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Preface

The idea to establish a European forum for academic and industrial researchers
working on various aspects of performance modeling and analysis of manufac-
toring and information systems gave rise to an annual series of workshops, re-
ferred to as European Performance Engineering Workshop (EPEW). The first
two EPEW workshops were held in Toledo, Spain, October 1-2, 2004, and Ver-
sailles, France, September 1-3, 2005. This volume contains the proceedings of the
third EPEW workshop held at the Technical University of Budapest, Budapest,
Hungary, June 21-22, 2006.

These proceedings comprise the 16 accepted contributed papers of EPEW
2006. To ensure the high-quality evaluation of the submitted papers we extended
the Program Committee of EPEW 2006 with international experts from all over
the world. Each submitted papers went through a rigorous review by at least
three international reviewers. Based on the reviews, the subsequent discussions
of reviewers with different judgement and an Internet-based Program Committee
meeting held on March 30, 2006, we selected 40% of the submitted papers. We
therefore owe special thanks to all members of the Program Committee and to
all external referees for the excellent work they did for the proper evaluation of
the papers.

The final workshop program, as well as this volume, are made up of five
thematic sessions:

– Stochastic process algebra
– Workloads and benchmarks
– Theory of stochastic processes
– Formal dependability and performance evaluation
– Queues, theory and practice

These sessions cover a wide range of performance evaluation methods and com-
pose an overview of the current research directions in performance evaluation.
Some papers focus on a particular research field (e.g., convergence rate of spe-
cific Markov chains) while others provide a combination of research methodolo-
gies from essentially different fields (e.g., model checking and stochastic fluid
models). We hope that these proceedings offer interesting research results for
everyone dealing with performance evaluation.

Last, but not least, we would like to thank the publication chair and the local
organizers of the workshops for their work. A special thanks to Levente Bodrog
for creating and maintaining the website of the conference.

April 2007 András Horváth
Miklós Telek
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András Horváth, University of Torino (Italy)

Publication Chair

Katinka Wolter, Humboldt University (Germany)

Local Organizers

Levente Bodrog, Technical University of Budapest (Hungary)
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Jane Hillston, Lëıla Kloul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Functional Performance Specification with Stochastic Probes
Ashok Argent-Katwala, Jeremy T. Bradley . . . . . . . . . . . . . . . . . . . . . . . . 31

Embedding Real Time in Stochastic Process Algebras
Jasen Markovski, Erik P. de Vink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Workloads and Benchmarks

Precise Regression Benchmarking with Random Effects: Improving
Mono Benchmark Results

Tomas Kalibera, Petr Tuma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Working Set Characterization of Applications with an Efficient LRU
Algorithm

Lodewijk Bonebakker, Andrew Over, Ilya Sharapov . . . . . . . . . . . . . . . . . 78

Theory of Stochastic Processes

Model Checking for a Class of Performance Properties of Fluid
Stochastic Models

Manuela L. Bujorianu, Marius C. Bujorianu . . . . . . . . . . . . . . . . . . . . . . 93

Explicit Inverse Characterizations of Acyclic MAPs of Second Order
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A Precedence PEPA Model for Performance
and Reliability Analysis

Jean-Michel Fourneau and Lëıla Kloul

PRiSM, Université de Versailles Saint-Quentin,
45 Av. des Etats Unis, 78000 Versailles, France

{jmf, kle}@prism.uvsq.fr

Abstract. We propose new techniques to simplify the computation of
the cycle times and the absorption times for a large class of PEPA models.
These techniques allow us to simplify the model description to reduce
the number of states of the underlying Markov chain. The simplification
processes are associated with stochastic comparisons of random variables.
Thus the simplified models are stochastic bounds for the original ones.

1 Introduction

In the recent years, several researchers have investigated ways to solve steady-
state distributions for Stochastic Process Algebra models with exponential dura-
tion of activities such as PEPA models [10]. The tensor based representation [11]
allows us to build large state spaces in a very efficient manner. However solving
the steady-state distribution remains a difficult problem even if the bisimula-
tion technique allows us to reduce the state space. Recently the process algebra
formalism has also been used to solve transient problems [7], still under the
Markovian assumption.

Here, we advocate a completely different approach which is not totally related
to this Markovian assumption. First, we want to compute the distribution of the
cycle time (if the model is well defined) or the distribution of the absorption time
(if the model has an absorbing state) instead of the steady-state distribution.
The cycle time is the delay between two successive visits to a specific state while
the absorption time is the time until absorption. Cycle time is closely related
to the throughput of the system while the distribution of the absorption time
allows us to define the reliability of a system. By taking the average of these
distributions, one can obtain the mean throughput and the average population
with Little’s formula or the mean time to failure. These quantities are in general
significant for models based on customer’s point of view rather than server’s
states.

We propose a two-level hierarchical approach. At the higher level, we consider
a precedence PEPA model. Each component of the precedence model is a sub-
model isolated from the other components. Because of the exponential duration
of the activities in a PEPA component, these sub-models can be associated with
continuous time Phase type distributions.

A. Horváth and M. Telek (Eds.): EPEW 2006, LNCS 4054, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 J.-M. Fourneau and L. Kloul

Computing absorption time distribution is usually done by uniformization and
analysis of transient discrete-time Markov chains. This technique requires a large
number of vector-matrix multiplications. The matrix size is the number of states
in the Markov chain. So it is important to find techniques which can be used to
reduce this number of states. Cycle times computation are not necessarily based
on Markovian assumption, even if exponential delays of individual activities
may lead to the usual Markovian numerical analysis. For a class of decision-
free Petri nets, cycle times are defined by recurrence relations [3]. Furthermore
these relations are linear but on the max-plus semigroup. Such structures have
been studied extensively in the context of random variables (see for instance
Baccelli et al [1]). For more general systems, the computation of the cycle times
is a complex problem. The stochastic comparison appears to be a promising
technique to cope with this complexity.

If we need to compute the cycle time of a PEPA model which is too com-
plex to analyse numerically, we design automatically a new model such that its
cycle time is a bound for the exact one. This bound is stochastic: we do not
compare reals but distribution functions. Thus stochastic bounds are far more
accurate than worst-case analysis. If the new model has a reduced state space, we
may then use numerical methods (or even analytical results) to efficiently solve
the problem. Note that bounding some performance measures is often sufficient
as quite often we only need to verify the requirements in terms of threshold.
Stochastic bounds may also be applied to Markov chains (see [8] for a survey of
the various techniques involved and [12] for an example of delays due to a Fair
Queueing discipline).

Here we propose high level techniques which transform a PEPA model into
simpler PEPA model. These techniques are based on stochastic bounds. They
allow us to divide the problem into sub-problems or to replace a complete PEPA
sub-model by a single activity. Here we just give some theoretical results, we will
present in a sequel paper the algorithms we need and some numerical results.

The rest of the paper is organised as follows. In Section 2, we present some
concepts of stochastic comparison while Section 3 gives a simple introduction
to PEPA, the SPA we consider. Section 4 is devoted to the precedence PEPA
model. Section 5 contains the main results of the paper. Finally in Section 6, we
conclude our work with some remarks and future work.

2 A Simple Introduction to Stochastic Comparison

We restrict ourselves to finite Continuous Time Markov Chains (CTMC).
Stoyan [14] defined the strong stochastic ordering (“st” ordering for short) by
the set of non-decreasing functions. Bounds on the distribution imply bounds on
these functions as well. Important performance measures such as average popu-
lation, loss rates or tail probabilities are non decreasing functions. The second
part of the definition for discrete random variables is much more convenient for
an algebraic formulation and an algorithmic setting.
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Definition 1. Let X and Y be random variables taking values on a totally or-
dered space. Then X is said to be less than Y in the strong stochastic sense, that
is, X <st Y iff E[f(X)] ≤ E[f(Y )] for all non decreasing functions f whenever
the expectations exist.

If X and Y take values on the finite state space {1, 2, . . . , n} with p and q as
probability distribution vectors, then X is said to be less than Y in the strong
stochastic sense, that is, X <st Y iff

∑n
j=k pj ≤

∑n
j=k qj for k = 1, 2, . . . , n.

Example 1. Let a = (0.1, 0.3, 0.4, 0.2) and b = (0.1, 0.1, 0.5, 0.3). We have
a <st b as: ⎡

⎣0.2 ≤ 0.3
0.2 + 0.4 ≤ 0.3 + 0.5
0.2 + 0.4 + 0.3 ≤ 0.3 + 0.5 + 0.1

Sufficient conditions for comparison for CTMC are known for a long time [14].
The stochastic comparison of CTMC implies that their steady-state and tran-
sient distributions are also ordered.

Theorem 1 (Stoyan [14], page 193). Let us consider two CTMC Z1 and
Z2 on the same state space whose transition rate matrix are respectively Q1 and
Q2. If

1. Z10 <st Z20
2.
∑

k≥l Q1(i, k) ≤
∑

k≥l Q2(j, k) for all i ≤ j and for all l which satisfy l ≤ i
or l ≥ j.

then Z1 <st Z2.

It may be important to compare Phase type random variables with exponential
ones because it allows building a smaller Markov chain. Let us first define a
family of random variables well known in reliability modelling [4].

Definition 2 (New Better than Used in Expectation). Let Xt be the resid-
ual time of X, given that X >t. X is said to be NBUE if E(Xt)≤E(X) for all t.

For instance, Erlang, uniform and constant random variables are NBUE. This
family leads to another stochastic ordering: the increasing convex ordering which
is used to compare random variables with exponentials.

Definition 3. Let X and Y be two random variables on the same space ε, X is
smaller in increasing convex order than Y , if and only if E(f(X)) ≤ E(f(Y ))
for all convex and non decreasing functions f on ε, provided that the expectations
exist. The relation is denoted by X <icx Y .

Property 1 ([14]). If X is NBUE of mean m, then X is smaller in increasing
convex ordering than an exponentially distributed random variable of mean m.

The icx ordering also provides a very intuitive lower bound.

Property 2 ([14]). For any arbitrary positive random variable X, E(X)<icx X.
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We also have two very simple properties which will be used to derive bounds at
the higher level of a model from bounds obtained at the lower level.

Property 3. The Max and Plus operators are convex and non decreasing
functions.

Property 4. Let X and Y be two r.v. such that X <icx Y , then for all convex
and non decreasing function f , we have f(X) <icx f(Y ).

Finally, we can compare the absorption time of Markov chains [5] as stated in
the following property.

Property 5. Let Z1 and Z2 be two homogeneous Markov chains with an ab-
sorbing state n and let Ta(Z1) and Ta(Z2) denote absorption times for the two
chains. If Z1 <st Z2 or Z1 <icx Z2 then Ta(Z2) <st Ta(Z1).

Note that the “st” comparison of absorption times is now on random variables
Ta defined on the time instants, not on the states.

3 PEPA

In PEPA, a system is viewed as a set of components which carry out activities.
Each activity is characterised by an action type and a duration which is expo-
nentially distributed. Thus each activity is defined by a couple (α, r) where α is
the action type and r is the activity rate. Because of the exponential distribution
of the activity duration, the underlying Markov process of a PEPA model is a
continuous time Markov process.

PEPA formalism provides a set of combinators which allows expressions to
be built, defining the behaviour of components, via the activities they engage
in. Below, we present informally the combinators we are interested in and which
are necessary to our model. For more details about the formalism, see [10].

Constant: noted S
def= P , it allows us to assign names to components. To com-

ponent S, we assign the behaviour of component P .

Prefix: noted (α, r).P , this combinator is the basic mechanism by which the
behaviours of components are constructed. The component carries out activity
(α, r) and subsequently behaves as component P .

Choice: noted P1+P2, this combinator represents competition between compo-
nents. The system may behave either as component P1 or as P2. All current activ-
ities of the components are enabled. The first activity to complete, determined by
the race condition, distinguishes one of these components, the other is discarded.

Cooperation: noted P1 ��
L

P2, it allows the synchronisation of components P1
and P2 over the activities in the cooperation set L. Components may proceed
independently with activities whose types do not belong to this set. A particular
case of the cooperation is when L = ∅. In this case, components proceed with
activities independently and are noted P1||P2.
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In a cooperation, the rate of a shared activity is defined as the rate of the
slowest component. For a component P1 and an action type α, the working
capacity is termed the apparent rate of α in P1. It is the sum of the rates of the
α type activities enabled in P1. The apparent rate of α in a cooperation between
P1 and P2 over α will be the minimum of the apparent rate of α in P1 and the
apparent rate of α in P2.

The rate of an activity may be unspecified for a component and is noted �.
Such a component is said to be passive with respect to this action type and the
rate of this shared activity is defined by the other component in cooperation.

In PEPA, when a component C carries out an activity (α, r) and subsequently
behaves as component C′, this one is said to be a derivative of C. From any PEPA
component C, the derivative set, denoted ds(C), is the set of derivatives (be-
haviours) which can evolve from the component. This set is defined recursively.

The evolution of a PEPA model is governed by the Structured Operational
Semantics (SOS) rules of the language [10]. These rules define the admissible
transitions or state changes associated with each combinator.

Necessary (but not sufficient) conditions for the ergodicity of the Markov
process in terms of the structure of the PEPA model have been identified and
can be readily checked [10]. These conditions imply that the model must be
a cyclic PEPA component. The model should be constructed as a cooperation
of sequential components, i.e. components constructed using only prefix, choice
and constants. This leads to formally define the syntax of PEPA expressions in
terms of model components P and sequential components S:

P ::= A | P ��
L

P | P/L S ::= (α, r).S | S + S | As

where A denotes a constant which is either a model or a sequential component
and As denotes a constant which is a sequential component. Thus the composi-
tional structure of PEPA models is at the level of the cooperating components;
such models are considered as well-defined.

4 The Precedence PEPA Model

We consider that a system is represented by a set of components which have the
same general behaviour as they wake up, proceed with their activities and then
make other components wake up. The components are assumed to be initially
asleep (off) and cannot proceed with the execution of their activities unless they
are woken up. We assume a precedence relation between the enabling of the
components in the set as the results of some components can be used as an input
by other components. The components are labelled to allow a representation of
this precedence relation. We assume the following properties for the set of labels:

1. the set is totally ordered,
2. the set has a unique minimal element which is denoted by Comp0 for con-

venience,
3. and the set has a unique maximal element which is denoted by Compn.
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We assume that Comp0 constitutes the starting component of the system
and Compn the last one to be enabled. When Compn completes, the system is
assumed to have the same behaviour, restarting from the beginning, i.e. Comp0
(Figure 1). Furthermore, we assume that the precedence relation between the
components is a Directed Acyclic Graph (DAG) modified by this return arc from
Compn to Comp0.

Comp n

Comp 0

Fig. 1. The precedence relation between the components

Our system specifications allow us to consider two kinds of analysis, perfor-
mance analysis and reliability analysis. The former exploits the presence of the
return arc from Compn to Comp0 to compute performance measures such as
the cycle times. The latter is only possible if we have in our system an absorbing
state, that is the precedence relation between the components is a real DAG.
Moreover, Compn must contain an absorbing state.

4.1 Formal Description of the System

To represent the precedence relation characterising our system, we define two
families of sets Pi and Si. Pi is the set of components which must complete their
activities before Compi is woken up and Si represents the set of components
which are enabled when Compi has completed its activities. Note that the two
families of sets have to be consistent.

We describe the system using n + 1 components. Each component Compk,
k = 0 . . . n, is woken up thanks to activity wake upjk where j is a predecessor of
Compk, that is j ∈ Pk. Once awake, the component can then proceed with its
own activities αk,l, l = 1..mk, where mk is the number of activities of Compk.
Note that these activities (αk,l) are all individual activities and once Compk has
finished executing them, it will wake up the components which are in its set of
successors Sk.
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The behaviour of the components of the system are modelled using the fol-
lowing equations:

Comp0
def= (start, w1).(α0,1, r0,1)...(α0,m0 , r0,m0).

i∈S0

(wake up0i, s).Comp0

Compi
def= (wake up0i, �).(αi,1, ri,1)...(αi,mi , ri,mi).

k∈Si

(wake upik, s).Compi

∀i ∈ S0

Compk
def=

j∈Pk

(wake upjk, �).(α0,k, r0,k)...(αk,mk
, rk,mk

).
j∈Sk

(wake upkj , s).Compk

∀k ∈ Si

Compn
def=

j∈Pn

(wake upjn, �).(αn,1, rn,1)...(αn,mn , rn,mn).(end, w2).Compn

where the notation of the form
∏

k∈Ai

(βik, r) refers to (βii1 , r).(βii2 , r). · · · .

(βi|Ai| , r).
The use of

∏
k∈Si

(wake upik, s) allows us to model the case where Compi wakes

up all the components in its successors set one by one. Whereas the use of∏
j∈Pn

(wake upjn,�) like in Compn models the case where a component has to

wait for several predecessors to complete their activities before proceeding with
its own activities.

Additionally, we consider another component Clock, which allows starting,
and restarting the system only once Compn has completed its activities. This
additional component has to synchronise with Comp0 on activity start then on
activity end with Compn.

Clock
def= (start,�).Clock0

Clock0
def= (end,�).Clock

The behaviour of the complete system is modelled as the interaction of its
components as follows:

System
def= Clock ��

{start,end} (. . . (Comp0 ��
{wake up0i/i∈S0} (. . . ||Compi|| . . .)i∈S0)

��
{wake upik/k∈Si} (. . . ||Compk|| . . .) . . .)k∈Si . . . (. . . ||Compj || . . .)j∈Pn

��
{wake upjn/j∈Pn} Compn) . . .)

4.2 Reliability Analysis Using the PEPA Model

Component Clock is only necessary in the case where a performance analysis is
targeted as it allows modelling the return arc of the precedence relation between
the components. Reciprocally, whenever reliability analysis is the objective, com-
ponent Clock is not only unnecessary, but has to be removed from the model.
As all its activities have an unspecified rate (�), its removal from the model has
no impact on the remaining components.
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Moreover, to ensure that the underlying Markov chain of the model has an
absorbing state, we need the last component Compn to not return to its ini-
tial state once activity end has been completed. Therefore, we have to redefine
Compn as follows:

Compn
def=
∏

j∈Pn

(wake upjn,�).(αn,1, rn,1)...(αn,mn , rn,mn).(end, w2).Comp∗n

In the first definition of Compn, the first and the last derivatives (states)
were the same, that is Compn. In the new definition, the first derivative is still
Compn, but the last one is different. It is denoted by Comp∗n and models the
absorbing state of the system. ��

As explained above, finding the absorption times and the cycle times for our
class of systems are connected problems. The former assumes that the durations
of the activities are independent, which is the case in our model. Thus the delays
from successive beginnings of the first component form a renewal process. In the
case of the latter, once the last component has completed its activities, the first
component is woken up.

In the following we only consider the absorption times. The computation of
the cycle times can be easily deduced from the results developed for the absorp-
tion times.

5 Reliability Analysis: Computing the Absorption Times

The PEPA model is a two-level hierarchy model, the component level and the
model level. Therefore the computation of the bounds on the absorption times
rely on two different classes of techniques according to the hierarchy level con-
sidered. However, all these techniques are based on the recurrence equations we
can obtain at the higher level of our hierarchy.

In the following, once we show how to obtain the recurrence equations, we first
propose techniques which can be applied on the PEPA sub-models (components).
Then we show how we can modify the precedence relation between the PEPA
components to derive simpler models.

The bounds on the absorption times are obtained from the recurrence equa-
tions which can be established on instants of transition. Let (ti) (resp. (bi)) be
the completion time (resp. the wake up time) of component Compi. The main
results come from the type of equations connecting instants ti to other instants
tj if Compj is a predecessor of Compi in the precedence model.

Let di be the service time of Compi, that is the time required for Compi to
proceed with all its activities αi,l, l = 1..mi. As Compi is a PEPA component
where all the activities have exponential durations, the total duration of Compi

has a continuous Phase type distribution (PH in the following).
Clearly for all i, we have ti = bi + di. Now it is important to note that Compi

wakes up as soon as all the components in its predecessors set Pi have completed
all their activities. Thus

bi = maxj∈Pi(tj)
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After substitution, we get:

ti = di + maxj∈Pi (tj) (5.1)

Thus we obtain a linear equation on vector (ti) using two operators: the
addition and the maximum. Such linear equations have been extensively studied
as they allow new types of analytical or numerical methods which are not based
on exponential delays or embedded Markov chains. In this paper we assume that
activities have exponential durations, but as the random variables di model a
PEPA sub-model (Compi) duration, di has a PH distribution.

5.1 Bounds Due to Service-Time of Activities

Using equation 5.1 and properties 3 and 4 we obtain the first comparison results
if all the random variables di are New Better than Used in Expectation (NBUE).
Indeed, the NBUE property implies the relation between a single random variable
and an exponential one with the same mean. Equation 5.1 and property 3 show
that ti is defined using two increasing and convex operators. Property 4 states
that the relation holds for the absorption time.

Property 6. Consider a precedence PEPA model such that the PH distribution
associated with Compi, a component of the model, is NBUE. The absorption
time is upper bounded in the increasing convex sense by the absorption time of
the same model where Compi is replaced by a single activity with rate E(di).

Similarly, we have a lower bound provided by constant random variable with the
same mean using property 1.

Property 7. Consider a precedence PEPA model with arbitrary random vari-
ables. The absorption time is lower bounded in the increasing convex sense by
the absorption time of the same model where the PH distribution associated with
Compi, a component of the model, is replaced by a constant with the same mean.

Note that, in this case, the resulting model is not a usual PEPA model anymore
as we have a component with a non exponential duration. One can also obtain a
lower bound of the completion time by a very simple argument on the duration
of any component. This is stated in the following property.

Property 8. For all positive random variables X, we have zero ≤st X where
zero is considered as the constant r.v. with mean 0.

Finally,

Property 9. Consider a precedence PEPA model. The absorption time is lower
bounded in the strong stochastic sense by the absorption time of the same model
where Compi, a component of the model, has been removed and where we have
added arcs (C1, C2) in the precedence model for all components C1 and C2 such
that arcs (C1, Compi) and (Compi, C2) were in the initial precedence model.

So the main question remaining now is whether a PH distribution is NBUE or
not. To the best of our knowledge such a problem has never been studied before.
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5.1.1 Phase Type and NBUE Distributions
A Phase type distribution is the absorption time of a transient Markov chain on
state space 1..N . It is defined by the initial distribution (say σ) and the transition
rate matrix Q. Let Y be this chain and X the absorption time of Y knowing σ.
Without loss of generality we assume that there exists only one absorbing state
which is the last one (i.e N). Thus

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

T t

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

with t = −Te, e being a column of 1. Without loss of generality we assume that
the initial distribution σ is (1, 0, . . . , 0). Indeed, a general distribution can be
considered if we add an extra state at the beginning.

Let Xt be the residual time before absorption, given that X ≥ t. Remember
that the distribution of X is NBUE iff E(Xt) ≤ E(X) for all t.

At time t, chain Y is in state j with probability Pr(Yt = j|Y0 = 1). Let μk be
the rate of activity k. The expectation of the remaining time before absorption
in Y can be computed using the mean number of passages in any state of Y
before being absorbed. Of course these quantities depend on the initial state of
the chain. Let ai,j be the average number of visits to state i when the initial
state of chain Y is j. Clearly, we have:

E(X) =
N−1∑
i=1

ai,1

μi

Similarly because of the memoryless property, the remaining time after t is ob-
tained by conditioning on the state reached at time t as follows:

E(Xt) =
N−1∑
j=1

Pr(Yt = j|Y0 = 1)
N−1∑
i=1

ai,j

μi

Now, we must compare E and E(Xt) to check if a distribution is NBUE. First
we obtain a very simple result which is quite useful.

Property 10. If, for all state i, we have for all state j, ai,j ≤ ai,1 then the PH
distribution is NBUE.

Proof: If ai,j ≤ ai,1 for all j, then any convex sum of ai,j is smaller than
ai,1. And

∑N−1
j=1 Pr(Yt = j|Y0 = 1)ai,j is such a convex sum. Finally we get

E(Xt) ≤ E(X).
Property 10 allows us to derive the following one:

Property 11. The hypoexponential distribution is NBUE.
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Remember that the hypoexponential distribution is a generalisation of the Er-
lang distribution where the exponential stages do not have the same rate. For
an hypoexponential distribution we get ai,1 = 1 as we visit every stage exactly
once. If we begin at stage j, the number of visits is 1 or 0 depending if the stage
to visit is after j or before j. Thus ai,j ≤ ai,1 for all i, j.

The hypoexponential distribution is easy to detect from a PEPA specification
of a component. It is a set of successive individual activities without any choice
operator.

Theorem 2. If a PEPA component C is constructed using only the prefix oper-
ator, the rates of successive individual activities of C are the rates of the stages
of an hypoexponential distribution and the completion time of C is NBUE. These
individual activities of C can therefore be aggregated into a single individual ac-
tivity with the same mean.

Proof: Consider a PEPA component which consists of a sequence of individual
activities in which the only operator used is the prefix. As each activity α in
the sequence is exponentially distributed with rate rα, these rates constitute the
rates of the stages of an hypoexponential distribution. As the hypoexponential
distribution is NBUE, according to Property 11, the completion time of the
sequence of activities of the component is NBUE. Consequently, this sequence
of activities can be aggregated and replaced by a single individual activity with
the same mean. ��

According to Theorem 2, we can replace a PEPA component with successive
individual activities by a component with a single individual activity. In this
context, the stochastic comparison allows a drastic reduction of the complexity.
Moreover, it allows a new type of aggregation which is not exact, but which
provides proved bounds.

Thus, in our precedence PEPA model, we can aggregate the sequence of in-
dividual activities (αk,1, rk,1).(αk,2, rk,2) . . . (αk,mk

, rk,mk
) of component Compk

into a single activity (αk, rk) where rk = ( 1
rk,1

+ 1
rk,2

+ . . . + 1
rk,mk

)−1.

More generally we get the following characterisation:

Property 12. Consider an arbitrary PH distribution. If for all state i and j we
have

N−1∑
i=1

ai,j

μi
≤

N−1∑
i=1

ai,1

μi

then the PH distribution is NBUE.

Proof: Again E(Xt) is a convex sum with coefficients Pr(Yt = j|Y0 = 1) of the
first quantities in the relation. Thus if the set of inequalities is satisfied for all j
and i, we get E(Xt) ≤ E(X).

Let us now consider acyclic PH distributions. Assume that the states of Y are or-
dered according to the natural ordering associated to this directed acyclic graph.
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Such a family of distributions have been shown to be very efficient when we have
to fit a general distribution [6]. This family is quite large and it contains Coxian
distribution. For an acyclic PH distribution using this numbering assumption,
we clearly have ai,j = 0 if j < i. As the graph of Y does not contain any directed
cycle, any state will be visited zero or once. The expected number of visits is
also the probability of visit. It is quite simple to compute ai,1 and ai,j from the
transition probability matrix embedded in matrix T .

Once we have computed ai,j for all i and j we can check the sufficient rela-
tions stated in Property 12. In general Coxian distribution are not NBUE but
Property 12 gives a very simple way to check it. Note that Property 12 also
applies when the PH is not acyclic. However, the complexity of computing ai,j

is now much higher.
Finally one can bound an arbitrary acyclic PH distribution by an hypoexpo-

nential distribution.

Theorem 3. Let X be an arbitrary acyclic PH distribution associated with tran-
sition rate matrix Q. Let Z be the hypoexponential associated with transition
matrix R. Assume now that the states of the chains are ordered according to the
DAG. If

R(i, i + 1) =
∑

j≥i+1

Q(i, j) and R(i, j) = 0 ∀j 
= i, i + 1

then X <st Z.

Proof: As X and Z are PH distributions, they are also absorption times of
CTMC. Theorem 1 states that the comparison of CTMC can be easily checked.
Property 5 shows that the comparison of CTMC implies the comparison of ab-
sorption times. So it is sufficient here to state that the chains associated with
the distributions satisfy both conditions of Theorem 1.

– The first condition is trivial as the initial distribution is the same.
– Remember that the states of the chains are ordered according to the DAG.

Thus matrix Q is upper triangular. The lower triangle of Q and R clearly
satisfy the constraints of Theorem 1. Finally one can easily check the upper
triangle part of the relation as R(i, i + 1) =

∑
j≥i+1 Q(i, j).

Thus one can transform any acyclic PH distribution into an hypoexponential one.
The PEPA sub-models (components) are transformed as well. The numbering
of activities defines the sequential ordering of the activities. The definition of
matrix R gives the activity rates in this transformed PEPA sub-model.

Let us now turn to other techniques based on the precedence relation at the
higher level, the model level.

5.2 Changing the Precedence Model to Obtain Bounds

Such transformations of the model are strongly related to the rules proposed by
Bacelli and Liu [2] for queueing networks with synchronisations and by Vincent
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and Pekergin for tasks graph [13]. Even if the problems are not the same, they
all share this property of linear evolution equation with max-plus operators (see
also [3] for Petri nets). The main transformations which have been proposed
consist of the addition or the deletion of a node, an edge, a place or a transition.
However these modifications of the graph do not always help for the resolution
of the model.

To compute an upper bound for our system, we propose to add a new com-
ponent in the precedence model. The main idea is to make the model separable.
Then we divide the model into two sub-models which are analysed in isolation.

Assume that the precedence model has n components. Let us assume that the
components of the model are ordered according to a topological ordering con-
sistent with the precedence relation: if there exists a directed edge from Compi

to Compj then i < j. We first add a new component (say Compn+1). Then
we modify the directed edges of the precedence model. Let m be an arbitrary
integer between 1 and n. We add directed edges in the precedence model from
any component Compi in 1..m to n + 1 and from component Compn+1 to any
component in m + 1..n. Such a component is denoted as a star.

Note that now the model is not correctly ordered: the star component
(Compn+1) does not have a correct index according to the precedence relation.
However the new model is still a precedence model.

Let us now prove that this transformation provides an upper bound. First
we reorder the state according to the new precedence model. The component
we have added receives number m + 1. Without loss of generality we assume
that the components between 1 and m keep the same numbers they had before
the insertion while the components numbers previously between m + 1 and n
increase by 1.

Considering equation 5.1, we just derive the new sets Pi as a function of the
sets before the insertion. We have:⎧⎨

⎩
Pi ← Pi ∀i = 1..m
Pm+1 ← {1..m}
Pi ← Pi−1

⋃
{m + 1} ∀i = m + 2..n

Let us denote by t′i the new values of the completion time. Clearly we have
t′i = ti for all i ≤ m. As sets Pi are now larger, we also have: t′i ≥ ti−1 + dm+1.

Theorem 4. Let m be an arbitrary integer in 2..n-1, the absorption time is
upper bounded in the strong stochastic sense by the absorption time of the same
model with a star component added with label m + 1.

Adding a star has also an effect on the resolution algorithm. The model is
now separable into two sub-models containing Comp1 to Compm for the first
one and Compm+1 to Compn+1 for the second one. Indeed, to be absorbed
in Compn+1, one must visit first Compm+1 and then travel from Compm+1 to
Compn+1. We compute the time to be absorbed in Compm+1 in a sub-model and
then we compute the time to be absorbed in Compn+1 knowing that the initial
component is Compm+1 at time 0. These two random variables are independent
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Comp0

Comp n

Comp 0

Comp n

star 

Fig. 2. Adding a star

and the distribution of the global absorption time is the convolution of the two
distributions obtained from the sub-models. If we assume that the components
set is equally divided by the insertion of the star, the stochastic comparison
allows a drastic reduction of the complexity of the analysis.

6 Conclusion

The approach we have presented here constitutes a first step towards a new
hierarchical resolution of hierarchical models. Indeed, we must improve our res-
olution techniques which are now far away from our modelling skills. Stochastic
comparison is a very efficient approach to simplify models and obtain bounds.
We can apply bounds on the transition times like in this paper or on the states.
Both approaches rely on a monotonicity property which is implicit on transi-
tion instants associated with a precedence model. Precedence PEPA models are
quite general but a natural extension to this work will be the generalisation
of this type of method for an even larger set of models. It must be clear that
this approach requires hierarchical models where the high level exhibits some
monotonicity property which must be consistent with the comparison we made
for sub-models absorption times. These are the key properties of the approach.
However they are limited neither to precedence PEPA models nor to (max,+)
semi-ring (again see [1]). For instance, PEPA nets, a new hierarchical modelling
technique [9], are based on a high level model which is mainly a Finite State
Machine (a simplified Petri Net with a limited interconnection between places
and transitions) and on sub-models associated with the places of the net. The
sub-models are PEPA models. It is worthy to remark that when the vertex cut
of the directed cycles of the FSM has size one then we can derive the same linear
equations on (max,+) semi-ring, from the PEPA net model, as the ones we have
obtained here. Indeed when we remove this directed arc, the graph of the FSM
becomes a DAG and it shows the relation with a precedence PEPA model. Thus
all the techniques presented here can be applied to this new modelling technique
as well.
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Abstract. PEPA has recently been extended with functional rates
[1][2]. These functions allow the specification of indirect interaction be-
tween components in such a way that the rate of an activity may be
made dependent on the local state currently exhibited by one or more
components. In this paper we demonstrate that these rates allow a sys-
tematic simplification of models in which there is appropriate indirect
interaction between components. We investigate the interplay between
this style of simplification and aggregation based on bisimulation, and
establish a heuristic for applying both techniques in a complementary
fashion.

1 Introduction

State space explosion remains the prevailing problem of most state-based mod-
elling techniques. In general we focus on the impact of this problem on model
solution when the size of the matrix representing the model becomes so large
that the solution is intractable. However the largeness of models has other impli-
cations for the modelling process. During model construction the complexity of
the system being represented may make it difficult for the modeller to keep track
of all necessary aspects in the model. Compositional modelling techniques, such
as stochastic process algebras, go some way towards alleviating this problem by
supporting a divide-and-conquer approach to system representation. Neverthe-
less the number of components involved may still become large, representing a
cognitive burden on the modeller.

In this paper we present a technique which aims to identify cases where com-
ponents may be eliminated from a model description. In the simplest such cases
the component may be eliminated without significant change to the remain-
ing components. However, in general, these components may be playing a vital
role within the model which must still be captured. In this case we achieve
the same behaviour by the use of functional rates within the remaining compo-
nents. Eliminating components in this way addresses the two issues of complexity
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discussed above. The model construction complexity is reduced, as the expression
of the model is now made in terms of a fewer number of components. Moreover,
the internal representation of the model is also, in general, more compact, as the
functional rates allow a reduction in the size of the corresponding matrix. For
a formalism like PEPA, for which a Kronecker representation has been devel-
oped [1], the reduction of the number of components in a model implies also the
reduction of the number of matrices required for the tensorial representation of
the corresponding Markov chain.

Since we aim to preserve the same behaviour the underlying Markov process
remains unchanged and so the reachable state space is not reduced. Nevertheless
we feel that this approach can be regarded as a model simplification technique
since it has the effect of extending the class of tractable models.

The rest of this paper is structured as follows. In the following section, we
give a brief overview of PEPA. We then go on to explain the version of PEPA
extended with functional rates that we will use in this paper. In Section 3 we
give a definition of the notion of function-equivalent components and show how
functional rates may be used to eliminate these components from a model. In
Section 5 we investigate the interplay between the model-level simplification
approach based on function-equivalent components and the state-level aggrega-
tion technique based on the bisimulation relation, strong equivalence. This is
illustrated by a small example. We present the algorithm for the automatic re-
moval of function-equivalent components and demonstrate its application to a
larger example in Section 6. We discuss related work in Section 7. Finally, we con-
clude in Section 8 with a summary of the results and a discussion of future work.

2 PEPA

In PEPA a system is described as an interaction of components which engage, ei-
ther singly or multiply, in activities. These basic elements of PEPA, components
and activities, correspond to states and transitions in the underlying Markov
process. Each activity has an action type. Activities which are private to the
component in which they occur are represented by the distinguished action type,
τ . The duration of each activity is represented by the parameter of the associated
exponential distribution: the activity rate. This parameter may be any positive
real number, or the distinguished symbol � (read as unspecified). Thus each
activity, a, is a pair (α, r) consisting of the action type and the activity rate re-
spectively. We assume a countable set of components, denoted C, and a countable
set, A, of all possible action types. We denote by Act ⊆ A×R+, the set of activ-
ities, where R+ is the set of positive real numbers together with the symbol �.

PEPA provides a small set of combinators which allow expressions to be con-
structed defining the behaviour of components, via the activities they undertake
and the interactions between them.
Prefix (α, r).P : This is the basic mechanism for constructing component be-
haviours. The component carries out activity (α, r) and subsequently behaves as
component P .
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Choice P +Q: This component may behave either as P or as Q: all the current
activities of both components are enabled. The first activity to complete, deter-
mined by a race condition, distinguishes one component, the other is discarded.

Cooperation P ��
L

Q: Components proceed independently with any activities
whose types do not occur in the cooperation set L (individual activities). How-
ever, activities with action types in the set L require the simultaneous involve-
ment of both components (shared activities). When the set L is empty, we use
the more concise notation P ‖ Q to represent P ��

∅ Q.
The published stochastic process algebras differ on how the rate of shared

activities are defined [4]. In PEPA the shared activity occurs at the rate of
the slowest participant. If an activity has an unspecified rate, denoted �, the
component is passive with respect to that action type. This means that the
component does not influence the rate at which any shared activity occurs.

Hiding P/L: This behaves as P except that any activities of types within the
set L are hidden, i.e. they exhibit the unknown type τ and can be regarded as
an internal delay by the component. These activities cannot be carried out in
cooperation with another component.

Constant A
def= P : Constants are components whose meaning is given by a

defining equation. A
def= P gives the constant A the behaviour of the component

P . This is how we assign names to components (behaviours).

The evolution of a model is governed by the structured operational semantics
rules of the language. These define the admissible transitions or state changes as-
sociated with each combinator. A race condition governs the dynamic behaviour
of a model whenever more than one activity is enabled.

The action types which the component P may next engage in are the current
action types of P , a set denoted A(P ). This set is defined inductively over the
syntactic constructs of the language [3]. For example, A(P +Q) = A(P )∪A(Q).

The activities which the component P may next engage in are the current
activities of P , a multiset denoted Act(P ). When the system is behaving as
component P these are the activities which are enabled. Note that the dynamic
behaviour of a component depends on the number of instances of each enabled
activity and therefore we consider multisets of activities as opposed to sets of
action types. Act(P ) is defined inductively over the structure of P .

The “states” of a PEPA model as it evolves are the syntactic terms, or deriva-
tives, which the model will go through. The derivative set of a PEPA component
C is denoted ds(C) and is the set of components which capture all the reachable
states of the system. It is also necessary to refer to the complete set of action
types which are used within the behaviour of a component C, i.e. all the possible
action types which may be witnessed as a component evolves. This set will be
denoted A(C). The complete action type set of a component C is:

A(C) =
⋃

C′∈ds(C)

A(C′).
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Since we aim to undertake numerical solution it is important that we ensure
that the components within the model, as well as the model itself, are finite
and ergodic. Necessary (but not sufficient) conditions for the ergodicity of the
Markov process in terms of the structure of the PEPA model have been identified
and can be readily checked [3]. These conditions imply that the model must be
a cyclic PEPA component.

A cyclic component is one in which behaviour may always be repeated, how-
ever the model evolves from this component it will always eventually return to
this component and this set of behaviours. This leads us to define the syntax of
PEPA expressions in terms of sequential components S and model components P :

P ::= P ��
L

P | P/L | A S ::= (α, r).S | S + S | AS

where A denotes a constant which is either a sequential or a model component
and AS denotes a constant which is a sequential component.

When a model component is defined it consists of one or more cooperating
components, and these cooperating components remain apparent in every deriva-
tive of the model. Thus the sequential components involved in a model, and the
cooperation sets in operation between them, will remain static throughout its
evolution. Only the particular derivatives exhibited by each of the sequential
components may change.

2.1 PEPA with Functional Rates

A functional dependency may involve one or several components. In a functional
dependency involving a single component, the rate value of an activity of the
component depends on the current state of the component itself. This is equiva-
lent to the presence of several apparent rates for the activity in the component.
Since each activity is represented explicitly in each local state it has always been
possible to capture this form of dependency in PEPA. When this is expressed
as a functional dependency, the rate value expressed as a function of the current
component state is still a positive real number and can never be zero. This adds
nothing new to the expressiveness of the language.

In contrast the ability to have an activity rate which is dependent on the local
state of another component has not been possible previously (except in the spe-
cial circumstance of shared activities). The introduction of this form of functional
dependency intoPEPAallows the dependent rate to include the value zero, indicat-
ing that an activity is blocked by the local state of another component. When the
dependency is between two or more components it implies that either the activity
to be performed by the first component and/or its rate value will be determined
by the current state of the other component(s). The rate value may then be any
non-negative real number R+ including zero, particularly when the choice of the
activity to be performed is done according to the state of another component.

The introduction of functional dependencies in PEPA therefore requires us to
relax the constraint on the definition domain of an activity rate. Thus, the set of ac-
tivitiesAct is now defined asAct ⊆ A×R∗ where R∗ is the set of non-negative real
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numbers together with symbol�. The syntax of sequential components is modified
to allow an activity to be defined in terms of an action type and an expression e,
which can be either a rate, or a function, or a product of a rate and a function [1, 2].

S ::= (α, e).S | S + S | A e ::= r | f | r × f | �

where f : 2C −→ R∗ is a function from one or more components to the non-
negative reals.

3 Function-Equivalent Components in PEPA

In this section we give a formal definition of the notion of function-equivalent
components and show that PEPA models can be reduced by eliminating this type
of component. This definition is the basis for automatically detecting suitable
components within a model.

A sequential component Sk is a function-equivalent component in a model
component C if Sk is a sequential component of C and for all derivatives Ci ∈
ds(C) given the current derivatives of the other sequential components Sji , j 
= k
of the model, the current derivative of Sk, Ski , can be inferred. This definition
implies that the function-equivalent component interacts with other components
of the model in such a way that its states can always be inferred from the states
of these components. For this to be the case it follows that the component never
acts independently and all its activities are carried out in cooperation with the
other components. As we will show later in the paper, if a sequential component
is shown to be a function-equivalent component, then this component can be
eliminated and replaced by appropriate functions in the other components of
the model.

In order to formalise the definition of a function-equivalent component we
consider first when a component can be identified as having no independent
activities. Within a model component, each sequential component may be within
the scope of several cooperation sets. For example, in the component

X
def= (P ��

L
R) ��

K
(S ��

N
T )

the subcomponent R can act independently on any action types in the set N
which do not occur in K or L, but must have the cooperation of other subcom-
ponents to achieve actions in the set L ∪K, whereas the subcomponent S can
act independently on any action types in the set L \ (K ∪ N), but must have
the cooperation of other subcomponents to achieve actions in the set K ∪ N .
Thus we can identify the interface of a component i.e. those activities on which
it must interact. In the following we formalise this idea. First, we define a partial
order, ≺, over components, which captures the notion of being a subcomponent :

Definition 1 (Subcomponents)

1. R ≺ P if R ∈ ds(P )
2. R ≺ P + Q if (R ≺ P ) ∨ (R ≺ Q)
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3. R ≺ P ��
L

Q if (R ≺ P ) ∨ (R ≺ Q)
4. R ≺ P/L if R ≺ P

5. R ≺ A if (A def= P ) ∧ (R ≺ P )

The interface of a sequential component within a component model is defined to
be the union of all the cooperation sets whose scope includes the component R.

Definition 2 (Interface). For any sequential component R within a model com-
ponent C (i.e. R ≺ C) the interface of R within C, denoted I(C :: R), is the set of
action types on which R is required to cooperate. It is defined in terms of the sub-
sidiary function J ; I(P :: R) = J (P :: R, ∅), where J is defined as follows

1. J (R :: R, K) = K
2. J (P ��

L
Q :: R, K) = K ′ ∪K ′′ if J (P :: R, K ∪ L) = K ′

and J (Q :: R, K ∪ L) = K ′′

3. J (P/L :: R, K) = J (P :: R, K \ L)
4. J (A :: R, K) = J (P :: R, K) if A

def= P
5. J (R′ :: R, K) = ∅ if R ≺/ R′.

When all the possible actions of a sequential component are constrained by its
interface the component is never free to act independently; it must cooperate
with other components to complete any action. Such a component can be viewed
as being subservient to the rest of the model, and is called a resource component.

Definition 3 (Resource Components). A sequential component R in a mo-
del C is a resource component if there is only one instance of R within C and
the complete action type set of R is a subset of its interface within C, i.e.

A(R) ⊆ I(C :: R)

or if each instance of R is a resource component within a submodel C′ of C and
the submodels are independent of each other (i.e. composed using ‖).

Example 1: A distributed memory system. Consider a system in which
two processors act independently using two different memory elements. Each
processor accesses to the data in its memory element, does computations and
finally stores the results in its memory. As the access to the memory elements
to get or save the data is defined by the processors, both memory elements can
be modelled using the same component Memory.

Proc1
def= (get, p1).(compute, p2).Proc′1 Proc2

def= (get, q1).(compute, q2).Proc′2
Proc′1

def= (save, p3).Proc1 Proc′2
def= (save, q3).Proc2

Memory def= (get,�).(save,�).Memory
System1

def= (Memory ��
{get,save} Proc1) ‖ (Memory ��

{get,save} Proc2)

In this model defined by System1, Memory is a resource component because
each of its instances in the model must synchronise on both activities get and
save.
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Example 2: Consider the following model components

R
def= (α, rα).(β, rβ).R P

def= (α, r1).P Q
def= (β, r2).Q

System2
def= (R ��

{α} P ) ‖ (R ��
{β} Q)

In contrast, in this model, R is not a resource component since it can behave
independently: one instance can act independently on α and the other can act
independently on β.

In the following, we will focus on a particular class of resource components
termed simple resource components. A sequential component R is a simple com-
ponent if

R ≡ S1 + S2 + · · ·+ Sn

for some distinct cyclic components S1, S2, . . . Sn constructed using only prefix,
with no repeated activities within a cycle and such that the last action of each
cycle returns to R.

If a resource component is simple it implies that it offers alternative behaviours
through its interface but once one of those behaviours is chosen (on the first
action) the pattern of behaviour is set until the chosen cycle is completed and
the choice is offered again. This type of repeated cyclic behaviour is, for example,
exhibited by web services.

Definition 4 (Arbiter). A simple resource component R ≡ S1 +S2 + · · ·+Sn,
in a model C ≡ (P1 ‖ P2 ‖ · · · ‖ Pk) ��

L
R is an arbiter between P1, P2, . . . , Pk if

for all i ∈ 1, . . . , k and j ∈ 1, . . . , n, if A(Pi) ∩A(Sj) 
= ∅ then A(Sj) ⊆A(Pi).

Example 3: A simple web service. Consider a system in which two clients
interact with a web service WS. Client1 repeatedly generates tasks of type 1
which it submits to the web service and waits for a response before displaying
the results. Client2 generates tasks of type 2 or type 3. Type 2 tasks require
interaction with the web service, analogously to type 1 tasks, whereas type 3
tasks are processed locally before display. The PEPA model is the following.

Client1
def= (task1, t1).(request1, ρ1).Client′1

Client′1
def= (response1,�).(display, d).Client1

Client2
def= (task2, t2).(request2, ρ2).Client′2
+ (task3, t3).(process, p).(display, d).Client2

Client′2
def= (response2,�).(display, d).Client2

WS def= (request1,�).(response1, r1).WS + (request2,�).(response2, r2).WS
Web Service def=

(
Client1 ‖ Client2

)
��

L
WS

where L = {request1, response1, request2, response2}. In this model, component
WS is an arbiter between components Client1 and Client2.
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Proposition 1. If a simple resource component R is an arbiter within a PEPA
model C, then R is a function-equivalent component and thus can be removed
from the model, the Markov process generated by the resulting model C′ being
isomorphic to the Markov process underlying C.

Proof: As all activities of an arbiter component are shared activities, each step
of the evolution of this component coincide with one step of evolution of one of
the other components of the model. The structure of the arbiter, and the form
of its interaction with the other components of the model ensure that even if it
changes state during the evolution of the model, all its states can be inferred
from the other components of the model. �

Such a component allows two or more other components of the model to indi-
rectly influence one another. This kind of interaction between the components
can be managed using functions in the rates of their shared activities. The defini-
tion of these functions takes into account the states of the components involved
in the cooperation. This allows the model to keep the form of scheduling initially
imposed by R.

The introduction of appropriate functional rates instead of an arbiter com-
ponent will not have any impact on the correctness of the model and thus the
Markov process underlying the reduced model is guaranteed to be isomorphic to
the one generated by the initial model.

Corollary 1. If a simple resource component R is a single state arbiter within
a PEPA model C, then R is an identity function-equivalent component and thus
can be removed from the model, the Markov process generated by the resulting
model C′ being isomorphic to the Markov process underlying C (subject to some
transfer of rates when C is passive with respect to an activity).

This corresponds to the case of an arbiter in which the cycle of each component
Si in R has only one activity:

R
def= (α1, r1).R + (α2, r2).R + . . . + (αn, rn).R

As R always exhibits the same state and all its activities are shared activities,
R can be removed from the model. This type of component does not enforce
any scheduling between the other components of the model as the cycle defining
the use of R by any component Pi is limited to one activity. For this reason
its removal is not conditioned by the use of functional rates. Therefore, when
removed, R can be replaced by an identity function in the other components
which share R’s activities.

However we should consider carefully the activity rates of R. If all activities
have unspecified rates (�), then the rate of these activities are already defined
by the other components of the model. So R can be eliminated without any
impact on the other components of the model. If at least one of its activities α
has a specified rate, then we need to compute the rate of each instance of α in
each component Pi which shares this activity with R. As explained in Section 6
this computation takes place during the generation of the derivation graph.
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In the following section, we show how an arbiter component can be eliminated
from the model using functional rates.

4 A Function Based Simplification Approach

In PEPA components are able to influence one another in two ways, both related
to activities. The first one is a direct interaction between the components and
is modelled using shared activities (cooperation). The other form of interaction
is less direct as the activity rate within a component can be influenced by the
local states of one or more other components in the model. This implies that
the activity may or may not be performed by the component according to a rate
value determined by the current state of the other component(s). Indeed, this
rate may have any non-negative value, including zero which aborts the activity.

In general, the use of functional rates can lead to a reduction in the model
expression because they avoid explicitly modelling all parts of a system’s be-
haviour. This is the case for PEPA models with arbiter resource components.

We have seen so far an arbiter component may be necessary to ensure the
correct behaviour of a model; they enforce the necessary scheduling between
the model’s components. Thus, an arbiter component may be seen as another
indirect means for the components of a model to influence one another. But,
as stated previously, this is exactly what the functional rates allow us to do
in PEPA. Therefore, we propose to replace arbiter components using functional
rates in the other components of the model with which they share their activities.
For example, consider again the web service model (Example 3). In this model,
component WS is an arbiter component and therefore can be removed from the
model and replaced with appropriate functions as follows:

Client1
def= (task1, t1).(request1, f × ρ1).Client′1

Client′1
def= (response1, r1).(display, d).Client1

Client2
def= (task2, t2).(request2, g × ρ2).Client′2
+ (task3, t3).(process, p).(display, d).Client2

Client′2
def= (response2, r2).(display, d).Client2

Web Service2 def= Client1 ‖ Client2

where f and g are defined as follows:

f(x) =
{

0 if x ≡ Client′2
1 otherwise g(y) =

{
0 if y ≡ Client′1
1 otherwise

y and x being the state of component Client1 and Client2 respectively.

Example 4: A multiprocessor shared memory. Consider a system in which
two processors compete for access to a shared memory via a bus. The processors
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are independent and both follow the same pattern of behaviour: each does com-
putations, acquires the bus, sends the message and then releases the bus.

Proc def= (compute, r1).(acquire, r2).Proc′ Bus def= (acquire,�).Bus′

Proc′ def= (transmit, r3).(release, r4).Proc Bus′ def= (release,�).Bus

Memory def= (transmit,�).Memory

Machine def=
(
(Proc ‖ Proc) ��

L1
Bus
)
��
L2

Memory

where L1 = {acquire, release} and L2 = {transmit}. In this model, components
Memory and Bus are arbiter components and therefore can be removed from
the model. The elimination of Memory is straightforward and does not require
the modification of the other components because the rate of the shared activity
transmit is unspecified in Memory. In contrast, in order to remove component
Bus, we need to introduce appropriate functional rates in the other components
where the cooperation activities acquire and release appear. By doing so, we
obtain the following model:

Proc10
def= (compute, r1).Proc11 Proc20

def= (compute, r1).Proc21

Proc11
def= (acquire, f1 × r2).Proc12 Proc21

def= (acquire, f2 × r2).Proc22

Proc12
def= (transmit, r3).Proc13 Proc22

def= (transmit, r3).Proc23

Proc13
def= (release, g1 × r4).Proc10 Proc23

def= (release, g2 × r4).Proc20

Machine′ def= Proc10 ‖ Proc20

where fj and gj, j = 1, 2, are functions defined, when k = 1, 2 k 
= j, as

fj(y) =
{

1 if y ≡ Prock0
0 otherwise gj(x) =

{
1 if x ≡ Prock0
0 otherwise

x and y being the state of Prock appropriately. Note that the functions gj are
not essential for the correct behaviour of the model and may be omitted. The
functions fj are sufficient to guarantee the correct behaviour of the model.
Both previous examples show that the functions are only necessary in the first
activity that a component P shares with the resource component. For P , the
function associated with the rate of the first activity can be regarded as the
access ticket to the resource component and this ticket must be validated to
make the access possible. Once P is using the resource component, the other
components of the model cannot use it.

5 Interplay Between the Function-Based Simplification
Approach and the Aggregation Technique

There is an established aggregation technique for PEPA models based on the
notion of strong equivalence between states. The aggregation may result in a
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single component being substituted for a number of components. Thus, like the
function-based simplification technique, it can result in a reduction in the model
expression. However, in the case of aggregation, this usually had the consequence
that the underlying state space is also reduced. This suggests that the best results
may be obtained if the two techniques are applied in conjunction. In this section
we make some observations about how this can be achieved and the interplay
between the two techniques.

Recall that if C is the set of all PEPA components, and q[P, S, α] is the total
conditional transition rate from component P to the set of components S, then
strong equivalence is defined as follows:

Definition 5 (Strong equivalence). An equivalence relation R⊆C × C is a
strong equivalence if whenever (P, Q)∈R then for all α∈A and for all S∈C/R

q[P, S, α] = q[Q, S, α]

In many cases strong equivalence exists between the derivatives of a model be-
cause there is strong equivalence between components of the model and their
interleaving can be eliminated.

Let us consider the original model of the multiprocessor system as given in
Example 4 and apply the aggregation technique on component Proc ‖ Proc
of the system equation. The model resulting from such an operation is the
following, where a single derivative represents each equivalence class.

Procs00
def= (compute, 2r1).Procs01 [(Proc10, Proc20)]00

Procs01
def= (compute, r1).Procs11
+ (acquire, r2).Procs02 [(Proc10, Proc21), (Proc11, Proc20)]01

Procs02
def= (transmit, r3).Procs03
+ (compute, r1).Procs12 [(Proc10, Proc22), (Proc12, Proc20)]02

Procs03
def= (compute, r1).Procs13
+ (release, r4).Procs00 [(Proc10, Proc23), (Proc13, Proc20)]03

Procs11
def= (acquire, 2r2).Procs12 [(Proc11, Proc21)]11

Procs12
def= (transmit, r3).Procs13 [(Proc11, Proc22), (Proc12, Proc21)]12

Procs13
def= (release, r4).Procs01 [(Proc11, Proc23), (Proc13, Proc21)]13

Bus def= (acquire,�).(release,�).Bus Memory def= (transmit,�).Memory

Machinea
def=
(
Procs00 ��

L1
Bus
)
��
L2

Memory

where L1 = {acquire, release} and L2 = {transmit}. In the new model, Memory
is a single state arbiter component as before, and its removal is straightforward.
Similarly, Bus is also an arbiter component as before. However, we would like
to highlight that in the aggregated model, its removal is no longer conditioned
by the use of functional rates in the other components of the model. Indeed, the
aggregation has reduced the number of components that have to cooperate with
Bus to one component. Moreover, the scheduling imposed previously by Bus
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between the two model components Proc is already taken into account in the
resulting component Procs00. Therefore the removal of Bus becomes straightfor-
ward and the new system equation is Machine′a

def= Procs00.
In contrast, if we first apply the function-based simplification technique we

obtain the model Machine′ def= Proc10 ‖ Proc20 defined earlier in which Proc1
and Proc2 involve functional rates. In order to apply aggregation to this model
we must first define strong equivalence for components which contain functional
rates. The original definition of strong equivalence suggests that this will be
achieved by extending the definition of conditional transition rate to include the
possibility that the transition rate concerned may be a function.

Definition 6 (Conditional transition rate). The conditional transition rate
between two derivatives Ci and Cj, via a given action type α, denoted
q(Ci, Cj , α), is defined to be the sum of the constant and the functional activity
rates associated with transitions between Ci and Cj in the derivation graph which
are labelled by α.

Note that the evaluation of a function is unequivocal because we are considering
the transition rates from a particular derivative. Each derivative corresponds
to a particular set of local states for each component, thus determining the
appropriate value of the function.

The total conditional transition rate to a set is defined, as previously, as the
sum of conditional transition rates from the component to elements of the set.
Thus it follows that two derivatives with functional rates for an action type α
will be strongly equivalent if the functions in each derivative will give the same
transition rate to each strong equivalence class. For the example above this is
readily shown to be the case. In the cases where the equivalence class has more
than one element it is clear that Proc10 ‖ Proc2k

∼= Proc1k ‖ Proc20 for all
k = 0, 1, 2, 3 and f1 and f2 (g1 and g2) will have the same evaluation.

If the techniques are considered as alternative means of model simplification
there is a clear preference for strong equivalence based aggregation since this
can reduce the size of the underlying state space. But when both techniques are
applicable, it seems that it is possible to apply the techniques in either order.
However, in general, establishing strong equivalence without functional rates
will be less involved and therefore to be preferred computationally. Moreover,
as we have seen, first carrying out the aggregation to remove interleavings may
simplify the function-based reduction because the need for functions to control
scheduling may have been eliminated.

In the following we describe the algorithm that allows the simplification of a
PEPA model by removing the arbiter components.

6 An Algorithm for Eliminating Arbiter Components

Assume that R is an arbiter in model C, i.e. R is a simple resource component
R ≡ S1 +S2 + · · ·+Sn, in a model C ≡ (P1 ‖ P2 ‖ · · · ‖ Pk) ��

L
R. Then for each

component Pi we can partition the derivative set of Pi into two disjoint subsets
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dsR(Pi), corresponding to states where Pi is “using” R and dsfree(Pi) where it
is not. A component is “using” the resource when it has cooperated on the first
activity of one of the cycles Si in R, but not yet cooperated on the last activity
of the cycle.

ds(Pi) = dsR(Pi) ∪ dsfree(Pi) dsR(Pi) ∩ dsfree(Pi) = ∅

Moreover, we denote by C state(Pi) the current state of component Pi and define
the two sets B(α) and Input(R). The former contains the components which have
α in their action type set and the latter the action types that component R may
engage in, in its initial state.

Single state arbiter components. This type of component has only one
derivative but may have the choice between several activities to engage in.

R
def= (α1, r1).R + (α2, r2).R + . . . + (αn, rn).R

As stated before, when such a component is removed, logically it can be replaced
by an identity function because it does not enforce any scheduling between the
other components of the model. In practical terms the introduction of such a
function can be omitted as it has no impact on the behaviour but overloads the
notation and introduces an unnecessary extra computation time.

