function with several outputs. Such
functions are called vectorial Boolean functions, or S-boxes by analogy with
block ciphers. But, as pointed out in [28], the resistance of the generator to
fast correlation attacks usually decreases with the number of output bits of
the function. For a single output function, the attack exploits the fact that the
output may be approximated by an affine function of the input variables. But,
for a function S with m outputs, the attacker can apply any Boolean function g
of m variables to the output vector (yi1,...,¥m) and he or she can perform
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the attack on the resulting sequence z = ¢(y1, - . -, Ym ). Therefore, the relevant
parameter is not the nonlinearity of the vectorial function, which is the lowest
Hamming distance between any linear combination of the components of S and
the affine functions, but the so-called unrestricted nonlinearity [8], which is the
lowest distance between any function g o S and the affine functions, where g
varies in the set of all nonzero Boolean functions of m variables.

For similar reasons, the algebraic immunity of a vectorial function tends to
decrease with the number of output bits. For an S-box with n inputs and m out-
puts, there exists a relation of degree at most d in the input variables (and of
any degree in the output variables) if

d
> <n) > nTm
i—o \!

A particular case of generators based on multi-output Boolean functions are
the word-oriented ciphers. In order to increase the performance of software im-
plementations, many ciphers use LFSRs over an extension field Fom and the
associated filtering function is usually a mapping from F%.. into Fam. This tech-
nique is used in many recent stream ciphers, e.g. in SNOW 2.0. The associated
filtering function can obviously be seen as a vectorial Boolean function with
mn inputs and m outputs. Consequently, all results previously mentioned apply,
but the major open issue here is to determine whether word-oriented attacks can
be mounted which exploit the particular structure of the function defined as a
polynomial over Fom.

Functions with memory. In some keystream generators, the filtering function is
replaced by a finite automaton with some memory bits. An example is the FEj
keystream generator used in the Bluetooth wireless LAN system, which uses a
combining function with 4 inputs and 4 memory bits. However, (fast) algebraic
attacks [4] can still be applied on such systems. Armknecht and Krause proved
that, for any filtering function of n variables with M memory bits, there always
exists a relation of degree at most f”(]véﬂ)} between (M +1) consecutive output
bits and the bits of the initial state, for a given initial assignment of the memory
bits. Obviously, relations of lower degree may exist. For instance, the function
used in Ej provides a relation of degree 4 involving 4 consecutive output bits,
which leads to an algebraic attack of running-time around 257 [4]. General results
on algebraic attacks against combiners with memory can be found in [3,13].
The main open issue related to the use of such sophisticated functions is to
improve the efficiency of the algorithms for computing their algebraic immunity
for a large number of input variables. Another related open problem is to find
some general constructions which guarantee a high resistance to all these attacks.
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Abstract. In public-key cryptography the discrete logarithm has gained
increasing interest as a one-way function. This paper deals with the par-
ticularly interesting case of the discrete logarithm in finite fields of char-
acteristic two.

We obtain bounds on the maximal Fourier coefficient, i.e., on the
non-linearity, on the degree and the sparsity of Boolean functions inter-
polating the discrete logarithm in finite fields of characteristic two. These
bounds complement earlier results for finite fields of odd characteristic.

The proofs of the results for odd characteristic involve quadratic
character sums and are not directly extendable to characteristic two.
Here we use a compensation for dealing with the quadratic character.
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1 Introduction
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multiplicative group IFy. The discrete logarithm (or index) ind,(§) of £ € I}
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study properties of Boolean functions which provide information on the discrete
logarithm. Namely, let B(Up, Us,...,U,—1) be a Boolean function satisfying

_ [0, if ind, (&) is even,
B(ko, k- bir1) = {1, if ind. (€, is odd, (1)

where § = koo + k181 + -+ + kr—18r—1 € F and k; € {0,1} for some fixed
ordered basis {8y, 1,...,8r—1} of F, over Fo. Hence, B provides the least
significant bit of ind, (§) for £ € .

For finite fields of odd characteristic such Boolean functions were studied in
[8,9,13]. The proofs involve sums over the quadratic character. Since there is
no quadratic character in fields of even characteristic the proofs are not directly
extendable to characteristic two. However, this case is particularly interesting
for cryptographic applications (see e.g. [10]). Here we use a compensation for
dealing with quadratic characters to extend some selected results of [8,9,13] to
characteristic two.

In Section 3 we estimate the maximal Fourier coefficient max B(a) of B,

2

where

Bla):= ) (~1)Pt<en> (2)

ueFy;
and < a,u > denotes the standard inner product. This provides a lower bound
for the non-linearity N L(B) of B, i.e., the minimum Hamming distance to affine
functions, because of the relation

1

NL(B)=2""1— _ max |B(a)|.

acFy
For the significance of this notion see [2, 3,4, 5,6, 14, 16].

In Section 4 we prove bounds on the sparsity, i.e., the number of nonzero
coeflicients, and degree of B.

Interestingly, our upper bound on the maximal Fourier coefficient is better
than the analog result for finite fields of odd characteristic (O(q'/?logq) vs.
0(q¢"/®1ogq)). In contrast, our lower bound on the sparsity is weaker, which
seems to be unnatural.

2 Preliminary Results

Let x be a primitive (multiplicative) character of IF, and put n := x (7). Define
the function ¢ : 'y — C (cf. [1]) by

B(X) = Z v+l
Tg-1 (&t 2

The following Lemma shows that 1) characterizes the least significant bit of the
discrete logarithm.
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Lemma 1. For § € I} we have

—1, otherwise.

1, ind 18 even,
Proof. We start with the well-known relation

1 = J _ 175217 F* 3
qg—1 ZX &)= 0, otherwise, fely (3)

AN

Then (3) implies for 0 <m < g — 2,

q—2 . —m
' anmxf@):{l’mdm‘ : (4)
§=0

q—1 0, otherwise.

Now we get

and the result follows by (4). O

For the following bound on Gaussian sums see [11, Theorem 2G| and [11, The-
orem 2C’].

Lemma 2. Let x be a nontrivial multiplicative character and v be a nontrivial
additive character of Fy. Let f(X) € Fy[X] be a polynomial which is not an
ord(xx)-th power with m distinct roots in its splitting field. Then for y € F, we
have

S (&) lues)
k=0

o md? oy #0,
(m - 1)(]1/27 y=0.

For the following bound on incomplete character sums see [15, Section 3, p. 469].

Lemma 3. Let x be a nontrivial multiplicative character of Fy and f(X) €
F,[X] a monic polynomial which is not an ord(x)-th power and has m distinct
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zeros in its splitting field over Fy. Then we have for any additive subgroup V' of
Fy and a € Iy,

> x(af(©)] <mg'?.

Eev

The following bound will be useful for the proofs.

Lemma 4. Let n be a complex primitive (¢ — 1)-th root of unity. For ¢ > 4 we

have

q—2

. ’ < 0.785(¢ — 1) logy(g — 1).

j=1

Proof. We have
e /2-1
L] 1 nl -1 772”/2—1:(12 21
RS ST | B P | -1 1=0 |

Using [7, Theorem 1] we have

2 [q/2-1 —2
S —2j1 sin 7TJ(J/ (¢—1)))
K sin(mj/(q— 1))
j=1]| 1=0 j=1 J
4
< 2 ,(@—1)In(g — 1) +0.38(¢ — 1) + 0.608
d(q/2,q —
Lo.1165¢d(@/2,a - 1)?
qg—1
from which the result follows as ged(q/2,¢ — 1) = 1. |

3 A Bound for the Maximum Fourier Coefficient

In this section we prove an upper bound for the maximal Fourier coefficient B
of B given by (2).

Theorem 1. Let B be defined as in (1). Then we have for ¢ > 4

max | B(a)| < 2¢"/*logy(q — 1).
2

a€F

Proof. Since (—1)BFukr) = qp(&,) for & # 0 we have for any a € F}

2"—1

@) = 3 UG DR 4 (-0,
k=1
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where (k,a) = ((ko, ..., kr—1), (ag,...,ar_1)). Put

2"—1

S(a) =" (&) (—1)k

k=0

where we additionally define t(0) = 0. Then
|B(a)| < |S(a)] + 1.

Note that the mapping v, : & € Far — (—1)<’“’”> is an additive character of
Fyr. We get

2" —1
1S(@)] = | Y (&) tbalér)
k=0
Ci N e 1
=12, ;mﬂwmw 5 | (@)
271 1 271 9 q—2 1 }
=2 gt 2 q_lgmﬂwgk)wa(&k)
21 9 2 1 2" —1
J
< ]CZ:;) q_1¢a(§k) + q—l = 77j+1 kz:o ¢ (gk)wa(gk) .
So it follows from Lemma 2 and Lemma 4 that
1.57log, (g — 1)¢*/?, a # 0,
‘S(a)| g {27‘/((] _21)a a = Oa

which yields the result. O
Corollary 1. Let B be defined as in (1). Then we have for ¢ > 4
NL(B) > 2" — ¢"*logy(q — 1).

4 Lower Bounds on Sparsity and Degree of B

The aim of this section is to provide a lower bound on the sparsity of
Boolean functions satisfying (1). This bound holds for an arbitrary basis
{Bo,B1,--.,Br—1} of the finite field showing that there is no Boolean function
of extremely low sparsity providing the least significant bit of the discrete loga-
rithm. However, the bound is much lower than one would expect. We also show
that for some special basis a much larger bound can be proven.

Theorem 2. Let B(Uy,Un,...,U,_1) be a Boolean function satisfying (1). For
q > 4 we have
logs ¢
B) > -2
spr(B) 6log, log, ¢
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Proof. Define the integer a by 2% > spr(B) + 1 > 27!, For each 1 < m < 2¢
with binary expansion m = Y ¢ 01m12 mo,...,Mq—1 € {0,1}, we consider the

function
Bm(UO7 U17 RS UT‘—L‘L—l) = B(UOa Ula R UT’—a—17mOa mi,... 7ma—1)~

The number of distinct monomials in Uy, ...,U,_,—1 occurring in all the B,,
cannot exceed spr(B). Since 2* — 1 > spr(B) we find a non-trivial linear combi-

nation
201

Z Cm UO,U17~-~7Ur—a—1), Cly...,Ca_1 E]FQ

which vanishes identically.
The function 9 introduced in Section 2 satisfies

Y() = (~1)Plokbem) o < g <2,

by Lemma 1. Now we vary the first » — a variables to obtain bounds on 2¢. For
0<k<2"% we have

2%—1

TT #(6ksram)™ = (—1) T emBrlhokikemas) _ 1,
=1

Let H be the Hamming weight of (c¢1, ¢, ..., c2a_1) and denote by N the set of
integers m € [1,2* — 1] for which ¢,, = 1. We sum over all possible k and use
the definition of ¢ to get

gr-a_120_1
27 = Z IT ©(rsorem)
=0 m=1
gr-a_120_1 5 -2 1 em
= Z H Z , X! (Epgor—am) +
pr i S Wl j:lnj+1 2

|
/N
S
(-]
—_
~——
T
T
OIS
~——
)
.
3
F]
QH
+
=

By Lemmas 3 and 4 we obtain

s (2)2(0) T > T+

s=0 mi,....ms€EN j1,...,Js=1

<2 56) T (omsu v - v
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2 \" H
< ¢'/? ( > H(0.785(q —1)logy(q— 1) + 1/2)
qg—1
1\
< 29¢'/? (1.57log2(q 1)+ ‘ 1) .

Since otherwise the bound is trivial we may assume 2* < r. Thus we get

. < (15Tlogy(q — 1) +1/3)*",
which allows to obtain
spr(B) > 271 —1
> 0.5 (1og2(q1/2 /12)/ logy (157 log,(q — 1) + 1/3)) 1
and by observing that
log,(1.571ogy(q — 1) +1/3) < 1.5log,(logyq) for ¢ >4
the result follows. O

Remark 1. Our estimate is much weaker than the comparable result for odd
characteristic (see [8, 13]). The main reason is of technical nature, namely 1), the
compensation for the quadratic character in the proof, is not multiplicative and
the product introduces 22 factors which results in an exponent of 2¢ instead of
a factor of 2%.

Much stronger bounds can be shown if one uses a special basis. However, a
possible attacker using a Boolean function is not restricted to use a special basis.
We now consider a fixed basis given by 3; = 7%, 0 < i < r— 1. To distinguish the
Boolean function working for this special basis we denote it by B.. We point out
that obviously one can always use a linear change of variables between the bases
{1,79,...,7 "'} and {Bo,...,Br—1} to represent the field elements with respect
to a different basis. However, there is no reason that for a different basis the
degree of B cannot be smaller.

We use a proof technique introduced in [8,12,13]. Up to now no application
in even characteristic was possible.

Proposition 1. Let B, be a Boolean function satisfying (1). We have
deg(By) > r —1 and spr(B,) > ¢/4.
Proof. Define the Boolean function F' by
F(Uo,...,Up_9) := By(Uy,...,Ur—2,0) + By(0,Uy, ..., Ur_2).

As (0,ko, ..., ky_o) represents S1_2 kit = 43T " kAt ie., y times the
first input, we have that exactly one of ZZ:OQ ki~' and 722;02 k' has even
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discrete logarithm. Hence, for each nonzero vector (ko,...,k.—2) one has
F(kg,...,k.—2) = 1. Evaluating F(0,0,...,0) gives 0 independent of the am-
biguous value of B,(0,0,...,0). Hence, F' is non-constant and we get

r—2
F(Up,....Up) = [Ja+U)+1.
1=0

From the definition of I’ we have
deg(By) > deg(F)=r—1

and
spr(B,) > [0.5spr(F)] = [0.5(2" ' —1)] =272 = ¢/4,

which completes the proof. (I
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Abstract. The security of the RSA public key cryptosystem depends on
the intractability of the integer factoring problem. This paper shall give
some theoretical support to the assumption of hardness of this number
theoretic problem.

We obtain lower bounds on degree, weight, and additive complexity
of polynomials interpolating functions related to the integer factoring
problem, including Euler’s totient function, the divisor sum functions,
Carmichael’s function, and the RSA-function.

These investigations are motivated by earlier results of the same flavour
on the interpolation of discrete logarithm and Diffie-Hellman mapping.

Keywords: polynomials, degree, weight, additive complexity, factoring
problem, RSA-problem, Euler’s totient function, divisor sum function,
Carmichael’s function.

1 Introduction

Computationally difficult number theoretic problems like the discrete logarithm
problem or the integer factoring problem play a fundamental role in public key
cryptography. The Diffie-Hellman key exchange depends on the intractability
of the discrete logarithm problem and the RSA cryptosystem is based on the
hardness of the integer factoring problem (see e.g. [27, Chapter 3]).

In the monograph [40] (or its predecessor [38]) and the series of papers
[2,3,4,8,10,14,15,16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 37, 43, 44, 45]
several results on discrete logarithm problem and Diffie-Hellman problem
supporting the assumption of their hardness were proven. In particular, it was
shown that there are no low degree or sparse interpolation polynomials of
discrete logarithm and Diffie-Hellman mapping for a large set of given data. In
the present paper we prove analog results for functions related to the integer
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factoring problem. We restrict ourselves to the case of factoring 'RSA-integers’
N = pq with two odd primes p < gq.

In Section 3 we investigate real and integer interpolation polynomials of map-
pings allowing to factor N, including FEuler’s totient function

o(pg) = (p—1)(¢g — 1),

Carmichael’s function

and divisor sum functions

on(pq) = (" +1)(¢" + 1)

with a small positive integer n, and ’factoring functions’

Un,m(Pg) = p"q™
with small different nonnegative integers n and m.

In Section 4 we prove a lower bound on degree and weight of an integer
polynomial representing the RSA-function

f(x)=2%modpq, =€,

for a subset S of Z; = {1 < x < pq : ged(z,pq) = 1} and some integer d with
ged(d, (p—1)(¢—1)) = 1.
We collect some auxiliary results on polynomials in the next section.

2 Preliminaries

A proof of the following useful relation between the number of zeros and the
degree of a multivariate polynomial, which extends the well-known relation for
univariate polynomials, can be found in [11, Lemma 6.44.].

Lemma 1. Let D be an integral domain, n € N, S C D, and f €
D[Xy,...,X,] be a polynomial of total degree d, with at least N zeros in S™.
If f is not the zero polynomial, then we have

N
d> .
— |S‘n71
The additive complexity C+(f) of a polynomial f(X) is the smallest number
of '+’ and =’ signs necessary to write down this polynomial. In [33,34] the
number of different zeros of a real polynomial was estimated in terms of its
additive complexity.
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Lemma 2. For a nonzero polynomial f(X) € R[X] having N different real zeros
we have

1 1/2
ca(nz (Jloa)
where log(N) is the binary logarithm.
In [35, 36] the following improvement was obtained for integer polynomials.

Lemma 3. For a nonzero polynomial f(X) € Z[X| having N different rational
zeros we have

log(N) = O(C+(f) log(C+(f)))-

The weight w(f) of a polynomial f is the number of its nonzero coefficients.
For polynomials over a finite field IF; of g elements we have the following lower
bound on the weight (see [40, Lemma 2.5]).

Lemma 4. Let f(X) € Fy[X] be a nonzero polynomial of degree at most g — 2
with N different zeros in F. Then we have

qg—1
W(f>zq_1_N.

Obviously, for any univariate polynomial f we have

Cx(f) < w(f) =1 < deg(f).

3 Interpolation of Factoring Functions

For example, the knowledge of the value

o(N)=(p-1)(¢g—-1)

of Euler’s totient function at an integer N = pg with unknown primes p and ¢
is sufficient to determine p and ¢ by solving the quadratic equation

X2 4+ (p(N)-=N-1)X+N =0. (1)

In general, let g(X) and h(X) be (known) real rational functions, such that the
product g(X)h(N/X) is not constant. Then from the knowledge of the values in
N = pq of a function f with the property

F(N) = g(p)h(q) = g(p)L(N/p)

we can determine the unknown factors p and ¢ of N by solving an algebraic
equation which is derived from

9(X)h(N/X) = f(N) (2)

by clearing denominators and negative powers of X.
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If we could interpolate the function f by a polynomial of low degree or low
additive complexity and the degree of the algebraic equation derived from (2)
were small, then we could efficiently factorize N. Hence, it becomes important
to prove lower bounds on degree and additive complexity of such interpolation
polynomials.

First we prove lower bounds on degree and additive complexity of a real
polynomial with some special prescribed values.

Proposition 1. For M > 3 let
O<ar<ax<...<aym
be a set of ordered reals,
g:{a,az,...,ap—1} = R,

h:{az,as,...,apn} — R,

real valued functions, and G the unique interpolation polynomial of g of degree
at most M — 2. Let f € R[X] be a polynomial satisfying

flaia;) = g(ai)h(a;), 1<i<j< M.

If there exist 1 <1 < j < M — 1 such that

6 (%) har) # otahtas) ®
then we have

1 1/2
Ci(f) > (5log(M—1)> - Cy(G) -1,
and if flamX) — h(am)G(X) € Q[X] and aq,...,apm—1 € Q then we have

log(M) >
loglog(M) }

C(f)+C=(G) =1 (
Proof. The polynomial
F(X) = flanX) = G(X)h(anm) (4)
is not identically zero by (3) and has zeros at ay,...,ar—1. So we have
max(deg(f), M — 2) > max(deg(f),deg(G)) > deg(F)> M — 1
by Lemma 1 and thus deg(f) > M — 1. By Lemma 2 and observing that

CL(F) <CL(f)+CL(G)+1
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we obtain our second assertion. The third assertion follows by Lemma 3 if we
multiply (4) with the least common denominator of the coefficients of F. O

Condition (3) in Proposition 1 is necessary and natural. For example, if the given
values are

g(a;) = h(a;) =af, i=1,....,M,

with M > n + 2, they determine the interpolation polynomial f(X) = X™ of
degree n < M — 2 having additive complexity 0. However, the interpolation
polynomial of g is G(X) = X™ and we have

G (aza]) h(anm) = ai'a} = g(ai)h(a;), 1<i<j<M-—1,
anr
contradicting (3).

On the other hand, if g and h are polynomials of small degree with respect
to M, then (3) being not valid implies that g(X)h(Y) = g(XY/anrr)h(an) by
Lemma 1. Hence, for each fixed curve Y = N/X the polynomial g(X)h(N/X)
is constant and (2) cannot be used to determine the factorization of N.

Proposition 1 provides lower bounds on degree and additive complexity of
real polynomials f interpolating several well-known functions, as generalizations
of Euler’s totient function

en(pg) = (" = 1)(¢" = 1), n#0, ®)
and generalized divisor sums
on(pg) = (" +1)(¢"+1), n#0, (6)
but also ’factoring functions’ 1y, ,, of the form
Unm(pg) =p"¢", n#m, (7)

where n and m are nonnegative integers and p and ¢ are primes with p < q.

Theorem 1. For M > 3 let p1 < p2 < ... < ppr be a set of primes and F a
function of the form (5), (6), or (7). Let f € R[X] be a polynomial satisfying

f(pipj) = F(pipj), 1<i<j< M.

Then we have
deg(f) > M —1

and
1 1/2
AGE ( 1og (1 - 1>) o

Proof. Since the functions

fn(X):((;)n—l)(X"—l), a>0,n=12...,
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are decreasing for x > y/a we have for all 1 <i < j <k < M,
pip; \" n 0 n
(") =1) or-v <6t - 005 -1
Pk
and (3) is satisfied in case of generalizations of Euler’s totient function. Since

fn(X)=((;)n+1)(X"+1), a>0 n=1,2...,

are increasing for x > y/a we have
piv; \"
(") 1) o+ 0> 60+ 0065 +1
and (3) is satisfied in case of generalized divisor sums. Trivially, we have
pinj \"
iDj
( e ) pr # pipj

for all n # m and (3) is satisfied in case of "factoring functions’. Now the Theorem
follows by Proposition 1. O

Proposition 1 does not apply to the Carmichael function
_ p(N)
ged(p—1,4— 1)

with two odd primes p # ¢, which can also be used to factorize N.
We first study how A can be used to factor N.

A(N)

N = pq,

Proposition 2. Let N = pq be a product of two unknown odd primes p < q
and put A = |[N/AX(N)]. Then either A = p orp and q are the solutions of the
quadratic equation

X2 4+ (ANN)-N-1)X+ N =0.
Proof. Put g = ged(p — 1,q — 1). Then we have

N 2 cg< N 2
AN) p—1-9S a0 T g-1

If g = p— 1, then we have N/A(N) = p + p/(¢ — 1), such that A = p. If
g < (p—1)/2, then the above inequalities give N/A(N) —1 < g < N/A(N) and
thus A = g. Hence in this case we have

P(N) = AXN)
and can determine p and ¢ from the quadratic equation (1). O

Next we prove an analog of Theorem 1 for the Carmichael function. Let 7(x)
denote the number of positive divisors of an integer x.
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Theorem 2. For M > 3 let p1 < p2 < ... < py be a set of primes and
f € R[X] be a polynomial satisfying

(i = D)(p; = 1)

1<i<j<M.
ged(pi —1,p; — 1)

f(pip;) =

Put T = mini<;<nm 7(p; — 1). Then we have

M—-1
T

Calf) > (élog (M,_;1>)1/2—2.

Proof. Choose 1 < k < M with

deg(f) >

and

T(pr — 1) = min 7(pi — 1).

For each divisor d of py — 1 we define a polynomial

(X =1Dpr—1)
d

Then each p; with 1 < ¢ < M and @ # k is a zero of at least one Fjy. These
polynomials are not identically zero. Otherwise, for three different primes
Di, Pj, P> Fa(pipj/pr) = 0 yields a monic quadratic equation in p; with constant
term p;p;, and the only possible integral solutions p; have to be divisors of
pip;, which is impossible by assumption. Now the result follows analogously to
the proof of Proposition 1 by the pigeon hole principle. O

Fo(X) = f(prX) -

Remark. The dependence of the result on 7" may indicate that factoring integers
N = pq is easier if p—1 and ¢ — 1 are smooth which fits to the expected running
time of Pollard’s p — 1 factoring algorithm. On the other hand the expected
running time of the (in general faster) number field sieve does not depend on
the factorization of p — 1 and ¢ — 1.

4 Interpolation of the RSA-Function

The RSA problem is the following: Given a positive integer IV that is a product
of two distinct odd primes p and ¢, a positive integer e such that ged(e, (p —
1)(¢ — 1)) =1, and an integer ¢, find an integer m such that m¢ = ¢ mod N. In
other words, if d is an (unknown) integer with ed = 1 mod (p—1)(¢—1) then we
have to evaluate the mapping f(x) = 2¢ in c. The following result excludes the
existence of very simple interpolation polynomials of this mapping in the case
of low public exponent e.



Interpolation of Functions Related to the Integer Factoring Problem 151

Theorem 3. Let N = pq be the product of two odd primes with p < q. Choose
integers d,e > 1 such that ed = 1mod (p — 1)(¢ — 1). Let S C Z% be a set
of size s > 2. If f(X) = D" ga; X" € Z[X] is a polynomial with degree m <
(g —1)/e and ged(ag, . . ., am, N) = 1 which satisfies

f(z)=2"mod N  for all z € S,

then we have

s 81/2

den() zmas (") 7, ) ond W(f)>(<p—1><;—1>—s>l/e‘

Proof. Put F(X) = f(X)®— X. Since s > 2 and e > 1 the interpolation polyno-
mial f(X) is not constant and we have

deg(F) = e deg(f).

Forn > 1let Z,(F) denote the number of different zeros of F' mod n lying in Z;,.
We have Zp,(F) = Z,(F)Z4(F) by the Chinese Remainder Theorem. ;From our
conditions on f we infer that deg(F) < ¢ — 1. Thus

s < Zp(F)Zq(F) < (p = 1)24(F) < (p — 1) deg(F) = e(p — 1) deg(f).
If s < (p — 1)? then we may assume deg(F) = edeg(f) < p— 1 and get
s < Zp(F)Zy(F) < (deg(F))* = (edeg(f))*.

By Lemma 4 and the same arguments we get

q—1 q-1 (p—1(g—-1)
w(F) > > = ,
B2z, 7 - 1-5/0-1) " p-Da-1) - s
and the last statement is a consequence of w(F) < (w(f))¢ + 1. O

If d is small then e has to be large and the lower bounds become very weak. In
this case the attack of [42] for small d (see also [5, Section 3]) solves the RSA-
problem. It should be also mentioned that for low public exponents e attacks on
RSA are known [6,7,13].

5 Some Related Results

In [1] it was shown that if the discrete logarithm problem in Z%; can be solved
in polynomial time, then N can be factored in polynomial time, and the Diffie-
Hellman problem in Z}; is at least as difficult as the problem of factoring N.
Most of the results on the discrete logarithm and the Diffie-Hellman mapping
modulo a prime in [40] can be extended to composite moduli. Such results can
also be regarded as complexity lower bounds on functions related to the factoring
problem of the same flavour as in this paper.
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The linear complexity of several sequences related to the factoring problem
including RSA-generator, Blum-Blum-Shub-generator, and two prime generator
was investigated in [4,9, 12, 39].

