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Abstract. We develop a new error bound for transductive learning al-
gorithms. The slack term in the new bound is a function of a relaxed
notion of transductive stability, which measures the sensitivity of the al-
gorithm to most pairwise exchanges of training and test set points. Our
bound is based on a novel concentration inequality for symmetric func-
tions of permutations. We also present a simple sampling technique that
can estimate, with high probability, the weak stability of transductive
learning algorithms with respect to a given dataset. We demonstrate
the usefulness of our estimation technique on a well known transductive
learning algorithm.

1 Introduction

Unlike supervised or semi-supervised inductive learning models, in transduction
the learning algorithm is not required to generate a general hypothesis that can
predict the label of any unobserved point. It is only required to predict the
labels of a given test set of points, provided to the learner before training. At
the outset, it may appear that this learning framework should be “easier” in
some sense than induction. Since its introduction by Vapnik more than 20 years
ago [18], the theory of transductive learning has not advanced much despite the
growing attention it has been receiving in the past few years.

We consider Vapnik’s distribution-free transductive setting where the learner
is given an “individual sample” of m+u unlabeled points in some space and then
receives the labels of points in an m-subset that is chosen uniformly at random
from the m + u points. The goal of the learner is to label the remaining test set
of u unlabeled points as accurately as possible. Our goal is to identify learning
principles and algorithms that will guarantee small as possible error in this game.
As shown in [19], error bounds for learning algorithms in this distribution-free
setting apply to a more popular distributional transductive setting where both
the labeled sample of m points and the test set of u points are sampled i.i.d.
from some unknown distribution.

Here we present novel transductive error bounds that are based on new no-
tions of transductive stability. The uniform stability of a transductive algorithm
is its worst case sensitivity for an exchange of two points, one from the labeled
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training set and one from the test set. Our uniform stability result is a rather
straightforward adaptation of the results of Bousquet and Elisseeff [4] for induc-
tive learning. Unfortunately, our empirical evaluation of this new bound (that
will be presented elsewhere) indicates that it is of little practical merit because
the required stability rates, which enable a non-vacuous bound, are not met by
useful transductive algorithms.

We, therefore, follow the approach taken by Kutin and Niyogi [12] in in-
duction and define a notion of weak transductive stability that requires overall
stability ‘almost everywhere’ but still allows the algorithm to be sensitive to
some fraction of the possible input exchanges. To utilize this weak transductive
stability we develop a novel concentration inequality for symmetric functions of
permutations based on Azuma’s martingale bound. We show that for sufficiently
stable algorithms, their empirical error is concentrated near their transductive
error and the slack term is a function of their weak stability parameters. The
resulting error bound is potentially applicable to any transductive algorithm.

To apply our transductive error bound to a specific algorithm, it is necessary
to know a bound on the weak stability of the algorithm. To this end, we develop
a data-dependent estimation technique based on sampling that provides high
probability estimates of the algorithm’s weak stability parameters. We apply
this routine on the algorithm of [20].

2 Related Work

The transductive learning framework was proposed by Vapnik [18, 19]. Two
transductive settings, distribution-free and distributional, are considered and it is
shown that error bounds for the distribution-free setting imply the same bounds
in the distributional case. Vapnik also presented general bounds for transductive
algorithms in the distribution-free setting. Observing that any hypothesis space
is effectively finite in transduction, the Vapnik bounds are similar to VC bounds
for finite hypothesis spaces but they are implicit in the sense that tail probabil-
ities are not estimated but are specified in the bound as the outcome of some
computational routine. Vapnik bounds can be refined to include prior “beliefs”
as noted in [5]. Similar implicit but somewhat tighter bounds were developed in
[3]. Explicit general bounds of a similar form as well as PAC-Bayesian bounds
for transduction were presented in [5].

Exponential concentration bounds in terms of unform stability were first con-
sidered by Bousquet and Elisseeff [4] in the context of induction. Quite a few vari-
ations of the inductive stability concept were defined and studied in [4, 12, 15].
It is not clear, however, what is the precise relation between these definitions
and the associated error bounds. It is noted in [9, 15] that many important
learning algorithms (e.g., SVM) are not stable under any of the stability defini-
tions, including the significantly relaxed notion of weak stability introduced by
Kutin and Niyogi [11, 12]. Hush et al. [9] attempted to remedy this by considering
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‘graphical algorithms’ and a new geometrical stability definition, which captures
a modified SVM (see also [4]).

Stability was first considered in the context of transductive learning by Belkin
et al. [2]. There the authors applied uniform inductive stability notions and
results of [4] to a specific graph-based transductive learning algorithm.1 However,
the algorithm considered has the deficiency that it always labels half of the points
by ‘-1’ and the other half by ‘+1’.

We present general bounds for transduction based on particularly designed
definitions of transductive stability, which we believe are better suited for captur-
ing practical algorithms. Our weak stability bounds have relatively “standard”
form of empirical error plus a slack term (unlike most weak stability bounds for
induction [12, 15, 16]). Kearns and Ron [10] were the first to develop standard
risk bounds based on weak stability. Their bounds are “polynomial”, depending
on 1/δ, unlike the “exponential” bounds we develop here (depending on ln 1/δ).