However, when removing such a component from a model, we should pay
attention to the rates of the activities in this component. These rates may be
real values or unspecified rates and according to this the elimination of this
component may or may not bring changes to the other components of the model.

1. If all the activities enabled by the arbiter component have unspecified rates,
then the component can be removed automatically from the model without
any changes in the other components of the model.

2. If the rate of an action type αi ∈ A(R) is specified, then for each component
Pj in the model and each instance α∗

i of αi in Act(Pj), a new rate should
be computed. For that we need to know the current state of each compo-
nent in B(α). To define this within a function would necessitate a complete
derivation of the state space of the remainder of the model. Thus we leave
this to be done during the usual generation of the derivation graph of the
model. For each arc of the graph to generate with label α, we consider the
components in competition for this action type and compute the associated
rate for α considering the rates of these components at this stage of the
graph. The functions instead are used to control whether an activity of this
type should be allowed or not, without complete specification of the rate.
Thus our functions always have the value 1 or 0 which can be regarded as
switching an activity on or off respectively.

Note that from the point of view of the state space, the removal of a single state
arbiter component does not bring any benefit.
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Multi-states arbiter components. Unlike single state arbiter components,
the removal of these components from the model allows us to reduce the size of
the model, its representation and its state space when the Kronecker form is the
internal representation used.

The general algorithm consists mainly in defining, for each component Pi

and action type α shared between this component and an arbiter component,
a function gi(α). This function allows Pi to know when the arbiter component
is free and thus usable. Application of the algorithm takes place at the model
(syntactic) level and results in the removal of all arbiter components.

//Algorithm

for each component Pi

// define a function fi over ds(Pi)
for each P ′

i ∈ ds(Pi)

fi =
{

1 if P ′
i ∈ dsfree(Pi)

0 if P ′
i ∈ dsR(Pi)

end for
end for

for each α ∈ Input(R)
for each Pj ∈ B(α)

gj(α)=
n∏

i=1,i�=j

P ′
i =C State(Pi)

fi(P ′
i )

replace (α, r) in Pj by
(α, gj(α)× r)

end for
end for

7 Related Work
Current research addresses the definition of efficient techniques for constructing
and analysing large models. These techniques fall into two categories: “largeness
avoidance” and “largeness tolerance” [9]. While the former refers to approaches
that aim to keep the size of the model representation as small as possible at
every stage of the modelling and analysis process, the latter category focusses
on sparse storage techniques and memory-efficient numerical methods.

Like decomposition techniques, the Kronecker approach, and techniques which
exploit model symmetries, the function-equivalent components based simplifica-
tion technique belongs to the first category. However, unlike these techniques
which have been widely reported in the literature, the possibility of using func-
tional rates to eliminate components has not really been investigated. This tech-
nique has been identified for SAN for some time [5]. However, to the best of
our knowledge, there has not been any work on a systematic way to identify
suitable components and automatically eliminate them. Instead the previous
approach relies on the expertise/skill of the modeller. Here we can envisage the
elimination being carried out transparently to the user since the identification
of suitable components is based on readily checked syntactic conditions, and the
algorithm of the previous section provides an automatic means of carrying out
the reduction.

Process algebras which encompass functions have previously appeared in the
literature (see for example μCRL [6][7]). However the role of the functions here
is somewhat different. Moreover this is the first stochastic process algebra to
incorporate them.
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8 Conclusions

In this paper, we have identified a class of function-equivalent PEPA components
and we have shown, using functional rates, that any component of this class can
be eliminated from a model. An algorithm allowing the automatic removal of
these components has been developed.

This new simplification technique allows the reduction of the number of com-
ponents in a model and thus the number of matrices required for a Kronecker
representation of the underlying Markov process, when this internal representa-
tion is used. Furthermore the model expression is simplified although the state
space remains the same and subsequent solution is exact.

Moreover, we have investigated the interplay between this simplification ap-
proach and the aggregation technique characterised by strong equivalence in
PEPA. Combining these techniques, when possible, may allow the modeller to
push the current limits of PEPA in terms of tractable systems. Our goal in the
future is to extend the class of function-equivalent components and to integrate
this new simplification approach into the PEPA Workbench [8].
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Abstract. In this paper, we introduce FPS, a mechanism to define
performance measures for stochastic process algebra models. FPS is a
functional performance specification language which describes passage-
time, transient, steady-state and continuous state space performance
questions. We present a generalisation of stochastic probes, a formalism-
independent specification of behaviour in stochastic process algebra mod-
els. Stochastic probes select the performance-critical paths for which the
measures are required; increasing their expressiveness in turn gives us
greater expressive power to represent performance questions. We end by
demonstrating these tools on an RSS syndication architecture of up to
1.5 × 1051 states.

1 Introduction

In this paper, we introduce functional performance specification (FPS) over
stochastic probes: a mechanism to define performance measures for stochastic
process algebra models, with a unified description to capture passage-time, tran-
sient, steady-state and continuous state space quantities.

These four kinds of soft performance bounds are an integral part of system
performance validation. For example, we might have a service-level agreement
(SLA) that a particular type of SQL query must return a result within 0.35
seconds 99% of the time; this would be derived from a passage-time quantile,
based on an underlying stochastic model. Alternatively, we might need to assure
ourselves that the probability that a just-in-time compiler is running native
code exactly 5 seconds after loading a Java applet is at least 0.8; this would
be a transient constraint. Finally, we might have to demonstrate that the long-
term probability that our software is in a particular failure mode is less than
0.002; this is a steady-state measure. Continuous state space analysis is used
to quantify massively parallel agent-based architectures, by providing counts of
agent states at particular time points, e.g. there are 5221 copies of a web client
component in a queue for the web server at time 150 seconds.

When measuring the performance of a system, we see a need to separate
the logic that specifies the performance query from the logic that defines the
model; a modelling requirement described in [1]. Without such separation, it is
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common to see many distinct versions of the same system being created explicitly
to capture distinct measurement-centred behaviour. Stochastic probes are one
method of making this separation of model and query. A stochastic probe [2] is a
measurement device that defines arbitrary start and end events for a performance
measure over a stochastic process algebra model.

We base the stochastic probe specification on an action-based regular expres-
sion syntax. We provide a further separation between the behavioural properties
that make up our performance measure (as described by the stochastic probe)
and the quantitative questions that we typically need to ask, using the functional
performance specification framework.

This work builds on many performance specification methodologies: the NICE
performance measurement system [3] of Woodside et al.; the regular
expression style behavioural specification of asCSL [4] and TIPPtool [5]; the
path-based reward structures described by Obal and Sanders [1]. FPS and
stochastic probes are, however, unique in offering the combination of functional-
style performance questions and a simple regular-expression based behavioural
specification.

In this paper, we show how stochastic probes can be used to specify expressive
behavioural constraints (Section 2.1), while the functional performance specifi-
cation layer uses the stochastic probes to define passage-time, transient, steady-
state or continuous state-based measures (Section 4). We significantly augment
the expressiveness of the stochastic probe language from the introduction pre-
sented in [2] and present a new formal semantic translation of probe operators
to underlying stochastic process algebra components (Section 6). We conclude
by demonstrating the use of functional performance specification and stochastic
probes over a PEPA model of the publish–subscribe mechanism, Really Simple
Syndication or RSS (Section 7).

2 Stochastic Probes

We use a regular expression [6] specification to describe the start and end points
of a performance measurement. The atoms of the regular expression are action
names in the target system, drawn from the alphabet of the underlying process
algebra model. This specification is turned into a fragment of stochastic process
algebra, for our purposes PEPA [7], but we could equally apply probes to other
stochastic process algebras such as EMPA [8] or SFSP [9] according to our
modelling requirements. These probe fragments are composed with the original
model to produce a model–probe system from which the performance measure
can be easily extracted using tools native to the formalism.

The precise meaning of the probe will depend on the semantics of the un-
derlying process algebra, in particular how choice works. In principle the trans-
lation offered in Section 6 will apply for any stochastic process algebra
which has choice, a passive cooperation and supports CSP-style multiway
synchronisation.
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2.1 Stochastic Probe Definition

In this enhanced version of stochastic probes, we add the without operator, R/L.
This specifies that, for a given path, a set of behaviours R should be observed
without seeing any of the actions in the set, L. This is a significant generalisation
over [10], where the modeller is only allowed to specify start and stop actions
actions with no additional constraints on intermediate behaviour. It also gener-
alises [2] where the modeller is only allowed to specify behaviour that should be
seen along a particular path. A stochastic probe definition, R, has the following
syntax:

R ::= A T, T S

S ::= T |S T

T ::= R R{n} R{m, n} R+ R� R? R/act
A ::= act act :start act :stop (1)

act is an action label that matches a label in the system being measured. Any
action specified in the probe has to be observed in the model before the probe
can advance a state. An action, act , can also be distinguished or tagged as
a start or stop action in a probe and signifies an action which will start or
stop a measurement, respectively.

R1, R2 is the sequential operation. R1 is matched against the system’s opera-
tion, then R2 is matched.

R1 | R2 is the choice operation. Either R1 or R2 is matched against the system
being probed.

R� is the closure operation, where zero or more copies of R are matched against
the system.

R? is the optional operation, matching zero or one copy of R against the sys-
tem.

R{n} is the iterative operation. A fixed number of sequential copies of R are
matched against the system e.g. R{3} is simply shorthand for R, R, R.

R{m, n} is the range operation. Between m and n copies of R are matched
against the system’s operation. R{m, n} is equivalent to R{n, m}, and we
consider the canonical form to have the smaller index first.

R+ is the positive closure operation, where one or more copies of R are
matched against the system. It is syntactic sugar for R, R�.

R/act is the without operation. R must begin again whenever the probe sees
an act action that is not matched by R.

3 PEPA Stochastic Process Algebra

PEPA is used as the stochastic process algebra of choice for defining the probe
semantics of Section 6 and the modelling example of Section 7. PEPA is a par-
simonious stochastic process algebra that can describe compositional stochastic
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models and has been used for many performance modelling case studies. These
models consist of components whose actions incorporate random exponential
delays. Full details of the PEPA process algebra can be found in [7]. In brief, the
syntax of a PEPA component, P , is represented by:

P ::= (a, λ).P P + P P ��
S

P P/L A

(a, λ).P is an action prefix operation. It represents a process which does an
action, a, and then becomes a new process, P . The time taken to perform a
is described by an exponentially distributed random variable with parameter
λ. The rate parameter may also take a �-value, which makes the action
passive in a cooperation (see below).

P1 + P2 is a choice operation between two components. A race is entered into
between components P1 and P2. If P1 evolves first then any behaviour of P2
is discarded and vice-versa.

P1 ��
S

P2 is the cooperation operator between two components which synchro-
nise over a set of actions, S. P1 and P2 run in parallel and synchronise over
the set of actions in the set S. If P1 is to evolve with an action a ∈ S, then it
must first wait for P2 to reach a point where it is also capable of producing
an a-action, and vice-versa. In an active cooperation, the two components
then jointly produce an a-action with a rate that reflects the slower of the
two components (usually the minimum of the two individual a-rates). In a
passive cooperation, where P1, say, can evolve with an (a,�)-transition, the
joint a-action inherits its rate from the P2 component alone.

P/L is a hiding operator of a set of actions, L. where actions in the set L
that emanate from the component P are rewritten as silent τ actions (with
the same appropriate delays). The actions in L can no longer be used in
cooperation with other components.

A is a constant label. and allows, amongst other things, recursive definitions to
be constructed.

Regarding related performance specification in PEPA, itself, Gilmore and Hill-
ston [11] have developed their own feature interaction logic which explores a
PEPA model, assigning rewards to component states for use in steady-state and
transient-state analysis. This is an alternative technique to the one we are try-
ing to achieve here. Instead of using a logic to interrogate a model, we use the
language’s own cooperation operator to observe the key events that we wish
to measure. By selectively sampling a model’s behaviour in this way, we can
simplify the task of picking the states that are relevant to our measure.

Our method has the benefit of not requiring the user to learn an entirely
different paradigm, being based on the process algebra in which the model is
described. At the moment, it has the downside that, being observationally-based,
it cannot distinguish actions that are generated by different copies of the same
component. This is possible in a logic setting such as that set up by Gilmore et
al. [12] for steady-state measure specification.
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4 FPS: Functional Performance Specification

A functional performance specification is presented here as a contrast to well-
established logical performance specification formalisms that have some from
CSL [13]. Logical formalisms reduce all performance questions to a truth value,
for instance in a later version of CSL [14], the expression s |= S<0.3(ψ) means:

Is the state s the initial state of a path that ends in the set of states
defined by ψ where the total steady-state probability of being in those ψ
states is less than 0.3?

This is how a performance modeller might phrase the same question:

Is the steady-state probability of the states defined by ψ less than 0.3?

If we were to require the precise value of the steady-state probability in CSL, we
would have to ask the more general question s |= S<p(ψ) and observe the value
of p at which the formula moves from being true to false. Of late, this situation
has been in part remedied by the support of tools such as PRISM [15], which
allow questions such as:

Find p such that, given a start state s, s |= S<p(ψ) is true.

However, we still feel that the question is not as directly or succinctly stated
as it might be. Despite this, logical performance specification offers a very ex-
pressive and very powerful environment, especially in being able to construct
compositional performance queries, due in a large part to its well-explored CTL
pedigree. In developing a functional performance paradigm, we seek to be able
to ask the quantitative performance question more directly, as in:

What is the steady-state probability of being in a set of states, ψ?

while maintaining the compositional power of logical performance specification.
However in this paper, since we favour a process framework for our underlying
model, we use stochastic probes rather than logical atomic propositions of CSL
to specify our state sets.

4.1 Performance Specification Syntax

With this motivation, we present a functional specification, which takes an input
native to a stochastic process algebra model – i.e. a stochastic probe or com-
ponent label – and generates a performance function, e.g. a passage time CDF,
which can itself be sampled or composed into higher-order performance queries.
A functional performance specification, M, over a stochastic probe, R, has the
following grammar:

M ::= Steady(R) Passage(R) Transient(R) Number(C)

and Steady(R) represents a steady-state measure; Passage(R) represents
a passage-time cumulative distribution function; Transient(R) represents a
transient-state distribution function; and Number(R) represents a deterministic
component counting function. C is a component type from the process model.
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4.2 Definitions

Let the joint probe–model system, R ��
L

M , be a Markov process, {Z(t) : t ≥ 0},
where Z(t) is the state of the system at time t. We can define the counting
process, N(t) = |{|Z(u) : 0 ≤ u ≤ t|}| − 1, to be the number of state transitions
that have occurred by time t.

In order to define the performance measure operators, Passage and Transient ,
we will need to specify sets of source states, F , and target states, G, based on
the instants after probe start and probe stop actions have occurred respectively.
So we define:

F (R) = {R′′ ��
L

M ′′ : R′ ��
L

M ′ (a:start,·)
−−−→ R′′ ��

L
M ′′} (2)

G(R) = {R′′ ��
L

M ′′ : R′ ��
L

M ′ (a:stop,·)
−−−→ R′′ ��

L
M ′′} (3)

where R′ and R′′ are derivative or successor states of the probe, R. M represents
the model being measured and M ′ and M ′′ are derivative states of M . It is
worth noting, that although we have used PEPA notation to highlight the joint
probe–model process, these definitions could easily be expressed in other process
algebras.

In the following descriptions prob ≡ [0, 1], the set of probability values and C
is a component type from the process model.

Steady-state, Steady(R) : prob. Applying the steady-state operator to a
probe, R, generates the steady-state probability for being in one of the states
reachable by a probe stop action. For irreducible state spaces, this can be
expressed as:

Steady(R) =
∑

x∈G(R)

π(x) (4)

where π(x) is the steady-state probability of being in the state x in the
process Z(t).

Passage-time CDF, Passage(R) : IR+ → prob. A passage-time measure over
a probe R returns a cumulative distribution function for the passage-time
that starts from a state reachable by a probe start action and finishes at a
state reachable by a probe stop action. More precisely, using λ-notation to
define the cumulative distribution function, we can say:

Passage(R) = λt .
∑

x∈F (R)

π(x) IP(PxG(R) ≤ t) (5)

where PiJ is the random variable representing the passage-time starting
from a state i and terminating in one of the states in J , as given by:

PiJ = inf{u > 0 : Z(u) ∈ J , N(u) > 0, Z(0) = i} (6)

In Eq. (5), we weight the passage with the steady-state probabilities of start-
ing in any of the start states, as defined by the start actions in the probe. It
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is our intention to generalise this in future versions, so that we can specify
a time-point from which we can generate a transient distribution to weight
the passage with.

Clearly, the associated density function, f(t), for this passage-time mea-
surement can be obtained by differentiating the CDF, f(t) = Passage(R)′(t).

Transient-state function, Transient(R) : IR+ → prob. A transient-state me-
asure over a probe R returns the transient-state distribution function for
having just completed the probe stop action at time t, having completed a
probe start action at time, t = 0. It is defined as follows, again using the
steady-state vector to weight the multiple start states that might arise from
the stochastic probe:

Transient(R) = λt .
∑

x∈F (R)

π(x) IP(Z(t) ∈ G(R) | Z(0) = x) (7)

Component count function, Number(C) : IR+ → IR+. Applying the com-
ponent count function to a component C in the model yields a function
which counts the number of that components in the system in the state C
at time t. It relates to the recent innovations in continuous state space ap-
proximation of stochastic process algebra models [16], which solve systems
of coupled of ODEs for systems with huge and otherwise computationally
infeasible state spaces.

The model M is regarded as consisting of a cooperation of n classes of
component, Ci, 1 ≤ i ≤ n and with each component class having mi deriva-
tive states. At any time, there may be many components of the same class,
but in a different state in the system. We let vij(t) represent the number of
components of type Ci in state j at time t for 1 ≤ j ≤ mi. This is found by
solving a set of coupled ODEs of the form v′ij(t) = g(v11(t), . . . , vnmn(t)). In
effect:

Number(Cij) = λt . vij(t) (8)

5 Stochastic Probe Examples

We give a few examples of stochastic probes as specified by regular expressions
over a simple PEPA model. Consider a Bartender and a few customers, specified
in PEPA:

Bartender def= (serve, rs).Bartender + (restock , rr).Bartender

Person def= (life , r).Person + (thirst , s).Thirsty

Thirsty def= (serve,�).Drinking

Drinking def= (drink , r0).(resume, r1).Person + (drink , r0).Thirsty

Sys def= Bartender ��
{serve} (Person || Person || Person)
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Let us ask a few simple questions of this model:

– How long between the first drink is served and the tenth?

serve:start, serve{8}, serve:stop

– Measure the time from the tenth serving till any of the drinkers returns to
their normal life.

serve{9}, serve:start, resume:stop

– If the bar holds stocks for 100 drinks, and is restocked to back to 100 drinks
every time the Bartender performs restock action, how long till the bar runs
dry?

serve:start, serve{99}/restock, serve:stop

It is important to realise that the probe will never block the behaviour of the
model it is synchronising with. As described in the next section, the probe will
absorb behaviour (without altering state) which it sees that is not part of its
next specified action. A probe that does not use the without construct asks the
question “will I ever see this behaviour?”. Using without, a modeller may also
ask “will I see exactly this behaviour next?”, if not then skip back to a particular
point in the measure.

6 Stochastic Probe Translation

Fig. 1 depicts the conversion of the individual regular expression elements to
process algebra components pictorially. The without operator acts at a different
level to the other operators, and is concerned with the actions within a particular
sub-expression, and not with composing expressions together. Dotted arrows
denote that there is an immediate choice (with no prefix action) to continue in
the successor state.

Note that the representation for R{m, n} is not the same as (R{m}|R{m
+ 1}| . . . |R{n}). That would be one way to translate it, but would mean com-
mitting, through random choice to matching a particular number of repetitions
of R. This could be surprising to a modeller who has asked the probe to match
any of the range of repetitions. Instead we treat R{m, n} as R{m}, R?{m− n}
(or R?{n} where m = 0).

Before translating the probe at all, we first build a parse tree, during which
all the syntactic sugar is removed. We convert: R+ to R, R�; R{n} to R, . . . , R
to give n explicit copies of R; and R{m, n} to R{m}, R?{m−n} or R?{n} where
m = 0. Now, we are left with probes which fit a smaller syntactic form, which
we need to convert to our target process algebra. In particular, the syntax of the
T component of the regular expression definition from Eq. (1) is reduced to:

T ::= R R� R? R/act
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Fig. 1. The representation of the distinct regular expression terms as state-transitions
in the underlying process algebra

6.1 Mapping Probes to PEPA

In the definitions below, we take as input the component name, P, we are to
define, the component name, Q, we are to end at and a reset-list of action names
and the component-label to which we return when we absorb that action. The
reset-list is initially empty. We introduce new, intermediate component labels
Ni, as required.

Throughout the conversion, only the topmost operator in the tree is consid-
ered, and the subtrees are handled recursively. First, a few definitions:

Definition 1. F(R) denotes the first names of the probe expression R. These
are the action names that are explicitly used at the beginning of R. It is defined
over the terms for regular expressions.

The sequence operator needs careful handling; where the first term is optional
(R� or R? or R{0, n}) then the first actions of the second term are also imme-
diately available. We take the first (which is also the most specific) definition
below that matches the current situation:

F(a:start) = a

F(a:stop) = a

F(a) = a

F(R�
1, R2) = F(R1) ∪ F(R2)

F(R1?, R2) = F(R1) ∪ F(R2)
F(R1, R2) = F(R1)

F(R1 | R2) = F(R1) ∪ F(R2)
F(R?) = F(R)
F(R+) = F(R)
F(R�) = F(R)
F(R/a) = F(R)
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Definition 2. N (R) denotes the names that are not explicitly enabled at the
beginning of R. For a probe that acts over the alphabet A, N (R) = A−F(R).

At every state, the probe will offer every action to lead somewhere. If not to move
the probe forward, or to reset it to some prior state due to an enclosing without
operator, then the probe absorbs the action and remains in the same state. To
abstract this from the translation that follows, we define the function S, which
provides the sum (choice) of all the reset and self-loops for an expression R,
being translated running from label P , with the set of pairs for resets X . Note
that this procedure adds a transition for every action in N (R):

S(R, P, X) =
∑

(b,E)∈X : b∈N (R)

(b,�).E +
∑

c∈N (R) : �x : (c,x)∈X

(c,�).P

We now define the full translation, T , which produces a set of PEPA def-
initions, and is a formal version of the English descriptions above. The first
argument to T is always a probe expression, which is underlined, to avoid con-
fusing the expression’s sequence operator for the argument separator. The Ni

are new process names for each recursive call.
The initial call to translate a probe is to T (R, Probe, Probe, ∅). This creates a

cyclic PEPA component, Probe, so when composed with an irreducible system,
that may be preserved.

Action T (a, P, Q, X) = P def= (a,�).Q + S(a, P, X)
Grouping T ((R), P, Q, X) = T (R, P, Q, X)

Choice T (R1|R2, P, Q, X) = P def= N1 + N2 + S(R1|R2, P, X);
T (R1, N1, Q, X); T (R2, N2, Q, X)

Sequence T (R1, R2, P, Q, X) = T (R1, P, N1, X); T (R2, N1, Q, X)

Closure T (R�, P, Q, X) = P def= N1 + Q
+ S(R�, P, X); T (R, N1, P, X)

Optional T (R?, P, Q, X) = P def= N1 + Q
+ S(R?, P, X); T (R, N1, Q, X)

Without T (R/a, P, Q, X) = T (R, P, Q, X ′)
where X ′={(c, x) ∈ X | c 
= a} ∪ (a, P )

Note that the intention of the “;” operator here is as a separator between defi-
nitions. T (. . .); T (. . .) means the PEPA system contains all the definitions from
both calls.

Or in words (omitting the passive loops and resets):

Action a: is always a leaf node and translates to:

P def= (a,�).Q

Choice R1 | R2: translates to P def= N1 + N2 and the algorithm is repeated for
the sub-trees with R1 running from N1 to Q and R2 running from N2 to Q.
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Sequence R1, R2: translates to R1 running from P to N1 and R2 from N1 to Q.
Closure R�: becomes Pdef=N1 +Q, where R is translated running from N1 to P.
Optional R?: becomes P def= N1 + Q, where R is translated running from N1

to Q.
Without R/a: R is translated running from P to Q and at every stage between,

offers a choice of (a,�).P wherever R does not explicitly offer one. We do
this by adding the pair (a,P ) to the reset-list and removing any other a-reset
pair. This ensures we use the most specific reset action that the modeller
has chosen, should they choose to exclude the same action more than once.

The procedure above gives us a valid PEPA fragment which will behave properly
as a probe. However, for our analysis with ipc/DNAmaca [10] we also need to be
able to tell, purely from the state of the probe, whether it is running or stopped.
To achieve this, we create an observationally equivalent probe which has a parti-
tion in its state space to enable ipc to specify the start and stop states for DNA-
maca. The details of this procedure can be found in Argent-Katwala et al. [2].

7 Worked Example: An RSS Publish–Subscribe System

To demonstrate our functional performance specification framework, we intro-
duce a simplified PEPA model of an RSS publish–subscribe system.

The RSS system under consideration consists of NC RSS clients and a single
RSS server comprising NS virtual servers running in parallel. The clients and
server are connected by a network capable of sustaining NN concurrent network
connections. This is described by the top-level system equation below:

RSS System def= (RSS Client [NC ] ��
L

RSS Server [NS , M ])

��
L

RSS Network [NN ]

where:

L = {subscribe, unsubscribe, rss poll , rss update, rss cache hit}
M = {new feed , rss refresh}

describes the set of actions that the RSS client and server cooperate over via the
network. Note that in the above description, the A[N ] construction is shorthand
for A[N, ∅] and A[N, M ] represents N components of type A cooperating over
the set of actions M , as in:

A[N, M ] ≡ A ��
M

A ��
M
· · · ��

M
A︸ ︷︷ ︸

N

The RSS client can subscribe to a server feed, after which it can poll the
RSS server for the current feed information. With some rate, λ2, a client can
withdraw from the system by unsubscribing. After polling, the client is given
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a newer version of the RSS feed or told that the cached version that the client
has is current and no update is necessary (achieved through a choice between
rss update and rss cache hit actions in component RSS Client1). At this stage,
the client will poll at different rates according to whether it has just been handed
a new version of the feed or not. If an older cached version exists, it will poll
more frequently, with λ4 > λ3.

RSS Client def= (subscribe, λ1).RSS Clientn

RSS Clientn
def= (rss poll , λ3).RSS Client1 + (unsubscribe, λ2).RSS Client

RSS Clientc
def= (rss poll , λ4).RSS Client1 + (unsubscribe, λ2).RSS Client

RSS Client1
def= (rss update,�).RSS Clientn + (rss cache hit ,�).RSS Client c

+ (unsubscribe, λ2).RSS Client

The RSS virtual servers, of which there will be several working in parallel to
update the feed information, keep track of the subscription list (not explicitly
represented in this model). A current feed has a lifetime determined by the
new feed action at rate μ1, which, together with the rss refresh action, represent
a feed content change on a shared disk, say. A client polling one of the servers
receives either an rss update or an rss cache hit with probabilities μu

μu+μc
and

μc

μu+μc
respectively, where μc > μu representing that sending a message that the

feed has not modified is quicker than sending the whole body of the feed. This
represents a type of HTTP conditional request, without greatly increasing the
size of the model.

RSS Server def= (subscribe,�).RSS Server + (unsubscribe,�).RSS Server
+ (rss poll ,�).RSS Server2 + (new feed , μ1).RSS Server1

RSS Server 1
def= (rss refresh, μ2).RSS Server

RSS Server 2
def= (rss update, μu).RSS Server + (rss cache hit , μc).RSS Server

Finally, a simple network model keeps track of limited bandwidth by capping
the total number of connections within a given network window to NN . The
duration of the network window is governed by the net recover action and the
γ parameter.

RSS Network def= (subscribe,�).RSS Network1

+ (unsubscribe.�).RSS Network1

+ (rss poll ,�).RSS Network1

+ (rss update,�).RSS Network1

+ (rss cache hit ,�).RSS Network1

RSS Network1
def= (net recover , γ).RSS Network
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7.1 Functional Performance Queries

We present some questions and analysis of the RSS model in the functional
performance specification style:

Steady-state query. What is the steady-state probability of seeing 4 consecu-
tive rss poll actions in the RSS model without having an rss update action?
This is translates into the formal functional performance query:

Steady( (rss poll :start, rss poll{2}, rss poll :stop)/rss update) (9)

We solved this query for a 1,494,288 state system of 7 clients, 3 servers and
2 network connections. S(R1) = 0.19273, for R1 taken to be the probe of
Eq. (9).

Passage-time query. What is the probability that the time between consecu-
tive rss update actions is between 2 and 4 time units? This translates into
the formal functional performance query on the cumulative distribution func-
tion of the equivalent passage time, Passage(R2)(4)−Passage(R2)(2) where
R2 = rss update:start, rss update:stop.

We solved this for a 11,232 state system of 4 clients, 2 servers and 2 net-
work connections. Fig. 2 shows a probability density function of the appro-
priate passage fp(t) = Passage(R2)′(t). Fig. 3 shows the cumulative distri-
bution function for the appropriate passage FP (t) = Passage(R2)(t). From
this second plot we can calculate the required probability FP (4)− FP (2) =
0.1072793.

Component counting. How many RSS Client components are there at time
60, for a system with NC = 100, NS = 3, NN = 2? This translates into the
formal functional performance query on the component counting function
Number(RSS Client)(60). Although this query is not based on a stochastic
probe, it is of fundamental interest as a quantitative measure to a perfor-
mance modeller.
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Fig. 4. The component counting functions, (top) Number(RSS Client)(t), (middle)
Number(RSS ClientC)(t) and (bottom) Number(RSS ClientN )(t), for RSS model
NC = 100, NS = 3, NN = 2

For parameters NC = 100, NS = 3, NN = 2, the RSS model has approxi-
mately 1.5×1051 states. For this magnitude of calculation, the only practical
option is to resort to the continuous state space techniques of Hillston [16].
The result of Number(RSS Client)(60) = 77.4 is derived from the appropri-
ate counting function in Fig. 4

8 Conclusion

In this paper, we have developed FPS, a functional performance specification
language which allows the modeller to derive quantitative performance functions
using stochastic probes. We have also extended stochastic probes as a means
of measuring soft performance characteristics of systems. We demonstrated a
regular expression language which specifies the stochastic probe and is itself con-
verted into a stochastic process algebra component. The probe is composed with
the target system for the purposes of extracting the performance measurement.

We showed how this joint FPS/stochastic probe environment could be used
to specify quantitative performance and reliability bounds on stochastic process
algebra based systems. Finally, we applied these techniques to a model of an
RSS system where we analysed PEPA models of 11 thousand, 1.5 million and
1.5× 1051 states in size for quantitative performance measures.

Future improvements include allowing the specification of initial state distri-
butions for passage-time and transient measures. We would also like to find an
intuitive but unrestrictive way of using probes to define the continuous state
space measure, in addition to or maybe as an alternative to using the SPA com-
ponent type.
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Abstract. We present a stochastic process algebra including immediate
actions, deadlock and termination, and explicit stochastic delays, in the
setting of weak choice between immediate actions and passage of time.
The operational semantics is a spent time semantics, avoiding explicit
clocks. We discuss the embedding of weak-choice real-time process theo-
ries and analyze the behavior of parallel composition in the weak choice
framework.

Keywords: Stochastic delay, weak choice, race condition, real-time and
stochastic process algebra.

1 Introduction

Traditionally, process algebras (PAs) like ACP, CCS and CSP are used for quali-
tative description and verification of processes. In this setting, process behaviour
is reflected by the order of actions. However, untimed description of processes
is frequently not sufficiently expressive. (See, e.g., [1].) Thus, several timed ex-
tensions of traditional PAs emerged. (A detailed overview can be found in [2].)
Also, probabilistic behavior of processes was included in PAs supporting prob-
abilistic analysis. (Cf. [3], for example.) Combined efforts, like [4], considering
timing aspects and probability, are reported as well.

Often, real-world processes require stochastic behaviour to be incorporated
in their description. Early PAs doing so, employed exponentially distributed
stochastic delays. Modeling with exponential distributions greatly simplifies the
treatment of parallel composition, because of the memoryless property. Promi-
nent Markovian PAs include EMPA, PEPA and Algebra of IMC [5, 6, 7]. The
first two associate exponential rates with actions, whereas the latter clearly dis-
tinguishes between actions and rates.

Although much success has been reported, an abundance of processes cannot
be dealt with exponentially. Consequently, several stochastic PAs with general
distributions are proposed like SPADES, IGSMP and NMSPA [8, 9, 10]. SPADES
introduces clocks to record the residual lifetime of stochastic delays. Each clock
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initialization is governed by a general distribution. Actions are only enabled af-
ter all clocks from a particular set have expired. Semantics for SPADES is given
in terms of stochastic automata [11]. IGSMP uses clocks to record spent life-
times. The clocks have an associated expiration time distribution. When a clock
expires other clocks are redistributed according to the time that has passed.
IGSMP semantics is given using generalized semi-Markov processes extended
with actions. An interesting feature is the definition of the alternative compo-
sition modeled as a probabilistic choice between differently distributed clocks.
NMSPA exploits random variables for the distribution of stochastic delays of ac-
tions. Also here, expiration of a stochastic delay induces redistribution of other
variables according to the time that has passed. The semantics is given in terms
of transition systems. The alternative composition is defined over an arbitrary
number of summands in order to achieve maximal progress for internal actions.
In NMSPA alternative composition of discrete stochastic delays followed by an
internal action represents an inherent probabilistic choice. Other stochastic PAs
that we mention here are the extension of LOTOS for performance analysis of
distributed systems, the stochastic π-calculus and TIPP [12, 13, 14]. More details
can be found in the overview papers [15, 16].

The main goal of our paper is to deal with standard real-time in stochas-
tic PAs with an semantics that exploits spent-time and avoids explicit clocks.
Our aims is to report on preliminary research on the conservative extension
of real-time process algebra where delays are governed by probabilistic dis-
tributions. To this end, we consider a stochastic PA with immediate actions,
deadlock and termination. We model stochastic delays as timed delays guided
by discrete random variables, as we wish to distinguish between actions and
stochastic delays, similar to IMC [7]. The alternative composition implements
weak choice between immediate actions and passage of time similar to real-time
PAs in the style of [1]. Here, we give the semantics in terms of stochastic tran-
sition systems. In comparison to other stochastic PA our approach is closest to
NMSPA. Unlike NMSPA, we define alternative composition on two processes
rather than on arbitrary sums and, in our setting, the alternative composition
makes no choice in case both summands can delay together as in the real-time
PAs. We propose an appropriate version of stochastic bisimulation for our set-
ting, which is a congruence. α-conversion is introduced to pave the way for a
treatment of the parallel operator. However, as we show, no expansion law is
available in this set-up. We justify, via an embedding of transition systems, the
proposed stochastic process algebra being called an extension of real-time pro-
cess algebra. In our present work, we consider only discrete stochastic delays,
mainly because they almost effortlessly model real-time delays as degenerated
discrete random variables. Also, as a technical convenience, they allow two dif-
ferent delays to have the same duration, a property not shared by continuous
distributions.

Related work. Surprisingly, there is not much work on embedding real-time
into stochastic time PAs. Markovian PAs cannot embed real-time because they
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employ exponential distributions only. The extension of LOTOS for performance
analysis is an extension of timed LOTOS with stochastic timers, but there are
strong syntax restrictions and no embedding is given. We remind the reader that
the semantics of SPADES [8] is given in terms of stochastic automata [11]. A
structural translation from stochastic automata to timed automata with dead-
lines is given in [17]. The translation is shown to preserve timed traces, so
SPADES can imitate real-time behaviour. There is a translation from IGSMP
into pure real-time models termed Interactive Timed Automata (ITA) [9].

The rest of this paper is organized as follows. Section 2 gives the mathemati-
cal background for the stochastic delays. Section 3 introduces a basic stochastic
PA with alternative composition and stochastic delay prefix. Section 4 provides
the transition system and a notion of stochastic bisimulation, for which congru-
ence properties are given. We define in Section 5 a variant of α-conversion to
support the operational semantics. Sections 6 and 7 discuss the parallel oper-
ator and the embedding of real-time process theories. Section 8 wraps up with
concluding remarks. For the complete proofs we refer to the full version of the
paper [19].

2 Preliminaries

We denote the set of discrete random variables by V . For S ⊆ V , y ∈ IR and �
either <, >, =, we write S �y for X � y, X ∈ S. We use X , Y and Z for random
variables and FX(t), FY (t) and FZ(t), for t ≥ 0, for their distribution functions,
unless stated otherwise. For durations of a stochastic delay we have FX(t) = 0
for t < 0 and we denote the set of such discrete distribution functions by Fd.
The support set of random variable X , denoted by supp(X) contains the values
for which P (X = t) > 0. By FX(t) we denote the residual distribution function
1 − FX(t). We extend the notion of support set to a set S of random variables
by supp(S) =

⋂
X∈S supp(X).

A stochastic delay is a time delay which duration is guided by a random
variable. It is discrete if the random variable is discrete. The notions of stochastic
delay and random variable are used interchangeably depending on the context.
We observe simultaneous passage of time for a number of stochastic delays until
at least one of their duration passes. This phenomenon is referred to as the race
condition. In general, simultaneous multiple stochastic delays can be observed
as being the shortest; the shortest duration itself can be different and provided
by different delays in different observations. Observing several stochastic delays
we call a race. The stochastic delay or delays that have the shortest duration are
called ‘winners’. The other ones are called ‘losers’ of the race.

In general, if one observes a race of a set of random variables V ⊆ V , the
resulting delay of the race will be distributed as the minimum min(V ) of these
random variables with a distribution function Fmin(V )(t) = 1 −

∏
X∈V FX(t).

The probability that the winners are in the set W ⊆ V is

P (W = min(V )) =
∑

t∈supp(W ) P (W = t, (V \W ) > t).
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The stochastic delay performed by the winners, is distributed as

P (〈 X |W = min(V ) 〉 = t) =
P (W = t, (V \W ) > t)

P (W = min(V ))
,

for any X ∈ W . We use angle brackets to denote conditional random variables.
Because of associativity and commutativity of the minimum of random vari-

ables, it holds that simultaneous observation of all delays amounts to the same
as iterated observation of disjoint sets.

3 Basic Processes with Discrete Stochastic Time

In this section we introduce BSPdst(A,V), a stochastic PA with immediate
actions, termination and deadlock, that implements weak choice between actions
and time. We refer to BSPdst as Basic Process Theory with Discrete Stochastic
Time. The terminology is adopted from [18] and we build on the untimed version
BSP(A). Here, A is the set of actions and V is the set of random variables. A
new unary operator scheme σX . for X ∈ V represents stochastic delays.

The process σX .p executes a stochastic delay guided by the random variable X
and continues behaving as p. Because of the race condition, one cannot observe
the execution of a stochastic delay in isolation. Informally, an example of a
transition system that corresponds to a race between two discrete stochastic
delays is depicted in Fig. 1.

σX .p + σY .q�
X=dX
(X<Y )

�������������� � Y =dY
(X>Y )

���������������

X,Y =dX,Y

(X=Y ) ��
p + σY ′ .q p + q σX′ .p + q

Fig. 1. Race condition

a.p + σY .q
a

(Y >0)

������������� � Y =d+
Y

(Y >0)

��											�

Y =0
��

p a.p + q q

Fig. 2. Weak choice

The relations in the brackets give the condition that enables the transition.
Each �→ transition represents a stochastic delay. The label shows the winners of
the race and their observed duration. The duration is determined by the support
set of the winning delay. For clarity, we represent all the transitions by a single
transition scheme. For example, the transitions of the stochastic delay guided
by X in Fig. 1 are represented by one transition scheme labeled by X and dX .
The observed winning duration dX takes its values from supp(〈X | X < Y 〉).
Thus, the transition scheme replaces | supp(〈X | X < Y 〉) | different transitions,
each executed with its own probability.

When considering the interaction of action transitions and termination versus
stochastic delay, we employ weak choice, i.e. a non-deterministic choice between
immediate actions, termination and passage of time. The alternative composi-
tion depicted in Fig. 2 allows execution of the stochastic delay in the rightmost
transition even though the choice is made between an immediate action and pas-
sage of time. As a consequence, the losers of the race become dependent on the
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amount of time that has passed for the winners as in Fig. 1. Thus, the random
variables of the remaining stochastic delays do not retain their initial distribu-
tions. Another issue we consider is the interaction between immediate actions
and zero duration delays. Similar to the timed process theories [1, 2] we take zero
duration not to disable immediate actions, as depicted by the middle transition
in Fig. 2. Note that the immediate action is enabled only if FY (0) 
= 1. In order
to distinguish between zero and non-zero transitions, we use the notation d+

X to
denote only positive durations.

In an alternative composition of two stochastic delays, we obtain three
transitions. In case the winner is the first summand, one obtains the leftmost
transition. The rightmost transition is obtained when the winner is the second
summand. The middle transition shows that both delays win the race together
with non-zero probability. In this case, the race cannot determine one winner
and passage of time does not determine a choice similar as for the real-time
setting.

In Fig. 1, the altered probability distributions of X and Y are denoted by
X ′ and Y ′, respectively. They are termed ‘aged’ probability distributions of X
and Y by the duration dY and dX , respectively. The probability distribution
of X ′ is the aged probability distribution of X by dY given by

FX′(t) = P (X ≤ t | X > Y, Y = dY ) =
FX(t + dY )− FX(dY )

1− FX(dY )
.

In order to calculate the actual distribution functions in each state, we require
the original distribution function and its age. In order to keep track of the ages of
the stochastic delays we introduce an environment to the transition system. The
basic idea underlying the environments is that they store the actual distribution
function of the random variables. The following definition and property of aging
justify the use of environments.

Definition 1. A distribution function F can be ‘aged’ by a time duration d ≥ 0
if F (d) < 1. The resulting distribution F |d is (F |d)(t) = F (t+d)−F (d)

1−F (d) .

If the conditions of Definition 1 are fulfilled, then F |d is again a distribution
function. We have that iterative application of the aging function is the same as
aging the function once by the sum of the time durations (for proof see [19]), i.e.

(. . . (F |d1) . . . )|dn = F | (
∑n

i=1di) .

Using this property one easily calculates the age of the losers after each stochastic
delay transition by adding the duration for the winners to the existing ages.

The environment is implemented using two injective functions: Φ : V → Fd for
the distribution functions and Δ : V → IR+

0 ∪ {⊥} for the age of the stochastic
delays. We add the special symbol ⊥ to denote that no time has passed for the
stochastic delay, i.e. the delay has not participated in a race yet. Note that this is
not the same as saying that the delay is of age zero. Having age zero means that
the variable has lost a race with a zero duration and, ultimately, that disabled
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its possible zero duration transitions. Thus, we have to extend the domain of |
to | : Fd × (IR+

0 ∪ {⊥})→ Fd. We put F |⊥ = F , x +⊥ = x, for x ∈ IR+
0 , and we

write IR+
⊥ instead of IR+

0 ∪ {⊥}. We consider a well-defined environment to be a
pair of two injective functions (Φ, Δ) ∈ FV

d × IR+
⊥
V

such that for all X ∈ V the
probability distribution function Φ(X) | Δ(X) is defined. The set of well-defined
environments is denoted by Env. Next, we introduce the signature of BSPdst and
describe its constants and operators.

Definition 2. The signature of BSPdst contains the two constants δ and ε, the
two unary operator schemes a. , for a ∈ A and σX . , for X ∈ V and the binary
operator + . The syntax of BSPdst is given by

P ::= δ | ε | a.P | σX .P | P + P,

with a ∈ A and X ∈ V. The set of closed terms over the signature of BSPdst is
denoted by C(BSPdst) and it is ranged over by p, q and r.

We adopt the signature from BSP(A) [18] where immediate constants and
actions are denoted by

≈
δ, ≈

ε and ≈
a. However, here, we do not use the ≈-notation.

The constant δ represents an immediate deadlock which does not allow passage
of time. Immediate termination ε terminates without allowing any time to pass.
The unary operator scheme a.p, for a ∈ A, comprises processes that execute the
action a without consuming any time and continue behaving as p. The unary
operator scheme σX .p provides processes that execute a stochastic delay guided
by the random variable X and afterwards continue behaving as p. The alter-
native composition behaves differently depending on three different contexts.
It makes a non-deterministic choice between actions, a weak choice between
actions, successful termination and stochastic delays, and imposes a race condi-
tion on stochastic delays.

4 Structural Operational Semantics

First, we define a stochastic transition system (STS) that deals with aging of
distributions as informally discussed in the example of Fig. 1. The transitions
of the STS are performed in an environment that keeps track of the up-to-date
distribution functions of the racing stochastic delays. It contains the distribution
functions for the random variables and the age of the delays.

Definition 3. STS is a structure STS = (S, (Φ, Δ),→, �→, ↓) where

– S is a set of states labeled by closed BSPdst-terms;
– (Φ, Δ) ∈ Env is a well-defined environment;
– → ⊆ S × Env×A× S × Env is a labeled transition relation;
– �→ ⊆ S × Env × 2V × IR+

0 × S × Env is a stochastic delay (probabilistic)
transition relation;

– ↓ ⊆ S is an immediate termination predicate.
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For → and �→ we will use infix notation. By 〈p, (Φ, Δ)〉 a→ 〈p′, (Φ, Δ′)〉 we de-
note that a process term p in the environment (Φ, Δ) does an action transition
with the label a to the term p′ and changes the environment to (Φ, Δ′). By
〈p, (Φ, Δ)〉 S�→dS 〈p′, (Φ, Δ′)〉 we denote that a term p in the environment (Φ, Δ)
exhibits a passage of time of duration dS , transforms to p′ and changes the en-
vironment to (Φ, Δ′). The observed time is a result of a race won by the set of
stochastic delays that are guided by the set of random variables S. The possible
durations of the winners are determined by dS ∈ supp(〈 X | S = min(rd(p)) 〉),
where rd(p) (we define this function later) is the set of racing delays of p and
X ∈ S. In case there is a separation between zero duration and non-zero dura-
tion, we denote the non-zero durations by d+

S > 0. The random variables X ∈ V
obtain their probability distributions as FX = Φ(X) | Δ(X). The race changes
the age binding function Δ by setting age ⊥ to every winning stochastic delay
and increasing the ages of the losing delays by dS .

Since all transitions only change the ‘age parameter’ Δ that assigns the
ages, we suppress Φ and use the shorthand Δ for the environment (Φ, Δ). The
STS represents a scheme because we leave implicit the conditions that enable
the transitions and we parameterize multiple delay transitions by their sup-
port set. Also, we write X for {X} and dX for d{X} in the transition labels.

We introduce the the set of all age parameters as Del = IR+
⊥
V
. In case we

wish to give a transition system for a specific term p ∈ C(BSPdst) we write
STS (p, (Φ, Δ0)), where (Φ, Δ0) is the initial environment. We denote the set of
STS’s
as ST S.

The sets of winning stochastic delays are given as labels of the probabilis-
tic transitions. However, not all stochastic delays participate in a race at the
same time. So, we have to identify only the racing stochastic delays, i.e. the
ones that participate in the race. A function named rd: C(BSPdst) → 2V ex-
tracts the random variables that guide the racing delays of a process term. They
are identified as all stochastic delays that are directly connected by alternative
composition.

rd(ε) = ∅ rd(a.p) = ∅ rd(δ) = ∅ rd(σX .p) = {X} rd(p + q) = rd(p) ∪ rd(q)

In order to provide a concise presentation of the operational semantics, we
define two functions res and age which alter the age parameter Δ of the envi-
ronment. The function res resets the images of the winners to ⊥, whereas age
ages the losers by the duration observed for the winners.

Definition 4. For an environment Δ, a set of winners W ⊆ V and a set of
losers L ⊆ V of a race of duration d, the functions res : Del × 2V → Del and
age: Del× 2V × IR+

0 → Del are defined as

res(Δ, W ) =
{

Δ(X) if X 
∈ W
⊥ if X ∈ W

age(Δ, L, d) =
{

Δ(X) if X 
∈ L
Δ(X) + d if X ∈ L.
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Next, we give the structural operational semantics for BSPdst.

1 〈ε, Δ〉 ↓ 2
〈p, Δ〉 ↓

〈p + q, Δ〉 ↓ 4 〈a.p,Δ〉 a→ 〈p,Δ〉 5 〈σX .p, Δ〉 X	→dX 〈p, res(Δ, {X})〉

6
〈p, Δ〉 a→ 〈p′, Δ′〉, 〈q, Δ〉 /	→

〈p + q, Δ〉 a→ 〈p′, Δ′〉
7

〈p,Δ〉 a→ 〈p′, Δ′〉, 〈q, Δ〉 T	→
d
+
T

〈q′, Δ′′〉
〈p + q, Δ〉 a→ 〈p′, res(Δ′, rd(q))〉

10
〈p, Δ〉 S	→0 〈p′, Δ′〉, 〈q, Δ〉 /	→

〈p + q, Δ〉 S	→0 〈p′ + q, Δ′〉
11

〈p, Δ〉 S	→
d+

S
〈p′, Δ′〉, 〈q, Δ〉 /	→

〈p + q, Δ〉 S	→
d+

S
〈p′, Δ′〉

14
〈p, Δ〉 S	→dS 〈p′, Δ′〉, 〈q, Δ〉 T	→dT 〈q′, Δ′′〉, dS < dT

〈p + q, Δ〉 S	→dS 〈p′ + q, Δ′′′〉
,

where Δ′′′ = age(Δ′, rd(q), dS)

16
〈p, Δ〉 S	→dS 〈p′, Δ′〉, 〈q, Δ〉 T	→dT 〈q′, Δ′′〉, dS = dT

〈p + q, Δ〉 S∪T	→ dS∪T 〈p′ + q′, Δ′′′〉
,

where Δ′′′ = res(age(Δ, rd(p + q), dS∪T ), S ∪ T )

Rules 1, 2, and 4 are the standard rules for termination and action prefix.
Rule 5 states that stochastic delays σX .p allow passage of time sampling from
Φ(X)|Δ(X). The non-deterministic choice made by action transitions from the
first summand is shown by Rule 6 when the second summand cannot do a
stochastic delay and by Rule 7 when it can do a stochastic delay with non-
zero duration. Rule 10 states that zero delay of p does not enforce a choice, still
allowing action transitions from q. In case p does perform a non-zero delay as in
Rule 11 weak choice is enabled between action transitions and passage of time,
where passage of time disables the action transitions of q. Rule 14 describes the
race in case when the first summand wins the race. The winners given by the
set S perform a stochastic delay transition with duration dS . The racing delays
of the losing summand (rd(q)) are aged by dS using the function age and the
environment of the winner Δ′ (in which the losers of the first summand are
already aged). Note that since the second summand can perform a stochastic
delay dT > dS , the aging of its racing delays is allowed. Rule 16 states that if
both summands have stochastic delays that can win with the same duration, the
joint race enabled by the alternative composition can be won by the union of
the winners of the both summands. The new environment is obtained by aging
all racing delays of both summands in the original environment and resetting
the winners. (Because of lack of space we omit the symmetric rules 3, 8, 9, 12,
13 and 15, analogous to 2, 6, 7, 10, 11 and 14.)

Next, we define when two STS’s are bisimilar. Intuitively, two STS should be
bisimilar if related states (1) do the same action transitions, (2) have the same
termination options and (3) go to another class of states with the same accumu-
lative probability of performing a stochastic delay with the same duration. The
following definition defines the accumulative probability of (3).
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Definition 5. Let R be an equivalence relation on S × Env, C ∈
(
S × Env)/R

an arbitrary class and (Φ, Δ) ∈ Env, where S ⊆ C(BSPdst). By ws(p, Δ, C, d) we
define the set of sets of winning stochastic delays that p can do in time d and
afterwards transform into a process that belongs to the class C, i.e.

ws(p, Δ, C, d) =
⋃

〈p′,Δ′〉∈C{ S ⊆ rd(p) | 〈p, Δ〉 S�→d 〈p′, Δ′〉 }.

The accumulative probability of doing a transition from a term to an equivalence
class in time d is given as

ap(p, Δ, C, d) =
{

0 ws(p, Δ, C, d) = ∅∑
S∈ws(p,Δ,C,d) P (S = min(rd(p)), S = d) ws(p, Δ, C, d) 
= ∅.

Next, we define strong bisimulation on STS’s.

Definition 6. A strong bisimulation on STS = (S, (Φ, Δ),→, �→, ↓) is an equiv-
alence relation R on S × Env such that the following conditions hold:

1. if 〈p, Δ〉 a→ 〈p′, Δ′〉, then 〈q, Δ〉 a→ 〈q′, Δ′〉, such that (〈p′, Δ′〉, 〈q′, Δ′〉) ∈ R,
2. for all d ≥ 0, it holds that ap(p, Δ, C, d) = ap(q, Δ, C, d),
3. if 〈p, Δ〉 ↓ then 〈q, Δ〉 ↓,

for all p, p′, q, q′ ∈ S and all C ∈ (S × Env)/R such that (〈p, Δ〉, 〈q, Δ〉) ∈ R.

Note that the second transfer condition implies that after doing a stochastic
delay, both terms must result again in bisimilar terms. If 〈p, Δ〉 and 〈q, Δ〉 are
related by a strong bisimulation we write 〈p, Δ〉 � 〈q, Δ〉. We also note, that if
we consider the time duration as a constant in the transition system, we obtain
the probabilistic bisimulation given in [20].

Theorem 7. The bisimulation relation � is a congruence [19].

5 α-Conversion

We proceed by analyzing a conflicting behaviour of the STSs defined so far that
occurs when two racing delays are guided by the same random variable. Consider
the following example.

Example 8. Suppose p ≡ σX .ε. We observe STS(p + p, (Φ, Δ)). Consider the
transition 〈σX .ε + σX .ε, Δ〉 X�→dX 〈ε + σX .ε, res(age(Δ, {X}, dX), X)〉. In the re-
sulting environment, X is a random variable that guides both the winning and
the losing stochastic delay. Such behavior leads to conflict because Δ(X) should
contain both, ⊥, because X won the race and dX , because X lost the race. On the
other hand, the term p + p is not bisimilar to σX .(ε + ε) because, in general, the
distribution functions of X and min(X, X) are not equal. Therefore, we wish to
express that the left and the right summand have equally distributed stochastic
delays and the distribution function is provided by the random variable X .
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We resolve the conflict by renaming one of the variables and ensuring that the
original and the replacement have the same distribution. So, σX .ε + σX .ε and
σX .ε + σY .ε behave the same under the assumption that FX = FY , because
the behavior of the STS does not depend on the name of the variable, but on
its distribution function. However, the second term has proper semantics, since
there is no conflicting behavior in its STS. For an technical underpinning of
this, we define the relation �α on C(BSPdst) × Env as the least relation such
that

〈δ,Δ〉 �α 〈δ,Δ〉 〈ε, Δ〉 �α 〈ε, Δ〉 〈p, Δ〉�α 〈q, Δ〉
〈a.p, Δ〉�α 〈a.q, Δ〉

〈p, Δ〉 �α 〈q, Δ〉, Φ(X) = Φ(Y ), Δ(X) = Δ(Y )
〈σX .p, Δ〉 �α 〈σY .q, Δ〉

〈p,Δ〉 �α 〈q, Δ〉, 〈p′, Δ〉�α 〈q′, Δ〉
〈p + p′, Δ〉 �α 〈q + q′, Δ〉

Clearly, �α is a congruence. In the literature, a relation as �α is referred to as
α-congruence or α-conversion [13, 8].

We define a function cv : C(BSPdst)→ 2V to identify conflicting random vari-
ables that guide multiple stochastic delays in the same race. The function cv is
defined using structural induction.

cv(ε) = ∅ cv(δ) = ∅ cv(a.p) = ∅ cv(σX .p) = ∅
cv(p + q) = cv(p) ∪ (rd(p) ∩ rd(q)) ∪ cv(q).

If a term does not contain conflicting variables, we say that it is conflict-free.
We characterize such terms using a predicate cf that checks whether the set of
conflict variables in the current step is empty. Given a process term p, cf(p) is
true if and only if cv(p) = ∅.

We add an α-conversion rule to the structural operational semantics, viz.

(α)
〈q, Δ〉 S�→dS 〈p′, Δ′〉, cf(q), cf(p′), p�α q

〈p, Δ〉 S�→dS 〈p′, res(Δ′, rd(p′) \ rd(q))〉
·

This rule guarantees that the stochastic delay transitions are performed as a
result of a race which does not lead to conflicting behavior. This is achieved by
finding an α-converted term that is conflict-free and performing the race with
it. Note that the non-racing terms of p′ can get an age in the process of α-
converting p to q, so we have to reset them in the resulting environment. For
example, α-converting σY .σX .ε + σX .ε to σY .σU .ε + σX .ε, where Δ(X) 
= ⊥
results in Δ(U) 
= ⊥, but U has not participated in any race. In order to exclude
conflicting behavior, we use the predicate cf.

This means that we have to adapt the operational semantics by adding an
extra conflict-freeness condition for every state that has the option to perform
a stochastic delay. For example, the adapted version of Rule 11 is:

11α
〈p, Δ〉 S�→d+

S
〈p′, Δ′〉, 〈q, Δ〉 /�→, cf(p + q)

〈p + q, Δ〉 S�→dS 〈p′, Δ′〉
·
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σX .σX .ε+σX .a.ε,
{X �→⊥,Y �→⊥,Z �→⊥}
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Fig. 3. Stochastic transition system of σX .σX .ε + σX .a.ε

The obtained theory is denoted as BSPdst
α . In the following we give an example

of a STS in order to illustrate the operational semantics rules.

Example 9. In Fig. 3 we give the STS (σX .σX .ε+σX .a.ε, (Φ, Δ0)), where initially
Φ = {X �→ F, Y �→ F, Z �→ F} and Δ0 = {X �→ ⊥, Y �→ ⊥, Z �→ ⊥}. Note that
we give possible α-conversions in brackets for clarification, but it is not a part
of the transition system.

Because of lack of space we do not present the equational theory of BSPdst
α , for

which the reader is referred to [19]. Next, we investigate the behaviour of the
parallel composition in the current setting.

6 Parallel Composition

We add an ACP-style parallel composition to the theory BSPdst
α and obtain the

theory of Basic Communication Processes with Discrete Stochastic Time and
α-conversion BCPdst

α (A,V , γ), where γ is the ACP-style communication func-
tion. As the parallel composition allows both interleaving and communication of
immediate actions, in the present setting it should also cater for interleaving and
synchronization of stochastic delays. Similarly to real-time PA’s, we merge the
delays in case the processes perform stochastic delays of different duration. We
synchronize the processes in case their delays are of the same duration. Immedi-
ate actions always take precedence over time in the parallel composition, except
when performing zero duration delays. It is important to perform all possible
zero delays and afterwards the immediate actions because otherwise we may
lose communication options. For example, σX .a.ε ‖ b.ε should allow a and b to
communicate if FX(0) 
= 0.
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The definitions of rd, cv and �α are extended straightforwardly to apply
to a parallel process p ‖ q. We give the operational semantics of the parallel
composition in the following table:

17
〈p,Δ〉 ↓, 〈q, Δ〉 ↓

〈p ‖ q, Δ〉 ↓ 18
〈p, Δ〉 S	→0 〈p′, Δ′〉, 〈q, Δ〉 /	→

〈p ‖ q, Δ〉 S	→0 〈p′ ‖ q, Δ′〉

20
〈p, Δ〉 a→ 〈p′, Δ′〉, 〈q, Δ〉 /	→

〈p ‖ q, Δ〉 a→ 〈p′ ‖ q, Δ′〉
22

〈p, Δ〉 a→ 〈p′, Δ′〉, 〈q, Δ〉 T	→
d+

T
〈q′, Δ′′〉

〈p ‖ q, Δ〉 a→ 〈p′ ‖ q, age(Δ′, rd(q), 0)〉

24
〈p, Δ〉 a→ 〈p′, Δ′〉, 〈q, Δ〉 b→ 〈q′, Δ′〉, γ(a, b) = c

〈p ‖ q, Δ〉 c→ 〈p′ ‖ q′, Δ′〉

25
〈p, Δ〉 S	→dS 〈p′, Δ′〉, 〈q, Δ〉 T	→dT 〈q′, Δ′′〉, dS < dT

〈p ‖ q, Δ〉 S	→dS 〈p′ ‖ q, Δ′′′〉
,

where Δ′′′ = age(Δ′, rd(q), dS)

27
〈p, Δ〉 S	→dS 〈p′, Δ′〉, 〈q, Δ〉 T	→dT 〈q′, Δ′′〉, dS = dT

〈p ‖ q, Δ〉 S∪T	→ dS∪T 〈p′ ‖ q′, Δ′′′〉
,

where Δ′′′ = res(age(Δ, rd(p ‖ q), dS∪T ), S ∪ T ).