Finally, we mention that an analog of Theorem 3 for the LUC cryptosystem
can be easily proven, where instead of monomial X? Dickson polynomials are
used (see [28,29,41]).
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Abstract. We study two topics on degrees of polynomials which
interpolate cryptographic functions. The one is concerned with elliptic
curve discrete logarithm (ECDL) on curves with an endomorphism
of degree 2 or 3. For such curves, we obtain a better lower bound of
degrees for polynomial interpolation of ECDL. The other deals with
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1 Introduction

Lange and Winterhof gave many results on degrees of polynomial interpolations
of functions related to discrete logarithm based cryptosystems including elliptic
curve cryptography in their series of papers [3], [4], [5]. We give two more results
by using their technique. The one is concerned with their result on polynomial
interpolation for elliptic curve discrete logarithms (ECDL). Let E/F, be an
elliptic curve and let P be a point of order [. We denote the X-coordinate of nP
by z, for n & [Z. Then the following inequality holds for a degree of a polynomial
which interpolates ECDL with the base point P.

Theorem (Lange and Winterhof[5, Proposition 2]). Let F(X) € Fp[X], p > 7,
satisfy
F(z,)=n and F(x2,)=2n, nes

for a subset S C {1,...,[1/4] }. Then we have

S

deg F' > # .

4
The constant 411 comes from the degree of the multiplication by 2 map, which
is 4. Some elliptic curves have endomorphisms of smaller degree. In Section 2, we
replace the multiplication by 2 map by endomorphisms of degree two or three
and obtain a better lower bound (but smaller range of S) for such curves.

The other result deals with so-called pairing inversion. Let ¢ be a power of
p and consider an arbitrary elliptic curve E/F,. Let B € E(F,) and put its
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order [. Assume that ! is odd and that F, contains a primitive [-th root ¢ of
unity. (Hence ! must be prime to p.) Using the Weil paring or the Tate pairing,
we can compute a group isomorphism (B) — ({). As is shown by Verheul|9,
Sect. 3], the computational complexity for evaluating its inverse isomorphism
t : () — (B) is related to the computational complexity of elliptic curve
discrete log problems. Here £(P) stands for the X-coordinate of P € E — {O}.
Let S C Z/IZ — {0}. Assume that #S > 2 and that a univariate polynomial f
interpolates the map ¢ over S in the sense that

f(¢") =€(nB) and f(¢*") = ¢&(2nB)

for all n € S. We show in Section 3 that deg f > é#S for odd p and
deg f > ;#S for p = 2. The idea of proof is flipping the method of the proof
for Lange and Winterhof[5, Proposition 2] inside out.

Notation. Let E be an elliptic curve defined over some perfect field. We assume
E is given by the Weierstrass model. We denote the X-coordinate function and
the Y-coordinate function by & and 7, respectively. Let 7 := —&/n be its local
parameter at the point O at infinity. The order of zero of a rational function
f at P € E is denoted by ordp f. As usual, we understand that —ordpf is the
order of pole at P when ordpf < 0. For a prime p and its power g, we let
Gal(F,/F,) act on F,[X] coeflicient wise. We denote the p-th power Frobenius
automorphism by o.

2 Endomorphisms of Small Degree

We begin with a simple (perhaps well known) lemma which is used later. After
we have done with it, we list elliptic curves with an endomorphism of small
degree and give a new bound for degree of polynomial interpolation for such
curves.

Lemma 1. Let ¢ € End(E) be separable. Let P € Kery. Then, ordp€oyp = —2.

Proof. Let V_p be the translation by —P map, i.e., V_p(4) = A — P. Then
Tp := T o V_p is a local parameter at P. Since ¢ is separable, we have an
expansion 7o ¢ = cr 4+ O(72) with a non-zero constant c. Recall £ = 7724 O(1)
(see e.g. Silverman[7, Chap. 4]). So, £ 0 p = ¢ 2772 + O(1). Applying V_p on
the right, we see oo V_p =c 27720 V_p + O(1). Since P € Keryp, it holds
that

Eop=EopoV_p=c 2152 +0(1). O

Now, there are 7 pairs consisting of an imaginary quadratic algebraic integer 3;
(up to multiplication by units) whose norm is 2 or 3 and an order Z[w;] contain-

ing ;. Explicitly, they are: 81 := 1+ +v/—1, B2 := /=2, B3 := 1+ /=2, B4 :=
Bs == /—=3, fs := 71+2\/777 Br = 71+§/711, and wy 1= V-1, wy == w3 1= /=2,
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Wy = _1+2\/_3, ws == /=3, wg := Bs, and wy := B7. Then, {1, w; } forms an
integral base of an order of Q(/3;). Using the continued fraction method described
in Stark[8], we can find an elliptic curve E;/Q whose endomorphism ring is Z[w;]
and an explicit formula for the X-coordinate component for multiplication by
Bi. Let Y2 = X3+ A; X + B; be the Weierstrass equation of E;. For ¢ € Z[w;], we
denote by [c] the endomorphism of E; satisfying 7o [¢] = ¢ + O(72). Let ¥;(X),
0;(X) € Q(w;)[X] be polynomials such that the X-coordinate of [3;](z,y) is
O,(x)/W;(z) for (z,y) € E;, or in the language of rational functions,

golp] = o)
] = .
7 ()
We normalize them so that ©; is monic. For completeness, we list them:
Bi A; B; Oi(z)/¥i(z)
2
14+v-1 5 0 SR
2 _2sz+ 18
V-2 —30 56 o
54 (ot 2w)2® (46T 28 )z + 112 + 80
142 _30 56 z° + (—4 + 2w)x ( w)x w
(B 3 4—w)?
z° 4 28
-3 0 7
v ey
z° — 62° 4+ 33z — 56
V-3 -15 22 B2 — 3)2
—1+/-7 a5 og 22 — (4 + W)z + (7T + 21w)
2 —(24+w)x + 6+ 5w
—1++/-11 2% — (24 + 4w)z? + (396 + 308w)x — 2200 — 2464w
—264 1694
2 (Bx + 6 — 10w)?

(To ease notation, the subscripts for w; and 3; are omitted in the last column.)
Put v; := NQu,)/q(Bi). One can observe that deg®; = v; and deg¥; = v; —
1. Moreover, ©;(X) and ¥;(X) are relatively prime in Q(w;)[X] and all the
coefficients belong to Z[w;]. In particular, they are algebraic integers. These
facts can be proved in general (see e.g. Stark[8]) but for our purpose, the above
table is enough.

Remark 1. In the above table, we also observe ¥; is square for v; = 3. This is
not a coincidence. In fact ¥; is, up to a constant, 1/)%1_ in the notation of [6] when
v; is odd.

In what follows, we omit the subscript ¢ for simplicity. Let p > 5 be a prime which
splits in End(FE) and choose (and fix) a prime ideal p dividing p. We add a bar
for objects obtained by the reduction modulo p. Assume moreover E has a good
reduction at p. Note E is an elliptic curve defined over F,,. Let Q € E(F;) be
a point of order [. Assume [3] preserves (Q). For cryptographically interesting
cases (e.g. [ is a prime grater than /¢ + 1), this condition is automatically

satisfied. Let A be an integer satisfying [5]Q = \Q.
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Theorem 1. Let S C {1, ..., [I/2]}. Suppose there exists f € F4[X] such that
f€nQ)) =n and f(E(AnQ)) = An (2.1)
for allm € S. Then deg f > i#S.
Proof. The equation (2.1) implies
FE(BInQ)) = Af(E(nQ)).
For n € S, the X-coordinate of n@Q is a solution of

o(T)

oo (i

) = \(T)4°8 7 £(T). (2.2)

Both the left side and the right side are polynomials of degree v deg(f). We need
to show that (2.2) is not an identity. Note

1 (P¢EQ])
2 (PeE[2, P+£O)

ordp(§ —¢(P)) =

for any P € E—{O}. Thus, we see ordpWo& = 2 for P € Ker[3] regardless of the
parity of v. Lemma 1 implies ordp©® o £ = 0, i.e., O({(P)) # 0. Hence, the left
side of (2.2) is non-zero at P whereas the right side of (2.2) is zero at P. Thus
(2.2) is not an identity and it has #S roots. Therefore we have deg f > ! #S. O

Remark 2. Contrary to the case of multiplication by two, when n runs over
S, the values £(n@) and £(n[3]Q) may not be distinct. Hence, a polynomial f
satisfying (2.1) does not always exist. A numerical example: take Y? = X3 4+5X
as E,and put p := 17, p := (4—+/—1) and Q := (2,1). Then [ = 13. On the other
hand, [v/—1](z,y) = (—z,4y) for (z,y) € E and [1 ++v/-1]Q = (8,12) = 6Q.
We simply use A := 6. Consider a polynomial interpolation for S := {1,2}.
Then the condition (2.1) implies f(£(Q)) =1, f(£(6Q)) =6, f(£(2Q)) = 2 and
f(&(12Q)) = 12. Since the order of @ is 13, the first condition and the last one
are clearly incompatible.

One sufficient condition for its existence is as follows: [ > 5 is a prime and for
each n € S, either [ 1 (An £ m) for all m € S or An € S. This restricts the size
of S rather small.

We can apply the above technique of using a small degree endomorphism
to the polynomial interpolation of Diffie-Hellman mapping due to Kiltz and
Winterhof[2, Th. 9]. The (computational) Diffie-Hellman problem on (Q) is to
find a feasible algorithm which receives m@ and n@ and returns mn@. For a
given S C (Z/1Z)*?, we evaluate the total degree of polynomial F' satisfying

F(E(mQ),§(nQ)) = §(mnQ)

for all (m,n) € S. In order to obtain a lower bound of degree of F', we need the
following simple lemma on the degree of a multivariate polynomial, as in [2]. We
use the same notation as above except for that now S is two dimensional.
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Lemma 2. Let R be an integral domain and let A be a finite subset of R. Let
U(X1,...,X,) € R[Xy,...,X,] be a non-zero polynomial of total degree d. Put
the number of zeros of U in A™ to m. Then, m < d(#A)"~L.

Proof. See von zur Gathen and Gerhard[10, Lemma 6.44]. ]

Theorem 2. Let Q € E(F,) be a point of order I. We assume that | is prime

to v and that | > v + 3. Assume [§] preserves (Q) and define X € Z/IZ by
(B1Q = \Q. Let S C (Z/1Z)*2. Suppose F(X,Y) € F,[X,Y] satisfies

F(E(mQ),£(nQ)) = &(mnQ)
for all (m,n) € S. Put S" := {(m,n) € (Z/IZ)*? : (m, n) € S}. Then,

#(5N5')

122w —1)° 23)

deg F' > 4
Proof. The proof is similar to that of Kiltz and Winterhof[2, Th. 9]. Since I
is prime to v, there exist integers v and w satisfying vl + wr = 1. This gives
rise to the equality vl + w(Tr([8]) — [F])[6] = 1 in End(E). Evaluating this at
@, we obtain w(Tr([A]) — N)AQ = Q. Therefore, A\ € (Z/I1Z)* and [5] is an
automorphism on (Q).
For any m and n, we have

F(¢(mQ),£(AnQ)) = F(£(mQ),&([BlnQ)) = F (S(m@’ ggﬁgﬁgi;)
On the other hand,
P (E(mQ), 60n@) =€mn@) = &(13mn@) = o ")

_O(F(EmQ).£(nQ)))
V(F(EmQ). £(nQ))

for all (m,n) € SNS’. Put d := degy F and

3 oY)\ O(F(X,Y))
UX,Y) :=¥(F(X,Y)wY)? <F <X7 &p(y)) T W(F(X, Y))) '

Then U is a bivariate polynomial and degU < (2v — 1)degF and
U(E(mQ),&(nQ)) = 0 for all (m,n) € SN S’. Now we prove that U is a non-
zero polynomial. First of all we show A # +1. Otherwise, ([3] £ 1)Q = O and
thus Nqg)/q(3 £ 1) = 0 mod I. But the left hand side is v + Trqg)/q(8) + 1
which is positive and not greater than v + 3 (see the table for the possible
values of 3). Hence A # £1. This implies that F' cannot be a constant unless
SNS" = 0. In the case SN S" = @, the inequality (2.3) holds trivially. So we
assume deg F' > 1 in what follows. Then, (2.3) holds in case of #S5 < 2(I — 1).
Therefore we have only to prove (2.3) under the condition #S > 2l — 1.
This in particular implies that there exist (m1,ng), (me,no) € S satisfying



160 T. Satoh

mi 7é +meo. Then7 F(g(le)7§(n0Q)) 7é F(g(mQQ)7§(n0Q))7 which ensures
degx F(X,&(no@)) > 1. Hence there exists « in the algebraic closure of F, sat-

isfying F'(a, £(no@)) = v where v is a root of ¥(z) = 0. Note ¥(£(noQ)) # 0
since otherwise noQ@ € Ker[3], a contradiction. Recall that ged(¥(z),O(x)) =1
over Fy[x]. Therefore, ©(y) # 0 and by

U(er,€(no@)) = =¥ (£(no@))?O(v) # 0

we conclude that U is a non-zero polynomial. Put A := {{(mQ) : m €
(Z/1Z)* }. The correspondence (Z/I1Z)? > (m,n) — (£(mQ),&(nQ)) € A? is
at most four to one. By Lemma 2, we obtain #(S;S ) < (2v—1)[I/2] deg(F). O

Remark 3. In the above proof, in case of #S < 2(I — 1), the polynomial U may
be zero. Indeed, for S = {(x1,n) : n € (Z/IZ)* }, we see F(X,Y) =Y and
U(X,Y)=0. Note S =5 regardless of \ in this case.

3 Pairing Inversion

Let p be a prime and ¢ a power of p. Throughout this section, we denote by F
an elliptic curve

Y24+ ai XY +a3Y = X3+ as X2+ as X + ag.

defined over F, by the Weierstrass equation. Let B € E(F,) be a point of odd
order [ where [ is prime to p. Assume FJ contains the primitive [-th root ¢
of the unity. (Otherwise, replace ¢ by its suitable power). Then (replacing ¢ if
necessary) we have a group isomorphism (B) — (¢) which sends B to ¢ by using
the Weil pairing or the Tate pairing. Here we consider polynomial interpolations
concerning the inverse isomorphism ¢ : (¢) — (B). Our aim is to give a lower
bound of degree of a polynomial f satisfying f(z) = £ o t(2) for some elements

z in ({).

Theorem 3. Let S be a subset of Z/1Z—{0} whose cardinality is greater than 2.
Assume f(T) € Fy[T] satisfies

f(¢") =€mB) and  f(¢*") = &(2nB) (3.1)
for alln € S. Then
#5  (p=3),
#5 (p=2).

deg f >

OIS, g

Proof. First, we note 2nB ¢ E[2] for all n € S since [ is odd. For P := (z,y) €
E — E[2], we have

§(2P) =
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UX)=X*— by X? - 206X —bg, V(X)=4X3+bX?+2bsX + bg

and by, ..., bg are constants depending on ay, ..., ag. Then (3.1) implies
U(rcm)
fm =
V(f(¢™)

for all n € S, or equivalently,
V(F(T)F(T?)~U(f(T) =0 (3.2)

has solutions T'= (" for n € S.

In case that p is odd: We have deg V(X) = 3 and degU(X) = 4. So, the
degree of the left side of (3.2) is exactly 5deg f. Hence 5deg f > #5S.

In case of p = 2: In this case, deg V' < 2 and the left side of (3.2) may vanish.
We need to prove that this does not happen. Explicitly, by = a?, by = ayas,
bg = a§7 bg = a%a(g + arazaq + a2a§ — ai. (Actually, we don’t need the explicit
form of bg. What we need on bg is the relation between bg and the discriminant
of E.) Thus V(X) = (a1 X + a3)? and U(X) = X* + ajaz X2 + bs. We see

FT*)(arf(T) +a3)* = (F(T)* + 0~ (ara3) f(T) + 07" (bs))?

has solutions T = (™ for n € S. (Recall that o stands for the Frobenius auto-
morphism.) Then

(a0 (AT + (D) F(T)+aso ™ (f)(T) = 0~ (aras) f(T)+0 " (bs)  (3.3)
has solutions T' = (™ for n € S. It’s sufficient to show that (3.3) is not an identity.
Assume a10 " (f)(T) + f(T) is a constant, say, c. Then f(T) = a10~*(f)(T)+c
and we have

(cay + az + o araz)ar)o  (f)(T) = ¢* + o~ Haraz)c + o (bg).
Since #S > 2, the condition (3.1) implies that f is not a constant. Hence
cay +asz+ajo (aras) =0, (3.4)

c4+a1agc2+bg =0. (3.5)
Then
2 4, 35 4, 3 2
bsbs= ajbs = (a1c)* + ajas(aic)
(3.4)
= ag + a?a% + a‘;’ag + a‘;’aga‘;’ag = a§ + a‘;’ag.

On the other hand, the discriminant A of F is

A =b3bs + bg + bababs
=aj +afad + o + oo}

=0.
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This contradicts that E is an elliptic curve. Thus deg(aio ™1 (f)(T) + f(T)) 2
and the degree of the left side of (3.3) is at least deg f + 1. Therefore (3.3) is no
an identity and it has at most 2 deg f solutions. Hence #5 < 2deg f. D

Remark 4. We cannot drop the condition #S > 2. Indeed, it is trivial to see
that the case I = 3 and S = {1, 2} yields a counter example.

We can generalize the statement for p = 2 as follows. The proof is essentially
the same.

Theorem 4. Let p > 3 be a prime. Let B, l and S be as in Theorem 3. Assume
f(X) € Fy[X] satisfies

f(¢") =¢&nB) and f(¢P") = &(pnB) (3.6)
for allm € S. Then deg f > ;#S.

Proof. For m € N, let 1, be the m-th division polynomial and put 6,,(X) =
Xwgn(X) - (wmfl¢m+1)(X)‘ Then,

€0 [p] = 0p() /(&)

As before, T'= (" is a solution of

FTP)p(f(T))? = 0,(f(T)) (3.7)

for n € S. Recall that 6,(z) and 1, (x) are relatively prime and both of them are
inseparable by Cassels[1]. Thus there exist a,, (5, € Fq[X] satisfying 6,(X) =
ap(X)P and ¢, (X) = B,(X)P. Thus,

(@ DB (f(T))? = ap(F(T) (3-8)

has solutions T' = (" for n € S. Since 6,(X) and 1, (X) are relatively prime, so
are ap(X) and B,(X). Moreover f is not a constant by the assumption #S > 2.
Thus (3.8) is not an identity. Note deg o, < p and deg 3, < p;l since p is odd.
Therefore we have #S < pdeg f. O

Acknowledgements. The author would like to thank Tanja Lange and Arne Win-
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Abstract. In this paper we analyse properties of the message expansion
algorithm of SHA-1 and describe a method of finding differential patterns
that may be used to attack reduced versions of SHA-1. We show that the
problem of finding optimal differential patterns for SHA-1 is equivalent
to the problem of finding minimal weight codeword in a large linear code.
Finally, we present a number of patterns of different lengths suitable for
finding collisions and near-collisions and discuss some bounds on minimal
weights of them.

1 Introduction

Most of the modern hash functions used in practice are dedicated ones designed
using principles of MD4 [18,19]. The first attack on MD4 appeared only a year
after the publication of the algorithm [7]. Both MD4 and its improved version,
called MD5 [20], were broken by Dobbertin [10, 8]. Another hash function from
the MD family, called RIPEMD [3] was also shown by Dobbertin [9] to be inse-
cure. The shortest variant of HAVAL [29] has been broken by Van Rompay et
al. [21]. Recent results obtained by Wang et al. [24,25] show that is is possible
to find collisions for MD4, MD5, HAVAL-128 and RIPEMD within hours on a
generic PC. It looks like the message expansion algorithm based on permuting
message words and applying them in a different order in each round is a weak
point of all these algorithms as it does not provide enough diffusion of differences.

Another group of hash functions are hash functions from the SHA family.
The idea of an extended Feistel permutation that was used in the design of the
MD family, is also driving the design of the SHA family but with more complex
message expansion algorithms. The first member of that family was SHA-0 [11].
It was promptly replaced by an improved version, SHA-1 [15]. Security concerns
that led to the re-design of SHA-0O appeared to be true, as in 1998 Chabaud and
Joux presented a theoretical attack on SHA-0 [6], which was later implemented
and improved allowing to find collisions [12, 13]. Now, one of the most interesting
questions in the field of hash function analysis is how secure is the present
standard SHA-1, which is different from SHA-O by only one rotation in the
message expansion process.

The same technique used to attack SHA-0 could be applied to launch an attack
on SHA-1 provided that there exists a good enough differential pattern. Biham
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and Chen [2] were able to find patterns that allowed to find collisions for SHA-1
variants reduced to first 34 and 36 steps. Their attack can be extended provided
that one can find good differential patterns for longer variants of SHA-1.

In this paper we investigate the problem of finding good differential patterns
for SHA-1. First we start with a different presentation of the message expan-
sion algorithm. Next, we show that the problem of finding differential patterns
suitable for attacking SHA-1 is equivalent to a problem of finding low-weight
codewords in a linear code.

We present the results of our search for the best patterns which can be used
in the differential attack and we estimate some bounds on the minimal weight
of such patterns.

2 The Differential Attack on SHA

In this section we briefly recall the structure of SHA-1 and describe the basic
framework of the differential attack applicable to SHA-0/1.

2.1 Description of the SHA-1 Compression Function

The SHA-1 compression function [15] hashes 512 bit input messages to 160
bit digests. Firstly, 512 bits of the message are divided into 16 32-bit words
Wo, W1, ..., Wis. The rest of 80 words is generated out of the first 16 words
according to the following recurrence formula

W; = ROL*(W; 3@ W, s @ W;_14 ©W;_14) for 16 <i <79 | (1)

where ROL* denotes rotation of a word by k positions left. If this is the first
application of the compression function, five 32-bit registers A, B, C, D, E are
initialized to values Ay = 0x67452301, By = Oxefcdab89, Cy = 0x98badcfe,
Dy = 0x10325476, Ey = 0xc3d2e1f0 accordingly.

Next, the algorithm applies 80 steps (¢ = 0,...,79). Each step is of the fol-
lowing form:

Ai1 = ROL®(A;) B fi(B;,C;, D) BE; BW; B K; , 2)
Biy1=4;

Cit1 = ROL*(B)) ,

Diy1=C;

Ei1=D; ,

where B denotes addition modulo 232 and A;, B;, C;,D; and E; denote the values
of the registers after i-th iteration. Functions f; and constants K; used in each

iteration are given in Table 1. The output of the compression function is the
concatenation of bits of Ao H Ag()7 BO H Bgo, Co H Cgo, DO H Dg() and E() H Eg().
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Table 1. Functions and constants used in SHA-1

step number 1% fi(B,C, D) K;
0-19 (BAC)@® (-B A D) 0x52827999
20 - 39 BeCeD Ox6ed9ebal
40 - 59 (BAC)V(BAD)V(CAD) 0x8flbbcde
60 — 79 BeCa& D Oxca62c1d6

2.2 The Differential Attack of Chabaud and Joux

Chabaud and Joux presented in [6] a differential attack on SHA-0. The funda-
mental observation they made is that a change in the j—th bit of the word W;
can be corrected by complementary changes in the following bits:

bit (j + 6) mod 32 of Wi+17
bit j of word Wi+27

bit (j 4+ 30) mod 32 of W3,
bit (j + 30) mod 32 of Wj4,
bit (j 4+ 30) mod 32 of W5,

O O O O O

provided that functions f;41, ..., fi+4 and additions B behave like linear func-
tions. That is, a single change of the input to f results in a change of the output
of f, a change in two inputs of f leaves the result unchanged and differences
propagate through additions without carries. They showed that a one bit dis-
turbance can be corrected by such a pattern with probability between 272 and
27% depending on functions f;, ..., fii4, if the disturbance is introduced in the
second bit (j = 1).

If a disturbance is introduced in the position j # 1, then there is an additional
factor of 273 caused by 50% chance of inducing a carry in additions in steps i+ 3,
i+4,i+5.

The attack is possible due to the property of the message expansion function
which does not mix bits in different positions. Thanks to that it was possible to
consider the message expansion algorithm as a bit-wise one. Enumeration of all
216 possible bit patterns in the position 1 allowed for choosing a disturbance pat-
tern in the first bit position that led to a global differential pattern ¢ producing
a collision with probability 276

2.3 Improvements

It is possible to improve the attack of Joux and Chabaud by reducing proba-
bilistic behaviour of some initial corrections using a better strategy of selecting
messages rather than picking random ones. Biham and Chen proposed in [1] the
method of so-called neutral bits. They showed that having a message that be-
haves correctly for at least 16 first steps after adding a difference 6, it is possible
to construct a big set of pairs (M, M @ §) that have much better probability of
a successful correction than the pairs produced from random messages.
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3 Analysis of the Message Expansion Algorithm of
SHA-1

An additional rotation in the message expansion formula (1) makes finding cor-
rective patterns used in [6] impossible, because now differences propagate to
other positions. For SHA-1, a one-bit difference in one of the 16 initial blocks
propagates itself to at least 107 bits of the expanded message W. This is illus-
trated in Fig. 1. However, we were able to find a difference pattern with only
44 bit changes in the expanded message. This suggests that it is interesting to
investigate the message expansion algorithm of SHA-1 in a greater detail and
check to what extent the differential attack can be applied also to SHA-1.

PR e T

IR

Fig. 1. Propagation of one bit difference in SHA-1 message expansion

The important property of the message expansion process given by the for-
mula (1) is that it is a bijective function producing 16 new words out of 16 old
ones. This implies that it is possible to reconstruct the whole expanded message
given any 16 consecutive words of it, in particular the first 16. Moreover, if we
consider it on a bit level as a function A : IF*'? — IF?12 | it is easy to see that A
is IFs-linear as the only operations used are word rotations (which are permu-
tations of bits) and bitwise XOR, operations. Then the expansion of the initial
message! m € IF5? can be expressed as a long vector

Ey(m) = m) | e T (3)

The set of correction masks is built from a disturbance pattern by rotations
and delaying the pattern by 1, 2, ..., 5 words in the same way as described in [6].
In order to find disturbance patterns which can give rise to correction patterns
one has to look for bit patterns b € IF?°%° that satisfy the following conditions:

1 We consider m to be a column vector.
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C1. the pattern b has to be of the form (3), i.e. b is the result of the expansion
operation,

C2. the pattern b ends with 5 - 32 = 160 zero bits (the last five words are zero),
because each disturbance is corrected in the next 5 steps, so no disturbance
may occur after the word 74,

C3. after delaying a pattern by up to 5 words (that is, shifting bits of b down
(right) by 5-32 = 160 positions) the shifted pattern must also be the result
of the expansion of its first 512 bits, that is

[g.\.’.gbo bi ... bazoo]T = E1([0...0bg... bzs1]T) .
160 bits

C4. b has both the minimal Hamming weight and the maximal number of non-
zero bits in position 1.

3.1 Basic Construction

Conditions C1 — C3 imply that in fact we are looking for longer bit sequences of
85 words such that the first 5 words are zero, the next 11 words are chosen in such
a way that while the rest of the words are the result of the expansion of the first
16, the last 5 words are zero again. After denoting the first 5 zero words with
indices —5,...,—1, in positions 0,...,79 we get a disturbance pattern which
allows for a construction of the corrective pattern.