3 Problem Setup and Preliminaries

We consider the following transductive setting [18]. A full sample Xm+u =
{xi}m+u

i=1 consisting of m + u unlabeled examples in some space X is given.
For each point xj ∈ Xm+u, let yj ∈ {±1} be its unknown deterministic label. A
training set Sm consisting of m labeled points is generated as follows. Sample
a subset of m points Xm ⊂ Xm+u uniformly at random from all m-subsets of
the full sample. For each point xi ∈ Xm, obtain its uniquely determined label
yi from the teacher. Then, Sm = (Xm, Ym) = (zi = 〈xi, yi〉)m

i=1. The set of re-
maining u (unlabeled) points Xu = Xm+u \Xm is called the test set. We use the
notation Is

r for the set of (indices) {r, . . . , s} (for integers r < s). For simplicity
we abuse notation, and unless otherwise stated, the indices Im

1 are reserved for
training set points and the indices Im+u

m+1 for test set points.
The goal of the transductive learning algorithm A is to utilize both the la-

beled training points Sm and the unlabeled test points Xu and generate a soft
classification ASm,Xu(xi) ∈ [−1, 1] for each (test) point xi so as to minimize its
transductive error with respect to some loss function �, Ru(A) �= Ru(ASm,Xu) �=
1
u

∑m+u
i=m+1 �(ASm,Xu(xi), yi). We consider the standard 0/1-loss and margin-loss

functions denoted by � and �γ , respectively.2 In applications of the 0/1 loss func-
tion we always apply the sign function on the soft classification ASm,Xu(x). The
empirical error of A is R̂m(A) �= R̂m(ASm,Xu) �= 1

m

∑m
i=1 �(ASm,Xu(xi), yi).

When using the margin loss function we denote the training and transductive
errors of A by R̂γ

m(A) and Rγ
u(A), respectively.

1 There is still some disagreement between authors about the definitions of ‘semi-
supervised’ and ‘transductive’ learning. The authors of [2] study a transductive set-
ting (according to the terminology presented here) but call it ‘semi-supervised’.

2 For a positive real γ, �γ(y1, y2) = 0 if y1y2 ≥ γ and �γ(y1, y2) = min{1, 1 − y1y2/γ}
otherwise.
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Note that in this transductive setting there is no underlying distribution as in
(semi-supervised) inductive models.3 Also, training examples are dependent due
to the sampling without replacement of the training set from the full sample.

We require the following standard definitions and facts about martingales.4

Let Bn
1

�= (B1, . . . , Bn) be a sequence of random variables. The sequence Wn
0

�=
(W0, W1, . . . , Wn) is called a martingale w.r.t. the underlying sequence Bn

1 if
for any 1 ≤ i ≤ n, Wi is a function of Bi

1 and EBi

{
Wi|Bi−1

1

}
= Wi−1. The

sequence of random variables dn
1 = (d1, d2, . . . , dn), where di

�= Wi − Wi−1,
is called the martingale difference sequence of Wn. An elementary fact is that
EBi

{
di|Bi−1

1

}
= 0.

Let f(Zn
1 ) �= f(Z1, . . . , Zn) be an arbitrary function of n (possibly dependent)

random variables. Let W0
�= EZn

1
{f(Zn

1 )} and Wi
�= EZn

1

{
f(Zn

1 )|Zi
1
}

for any
1 ≤ i ≤ n. An elementary fact is that Wn

0 is a martingale w.r.t. the underlying
sequence Zn. Thus we can obtain a martingale from any function of (possibly
dependent) random variables. This routine of obtaining a martingale from an
arbitrary function is called Doob’s martingale process. Let dn

1 be the martingale
difference sequence of Wn

0 . Then
∑n

i=1 di = Wn − W0 = f(Z) − EZn
1

{f(Zn
1 )}.

Consequently, to bound the deviation of f(Z) from its mean it is sufficient to
bound the martingale difference sum. A fundamental inequality, providing such
a bound, is the Azuma inequality.

Lemma 1 (Azuma,[1]). Let Wn
0 be a martingale w.r.t. Bn

1 and dn
1 be its dif-

ference sequences. Suppose that for all i ∈ In
1 , |di| ≤ bi. Then

PBn
1
{Wn − W0 > ε} < exp

(

− ε2

2
∑n

i=1 b2
i

)

. (1)

4 Uniform Stability Bound

Given a training set Sm and a test set Xu and two indices i ∈ Im
1 and j ∈ Im+u

m+1 ,
let Sij

m
�= Sm \ {zi} ∪ {zj = 〈xj , yj〉} and X ij

u
�= Xu \ {xj} ∪ {xi} (e.g., Sij

m is Sm

with the ith example (from the training set) and jth example (from the test set)
exchanged). The following definition of stability is a straightforward adaptation
of the uniform stability definition from [4] to our transductive setting.