We briefly discuss the new rules. Rule 17 states when the parallel composition
has the termination option. Rule 18 enables zero delays before immediate actions
similar to the alternative composition. Rules 20 and 22 enable interleaving of
actions, by allowing the left operand to perform an immediate action if the
right one cannot delay or it can delay with positive duration, in which case
the zero durations are disabled by aging of 0 in Rule 22. Rule 24 states that
synchronization of actions can occur, only if their communication is defined by
the communication function γ. Rule 25 enables the race condition, similar to the
Rule 14 for the alternative composition. Rule 27 enables simultaneous passage
of time for the left and right operand which allows synchronization of stochastic
delays that exhibit the same duration. (Rules 19, 21, 23 and 26 are omitted as
analogous to the rules 18, 20, 22 and 25.)

It is easily observed that the parallel operator is both commutative and as-
sociative. The proof for the action transitions is standard. Regarding stochastic
delays, the properties follow immediately from the structural operational seman-
tics. Note that the race imposed by the parallel operator is the same as for the
alternative composition. In the following example we illustrate some problems
introduced by the weak choice and the α-conversion for the parallel operator,
ultimately leading to absence of a standard expansion law.

Example 10 (No expansion law for BCPdst
α ). Let p ≡ σX .ε and q ≡ σY .ε.

We observe their parallel composition p ‖ q and p � q + q � p + p | q as
its standard expansion. Note that p � q can perform a delay guided by X
if P (X < Y ) > 0. Same holds for q � p, whereas p | q performs a delay if
P (X = Y ) > 0. Suppose (Φ, Δ) is the environment. Then 〈σX .ε, Δ〉 X�→dX 〈ε, Δ′〉
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and 〈σY .ε, Δ〉 Y�→dY 〈ε, Δ′〉. Let us assume that dX < dY . Then one obtains the
transition 〈σX .ε ‖ σY .ε, Δ〉 X�→dX 〈ε ‖ σY .ε, Δ′′〉, where Δ′′(Y ) = dX and the
transition system deadlocks.

Next, let us observe the process term obtained by the standard expansion
law σX .ε � σY .ε + σY .ε � σX .ε + σX .ε | σY .ε. This term has semantics only if
it is first α-converted to σX .ε � σY .ε + σY ′ .ε � σX′ .ε + σX′′ .ε | σY ′′ .ε, where
FX = FX′ = FX′′ and FY = FY ′ = FY ′′ . Now, it is straightforward to observe
that the parallel composition and its standard expansion do not have the same
transition systems. For example, due to the weak choice the standard expansion
term can do a stochastic delay guided by X , followed by a stochastic delay guided
by Y ′ and aged by dX and afterwards it finally deadlocks.

Based on the previous observations we conclude that the lack of total order
on the durations of the stochastic delays and the presence of weak choice and
α-conversion made it difficult to obtain a standard expansion law. However,
because we retained the weak choice we are able to embed real-time in the
STS’s, which is presented in the following section.

7 Embedding Real Time in Stochastic Time

We consider the embedding of BCPsrt into BCPdst
α . BCPsrt(A, γ) is a real-

time extension of BSP(A) with parallel composition that allows synchronization
of time delays with the same duration. It is a variant of the process algebra
TCPsrt(A, γ) of [18] without sequential composition. Its semantics is given in
terms of timed transition systems (TTS’s).

Definition 11. TTS is a structure TTS = (S,→, �→, ↓) where

– S is a set of states labeled by closed BCPsrt-terms;
– → ⊆ S ×A× S is a labeled transition relation;
– �→ ⊆ S × IR+

0 × S is a timed transition relation;
– ↓ ⊆ S is an immediate termination predicate.

Similarly to STSs, we use infix notation for → and �→. By t�→ we denote that
time t ≥ 0 has passed. The TTS of a term p is denoted by TTS(p). We denote
the set of TTSs by T T S.

The embedding of TTSs into STSs is given by an embedding of BCPsrt-terms
in BCPdst

α -terms that will effectively replace each timed delay of duration d
by a stochastic delay guided by a degenerated random variable Xd, such that
P (Xd = d) = 1. The restrictions to degenerated random variables are denoted
by a subscript deg. The embedding is given by the mapping ξ : T T S → ST S:

ξ(TTS(p)) = STS(ε(p), (Φdeg, Δ⊥)),

where Φdeg is restricted to degenerated distributions, Δ⊥(X) = ⊥, for all X ∈
Vdeg and the mapping ε : C(BCPsrt)→ C(BCPdst

α ) is given by:

ε(ε) = ε ε(δ) = δ ε(a.p) = a.ε(p)
ε(σ t.p) = σXt .ε(p) ε(p + q) = ε(p) + ε(q) ε(p ‖ q) = ε(p) ‖ ε(q).



60 J. Markovski and E.P. de Vink

Note that because of the degenerated distributions the stochastic transition sys-
tem only deals with the probabilities 0 and 1. Therefore, in that setting our
bisimulation coincides with strong timed bisimulation of [18], were only the du-
rations of delays are required to match. We observe that only one of the oper-
ational rules 12, 13 and 14 is applicable at the same time and the stochastic
delay with the shortest duration wins. Moreover, we realize that in this setting
there is no need for α-conversion, since all stochastic delays guided by the same
random variable either win the race together or age the same duration of time
together. The behavior of the zero delay is captured by the rules 8 and 10 and
the weak choice by the rules 9 and 11. The time interpolation of the real-time
PA’s is embedded by aging the racing delays by the interpolation time.

Taking all together we have the following theorem.

Theorem 12. The mapping ξ : T T S → ST S is an embedding.

The proof of the theorem can be found in [19]. Next we give an example to
illustrate the embedding.

Example 13. In Fig. 4, we have for the term p ≡ σ t+s.a.ε ‖ σ t.(σ s.b.ε+ a.ε), for
s, t > 0 and γ(a, b) = c the original TTS(p) on the left, and its embedding, the
STS(ε(p), (Φdeg, Δ⊥)) on the right, where ε(p) = σXt+s .a.ε ‖ σXt .(σXs .b.ε+a.ε).
We represent only the important part of the environment.

σt+s.a.ε‖σt.(σs.b.ε+a.ε)�
t

��
σs.a.ε‖(σs.b.ε+a.ε)
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����������� �
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Fig. 4. Example embedding

8 Conclusion and Future Work

We have proposed a stochastic process algebra with immediate actions, termina-
tion and deadlock, and discrete distributions as an extension of un-timed process
algebra. We introduced a notion of a stochastic transition system and gave a def-
inition of strong bisimulation in that setting that conforms to the probabilistic
bisimulation when considering the time as a constant and it corresponds to
strong timed bisimulation when only considering probabilities of 0 and 1. We
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have argued that the bisimulation is a congruence. We showed conflicting be-
havior of the STS’s and introduced α-conversion in order to deal with stochastic
delays that are guided by conflicting variables.

We considered extending the algebra with parallel composition. However, ex-
pansion of the parallel operator using the alternative composition with weak
choice turned out to be problematic. We identified the lack of total ordering on
the durations observed by the stochastic delays as the main reason for failure
of the standard expansion law when considering alternative composition with
weak choice and α-conversion. However, because we retained the weak choice,
we were able to propose an intuitive embedding of TTS into stochastic ones by
restricting to discrete degenerated stochastic delays.

As future work we schedule an alternative way to obtain an expansion law
for the parallel composition, as part of the identification of an axiomatic theory
that conservatively extends the underlying real-time theory. Because of the se-
mantical basis, we do not expect major difficulties when incorporating recursion.
Also, we plan to extend the current setting with continuous stochastic time. Af-
terwards, we will consider case studies, especially in protocol verification (e.g.
sliding window protocols), since successful modeling of real-time delays paves
the way for an easy specification of time-outs.

Acknowledgment. We are grateful to Jos Baeten for his support, reviews and
comments and for the many fruitful discussions on the topic.
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Abstract. Benchmarking as a method of assessing software performance
is known to suffer from random fluctuations that distort the observed per-
formance. In this paper, we focus on the fluctuations caused by compila-
tion. We show that the design of a benchmarking experiment must reflect
the existence of the fluctuations if the performance observed during the
experiment is to be representative of reality.

We present a new statistical model of a benchmark experiment that
reflects the presence of the fluctuations in compilation, execution and
measurement. The model describes the observed performance and makes
it possible to calculate the optimum dimensions of the experiment that
yield the best precision within a given amount of time.

Using a variety of benchmarks, we evaluate the model within the con-
text of regression benchmarking. We show that the model significantly
decreases the number of erroneously detected performance changes in
regression benchmarking.

Keywords: performance evaluation, benchmark precision, random ef-
fects, regression benchmarking.

1 Introduction

Software performance engineering is generally understood as a systematic pro-
cess of planning and evaluating software performance [1]. One of the principal
approaches to evaluating performance is benchmarking, where the system under
test executes a model task, called benchmark, and the observed performance is
used for the evaluation. An important feature of benchmarking is that a choice
of a realistic benchmark and a realistic configuration of the benchmarking ex-
periment makes the observed performance representative of the performance of
a real system. This makes benchmarking an indispensable complement of other
approaches to evaluating performance based on modeling and simulation.

Both the performance of a benchmarking experiment and the performance of a
real system are subject to random fluctuations. Well known causes of these fluc-
tuations include for example the asynchronous device interrupts, whose often un-
predictable occurrence can add the device interrupt service time to the observed

A. Horváth and M. Telek (Eds.): EPEW 2006, LNCS 4054, pp. 63–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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performance. To keep the observed performance representative, benchmarking
experiments typically measure the benchmark multiple times. Averaging over
the multiple measurements is then used to filter out the random fluctuations.
In [2], however, we show that this practice suffers from a lack of understanding
of the causes of random fluctuations. Consequently, even after averaging, the
performance of a benchmarking experiment is not necessarily representative of
the performance of a real system.

In order to correctly understand the causes of random fluctuations in ob-
served performance, a benchmarking experiment must be viewed as a sequence
of steps. This sequence begins with the compilation of the benchmark and pro-
ceeds through booting of the system under test to the execution of the process
implementing the benchmark and the measurement of the benchmark itself as
the final steps. Importantly, each of the steps has the potential to influence the
observed performance, and each of the steps can be subject to nondeterminism
that makes the influence assume the form of random fluctuations. In [2], we il-
lustrate this influence by showing how the choice of physical memory pages used
to store the benchmark impacts the observed performance. This choice cannot
be practically influenced and as such is one of the sources of nondeterminism in
the execution of a benchmark.

The common practice of averaging can still be made to cover all the causes of
random fluctuations. To achieve this, all the steps of the benchmarking experi-
ment would have to be done once for each measurement, rather than just once
for all the measurements. Unfortunately, some of the steps of the benchmarking
experiment can take a long time and repeating them enough times to obtain
enough measurements for a representative average would take a prohibitively
long time. To avoid this problem, we propose a novel statistical model that re-
flects the understanding of the benchmarking experiment as a sequence of steps
that can be repeated starting with any step of the experiment and finishing with
the measurement step (e.g. compiling multiple times, executing each compiled
binary multiple times, collecting multiple measurements for each execution).

The model makes it possible to derive the asymptotic distribution of the
average of the observed performance, and use this distribution to create the
asymptotic confidence interval for the mean observable performance, as well as
determine the optimal ratio of the repetitions of the individual benchmark ex-
periment steps. The model can describe benchmark experiments where at most
three of the steps influence the observed performance, and is an extension of
the model from [3] that could describe benchmark experiments where at most
two of the steps influenced the observed performance.

As a proof of concept, we apply the statistical model in regression benchmark-
ing. Regression benchmarking [4] is a new methodology for automated tracking
of performance during software development. In our evaluation, we apply the
methodology on omniORB [5] and Mono [6] as large open source projects with
frequent changes. The omniORB platform is an open source implementation of
the CORBA standard, consisting of an IDL compiler, an object request broker
and object services, totaling almost 200k lines of code. The Mono platform is an
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open source implementation of the Common Language Infrastructure [7], also
known as Microsoft .NET, consisting of a C# compiler, a virtual machine and
application libraries, totaling almost 3M lines of code. Our evaluation relies on
the Mono Regression Benchmarking Project [8], which tracks performance of
daily Mono versions on several different benchmarks since August 2004, with
the results continuously available on the web [8].

In the proof of concept, we focus on the nondeterminism in the compilation
step of a benchmark experiment, thus complementing [3], where only the nonde-
terminism in the execution and measurement steps of a benchmark experiment
is tackled. The quantification of the benefits is based on the percentage of “false
alarms” in the form of spurious reports of performance changes by the regression
benchmarking methodology, which can be reduced from as high as 50% when
using the model from [3] to as low as 4% when using the proposed model.

The paper follows by analysis and quantification of the random effects of
compilation in Section 2. A new statistical model that describes benchmarking
experiments with random effects of compilation is described in Section 3. The
model is evaluated in the context of the regression benchmarking methodology
in Section 4. The paper is concluded in Section 5.

2 Problem of Random Effects of Compilation

The compilation of benchmarks for complex software is necessarily a complex
task in itself. Using the example of the omniORB platform, compiling a typical
benchmark includes compiling the core libraries, compiling and linking the IDL
compiler, using this IDL compiler to generate stubs and skeletons, compiling the
benchmark itself and linking the benchmark with the core libraries. Similarly,
using the example of the Mono platform, compiling a typical benchmark includes
compiling and linking the virtual machine, compiling the C# compiler using
another bootstrap compiler and using this compiler to compile the core libraries
and the benchmark itself. It is important to note that the process of compilation
is not always entirely reproducible.

In [2], we have identified one particular source of nondeterminism in com-
pilation of C++ code by the GNU C++ compiler [9]. The compiler generates
random names for symbols defined in anonymous namespaces. As a consequence,
the linker places these symbols in different locations within the binary for each
compilation. During execution, a difference in the location of the symbols is
reflected as a difference in the number of cache misses. This source of nondeter-
minism can influence the compilation of the omniORB platform, other sources of
nondeterminism exist that can influence the compilation of the Mono platform.

It should be emphasized that various sources of nondeterminism exist in var-
ious processes of compilation [10]. These are frequently associated with the in-
ternal workings of a particular compiler on a particular platform. An exhaustive
search for all sources of nondeterminism in compilation with the goal of eliminat-
ing them from benchmarking experiments is therefore not a feasible approach.
To characterize how much the random effects of compilation impact the observed
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performance in a way that is independent of the particular sources of nondeter-
minism in compilation, we have introduced a metric called “impact factor of
random effects of compilation” [2]. The metric is defined as a ratio of the stan-
dard deviation of the mean response times from different binaries to the standard
deviation of the mean response times from the same binary. An impact factor
of 1 indicates no impact of random effects on the response time, values larger
than 1 indicate an impact of the random effects. The value of the impact factor
is estimated by simulation (bootstrap). More details can be found in [2].

In Figure 1, we show the impact factors for selected benchmarks that cover a
range of software applications. The Ping and Marshal benchmarks are omniORB
benchmarks that assess remote method invocation, the other benchmarks are
Mono benchmarks that assess remote method invocation, numerical computation
and cryptography, see Appendix C and [8]. The figure also lists the variation of
the results attributed to the random effects in compilation, related to the mean.
Figure 1 shows that random effects of compilation influence results of almost
all of the selected benchmarks. For these benchmarks, ignoring these effects can
therefore mean that the performance of a benchmarking experiment will not
be representative of the performance of a real system. The practical impact of
relying on such benchmarking experiments depends on the particular use of the
experiment. An evaluation in the context of regression benchmarking follows in
Section 4.

Benchmark Impact Relative (%)
Factor Variation

FFT 1.18 4.1
FFT (NA) 1.08 3.35
FFT (NA,OPT) 1.08 3.42
FFT (OPT) 1.13 4.41
HTTP 1.03 0.19
HTTP (OPT) 1.03 0.23

Benchmark Impact Relative (%)
Factor Variation

Rijndael 1.01 0.38
Rijndael (OPT) 1. 0.38
TCP 1.05 0.56
TCP (OPT) 1.04 0.56
Marshal 1.05 2.
Ping 1.12 0.81

Fig. 1. Impact factor of random effects in compilation and relative variation caused by
these effects for selected benchmarks

3 Benchmarking with Random Effects of Compilation

As suggested in Section 1, a simplistic solution to the problem of random effects
of compilation is to repeat all the steps of the benchmarking experiment that
preceed the measurement once for each measurement rather than just once for all
the measurements, and to estimate the response time of the benchmark from the
individual response times collected one in each measurement. Formally, the mean
response time can be estimated by average and the precision of the estimate by
an asymptotic confidence interval. Increasing the number of repetitions improves
the precision, with an obvious drawback – the repetition of the compilation step
takes too long.
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In this section, we provide a statistical model of a benchmark experiment,
that covers random effects at all three levels – compilation, execution and mea-
surement. The model allows both to estimate the result precision and to choose
the optimal number of measurements per execution and the optimal number of
executions per binary. These numbers are optimal in respect that they minimize
the time needed for the benchmarking experiment. The model is designed to be
as generic as possible, so that it covers the widest possible range of benchmarks.
In particular, the model works both for benchmarks where repeating measure-
ments or executions helps as well as for benchmarks where it does not help. As
a consequence, the model requires to always repeat the executions and measure-
ments several times to adapt to a particular benchmark. This is not a problem,
since compilation of large projects takes several orders of magnitude longer than
execution or measurement.

3.1 Statistical Model of Benchmark with Random Effects

The intuitive idea behind the model is that the mean of measured response
times in each execution is in fact a realization of a random variable, which is
characteristic for the respective binary (the response times in an execution are
prone to random effects). Similarly, the mean of this random variable is also
in fact a realization of another random variable, which is characteristic for the
respective software version (the execution means are prone to random effects).

We will now formalize the intuitive idea. Let Y ∼ FY

(
μY , σ2

Y

)
denote a ran-

dom operation response time in a given software version. The distribution FY

of Y is unknown; we assume that it has finite mean μY and finite variance σ2
Y .

The parameter of interest is the mean response time μY .
We assume that response times in each benchmark execution are independent

identically distributed (i.i.d.), with a finite variance σ2
E that is fixed for all ex-

ecutions in a given software version, and with a finite mean μE that differs for
each execution. The parameter μE is in fact a sample from a random variable
ME. For better readability, we will write “μE” and “Y |μE” instead of “ME”
and “Y | [ME = μE ]”:

E (Y |μE) = μE , var (Y |μE) = σ2
E . (1)

We assume that the execution mean times μE for each binary are random i.i.d.,
with a finite variance σ2

B that is fixed for all binaries in a given software version,
and with a finite mean μB that differs for each binary:

E (μE |μB) = μB, var (μE |μB) = σ2
B . (2)

We assume that binary mean times μB for each software version are random
i.i.d., with a finite mean μV and a finite variance σ2

V , which are fixed for a given
software version:

E (μB) = μV , var (μB) = σ2
V . (3)
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In this model, μY = μV . This can be easily shown using The Rule Of Iterated
Expectations [11], which says that for random variables X and Y , assuming the
expectations exist,

E [E(Y |X)] = E(Y ) : (4)

μY = E(Y ) =(4) E [E(Y |μE)] =(1) E(μE) =(4)

= E [E(μE |μB)] =(2) E(μB) =(3) μV .

It can also be shown, that σ2
Y = σ2

E + σ2
B + σ2

V , using The Rule Of Iterated
Expectations and a known property of conditional variance [11], which says that
for random variables X and Y ,

var(Y ) = E [var(Y |X)] + var [E(Y |X)] : (5)

σ2
Y = var(Y ) =(5) E [var(Y |μE)] + var [E(Y |μE)] =(4),(1)

= σ2
E + var(μE) =(5) σ2

E + E [var(μE |μB)] + var [E(μE |μB)] =(4),(2)

= σ2
E + σ2

B + var(μB) =(3) σ2
E + σ2

B + σ2
V .

The parameter of interest μY is unknown, we will estimate it from the data:
let us assume that we have compiled a given software version l times creating
l binaries, and that we have executed each benchmark binary m times, getting
n post–warmup measurements in each execution. In the rest of this section, we
will show that μY can be estimated by average of all the measurements

Y •••
def
=

1
lmn

l∑
k=1

m∑
j=1

n∑
i=1

Yijk,

and that this estimate is asymptotically normal:

Y ••• ≈ N

(
μY ,

σ2
E

lmn
+

σ2
B

lm
+

σ2
V

l

)
. (6)

Lemma 3.1. Let X1, ..., Xn be i.i.d. with mean μ and finite positive variance σ2.
Then, X• has asymptotically normal distribution: X• ≈ N

(
μ, σ2

n

)
. Lindeberg–

Levy Central Limit Theorem.

Lemma 3.2. Let X1, ..., Xn be independent, Xi ∼ N
(
μi, σ

2
i

)
. From the proper-

ties of normal distribution [11], it follows that: X• ∼ N
(
μ•, σ2•

)
.

Lemma 3.3. Let X ∼ N
(
μX , σ2

X

)
and Y | [X = x] ∼ N

(
x, σ2

)
. Then, Y ∼

N
(
μX , σ2

X + σ2
)
. The proof is outlined in Appendix A.
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By Lemma 3.1 we have, from (1),(2),(3):

Y kj•|μEkj ≈ N

(
μEkj

,
σ2

E

n

)
, (7)

μEk•|μBk
≈ N

(
μBk

,
σ2

B

m

)
, (8)

μB• ≈ N

(
μV ,

σ2
V

l

)
. (9)

By applying Lemma 3.2 on (7),(8), we get by turns (10),(11). Then, by applying
the same lemma again on (10), we get (12):

Y k••|μEk• ≈ N

(
μEk•,

σ2
E

mn

)
(10)

μE••|μB• ≈ N

(
μB•,

σ2
B

lm

)
(11)

Y •••|μE•• ≈ N

(
μE••,

σ2
E

lmn

)
(12)

By applying Lemma 3.3 on (9) and (11), we get

μE•• ≈ N

(
μV ,

σ2
B

lm
+

σ2
V

l

)
. (13)

Finally, by applying Lemma 3.3 on (13) and (12), we get (6) ��

3.2 Change Detection

In regression benchmarking, we need to detect a performance change between
two consecutive versions of selected software. Currently, we focus only on mean
response time. In terms of the model described above, we want to detect a
change, whenever μY changes between two consecutive versions. Because we
cannot assume to have a long period of versions without a change, we cannot
directly use methods of change–point detection or quality control. The option of
modifying some of these methods for regression benchmarking is left for future
work.

Currently, we use a simple comparison method based on confidence intervals:
we detect a change whenever confidence intervals for the mean from two consec-
utive versions do not overlap. The method is similar to the Approximate Visual
Test described by Jain [12], where t–test is used to detect changes in case the
center of one confidence interval falls into the other confidence interval.

The asymptotic confidence interval for μY can be constructed using (6). We
can estimate the unknown variances σ2

E , σ2
B and σ2

E by S2
E , S2

B and S2
V as follows:

S2
E =

1
lm(n− 1)

l∑
k=1

m∑
j=1

n∑
i=1

(
Ykji − Y kj•

)2
(14)
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S2
B =

1
l(m− 1)

l∑
k=1

m∑
j=1

(
Y kj• − Y k••

)2
(15)

S2
V =

1
l − 1

l∑
k=1

(
Y k•• − Y •••

)2
(16)

Since we do not assume normal distributions of μB, μE |μB and Y |μE , we can-
not assume Y ••• to follow the t–distribution. We therefore have to rely on the
asymptotic normality of Y •••, even after the estimates of the variances are used
instead of the unknown variances. The asymptotic (1 − α) confidence interval
for μY used for change detection therefore is

Y ••• ± u1−α
2

√
S2

E

lmn
+

S2
B

lm
+

S2
V

l
, (17)

where u• is the quantile function of the standard normal distribution. Thus, the
probability that μY lies within this interval is asymptotically (1− α).

3.3 Determining Optimum Number of Executions and
Measurements

When detecting changes using confidence intervals as described above, the shor-
ter the interval is, the higher is the chance of discovering a performance change.
The width of the confidence interval (17) can be reduced only by proper selection
of the numbers of measurements, executions and binaries – n, m, l, because the
confidence level (1 − α) is fixed and the variance estimates S2

E , S2
B and S2

V are
properties of the given software version.

From (17), it is clear that increasing the number of binaries l always reduces
the interval width. Increasing the number of executions m reduces the width
only partially, because it does not reduce the impact of S2

V (random effects
in compilation). Similarly, increasing the number of measurements n does not
reduce the impact of S2

B (random effects in execution) and S2
V . On the other

hand, increasing the number of measurements n is usually less expensive than
increasing the number of executions m, which is in turn less expensive than
increasing the number of compilations l. Therefore, optimum values of n and m
should exist, that guarantee the shortest confidence interval given a fixed time
for the benchmarking experiment. The optimum values would depend on S2

E ,
S2

B and S2
V . This intuitive idea will be formalized further in this section.

We define the cost c of a benchmarking experiment:

c = (b + (w + n) ·m) · l, (18)

where w is the number of measurements in the warm–up stage of each benchmark
execution (price for a new execution) and b is the number of measurements that
could be taken in the time needed for compilation (price for a new binary). The
values of w and b have to be estimated or determined by experience, as discussed
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below. Our objective is to find m,n such that for the fixed cost c, f(m, n, l) is
minimal:

f(m, n, l) =
S2

E

lmn
+

S2
B

lm
+

S2
V

l
. (19)

After eliminating l using (18), f(m, n) is

f(m, n) =
mw + mn + b

c
·
(

S2
E

mn
+

S2
B

m
+ S2

V

)
. (20)

It is shown in Appendix B that the minimum is reached in

m0 =

√
b

w
· S2

B

S2
V

, n0 =

√
w · S2

E

S2
B

. (21)

In practice, the length of the warm–up stage w depends on the benchmark plat-
form and benchmark application and can be set by experience. It is important
not to understate w in order to get relevant results [13]. The value of b can be
estimated by experiments, it depends on the used compiler, the build scripts and
the code size. From our experience, neither b nor w vary significantly between
software versions. Still, the variances σ2

E , σ2
B and σ2

V do vary between versions,
and we have to collect enough measurements in enough executions for enough
binaries to get variance estimates S2

E , S2
B, S2

V . How much is enough depends on
each benchmark and platform. With these estimates, we can calculate the confi-
dence interval width (17), and if the width is too large, we can run an additional
experiment with the optimum values of m and n using (21).

Some benchmarks measure only the response time of a part of a larger oper-
ation, where the whole operation is repeatedly invoked. An example of such a
benchmark is the Marshal benchmark, which in fact repeatedly runs a remote
procedure call, but measures only the marshaling part of the call. Let us assume
that the measured operation takes q times less time than the repeated operation.
The cost of the experiment is then still expressed in the number of measurements
of the measured operation:

c = (b + (w + n) ·m · q) · l. (22)

It is shown in Appendix B that the optimum numbers of measurements and
executions are:

m0 =
1
√

q
·

√
b

w
· S2

B

S2
V

, n0 =

√
w · S2

E

S2
B

. (23)

The optimum number of executions m0 is smaller than in (21), because the cost
of the execution has been understated compared to the cost of the compilation.
The optimum number of measurements n is the same, because the cost of the
measurement compared to the cost of the execution did not change: both in
warm–up phase and non warm–up phase, the whole operation is repeated. The
value of q can be estimated by experiments. By our experience, it does not vary
significantly between software versions.
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4 Evaluation

The evaluation of the proposed statistical model is done in the context of re-
gression benchmarking [4]. The essential part of regression benchmarking is an
automated comparison of observed performance between different software ver-
sions, with the goal of identifying instances of performance changes from version

FFT FFT
(NA)

FFT
(NA,OPT)

FFT
(OPT)

HTTP HTTP
(OPT)

Rijndael Rijndael
(OPT)

TCP TCP
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[%
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Number of compilations of tested version

Benchmark
False Alarms (%) for Different

Numbers of Compilations
1 10 15 20 25 30

FFT 50.09 20.69 14.09 9.29 5.79 4.15
FFT (NA) 37.80 16.16 10.88 7.13 4.74 3.04
FFT (NA,OPT) 36.88 15.87 10.22 6.96 4.36 3.61
FFT (OPT) 41.35 19.66 13.25 8.46 6.01 3.95
HTTP 1.64 0.95 0.59 0.40 0.27 0.13
HTTP (OPT) 3.29 1.38 0.96 0.72 0.51 0.37
Rijndael 0.03 0.01 0.02 0.02 0.00 0.01
Rijndael (OPT) 0.00 0.00 0.00 0.01 0.01 0.00
TCP 6.01 2.50 1.63 1.36 0.82 0.55
TCP (OPT) 4.03 1.77 1.29 0.84 0.70 0.41
Marshal 4.97 0.29 0.10 0.01 0.02 0.00
Ping 16.68 1.16 0.35 0.08 0.03 0.00

Fig. 2. Reduction of false alarms in regression benchmarking for different numbers of
compilations. The same values are presented both in the graph and in the table.
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to version. Regression benchmarking is therefore sensitive to random fluctuations
in the observed performance, which exhibit themselves as “false alarms” – spuri-
ous reports of performance changes that are caused by the random fluctuations
rather than differences between software versions.

The evaluation is made difficult by the fact that deciding whether a change
in observed performance corresponds to a change between software versions re-
quires manual analysis of the software versions in question. Such an analysis
becomes prohibitively expensive when enough data for a statistically significant
evaluation needs to be collected. We overcome this obstacle by comparing multi-
ple benchmarking experiments on the same software version in place of multiple
benchmarking experiments on multiple software versions. Then, all the detected
changes are necessarily false alarms.

In more detail, the evaluation begins with compiling the same software ver-
sion many times into a number of binaries, executing each binary a number of
times and collecting a number of measurements from each execution. The exact
numbers of compilations, executions and measurements are chosen to maximize
the reliability of the evaluation. The evaluation proceeds with simulation (boot-
strap). For each benchmark, the simulation is repeated a number of times, each
time two groups of binaries are chosen by random and compared using the pro-
posed statistical model. The results are shown in Figure 2, contrasted against
the results obtained using the model from [3] with only a single binary per group.

The evaluation suggests that different benchmarks suffer from false alarms to
different degrees. The FFT benchmarks suffer most – this can be explained by the
fact that they use a lot of memory and are therefore sensitive to the performance
of the memory cache. On the other hand, the Rijndael benchmark does not
suffer from false alarms at all – the encryption and decryption is computationally
intensive, but does not need much memory. It is also interesting that in omniORB
benchmarks, the decrease in the number of false alarms with the growing number
of binaries is much faster than in Mono benchmarks. We attribute this to the fact
that the random effects of compilation in Mono benchmarks are more complex
than in omniORB benchmarks.

5 Conclusion

The compilation of large applications is often a non–repeatable process. Com-
piling the same sources with the same compiler under the same settings can and
often does result in different binaries that deliver different performance. As a
result and contrary to the common practice, multiple binaries should be used
for benchmarking. We show on a diverse set of benchmarks how using only a
single binary for benchmarking can lead to severe distortion of the benchmark
results.

We introduce a new statistical model of a benchmark experiment, one which
allows to estimate the precision of benchmark results, taking into account the ran-
dom effects in compilation, but also the random effects in benchmark execution
described in [2] and the widely known random effects in individual measurements.
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In addition to this, the model makes it possible to determine the optimum num-
ber of measurements within each benchmark execution and the optimum number
of executions for each benchmark binary, which allows us to achieve the best pos-
sible precision for a given time limit on the benchmark experiment.

As an application of the model, we demonstrate a significant reduction of the
number of erroneously detected performance changes between different versions
of the same software in the context of regression benchmarking [4]. As a striking
example, with 25 Mono binaries, the number of erroneous detections using a
standard numerical benchmark falls down from 50% to 6%, as illustrated in
Figure 2. This improvement is achieved by incorporating the random effects of
compilation into the precision estimates of the results.

There are numerous related projects that track performance changes during
software development, such as [14, 15]. Although these projects do not attempt
to detect the changes in performance automatically, their results would benefit
from using the proposed statistical model. At the time of this writing, we are not
aware of any other project that would attempt to handle the problems associated
with random effects of compilation in performance.
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A Proof of Lemma 3.3

Let f be the probability density function of the normal distribution with mean
μ and variance σ2:

f(x; μ, σ) =
1

σ
√

2π
exp

(
− (x− μ)2

2σ2

)
, exp(z) = ez.

The density functions of X and Y |X from Lemma 3.3 are:

fX(x) = f(x; μX , σX), fY |X(y|x) = fY |x(y) = f(y; x, σ).

By the definition of conditional density:

fY,X(y, x) = fY |X(y|x) · fX(x).

It follows, that:

fY (y) =
∫

fY,X(y, x) dx =
∫

fY |X(y|x)fX(x)dx =

=
∫

1
σ
√

2π
exp

(
− (y − x)2

2σ2

)
· 1
σX

√
2π

exp

(
− (x− μX)2

2σ2
X

)
dx =

=
∫

1
σ
√

2π
exp

(
− (y − μX − u)2

2σ2

)
· 1
σX

√
2π

exp

(
− u2

2σ2
X

)
du =

=
∫

f(y − u; μX , σ)f(u; 0, σX)du. |u = x− μX

Lemma A.1. Let f(t; μ1, σ1),f(t; μ2, σ2) be density functions of normal vari-
ates. Then,∫

f(τ ; μ1, σ1)f(t− τ ; μ2, σ2))dτ = f

(
t; μ1 + μ2,

√
σ2

1 + σ2
2

)
.

In other words, convolution of Gaussians is also a Gaussian (Convolution, [16]).

By Lemma A.1:

fY (y) =
∫

f(y − u; μX , σ)f(u; 0, σX)du = f

(
y; μX ,

√
σ2 + σ2

X

)
,

and thus

Y ∼ N(μX , σ2
X + σ2). ��
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B Proof of (21) and (23)

We will show only (23), because (21) is a special case of (23), where q = 1. Let
f ,g be defined as follows:

g(l, m, n) = (b + (w + n) ·mq) · l− c,

f(l, m, n) =
S2

E

lmn
+

S2
B

lm
+

S2
V

l
.

Our objective is to find a minimum of f(l, m, n), subject to the constraint
g(l, m, n) = 0. Using Lagrange Multiplier Theorem [16], we can find l, m, n
where the minimum must be, provided that the minimum exists. The partial
derivatives are:(

∂g

∂l
,

∂g

∂m
,
∂g

∂n

)
(l, m, n) = ((w + n) ·mq + b, (w + n) · ql, mql) ,(

∂f

∂l
,

∂f

∂m
,
∂f

∂n

)
(l, m, n) =

(
− S2

E

l2mn
− S2

B

l2m
− S2

V

l2
,− S2

E

lm2n
− S2

B

lm2 ,− S2
E

lmn2

)
.

By Lagrange Multiplier Theorem, the local extremum can only be in l, m, n,
that solve the following system of equations:

∂f

∂l
(l, m, n) + λ

∂g

∂l
(l, m, n) = 0 (24)

∂f

∂m
(l, m, n) + λ

∂g

∂m
(l, m, n) = 0 (25)

∂f

∂n
(l, m, n) + λ

∂g

∂n
(l, m, n) = 0 (26)

g(l, m, n) = 0 (27)

We can express m2 and l2 from (26), for λ > 0, q > 0:

m2 =
S2

E

λql2n2 , l2 =
S2

E

λqm2n2 . (28)

By substituting m2 from (28) into (25), we get for n > 0:

n0 = n =

√
wS2

E

S2
B

.

By substituting l2 from (28) into (24), we get for m > 0, w > 0:

m0 = m =

√
bS2

B

qwS2
V

.

We are not interested in the values of l and λ solving the system of equations.
Still, it remains to be shown that there really is a local minimum of f(l, m, n) in
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m = m0,n = n0. This can be done directly by checking the first and the second
partial derivatives of f(m, n),

f(m, n) =
mqw + mqn + b

c
·
(

S2
E

mn
+

S2
B

m
+ S2

V

)
,

as described in Second Derivative Test [16]. The procedure is quite straightfor-
ward, but involves some labor algebra. We do not include the details here.

C Description of Used Benchmarks

All benchmarks were run on a single machine, Dell Precision 340, with a single
Pentium 4 processor, 512M RAM. The CORBA benchmarks were run on Fedora
2 operating system, the Mono benchmarks were run on Fedora 4. All benchmarks
were run with a disconnected network interface and with all unnecessary system
services shut down.

The Ping benchmark measures the response time of a simple CORBA remote
procedure call, the Marshal benchmark measures only marshaling part of the
remote call. Both benchmarks comprise of a client and a server process, both
of which are restarted in each execution. The evaluation was done with 100
CORBA/benchmark binaries, each benchmark binary was executed 25 times.
The Ping and Marshal benchmarks are described in [2] in more detail, including
the platform information.

The other benchmarks are from the Mono Regression Benchmarking Project
[8]. The TCP Ping and HTTP Ping benchmarks measure response time of a
single remote procedure call using TCP and HTTP channels, both benchmarks
comprise of two processes. The Rijndael benchmark measures the aggregated
time for encryption and decryption of a constant short text in memory. The
FFT benchmark measures the aggregated time for forward and inverse Fast
Fourier Transformation of a constant vector. There are two versions of the FFT
benchmark: the original version allocates the memory for computation repeat-
edly at the beginning of each measurement, the NA (“no allocation”) version
allocates the memory once at the benchmark process start–up. Each benchmark
was run both with the default virtual machine optimizations turned on, and with
all the implemented virtual machine optimizations turned on (OPT). The eval-
uation was carried out with 150 binaries, each benchmark binary was executed
100 times. Detailed description of the benchmarks and platform information are
available on the web [8].
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caches in the system. Efficient characterization algorithms allow one to build a
repository of workload properties of representative applications.

In this paper we focus on the analysis of memory reuse for a range of workloads
and continuous profiles that can be used for cache miss rate estimation and for
capturing the working set sizes of applications. We propose an efficient algorithm
based on the least recently used (LRU) stack model, which makes it feasible to
quickly generate a large collection of memory reuse profiles.

The next section of this paper discusses common memory characterization
methodologies. The fast LRU algorithm is presented in Section 3. Section 4
shows the results of the algorithm applied to the NAS Parallel Benchmarks and
is followed by the analysis of the results. We conclude the paper with a discussion
of the performance of the proposed algorithm.

2 Background

There are a number of established methodologies for the analysis of the memory
access properties of a workload. Regularity of computational applications can be
analyzed based on striding properties [1]. This methodology can be combined
with APEX map [2] characterization to analyze the spatial and temporal locality
of memory accesses of an application in an architecture-independent way [3].

Another approach for the memory access characterization is the dynamic char-
acterization of the working set size of an application [4, 5]. This approach can
be applied to both cache utilization analysis and memory paging algorithms.

A thriving area of research is the cache miss rate analysis [6]. Cache simulators
based on instructions traces and on execution-driven techniques are common in
the industry. In addition, there are a number of analytical techniques, such as
Cache Miss Equations [7], that are applicable for compile-time cache analysis.

In this work we base our characterizations on the LRU [8] stack histogram,
which accurately models fully associative LRU caches. We generate continuous
profiles of miss ratios that capture working set sizes of an application. This
temporal locality characterization is similar to the approach applied to compiler
loop analysis in [9] for memory ranges up to 211 bytes. We propose a highly
efficient algorithm that allowed us to capture application-wide memory reuse
profiles for memory sizes of up to 226 bytes.

We perform workload characterization using the traditional LRU stack
method. A stack of a fixed length N keeps an ordered list of N most recently
accessed elements. Each access moves an element, which may or may not be
already in the stack to the top. If the element was taken from the stack its
previous position is recorded in the histogram. Aggegated histogram values are
scaled to generate a workload profile that shows the reuse ratios for a range of
stack or cache sizes up to the size actually used in the analysis.

Specific examples and results will be discussed in Section 4. Here we will refer
to Figure 5 to illustrate this characterization. The miss rate of 0.03 for a 4 MB
(214 bytes) cache for all three problem sizes means that 97% of newly considered
entries were already present in the top 4 MB part of the stack. Vertical drops
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at the tail ends of the curves correspond to different amounts of memory used
by the three versions of the benchmark. This particular application performs
a computation on a fixed three-dimensional grid. Intermediate vertical drops in
the profiles illustrate intermediate working set sizes corresponding to the amount
of data required to perform the computation in two dimensional planes.

3 Fast LRU Stack Algorithm

The proposed algorithm efficiently provides the rank for any element in the LRU
stack, even when the LRU stack is large. The algorithm addresses some of the
common obstacles that make traditional implementations of LRU stack algo-
rithms inefficient. First, while maintaining an LRU stack in memory is simple
using a double linked list, finding the rank of an element in the list would re-
quire counting from the beginning of the list until the element is found. Second,
addressing the first point by attributing a static rank to the elements in an LRU
will not work because that rank will change as soon as an element is added to
the top of the list. These problems limit the usability of conventional implemen-
tations to short LRU stacks. With the new algorithm we demonstrate that with
sufficient memory we can use LRU stacks very effectively.

We base our algorithm on two observations. First, many distributions common
to computer science have uneven reuse of stack elements where most activity
is in the top of the stack. Such behavior is true for Pareto and exponential
distributions [10, 11]. Second, when an element is moved to the top of the stack,
the order of the other elements is not changed, rather all elements after the
removed element remain unchanged while the lower ranking elements shift down
one step. Based on these observations we optimize the algorithm for the cases
where the distribution of reused values is biased towards the top of the stack.
Here we assume that we are performing cache analysis and the elements we are
storing in the stack are memory references with values between 0 and 264 − 1.
This type of stack analysis is relevant for any analysis where LRU is appropriate,
like memory or web server caches [10].

3.1 Rank Ordering

Throughout the algorithm we maintain a linked list of stack entries. Checking
whether a newly issued address is on the stack is implemented via hashing. For
performance reasons, we pick the size of the hash table comparable with size
of the LRU stack. Our experiments have shown that the table lookup does not
amount to an appreciable cost. When we have found an element using the hash-
table, we want to determine its rank in the stack before we move it to the top
of the stack. In order to do this we maintain a rank record for every element in
the LRU stack. This rank record is an estimation of its rank. These rankings
in the LRU stack are re-initialized to true values at certain intervals discussed
later. This re-initialization or reranking means that we assign every element the
value of the counter as we count down from the top to the bottom of the LRU
stack, starting with the number one. Reranking is very expensive and we aim
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// return rank of element value
getactualrank(value) {
stack_t stack; // stacktype
element_t element; // stack element type
// find the element in the hash-code
element=findelement(value);
if(element==NULL) { //value is not on the stack

deletelast(stack); //remove last entry
element=newelement(value); // create new
actualRank=0;

} else { // value found on the stack
if (element.rank==0) { // previously moved
actualRank=findrank(stack,element)

} else { // unmoved
actualRank=changelist(stack,element.rank)

}
}
element.rank=0; // set rank zero and place
placeontop(stack,element); // on top of stack
if (stack.findcount>stack.rerankcount) {

rerank(stack); // reinitialize the rankings
stack.rerankcount+=stack.size;

}
return actualRank;

}

// find element from top of stack
findrank(stack,element) {
element_t current;
current=stack.head->next; // first data element
rank=1;
while (current.value!=element.value) {
current=current.next;
rank++;

}
stack.findcount+=rank;
return(rank);

}

// correct estimated rank with changelist
changelist(stack,element.rank) {
deltarank=0;
for(i=0; i<sizeof(rank.changelist);i++) {
if(rank.changelist[i]>element.rank)
deltarank++;

}
stack.findcount+=sizeof(rank.changelist);
addtochangelist(element.rank,rank.changelist);
return(element.rank+deltarank);

}

Fig. 1. LRU stack algorithm pseudo code

to minimize its use. Between rerankings we maintain a change list, an array
containing the estimated ranks of previous elements removed from the stack and
placed on top. Elements moved to the top of the stack since the last reranking
are assigned an estimated rank zero.

When we move an element to the top of the stack the algorithm performs a
number of steps (illustrated in Figure 2 with pseudo-code in Figure 1). If the
element is not in the stack, it is moved to the top of the stack and assigned an
estimated rank zero. In this case the last entry of the stack is removed. If the
element is found in the stack we need to determine its real rank to update the
histogram. If the estimated rank of the current element is greater than zero we
know that we have found an element that has not been accessed since the last
reranking. We calculate the real rank from the estimated rank by finding how
many places the element was moved down the stack since the last reranking. We
start by assigning the real rank the value of the estimated rank. We then traverse
the change list and for every entry whose rank is greater than the estimated rank
of our element, we increment the real rank by one, since every element removed
from below the current element would have moved the element one rank down.
If an element was moved to the top from above our current element, then the
position of our current element would not have changed. Once the change list is
traversed, we add the original estimated rank to the change list. Finally we add
the number of unique new elements added since the last reranking to the real
rank.

If the estimated rank of the element is zero, we determine the real rank by
counting from the top of the stack until we have found the correct element. Since
the estimated rank is zero it does not need to be added to the change list.

As more and more elements are moved to the top of the stack, the num-
ber of elements with estimated rank zero increases. As a result of this increase,
the amount of work the algorithm has to perform to determine the correct rank
quickly increases with any top-biased distribution. This is caused by the increas-
ing number of hits on elements with estimated rank zero, forcing a count from
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Fig. 2. Rank algorithm using L,A,I as values

the top of the stack until the element is found. By keeping track of the balance
of work done between reranking the entire stack and counting from the top, we
rerank the stack when the total amount of work done based on counting (find-
count) exceeds the total amount of work done based on reranking (rerankcount).

3.2 Stack Buckets

We can improve the performance of the algorithm by partitioning the stack
into contiguous regions or buckets. This optimization is based on an observation
that under an exponential distribution of element reuse (ie cache locality), the
distribution of reuse within each bucket will be exponential as well.

We split the stack into buckets of exponentially increasing size and make the
algorithm work identically for each bucket. Each bucket is considered to have a
fixed length. If a new element is added to the top of a bucket and the bucket
overflows, the last element of that bucket is moved to the next bucket. If the
last element is the last element of the stack, it is destroyed and removed from
the stack as well as from the hash-table. When we take an element from the
stack, the rank can then be calculated by finding the rank in its bucket and then
adding the bucket offset to that rank. Each bucket independently manages its
counting versus reranking balance.

The efficiency of the algorithm is significantly improved by partitioning. As-
suming any reference locality, reused elements will be found towards the front
of the list. The closer an element is to the front of the list, the shorter the
bucket containing it, and therefore the cheaper the bucket is to maintain. Each
bucket effectively acts as a filter reducing the amount of work which needs to
be performed on more expensive buckets. By covering the most volatile areas of
the LRU stack with smaller buckets (see Figure 3) we ensure that the cost of
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Fig. 3. The relationship between
hitrate and bucket size

Fig. 4. An LRU bucket element with
pointers

reranking each region is approximately equal (larger and therefore more expen-
sive buckets require reranking far less frequently).

3.3 Implementation

We have implemented this algorithm in the C programming language making
extensive use of pointer based lists and structures. Each element structure in
a bucket has two pairs of pointers, for the hash table as well as the bucket
(see figure 4). In addition, each element structure contains the bucket counter
and the estimated rank. It is therefore clear that the price of the efficiency of
this algorithm is in its extensive use of memory. Our 64-bit implementation
requires 360 bits in order to store all the information pertaining to a single 64
bit value. The memory requirements are further increased by the hash-table
and stack histogram size.

In order to achieve a high level of efficiency inside the algorithm and make
trade-off decisions between either reranking the bucket or just counting, we track
two values. The first value, rerankcount, is the total number of reranking op-
erations performed while the second value, findcount, is the total number of
counts we have performed. The findcount is incremented whenever the algorithm
iterates from the top of the bucket (to calculate the rank of a recently inserted
element), and also when iterating through the change list (to calculate the true
rank from the estimated rank). Whenever findcount exceeds rerankcount (pro-
viding some indication that it is becoming costly to calculate rank), we rerank
the bucket and add the current size of the bucket to the rerankcount. We have
found through experimentation that this delivers a good results. Finding an
optimal heuristic for reranking is a subject for further research.

4 Results and Analysis

In order to evaluate the LRU stack as described in Section 3 we applied it to a
series of well known applications. The serial versions of the NAS Parallel Bench-
marks [12, 13] were chosen for their ready availability, well understood behavior,
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and demonstration of regimes common to scientific applications. These bench-
marks include a variety of problem sizes, making them particularly well suited
for working-set analysis. A variety of problem sizes is included, from smallest
to largest, S and W for testing and debugging, A, B and C for benchmarking.
Larger problem sizes scale the working set, the number of iterations, or both.
These applications are considered representative of a number of common scien-
tific workloads.

4.1 Methodology

As the algorithm is based on a stream of memory references, address traces
are a necessary prerequisite. Due to the scale of some problem sizes (several
billion data references in a single iteration of the compute phase), dynamic trace
generation was considered preferable to using stored traces.

Trace generation was handled using valgrind[14, 15], a dynamic binary trans-
lation (DBT) framework allowing run-time instrumentation of existing, compiled
binaries. A native binary is translated by valgrind into an intermediate repre-
sentation (IR), which may be modified, before being translated back into native
code and executed. The design of the framework makes it comparatively simple
to implement different “skins” which modify the IR in different ways; the default
skin validates memory references, but the tool is in no way constrained by this.
As the tool executes generated code, rather than simulating an application, the
performance overhead is quite low. Currently valgrind runs on Linux under the
x86 (32/64 bit) and PowerPC (32-bit) instruction sets.

A new skin was written to collect address references and submit them to an
integrated implementation of the algorithm. Prior to each atomic, load or store
(a complicated process given the x86 instruction set), the referenced address was
submitted to the LRU stack.

The bt, ft, is, lu, lu-hp, mg, sp and ua benchmarks were tested in each of
the S, W and A problem sizes. Benchmarks were compiled in 64-bit mode using
gcc version 3.3, and run on an AMD64-based linux system. All benchmarks
were optimized (using -O2). The benchmarks were modified slightly to evaluate
a single iteration (after application setup and two iterations of warming) rather
than a complete run.

A second valgrind skin was written to act as a trivial cache simulation. It
employed the same IR modifications as mentioned above, however, the address
trace was passed to a simple cache model which allowed variation of associativ-
ity, size and replacement policy (either LRU, round-robin or pseudo-random).
Multiple cache models were employed simultaneously to reduce the number of
required simulation runs.

Both skins were written to support a warming mode in which addresses were
used to initialize the data structures, but no results were collected.

A necessary element of the algorithm is the assumed size of a cache line, which
is used to map an address to a cacheline, and to convert between number of stack
elements and working set size. All simulations described employed an LRU stack
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with one million entries and a cache line size of 64 bytes, allowing working set
characterization of up to 226 bytes (64 MB).

Problem set sizes were constrained by the amount of memory available in
the test machines. Due to the use of valgrind, sufficient memory for both the
application and the LRU stack was required simultaneously. To expand on Sec-
tion 3.3, memory requirements are strictly determined by the maximum size of
the LRU. Each entry requires 360 bits (in practice 48 bytes), with additional
(but smaller) overhead due to the use of a hash table and the histogram. If
sufficient storage is available, tracing and trace processing could be performed
independently to reduce the memory overhead. Another alternative is to increase
the underlying cacheline size (causing a corresponding reduction in the number
of entries required to cover a given working set). This can produce slightly mis-
leading results for small number of entries (due to striding touching differing
combinations of cache lines).

4.2 Results

In order to calculate the projected miss rates, a histogram is maintained record-
ing the depth at which a given entry was found before moving it to the top of the
stack. For notational purposes, a new entry is considered to have a rank of 0. An
entry with a given rank could be found only in a cache with at least that num-
ber of cachelines. If the cache contained fewer lines, the entry in question would
already have been victimized subject to the LRU policy and should therefore be
considered a miss.

Miss rates are therefore given by:

mn = 1−
∑n

i=1 hi∑max
j=0 hj

where mn is the miss rate for n cachelines, and hi is the number of elements
with rank i (with h0 the number of elements not found in the stack).

Based upon this equation, miss rates were calculated for the family of bt
(Figure 5) and sp (Figure 6) benchmarks. These benchmarks were chosen as they
provide an illustration of properties discussed below. As mentioned in Section 4.1,
these results arise from a single iteration of the respective benchmark.

With a single simulation run, it is immediately possible to gain some insight
into the expected miss rate for any cache size within the range of analysis.
The ability to generate a continuous curve rather than a number of discrete
points provides an enormous amount of information in a single run, rather than
requiring numerous cache simulations. In particular, the effects of algorithmic
blocking are clearly visible, particularly in Figure 5. Due to the continuous nature
of the generated miss rates, the presence of loop constructs (and their respective
working set size) may immediately be seen. This behavior may not be nearly so
obvious given only a series of points.

In order to validate the simulation results generated by this technique, address
traces were also run through a traditional cache simulation model, employing a
range of replacement policies.
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Figure 7 shows the comparison for bt.A while Figure 8 shows the comparison
for lu-hp.A. In both cases, the LRU stack results were compared against a
simple 4-way set associative cache of a variety of sizes using either an LRU, a
round-robin or a pseudo-random replacement policy.

The results predicted by both conventional techniques and LRU stack based
analysis correspond quite well although with some discrepancy around sudden
changes in miss-rate (see Figure 8). This discrepancy is attributed to the patho-
logical case of an LRU replacement policy and a working set which slightly
exceeds the length of the LRU. A conventional cache design (and therefore sim-
ulator) is protected from this effect to some extent by the partitioning provided
by indexing. A large fully-associative design has no such protection.

In spite of this mild discrepancy, the LRU stack algorithm quickly identifies
the region in question as one subject to changing miss rate behavior and an ideal
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candidate for further examination if this were a workload of importance to the
designer.

As a point of curiosity, a standalone version of this algorithm was examined
while processing a 64-bit version of a bt.S trace (including startup), and the
result is illustrated in Figure 9. Both the cache behavior of the analysis tool
and the behavior of the source trace are shown. The source trace is a set of 256
million address references taken from the start of bt.S, while the analysis trace
is from a complete analysis of the source trace (without warming).

Notice the clear demonstration of blocking behavior at several points; this
is to be expected given the use of buckets to model the LRU, and the size
(and location) of the drop offs in miss rates will be partially contingent on the
data supplied to the algorithm. If a working set strongly exercises only the top
few buckets, the LRU stack working set will be composed principally of those
buckets. On the other hand, an application with a larger working set will require
a similar increase in the working set of the simulator.

4.3 Additional Considerations

Some final consideration should be given to the methodology employed.
Although valgrind is a DBT framework, as both the host and the target
are identical, word sizes, data segment positioning, and addresses are largely
preserved. valgrind’s source code is resident within the traced application’s ad-
dress space (due to the need to translate and supervise its execution). This pres-
ence within the address space can alter the overall memory layout of application.
For example, the overall size of address space available to the application will be
reduced by valgrind’s requirements (a potential problem on 32-bit platforms),
and this reduction may result in mmap calls mapping to different addresses. Given
the use of scientific workloads, these effects are presumed to be minimal and the
resulting address traces are assumed to be representative.

Furthermore, only data references are captured and used within this simula-
tion, while a real system would observe fetch traffic at the L2 cache. For the
purposes of our analysis this is considered a low order effect.

5 Performance

The performance of the algorithm described in Section 3 has been characterized
in several ways, both on its own, and in comparison to a set of alternatives.

5.1 Raw Performance

Table 1 illustrates the raw performance of the algorithm itself when isolated
from tracing infrastructure and most other sources of overhead. The values
in this table were obtained by supplying a pre-captured trace of the first 228

(256 million) data references in the compute phase of the benchmark in question
to a standalone implementation of the algorithm.
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Table 1. LRU simulation benchmarks

bt.A (228 records) mg.A (228 records) lu.A (228 records)
time (s) addr/s time (s) addr/s time (s) addr/s

1.4 GHz Opteron 240 (64-bit) 160.24 1.675 M 234.90 1.142 M 179.34 1.497 M
2.2 GHz Opteron 848 (64-bit) 144.92 1.852 M 235.51 1.140 M 172.69 1.155 M
1.86 GHz Pentium M (32-bit) 102.09 2.629 M 112.22 2.392 M 70.83 3.790 M

Three different systems were employed for testing:

– 1.4 GHz Opteron 240, 1 MB L2, 2 GB RAM, Linux 2.4.21
– Quad 2.2 GHz Opteron 848, 1 MB L2, 8 GB RAM, Linux 2.6.7
– 1.87 GHz Pentium M, 2 MB L2, 1 GB RAM, Linux 2.6.13

Native word sizes were used on each platform; 32-bit traces on the Pentium
M, and 64-bit traces on the two AMD64 systems. Timings are not directly com-
parable between systems of differing word sizes, due to the difference in the size
of trace data and algorithm memory footprint.

The run times vary somewhat for the various benchmarks tested. This is a
consequence of the relationship between bucket usage and cache hit rate illus-
trated in Figure 3. Benchmarks which demonstrate greater locality will find their
accesses confined to the top-most buckets, which incur substantially lower costs
for both lookup and rank maintenance due to their smaller size. This overhead
will increase with the working set (and thus bucket) size, and thus algorithmic
efficiency is expected to decrease with larger problem sizes.

Regardless of the problem size, however, within the examined benchmarks,
performance exceeds one million processed records per second. The Pentium M
based system appears to hold a substantial advantage, presumably due to the
smaller size of each record (32-bit pointers) and the larger L2.

5.2 Algorithmic Variation

To examine the performance gains made possible by book keeping and the use
of buckets, three different versions of the algorithm were compared on the same
traces as above.

The efficient algorithm is as described in Section 3. The nobuckets algorithm
is a degraded version of efficient. The details of the algorithm remain largely the
same (including hash table and book-keeping), however, the list is not partitioned
into multiple buckets.

The naive algorithm is a simple linked-list based implementation of a stack.
On each lookup, the list is scanned, and the matching entry is shifted to the front.
Some improvement could be gained by using a hash table to track elements in
the list. This would avoid an unsuccessful scan on new elements (quite significant
when the working set exceeds the number of entries in the stack), and reduce
the number of comparisons needed to find an element. As this case is intended
to provide a performance baseline, this optimization has not been made.
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Table 2. Algorithmic performance comparison

Algorithm bt.A mg.A lu.A

naive time (s) 16336.28 > 25200 2966.50
slowdown 160.02 > 224.56 41.90

nobuckets time (s) 1369.32 1552.75 708.30
slowdown 14.40 13.83 10.00

efficient time (s) 102.09 112.22 70.83

All benchmarks were run on the Pentium M system described above, and
timing information is shown in Table 2. The times result from runs over traces
of the first 228 instructions of the compute phase of each benchmark, as used
in Table 1. All runs were made with a stack size of one million (220) entries,
modeling working sets of up to 64 MB (226 bytes). In the case of mg, the naive
algorithm proved too slow, and the simulation run was terminated.