Using the matrix notation, we are looking for a vector m € IF5'? such that
A%m has 160 trailing zero bits and also A=!'m has 160 trailing zeros. As the
transformation A is a bijection, this is equivalent to finding a vector

T 512
U:[0071}17"'71}351707"'70] eIF )

such that the last 160 bits of A=>(v) contain only zeros, what can be written as

ZTo ap,0 --- e ... Qp511 Vo
Z1 U1

T35 | = © | U3s1 , (4)
0 a352,0 ... (352,351 0

| 0 | | 4511,0 --- @511,351 --- a511,511 | | O |

where A™% = (aivj ) 0<i,j<511-
This condition means that truncated vectors @ = [vg,v1,...,v3s51]7 € F3?
have to belong to the null-space of the matrix (2 of the form

3520 - - - 352,351

a511,0 - - - A511,351
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created as a copy of the lower left part of the matrix A~=°. It means that the
set of all vectors satisfying properties 1- 2 is a linear subspace of IF?°%Y with
elements of the form

c=[AT' )T AT W) | A2 @) [[AT ) [[07] (6)

where v = [07 (| 0...0]7 € IF°'? and v € Ker(0).

The set of all such vectors c¢ is in fact a linear code C' of length n = 2560 and,
as we have verified that the rank of the matrix {2 is equal to 192, of dimension
k= 192.

To maximize the probability of a successful correction by the differential pat-
tern, it is necessary to search for the words of minimal Hamming weight and,
if possible, for those words with the maximal number of non-zero bits in the
position 1.

This is essentially a problem of finding the minimum distance of a linear code,
which is known to be NP-hard [22], so there is no easy way of finding optimal
corrective patterns. However, there are a number of probabilistic methods [14, 4]
that allow for efficient finding of low-weight codewords in big linear codes.

The second part of the condition C4 can be partially achieved using the fact
that the expansion process is invariant with respect to the word rotation. The
result of the expansion of 16 input words already rotated by a number of bits is
the same as the rotation of the result of the expansion of 16 words performed
without rotation. Thanks to that, having a pattern of minimal weight it is easy
to transform it to a pattern with the maximal number of ones in the position 1
using the word-wise rotation by an appropriate number of positions. Of course,
in general this is the problem of finding codewords with the minimal weighted
weight, however, our experiments show that this simplified approach gives very
good results.

3.2 Reduced Variants

The generalization of the construction presented above can be applied to find
good differential patterns for reduced versions of SHA-1.

Assume that we want to find a differential pattern for SHA-1 reduced to
16 < s < 80 steps (2). Condition C1 implies that the vector A=!(m) has to
have 160 trailing zero bits. If we denote the last 160 rows of the matrix A~! as
A~1[352 :: 511] then this condition can be written as

0=A"1[352::511]-m . (7)

To formulate a simple description of constraints inferred from condition C2,
it is convenient to note that the whole message expansion process can be seen
as a linear transform E; : IF?'2 — 2560 represented by a matrix of the form

Is1o
A
E = | A2 ,
AS
A4
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where I512 is the identity matrix and A is the linear transform described in
Section 3. Now, if we want to find a differential pattern for s steps, 5 words
of the expanded message in positions s — 4, s — 3, ..., s have to be zero. In
the matrix notation, 160 entries in the vector F; - m have to be zero, precisely
these in positions (s —4) - 32, ..., s-32 4+ 31. If we denote the matrix created
by selecting rows of the matrix E; with indices 32(s — 4), ..., 32s + 31 by
Eq[32(s — 4) :: 32s + 31], then condition C2 can be written as:

0=FEy[32(s—4) =325+ 31]-m. . (8)

Putting together Equations (7) and (8) we obtain the final result. A message
m € IF%12 gives rise to the corrective pattern if and only if m € Ker(¥,), where

A~1[352 :: 511
Vs = | BiB2(s — 4) = 325+ 31] )
is a matrix of dimensions 320 x 512 built by placing rows of E;[32(s—4) :: 325+31]
below rows of A~1[352 :: 511].

4 Search for the Best Patterns

We have shown that the problem of finding disturbance patterns with minimal
weights can be seen as a problem of finding minimal weight codewords in a linear
code. To find them, we use a simplified version of the algorithm by Leon [14]
presented in [5]. We use the parameter p = 3 to search for all combinations
of up to three rows and for each code we apply at least 100 repetitions of the
procedure. The results are presented in Table 2. For each variant of SHA-1 (of
length 32 - 85) the second column contains the minimal weight of the pattern
found. The results marked with (*) are better than those obtained by Biham
and Chen [2]. The patterns we investigate are suitable for attacking only last
steps of SHA-1. As the first 20 steps of SHA-1 employ the IF Boolean function,
the first 16 words of a disturbance pattern cannot have ones in the same bit
position in the two consecutive words. Thus for variants longer than 64, we give
only lower bounds on the weight of patterns satisfying the IF condition.

We decided to compute a lower bound because the algorithm we used ensures
that there is no codeword of a lower weight with a very high probability. This
result is unlikely to be extended in a straightforward way to the case of search
for restricted patterns satisfying the IF condition. A way out is finding the lower
bound on weights of restricted patterns using unrestricted ones.

According to Biham and Chen [2], it is possible to eliminate the probabilistic
behaviour of up to 20 first rounds. Thus the third column (denoted by wta4)
contains minimal weights of patterns where weights of the first 20 steps are not
counted.

We are also interested in patterns that do not allow for finding the full col-
lisions but still are suitable for finding near-collisions as this may possibly lead
to an easier way of finding multi-block collisions. To obtain them we relax the
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Table 2. Hamming weights of the best patterns found. Column wt contains total
Hamming weights of patterns, wtao4 — weights of patterns with ignored 20 first steps,
column wt, shows total weights of incomplete patterns for near-collisions (patterns
ending with only 4 zero blocks).

steps wt witao4+ wty, steps wt wizp+r wt, steps wt wizny wiy
32 9 2 9 50 35 14 35 68 >122 >78 >90

33 9 2 9 51 35 15 35 69 > 127 >81 > 127
34 9 2 9 52 35 16 35 70 >142 >80 > 124
35 28 4 24 53 35 16 35 71 > 157 >94 > 142
36 24 5 24 54 T8 36 75 72 >172 >93 > 139
37 25 5 25 55 80 39% 73 73 > 139 > 111 > 139
38 30 8 30 56 79 41 72 74 >139 >98 > 139

39 39 8% 35 57 T2 42 72 75 > 142 > 90 > 142
40 41 11 38 58 73 42 55 76 > 187 > 111 > 187
41 41 12 41 59 91 51 66 77T > 184 > 108 > 184
42 41 13 34 60 66 44 66 78 > 198 > 115 > 177
43 41 17 41 61 66 44 66 79 > 220 > 115 > 220
44 50 15 42 62 66 45 66 80 > 172 > 106 > 172
45 45 15 45 63 107 64 87 81 > 255 > 117
46 56 23 42 64 >101 >60 >96 82 > 242 > 142
47 56 24* 35 65 >113 >66 >98 83 > 215> 163
48 35 14 35 66 >98 >58 >98 84 > 161> 101
49 35 14 35 67 >127 >69 >122 85 > 340 > 177

condition that requires that the last five words must contain zeros only and we
allow for non-zero entries in one more block. Weights of the best patterns found
this way are listed in the column wt,.

It is interesting to see that the minimal weights we are able to find are growing
in quite an irregular fashion. In fact, after a rapid jump after reaching 35 steps
and a steady growth up till the step 47, there is an unexpected downfall to
the weight 35 in the step 48. The same pattern, presented in Fig. 6, is suitable
for attacks up to 53 steps. After 53 steps, weights get much higher and as we
consider patterns without restrictions imposed by the IF function in the first 20
steps of SHA-1, the best pattern for the full SHA-1 will most likely have weight
considerably higher than 172.

However, when we relax all the conditions and look only for patterns that
result from the expansion process, we are able to find differences with the weight

only 44 for the full length message expansion. Such a difference is presented in
Table 4.

5 Bounds on Minimal Weights of Short Patterns

Let us discuss some bounds on minimal weights of corrective patterns. Consider
the inverse of the transformation (1). It can be written as
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Fig. 2. Inverse propagation of one bit difference applied in the last segment of SHA-1

Wi =Wiyo @ Wiys @ Wiy13 @ RORI(WZ‘+16)7 0<1<64 (10)

where the last 16 words Wgy,. .. ,Wrg are set arbitrarily.

Although this formula describes essentially the same transformation, if we
consider the fact that the rotation is now applied to only one variable distant
by 16 steps, the difference propagation of the expansion process described by
Equation (10) is much worse than the original function. In fact, the difference
of one bit in one of the last 16 words generates up to 4 changes positioned 55 to
82 bits, what is illustrated in Fig. 2. It is interesting to note that this peculiar
behaviour does not depend on the number of positions by which a word is rotated
in the algorithm but is rather inherent to the structure of recurrence relations
similar to (1).

To estimate the minimal number of ones in the expansion process we divide the
set of ones in two groups: these in the same position as the initial bit and those in
different positions. The size of the first group can be easily found experimentally,
as there are only 216 of all bit sequences generated by the following relation

m; for 0 <i < 16,
w; = .
Wiy2 © wiys © wiy1z, fori> 16

and much less of them with the first five and the last five elements equal to zero.
Minimal weights of such sequences of different lengths are presented in Table 3.
Note that to estimate the number of ones for a differential pattern of length s,

Table 3. Minimal weights of sequences of length s + 5 with 5 leading and 5 trailing
zeros generated by the formula w; = wits B witrs B wit1s

s 32-34 35-38 39,40 41 42,43 44-47 4849 50 51
min. weight 8 9 11 13 11 14 16 17 16
s 52,563 54-56 57-64 65-67 68-71 72 T3-T5 76,77 78-85

min. weight 17 18 19 23 22 26 24 29 30
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Table 4. A full length difference of weight 44 for unrestricted message expansion of
SHA-1

0x00000002 0x00000001 0x00000000 0x00000000 0x00000008
0x00000002 0x00000000 0x00000000 0x00000000 0x00000020
0x00000000 0x00000002 0x00000002 0x00000000 0x00000000
0x00000000 0x00000002 0x00000000 0x00000000 0x00000000
0x00000001 0x00000001 0x00000002 0x00000000 0x00000040
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x80000002 0x00000000 0x00000002 0x00000000 0x00000028
0x00000002 0x00000002 0x00000000 0x00000000 0x00000080
0x80000002 0x00000003 0x00000002 0x00000004 0x00000018
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000002 0x00000002 0x00000000 0x00000000 0x00000100
0x00000000 0x00000002 0x00000000 0x00000008 0x00000020
0x00000003 0x00000000 0x00000000 0x00000000 0x000000a0
0x00000000 0x00000000 0x00000000 0x00000000 0x00000200
0x00000002 0x00000002 0x00000000 0x00000010 0x00000020
0x00000002 0x00000000 0x00000000 0x00000000 0x00000000

Table 5. The best differential pattern for the first 34 steps of SHA-1

W[ 0]= 0x00000002 W[16]= 0x00000000 W[32]= 0x00000000
W[ 1]= 0x00000000 W[17]= 0x00000000 W[33]= 0x00000000
W[ 2]= 0x00000002 W[18]= 0x00000000
W[ 3]= 0x00000000 W[19]= 0x00000000
W[ 4]= 0x00000002 W[20]= 0x00000002
W[ 5]= 0x00000000 W[21]= 0x00000000
W[ 6]= 0x00000003 W[22]= 0x00000002
W[ 7]1= 0x00000000 W[23]= 0x00000000
W[ 8]= 0x00000000 W[24]= 0x00000000
W[ 9]= 0x00000002 W[25]= 0x00000000
W[10]= 0x00000000 W[26]= 0x00000000
W[11]= 0x00000000 W[27]= 0x00000000
W[12]= 0x00000000 W[28]= 0x00000000
W[13]= 0x00000000 W[29]= 0x00000000
W[14]= 0x00000002 W[30]= 0x00000000
W[15]= 0x00000000 W[31]= 0x00000000

the minimal weight of a sequence of length s + 5 has to be considered with 5
leading and 5 trailing zero bits.

The size of the other group of bits cannot be easily estimated. We only can say
that it contains at least one element for sequences longer than 16. This makes
our estimation work only for variants that are not too long.

As an example, we can consider the differential pattern for 34 steps. The first
set for sequences of length 34 contains at least 8 non-zero bits. The second set
must contain at least one bit. Thus, we have shown that the pattern presented
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Table 6. The best differential pattern for the last 53 steps of SHA-1

W[32]=0x00000002 W[48]=0x80000000 W[64]=0x00000002
W[33]=0x80000000 W[49]=0x00000002 W[65]=0x00000000
W[34]1=0x40000003 W[50]=0x80000001 W[66]=0x00000001
W[35]=0x00000000 W[51]=0x00000000 W[67]=0x00000000
W[36]=0x00000001 W[52]=0x00000002 W[68]=0x00000000
W[37]1=0x80000002 W[53]=0x00000002 W[69]=0x00000002
W[38]=0x80000000 W[54]=0x00000000 W[70]=0x00000000
W[39]=0x00000002 W[55]=0x00000000 W[71]=0x00000000
W[40]=0x00000001 W[56]=0x00000002 W[72]=0x00000002
W[41]1=0x00000000 W[57]=0x00000000 W[73]=0x00000000
W[42]=0x80000002 W[58]=0x00000003 W[74]=0x00000000
W[27]=0x00000000 W[43]=0x00000002 W[59]=0x00000000 W[75]=0x00000000
W[28]=0x00000000 W[44]=0x80000002 W[60]=0x00000002 W[76]=0x00000000
W[29]=0x00000000 W[45]=0x00000000 W[61]=0x00000002 W[77]=0x00000000
W[30]=0x40000000 W[46]=0x80000001 W[62]=0x00000002 W[78]=0x00000000
W[31]=0x00000000 W[47]1=0x00000000 W[63]=0x00000000 W[79]=0x00000000

in Table 5 is the optimal one for that length. This is the same pattern used by
Biham and Chen to find collisions for 34 steps of SHA-1 [2].

6 Conclusions

In this paper we have presented a new characterization of the message expansion
process of SHA-1 using linear codes over IFs. This immediately has allowed
us to prove that the problem of finding the best differential pattern for SHA-
1 is equivalent to the problem of finding the minimum weight codeword in a
particular linear code.

Although this problem is hard in general and codes describing message expan-
sion are very long, thanks to an unexpected behaviour of the codes in question,
we were able to find differential patterns for reduced versions of SHA-1 of lengths
between 34 and 85 steps experimentally.

Our study has shown that minimal weights for reduced variants may vary in
an unexpected way. Nevertheless, the longest variant, for which the differential
attack of Joux and Chabaud with necessary improvements seems to be possible,
is the version of the last 53 steps of SHA-1. We have presented the actual dif-
ferential for this variant and have improved in a few places weights for shorter
variants given by Biham and Chen in [2].

In an effort to establish lower bounds on weights of differences, we have de-
rived some bounds on minimal weights of short differential patterns and have
proved that the 34-step differential characteristics used by Biham and Chen is
the optimal one for this length. It is interesting to note that all these results are
quite general and can be applied to any message expansion structure that uses
transformations linear over IFs.
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The problem of the resistance of SHA-1 against Chabaud-Joux attack was
also studied independently by Rijmen and Oswald [17]. They considered different
linear approximations of non-linear Boolean functions and presented results of
their search for low-weight differences using a dedicated algorithm they designed.
Their results agree with ours, they also report 44 as the minimal weight of the
message expansion difference and claim that variants of SHA-1 up to 53 steps
can be attacked using disturbance-corrections strategy.

7 Addendum

The year 2005 was very exciting for researchers working on cryptographic hash
functions. Shortly after WCC’2005 workshop, Wang et al. presented their final
results of the analysis of MD4 [23] and MD5 [27]. Soon after that, they used
their techniques of modular differentials to control propagation of differences and
message modification to increase the probability of a differential in a practical
attack on SHA-0 with the complexity of 23 hash evaluations [28] and the first
theoretical attack on the full SHA-1 [26].

Their attack on SHA-1 is based on multi-block near-collisions. Using modular
differentials they were able to overcome the problem of consecutive disturbances
in the first round by using an irregular differential and controlling differences
“by hand” in the first 20 steps. Finding near-collisions instead of full collisions
essentially made conditions C2 and C3 (conditions 1 and 2 in Table 2 of their
paper [26]) unnecessary and enabled them to use a very low weight disturbance
pattern which was a shifted version of the pattern presented in our Table 4.

Another result concerning SHA-1, interesting in the context of this paper,
was presented by Pramstaller at al. [16]. Roughly speaking, they represented
the differences in chaining variables of a linearized variant of SHA-1 as a lin-
ear function of a message difference and tried to find low-weight differences of
chaining variables treated as a huge linear code. Later, they derived a set of
conditions that made the original function behave like the linear approximation
for a selected low-weight difference.

We are sure that coming months will bring even more new results on the
analysis of cryptographic hash functions.
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Abstract. In this paper we look at the Gabidulin version of the
McEliece cryptosystem (GPT). In order to avoid Gibson’s attacks on
GPT, several variants have been proposed. We cryptanalyze the vari-
ant with column scrambler and the one using reducible rank codes.
Employing Gibson’s attacks as a black box, we get an efficient attack
for the parameter sets proposed for GPT with column scrambler. As a
countermeasure to our attack, we propose a new variant of the GPT
cryptosystem.

1 Introduction

The security of cryptosystems based on error correcting codes is connected to
the hardness of the general decoding problem. In 1991 Gabidulin, Paramonov
and Tretjakov proposed a variant of the McEliece scheme (GPT) [6] using rank
distance codes instead of Goppa codes. For the Hamming-metric fast (but expo-
nential) general decoding algorithms are known, but despite of recent advances,
there does not exist one for the rank-metric [9]. Thus, smaller public-key sizes
may be used for the GPT than for the McEliece cryptosystem using Goppa
codes.

Gibson developed two structural attacks for the GPT cryptosystem ([7], [8])
and proved the parameter sets proposed in [6] and [4] to be insecure. Even
though, the cryptosystem remained unbroken for large public-keys, as both at-
tacks are exponential in runtime.

Several variants of GPT have been proposed in order to avoid structural at-
tacks (see [2], [1] and [5]). In this paper we take advantage of some nice properties
of Gabidulin codes to build structural attacks for two of these variants, namely
the “GPT with column scrambler” [2] and the variant using “reducible rank
codes” [5].

The paper is structured as follows: First we give a short introduction to rank
distance codes and the original GPT cryptosystem. Then we present the two
variants this paper addresses and show how to attack the first one. Based on our
observations we propose a generalized variant of GPT and finally extend our
observations to give a guideline to a possible structural attack for GPT using
reducible rank codes.

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 178-188, 2006.
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2 Rank Distance Codes

Rank distance codes were presented by Gabidulin in [3]. They are linear codes
over the finite field Fgm for ¢ (power of a) prime and m € N. As their name
suggests they use a special concept of distance.

Definition 1. Let ¢ = (z1, -+ ,x,) € ]Fgm and by, by, a basis of Fgm over
Fy. We can write x; = z;nzl x50 for eachi=1,--- ,n with x;; € F,. The rank
norm || - ||~ is defined as follows:

|| = rank ((xij)lgign’ 1§j§m) .

The rank norm of a vector x € Fy.. is uniquely determined (independent of the
choice of basis) and induces a metric, called rank distance.

Definition 2. An (n,k)-code C over a finite field F is a k-dimensional subvec-
torspace of the vector space F™. We call the code C an (n, k,d) rank distance code
if d = ming yec ||z — yl|-. The matriz C € F**" is a generator matriz for the
(n, k) code C over F, if the rows of C' span C over F. The matrix H € Frx(n—Fk)
s called check matriz for the code C if it is the right kernel of C. The code
generated by H' is called dual code of C and denoted by C*.

In [9] Ourivski and Johansson presented an algorithm which solves the general
decoding problem in O ((mdgl)?’q(d*?’)(k“)ﬂ) operations over F, for (n,k,d)
rank distance codes over F,m. A special class of rank distance codes are the
Gabidulin codes for which an efficient decoding algorithm exists [3]. We will
define these codes by their generator matrix.

Definition 3. Let g € Fjin be a vector s.t. the components g;, i =1,--- ,n are
linearly independent over F,. This implies that n < m. The (n,k,d) Gabidulin
code G is the rank distance code with generator matriz

g1 92 ct On
g g 98 i
=1. . eFn". (1)
k—1 k—1 k1
g g5 - 9d

An (n, k) Gabidulin code G corrects L";kJ errors and has a minimum distance of
d = n—k+1. The dual code of an (n, k) Gabidulin code is a (n, n — k) Gabidulin
code (see [4]). The vector g is said to be the generator vector of the Gabidulin code
G. A decoding algorithm based on the “right Euclidean division algorithm” runs
in O (dlog3 d + dn) operations over Fym for (n, k,d) Gabidulin codes [4].
Throughout this paper we will use the following notation. We write G = (G)
if the linear (n, k)-code G over the field F has the generator matrix G. We will
identify x € F™ with (z1, -+ ,2,),z; € Ffori = 1,--- ,n. For any (ordered)
subset {j1, - Jjm} = J C {1,---n} we denote the vector (xj,, - ,z;, ) € F™
with z 7. Similarly, we denote by M. ; the submatrix of a k x n matrix M consist-
ing of the columns corresponding to the indices of J and M ;.. = ((MT),J,)T for
any (ordered) subset J' of {1,---,k}. Block matrices will be given in brackets.



180 R. Overbeck

3 The GPT Cryptosystem

In this section, we briefly introduce the GPT cryptosystem presented in [6]. In
order to better understand the impact of Gibson’s attacks we introduce a new
security parameter s.
— System Parameters: ¢,n,m,k,t,s € N, where n < m, t < "_’2“_1 and
s < min{k,t}.
— Key Generation: First generate the following matrices over Fym:
G: k x n generator matrix of an (n, k,d) Gabidulin code G over Fym.
S: k x k random non-singular matrix (the row scrambler).
X: k x n random matrix with rank s over F;m and rank ¢ over F,.

Then, compute the k x n matrix G’ = S (G + X) and e = ";* — ¢. Further
let Dg be an efficient decoding algorithm for G.

— Public Key: (G',¢)

— Private Key: (Dg, X, S) or (G, X, S) where G is of the form in (1).

— Encryption: To encode a plaintext = € ]F’gm choose a vector z € Fg.. of
rank norm e at random and compute the ciphertext ¢ as follows:

c=zG +z.

— Decryption: To decode a ciphertext ¢ apply the decoding algorithm Dg
for G to it. Since ¢ is at distance less than (n — k)/2 from G, we obtain the
codeword

2SG =Dg (c) .

Now, we can compute the plaintext x.

The matrix X is called distortion matriz. As |mSX|, < ¢ the decryption
works correctly. In all examples and figures we will choose n = m and ¢ = 2.
Figure 1 shows public key sizes and approximate workfactors (operations over
F,) for en- and decryption.

Parameters Size Public WF WF
m k Key (Bytes) Encryption Decryption
36 18 2,916 220 220
48 24 6,912 221 2%2
64 32 16, 384 2% 2%
128 64 131,027 227 227

Fig. 1. Parameter sets for the Gabidulin PKC
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4 Gibson’s Attacks

Gibson presented two structural attacks on the GPT cryptosystem ([7], [8]).
They recover an (alternative) private-key from the public-key. We are going to
use both attacks as a black box for our new attack. Let (G) be an (n, k) Gabidulin
code over Fym, S € ]F’qcnxzk non-singular and Y € ]anxz" of rank s over Fym and rank
0 <t < n over F,. Then Gibson’s attacks return on input of G’ = S(G+Y)
three matrices G, X € IF’;?E" and S € ]anxzk, s.t.

(1) G is a generator matrix of an (n, k) Gabidulin code over Fgm,
(i) G' =8 (G + X) and
(i47) the rank of X over F, is not bigger than ¢.

Gibson’s first attack [7] was developed for the case that the GPT parameter s
is 1, but may be adapted to the case where s # 1 (see [4]). It has runtime

0 (m3 (n—k)° qms> . (2)

In [8] Gibson presented a different attack, which is more efficient for larger values
of s. It requires that k + ¢ + 2 < n (this is a very weak condition) and runs in
time

O (K + (k+ ) f-a"* - (m—K)t-o’) | (3)

where f ~ max (0, — 2s,t+ 1 — k). Note, that this attack runs in polynomial
time if f = 0 and otherwise is still fast. The success of both attacks is based
on some assumptions, which are fulfilled with high probability for random G, S
and Y. Figure 2 shows the behavior of the attacks for some sample parameter
sets.

Parameters ~ WF Gibson’s WF Gibson’s WF attack

m k st e attack [7] attack [8] by J&O [9]
3 1816 3 2™ 297 255
48 2417 5 2% Q149 9120
64 322106 2'™ 9224 0188
128 64 5 20 12 2693 Q084 Qa4

Fig. 2. Attacking the GPT cryptosystem with Gibson’s attacks

5 GPT Variants

Apart from a solver for the general decoding problem, structural attacks today
are the most severe threat to the GPT cryptosystem. In order to avoid Gibson’s
attacks, it is possible to choose different parameter sets, since both attacks have
exponential runtime. However there have been other attempts to make structural
attacks harder to apply or to avoid them completely.
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5.1 Applying a Column Scrambler

In order to hide the structure of the public key even more, we may multiply a
column scrambler T' (a non-singular matrix over the base field F,;) from the right
to it. Removing the influence of T' at decryption does not change the rank of the
error vector. Unfortunately Gibson’s attacks are still applicable, because GT' is
a matrix of the form given in equation (1), too. In 2001, Ourivski and Gabidulin
suggested to add more redundancy to the code [2], i.e. choose G’ in the public
key as

G=S[YG+X|T (4)

with Y € IF’;?EZ. Gibson’s attacks remain applicable if we guess a set N of n
columns out of the matrix G’ s.t. ([0 G| T).y has rank n over F,. This can be
done with high probability if T' was chosen at random. For carefully chosen Y
and T there is no way to choose N s.t. ([Y X] T),N is of rank < t. The attacker
would still have to guess part of the error even after employing one of Gibson’s
attacks. This seems impossible, if the search space is big enough. According to
[2], a secure choice of parameters could be ¢ =2, m =32,k =20,1=8,t=3
and e = 3 with a public key size of approximately 3,200 bytes.

5.2 Using Reducible Rank Codes

The idea to use reducible rank codes (RRC) was first presented in [5]. We want
to introduce a slightly different definition.

Definition 4. Let C; = (C;), i =1, -+ ,w be a family of linear error correcting
codes over Fym where C; is an (n;, ki, d;) code. Then the (linear) code G given
by the generator matriz of the form

G21 02 -0
G=|. .
Gwl Gw2 Cw

for some matrices G;; € IF];annj is called reducible code. Further, G has length
n =73y n; dimensionk =3 | k; and minimum distance d = mini<;<,, (d;).

Error correction may be done in sections, starting from the right. If all codes Cj,
i =1,---w are rank distance codes, we call G a reducible rank code. In [5] all
the codes permutation equivalent to such codes are called RRC as well.