Definition 1 (Uniform Transductive Stability). A transductive learning
algorithm A has uniform transductive stability β if for all choices of Sm ⊂
Sm+u, for all i ∈ Im

1 , j ∈ Im+u
m+1 ,

max
1≤k≤m+u

∣
∣
∣ASm,Xu(xk) − ASij

m,Xij
u

(xk)
∣
∣
∣ ≤ β . (2)

3 As discussed earlier, Vapnik also considers a second transductive setting where ex-
amples are drawn from some unknown distribution; see Chapter 8 in [19]. Results in
the model we study here apply to the other model (Theorem 8.1 in [19]).

4 See, e.g., [7], Chapt. 12 and [6] Sec. 9.1 for more details.
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Let Z �= Zm+u
1

�= (Z1, . . . , Zm+u) be a random permutation vector where the
variable Zk, k ∈ Im+u

1 , is the kth component of a permutation of Im+u
1 , chosen

uniformly at random. Let Zij be a perturbed permutation vector obtained by
exchanging Zi and Zj in Z. A function f on permutations of Im+u

1 is called
(m, u)-symmetric permutation function if f(Z) = f(Z1, . . . , Zm+u) is symmetric
on Z1, . . . , Zm as well as on Zm+1, . . . , Zm+u.

Let H2(n) �=
∑n

i=1
1
i2 and K(m, u) �= u2(H2(m+u)−H2(u)). It can be verified

that K(m, u) < m. The following lemma is obtained5 by a straightforward ap-
plication of the Azuma inequality to a martingale obtained from f(Z) by Doob’s
process.

Lemma 2. Let Z be a random permutation vector. Let f(Z) be an (m, u)-
symmetric permutation function satisfying

∣
∣f(Z) − f(Zij)

∣
∣ ≤ β for all i ∈ Im

1 ,
j ∈ Im+u

m+1 . Then

PZ {f(Z) − EZ {f(Z)} ≥ ε} ≤ exp
(

− ε2

2β2K(m, u)

)

. (3)

Our first transductive error bound is obtained by applying Lemma 2 to the
function Rγ

u(A)−R̂γ
m(A) and bounding E{Rγ

u(A)−R̂γ
m(A)} using an adaptation

of Lemma 7 from [4] to our setting.

Theorem 1. Let A be a transductive learning algorithm with transductive uni-
form stability β. Let β̃

�= (u−1)β
uγ + (m−1)β

mγ + 1
m + 1

u . Then, for all γ > 0 and
δ ∈ (0, 1), with probability at least 1 − δ over the draw of the training/test sets
(Sm, Xu),

Ru(A) ≤ R̂γ
m(A) + β/γ + β̃

√
2K(m, u) ln(1/δ) . (4)

The tightness of the bound (4) depends on the transductive uniform stability
β of algorithm A. If β = O(1/m) and u = Ω(m), then the slack terms in (4)
amount to O(

√
ln(1/δ)/m/γ). However, in our experience this stability rate is

never met by useful transductive algorithms.

5 Weak Stability Bound

The impractical requirement of the uniform stability concept motivates a weaker
notion of stability that we develop here. The following definition is inspired by
a definition of Kutin for inductive learning (see Definition 1.7 in [11]).

Definition 2 (Weak Permutation Stability). Let Z be a random permuta-
tion vector. A function f(Z) has weak permutation stability (β, β1, δ1) if f has
uniform stability β and

PZ,i∼Im
1 ,j∼Im+u

m+1

{∣
∣f(Z) − f(Zij)

∣
∣ ≤ β1

}
≥ 1 − δ1 , (5)

where i ∼ I denotes a choice of i ∈ I uniformly at random.
5 All omitted proofs will appear in the full version of the paper.
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This weaker notion of stability only requires that |f(Z) − f(Zij)| be bounded
with respect to most exchanges, allowing for a δ1-fraction of outliers. To utilize
Definition 2 we develop in Lemma 3 a new concentration inequality for symmetric
permutation functions that satisfy the new weak stability property.

Lemma 3. Let Z be a random permutation vector and f(Z) be an (m, u)-
symmetric permutation function. Suppose that f(Z) has weak permutation sta-
bility (β, β1, δ1). Let δ ∈ (0, 1) be given, and for i ∈ Im

1 , let θi ∈ (0, 1), Ψ
�=

δ1
∑m

i=1 1/θi and bi
�= ((1−θi)β1+θiβ)

(m+u−i+1)(1−Ψ) . If Ψ < 1, then with probability at least
(1 − δ) · (1 − Ψ) over the choices of Z,

f(Z) ≤ EZ {f(Z)} + u

√
√
√
√2

m∑

i=1

b2
i ln

1
δ

. (6)

Note that the confidence level can be made arbitrarily small by selecting appro-
priate θi and δ1 (thus trading-off β1).

Proof. Let Wm+u
0 be a martingale generated from f(Z) by Doob’s process. We

derive bounds on the martingale differences di, i ∈ Im+u
1 , and apply Lemma 1.

