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Abstract. We propose and analyze a new vantage point for the learn-
ing of mixtures of Gaussians: namely, the PAC-style model of learning
probability distributions introduced by Kearns et al. [13]. Here the task
is to construct a hypothesis mixture of Gaussians that is statistically in-
distinguishable from the actual mixture generating the data; specifically,
the KL divergence should be at most ε.

In this scenario, we give a poly(n/ε) time algorithm that learns the
class of mixtures of any constant number of axis-aligned Gaussians in
Rn. Our algorithm makes no assumptions about the separation between
the means of the Gaussians, nor does it have any dependence on the
minimum mixing weight. This is in contrast to learning results known in
the “clustering” model, where such assumptions are unavoidable.

Our algorithm relies on the method of moments, and a subalgorithm
developed in [9] for a discrete mixture-learning problem.

1 Introduction

In [13] Kearns et al. introduced an elegant and natural model of learning un-
known probability distributions. In this framework we are given a class C of
probability distributions over Rn and access to random data sampled from an
unknown distribution Z that belongs to C. The goal is to output a hypothesis
distribution Z′ which with high confidence is ε-close to Z as measured by the the
Kullback-Leibler (KL) divergence, a standard measure of the distance between
probability distributions (see Section 2 for details on this distance measure). The
learning algorithm should run in time poly(n/ε). This model is well-motivated by
its close analogy to Valiant’s classical Probably Approximately Correct (PAC)
framework for learning Boolean functions [17].
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Several notable results, both positive and negative, have been obtained for
learning in the Kearns et al. framework of [13], see, e.g., [10, 15]. Here we briefly
survey some of the positive results that have been obtained for learning vari-
ous types of mixture distributions. (Recall that given distributions X1, . . . ,Xk

and mixing weights π1, . . . , πk that sum to 1, a draw from the corresponding
mixture distribution is obtained by first selecting i with probability πi and then
making a draw from Xi.) Kearns et al. gave an efficient algorithm for learning
certain mixtures of Hamming balls; these are product distributions over {0, 1}n

in which each coordinate mean is either p or 1 − p for some p fixed over all
mixture components. Subsequently Freund and Mansour [11] and independently
Cryan et al. [4] gave efficient algorithms for learning a mixture of two arbitrary
product distributions over {0, 1}n. Recently, Feldman et al. [9] gave a poly(n)-
time algorithm that learns a mixture of any k = O(1) many arbitrary product
distributions over the discrete domain {0, 1, . . . , b − 1}n for any b = O(1).

1.1 Results

As described above, research on learning mixture distributions in the PAC-style
model of Kearns et al. has focused on distributions over discrete domains. In
this paper we consider the natural problem of learning mixtures of Gaussians in
the PAC-style framework of [13]. Our main result is the following theorem:

Theorem 1. (Informal version) Fix any k = O(1), and let Z be any unknown
mixture of axis-aligned Gaussians over Rn. There is an algorithm that, given
samples from Z and any ε, δ > 0 as inputs, runs in time poly(n/ε) · log(1/δ)
and with probability 1 − δ outputs a mixture Z′ of k axis-aligned Gaussians over
Rn satisfying KL(Z||Z′) ≤ ε.

A signal feature of this result is that it requires no assumptions about the Gaus-
sians being “separated” in space. It also has no dependence on the minimum
mixing weight. We compare our result with other works on learning mixtures of
Gaussians in the next section.

Our proof of Theorem 1 works by extending the basic approach for learning
mixtures of product distributions over discrete domains from [9]. The main tech-
nical tool introduced in [9] is the WAM (Weights And Means) algorithm; the
correctness proof of WAM is based on an intricate error analysis using ideas
from the singular value theory of matrices. In this paper, we use this algorithm
in a continuous domain to estimate the parameters of the Gaussian mixture.
Dealing with this more complex class of distributions requires tackling a whole
new set of issues around sampling error that did not exist in the discrete case.

Our results strongly suggest that the techniques introduced in [9] (and extended
here) extend to PAC learning mixtures of other classes of product distributions,
both discrete and continuous, such as exponential distributions or Poisson distri-
butions. Though we have not explicitly worked out those extensions in this paper,
we briefly discuss general conditions under which our techniques are applicable in
Section 7.
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1.2 Comparison with Other Frameworks for Learning Mixtures of
Gaussians

There is a vast literature in statistics on modeling with mixture distributions, and
on estimating the parameters of unknown such distributions from data. The case
of mixtures of Gaussians is by far the most studied case; see, e.g., [14, 16] for sur-
veys. Statistical work on mixtures of Gaussians has mainly focused on finding the
distribution parameters (mixing weights, means, and variances) of maximum like-
lihood, given a set of data. Although one can write down equations whose solutions
give these maximum likelihood values, solving the equations appears to be a com-
putationally intractable problem. In particular, the most popular algorithm used
for solving the equations, the EM Algorithm of Dempster et al. [7], has no efficiency
guarantees and may run slowly or converge only to local optima on some instances.