Using reducible rank codes for the McEliece cryptosystem is quite a natural
extension. In [5] the authors propose to use two (n;, k;) Gabidulin codes over
Fym, named (G;), i € {1,2}, and a special matrix Y € F’;?nxm to build a reducible
rank code. The public key of the cryptosystem may thus be described as

G’zS([%£2]+X>T, (5)
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where S € FEx" and T € F*" are non-singular and the rank over Fy of the
columns of X corresponding to G; is less than ¢; for ¢ = 1,2. According to [5], the
error correction capability of the code defined by G’ is e = min;—1 o {";k — ti},
and every parameter set with n; > 24 and e > 4 is considered to provide sufficient
security, even if X = 0.

6 Extending Gibson’s Attacks

In this section we will take advantage of some well known facts and reassemble
them to enhance Gibson’s attacks by using them as black boxes. First, we show
how to correct more errors with a GPT public key as previously claimed to be
possible, then we apply our observation to the GPT cryptosystem with column
scrambler.

Theorem 1. Let (G) be an (n,k) Gabidulin code over Fgm, X € ]F}q%" of rank
t <n—Fk over Fy. Then there exist an invertible Matriz U € ]F;‘X", a generator

matriz G of an (n —t, k) Gabidulin code over Fym and X € ]F};ﬁt s.t.
(G+X)U=[Xa].

Further a matriz U satisfying the above condition can be found in O (n3) oper-
ations over Fy if X is known.

Before we prove the theorem we want to give an example of its application.
According to [2] an acceptable choice of parameters for the cryptosystem of
section 5.1 could be ¢ = 2, n = m = 25,k = 15,1 = 5,t = 3 and e =
2 with a public key size of approximately 1,400 bytes. Let (G, X,Y,S,T) be
the private key corresponding to the public key (G’,e) of an instance of the
GPT cryptosystem with column scrambler, where G’ has the form described in
equation (4). An attacker could try to apply one of Gibson’s attacks to a set
J of m columns of G’. This will leave him with a set of three matrices of the
following form:

(i) G a generator matrix of a (m, k) Gabidulin code over Fm,
(ii) S € FEX* an invertible matrix and
(i) Y € ]F’;,,sz a distortion matrix of rank ¢ + [ over F,.

The attacker knows that S ( G+Y ) = G ;- Applying theorem 1 to our example
we can correct errors of rank 1, whereas we would have to correct an error of rank
2. The attacker could try to guess part of the error vector, s.t. the remaining
error has rank 1. There are only ¢™+™~!=t = 242 different error vectors of rank
1 and length m — [ — ¢t in our example. This number is small enough to allow a
random guess, so the choice of parameters above is insecure. Now we prove the
theorem.
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Proof. (Theorem 1) We exploit the fact that it is easy to determine the linear
dependency of the columns of X over F,. Let Z € ]F]%t be a set of ¢ linearly
independent columns of X. Without loss of generality, we may assume that these
are the first ¢ columns. We may solve the linear equation Zu; = X.; with u; € Ffl
fori=t+1,---,nin time O (n?). Let U := [u¢1|uesra| - |un) and Id, denote
the k-dimensional identity matrix. Then the last n — ¢ columns of

M, U] 0
0o [0 ] e za 50

form a generator matrix of an (n — ¢, k) Gabidulin code. Defining the (k x t)
Matrix X as X := G. {1,-- 4} T Z proves the theorem.

It follows that the code generated by G 4+ X has an efficient decoding algorithm
which decodes errors of rank up to "~ k ¢ if X is known. Now we apply this
result to break the GPT cryptosystem Wlth column scrambler by viewing it as
an instance of the original GPT cryptosystem.

Theorem 2. Any instance of the GPT cryptosystem with column scrambler with
parameters q, n, m, k, t, s and l is equivalent to an instance of the GPT cryp-
tosystem in its basic version with parameters ¢,n =n+1, m=[(n+1)/m]-m
k,t =t+1 and § < min (k,s +1). The GPT with column scrambler may be
broken in time O (Gibson’s attack for parameters g, 7, i, k, ¢, 3) .

Proof. Let (G',e = (n—k)/2—t) with G’ = S [Y G + X | T be the public key of
an instance of the GPT cryptosystem with column scrambler with parameters
given above and secret key (G, S, T). If we define a := [(n + 1)/m], then every el-
ement of Fym may be viewed as an element of Fgem . Let (g1, - - , gn) be a genera-
tor vector of (G). Then we can choose g1, , G € Fgam s.t. g1, ,G1,91,* , 9n
are linearly independent over Fy. Let ( G') be the (n+1, k) Gabidulin code with
generator vector (g1, , 1,91, - ,gn) and G of the form in equation (1). If we
define R
X=[Y-Gpu..pnX],

then we have
s (GT + XT) =S (G + X) T =G eFu"t.

This proves the first part of the theorem. We know that the rank of X7 over
F, is less than [+t and k+{ + ¢t + 2 < 7, thus we may apply both Gibson’s
attacks to recover (alternative) S, XT and GT. By theorem 1, we are now able
to correct all error vectors of rank less than (m+1—k—1—1t)/2> (m—k)/2—1
efficiently.

We will call the attacks described in theorem 2 “extended Gibson” attacks. Note
that we don’t have any control of § using GPT with column scrambler. The
size of this parameter of the corresponding GPT instance over an extension
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Parameters WFEF extended WF attack
m kIl s§ t e Gibson [§] by J&O [9]
32 208 19 3 3 2% 259
36 184 13 6 3 2% 255
48 245 14 7 5 2% 9120
64 326 25 106 23° 2289
128 64 10 5 10 20 12 2%° QT4

Fig. 3. Attacking GPT with column scrambler

field of Fym is very likely to be near its upper bound and thus making Gibson’s
second attack very fast. Figure 3 shows the workfactors of the new attack on
GPT with column scrambler, where § refers to the expected parameter for the
corresponding GPT cryptosystem parameter set.

7 A New Variant of the GPT Cryptosystem

As a consequence from theorem 1, the public key parameter e of the GPT cryp-
tosystem may be chosen larger, than it was proposed originally. The result is a
generalized variant for the GPT cryptosystem (GGPT), which includes a col-
umn scrambler and new bounds for ¢ and e. While the size of the public key
remains the same (compare figure 1), the runtime for decryption decreases to
O (n?) operations over Fym.

— System Parameters: ¢,n,m,k,t,s € N, wheren < m,t <n—%k—1 and
s < min {k,t}.
— Key Generation: First generate the following matrices over Fym:
G: k x n generator matrix of an (n, k,d) Gabidulin code over Fym,
S: k x k random non-singular matrix (the row scrambler),
X: k x t random matrix of rank s over Fgm and rank ¢ over Iy

and T an n X n random, non-singular matrix over F, (the column scrambler).
Then compute the k x n matrix

G =S5 [G.{l)... 4+ X G.{t+1’... ’n}] T
and e = "_g_t. Further let Dg be an efficient decoding algorithm for the
Gabidulin code G generated by the matrix G.(141,... n}-
— Public Key: (G',¢)
— Private Key: (Dg, S,T) or (G, S,T) where G is of the form in (1).
— Encryption: To encode a plaintext = € ]Flgm choose a vector z € Fii. of
rank norm e at random and compute the ciphertext ¢ as follows:

c=zG +z.
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— Decryption: To decode a ciphertext ¢ apply the decoding algorithm Dg for
Gtocd = (CT_l){tJrl,---,n}' Since ¢’ has a rank distance less than "~ to
G, we obtain the codeword

xSG{tJrl)... n} = Dg (C/) .
Now, we can compute the plaintext x.

Note, that all instances of the GPT cryptosystem, as well as the ones of the
GPT cryptosystem with column scrambler may be viewed as instances of the
new variant. Figure 4 shows the workfactors of the attacks for some parameter
sets of GGPT. Parameter sets were chosen taking into account recent results,
which came to light after the WCCO05 conference [10].

Parameters WF extended WF extended WEF attack

m kst e Gibson [7] Gibson [8] by J&O [9]
64 8140 82! 21403 287
80 8256 82210 9544 288
156 8 8 132 8 21306 21279 291

Fig. 4. Parameter sets for GGPT

8 Attacking GTP with Reducible Rank Codes

In this section, we want to give a hint on how to build a structural attack on
the GPT cryptosystem with reducible rank codes. We will show, that if the row
scrambler S is generated at random (with no more conditions than being non-
singular), the problem of recovering a secret key for GPT with reducible rank
codes can be reduced to the problem of recovering a secret key for instances of
the GPT variant from the previous section, if the following assumption holds:

Assumption 1. Let (G',e) be the public key of a random instance of GGPT
with parameters q,n,m,k,t and s. Further, let (G,S,T) and (G, S,T) be two
valid secret keys corresponding to (G’ e), then with high probability

(TT_l)NlN2 =0,

where Ny :={1,--- ,t} and N :={t+1,--- ,n}.

With other words, we assume, that for most instances of the GPT variant from
the previous section, all possible secret keys are closely related to each other:
Gn, (TT™1) NoN, = Gn,. This assumption is corroborated by an observation
of Gibson ([7], [8]) for small parameter sets. Gibson states, that the secret key
seems to be unique (after some normalization) for most instances of the GPT
cryptosystem.
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Theorem 3. Let A be an oracle which recovers a private key from the public key
for any instance of GGPT and assume, that assumption 1 holds. Then we may
use A to recover an alternative private key from the public key for an instance
of the GPT cryptosystem with RRC with high probability if every entry of S was
chosen uniformly from Fgm .

Proof. We will give an outline of a proof for the case where the secret RRC is
built from two Gabidulin codes of the same dimension. It may be easily extended
to all other cases. Let G and G be generator matrices of two (n;, k), i € {1,2}
Gabidulin codes over Fym. Let (G’,e) be the public key corresponding to the
private key (G1, G2, X,Y, S and T') of an instance of the GPT with RRC, where
G’ is of the form given in equation (5).

First we guess a set J C {1,---,2k} s.t. the matrix Syg, with Ky :=
{k+1,---,2k} is invertible. If S is a truly random generated matrix, then the
probability that the condition is fulfilled for a random J is not too bad (> 0.99)
in practice. Let Ky := {1,--- ,k}, then we know:

G = ([Ssx,G1+ Sik,Y Sik,Ga |+ (S-X),)T
= Syks ([S74, S0, G1+Y Go| + Sy, (S- X)) T
= Sk [S7k, (SyriGr 4 (S X) e ) Y Go+ S7h (S-X) 5, ] T.

Thus, G;. forms an instance of GGPT. As S (S - X) , is of sufficient small
column rank over F,, we may query A to obtain an alternative secret key
(G2, 52, T) for G;. and can compute:

G :S<[C;,1£ ] +X> Tles({(;}g }TT1+XTT1> .
2 2

By assumption 1, the last 2e + k columns of XT7T~! and [Gl O] TT-! are
zero with high probability. Thus, we are able to compute an invertible matrix
S € F2EX?k 5.4, the last 2e columns of (STIG'T!) ;. are zero. It follows,

that the first N = ny + ng — 2e — k columns of (S—'G'T~1) sc. build another
instance of the GPT variant from the previous section. Thus, on the query
(S7'G'T—1) JC{1, N} the oracle A returns three matrices G, S, T € FflVXN,

such that
Z1G1 0
Zy Z3 Gog

§-larp-t {T_l 0 ]

0 Idgetk

for some (2¢ + k, k) Gabidulin codes (G;), ¢ = 1,2 and some matrices Z1, Zs €
Fiﬁx(nﬁn?_%_%) and Z3 € F§2(2e+k). (Here, the matrices G;, i = 1,2 are not
necessarily in the form of equation (1).) Now, one can see, that we can correct
errors of rank e efficiently in the code defined by G’, employing the knowledge

of’f’,j’andg.

Note that the attack proposed in this section runs in oracle-polynomial-time.
However, extended Gibson attacks can not be combined with the result of the-
orem 3 to build an efficient attack on GPT with RRC.



188

R. Overbeck

References

1.

10.

T.P. Berger and P. Loidreau. Security of the Niederreiter form of the GPT public-
key cryptosystem. In IEEE International Symposium on Information Theory, Lau-
sanne, Suisse. IEEE, July 2002.

. E. M. Gabidulin and A. V. Ourivski. Column scrambler for the GPT cryptosystem.

Discrete Applied Mathematics, 128(1):207-221, 2003.

. E.M. Gabidulin. Theory of codes with maximum rank distance. Problems of

Information Transmission, 21, No. 1, 1985.

. E.M. Gabidulin. On public-key cryptosystems based on linear codes. In Proc. of

Jth IMA Conference on Cryptography and Coding 1993, Codes and Ciphers. IMA
Press, 1995.

. E.M. Gabidulin, A.V. Ourivski, B. Honary, and B. Ammar. Reducible rank codes

and their applications to cryptography. IEEFE Transactions on Information Theory,
49(12):3289-3293, 2003.

. E.M. Gabidulin, A.V. Paramonov, and O.V. Tretjakov. Ideals over a non-

commutative ring and their applications to cryptography. In Proc. Furocrypt 91,
volume 547 of LNCS. Springer Verlag, 1991.

. J. K. Gibson. Severely denting the Gabidulin version of the McEliece public key

cryptosystem. J-DESIGNS-CODES-CRYPTOGR, 6(1):37-45, July 1995.

. K. Gibson. The security of the Gabidulin public key cryptosystem. In Proc. of

Eurocrypt’96, volume 1070 of LNCS, pages 212-223. Springer Verlag, 1996.

. T. Johansson and A.V. Ourivski. New technique for decoding codes in the rank

metric and its cryptography applications. Problems of Information Transmission,
38, No. 3:237-246, 2002.

R. Overbeck. A new structural attack for GPT and variants. In Proc. of Mycrypt
2005, volume 3715 of LNCS, 2005. to appear.



Reduction of Conjugacy Problem in Braid
Groups, Using Two Garside Structures

Malffre Samuel

XLIM, University of Limoges, France
samuel .maffre@unilim.fr

Abstract. We study the Conjugacy Search Problem used in braid-based
cryptography. We develop an algorithm running in Garside groups gener-
alizing braid groups. The method permits, in some case, to reduce dras-
tically the size of the secret in braid groups. We use the fact that braid
groups admit two different Garside structures to improve the efficiency
of the reduction. This paper emphasizes the importance of the particular
way used to produce Conjugacy Search Problem instances. The chosen
method influences directly the reduction and then also the security.

1 Introduction

Braid groups, introduced by Artin in [2], are non-abelian groups. Conjugacy
Search Problems are assumed to be hard, at least on some set of instances, and
this is the basis for braid-based cryptography since 1999 [1,11,6]. Our work
reveals the role played by the random generator of braid. A lot of work exists
in the literature on the cryptanalysis of braid cryptosystems. However, they
question essentially the choice of instances rather than the protocols themselves.
Braid-based cryptography must solve a fundamental problem : to find efficient
random generators of braid. In this work, we consider two random generators
and show their influence on our reduction method.

Our work is devoted to the Conjugacy Search Problem formally : recover a,
knowing (z,aza~!). In practice, cryptosystems use essentially a variant of this
cryptographic primitive.

The size of a braid group is defined by its number of strands. The size of a braid
can be measured by the number of generators or the number of canonical factors
which permits to write it. Our method produces an attractive factorization of
the secret a in the form of a divisor (d < a) and a multiple (¢ < m). The
goal is to reduce the length of the secret given by the number of generators.
In this way, we produce two reduced conjugacy instances : (z,d 'aza~'d) and
(x,m~taxa~1m). The efficiency of this reduction is related to the residual length
of the new secrets d~'a and m~'a.

Obviously, our reduction is a length attack. It is based on the canonical length.
This work generalizes another work from the same author that applies only to
Artin’s presentation [12] (see also [9]).

We develop an algorithm which runs in a generalization of braid groups :
Garside groups. The interesting fact is that braid groups admit two different

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 189-201, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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(z,aza™t)

Reduction
!
d <a<m

[
v ¥

C(:U, d_la:m_ld)> Qaz,m‘laxa_lmD

Fig. 1. Reduction of a conjugacy instance

Garside structures : Artin’s presentation and the presentation of Birman, Ko and
Lee [2,3]. Then, we apply our algorithm to each Garside structure to improve
the efficiency of the reduction. Both presentations can be used in parallel or
sequentially.

The algorithm takes as input a conjugacy instance in a Garside group and
some information on the secret which can not be considered as security param-
eters. It is deterministic and polynomial. The complexity is directly related to
the complexity of an effective normal form. Though we do not have a theoretical
result about the quality of the output divisor and multiple, we can compute
them and give experimental results.

For instance, let BK Ligg, be a braid group with 100 strands on BKL’s pre-
sentation, and let a classical random generator which produces some braids with
a canonical length of 15. With our method, the size of the secret, on average, is
reduced from 750 to 8. In some situations, this reduction reaches 1/1000. It is im-
portant to consider that this efficiency depends on the representation of braids.
We apply our method on several proposed instances in the literature. Many of
them seem broken. However, the protocols themselves are not concerned but
our method shows the importance of being careful with the choice of the used
random generator of braid. Then, we give criteria to forestall that. This study
attempts to establish a more efficient way to use braid-based cryptography.

In Section 2, we introduce the Garside groups that are generalization of braid
groups. Then, in Section 3, we present our algorithm that applies to Garside
structure. Afterwards, in Section 4, we recall briefly braid-based cryptography.
In Section 5, we show how to use our algorithm in braid groups. We analyze in
Section 6 the efficiency with simulations.

2 Garside Groups

This introduction to Garside group derives from [5,7, 8, 14].

Definition 1. A monoid is a couple (M, o), where M is a set, ® is a associative
law of composition and M has a neutral element for e, 1.
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Let M be a monoid, we define a partial order : a < b if 3¢ € M such that ac = b.
One says that a is a left divisor of b or that b is a right multiple of a. In the
same way, a right division is defined, denoted by <".

Definition 2. Let M be a monoid. The element x € M is an atom if v # 1
and if t = yz = (y =1 or z = 1). The monoid M is an atomic monoid if it
is generated by its atoms and, moreover, for every x € M, 3N, € N such that
can not be written as a product of more than N, atoms.

Definition 3. A monoid M is left-cancellative if :
Ve,y,z € M, xzy=xz=1y==z.

Definition 4. A monoid M is a Gaussian monoid if it is atomic, cancellative
and every pair of elements in M admits a greatest common divisor and a least
common multiple.

In the case of Gaussian monoid, the ged and lem are unique. We denote by A
the left greatest common divisor and by V the right least common multiple.

Leta,be M, d=aAb & VeceM c<aandc<biffc<d
m=aVb & VceM a<candb<cif m<c

Definition 5. A Garside element is an element in the monoid, A, the left divi-
sors of which coincide with its right divisors and form a finite subset generating
the monoid. A Garside monoid is a Gaussian monoid which admits a Garside
element.

Let S be the set of left divisors of A, which are called canonical factors.

Definition 6. A group G is a Garside group if there exists a Garside monoid
of which G is the group of fractions.

The Words Problem appears in Garside groups ; this problem is solved by a
normal form which defines a canonical writing for each element of the group.

Definition 7. Let M be a Garside monoid and G be its group of fraction. For
a i G, the infimum and the supremum of a are respectively

inf(a) = maz{r € Z ; A" < a} and sup(a) =min{r € Z; a < A"}
The canonical length of a is defined by cl(a) = sup(a) — inf(a).
Definition 8. Let M be a Garside monoid and G be its group of fraction.
For a in G, the (left) A-normal form of a is the unique decomposi-

tion APajag---ag) with p = inf(a), a1 = A A (A7Pa) and a; = A A
((APajag -~ a;—1)"ta) for 1 <i <cl(a).
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We end this section by introducing notations :

Notation 9. Let a be an element in a Garside group G ; we denote by a* the
dual element of a, defined by a1 AS"P(@) . Moreover, we define both functions :

T :G—G 9:5— 8
z — A7lzA g—q A

The function O is a bijection on S, T is an automorphism on M. We note
that T = 0% on S.

Let APajas - - ag be the left A-normal form of a, an element of a Garside
group G ; thus the left A-normal form of a=! is given by :

at = AP PR (9(ay) TP TR (0(agk-1)) TP (O(ar) (1)

3 Scheme of the Reduction

The objective is to reduce the Conjugacy Search Problem, giving some informa-
tion on the secret. Let G be the group of fractions of the Garside monoid M.
Let a,z be elements of G. The aim is to determine a, called secret, knowing
only (z,2" =aza™1'). Our solution is an algorithm, REDCONJ, that builds a left
divisor and a right multiple of the secret :

find (d,m) € G suchthat d<a=<m

The algorithm REDCONJ is based on two algorithms : the algorithm RIGHT-
MGARSIDE determines a right multiple of the secret ; in a similar way, the
algorithm LEFTDGARSIDE determines a left divisor of the secret. The proofs of
these algorithms can be found in [12,13]. Principles of the procedure :

The algorithm is an iterative process reducing the canonical length. It
uses the left-right symmetry between a and a~! to reduce on the left
and on the right 2’ = aza~!. At each step, we begin by determining a
rough right multiple of aias - - - a;, considering =’ on its left ; afterwards,
if the canonical length of 2’ is again large enough, then we simplify z’
to the right to obtain a better multiple.

Format of Input Data for RightMGarside, LeftDGarside. We assume
that the canonical length and the infimum of the secret are known ; in braid-
based cryptography, we consider that they are not security parameters (see [12]).

INPUT DATA : (X, 11,12, 0, 8) € M x N? x 7?2

X = 79(T)yro+8(T*)
such that 3T,y € M; l1 =d(y), la =cl(T)
inf(T) = inf(y) =0
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Algorithm 10. RightMGarside (X, 1,12, , 3)

Input : Let X € M, li,l2 €N and o, B € 7.
Init : A:=1, Y = 77%(X), 1:=0, cond = true
Compute the left A-normal form Y1Ya - Yy of Y
B:=Y1Y2-- Y,

Loop : While cond and |l < l2 do
l:=14+1, A= AY;,
Z =Y 'yrPtrt (9(vh) )
Y =YY
If Z ¢ M then cond := false
Else Compute the left A-normal form Z1Zz2 -+ Zsup(z) of Z
Ifsup(Z) =11 +2(lo — 1) + 1 then
A= AT_ﬂ_lz—H(Zsup(Z))_l
Z =1 Pt L )22}

sup(Z)
EndIf
Y := the left A-normal form of Z
EndlIf
EndWhile
Ifl <y then A := AY>2Y3--- Y, 111 EndIf

Output : AN B

Let m be the output of the algorithm RIGHTMGARSIDE satisfying the input
format ; therefore T' < m and sup(T") = sup(m).

Algorithm 11. LeftDGarside (X, 11,12, a, 3)

Input : Let X € M, li,l2 €N and o, B € 7.
Init : A:=e, Y = 717%(X), 1:=0, cond := true
Compute the right A-normal form Y1Ya2 - Ysupy) of ¥
B := Ysup(v)—t541 -+ Ysup(v)

Loop : While cond and |l < l2 do
l:=1 + 1, A= Sup(y)A,
Z:=rl7hh (8_1(Ysup(Y))_1) Y}/s,;;(Y)
If Z ¢ M then cond := false
Else Compute the right A-normal form Z1Z3 - -+ Zgwp(z) of Z
Ifsup(Z) =11 +2(l2 — 1) + 1 then
A= rBrlel(z)71A
Z = Z7 zrP e (7))
EndIf
Y := the right A-normal form of Z
EndIf
EndWhile
Ifl <1z then A := szup(p)flerlJrl s )/;up(y>A EndlIf
C:=7P(AANB)
Output : AP 1
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Property 12. [12] Let a,b € M a Garside monoid :
a<b & b= a*Asup(b)—sup(a)

The process of LEFTDGARSIDE is similar to the one of RIGHTMGARSIDE but
it works on the right, using the right A-normal form. It produces first a left
multiple of T ; afterwards, the previous property gives

= APy —l 2

T <"m
sup(T™) = sup(m)

Thus the output of LEFTDGARSIDE is a left divisor of T'.

Algorithm 13. RedConj (z,2’,r,p)

Input : Let x,2’ € G, r,p€EZ.
Init : X := AP~y
Iy :=cl(x), la:=p
a=inf(z) —r—p, [ =—inf(z)

M := RIGHTMGARSIDE(X, 1, l2, o, B)
D := LEFTDGARSIDE(X, l1, l2, a, )
Output : (A"D, A" M)

Let a, x be elements of G. We consider the conjugacy instance (x, 2’ = ara™!)
and denote (d,m) the output of the algorithm REDCONJ having as input the
4-tuple (z,2’,inf(a),cl(a)). Therefore d is a left divisor of a and m is a right
multiple of @ with the same supremum.

That comes from the following expression :

= CL$CL_1 — Ainf(m)—cl(a)Tinf(x)—sup(a)(T)T— sup(a) (Z)T_ sup(a) (T*)

with T = A=f@)g » = A=f@)g We note that inf(T) = 0 = inf(z) and
a~l = T*A— sup(a).

Measure of the Efficiency of This Reduction

e The complexity of the algorithms RIGHTMGARSIDE, LEFTDGARSIDE and
REDCONJ is
O (I« O( A-normal form )) (2)

where [ is the canonical length of the secret. Indeed, the most expensive operation
is the computation of the normal form and the length of the loop depends clearly
on the canonical length of the secret. In braid groups, the computation of the
A-normal form is efficient, thus this one of the algorithm REDCONJ is too.

e This method takes as input a ”conjugacy instance” and returns a left divisor
and a right multiple of the secret : d < a < m. The efficiency of the reduction is
controlled by two parameters :

— the absolute knowledge, ak(a) = min(l(m) — l(a),l(a) — I(d)),
— the relative knowledge, rk(a) = I(m) — I(d).
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The relative positions of writings can be represented by :

dla a'm —ak(a) = min(l(d"ta),l(a"*m))
—_—N— —
d a m
d'm —rk(a) = 1(d"'m)

The absolute knowledge is not known, because we do not know I(a) ; it repre-
sents the number of generators to complete the secret, by adding the divisor or
removing the multiple. In practice, this number permits to measures the cost of
completing the search of the secret. The relative knowledge is known and gives
an overestimation of the absolute knowledge, ak < ”2’“.

The cost of a supplementary exhaustive attack determines if a conjugacy
instance is broken or not. For a rough method, the cost is :

O (#G(M)™* x C(test of identity)) . (3)

4 Outline of Braid-Based Cryptography

The main cryptographic primitive in braid groups is the Conjugacy Search Prob-
lem and its variants. Here, we consider only the Conjugacy Search Problem and
its simultaneous variant (for £k =1 or 2):

SIMULTANEOUS CONJUGACY PROBLEM : (SCP)

Instance : Let (mi,yi)ie[l’k] € G* such that 3a € G with Vi € [1,k], y: = aza” .
Objective : Find b € G such that Vi € [1, k], y; = ba;b™".

In practice, the particular problem used for braid-based cryptosystems is the
Generalized Conjugacy Problem of the Diffie-Hellman type based on the Gen-
eralized conjugacy problem. These problems are also affected by this reduction
[12].