Let πππm+u
1 = π1, . . . , πm+u be a specific permutation of Im+u

1 . In the proof
we use the following shortcut: Zr

1 = πππr
1 abbreviates the r equalities Z1 =

π1, . . . , Zr = πr. Let θi be given. For r ∈ Im
1 , we say that the prefix πππr

1 of a
permutation πππm+u

1 is (r, θr)-admissible (w.r.t. a fixed β1) if it guarantees that

PZ,j∼Im+u
m+1

{∣
∣f(Z) − f(Zrj)

∣
∣ ≤ β1 | Zr

1 = πππr
1
}

≥ 1 − θr . (7)

If the prefix πππr
1 does not satisfy (7), we say that it is not (r, θr)-admissible. Let

ζ(r, θr) be the probability that Zr
1 is not (r, θr)-admissible. Our goal is to bound

ζ(r, θr). For any fixed 1 ≤ r ≤ m we have,

t(r) �= PZ,j∼Im+u
m+1

{∣
∣f(Z) − f(Zrj)

∣
∣ > β1

}

=
∑

all possible
prefixes πππr

1

(
PZ,j∼Im+u

m+1

{∣
∣f(Z) − f(Zrj)

∣
∣ > β1 | Zr

1 = πππr
1
}

· PZ {Zr
1 = πππr

1}
)

≥
∑

non-
admissible
prefixes πππr

1

(
PZ,j∼Im+u

m+1

{∣
∣f(Z) − f(Zrj)

∣
∣ > β1 | Zr

1 = πππr
1
}

· PZ {Zr
1 = πππr

1}
)

≥ θr ·
∑

non-admissible
prefixes πππr

1

PZ {Zr
1 = πππr

1} = θrζ(r, θr) . (8)

Since f(Z) is (m, u)-permutation symmetric, t(r) = t is constant. Since f(Z)
has weak permutation stability (β, β1, δ1),

δ1 ≥ PZ,i∼Im
1 ,j∼Im+u

m+1

{∣
∣f(Z) − f(Zij)

∣
∣ > β1

}
=

m∑

r=1

1
m

· t(r) = t ≥ θrζ(r, θr) .

(9)
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Consequently, ζ(r, θr) ≤ δ1/θr. Or next goal is to bound dr for (r, θr)-admissible
prefixes. Let l(k) be an index l such that Zl = k. If πππr

1 = (πππr−1
1 , πr = k) is

(r, θr)-admissible, then

|dr| = |Wr − Wr−1| =
∣
∣EZ {f(Z) | Zr

1 = πππr
1} − EZ

{
f(Z) | Zr−1

1 = πππr−1
1

}∣
∣

=
∣
∣
∣EZ

{
f(Zrl(k)) − f(Z) | Zr−1

1 = πππr−1
1

}∣
∣
∣

=
∣
∣
∣EZ,j∼Im+u

r

{
f(Z) − f(Zrj) | Zr

1 = πππr
1
}∣
∣
∣ (10)

≤ EZ,j∼Im+u
r

{∣
∣f(Zrj) − f(Z)

∣
∣ | Zr

1 = πππr
1
}

= Pj∼Im+u
r

{j ∈ Im
r } · EZ,j∼Im

r

{∣
∣f(Zrj) − f(Z)

∣
∣ | Zr

1 = πππr
1
}
} (11)

+Pj∼Im+u
r

{j ∈ Im+u
m+1 } · EZ,j∼Im+u

m+1

{∣
∣f(Zrj) − f(Z)

∣
∣ | Zr

1 = πππr
1
}

(12)

≤ u ((1 − θr)β1 + θrβ)
m + u − r + 1

�= br . (13)

The inequality (13) follows because (i) the expectation in (11) is zero since f
is (m, u)-permutation symmetric; and (ii) πππr

1 is (r, θr)-admissible, implying that
the expectation in (12) is bounded by (1 − θr)β1 + θrβ.

A permutation πππm+u
1 is good if for all r ∈ Im

1 its r-prefixes, πππr
1, are admissible

(w.r.t. the corresponding θr). Since ζ(r, θr) ≤ δ1/θr, we have

PZ {Z not good} ≤
m∑

r=1

PZ {Zr
1 not admissible} =

m∑

r=1

ζ(r, θr) ≤
m∑

r=1

δ1

θr
= Ψ .

(14)
Thus, with probability at least 1 − Ψ , the random permutation Z is good, in
which case we have |dr| ≤ br for all r ∈ Im

1 .
Consider the space G of all good permutations. Let Vm+u

0 be a martingale
obtained by Doob’s process operated on f and G. Then, using (13) we bound
the martingale difference sequence d′m+u

1 of Vm+u
0 as follows.

|d′i| ≤ Pj∼Im+u
r

{j ∈ Im+u
m+1 } ×

EZ∈G,j∼Im+u
m+1

{∣
∣f(Zrj) − f(Z)

∣
∣ | Zr

1 = πππr
1, πππr

1 is admissible
}

(15)

≤ Pj∼Im+u
r

{j ∈ Im+u
m+1 } ×

EZ,j∼Im+u
m+1

{∣
∣f(Zrj) − f(Z)

∣
∣ | Zr

1 = πππr
1, πππr

1 is admissible
}

PZ{Z ∈ G}

≤ u ((1 − θr)β1 + θrβ)
(m + u − r + 1)(1 − Ψ)

�= br . (16)

Since f(Z) is (m, u)-permutation symmetric, it follows from (10) that for any
r ∈ Im+u

m+1 , d′r = 0. Therefore, we can apply Lemma 1 to the martingale Vm+u
0 .