A change in perspective led to the first provably efficient algorithm for learn-
ing: In 1999, Dasgupta [5] suggested learning in the clustering framework. In this
scenario, the learner’s goal is to group all the sample points according to which
Gaussian in the mixture they came from. This is the strongest possible criterion
for success one could demand; when the learner succeeds, it can easily recover
accurate approximations of all parameters of the mixture distribution. However,
a strong assumption is required to get such a strong outcome: it is clear that
the learner cannot possibly succeed unless the Gaussians are guaranteed to be
sufficiently “separated” in space. Informally, it must at least be the case that,
with high probability, no sample point “looks like” it might have come from a
different Gaussian in the mixture other than the one that actually generated it.

Dasgupta gave a polynomial time algorithm that could cluster a mixture of
spherical Gaussians of equal radius. His algorithm required separation on the
order of n1/2 times the standard deviation. This was improved to n1/4 by Das-
gupta and Schulman [6], and this in turn was significantly generalized to the
case of completely general (i.e., elliptical) Gaussians by Arora and Kannan [2].
Another breakthrough came from Vempala and Wang [18] who showed how the
separation could be reduced, in the case of mixtures of k spherical Gaussians (of
different radii), to the order of k1/4 times the standard deviation, times factors
logarithmic in n. This result was extended to mixtures of general Gaussians (in-
deed, log-concave distributions) in works by Kannan et al. [12] and Achlioptas
and McSherry [1], with some slightly worse separation requirements. It should
also be mentioned that these results all have a running time dependence that
is polynomial in 1/πmin, where πmin denotes the minimum mixing weight.

Our work gives another learning perspective that allows us to deal with mix-
tures of Gaussians that satisfy no separation assumption. In this case clustering
is simply not possible; for any data set, there may be many different mixtures
of Gaussians under which the data are plausible. This possibility also leads to
the seeming intractability of finding the maximum likelihood mixture of Gaus-
sians. Nevertheless, we feel that this case is both interesting and important, and
that under these circumstances identifying some mixture of Gaussians which is
statistically indistinguishable from the true mixture is a worthy task. This is
precisely what the PAC-style learning scenario we work in requires, and what
our main algorithm efficiently achieves.
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Reminding the reader that they work in significantly different scenarios, we
end this section with a comparison between other aspects of our algorithm and
algorithms in the clustering model. Our algorithm works for mixtures of axis-
aligned Gaussians. This is stronger than the case of spherical Gaussians con-
sidered in [5, 6, 18], but weaker than the case of general Gaussians handled
in [2, 12, 1]. On the other hand, in Section 7 we discuss the fact that our meth-
ods should be readily adaptable to mixtures of a wide variety of discrete and
continuous distributions — essentially, any distribution where the “method of
moments” from statistics succeeds. The clustering algorithms discussed have
polynomial running time dependence on k, the number of mixture components,
whereas our algorithm’s running time is polynomial in n only if k is a constant.
We note that in [9], strong evidence was given that (for the PAC-style learn-
ing problem that we consider) such a dependence is unavoidable at least in the
case of learning mixtures of product distributions on the Boolean cube. Finally,
unlike the clustering algorithms mentioned, our algorithm has no running time
dependence on 1/πmin.

1.3 Overview of the Approach and the Paper

An important ingredient of our approach is a slight extension of the WAM al-
gorithm, the main technical tool introduced in [9]. The algorithm takes as input
a parameter ε > 0 and samples from an unknown mixture Z of k product distri-
butions X1, . . . ,Xk over Rn. The output of the algorithm is a list of candidate
descriptions of the k mixing weights and kn coordinate means of the distrib-
utions X1, . . . ,Xk. Roughly speaking, the guarantee for the algorithm proved
in [9] is that with high probability at least one of the candidate descriptions
that the algorithm outputs is “good” in the following sense: it is an additive
ε-accurate approximation to each of the k true mixing weights π1, . . . , πk and
to each of the true coordinate means μi

j = E[Xi
j ] for which the corresponding

mixing weight πi is not too small. We give a precise specification in Section 3.
As described above, when WAM is run on a mixture distribution it gener-

ates candidate estimates of mixing weights and means. However, to describe a
Gaussian we need not only its mean but also its variance. To achieve this we
run WAM twice, once on Z and once on what might be called “Z2” — i.e., for
the second run, each time a draw (z1, . . . , zn) is obtained from Z we convert it
to (z2

1 , . . . , z2
n) and use that instead. It is easy to see that Z2 corresponds to a

mixture of the distributions (X1)2, . . . , (Xk)2, and thus this second run gives
us estimates of the mixing weights (again) and also of the coordinate second
moments E[(Xi

j)
2]. Having thus run WAM twice, we essentially take the “cross-

product” of the two output lists to obtain a list of candidate descriptions, each
of which specifies mixing weights, means, and second moments of the component
Gaussians. In Section 4 we give a detailed description of this process and prove
that with high probability at least one of the resulting candidates is a “good”
description (in the sense of the preceding paragraph) of the mixing weights,
coordinate means, and coordinate variances of the Gaussians X1, . . . ,Xk.