Braids Random Generator

There are essentially two possible representations of a braid : the decomposition

of a word as a product of group generators and their inverses ; and the one of

normal forms, like the left A-normal form, as a product of canonical elements.
Now, we present two random generators of braid :

PARG POSITIVE ARTIN’S RANDOM GENERATORS : the number of genera-
tors, [, is fixed ; we make [ random draws on G (set of group generators)
and we add on the left a factor of the type AF, k € Z.

CRG CANONICAL RANDOM GENERATORS : the canonical length is fixed, [ ;
we make [ random draws on S. Afterwards, we reduce the n-braid to its left
A-normal form. While the canonical length is smaller than [, we complete
with some other random draws. After, we add a factor A* on the left.
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5 Double Garside Structures in Braid Groups

The significant fact in braid groups is that they admit two different Garside
monoids of which they are the group of fractions. The new idea is to use the
two presentations to improve the efficiency of our algorithm. The two Garside
presentations of the braid group with n strands are :

e Artin’s presentation - 1947 [2]

0300 = 050,05 if ‘Z —_]‘ =1
B, = 01,02,...,0n—1

0,05 = 0504 lf‘Z—j‘ZQ

#G(B,) =n—1 number of generators
App = (0102...0n-1)(0102...0p—2)...(0102)01
#SBn =nl

e Birman Ko and Lee’s presentation - 1998 [3]

B Atslrq = Qrqats if (E—T)(t—q)(s —7)(s—¢q) >0
= > >
BKLn <at8 (n = t>s = 1) AtsQgr = QprQrg = QgrQiy lf n 2 t>s>r 2 1

n(n—1)
#G(BKL,) = ",
ABKL'IL = An,n—10n—-1,n—2.--21

#SBKLn = n'((i’r:z'l)' =C, € [371’471}(6 0("'))

Remark 14. We can easily pass from one to the other with polynomial com-
plexity [4]
-1

05 = Qi41,5 and at.s = (O’t,1 . "O’S+1) O (0’;&1 . 'O—tfl)

Applying Garside Algorithm

Our algorithm is based on the canonical length ; it exploits the density of the
writing in the A-normal form. Then, after one reduction, it is useless to begin
again with the same structure on the new instance produced by the output
divisor : (z,d taxa='d). It is here that the double Garside structure bring a
pleasant alternative : we can change the presentation before iteration, or we can
use both presentations in parallel.

e Parallel process: Consider a conjugacy instance ; we reduce it on both pre-
sentations at the same time. Next we transform to BKL’s presentation to get
some better divisor and multiple, see Figure 2. We can not transform to Artin’s
presentation because the relation < is not respected in this way : a braid admit-
ting a positive word in BKL’s presentation does not necessarily admit a positive
word in Artin’s presentation.

e Sequential process: This method exploits information successively on both
presentations. We use the output divisor and multiple, obtained in one presen-
tation, to produce two new instances :

(v, D Yaxa='D) and (v, M ~taxa~'M). Next, we reduce them in the other pre-
sentation. Then, we obtain some better results. See Figure 3.
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!

Ddi vV Mmq < a < Ddy N Mmo

Fig. 3. Sequential process of the reduction
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6 Analysis of Efficiency — Simulations

In this Section, we present three tables of results. We give the complexity of the
supplementary exhaustive attack. These experimental results average several
hundred simulations.

In Table 1 and 2, we propose instances in BKL’s presentation to produce
the efficiency of the reduction. We consider both random generators : CANONI-
CAL RANDOM GENERATOR and POSITIVE ARTIN’S RANDOM GENERATOR. The
complexity is given by log, "("2_1) * ak.

We compare three ways to use our algorithm :

— simply our algorithm
— the parallel process
— the sequential process

We ascertain that both processes (parallel and sequential) complement one
another. The representation of the braid has an influence on the efficiency of
the reduction. For a braid produced by CRG in BKL’s presentation, simply our
algorithm is very efficient. The output data are not improved by the parallel
process ; only the sequential algorithm let to improve them. In the case of a
braid produced by the PARG, its normal structure is not also dense. The both
processes bring a distinct improvement and the parallel one seems more efficient.

The efficiency of our algorithm is remarkable. For both random generator, we
reduce the size of the secret from several hundred groups generators to only few
dozen or even less. The Simultaneous Conjugacy Problem is greatly affected. We
attain our aim : we give an efficient method to work in braid groups and we
show that the choice of the random generator is preponderant in the security of
protocol.

In Table 3, we apply the sequential reduction on Artin’s presentation to sev-
eral existing instances from cryptographic literature. Many are broken, but it

Table 1. Reduction on the SCP using the CRG on BKL’s presentation

n cl(a) =cl(z) SCP  type l(a) I(a)—1(d) l(m) —1(a) ak(a) complexity

60 9 1 simple  265.6 6.7 6.6 5.2 56.1
parallel 6.7 6.6 5.2 56.1

sequential 5.2 5.1 3.8 41.0

2 simple 1.2 1.2 0.6 <10

parallel 1.2 1.2 0.6 <10

sequential 0.7 0.6 0.5 <10

100 15 1 simple  743.0 10.0 10.1 8.3 101.8
parallel 10.0 10.1 8.3 101.8

sequential 8.3 8.3 6.6 80.9

2 simple 1.7 1.7 1.0 12.2

parallel 1.7 1.7 1.0 12.2

sequential 1.2 1.2 0.8 <10
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Table 2. Reduction on the SCP using the PARG on BKL’s presentation

n l(a) =1(z) SCP  type I(a)—1I(d) l(m)—1(a) ak(a)
60 1000 1 simple 244.5 1722.1 244.5

parallel 19.7 1659.0 19.7
sequential 40.2 200.2 39.9

2 simple 240.5 1645.6  240.8
parallel 6.4 1645.6 6.4
sequential 8.7 96.3 8.7

100 1500 1 simple 299.7 3499.2  299.7
parallel 34.6 3489.0 34.6
sequential 73.3 403.0 73.3

2 simple 274.2 34274  274.2
parallel 11.3 3427.4 11.3
sequential 16.7 198.1 16.7

Table 3. Sequential reduction using the CRG on Artin’s presentation

ref problem n cl(a) cl(z) I(a) rk(a) ak(a) complexity
[4] GCP 100 15 15 9206.3 31.0 11.5 56.9
150 20 20 27790.9 44.7 18.0 98.6
200 30 30 74157.1 57.8 23.7 138.7
[11] GCP 50 5 3 752.3 18.1 6.1 25.4
90 12 10 5943.0 28.8 10.7 51.8
[16] CSP 30 15 15 3410.8 279 9.3 44.6
GCP 60 15 15 3261.6 209 7.2 31.5
[10]Y SCP; 20 4 3 4595 26 0.7 < 10
24 4 3 6549 2.5 0.8 < 10
28 4 3 887.3 2.7 09 < 10

((1)_ we do not use the Random Super Summit Braid Generator but only the CANONICAL
RANDOM GENERATOR)

is rather the CANONICAL RANDOM GENERATOR which is faulty. Some existing
protocols are secure ; however, we must find a procedure to produce some good
instances.

The complexity is given by log, (min(n — 1,7k)) * ak for the Conjugacy
Search Problem and by log, (mm( (";1) , Tk)) xak for the Generalized Conjugacy
Problem.

7 Conclusion

The interest of this paper is the new proposed method to work in braid groups.
We propose an efficient algorithm to reduce the conjugacy problem and its vari-
ants : producing a divisor and a multiple of the secret. Moreover, we use the two
Garside presentations of braid groups to improve the efficiency of the algorithm.
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Even though we present many interesting results, the used random generators
are not yet perfect [15]. The representation of braids and their random gener-
ators have to be improved to get further results in braid-based cryptography.
We began this work in [12], but this development implicates the new proposed
canonical random generator. This new work permits to complete an existing list
of properties to get an efficient way to produce secure instances. We must meet
the following requirements :

the required properties for the secret a, must be satisfied by its inverse as
well.

l(a) = Z(A)QC l(a)7 where [ denotes the number of generators and ¢l denotes its
canonical length.

the length of the the first canonical factors must be large (>
the one of the last factors must be short (< Z(QA) ).

— the required properties for the secret must not depend on the presentation.

1(4)
2

) whereas

A further study could be done on the creation of a random generator of braid
verifying all existing criteria.

Independently, the new method introduced in this paper on the parallel and
sequential work can be improved. A sequential iterative process study could be
considered in the future.

Acknowledgments. The author would like to thank Frangois Arnault, Thierry
Berger and Philippe Gaborit for their valuable observations.
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Abstract. A key assignment scheme is a protocol to assign encryption
keys and some private information to a set of disjoint user classes in a
system organized as a partially ordered hierarchy. The encryption key
enables each class to protect its data by means of a symmetric cryp-
tosystem, whereas, the private information allows each class to compute
the keys assigned to classes lower down in the hierarchy.

In this paper we consider a particular kind of a hierarchy: the com-
plete rooted tree hierarchy. We propose a key assignment scheme which
is not based on unproven specific computational assumptions and that
guarantees security against an adversary controlling a coalition of classes
of a certain size. Moreover, the proposed scheme is optimal both with
respect to the size of the information kept secret by each class and with
respect to the randomness needed to set up the scheme.

1 Introduction

The hierarchical access control problem deals with the specification of users’
access permission and is defined in a scenario where the users of a computer
system are organized in a hierarchy formed by a certain number of disjoint
classes, called security classes. A hierarchy arises from the fact that some users
have more access rights than others. The hierarchical access control problem
can be solved by using a key assignment scheme, that is, a method to assign
an encryption key and some private information to each class. The encryption
key will be used by each class to protect its data by means of a symmetric
cryptosystem. The private information will be used by each class to compute
the keys assigned to all classes whose secret data can be accessed by that class.
The assignment is carried out by a central authority, the CA, which is active
only at the distribution phase.

Akl and Taylor [1] first proposed an elegant solution for the general problem
where the hierarchy on security classes is an arbitrary partial order. In their
scheme each class is assigned a key that can be used, along with some public
parameters generated by the CA, to compute the key assigned to any class lower
down in the hierarchy. Subsequently, many researchers have proposed schemes
that either have better performances or allow insertion and deletion of classes in
the hierarchy (see [2,8,9,11,12,13,14, 15]).

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 202-217, 2006.
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The most used approach to key assignment schemes is based on unproven
specific assumptions (see [1,5,2,8,9,11,12,13, 14, 15]). For example, Sandhu [15]
proposed a key assignment scheme based on the existence of secure symmetric
cryptosystems and of one-way functions. Such a scheme has been designed for
a particular kind of partially ordered hierarchy, the rooted tree hierarchy. The
case of a rooted tree hierarchy has also been considered by other researchers (see
[9,11,12]). A different approach, based on information theory and not depending
on any unproven specific assumption has been proposed in [4,6] to design and
analyze unconditionally secure key assignment schemes.

In this paper we follow the unconditionally secure approach and propose a
key assignment scheme for a particular kind of partially ordered hierarchy, the
complete rooted tree hierarchy. The paper is organized as follows: in Section 2 we
recall the definition of unconditionally secure key assignment schemes given in
[4]. In Section 2.1 we prove lower bounds on the size of the private information
held by any class and on the amount of random bits needed to set up any key
assignment scheme. In Section 3 we describe a key assignment scheme for any
rooted tree hierarchy which guarantees security against a single class. Such a
scheme has been proposed in [4] and will be used in Section 4 as a starting point
to construct a key assignment scheme for any complete tree hierarchy which
is secure against a coalition of classes having an arbitrary size. The proposed
scheme is optimal both with respect to the size of the private information held
by any class and with respect to the amount of random bits needed to set up
the scheme.

2 The Model

We consider a scenario where the users of a computer system are divided into
a certain number of disjoint classes, called security classes. The set of rules
that specify the information flow between different user classes in the system
defines an access control policy. An access control policy can be represented by
a directed graph G = (V| E), where the vertex set V' corresponds to the set of
security classes and there is a directed edge (u,v) € F if and only if class u can
access class v. For each u € V', we define the accessible set of u as the set of classes
that can be accessed by wu, including w itself, i.e., 4, = {v € V : (u,v) € E}.
For any subset of classes X C V, we denote by A, the set U,exA,. We also
define the forbidden set of u as the set of classes that cannot access class u, i.e.,
Fo={veV:iugA,}.

A key assignment scheme for the access control policy G = (V, E) is a method
by which a trusted third party, called the central authority (CA), assigns a key
and some private information to each class in V. For any class u € V', we denote
by py the private information sent by the CA to users in class v and by k, the
key assigned to class u, respectively. Moreover, we denote by P, and K, the
sets of all possible values that p, and k, can assume, respectively. Given a set
of classes X = {uy, -+, us}, where u; < ug < -+ < ug, we denote by P, and K
the sets P,, x -+ x P, and K,, X --- x K,,, respectively.
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In this paper, with a boldface capital letter, say Y, we denote a random
variable taking values on a set, denoted by the corresponding capital letter Y,
according to some probability distribution {Pr, (y)},ey. The values such a ran-
dom variable can take are denoted by the corresponding lower case letter. Given
a random variable Y, we denote by H(Y) the Shannon entropy of {Pr, (y)}yey
(we refer the reader to [3] for a complete treatment of Information Theory).

We consider key assignment schemes where the key assigned to each class is
unconditionally secure with respect to an adversary controlling a coalition of
classes of a limited size. Our schemes are characterized by a security parameter
r, the size of the adversary coalition. The maximum value that the security
parameter r can assume is equal to the cardinality of the maximum forbidden
set, since any adversary coalition for class u can contain at most | Fy,| classes. An
r-secure key assignment scheme for an access control policy is defined as follows.

Definition 1. ([4]) Let G = (V, E) be the directed graph that represents an
arbitrary access control policy and let 1 < r < maxy,ey |Fu|. An r-secure key
assignment scheme for G is a method to assign a key to each class in such a way
that the following two properties are satisfied:

1. Any class allowed to access another class can compute the key assigned
to that class. Formally, for any v € V and any v € A,, it holds that
H(K,|P,)=0.

2. Any coalition of at most r classes not allowed to access another class have
absolutely no information about the key assigned to that class. Formally, for
any uw € V and any X C F, such that | X| < r, it holds that H(K,|P,) =

In Definition 1 we did not make any assumption on the entropies of the random
variables K, and K,, for different classes u,v € V. For example, we could have
either H(K,) > H(K,) or H(K,) < H(K,). Our results apply to the general
case of arbitrary entropies of keys, but for clarity we state the next results for
the simpler case that all entropies of keys are equal, i.e. H(K,) = H(K,) for all
u,v € V. We denote this common entropy by H (K).

2.1 Lower Bounds

In this section we show lower bounds on the size of the private information held
by each class and on the amount of random bits needed to set up any r-secure
key assignment scheme. We need the next definition.

Definition 2. ([4]) Let G = (V, E) be the directed graph that represents an
arbitrary access control policy. In any r-secure key assignment scheme for G,
a sequence of classes v1,...,vy is called r-almost covered if, either m = 1, or
m > 1 and for any j =2,...,m, there exists a set X; C F,, such that | X;| <r
and {vy,...,vj_1} C Ay .

The next theorem shows a lower bound on the size of the private information
held by each class in any r-secure key assignment scheme.
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Theorem 1. ([4]) Let G = (V, E) be the directed graph that represents an ar-
bitrary access control policy. In any r-secure key assignment scheme for G, for

any u € V, if there exists an r-almost covered sequence vy, ..., vy, in Ay, then
it holds that H(P,) > m - H(K).

As shown by Knuth and Yao [10], the entropy of a random source is related to
the average number of independent unbiased random bits necessary to simulate
the source. In the following, given a directed graph G = (V, E) representing an
arbitrary access control policy, we denote by H (P, ) the amount of randomness
needed by the CA to set up any r-secure key assignment scheme for G.

Theorem 2. Let G = (V, E) be the directed graph that represents an arbitrary
access control policy. In any r-secure key assignment scheme for G, if there exists
an r-almost covered sequence of length m in V, then it holds that H(P,) >
m - H(K).

Key Assignment Schemes for Rooted Tree Hierarchies. In this section
we consider key assignment schemes for an important kind of access control
policy: the rooted tree hierarchy. Given a rooted tree T' = (V, E), for any class
u € V', we denote by h, the height of the class u, defined by h, = 1 if u is a leaf
class and h, = 1 + max;*, h,, otherwise, where g, is the degree of v and, for
t=1,..., 9y, u; denotes the i-th child of u. We also denote by h the height of
the tree, i.e., the height of the root class.

For any two classes u,v € V, class v has access to v’s private data if and
only if u is an ancestor of v. Therefore, the accessible set A, of class u € V
consists of the classes in the subtree rooted at u, whereas, the forbidden set F,,
consists of the classes that are not ancestors of u. The next lemma shows how
to compute the length of an r-almost covered sequence in the accessible set A,
for any w € V and any 1 < r < max,ey |Fyl.

Lemma 1. ([4]) Let T = (V,E) be a rooted tree hierarchy and let 1 < r <
maxycy |[Fu|. In any r-secure key assignment scheme for T, for any u € V,
there exists an r-almost covered sequence in A, whose length L(r, h,) is defined
by the following recurrence

1 if u is a leaf class;

min{r . . . 1
1+ Zi:l{ gut L(r — min{r, g, } + i, hy,;) otherwise. (1)

L(r,hy) = {
From (1), it is easy to see that L(r,h,) > L(1', hy), for any v/ = 1,...,r — 1.
The next lemma shows that, given a class u € V', any 1-almost covered sequence
in A, having length h, is a 1-almost covered sequence of maximum length.

Lemma 2. ([4]) Let T = (V, E) be a rooted tree hierarchy. In any 1-secure key
assignment scheme for T, for any class uw € V, the length of any 1-almost covered
sequence in A, is less than or equal to h,,.

The next theorem is an immediate consequence of Theorem 1 and Lemma 1.
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Theorem 3. ([4]) Let T = (V, E) be a rooted tree hierarchy and let 1 < r <
maxycy |[Fu|. In any r-secure key assignment scheme for T, for any class u € V,
it holds that H(P,) > L(r, hy,) - H(K).

Remark 1. From Lemma 2 and Theorem 3, the size of the private information
held by each class u € V in any 1-secure key assignment scheme for T is lower
bounded by h, - H(K). In particular, if we consider the root class, it follows
that the number of random bits needed by the CA to set up any 1-secure key
assignment scheme for T is lower bounded by h - H(K).

Complete Rooted Tree Hierarchies. In the following we consider g-complete
rooted tree hierarchies, i.e., such that all leaves of the tree are at the same
level and all internal nodes have the same degree g. Given a g-complete rooted
tree hierarchy T' = (V, E), for each class u € V, the cardinality of the forbidden
set F, is equal to the number of classes in V, that is, Z?:_()l g%, minus the number
of ancestors of w minus one (the class u), that is, h — h,, + 1. Therefore, we have
that |F,| = 32170 g' = (h—hu +1) = 2| — (h — hy + 1). In particular, for the

h—1
root class we have |F.oo| = ¢ 71_1). Therefore, the maximum value that the

security parameter r can assume in a key assignment scheme for a g-complete
(" '—
g—1
in the tree minus one (the root class).
The next lemma will be a useful tool to show a lower bound on the size of the
private information held by each class in any r-secure key assignment scheme

for a g-complete rooted tree hierarchy, when 1 < r < g.

(g

rooted tree hierarchy is equal to ¢ b , which is equal to the number of nodes

Lemma 3. Let T = (V, E) be a g-complete rooted tree hierarchy and let 1 < r <
g. In any r-secure key assignment scheme for T, for any class w € V', it holds

that
hu

L(r,ha) = L(r—1,4).

i=1
Proof. The proof is by induction on h,,. Let u be a leaf class. From (1), it follows
that L(r,1) =1= L(r — 1,1).

Assume by inductive hypothesis that L(r,h),) = Z?;l L(r — 1,4), for any
1 < h!, < hy. Since g > r, from (1) we get

L(r,hy) =1+ ZT:L(Z', hy —1)

i=1
r—1

=14 L(i,hy — 1)+ L(r,hy — 1)
i=1

=L(r—1,hy)+ L(r,hy — 1) (from (1))
hu—1

=L(r—1,h,) + Z L(r —1,4) (from the inductive hypothesis)
i=1
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R
Z (r—1,1).

Hence, the lemma holds. a

In the next lemma we will use the following equality where a and b are integers,
(see equation (5.9) of [7, pag. 159]):

()= ()

Lemma 4. Let T = (V, E) be a g-complete rooted tree hierarchy and let 1 < r <
g. In any r-secure key assignment scheme for T, for any class uw € V', it holds

that ) .
T+ u -

L w) = .

= ("3

Proof. The proof is by induction on r. Let » = 1. From (1) it follows that
L(1,hy) =14+ L1, hy — 1) = hy.

Assume by inductive hypothesis that L(r', h,) =
We have that

(" ;uhj;l), for any 1 <1’ <.

>

u

L(r, hy) = L(r—1,1) (from Lemma 3)

h.
= -1 -1
(T i ) (from the inductive hypothesis)

i—1
=1
B ful (r -1 +j)
j=0 J
hy, —1 . .
— (" _}t 1 ) (from equality (2), setting a =7 — 1 and b = h,, — 1).
Hence, the lemma holds. O

The next theorem is an immediate consequence of Theorem 1 and Lemma 4.

Theorem 4. Let T = (V, E) be a g-complete rooted tree hierarchy and let 1 <

r < g. In any r-secure key assignment scheme for T, for any class u € V, it

holds that H(P,) > ("} 1) - H(K).

In particular, if we consider the root class, it follows that the number of random
bits needed by the CA to set up any r-secure key assignment scheme for a g-
complete rooted tree hierarchy, where 1 < r < g, is lower bounded by ("1"71) -
H(K). The above bounds are both tight. Indeed, in Section 4 we will show an
r-secure key assignment scheme for a g-complete tree hierarchy which meets the

bounds.
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3 A 1-Secure Key Assignment Scheme for Any Rooted
Tree Hierarchy

In this section we describe a 1-secure key assignment scheme for any rooted tree
hierarchy. Such a scheme has been proposed in [4] and will be used in Section 4
as a starting point to construct r-secure key assignment schemes. Let T' = (V, E)
be a rooted tree hierarchy with height i and let ¢ > h be a prime number. The
scheme works as follows: first, the CA randomly chooses a sequence s of h distinct
integers in Z,. These integers will be used to compute the key &, and the private
information p,, associated to each class u € V. Afterwards, for each class u € V,
the CA sends the private information p, to u by means of a secure channel. Such
information will be used by each internal class u € V' to compute the key assigned
by the CA to any class v € A,, by iteratively computing the key assigned to any
class in the path from u to v. The 1-secure scheme is shown in Figure 1.

Input: A rooted tree T' = (V, E).

Let h be the height of T" and let ¢ > h be a prime number.
Randomly choose a sequence s of h distinct integers in Z.
{(w, pu, ku) : uw € V} « Basic Scheme(T, s, q)

For any u € V, privately send p, to u.

Fig. 1. A 1-secure key assignment scheme for any rooted tree hierarchy

The scheme used to compute the key k, and the private information p,
for each class u € V, referred to as the Basic Scheme(T,s,q), is described in
Figure 2. In the key generation phase, starting from the root class, the key for
each internal class u is used by the CA to compute the keys for its children
Ui...,Uq,, Where g, is the degree of u. In the private information generation

Basic Scheme(T), s, q)
Let h be the height of T" and let s = (y1,...,yn)-
/*Key generation phase*/
Let root be the root of T', then koot < yp.-
For j = h downto 2 do

For any v € V with h, = j do

For any i =1,..., gu, do ku; < ku + %" yp,, mod g.

/*Private information generation phase*/
For any leaf class u € V do p, < k..
For any internal class w € V do pu < ((y1,- -+, Yhu—1) © ku).

Return {(u, pu, k) 1 u € V}.

Fig. 2. The basic scheme used by the 1-secure scheme of Figure 1
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phase, the CA assigns to each class u the private information p,, which consists
of a sequence of h,, integers in Z,. The last value of such a sequence is the key
k. Indeed, if u is a leaf class, then p, = k,, whereas, if u is an internal class,
then p, = ((y1,-..,Yn,—1) © ku), where the symbol o denotes the concatenation
of two sequences and (y1,...,yn,—1) is the sequence of integers needed by u to
compute the keys for all classes in its accessible set.

It is easy to see that the scheme is optimal both with respect to the size
of the private information held by each class and with respect to the number
of random bits needed by the CA to set up the scheme. Indeed, the size of the
private information p,, assigned to class u is equal to h,, log ¢ bits and the amount
of random bits is equal to hlog ¢ bits, whereas, the size of the key k,, is equal to
log g bits. Hence, the larger the prime number ¢ > h, the larger the size of the
key, of the private information held by each class and of the number of random
bits needed to set up the scheme.

4 An r-Secure Key Assignment Scheme for Any
Complete Rooted Tree Hierarchy

In this section we show an r-secure key assignment scheme for any g-complete
rooted tree hierarchy. The problem of designing an r-secure scheme for a g-
complete rooted tree hierarchy 7' = (V, E) with height h is reduced to the prob-
lem of designing an (r — 1)-secure scheme for the truncated tree T; = (V}, E;),
for 5 = 1,...,h, where Tj is the subtree of 1" obtained by truncating 7" at the
j-th level, that, is the subtree containing the first j levels of T. The keys and
the private information computed by the (r — 1)-secure schemes on such trun-
cated trees are then combined to produce the keys and the private information
computed by the r-secure scheme on T'. The recursion bottoms up when r = 1:
in this case we use the 1-secure scheme presented in Section 3.

The r-secure scheme works as follows: first, the CA randomly chooses a se-
quence s of (TZEII) distinct integers in Z,, where ¢ > (ﬁﬁ;l) is a prime number.
These integers will be used to compute the key k, and the private information
Py, associated to each class u € V. The larger the prime number ¢, the larger
the size of the key and of the private information held by each class. Afterwards,
for each class u € V, the CA sends the private information p, to u by means

Input: A g-complete rooted tree T'= (V, E') with height h and an integer
1<r< 9" -0,
- - g

Let ¢ > (T';L'le) be a prime number.

r+h—1
Randomly choose a sequence s of ( hel
{(u, pu, ku) : u € V} « Scheme(T,r,s,q).

For any u € V, privately send p, to w.

) distinct integers in Z,.

Fig. 3. An r-secure key assignment scheme for any g-complete rooted tree hierarchy
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Scheme(T,r, s, q)

If r =1, then
{(w, pu, ku) : uw € V} « Basic Scheme(T, s, q)
Return {(u, pu, ku) : u € V}

Let h be the height of T'.

Partition the sequence s into h subsequences S[r—1:1]s - - » S[r—1;h] such that, for any
j=1,..., h, the subsequence s[,_;,; contains (T;ETJ) distinct integers.
For any j =1,...,h, let T; = (V}, E;) be the subtree of T obtained by truncating T’
at the j-th level.
For j=2tohdo

{(u, o™V KT sw € Vi) o Scheme(Ts 1 — 1, s111,9)
/*Key generation phase*/
Let root be the root class of T', then kroot < S[r—1;1]-
For j = h downto 2 do

For any v € V with h, = j do

Foranyi=1,...,9,do ku;, < ku+1- ki[fi_l;z“ﬂ] mod q.