While the use of careful bookkeeping (the primary difference between the
naive and the nobuckets approach) does significantly improve performance, the
addition of buckets yields an order of magnitude performance improvement.
The variation in degree of slowdown is largely attributable to the source data.
The manipulation of small buckets is much faster than that of larger buckets,
and an application with highly localized accesses would be largely confined to
the top few (small and therefore cheap) buckets. Such an application would thus
experience a large slowdown without the use of buckets (see Figure 3).

As noted above, the naive algorithm experienced severe slowdowns when the
size of the working set exceeded the LRU stack size (as is the case with mg.A).

5.3 Tracing Overhead

Although all runtimes discussed thus far have referred purely to trace processing,
it is also instructive to consider the performance of run-time trace generation
(i.e. the use of valgrind). While in some instances it may be practical to store
complete traces for billions of instructions, storage constraints may make this
undesirable in many environments, particularly if tracing overhead is low.

Table 3 compares the time taken to examine a single iteration of the compute
phase for several benchmarks under a variety of conditions. The time taken to
complete an iteration on the host is given by native. valgrind records the time
taken using the “none” skin. This translates from native code to the intermediate
representation and back again without performing any transformations on the
IR, and gives a baseline indicator of valgrind’s overhead. The skin used to
generate address traces is shown by tracing. Finally the runtime when performing
the LRU stack simulation is given by simulation. These performance numbers
are taken from the quad Opteron 848 system mentioned earlier.

From this table it may be seen that the combination of valgrind and the stack
algorithm incurs roughly a 500 fold slowdown, while valgrind itself incurs a
5–10 fold slowdown. Interestingly, the record processing rates quoted are roughly
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Table 3. Overall run-time (one compute iteration)

bt.A mg.A lu.A

records (million) 1040 1208 440
simulation time (s) 369.72 964.41 301.81

slowdown 513 771 419
million rec/s 2.81 1.12 1.45

tracing time (s) 19.59 25.08 9.03
slowdown 27 20.06 12.54

valgrind time (s) 6.84 11.97 4.05
slowdown 9.50 9.57 5.62

native time (s) 0.72 1.25 0.72

comparable to those in Table 1, suggesting that the simulation itself swamps the
overhead of trace generation when applied in this manner.

Owing to the use of a dynamic translation framework, it is possible to run
a given application uninstrumented (incurring a 5 to 10 fold slowdown) until
an area of interest is reached. At this point instrumentation could be enabled
(imposing a 500 fold slowdown). These numbers are sufficiently low to make
instrumentation of large applications quite practical.

6 Conclusions

In this work we have demonstrated the ability to generate very efficiently contin-
uous curves outlining the working set behavior of an application in a single pass.
These graphs very quickly pinpoint important working set regions, and blocking
behavior within the target application.

Using a dynamic binary translation framework, this algorithm is capable of
modeling working set behavior with only a 500-fold slowdown. The same frame-
work imposes only a five to ten-fold slowdown when not instrumenting, making
the examination of large applications practical.

Comparison against a traditional cache simulator has shown that while quite
close, the miss rates do not always match precisely in the vicinity of sudden
changes due to structural differences between an LRU stack and a real cache.
In spite of these differences, the curves generated by the LRU stack closely
approximate the miss rates projected by a cache simulator, and provide a useful
baseline for targeting more detailed analysis.
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Abstract. Recently, there is an explosive development of fluid approa-
ches to computer and distributed systems. These approaches are inher-
ently stochastic and generate continuous state space models. Usually,
the performance measures for these systems are defined using probabili-
ties of reaching certain sets of the state space. These measures are well
understood in the discrete context and many efficient model checking
procedures have been developed for specifications involving them. The
continuous case is far more complicated and new methods are necessary.
In this paper we propose a general model checking strategy founded on
advanced concepts and results of stochastic analysis. Due to the problem
complexity, in this paper, we achieve the first necessary step of charac-
terizing mathematically the problem. We construct upper bounds for the
performance measures using Martin capacities. We introduce a concept
of bisimulation that preserves the performance measures and a metric
that characterizes the bisimulation.

Keywords: Fluid models, performance measure, bisimulation, modelch-
ecking, computer networks, Markov processes, capacity.

1 Introduction

Performance analysis is an important activity for systems having continuous
state components and / or continuous time transitions. Such systems include
fluid models of communicating and computer networks [22], [20], stochastic fluid
Petri nets [18], [12], stochastic hybrid systems and their applications (air traf-
fic control systems, chemical engineering, automated highway systems, power
systems, nuclear plants, wireless gadgets). In most cases performance analysis
is carried out probabilistically. The most used (engineering) measure for sys-
tem performance is also a measure in the mathematical sense, i.e. a probability.
We follow the probabilistic model checking approach [25] that defines the per-
formance measure as a probability of a specific set of events, each event being
defined as a system path with some properties. The probability is counted for
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those sets of paths that start from a given state and pass through a target set
in the state space. We extend this definition from the discrete case to the fluid
case (continuous and / or transitions). The countable system paths are replaced
by dense (i.e. contiguous) system trajectories. The working mathematicians will
remark that trajectories can be discontinuous, but they have the cadlag property
(right continuous with left limits). Of course, the way we specify the trajectories
differs largely from the manner to specifying discrete paths. The situation be-
comes more complicated when estimations of the probabilities are constructed.
If, in probabilistic model checking [26], combinatorics and discrete mathematics
are used, for contiguous trajectories we have to use advanced stochastic analysis
concepts. In probabilistic model checking both maximal and minimal reachability
probabilities are estimated. In this paper, we construct upper bounds estimation
only.

Most of the fluid models for performance analysis of distributed systems
adopts the Petri nets model of concurrency. In this paper, we adhere to the
process algebra philosophy. A process algebra fluid has been introduced and in-
vestigated in [8]. We have shown that the study of performance analysis of these
systems is equivalent to the performance analysis of strong Markov processes
with cadlag property, which we investigate in this paper.

In this paper, we consider those performability properties that specify upper
bounds for performance measures. In order to make formal these properties we
need a suitable continuous stochastic logic. In [9], we have defined approximate
abstractions for some classes of fluid models for which there exists available a
version of the continuous stochastic logic. This logic may be used to specify the
performability properties of interest to us. The full formality of the approach
we propose can not be achieved because of the limited room of this paper.
Therefore, we present only a strategy based on semantic arguments. Even the
properties would be formally fully specified, their semantics would be a mathe-
matical statement about upper bounds of the performance measure. Every model
checking procedure for performability properties needs mathematical solutions
for inequality problems involving the performance measure. This absolutely nec-
essary first step for performability properties model checking is achieved in this
paper.

In application domains like air traffic control there are often sudden physi-
cal changes that requires modifications in the mathematical model and conse-
quently the probabilities change. A similar case appears in practical situations
when approximations of probabilities are used in decision making and because
of changes in the environment require the recalculation of the approximations.
Our approach covers these kind of situations in a dynamic, configurable change
prone environment. Moreover, we consider a version of stochastic model check-
ing, meaning that one could get a system abstraction (hopefully simpler or even
finite state) that preserves the probabilities of critical situations. This technique
requires a suitable concept of bisimulation. In this paper, we present a bisimula-
tion concept and prove that two bisimilar processes have the same probabilities
of reach a safety critical (hazardous) situation - called reach set probabilities.
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The bisimulation concept is very robust because it does not involve the stochas-
tic equivalence of the Markov processes considered. In practice probabilities are
approximated by various statistical methods and therefore it is difficult to check
the equality of transition probabilities (in order to prove the stochastic equiva-
lence of processes).

The basic ingredients we use are Markov processes, capacities, belief functions,
and semigroups. Advanced concepts of stochastic analysis have been used for a
long time in modelling computer networks and the Internet, for example by Kelly
and co-workers [22], [23], Hespanha [21], Katoen, Baier and co-workers [20] etc.

The paper is structured as follows. The next section provides the paper mo-
tivation. The basic background in Markov processes and capacities is given in
section 3. The section 4 contains the problem formulation and characterization.
In section 5 a new concept of stochastic bisimulation is introduced and investi-
gated. The paper ends with some final remarks.

2 Motivation

Nowadays, there is a proliferation of models for very large communicating (com-
puter) networks that consider the overall network behaviour as being continuous.
These models are called generically ‘fluid’. The interested reader can easily find
nice tutorial on this issue like [23, 22]. As the world, we live in, is getting more
and more interconnected, these fluid models become more efficient for studying
the congestion control, the quality of services and various performance measures.
These methods are analytical and the only verification methodologies available
are based on stochastic (Monte Carlo) simulations. Other analytical verification
methods use some tricky discretisations by employing queue systems.

The focus of the ‘fluid’ approach on modelling is natural, but the approach
suffers because of the ad-hoc verification methods. In particular, model check-
ing, the mostly used verification technique in performability analysis, is not
available. This is because of the lack of sound, adequate analytical techniques.
When probabilities and continuous aspects are considered altogether, the math-
ematical problems get a formidable complexity. In this paper, we address the
mathematical foundations for the stochastic model checking of performability
properties in the ‘fluid’ approach.

The corner stones of the model checking strategy, which we propose here, are
given by a mathematically sound upper estimations of the performance measure
and a bisimulation relation that preserve it. The class of systems that can be
checked has behaviour as strong Markov processes with the cadlag property.
This class is very large and it includes, for example, continuous Petri nets, fluid
stochastic Petri nets (FSPNs), continuous places and / or fluid flow arcs FSPNs,
and stochastic hybrid systems (SHS). Of course, each subclass of systems add
specific properties to the class Markov processes representing their behaviour.
Our strategy will be refined for subclasses of systems, in particular, for stochastic
hybrid systems in a forthcoming paper. Actually, a research project [27] has been
undertaken at the University of Twente to explore these issues.



96 M.L. Bujorianu and M.C. Bujorianu

FSPNs [24] extend stochastic Petri Nets (SPNs) by introducing positive real
tokens to special continuous places. The set of places is partitioned as follows:
(i) a set of discrete places, characterised by an integer number of tokens; (ii) a
set of fluid (or continuous) places containing a real fluid level.

Stochastic fluid flow models [33] have been used extensively to evaluate the
performance of high-speed networks, for which the underlying stochastic pro-
cesses can be viewed as continuous state whilst the network speed increases (for
example, the ATM networks where the cell transmission delay is 3 microseconds
in 155 Mb/s). Moreover, the fluid models can be employed to deal with the
problem of largeness.

Stochastic hybrid systems are ‘traditional’ hybrid systems with some stochas-
tic features [5, 28]. These systems typically contain variables or signals that take
values from a continuous set and also variables that take values from a discrete
(finite or countable) set. Differential equations or stochastic differential equa-
tions generally give the continuous dynamics of such systems. A Markov chain
generally governs the discrete-variable dynamics of stochastic hybrid systems.
The stochastic features might be present in the continuous dynamics or in the
discrete dynamics, or in both. The continuous and discrete dynamics coexist
and interact with each other and because of this it is important to use models
that accurately describe the dynamic behaviour of such hybrid systems. The
realizations of the different models of stochastic hybrid systems (see [28] for an
overview) can be thought of as particular classes of strong Markov processes
with the continuous evolution disturbed by forced or spontaneous transitions.

3 Background

In this section we present the necessary results and concepts about Markov
processes and capacities to make this paper self-contained.

3.1 Stochastic Analysis of Markov Processes

We fix (Ω,F) a measurable space. Let Mt, t ∈ [0,∞] be a filtration on (Ω,F)
(i.e. a non-decreasing family of sub-σ-algebras of F). Denote M∞ = ∨

t∈[0,∞)
Mt,

i.e. M∞ is the smallest σ-algebra containing all Mt, t ∈ [0,∞). A filtration
{Mt} is right continuous if Mt = Mt+ = ∩{Mt′ |t′ > t}. A filtration is a way
of representing our information about a system growing over time. To see what
right-continuity is about, suppose it failed, i.e. Mt ⊂ ∩{Mt′ |t′ > t}. Then there
would have to be events which were detectable at all times after t, but not at time
t itself. This means we have some sudden jump in our information right after t.
A stochastic process (xt) is adapted to a filtration (Mt) if xt is Mt-measurable
for all t ≥ 0 (or (Mt) is an admissible filtration). Any process is adapted to
the filtration it induces F0

t = σ{xt, s ≤ t} for t ∈ [0,∞) and F0 = ∨tF0
t . (F0

t )
is called the minimum admissible filtration or the natural filtration. A process
being adapted to a filtration just means, for each time, the filtration gives us
enough information to find the value of the process.
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Let X be a topological Hausdorff space and assume that B is the Borel
σ-algebra of X . We adjoin an extra point Δ (the cemetery) to X as an iso-
lated point, XΔ = X ∪ {Δ}. Let B(XΔ) be the Borel σ-algebra of XΔ.

Let M = (Ω,F , (xt)t≥0, (Px)x∈XΔ) be a Markov process with the state space
(X,B), life time ζ(ω) (when the process M escapes to and is trapped at Δ) and
corresponding filtration (Mt). The elements Ft, Px are defined as follows.

• Px : (Ω,F) → [0, 1] is a probability measure (called Wiener probability) such
that Px(xt ∈ E) is B-measurable in x ∈ X for each t ≥ 0 and E ∈ B.
• If μ ∈ P(XΔ), i.e. μ is a probability measure on (XΔ,B(XΔ)) then we can
define Pμ(Λ) =

∫
XΔ

Px(Λ)μ(dx), Λ ∈ F . The completion of F0
t , for t ∈ [0,∞],

w.r.t. all Pμ, μ ∈ P(XΔ), is denoted by Ft.

Given an admissible filtration {Mt}, a [0,∞)-valued function T on Ω is called
an {Mt}-stopping time or optional time if {T ≤ t} ∈ Mt, ∀t ≥ 0.

For an admissible filtration {Mt}, we say that M is strong Markov w.r.t.
{Mt} if {Mt} is right continuous and for any {Mt}-stopping time T

Pμ(xT+t ∈ E|MT ) = PxT (xt ∈ E); Pμ − a.s.

μ ∈ P(XΔ), E ∈ B, t ≥ 0.

M has the càdlàg property if for each ω ∈ Ω, the sample path t �→ xt(ω) is right
continuous on [0,∞) and has left limits on (0,∞) (inside XΔ).
Let (Pt) denote the operator semigroup associated to M defined by

Ptf(x) = Exf(xt), f ∈ Bb(X)

where Bb(X) is the set of all bounded measurable real valued functions on X
and Ex is the expectation w.r.t. Px.

3.2 Capacities

The information input into different real-world models may be imprecise for
several reasons. For example, for computer models, imprecision is often a conse-
quence of measurement processes (e.g. using digital sensors). Prior information
is sometime recorded as intervals without any information about probability
distributions [15].

The extension of probabilistic analysis to include imprecise information is now
well established in the theory of imprecise probabilities [32], robust Bayesian
analysis [19] and fuzzy statistics [31].

The imprecise probabilities are modelled by sets of probability measures which
might generate upper/lower probabilities [15], Choquet capacities [10], etc.

In the following, first, we shortly present the concept of Choquet capacity and
then we give the construction of the capacity associated to a Borel right Markov
process. This later concept is used in the next section to give a new definition
for stochastic bisimulation.

Intuitively, a capacity is a set function which extend the concept of measure.
The additivity property is not longer true for a capacity.
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For every space X and algebra A of subsets of X a set-function c : A → [0, 1]
is called a normalized capacity if it satisfies the following:

(i) c(∅) = 0, c(X) = 1, (ii) ∀A, B ∈ A: A ⊂ B ⇒ c(A) ≤ c(B).

A capacity is called convex (or supermodular) if in addition to (i)-(ii) it satisfies
the additional property:

(iii) ∀A, B ∈ A: c(A ∪B) ≥ c(A) + c(B)− c(A ∩B).

A special type of convex capacities are the belief functions presented and
discussed by Dempster [15] and Shafer [29]. A capacity is called a probability if
(iii) holds everywhere with equality, i.e. it is additive. If a capacity satisfies the
inverse inequality in (iii) then it is called submodular or strongly subadditive.

Let Λ be a set and C a σ-algebra of subsets of Λ. Given a measurable function
F : Λ× Λ → [0,∞] and a finite measure μ on (Λ, C), the F -energy of μ is

F (μ) = F (μ, μ) =
∫

Λ

∫
Λ

F (α, β)dμ(α)dμ(β).

The capacity with respect to F is

CapF (Λ) = [inf F (μ)]−1 (1)

where the infimum is over probability measures μ on (Λ, C) and by the conven-
tion, ∞−1 = 0.

Since we allow the possibility that c is not additive, we can not use the integral
in the Lebesgue sense to integrate w.r.t. c. The notion of integral we use is due
originally to Choquet [10] and it was independently rediscovered and extended
by Schmeidler [30]. If f : X → R is bounded A-measurable function and c is any
capacity on X we define the Choquet integral of f w.r.t. c to be the number∫

X

f(x)dc(x) =
∫ ∞

0
c({x ∈ X |f(x) ≥ α})dα +

+
∫ 0

−∞
[c({x ∈ X |f(x) ≥ α})− 1]dα

where the integrals are taken in the sense of Riemann.

3.3 Markov Process Capacity

Throughout this paper M = (Ω,F ,Ft, xt, Px) will be a Borel right Markov
process on (X,B). This means that (see, for example, [13] and the references
therein):

• Its state space (X,B) is a Lusin state space (i.e. X is a separable metric space
homeomorphic to a Borel subset of some compact metric space, with Borel
σ-algebra B(X) or shortly B). It will be equipped with a σ-finite measure m.

• M is a strong Markov process and the sample paths t → xt(ω) are almost
surely right continuous.

• the transition operator semigroup (Pt)t≥0 of M maps Bb (the lattice of
bounded real measurable functions defined on X) into itself.
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In addition, in this paper we suppose that M has the cadlag property and that
M is transient. This means that there exists a strictly positive Borel function q
such that Uq is bounded (where Uf =

∫∞
0 Ptfdt is the kernel operator).

One can take the sample space Ω for M to be the set of all paths (0,∞) "
t �→ ω(t) ∈ XΔ such that (i) t �→ ω(t) is X-valued and cadlag on (0, ζ(ω)) where
ζ(ω) := inf{s > 0|ω(s) = Δ}, (ii) ω(t) = Δ for all t ≥ ζ(ω), and (iii) ζ(ω) < ∞.
In this way, M is realized as the coordinate process on Ω: xt(ω) = ω(t), t > 0.
We complete the definition of M by declaring x0(ω) =lim

t↘0
ω(t), t > 0.

Because of transience condition, it is possible to construct a probability mea-
sure P on (Ω,F0

t ) under which the coordinate process (xt)t>0 is Markovian with
transition semigroup (Pt)t≥0 and one-dimensional distributions P(xt ∈ A) =
μt(A), ∀A ∈ B, t > 0, where (μt)t>0 is an appropriate entrance law (see [17] and
the references therein).

The capacity associated to M is defined as follows (see [7] and the references
therein): for all B ∈ B

CapM (B) = P(TB <∞) = P(TB < ζ), (2)

where TB is the first hitting time of B, i.e. TB = inf{t > 0|xt ∈ B}.
This capacity can be written as a non-additive set function CapM : (X,B) →
[0, 1], which is finer than a measure. The capacity of a measurable set B can
be thought of as a ‘measure’ of all process trajectories that ever visit B over
an infinite horizon time. It can be shown that CapM is monotone increasing,
submodular, and countably subadditive [17]. The initial definition (see the refer-
ences therein [17]) of this notion gives the capacity CapM as an upper envelope
of a non-empty class of probability measures on B.

4 Problem Formulation and Characterization

Randomness or uncertainty is ubiquitous in scientific and engineering systems.
Stochastic effects are not just introduced to compensate for defects in determinis-
tic models, but are often rather intrinsic phenomena. In this section, we consider
a performance measure for stochastic fluid systems defined as a probability for a
stochastic reachability problem. We show that this problem is well defined and
construct an upper bound for reach set probabilities based on capacities.

4.1 Performance Measure

Let us consider M = (Ω,F ,Ft, xt, Px), as in subsection 3.3, the realization
of a stochastic fluid system. We use the definition from [25] of the performance
measure as a reachability probability. To address the reachability problem assume
that we have a given set E ∈ B(X) and a horizon time T > 0. Let us define

ReachT (E) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ E}
Reach∞(E) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ E}. (3)
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These two sets are the sets of trajectories of M , which reach the set E (the flow
that enters E) in the interval of time [0, T ] or [0,∞). The reachability problem
consists of determining the probabilities of such sets. The reachability problem
should be well-defined, i.e. ReachT (A), Reach∞(A) are indeed measurable sets.
Then the performance measures are the probabilities of reach events are

P (TA < T ) or P (TA <∞) (4)

where TA = inf{t > 0|xt ∈ A} and P is a probability on the measurable space
(Ω,F) of the elementary events associated to M . P can be chosen to be Px

(if we want to consider the trajectories, which start in x) or Pμ (if we want to
consider the trajectories, which start in x0 given by the distribution μ). Recall
that Pμ(A) =

∫
Px(A)dμ, A ∈ F . In this way, the reachability problem is related

with the computation of the capacities associated to the processes MT and M ,
where MT is the process M “killed” after the time T (see [13] for the details
about the killed process).

In the case of stochastic reachability the types of properties which can ex-
pressed can be classified as follows [25]:

• Reachability: The system can reach a certain set of states with a given proba-
bility.
• Invariance: The system does not leave a certain set of states with a given
probability (viability problem). In this context, the reachability problem can be
formulated as [5]: given a system and a set of initial conditions S0, determine the
set of states that can be reached by the system starting from S0. Reachability
analysis can be used for safety verification, that means one has to check that the
trajectories starting in S0 remains in a safe set F , i.e. ReachS0 ⊂safe set F . This
implies that the system is operating in safe conditions. Contrary, if ReachS0 �

safe set F then the system is operating in unsafe conditions.
• Time bounded reachability: The system can reach a certain set of states within a
certain time deadline (horizon time) and probability threshold. In safety-critical
system, some region of the state space is “unsafe”. One has to verify that the
system operates in safe conditions, i.e. it keeps staying inside the safe set. If
that is not the case the system has to be modified so as to guarantee safety.
For example, this is the case for the mathematical models for the safety critical
air traffic management situations [5, 28]. A central problem in air traffic con-
trol is determining the conflict probability, i.e. the probability two aircraft come
closer than a minimum allowed distance within a certain time deadline. If this
probability can be computed, an alert can be issued when it exceeds a certain
threshold.
• Bounded response: The system inevitably reaches a certain set of states within
a certain time deadline with a given probability. Critical issue for systems op-
erating in a highly dynamic uncertain environment: safety has to be repeatedly
verified on-line based on updated information, so as timely take appropriate cor-
rective actions for steering the system trajectory outside of the unsafe set. This
reachability analysis can provide useful information for diagnosis purposes and
corrective action design like controller design based on reachability analysis.
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4.2 Measurability of Reach Events

In this subsection, we show that the performance measures defined in the previ-
ous subsection are well defined, i.e. the reach events (3) are, indeed, measurable
sets in the underlying probability space. The proof (see the Appendix) argument
is based on analytic set properties.
Analytic Sets. Let F be a set. A paving on F is any family of subsets of F which
contains the empty set. The pair (F, E) consisting of a set F and a paving E is
called paved set.

The closure of a family of subsets E under countable unions (resp. intersec-
tions) is denoted by Eσ (resp. Eδ). We shall write Eσδ = (Eσ)δ.
Let (F, E) be a paved set. A subset A ∈ E is called E-analytic if there exists
an auxiliary compact metrizable space K and a subset B ⊆ K × F belonging
to (K(K) × E)σδ, such that A is the projection of B onto F . The paving of F
consisting of all E-analytic sets is denoted by A(E).

Remark 1. E ⊂ A(E); and the paving A(E) is closed under countable unions and
intersections.

Let B(R) be the Borel sets in R, K(R) the paving of all compact sets in R and
(Ω, E) be a measurable space.

Theorem 1. [2] (1) B(R) ⊂ A(K), A(B(R)) = A(K). (2) The product σ−field
G = B(R)× E on R× Ω is contained in A(K(R) × E). (3) The projection onto
Ω of an element of G (or, more generally, of A(G)) is E-analytic.

Recall that a Borel space is a topological space which is homeomorphic to a
Borel subset of a complete separable metric space. Every Borel subset of a Borel
space is analytic [2].

We denote the set of all probability measures on Ω by P(Ω). If Ω is a Borel
space and P is a probability measure on (Ω,B(Ω)) we define BΩ(P ) the comple-
tion of B(Ω) under P . The universal σ-algebra UΩ is defined as the intersection
of {BΩ(P ), P ∈ P(Ω)}.

Proposition 1. [2] Every analytic subset of a Borel space is universally mea-
surable.

Measurability. Using the canonical representation of a Markov process, we can
choose Ω as DX [0,∞) the set of right continuous functions with left limits with
values in X . DX [0,∞) is a Borel space [4].

Theorem 2. Let E ∈ B(X) be a given Borel set. Then ReachT (E) and
Reach∞(E) are universally measurable sets in Ω.

The proof of theorem 2 is based only on two properties of the Markov process
in cause: (i) the process is measurable; (ii) its probability space is Borel space.
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4.3 Upper Bounds

Let pt(x, B) = Px(xt ∈ B) = Pt1B(x), t > 0, x ∈ X , B ∈ B(X) the transition
function associated to the given Markov process.

Assumption 1. All the measures pt(x, ·) are absolutely continuous with respect
to a σ-finite measure m on (X,B(X)).

We denote the Radon-Nycodim derivative of pt(x, ·) by ρt(x, ·), i.e. ρt(x, y) =
pt(x, dy)/m(dy). This can be chosen to be measurable in x, y and to satisfy∫

X
ρs(x, y)m(dy)ρt(y, z) = ρt+s(x, z).

A σ-finite measure m on (X,B(X)) is called reference measure if m(B) = 0 if
and only if pt(x, B) = 0 for all t and x. Throughout this paper we suppose that
m, in the absolutely continuity assumption, is a reference measure.
We define the Green kernel as u(x, y) =

∫∞
0 ρt(x, y)dt.

Assumption 2. i) y → u(x, y)−1 is finite continuous, for y ∈ X; ii) u(x, y) =
+∞ if and only if x = y.

For a target set E we define a random variable γE <∞ (M is transient), called
the last exit time from E as follows:

γE(ω) =
{

sup{t > 0|xt(ω) ∈ E} if ω ∈ Reach∞(E)
0 if ω ∈ Ω\Reach∞(E)

Then, the distribution of the last exit position xγE− is given by

LE(x, A) = Px(γE > 0; αγE− ∈ A), x ∈ X , A ∈ B(X).

Theorem 3. Suppose that M satisfies the Assumptions 1 and 2. Let x0 ∈ X be
initial state. For any closed set E of X we have

Px0(TE < ∞) ≤ CapK(E) (5)

where CapK is the capacity1 defined, using (1), w.r.t. the Martin kernel K

K(x, y) =
u(x, y)
u(x0, y)

.

5 Stochastic Bisimulation

Let (X,B(X)) and (Y,B(Y )) be Lusin spaces2 and let R ⊂ X × Y be a relation
such that Π1(R) = X and Π2(R) = Y . We define the equivalence relation on X
that is induced by the relationR ⊂ X×Y , as the transitive closure of {(x, x′)|∃y
s.t. (x, y) ∈ R and (x′, y) ∈ R}. Analogously, the induced (by R) equivalence
1 This capacity is called Martin capacity.
2 The equivalence relation introduced in this section can be defined in a more general

setting of the analytic spaces.
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relation on Y is defined. We write X/R and Y/R for the sets of equivalence classes
of X and Y induced by R. We denote the equivalence class of x ∈ X by [x]. We
define now the notion of measurable relation. Let B∗(X) = B(X) ∩ {A ⊂ X | if
x ∈ A and [x] = [x′] then x′ ∈ A} be the collection of all Borel sets in which any
equivalence class of X is either totally contained or totally not contained. It can
be checked that B∗(X) is a σ-algebra. Let πX : X → X/R be the mapping that
maps each x ∈ X to its equivalence class and let

B(X/R) = {A ⊂ X/R|π−1
X (A) ∈ B∗(X)}.

Then (X/R,B(X/R)), which is a measurable space, is called the quotient space
of X w.r.t. R. The quotient space of Y w.r.t. R is defined in a similar way. We
define a bijective mapping ψ : X/R → Y/R as ψ([x]) = [y] if (x, y) ∈ R for
some x ∈ [x] and some y ∈ [y]. We say that the relation R is measurable if X
and Y if for all A ∈ B(X/R) we have ψ(A) ∈ B(Y/R) and vice versa, i.e. ψ is
a homeomorphism. Then the real measurable functions defined on X/R can be
identified with those defined on Y/R through the homeomorphism ψ. We can

write Bb(X/R)
ψ∼= Bb(Y/R). Moreover, these functions can be thought of as real

functions defined on X or Y measurable w.r.t. B∗(X) or B∗(Y ).
In the following we introduce a new concept of equivalence between two ca-

pacities w.r.t. a measurable relation defined on the product of their underlying
spaces.

Definition 1. Suppose we have the capacities cX and cY on the Lusin spaces
(X,B(X)) and (Y,B(Y )) respectively and a measurable relation R ⊂ X × Y .
The capacities cX and cY are called equivalent w.r.t. R if they define the same
capacity on the quotient space of X and Y , i.e. if we have cX(π−1

X (A)) =
cY (π−1

Y [ψ(A)]) for all A ∈ B(X/R).

Suppose we have two Borel right Markov processes M and W with the state
spaces X and Y . The equivalence between capacities will be employed in defining
a new ‘equivalence’ between Markov processes, as follows.

Definition 2. A measurable relation R ⊂ X × Y is a bisimulation between M
and W if their associated capacities CapM and CapW are equivalent w.r.t. R.

It is known that for symmetric processes (equal with their time reversed pro-
cesses) defined on the same state space, the equality of their capacities implies
that they are time changes of one another [17].

We can define now a pseudometric w.r.t. a measurable relation R ⊂ X × Y
between the processes M and W as follows:

dR(M, W ) = sup
f∈B∗b(X)

|
∫

fdCapM −
∫

f ◦ ψdCapW |

where B∗b(X) is the set of bounded real B∗(X)-measurable functions on X .
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Proposition 2. A measurable relation R ⊂ X×Y is a bisimulation between M
and W if and only if dR(M, W ) = 0.

In the classical theory of stochastic processes, one process is a modification of
another iff their transition probabilities differ on set of times of measure zero.

Proposition 3. A Borel right Markov process is bisimilar with any of its mod-
ifications.

We can refine further this result by considering another way to define equiva-
lence between stochastic processes. Two Markov processes are equivalent if they
possess a common exceptional set (a set with zero capacity) outside which their
transition functions coincide. This constitues now a classical concept in the the-
ory of Markov processes [4].

Proposition 4. Two equivalent Markov processes are bisimilar.

The way to define bisimulation between two Markov processes is, in fact, a
new approach to define coarser versions of the concept of equivalence between
stochastic processes. In this approach, two processes are bisimilar (weak equiva-
lent) if one can define an equivalence relation on the product of their state spaces
such that the quotient processes have associated equal capacities (i.e. this weak
equivalence preserves the probability to ‘reach’ certain state spaces over infinite
horizon time).

Proposition 5. R ⊂ X×Y is a bisimulation relation between M and W if and
only if the probabilities of reachable events (3) associated to “saturated” (w.r.t.
R) Borel sets are equal, i.e. PM (TE < ∞) = PW (Tψ(E) < ∞), ∀E ∈ B∗(X).

The proof is a clear consequence of definition of a bisimulation relation between
two Markov processes.

6 Final Remarks

In this paper, we have defined a new model checking strategy and a stochastic
bisimulation concept for a class of Markov processes (Borel right Markov pro-
cesses) based on the notions of capacity and measurable relation. These processes
can be understood as behaviours of fluid stochastic system models comprising
stochastic hybrid systems, FSPNs and process algebra fluid models.

A bisimulation relation is defined as a measurable relation between two pro-
cesses (i.e. a relation on the product of their state spaces, which induces two
homeomorphic quotient measurable spaces) which preserves the capacities (i.e.
the reach set probabilities). A capacity is non-additive set-function used to rep-
resent uncertainty. The mathematical theory of non-additive set-functions got
its first contribution with Gustave Choquet’s “Theory of Capacities” [10] in
1953. Choquet’s interest was applications to potential theory. For continuous
dynamical systems, the classical concept of measure is too rough to provide the
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negligible sets. Two dynamical (deterministic or random) systems that differ
only on a negligible set are considered to be the same. The capacity has higher
discrimination power and a negligible set is defined as a zero capacity set. This
short definition was the solution for more than a century of mathematical re-
search. A bisimulation defined using this interpretation of capacity would be too
strong: bisimilar processes would be equivalent in a classical sense. In this paper,
we have used modern, probabilistic interpretations of capacity as non-linear gen-
eralisations of probabilities. The modern capacity theory has found applications
in decision theory [15, 30], robust Bayesian inference [19], automated reasoning
[16], etc. Capacities have been recently used in computer science, notably in the
context of linear logic and in the study of labelled Markov processes (see, for
example, [14] and the references therein).

Moreover, using the concept of integral associated to a capacity we have in-
troduced a pseudometric between processes. The distance between two processes
is measured in terms of probabilities of the set of trajectories which ever visit
the sets that can be “identified” through the homeomorphism induced by a
measurable relation.

Examples of fluid models can be found in the references on FSPNs and
stochastic hybrid systems. The general approach followed in this paper served
to identify the fundamental principles and to distinguish generally applicable
techniques from ad-hoc methods.

The natural step to be developed further is to employ the extensions of the
continuous stochastic logic for formal specification of performability properties.
The semantics of this logic is fully compatible with the semantic framework we
have proposed in this paper. Then a complete numerical case study could be
developed. The present paper is the (necessary) first step in creating the sound
mathematical foundations of a model checking strategy. In a further paper, we
apply this model checking strategy to a fluid model of TCP/IP in a form of a
stochastic hybrid system.

There are various approaches to the formal specifications and / or model
checking probabilistic properties of systems with continuous state space com-
ponents. The references list some of these approaches, but, of course, the list
could have been continued. However, to the authors’ knowledge, the approach
presented in this paper is new and it does not relate easily with the existing ones.

Acknowledgements. The first author thanks Prof. Holger Hermanns, principal
investigator of the AiSHA project [27].
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Appendix

Proof. of Th.2. Since the process has cadlag property then x : R+×Ω → X is a
measurable function w.r.t. B(R+)×F0 and B(X). Since E ∈ B(X), then clearly
x−1(E) ∈ B(R+) × F0. For T > 0, we set AT (E) = x−1(E) ∩ [0, T ]× Ω. Since
[0, T ]×Ω ∈ B(R+)×F0 then AT (E) ∈ B(R+)×F0. Now, using the theorem 1 we
obtain that ReachT (E) = ProjΩAT (E) is anF0-analytic set. Therefore, because
Ω is a Borel space, this implies (cf. to prop 1) that ReachT (E) is an universally
measurable set. Obviously, Reach∞(E) is, also, an universally measurable set.
Since UΩ the σ−algebra of universally measurable sets is included in F (which
is the completion of F0 w.r.t. all probabilities Pμ, where μ runs in the set P(X).

Proof. of Th.3. To bound from above the probability of ever hitting E, consider
the hitting time TE and the last exit time γE of E, and the distribution

νx0(Λ) = LE(x0, Λ) = Px0(t < γE |αγE− ∈ Λ); Λ ∈ B(X)

The Kai Lai Chung’s [11] result says that LE(ρ, Λ) =
∫

Λ u(x, y)μE(dβ); Λ ∈
B(X), where μE is the equilibrium measure of E is given by

μE(dy) = LE(x, dy)u(x, y)−1 = νx(dy)u(x, y)−1, ∀x ∈ X

in particular, for the initial state x0 ∈ X

μE(dy) = LE(x0, dy)u(x0, y)−1 = νx0(dy)u(x0, y)−1.

It follows that
∫

E K(x, y)νx0(dβy) =
∫

E K(x, y)u(x0, y)μE(dy) =∫
E

u(x, y)μE(dy) = Px(TE < ∞) ≤ 1. Therefore K(νx0 , νx0) ≤ νx0(E)
and thus CapK(E) ≥ [K(νx0/νx0(E))]−1 ≥ νx0(E), which yields the upper
bound on the probability of hitting E.
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Abstract. This paper shows how to construct a Markovian arrival process of sec-
ond order from information on the marginal distribution and on its autocorrela-
tion function. More precisely, closed-form explicit expressions for the MAP(2)
rate matrices are given in terms of the first three marginal moments and one pa-
rameter that characterizes the behavior of the autocorrelation function. Besides
the permissible moment ranges, which were known before, also the necessary and
sufficient bounds for the correlation parameter are computed and shown to de-
pend on a free parameter related to equivalent acyclic PH(2) representations of
the marginal distribution. We identify the choices for the free parameter that max-
imize the correlation range for both negative and positive correlation parameters.

Keywords: Acyclic Markovian arrival processes of second order, inverse char-
acterization, moment and correlation bounds.

1 Introduction

Matrix-analytic methods ([1, 2, 3], also see the journal on Stochastic Models for recent
advances) provide a wide range of efficient algorithms to evaluate diverse queueing
systems. Especially for application studies, it is also important to provide convenient
ways to inversely characterize (correlated) arrival and service processes, which are rep-
resented by the matrices of Markovian arrival processes (MAPs)1. In the wide sense, in-
verse characterization refers to constructing the MAP matrices from observations (e.g.,
data traces) or other information, like performance metrics, of the considered process.
In the narrow sense, which we adopt here, inverse characterization means to find ana-
lytic expressions for the MAP matrices in terms of their marginal distribution and their
autocorrelation behavior – along with bounds for the permissible ranges of the involved
input parameters in order to ensure valid MAP representations. It is clear that both rate
expressions and bounds will depend on the order of the MAPs to be characterized.

Recent years have seen significant advances in the field of inverse characterization
of MAPs both in the wide and narrow sense. Regarding the former case, quite general

1 MAPs can be generalized to processes with batch arrivals, so-called batch Markovian arrival
processes. We will not consider batches in this paper.
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fitting techniques for MAPs of arbitrary (preferably small) orders have been proposed.
Usually, these algorithms are based on some optimization [4, 5], which may be compu-
tationally expensive and/or which may result in models, which differ significantly from
identified key characteristics like the marginal moments. Also, approximately capturing
non-Markovian behavior (e.g., self-similarity) by Markovian models such as MAPs has
received a lot of attention (see [6] for an introduction to the topic).

Exact and inexpensive moment/correlation fitting, as it ensues from an inverse char-
acterization in the narrow sense, has obvious advantages. Especially, explicit closed-
form expressions for the MAP representations are desired, but have only been found for
special cases.

Without correlations, i.e., when phase-type (PH) distributions need to be fitted to
moments, analytical results are now available to map an arbitrary number of moments
to acyclic PH distributions of minimal order [7]. Explicit expressions for the moment
bounds of the first three moments for acyclic PH distributions may be found in [8] for
order 2 and in [9] for arbitrary order n. Including correlations into distributional models
has not yet led to complete inverse characterizations. For correlated matrix-exponential
processes, which are algebraic generalizations of MAPs, a general order-n representa-
tion has been been developed based on the first 2n − 1 marginal moments and 2n− 3
correlation parameters, but lacks the corresponding bounds to decide when this rep-
resentation is valid [10]. In [11], a representation of order n with a single correlation
parameter is proposed that guarantees validity, however, at the expense of reduced flex-
ibility in capturing correlations.

In the Markovian domain, attention has so far focused on correlated MAP represen-
tations of order 2. The inverse problem for general MAP(2)s has already been stud-
ied in [12], but neither the MAP(2) representation nor the related correlation bounds
were given explicitly therein. For an important special case, namely MAP(2)s with the
marginal distribution being a mixture of two exponentials, this was achieved in [13].
Beyond the more compact and closed forms, these results generalize the applicabil-
ity as compared with analytical techniques of moment/correlation fitting for Markov-
modulated Poisson processes (MMPPs) of order 2 [14, 15]. However, both the MMPP
structure and the mixtures of exponentials as marginals limited the mapping to MAP(2)s
with squared coefficients of variations greater than (or equal to) one.

In this paper, we finally provide a complete and explicit characterization of acyclic
MAP(2)s with hyperexponential and hypoexponential marginals. For both cases, ded-
icated closed-form representations as well as correlation bounds are given, where a
new approach to the symbolic solution allows to yet extend the known results even for
hyperexponential MAP(2)s. The provided MAP(2) representation and its bounds fully
exploit the capabilities of these processes to capture correlations. Thus, a very simple
and easy-to-implement correlated traffic/service model is at hand, which may not only
be used efficiently in matrix-analytic methods, but also in discrete-event simulation.
Despite its limitations due to the minimal order, it is ideally suited to study the impact
of short- and long-term correlation on systems, the importance of which has already
been highlighted in [16, 17].

The paper is organized as follows: In Section 2, we first review the existing explicit
representation for MAP(2)s with mixtures of exponentials as their marginal, which is
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extended to general acyclic MAP(2)s – both with hyper- and hypoexponential marginals
– in Section 4. In between, Section 3 outlines how the latter representation and the nec-
essary and sufficient bounds were derived. Section 5 translates the inverse characteri-
zation of MAP(2)s into a practical fitting algorithm that fully exploits the moment and
correlation ranges of MAP(2)s. Section 6 concludes the paper.

2 Second-Order Markovian Arrival Processes with Two-Branch
Marginal Distributions

In general, Markovian Arrival Processes (MAPs) are ergodic Continuous-Time Markov
Chains (CTMCs), in which transitions are distinguished by whether they cause an event
or not. The rates are grouped into two matrices D1 and D0, such that

D1 is a nonnegative (mMAP ×mMAP)-rate matrix, where mMAP is the order of the MAP.
D0 is a matrix of the same dimension as D1, with negative diagonal and nonnegative

off-diagonal elements.

The matrix QMAP = D0 + D1 is the irreducible infinitesimal generator of the CTMC,
where D0 governs transitions that do not correspond to events, while D1 governs
those transitions that do correspond to events. Special cases of MAPs include Markov-
modulated Poisson processes (MMPPs) and PH-type renewal processes.

2.1 Analytic Construction

In this paper, we focus on MAPs of order 2, i.e., mMAP = 2, and even more specifically in
this section, on MAP(2)s, whose marginal distribution is a mixture of two exponentials.
For such MAP(2)s, a closed-form representation for the two-dimensional matrices D0
and D1 was given explicitly in terms of the first three moments and a correlation param-
eter [13]. The solution of this inverse problem leads to the CTMC in Figure 1 (left-hand
side), where each transition causes an event and the corresponding rates λij (i, j = 1, 2)
thus appear matrix D1. Since associated events and interevent times between them are
considered for MAPs (and not only state probabilities), it is important to preserve event-
related self-loops in the CTMC. For MAP(2)s, whose marginal distribution is a mixture
of two exponentials (see right-hand side of Figure 1 with an additional absorbing state
besides the two now transient states of the CTMC), D0 will be a diagonal matrix. Thus,
D0 and D1 take the form

D0 =
[
−λ1 0
0 −λ2

]
, D1 =

[
λ11 λ12
λ21 λ22

]
,

where λi = λi1 + λi2 for i = 1, 2. Rates related to the leftmost state in Figure 1 appear
in row 1 of matrices D0 and D1.

Before we give the functions, which explicitly compute the rate parameters λij from
the first three moments of the marginal distribution and a correlation parameter, we in-
troduce some auxiliary notation and explain the meaning of the correlation parameter.

Let us denote the four input parameters by ri = E[Xi]
i! , i = 1, 2, 3, the first three (re-

duced) moments of the marginal distribution, and γ, the correlation parameter. Random
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11λ λ22

21λ
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1

Fig. 1. Markov chain for the MAP(2), where each transition causes an event (left), and its hyper-
exponential two-branch marginal PH distribution (right): λi = λi1 + λi2 for i = 1, 2

variable X (also used with a subscript, as in Xk, to indicate the interevent times in a
sequence) stands for a generic interevent time of the MAP point process. For MAPs of
second order, the lag-k covariances of interevent times can be characterized by [12]

cov[X0, Xk] = E[(X0 − r1)(Xk − r1)] = γk(r2 − r1
2) k ∈ IN . (1)

Here, X0 and Xk denote two interevent times k lags apart. Therefore, the decay of the
correlation structure of a MAP(2) is determined by the parameter γ (where the first
two marginal moments serve to scale the correlation function). The correlation function
decays geometrically in absolute terms.

Now, with the auxiliary variables

h2 ≡
r2 − r1

2

r1
2 h3 ≡

r3r1 − r2
2

r1
4 (2)

b ≡ h3 + h2
2 − h2 c ≡

√
b2 + 4h2

3 , (3)

the MAP(2) matrices D0 and D1 are explicitly constructed as

D0 =
1

2r1h3

−(2h2 + b − c) 0
0 −(2h2 + b + c) (4)

D1 =
1

4r1h3

(2h2 + b − c)(1 − b
c

+ γ(1 + b
c
)) (2h2 + b − c)(1 + b

c
)(1 − γ)

(2h2 + b + c)(1 − b
c
)(1 − γ) (2h2 + b + c)(1 + b

c
+ γ(1 − b

c
))

(5)

where, of course, λ1 = 2h2+b−c
2r1h3

for instance.

2.2 Performance Measures

Generally for arbitrary MAPs, a variety of performance measures can be computed
from D0 and D1. Here, we specialize the general formulas to verify the above MAP(2)
representation. The stationary probability vector of the CTMC generator is defined by
πMAPQMAP = 0 with normalization πMAPe = 1, where 0 and e denote the row/column
vectors of zeros or ones of the appropriate dimension. In two dimensions with repre-
sentation (4) and (5), we obtain

πMAP2 =
1
2c

[
c + 2h2

2 − b c− 2h2
2 + b

]
. (6)
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Besides the general-time stationary distribution πMAP, we also consider the event-
time stationary distribution, i.e., the stationary probability vector pMAP of the discrete-
time Markov chain (DTMC) embedded at the event instants. Specializing the general
formula for the MAP(2) representation yields:

pMAP =
πMAPD1

πMAPD1e
=

1
2c

[
c− b c + b

]
=
[
p1 1− p1

]
= pMAP2 . (7)

Note that the tuple (pMAP,D0) specifies the marginal PH distribution of a MAP. The
right-hand side of Figure 1 depicts this distribution in our special case with the two-
dimensional initial probability vector pMAP2.

Of course, with representation (4) and (5), we should be able to reproduce the margi-
nal moments and the correlation structure as specified by the input parameters. And
indeed, the arrival rate, the squared coefficient of variation (of the PH-type marginal
distribution) and the autocorrelation function of the MAP reduce to

λMAP = πMAPD1e =
1
r1

(8)

c2
MAP =

E[X2]
(E[X])2

− 1 = 2λMAPπMAP(−D0)−1e − 1 = 2h2 + 1 =
2r2

r12 − 1 (9)

corr[X0, Xk] =
E[(X0 − E[X])(Xk − E[X])]

Var[X]

=
λMAPπMAP((−D0)−1D1)k(−D0)−1e − 1

2λMAPπMAP(−D0)−1e − 1

= γk h2

2h2 + 1
= γk r2 − r1

2

2r2 − r12 . (10)

As opposed to the covariances in (1), we gave here the lag-k coefficients of correlation
(k > 0) [18].

2.3 Limitations

While the usefulness of the MAP(2) with a mixture of two exponentials as its marginal
has been demonstrated in [5], it is of course subject to a number of limitations. These
stem primarily from the low order of the MAP(2), but also from the additional constraint
that the marginal distribution is a mixture of two exponentials.

For second-order PH distributions, moment bounds for the first three (reduced) mo-
ments have been established in [8] and remain invariant when these distributions are
embedded into MAP(2)s as marginals. Table 1 summarizes the moment bounds, which
differ for the hypo- (c2

MAP2 < 1 or h2 < 0) and hyperexponential (c2
MAP2 > 1 or h2 > 0)

setting. For simplicity, these bounds are encoded in terms of the auxiliary variables h2
and h3. Variables h2 and h3 are related to Hankel determinants and their values can be
interpreted as the (normalized) additional information carried by the respective moment
that cannot be implied from the lower moments [19].

The case h2 = 0 (i.e., c2
MAP2 = 1) has been excluded, because then a PH(2) represen-

tation must be stochastically equivalent to an exponential distribution (and a MAP(2)
with such a marginal distribution cannot capture any correlations [12]).
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Table 1. Bounds for the first three moments of PH(2) distributions in terms of r1, h2, h3

r1 > 0 hypoexponential hyperexponential
h2 − 1

4 ≤ h2 < 0 0 < h2

h3 h2(1 − h2 − 2
√−h2) ≤ h3 ≤ −h2

2 0 < h3

Since mixtures of exponentials will always result in distributions with a squared
coefficient of variation greater than 1, the marginal distribution of the MAP(2) repre-
sentation (4) and (5) implies h2, h3 > 0, thus excluding the hypoexponential setting.
As we will see in Section 4, the diagonal structure of D0, as it ensues from a mixture
of two exponentials, additionally restricts the capabilities by which correlations can be
introduced into a MAP(2) with hyperexponential marginals.

In [13], the bounds on the correlation parameter γ for representations (4) and (5)
were shown to depend on the sign of parameter b:

if b > 0 : if b = 0 : if b < 0 :
γ ≥ γmin = b−c

b+c γ ≥ γmin = −1 γ ≥ γmin = b+c
b−c

(11)

where 1 > γ always holds. Furthermore, the lower bound γmin is negative in all cases,
but never below−1.

From the moment and correlation bounds for MAP(2) representation (4) and (5), we
see that such hyperexponential MAPs can only have completely nonnegative correlation
structures or alternating correlation structures starting with a negative first coefficient
of correlation (see (10) or (1)). In contrast, MAP(2)s with hypoexponential marginals
might also exhibit a completely negative correlation structure or alternating correlation
structures starting with a positive first coefficient of correlation. This paper will provide
an acyclic MAP(2) representation that fully exploits the possibilities to jointly capture
marginal moments and correlations for two-dimensional MAPs.

3 Outline of Derivations for Acyclic MAP(2)s

The inverse problem for general MAP(2)s has been studied in [12]. While the permis-
sibility of the first three moments can be confirmed by means of Table 1, the general
bounds for the correlation parameter γ could only be obtained numerically in [12]. The
approach followed in this reference exploited a moment/correlation-fitting canonical
form of second-order matrix-exponential processes, which was converted to MAP(2)
representations. Success and failure of this algorithmic conversion – dependent on the
moment/correlation input parameters – allowed to locate bounds of the correlation pa-
rameter.

In [5], a rather direct non-linear optimization approach for fitting MAPs of arbitrary
order was proposed. However, it turns out that the equations involved in the optimiza-
tion can be manipulated to yield a closed-form representation of acyclic MAP(2)s as
well as an explicit formulation of the correlation bounds. In this section, we will not
give the full and cumbersome derivation details, but rather outline the steps from the
initial set of equations to the final results presented in Section 4.
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Fig. 2. The canonical representation of second-order PH distributions (left) and its transformation
(right)

The left-hand side of Figure 2 shows a commonly used canonical form of acyclic
PH distributions of second order. For order 2, the class of acyclic PH distributions
is equivalent to that of cyclic PH distributions (which may contain loops). Thus, all
PH(2) distributions – be they hyper- or hypoexponential – may be represented in the
given acyclic canonical form. However, when using this form as a basis to construct
MAP(2)s, no correlation may be introduced into these MAPs. Obviously, with only
a single transition to generate events (namely, that from the central to the absorbing
state), this canonical form is not flexible enough to accommodate correlations. How-
ever, the desired flexibility (with two event-generating transitions) may be achieved
by transforming the canonical form into the representation on the right-hand side of
Figure 2. This transformation for better correlation fitting was already proposed in
[5] and – in our case – can be performed by solving two linear equations symbol-
ically. In PH notation, the transformed distribution is written as

pMAP2 =
[
p1 1− p1

]
=

1
λ2 − aλ1

[
λ2p

′
1 λ2(1 − p′1)− aλ1

]
, (12)

D0 =
[
−λ1 λ1(1 − a)
0 −λ2

]
, (13)

where parameter a may be chosen arbitrarily in [0, 1]. Note that a = 0 yields the original
canonical form and that, in the canonical form, the rate parameters are usually chosen
such that λ1 ≤ λ2.

The parameters p′1, λ1 and λ2 can be determined from the first three moments r1, r2,
r2, or equivalently from r1, h2, h3. Corresponding analytic three-moment fitting tech-
niques are found in [8, 9].

In going from a PH(2) distribution to a MAP(2) with a prescribed correlation param-
eter γ (i.e., with a correlation structure corr[X0, Xk] = γk h2

2h2+1 ), we have to find a
suitable matrix D1 with nonnegative entries. Let

D1 =
[
x11 x12
x21 x22

]
.

The four unknowns xij can be determined from the following equations:

(D0 + D1) e = e (14)

pMAP2 (−D0)
−1 D1 = pMAP2 (15)

λMAP2πMAP2(−D0)−1D1(−D0)−1e− 1
2λMAP2πMAP2(−D0)−1e− 1

= γ
h2

2h2 + 1
(16)
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Equation (14), which contributes two scalar equations, ensures that the CTMC gener-
ator of the constructed MAP(2) has zero row sums. Equation (15) guarantees that D1
is built in such a way that the event-stationary distribution of the MAP(2), i.e., the sta-
tionary distribution of the DTMC embedded at the event instants, equals pMAP2 obtained
from (12) via moment matching. Only one of the two linearly dependent equations of
(15) will be considered. Finally, scalar equation (16) sets the result of the general for-
mula for the first coefficient of correlation equal to the value specified in terms of the
given correlation parameter γ (also see (10) for k = 1). Using (9) and the relationship

πMAP2 = pMAP2(−D0)−1

r1
, equation (16) may also be simplified to

pMAP2(−D0)−2D1(−D0)−1e− 1 = γh2r1
2 . (17)

In total, we thus have four equations, which are linear in the four unknowns xij (i, j =
1, 2).
Overall, the analytic MAP fitting now comprises the following steps:

– Perform a symbolic three-moment fitting to the PH(2) canonical form (lhs of
Figure 2) in order to obtain the parameters p′1, λ1 and λ2 as functions of r1, h2
and h3.

– Using representation (12) and (13) for the marginal distribution, solve equations
(14), (15) and (17) to obtain the entries of matrix D1.

Explicit closed-form bounds for the permissible range of correlation parameter γ are
found by checking the requirements xij ≥ 0 (i, j = 1, 2) for a MAP(2) proper. These
bounds are then sufficient and necessary, but will depend on the specific choice of the
free parameter a in representation (13). In other words, the amount of correlation that
can be introduced into an acyclic MAP(2) generally depends on the specific represen-
tation selected for its marginal distribution.

4 The Characterization of Acyclic MAP(2)s

Following the outline in Section 3, a compact MAP(2) representation based on the first
three moments, the correlation parameter and the free parameter a may be derived. We
spare the reader the details of these algebraic manipulations and directly provide the
explicit closed-form expressions for the matrices D0 and D1. Regarding the correlation
bounds, we identify the choices for the free parameter a that maximize the upper bound
for γ or minimize the lower bound, respectively. The coordinates for these extremal
values turn out to be surprisingly simple so that very efficient moment/correlation-fitting
rules can be designed for MAP(2)s.

Both these rules and the actual representations differ for MAP(2)s with hyperexpo-
nential and hypoexponential marginal distributions. We first treat the hyperexponential
setting, where the MAP(2) discussed in Section 2 is identified as a special case for
a = 1. In fact, for both cases, we use the notation introduced in Section 2, namely the
normalized moment parameters h2 and h3 and the auxiliary variables b and c (see (2)
and (3), respectively).
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4.1 MAP(2)s with Hyperexponential Marginals

MAPs of order 2 may be constructed from the first three moments of the marginal
distribution (e.g., given by r1, r2, r3 or equivalently by r1, h2, h3) and the correlation
parameter γ. For the hyperexponential case (i.e., h2, h3 > 0), the derivations outlined
in Section 3 lead to the following acyclic MAP(2) representation:

D0 =
1

2r1h3

[
−(2h2 + b− c) +(2h2 + b− c)(1− a)

0 −(2h2 + b + c)

]
(18)

D1 =
1

2r1h3

[
(2h2 + b − c)d1 (2h2 + b− c)(a− d1)
(2h2 + b + c)d2 (2h2 + b + c)(1− d2)

]
(19)

d1 =
(1 − a)(2h2γ + b− c) + γ(b + c)− (b − c)

(1− a)(2h2 + b− c) + 2c
(20)

d2 =
(γ − 1)(b − c)

(1 − a)(2h2 + b− c) + 2c
(21)

First of all, we recognize the structure of the transformed canonical form (13) in
(18) with free parameter a ∈ [0, 1]. In fact, for a = 1, representation (18)/19) reduces
to the one presented in Section 2 for MAP(2)s with a mixture of two exponentials as
their marginal distribution. The definition of the rate parameters λ1 and λ2 remained
invariant. Both matrices D0 and D1 are again scaled by the mean r1 (which leaves the
normalized moments unchanged). The parameter h3 in the denominator indicates that
the lower bound h3 = 0 is excluded in the parameter range.

For a = 1, the permissible range of the correlation parameter was given in Section
2. For a = 0 (i.e., D0 takes the canonical form), one can easily verify that γ must be
zero for the entries of D1 to be nonnegative. Thus, the permissible correlation range
depends on parameter a. Does the choice of a = 1 maximize the range of γ both in the
positive and negative domain? As indicated in Figure 3 (for specific choices of h2 and
h3), this is only true, if auxiliary parameter b = h3 +h2

2−h2 is greater than or equal to
0. In the complementary case b < 0 (left-hand side of Figure 3), an additional (linear)
lower γ-bound becomes relevant causing the absolute minimum of γ to be assumed for
a value a < 1.
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Fig. 3. Nature of bounds for maximal and minimal values of γ for hyperexponential MAP(2)s for
b < 0 (left) and b ≥ 0 (right)
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Fig. 4. Visualizing the moment pairs (h2, h3), for which γ assumes low values (by dark shading)

Let us first focus on the values of a, for which γ takes extreme values. In Section
5, we present an analytic fitting algorithm that exhausts the capabilities of MAP(2)s to
match r1, h2, h3 and γ exactly.

For any combination of hyperexponential moment values h2, h3 > 0 (and r1 > 0),
the upper (positive) bound of γ is maximized at a = 1. Then γ < γmax = 1.

In order to minimize the lower (negative) bound of γ, we have to distinguish two
cases:

– If b ≥ 0 (i.e., h3 ≥ h2 − h2
2): The lower (negative) bound of γ is also minimized

at a = 1. Then γ ≥ γmin = b−c
b+c .

– If b < 0 (i.e., h3 < h2 − h2
2): The lower (negative) bound of γ is minimized at

a = h3+h2
2

h2
. Then γ ≥ γmin = −h3+h2

2

h2
.