To actually PAC learn the distribution Z, we must find this good description
among the candidates in the list. A natural idea is to apply some sort of
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maximum likelihood procedure. However, to make this work, we need to guar-
antee that the list contains a distribution that is close to the target in the sense
of KL divergence. Thus, in Section 5, we show how to convert each “parametric”
candidate description into a mixture of Gaussians such that any additively accu-
rate description indeed becomes a mixture distribution with close KL divergence
to the unknown target. (This procedure also guarantees that the candidate distri-
butions satisfy some other technical conditions that are needed by the maximum
likelihood procedure.) Finally, in Section 6 we put the pieces together and show
how a maximum likelihood procedure can be used to identify a hypothesis mixture
of Gaussians that has small KL divergence relative to the target mixture.

2 Preliminaries

The PAC learning framework for probability distributions. We work
in the Probably Approximately Correct model of learning probability distribu-
tions which was proposed by Kearns et al. [13]. In this framework the learning
algorithm is given access to samples drawn from the target distribution Z to
be learned, and the learning algorithm must (with high probability) output an
accurate approximation Z′ of the target distribution Z. Following [13], we use
the Kullback-Leibler (KL) divergence (also known as the relative entropy) as our
notion of distance. The KL divergence between distributions Z and Z′ is

KL(Z||Z′) :=
∫

Z(x) ln(Z(x)/Z′(x)) dx

where here we have identified the distributions with their pdfs. The reader is
reminded that KL divergence is not symmetric and is thus not a metric. KL
divergence is a stringent measure of the distance between probability distances.
In particular, it holds [3] that 0 ≤ ‖Z − Z′‖2 ≤ (2 ln 2)

√
KL(Z||Z′), where ‖ · ‖1

denotes total variation distance; hence if the KL divergence is small then so is
the total variation distance.

We make the following formal definition:

Definition 1. Let D be a class of probability distributions over Rn. An efficient
(proper) learning algorithm for D is an algorithm which, given ε, δ > 0 and
samples drawn from any distribution Z ∈ D, runs in poly(n, 1/ε, 1/δ) time and,
with probability at least 1 − δ, outputs a representation of a distribution Z′ ∈ D
such that KL(Z||Z′) ≤ ε.

Mixtures of axis-aligned Gaussians. Here we recall some basic definitions
and establish useful notational conventions for later.

A Gaussian distribution over R with mean μ and variance σ has probability
density function f(x) = (1/

√
2πσ) exp

(
− (x−μ)2

2σ2

)
. An axis-aligned Gaussian

over Rn is a product distribution over n univariate Gaussians.
If we expect to learn a mixture of Gaussians, we need each Gaussian to have

reasonable parameters in each of its coordinates. Indeed, consider just the prob-
lem of learning the parameters of a single one-dimensional Gaussian: If the vari-
ance is enormous, we could not expect to estimate the mean efficiently; or, if
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the variance was extremely close to 0, any slight error in the hypothesis would
lead to a severe penalty in KL divergence. These issues motivate the following
definition:

Definition 2. We say that X is a d-dimensional (μmax, σ
2
min, σ

2
max)-bounded Gau-

ssian if X is a d-dimensional axis-aligned Gaussian with the property that each of
its one-dimensional coordinate Gaussians Xj has mean μj ∈ [−μmax, μmax] and
variance (σj)2 ∈ [σ2

min, σ
2
max].

Notational convention: Throughout the rest of the paper all Gaussians we
consider are (μmax, σ

2
min, σ

2
max)-bounded, where for notational convenience we

assume that the numbers μmax, σ2
max are at least 1 and that the number σ2

min is
at most 1. We will denote by L the quantity μmaxσmax/σmin, which in some sense
measures the bit-complexity of the problem. Given distributions X1, . . . ,Xk over
Rn, we write μi

j to denote E[Xi
j ], the j-th coordinate mean of the i-th component

distribution, and we write (σi
j)

2 to denote Var[Xi
j ], the variance in coordinate j

of the i-th distribution.

A mixture of k axis-aligned Gaussians Z = π1X1 + · · · + πkXk is completely
specified by the parameters πi, μi

j , and (σi
j)

2. Our learning algorithm for Gaus-
sians will have a running time that depends polynomially on L; thus the algo-
rithm is not strongly polynomial.

3 Listing Candidate Weights and Means with WAM

We first recall the basic features of the WAM algorithm from [9] and then ex-
plain the extension we require. The algorithm described in [9] takes as input a
parameter ε > 0 and samples from an unknown mixture Z of k distributions
X1, . . . ,Xk where each Xi = (Xi

1, . . . ,X
i
n) is assumed to be a product dis-

tribution over the bounded domain [−1, 1]n. The goal of WAM is to output
accurate estimates for the mixing weights πi and coordinate means μi

j ; what the
algorithm actually outputs is a list of candidate “parametric descriptions” of
the means and mixing weights, where each candidate description is of the form
({π̂1, . . . , π̂k}, {μ̂1

1, μ̂
1
2, . . . , μ̂

k
n}).