/*Private information generation phase*/
For any leaf class u € V do p, < k..
For any internal class ©w € V do p, «— pEI*”“*” 0. opgfl;h] 0 ky.

Return {(u, pu,ku) 1w €V}

Fig. 4. The scheme used by the r-secure scheme of Figure 3

of a secure channel. Such information will be used by each class to compute the
keys assigned to all classes in its accessible set. The r-secure scheme is shown in
Figure 3. The scheme used to compute the key and the private information for
each class is referred to as the Scheme(T,r, s, q) and is described in Figure 4. If
r =1, the Scheme(T,r, s, q) reduces to the Basic Scheme(T, s, q).

If r > 1, the scheme proceeds as follows: First, the CA partitions the sequence
s into h subsequences s[,._1.1],- -, S[r—1;n], Such that, for any j = 1,...,h, the
sequence S[._1;;] contains (TZET]) distinct integers. Notice that from equation
(2), setting b=h — 1 and a = r — 1, we have

Eh:<r—2+j>_h§:l<r—1+i>_<r+h—1> )
: r—1 ) < i “\h-1 )

j=1 1=0

Afterwards, for any j = 1,...,h, the CA runs the Scheme on inputs Tj,r —
1, sjr—1;5, and g, where T = (V}, I;) is the subtree of T obtained by truncating
T at the j-th level. Forany j = 2, ..., h, let k' "5 and pl' =% be the key and the
private information assigned by such a scheme to a class w in the truncated tree
Tj. Starting from the key k=19 and the private information pl ¥ assigned
to the class u € T; by the Scheme on inputs Tj,r — 1,5[,_1,; and ¢, for any
j = 2,...,h, the CA computes the key k, and the private information p, for
any class u in the tree T'.



A New Key Assignment Scheme for Access Control 211

In the key generation phase the CA assigns to the root class of T the value
S[r—1;1), corresponding to the first subsequence of s, which contains a single
element. Starting from the root class, the key k, for each internal class u at
level £, is used to compute the key for its children u; ..., uq, which are at level
£, + 1. In particular, for any ¢ = 1,...,g, the computation of the key k,, also
involves the use of the key k[~ 1¢+1
Tg“_;,_l,’l" -1, Slr—1;4,+1)> and q.

In the private information generation phase the CA assigns to each class u the
private information p,, which consists of a sequence of integers in Z,. The last
value of such a sequence is the key k. Indeed, if u is a leaf class, then p, = ki,
whereas, if u is an internal class, then p, = pq[ffu“ﬂ] o Opq[rilgh] o k., where
the symbol o denotes the concatenation of two sequences. Each internal class
u € V can use its private information p, to compute the key assigned by the
CA to any class v € Ay, by iteratively computing the key assigned to any class
in the path from u to v.

assigned to wu; by the Scheme on inputs

4.1 Analysis of the Scheme

In this section we analyze the scheme proposed in the previous section. We first
remark some properties and give some useful definitions in order to prove cor-
rectness and security properties. Afterwards, we show that the proposed scheme
is optimal both with respect to the size of the private information held by each
class and with respect to the randomness needed by the CA to set up the scheme.

We first notice that the scheme of Figure 4 recursively calls itself on different
trees and with different security parameters, as shown in the following. Given
a tree T having height h, we define the execution hierarchy as the tree whose
height is equal to r and whose nodes are represented by boxes corresponding to
the truncated trees Ts, ..., T} (see the left hand side of Figure 5). The root box

T}y, corresponds to the entire tree T'. Moreover, for any j = 2,..., h, any internal
box corresponding to the truncated tree 7T} has j — 1 children, corresponding to
the truncated trees 75, ..., T}, respectively.

In the following we define the initialization sequences, the keys and the private
information received by the classes during the executions of the schemes on the trees
corresponding to all the boxes in the execution hierarchy. Foreachi =2,...,r—1
and j1,j2,...,Ji € {1,...,h}, wedefine s _;;, 4,... j,) as the sequence of integers
used to set up the scheme on Tj,, where the security parameter is equal to r — ¢
and foreach o« =r —1,...,r — i + 1, the scheme is executed on T}, with security

e Fu;zg]‘ %[1;3,2]‘ Fu;g,:ﬂ‘%[1;h,2]‘%[1;h,3]}m0}9[1;h,h]

Fig. 5. The execution hierarchy and the corresponding sequences for r = 3
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parameter equal to a. The right hand side of Figure 5 shows the sequences used to
set up the schemes on the trees corresponding to each box of the execution hier-
archy drawn on the left hand side of Figure 5. Moreover, for each¢ = 2,...,7r — 1
and ji1,j2,...,Ji € {1,...,h}, we define the keys and the private information re-
ceived by a class u during the execution of the scheme on T, with security parameter
equal to r—i starting by the sequence sj,_;,;, 7, . ., respectively as, flr—Bavd2,-.dil
andpgii;jl’jz’m’ji]. We also define k.l[[*ﬁjl’j%'”a.ji] andpgr*i;jl’jzwwji] as kq[f*i’ji] and
pgf_i;ji} if j1 = jo = ... = j;. For the sake of notational consistency, in the following
we refer to k, and p, as kq[f;h] and pq[f ;h], respectively.

Now, we are ready to show that each class, starting from its private informa-

tion, can compute the keys assigned to all classes in its accessible set.

Theorem 5. Let T = (V, E) be a g-complete rooted tree hierarchy with height h

h—1
and let 1 <r < g(gg_fl). In the r-secure scheme each class u can compute the

key assigned to each class v € A, by using its private information pq[f il

Proof. The proof is by induction on r. For » = 1 the proof follows from the
correctness of the 1-secure scheme (see [4]).

Assume by inductive hypothesis that, given a g-complete rooted tree T' =
(V, E) with height h, in the r-secure scheme, where 2 < r < 1/, each class u can

compute the key assigned to each class v € A, by using its private information
[rsh]
Pu .

Let 7 = 1. It is easy to see that, for any v € A,, the key k" is a function
of the key kLr;h] and of the keys k{ﬁ‘“wl for any class w along the path from u
LT 1 contains pq[f 71%“’]7 from the inductive hypothesis it follows that
u can compute the key kg ~Litu] assigned to each class w along the path from u
to v. Moreover, pg 1l also contains the key kq[f;h] assigned to u by the r-secure

to v. Since p

scheme. Therefore, u can compute the key k""" assigned by the r-secure scheme

to each class v € A, by using its private information pg il a

In order to prove Property 2. of Definition 1, we need the following definition.

Definition 3. Let T' = (V, E) be a g-complete rooted tree hierarchy with height

h—1
handlet1 <r< 99 _1_1). A set of classes {v1,va,...,v.} is called an r-strong
coalition for a class u if and only if v; € F,, and u € A,,,, where w; is the parent
of vi, for eachi=1,...,r.

The next lemmas will be useful tools to show our results.

Lemma 5 (POLYNOMIAL PROPERTY). Let T = (V,E) be a g-complete
rooted tree hierarchy with height h and let 1 < r < g(g};:lfl). Let u € V be an
internal class and let u; be the i-th child of u, for some i € {1,...,g}. In the
r-secure scheme, it holds that k,, = q,(i), where

r—1
qu(z) = kM 4 Z oI R gy, L mod g

j=1
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is a polynomial of degree r and ye,+1 is the last element of the sequence used in
the initialization phase of the 1-secure scheme on Ty, 1.

Proof. From the key generation phase in the r-secure scheme, it holds that

Elrhl = gt g k=1t mod ¢

_ kur,h] ki[trfl;&rkl] + ,L~2 . k1[272;[u+1] mod q

B r—1

= k[P 4y i gttt gt g6t mod g
j=2
r—1

= kM ik iy, 10 mod g,
j=1

The last equality follows from the key generation phase of the 1-secure scheme,

since kL0t = bttt gy 0

Notice that, for each class u, the key k,, is a function of the key held by the
root class and of the sequences sj_1.9], ..., 8[r—1,¢,]- Moreover, in the private
information generation phase, any child of u receives its key and some values
in 8;_1;0,41]- -+ » Sjr—1;n]- Since the h subsequences sj_1,1], ..., S[r—1;5] are ob-
tained by partitioning the sequence s of distinct integers randomly chosen by
the CA, the following property holds:

CHILD POWER PROPERTY. Let T = (V E) be a g-complete rooted tree

hierarchy with height h and let 1 < r < 9(g" " =1) In the r-secure scheme,
giwen any internal class uw € V', each of its chzldren holds a unique information

(corresponding to its own key) which can be used to compute the key kq[f il

Lemma 6. Let T = (V, E) be a g-complete rooted tree hierarchy with height h,

let1<r <99 " and let C be an (r + 1)-strong coalition of classes in Ty,

for a class u. In  the r-secure scheme the coalition C' is able to compute the key
ki

Proof. The proof is by induction on r. Let r = 1 and C = {v1,v2}. We have to
distinguish three cases.

1. Let v; and vy be siblings of u and let z be their parent. From the key
generation phase in the 1-secure scheme, the keys of the classes in u, v; and
v are a function of k, and y,,. Hence, the coalition is able to compute k,
and yp,. Afterwards, the coalition is also able to compute the key k.

2. Let £,, > ¢,, and let z be the parent of v;. Since vy holds the value Ye,,
and the key of z is a function of the key of vy and yg, , the coalition is
able to compute the key k,. Notice that z is also an ancestor of u. Since vg
holds the sequence (ye.+1,- .-y, ), from the key generation phase in the 1-
secure scheme, it is easy to see that the coalition is also able to compute the
key k.
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3. Let ¢,, = {,, > ¢, and let z be the parent of v; and vs. Since k,, and k,, are
a function of the value yy, and the key of z, the coalition is able to compute
both the key k, and the value Ye,, - Since v; and vy also hold the sequence
(yev1+1, ...Ye,), from the key generation phase in the l-secure scheme, it is
easy to see that the coalition is also able to compute the key k,,.

Assume by inductive hypothesis that given a g-complete rooted tree hierarchy,
in the r-secure scheme, where 2 < r < 7/, any (r 4+ 1)-strong coalition of classes
in Ty, for a class u is able to compute the key kq[f;h].

Let r = 7. We have to analyze the following two cases:

1. Let the coalition be constituted by r + 1 siblings of u and let z be their
parent. From the POLYNOMIAL PROPERTY, the keys of the classes in the
coalition are the evaluations of the polynomial ¢.(z) of degree r, in r + 1
different points. Hence, the coalition is able to compute the key kz[f;h].

2. Let the coalition be constituted by ¢ siblings of u and by a set C' of r+1 —14
classes in Ty, _1, for some ¢ = 0,...,7. Let z be the parent of u. From the
POLYNOMIAL PROPERTY, the keys of the siblings of u correspond to 4
equations in the r + 1 unknowns k", Yo, ged R B From the
private information generation phase, the coalition holds y,,. Moreover, for

i # r, from the inductive hypothesis it follows that the r + 1 — ¢ classes in

C" are able to compute the r — i keys k.. k=% Since the coalition
has 7 equations in the ¢ unknowns k., kz[fﬂﬂ;e“h e kz[ffl;e“], it is able to
compute the key k. ]

Since the private information held by each class is contained in the private
information held by each of its ancestors, in order to show that any coalition in
the forbidden set F,, cannot compute the key of a class u, it is enough to consider
only strong coalitions for w.

Theorem 6. Let T = (V, E) be a g-complete rooted tree hierarchy with height

_171)

h
handletl <r< g(gg L - In the r-secure scheme, an r-strong coalition for a

class u is not able to compute the key kq[f;h] with probability greater than or equal
to 1/q.

Proof. The proof is by induction on r. For r = 1 the proof follows from the
security of the 1-secure scheme (see [4]).

Assume by inductive hypothesis that given a g-complete rooted tree hierarchy,
in the r-secure scheme, where 2 < r < r/, any r-strong coalition for a class u
is not able to compute the key of u with probability greater than or equal
to 1/q.

Let r = 7/, the proof follows by induction on the level £, of a class u. Let £, =
1, i.e., u is the root class. Any r-strong coalition for u is constituted by r children
of u. From the CHILD POWER PROPERTY, each class in the coalition holds a
unique information (corresponding to its own key) which can be used to compute

the key kq[f;h]. From the POLYNOMIAL PROPERTY, the keys of the classes in
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the coalition are the evaluations of ¢, (x) in r different points. Hence, in order to
compute k"™, the coalition has a system of r equations in 7 + 1 unknowns. For
any of the ¢" possible choices for the r-tuple (ye,+1, s ki[f_l;g“ﬂ]h
there are ¢"~! corresponding values for the key kq[f;h]. Hence, the probability
that the coalition computes the key k" assigned to the class u is equal to 1 /q.

Assume by inductive hypothesis that any r-strong coalition for a class u where
1 </, < {is not able to compute the key of u with probability greater than or
equal to 1/q.

Let u be a class at level £, = ¢. We have to analyze the following three cases:

Case 1. The coalition is constituted by r children of u. With identical argu-

mentation used to show the basic case where £, = 1, we can prove that the

probability that the coalition computes the key kLr;h]

equal to 1/q.

Case 2. The coalition is constituted by classes in T}, . Let z be the parent of u.
It is easy to see that the coalition is also an r-strong coalition for z. Assume
by contradiction that the coalition is able to compute the key of u with
probability greater than or equal to 1/q. Let C’ be the set constituted by
the class u and the 0 < 7 < r classes in the coalition that are also children
of z. Let C” be the set constituted by the classes in the coalition whose
levels are less than or equal to £,. From the POLYNOMIAL PROPERTY,
the keys of the classes in C” correspond to i + 1 equations in the r + 1

unknowns kLT;hL Yo s kLl;Z'“]7 cen /cLT*“”“]. Hence, if ¢ = r, the coalition is

assigned to class u is

able to compute kg;h]. Otherwise, from the private information generation
phase, the coalition holds y,, and, from Lemma 6, the r — i classes in C” are
able to compute the 7 —i — 1 keys k%) . k=171 Since the coalition

has i + 1 equations in the i + 1 unknowns k,, kI =% k=540 it is able

to compute k" This contradicts the inductive hypothesis because the level
of z is less than /.

Case 3. The coalition is constituted by 1 < i < r — 1 children of v and by a
set C' of r — ¢ classes in Ty,. From the CHILD POWER PROPERTY, each
child of u holds a unique information (corresponding to its own key) which
can be used to compute the key of u. From the POLYNOMIAL PROPERTY,
it follows that those keys correspond to i equations in the r + 1 unknowns
B g, B et The classes in C hold the value yg, 41
and since they represent an (r —4)-strong coalition in Ty, for u, from Lemma
6, they are able to compute the r — i — 1 keys ki@ H . glr—i-litutl]

with probability greater than or equal to 1/q. Hence the coalition has i

equations in the i 4+ 1 unknowns kq[f;hL ki[f_i;z“ﬂh o ki[f_l;g“ﬂ]

to compute the key k", the classes in C' should be able to compute at

least one of those i + 1 keys, with probability greater than or equal to 1/q.

. In order

From Case 2., the classes in C' are not able to compute the key k" and

from the inductive hypothesis they are not able to compute any information

in (/ﬂz[fi;z'“+1}7 e kz[ffl;z“ﬂ]). For any of the ¢'*! possible choices for the
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(i + 1)-tuple (kq[f;h],kz[f*i;e“ﬂ], . .,kz[f*l;z“ﬂ]), there are ¢’ corresponding
values for the key k", Hence, the probability that the coalition computes
the key kq[f;h] assigned to class u is equal to 1/q. a

It is easy to see that the r-secure scheme is optimal with respect to the random-
ness needed to set up the scheme when 1 < r < g. The next theorem shows that
the scheme is also optimal with respect to the size of the private information
held by each class.

Theorem 7. Let T = (V, E) be a g-complete rooted tree hierarchy with height h

h—1
andletl <r < g(gg_fl). The number of integers contained in the private infor-

r+h“—1) )

mation distributed to each class u by the r-secure scheme is equal to ( o

Proof. The proof is by induction on r. For r = 1, it holds that (r"}th_zl) = Ry

Assume by inductive hypothesis that, for any v’ = 2,...,r — 1 the private
information pI ¥ contains (" jﬁ;ﬂ;ﬂh’j;l plr—litutll o
p£f —Lh k., the number of integers contained in p,, is equal to

b rtj—h4h,—2 i r4j—h4h,—2
1+ ) < 'jh B o1 >:1+' 2. < 'jh B o1 )
oty N T e imhhag2 N I T

(since £, = h — h, + 1)

(S
5 (707)

_ r+h, —1
T\ hy—-1 )

The last equality follows from equation (2), setting b =h,, —landa=r—1. O

) integers. Since p, = .o
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to Micropayment Schemes
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Abstract. One-way hash chains have been used in many micropay-
ment schemes due to their simplicity and efficiency. In this paper we
introduce the notion of multi-dimensional hash chains, which is a new
generalization of traditional one-way hash chains. We show that this con-
struction has storage-computational complexity of O(log, N) per chain
element, which is comparable with the best result reported in recent lit-
erature. Based on multi-dimensional hash chains, we then propose two
cash-like micropayment schemes, which have a number of advantages in
terms of efficiency and security. We also point out some possible improve-
ments to PayWord and similar schemes by using multi-dimensional hash
chains.

1 Introduction

One-way hash chains are an important cryptographic primitive and have been
used as a building block of a variety of cryptographic applications such as access
control, one-time signature, electronic payment, on-line auction, etc.

In particular, there are many micropayment schemes based on one-way hash
chains, including PayWord [8], NetCard [1], micro-iKP [5] and others.

By definition, micropayments are electronic payments of low value. Other
schemes designed for payments of high value normally use a digital signature
to authenticate every payment made. Such an approach is not suitable for mi-
cropayments because of high computational cost and bank processing cost in
comparison with the value of payment.

The use of hash chains in micropayment schemes allows minimizing the use
of digital signature, whose computation is far slower than the computation of a
hash function (according to [8], hash functions are about 100 times faster than
RSA signature verification, and about 10,000 times faster than RSA signature
generation). Moreover, because a whole hash chain is authenticated by a single
digital signature on the root of chain, successive micropayments can be aggre-
gated into a single larger payment, thus reducing bank processing cost.

There are a variety of improvements to hash chains. For example, in the
PayTree payment scheme [7], Jutla and Yung generalized the hash chain to a
hash tree. This construction allows the customer to use parts of a tree to pay
different vendors. Recently, researchers have proposed a number of improved

@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 218-228, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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hash chains, which are more efficient in terms of computational overhead and
storage requirement [3, 6,11, 4].

This paper is organized as follows. In section 2 we introduce the notion of
multi-dimensional hash chains (MDHC for short). We also analyze efficiency of
this construction and show that RSA modular exponentiations could be used
as one-way hash functions of a MDHC. Section 3 describes two cash-like mi-
cropayment schemes based on MDHC, which have a number of advantages in
terms of efficiency and security. In section 4 we also examine some possible im-
provements to PayWord and similar schemes. Finally, section 5 concludes the

paper.

2 Multi-Dimensional Hash Chain

2.1 Motivation

The notion of MDHC originates from one-way hash chains and one-way accu-
mulators [2]. Here we briefly describe these two constructions.

A hash chain is generated by applying a hash function multiple times. Suppose
that we have a one-way hash function y = h(z) and some starting value x,,.
A hash chain consists of values zg,x1,x2,...,x, where x; = h(x;41) for i =
0,1,...,n— 1. The value xg = h™(x,) is called the root of hash chain. The figure
below depicts a hash chain of size n:

h h h
O«<————O0<«<— 0=« ----0<«<—O

X0 | ) Xn -1 X

Fig.1. A one-way hash chain

In contrast, a one-way accumulator is the output of multiple hash functions,
each of them applied only once:

y = ha(ha(...(hm(2)))) - (1)

In order to ensure that the output is uniquely determined regardless of the
application order, functions hi,ho, ..., hy,, must be in pairs commutative, i.e.
hz(hj (.TJ)) = hj(hz(l‘)) for any x.

Combining the two constructions described above, we can define a multi-
dimensional hash chain as the result of multiple applications of different com-
mutative hash functions, so the root of an m-dimensional hash chain is:

Xo = hi* (hy? (- (b (XN)))) - 2)

It is necessary to note that MDHC differs from other generalizations of normal
hash chain such as hash tree, which is used in PayTree scheme. In particular such
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trees are generated from multiple leaf nodes, while a MDHC is generated from
a single starting value (i.e. the value Xy above).

2.2 Definitions
We begin with necessary definitions.

Definition 1. Two functions hi,he : X — X are called commutative if hy
(ha(z)) = ha(h1(z)) for any z € X.

Definition 2. A one-way function h : X — Y is called one-way independent of
one-way functions hy, ha, ..., hy, of the same domain if for any x € X, computing
h=1(z) is intractable even if values hy*(x), hy*(x),..., hi;}(x) are known.

We now define MDHC as follows.

Definition 3. Let hy, ho, ..., hy, be m one-way hash functions that are in pairs
commutative and every of them is one-way independent from all others. An
m-dimensional hash chain of size (n1,na,...,nm) consists of values Ty, k... k.,
where:
Tk hzyeons ik = P (Thot oz it 1o o) (3)

fori=1,2,...mand k; =0,1,....,n; .

The value XN = Zn, ny,....n., 15 called the starting node, and the value Xo =
Z0,0,...0 @S called the root of the MDHC, which is uniquely determined from Xy
due to commutativity of hash functions:

m

Xo = By (hy? (e (R (Xn)))) = [ [ A (Xw) (4)

i=1

As an illustration, the figure below depicts a two-dimensional hash chain of size
(3,2):

Xy = Xop X190

O =< (O 5 O =< @]
\ J
X1 O== O = (] o
\
hy
hy
O O O = @]
XN= X3’2

Fig. 2. A two-dimensional hash chain
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2.3 Efficiency Analysis

In recent literature, there are a number of improvements to one-way hash chains
that aim to be more efficient in terms of computational overhead and storage re-
quirement. A widely used metric for one-way hash chain efficiency is the storage-
computational complexity, which is the product of the traversal overhead and
the storage required to compute consecutive nodes of the hash chain.

It is easy to see that a linear hash chain size of n has storage-computational
complexity of O(n). In fact, if we precompute and store all nodes (storage
of O(n)), then no computation is needed when a node is requested (traver-
sal of O(1)). Alternatively, we can store only the starting value, and compute
every node from the beginning each time it is requested. This approach requires
storage of O(1) and O(n) computations. Also, if we store each of ¢ nodes, then
storage of O(n/t) and O(t) computations are required. So, in any case, the
storage-computational complexity of the linear hash chain is O(n).

In [3,6,11] the authors have proposed new techniques that make traversal
and storage more efficient, which require O(log, n) computations and O(log, 1)
storage, resulting in storage-computational complexity of O(log22 n). Recently,
Hu et al. [4] have presented a new hierarchical construction for one-way hash
chains that requires O(log, n) storage and only O(1) traversal overhead.

In our case of m-dimensional hash chain of size n (for simplicity we assume
all dimensions have the same size ny = ny = ... = n,, = n), the number of
nodes is N = (n + 1)™. If we store only the starting node of the chain (storage
of O(1)) then maximal number of calculations required to compute any node
is nm = nlog, N, or log, N if we select n = 1. In that case the storage-
computational complexity of MDHC is O(log, N), which is equivalent to the
results in [4].

The advantage of MDHC is its simple implementation that does not rely on
the so-called pebbling technique, which is used in the constructions mentioned
above. However, the main limitation of this construction is the fact that hash
functions have to meet the conditions described in the definition of MDHC. The
RSA modular exponentiation is known to meet these conditions, but it is not as
fast as the traditional hash functions, e.g. MD5 or SHA.

2.4 RSA Modular Exponentiation

Let consider the function of RSA modular exponentiation:
y = 2° mod M (5)

where ¢ is some constant value and M is an RSA modulus, which is a product
of two large primes of equal bit length p and gq.

According to [2], the RSA modular exponentiation functions with appropri-
ately selected exponents could meet MDHC requirements.

First, obviously these functions are in pairs commutative:

hi(h;(z)) = % mod M = hj(h;(x)) . (6)
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Second, one-wayness of these functions is derived from the RSA assumption
[9], which states that the problem of finding the modular root z = y'/¢ mod M
is intractable.

Finally, regarding one-way independence of functions, Shamir [12] showed that
if ¢ is not a divisor of the product ¢; ¢s ... ¢, then the modular roots yl/c1 mod
M, y*¢ mod M, ..., y/°» mod M are insufficient to compute the value of
y'/¢ mod M.

Therefore we can use the functions of RSA modular exponentiation as one-way
hash functions to construct multi-dimensional hash chains.

In that case we have following recursive expression:

xkl’kZ)“wkiw'wknz = (‘rkl)kZ"u7ki+17"'7k7rL)Ci mOd M (7)

fori=1,2,....m, k; =0,1,...,n; and where ¢, co, ..., ¢;, are exponents of RSA
functions hq, hs, ..., by, respectively.

Note that if one knows the factorization of M (i.e. knows p and ¢), then one
can compute X quickly by using following expression:

ﬁ c;* mod E
Xo= Xy it mod M (8)

where E = (M) = (p—1)(¢ — 1), and ¢ denotes the Euler’s totient function.

The expression above consists of only one modular exponentiation with mod-
ulus M and log, N modular multiplications with modulus E. Since a multipli-
cation is far faster than an exponentiation, this expression allows us to compute
Xo from Xy in a very effective manner.

3 Cash-Like Schemes Based on MDHC

Cash-like payment schemes use the notion of electronic coin, which is an authen-
ticated (by the bank) bit string that is easy to verify, but hard to forge. Examples
of such coin are hash collisions (as in MicroMint [8]), or digital signatures (as in
Ecash [10]).

Let’s recall the definition of MDHC. If we select the size of the hash chain
with n = 1 then all nodes X; = x0,0,...,1,...0 (with all kj; = 0, except k; = 1)
have the same hash value: h;(X;) = Xo. So we can use a pair (X;,h;) as an
electronic coin since:

— It is easy to verify by just one hashing.

— It is hard to forge because hash functions h; are one-way, and their one-way
independence assures that coin forgery is impossible even if one knows other
coins with the same root Xj.

As a proof of that concept, we suggest two micropayment schemes based on
MDHC with the RSA modular exponentiation. We refer to these as S1 and S2
schemes.
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3.1 The S1 Scheme

We assume that there are three parties involved in a micropayment scheme,
namely a bank (B), a customer (C) and a vendor (V). B is trusted by both C
and V.

SETUP:

— B selects an RSA modulus M = pq where p and g are large safe primes of
equal bit length. A prime p is called safe if p = 2p’ + 1 where p’ is also an
odd prime.

— B chooses m constant values c1, ca, ..., ¢;, that satisfy the condition of one-
way independence, i.e. each ¢; is not a factor of [] i Ci- These values to-
gether with modulus M are public parameters and can be used for multiple
coin generations.

— To generate m coins, B picks a random value Xy and computes:

C =cicg...o;mmod B where E=(p—1)(¢g—1) , (9)
Xo = h1(ha(...(hm(XN)))) = Xy mod M | (10)
Cc{l mod E

X; = hl(hg((hz_l(hH_l((hm(XN))))))) = XN

fori=1,...m.
Now B has m coins (X, ¢;).

— B keeps X in a public list of coin roots.