For completeness sake, we also give the symbolic definitions of the a-dependent γ-
bounds. The proofs of these linear and hyperbolic functions (called f(a), h(a) and j(a)
in Figure 3) are found in [20].

fhyper(a) =
a
[
2(h3 + h2

2)− a(2h2 + b− c)
]

(2h2 + b + c)− 2h2a
(22)

hhyper(a) =
a(b − c)

(2h2 + b + c)− 2h2a
(23)

jhyper(a) =
2(h3 + h2

2)− a(2h2 + b− c)
b− c

(24)

Finally, Figure 4 shows in the permissible moment ranges for h2 and h3, where γ
assumes its lower values as depicted by darker shades. Absolute minima (i.e., γ = −1)
are reached along the black arc in the hyperexponential domain (h2, h3 > 0).

4.2 MAP(2)s with Hypoexponential Marginals

The situation for MAP(2)s with hypoexponential marginals is slightly more involved.
Recall that here h2, h3 < 0 (see Table 1 for the precise moment bounds).



118 A. Heindl, G. Horváth, and K. Gross
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Fig. 5. Illustration of bounds for maximal and minimal values of γ for hypoexponential MAP(2)s

With respect to matrices D0 and D1 expressed in terms of the first three moments
and the correlation parameter, the representation given in (18) through (21) for the hy-
perexponential setting only needs to be minutely modified: Simply change the sign
before all occurrences of parameter c!

Regarding the bounds of correlation parameter γ, Figure 5 again illustrates represen-
tative dependencies of the permissible γ-ranges on parameter a (for specific values of
h2 and h3). Several observations can be generalized:

– In the hypoexponential setting, the area of permissible tuples (a, γ) is always con-
fined by the three (intersecting) boundary functions fhypo(a), hhypo(a) and jhypo(a)
defined at the end of this subsection.

– There exist a unique maximum and a unique minimum for γ at usually different
locations of a.

– In order to capture non-zero correlations, parameter a can no longer be chosen

arbitrarily in [0, 1], but is restricted to the interval [0, (h3+h2
2)(2h2+b−c)
2h2h3

. In the end
points of this interval, boundary functions intersect in their zero values (enforcing
γ = 0).

– We observe the following trends: With decreasing h2 (and h3 fixed) or increasing
h3 (and h2 fixed), the permissible range for parameter a decreases. At the same
time, maximum and minimum of γ draw nearer to the zero.

– Finally, and not shown in Figure 5, the boundary equations additionally admit a
singular solution at a = 1, where γ = 1. However, this corresponds to a reducible
MAP(2) with diagonal matrices D0 and D1. Therefore, we exclude this case of two
independent Poisson processes.

As in the hyperexponential setting, let us also provide the location of the maximal and
minimal values of γ for the hypoexponential setting (h2, h3 < 0):

– The upper (positive) bound of γ is maximized at a = (2h2+b−c)(h2+
√−h3)

2h2
√−h3

. Then

γ ≤ γmax = − (h2+
√−h3)2

h2
.

– The lower (negative) bound of γ is minimized at a = h3+h2
2

h2
. Then γ ≥ γmin =

−h3+h2
2

h2
.
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Fig. 6. Visualizing the moment pairs (h2, h3), for which γ assumes low negative (left) and large
positive (right) values (by dark shading, respectively)

These expressions are easily obtained by discussion of the a-dependent γ-bounds be-
low, which are formally identical to the corresponding ones in the hyperexponential case
(see (22), (23), (24)) except for the changed signs before all occurrences of parameter c:

fhypo(a) =
a
[
2(h3 + h2

2)− a(2h2 + b + c)
]

(2h2 + b− c)− 2h2a

hhypo(a) =
a(b + c)

(2h2 + b− c)− 2h2a

jhypo(a) =
2(h3 + h2

2)− a(2h2 + b + c)
b + c

Figure 6 visualizes – in particular for the hypoexponential domain – when γ takes lower
negative (left) and larger positive values (right) in the permissible moment ranges. The
darker the shading, the more extremal the minima and maxima, respectively. For exam-
ple, in the hypoexponential domain, the largest flexibility in γ is achieved for h2 near 0
and h3 at its lower bound.

5 Moment and Correlation Mapping to MAP(2)s

In this section, we compile different results of the previous sections for an algorithm that
decides whether given first three moments of a marginal distribution and a correlation
parameter can be mapped to a valid acyclic MAP(2). If yes, the algorithm provides the
corresponding two-dimensional matrices D0 and D1.

Let us assume that, besides the first three reduced moments ri = E[Xi]
i! , i = 1, 2, 3,

we only know the lag-1 covariance cov[X0, X1] = E[(X0− r1)(X1− r1)] of the wide-
sense stationary correlated process – either as sample values from measurements or as
output from other algorithms. We explicitly state that knowledge of lag-k covariances
for larger values of k or of the decay behavior of the correlation structure may affect
how the correlation parameter γ is determined (as e.g., outlined in [13]). Note again
that due to (1),
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MAP(2)s with hyperexponential marginals can only capture either nonnegative au-
tocorrelation functions or autocorrelations with alternating signs starting with a
negative lag-1 covariance (or lag-1 correlation coefficient).

Inversely, MAP(2)s with hypoexponential marginals can only capture either nonpos-
itive autocorrelation functions or autocorrelations with alternating signs starting
with a positive lag-1 covariance (or lag-1 correlation coefficient).

By matching only the lag-1 covariance, we ignore the autocorrelation behavior of the
considered process beyond lag 1, which may result in significant deviations in related
parameters.

The Moment/Correlation Fitting Algorithm for MAP(2)s

1. Input parameters: r1, r2, r3, cov[X0, X1]
2. Quit, if r1 ≤ 0.
3. Compute h2, h3 via (2).
4. Quit, if h2 = 0: No correlated MAP(2) with c2

MAP = 1 can be fitted. All MAP(2)s
with h2 = 0 are stochastically equivalent to Poisson processes, for which also
γ = 0 and h3 = 0 hold.

5. Compute γ from γ = cov[X0,X1]
r2−r12 (see (1) for k = 1).

6. Compute auxiliary variables b and c via (3).
7. Check moment bounds for h2, h3 according to Table 1:

if h2 > 0 and h3 > 0: Goto step 8 (Hyperexponential case)
else if − 1

4 ≤ h2 < 0 and h2(1 − h2 − 2
√
−h2) ≤ h3 ≤ −h2

2: Goto step 9
(Hypoexponential case)

else: Quit (moments out of bounds).
8. Hyperexponential case:

if b ≥ 0:
if b−c

b+c ≤ γ < 1: Choose MAP(2) representation (4)/(5)
else: Quit (correlation parameter out of bounds).

else if b < 0:
if 0 ≤ γ < 1: Choose MAP(2) representation (4)/(5)
else if −h3+h2

2

h2
≤ γ < 0: Choose MAP(2) representation (18)/(19) with

a = h3+h2
2

h2
else: Quit (correlation parameter out of bounds).

9. Hypoexponential case:
if γ ≥ 0:

if γ ≤ − (h2+
√−h3)2

h2
: Choose MAP(2) representation (18)/(19) with

changed signs before all occurrences of parameter c and with a =
(2h2+b−c)(h2+

√−h3)
2h2

√−h3

else: Quit (correlation parameter out of bounds).
else if γ < 0:

if γ ≥ −h3+h2
2

h2
: Choose MAP(2) representation (18)/(19) with changed

signs before all occurrences of parameter c and with a = h3+h2
2

h2
else: Quit (correlation parameter out of bounds).
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Either the algorithm is aborted with an out-of-bounds message or the appropriate
MAP(2) representation is chosen that matches r1, r2, r3 and cov[X0, X1] exactly. In
the former case, one might want to step back in the algorithm, set the out-of-bounds
parameter to the closest permissible boundary value and continue. The tradeoff in such
an approximate moment/correlation fitting will be studied in future work.

6 Concluding Remarks

Inverse characterizations of MAPs are important to reflect commonly used traffic met-
rics in the matrix notation of matrix-analytic methods. In this paper, we showed how
to construct analytically an acyclic MAP of order 2 from the first three marginal
moments and a correlation parameter. These parameters were mapped exactly in three
stages: first, the moments were fitted into a canonical PH representation. Second, this
canonical form was transformed into an equivalent one, which permitted to introduce
correlations in a process with this marginal distribution. Third, equations defining the
MAP rates associated with events were solved symbolically.

Following this approach, an existing MAP(2) representation based on a mixture of
two exponentials as the marginal representation could be extended. The enhanced hy-
perexponential representation now allows to capture stronger alternating correlations.
Even more important, a symbolic inverse characterization for MAP(2)s with hypoex-
ponential marginals is now available for the first time. Furthermore, the behavior of the
correlation range and its dependence on the representation of the marginal acyclic PH(2)
distribution are now understood. Exploiting the extrema of the correlation parameter, a
moment/correlation fitting algorithm was given that fully exploits the capabilities of
MAP(2)s to capture correlations dependent on the marginal moments. The relationship
between acyclic and cyclic MAP(2)s yet has to be proven, but these classes are widely
conjectured to be identical.

The provided characterization of second-order MAPs may be helpful on many
occasions: It may be used as a correlated input model both in analysis and discrete-
event simulation. As a building block for arrival or service significantly alleviate the
state-space explosion problem. Its acyclic Markovian structure enables very efficient
(correlated) random variate generation. Of course, the rather restrictive moment and
correlation bounds, especially in the hypoexponential domain, limit the applicability of
the MAP(2) traffic model in real-data fitting. But in the context of sensitivity analysis,
the depoupling of moment and correlation fitting may prove invaluable: Thus, for
instance, it can be qualitatively and quantitatively studied how systems react to cor-
related input as opposed to uncorrelated input (with invariant marginal distributions).
Also, modifying the exact moment/correlation fitting algorithm of Section 5 into an
approximate one will further widen the applicability of such a MAP(2) model.
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Abstract. We present a timed extension of the classical finite state ma-
chines model where time is introduced in two ways. On the one hand, time-
outs can be specified, that is, we can express that if an input action is not
received before a fix amount of time then the machine will change its state.
On the other hand, we can associate time with the performance of actions.
In this case, time will be given by means of random variables. Intuitively,
we will not have conditions such as “the action a takes t time units to be
performed” but conditions such as “the action a will be completed before
time t with probability p.” In addition to introducing the new language, we
present several conformance relations to relate implementations and spec-
ifications that are defined in terms of our new notion of stochastic finite
state machine.

1 Introduction

Formal analysis techniques rely on the idea of constructing a formal model that
represents the critical aspects of the system under study. These models, simpler
and more handleable than the original system, allow to perform a systematic
analysis that would be harder, or ever impossible, in the system. For example,
the model can be formally manipulated to find out whether a given property
holds (for instance, by using model checking [CGP00]). The model can be also
used to define the specification of a system being constructed. Then, we can
check its correctness with respect to the specification by comparing its empirical
behavior with that of the model (for instance, by using formal testing tech-
niques [BU91, LY96]). In order to use a formal technique, we need that the
systems under study can be expressed in terms of a formal language. These
languages became more sophisticated as they provided more expressivity capa-
bilities. The first languages represented only the functional behavior of systems
(i.e., what must or must not be done). Then, a new generation of languages al-
lowed to explicitly represent non-functional aspects of systems (the probability
of performing a certain task [GSS95, CDSY99, SV03, CCV+03, Núñ03, LNR06],
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the time consumed by the system while performing tasks, being it either given by
fix amounts of time [RR88, NS91, HR95] or defined in probabilistic/stochastic
terms [Hil96, BG98, Her98, LN01, BG02], the dependence of the system on the
available resources [BL97, NR01, CdAHS03], etc).

A suitable representation of the temporal behavior is critical for constructing
useful models of real-time systems. A language to represent these systems should
enable the definition of temporal conditions that may direct the system behav-
ior, as well as the time consumed by the execution of tasks. Moreover, global
temporal requirements should be easily extracted from the requirements of each
activity in the system. We can split the time consumed during the execution of
a system into the following categories:

(a) The system consumes time while it performs its tasks.
(b) The time passes while the system waits for a reaction from the environment.

In particular, the system can change its internal state if an interaction is not
received before a certain amount of time.

A language focusing on temporal issues should allow models to explicitly define
how the time of type (a) is consumed. Besides, it should allow to define how the
system behavior is affected by both types of temporal aspects (e.g., a task is
performed if executing the previous task took too much time, if the environment
did not react for a long time, if the addition of both times exceeded a given
threshold, etc). Finally, the twofold relation between functional activities and
temporal aspects should be defined so that they influence each other in an easy
way.

In this paper we present a formalism, based on finite state machines, allowing
to take into account the subtle temporal aspects considered before. Even though
there exists a myriad of timed extensions of classical frameworks, this number is
not so big in the framework of finite state machines. Moreover, when considering
that time is stochastically defined, there are almost no proposals ([NR03] is an
exception). Besides, most approaches specialize only in one of the previous vari-
ants: Time is either associated with actions or associated with delays/timeouts.
Our formalism allows to specify in a natural way both time aspects. In our
framework, timeouts are specified by using fix amounts of time. In contrast, the
duration of actions will be given by random variables. That is, instead of hav-
ing expressions such as “the action o takes t units of time to be performed” we
will have expressions such as “with probability p the action o will be performed
before t units of time”. We will consider a suitable extension of finite state ma-
chines where (stochastic) time information is included. Intuitively, transitions in
finite state machines indicate that if the machine is in a state s and receives and
input i then it will produce and output o and it will change its state to s′. An

appropriate notation for such a transition could be s
i/o−→ s′. If we consider a

timed extension of finite state machines, transitions as s
i/o−−−−→ t s′ indicate that

the time between receiving the input i and returning the output o is equal to
t. In the new model that we introduce in this paper for stochastic transitions,
we will consider that the time consumed between the input is applied and the
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output is received is given by a random variable ξ. Thus the interpretation of a

transition s
i/o−−−−→ξ s′ is “if the machine is in state s and receives an input i then

it will produce the output o before time t with probability P (ξ ≤ t) and it will
change its state to s′”. The definition of conformance testing relations is more
difficult than usually. In particular, even in the absence of non-determinism,
the same sequence of actions may take different time values to be performed
in different runs of the system. While the definition of the new language is not
difficult, mixing these temporal requirements strongly complicates the posterior
theoretical analysis.

We propose several stochastic-temporal conformance relations: An implemen-
tation is correct with respect to a specification if it does not show any behavior
that is forbidden by the specification, where both the functional behavior and the
temporal behavior are considered (and, implicitly, how they affect each other).
From the functional point of view, the idea underlying the definition of the
conformance relations is that the implementation does not invent anything for
those sequences of inputs that are specified in the specification. Moreover, regard-
ing functional conformance we have to consider not only that the sequences of
inputs/outpus produced by the implementation must be considered in the speci-
fication. We also have to take into account the possible timeouts. For example, a
sequence of inputs/outputs could be accepted after different timeouts have been
triggered, and not in the case of other combinations. Regarding stochastic-time,
we might require that any trace of the specification that can be performed by
the implementation must have the same associated delay, that is, an identically
distributed random variable. Even though this is a very reasonable notion to
define conformance, if we assume a black-box testing framework then we cannot
check whether the corresponding random variables are identically distributed.
In fact, we would need an infinite number of observations from a random vari-
able of the implementation (with an unknown distribution) to assure that this
random variable is distributed as another random variable from the specification
(with a known distribution). Thus, we have to give more realistic implementa-
tion relations based on a finite set of observations. The idea will be to check
that for any trace observed in the implementation that can be performed by the
specification, the observed execution times fit the random variable indicated by
the specification. This notion of fitting will be given by means of a hypothesis
contrast.

In terms of related work, a lot of formalisms have been proposed to describe
the temporal behavior of systems. If we restrict ourselves to time values given
by fix amounts, instead of using random variables, our formalism is as expres-
sive as the most popular one: Timed automata [AD94]. Thus, our formalism can
compare in terms of expressivity with stochastic extensions of timed automata
(e.g. [DK05]). However, our way to deal with time is different. As we said be-
fore, we can associate time with the performance of actions while timeouts can
be easily represented as fix amounts of time. These features do not only im-
prove the modularity of models, but they are also suitable for clearly identifying
IUT requirements and responsibilities in a testing methodology. Besides, the
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formalism underlying our language is not based on automata but on finite state
machines (i.e., Mealy machines), which have been extensively used by the formal
testing community. Regarding testing of temporal requirements, there exist sev-
eral proposals (e.g., [CL97, HNTC99, SVD01, NR03, ED03]) but most of them,
with the exception of our previous work, are based on timed automata.

The rest of the paper is structured as follows. In the next section we intro-
duce our notion of stochastic finite state machine. In Section 3 we introduce an
implementation relation that takes into account only functional aspects, that is,
which actions can be performed and how timeouts are specified. This notion is
extended in Section 4 to cope with performance time of actions. In Section 5 we
present our conclusions and some lines for future work. Finally, in the appendix
of the paper, we show how hypothesis contrasts can be performed.

2 A Stochastic Extension of the EFSM Model

In this section we introduce our notion of finite state machines with stochastic
time. We use random variables to model the (stochastic) time output actions take
to be executed. Thus, we need to introduce some basic concepts on random vari-
ables. We will consider that the sample space, that is, the domain of random vari-
ables, is a set of numeric time values Time. Since this is a generic time domain,
the specifier can choose whether the system will use a discrete/continuous time
domain. We simply assume that 0 ∈ Time. Regarding passing of time, we will
also consider that machines can evolve by raising timeouts. Intuitively, if after a
given time, depending on the current state, we do not receive any input action
then the machine will change its current state.

During the rest of the paper we will use the following notation. Tuples of
elements (e1, e2 . . . , en) will be denoted by ē. â denotes an interval of elements
[a1, a2), with a1, a2 ∈ Time and a1 < a2. We will use the projection function πi

such that given a tuple t̄ = (t1, . . . , tn), for all 1 ≤ i ≤ n we have πi(t̄) = ti.
Let t̄ = (t1, . . . , tn) and t̄′ = (t′1, . . . , t

′
n). We write t̄ = t̄′ if for all 1 ≤ j ≤ n

we have tj = t′j . We write t̄ ≤ t̄′ if for all 1 ≤ j ≤ n we have tj ≤ t′j . We
denote by

∑
t̄ the addition of all the elements belonging to the tuple t̄, that is,∑n

j=1 tj . The number of elements of the tuple will be represented by |t̄|. Finally,
if t̄ = (t1 . . . tn), p̄ = (t̂1 . . . t̂n) and for all 1 ≤ j ≤ n we have tj ∈ t̂j , we write
t̄ ∈ p̄.

Definition 1. We denote by V the set of random variables (ξ, ψ, . . . range over
V). Let ξ be a random variable. We define its probability distribution function as
the function Fξ : Time −→ [0, 1] such that Fξ(x) = P (ξ ≤ x), where P (ξ ≤ x)
is the probability that ξ assumes values less than or equal to x.

Given two random variables ξ and ψ we consider that ξ +ψ denotes a random
variable distributed as the addition of the two random variables ξ and ψ. We
will call sample to any multiset of elements belonging to Time. We denote the set
of multisets in Time by ℘(Time). Let ξ be a random variable and J be a sample.
We denote by γ(ξ, J) the confidence of ξ on J . ��
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In the previous definition, a sample simply contains an observation of values. In
our setting, samples will be associated with the time values that implementations
take to perform sequences of actions. We have that γ(ξ, J) takes values in the
interval [0, 1]. Intuitively, bigger values of γ(ξ, J) indicate that the observed
sample J is more likely to be produced by the random variable ξ. That is, this
function decides how similar the probability distribution function generated by
J and the one corresponding to the random variable ξ are. In the appendix
of this paper we show one of the possibilities to formally define the notion of
confidence by means of a hypothesis contrast.

Definition 2. A Stochastic Finite State Machine, in short SFSM, is a tuple
M = (S, I, O, δ, TO, sin) where S is the set of states, with sin ∈ S being the
initial state, I and O denote the sets of input and output actions, respectively,
δ is the set of transitions, and TO : S −→ S× (Time∪{∞}) is the timeout func-
tion. Each transition belonging to δ is a tuple (s, i, o, ξ, s′) where s, s′ ∈ S are the
initial and final states, i ∈ I and o ∈ O are the input and output actions, and
ξ ∈ V is the random variable defining the time associated with the transition.

Let M = (S, I, O, δ, TO, sin) be a SFSM. We say that M is input-enabled if for
all state s ∈ S and input i ∈ I there exist s′, o, ξ, such that (s, i, o, ξ, s′) ∈ δ.
We say that M is deterministically observable if for all s, i, o there do not exist
two different transitions (s, i, o, ξ1, s1), (s, i, o, ξ2, s2) ∈ δ. ��
Intuitively, a transition (s, i, o, ξ, s′) indicates that if the machine is in state s
and receives the input i then the machine emits the output o before time t with
probability Fξ(t) and the machine changes its current state to s′. Let us remark
that non-deterministic choices will be resolved before the timers indicated by
random variables start counting, that is, we follow a pre-selection policy. Thus,
if we have several transitions, outgoing from a state s, associated with the same
input i, and the system receives this input, then the system at time 0 non-
deterministically chooses which one of them to perform. So, we do not have
a race between the different timers to decide which one is faster. In order to
avoid side-effects, we will assume that all the random variables appearing in the
definition of a SFSM are independent. Let us note that this condition does not
restrict the distributions to be used. In particular, there can be random variables
identically distributed even though they are independent.

For each state s ∈ S, the application of the timeout function TO(s) returns a
pair (s′, t) indicating the time that the machine can remain at the state s waiting
for an input action and the state to which the machine evolves if no input is
received on time. We indicate the absence of a timeout in a given state by setting
the corresponding time value to ∞. In addition, we assume that TO(s) = (s′, t)
implies s 
= s′, that is, timeouts always produce a change of the state. In fact, let
us note that a definition such as TO(s) = (s, t) is equivalent to set the timeout
for the state s to infinite.

Regarding the notion of deterministically observable, it is worth to point out
that it is different from the more restricted notion of deterministic finite state
machine. In particular, we allow transitions from the same state labelled by the
same input action, as far as the outputs are different. Let us remark that both
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Fig. 1. Examples of (Stochastic) Finite State Machines

the concept of deterministically observable and input-enabled are independent
of the stochastic information appearing in SFSMs.

Example 1. Let us consider the finite state machines M1, M2, and M3 depicted
in Figure 1. In order to transform these machines into stochastic finite state ma-
chines, we simply need to add random variables to all the transitions and time-
outs to all the states. We assume that absent timeouts correspond to timeouts
having ∞ as parameter. For example, if we transform M1 into a stochastic state
machine we obtain M ′

1. Then we have M ′
1 = ({1, 2}, {i1, i2}, {o1, o2}, δ, TO, 1)

where the set of transitions δ is given by:

δ = {(1, i2, o1, ξ1, 1), (1, i1, o1, ξ2, 2), (2, i1, o2, ξ3, 1)}

In order to complete our specification of M ′
1 we need to say how random variables

are distributed. Let us suppose the following distributions:

Fξ1(x) =

⎧⎨
⎩

0 if x ≤ 0
x
3 if 0 < x < 3
1 if x ≥ 3

Fξ2(x) =
{

0 if x < 4
1 if x ≥ 4

Fξ3(x) =
{

1 − e−3·x if x ≥ 0
0 if x < 0

We say that ξ1 is uniformly distributed in the interval [0, 3]. Uniform distribu-
tions allow us to keep compatibility with time intervals in (non-stochastic) timed
models in the sense that the same weight is assigned to all the times in the inter-
val. We say that ξ2 is a Dirac distribution in 4. The idea is that the corresponding
delay will be equal to 4 time units. Dirac distributions allow us to simulate de-
terministic delays appearing in timed models. We say that ξ3 is exponentially
distributed with parameter 3. Let us consider the transition (1, i2, o1, ξ1, 1). In-
tuitively, if M ′

1 is in state 1 and it receives the input i2 then it will produce the
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output o2 after a delay given by ξ1. For example, we know that this delay will
be less than 1 unit of time with probability 1

3 , it will be less than 1.5 units of
time with probability 1

2 , and so on. Finally, once 3 units of time has passed we
know that the output o1 has been performed (that is, we have probability 1).
Regarding the timeout function, we have TO(1) = (2, ∞) and TO(2) = (1, 3).
In this case, if the machine is in state 2 and no input is received before 3 units
of time then the state is changed to 1.

Regarding the notions of input-enabled and deterministically observable, the
first property does not hold in M1 (there is no outgoing transition labelled by i2
from the state 2) while the second one does. We have that M3 fulfills the first of
the properties but not the second one (there are two transitions from the state
2 labelled by i1/o1). Finally, both properties hold for M2. ��

Definition 3. Let M = (S, I, O, δ, TO, sin) be a SFSM. We say that a tuple
(s0, s, i/o, t̂, ξ) is a step for the state s0 of M if there exist k states s1, . . . , sk ∈ S,
with k ≥ 0, such that t̂ =

[∑k−1
j=0 π2(TO(sj)),

∑k
j=0 π2(TO(sj))

)
and there

exists a transition (sk, i, o, ξ, s) ∈ δ.
We say that (t̂1/i1/ξ1/o1, . . . , t̂r/ir/ξr/or) is a stochastic evolution of M if

there exist r steps of M (sin, s1, i1/o1, t̂1, ξ1), . . . , (sr−1, sr, ir/or, t̂r, ξr) for the
states sin . . . sr−1, respectively. We denote by SEvol(M) the set of stochastic
evolutions of M . In addition, we say that (t̂1/i1/o1, . . . , t̂r/ir/or) is a functional
evolution of M . We denote by FEvol(M) the set of functional evolutions of M .
We will use the shortenings (σ, p̄) and (σ, p̄, ξ̄) to denote a functional and a
stochastic evolution, respectively, where σ = (i1/o1 . . . ir/or), p̄ = (t̂1 . . . t̂r) and
ξ̄ = (ξ1 . . . ξr). ��

Intuitively, a step is a sequence of transitions that contains an action transition
preceded by zero or more timeouts. The interval t̂ indicates the time values where
the transition could be performed. In particular, if the sequence of timeouts is
empty then we have the interval t̂ = [0, TO(s0)). An evolution is a sequence of
inputs/outputs corresponding to the transitions of a chain of steps, where the
first one begins with the initial state of the machine. In addition, stochastic evo-
lutions also include time information which inform us about possible timeouts
(indicated by the intervals t̂j) and random variables associated to the execu-
tion of each output after receiving each input in each step of the evolution. In
the following definition we introduce the concept of instanced evolution. Intu-
itively, instanced evolutions are constructed from evolutions by instantiating to
a concrete value each timeout, given by an interval, of the evolution.

Definition 4. Let M = (S, I, O, δ, TO, sin) be a SFSM and let us consider a
stochastic evolution e = (t̂1/i1/ξ1/o1, . . . , t̂r/ir/ξr/or). We say that the tuple
(t1/i1/ξ1/o1, . . . , tr/ir/ξr/or) is an instanced stochastic evolution of e if for all
1 ≤ j ≤ r we have tj ∈ t̂j . Besides, we say that the tuple (t1/i1/o1, . . . , tr/ir/or)
is an instanced functional evolution of e.

We denote by InsSEvol(M) the set of instanced stochastic evolutions of M
and by InsFEvol(M) the set of instanced functional evolutions of M . ��
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3 A First Implementation Relation

In this section we introduce an implementation relation to deal with functional
aspects. It follows the pattern borrowed from confnt [NR02]: An implementation
I conforms to a specification S if for all possible evolution of S the outputs
that the implementation I may perform after a given input are a subset of
those for the specification. In addition to the non-stochastic conformance of
the implementation, we require other additional conditions, related to time, to
hold. Specifically, we require that the implementation always complies with the
timeouts established by the specification.

Next, we fix the sets of specifications and implementations. A specification is
a stochastic finite state machine. Regarding implementations, we consider that
they are also given by means of SFSMs. We will consider that both specifications
and implementations are given by deterministically observable SFSMs. That is, we
do not allow a machine to have two different transitions such as (s, i, o, ξ1, s

′) and
(s, i, o, ξ2, s

′′). Let us note that we do not restrict observable non-determinism,
that is, we may have the transitions (s, i, o1, ξ1, s1) and (s, i, o2, ξ2, s2, ) as far as
o1 �= o2. Besides, we assume that input actions are always enabled in any state
of the implementation, that is, implementations are input-enabled according to
Definition 2. This is a usual condition to assure that the implementation will
react (somehow) to any input appearing in the specification.

First, we introduce the implementation relation conff , where only functional
aspects of the system (i.e., which outputs are allowed/forbidden and how time-
outs are defined) are considered while the performance of the system (i.e., how
fast outputs are executed) is ignored. Let us note that the time spent by a system
waiting for the environment to react has the capability of affecting the set of
available outputs of the system. This is because this time may trigger a change
of the state. So, a relation focusing on functional aspects must explicitly take
into account the maximal time the system may stay in each state. This time is
given by the timeout of each state.

Definition 5. Let S and I be SFSMs. We say that I functionally conforms
to S, denoted by I conff S, if for each functional evolution e ∈ FEvol(S),
withe = (t̂1/i1/o1, . . . , t̂r/ir/or) and r ≥ 1, we have that for all t1 ∈ t̂1, . . . , tr ∈ t̂r
and o′r

e′ = (t1/i1/o1, . . . , tr/ir/o′r) ∈ InsFEvol(I) implies e′ ∈ InsFEvol(S)

��
Intuitively, the idea underlying the definition of the functional conformance re-
lation I conff S is that the implementation I does not invent anything for
those sequences of inputs that are specified in the specification S. Let us note
that if the specification has also the property of input-enabled then we may
remove the condition “for each functional evolution e ∈ FEvol(S), with e =
(t̂t1/i1/o1, . . . , t̂tr/ir/or) and r ≥ 1”.

In addition to requiring this notion of functional conformance, we have to ask
for some conditions on delays. As indicated in the introduction, a first approach
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would be to require that the random variables associated with evolutions of
the implementation are identically distributed as the ones corresponding to the
specification. However, the fact that we assume a black-box testing framework
disallows us to check whether these random variables are indeed identically dis-
tributed. Thus, we have to give more realistic implementation relations based on
finite sets of observations. Next, we present implementation relations that are
less accurate but that are checkable.

4 Implementation Relations Based on Samples

In the previous section we discussed how an appropriate implementation relation
can be defined. Unfortunately, this notion is useful only from a theoretical point
of view. In this section we introduce implementation relations that take into
account the observations that we may get from the implementation. We will
collect a sample of time values and we will compare this sample with the random
variables appearing in the specification. By comparison we mean that we will
apply a contrast to decide, with a certain confidence, whether the sample could
be generated by the corresponding random variable.

Definition 6. Let I be a SFSM. We say that (σ, t̄, t̄′), with σ = i1/o1, . . . , in/on,
t̄ = (t1 . . . tn), and t̄′ = (t′1 . . . t′n), is an observed time execution of I, or simply
time execution, if the observation of I shows that for all 1 ≤ j ≤ n we have that
the time elapsed between the acceptance of the input ij and the observation of
the output oj is t′j units of time, being the input ij accepted tj units of time
after the last output was observed.

Let Φ = {(σ1, p̄1), . . . , (σm, p̄n)} where for all 1 ≤ j ≤ n we have p̄j =
(t̂1 . . . t̂n), and let H = {|(σ′

1, t̄1, t̄
′
1), . . . , (σ

′
n, t̄n, t̄′n)|} be a multiset of timed exe-

cutions. We say that Samplingk
(H,Φ) : Φ −→ ℘(Time) is a k-sampling application

of H for Φ if Samplingk
(H,Φ)(σ, p̄) = {|πk(t̄′) | (σ, t̄, t̄′) ∈ H ∧ |σ| ≥ k ∧ t̄ ∈ p̄|},

for all (σ, p̄) ∈ Φ. We say that Sampling(H,Φ) : Φ −→ ℘(Time) is a sampling
application of H for Φ if Sampling(H,Φ)(σ, p̄)) = {|

∑
t̄′ | (σ, t̄, t̄′) ∈ H ∧ t̄ ∈ p̄|},

for all (σ, p̄) ∈ Φ. ��
Regarding the definition of k-sampling applications, we just associate with each
subtrace of length k the observed time of each transition of the execution at
length k. In the definition of sampling applications, we assign to each trace the
total observed time corresponding to the whole execution.

Definition 7. Let I and S be SFSMs, H be a multiset of timed executions of I,
0 ≤ α ≤ 1, Φ = FEvol(S), and let us consider Sampling(H,Φ) and Samplingk

(H,Φ),
for all 1 ≤ k ≤ max{|σ| | (σ, p̄) ∈ Φ}.

We say that I (α, H)−strong stochastically conforms to S, and we denote it
by I confs

(α,H)
s S, if I conff S and for all (σ, t̄, t̄′) ∈ H we have

∃(σ, p̄, ξ̄) ∈ SEvol(S) : t̄ ∈ p̄
⇓

∀ 1 ≤ j ≤ |σ| : γ(πj(ξ̄), Sampling
j
(H,Φ)(σ, p̄)) > α
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We say that I (α, H)−weak stochastically conforms to S, and we denote it by
I confs

(α,H)
w S, if I conff S and for all (σ, t̄, t̄′) ∈ H we have

∃(σ, p̄, ξ̄) ∈ SEvol(S) : t̄ ∈ p̄
⇓

γ

⎛
⎝ |σ|∑

j=1

πj(ξ̄), Sampling(H,Φ)(σ, p̄)

⎞
⎠ > α

��

The idea underlying the new relations is that the implementation must conform
to the specification in the usual way (that is, I conff S). Besides, for all ob-
servation of the implementation that can be performed by the specification, the
observed execution time values fit the random variable indicated by the specifi-
cation. This notion of fitting is given by the function γ that it is formally defined
in the appendix of this paper. While the weak notion only compares the total
time, the strong notion checks that the time values are appropiate for each per-
formed output. A first direct result says that if we decrease the confidence level
then we keep conformance.

Lemma 1. Let I and S be SFSMs. If I confs
(α1,H)
s S and α2 < α1 then we have

I confs
(α2,H)
s S. If I confs

(α1,H)
w S and α2 < α1 then we have I confs

(α2,H)
w S.

��

The next result, whose proof is straightforward, states that if we have two sam-
ples sharing some properties then our conformance relations give the same result
for both of them.

Lemma 2. Let I and S be SFSMs, H1 and H2 be multisets of timed executions
for I, and let bi = {|(σ, t̄, t̄′)|(σ, t̄, t̄′) ∈ Hi ∧ (σ, t̄) ∈ InsFEvol(I)∩InsFEvol(S)|},
for i ∈ {1, 2}. If b1 = b2 then we have Iconfs

(α,H1)
s S iff Iconfs

(α,H2)
s S. Similarly,

if b1 = b2 then we have I confs
(α,H1)
w S iff I confs

(α,H2)
w S. ��

Lemma 3. Let I and S be SFSMs. We have Iconfs
(α,H)
s S implies Iconfs

(α,H)
w S.

��

Next we present different variations of the previous implementation relation.
First, we define the concept of shifting a random variable with respect to its
mean. For example, let us consider a random variable ξ following a Dirac dis-
tribution in 4 (see Example 1 for the formal definition). If we consider a new
random variable ξ′ following a Dirac distribution in 3, we say that ξ′ represents
a shift of ξ. Moreover, we also say that ξ and ξ′ belong to the same family.

Definition 8. We say that ξ′ is a mean shift of ξ with mean M ′, and we denote
it by ξ′ = MShift(ξ, M ′), if ξ, ξ′ belong to the same family and the mean of ξ′,
denoted by μξ′ , is equal to M ′.
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Let I and S be SFSMs, H be a multiset of timed executions of I, 0 ≤ α ≤ 1,
Φ = FEvol(S), and let us consider Sampling(H,Φ) and Samplingk

(H,Φ) for all
1 ≤ k ≤ max{|σ| | (σ, p̄) ∈ Φ}. We say that I (α, H)−strongly stochastically
conforms to S with speed π, denoted by Iconfm

(α,H)
sπ S, if I conff S and for all

(σ, t̄, t̄′) ∈ H we have

∃ (σ, p̄, ξ̄) ∈ SEvol(S) : t̄ ∈ p̄
⇓

∀ 1 ≤ j ≤ |σ| : γ(MShift(πj(ξ), μπj(ξ) · π), Samplingj
(H,Φ)(σ, p̄)) > α

We say that I (α, H)−weakly stochastically conforms to S with speed π, de-
noted by Iconfm

(α,H)
wπ S, if I conff S and for all (σ, t̄, t̄′) ∈ H we have

∃ (σ, p̄, ξ̄) ∈ SEvol(S) : t̄ ∈ p̄
⇓

γ(MShift(ξ, μξ · π), Sampling(H,Φ)(σ, p̄)) > α

where we have considered ξ =
|σ|∑
j=1

πj(ξ̄). ��

An interesting remark regarding these new relations is that when α is small
enough and/or π is close enough to 1, then it may happen that we have both
Iconfs

(α,H)
s S and Iconfm

(α,H)
sπ S, and similarly for the case of Iconfs

(α,H)
w S and

Iconfm
(α,H)
wπ S. Nevertheless, it is enough to increase α, as far as π �= 1, so that

we do not have both results strong/weak conformance notions simultaneously.
Let us note that in the previous definition, a value of π greater than 1 indicates
that the new delay is slower. This observation induces the following relation.

Definition 9. Let I and S be SFSMs. Let H be a multiset of timed executions of
I. We say that I is strong-generally faster (respectively strong-generally slower)
than S for H if there exist 0 ≤ α ≤ 1 and 0 < π < 1 (respectively π > 1) such
that Iconfm

(α,H)
sπ S but I confs

(α,H)
s S does not hold. We say that I is weak-

generally faster (respectively weak-generally slower) than S for H if there exist
0 ≤ α ≤ 1 and 0 < π < 1 (respectively π > 1) such that Iconfm

(α,H)
wπ S but

I confs
(α,H)
w S does not hold. ��

Given the fact that, in our framework, an implementation could fit better to a
specification with higher or lower speed, it will be interesting to detect which
variations of speed would make the implementation to fit better the specification.
Intuitively, the best variation will be the one allowing the implementation to
conform to the specification with a higher level of confidence α.

Definition 10. Let I and S be SFSMs. Let H be a multiset of timed executions
of I. Let us consider 0 ≤ α ≤ 1 such that Iconfm

(α,H)
sπ S, Iconfm

(α,H)
wπ S, and

there do not exist α′ > α and π′ ∈ IR+ with Iconfm
(α′,H)
sπ′ S. Then, we say that

π is a relative speed of I with respect to S for H . ��
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The concept of relative speed allows us to define another implementation relation
which is more restrictive than those presented so far. Basically, the implemen-
tation must both (α, H)−stochastically conform to the specification and have 1
as a relative speed. Let us note that the latter condition means that the imple-
mentation fits perfectly in its current speed.

Definition 11. Let I and S be SFSMs. Let H be a multiset of timed executions
of I and let us consider 0 ≤ α ≤ 1. We say that I (α, H)−stochastically and
precisely strong conforms to S, denoted by I confp

(α,H)
s S, if I confs

(α,H)
s S and

we have that 1 is a relative speed of I with respect to S for H . Similarly, we
say that I (α, H)−stochastically and precisely weak conforms to S, denoted by
Iconfp

(α,H)w
S , if I confs

(α,H)
w S and we have that 1 is a relative speed of I with

respect to S for H . ��

The following result relates some of the notions presented in this section.

Lemma 4. Let I and S be SFSMs. We have I confp
(α,H)
s S iff I confs

(α,H)
s S

and neither I is strong-generally faster than S for H nor I is strong-generally
slower than S for H .

We have I confp
(α,H)
w S iff I confs

(α,H)
w S and neither I is weak-generally

faster than S for H nor I is weak-generally slower than S for H . ��

5 Conclusions and Future Work

In this paper we have presented a new notion of finite state machine. In con-
trast with most timed extensions, our formalism allows to specify in an easy
way both the passing of time due to timeouts and the time due to the perfor-
mance of actions. In the first case, we consider that timeouts are given by fix
amounts of time. For each state of the machine, if after a certain time no input
action is received then the machine changes the state. In the second case, time
is introduced by means of random variables. Thus, we are able to specify the
time elapsed from the reception of an input until the observation of an output.
These time values are specified by means of random variables. Finally, we have
presented several implementation relations based on the notion of conformance.
These relations share a common pattern: The implementation must conform to
the specification regarding functional aspects. In addition to require that differ-
ent sequences of actions are performed in the implementation as indicated by the
specification, the timeouts of the implementation have also to be placed accord-
ing to the ones of the specification. Our implementation relations also impose
some conditions regarding the random variables appearing in both specifications
and implementations.

As future work we plan to introduce an appropriate notion of test and to
define how tests are applied to implementations. In this sense, we will give a
notion of passing a test suite up to a certain probability. The final goal will be to
relate our implementation relations with this notion of passing tests. This will
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be done by providing a test derivation algorithm to obtain sound and complete
test suites with respect to some of the implementation relations given in this
paper.
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Appendix. Statistics Background: Hypothesis Contrasts

In this appendix we introduce one of the standard ways to measure the confidence
degree that a random variable has on a sample. In order to do so, we will present
a methodology to perform hypothesis contrasts. The underlying idea is that a
sample will be rejected if the probability of observing that sample from a given
random variable is low. In practice, we will check whether the probability to
observe a discrepancy lower than or equal to the one we have observed is low
enough. We will present Pearson’s χ2 contrast. This contrast can be applied both
to continuous and discrete random variables. The mechanism is the following.
Once we have collected a sample of size n we perform the following steps:

– We split the sample into k classes which cover all the possible range of values.
We denote by Oi the observed frequency at class i (i.e. the number of elements
belonging to the class i).

– We calculate the probability pi of each class, according to the proposed
random variable. We denote by Ei the expected frequency, which is given by
Ei = npi.
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– We calculate the discrepancy between observed frequencies and expected
frequencies as X2 =

∑n
i=1

(Oi−Ei)2

Ei
. When the model is correct, this discrep-

ancy is approximately distributed as a random variable χ2 .
– We estimate the number of freedom degrees of χ2 as k − r − 1. In this case,

r is the number of parameters of the model which have been estimated by
maximal likelihood over the sample to estimate the values of pi (i.e. r = 0
if the model completely specifies the values of pi before the samples are
observed).

– We will accept that the sample follows the proposed random variable if
the probability to obtain a discrepancy greater or equal to the discrep-
ancy observed is high enough, that is, if X2 < χ2

α(k − r − 1) for some
α low enough. Actually, as such margin to accept the sample decreases
as α decreases, we can obtain a measure of the validity of the sample as
max{α | X2 < χ2

α(k − r − 1)}.

According to the previous steps, we can now present an operative definition of
the function γ which is used in this paper to compute the confidence of a random
variable on a sample.

Definition 12. Let ξ be a random variable and let J be a multiset of real
numbers representing a sample. Let X2 be the discrepancy level of J on ξ calcu-
lated as explained above by splitting the sampling space into the set of classes
C = {[0, a1), [a1, a2), . . . , [ak−1, ak), [ak, ∞)}, where k is a given constant and for
all 1 ≤ i ≤ k we have ai = q where P (ξ ≤ q) = i

k+1 . We define the confidence of
ξ on J with classes S, denoted by γ(ξ, J), as max{α | X2 < χ2

α(k − 1)}. ��

Let us comment some important details. First, given the fact that the random
variables that we use in our framework denote the passing of time, we do not need
classes to cover negative values. Thus, we will suppose that the class containing
0 will also contain all the negative values. Second, let us remark that in order to
apply this contrast it is strongly recommended that the sample has at least 30
elements while each class must contain at least 3 elements.
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1 Introduction

Markov chain based models in performance analysis often encounter the difficulty
that the chain has a huge state space, which may significantly slow down any
practical computation or convergence rate. In such cases it is very useful if
the state space can be partitioned such that the states belonging to the same
partition class “behave the same way”, in the sense defined formally in the next
section. This is the well known concept of lumpability [6]. Informally speaking, it
means that some sets of states can be lumped together and replaced by a single
state, thus obtaining a Markov chain which has a smaller state space, but its
essential behavior is the same as the original.

In some cases the lumpability of the Markov chain can have a very significant
effect on the efficiency of the model. A practical example is discussed in [8],
where the authors present a fast algorithm to compute the PageRank vector,
which is an important part of search engine algorithms in the World Wide Web.
The PageRank vector can be interpreted as the stationary distribution of a
Markov chain. This chain has a huge state space, yielding excessive computation
times. This Markov chain, however, is lumpable. Making use of the lumpability,
the computation time can be reduced to 20% of the original, according to the
experiments presented in [8].

Unfortunately, it happens relatively rarely that the Markov chain satisfies the
definition of lumpability exactly. This motivates the concept of quasi-lumpability
[1, 2]. Informally, a Markov chain is quasi-lumpable if its transition matrix is ob-
tainable by a small perturbation from a matrix that exactly satisfies the lumpa-
bility condition (see the formal definition in the next section).
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In this paper we are interested in the following problem, which is often en-
countered in applications: how long do we have to run the Markov chain if we
want to get close to the stationary distribution within a prescribed error? While
generally this question is widely discussed in the literature (see, e.g., [7, 10]),
to the author’s best knowledge no specific result exists that utilizes the special
structure of quasi-lumpable Markov chains in the convergence rate analysis. Our
goal is to (partially) fill this gap.

2 Lumpable and Quasi-lumpable Markov Chains

We assume the reader is familiar with the fundamental concepts of Markov
chains. We adopt the notation that a Markov chain M is given by a set S of
states and by a transition probability matrix P , so we write M = (S, P ). We
do not include the initial distribution in the notation, because it is assumed
arbitrary.

First we define the lumpability of a Markov chain. Informally, as mentioned in
the Introduction, a chain is lumpable if its states can be aggregated into larger
subsets of S, such that the aggregated (lumped) chain remains a Markov chain
with respect to the set-transition probabilities (i.e, it preserves the property that
the future depends on the past only through the present). Let us introduce now
the formal definition.

Definition 1 (Lumpability of Markov chain). Let M = (S, P ) be a Markov
chain. Let Q = {A1, . . . , Am} be a partition of S. The chain M is called lumpable
with respect to Q if for any initial distribution the relationship

Pr(Xt ∈ Aj | Xt−1 ∈ Ai1 , . . . , Xt−k ∈ Aik
) = Pr(Xt ∈ Aj | Xt−1 ∈ Ai1) (1)

holds for any t, k, j, i1, . . . , ik, whenever these conditional probabilities are defined
(i.e., the conditions occur with positive probability).

A fundamental result on the lumpability of Markov chains is the following theo-
rem, see [6], Theorem 6.3.2. We use the notation that p(x, A) denotes the prob-
ability that the chain moves into a set A ⊆ S, given that it is in the state x ∈ S.
Note that x itself may or may not be in A.

Theorem 1 (Necessary and sufficient condition for lumpability). A
Markov chain M = (S, P ) is lumpable with respect to a partition Q =
{A1, . . . , Am} of S if and only if for any i, j the value of p(x, Aj) is the same for
every x ∈ Ai. These common values define the transition probabilities p̂(Ai, Aj)
for the lumped chain, which is a Markov chain with state set Q and state tran-
sition probabilites

p̂(Ai, Aj) = p(x, Aj) = Pr(Xt ∈ Aj | Xt−1 ∈ Ai)

where x is any state in Ai.
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Whenever our Markov chain is lumpable, we can reduce the number of states by
the above aggregation, and that is usually advantageous for faster convergence
(a specific bound will be proven in Section 3).

Now let us relax the concept of lumpability to broaden the family of the
considered Markov chains. Informally, a Markov chain is called quasi-lumpable or
ε-quasi-lumpable or simply ε-lumpable, if it may not be perfectly lumpable, but it
is “close” to that. This “ε-closeness” is defined in [1, 2] in a way that the transition
matrix can be decomposed as P = P− + P ε. Here P− is a componentwise
nonnegative lower bound for P , such that P− satisfies the necessary and sufficient
condition of Theorem 1. The other matrix, P ε, is an arbitrary nonnegative matrix
in which each entry is bounded by ε. In our discussion we prefer the following
simpler but equivalent definition.

Definition 2 (ε-lumpability). Let ε ≥ 0. A Markov chain M = (S, P ) is
called ε-lumpable with respect to a partition Q = {A1, . . . , Am} of S if∣∣p(x, Aj) − p(y, Aj)

∣∣ ≤ ε

holds for any x, y ∈ Ai and for any i, j ∈ {1, . . . , m}.
Note that if we take ε = 0, then we get back the ordinary concept of lumpa-
bility. Thus, quasi-lumpability is indeed a relaxation of the original concept. It
can also be interpreted in the following way. If ε > 0, then the original definition
of lumpability may not hold. This means, the aggregated process may not re-
main Markov. i.e., it does not satisfy (1). On the other hand, if ε is small, then
the aggregated process will be, in a sense, “close” to being Markov, that is, to
satisfying (1).

What we are interested in is the convergence analysis of quasi lumpable
Markov chains, typically for a small value of ε (but the result of the next sec-
tion formally holds for any ε). For the analysis we need to introduce another
definition.

Definition 3 (Lower and upper transition matrices). Let M = (S, P ) be a
Markov chain which is ε-lumpable with respect to a partition Q = {A1, . . . , Am}.
The lower and upper transition matrices L = [lij ] and U = [uij ] are defined as
m × m matrices with entries

lij = min
x∈Ai

p(x, Aj) and uij = max
x∈Ai

p(x, Aj),

respectively, for i, j = 1, . . . , m.

Note that it always holds (componentwise) that L ≤ U . If the chain is lumpable,
then these matrices coincide, so then L = U = P̃ , where P̃ is the transition
matrix of the lumped chain. If the chain is ε-lumpable, then L and U differ at
most by ε in each entry.

Generally, L and U are not necessarily stochastic matrices1, as their rows may
not to sum up to 1.
1 A vector is called stochastic if each coordinate is nonnegative and their sum is 1. A

matrix is called stochastic if each row vector of it is stochastic.
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3 Convergence Analysis

An important concept in Markov chain convergence analysis is the ergodic coef-
ficient or coefficient of ergodicity, see, e.g., [7].

Definition 4. Let P = [pij ] be an n×n matrix. Its ergodic coefficient is defined
as

ρ(P ) =
1
2

max
i,j

n∑
k=1

|pik − pjk|.

For stochastic matrices two well known properties of the ergodic coefficient are
the following [7]:

(i) 0 ≤ ρ(P ) ≤ 1
(ii) ρ(AB) ≤ ρ(A)ρ(B)

The importance of the ergodic coefficient lies in its relationship to the con-
vergence rate of the (finite state) Markov chain. It is well known that the con-
vergence rate is determined by the second largest eigenvalue of the transition
matrix (that is, the eigenvalue which has the largest absolute value less than 1),
see, e.g., [10]. If this eigenvalue is denoted by λ1, then the convergence to station-
arity happens at a rate of O(λt

1), where t is the number of steps. It is also known
[7] that the ergodic coefficient is always an upper bound on this eigenvalue, it
satisfies λ1 ≤ ρ(P ) ≤ 1. Therefore, the distance to the stationary distribution
is also bounded by O(ρ(P )t). Thus, the smaller is the ergodic coefficient, the
faster convergence we can expect. Of course it only provides any useful bound if
ρ(P ) < 1. If ρ(P ) = 1, then a way out is considering the k-step transition matrix
P k for some k. If k is large enough, then we can certainly achieve ρ(P k) < 1,
since it is known [7] that limk→∞ ρ(P k) = 0.

Now we are ready to present the main result, which is a bound on how fast
will an ε-lumpable Markov chain converge to its stationary distribution on the
sets that are in the partition which is used in defining the ε-lumpability of the
chain. We are going to discuss the applicability of the result in the next section.

Theorem 2. Let ε ≥ 0 and M = (S, P ) be an irreducible, aperiodic Markov
chain that has a stationary distribution π. Assume the chain is ε-lumpable with
respect to a partition Q = {A1, . . . , Am} of S. Let ρ be any upper bound on the
ergodic coefficient of the lower transition matrix L (Definition 3), that is, ρ(L) ≤
ρ. Let π0 be any initial probability distribution on S, such that P(Xt ∈ Ai) > 0
for any i and t = 0, 1, 2, . . . Then for every t ≥ 1 the following estimation holds:

m∑
i=1

∣∣πt(Ai) − π(Ai)
∣∣ ≤ 2(ρ + εm/2)t + εm

1 − (ρ + εm/2)t

1 − ρ − εm/2

assuming ρ + εm/2 < 1.

For the proof we need a lemma of D.J. Hartfiel about stochastic vectors and
matrices (Lemma 3.4 on p. 70 in [3], see also [4]):
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Lemma 1. (Hartfiel [3, 4]) Let x, y be n-dimensional stochastic vectors. Further,
let B1, . . . , Bk and C1, . . . , Ck be n × n stochastic matrices. If ρ(Bi) ≤ ρ0 and
ρ(Ci) ≤ ρ0 for all i, 1 ≤ i ≤ k, then

‖xB1 . . . Bk − yC1 . . . Ck‖ ≤ ρk
0‖x − y‖ + (ρk−1

0 + . . . + 1)E

where E = maxi ‖Bi−Ci‖. The vector norm used is the L1-norm ‖x‖ =
∑n

i=1 |xi|
and the matrix norm is

‖A‖ = sup
z �=0

‖zA‖
‖z‖ = max

i

n∑
j=1

|aij |

for any n × n real matrix A = [aij ].

Lemma 1 can be proved via induction on k, see [3, 4]. Now, armed with the
lemma, we can prove our theorem.

Proof of Theorem 2. Let π0 be an initial state distribution of the Markov chain
M, let πt be the corresponding distribution after t steps and π = limt→∞ πt be
the (unique) stationary distribution of M. For a set A ⊆ S of states the usual
notations πt(A) = P(Xt ∈ A), π(A) = limt→∞ πt(A) are adopted.

Using the sets A1, . . . , Am of the partition Q, let us define the stochastic
vectors

π̃t =
(
πt(A1), . . . , πt(Am)

)
(2)

for t = 0, 1, 2, . . . and the m × m stochastic matrices

P̃t(π0) = [p(π0)
t (i, j)] =

[
P(Xt+1 ∈ Aj | Xt ∈ Ai)

]
(3)

for t = 1, 2, . . .. Let us call them aggregated state distribution vectors and ag-
gregated transition matrices, respectively. Note that although the entries in (3)
involve only events of the form {Xt ∈ Ak}, they may also depend on the detailed
state distribution within these sets, which is in turn determined by the initial
distribution π0. In other words, if two different initial distributions give rise to
the same probabilities for the events {Xt ∈ Ak} for some t, they may still result
in different conditional probabilities of the form P(Xt+1 ∈ Aj | Xt ∈ Ai), since
the chain is not assumed lumpable in the ordinary sense. This is why the no-
tations P̃t(π0), p

(π0)
t (i, j) are used. Also note that the conditional probabilities

are well defined for any initial distribution allowed by the assumptions of the
lemma, since then P(Xt ∈ Ai) > 0.

For any fixed t the events {Xt ∈ Ai}, i = 1, . . . , m, are mutually exclusive
with total probability 1, therefore, by the law of total probability,

P(Xt+1 ∈ Aj) =
m∑

i=1

P(Xt+1 ∈ Aj | Xt ∈ Ai)P(Xt ∈ Ai), j = 1, . . . , m

holds. This implies π̃t+1 = π̃tP̃t(π0), from which
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π̃t = π̃0P̃1(π0) . . . P̃t(π0) (4)

follows.
We next show that for any t = 1, 2, . . . the matrix P̃t(π0) falls between the

lower and upper transition matrices, i.e., L ≤ P̃t(π0) ≤ M holds. Let us use
short notations for certain events: for any i = 1, . . . , m and for a fixed t ≥ 1 set
Hi = {Xt ∈ Ai}, H ′

i = {Xt+1 ∈ Ai}, and for x ∈ S let Ex = {Xt = x}. Then
Ex ∩ Ey = ∅ holds for any x �= y and

∑
x∈S Ex = 1. Applying the definition of

conditional probability and the law of total probability, noting that P(Hi) > 0
is provided by the assumptions of the lemma, we get

p
(π0)
t (i, j) = P(H ′

j | Hi) =
P(H ′

j ∩ Hi)
P(Hi)

=

∑
x∈S P(H ′

j ∩ Hi ∩ Ex)
P(Hi)

=

∑
x∈S P(H ′

j | Hi ∩ Ex)P(Hi ∩ Ex)
P(Hi)

=
∑
x∈S

P(H ′
j | Hi ∩ Ex)

P(Hi ∩ Ex)
P(Hi)

=
∑
x∈S

P(H ′
j | Hi ∩ Ex)P(Ex | Hi).

Whenever x /∈ Ai we have P(Ex | Hi) = P(Xt = x | Xt ∈ Ai) = 0. Therefore, it
is enough to take the summation over Ai, instead of the entire S. For x ∈ Ai,
however, Hi ∩ Ex = {Xt ∈ Ai} ∩ {Xt = x} = {Xt = x} holds, so we obtain

p
(π0)
t (i, j) =

∑
x∈Ai

P(Xt+1 ∈ Aj | Xt = x)P(Xt = x | Xt ∈ Ai).

Thus, p
(π0)
t (i, j) is a weighted average of the P(Xt+1 ∈ Aj | Xt = x) probabilities.

The weights are P(Xt = x | Xt ∈ Ai), so they are nonnegative and sum up to 1.
Further,

lij ≤ P(Xt+1 ∈ Aj | Xt = x) ≤ uij

must hold, since lij , uij are defined as the minimum and maximum values, re-
spectively, of

p(x, Aj) = P(Xt+1 ∈ Aj | Xt = x)

over x ∈ Ai. Since the weighted average must fall between the minimum and the
maximum, therefore, we have

lij ≤ p
(π0)
t (i, j) ≤ uij , (5)

that is,
L ≤ P̃t(π0) ≤ M (6)
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for any t ≥ 1 and for any initial distribution π0 allowed by the conditions of the
Theorem.

Let us now start the chain from an initial distribution π0 that satisfies the
conditions of the Theorem. We are going to compare the arising aggregated state
distribution vectors (2) with the ones resulting from starting the chain from the
stationary distribution π. Note that, due to the assumed irreducibility of the
original chain, π(x) > 0 for all x ∈ S, so π is also a possible initial distribution
that satisfies the conditions P(Xt ∈ Ai) > 0.