We now explain the notion of a “good” estimate of parameters from Section 1.3
in more detail. As motivation, note that if a mixing weight πi is very low then
the WAM algorithm (or indeed any algorithm that only draws a limited number
of samples from Z) may not receive any samples from Xi, and thus we would
not expect WAM to construct an accurate estimate for the coordinate means
μi

1, . . . , μ
i
n. We thus have the following definition from [9]:

Definition 3. A candidate ({π̂1, . . . , π̂k}, {μ̂1
1, μ̂

1
2, . . . , μ̂

k
n}) is said to be para-

metrically ε-accurate if:

1. |π̂i − πi| ≤ ε for all 1 ≤ i ≤ k;
2. |μ̂i

j − μi
j | ≤ ε for all 1 ≤ i ≤ k and 1 ≤ j ≤ n such that πi ≥ ε.
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Very roughly speaking, the WAM algorithm in [9] works by exhaustively
“guessing” (to a certain prescribed granularity that depends on ε) values for
the mixing weights and for k2 of the kn coordinate means. Given a guess, the
algorithm tries to approximately solve for the remaining k(n − k) coordinate
means using the guessed values and the sample data; in the course of doing
this the algorithm uses estimates of the expectations E[ZjZj′ ] that are obtained
from the sample data. From each guess the algorithm thus obtains one of the
candidates in the list that it ultimately outputs.

The assumption [9] that each distribution Xi in the mixture is over [−1, 1]n

has two nice consequences: each coordinate mean need only be guessed within
a bounded domain [−1, 1], and estimating E[ZjZj′ ] is easy for a mixture Z of
such distributions. Inspection of the proof of correctness of the WAM algorithm
shows that these two conditions are all that is really required. We thus introduce
the following:

Definition 4. Let X be a distribution over R. We say that X is λ(ε, δ)-samplable
if there is an algorithm A which, given access to draws from X, runs for λ(ε, δ) steps
and outputs (with probability at least 1 − δ over the draws from X) a quantity μ̂
satisfying |μ̂ − E[X]| ≤ ε.

With this definition in hand an obvious (slight) generalization of WAM, which
we denote WAM

′, suggests itself. The main result about WAM
′ that we need

is the following (the proof is essentially identical to the proof in [9] so we omit
it):

Theorem 2. Let Z be a mixture of product distributions X1, . . . ,Xk with mix-
ing weights π1, . . . , πk where each μi

j = E[Xi
j ] satisfies |μi

j | ≤ U and ZjZj′

is poly(U/ε) · log(1/δ)-samplable for all j �= j′. Given U and any ε, δ > 0,
WAM

′ runs in time (nU/ε)O(k3) · log(1/δ) and outputs a list of (nU/ε)O(k3)

many candidates descriptions, at least one of which (with probability at least
1 − δ) is parametrically ε-accurate.

4 Listing Candidate Weights, Means, and Variances

Through the rest of the paper we assume that Z is a k-wise mixture of inde-
pendent (μmax, σ

2
min, σ

2
max)-bounded Gaussians X1, . . . ,Xk, as discussed in Sec-

tion 2. Recall also the notation L from that section.
As described in Section 1.3, we will run WAM

′ twice, once on the original
mixture of Gaussians Z and once on the squared mixture Z2. In order to do this,
we must show that both Z = π1X1+· · ·+πkXk and Z2 = π1(X1)2+· · ·+πk(Xk)2

satisfy the conditions of Theorem 2. The bound |μi
j | ≤ μmax on coordinate means

is satisfied by assumption for Z, and for Z2 we have that each E[(Xi
j)

2] is at
most σ2

max + μ2
max. It remains to verify the required samplability condition on

products of two coordinates for both Z and Z2; i.e. we must show that both the
random variables ZjZj′ are samplable and that the random variables Z2

jZ
2
j′ are

samplable. We do this in the following proposition, whose straightforward but
technical proof is deferred to the full version of this paper [8]:
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Proposition 1. Suppose Z = (Z1,Z2) is the mixture of k two-dimensional
(μmax, σ

2
min, σ

2
max)-bounded Gaussians. Then both the random variable W :=

Z1Z2 and the random variable W2 are poly(L/ε) · log(1/δ)-samplable.

The proof of the following theorem explains precisely how we can run WAM
′

twice and how we can combine the two resulting lists (one containing candi-
date descriptions consisting of mixing weights and coordinate means, the other
containing candidate descriptions consisting of mixing weights and coordinate
second moments) to obtain a single list of candidate descriptions consisting of
mixing weights, coordinate means, and coordinate variances.