We obtain a bound on the deviation of Vm+u − V0 = f(Z) − EZ {f(Z)}. Our
result (6) is completed by equating the resulting bound to δ and isolating ε. �
It follows from Definition 2 that β1 depends on δ1. Hence, the bound (6) depends
on the following parameters: δ1, θi, i ∈ Im

1 . It can be shown that if β1 = O(1/m),
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δ1 = O(1/m2) and θi = O(1/m) for all i ∈ Im
1 , then the slack term in (6) is

O(
√

ln(1/δ)/m) and the bound’s confidence can be made arbitrarily close to 1.
Our goal now is to derive an error bound for transductive algorithms by

utilizing the weak stability notion. To this end, we now define weak trans-
ductive stability for algorithms. The following definition, which contains three
conditions and six parameters, is somewhat cumbersome but we believe it fa-
cilitates tighter bounds than can possibly be achieved using a simpler defini-
tion (that only includes condition (18) below); see also the discussion that fol-
lows this definition. For a fixed full sample, we abbreviate Aij(x, (Sm, Xu)) �=
|ASm,Xu(x) − ASij

m ,Xij
u

(x)|.
Definition 3 (Weak Transductive Stability). A transductive learning algo-
rithm A has weak transductive stability (β, β1, β2, δ

a
1 , δb

1, δ2) if it has uniform
transductive stability β and the following conditions (17) and (18) hold.

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1

{
Px∼Xm+u

{
Aij(x, (Sm, Xu)) ≤ β1

}
≥ 1 − δa

1
}

≥ 1 − δb
1 .

(17)

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1

{
Aij(xi, (Sm, Xu)) ≤ β2

}
≥ 1 − δ2 . (18)

While in (17) we quantify the sensitivity of the algorithm w.r.t. all examples in
Xm+u, in (18) only the exchanged examples are considered. A number of weak
stability definitions for induction is given in [10, 12, 15]. Ignoring the differences
between induction and transduction, our condition (17) poses a qualitatively
weaker constraint than the ‘weak hypothesis stability’ (Definition 3.5 in [12]), and
a stronger constraint than the ‘weak error stability’ (Definition 3.8 in [12]). Our
condition (18) is a straightforward adaptation of the ‘cross-validation stability’
(Definition 3.12 in [12]) to our transductive setting.

It should be possible to show, using a technique similar to the one used in
the proof of Theorem 3.16 in [12], that (18) implies (17). In this case a simpler
weak stability definition may suffice but, using our techniques, the resulting error
bound would be looser.

Let Δ(i, j, s, t) �= �γ(ASij
m,Xij

u
(xt), yt) − �γ(ASm,Xu(xs), ys). For the proof of

the forthcoming error bound we need the following technical lemma.

Lemma 4. E(Sm,Xu)

{
Rγ

u(A) − R̂γ
m(A)

}
= E(Sm,Xu),i∼Im

1 ,j∼Im+u
m+1

{Δ(i, j, i, i)}.

Theorem 2. Let A be an algorithm with weak transductive classification sta-
bility (β, β1, β2, δ

a
1 , δb

1, δ2). Suppose that u ≥ m and δa
1 < m

m+u .6 Let γ > 0,
δ ∈ (0, 1) be given and set

β̃1
�=

u − 1
u

· β1

γ
+

δa
1 (m + u)β + [m − 1 − δa

1 (m + u)] β1

mγ
+

1
m

+
1
u

, (19)

β̃
�=

u − 1
u

· β

γ
+

m − 1
m

· β

γ
+

1
m

+
1
u

. (20)

6 The proof for the cases δa
1 > m

m+u
and m > u is very similar to the proof given below

and is omitted.
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For any θi ∈ (0, 1), i ∈ Im
1 , set Ψ

�=
∑m

i=1
δb
1

θi
and bi

�=
u((1−θi)β̃1+θiβ̃)
(m+u−i+1)(1−Ψ) . If Ψ < 1,

then with probability at least (1 − δ) · (1 − Ψ) over the draw of the training/test
sets (Sm, Xu),

Ru(A) ≤ R̂γ
m(A) +

[

(1 − δ2)
β2

γ
+ δ2

β

γ

]

+

√
√
√
√2

m∑

i=1

b2
i ln

1
δ

. (21)

Proof. We derive bounds on the weak permutation stability of the function
f(Sm, Xu) �= Rγ

u(A) − R̂γ
m(A) and its expected value. Then we apply Lemma 3.

For i ∈ Im
1 , j ∈ Im+u

m+1 , we have (by expanding the risk expressions),

∣
∣
∣Rγ

u(A) − R̂γ
m(A) −

(
Rγ

u(ASij
m,Xij

u
) − R̂γ

m(ASij
m ,Xij

u
)
)∣
∣
∣ ≤

1
u

m+u∑

k=m+1,
k �=j

|Δ(i, j, k, k)|+ 1
u

|Δ(i, j, j, i)|+ 1
m

m∑

k=1,
k �=i

|Δ(i, j, k, k)| +
1
m

|Δ(i, j, i, j)| .