— For prevention of double-spending B keeps another list of all unspent coins.
In addition, B can also generate vendor-specific as well as customer-specific
coins by using some bit portions of constants ¢; to form vendor ID and
customer ID, similar to the technique used in MicroMint scheme.

— C buys a sufficiently large number of coins from B before making purchases.

mod M (11)

PAYMENT:

— C pays a coin (X;, ¢;) to vendor V.

— V verifies the coin by computing Xo = X;* mod M, and checks if Xj is in
the list of coin roots. Note that this list is relative small and does not change
frequently so C could keep it locally.

— To assure that a coin was not double-spent, V either checks the list of unspent
coins on-line with B, or checks (off-line) the list of coins he already received
if the coin is vendor-specific.

REDEMPTION:

— V deposits the coins he got from customers to B and receives an amount
corresponding to number of coins.

At the end of the coin validity period, C can sell unused coins back to B or
exchange them for new coins.
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The proposed above scheme has several advantages:

— Coins are hard to forge under the RSA assumption.

— Payment can be made off-line by using vendor-specific coins.

— If customer-specific coins are not used, the scheme is anonymous and un-
traceable because coins contain no customer information and there are no
links between coins.

However, the disadvantages of this scheme are:

— Generation and verification of coins is not very efficient. Each coin requires
one modular exponentiation to generate or verify it, which is much slower
than normal hash calculation.

— The list of unspent coins can be very big, though this is a common problem
of most coin-based schemes.

To overcome these disadvantages, we propose a modified scheme with larger
size hash chains (i.e. with n > 1). In this scheme, B generates m chains of coins
at once, rather than m single coins. Each coin chain is similar to the hash chain
used in the PayWord scheme.

3.2 The S2 Scheme
SETUP:

— B selects public parameters M and ¢y, co, ..., ¢, in the same way as in the
S1 scheme. Let n be the size of the hash chains (for simplicity we assume all
dimensions have the same size i.e. ny = ng = ... = n,, = n).

— B picks a random value Xy and computes:

C=clc5...c;,mod E where E=(p—1)(¢—1) , (12)
Xo=Xx"mod M , (13)
X=Xy % ™ P od M fori=1,2,..,m . (14)

Now B has m coin chains (X, ¢;). Each of those chains contains exactly n
coins (x; 5, ¢;, §) for j =1,2,...,n where:

Ci

Tij=a; 4y mod M fori=1,2,..,mand j=0,1,...,n—-1, (15)
Tin = ‘XZ and Z;,0 = X() . (16)

The coins from one coin chain must be paid to the same vendor.

— For double-spending prevention, now there is no need to keep track of all
unspent coins. Instead, B keeps the list of first coins of all unused chains.

— As in the S1 scheme, coin chains can be vendor-specific as well as customer-
specific.

— C buys coin chains from B before making purchases.
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PAYMENT:

— C pays a vendor V the coins from a coin chain. The first coin of the chain
(x4,1,¢i,1) is verified by computing X = ;9 = axff mod M and lookup of
X in the list of chain roots. It is also checked for double-spending by lookup
in the list of unused chains. Any subsequent coin is verified by checking that
it hashes to the previous coin in the chain, as in the PayWord scheme:

hi(xi,jJrl) = mi,;—j—l mod M = Tij - (17)
REDEMPTION:

— V deposits the last coin (i.e. the coin with highest index j) of each coin
chain he got from customers to B and receives an amount corresponding to
number of coins.

Comparing with the S1 scheme, this modified scheme retains all advantages
of S1, but storage requirement is reduced by factor of n. In fact, B keeps track
of only the first coins of n-coin chains.

Another advantage of this scheme is more efficient coin generation. Because B
knows the factorization of M, he can compute the starting node of a coin chain by
just one modular exponentiation. Thus the cost of this computational expensive
operation is shared over all coins of the chain. Similarly, B can also verify coin
chains that he got from vendors by computing one modular exponentiation per
chain.

Generally speaking, the S2 scheme combines the advantages of two different
approaches. A first approach uses unrelated coins that are convenient for pay-
ments to multiple vendors. Another approach uses chains of coins that are easy
to generate and verify. In our scheme different coin chains are unrelated, while
coins within a chain are generated and verified only by repeated hashing.

4 TImprove PayWord Scheme by Using MDHC

The PayWord scheme has been proposed in [8]. It is based on one-way hash
chains described in Sect. 2. In this scheme, before making purchases a customer
C generates a hash chain xg, 1, ...z, (that is a chain of paywords) and sends his
signature of the root xo to the vendor V. The customer then makes a payment
to V by revealing the next payword, which can be verified by checking that it
hashes to the previous payword.

The PayWord scheme allows a vendor to aggregate successive payments from
a customer by sending only last payword he got from the customer to the bank
for redemption. However, a vendor cannot aggregate payments of different cus-
tomers, nor can a customer use the same chain of paywords to make payments
to different vendors, because there is no way to merge different hash chains.

By using MDHC, we can improve PayWord scheme in a number of ways.
Below we briefly describe two of such possible improvements. Note that some
irrelevant details in these descriptions are omitted for convenience.
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4.1 Multiple Denominations

In the original PayWord scheme the size of the hash chain must be large enough.
For example, if each micropayment is worth 1 cent and total payment is up to
$100, then a chain with size of 10,000 must be generated, which requires 10,000
hash calculations.

We can reduce the number of hash calculations by using MDHC instead of
linear hash chain. The idea is that every dimension of MDHC will be associated
with different weight (or denomination) according to some number system (e.g.
decimal or binary).

Suppose we have an m-dimensional hash chain with size of n. If one step in
the (i+1)* dimension is equivalent to (n+1) steps in i** dimension, then a node
Ty ks,....k,, COITesponds to the value:

ki +ke(n+1) +ks(n+ 12+ .+ kp(n+1)™ 1. (18)

The maximal value that could be represented by this hash chain is N =
(n+1)™ —1 and the number of hash calculations required to generate the hash
chain is nlog, ,, (N + 1). In the case of a binary number system (i.e. n = 1) it
is logy (N + 1).

Returning to the example above, the hash chain now requires just 14 calcula-
tions to generate.

Similarly, verification of the payword also requires significantly less calcula-
tions than in the case of the original PayWord scheme.

4.2 Multiple Vendors

In the PayWord scheme a hash chain can be used for payments to only one
vendor. A customer must generate different hash chains for payment to different
vendors.

We can overcome this drawback by using MDHC as well. Let every vendor
V; in the payment system is assigned a different hash function h; (i.e. a public
parameter ¢; in the case of RSA modular exponentiation).

Now, in order to make payment to m different vendors, a customer generates
an m-dimensional hash chain with their public parameters ¢; and signs its root.
The customer then makes a payment to V; by revealing the next payword in the
it" dimension, starting from the root of hash chain.

In particular, if the current payword is xg, k... .k
ith dimension will be Tk, ko, ki+1,. k-

At the end of the day, vendors deposit the last paywords they got to the bank
for redemption. The bank picks the last payword (which is the one with highest
indices) among paywords with certain root (which all come from one customer).
Finally, the bank credits vendors V; by the amount equivalent to k;, and debits
the customer’s account accordingly.

There could be other possible improvements to the PayWord scheme by using
MDHC. For example we can aggregate payments of different customers into a
single MDHC that is generated by the bank, or we can construct a payment
scheme with multiple currencies, etc.

k.., the next payword in

iyeees
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5 Conclusion

The proposed multi-dimensional hash chain is a simple and efficient construc-
tion for one-way hash chains. Whereas a traditional one-way hash chain has a
storage-computational complexity of O(n), our construction achieves a complex-
ity of O(logyn), which is comparable with the best result among other recently
proposed constructions.

We show that multi-dimensional hash chains can be very useful in micropay-
ment schemes. In particular, we suggest two cash-like micropayment schemes
based on MDHC with RSA modular exponentiation as one-way hash function.
The first scheme utilizes coins that are hard to forge under the RSA assumption.
This scheme could be also off-line and untraceable. The second scheme has addi-
tional advantages including very efficient coin generation/verification and much
less storage requirements.

We also point out some possible improvements to PayWord and similar
schemes by using MDHC, including payword chains with multiple denomina-
tions, and a scheme that allows payment to multiple vendors using the same
payword chain.

An open issue for our construction is whether another one-way hash function
can be found that meets MDHC requirements, and at the same time is more
efficient than RSA modular exponentiation.
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Abstract. We show how to recover the affine parts of the secret key
for a certain class of HFE-Cryptosystems. Further we will show that
any system with branches can be decomposed in its single branches in
polynomial time on average. The attack on the affine parts generalizes
the results from [1,11] to a bigger class of systems and is achieved by
a different approach. Despite the fact that systems with branches are
not used anymore (see [11, 6]), our second attack is a still of interest, as
it shows that branches belong to the list of algebraic properties, which
cannot be hidden by composition with secret affine transformations. We
derived both algorithms by considering the cryptosystem as objects from
the theory of nonassociative algebras and applying classical techniques
from this theory. This general framework might be a useful tool for future
investigations of HFE-Cryptosystems, e.g. to detect further invariants,
which are not hidden by composition with affine transformations.

Keywords: HFE, finite fields, branches, nonassociative algebra, mixed
centralizer, affine transformations.

1 Introduction

At Eurocrypt’88 Imai and Matsumoto (see [7]) proposed a promising cryptosys-
tem called C* based on multivariate polynomials, especially useful for smart-
cards. To speed up computation and to enhance security, they introduced the
idea of branches. C* was broken independently by Dobbertin in 93 (unpublished,
see [4,5]) and by Patarin in 95 (see [11]). To repair these systems Dobbertin
studied bijective power functions of higher degree, whereas Patarin introduced
the HFE-Cryptosystem and also faster variants, which make use of branches (see
[11,12,13]). The disadvantage of the latter systems is, if an attacker is able to
separate the branches, he also benefits from the speed up, because he can attack
the single branches separately.
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In the beginning probabilistic polynomial time attacks to separate the
branches were only known for very special systems like C*. Later more gen-
eral probabilistic attacks with exponential running time (exponential in the size
of the branches, see [6, 11]) were discovered. As a consequence only systems with
branches of moderate size could be considered to be secure. Thus the speed up
of computation was no longer given and such systems were not used anymore.
It remained an open question, if there exists an efficient algorithm to recover
big branches for an arbitrary HFE-Cryptosystem. In Section 4 we consider this
question from the perspective of nonassociative algebras. This will yield to an
algorithm to recover the branches for an arbitrary system in polynomial time on
average and thus proving that the answer is no. This gives another item on list
of algebraic properties, which cannot be hidden by the HFE-principle.

Section 3 is concerned with the secret affine transformations used to construct
the trapdoor. It is an open problem, if the security is affected when linear map-
pings are chosen instead of affine. At first we briefly describe what we understand
by eliminating the affine parts. By applying classical techniques from the theory
of nonassociative algebras we show, that the affine parts can be eliminated for
certain classes of HFE-systems, including systems like Sflash. This generalizes
the results in [1, 11], but we make use of a different approach.

Putting an HFE-system into the perspective of nonassociative algebras re-
quires some technical efforts in the beginning. We will see, that this view finally
simplifies finding the invariats that yield to our attacks. We are confident that
there might be other invariants, which can be discovered this way.

2 Preliminaries

We assume that the reader is familiar with the theory of finite fields and mul-
tivariate polynomials as can be found in [10] for example. In the following we
briefly sum up some facts about representations of mappings over finite fields and
HFE-Cryptosystems. A detailed description about encryption and signing with
HFE-Cryptosystems can be found in [11, 13]. More details about representations
of mappings are given in [§].

With Fy, ¢ = p™, we denote the finite field of characteristic p and with
F,n the extension of degree n. We will often consider F» as an n-dimensional
F4-vector space and via a choice of a basis we will identify it with the vector

space . Elements (a1, ..., ay) of Fy will often be denoted by a. The univariate
polynomial ring is denoted by Fy»[X] and the multivariate polynomial ring by
Fynlz1, ..., z0].

Any mapping over Fy» can be uniquely represented by a polynomial

q" -1

P(X)= )Y aX'a €Fp
=0

and of course every such polynomial P(X) induces a mapping by a — P(a),a €
Fgn. Any mapping from Fy into F}/ can be uniquely represented by a vector of
polynomials
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P1(x1,- s xn), -y Pal(T1, -, 20)), 0s € Fglaa, ..., 2]

with the property, that if a monomial ﬂa:lf ... zln occurs in py, then I; < ¢ for

n
1=1,...,n. We will call such a vector reduced. Of course, as above, every such
vector induces a mapping on Fp.
For any choice of a basis by, ..., b, of Fyn, there exists for every mapping F'

over Fyn a unique mapping f = (f1,..., fn) over Fy with

F(a) = F(Z aib;) = Z fi(@)bi

and vice versa.

Thereby the unique polynomial P(X) of degree d < ¢™ — 1 with F(a) = P(a)
is called the univariate representation of F'. The uniquely determined reduced
vector (p1(z),...,pn(z)) with f(a) = (p1(a),...,pn(a)) is called the multivariate
representation of F'.

We define the degree of a vector of polynomials as max{deg(p;)|i = 1,...,n}.
With this definition the above correspondence is degree preserving in the sense,
that if the univariate representation has degree d, then the multivariate repre-
sentation has degree g-weight of d. We briefly explain, what we understand by
the g-weight. Let d = Zé:o ¢iq',0 < ¢; < q the g-adic representation of d. Then
the g-weight is the sum Zé:o .

Affine mappings S on Fy will be as usual denoted by Az + ¢, where A de-
notes an n X n-matrix, x = (z1,...,o,) and ¢ € Fy . To keep the description in
the rest of this paper as simple as possible, we consider the result of a matrix-
vector-multiplication as a row vector. Thus Az + ¢ is already the multivariate
representation of the affine mapping S. With this notation the multivariate rep-
resentation of the composition S o f, where f is a mapping over Fy with multi-
variate representation p := (p1,...,pn) is given by Ap + ¢. Moreover a reduced
vector (p1, ..., pn) will sometimes be identified with the corresponding mapping.

Now we very briefly describe a basic HFE-Cryptosystem with branches. The
secret key consists of:

1. n=n1+ -+ ny, a partition of n.

2. Field extensions [Fyn,. over a fixed base field IF, for k = 1,...,[. The fields will
be represented by the choice of an irreducible polynomial F,[X] to construct
Fyn. and an Fy-basis, which determines the isomorphism between Fj* and
Fyne.

3. 1 HFE-polynomials of degree dy, that is polynomials of the form Hj(X) =
Zznj_:lo BijeXTTT + 37 0 X7,
where Bk, ik € Fgni, k=1,...,1.

4. Two affine bijective transformations S(r) = Az + ¢,T(v) = Bx + d of Fy.

This constitutes the secret key. The public key is derived by computing the
multivariate representation for each of the Hy denoted by
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(h1(z1,...,zn,), coe s (z1, . )
(hn1+1(mn1+17"'7xn1+ﬂ2)7 7hn1+n2($ﬂ1+17'"7‘rﬂ1+n2)) (1)
(Pr—ny 1 (Tn—ny 41y s @n)s oo s B (T 41, -« - Tn))

Each of these n;-tuples constitutes a branch. Combining these n;-tuples gives an
n-tuple of polynomials (hq,...,hy,) in n variables. The public key (p1,...,pn)
is given by the composition T o (h,...,h,) o S and cousists of n quadratic
polynomials in n variables. This implies that the base field I, is public. Note,
that the polynomials in different branches have different sets of variables and
these are mixed up by S, T.

The public key is the multivariate representation of a composition of map-
pings, where mappings over Fgn;, 72 = 1,...,1 are involved. This implies, that
an encryption can also be considered as chain of compositions like it is given in
the following diagram. This different point of view is important for our analysis.
Thereby ¥ denotes the canonical isomorphism from Fy into Fg* x -+ x Fj* and
¢i the canonical isomorphism from Fy? into Fyn; given by the chosen basis.

—1
P1 H, o
mn1 ni1
Fr 2 Fny = Fyny 2 F7
vt
T

) n n
/ IFq —>]Fq

NS

s
Fy = Fy B
Fo 2 By B By 20

Now it becomes apparent, that if an attacker is able to recover the branches,
he is able to attack every branch.

A basic HFE-Cryptosystem is a system where [ = 1. The nowadays proposed
schemes are variants of this basic system as for example Sflash or Quartz (see [3, 2]).

In some descriptions the univariate polynomials have a constant term. Since
these can be captured by T', we skipped it in our description (see also the next
section). In the sequel the multivariate and univariate representations are con-
sidered with respect to the bases chosen by the designer. For our attacks we do
not need to know these bases since we will show, that all necessary information
can be computed from the public key.

Now we are going to show how to construct a nonassociative F,-algebra from
an HFE-Cryptosystem. This will be the foundation for the algorithms presented
later. By a nonassociative F4-algebra ¢/ we understand an F,-vectorspace with
a multiplication, which is so that

Mzy) = (Ax)y = z(\y) for all A e Fy,z,y € U,

and which is also bilinear (i.e. (z +y)z = zz + yz,2(x + y) = zx + 2y). The
associative law is not being assumed. An introduction to this subject can be
found in [14].

Given an HFE-Polynomial H(X) = Z?;:IO B X0+ 57" X9 we define
a multiplication on Fg» as follows:

M(a,b) :==H(a+b)— H(a) — H(b),a,b € Fyn.
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Since M is given by the sum Z?;:lo Bij(a? b?" 4 b9 a?") this multiplication in-
duces indeed an nonassociative and commutative algebra. Again we can derive
n polynomials m; in x1,...,2, and y1, ..., Y, which give the multivariate rep-
resentation of the mapping M. This is achieved similar to the univariate case,
but here we have the defining relation

M(Z a;b;, Z Bibi) = Z mi(a, 3)bi,
i=1 i=1 i=1

where bq,...,b, is a basis of Fgn. If L, Ly denote the linear part of the secret
key of an HFE-Cryptosystem considered over Fy», then

M'(a,b) := La(M(L1(a), L1(b)) induces a second algebra.

Note, that the multivariate representation of M’ can be calculated from the
public key by computing p;(x + y) — pi(z) — pi(y). We will see, that this still
holds when the secret transformations S, T are affine (see Section 4).

3 Eliminating the Affine Parts of S,T

Recall that a polynomial ¢(x1,...,2,) is called homogeneous of degree d, if all
monomials that occur have the exact degree d. We start with a lemma, which is
crucial for our algorithm. It shows that the affine parts of S, T are not mixed up
properly by the application of S, T, if the polynomial H(X) is also homogenous

in the sense, that all monomials that occur are of the form 3;; X a'+d

Lemma 1. Let Fy # Fy. Further let S(z) = Ax + ¢, T(x) = Bz + d be bijec-
tive affine mappings over Fon with univariate representation Ly + ¢, Ly +d and
H(X) = Z:L]_:lo Bij X+

If p1,...,pn denotes the public key of the resulting cryptosystem, then p;(x) =
qi(z) + li(x) + a;, where a; is a constant, l; is linear and q; is homogeneous
of degree 2. Furthermore (q1,...,qn) is the multivariate representation of Lo o
Ho Ll.

Proof. Let (hq,...,hy,) denote the multivariate representation of H. Then the
public key, which is the multivariate representation of (L 4+ d) o H o (L1 + ¢),
equals the reduced vector of the composition To(hq, ..., hy)oS. Due to the shape
of H(X) the polynomials h; are homogeneous of degree 2, since the base field is
not [F5. Otherwise the reduction involved in the computation of the multivariate
representation would imply to substitute 27 by z; and the h; could also contain
monomials of degree 1.
By comparing the public key p1,...,p, with the reduced vector of T o (hq,
.., hp) 0 S one sees, that p; = ¢;(x) + I;(x) + a;, where (q1,...,q,) represents
Ly o H o Ly. From this the result follows as requested.

We restrict to explain our attack for a simple mapping with one branch, i.e. a
basic HFE-Cryptosystem with a simple hidden polynomial. The attack for an
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arbitrary system follows straight forward from this special case, but a general
description would be very technical. Therefore we will only give briefly some
remarks about the generalization at the end of this section.

Thus, we will restrict to show how to eliminate the affine parts of S, T, if
the base field F, equals Fom, where m > 2 and H(X) = X9 %9 i # j. By
eliminating we understand that we will compute d and A~!(c), because once d
and A~!(c) are known it is easy to transform the system T o (hy,...,h,) 0 S
into Bo (hi,...,h,) o A. Note, that if (y,x) is a plaintext/ciphertext pair of the
first system, then (y —d, z+ A~!(c)) is the corresponding pair of the second one
and vice versa. Thus the task to decrypt an intercepted ciphertext of the system
with affine transformations can be reduced to the task to decrypt a ciphertext
of the according system without the translation vectors.

What we showed above is surprising, because one would expect that the elimi-
nation of the translations would imply the knowledge of ¢ and not only of A~*(c).
This is not the case for our approach. One can show that an algorithm to com-
pute ¢ would yield to an algorithm to compute A. Consequently eliminating the
translations and computing c are different problems and very likely of a different
complexity. ‘

Without loss of generality we assume that H(X) = X9+ i # 0. Otherwise
consider ((Ly + d) o (BX7")) o (X7 o (X9 *9")) o (L1 + ¢), which gives an
equivalent system, i.e. a system with different S, T but exactly the same public
key and a hidden polynomial of the desired form. In the general description of
HFE-systems we mentioned that the constant term in the hidden polynomial
can be skipped. With the above notion of an equivalent system one can easily
explain why this is true. Similarly as above one shows, that an HFE-system with
a hidden polynomial H(X) possessing a constant term is equivalent to a system,
where the hidden polynomial has no constant term.

For H(X) = X9 *1,i # 0 we have M (a,b) = a? b+b? a. A natural question in
the theory of nonassociative algebras is to determine all annihilating elements,
i.e. to determine all @ € Fyn such that the corresponding mappings M (a,-) or
M(-,a) (the so called left or right multiplications) vanish on Fgn. Recall that
in our case M and M’ are always commutative and therefore we can restrict to
consider left multiplications. We begin with a simple lemma.

Lemma 2. Leti & {0,n}, i.e. X7 # X.

1. If M(a,b) =a%b+b%a =0 for all b € Fyn, then a = 0.
2. If M'(a,b) =0 for all b € Fyn, then a = 0.

Proof. For a # 0 the polynomial a? X + X q has less than q" zeros. This proofs
the first assertion. The second part follows immediately from the fact that the
linear mappings involved in the definition of M’ are always bijective.

Now we will show how to relate the problem of eliminating the translations to
the problem of finding annihilating elements.
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The public polynomials are the multivariate representation of P(X) := (L2 +
d)oX? X o(Ly+c). From this we can compute the multivariate representation of

P(X +Y) + P(X) = Lo(Li(X)7 Ly (Y) + L1 (Y)? L1 (X) + L1 () Ly (Y) + L1(Y) L1 (c))
+La (L1 (V)" L1 (Y)).

A Usage of Lemma 1 gives the multivariate representation of the last term
Lo(L1(Y)9 Ly(Y)). So we can eliminate this term by subtracting it. This way
we get the multivariate representation of

Lo(Li(Y)? (L1 (X) + ¢) + Ly(X + ¢) Ly(Y)) = M'(X + L7 Y(c), Y).

From Lemma 2 we have that M’(a + L7 *(c),Y) is the zero mapping iff a =
L '(c). This yields to the following algorithm to eliminate the translations.

1. Compute the multivariate representation

<Q1(x1a"'7xn7y17"'7yn)a'"aQTL(xla"'7In7y1a"'7yn))

of M'(a+ Ly (c),Y) by calculating p; (21 4+ y1, - - -, Tn + Yn) +pi(T1,. .., T)
and eliminating the multivariate part describing Lo(L;(Y)? L1 (Y)).

2. Compute ¢;(z,e1) for i = 1,...,n, where e; denotes the first canonical basis
vector (1,0,...,0). This gives an inhomogeneous system of n linear equa-
tions. If it has rank n compute the unique solution, which gives A=!(c). If
the rank is < n, add the next n equations ¢;(z, e2) and so on, until rank n
is reached.

3. Once ¢’ := A71(c) is computed, compute p/(x) = p;(x + ¢’) for all i. This
gives the multivariate representation of (Ly +d) o X4 X o L;.

4. Compute p;(0) for all . This gives the vector d, which can be finally elimi-
nated.

This algorithm is dominated by the running time for the Gaussian elimination
for a system with at most n? linear equations in n variables. Hence the running
time is O(n?).

If this algorithm is applied to a more general HFE-system as for example
a system with hidden polynomial H(X) := Z?J;lo Bi; X9+ i # j then the
annihilating elements a have to fulfill

M(a,b) =" Bia?b? + b7 a? =0 for all b € Fyn.
j
For a # 0 this yields to a polynomial of the form
> Bij(a? X7 4+ X7 at),
(]
which has to be constantly zero. When sorted by X this polynomial has the
shape 3 ;o ri(a)X ql7 where all the r; are polynomials in a and I a proper index
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set. Thus a is an annihilating element iff r;(a) = 0 for all [ € I. By construction
this is the case for ¢ = 0 and it is reasonable to assume that in most of the
cases this is the only solution. This means it makes sense to assume, that the
multiplication M or M’ respectively of an HFE-Cryptosystem has the properties
from lemma 2. We get the following theorem.

Theorem 1. Given an arbitrary HFE-Cryptosystem, or a "—"-system like
Sflash, over a field Fy # Fo with secret affine transformations S = Az + ¢ and
T = Bz +d, then c,d can be eliminated with O(n*) field operations on average.

4 A Fast Algorithm for Separating the Branches

In [11] and [12] a probabilistic polynomial time algorithm to separate the
branches is described assuming the underlying HFE-polynomials admit special
syzygies. This algorithm is based on the Coppersmith-Patarin attack on Dragon-
Schemes (see [12]). We will introduce an algorithm which is also based on the
Coppersmith-Patarin attack with a similar running time, but does not require
syzygies anymore and is therefore applicable to any HFE-Cryptosystem.

We denote as usual with S(z) = Az + ¢,T(z) = Bz + d the affine transfor-
mations used to build up the HFE-Cryptosystem. The crucial step of our attack
(which is the same as in [11,12]) is the computation of a matrix C = AAA™
where

A1 0 0 --- 0
0 A, 0 --- 0
A=| 1 0 A3--- 0
o0 o0
0 0--- 0 A

Thereby [ denotes the number of branches and A the representation matrix of
a linear mapping = — Az, A € Fyni, where Fyn,. is the field belonging to the
k-th branch, 1 <k <.