Theorem 3. Let Z be a mixture of k = O(1) axis-aligned Gaussians X1, . . . ,Xk

over Rn, described by parameters ({πi}, {μi
j}, {σi

j}). There is an algorithm with
the following property: For any ε, δ > 0, given samples from Z the algorithm runs
in poly(nL/ε)·log(1/δ) time and with probability 1−δ outputs a list of poly(nL/ε)
many candidates ({π̂i}, {μ̂i

j}, {σ̂i
j}) such that for at least one candidate in the

list, the following holds:

1. |π̂i − πi| ≤ ε for all i ∈ [k]; and
2. |μ̂i

j − μi
j | ≤ ε and |(σ̂i

j)
2 − (σi

j)
2| ≤ ε for all i, j such that πi ≥ ε.

Proof. First run the algorithm WAM
′ with the random variable Z, taking the

parameter “U” in WAM
′ to be L, taking “δ” to be δ/2, and taking “ε” to

be ε/(6μmax). By Proposition 1 and Theorem 2, this takes at most the claimed
running time. WAM

′ outputs a list List1 of candidate descriptions for the mixing
weights and expectations, List1 = [. . . , (π̂i, μ̂i

j), . . . ], which with probability at
least 1 − δ/2 contains at least one candidate description which is parametrically
ε/(6μmax)-accurate.

Define (si
j)

2 = E[(Xi
j)

2] = (σi
j)

2 + (μi
j)

2. Run the algorithm WAM
′ again

on the squared random variable Z2, with “U” = σ2
max + μ2

max, “δ” = δ/2, and
“ε” = ε/2. By Proposition 1, this again takes at most the claimed running time.
This time WAM

′ outputs a list List2 of candidates for the mixing weights (again)
and second moments, List2 = [. . . , (ˆ̂πi, (ŝi

j)
2) . . . ], which with probability at least

1 − δ/2 has a “good” entry which satisfies

1. |ˆ̂πi − πi| ≤ ε/2 for all i = 1 . . . k; and
2. |(ŝi

j)
2 − (si

j)
2| ≤ ε/2 for all i, j such that πi ≥ ε/2.

We now form the “cross product” of the two lists. (Again, this can be done in
the claimed running time.) Specifically, for each pair consisting of a candidate
(π̂i, μ̂i

j) in List1 and a candidate (ˆ̂πi, (ŝi
j)

2) in List2, we form a new candidate
consisting of mixing weights, means, and variances, namely (π̂i, μ̂i

j , (σ̂
i
j)

2) where
(σ̂i

j)
2 = (ŝi

j)
2 − (μ̂i

j)
2. (Note that we simply discard ˆ̂πi.)

When the “good” candidate from List1 is matched with the “good” candi-
date from List2, the resulting candidate’s mixing weights and means satisfy the
desired bounds. For the variances, we have that |(σ̂i

j)
2 − (σi

j)
2| is at most

|(ŝi
j)

2 −(si
j)

2|+ |(μ̂i
j)

2 −(μi
j)

2| ≤ ε

2
+ |μ̂i

j −μi
j | · |μ̂i

j +μi
j | ≤ ε

2
+

ε

6μmax
·3μmax = ε.

This proves the theorem.
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5 From Parametric Estimates to Bona Fide Distributions

At this point we have a list of candidate “parametric” descriptions ({π̂i}, {μ̂i
j},

{(σ̂i
j)

2}) of mixtures of Gaussians, at least one of which is parametrically accu-
rate in the sense of Theorem 3. In Section 5.1 we describe an efficient way to
convert any parametric description into a true mixture of Gaussians such that:

(i) any parametrically accurate description becomes a distribution with close
KL divergence to the target distribution; and

(ii) every mixture distribution that results from the conversion has a pdf that
satisfies certain upper and lower bounds (that will be required for the max-
imum likelihood procedure).

The conversion procedure is conceptually straightforward — it essentially just
truncates any extreme parameters to put them in a “reasonable” range — but the
details establishing correctness are fairly technical. By applying this conversion
to each of the parametric descriptions in our list from Section 4, we obtain a list
of mixture distribution hypotheses all of which have bounded pdfs and at least
one of which is close to the target Z in KL divergence (see Section 5.2). With
such a list in hand, we will be able to use maximum likelihood (in Section 6) to
identify a single hypothesis which is close in KL divergence.

5.1 The Conversion Procedure

In this section we prove:

Theorem 4. There is a simple efficient procedure A which takes values
({π̂i}, {μ̂i

j}, {(σ̂i
j)

2}) and a value M > μmax as inputs and outputs a true mixture
Ż of k many n-dimensional (μmax, σ

2
min, σ2

max)-bounded Gaussians with mixing
weights π̇1, . . . , π̇k satisfying

(a)
∑k

i=1 π̇i = 1, and
(b) α0 ≤ Ż(x) ≤ β0 for all x ∈ [−M, M ]n,

where α0 :=
[

1√
2πσmax

· exp
(

−2M2

σ2
min

)]n

and β0 := 1/(
√

2πσmin)n.