(22)

Since �γ has Lipschitz constant γ, it follows from (17) that

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1

{
Pk∼Im+u

1
{|Δ(i, j, k, k)| ≤ β1/γ} ≥ 1 − δa

1

}
≥ 1 − δb

1 .

(23)
We say that the example xk is bad if |Δ(i, j, k, k)| > β1/γ. According to (23),
with probability at least 1 − δb

1 over the choices of ((Sm, Xu), i, j), there are
at most (1 − δa

1 ) (m + u) bad examples. If u ≥ m, the terms in the second
summation in (22) have greater weight (which is 1/m) than the terms in the
first summation (weighted by 1/u). In the worst case all bad examples appear
in the second summation in which case (22) is bounded by (19) with probability
at least 1 − δb

1 over the choices of ((Sm, Xu), i, j).
The right hand side of (22) is always bounded by β̃. Therefore, the function

f(Sm, Xu) has weak permutation stability (β̃, β̃1, δ
b
1). By applying Lemma 3 to

f(Sm, Xu), we obtain that with probability at least (1 − δ) (1 − Ψ),

Rγ
u(A) ≤ R̂γ

m(A) + E(Sm,Xu)

{
Rγ

u(A) − R̂γ
m(A)

}
+

√
√
√
√2

m∑

i=1

b2
i ln

1
δ

. (24)

Since �γ has Lipschitz constant γ, it follows from (18) that

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1
{|Δ(i, j, i, i)| ≤ β2/γ} ≥ 1 − δ2 . (25)

Therefore, the right hand side of the equality in Lemma 4 is bounded from
above by β2(1− δ2)/γ +βδ2/γ. By substituting this bound to (24) and using the
inequality Rγ

u(A) ≥ Ru(A), we obtain (21). �
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It follows from Definition 3 that β1 depends on δa
1 and δb

1, and that β2 depends
on δ2. Hence the bound (21) depends on the following parameters: δa

1 , δb
1, δ2, θi,

i ∈ Im
1 . It is possible to show that if u = Ω(m), δb

1 = O(1/m2) and β1, β2, δa
1 , δ2,

θi are each O(1/m), then the slack term in (21) is O(
√

ln(1/δ)/m/γ) and the
bound’s confidence can be made arbitrarily close to 1.

6 High Confidence Stability Estimation

In this section we describe a routine that can generate useful upper bounds
on the weak stability parameters (Definition 3) of transductive algorithms. The
routine generates these estimates with arbitrarily high probability and is based
on a sampling-based quantile estimation technique. Given a particular learning
algorithm, our stability estimation routine relies on an “oracle” that bounds the
sensitivity of the transductive algorithm with respect to a small change in the
input. We present such an oracle for a familiar practical algorithm. In Sec. 6.1 we
describe the quantile estimation method, which is similar to the one presented
in [14]; in Sec. 6.2 we present the bounding algorithm, and in Sec. 6.3 we consider
a known transductive algorithm and present a few numerical examples of the
application of these methods.

6.1 Quantile Estimation

Consider a very large set Ω of N numbers. Define the q-quantile of Ω to be the

qN�-th smallest element of Ω (i.e., it is the 
qN�-th element in an increasing
order sorted list of all elements in Ω). Our goal is to bound the q-quantile xq

from above as tightly as possible, with high confidence, by sampling a “small”
number k � N of elements. For any ε ∈ (0, 1) we generate a bound β such that
P{xq ≤ β} ≥ 1− ε. The idea is to sample k = k(q, ε) elements from Ω uniformly
at random, compute their exact (q̄ �= q + 1−q

2 )-quantile xq̄ , and output β
�= xq̄.

Denote by quantile(q, ε, Ω) the resulting routine whose output is β = xq̄ .

Lemma 5. For any q, ε ∈ (0, 1). If k = k(q, ε) = 2 ln(1/ε)
(1−q)2 , then

P {xq ≤ quantile(q, ε, Ω)} ≥ 1 − ε . (26)

Proof. For i ∈ Ik
1 let Xi be the indicator random variable obtaining 1 if the ith

drawn element (from Ω) is smaller than xq, and 0 otherwise. Set Q = 1
k

∑k
i=1 Xi.

Clearly, EQ ≤ q. By Hoeffding’s inequality and using the definition of q̄, we get

P {Q > q̄} = P
{

Q − q >
1 − q

2

}

≤ P
{

Q − EQ >
1 − q

2

}

≤ exp
(

−k(1 − q)2

2

)

. (27)

Therefore, with “high probability” the number kQ of sample points that are
smaller than xq is smaller than kq̄. Hence, at least (1 − q̄)k points in the sample
are larger than xq. quantile returns the smallest of them. Equating the right
hand side of (27) to ε and solving for k yields the stated sample size. �
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6.2 Stability Estimation Algorithm

Let A be a transductive learning algorithm. We assume that some (rough) bound
on A’s uniform stability β is known. If no tight bound is known, we take the
maximal default value, which is 2, as can be seen in Definition 1. Our goal is
to find useful bounds for the weak stability parameters of Definition 3. Let the
values of δa

1 , δb
1 and δ2 be given. We aim at finding upper bounds on β1 and β2.