Then from C' a matrix G is derived, such that

0
0
AG = 0

, where W; is a block matrix.

o0 .0
0 0 -0 W

To compute G classical linear algebra related to the theorem of Cayley-Hamilton
and Jordan-Normal forms is needed, which is not very surprising due to the
structure of C. We skip the details, because this is done in Shamir’s attack on
the Oil&Vinegar-Schemes [9] and also in [11,12].
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Once G is known the separation is rather straightforward as we will briefly
indicate now. As mentioned in Section 2, for the k-th branch there exists a unique
set of variables

Vk = {1‘2?;11 ng4+1 7$Z§=1 nj}'

At first one computes pi(x) := p;(Gz) for i = 1,...,n. The polynomials p; have
the property, that if zsz; is a monomial occuring in p} then x4, z; € Vj, for a
proper k (see also the composition a few lines below). Thus the monomials in p/
reveal the sets Vi and moreover can be grouped according to the unique set Vj
containing their variables. Below we noted down the composition p;(Gx) as the
composition of column vectors. This deviates from our usual notation, but the
effect of the composition with G is this way much better visualized.

hl(acl, . ,(Enl)
hnl(ﬂjl,...,xnl)
(To 0S)oG =
hn—nl+1($n—nl+1a .. 7$n)
hn(‘rnfnﬂrlv e 7xn)
hl(l“l,...,$n1) ll(l‘l,...,$n1)—|—cl
By (1,00 Ty) I, (X1, o Ty ) + Cny
To o
hnfm (-Tnfnrkla ceey ‘rn) ln7m+1(mn7’m+17 v 7xn) + Cn—n;_4
hn(mnfnrklu"'vxn) ln(mnfnrklw"u‘rn) +Cn)

The above composition shows that this way the different sets V) are indeed
revealed.

Once this composition is computed one gets by applying Gaussian elimination
to pi,...,p, the desired polynomials, where the first n; polynomials have only
variables from V7, the next ns polynomials have variables from the set V2 and
so on. This is possible due to the above described property of the monomials in
p}. This completes the separation.

It might happen that the composition with G does not reveal all branches,
but more clusters of branches. In this case the clusters are attacked separately
afterwards, and the separation is refined step by step.

To prove that such a G can be computed with high probability, we put the key
idea from the Coppersmith-Patarin attack into the perspective of nonassociative
algebras. In [12] it was used, that the only linear mappings L over a field F» with

L(xzy) = xL(y) for all z,y € Fyn (2)
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are multiplications with a field element in Fg». In the theory of nonassociative
algebras one calls the set of linear mappings L fulfilling equation 2 the multipli-
cation centralizer.

Our generalization is as follows. At first we define a proper multiplication.
Then we introduce the notion of a mixzed multiplication centralizer and prove
that from this a matrix C' can be computed, such that A~*C'A4 is a block matrix.
In the following we show how the multiplications M and M’ from Section 2
extend to systems with branches.

For every field Fyn. we have a multiplication My(a,b),k =1,...,1. We get the
desired multiplication M (a,b) on F4n as follows. We consider the multiplication

on Hic:l Fyni. defined by
((ar, ..., ar), (b,..., b)) — (My(a1,b1),..., Mp(as, by)).
The multiplication M on Fy» is given by
U loM; XX MjoW,

where ¥ is the embedding of Fyn into the product of fields. With (mq,...,my)
we denote the multivariate representation of M. The multiplication M’ on Fyn
is given by M’(a,b) := La(M(L1(a), L1())). The polynomials

mi(z,y) = pi(z +y) — pi(z) — pi(y)

are the multivariate representation of M’. If S, T are affine it is easy to see, that
we get the representation by skipping the constant parts after the computation of
pi(x+y)—pi(x)—p;i(y). This becomes apparent, if one computes the linearization
P(X +Y)— P(X)— P(Y) for the univariate representation P(X) in the same
vein as in section 3.

We define the mized multiplication centralizer to be the set of all linear map-
pings C, C’ fulfilling

C'(mi(z,y),...,my,(z,y)) = (my(z,Cy),...,m,(z,Cy)).
This can also be written as

From this we see, that if C,C’ lie in the mixed centralizer, i.e. they solve the
equation (3), then ACA™!, B~1C'B solve

Z'(m1,...,myu)) = (mi(z, Zy), ..., mu(x, Zy)), (4)

and if Z, Z’ solve (4), then A~'ZA, BZ'B~" solve equation (3). Hence the so-
lutions are conjugated to each other. The centralizer of M’ can be computed
from the public key with Gaussian elimination, when the elements c;;, cgj are set
as unknowns and plaintext/ciphertext pairs are plugged in to get equations in
the unknowns. Now we analyze the mixed centralizer and show that it has the
desired property. For special cases it can be completely determined. We give an
example for fields of characteristic 2.
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Theorem 2. Given the base field Fom. Let M be the multiplication as above
derived from univariate polynomials Hy = X2mk+17 where i, & {0,n;} and
ged(2mik +1,2mm — 1) =1 for k= 1,...,1. Then the centralizer consists of all
pairs (A~Y*ZA, BZB™'), where Z is the representation matrixz of the mapping

a — !P_l((/\l . W(a)l, ey /\l . W(a)l)),
a € Fon and A\ € Fomgeatiynyy for k=1,...,1.

Proof. We only give a sketch of the proof.

At first we restrict to one branch. W. log. we consider the first branch. Let
Ly, Ly be linear mappings over Famn, such that Lo(Mi(a,b)) = Mi(a, L1(b))
with a,b € Fomn,. By choosing b = a the corresponding equation simplifies to

Mi(a, (Li(a)) = a(L1(a))2"" +a*"" Li(a) = 0.

2mi1
For a # 0 this equivalent to (Lla(a)> = Lléa). Thus, Lléa) =04 € Fomgeany in)
and Li(a) = 0,a. Due to our assumption on i; this intermediate field does not
equal Fomn, .
Assume we are given two elements eq, ea, that are linear independent with re-
spect to the intermediate field Fomgeacny i) - It follows that Li(e;) = 0., e1, L1(e2)
= 0.,e2 and

L1(61 + 62) = 961+52 (61 + 62) = L1(61) + L1(62) = 96161 + 96262.

Since the elements are linear independent every linear combination is unique and
thus 0¢, e, = 0., = 0e,. By substituting e; by ae; with o € Fymacany.iy) One
gets, that

Li(aer) = abe, e;.

Via this two properties one concludes by considering an Fymgcd(n,.i1)-basis that
there exist a 6 € Fymeca(ny,i1), such that

Li(ab) = abb

for any element b of this basis and « € Fomeca(n,i1). This proves that Li(z) =
fx. By noting that the image of M;(a,b) contains an Fom-basis of Famn: one
concludes rather straightforward that Lo = L.

To show that the centralizer for product of fields is as stated in the theorem
is tedious and technical. So we skip this part and end our proof.

Understanding the centralizer of an arbitrary HFE-Cryptosystem with
branches is a hard problem. But it is easy to see that all block matrices Z,
where every block Ay represents a multiplication with an element from the base
field [F¢, lie in the centralizer of M. It is very likely and confirmed by our exper-
iments that these are the only elements when H(X) is not as simple as above.
Thus we have the following reasonable conjecture.
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Congecture 1. The elements C' of the centralizer for an arbitrary system with [
branches are the matrices A~*Z A with

A 0 0 0
0 Ay 0 -+ 0
Z=1 10 A3--- 0
S50 L0
00 - 0 A

Thereby A}, denotes the representation matrix of a multiplication with A € F,.

Remark 1. The conjecture does not state anything about C'. As C s only
needed to compute C' but not to complete the actual separation, no further
knowledge about the structure is necessary.

The separation requires the factorization of the characteristic polynomial of C'.
Assuming Conjecture 1 the matrices C' can be diagonalized with only a few
possible Eigenvalues. Consequently the factorization is feasible.

The number of recovered branches depends on the number of different Eigen-
values. If only clusters of branches are recovered, the algorithm can be applied
separately to the different clusters. We have the following result.

Theorem 3. The branches for an arbitrary system can be recovered with O(n®)
field operations on average.

Remark 2. From the proof of theorem 2 we see, that for this special mappings
we can compute the matrix C' by computing all matrices with m/(z,Cz) = 0
for all x € Fonm. From experiments we have that this seems to remain true for
arbitrary HFE-systems over arbitrary characteristic. This variant is a bit faster
as the number of required plaintext/ciphertext pairs obviously does not increase
and the number of variables in the Gaussian elimination is reduced as C’ does
not have to be computed anymore. Thus it makes sense to start with this variant
and extend to the more complex algorithm, if necessary.

5 Conclusion

We showed that if the base field of a given HFE-Cryptosystem is not Fo then
the security is not affected if the secret transformations are chosen to be linear
instead of affine. This was achieved by considering the HFE-system as a nonas-
sociative algebra and showing that from this point of view the affine parts can be
eliminated. It is very interesting to investigate if this approach can be modified
to reveal the secret key. Furthermore we showed that for an arbitrary system
with branches the branches can be separated in polynomial time on average.
Again this was achieved by employing the theory of nonassociative algebras.
Both results were based on the assumption that certain conditions are satisfied
with a very high probability by the algebra we get from a randomly chosen HFE-
Cryptosystem. Therefore it is a very challenging task to find conditions on the
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hidden polynomial H(X), which yield to algebras fulfilling this assumptions.
Clearly finding answers to one of the above problems would yield to a much
better understanding about the security of HFE-Crypto systems.
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Abstract. The Matsumoto-Imai (MI) cryptosystem was the first mul-
tivariate public key cryptosystem proposed for practical use. Though MI
is now considered insecure due to Patarin’s linearization attack, the core
idea of MI has been used to construct many variants such as Sflash,
which has recently been accepted for use in the New European Schemes
for Signatures, Integrity, and Encryption project. Linearization attacks
take advantage of the algebraic structure of MI to produce a set of equa-
tions that can be used to recover the plaintext from a given ciphertext. In
our paper, we present a solution to the problem of finding the dimension
of the space of linearization equations, a measure of how much work the
attack will require.

1 Introduction

In the last two decades, public key cryptography has become an indispensable
part of most modern communication systems. However, due to the threat that
quantum computers pose to cryptosystems based on “hard” number theory prob-
lems, there has recently been great effort put into the search for alternative public
key cryptosystems. Multivariate cryptosystems provide a promising alternative
since solving a set of multivariate polynomial equations over a finite field appears
to be difficult, analogous to integer factorization, though it is unknown precisely
how difficult either problem is.

One of the first implementations of a multivariate public key cryptosystem
was suggested by Matsumoto and Imai [8]. Fixing a finite field k of characteristic
two and cardinality 29, they suggested using a bijective map M defined over K,
a degree n extension of k. By identifying K with k™, we see that M induces a
multivariate polynomial map M. We can “hide” this map by composing on the
left by L1 and on the right by Ly, where the L; : K — k" are invertible affine
linear maps. This gives a map M : k™ — k™ defined by

M(ajl,...,xn):LloMoLg(xl,...,xn):(yl,...,yn).
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@. Ytrehus (Ed.): WCC 2005, LNCS 3969, pp. 242-251, 2006.
© Springer-Verlag Berlin Heidelberg 2006



Dimension of the Linearization Equations of the MI Cryptosystems 243

The map originally suggested by Matsumoto and Imai is the map
M: X — X127

where ged(29% + 1,29" — 1) = 1. The resulting system is the Matsumoto-Imai
(C* or MI) cryptosystem. The public key for MI is the system of n quadratic
polynomials y1, ..., Yn.

Even for a large finite field K, MI is efficient. Unfortunately this scheme was
proven insecure under an algebraic attack [9] that produces so-called “lineariza-
tion equations.” These linearization equations can be swiftly generated from the
public key and known plaintext/ciphertext pairs, and have the form:

Zaijl’iyj + szxz + Zijj +d=0,

where 1, ..., x, are the plaintext variables corresponding to the ciphertext vari-
ables y1,...,yn. Once we have found enough of these equations, and hence the
aij,b;,c; and d, we can substitute in the ciphertext to produce a system of lin-
ear equations in the plaintext variables. Patarin showed that there are enough
linearization equations to produce enough linearly independent linear equations
in the plaintext variables, which can then be used to find the plaintext.

After introducing his linearization attack, Patarin posed the general question
of how we can find the maximum number of linearly independent lineariza-
tion equations for MI. The answer to this question is necessary for a complete
understanding of both MI and the linearization attack, and may provide valu-
able insight into related systems derived from MI, such as the Sflash signature
schemes [1, 2], PMI and PMI+ [3,4], HFE [10] and others. In this paper, we use
the method developed in [6] to attack the HFE cryptosystem (another general-
ization of MI), to find the exact dimension of the space of linearization equations.

The complete result, given in Theorems 2 and 3, involves a number of excep-
tional cases. Let us summarize here the result ignoring the case n = 26, which
has no cryptographic applications, and some exceptional cases when n is 2,3 or
6. Let 6 be the dimension of the space of linearization equations. If ¢ > 1, then

5= 2, if@=n/3or2n/3;
B n,  otherwise.

On the other hand, if ¢ =1,

v, if@=n/3 or 2n/3;

2n, iff=1,n—1or (ntl)/2;

B, ifn=120+2;

n, otherwise.

Computer simulations for the cases n < 15 have confirmed these results.
Before getting into the technical details we outline the idea of the proof. Let
X € K and let Y = X2+, Then V2" ~! = x@“+D@" -1 \ultiplying each
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side by XY, we obtain V2’ X = VX2 Since K has characteristic two, y2"
and X2*" are linear functions of ¥ and X respectively. This equation is thus
a version of a linearization equation for K. Using the identification of K with
k™ and looking at coordinate components yields a set of n (not necessarily in-
dependent) linearization equations in the above sense. Moreover, for any integer
m=0,1,...,n— 1, we further have

qm

(XY —y X2 2" .

Looking at coordinate components yields further linearization equations. When
q > 1, it turns out that all linearization equations arise in this way. When ¢ = 1,
there are additional identities that arise for certain exceptional values of 6. For
instance, if @ = 1, then XY = X4,

The proof proceeds in the following way. We first define a notion of lineariza-
tion equation for K and use a simple algebraic trick (exactness of the tensor
product) to show that the dimension of the space of linearization equations is
the same over both k£ and K. We then show that the equations above span all
possible linearization equations for K and count carefully the dimension of this
space.

Note that we only need to do this calculation for M. The composition with the
invertible affine linear maps L; does not affect the dimension of the associated
space of linearizations equations.

2 The Linearization Problem

We begin by placing the problem in a general context. Let V' be a vector space
over k and denote by Fun(V, V) the set of functions from V to V. If V is the
plaintext /ciphertext space of a cryptosystem, then a cipher is an element M €
Fun(V,V).

More generally, for any pair of sets V' and W, denote by Fun(V, W), the set
of all functions from V' to W. Define a function

Yy Fun(V x V k) — Fun(V, k)

by
Ym(f)(v) = f(v, Mv).

Recall that for any pair of vector spaces V' and W, the set Fun(V, W) is again a
vector space in the usual way:

Af)w) =Af(V),  (F+9)(v) = f(v) +9(v).

Thus both Fun(V x V, k) and Fun(V, k) are vector spaces. It is easily checked
that s is a linear transformation between these spaces. Denote by A(V) the
subspace of Fun(V, k) consisting of affine linear functions (polynomials of degree
less than or equal to one). Note that there is a natural embedding of A(V)®.A(V)
into Fun(V x V, k) given by (f ® g)(v,v") = f(v)g(v').
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Definition 1. The subspace Ly = ker Yar| a(vyza(v) is defined to be the space
of linearization equations associated to M.

Let’s see how this definition ties up with the usual definition of linearization
equation. Let {f; | ¢ = 0,1,...,n — 1} be a basis for the dual space V*. Then
A(V) has a basis consisting of the f; and the constant function 1. So the (n+1)?2
elements f;®@f;, fi®1,1Q f;, 1®1 form a basis for A(V)®.A(V) and an arbitrary
element of A(V) ® A(V) is a bi-affine linear function of the form:

n=> ai;(fi®f;)+ Y bi(fi®l)+Y ¢;(1ef)+d1la1).

Let x € V have coordinates z; = f;(x) and let y = M(z) have coordinates
yi = fi(y). Thus n € L if and only if for all x € V,

v (n)(z) = Zaijffiyj + Zbimi + Zijj +d=0.

That is, n € L if and only if ¢ar(n)(z) = 0 is a linearization equation in the
usual sense.
We are now in a position to state the problem that we solve in this article.

Linearization problem. Let g be a positive integer, let k be a finite field of
order 29, and let K be an extension field of k with [K : k] = n. Let 6 be an
integer such that 1 < @ < n, and let M: K — K be the map M (X) = X1+2*.
Find dim £, the dimension of the space of linearization equations associated
to M.

Note that the condition ged(29? + 1,29" — 1) = 1 is required in the MI cryp-
tosystem, though this assumption is not needed in order to calculate the dimen-
sion of L.

3 Lifting to K

In order to simplify the calculations, we work inside the larger algebra Fun(K x
K, K) which we can realize as a homomorphic image of the polynomial ring
K[X,Y]. Let us recall some general facts about this algebra. Since K is finite
of cardinality 27, the natural homomorphism K[X] — Fun(K, K) is surjec-
tive and its kernel is the ideal (X" — X). Similarly, the natural homomorphism
K[X,Y] — Fun(K x K, K) is also surjective and has kernel (X?"" — X, Y2"" —Y).
Let G be the Galois group Gal(K, k). One of the key observations used in [6], is
the following standard result from Galois theory (see for instance [5, Theorem 2]).

Lemma 1. Denote by Fung (K, K) C Fun(K, K) the subspace of k-linear endo-
morphisms of K. Then Fung (K, K) is naturally isomorphic as a vector space to
the group algebra KG.

Similarly the subset of linear functions Fung (K x K, K) C Fun(K x K, K) can
be identified with K (G x G). The group G is cyclic, generated by the polynomial
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function X 2. The space of affine linear functions from K x K to K can be viewed,
by extension of coefficients, as K ® A(K) ® A(K). From the above discussion,
the elements of K ® A(K) ® A(K), viewed as polynomial functions, have the
form

n—1 n—1 n—1
Y aex* ox? 1Y Bex* e1+) elex” +Delel,
2,j=0 i=0 §=0

for some A;;, B;, Cj, D € K. As above, for any M € Fun(K, K), we may define a
map Yy : Fun(K x K, K) — Fun(K, K) by ¥a(f)(z) = f(z, M(z)). Set Ly =
ker Y| kea(k)@A(K)- This yields the following exact commutative diagram:

0 —— Ly ——  AFK)@AK) —2 Fun(K,k)

I L
0 —— Ly —— K@ AK)® AK) — Fun(K, K)

Observe that the bottom line is the image of the top line under the exact functor
K ® —. For Fun(K, K) is naturally isomorphic to K ® Fun(K, k) and under this
identification 1/3M identifies with K ® v, the image of ¢;; under the functor
K ® —. The exactness of K ® — implies that ker(K ® ) =2 K ® ker(wp) (see,
for instance [7]); so Ly 2 K ® L. Hence dimy, Ly = dimp L.

4 Statement of Main Theorems

To find the dimension of the space of linearization equations we must find the
dimension of the kernel of the map

bt K@ AK) ® AK) — Fun(K, K).

This amounts to finding linearly independent identities of the form

n—1 n—1 n—1
S A XY S B+ Y oyt 4 D=,
2,7=0 =0 7=0

where Y = X2+ X2" = X and Y2" =Y and A,;, B;,C;,D € K. As noted
above, it is easy to see that ¥ = X2"+! implies that Y2 X = Y X2 and
hence more generally that

2am

(XY2" —yx?y2" —,

for m = 0,...,n — 1. Generically these will be distinct identities. However,
if n = 30 or 30/2, the identities XV?2" — VX2 X2y _ y2” X and
X2y — vy x2" are evidently dependent, yielding only 2n/3 independent
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identities. The case n = 26 is an exceptional, highly degenerate case. In this
0
situation, Y2" =Y, yielding (n? + n)/2 identities of the form

(V2 oy X2 =g

)

fori=0,...n/2—1Tand m=0,...n— 1.
When ¢ > 1, these identities are independent and span the set of all identities.

Theorem 2. Ifq > 1, then the dimension of the space of linearization equations
s given by

2n/3, if 0 =n/3 or2n/3;
dim Ly = { (n%+n)/2, if0=n/2;
n, otherwise.

When ¢ = 1, further identities occur for special values of 6.

— When 6 = 1, XY = XX?*! = X* yielding n identities of the form (XY —
XH2" =0form=0,...,n—1.

— When f=n—1,Y2=(X2"""+1)2 = X2" X2 = X3 yielding n identities of
the form (XY?2 — X4)?" =0form=0,...,n—1.

— Whenn =20+ 1, Y2 = (X2'+1)2""" = x 22" 270 — x2"t _ y x?f
yielding n identities of the form (YXQH —y2" 2" =0form=0,...,n—1.

~ Whenn =201,V = (X¥+1)2" = Xx¥"+2" = x2(x?" )2 = X2 x2 =
XY, yielding n identities of the form (Y2 —XY)2" = 0forform =0,...,n—

— %Vhen n=20+2 Y7 X = X220 o x27 2 o X272 yeld-

ing n/2 identities of the form (Y2 "X — X2""'¥2)2" = 0form = 0, ...,
n/2—1.
_ When n = 29_27 Y2671X2671 _ (X26+1)2971X2971 _ X22671+26 _ X2+26 _

XY, yielding n/2 identities of the form (Y2 X2" — XV)2" for m =
0,...,n/2—1.

Again these turn out to be all identities and they are linearly independent.

Theorem 3. If g = 1, the dimension of the space of linearization equations is
as follows. When 0 =n/3 or 2n/3,

7, if n=6, 0=2 or4;
dimly =48, if n=3,0=1o0r2;

2n

3, otherwise.

When 0 = n/2,

i fnr 5 ifn=20=1;
M (n?+n)/2, otherwise.
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When 0 #n/3,2n/3,n/2,

10, ifn=4andf =1 or3;
2n, if0=1,n—-1or(n+1)/2;
v if0=n/24+1;

n,  otherwise.

dimﬁM =

5 Proofs of Main Theorems

An arbitrary element of K ® A(K) ® A(K) is of the form

n—1 n—1 n—1
Yo A4;ex ox? +Y Beox* el1+) eleXx” +Delel
$,=0 i=0 iz

and its image under Y,y is

n—1 n—1 n—1
Z Ainqu (X2q9+1)2‘” + ZBZ-XQC” + ZC}(XQWH)QC” 4D,
i,j=0 i=0 j=0

where because of the relation (X" — X) in Fun(K, K), we may consider the
exponents as elements of Zgan 1. If such a polynomial is in the kernel, its constant
term must be zero, so it suffices to look at terms of the form

n—1 n—1 n—1
Y AeXT X+ BeoXxT els) CeleXx.
i,j=0 =0 Jj=0

Lemma 4. Let M = {X2" @ X2” X2 ©1,10 X2" |i,j=0,...n—1}. Then
dim Ly = n? + 2n — |ar(M)].

Proof. Let N' = {X2" | i = 0,...n — 1}. Then N U {1} forms a basis for
K® A(K) and MU{1®1} forms a basis for K ® A(K)® A(K). It is clear from
the defintion of ¢5; that ¥p(1 ® 1) = 1 and that ¢ (M) C N. Hence

rank(var) = [thar (M U{1 @ 1})] = [ar(M)] + 1
Hence
dim £ = dim(K @ A(K) @ A(K)) — rank(¢s)
= (n+1)% = [Par(M)] + 1
=n®+2n — [y (M)

Thus the problem reduces to the calculation of [¢)5r(M)|. In the case ¢ > 1, this
calculation is fairly straightforward, but when ¢ = 1, it is a little more intricate.
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We can reset the problem in the following way. Define Z. and Z2 to be two
copies of Z,,. Define

¢ (Zp X L) UZL UZ2 — Zgan_4

by

¢(i, j) = 29 + 29 + 2109 for (i, j) € (Zn x ZLn)

p(k) = 2% for k € Z}

B(1) = 29" 4 290D for | € 72
Clearly [¢ar(M)] = [Tm g|.

The elements of Zgan —1 can be represented uniquely in a 29-ary expansion of

length less than or equal to n. It is convenient to represent this expansion as a
circular graph with n vertices representing the place holders and the digits of

the expansion as labels on these vertices. For example in the case when n = 8§,
the element 02100301 is represented by the labelled graph in figure 1.

Fig. 1. The representation of the number with 29-ary expansion 02100301

Theorem 5. If g > 1, then

n?+4n/3,  ifn =30, 30/2;
[Im ¢| = ¢ (n? +3n)/2, ifn=26;

n? +n, otherwise.

Proof. The elements of Im ¢ considered as diagrams consist of

1. diagrams with all labels 0 except one label of 1

2. diagrams with all labels 0 except two labels of 1, spaced 6 apart.

3. diagrams with all labels 0 except one label of 1 and one label of 2, spaced 6
apart.

4. diagrams with all labels 0 except three labels of 1, of which at least one pair
is spaced 0 apart.
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There are n diagrams of type (1). There are n diagrams of type (2) except
if n = 260 in which case there are only n/2 diagrams. There are 2n diagrams of
type (3), unless n = 26, in which case there are only n diagrams.

Consider diagrams of type (4). Consider first diagrams with exactly one pair
of labeled vertices spaced 8 apart and assume that n # 26. For each such pair,
there are n — 4 possible locations for the third labeled vertex if n # 30 and n —3
locations if n = 36. Thus there are n(n — 4) and n(n — 3) total such diagrams
respectively. If n = 26, there are n/2 such pairs and n — 2 locations for the third
vertex, so there are n(n — 2)/2 diagrams.

If n does not divide 30 and n # 26, then we can have exactly two pairs of
vertices spaced by 6. There are n such diagrams. If 1|36, we can have all three
vertices spaced by 6 and there are n/3 of these diagrams.

Thus when n = 26, [Im ¢| =n+n/2+n+n(n—2)/2 = (n?+3n)/2 . When
30 =0 (mod n), |Im ¢| =n+n+2n+ (n? —3n) +n/3 = n? +4n/3. Otherwise
Im ¢| =n+n+2n+ (n? —4n) +n =n?+n.

Theorem 6. Suppose that ¢ =1. If 30 =0 (mod n), then

41, if n=6, 0=2 ord4;
[Im ¢ = {7, if n=3,0=1 or2;
n? + 43"7 otherwise.
If 20 = n, then
THREPS
Im o] =1 yn=2
(n®+3n)/2, otherwise.
Otherwise,
14, ifn=4and =1 or3;
n?, if0=1;
[Im ¢| = { n?, if0>1andn=20+1or0+1;

n2—|—g, ifn=20+2;

n? +n, otherwise.

Proof. The elements of Im ¢ considered as diagrams consist of essentially the
same cases as in the previous proof except that a vertex with a label of 2 trans-
forms into the next vertex moving clockwise around the diagram, labeled with
a 1. Thus the possible configurations are now:

1. diagrams with all labels 0 except one label of 1

2. diagrams with all labels 0 except two labels of 1, spaced 8, 6 — 1 or 6 + 1
apart.

3. diagrams with all labels 0 except three labels of 1, of which at least one pair
is spaced 6 apart.

The counting of diagrams of type (1) and (3) is the same as in above. Similarly
for the diagrams of type (2) spaced 6 apart there are again n of these if n # 26
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and n/2 if n = 26. In the generic case there are an additional n digrams with
each of the other two spacing options. However, there are now a number of
exceptional cases when a pair of #, # — 1 or # + 1 coincide, or one of them
equals n/2.

If 8 = 1, then the 6 — 1 spacing does not occur and when § =n —1, the § +1
spacing does not occur.

If n = 20 + 2, then 6 + 1 is n/2 so there are only n/2 diagrams with this
spacing. S