Furthermore, suppose Z is a mixture of Gaussians X1, . . . ,Xk with mixing
weights πi, means μi

j, and variances (σi
j)

2 and that the following are satisfied:

(c) for i = 1 . . . k we have |πi − π̂i| ≤ εwts where εwts ≤ 1/(12k)3; and
(d) for all i, j such that πi ≥ εminwt we have |μi

j − μ̂i
j | ≤ εmeans and |(σi

j)
2 −

(σ̂i
j)

2| ≤ εvars.

Then Ż will satisfy KL(Z||Ż) ≤ η(εmeans, εvars, εwts, εminwt), where

η(εmeans, εvars, εwts, εminwt) := n ·
(

εvars
2σ2

min
+

ε2means + εvars
2(σ2

min − εvars)

)

+ kεminwt · n ·
(

σ2
max + 2μ2

max

σ2
min

)
+ 13kε

1/3
wts.
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Proof. We construct a mixture Ż of product distributions Ẋ1, . . . , Ẋk by defining
new mixing weights π̇i, expectations μ̇i

j , and variances (σ̇i
j)

2. The procedure A
is defined as follows:

1. For all i, j, set

μ̇i
j =

⎧⎨
⎩

−μmax if μ̂i
j < −μmax

μmax if μ̂i
j > μmax

μ̂i
j o.w.

and σ̇i
j =

⎧⎨
⎩

σmin if σ̂i
j < σmin

σmax if σ̂i
j > σmax

σ̂i
j o.w.

2. For all i = 1, . . . , k let π̈i =
{

π̂i if π̂i ≥ εwts
εwts if π̂i < εwts.

Let s be such that s
∑k

i=1 π̈i = 1. Take π̇i = sπ̈i. (This is just a normalization
so the mixing weights sum to precisely 1.)

It is clear from this construction that condition (a) is satisfied. For (b), the
bounds on σ̇i

j are easily seen to imply that Ẋi(x) ≤ 1/(
√

2πσmin)n =: β0 for
all x ∈ Rn, and hence the same upper bound holds for the mixture Ż(x), be-
ing a convex combination of the values Ẋi(x). Similarly, using the fact that
M ≥ μmax together with the bounds on μ̇i

j and σ̇i
j , we have that Ẋi(x) ≥[

1√
2πσmax

· exp
(

−2M2

σ2
min

)]n

=: α0, for all x ∈ [−M, M ]n, and this lower bound

holds for Ż(x) as well.
We now prove the second half of the theorem; so suppose that conditions (c)

and (d) hold. Our goal is to apply the following proposition (proved in [9]) to
bound KL(Z||Ż):

Proposition 2. Let π1, . . . , πk, γ1, . . . , γk ≥ 0 be mixing weights satisfying∑
πi =

∑
γi = 1. Let I = {i : πi ≥ ε3}. Let P1, . . . ,Pk and Q1, . . . ,Qk be

distributions. Suppose that

1. |πi − γi| ≤ ε1 for all i ∈ [k];
2. γi ≥ ε2 for all i ∈ [k];
3. KL(Pi||Qi) ≤ εI for all i ∈ I;
4. KL(Pi||Qi) ≤ εall for all i ∈ [k].

Then, letting P denote the π-mixture of the Pi’s and Q the γ-mixture of the
Qi’s, for any ε4 > ε1 we have KL(P||Q) ≤ εI + kε3εall + kε4 ln ε4

ε2
+ ε1

ε4−ε1
.

More precisely, our goal is to apply this proposition with parameters

ε1 = 3kεwts; ε2 = εwts/2; ε3 = εminwt; εI = n ·
(

εvars
2σ2

min
+ ε2means+εvars

2(σ2
min−εvars)

)
;

εall = n ·
(

σ2
max+2μ2

max
σ2
min

)
; ε4 = ε

2/3
wts/2.

To satisfy the conditions of the proposition, we must (1) upper bound |πi − π̇i|
for all i; (2) lower bound π̇i for all i; (3) upper bound KL(Xi||Ẋi) for all i such
that πi ≥ εminwt; and (4) upper bound KL(Xi||Ẋi) for all i. We now do this.
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(1) Upper bounding |πi − π̇i|. A straightforward argument given in [9] shows
that assuming εwts ≤ 1/(2k), we get |πi − π̇i| ≤ 3kεwts.

(2) Lower bounding π̇i. In [9] it is also shown that π̇i ≥ εwts
2 assuming that

εwts ≤ 1/k.

(3) Upper bounding KL(Xi||Ẋi) for all i such that πi ≥ εminwt. Fix an i
such that πi ≥ εminwt and fix any j ∈ [n]. Consider some particular μi

j and μ̇i
j and

σi
j and σ̇i

j , so we have |μi
j − μ̂i

j | ≤ εmeans and |(σi
j)

2 − (σ̂i
j)

2| ≤ εvars. Since |μi
j | ≤

μmax, by the definition of μ̇i
j we have that |μi

j − μ̇i
j | ≤ εmeans, and likewise we

have |(σi
j)

2 − (σ̇i
j)

2| ≤ εvars. Let P and Q be the one-dimensional Gaussians with
means μi

j and μ̇i
j and variances σi

j and σ̇i
j respectively. Using standard properties

of the KL-divergence of one-dimensional Gaussians (see Appendix C of [8]), it
can be shown that KL(P||Q) ≤ εvars

2σ2
min

+ ε2means+εvars
2(σ2

min−εvars)
. Each Ẋi is the product

of n such Gaussians. Since KL divergence is additive for product distributions
(again see Appendix C of [8]) we have the following bound for each i such that
πi ≥ εminwt:

KL(Xi||Ẋi) ≤ n ·
(

εvars
2σ2

min
+

ε2means + εvars
2(σ2

min − εvars)

)
.