Definition 4 (The diff Oracle). Consider a fixed labeled training set Sm =
(Xm, Ym) given to the learning algorithm. Let diff(X̃m, X̃u, i, j, r|Sm) be an
“oracle” function defined for any possible partition (X̃m, X̃u) of the full sample
and indices i ∈ Im

1 , j ∈ Im+u
m+1 and r ∈ Im+u

1 . diff provides an upper bound on
∣
∣
∣AS̃m,X̃u

(xr) − AS̃ij
m,X̃ij

u
(xr)

∣
∣
∣ , (28)

where S̃m is any possible labeling of X̃m that “agrees” with Sm on points in
Xm ∩ X̃m. Note that here we assume that Im

1 is the set indices of points in X̃m

(and indices in Xm are not specified and can be arbitrary indices in Im+u
1 ).

We assume that we have an accesses to a useful diff(X̃m, X̃u, i, j, r|Sm) func-
tion that provides a tight upper bound on (28). We now describe our stability
estimation algorithm that applies diff.

Let K be the set of all possible quadruples (X̃m, X̃u, i, j) as in Definition 4.
Define Ω1 = {ω(t) : t ∈ K}, ω(t) = ω(X̃m, X̃u, i, j) is a (1 − δa

1 )-quantile of the
set Φ =

{
diff(X̃m, X̃u, i, j, r|Sm), r = 1, . . . , m + u

}
. It is not hard to see that

for any ε ∈ (0, 1), with probability at least 1 − ε (over random choices made by
the quantile routine), quantile(1 − δb

1, ε, Ω1) is an upper bound on the weak
stability parameter β1 of Definition 3. Likewise, let Ω2 = {ω(t) : t ∈ K}, but
now ω(t) = ω(X̃m, X̃u, i, j) = diff(X̃m, X̃u, i, j, i). It is not hard to see that for
any ε, with probability at least 1 − ε, quantile(1 − δ2, ε, Ω2) is an upper bound
on the weak stability parameter β2 of Definition 3.

Thus, our weak stability estimation algorithm simply applies quantile twice
with appropriate parameters. To actually draw the samples, quantile utilizes
the diff function. Let v be the time complexity of computing diff oracle.
By Lemma 5 the number of samples that should be drawn, in order to obtain
with probability at least 1 − ε the bound on q-quantile, is O(ln(1/ε)/(1 − q)2).
It can be verified that the complexity of our stability estimation algorithm is
O(ln(1/ε)(m + u)v/ min{(δb

1)
2, (δ2)2}). As discussed after Theorem 2, δb

1 should
be O(1/m2) to ensure that the bound (21) has arbitrarily high confidence. This
constraint entails a time complexity of Ω(m4(m+u)). Hence currently our ability
to use the stability estimation routine in conjunction with the transductive error
bound is limited to very small values of m.

6.3 Stability Estimation Examples

In this section we consider the transductive learning algorithm of Zhou et al. [20]
and demonstrate a data-dependent estimation of its weak stability parameters
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using our method. While currently there is no comprehensive empirical com-
parison between all available transductive algorithms, this algorithm appears to
be among the more promising ones [8]. We chose this algorithm, denoted by
CM (stands for ‘Consistency Method’; see [8]), because we could easily develop
a useful diff “oracle” for it. We were also able to efficiently implement diff
“oracle” for the algorithm of Zhu et al. [21], which will be presented elsewhere.

We start with the brief description of the CM algorithm. Let W be a symmetric
(m + u) × (m + u) affinity matrix of the full sample Xm+u. We assume that
Wii = 0. In this paper we use RBF kernels, parameterized by σ, to construct
W . Let D be a diagonal matrix, whose (i, i)-element is the sum of the ith row in
W . A normalized Laplacian of W is L = D−1/2WD−1/2. Let α be a parameter
in (0, 1). Let Y be an (m + u) × 1 vector of available full sample labels, where
the entries corresponding to training examples are ±1 and entries of unlabeled
examples are 0. We assume w.l.o.g. that the first m entries in Y correspond
to the m labeled training examples. Let P = (I − αL)−1. The CM algorithm
produces soft-classification F = P · Y . In other words, if pij is the (i, j)th entry
of P and fi is the ith entry of F , the point xi receives the soft-classification

fi =
m∑

j=1

pijyj . (29)

To obtain useful bounds on the (weak) stability of CM we require the following
benign technical modifications of CM that would not change the hard classification
it generates over test set examples.

1. We prevent over-fitting to the training set by setting pii = 0.
2. To enable a comparison between stability values corresponding to different

settings of the parameters α and σ, we ensure that the dynamic range of fi

is normalized w.r.t. different values of α and σ. That is, instead of using (29)
for prediction we use

fi =

∑m
j=1 pijyj

∑m
j=1 pij

. (30)

The first modification prevents possible over-fitting to the training set since for
any i ∈ Im+u

1 , in the original CM the value of pii is much larger than any of the
other pij , j �= i, and therefore, the soft classification of the training example xi

is almost completely determined by its given label yi. Hence by (29), when xi

is exchanged with some test set example xj , the soft classification change of xi

will probably be large. Therefore, the stability condition (18) cannot be satisfied
with small values of β2. By setting pii = 0 we prevent this problem and only
affect the soft and hard classification of training examples (and keep the soft
classifications of test points intact). The second modification clearly changes the
dynamic range of all soft classifications but does not alter any hard classification.