When the chain is started from the stationary distribution π, then, according
to (4), the aggregated state distribution vector at time t is π̃P̃1(π) . . . P̃t(π) where
π̃ =

(
π(A1), . . . , π(Am)

)
. On the other hand, P(Xt ∈ Ai) remains the same for

all t ≥ 0 if the chain starts from the stationary distribution. Therefore, we have

π̃P̃1(π) . . . P̃t(π) = π̃ =
(
π(A1), . . . , π(Am)

)
. (7)

When the chain starts from π0, then we obtain the aggregated state distribution
vector

π̃t = π̃0P̃1(π0) . . . P̃t(π0) (8)

after t steps. Now we can apply Lemma 1 for the comparison of (7) and (8).
The roles for the quantities in Lemma 1 are assigned as x = π̃0, y = π̃, k = t,
n = m, and, for every τ = 1, . . . , k, Bτ = P̃τ (π0), Cτ = P̃τ (π). To find the
value of ρ0 recall that by (6) we have L ≤ P̃τ (π0) ≤ M and L ≤ P̃τ (π) ≤ M .
Since any entry of U exceeds the corresponding entry of L at most by ε,
therefore, by the definition of the ergodic coefficient, ρ

(
P̃τ (π0)

)
≤ ρ + εm/2

and ρ
(
P̃τ (π)

)
≤ ρ + εm/2 hold, where ρ is the upper bound on ρ(L). Thus,

we can take ρ0 = ρ + εm/2. With these role assignments we obtain from
Lemma 1

‖π̃0P̃1(π0) . . . P̃t(π0)−π̃P̃1(π) . . . P̃t(π)‖ ≤ (ρ+εm/2)t‖π̃0−π̃‖+E
t−1∑
k=0

(ρ+εm/2)k

where E = maxτ ‖Pτ (π0) − Pτ (π0)‖ and the norms are as in Lemma 1. Taking
(7) and (8) into account yields

‖π̃t − π̃‖ =
m∑

i=1

∣∣πt(Ai)−π(Ai)
∣∣ ≤ (ρ+ εm/2)t‖π̃0 − π̃‖+ E

t−1∑
k=0

(ρ+ εm/2)k. (9)

Thus, it only remains to estimate ‖π̃0 − π̃‖ and E . Given that π̃0, π̃ are both
stochastic vectors, we have ‖π̃0 − π̃‖ ≤ ‖π̃0‖ + ‖π̃‖ ≤ 2. Further,

E = max
τ

‖Pτ (π0) − Pτ (π)‖ = max
τ

max
i

m∑
j=1

∣∣p(π0)
τ (i, j) − p(π)

τ (i, j)
∣∣ ≤ εm,

since (5) holds for any considered π0 (including π), and, by the definition of
ε-lumpability, uij − lij ≤ ε. Substituting the estimations into (9), we obtain
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m∑
i=1

∣∣πt(Ai) − π(Ai)
∣∣ ≤ 2(ρ + εm/2)t + εm

t−1∑
k=0

(ρ + εm/2)k

= 2(ρ + εm/2)t + εm
1 − (ρ + εm/2)t

1 − ρ − εm/2

proving the Theorem.

If the chain is lumpable in the ordinary sense, then we get a “cleaner” result.
Let π̃t be the state distribution of the lumped chain after t steps and let π̃
be its stationary distribution. For concise description let us apply a frequently
used distance concept among probability distributions. If p, q are two discrete
probability distributions on the same set S, then their total variation distance
DTV (p, q) is defined as

DTV (p, q) =
1
2

∑
x∈S

|p(x) − q(x)|.

It is well known that 0 ≤ DTV (p, q) ≤ 1 holds for any two probability distribu-
tions. It is also clear from the definition of the ergodic coefficient that it is just
the maximum total variation distance between any two row vectors.

Note that (ordinary) lumpability is the special case of ε-lumpability with
ε = 0. Therefore, we immediately obtain the following corollary.

Corollary 1. If the Markov chain in Theorem 2 is lumpable (i.e., ε = 0), then
in the lumped chain for any t = 0, 1, 2, . . . the following holds:

DTV (π̃t, π̃) ≤ ρt

where ρ = ρ(P̃ ) is the ergodic coefficient of the transition matrix P̃ of the lumped
chain.

Proof. Take ε = 0 in Theorem 2.

4 An Example

Let us consider the following situation. Let M be a Markov chain with a huge
state space S. Assume we want to estimate the stationary measure π(A) of a
subset A ⊆ S. A practical example of such a situation is to estimate the prob-
ability that there is at least one blocked link in a loss network (for information
on loss networks see, e.g., [5]). Of course, we can also consider other events, e.g.,
at most a given percentage of traffic is blocked.

In many cases we are unable to directly compute π(A). This task frequently
has enormous complexity, for the theoretical background see [9]. Then a natural
way to obtain an estimation of π(A) is simulation. That is, we run the chain from
some initial state, stop it after t steps and check out whether the stopping state
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is in A or not. Repeating this experiment a large enough number of times, the
relative frequency of ending up in A will give a good estimation of the measure
of πt(A) (conditioned on the initial state). If t is chosen such that πt is close
enough to the stationary distribution π for any initial state, then we also obtain
a good estimation for π(A). This is the core idea of the Markov Chain Monte
Carlo approach.

Unfortunately, Markov chains with huge state space often converge extremely
slowly. Therefore, we may not get close enough to π after a reasonable number
of steps. In such a case our result can do a good service, at least when the chain
satisfies some special requirements. As an example, let us consider the following
case.

Assume the set A ⊆ S is “regular” in the sense that for any state x ∈ A
the probability to move out of A in the next step is approximately the same.
Similarly, if x /∈ A, then moving into A in the next step has approximately the
same probability from any x /∈ A. Formally, assume there are values p0, q0, ε,
such that the following conditions hold:

– If x ∈ A then p0 ≤ p(x, Ā) ≤ p0 + ε where Ā = S − A.
– If x ∈ Ā then q0 ≤ p(x, A) ≤ q0 + ε.
– The numbers p0, q0, ε satisify p0 + ε < 1, q0 + ε < 1 and 0 < p0 + q0 < 1.

Let us apply Theorem 2 for this situation. The parameters will be as follows:
m = 2,

L =
[

1 − p0 − ε p0
q0 1 − q0 − ε

]
U =

[
1 − p0 p0 + ε
q0 + ε 1 − q0

]
.

Furthermore, we can take ρ = 1 − p0 − q0 − ε. Then we obtain from Theorem 2,
expressing the estimation in terms of the total variation distance:

DTV (π̃t, π̃) ≤ (1 − p0 − q0)t + ε
1 − (1 − p0 − q0)t

p0 + q0

where the distributions π̃t, π̃ are over the sets of the partition (A, Ā), not on
the original state space. Note that in our case we actually have DTV (π̃t, π̃) =
|πt(A) − π(A)|, due to the fact that |πt(A) − π(A)| = |πt(Ā) − π(Ā)|. Therefore,
we obtain the estimation directly for the set A:

|πt(A) − π(A)| ≤ (1 − p0 − q0)t + ε
1 − (1 − p0 − q0)t

p0 + q0
.

If p0 + q0 is not extremely small, then the term (1−p0 − q0)t will quickly vanish,
so after a reasonable number of steps we reach a distribution πt from any initial
state, such that |πt(A) − π(A)| is bounded approximately by ε/(p0 + q0). For a
numerical example let us take p0 + q0 = 1/2. In this case after t = 100 steps we
obtain the estimation

|πt(A) − π(A)| ≤ 2−100 + ε
1 − 2−100

1/2
≈ 2ε.
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Note that we do not have to know the actual value of p0, q0 to get a good
estimation. We only need that p0 + q0 is not so small that the term (1−p0 − q0)t

would converge too slowly to 0. If we have any lower bound a ≤ p0 + q0, then we
can directly estimate the number of steps needed to get to stationarity within
∼ ε/a error.

If the original chain does not satisfy the condition of ε-lumpabibity with a
reasonably small ε, then it is worth trying the chain generated by k-step tran-
sitions of the original one, with some appropriate value of k. This usually has
a “smoothing effect” and increases the chance for ε-lumpabibity with small ε.
(Note that if ε is not small, then ε-lumpabibity is not a restrictive requirement,
but then our bound becomes too lose with growing ε.)

5 Conclusion

We have analyzed the convergence rate of quasi-lumpable Markov Chains. The
result is a new bound on the rate at which the aggregated state distribution
approaches its limit in such chains. We have also demonstrated that in certain
cases this can lead to a significantly accelerated way of estimating the measure
of certain subsets in Markov chains with huge state space.
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Abstract. This paper covers the performance parameters for an object=
oriented software system: The number of classes in the class diagram of
this system, the number of attributes and methods in each class, their data
types, the multiplicities of single classes, the number of relationships in
this diagram, the types and multiplicities of relationships, the lengths of
access paths, and the allocation of methods and attributes to classes. A
performance analysis is described. It treats a class diagram, which must
be in attendance at each analysis because used dynamic diagrams must
be consistent with it, and encloses these parameters. It is based on an
approach which enables one to predict the performance values of
response time, throughput and utilization, for use cases that can operate
on databases related to this diagram.

Keywords: class, relationship, class diagram, database, performance
analysis.

1 Introduction

A class diagram illustrates classes and interfaces, and relationships between them.
It contains the statics and dynamics of its software system, and can be schemes for
(object-oriented) databases at the same time. Thus, this diagram can be applied
to conduct a performance analysis. From a performance viewpoint, the structure
of a class diagram influences the behavior in this diagram. It encloses parameters
such as: The number of classes, the number of attributes and methods in a class,
their data types for example set, multiplicities of classes, the number of diagram
relationships, their multiplicities, types for instance relationships between classes
and part classes or subclasses, lengths of access paths, and distribution of methods
and attributes to classes. Most of these parameters, expounded in the next section,
in particular multiplicities and types of relationships and cardinalities of object
collections are included in Data Integrity Constraints (DICs), which are checked
when data is updated in databases [8]. All parameters can be so adjusted that the
performance quality of a software system is ensured. Both terms “class diagram”
and “UML class diagram” refer to the same.

This paper describes a performance analysis for an object-oriented software
system in which the class diagram of this system, i.e. its parameters, is treated.

A. Horváth and M. Telek (Eds.): EPEW 2006, LNCS 4054, pp. 148–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Applying the UML Class Diagram in the Performance Analysis 149

An approach, which is adopted and partially explained in [1], considers how
these parameters are applied. It requires the UML documents of the class dia-
gram including the description of the behavior within it (collaborations) and the
deployment diagram. The use case diagram and sequence diagrams are used to
present this behavior. In fact, these diagrams are extra, very useful delineations
for the dynamics, and they must be consistent with the class diagram to lead an
analysis that produces correct results [25], [18].

The approach delivers, for use cases that can operate on databases related to
the class diagram, the performance values of response times, throughput, and
utilization of components of computer system. It consists of a number of ac-
tivities: (I) Defining the workload intensities, or arrival rates, of use cases and
setting up the performance requirements, or objectives, of them; (II) Defining
the statistics of the class diagram; (III) Annotating the (DICs) in use cases with
performance information; (IV) Deducing the Execution Graphs (EGs) for use
cases from their sequence diagrams; (V) Deriving the Queueing Network Model
(QNM) of computer system from the deployment diagram and instantiating the
EGs with information from this diagram; and (VI) Deducing, parameterizing,
and evaluating the QN performance models of use cases by using analytic ap-
proaches. The performance requirements and performance values are compared.
If requirements are not met, the class and/or the deployment diagram must be
changed and the performance analysis has to be repeated.

This analysis of the performance is conducted on a developing software sys-
tem for a book store system. One of the most performance critical use cases that
frequently transports a lot of data between the main and secondary storages is
chosen and analyzed. Because its performance values are small, it is twice re-
designed in accordance with the class diagram and studied, in subsection 4.2.

Section 2 explores the class diagram for an analysis of the performance. Sec-
tion 3 describes this analysis, while section 4 demonstrates it on a software
system in the design phase. Section 5 surveys existing works to manage the per-
formance by means of UML diagrams, and the last section contains conclusions.

2 The Performative UML Class Diagram

A class is set of objects which have the same features (attributes), behaviors
(methods), connections to other objects (reference attributes), and semantics
(meaning). A relationship is a connection between model parts, such as actors,
classes, and objects [19]. A class diagram is a graph, the nodes of which present
classes and interfaces, and the edges of which express relationships. It can model
a system from a static and dynamic viewpoint. This diagram manages both
classes and interfaces, and it is necessary for further making and maintaining a
software system. As interface operations are realized in classes, class diagrams
with only classes as well as binary relationships are considered in this paper.

Subsection 2.1 discusses the performance parameters which are inherent in a
class diagram. Subsection 2.2 gives an overview about the behavior in this
diagram.
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2.1 Performance Parameters of a Class Diagram

The performance parameters, or factors, of a class diagram have trade-offs be-
tween themselves. Some of them have to be stated for the performance analysis of
behaviors if they are unknown, while other already given parameters are involved
in this analysis. If these parameters are changed, a class diagram is redesigned,
and conversely.

2.1.1 Number of Classes
Concerning databases the objects of a class are put in one or many data files
and managed by one or many index files. Disregarding index files, many classes
map to a number of data files. This number should not be much smaller than
the number of the classes, because it indicates that, data is clustered or unified
very much and, hence, system performance will be bad. On the other hand,
big number of data files can, among other things, increase the volume of index
data and the management information of these files and their index files, and
also causes more accesses to databases or secondary storages than it will be
needed. Consequently, the number of the classes and of data files have not to
be much different. That is, an increase of class number produces an increase of
file number. If a software system is not changed, the first number can be varied
by de-, normalizing, unifying, or splitting classes, and the second number, by
clustering, partitioning, or replicating files [21], [1].

2.1.2 Number of the Attributes in a Class
The volume of a data object of a class is contingent on the number of the
attributes in this class. Many attributes in a class can mean that a class is
connected to a number of other classes and, thus, is repeatedly accessed. This
performance factor can be modified either by reassigning attributes to classes or
building or destroying links between classes.

2.1.3 Number of the Methods in a Class
Methods, including those methods which realize interface operations, can be
seen as special attributes in classes. Therefore, the number of methods in a class
affects the volume of a data object of this class. Many methods in a class can
mean that this class is frequently accessed. This parameter is changeable by
distributing methods to classes.

2.1.4 Data Type of an Attribute or a Method
The type of an attribute in a class can be simple, such as int and string. It has
a size of some bytes. An attribute can have a complex data type, like a class,
list, or set of objects. This type has a bigness of many bytes. The size of a data
type of an attribute influences the volume of a data object, and the volume of
its index record in the case of databases.

2.1.5 Multiplicity of a Class
That is the number of the objects which a class can have in a class diagram
[3]. The multiplicity of a class should agree with the multiplicities at the ends
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of relationships attached to it. In databases the extension of a class is the set
of objects of this class over the time [20]. This statical parameter controls the
cardinality of a class extension and, thus, the volume of a data file and its ac-
companied index file(s). It can be altered by manipulating objects of classes.
In UML this parameter is commented as a number in the upper right corner
inside the notation of a class, while the cardinality of an extension can be anno-
tated by using tagged value or note outside the notation of a class [3], as shown
in Fig. 3.

2.1.6 Multiplicity of a Relationship End
In UML this parameter is simply drawn at the ends of relationships. It gives
number of objects of a class which are connected to an end. Multiplicities are
expressed in form of single number, list or range of numbers, or lower/upper
bounds of numbers. In respect to schemes of databases this factor expresses
a data integrity constraint, as discussed in subsections 2.2, 3.3, and 4.2.3. If
it is not constant and a relationship is not restricted [3], it can be varied by
updating objects and their connections (in object collections at ends of links),
as demonstrated in subsection 4.3.

2.1.7 Type of a Relationship
The connection type affects the performance values of use cases, because it ex-
presses a data integrity constraint. If databases are dealt with, this paper only
considers the following types of relationships: (I) Association with its further
specification as an aggregation or a composition of objects; (II) Inheritance with
its kinds single or multiple, and their further descriptions as complete or incom-
plete and as disjoint or overlapping. The types of relationships can be changed
in a class diagram, for example by delegation from multiple inheritance to ag-
gregation [19].

2.1.8 Length of an Access Path
That is the number of relationships on an access path which connects two classes
in a class diagram and on which reference attributes in classes are visible to
their neighboring classes and relationships are navigable in the direction to
the accessed class [3], as illustrated in subsection 4.1.1. Obviously, long access
paths cause extra processing times. This parameter can be modified by building
new or destroying existing relationships, de-, normalizing, unifying, or splitting
classes.

2.1.9 Number of Relationships
This factor refers to both explicit and implicit relationships in a class diagram.
The more there are relationships between classes, the shorter access paths are
from a class to another. On the contrary, many relationships, such as deep
inheritance, aggregation, or composition hierarchies and big number of suc-
cessor classes, produce much processing, to check the specifications of these
relationships in the case of databases. Generally, the more classes a class
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diagram includes, the more relationships this diagram exhibits. Big number of
classes and small number of relationships generate long access paths in a class
diagram.

2.1.10 Allocation of Methods and Attributes to Classes
The location of methods in classes influences the performance values of use
cases. Methods of classes have to be accessed along relationships and then exe-
cuted. This parameter has to do with lengths of access paths between client and
server classes [2]. The same is for attributes.

2.2 Behavior Within the Class Diagram

The behavior of a software system is specified by use cases, and their performance
is to analyze. Use cases, which can contain database transactions, are defined
and implemented as methods, that is collaborations, in classes of a class diagram
or in special classes called for example Collection. This Technique, based on
object-oriented concepts, is presently applied in some Object-Oriented DataBase
Management Systems (OODBMSs), such as GemStone which has developed an
object-oriented database language GemStone Smalltalk and ObjectStore [8], [5],
[9]. Because use cases which manipulate data in databases can include the reali-
zation of data integrity, data integrity constraints are debated in the following
paragraph.

Data integrity constraints are defined and specified in the analysis phase of a
development process of a software system. They are inherent in class diagrams.
With respect to object-oriented databases, they can be divided into the following
types [20], [8], [9], [10], [5].

1. Domain constraints: An example is the not null constraint for attributes,
that is, null values are not valid for these attributes.

2. Primary key constraints: A group of attributes of a class is chosen as a key.
Their values must uniquely identify objects of this class and contain no null
part values [20].

3. Cardinality constraints: Lower and/or upper bounds or (lists of) single values
are set for multiplicities of relationships and, for cardinalities of attributes
data types of which are complex such as set.

4. Aggregation and composition constraints: They concern with objects taking
part in aggregations and compositions as well as associations. For example,
it is to forbid to delete an object which is referenced by other objects from
a database.

5. Inheritance constraints: There is a series of constraints that are related to
this type. An inclusion constraint requests that the extension of a subclass is
a (real) subset of the extension of its class (which is abstract), and a disjoint-
ness constraint ensures that intersection of all extensions of the subclasses of
a class is equal to the empty set. A covering constraint forces that the union
of all extensions of the subclasses of a class is equal to the extension of this
class which is abstract. Other constraints from this kind are class migration,
class membership, and role change constraint [20].
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3 Performance Analysis

In this section, an approach to a performance analysis of an object-oriented soft-
ware system is elucidated. It requires the UML documents of the class diagram
including descriptions of collaborations within it and the deployment diagram.
It predicts for those collaborations the performance values of response times,
throughput, utilization of computer components, and consequently, detects the
bottle necks in these components. Useful diagrams are the use case diagram
and sequence diagrams of single use cases. The first can be obtained from the
functional requirements. The other diagrams are different forms for collabora-
tions in the class diagram. The approach, run by performance analyst, handles
dynamic diagrams which have no asynchronous interactions, and it is based on
product-form QNs. It combines a number of steps discussed in [1], [11], [22],
[13] [14], [4].

The approach is supported by QN-based performance tools, such as SPE.ED
[23], ObjecTime [16], or QSolver/1 [13], which are integrable into software pro-
duction environments. The use of UML tools, e.g. Together or Rational Rose,
aids the consistency between the class diagram and other UML dynamic
diagrams.

3.1 Defining the Workload Intensities and Establishing the
Performance Objectives

The workload intensities, that is number of the calls of a use case in a time unit
or transactions per second (tps), and the calling probabilities of use cases, by the
users of a software system, are stated. If there is a system, workload intensities
are measured. For early software descriptions they can be estimated based on
experience [26]. Calling probabilities can be determined from system measuring
if system exists, user-level software sketches, or also estimates close to practice,
as achieved in subsections 4.2.1 and 4.1.2.

Then, the performance objectives of use cases, like response times, are set
up, as seen by the stakeholders of a software system [24]. They should be quan-
titative and measurable. For each of workload intensities, calling probabilities,
and performance objectives comments can be made on a use case diagram in
the form of UML tagged values, notes, or expressions of the Object Constraint
Language (OCL) [3].

3.2 Defining the Statistics of the Class Diagram

The demands on components of a computer system are determined for database
transactions or use cases. The physical design document of a database is dealt
with. This contains: Specifications of hardware, like Hard Disk (HD) devices;
DBMS characteristics including access path techniques, e.g. B-Trees, Bitmaps, or
Hashing; optimization plans of use cases; information about design decisions such
as data clustering; and information about data and index files and their statistics,
like (average) volumes. For a use case the number of the accesses to a database
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depends on its optimization plan, number of the entered data files, and decisions
of the design. For an access to a database number of the accesses to an HD device
is reckoned over used access path techniques, which are very good regarded in
the literature, and the remaining contents of this document [6], [12], [21].

If there is no available information about the data and index files and their
statistics, the logical or conceptual design document of a database is processed.
The latter consists of the performative class diagram. The average volume of a
database can be defined thus: Firstly, the persistent class sub-diagram is con-
verted into an equivalent class sub-diagram which only includes one type of
relationships, binary associations, and OCL constraints [1].

Secondly, the following actions are achieved and the data is put on that sub-
diagram: (I) Define the average cardinality for each single class extension; (II)
Define the average multiplicities at both ends for each single association.

If system exists, data is measured. If not, it can be acquired from user-level
descriptions, multiplicities on the sub-diagram, data of problem domains, or es-
timates based on experience. The average cardinalities of extensions must agree
with the average multiplicities of associations, or of classes. In the case of com-
plete inheritance, the sum of the average cardinalities of the extensions of sub-
classes must be equal to the average cardinality of the extension of abstract class.

Finally, the average volume of a data file and an index file is counted, by mul-
tiplying the average cardinality of a class extension and the (average) volume
of an object of this class or index record together. (Average) object and record
volume have also to be calculated from sums of sizes of data types of attributes
and methods in a class and an index record, or to be assessed if data types or
number of attributes and methods are still unknown.

3.3 Annotating the DICs with Performance Information

The realization of data integrity constraints, by collaborations in the perform-
ative class diagram, is concerned. The cardinality constraints are involved in
all other types of constraints: They must be always met, after those types were
tested. Their numbers as well as frequent checks influence a system performance.
Comments on these constraints are made in this manner: One begins with a cer-
tain class and navigates in the converted sub-diagram to other classes. Each
association end which lies in the navigation direction is annotated with perform-
ance information that should be conformable with the original multiplicity of
this association, as demonstrated in subsection 4.2.3. If system exists, this data
is measured. Otherwise, it can be obtained from user-level software descriptions
or estimates related to practice. Performance data of the other constraints’ types
are presented by the performance factors in the last section. For example, in the
case of inheritance this data is number of the subclasses of a class.

The data integrity constraints of a database system are specified in the se-
quence diagram(s) of use cases which manipulate data. For the consistency be-
tween the class diagram and those extra and helpful diagrams, this performance
data is also depicted onto them [25], [18], as done in subsection 4.3.
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3.4 Deducing the Execution Graphs for Use Cases

An Execution Graph is similar to a UML activity diagram: Its nodes hold soft-
ware components or workloads, and its edges display the processing sequence of
these components. There are many algorithms in the literature [11], [22], [4] to
derive EGs from software specifications.

The algorithm described in [4] builds the EG for a use case. It infers an EG for
each sequence diagram of a use case, and then adds the calling probabilities of
each diagram by users to its EG. Shortly, the algorithm maps every interaction
in a sequence diagram into a basic node in which the name of this interaction,
the sender, and the receiver design component are noted. According to the con-
trol flow in this sequence diagram, it connects an existing node with a new node
by a pending arrow, cycle, branching, fork, or join node.

3.5 Deriving the QNM of Computer System and Instantiating EGs

A deployment diagram supplies the analysis with data about the hardware con-
figuration of the (future) computer system on which a (developing) software
system should run [3]. There exists a lot of approaches in the literature [11],
[22], [13] to build QNs for computer systems. The approach illustrated in [22]
can be applied to data of a deployment diagram. It is chosen to complete this
step. In brief, it identifies components of a computer system, e.g. CPUs and HD
devices, which are key to the performance of this computer system, and repre-
sents them by queueing service centers. It then joints these centers to each other
by the way their computer components interact with others.

A deployment diagram displays the components of a software design and their
distribution on the components of a computer system [3]. For this reason, it
provides the analysis with data about communication times between computer
components. In order to instantiate an EG agreeably with a deployment dia-
gram, this data is added to it in this way: For each node in an EG the sender
and receiver design component are replaced by the communication time between
their places. When this process has finished, it results in another graph which
is very similar to the original EG. It is called an EG instance according to the
involved deployment diagram [4], as shown in subsection 4.2.4.

3.6 Deducing, Parameterizing, and Evaluating the QN Performance
Models

The EG instances of use cases are further processed. For an EG instance the
subsequent activities are completed: Firstly, natural numbers and probabilities,
for the users of its use case, are assessed, and are then written on its cyclic nodes
and at the edges of its branching or fork nodes respectively. This data is gather-
ed from subsection 3.3, system measurements if possible, user-level software de-
scriptions, or assessments based on experience.

Secondly, for each node in this EG instance which has an interaction the de-
mands on service centers of the QNM, or the number of the machine instructions
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executed by components of the attended computer system, are determined. This
data is collected from subsections 3.2, 3.3, and [22]. Finally, simple arithmetical
algorithms are applied to this EG instance, to calculate its demands on those
centers, that is the demand vector of its use case.

On the condition that there is only one user and no competition with other
users on the service centers, the processing time of a use case is computed as
follows: Each component of the demand vector is multiplied by the (average)
service time of its service center. Processing time is equal to the total sum of
all products. If this time is less than the time of the objective of a use case, the
performance analysis continues, as done in subsection 4.2.5.

The demand vector of a use case is put together with the QNM, to deduce
the subnet or QN performance model of this use case [22], [13]. Then, this model
is parameterized with information from the deployment diagram such as CPU
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Fig. 1. UML class diagram of book store system
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size and speed, from the demand vector, and from workload intensities. It is
evaluated by using analytic approaches or performance tools.

4 Case Study: Book Store System

A software design for a book store system will be studied. This system offers
many services, and users call them, for instance to get information, order books,
or possibly change their orders.

Subsection 4.1 introduces a specification for a book store system. It ex-
plains a class diagram, a sequence diagram of a collaboration which realizes a use
case or service, and a deployment diagram of a computer system. Subsection 4.2
leads the performance analysis, and subsection 4.3 argues design choices for this
use case.

4.1 The Book Store Specification

4.1.1 The Class Diagram
Fig. 1 presents a class diagram for a book store system: It comprises nine persistent
classes (in bold) which are linked by ten binary relationships of different types,
that is associations e.g. amid the classes Book and Category; an aggregation of the
classes Book and KeyWord; and both disjoint and incomplete inheritance between
the concrete class Person and the subclasses Publisher, Author, and Customer.

It contains two transient classes User and Control to model the users of a book
store and to steer interactions between the classes respectively, and a boundary
class which has links with the classes and is ignored for the sake of the diagram
complexity. It is assumed that class User only has access rights to methods
of class Control; Control, to attributes and methods of BookOrder; reference
attributes in persistent classes are visible to neighboring persistent classes; and
the relationships between these classes are navigable. As can be seen, the diagram
is early in maturing, why the specifications of its classes are still unfinished.

4.1.2 The Use Case, Sequence, and Deployment Diagram
The use case diagram of this software system holds many use cases, from which
a performance critical use case Order Changing will be treated. Customers who
have ordered items from the store can later alter their commissions, until a time
limit and once at most. They can request additional books, remove items from
their orders, and/or exchange books for others.

For the simplicity, the use case diagram is reduced to a diagram with this use
case. Thus, Order Changing has a calling probability of one. It is supposed that
customers alter their orders before the time limit at one time. Fig. 2 presents a
sequence diagram for this use case: For a user (customer) who has to type into a
new version for his/her old request again, a new object of the class BookOrder is
created. The interaction changeInteg() checks the data integrity of this object,
and modify() manipulates an existing book order if the data integrity of the new
object is fulfilled.
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Fig. 2. Sequence diagram of Order Changing

For the diagram of changeInteg() it exists two variants: The first, similar to a
diagram in [1], is not given for limited place, but its EG instance. The second is
presented later. The deployment diagram, of a node in a shared-nothing system,
consists of one CPU device with frequency of 2 GHz and very large memory and
one 4 GB HD device with access time of 16.43 msec. It is also illustrated in [1].

4.2 Performance Analysis

The steps of the performance analysis are carried out for use case Order Chang-
ing. It is assumed that all databases are opened and all transactions are compiled.

4.2.1 Defining the Workload Intensities and Establishing the
Performance Objectives

Estimates that are related to practice are assigned to workload intensity λ:
λ = 0.05, 0.1, . . . tps as in Fig. 5. It is requested that the response time R should
not exceed five seconds: R ≤ 5 secs.

4.2.2 Defining the Statistics of the Class Diagram
The persistent class sub-diagram in Fig. 1 is converted into an equivalent class sub-
diagram which only includes binary associations and OCL constraints and which
is fully discussed in [1]. Fig. 3 presents this diagram: It shows the defined, average
multiplicities of associations and cardinalities of class extensions (in normal), and
is found that one access to any database requires one access to the HD device.

4.2.3 Annotating the DICs with Performance Information
The cardinality constraints for a revised order are concerned, since further con-
straint types (primary key constraints) are already annotated, when performance
factors (extension and key size) are stated, or not given. Starting with class
BookOrder in the scheme of book order database in Fig. 3, comments for perform-
ance information (values in bold) are made on the multiplicities of association
ends which one reaches in the navigation to other classes. They are estimated
to be equal to the information already existing in the book order database.

As explained in subsection 3.4, the EG of Order Changing is constructed. It
is shown by its instance in Fig. 4A and 4B, which is alike.
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Fig. 3. Equivalent UML class diagram for book store system

4.2.4 Deriving the QNM of Computer System and Instantiating the
EG

The CPU and HD device in the deployment diagram are mapped to an
M/M/1/1-PS CPU and M/M/1/1-FCFS HD queueing service center respec-
tively. The network which links these centers matches the logical communication
network between their devices.

Fig. 4A presents an EG instance for Order Changing that is tailored to the
deployment diagram. The expanded node Loop Books (in bold) is refined by
Fig. 4B. As the design components (GUI, OODBMS, and Order Changing) are
located on the same CPU memory, the communication times between them are
very small and negligible [7]. Each node comprises two pieces of data: The name
of an interaction and the communication time for it.

4.2.5 Deducing, Parameterizing, and Evaluating the QN
Performance Model

Probabilities for users, approximated from the practice, are assigned to the
edges of branching nodes in figures 4A and 4B, and numbers, taken from subsec-
tion 4.2.3, are put in the cyclic nodes of Fig. 4B. Assuming that the average rate
of one high-level instruction to machine instructions is 1:20, using the informa-
tion gained in subsections 4.2.2 and 4.2.3, and using estimates from similar soft-
ware systems in [22], [6], [12], the average demands on CPU and HD device are
determined for each node of figures 4A and 4B, including the processing over-
head. Node or interaction modify() has a demand vector of (1,110,000; 44) and
the demand vectors of the remaining interactions are summarized in [1].

The demand vector of Order Changing is calculated from figures 4A, 4B, and
demand vectors of their nodes. As the processing time T is T ≈ 0.57 sec. < 5 sec.,
the performance analysis pursues. The queueing subnet associated with this use
case is constructed by combining its demand vector with the QNM of the com-
puter system. Fig. 4C presents it: It is an open QN, because the customers
change their orders and leave the system.
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Fig. 4. EG instance (A and B) and QN performance model (C) of Order Changing

This QN performance model is then parameterized with information from the
deployment diagram, the demand vector, and subsection 4.2.1. For the simplicity,
it is assumed that there is only one kind of job Order Changing routing in the
system. By typing the performance model into a tool like QSolver/1, the values
of response times can be computed. Fig. 5 graphically presents them: The upper
curve shows an (exponential) increase of the response time R1, over the workload
intensity λ. As can be seen, the maximal achievable workload intensity λ1 which
yet fulfills the performance requirement is by 1.54 tps, λ1≈1.54 tps. It is also the
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Fig. 5. Response times of Order Changing’s redesigns

maximal delivered system throughput X1, X1=λ1. The HD utilization averages
about 90%. Hence, the HD device is a bottle neck in the system.

4.3 Redesigns of Use Case Order Changing

Obviously, the design of Order Changing requires many demands on devices of
the computer system, especially on the hard disk device. Fig. 6 presents another
architecture for the method changeInteg(): The cardinalities of object collections
— that is, books, keywords, and authors — in Fig. 1 are initially tested. Then
the existence of the part objects of a revised order in both book and customer
database is checked by traversing this figure in the visit series BookOrder, Cus-
tomer, Book, and so on, as drawn in Fig. 6, to invoke method search().

The analysis is again conducted: Both the performance objective and sta-
tistics of the class diagram are the same as before. Also, the performance data
on Fig. 3 and 6 is identical. The EG of the new designed use case is done. It is
instantiated agreeably to the deployment diagram. Its instance is analogous to
figures 4A and 4B, and on it the same comments of information are made. It
is assumed that probability of errors caused by cardinality and existence test is
equal distributed: P ([res<1])=0.05÷2=0.025 after the second and third call of
getBookNum() (in bold) in Fig. 6 (Cf. Fig. 4A). The demand vector is calculated
for this instance and the performance model is followed. The latter is the same
as Fig. 4C. It is parameterized and evaluated. The middle curve in Fig 5 shows
the response time R2 of the second design. The maximal workload intensity λ2
is by 1.805 tps, λ2 ≈ 1.805 tps, and the HD utilization averages about 90%. As
a result, the new design has increased the system throughput by ΔX1 = Δλ1
=λ2 −λ1 ≈ 0.265 tps.
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Taking that the previous design has not sufficiently raised λ and other physical
design choices do not notably adjust λ too, the class diagram is treated. The
multiplicities at the ends to class KeyWord and Author (for one book in book
order scheme in Fig. 3) are varied, and also performance data from n2 = 2 to
n2 = 1 and n3 = 2 to n3 = 1. The altered performance data is put on Fig. 6 for
consistency between both diagrams. The analysis is repeated anew: The lower
curve in Fig. 5 shows the response time R3 of the third design. The workload
intensity λ3 is by 2.14 tps, λ3≈2.14 tps, and the HD utilization is about 90%.
As a result, the throughput is enhanced by ΔX2 = Δλ2 = λ3 −λ1 ≈ 0.60 tps,
that is 2160 transactions per an hour.

There are three ways, to further extend the performance values. After which
the performance analysis has to be repeated.

– The first is a further redesign the class diagram in Fig. 1 and its collaboration
in Fig. 6. For example, the classes Category and Publisher in both book and
book order database can be unified to build one class PubCate. This varies
the performance factors number of classes and number of relationships.

– The second is an alteration of the deployment diagram. One or more HD
devices have to be added to the computer system, or the existing HD device
has to be replaced by a new HD device which is quicker or by many HD
devices. Problems that are related with this way are discussed in [22].

– The third is a combination of the two ways above.

5 Related Works

On the area of performance engineering there exists many works about UML dia-
grams. Most of them apply helpful, dynamic diagrams, like [4] which deduces QN
performance models for use case and sequence diagrams and [15] which infers petri
net performance models for the last diagrams via state transition diagrams.

A further work [17] uses the class diagram. Precisely, it analyzes the space per-
formance for an existing software component in the context of a software appli-
cation. As the speed performance analysis here, this work treats parameters of
the class diagram to complete an analysis of the performance. It consists of three
steps. (I) Gathering Data: The software engineer collects information about the
memory allocation and deallocation of every object and the sizes of each; (II) An-
notating Structural Information: Dynamic information is depicted onto the class
diagram, as done in subsection 3.2; and (III) Using the Annotated Structure for
Prediction: The engineer selects a particular class for memory projecting, and
then uses it to predict the memory size which will be allocated by a component.
Elementary arithmetical operations are carried out, as explained in subsection
3.2 and [1]. On the one hand, the approach in [17] deals with software compo-
nents already developed, and deduces their class diagrams from their codes by
reverse transformations. Alternatively, the analysis in this paper addresses class
diagrams which are already given and which can be in evolving states, that is at
early design stages or incomplete. Regardless of transient or persistent diagrams,
a space performance analysis is done in subsections 3.2 and 4.2.2.
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6 Conclusions

A performance analysis for an object-oriented software system is shown. It treats
the class diagram of this system, by applying an approach to use cases which can
operate on databases related to this diagram. A performance critical use case
is studied. It includes a data alteration in a database. Use cases which have no
accesses to databases can be handled too. The analysis supports decisions as to
number of classes, such as “design a subclass as a part of a class diagram” or
“build its extention from superclasses by queries or use cases”.

The use or integration of the class diagram into an analysis of the performance
conveys the following benefits.

– Besides the correspondence between the deployment diagram — of a com-
puter system and (developing) software system — and the QNM of this
computer system, it saves the consistency between the class diagram and
used dynamic diagrams. Thus, it yields right execution graphs and manages
an analysis that delivers correct results.

– In addition to the redesign of an architecture of a behavior, the class dia-
gram provides all other performance parameters (Cf. section 2.1) to tune the
performance of this behavior.

– Leading the space performance analysis at the same time and finding a com-
promise between both speed and space performance analysis for a software
system on a computer system.

Acknowledgement. I would like to thank the committee for comments on this
work.

References

1. Ahmad Alsaadi. A Performance Analysis Approach Based on the UML Class
Diagram. In Proceedings of the Fourth International Workshop on Software and
Performance (WOSP 2004), pages 254-260, Redwood Shores, California, USA, Jan-
uary 14-16, 2004.

2. Booch, G.: Object-Oriented Analysis and Design, With Applications. 2nd edn.
Benjamin/Cummings Publishing Company (1994)

3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, Covers UML 2.0. 2nd edn. Addison Wesley (May 2005)

4. Cortellessa, V., Mirandola, R.: Deriving a Queueing Network Based Performance
Model from UML-Diagrams. In: Proceedings of the Second International Work-
shop on Software and Performance (WOSP 2000), pages 58-70. Ottawa, Canada
(September 17-20, 2000)

5. Geppert, A.: Objektrelationale und objekt-orientierte Datenbankkonzepte und
-systeme [Object-Relational and -Oriented Database Concepts and Systems]. Erste
Auflage. Dpunkt.verlag (2002)

6. Härder, T., Rahm, E.: Datenbanksysteme, Konzepte und Techniken der Imple-
mentierung [Database Systems. Concepts and Techniques of the Implementation].
Zweite, überarbeitete Auflage. Springer-Verlag (2001)



Applying the UML Class Diagram in the Performance Analysis 165

7. Hennessy, J.L., Patterson, D.A.: Computer Architecture, A Quantitative
Approach. 2nd edn. Morgan Kaufmann Publishers, Inc. (1996)

8. Heuer, A.: Objektorientierte Datenbanken, Konzepte, Modelle, Standards und Sys-
teme [Object-Oriented Databases, Concepts, Models, Standards, and Systems].
Zweite aktualisierte und erweiterte Ausgabe. Addison Wesley (1997)

9. Khoshafian, S.: Object-Oriented Databases. John Wiley & Sons, Inc. (1993)
10. Khoshafian, S., Abnous, R.: Object Orientation. 2nd edn. John Wiley & Sons, Inc.

(1995)
11. Lazowska, E.D., Zahorjan, J., Graham, G.S., Kenneth, C.S.: Quantitative Sys-

tem Performance, Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1984)

12. Lockemann, P.C., Schmidt, J.W. (eds): Informatik-Handbücher: Datenbankhand-
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Abstract. As Web service-based system integration recently became the main-
stream approach to create composite services, the dependability of such systems 
becomes more and more crucial. Therefore, extensions of the common service 
composition techniques are urgently needed in order to cover dependability as-
pects and a core concept for the dependability estimation of the target compos-
ite service. Since Web services-based workflows fit into the class of systems 
composed of multiple phases, this paper attempts to apply methodologies and 
tools for dependability analysis of Multiple Phased Systems (MPS) to this 
emerging category of dependability critical systems. The paper shows how this 
dependability analysis constitutes a very useful support to the service provider 
in choosing the most appropriate service alternatives to build up its own com-
posite service. 

1   Introduction 

Recently, the main paradigm of creating large scale information systems is shifting 
more and more towards integrating services instead of integrating components as in 
traditional technologies. Open standards like Web Service Description Language 
(WSDL) assure system interoperability. This integration and development paradigm 
is called Service Oriented Architecture (SOA). The top level description of a SOA 
process describes the main business logic and it is usually very close to the traditional 
business process models (BPM). Recent development tools provide a quite powerful 
support for functional service integration but they lack the support of the description 
and analysis of the non-functional aspects in the system. However, service level 
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integration raises new problems as the service provider is composing its main services 
from elementary services as building blocks without having a complete control over 
them. Thus, the result of the main service may be invalidated by simple faults and 
errors in imported services. Dependability analysis has to focus on creating a system-
wide dependability model of the component models and evaluating the impact of the 
faults in the individual components, including the identification of dependability bot-
tlenecks and the sensitivity analysis of the overall system to the components’ depend-
ability characteristics [1]. 

Based on the observation that Web services-based workflows fit into the class of 
systems composed of multiple operational phases characterized by potentially differ-
ent requirements and goals, the paper attempts to apply methodologies and tools for 
dependability analysis based on the paradigm of Multiple Phased Systems (MPS, [2], 
[6], [7]) to this emerging category of dependability critical systems. A methodology 
for transforming workflow description of composite Web services into an MPS de-
scription is proposed, and, once such a description is derived, appropriate tools for 
MPS modeling and evaluation are applied to quantitatively assess specified depend-
ability indicators. Hereby we use the DEEM tool to describe dependability models 
and to evaluate the indicators. 

This paper is organized as follows. Section 2 describes the Web service flows and 
exposes the need for evaluating dependability indicators and discusses the related 
work. Section 3 introduces the MPS paradigm and the DEEM tool for dependability 
analysis. Section 4 discusses the possible ways of combining Web service flows as an 
implementation-close description of processes running in a distributed environment 
and MPS as a dependability modeling paradigm. Section 5 describes the model trans-
formations performed in the VIATRA 2 framework [5] which enables a (semi-) 
automatic transformation of business processes (such as those built of Web services) 
to formal analytical models (e.g. Deterministic and Stochastic Petri Nets). Section 6 
illustrates the methodology by a case study. Section 7 concludes the paper and sum-
marizes further research directions. 

2   Dependability Aspects of Web Service Flows 

Present BPM tools (e.g. [26]) enable performance analysis/simulation with the restric-
tion that all resources are available. Therefore, no faulty states can be modeled in a 
consistent way, failure rates and repair times cannot be considered during the analysis 
and no dependability analysis can be performed on the model. Similarly, there is a lack 
of error handling, despite the fact that some languages (for instance, Business Process 
Execution Language [8]) can handle exceptions. A BPEL exception handling routine, 
however, may contain only compensation actions which try to eliminate the effect of an 
uncommitted transaction, transaction time-outs, non-atomic operations etc. 

The service-based approach to system integration raises the problem of defining 
Service Level Agreements [9] (SLA) between the provider and user of the main ser-
vice. In this context, SLAs are used to describe the required quantitative parameters of 
a service, related to a particular client or class of clients.  In general, an SLA contains 
measurement objectives, their guaranteed values, a measurement methodology and 
some goals and obligations for the participating parties. An SLA can be attached to all 
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service invocations, described as simple activities in a BPM, although no unified 
formalization of such documents exists. 

As the service level of the system depends on external providers, a standardized 
description of the QoS parameters of Web services is needed in order to have a con-
sistent view of the QoS at the level of composed services. Several descriptions of the 
QoS parameters of Web services were proposed, e.g. in [11], [12],  and [13], however, 
no single, standardized description format was generally accepted. Accordingly, in the 
current paper, no specific syntax will be assumed on the service quality description, 
but merely only those core concepts which can be found in an arbitrary QoS defini-
tion will be referred. 

To illustrate the importance of dependability analysis of Service Oriented Architec-
ture, consider a sample process of three simple steps: receiving a request, forwarding 
it to an external partner (“outsourcing”) and then returning the answer to the client. 
The first and the last activities use internal resources (e.g. a Web server) having 
known performance and dependability characteristics. The second activity is however 
deployed on an external system, therefore its resource usage is unknown, it is de-
scribed only by its Service Level Agreement parameters, for instance,  “AverageRe-
sponseTime” etc. The provider of the main service has to estimate the guaranteed 
QoS parameters of his service, for instance the failure rate, which depends on the 
failure rates of the internal resources and the failure rate of the external service over 
which he has no control.  

 

Fig. 1. A sample process with external method invocation 

The model based analysis of a process necessitates additional information to the 
basic functionality of the process, such as failure rates of components, required and 
guaranteed response times, availability, repair times (for instance, time interval be-
tween retrying to invoke a service), etc. Non-functional design patterns such as 
Recovery Block should also be considered, e.g. in case of a failure, the invocation of 
the fastest service can be followed by calling a slower but more robust variant. The 
system dependability model [14] has to be created from rather different engineering 
models. The external service is described only by a black box model, describing the 
functional interface, performance and dependability-related quantitative parameters 
while the internal services have to be extracted from a model indicating both the func-
tionality and the deployment to resources, extended by the non functional parameters. 
A uniform system-wide model has to be derived from these engineering models for 
the further analysis. 

Available extensions of BPM lack a support of the usage of dependability parame-
ters and fault tolerance patterns in the model. There are, however, numerous evolving 
standards, specifications and research in this field such as [17]. XML-based descrip-
tion languages such as WS-Reliability[16], WS-BaseFaults  [18] can describe the 
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characteristics of a certain endpoint, i.e. a Web service or a port/method of a Web 
service. These descriptions can be associated with WSDL files [19].  

As the actual description language is irrelevant from the analysis point of view, a 
general description language is adopted among the several emerging languages and 
technologies such as Web Service Level Agreements (WSLA) which contains lan-
guage elements for at least a subset of the performance and dependability characteris-
tics. As this language is quite flexible and extensible, we propose to use this for the 
description of non-functional parameters, as this way the external services and the 
internal resources could be characterized using the same description, using Service 
Level Agreements. A typical SLA contains the objectives to be measured, such as the 
transactional throughput of a web server or the response time of a remote web service, 
the measurement algorithm (e.g. how to compose an average measure), the fee of the 
service and the punishments related to violating the requirements. Guaranteed values 
of SLA parameters can be negotiated with the client. After such a negotiation, a com-
plex process can be composed based on elements having well-defined QoS guaran-
tees. The process of this negotiation is out of the scope of this paper; several ideas are 
discussed in [21], [22]. In our research the emphasis is on the evaluation of the proc-
ess models extended with the dependability description. Hereby we suppose a WSLA-
like description for the resources and the services.  

Evaluation of Web Service compositions has been addressed in the literature by 
using Petri Net-based techniques ([29], [31]), Timed Automata [30], non-
deterministic automata [32] or some kind of pi-calculus [31], [33]. PEPA models are 
also used to derivate quantitative characteristics of the systems and are the basis of 
SLA evaluation [28]. However, to our best knowledge, none of these were applied 
directly on a high-level (for instance, BPM) description to perform quantitative de-
pendability analysis without the need to create a lower level model of the system, only 
basic verification is fully automatized. 

The availability of a versatile and highly efficient tool dealing with dependability 
analysis of Multiple Phased Systems, combined with the appropriateness to include 
web-service based processes in the category of MPS systems as shown in the sequel, 
motivated the choices at the basis of our work. 

3   Dependability Modeling: Multiple Phased Systems and DEEM 

This paper elaborates on characterizing Web services-based workflows as Multiple-
Phased Systems for the purpose of dependability analysis. In this section, a brief over-
view of MPS is provided, together with a short description of the tool DEEM for the 
dependability analysis of MPS.  

Multiple-Phased Systems (MPS) is a class of systems whose operational life can be 
partitioned in a set of disjoint periods, called “phases”. During each phase, MPS exe-
cute tasks, which may be completely different from those performed within other 
phases. The performance and dependability requirements of MPS (such as through-
put, response time, availability, etc.) can be utterly different from one phase to 
another. The configuration of MPS may change over time, in accordance with 
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performance and dependability requirements of the phase being currently executed, or 
simply to be more resilient to an hazardous external environment. As the so-called 
MPS goal may change over time, the sequence of phases of which the MPS execution 
is composed (the execution of a given workflow) may depend on the state (such as 
success/failure) of previous phases. Phased Mission Systems (PMS) and Scheduled 
Maintenance Systems (SMS) are two typical subtypes of MPS. Examples of MPS can 
be found in various application domains, such as nuclear, aerospace, telecommunica-
tions, transportation, electronics, and many other industrial fields. Because of their 
deployment in several critical application domains, MPS have been widely investi-
gated, and their dependability analysis has been the object of several research studies 
([2], [3], [4], [6], [7], the complete expose of the literature can be found in [2]).  

Recently, a dependability modeling and evaluation tool, DEEM, specifically tai-
lored for MPS, has been developed at the University of Florence, and ISTI-CNR [4]. 
DEEM relies upon Deterministic and Stochastic Petri Nets (DSPN) as the modeling 
formalism, and on Markov Regenerative Processes (MRGP) for the model solution 
[2]. When compared to existing general-purpose tools based on similar formalisms, 
DEEM offers advantages on both the modeling side (sub-models neatly model the 
phase-dependent behaviors of MPS), and on the evaluation side (a specialized algo-
rithm allows a considerable reduction of the solution cost and time).  

The rich set of modeling features provides DEEM with a two-level modeling ap-
proach in which two logically separate parts are used to represent MPS models. One 
is the SystemNet (SN), which represents the resource states and the failure/repair 
behavior of system components for each phase, and the other is the PhaseNet (PhN), 
which represents the execution of the various phases, as illustrated later in Figure 6. 
Each net is made dependent on the other one by marking-dependent predicates which 
modify transition rates, enabling conditions, transition probabilities, multiplicity func-
tions, etc., to model the specific MPS features. 

In DEEM, very general dependability measures for the MPS evaluation can be de-
fined by a reward function. Among the measures assessable through such approach 
are the probability of successful mission completion, the relative impact of each sin-
gle phase on the overall dependability figures, and the amount of useful work that can 
be carried out within the mission. The main motivation of using DEEM was that −as 
it was shown in [2]− it is a versatile and highly efficient tool for dependability model-
ing and evaluation of MPS systems. 

4   Combining BPM as a Modeling Language and MPS as a 
Dependability Analysis Paradigm 

As it was discussed earlier in Sect. 2., BPM models can be extended to capture non-
functional parameters of the system. Therefore, an approach is needed which exploits 
the possibility of modeling multiple states of a resource. The modeling methodology 
and the evaluation procedure implemented in DEEM allow to describe the flow mod-
els of the web service systems and to analyze their dependability attributes, as shown 
in the next subsections. 
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4.1   Considering Business Process Flows as MPS 

Processes in the SOA context can be considered as Multiple Phased Systems in a 
natural way. The two layer-representation of Multiple Phased Systems corresponds 
exactly to the logic of workflow-like integrated component services. The upper layer 
corresponds to the workflow sequence consisting of the sub-service elements while 
the detailed model may be used to describe the individual component services. Re-
mind that the possibility of splitting the description into functional and non-functional 
aspects allows the natural expression of different parameterization of the invocation 
of the services and data-dependent branching in the main workflow. To illustrate the 
modeling issues of a business process, a more detailed view of the process in Fig.1. is 
presented, as shown in Figure 2. 

 

Fig. 2. Sample business process and the underlying resources 

The “Receiving request” and “Return answer” activities are executed locally, i.e. 
on controllable and observable internal resources. Resource parameters can be mod-
eled in a standard way using the General Resource Model UML [20] profile of the 
OMG. The resource faults and their effects can also be described by using the nota-
tions defined in this profile as it was shown in  [10], [15]. The “Invoke external ser-
vice” activity corresponds to a Web service invocation, therefore the quantitative 
parameters of this activity can be derived from the SLA descriptions of the service as 
pointed out in Sect. 2. 

The dynamics of the business process flow can be treated as a Multiple Phased 
System in the following way. The phases (partitions of system operation) are the tasks 
of the BPM, unless consecutive tasks use the same internal resource. This way the 
context of the operation (the environment of the mission) will be different for each 
phase. The resource parameters –appearing in SystemNet if modeled in DEEM– such 
as failure rates, repair times, number of identical resources (e.g. the number of possi-
ble retransmissions of a request or the number of Web servers) may depend on the 
operation context, thus on the actual phase. The mission goal can change over the 
time and the execution of the process (i.e. the mission goal) may depend on the result 
of previous phases and the system state. For instance, if validating a credit card does 
not terminate within a predefined timeout, then a flight ticket reservation cannot be 
confirmed, but is saved as a conditional reservation. 

The chosen method to evaluate the dependability of the web service systems is de-
scribing the model in BPM and transforming it to a MPS model, since the basic 
description language −in which the process is built− is easy to use, a wide range of 
tools are available, and an implementation skeleton (i.e. the workflow control descrip-
tion) can be generated directly from the model after passing the dependability 
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analysis. Moreover, BPM activities can be converted into phases of a MPS in a quite 
natural way while the opposite direction (i.e. generating the skeleton of a control flow 
from a MPS model) raises several questions as many activities can be described in 
one phase, if their dependability parameters are the same. Using model transforma-
tions instead of describing the model in a meta-language brings the benefit of easy 
implementation of additional transformations (for instance, model checking based on 
qualitative properties of the mode) as the model is stored in the format of the graph 
transformation tool. The transformation tool also enables the generation of practically 
any type of output (which can be further the basis of a runtime validation).  

The basic BPM model should be extended with some information about the re-
quired behavior of components (basic activities), such as maximum response time, 
maximum number of timeouts in a given time interval, guaranteed rate of good an-
swers for a prefixed number of requests, availability, etc. All these characteristics can 
be derived from the characteristics of the resources and the software implementation 
(if known) in the case of internal services (those we have control over) or from the 
Service Level Agreements in the case of external service. The business process model 
can be transformed to a MPS according to the following rules: 

- The different activities will be different phases in PhaseNet with different goals, 
dependability metrics and resources. 

- The performance and dependability characteristics of resources and services will 
determine the SystemNet parameters such as transition rate, initial marking, etc. 

- The dependencies between PhaseNet and SystemNet are given by the task-
resource bindings and SLAs of the (both internal and external) services. 

- The measurements of a MPS analysis are determined by the “business measures” 
of the BPM, i.e. the QoS parameters of the main service.  

 

Fig. 3. The sample process seen as a MPS system and modeled in DEEM 

Figure 3 shows the sample process as a Multiple Phased System. Note that the pa-
rameters of the DSPN are derived from the BPM parameters based on the resource 
descriptions and SLAs. The expected durations of the timed transitions of the Phase-
Net correspond to the estimated execution time for activities of the business process. 
For instance, the expected duration of the transition “do_Receive” results from the 
average execution time of “Receive request” activity while the expected duration of 
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the transition “do_Invoke” is derived from the average response time of the external 
service, described in the corresponding SLA. Error manifestation is expected to hap-
pen at the invocation of an operation using a resource. Resource faults inducing errors 
are modeled by the timed transitions of the SystemNet while the enabling conditions 
of these transitions model the resource allocation.  

For instance, the transition “Web server fails” is enabled during the phases which 
correspond to tasks using the web server while the transition rate corresponds to the 
expected failure rate of a server during a typical transaction. These parameters are 
represented in the IBM WBI as the “description” of the resources (since the definition 
of failure rates of resources is not supported by the present BPM tool). For external 
services, such as “External service” in this example, the failure rate is derived from 
the Service Level Agreement, also using a textual field in the modeling tool. The 
main difference between the internal resource usage and the external service invoca-
tion is that in the former case, multiple resources can be used simultaneously and a 
fault in any of them prohibits the proper service while in the latter case only a single 
service and −at most− one resource, namely the application server is used. 

5   Model Transformations with VIATRA2 

As it was mentioned in Sect. 4., the dependability indicators of business processes can 
be evaluated if they are transformed into a MPS model. The model transformation-
based analysis of business process descriptions consists of the steps shown in Figure 4.  

 

Fig. 4. Transformation of business processes 

Using model transformations for the analysis of high-level system models is part of 
the Model Driven Architecture (MDA) concept. The motivation for using model 
transformations in the VIATRA (Visual Automated Model Transformations) frame-
work was the extensibility of the transformation engine by additional parsers and 
plugins which enable the decoupling of the format of the source model and the target 
analysis platform. 

First, the engineering model of the functionality −enriched by dependability pa-
rameters− is taken to be analyzed by formal methods. This model will be generated by 
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a BPM tool [26] and transformed by the VIATRA2 framework into a DEEM model. 
To build a mathematical model from the high level business description in an auto-
mated way, the BPM is parsed into a graph representation (“BPM Graph”). In our 
case, this will be the inner representation language of the VIATRA2 tool, which is a 
public domain model transformation framework, developed at BUTE [23]. It is now 
part of the Eclipse GMT project [5]. In the VIATRA2, graph pattern matching [24] is 
controlled by Abstract State Machines [25]. 

Then, graph transformations are performed upon this parsed model in order to gen-
erate a graph which represents the relevant elements of the system in the target para-
digm (“MPS Graph”). In this case, the target paradigm is MPS and the target model 
representation format is that of the DEEM tool. However, as it will be discussed later, 
the transformation itself was implemented in two steps. Once the model can be read 
by the target analysis tool, a precise analysis method (in this case, the Markov Regen-
erative Process-based dependability evaluation) can be performed.  

The transformations were implemented with the VIATRA2 model transformation 
framework. The automatic generation of a DEEM model consists of three basic steps: 

1. Importing the XML files which contain the description of different aspects of the 
BPM model (“BPM description”), such as the basic process model and the actual 
values of the variables which determine the runtime behavior of the system, e.g. 
the probabilities of paths to be followed after decisions. This step was implemented 
using the built-in BPM parser component of the VIATRA2 framework, which cre-
ates an inner graph representation –in the VPML language of the tool– of the busi-
ness process (“BPM Graph”). 

2. Transforming the graph representation of the BPM structures and concepts into a 
graph representation of a multiple phased system. The model transformation 
(“bpm2mps”) itself is implemented in this step. The metamodel of a general MPS 
description contains the elements of a DSPN-based representation of MPS, such as 
the places, the transitions and the arcs of the SystemNet and the PhaseNet (“MPS 
Graph”). The transformation is described by precondition patterns matching to the 
concepts of the BPM metamodel and the corresponding postcondition patterns give 
the equivalent Petri Net structures, describing a Phase Mission System still in the 
graph representation language. As this transformation is based on a generic MPS 
metamodel, the analysis tool can be replaced by another Petri Net based tool with-
out any change in this transformation. 

3. Code generation: once a graph representation of the MPS is available, the text file 
in the DEEM format can be generated by a simple transformation (“mps2deem”). 
This transformation is designed to take a graph, in which the elements are stored in 
a tree structure and references between them describe the logical connections, and 
generate a text file (“DEEM model”). The main reason of the separation of model 
transformation and the code generation is twofold; first, this way the changes in the 
tool representation format (or even the replacement of the DEEM by another 
analysis tool) can be easily tracked and do not interfere with algorithm of the trans-
formation of the main concepts. Therefore, the transformations are maintainable. 
Second, since the DEEM representation is a flat format, the whole graph tree is 
needed for the code generation, and therefore this step cannot be started before the 
entire model transformation is finished.  
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In order to analyze business processes with DEEM (“Analysis results”), the two 
transformations (“bpm2mps” and “mps2deem”) were implemented in the VIATRA2 
framework. At the moment there are some limitations on BPM elements due to the 
BPM parser of the framework, but anyway they do not affect the essence of the meth-
odology. 

6   Case Study 

Consider an insurance company with a database containing client data (e.g. previous 
accidents) wanting to provide a premium calculator service which receives client data 
and returns an estimated insurance fee for the given person. Consider that this com-
pany wants to interact with other companies to complete its knowledge about a cli-
ent’s insurance record. This interaction is done via Web service interface; the partners 
provide similar premium calculator services. 