(4) Upper bounding KL(Xi||Ẋi) for all i ∈ [k]. Using the fact that both Xi

and Ẋi are (μmax, σ
2
min, σ2

max)-bounded, it can be shown (see [8]) that we have

KL(Xi||Ẋi) ≤ n

(
σ2

max + 2μ2
max

σ2
min

)
.

Proposition 2 now gives us

KL(Z||Ż) ≤ n ·
(

εvars
2σ2

min
+

ε2means + εvars
2(σ2

min − εvars)

)
+ kεminwt · n ·

(
σ2

max + 2μ2
max

σ2
min

)
+ R,

where R = kε4 ln ε4
ε2

+ ε1
ε4−ε1

= k
2 ε

2/3
wts ln(ε−1/3

wts )+ 3kεwts

ε
2/3
wts/2−3kεwts

. Using the fact that

ln x ≤ x1/2 for x > 1, the first of these two terms is at most k
2 ε

1/2
wts. Using the

fact that εwts < 1/(12k)3, the second of these terms is at most 12kε
1/3
wts. So R is

at most 13kε
1/3
wts and the theorem is proved.

5.2 Getting a List of Distributions One of Which Is KL-Close to
the Target

In this section we show that combining the conversion procedure from the pre-
vious subsection with the results of Section 4 lets us obtain the following:

Theorem 5. Let Z be any unknown mixture of k = O(1) axis-aligned Gaussians
over Rn. There is an algorithm with the following property: for any ε, δ > 0,
given samples from Z the algorithm runs in poly(nL/ε) · log(1/δ) time and with
probability 1 − δ outputs a list of poly(nL/ε) many mixtures of Gaussians with
the following properties:
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1. For any M > μmax such that M = poly(nL/ε), every distribution Z′ in the
list satisfies exp(−poly(nL/ε)) ≤ Z′(x) ≤ poly(L)n for all x ∈ [−M, M ]n.

2. Some distribution Z� in the list satisfies KL(Z||Z�) ≤ ε.

Note that Theorem 5 guarantees that Z′(x) has bounded mass only on the
range [−M, M ]n, whereas the support of Z goes beyond this range. This issue is
addressed in the proof of Theorem 7, where we put together Theorem 5 and the
maximum likelihood procedure.

Proof of Theorem 5: We will use a specialization of Theorem 3 in which we
have different parameters for the different roles that ε plays:

Theorem 3′ Let Z be a mixture of k = O(1) axis-aligned Gaussians X1, . . . ,Xk

over Rn, described by parameters ({πi}, {μi
j}, {σi

j}). There is an algorithm with
the following property: for any εmeans, εvars, εwts, εminwt, δ > 0, given samples
from Z, with probability 1 − δ it outputs a list of candidates ({π̂i}, {μ̂i

j}, {σ̂i
j})

such that for at least one candidate in the list, the following holds:

1. |π̂i − πi| ≤ εwts for all i ∈ [k]; and
2. |μ̂i

j −μi
j | ≤ εmeans and |(σ̂i

j)
2−(σi

j)
2| ≤ εvars for all i, j such that πi ≥ εminwt.

The runtime is poly(nL/ε′) · log(1/δ) where ε′ = min{εwts, εmeans, εvars, εminwt}.

Let ε, δ > 0 be given. We run the algorithm of Theorem 3′ with parameters
εmeans = εσ2

min
12n , εvars = 2εmeans, εminwt = εσ2

min
3kn(σ2

max+2μ2
max) and εwts = ε3

(39k)3 .

With these parameters the algorithm runs in time poly(nL/ε) · log(1/δ). By
Theorem 3′, we get as output a list of poly(nL/ε) many candidate parameter
settings ({π̂i}, {μ̂i

j}, {σ̂i
j}) with the guarantee that with probability 1−δ at least

one of the settings satisfies

– |πi − π̂i| ≤ εwts for all i ∈ [k], and
– |μ̂i

j −μi
j| ≤ εmeans and |(σ̂i

j)
2 −(σi

j)
2| ≤ εvars for all i, j such that πi ≥ εminwt.