To use our stability estimation algorithm one should provide an implemen-
tation of diff. We show that for the CM algorithm diff(X̃m, X̃u, i, j, r|Sm) can
be effectively implemented as follows. For notational convenience we assume
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here (and also in Definition 4) that examples in X̃m have indices in Im
1 . Let

τ(r) =
∑m

k=1,k �=i prk and τy(r) =
∑m

k=1,k �=i prkyk. It follows from (30) that

∣
∣
∣AS̃m,X̃u

(xr) − AS̃ij
m,X̃ij

u
(xr)

∣
∣
∣ ==

∣
∣
∣
∣
∣

(prj − pri) ·
∑m

k=1,k �=i,xk /∈Xm
prkyk + T

(τ(r) + pri)(τ(r) + prj)

∣
∣
∣
∣
∣

,

(31)
where T

�= (prj−pri)·
∑m

k=1,k �=i,xk∈Xm
prkyk+τ(r)·(priyi−prjyj)+priprj(yi−yj).

To implement diff(X̃m, X̃u, i, j, r|Sm) we should upper bound (31). Suppose
first that the values of yi and yj are known. Then, T is constant and the only un-
knowns in (31) are the yk’s in the first summation. Observe that (31) is maximal
when all values of these yk’s are −1 or all of them are +1. Hence by taking the
maximum over these possibilities we obtain an upper bound on (31). If yi (or yj)
is unknown then, similarly, for each of its possible assignments we compute (31)
and take the maximum. In the worst case, when both yi and yj are unknown, we
compute the maximum of (31) over the eight possible assignments for these two
variables and the yk’s in the first summation. it can be verified that the time
complexity of the above diff oracle is O(m).

We now show two numerical examples of stability estimations for the CM algo-
rithm with respect to two UCI datasets. These results were obtained by imple-
menting the modified CM algorithm and the stability estimation routine applied
with the above implementation of diff. For each “experiment” we ran the mod-
ified CM algorithm with 21 different hyper-parameter settings for α and σ, each
resulting in a different application of the algorithm.7

We considered two UCI datasets, musk and mush. From each dataset we gen-
erated 30 random full samples Xm+u each consisting of 400 points. We divided
each full sample instance to equally sized training and test sets uniformly at
random. The high confidence (95%) estimation of stability parameter β1 (see
Definition 3) w.r.t. δa

1 = δb
1 = 0.1, and the corresponding empirical and true

risks are shown in Fig. 1. The graphs for the β2 parameter are qualitatively sim-
ilar and are omitted here. Indices in the x-axis correspond to the 21 applications
of CM and are sorted in increasing order of true risk. Each stability and error
value depicted is an average over the 30 random full samples. We also depict a
high confidence (95%) true stability estimates, obtained in hindsight by using
the unknown labels in the computation of diff. The uniform stability graphs
correspond to lower bounds obtained by taking the maximal soft classification
change encountered while estimating the true weak stability.

It is evident that the (true) weak stability is often significantly lower than the
(lower bound on) the uniform stability. In cases where the weak and uniform
stabilities are similar, the CM algorithm performs poorly. The estimated weak
stability behaves qualitatively the same as the true weak stability. When the
uniform stability obtains lower values the algorithm performs very poorly. This
may indicate that a good uniform stability is correlated with degenerated be-
havior (similar phenomenon was observed in [2]). In contrast, we see that very
7 We naively took α ∈ {0.01, 0.5, 0.99} and σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1, 2} and these

were our first and only choices.
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Fig. 1. Stability estimates (left) and the corresponding empirical/true errors (right)
for musk and mush datasets

good weak stability can coincide with very high performance. Finally, we note
that these graphs do not demonstrate that good weak stability is proportional
to low discrepancy between the empirical end true errors.

7 Concluding Remarks

This paper has presented new error bounds for transductive learning. The bounds
are based on novel definitions of uniform and weak transductive stability. We
have also shown that weak transductive stability can be bounded with high
confidence in a data-dependent manner and demonstrated the application of this
estimation routine on a known transductive algorithm. As far as we know this
is the first attempt to generate truly data-dependent high confidence stability
estimates based on all available information including the labeled samples.

We note that similar risk bounds based on weak stability can be obtained
for induction. However, the adaptation of Definition 3 to induction (see also
inductive definitions of weak stability in [10, 12, 15]) depends on the probability
space of training sets, which is unknown in general. This prevents the estimation
of weak stability using our method.

As discussed, to derive stability bounds with sufficient confidence our stability
estimation routine is required to run in Ω(m4(m + u)) time, which precluded,
at this stage, an empirical evaluation of our bounds. In future work we will
attempt to overcome this obstacle by tightening our bound, perhaps using the
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techniques from [13, 17]. A second direction would be to develop a more suitable
weak stability definition. We also plan to consider other known transductive
algorithms and develop for them a suitable implementation of the diff oracle.
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