The clients of such an application are employees of the company, individual 
brokers, other companies, registered users, etc. The company implements this func-
tionality as a Web service to support communication between heterogeneous, loosely-
coupled systems. The company wants to assure QoS parameters for the clients. 
Therefore, its own resources and services have to match several expectations just as 
the external services.  

There are different types of clients with different QoS requirements against the 
premium calculator service. For instance, a client with a “Golden value” contract 
(another insurance company) may have different expectations against the system than 
a registered user accessing the service from a home PC. 

Requests which mean a big risk (a calculation for an insurance of big amount or for 
a client with missing personal data) have to be checked by other partners to eliminate 
the chance of failure or cheating. On the other hand, different partner companies offer 
their calculator services (which are external activities in the process flow) for 
different prices. 

The measures of interest are −among others− the following: 

- The probability that a client request fails (for different types of clients). 
- Performability metrics which show the cost of dependability, i.e. which external 

services to invoke at given QoS parameters and price. Requests of different client 
types, of course, can be forwarded to different external partners in order to assure 
the required QoS at a reasonable price. 

Finally, sensitivity analysis is required to evaluate the effect of component failure 
rates on above measures. 

6.1   The Example Model in BPM 

This section describes the high-level BPM model of the example. The concrete mod-
eling tool is IBM WBI Modeler which, on the one hand, supports the modeling of 
resources (in this case, the quantitative parameters of the services) and, on the other 
hand, has a BPEL export feature. 
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Fig. 5. The example in IBM WBI modeler 

The rounded rectangles represent the internal and external activities. Parameters 
of the resources and the services are stored in the model repository but are not 
visualized. To comply with the BPEL standard, internal activities can also be 
accessed via a SOAP interface, but their QoS parameters depend on resources with 
known characteristics. 

6.2   The Example Model as an MPS 

This section describes the MPS model of the example business flow, showing the 
general method of transforming a BPM to a MPS. The system can be considered as a 
MPS in the following way.  

 

Fig. 6. The MPS model of the example 

The Web server is modeled in the SystemNet (the lower partition of Fig. 6) which 
can be reconfigured according to that actual phase. The Web server can fail with a 
failure rate which is the parameter of the “webServer_fails” transition. This motivates 
the usage of the same topology (places and transitions) for representing all resources; 
the transition rates may change over time, according to the actual phase.  
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The first phase of the system is receiving a message from the client. This corre-
sponds to the first activity of the business process. The second phase is upon a deci-
sion; whether the request can be served locally (in this case, no remote web service is 
invoked) or it needs to be sent to a remote partner. In the latter case, the answer is 
verified against some basic requirements, for instance, the presence and the consis-
tency of all required data fields are checked. 

If additional information is needed, the request is sent to a backup service, pro-
vided by another partner, and built upon another database. The first activity of the 
workflow (“Process request”) is the only element of a sequence of internal service 
invocations. Therefore, it is the first phase of the system. The length of the phase 
will be represented by a timed transition (processRequest in Fig. 6) with a transition 
duration determined by the length of the task in the business process. During this 
phase, the system can fail if the internal resource, in this case the Web server, 
crashes.  

The next phase is selected according to the user type; the simple calculations are 
served locally while the difficult calculations, e.g. those of users with missing data or 
big value of insurance, are sent to external partners. In this version, the “Recovery 
Block” pattern is implemented in a service oriented environment, which could be 
called “Recovery Block-like Service Invocations”. This means the invocation of a 
primary service, and if the answer is not acceptable –for instance, some user record is 
empty– then the invocation of a backup service. 

The parameters of external service invocations (modeled by phase “service1” and 
“service2”) are determined by the SLAs. The failure rate of the services comes from 
the UpTimeRatio parameter from the SLA (which is represented in the BPM tool as a 
resource parameter of the services which represent the remote partners). The possible 
reconfiguration of the system, i.e. the resending of the request to the “backup ser-
vice”, is represented by the transition “conf” in the SystemNet. 

6.3   Dependability Analysis Results 

To illustrate how dependability analysis constitutes a support to the provider of the 
composed service, we answer the questions “What is the probability of the failure of a 
client request?” and “Which is the most appropriate external service provider from the 
set of available providers?”. 

In a real scenario, the parameters of the services and resources are described by 
Service Level Agreements. As our aim is to present a methodology for the evaluation 
of dependability indicators, we used some sample values based on a measurement 
performed against public domain web services, such as the web service interface of 
google [27].  Hereby we suppose ten available service alternatives for Service1, 
which have their parameters described in Table 1 (considering the same response 
time). Please remember that these do not have realistic meanings, but have been cho-
sen just to illustrate the possibilities of such an analysis. Due to the space problems, 
we do not include a table with the fix parameters used for the evaluations (e.g., the 
costs in the reward measure, the duration of the phases, etc.). 
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Table 1. Parameters of services in the example 

Service 
alternatives 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

Failure 
rate 

0.010 0.012 0.017 0.020 0.025 0.030 0.040 0.042 0.048 0.070 

Service 
price 

14.0 13.5 13.3 13.0 12.8 12.6 12.5 12.2 12.0 11.5 

The aim of this analysis is at determining the impact of the price and dependability 
characteristics of an external web service on the probability of the failure of a client 
request and on the income of the composite service. This income is the fee that a 
client pays for the service minus the sum of the prices of the invoked local and exter-
nal services. As the client receives a compensation for every failed request, this value 
has to be considered as a penalty. The measures of interest are defined in DEEM as 

probServiceFail = IF ( MARK(webServer_down)=1 OR 
MARK(localServ_down)=1 OR MARK(serv1_down)=1 OR 
MARK(serv2_down)=1 ) THEN (1) ELSE (0) //failure prob 

ServiceReward = [VAR(ClientFee) - 
VAR(serv1Price)*FUN(serv1Succ) - 
VAR(serv2Price)*FUN(serv2Succ)- 
VAR(localPrice)*FUN(localServSucc)]* 

(1-FUN(serviceFail)) - 
FUN(serviceFail)*VAR(servicePenalty) //service reward 

The results of the analysis is shown in Fig. 7.  
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Fig. 7. Results of the dependability analysis 

Based on dependability aspects only, 1.service is obviously the best choice as the 
number of failed requests has a minimum for this service. However, if the services are 
evaluated against the performability measure, then 10.service seems to be optimal as 
it has the highest reward value. If both aspects are considered, 9.service should be 
chosen instead, as it has almost as good performability measure as that of 10.service 
with a significantly lower probability of failure of a client request. 
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7   Conclusions 

We presented a methodology for transforming higher level models of Service 
Oriented Architectures into a formal description in order to perform dependability 
analysis. Based on the observation that Web services-based workflows fit within the 
Multiple Phased Systems, model transformations were implemented in the VIATRA2 
framework to perform precise mathematical analysis. Business process descriptions 
extended with quantitative parameters taken from SLAs were transformed, by using 
semi-automated transformations, into a precise mathematical model, a formal descrip-
tion of a Multiple Phased System, which can be solved by the dependability evalua-
tion tool DEEM. 

The current research direction is to extend the proposed methodology to analyze 
high level models described in BPEL and XML-based Web service description lan-
guages to provide a dependability analysis for a wider toolset. This way, a really plat-
form (and vendor) independent analysis framework can be established. SLA-driven 
synthesis of web service compositions is another important research direction. 
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Abstract. The new standard IEEE 802.11e targets at enhancing the
legacy 802.11 so that QoS management over WLAN standards becomes
possible. This is done by the introduction of two new functions, the
enhanced distributed channel access (EDCA) and the hybrid coordina-
tion function controlled channel access (HCCA) for offering diffserv and
intserv functionalities. The efficient coordination of both functions plays
a crucial role in terms of the performance of 802.11e. In this paper we
propose a new method for the calculation of the service interval by using
the send rates of different traffic streams and suggest an advanced way
to determine which one of the functions for which kind of streams to
deploy. We show that despite its simplicity the proposed methods de-
crease packet delay and loss rates significantly and increases the number
of streams having acceptable QoS levels.

1 Introduction

802.11 standards are among the most prominent wireless communication tech-
nologies for daily use. However the lack of quality of service support on 802.11
does not allow sufficient protection for real time traffic for which there is a high
demand on the customer side. In order to overcome this problem, the IEEE
802.11e task group developed an amendment to the legacy 802.11 standard. The
amendment targets at enhancing the legacy 802.11 medium access control so that
real time traffic can be offered using WLAN devices within acceptable quality
of service levels.

The most dominant enhancement in 802.11 medium access control (MAC) is
the introduction of the hybrid coordination function (HCF) which consists of two
sub functions, the enhanced distributed channel access (EDCA) and the HCF
controlled channel access (HCCA). As the 802.11e standard is new, most of the
relevant studies made so far include performance analysis and the improvement
suggestions for the new functions EDCA and HCCA [1, 2, 3]. In these studies, it
was shown that although the new standard improves the WLAN performance
substantially, only a very careful fine tuning of the parameters of these functions
results high QoS levels. In our previous study [4], we also showed that especially
the maximum service interval (maximum allowed time between transmissions of
two successive packets belonging to a specific traffic stream) and the amount

A. Horváth and M. Telek (Eds.): EPEW 2006, LNCS 4054, pp. 181–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of time reserved for HCCA affect the QoS that one may expect using 802.11e.
The correct choice of these parameters boosts system performance drastically.
Although the effects of the service interval choice and the time reserved for
HCCA were shown to be significantly high in [4], no method was proposed for a
proper selection of these parameters.

In this paper we analyze mathematically the effect of the service interval
choice on the delay and loss rates of the traffic being served within HCCA and
correspondingly propose methods for choosing service interval length leading to
significant performance improvements. We also propose an admission control
algorithm which is an enhanced version of the reference admission control of
802.11e. Within the proposed admission control algorithm, we differentiate be-
tween uplink, downlink and bidirectional traffic. We figure out in which cases
these different traffic types should be assigned to which one of the two sub func-
tions (EDCA and HCCA) of the hybrid coordination function. We show that
the cooperation and so the performance of 802.11e in terms of offered QoS can
be significantly increased when using this control mechanism and the service in-
terval selection method. To the best of the authors’ knowledge there is no study
which deals with the service interval selection problem and a corresponding ad-
mission control procedure although it is one of the most effective parameters of
802.11e in terms of satisfying QoS requirements [4].

The rest of the paper is organized as follows. In the second section the func-
tioning of HCCA is summarized in order to give background information about
802.11e. In the third section a short literature review is given. In the fourth sec-
tion we analyze the relationship between service interval and the QoS metrics.
Fifth section presents the validation of mathematical analysis with simulation
results. In the sixth section we draw the conclusions.

2 Background

The IEEE 802.11e task group enhanced the legacy WLAN standard with two
well known QoS mechanisms. These mechanisms are called differentiated ser-
vices (diffserv) and integrated services (intserv). Diffserv mechanism is setup
in the way that access points can serve multiple traffic classes with different
QoS requirements. Instead of priorities, intserv is based on the individual QoS
requirements of the stations. The hybrid coordination function of 802.11e uses
EDCA for diffserv and HCCA for intserv. Depending on the load of the net-
work, hybrid coordination function determines respectively at what time which
one of these functions to use. An example to successive deployment of EDCA
and HCCA can be seen in figure 1.

Basically the HCCA is an asynchronous real time scheduler. For cases where
there are strict delay and loss constraints, the stations inform the access point
that they must be included in the HCCA scheduler. In order to do this, they
give detailed information about the traffic stream within a management frame
called TSPEC. TSPEC includes information like nominal MAC service data unit
(MSDU) size, mean data rate, suspension interval, delay, surplus bandwidth
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Fig. 1. An illustration of HCF, HCCA and EDCA

allowance and maximum service interval. This information is used to decide on
accepting the incoming requests for being included in the schedule of HCCA
or not. If a stream is accepted to the HCCA schedule, then a time interval for
that specific stream is reserved in the schedule. This time interval is called the
HCCA transmission opportunity (HCCA TXOP). The usage of HCCA TXOP
is summarized in Fig. 1. Stations are informed about the reserved TXOP with
a frame called CFPoll frame after the channel is sensed to be idle for a time
period which is called the arbitration inter frame space (AIFS). In fact AIFS is
different for all traffic priorities. For this reason the arbitration interframe space
of the access point is denoted as AIFS[0] within Fig. 1. The station receiving
the CFPoll sends its frames after waiting for a short inter frame space (SIFS).
During a TXOP only the station which received the CFPoll can send its frames.
This period is also called the contention free period, because only the stations
who receive HCCA TXOP are allowed to transmit any packets.

In real time schedulers one of the most common and most important parame-
ters used for building the schedule is the deadline. The HCCA reference scheduler
uses the maximum service intervals that are given by the stations for this pur-
pose. Maximum service intervals define the maximum amount of time that is
allowed between transmissions of two successive frames of a specific stream. For
the sake of simplicity, the reference scheduler proposes a cyclic schedule which
cycles through a path of TXOPs determined at the beginning of a beacon period
(See Fig. 2). This cycling is delineated as follows. A beacon period is defined as
the time between two beacon frames where a beacon frame is a management
frame used to advertise general information regarding the access point to all
surrounding stations periodically. The reference scheduler selects a number as
its service interval which is smaller than the smallest maximum service interval
given by the stations and which is a submultiple of the beacon interval. In this
way it makes sure that all of the maximum service intervals (in other words
’due dates’) are taken into account. HCCA calculates TXOPs needed by each
one of the stations during one service interval. The same TXOPs are distributed
to the stations during each of the following service intervals until a new set of
TXOPs is determined. This cyclic procedure is illustrated within Fig. 2 where
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three different traffic streams receive TXOPs at the beginning of each service
interval. As seen from Fig. 2 the time in which HCCA is not used is reserved to
EDCA. For more information about the functioning of EDCA please refer to [5].

3 Literature Review

Due to the long lasting ratification of 802.11e, one can find many studies for the
optimization of EDCA and HCCA. To the best of the authors’ knowledge, in
all these studies, except the one from Ramos et al. [6], EDCA and HCCA were
dealt with separately. Banchs et al. [7] introduced an admission control algorithm
based on an analytical model for the throughput performance of 802.11e using
EDCA, where they dynamically adapt the contention windows of each priority
level, as new traffic associates with an access point. On the other hand Xiao [8]
presented an enhancement suggestion by introducing ”TXOP Budgets” to each
access category. In this way, they protect voice and video traffic from the best
effort traffic. Kim and Suh [9] and Gao et al. [10] instead use the physical trans-
mission rates of the stations in order to prevent unfairness because of distance
at the cost of lower throughput.

For HCCA, the studies concentrate more on the protection of voice and video
traffic. Ma et al. [11] use the talkspurt-silence alternation characteristics in order
not to reserve time in the HCCA scheduler for a voice stream when it is silent.
Ansel et al. [12] and Fan et al. [13] introduce algorithms for dealing with variable
bit rate traffic (VBR), as it is one of the main problems of HCCA. As a result
of these studies the recommended TXOP calculation of 802.11e was changed so
that VBR is also supported. [12] uses exponential smoothing for estimating queue
length information of VBR traffic and reassigns TXOPs in case of deviation from
the ideal queue length. [13] makes the redistribution of TXOPs by calculating
VBR traffic drop rates with a trade-off between the packet loss performance and
the number of admitted flows.

Different than EDCA and HCCA performance analysis, in [4] we evaluated the
quality of the QBSS load element of 802.11e in terms of an information element
for solving the candidate access point selection. It was shown that the complexity
of the cooperation of EDCA and HCCA avoids having reliable information for
estimating the QoS that a traffic stream can receive after associating with an
access point. The service interval and the amount of time reserved for HCCA
plays a crucial role in this problem. Taking this result as the basis, we tried to
find out the optimum choice of service interval length and the amount of time
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reserved for HCCA. This paper is devoted to present the results of our studies
for increasing 802.11e system performance by adapting a new service interval
selection mechanism and time reservation policy for HCCA.

4 Service Interval and the QoS Metrics

A service interval starts with the distribution of TXOPs which are determined
as follows: Let Ni be the number of packets arriving within a service interval SI,
pi is the application data rate and Li is the nominal MSDU size of the traffic
stream (TS) in TS queue i, then :

Ni = �pi ∗ SI

Li
�. (1)

TXOPs for different traffic streams are assigned as follows:

TXOPi = max(
Ni ∗ Li

Ri
+ O,

M

Ri
+ O), (2)

which is the maximum time needed to transmit N frames of size L with data
rate R and time needed to send one maximum size MSDU (M) plus overheads.
The hybrid coordinator sends the so called CFPoll frames to the stations which
includes the information about the assigned TXOP. As given in Fig. 1, the station
receiving CFPoll sends its packets after waiting SIFS (short inter frame space)
long. In case there is no packet to be transmitted or the excess TXOP is not
needed any more, the station sends QoS NULL packet so that next station in
the schedule can transmit its packets. For the usage of the given TXOPs there
are three possible cases:

– TXOP is used completely, so that there is no free time to send QoS NULL
packet at the end

– TXOP is used partially and a QoS NULL packet is sent following a QoS
DATA

– TXOP is not used and a QoS NULL packet is sent directly

Although first case is the ideal case, it is not the most usual one because
TXOP reservation mechanism rounds up the expected number of packets during
a service interval (See eq. (1)). For this reason, there is most of the times unused
TXOP for any stream. The expected ratio of unused TXOPs can be given as
follows. For a stream with a send rate of x and a service interval length of x+y
where y is a positive number, the average number of TXOPs that are not used
during a service interval is:

NUsmall = (
Ni

x + y
− 1

x
) ∗ (x + y). (3)

For a stream with a send rate of z which is greater than or equal to the service
interval (x+y), the average number of TXOPs that are not used is:

NUbig = (
1

x + y
− 1

z
) ∗ (x + y). (4)
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Then the average time used by HCCA during one service interval is:

HCCA[y] = Lost[y] + Used[y], (5)

where

Lost[y] = (
1

x + y
− 1

z
)∗ni ∗nothingi+(

Ni

x + y
− 1

x
)∗nj ∗nothingj)∗(x+y), (6)

Used[y] = ni ∗ TXOPi ∗ x + y

x
+ nj ∗ TXOPj ∗ x + y

z
. (7)

For the sake of simplicity we assume that there are only two types of streams,
one having a send rate smaller than the service interval and the other one bigger
than the service interval. ni and nj are the numbers of traffic streams of the first
and the second types and nothingi and nothingj are the lengths of the times
needed for sending QoS NULL frames with the overheads.

As long as there is enough time reserved in the scheduler for any traffic, packet
losses should not occur for that traffic. For this reason, in such cases the length
of the service interval and so the lost time because of extra TXOP does not play
a role in the packet loss rate. However Lost[y] is decreasing in y. Hence, any
reduction in the lost time will result lower packet loss rates within a congested
channel. We can then estimate the necessary increment in the length of the
service interval for a new traffic by finding the increment in the unused time
within HCCA scheduler:

r∗(x+y+k)−HCCA[x+y+k]−(r∗(x+y)−HCCA[x+y]) = TXOPnew, (8)

where r is the maximum percentage of time that can be reserved for HCCA
scheduler within a service interval and k the required increment in the service
interval length, so that new stream can be served using HCCA. Rather long
algebra gives the following solution for k:

TXOPnew ∗ x ∗ z

r ∗ x ∗ z − z ∗ ni ∗ (Ti − nothingi) − x ∗ nj ∗ (Tj − nothingj)
= k, (9)

whereTi is the time needed to send one MSDU plus overheads.Although this equa-
tion is harder to solve if there aremore than two types of traffic streams to consider,
the problem could be reduced to the first priority streams in such cases.

Average delay for the packets is also independent of the lost time, since TXOP
distribution is cyclic and the order of TXOP distribution is the same for each
service interval. As seen from Fig. 2, the average length between two TXOPs of
any specific traffic is the addition of the expected time spent for HCCA plus the
remaining time for EDCA. This length is equal to the service interval length.
Consequently the average time between two TXOPs of any stream is always
equal to the service interval length.

Average delay caused by this service interval is increasing in the length of the
service interval and dependent on the number of common divisors of the send
rate and the service interval. The simple logic behind this fact is the wasted time
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(a) (b)

Fig. 3. Delay caused by 4ms and 20ms SIs to packets with interarrival rates of 3ms
and 10ms

because of the asynchronous occurences of the TXOPs and the packet arrivals.
In the worst case they have no common divisors. A simple example is illustrated
in Fig. 3(a) where the service interval length is 4ms and the send rate is 3 ms.
Here, the first packet waits for 1ms to be sent, the second packet waits for 2ms,
the third packet 3ms and the last packet is sent directly. Consequently, packets
experience delays from 0 to service interval minus one (Here from zero to 3ms).
Hence, the average delay is the addition of the integers from 1 to service interval
minus one divided by the number of packets experiencing these delays, which
is equal to the length of the service interval. This gives the average delay as
(SI-1)/2. This implies the fact that each increment in the service interval length
also increases the delay of the packets as much as half of this increment. Hence
service interval should be kept as small as possible.
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Fig. 4. Delay caused by different SIs to a packet with a interarrival rate of 10ms

The best case scenario is where the interarrival rate or the service interval is
a divisor of the other. In this case, if the service interval is longer than the inter-
arrival rate, average delay is (SI-interarrival rate)/2. Fig. 4 illustrates the case
where interarrival rate is equal to 10ms. As seen from Fig. 4, we are indifferent
between choosing a service interval which is one more than any multiple of the
interarrival rate and the next multiple of the interarrival rate. This implies the
following point: if we need extra time for a new stream, then we can increase
the service interval length to the next multiple without increasing the expected
delay. This is achieved by synchronizing TXOPs distributions with the packet
arrival times as much as possible. In case there are more than one interarrival
rate, decision should be made using delay constraints of the streams. However
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using the smallest interarrival rate as the basic rate would make sense for most
cases, since the number of sent packets is the most for the stream having the
smallest interarrival rate.

To summarize our findings:

– Choose the smallest comman multiple/submultiple of the interarrival rates,
which is also greater than or equal to the smallest interarrival rate, as the
service interval length.

– If we have to increase the service interval length because of a new stream,
then we choose the next multiple of the interarrival rates which is also greater
than the result of the equation (9).

These two points are used during our simulations in section 6 to select the
appropriate service interval.

5 Assigning Traffic Streams to HCCA and EDCA

So far we analyzed the effect of the service interval to loss and delay of the
traffic streams served within HCCA. In this section we clarify which type of
traffic should be assigned to HCCA during admission control processes.

The access point accesses the channel like a station when using EDCA. Having
only as much channel access chance as a station with the load of all stations
impairs downlink traffic drastically. In case the TXOP given to access point for
any priority is not enough, then especially the interface queue length increases
substantially leading to high delay and even loss rates. For this reason it is
reasonable to protect the downlink traffic during HCCA, and only if there is
remaining time in the HCCA scheduler reserve it for the uplink traffic. However
it can be shown using simple calculations that as long as the overhead for sending
the needed amount of packets using HCCA is higher, it makes no sense to reserve
time for uplink traffic in the scheduler within a congested channel. If we describe
the total time usage (TT) within a service interval as:

TT =
3∑

j=1

j∑
i=1

Nj,i ∗ pj,i +
3∑

j=1

j∑
i=1

((
SI

xj,i
− Nj,i) ∗ qj,i) + B, (10)

where Nj,i is the number of packets from the ith stream of the jth priority allowed
to be transmitted using HCCA, pj,i is the amount of time needed to send one
packet during HCCA and respectively qj,i is the time needed during EDCA, xj,i

is the interarrival rate and B is the time used by traffic which did not request any
HCCA TXOP, which was rejected by the HCCA scheduler and the background
traffic. The summation is done over three priorities, since background traffic
does not receive HCCA TXOP. Using this equation one can find the effect of
reserving TXOP for an additional packet:

∂Nj,iTT =
3∑

j=1

j∑
i=1

pj,i −
3∑

j=1

j∑
i=1

qj,i. (11)
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As seen, the slope of the total time usage with respect to Nj,i is dependent on
the packet transmission times required for EDCA and HCCA. If the time needed
to send the same packet during HCCA is longer than the time needed to send
the same packet during EDCA, than reserving time in the HCCA for this packet
causes more channel utilization because of the increasing TT (total time usage).
The time needed to send one packet during HCCA and EDCA can be illustrated
as follows:

AIFS[0] CFPoll SIFS DATA SIFS ACK

AIFS[1,2,3] CW[1,2,3] DATA SIFS ACK

ED
C

A
H

C
C

A

Fig. 5. Comparison of packet transmission times with EDCA and HCCA

In Fig. 5 each block represents the time needed for different actions. AIFS[0] is
the length of the arbitration inter frame space used by the access point. CFPoll
is the time needed to send one CFPoll frame, ACK is the time needed to send
the acknowledgment, and CW is the contention window length. We include AIFS
and CW of the first three priorities as the fourth priority uses only EDCA for its
transmissions. If we compare both cases, we see that the difference of the times
needed by HCCA and EDCA to send the same packet is AIFS[0]+ CFPoll +
SIFS <> AIFS[1,2,3]+CW[1,2,3]. The assignment of the lengths of arbitration
inter frame spaces is described in the standard as follows:

AIFS[AC] = AIFSN [AC] ∗ slotT ime + SIFS, (12)

where AIFSN[AC] is a number greater than or equal to 2 for all access categories
(AC) of non access point stations and greater or equal to one for access points. If
we assume that the AIFSN for the access point is one and for three of the access
categories 2,3 and 4, then in the worst case the difference of the time needed
by HCCA and EDCA is 3slotTimes + CW[3] <> CFPoll+ SIFS. Within a
congested channel with low service interval values, which is the case with the
above defined service interval selection criteria, it is not trivial to assume that
the ’next’ access category that is going to send its packets has a backoff timer of
length 1 time slot. Considering this, 4slotTimes < CFPoll + SIFS will be true
for most of the usual configurations of the parameters of 802.11e. One could
argue the fact that CFPoll can be piggybacked on a QoS DATA frame so that
the QAP does not have to wait extra AIFS long. However, in such cases the
physical transmission rate of QoS DATA frame is reduced to a basic rate, which
is the smallest of the maximum physical transmission rates of all the associated
stations. If there is one station away from the QAP or a station using 802.11b
instead of 802.11g, this would increase the time needed for sending QoS DATA
even further. For this reason, piggybacking is not a solution to the mentioned
problem. Hence it makes sense not to reserve time during HCCA for uplink
traffic. This is true even if the time needed by HCCA is shorter than the time
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needed by EDCA, since there is an upper bound for the time reserved to HCCA.
In a crowded network reserving time for uplink traffic within HCCA degrades
the performance of downlink traffic because there is not enough time to reserve
TXOPs to all downlink streams. Additionally reserving more TXOPs in the
HCCA scheduler results losing more time during a service interval as explained
in the previous section. We can reduce this lost time by distributing less TXOPs
to the uplink traffic.

An exception to this argument is the bidirectional traffic. If the traffic is
bidirectional, it makes no sense to keep the QoS of one direction good, ignoring
the other. Therefore the number of bidirectional streams should be optimized
regarding both directions. Consequently there must be a balance between HCCA
and EDCA for bidirectional traffic. Access point must make sure that expected
time in EDCA is sufficient for the packets of the bidirectional traffic which are
not being served within HCCA.

To summarize:

– Reserve time of HCCA first of all for downlink traffic.
– Even if there is remaining time in the HCCA scheduler, we are better off if

we do not reserve TXOPs for uplink traffic in case there is a high conges-
tion probability. This is true as long as we do not have strict service level
agreements for such traffic.

– It does not make sense to reserve time for bidirectional traffic in case the
requirements of one direction cannot be fulfilled.

Taking these into account, we developed an admission control mechanism
which consists of following constraints:

3∑
j=1

j∑
i=1

((
aj,i ∗ (1 + bj,i) ∗ SI

sj,i
− xj,i) ∗ qj,i) +

3∑
j=1

j∑
i=1

xj,i ∗ pj,i + B ≤ SI, (13)

aj,i ≥ xj,i, (14)
3∑

j=1

j∑
i=1

xj,i ∗ pj,i ≤ HCCAlimit, (15)

xj,i ε downlink, (16)

aj,i ε0, 1, (17)
where k is the number of streams in the scheduler, bj,i is the binary for bidirec-
tional traffic and aj,i determines if the stream is accepted by the HCCA scheduler
or not. Constraints (13) and (14) make sure that bidirectional streams receive
TXOPs for uplink and downlink in case they are accepted and the total amount
of time reserved for HCCA TXOPs plus the time used by uncontrolled traffic
is smaller than the selected service interval. Constraint (15) makes sure that
the time reserved for HCCA is less than the maximum amount of time allowed
and last constraint reserves HCCA TXOPs only to downlink traffic. If the in-
coming streams satisfy all the above defined constraints, then they are accepted
to the HCCA scheduler. This admission control mechanism is used within our
simulation runs in the following section.
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6 Simulation

6.1 Simulation Environment

In order to show the effect of the service interval choice in different traffic situa-
tions we run simulations using an updated and slightly corrected version of ns2
network simulator for 802.11e developed by [14]. Within the simulation environ-
ment, there is one access point and different number of stations of each priority.
Each station uses only one type of traffic. There are a total of 6 types of traffic
during simulations. These are given as follows:

1. First priority, bidirectional constant bit rate (CBR) traffic using UDP with a
packet size of 160 bytes and sample intervals (interarrival rate) of 5,8,10,15,
..,35 ms. (1st access category)

2. First priority, bidirectional constant bit rate (CBR) traffic using UDP with
a constant voice payload of 64 Kbps and interarrival rate of 10,20 and 30
ms. (1st access category)

3. First priority, bidirectional constant bit rate (CBR) traffic using UDP with
a constant voice payload of 8 Kbps and interarrival rates of 10,20, 30 ms.
(1st access category)

4. Second priority CBR traffic using UDP with a packet size 1280 bytes and
interarrival rate of 5, 10, 20, 30ms.(2nd access category)

5. Bidirectional interactive traffic using TCP with a packet size of 1100 bytes
and exponentially distributed arrival rates having an average of 50ms on
time, 30ms off time and sending rate of 60Kbits/s during on times corre-
sponding to an average of 10Kbytes/s. This complies with the interactive
traffic definition of 3GPP TS 22.105 [15] and ITU G.1010 [16]. (3rd access
category)

6. VBR Background traffic using TCP with a packet size of 1200 bytes and
exponentially distributed inter arrival times having an average of 1000ms off
and 200ms on times with a sending rate of 100Kbits/s corresponding to low
load 11Kbytes/s traffic. (4th access category)

The first three traffic types are defined to simulate voice traffic. The first traffic
type targets at showing the effects of changing interarrival rates without caring
for the existence of a corresponding voice codec being used in the internet. The
second and third types represent the codecs G.711 and G.729 correspondingly
as defined in Cisco Call Manager [17]. These three types of voice packets cover
most of the used codec formats in the internet [18]. The second priority is defined
for video traffic with different qualities which also comprises most of the video
codecs being used in the internet [19]. Third and fourth traffic types are defined
to simulate normal hot spot user behaviour as given in [20]. As a result, the
results presented in the following sections are representative for most of the traffic
combinations being used currently. Additionally the 802.11e specific parameters
are given in table 1.
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Table 1. List of Simulation Parameters

Bandwidth 11Mbps
PLCPTransmissionrate 1 Mbps
RTSThreshold 3000μs
ShortRetryLimit 7
LongRetryLimit 4
slotTime 9μs
AIFS(1,2,3,4) 1, 2, 6, 12
CWmin(1,2,3,4) 7, 15, 15, 31
CWMax(1,2,3,4) 15, 31, 255, 525

6.2 Simulation Results

The results presented in this section are the average results where we used up
to 13 background, 13 interactive, 5 video and 14 voice streams with a changing
ratio of the maximum amount of time reserved to HCCA (from 14% to 82%). In
each run, voice streams are selected from the defined three types of first priority
traffic randomly. In case not otherwise stated, the largest 99% confidence interval
is within 20% of the given results. For each service interval and voice stream
count combination we evaluated 4225 runs.

The results of our simulations mostly coincide with the findings presented in
the previous section. As seen in Fig. 6(a), choosing different service intervals has
no effect on the packet loss rate of high priority traffic. The differences between
the loss rates at different service intervals are either statistically insignificant
or ignorably small. We also observe an increasing delay for high priority traffic
in SI as shown in Fig. 6(b). However the experienced average delay during our
simulations is less than the theoretical delay which is nearly equal to the half
of the service interval. A linear regression of the simulation results gives a slope
of 0.22 with an R2 value of 0.24. The R2 value shows the goodness of fit and is
calculated as:

R2 = 1 − SSE

SST
(18)

where SSE is the sum squared error and SST is the total variance in the data.
As R2 approaches 1 the regression approaches a perfect fit. The fit is not perfect
in our case, since we also used service intervals which are multiples of the inter-
arrival rates. This introduces a deviation to the expected delay. Additionally, we
could not show that choosing a common multiple of the interarrival rates as the
service interval length decreases the average delay as explained in section 4. In
fact with service intervals 25ms, 30ms and 40ms this effect is observable. How-
ever this is not true for service interval values 20ms and 50ms. This may be due
to some minor implementation errors in the network simulator ns2.

On the other hand simulation runs in which we used an admission control
mechanism by implementing the findings of the previous section proved to be
very efficient in terms of channel reservation. As seen from Fig. 7(a), if we dis-
tribute TXOPs to the uplink traffic, then unacceptable loss rates occur starting
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Fig. 6. Effect of service interval choice on delay and loss rate. ConfH and ConfL illus-
trate the 99% confidence interval levels.
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Fig. 7. Comparison of delay and loss rates of 1st priority traffic with different admission
control mechanisms

with the 12th bidirectional voice stream. However this number grows up to 18
if only downlink traffic receives TXOPs. On the other hand using the admission
control mechanism which combines the findings of the previous section does not
allow more than 19 voice streams. For the 19th stream the service interval is in-
creased using equation (9)and the effect of this increment can be seen in Fig. 7(a)
where the loss rate is about the half of the case without the admission control
mechanism. However this happens at the cost of more delay as seen in Fig. 7(b).
As seen, the admission control algorithm does not allow delay more than 150ms.

7 Conclusion

Research activities on the upcoming standard 802.11e show that WLAN will be
able to satisfy high QoS expectations of different applications much more than
we can reach currently. 802.11e does this by offering both diffserv and intserv
mechanisms at the same time in a comprehensive manner. However only an
efficient cooperation of these two mechanisms makes sure that the resultant QoS
levels are as high as expected.
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In this paper we studied the effects of the service interval on the delay and loss
rate of high priority traffic. We showed that, with a clever choice of the service
interval it is possible to reach much higher QoS levels. Using these results we
suggested very simple changes in the recommended way of calculating service
intervals. We also divided the traffic into four categories as uplink, downlink,
bidirectional and unidirectional traffic and assigned these traffic categories into
HCCA and EDCA based on their transmission procedures. We showed using
simulation analysis that the suggested methods enable an efficient cooperation
of EDCA and HCCA by maximizing the numbers of streams that can be offered
for higher priority streams and keeping the QoS within acceptable limits.

We are currently working on developing novel ways for making autonomous
decisions by the hybrid coordinator so that the usage of EDCA and HCCA are
optimized dynamically without being dependent on the scheduling algorithms
used by different vendors.
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Abstract. We consider a finite buffer queue with one deterministic
server fed by packets arriving in batches. We assume that we are not
able to fully describe the batch distribution: only the maximal size and
the average number of packets are supposed known. Indeed, these two
quantities are simple to measure in a real system. We additionally allow
the batch distribution to be state dependent. We analyze the worst case
distribution of the queue length and the expectation of lost packets per
slot. We show that the increasing convex ordering provides tight bounds
for such a system.

1 Introduction

In the case when we do not have complete information but some qualitative
and quantitative information, a quite natural approach in many fields of ap-
plied probability consists in finding an extremal distribution. For instance, in
reliability modelling, one can compute the worst case Increasing Failure Rate
distribution knowing the first moment (for the definitions and method see Bar-
low and Proschan [2, p. 113]).

In Performance Evaluation such a method has received less attention. The ma-
jor exception are the (max,+) linear equations which naturally arise when one
models Stochastic Event Graphs, a subset of Petri Nets (see the book by Baccelli
et al. [1] for a considerable survey on these topics). Most of the results obtained
in this book can be generalized to models exhibiting stochastic linear recurrence
equations in some semirings: for instance (min, max) semiring or (min, +) semir-
ing. These results are based on the properties of the semirings: when we consider
more complex algebraic structures most results do not apply any more.

A completely different idea was recently proposed by P. Buchholz [5]. The
main assumption is that the modellers do not know the real transition proba-
bilities. Thus, one wants to model a system by a family of Markov chains where
the transition probabilities belong to an interval. One has to derive the worst
case (or the best case) for all the matrices in the set. The theoretical arguments
rely on Courtois’s polyhedral approach. The algorithms are very accurate as the
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bounds can be reached by a matrix in the set. Unfortunately the complexity is
quite high. Very recently a similar problem was solved independently by Had-
dad and Moreaux [9]. Again one has to find the best and the worst matrices in
a set. However, Haddad and Moreaux’s approach is based on strong stochastic
ordering (st-ordering). The algorithm is simpler but the bounds are generally
less accurate. To the best of our knowledge, the two approaches have not been
compared on some benchmarking problems.

Our approach combines some of these ideas. We analyze a finite buffer queue
with a deterministic service fed by a batch process. The batch distribution can
be state dependant. We assume that we know the maximal batch size and the
average number of packets in a batch. Note that both quantities are simple
to obtain from the specifications of a system or from simple measurements.
The maximal size of the batch is the number of inputs in a slotted system and
the mean batch size is easily related to the load. A natural question when we
analyze such a system is to find the worst batch distribution when we compute
the distribution of the queue size, its average, or the average packet loss. Even
if the system exhibits a simple evolution equation, the analysis is quite difficult.
Indeed, due to the buffer finiteness this equation is based on three operators:
max, +, and min, and the theory developed in [1] does not apply.

The infinite buffer case has already been studied by several authors [10, 11].
In that case the model has an evolution equation on max and + operators and
the analysis is in general much simpler. Unfortunately, the finite buffer case
introduces min operator and the underlying monotonicity disappears on the
boundary of the state space.

We consider here a different approach based on Markov chains rather than evo-
lution equations. We design an upper bounding monotone chain for the considered
system in the sense of the increasing convex order (icx-order). This order is known
for a long time [13] but only recently an algorithmic derivation of icx-monotone
chains has been proposed [4]. The main advantage of this order is that it is possible
to obtain a bound with the same mean as the initial distribution. Such a property
is very important here to obtain tight bounds. This property is not valid with the
usual st-ordering. Indeed, if X is smaller than Y in the sense of the st-order and if
the expectation of X is equal to the expectation of Y , then X equals Y .

The problem we consider is related to the dimensioning of finite buffer in sys-
tems with fixed size packets: for instance ATM [14] or optical packet networks
like ROM [8]. Such systems are slotted, thus discrete time chains provide nat-
ural models. The time slot is the service time and arrivals occur in batches of
packets. The maximum batch size is the number of wavelengths in the optical
transmission part of the network. The real distribution of batches is unknown
and the traffic can be state-dependent. Instead of trying to give more and more
details on the traffic, we try to derive a more pessimistic traffic. This traffic will
be used to dimension the buffer. Hence our approach is quite different from the
traditional traffic engineering approach.

The remaining of the paper is as follows. In Sect. 2 we briefly introduce the
icx-order and the useful results proved in [13] and [4]. We also describe the worst
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case batch distribution in the sence of the icx-order. In Sect. 3 we construct an
upper bounding icx-monotone Markov chain for a Batch/D/1/N queue where
only the maximal and the average batch size are known, and we show that this
chain provides a worst case bound for the queue length. We additionally show
how we can use this bound to derive bounds on the number of lost packets.
Finally in Sect. 4 we present some numerical results.

2 Some Preliminaries on Stochastic Bounds and the
Icx-Worst Case Batch Distribution

In this section we first give some basic definitions and theorems of the stochastic
comparison. We refer to [13] for proofs and further details. Then we consider a
batch distribution whose average is known and we recall the worst case (largest)
distribution for the icx-ordering [15].

2.1 Stochastic Comparison Under the Icx Order

Definition 1. Let X and Y be two random variables taking values on a totally
ordered space E. Then we say that X is smaller than Y in the increasing convex
sense (icx),

X �icx Y if E(f(X)) ≤ E(f(Y )), for all increasing and convex functions f,

whenever the expectations exist.

In the case of a finite state space E = {0, . . . , N}, we have the following charac-
terization of icx-comparison of two random variables.

Proposition 1. Let X and Y be two random variables with probability vectors
p = (pi)N

i=0 and q = (qi)N
i=0 (pi = P (X = i) and qi = P (Y = i), ∀i). Then,

X �icx Y ⇐⇒
N∑

k=i

(k − i + 1) pk ≤
N∑

k=i

(k − i + 1) qk, ∀i ∈ {1, . . . , N}.

Recall that the usual strong stochastic order (st) is generated by the family of
all increasing functions. Obviously, X �st Y implies X �icx Y , as the family
of all increasing functions is larger. Characterization of the st-comparison on a
finite space E = {0, . . . , N} is given by

X �st Y ⇐⇒
N∑

k=i

pk ≤
N∑

k=i

qk, ∀i ∈ {1, . . . , N}.

Example 1. Let us consider E = {0, . . . , 3}, and let

x = (0.5, 0.1, 0.1, 0.3), y = (0.3, 0.3, 0.1, 0.3), and z = (0.3, 0.2, 0.4, 0.1)

be probability vectors on E . Then x �st y and, therefore, x �icx y. The vectors
x and z are not icx-comparable (and, consequently, not st-comparable), as x3 =
0.3 > 0.1 = z3, but x1 + 2x2 + 3x3 = 1.2 < 1.3 = z1 + 2z2 + 3z3. Finally, vectors
y and z are not st-comparable, but z �icx y.
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The stochastic comparison can be also defined on a process level.

Definition 2. Let {Xk}k≥0 and {Yk}k≥0 be two homogeneous Markov chains.
Then,

{Xk} �icx {Yk}, if Xk �icx Yk, for all k ≥ 0.

Let us now introduce the comparison and the monotonicity property for stochas-
tic matrices. It is shown in Theorem 5.2.11. of [13, p.186] that comparison and
monotonicity of the transition matrices of homogeneous discrete time Markov
chains yield sufficient conditions to stochastically compare the underlying chains.
Notice that Definitions 2, 3, 4, and Theorem 1 are also valid for the st-order.

Definition 3. Let P and Q be two stochastic matrices. We say that P �icx Q
if

Pi,∗ �icx Qi,∗, ∀i ∈ {0, . . . , N}
where Pi,∗ denotes the ith row of matrix P.

Definition 4. A stochastic matrix P is said to be icx-monotone if for any prob-
ability vectors p and q,

p �icx q =⇒ pP �icx qP.

Theorem 1. Two homogeneous Markov chains {Xk}k≥0 and {Yk}k≥0 with the
transition matrices P and Q satisfy {Xk} �icx {Yk}, if

– X0 �icx Y0,
– P �icx Q
– at least one of matrices P or Q is icx-monotone.

Definition 4 is not very useful in practical applications. We give here the algebraic
characterization of icx-comparison for the finite space case. We refer to [3, 4] for
the proof. Characterization for the icx-monotonicity for E = Z can be found
in [12].

Let P be a stochastic matrix taking values on E = {0, . . . , N}. Let us first
introduce the following notations:

φi,j(P) =
∑N

k=j(k − j + 1)Pi,k, 0 ≤ i ≤ N, 0 ≤ j ≤ N,

Δi,j(P) = Pi,j − Pi−1,j , 1 ≤ i ≤ N, 0 ≤ j ≤ N.

We will denote by φ(P) the matrix φ(P) = (φi,j(P))N
i,j=0 .

Proposition 2. A stochastic matrix P taking values on E = {0, . . . , N} is icx-
monotone if and only if the vector

φ∗,j(P) = (φi,j(P))N
i=0 is increasing and convex, for all j ∈ {1, . . . , N},

i.e.
φ1,j(P) ≥ φ0,j(P) and φi+1,j(P) + φi−1,j(P) ≥ 2φi,j(P),

for all i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , N}. Notice that the vector φ∗,j(P) is
increasing and convex if and only if the vector Δ∗,j(φ(P)) is non-negative and
increasing.
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Example 2. Let us consider the two matrices

P =
0.2 0.5 0.3
0.3 0.3 0.4
0.2 0.3 0.5

and Q =
0.5 0.4 0.1
0.3 0.3 0.4
0.1 0.4 0.5

.

Using Proposition 2 it can be easily shown that the matrix P is icx-monotone,
while the matrix Q is not.

2.2 Icx-Worst Case Batch Distribution

We now study the existence and description of the worst case distribution within
the family of all distributions with the same mean. Formally, let Fα be the family
of all probability distributions on the space E = {0, . . . , N} having the same
mean α. This family admits a greatest distribution under the icx-order.

Proposition 3. The distribution q = (1 − α
N , 0, . . . , 0, α

N ) satisfies

q ∈ Fα and p �icx q, for all p ∈ Fα.

See Theorem 2.A.9 of [15] for a proof.
Note that the family Fα does not admit a greatest element under the st-order.

Indeed, if for two random variables X and Y , Y �st X and E(X) = E(Y ), then
X and Y have the same distribution (see Theorem 1.2.9. of [13, p.5]).

In the next section we consider a finite capacity single server queue with batch
arrivals and we are interested in queue length worst case analysis. Distribution
q from Proposition 3 will be used to model the unknown batch distribution of a
given mean, thus we will refer to it in the following shortly as to “the worst case
batch”.

Finally, it is worthy to remark that this distribution q is also an icx-bound
for batch distributions whose mean is smaller than α.

3 Worst Case Analysis of a Batch/D/1/N Queue

We consider a finite capacity queue with a single server. The queue capacity
is N . The service is deterministic and equals to one time slot. The queue is
fed by a batch arrival process. We do not assume that the batch arrivals are
i.i.d., for instance they can be state dependent. We suppose that we know the
maximal size K of the batch. More precisely, let Ai = (a(i)

0 , . . . , a
(i)
K ) denote the

distribution of the batch arrivals at state i. The exact values of a
(i)
k (0 ≤ k ≤ K)

are unknown. We only know the mean batch size α = E(Ai). In order to have
the mean load less than 1, we assume that α < 1. Note that the maximum batch
size is generally determined from the underlying physical system. For instance,
in the case of optical networks the batch size is upper bounded by the number
of wavelengths. Both parameters α and K are quite simple to measure or obtain
from specifications.
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3.1 Upper Bound for the Queue Length

We suppose that K << N and that 0 < α < 1. We are interested in upper
bounding the queue length of an arbitrary Batch/D/1/N queue with the maximal
batch size equal to K and the mean batch size equal to α.

First step consists in finding the transition matrix P such that

R �icx P,

for each transition matrix R of a Batch/D/1/N queue with the maximal batch
size equal to K and the mean batch size equal to (or smaller than) α. From the
description of icx-worst case batch in the previous section, we easily get:

P =

P0,0 = 1 − α
K

P0,K = α
K

i = 1, . . . , N − K + 1 : Pi,i−1 = (1 − α
K

) Pi,i+K−1 = α
K

i = N − K + 2, . . . , N − 1 : Pi,i−1 = (1 − α
N−i+1 ) Pi,N = α

N−i+1
PN,N−1 = (1 − α) PN,N = α

Notice that the rows i = N − K + 2, . . . , N are obtained by taking the worst
case batch (Proposition 3) with the mean batch size equal to α and the maximal
batch size equal to N − i + 1 (and not K), since we need to assure the icx-
comparison of the unknown matrix R and the matrix P, i.e. Ri,∗ �icx Pi,∗, for
all i. We want to emphasize that the matrix P actually belongs to the family
of queues we want to bound. However, this matrix is not icx-monotone so we
cannot directly apply Theorem 1.

Now we apply to P a linear transform which does not modify the steady-state
distribution,

Q = δP + (1 − δ)Id,

where δ is a real constant, 0 < δ < 1. This transform was shown to improve the
accuracy for st-bounds [6]. Here it has a crucial role as it allows to move some
probability mass to the diagonal elements (see (3) and the proof of Theorem 2).

Q =

Q0,0 = 1 − δ α
K

Q0,K = δ α
K

i = 1, . . . , N − K + 1 :
Qi,i−1 = δ(1 − α

K
) Qi,i = 1 − δ Qi,i+K−1 = δ α

K

i = N − K + 2, . . . , N − 1 :
Qi,i−1 = δ(1 − α

N−i+1 ) Qi,i = 1 − δ Qi,N = δ α
N−i+1

QN,N−1 = δ(1 − α) QN,N = 1 − δ + δα

(1)

Finally, we define the matrix B as follows:

B =

B0,0 = 1 − δ α
K

B0,K = δ α
K

i = 1, . . . , N − K + 1 :
Bi,i−1 = δ(1 − α

K
) Bi,i = 1 − δ Bi,i+K−1 = δ α

K

i = N − K + 2, . . . , N − 1 :
Bi,i−1 = fi Bi,i = ei Bi,N = δ α

K
(i − N + K)

BN,N−1 = δ(1 − α) BN,N = 1 − δ + δα

(2)

where ei = 1 − δ + δα − (N − i + 1)Bi,N and fi = 1 − ei − Bi,N .
This matrix B will be used to derive the worst case bounds for the underlying

system. The proof of the following theorem is given in Appendix.
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Theorem 2. Suppose that

δ ≤ 1
1 + αU

, (3)

where U = maxr=2...K−1
r(K−r+1)

K . Then,

1. B is a stochastic matrix.
2. B is irreducible.
3. Q �icx B.
4. B is icx-monotone.

Now Q �icx B gives δR + (1 − δ)Id �icx B, for each transition matrix R of a
Batch/D/1/N queue with the mean batch size smaller or equal to α. Note that
B is also icx-monotone. Therefore, it follows from Theorem 1 that

πδR+(1−δ)Id �icx πB,

where πA denotes the steady-state distribution, provided that it exists, of a
Markov chain with the transition matrix A. Since δR + (1 − δ)Id and R have
the same steady-state distribution, the matrix B provides an upper bound for
the steady-state queue length distribution of a queue given by matrix R, i.e.

πR �icx πB.

3.2 Deriving Bounds on Lost Packets

The bounds on the queue length we obtained in Sect. 3.1 can be also used to
compute the bounds on the average number of lost packets per slot. As we
consider the icx-order, we must prove that the rewards describing the mean
number of lost packets are increasing and convex. Unfortunately they are not in
general, thus we upper bound the rewards by an increasing and convex function.
Recall that we do not know the real batch distribution.

Let us remind that we consider the state dependant batches, where Ai =
(a(i)

0 , . . . , a
(i)
K ) ∈ Fα denotes the distribution of batch arrivals in state i. Let us

define a reward g, with g(i) equal to the mean number of lost packets in state i,

g(i) =
{

0, 0 ≤ i ≤ N − K + 1∑K
k=0 P (Ai = k)(i − 1 + k − N)+, N − K + 2 ≤ i ≤ N.

Proposition 4. The reward g is upper bounded by the increasing and convex
function h,

h(i) =
{

0, 0 ≤ i ≤ N − K + 1
r α

K , i = N − K + 1 + r, 1 ≤ r ≤ K − 1.

Proof. From Ai ∈ Fα and Proposition 3 it follows that

Ai �icx q = (1 − α

K
, 0, . . . , 0,

α

K
), (4)
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for all i ∈ {0, . . . , N}. On the other hand, for i = N − K + 1 + r,

g(i) =
K∑

k=0

a
(i)
k (i − 1 + k − N)+ =

K∑
k=K−r+1

a
(i)
k (k − K + r),

for all r ∈ {1, . . . , K − 1}. Now from (4) and Proposition 1 it follows that

g(i) =
K∑

k=K−r+1

a
(i)
k (k − K + r) ≤

K∑
k=K−r+1

qk(k − K + r),

for all i = N − K + 1 + r, r ∈ {1, . . . , K − 1}. Notice that only the last term of
the right side in the above equation is strictly positive, thus

g(i) ≤ r
α

K
= h(i),

for all i = N − K + 1 + r, r ∈ {1, . . . , K − 1}, and, therefore, g ≤ h. �

Finally we can bound the average number of lost packets per slot by the expec-
tation of the reward h on the steady state distribution of matrix B.

4 Numerical Results

As the matrices considered here are very small (up to one thousand states) we use
GTH [7], a direct elimination algorithm which is known to be very accurate. First
we show that the monotonicity constraints we impose on matrix B does not have
a very important effect on the accuracy of the bound. Recall that the matrix B
was constructed in three steps. First we found the matrix P, the largest transi-
tion matrix in the sense of icx-order. There exists a state dependent batch which
allows to reach this largest batch matrix. Then we compute matrix Q which has
the same steady state distribution as P. Finally, matrix B is built from Q to prove
the monotone icx-bound at the steady state. Only the last step of the method can
add some perturbation. Tables 1 and 2 illustrate the quality of the bound.

In Table 1 we report the average queue length. Clearly the relative errors are
not very large when the load is light or moderate. At heavy load (α > 0.95) they
are still smaller than 0.5%.

Let us know consider the probability that the queue is full (Table 2). The
bounds are now less accurate, especially when the load is light. Even though the
relative errors are significant, the probabilities are very small and the absolute
errors are not so important. So we advocate that the bounds are tight. The
analysis provides a bound which is very close to one matrix in the feasible set.
We give in Figure 1 the evolution of the average queue length for the bound
when we change the load or the maximum batch size.

Now we consider a state dependent batch. We assume that the queue has
some kind of back-pressure mechanism. When the queue size is large, a signal is
sent to the sources of traffic to avoid congestion. We assume that this mechanism
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Table 1. Comparison of the mean queue length at the steady-state between the
“largest-batch” queue (P) and the monotone upper bound (B) for N = 1000

α
K=10 K=100

P B rel. error P B rel. error
0.5 5.000e+00 5.000e+00 <1.0e-15 5.000e+01 5.000e+01 5.292e-06
0.8 1.880e+01 1.880e+01 <1.0e-15 1.962e+02 1.965e+02 1.708e-03
0.9 4.140e+01 4.140e+01 1.602e-12 3.909e+02 3.924e+02 3.895e-03
0.95 8.645e+01 8.645e+01 4.452e-08 6.038e+02 6.060e+02 3.585e-03
0.99 3.984e+02 3.984e+02 1.670e-05 8.990e+02 8.999e+02 1.085e-03

Table 2. Comparison of π(N) at the steady-state between the “largest-batch” queue
(P) and the monotone upper bound (B) for N = 1000

α
K=10 K=100

P B rel. error P B rel. error
0.5 1.375e-60 2.667e-60 9.404e-01 4.169e-07 3.299e-06 6.913e+00
0.8 1.646e-21 2.265e-21 3.759e-01 5.589e-03 1.341e-02 1.400e+00
0.9 9.240e-11 1.094e-10 1.838e-01 8.069e-02 1.261e-01 5.624e-01
0.95 1.154e-05 1.258e-05 9.056e-02 2.889e-01 3.619e-01 2.527e-01
0.99 1.057e-01 1.076e-01 1.788e-02 7.820e-01 8.184e-01 4.648e-02
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Fig. 1. Upper bounds for the mean number of packets for N = 1000

changes the variability of the traffic. The traffic still has the same average but the
variability of the batch is now smaller. Typically a traffic shaper can have this
effect. More formally we assume that the back-pressure signal is sent when the
queue size is larger than 80% of the buffer size. We also assume that the signal
instantaneously acts upon the source and that the effect ends when the queue size
becomes smaller than the threshold. The batch distribution is the worst batch
introduced in Sect. 2 when the queue size is small. When the queue becomes
larger than the threshold we assume that the maximal batch size is now 2.
Remember that the average batch size is still the same. We present in Table 3
the numerical results for the average number of packets in the queue.
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Table 3. Comparison of the mean queue length at the steady-state between the state
dependant “back-pressure mechanism batch” (S) and the monotone upper bound (B)
for N = 1000

α
K=10 K=100

S B rel. error S B rel. error
0.5 5.000e+00 5.000e+00 <1.0e-15 5.000e+01 5.000e+01 2.755e-05
0.8 1.880e+01 1.880e+01 <1.0e-15 1.935e+02 1.965e+02 1.526e-02
0.9 4.140e+01 4.140e+01 8.916e-09 3.690e+02 3.924e+02 6.346e-02
0.95 8.644e+01 8.645e+01 9.122e-05 5.453e+02 6.060e+02 1.113e-01
0.99 3.780e+02 3.984e+02 5.396e-02 7.946e+02 8.999e+02 1.325e-01
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Fig. 2. Upper bounds for the mean number of lost packets
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Fig. 3. Exact values and for the mean number of lost packets for “0-K” batch compared
to the bound

We compute the exact solution and the bound to check the accuracy of the
approach for a large buffer (N = 1000). As expected, the bound is very accurate
at light load for small and large values of K. At heavy load the relative errors
are larger but it is still a good estimate.

Let us now consider the average number of lost packets per slot. We give in
Figure 2 the evolution of the mean number of lost packets for the bound as
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a function of the load. In Figure 3 we compare this bound to the exact mean
number of lost packets for the queue with the i.i.d. batch (1 − α

K , 0, . . . , 0, α
K )

(“0-K” batch). The approach is acceptable when the load is relatively light. At
extremely heavy load (i.e. larger than 0.9) the bounds on the lost packets are
not accurate.

5 Conclusion

In this paper, we have shown how we can provide a worst case analysis of a finite
buffer queue with deterministic service and batch arrivals when the detailed
description of the arrival process is not available. The approach is based on the
derivation of a worst case matrix which is larger than the matrix in the set and
which is also icx-monotone. Note that to the best of our knowledge it is not
easy to apply the coupling method here because we use the icx-ordering rather
than the st-ordering. We expect that such a method will help to dimension
networking components because it is more and more difficult to really model the
traffic characteristics and the worst case analysis is certainly a useful tool in the
context of traffic engineering.
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Appendix

In this appendix we give the proof of Theorem 2. Let us first show some properties
of diagonal and lower triangular entries of matrices Q and B.

Lemma 1. The diagonal entries of matrix φ(Q) have a constant value for all
i > 0. Moreover, the diagonal of matrix φ(B) is equal to the diagonal of ma-
trix φ(Q),

φi,i(B) = φi,i(Q) =
{

1 + δα, i = 0,
1 − δ + δα, for all i > 0.

Proof. Follows directly from the definitions of matrices Q and B (equations (1)
and (2)). �

Lemma 2. The lower triangle entries of matrices φ(Q) and φ(B) have the same
values,

φi,j(Q) = φi,j(B) = 1 − δ + δα + (i − j), j < i.

Proof. Notice that, for 0 ≤ i ≤ N, 0 ≤ j ≤ N − 1,

φi,j(P) = φi,j+1(P) +
N∑

k=j

Pi,k. (5)

The statement of the corollary follows directly from Lemma 1, (5), and the fact
that

∑N
k=j Qi,k =

∑N
k=j Pi,k = 1, for all i, j such that j < i. �

Proof of Theorem 2.
1) B is a stochastic matrix. Notice that rows 0, . . . , N −K +1 and row N are

the same for matrices Q and B. For a row i = N − K + r, where 2 ≤ r ≤ K − 1,
we have 0 < r

K < 1 and Bi,N = δα r
K , thus

0 < Bi,N < 1, i = N − K + 2, . . . , N − 1. (6)

It remains us to show that

Bi,i = ei ≥ 0 and ei + Bi,N ≤ 1, i = N − K + 2, . . . , N − 1.
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Then Bi,i−1 = fi ≥ 0 and
∑N

j=0 Bi,j = 1, i = N − K + 2, . . . , N − 1. For a row
i = N − K + r, where 2 ≤ r ≤ K − 1, we have

ei = 1 − δ + δα − δα
r(K − r + 1)

K
≥ 1 − δ + δα − δαU. (7)

Now from (3) and δα > 0 it follows that Bi,i = ei > 0, i = N −K +2, . . . , N −1.
For a row i = N − K + r, where 2 ≤ r ≤ K − 1,

ei + Bi,N = 1 − δ(1 − α) − δα
r(K − r)

K
< 1, (8)

since 0 < α < 1. Thus,

Bi,i−1 = fi = 1 − ei − Bi,N > 0, i = N − K + 2, . . . , N − 1, (9)

and B is a stochastic matrix.
2) B is irreducible. Follows easily from (2) and the fact that 0 < α, δ < 1.
3) Q �icx B, i.e. φi,j(Q) ≤ φi,j(B), i = 0, . . . , N, j = 1, . . . , N. We need to

consider only the rows i = N − K + 2, . . . , N − 1, as the remaining ones are the
same for both matrices. Furthermore, from Lemmas 1 and 2 it follows that

φi,j(Q) = φi,j(B), j ≤ i.

On the other hand, from the definition of matrices Q and B we have φi,j(Q) =
(N − j + 1)Qi,N and φi,j(B) = (N − j + 1)Bi,N , N − K + 2 ≤ i < j < N.
Therefore, we need only to verify that

φi,N (Q) ≤ φi,N (B), N − K + 2 ≤ i ≤ N − 1.

For a row i = N − K + r, 2 ≤ r ≤ K − 1, we have

φi,N (Q) ≤ φi,N (B) ⇔ Qi,N ≤ Bi,N

⇔ 1
K − r + 1

≤ 1
K

r

⇔ r2 − (K + 1)r + K ≤ 0

The above second order equation has two real roots: 1 and K. Thus, for r =
2, . . . , K − 1, r2 − (K + 1)r + K < 0. Therefore, Q �icx B.

4) B is icx-monotone. After Proposition 2 this is equivalent to show that
φ∗,j(B) is an increasing and convex vector, i.e. that Δ∗,j(φ(B)) is a non-negative
and increasing vector for all j = 1, . . . , N .

We will consider the partition of matrix φ(B) into the following zones:

1�
�

�
�

��

2

3

�
�

�
�

�
�

�
�

�
�

�
�

4��

5

�
�

�
�

�
�

�
��

1. i = 0, K + 1 ≤ j ≤ N and
1 ≤ i ≤ N − K, i + K ≤ j ≤ N

2. i = 0, 0 ≤ j ≤ K
3. 1 ≤ i ≤ N −K+1, i+1 ≤ j ≤ i+K−1
4. N − K + 2 ≤ i ≤ N − 1, i + 1 ≤ j ≤ N
5. 1 ≤ i ≤ N , 0 ≤ j ≤ i
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Matrix φ(B) can be then written as follows:

Zone 1 : φi,j(B) = 0,

Zone 2 : φ0,0(B) = δ(1 + α), φ0,j(B) = (K − j + 1)δ
α

K
, 1 ≤ j ≤ K,

Zone 3 : φi,j(B) = (i + K − j)δ
α

K
, (10)

Zone 4 : φi,j(B) = (i − N + K)(N − j + 1)δ
α

K
, (11)

Zone 5 : (Lemmas 1 and 2)
φi,j(B) = 1 − δ + δα + (i − j). (12)

Zone 1 is trivial as φ∗,j(B) has a constant value 0 within this zone for all j.
Notice that for an arbitrary column φ∗,j(B), inside of zones 3, 4, and 5 we have
a linear increase:

Δi,j(φ(B)) = δ
α

K
, for all (i − 1, j), (i, j) in zone 3, (13)

Δi,j(φ(B)) = (N − j + 1)δ
α

K
, for all (i − 1, j), (i, j) in zone 4, (14)

Δi,j(φ(B)) = 1, for all (i − 1, j), (i, j) in zone 5. (15)

Notice that δ α
K ≤ (N − j + 1)δ α

K , since j ≤ N . Furthermore, inside of zone 4
we have j ≥ i + 1 ≥ N − K + 3. Thus, (N − j + 1)δ α

K ≤ δαK−3
K < 1, as δα < 1.

For all j, 1 ≤ j ≤ N , column Δ∗,j(φ(B)) has thus a constant, non-negative
value within each of the zones 1, 3, 4, and 5. Additionally, those constants are
increasing with the respect of the number of the zone. Notice that the zones are
ordered in such a way that each column j crosses the zones in increasing order
with respect to the row index.

Some special care has to be done at the boundaries between different zones.
We illustrate the procedure on the example of boundaries 3 − 4 and 4 − 5. The
proof for other boundaries is simpler and it is omitted due to the lack of space.

Boundary 3 − 4. We have to show that

ΔN−K+1,j(φ(B)) ≤ ΔN−K+2,j(φ(B)) ≤ ΔN−K+3,j(φ(B)), (16)

for all N − K + 3 ≤ j ≤ N. From (13) for j < N , φN−K+1,N (B) = δ α
K , and

φN−K,N (B) = 0 it follows that ΔN−K+1,j(φ(B)) = δ α
K , N − K + 3 ≤ j ≤ N.

Equations (11) for (N − K + 2, j) and (10) for (N − K + 1, j) imply

ΔN−K+2,j(φ(B)) = (N − j + 1)δ
α

K
, N − K + 3 ≤ j ≤ N.

Thus, the left inequality in (16) holds.
Equation (14) implies ΔN−K+3,j(φ(B)) = (N −j+1)δ α

K , N −K+4 ≤ j ≤ N.
Thus, the right inequality in (16) holds for N − K + 4 ≤ j ≤ N . It remains
us to show ΔN−K+2,N−K+3(φ(B)) ≤ ΔN−K+3,N−K+3(φ(B)). Equations (12)



210 A. Bušić, J.-M. Fourneau, and N. Pekergin

for (N − K + 3, N − K + 3) and (11) for (N − K + 2, N − K + 3) imply
ΔN−K+3,N−K+3(φ(B)) = 1 − δ + δα − 2(K − 2)δ α

K . Therefore,

ΔN−K+2,N−K+3(φ(B)) ≤ ΔN−K+3,N−K+3(φ(B))

⇔ 1 − δ + δα − δα
3(K − 2)

K
≥ 0.

Proposition hypothesis (3) implies δ(1+α3(K−2)
K ) ≤ 1. Thus, the right inequality

in (16) holds also for j = N − K + 3.
Boundary 4 − 5. We have to show that

Δi−1,i(φ(B)) ≤ Δi,i(φ(B)), N − K + 3 ≤ i ≤ N, and (17)
Δi,i(φ(B)) ≤ Δi+1,i(φ(B)), N − K + 3 ≤ i ≤ N − 1. (18)

From (11) for (N − K + 2, N − K + 3), (10) for (N − K + 1, N − K + 3), and
(14) for i > N − K + 3, it follows that

Δi−1,i(φ(B)) = (N − i + 1)δ
α

K
, N − K + 3 ≤ i ≤ N.

Equations (12) for (i, i), (11) for (i − 1, i), and (15) give

Δi,i(φ(B)) = 1 − δ + δα − (i − 1 − N + K)(N − i + 1)δ
α

K
,

N − K + 3 ≤ i ≤ N,

Δi+1,i(φ(B)) = 1, N − K + 3 ≤ i ≤ N − 1.

Since α < 1 and (i − N + K)(N − i) > 0, N − K + 3 ≤ i ≤ N − 1, (18) holds.
In order to show (17), we have to show that

1 − δ + δα − (i − N + K)(N − i + 1)δ
α

K
≥ 0, N − K + 3 ≤ i ≤ N. (19)

Notice that, for N −K+3 ≤ i ≤ N −1, the left side of the above equation is equal
to Bi,i = ei (see (7)), and we have already proved that, under the hypothesis of
the proposition, ei ≥ 0, N − K + 2 ≤ i ≤ N − 1. It remains us to show (19) for
i = N . We have

1 − δ + δα − Kδ
α

K
= 1 − δ ≥ 0.

Thus, (18) holds for all i, N − K + 3 ≤ i ≤ N . �
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Abstract. This paper discusses five different ways to approximate the
loss rate in a fundamental two class priority system, where each class
has its own finite capacity buffer, as well as an exact approach. We iden-
tify the type of error one can expect by assuming that one, or both
buffers are of infinite size. Furthermore, we investigate whether asymp-
totic based results can achieve the same level of accuracy as those based
on the actual steady state probabilities. Three novel priority queueing
models are introduced and efficient algorithms, relying on matrix ana-
lytic methods, are developed within this context. A comparative study
based on numerical examples is also included.

Keywords: Buffer finiteness, priority queues, loss rate, matrix analytic
methods, generating functions.

1 Introduction

The study of priority queues has a long history and is often motivated by their
common occurrence in communication networks [16, 17, 3, 4, 8], where they can
be used to model Random Access Memory (RAM) buffers and in service part
logistics [14, 15]. One of the key performance measures of such a buffer is the
loss rate induced by their finite capacity as this strongly affects the network per-
formance. From an analytical point of view, dealing with finite capacity queues
is often more troublesome compared to infinite size buffers. Therefore, it is a
common practice to analyze the infinite capacity system first and afterward to
apply a heuristic method to obtain an estimate of the loss probability for the
finite capacity problem (e.g., the probability of having more than C customers
in the infinite case is frequently used as an approximation to the loss rate in a
finite capacity C setting [6]).

Although this approach has been shown to be fruitful for many queueing
systems, more recent results may question such an approach when applied to
the (low priority) loss rate in priority queueing system. More specifically, in
[2, 10, 16, 17] it is shown that the tail behavior of the low priority buffer occu-
pation might be nongeometric when both the low and high priority buffer is
of infinite capacity. Earlier results (e.g., [5]), however, have shown that one
typically has geometric tails when the high priority buffer capacity is finite
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(and arbitrarily large). One does not expect a substantial difference between
having an infinite or a very large finite buffer for the high priority traffic (i.e.,
any simulation run attains some finite maximum queue length). As such, the
correspondence between the infinite and finite capacity C system should grow as
C increases. However, the tail behavior of both systems, for any finite C, follows
a very different regime, implying that blindly trusting upon asymptotic results
may lead to substantial errors. The opposite modeling approach, where infinite
size queueing systems are studied by truncation to accomplish a numerical eval-
uation, also exists [3, 4], further motivating our interest in this subject.

The objective of this paper lies in identifying the approaches that may cause
poor estimates. To achieve this goal, we will analyze a fundamental discrete-
time queueing system with two priority classes, where each priority class has its
own waiting room. To study the impact of the buffer finiteness, we introduce
three novel discrete time queueing models with batch arrivals: one to analyze
the system where both queues (low and high priority) are finite and two models
that evaluate the systems where either one of the buffers is finite. The arrival
process considered allows correlation between the number of arrivals of each
priority class. There is, however, no correlation between the number of arrivals
during consecutive time slots. We further assume a deterministic service time of
one time slot for all packets. Although this model is a rather restrictive one, it
allows us to isolate the impact of assuming one (or two) infinite size buffers on
the accuracy of the loss rate obtained.

A variety of matrix analytic techniques are exploited to assess the (estimated)
loss rate for each of the three models with at least one finite capacity buffer. Es-
pecially useful is the observation that the system with two finite capacity buffers
can be captured by the paradigm developed in [7] for an M/G/1-type Markov
chain with some regenerative structure, as well as the explicit knowledge of the
G matrix appearing in the M/G/1-type Markov chain for the finite capacity
high priority buffer. For the setup where both queues are of infinite size we can
rely on existing results involving generating functions [17] to obtain numerical
results. In case the low priority traffic has an infinite size capacity buffer, we
develop two estimates for the loss rate: one based on a numerical evaluation of
the steady state probabilities and another that uses an asymptotic description
of the tail behavior. This leads to a total of six different approaches to gather
the loss rate of a system with two finite buffers (including five approximations).

Notice, although the methods developed in [3] are closely related to the model
with an infinite high and finite low capacity buffer, they do not apply directly as
batch arrivals are not considered in [3]. Finally, some of the solution techniques
can be adapted such that they still apply to a more general setting (i.e., more
general service times).

2 System Characteristics

We consider a discrete-time single-server multi-class queueing system with a
priority scheduling discipline. We consider a system with two priority classes,
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denoted as the high (class-1) and the low (class-2) priority class. The arrival
process is chosen as in [10, 16, 17] and is characterized by the probabilities

a(i1, i2)
Δ= Prob[a1 = i1, a2 = i2], (1)

where aj denotes the number of arriving packets of class-j during a time slot.
The corresponding joint probability generating function is given by

A(z1, z2)
Δ= E [za1

1 za2
2 ] =

∞∑
i1=0

∞∑
i2=0

a(i1, i2)zi1
1 zi2

2 . (2)

Notice that the number of arrivals from different classes in one slot can be
correlated. There is however no correlation between the number of arrivals dur-
ing consecutive time slots. For further use, let a1(i) =

∑∞
i2=0 a(i, i2), a2(i) =∑∞

i1=0 a(i1, i), a∗
1(i) =

∑∞
k=i a1(k) and a∗

2(i) =
∑∞

k=i a2(k). The class-i arrival
rate λi equals

∑∞
k=1 a∗

i (k).
We assume a deterministic service time of one time slot for all the packets.

Although this assumption is rather strong, it allows us to isolate the impact
of assuming one (or two) infinite size buffers on the accuracy of the loss rate
obtained. There are two buffers, one for the high and one for the low priority
traffic. If an arriving packet finds the server busy, it joins the appropriate buffer.
The class-1 packets have priority over these of class-2 and within each class the
service discipline is assumed to be First Come First Served. Therefore, when a
packet completes its service, the class-1 packet with the longest waiting time will
be served. If there are no high priority packets available, the oldest low priority
packet is selected for service.

In the next sections, we discuss four different cases, where the buffer size of
the two buffers is either finite or infinite. For each situation, we determine the
steady state probabilities of the system contents distribution, which can, among
others be used to calculate loss probability of the class-2 packets. In each of
these models, all events such as arrivals, service completions and packet losses
are assumed to occur at instants immediately after the discrete time epochs. We
further assume that departures occur before arrivals.

3 Finite High Priority Buffer

Let us first discuss the above-mentioned queueing system provided that the
class-1 buffer is finite, with a capacity H , and the class-2 buffer is infinite. We
can model this system using an M/G/1-type Markov chain represented by the
following transition matrix:

P =

⎡
⎢⎢⎢⎢⎢⎣

B0 B1 B2 B3 . . .
A0 A1 A2 A3 . . .
0 A0 A1 A2 . . .
0 0 A0 A1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ . (3)
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We denote the states of this Markov chain as 〈i, j〉, where the level i ≥ 0 denotes
the number of low priority packets in the queueing system and j = 0, . . . , H + 1
reflects the number of high priority packets. An expression for the (H + 2) ×
(H + 2) matrices Ai (i = 0, 1, . . .) is given first. A transition to a lower level can
only occur, if there are no high priority packets present in the system, otherwise
such a packet is served, preventing any low priority packet from leaving the
system. As a consequence only the first row of the matrix A0 contains non-zero
probabilities. A second condition in order to have a transition to a lower level is
that no low priority packets arrive during the current time slot. Hence,

A0 = e1(a(0, 0), a(1, 0), a(2, 0), . . . , a∗(H + 1, 0)), (4)

where a∗(i, j) =
∑∞

k=i a(k, j) and e1 is a column vector with all its entries equal
to zero, except for the first which equals one. The transitions from state 〈i, j〉
to state 〈i + k, j′〉 are covered by the matrix Ak+1, for i ≥ 1 and k ≥ 0. We
distinguish two cases: j = 0 and j > 0. In the first case, a low priority packet
is in service; hence, k + 1 low priority packets need to arrive in order to get a
transition to level i + k. In the latter case, a class-1 packet occupies the server.
A transition to level i + k thus occurs if k class-2 packets arrive. This yields,

Ak+1 =

⎡
⎢⎢⎢⎢⎢⎣

a(0, k + 1) a(1, k + 1) a(2, k + 1) . . . a∗(H + 1, k + 1)
a(0, k) a(1, k) a(2, k) . . . a∗(H + 1, k)

0 a(0, k) a(1, k) . . . a∗(H, k)
...

. . . . . . . . .
...

0 . . . 0 a(0, k) a∗(1, k)

⎤
⎥⎥⎥⎥⎥⎦ . (5)

Finally, the matrix Bk contains the probabilities of having a transition from
level zero to level k. Level zero corresponds to having zero class-2 packets in the
system, implying that k low priority packets must arrive to enter a level k state,
for k ≥ 0,

Bk =

⎡
⎢⎢⎢⎢⎢⎣

a(0, k) a(1, k) a(2, k) . . . a∗(H + 1, k)
a(0, k) a(1, k) a(2, k) . . . a∗(H + 1, k)

0 a(0, k) a(1, k) . . . a∗(H, k)
...

. . . . . . . . .
...

0 . . . 0 a(0, k) a∗(1, k)

⎤
⎥⎥⎥⎥⎥⎦ . (6)

To calculate the steady state vector x = (x0, x1, x2, . . .), with xk a 1 × (H + 2)
vector for k ≥ 0, of P , i.e., the joint system contents distribution, Ramaswami’s
formula [13, 12, 11] can be used. This formula requires x0 and a (stochastic) ma-
trix G, being the smallest nonnegative solution of G =

∑∞
k=0 AkGk, as its input.

The (j, k)-th entry of this matrix represents the probability that, starting from
state 〈i + 1, j〉, the Markov chain visits the set of states {〈i, 0〉 , . . . , 〈i, H + 1〉}
the first time by entering the state 〈i, k〉. Finding G is often by far the bottleneck
when computing the invariant vector of an M/G/1-type MC. However, in this
setup, a transition to a lower level can only occur when there are no high priority
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packets in the system and there is no arrival of low priority traffic at the current
time instant. As a consequence, all the rows of G are identical and can be given
explicitly by the vector α = (a(0, 0), a(1, 0), a(2, 0), . . . , a∗(H + 1, 0)) /a∗(0, 0).
Notice that Gk = G = eα for k > 0 and g = α, where g is the unique solution of
gG = g, with ge = 1 and e a column vector of ones. Combining [12, Chapter 3]
and the structure of the Ak and Bk matrices with these properties, the following
algorithm to compute x can be devised:

Algorithm 3.1: [H/∞]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process and the capacity H of the buffer for the high priority traffic.

2. Determine the matrices Ak and Bk (k ≥ 0) using Eqn. (4), (5) and (6).
3. Calculate ρ = πβ, where π is the vector representing the stationary distri-

bution of the stochastic matrix A =
∑∞

k=0 Ak and β = (1 + λ2)e − e1.
4. Next, set κ̃1 = ψ2+(B1 + a∗

2(2)eα) (I−A1−a∗
2(1)eα +a2(1)e1α)−1ψ1, where

I is the identity matrix of the appropriate dimension. The vectors ψ1 and
ψ2 are given by the following expressions:

ψ1 = (I − A0 − A1) (I − eα) (I − A + (e − β)α)−1
e

+(1 − ρ)−1a2(0)e1,

ψ2 = (B − B0 − B1) (I − eα) (I − A + (e − β)α)−1 e

+(1 − ρ)−1(λ2 − ρ + a2(0))e,

where B =
∑∞

k=0 Bk.
5. The vector x0 containing the steady state probabilities that there are no

low priority packets in the system, is given by x0 = (κκ̃1)−1κ with κ the
invariant probability vector of K = B0 + (I − B0)eα.

6. Finally, the following recursion is used to calculate the remaining vectors xi

of the steady state distribution:

xi =

⎛
⎝x0B̄i +

i−1∑
j=1

xjĀi+1−j

⎞
⎠(I − Ā1

)−1
, i > 0. (7)

In this expression we have Āk = Ak + (a∗
2(k)e − a2(k)e1)α and B̄k = Bk+

a∗
2(k + 1)eα, for k ≥ 0.

Notice, the matrices Ak, Bk, Āk, B̄k, etc. are fully characterized by their first
(or first two) rows; hence, there is no need to store more than one (two) rows
for each of these matrices.

In this section, we assumed an infinite size low priority buffer. In practice,
buffers are finite and some low priority losses can occur. To estimate the loss
probability of the class-2 packets, given the maximum capacity L of the corre-
sponding buffer, we can use the following standard approach in queueing1. This
1 High priority buffers are usually dimensioned such that hardly any losses occur,

therefore, we focus on the low priority packets.
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approach approximates the packet loss in a finite size L buffer, by the expected
value of max(0,number of packets waiting −L) in an infinite size system:

Ploss ≈
∞∑

k=L+1

(k − L)xke − xL+1(0), (8)

where xL+1 = (xL+1(0), xL+1(1), . . . , xL+1(H)). The accuracy of this estimate
is studied in Section 7. Apart from computing the steady state vector x =
(x0, x1, x2, . . .) in an exact manner via Algorithm 3.1, we can also rely on a
theorem by Falkenberg [5, Theorem 3.5], that describes the tail behavior of
an M/G/1-type MC, to approximate xk for k large. This theorem states that
the tail will typically decay geometrically, with parameter τ . This parameter is
the solution τ > 1 to ξ

(∑∞
k=0 Akzk

)
= z, with ξ(X) representing the Perron-

Frobenius eigenvalue of the matrix X , and can be computed by a simple bisection
algorithm. By plugging the approximated xk values in (8), we find an alternative
estimate for the class-2 loss probability. We will refer to this approach as the
H/∞t approach (as opposed to the H/∞ approach of Algorithm 3.1).

4 Finite Low Priority Buffer

Consider the same system as in Section 3, but with an infinite buffer for the high
priority traffic and a finite one of size L for the low priority traffic. As before, we
start by setting up an M/G/1-type Markov chain to describe the system. The
transition matrix of this Markov chain is given by

P =

⎡
⎢⎢⎢⎢⎢⎣

B0 B1 B2 B3 . . .
C0 A1 A2 A3 . . .
0 A0 A1 A2 . . .
0 0 A0 A1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ , (9)

with Ak (k ≥ 0) an (L + 1) × (L + 1) matrix, Bk (k > 0) an (L + 2) × (L + 1)
matrix, B0 an (L + 2)× (L +2) matrix and C0 an (L+ 1)× (L + 2) matrix. The
different dimensions originate from the fact that there can be L + 1 low priority
packets in the system only if there are no packets of high priority present. Within
a level, the states of this Markov chain correspond to the number of low priority
packets; thus, level zero contains one additional state. Arguments similar to the
one presented in Section 3 yield the following expressions:

Ak =

⎡
⎢⎢⎢⎣

a(k, 0) a(k, 1) . . . ā(k, L)
0 a(k, 0) . . . ā(k, L − 1)
...

. . .
. . .

...
0 . . . 0 ā(k, 0)

⎤
⎥⎥⎥⎦ , k ≥ 0, (10)
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B0 =

⎡
⎢⎢⎢⎢⎢⎣

a(0, 0) a(0, 1) a(0, 2) . . . ā(0, L + 1)
a(0, 0) a(0, 1) a(0, 2) . . . ā(0, L + 1)

0 a(0, 0) a(0, 1) . . . ā(0, L)
...

. . . . . . . . .
...

0 . . . 0 a(0, 0) ā(0, 1)

⎤
⎥⎥⎥⎥⎥⎦ , (11)

Bk =

⎡
⎢⎢⎢⎢⎢⎣

a(k, 0) a(k, 1) . . . ā(k, L)
a(k, 0) a(k, 1) . . . ā(k, L)

0 a(k, 0) . . . ā(k, L − 1)
...

. . . . . .
...

0 . . . 0 ā(k, 0)

⎤
⎥⎥⎥⎥⎥⎦ , k > 0 (12)

and

C0 =

⎡
⎢⎢⎢⎣

a(0, 0) a(0, 1) a(0, 2) . . . ā(0, L + 1)
0 a(0, 0) a(0, 1) . . . ā(0, L)
...

. . . . . . . . .
...

0 . . . 0 a(0, 0) ā(0, 1)

⎤
⎥⎥⎥⎦ , (13)

where ā(i, j) =
∑∞

k=j a(i, k). Given these expressions, we only need to find x0
and the matrix G before we can apply Ramaswami’s formula to compute x =
(x0, x1, . . .). For this setup, there is no explicit expression for G. However, various
iterative algorithms can be used to compute G. A low memory implementation
can be achieved using the following basic scheme: G0 = I, Gn =

∑∞
k=0 AkGk

n−1.
The time needed to execute one iteration can be reduced by observing that only
the first row has to be calculated for the entire matrix to be known. That is,
the matrix Gn is a triangular matrix with the following structure (due to the
probabilistic interpretation of G) :

Gn =

⎡
⎢⎢⎢⎢⎣

G(0) G(1) . . . G(L)

0 G(0)
. . . G∗(L − 1)

...
. . . . . .

...
0 . . . 0 G∗(0)

⎤
⎥⎥⎥⎥⎦ ,

where G∗(i) =
∑L

k=i G(k). Hence, the steady state vector of the stochastic
matrix G is given by g = (0, 0, . . . , 1). Similarly, as A =

∑
k Ak is also triangular,

its invariant vector π = (0, 0, . . . , 1) as well. Furthermore, the matrices Ak, Bk

and C0(k ≥ 0) can be represented by their first row and both Ake and Bke
equal a1(k)e (for k ≥ 0). This leads to the following simplifications: β = λ1e,
ρ = λ1, ψ1 = ψ2 = a1(0)(1 − λ1)−1e and κ̃1 = (1 − λ1)−1e. These expression
can be obtained from [12, Chapter 3] by noticing that (I − A + (e − β)g)−1e =∑∞

k=0(A − (e − β)g)ke =
∑∞

k=0 λk
1e = (1 − λ1)−1e. Therefore, the following

algorithm can be used to compute x = (x0, x1, x2, . . .):
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Algorithm 4.1: [∞/L]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process and the capacity L of the buffer for the class-2 traffic.

2. Determine the matrices Ak, Bk (k ≥ 0) and C0 using the Eqn. (10), (11),
(12) and (13).

3. Set x0 = (κκ̃1)−1κ = (1 − λ1)κ with κ the invariant probability vector of
the matrix K:

K = B0 +

( ∞∑
k=1

BkGk−1

)(
I −

∞∑
k=1

AkGk−1

)−1

C0.

4. Finally, we can use the following iteration to calculate the other vectors of
the steady state distribution:

xi =

⎛
⎝x0B̄i +

i−1∑
j=1

xjĀi+1−j

⎞
⎠(I − Ā1

)−1
, i > 0, (14)

where Āk =
∑∞

i=k AiG
i−k and B̄k =

∑∞
i=k BiG

i−k, for k ≥ 0.

As Ak, Bk and G are fully characterized by their first row, so are the Āk

and B̄k matrices, allowing a significant reduction in the computing time and
storage space needed to implement Ramaswami’s formula (i.e., (14)). Having
found the steady state probabilities, xj(k) denotes the steady state probability
of having j high and k low priority packets in the system. Define ā∗(i, j) =∑∞

k=i

∑∞
l=j a(k, l).

Let us now take a look at the calculation of the loss rate of class-2 packets.
Low priority packets are lost when the buffer has reached its maximum capacity
upon their arrival. This happens in the following two cases:

– The system contains j = 0, 1 class-1 packets, i class-2 packets (for 0 ≤ i ≤
L + 1 − j) and (a) at least one high and L + 1 − [i − j̄]+ low priority packets
arrive (where [x]+ = max(0, x) and j̄ = j + 1 mod 2) or (b) no high and at
least L+2− [i− j̄]+ low priority packets arrive. Notice, [i− j̄]+ represents the
number of class-2 packets left behind by the possible departure and seen by the
new arrivals. The expected number of losses due to these cases corresponds to

1∑
j=0

L+1−j∑
i=0

xj(i)

⎛
⎝ ∞∑

k=L+1−[i−j̄]+
ā∗(1, k) +

∞∑
k=L+2−[i−j̄]+

ā(0, k)

⎞
⎠ .

– There are j (j > 1) class-1, i (0 ≤ i ≤ L) class-2 packets and more than
L − i low priority packets arrive. The expected number of losses caused by
these cases equals

∑∞
j=2
∑L

i=0 xj(i)
(∑∞

k=L+1−i ā∗
2(k)
)
.

The loss rate of the class-2 traffic can now be calculated by taking the sum of
these two expressions. We expect that this approach provides us with a more
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accurate estimation than the one presented in the previous section, keeping in
mind that the high priority queue is typically dimensioned sufficiently large such
that hardly any losses occur. In Section 7 we will give some numerical examples
in which both approaches are compared.

5 Two Finite Buffers

This section focuses on the system with both a finite, size L low and finite, size
H high priority traffic buffer. In practice, all buffers are finite, thus the results
obtained in this section are the most relevant. The system state, captured by
the number of low and high priority customers in the queue, can be described
by a Markov chain with the following transition matrix P :

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 B1 . . . BL−1 DL CL

A0 A1 . . . AL−1 DL−1 CL−1

0 A0
. . . AL−2 DL−2 CL−2

...
. . . . . .

...
...

...
...

. . . . . . A0 D0 C0
0 . . . . . . 0 F E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

As in Section 3, the states are labeled as 〈i, j〉, with i and j reflecting the number
of low and high priority customers, respectively. Notice that the states 〈L + 1, j〉
can only be reached if j = 0. Otherwise, a high priority customer will occupy the
server, leaving only L buffer places available for the low priority traffic. As a con-
sequence Ci (0 ≤ i ≤ L) are column vectors, F is a row vector, and E is a scalar.

In many applications, the dimension of the buffer for the class-1 traffic is
significantly smaller than the class-2 buffer. Keeping this in mind, choosing the
representation above allows us to work with relatively smaller matrices then
would be the case when the order of both variables would be switched. Moreover,
this choice also causes P to have a useful regenerative structure. The expressions
for the matrices Ak and Bk (0 ≤ k < L) are identical to those given in Section 3
and as a consequence the matrix G = eα, being the smallest nonnegative solution
to G =

∑∞
i=0 AiG

i, is again known explicitly.
Let us now determine the expressions for the matrices Ck, Dk, E and F . First,

the matrix Ck (0 ≤ k ≤ L) contains the probabilities of having a transition to
level L + 1, which can only occur when there are no high priority packets in the
system during the next time slot. Meaning, Ck is a column vector, the first two
entries of which only differ form zero:

CL =

⎡
⎢⎢⎢⎢⎢⎣

ā(0, L + 1)
ā(0, L + 1)

0
...
0

⎤
⎥⎥⎥⎥⎥⎦ and Ck =

⎡
⎢⎢⎢⎢⎢⎣

ā(0, k + 2)
ā(0, k + 1)

0
...
0

⎤
⎥⎥⎥⎥⎥⎦ , 0 ≤ k < L. (16)
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A similar argument can be used to find

E = ā(0, 1) (17)

The transitions to level L are described by Dk (0 ≤ k ≤ L) and F , and can be
written as:

DL =

⎡
⎢⎢⎢⎢⎢⎣

a(0, L) ā(1, L) ā(2, L) . . . ā∗(H, L)
a(0, L) ā(1, L) ā(2, L) . . . ā∗(H, L)

0 ā(0, L) ā(1, L) . . . ā∗(H − 1, L)
...

. . . . . . . . .
...

0 . . . 0 ā(0, L) ā∗(1, L)

⎤
⎥⎥⎥⎥⎥⎦ , (18)

Dk =

⎡
⎢⎢⎢⎢⎢⎣

a(0, k + 1) ā(1, k + 1) ā(2, k + 1) . . . ā∗(H, k + 1)
a(0, k) ā(1, k) ā(2, k) . . . ā∗(H, k)

0 ā(0, k) ā(1, k) . . . ā∗(H − 1, k)
...

. . . . . . . . .
...

0 . . . 0 ā(0, k) ā∗(1, k)

⎤
⎥⎥⎥⎥⎥⎦ (19)

and
F = (a(0, 0), ā(1, 0), ā(2, 0), . . . , ā∗(H, 0)) , (20)

Now that we have derived an expression for the building blocks of the tran-
sition matrix P , we are in a position to calculate its steady state distribution
x = (x0, x1, . . . , xL+1). P is a downward skip-free finite transition matrix with
a special regenerative structure, in [7, Theorem 4.1] Ishizaki introduced an effi-
cient algorithm (similar to Ramaswami’s formula) to compute the steady state
vector of such a matrix P . Applying this algorithm to our setting and using the
same notations as in Section 3, we can calculate the steady state probabilities
by means of the following set of equations:

Algorithm 5.1: [H/L]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process and both buffer capacities L and H .

2. Determine the matrices Ak, Bk (0 ≤ k ≤ L−1), Ck, Dk (0 ≤ k ≤ L), E and
F using Eqns. (4–6) and (16–20).

3. Let x0 be the stochastic solution of x0 = x0K, where K = B0 + (I − B0)eα.

4. Set xi =
(
x0B̄i +

∑i−1
k=1 xkĀi−k+1

) (
I − Āi,1

)−1 for i = 1, . . . , L − 1, where

the matrices Āk and B̄k were defined in step 6 of Algorithm 3.1.
5. Let xL =

(∑L−1
k=0 xk(DL−k + CL−kF ∗)

)
(I − D̄0)−1, where F ∗ = F/(Fe)

and D̄0 = D0 + C0F
∗.

6. Compute xL+1 =
(∑N

i=0 xiCL−i

)
(1 − E)−1.

7. Normalize x = (x0, x1, . . . , xL+1) such that
∑L+1

i=0 xie = 1.
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Observe that we compute (x0, . . . , xL−1) in exactly the same way as in Sec-
tion 3, except that x0 is not normalized. Normalization occurs after computing
xL and xL+1. Thus, obtaining results for the system with two finite buffers is
almost computationally equivalent to solving the finite/infinite system. This is
exceptional as finite buffer systems typically demand more computational power.
Using these steady state probabilities, the loss probability of the class-2 packets
can be calculated in the same way as in Section 4.

6 Two Infinite Buffers

To analyze the system where both buffers are of infinite size, we can rely on
some existing results in the literature. From [17], it follows that the probability
generating function Q2(z) of the number of class-2 packets waiting in the queue
can be written as

Q2(z) = (1 − λ)
(z − 1)(Y (z) − 1)

(z − Y (z))(A(1, z) − 1)
, (21)

where Y (z) is implicitly defined by Y (z) = A(Y (z), z). From Rouché’s theorem,
it can be seen that there is exactly one solution for Y (z), with |Y (z)| ≤ 1 for
|z| < 1. There are two approaches to retrieve an estimate for the class-2 loss
probability from (21). The first involves a numerical inversion of the generating
function to obtain an approximation for the distribution of the number of class-2
packets present in the buffer. The inversion is realized using a discrete Fourier
transform method (DFT), where a damping parameter 0 < r < 1 is used [1]. We
make use of a damping parameter such that when evaluating Q2(z) at rωs

N , where
ωs

N for s = 0, . . . , N − 1 are the N -th roots of unity, Y (z) is uniquely defined by
Rouché’s theorem as |rωs

N | < 1. This leads to the following algorithm:

Algorithm 6.1: [∞/∞]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process.

2. Evaluate Q2(z) at rωs
N , where ωs

N for s = 0, . . . , N −1 are the N -th roots of
unity (where N is a power of 2 sufficiently large). This entails that we have
to determine the unique solution of Y (z) = A(Y (z), z), with |Y (z)| < 1, for
each z = rωs

N .
3. Compute qk, for k = 0, . . . , N − 1, via the inverse DFT. The values qk can

be used as an approximation to the probability of having k buffered class-2
packets.

In [9], it is argued that as long as enough numerical precision is used, the desired
probabilities can be obtained to any given accuracy. Therefore, it is advised to use
a software package that supports high numerical precision when implementing
this algorithm (e.g., Maple or Mathematica). The class-2 loss probability can be
estimated as Ploss ≈

∑∞
k=L+1(k − L)qk.
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A second approach is to rely on the tail behavior of (21) to get an alternate
approximation q′k for the probability of having k class-2 packets buffered. A de-
scription of the tail behavior of interest can be found easily from [17, Eqn. (21)].
The key in generating numerical results from these expressions is the computa-
tion of the real numbers zT > 1 and zB > 1: these numbers are the solutions to
A(z, z) = z and A(1)(Y (z), z) = 1 (where A(1)(z1, z2) is the first partial deriva-
tive of A(z1, z2)), respectively. As A(z, z) is a convex function with A(1, 1) = 1
and dA(z,z)

dz

∣∣∣
z=1

< 1 (otherwise the system would be unstable), we can apply a
simple bisection algorithm to find zT . For zB we can use the following algorithm:

Algorithm 6.2: [∞/∞t]

1. Set z2:min = 1 and z2:max = 2. Determine z1 > 1 via a bisection algo-
rithm such that A(1)(z1, z2:max) = 1. As long as A(z1, z2:max) is less than z1,
increase z2:min and z2:max by one.

2. Let z2:new = (z2:min +z2:max)/2. Determine z1 > 1 via a bisection algorithm
such that A(1)(z1, z2:new) = 1. If z1 < A(z1, z2:new), assign z2:new to z2:max,
else z2:min = z2:new. Repeat step 2 until z2:max − z2:min < 10−14.

For details on how to compute an approximation q′k given zT and zB we refer
to [17].

7 Numerical Examples

In this section we will compare the discussed approaches to estimate the loss
probability of the low priority traffic. Let us first describe the arrival process
under consideration. The number of arrivals during one time slot is bounded by
N and is generated by a Bernoulli process with rate λT /N , where an arriving
packet belongs to class-j (j = 1, 2), with a probability λj/λT (with λ1+λ2 = λT ).
This arrival process is characterized by the joint probability generating function

A(z1, z2) =

⎛
⎝1 +

2∑
j=1

λj

N
(zj − 1)

⎞
⎠N

. (22)

It was also used in [16] where a non-blocking output-queueing switch with N
inlets and N outlets was given as a possible application.

More specifically, we assume the maximum number of simultaneously arriving
packets to be 16. The probability that a class-1 packet arrives is fixed throughout
this section at λ1 = 0.4, while the buffer for the high priority traffic has a
size H = 25 packets. By dimensioning the high priority buffer like this, the
probability that a class-1 packet is dropped due to buffer overflow is in the order
of 10−20. Figure 1(a) represents, for each of the discussed approaches, the loss
rate of the class-2 packets where the corresponding buffer has a size L = 20
packets and λ2 = 0.1, . . . , 0.4.
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Fig. 1. Comparison of the loss rate of low priority packets for each of the six approaches

The exact results obtained via the system with two finite buffers, is denoted
by the full line. It can be seen that the ∞/L results are very accurate, meaning
there is no harm in assuming an infinite size high priority buffer. The other four
approximation approaches give rise to higher loss probabilities. This difference is
caused by the heuristic calculation used to estimate the loss probability. When-
ever an infinite buffer is used for the low priority traffic, the estimate for the
loss probability is based on the probability that the number of packets in the
buffer exceeds L. In general, this causes an overestimation as packets that would
be dropped earlier by the finite capacity system may still reside in the infinite
buffer setup when the next arrival(s) occur.

In case both queues are assumed to be infinite, we observe some poor results
around λ2 = 0.21 for the ∞/∞t approach, which relies on the asymptotic tail
behavior of the class-2 queue. This is caused by the fact that the tail transition
point is situated at pt = 0.208060765: for λ2 ≤ pt the tail is nongeometric,
whereas for λ2 > pt, we have a geometric tail. When λ2 < pt, the asymptotic
regime is dominated by a branch point, whereas for λ2 > pt there exists a
dominant pole. When we approach the transition point, the domination becomes
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less severe and significant errors occur as shown in this example. The loss rate
obtained for λ2 = pt is quite accurate as indicated by the star on the plot.

Figure 1(b) illustrates the influence of the buffer capacity for the low priority
traffic on the loss probability of this traffic in the case where λ2 = 0.2. As could
be expected, the loss probability of the class-2 packets decreases when this buffer
becomes larger. If we compare the different approaches, we notice the same be-
havior as in Figure 1(a). Because taking λ2 = 0.2 brings us relatively close to
the transition point, a significant error is introduced by assuming both queues
infinite and relying on the tail behavior. That is, the loss probability obtained by
this approach overestimates the actual loss rate by a factor of 100 to 1000. If, for
example, we would use the ∞/∞t approximation to dimension the class-2 buffer
such that the loss probability is less than 10−5, we would need a buffer of 14 pack-
ets, whereas a buffer of only 8 packets suffices if we consider the H/L approach.

In Figure 2 we compare the two approaches based on the tail behavior of the
low priority queue. In fact, the full line represents the geometric decay parame-
ter in function of the arrival rate λ2 of the low priority traffic. The dotted line
represents the parameter zT , described in algorithm 6.2. On the figure, the tran-
sition point is indicated by the vertical line. As mentioned before, on the left of
this line the tail for the class-2 queue obtained by algorithm 6.2 is nongeometric,
whereas on the right of the transition point the tails are geometric. It can be
noticed that the values indicated by the two curves, converge to the same value
as λ2 reaches the transition point.

8 Conclusions

In this paper we have studied the influence of buffer finiteness on the low prior-
ity loss probability in a queueing system with two priority classes. Three novel
discrete time queueing models with at least one finite capacity buffer were intro-
duced, together with efficient solution techniques that rely on matrix analytic
methods. Six different approaches to estimate the low priority loss rate were
discussed and compared.

The most accurate approximation results were generated by the approach in
which only the high priority traffic is considered as infinite. Moreover, given that
the size of the high priority buffer is chosen sufficiently large, the distinction with
exact results is negligible. When the low priority queue was assumed to be infi-
nite, we observed an overestimated loss rate. Relying on the actual steady state
probabilities or the asymptotic tail behavior seemed to make little difference if
the high priority queue was finite. However, in case both queues are infinite very
inaccurate loss probability were observed when we made use of the asymptotic
tail behavior, especially in the area near the transition point.
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Abstract. In this paper we experimentally investigate if optimal retry
times can be determined based on models that assume independence
of successive tries. We do this using data obtained for HTTP GET.
This data provides application-perceived timing characteristics for the
various phases of web page download, including response times for TCP
connection set-ups and individual object downloads. The data consists
of pairs of consecutive downloads for over one thousand randomly chosen
URLs. Our analysis shows that correlation exists for normally completed
invocations, but is remarkably low for relatively slow downloads. This
implies that for typical situations in which retries are applied, models
relying on the independence assumption are appropriate.

1 Introduction

When a computing job or task does not complete in a reasonable time, it makes
common sense to retry it. Examples are plentiful: clicking the browser refresh
button, retry of TCP connection attempts at expiration of the retransmission
timer, reboot of machines if jobs do not complete (‘rejuvenation’), preemptive
restarting of a randomised algorithm using a different seed, etc.

In concrete terms, a retry makes sense if a new try takes less time to complete
than the ongoing attempt would have taken. If we assume that the completion
times of consecutive tries are independent and identically distributed and that
no time penalty is incurred when issuing a retry, it can be shown that retries
improve the overall mean completion time when the completion time distribution
is of a particular type, most notably heavy-tailed, bi-modal or log-normal [9].
Since we know from existing experimental work (e.g., [5]) that Internet response
times fit such distributions, Internet applications potentially respond positively
to retries.

However, the above reasoning assumes independent identically distributed
tries, an assumption that may not necessarily hold. Hence, models that deter-
mine optimal retry times based on the independence assumption [2, 4, 5, 9] may
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not necessarily be appropriate either. To analyse if and to what extend the inde-
pendence assumption holds for Internet applications, we conducted experiments
and collected data for consecutive HTTP GET invocations. This paper reports
on the analyses of the correlation characteristics of this data. To the best of
our knowledge such data capturing and analysis has not been done before (com-
pare for instance the surveyed experimental work in [3]). In earlier work [6],
we analysed HTTP GET invocations, but did not possess the detailed data for
subsequent requests to the same URL we use in this paper.1

Our experiments capture data for many consecutive downloads from individ-
ual URLs, always executed in pairs. This allows us to investigate correlation
between consecutive attempts as well as to determine the distribution of com-
pletion time. We collected data for various phases of the download of a web
page, distinguishing TCP connection set-up, time until the first data has been
received, intermediate ‘stalling’ times and the overall download time of an ob-
ject. We are interested in these detailed metrics because they potentially provide
clues on when to initiate a retry. We only obtained data for metrics that are vis-
ible at the application level, since we are interested in investigating retries that
could be introduced in an Internet application such as a browser or a software
agent.

We gained the following insights from the analysis in this paper. On the one
hand, if we consider all samples, the correlation between subsequent tries is
surprisingly low, irrespective of the considered phase in a web page download.
On the other hand, if we only consider attempts that complete ‘fast’ (that is,
within a small deviation of the average), the correlation is considerable. We
conclude from this that the independence assumption is reasonable for model-
based optimisation of retry times, provided one limits retries to times at which
completions can be considered slower than normal. Clearly, this corresponds to
the case in which one would want to consider retries to begin with. We also study
the correlation between different phases of the same download, and conclude that
these typically exhibit very low correlation. This makes it difficult to make use of
knowledge of earlier phases of the download to predict the remaining download
time (as has been utilised in [7] for retries of database queries).

We now first describe our experiment set-up and its underlying system model,
as well as the metrics we observed. We present the collected data in Sect. 3,
followed by the statistical analysis.

2 Experiment Design and Execution

Figure 1 depicts response times of HTTP GET invocations as an application
perceives it. The figure shows the various phases during the download of a
1 The data used in [6] contains completion times for TCP connection set-up, images,

objects and complete web pages for three experiments using 56,000 randomly selected
URLs. However, it lacks data for subsequent tries over long periods of time. We have
made available on the web [1] both the data set used in [6] and the one used in this
paper.



228 P. Reinecke, A.P.A. van Moorsel, and K. Wolter

Connection
Setup Req.

Connection
Setup Resp.

Time To
Start (TTS)

Stalling
Time

Connection Setup
Time (CST)

Object Download Time (ODT)

Data

t

Fig. 1. Metrics and measurement points during the download task

single object (such as a page or an image) and denotes the metrics used in
our experiments.

We call the overall time spent downloading the Object Download Time
(ODT), which is comprised of:

– Connection Set-up Time (CST): the time for the TCP connection set-up
– Time To Start (TTS): the time between sending the GET request and re-

ceiving the first data
– the time consumed by actual data transfer (we do not collect this time

explicitly)
– Longest Stalling Time (LST): the length of possible stalling periods during

the download, of which we record the longest

These metrics allow us to assess the performance of a download in three distinct
phases:

Connection Set-Up Time: In TCP, connection set-up is accomplished by a
three-way-handshake and error handling procedures involving the Retrans-
mission Timeout (RTO) timer. From the application’s point of view, this
task corresponds to calling a connect() function, and waiting for this call
to return the connection. The application has no means to infer the state
of the connection set-up, and thus the performance of this whole process is
described by a single metric, namely its length.

Time To Start: The client proceeds by sending its request over the connec-
tion. The network transports the request data to the server, which generates
an answer and sends it back to the client. At the transport layer, the connec-
tion’s receive and send windows are adjusted to accommodate for network
characteristics (‘slow start’). At the application level a new server instance
may have to be started on the server, and content has to be prepared and
sent out. As with connection set-up, the intricacies of this phase remain
hidden from the client application, since it cannot observe whether its re-
quest actually reached the server, was processed, nor whether a reply was
sent back. Instead, it encounters a period of inactivity between sending the
request and receiving the first chunk of data.

Longest Stalling Time: During the download, various factors (e.g., network
or server congestion) may lead to periods of temporary stalling. In these
periods, no new data is available to the application when it polls the socket
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(done at 20ms intervals, see below). We always track the longest such inter-
val. If there was no stalling period, LST will be zero.

Object Download Time: Together, CST, TTS, LST, other stalling intervals,
and the length of periods in which data arrives add up to the Object Down-
load Time. That is, ODT is the time it takes from initiating the download
until the object is available to the application.

2.1 Experiments

To conduct our experiments we implemented a Java client that repeatedly down-
loads web pages from a set of hosts and measures the above-mentioned perfor-
mance indicators. The client issues GET / HTTP/1.0 requests to a web server,
and the ODT metric then corresponds to the time it takes to download the web
server’s root document (e.g., index.html) without any images or other objects
that might otherwise be included.

To obtain a sample, the client chooses a URL at random. We randomise the
order in which we visit servers to decrease the likelihood of introducing sub-
stantial dependencies between ordered requests to different machines. The Java
client then downloads the host’s root document twice in a row, with a 20ms
pause in between. The pairs of samples thus obtained allow us to study corre-
lation between subsequent requests. All our samples have a 20ms granularity,
because the client polls a TCP socket for new data at 20ms intervals.

The initial list of URLs was determined in two passes. First, to create a
reasonably random set of live URLs, we fed words from a large word list into
the Google search engine and extracted the links (the first 100) from the results.
In earlier experiments we used all of the resulting 56,000 URLs. In the current
experiment, we reduced the list by randomly drawing 2000 entries for detailed
investigation. As failing hosts may stall the experiments, any URL that produces
fatal errors or exceeded certain time thresholds (24 s for CST, 60 s for TTS, and
1200 s for ODT) was automatically removed from the list. Due to this mechanism,
our list shrank, and the data presented in the next section stems therefore from
725 unique URLs, each yielding a large number of samples (at least 1000).

The experiments were run on two Linux PCs connected to the Internet using
768kbit ADSL dial-up with the same ISP. On the first, a 2.0 GHz PC, the exper-
iment ran for 22 days, on the second, a 1.6 GHz PC, we collected samples for 10
days. The experiments faced three interruptions (interrupted dial-up connection,
etc.), and we accounted for these interruptions in our analysis in such a way that
they did not influence the results.

3 Results

Table 1 gives an overview of the results for the metrics defined in Sect. 2. The
first and second trial are denoted by subscripts 1 and 2, respectively. Note that
for Time To Start and Object Download Time the second attempt is typically
faster than the first. Most likely the second request benefits from work already



230 P. Reinecke, A.P.A. van Moorsel, and K. Wolter

Table 1. Overview of data set characteristics for the 725 URLs analysed. All times
are given in milliseconds.

CST1 CST2 TTS1 TTS2 LST1 LST2 ODT1 ODT2

First data set (22.09.2004, 6:44 – 14.10.2004, 15:48; 816397 samples)

mean 178.9 180.4 311.2 295.6 62.9 62.3 721.7 704.7

median 160 160 180 180 0 0 440 440

std. deviation 301.9 229.6 1663.5 1627.9 404.9 427.5 1918.6 2280.8

CoV 1.687 1.273 5.345 5.507 6.437 6.862 2.658 3.236

minimum 0 20 40 0 0 0 0 40

maximum 23700 24000 58440 60020 197480 309000 317700 1201880

Second data set (07.10.2004, 11:36 – 17.10.2004, 20:04; 212805 samples)

mean 174.6 173.4 293.9 279.0 63.7 62.4 1382.4 1347.2

median 160 160 180 180 0 0 840 840

std. deviation 320.3 250.4 1576.6 1545.0 264.3 201.9 3547.126 6242.9

CoV 1.834 1.444 5.364 5.537 4.15 3.235 2.566 4.634

minimum 20 20 20 0 0 0 320 340

maximum 21440 24000 57880 60020 57420 26760 274940 2420360

done for the previous one, e.g., the server might re-use the server instance that
handled the first attempt and could also serve cached data. However, this effect
is not very large, and close to negligible if we consider the median (at 20 ms
granularity).

It is worth mentioning that all sampled metrics have a coefficient of variation
(CoV, which is defined as the standard deviation divided by the expectation of
the considered metric) greater than one, indicating high variability. This holds
especially true for TTS and the Longest Stalling Time. The high variability
of TTS can most likely be explained by the dependence of TTS on network
conditions, the server, the client’s operating system state, etc. The high CoV
value for LST may be explained by the fact that it is a maximum value and is
therefore rather unpredictable.

In interpreting our results it is important to understand the working of TCP’s
retry mechanism. During connection set-up, TCP initiates a retry when the RTO
times out. RTO first expires after 3000ms and doubles after every expiration,
i.e., RTO expires and TCP re-attempts to set up a connection 3, 9, 21, 45 and
93 seconds after the initial attempt. The consequence of this mechanism on the
download time can be observed very well in Fig. 3, as we explain in Sect. 3.1.

We note that in our experiments about 0.3 percent of all TCP connection set-
up attempts experienced one or more RTO expiries, i.e., CST > 3000 ms (this
is not directly visible in the table). In earlier experiments [6] we found that the
IP-level failure percentage for TCP connection set-up is close to 0.6 percent. The
difference can probably be explained by our method of selecting URLs, which
tends to favour less failure-prone hosts.
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Fig. 2. Histograms for all CST < 3000 from both sets

Figure 2 illustrates the distribution of CSTs for attempts without RTO expi-
ration, with the right side graph zooming in on the left. The histogram in Fig. 2
suggests that for non-failed connection set-ups, CSTs for random URLs have
quite a high variance and frequently exhibit a relatively long completion time.
This may be interesting in its own right, but also bodes well for issuing restarts,
as was also found in [5, 8]. The question remains, however, whether consecutive
connection set-up times are independent, an issue we will study now.

3.1 Correlation

Various models that are used to determine the optimal retry time rely on the
assumption that subsequent tries exhibit independent and identically distributed
(iid) completion times. If the iid assumption is true, then correlation will be
zero. In other words, if correlation is high, we conclude that the independence
assumption is not valid. Therefore we now analyse the correlation characteristics
of our data. The analysis presented here is based solely on data from the first data
set, but we found that both sets lead to similar conclusions regarding correlation.

A first visual indication of the degree to which consecutive downloads are
correlated is given by the scatter plots in Fig. 3 and Fig. 4, for the CST and ODT
metric, respectively. Scatter plots of consecutive attempts show the correlation
between the first and second attempt by plotting the duration of the former
against that of the latter. For points close to the diagonal the first and the second
download experienced roughly equal completion times, and therefore indicate
strong correlation. Points far off the diagonal signal low correlation. Data points
below the diagonal of the scatter plot could have benefitted from a retry, since
the second attempt would have taken less time than the first. Points above the
diagonal would not have benefitted from a retry.

Figure 3 depicts connection set-up times. The importance of TCP’s RTO
timeout values shows quite clearly through clusters of samples just above 3000ms
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Fig. 3. Scatter plot for CST1 and CST2. TCP’s RTO values are clearly visible in the
clusters in the off-diagonals around 3000ms and 9000ms on each axis.

and 9000ms near both axes. Since these two clusters are far from the diagonal,
they indicate low correlation between consecutive connection set-ups. However,
note that these clusters (indicating low correlation) correspond to cases in which
one of the two connection set-up attempts experienced failures on the IP level.
In cases where both connection set-ups succeed without an RTO expiry (that is,
both CST1 and CST2 are below 3000ms), the samples more strongly gravitate
towards the diagonal, indicating substantial correlation.

The clusters caused by the RTO time out values are still faintly visible in
the scatter plot for ODT1 and ODT2 (Fig. 4). However, this picture is much
more diffuse, as could already have been expected based on the coefficient of
variation values in (Tab. 1) (the ODT coefficient of variation is double that for
CST). Together, these two observations suggest that, while delays introduced
by the RTO mechanism may have a strong influence on the ODT, the addi-
tional factors affecting this metric can change the pattern of observed ODTs
considerably.

Although they provide a strong visual insight into the amount of correlation,
the scatter plots do not objectively quantify the degree to which observations are
actually correlated for a given set of URLs. To this end, we study the distribution
of correlation coefficients per URL, as shown in the histograms in Fig. 5 until
Fig. 7. That is, we split the data set by URLs and for every URL treat the
(thousand or more) observations for each metric M from the first and the second
attempt as resulting from two random variables M1 and M2. We then compute
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Fig. 4. Scatter plot for ODT1 and ODT2
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Fig. 5. Histograms of correlation coefficients for (CST1, CST2)

Cor(M1, M2) for each URL and display the distribution of Cor(M1, M2) over all
URLs. Figure 5, for instance, shows that if we consider CST, close to 300 URLs
have correlation in the range between 0.0 and 0.1.

In our discussion of the scatter plots, we already touched upon the difference
in correlation of ‘failed’ attempts (i.e., failed on the IP level) and ‘fast’ attempts.
This issue can be studied quantitatively by comparing the left and right hand
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Fig. 6. Histograms of correlation coefficients for (ODT1, ODT2)

bar chart in Fig. 5. The left hand side, where we consider all attempts, shows low
correlation, whereas the right hand side indicates high correlation if we consider
only pairs that were successful (CST below 3000ms) in both tries. This indicates
that the independence assumption is only valid in the ‘failed’ case, not for the
common situation of normally succeeding attempts. So, even though successful
completion times may be distributed according to a distribution that is amenable
to retries (log-normal, heavy-tail), this does not imply that retries do indeed pay
off because the independence assumption is probably invalid. However, when one
considers higher retry times, retries at those times are not highly correlated, and
models based on the independence assumption are likely to be valid.

This difference between correlation for ‘failed’ and successful attempts can also
be observed for ODTs in Fig. 6, although here there remains a larger portion
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of URLs with low correlation. The latter may find its explanation in the low
correlation for TTS and LST, as seen in Fig. 7. The time-to-start values of the
first and the second attempt seem often, but not always, uncorrelated, as can be
seen in Fig. 7 on the left, while the longest stalling time often is long (or short)
again upon the second try, if it was long (or short) before, as can be seen in
Fig. 7 on the right.
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Cross-Measure Correlation. A final point of interest is the correlation be-
tween various phases of the download. If correlation exists, samples for one metric
M may be used to predict the completion time of a subsequent metric M ′ within
the same download (along the lines of [7]).

Figure 8 is just one example for the likelihood of such correlation, namely
that between connection set-up time and time to start. It shows that correlation
is relatively low, and similar behaviour exists between the other phases. This
makes it difficult to exploit possible inter-phase dependence for computing retry
times. Figure 9 illustrates the fact further. In this scatter plot we observe that
there is no obvious relation between CST and TTS; TTS may take on any value
when the connection set-up was very fast, and vice versa. The cluster for values of
TTS close to zero at CST values of 3000ms and at 9000ms signify that retries of
connection set-ups do not make large TTS more likely. The diagonal, indicating
positive correlation, is pronounced only for small values of both metrics, and,
in particular, for CST< 3000. This latter observation indicates that inter-phase
dependencies may be exploitable only in the absence of packet loss.

4 Conclusions

In this paper we have analysed empirical data sampled using HTTP GET. We
have investigated correlation patterns in the data and found high correlation
when using data from connections that were successfully set up straight away,
i.e., with Connection Set-up Times of less than 3000ms. For these, not only
the corresponding Connection Set-up Times are correlated, but also the Object
Download Times. However, when considering data from connections that ‘failed’
(i.e., Connection Set-up Time greater than 3000ms), we found very little correla-
tion. The consequence of our finding is that models that rely on the independence
of successive tries will not likely be useful to determine retry times for fast tries
(even if their distribution is amenable to retries). However, models based on the
independence assumption are appropriate when one wants to determine optimal
retry times for slower or ‘failed’ attempts. Since retries are most relevant in this
latter situation, this validates the use of optimisation models that rely on the
independence assumption.
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