We now pass each of these candidate parameter settings through Theorem 4.
(Note that εwts < 1/(12k3) as required by Theorem 4.) By Theorem 4, for any
M = poly(nL/ε) all the resulting distributions will satisfy exp(−poly(nL/ε)) ≤
Z′(x) ≤ poly(L)n for all x ∈ [−M, M ]n. It is easy to check that under our parame-
ter settings, each of the three component terms of η (i.e. n·

(
εvars
2σ2

min
+ ε2means+εvars

2(σ2
min−εvars)

)
,

kεminwt · n
(

σ2
max+2μ2

max
σ2
min

)
, and 13kε

1/3
wts) is at most ε/3. Thus η(εmeans, εvars, εwts,

εminwt) ≤ ε, so one of the resulting distributions Z� must satisfy KL(Z||Z�) ≤ ε.

6 Putting It All Together

6.1 Identifying a Good Distribution Using Maximum Likelihood

Theorem 5 gives us a list of distributions at least one of which is close to the
target distribution we are trying to learn. Now we must identify some distribution
in the list which is close to the target. We use a natural maximum likelihood
algorithm described in [9] to help us accomplish this:
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Theorem 6. [9] Let β, α, ε > 0 be such that α < β. Let Q be a set of hypothesis
distributions for some distribution P over the space X such that at least one
Q∗ ∈ Q has KL(P||Q∗) ≤ ε. Suppose also that α ≤ Q(x) ≤ β for all Q ∈ Q and
all x such that P(x) > 0.

Run the ML algorithm on Q using a set S of independent samples from P, where
S = m. Then, with probability 1 − δ, where δ ≤ (|Q| + 1) · exp

(
−2m ε2

log2(β/α)

)
,

the algorithm outputs some distribution QML ∈ Q which has KL(P||QML) ≤ 4ε.

6.2 The Main Result

Here we put the pieces together and give our main learning result for mixtures
of Gaussians.

Theorem 7. Let Z be any unknown mixture of k n-dimensional Gaussians.
There is a (nL/ε)O(k3) · log(1/δ) time algorithm which, given samples from Z
and any ε, δ > 0 as inputs, outputs a mixture Z′ of k Gaussians which with
probability at least 1 − δ satisfies KL(Z||Z′) ≤ ε.

Proof. Run the algorithm given by Theorem 5. With probability 1 − δ this pro-
duces a list of T = (nL/ε)O(k3) · log(1/δ) hypothesis distributions, one of which,
Z�, has KL divergence at most ε from Z and all of which have their pdfs bounded
between exp(−poly(nL/ε)) and poly(L)n for all x ∈ [−M, M ]n, where M > μmax
is any poly(nL/ε).

We now consider ZM , the M -truncated version of Z; this is simply the distri-
bution obtained by restricting the support of Z to be [−M, M ]n and scaling so
that ZM is a distribution. The proof of the following proposition appears in the
full version of this paper [8], with ZM being formally defined there as well:

Proposition 3. Let P and Q be any mixtures of n-dimensional Gaussians. Let
PM denote the M -truncated version of P. For some M = poly(nL/ε) we have
|KL(PM ||Q) − KL(P||Q)| ≤ 4ε + 2ε · KL(P||Q).

This proposition implies that KL(ZM ||Z�) ≤ 7ε.
Now run the ML algorithm with m = poly(nL/ε) log(M/δ) on this list of

hypothesis distributions using ZM as the target distribution. (We can obtain
draws from ZM using rejection sampling from Z; with probability 1 − δ this
incurs only a negligible increase in the time required to obtain m draws.) Note
that running the algorithm with ZM as the target distribution lets us assert that
all hypothesis distributions have pdfs bounded above and below on the support
of the target distribution, as is required by Theorem 6. (In contrast, since the
support of Z is all of Rn, we cannot guarantee that our hypothesis distributions
have pdf bounds on the support of Z.) By Theorem 6, with probability at least
1−δ the ML algorithm outputs a hypothesis ZML such that KL(ZM ||ZML) ≤ 28ε.

It remains only to bound KL(Z||ZML). By Proposition 3 we have

KL(Z||ZML) ≤ 28ε + 4ε + 2ε · KL(Z||ZML)

which implies that KL(Z||ZML) ≤ 33ε. The running time of the overall algorithm
is (nL/ε)O(k3) · log(1/δ) and the theorem is proved.
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7 Extensions to Other Distributions

In this paper we have shown how to PAC learn mixtures of any constant number
of distributions, each of which is an n-dimensional Gaussian product distribu-
tion. This expands upon the work by Feldman et al. [9] which worked for discrete
distributions in place of Gaussians. It should be clear from our work that in fact
many “nice” univariate distributions can be handled similarly. Also, it should
be noted that the n coordinates need not come from the same family of distrib-
utions; for example, our methods would handle mixtures where some attributes
had discrete distributions and the remainder had Gaussian distributions.

What level of “niceness” do our methods require for a parameterized family
of univariate distributions on R? First and foremost, it should be amenable to
the “method of moments” from statistics. By this it is meant that it should be
possible to solve for the parameters of the distribution given a constant number
of the moments. Distributions in this category include gamma distributions, chi-
square distributions, beta distributions, exponential — more generally, Weibull
— distributions, and more. As a trivial example, the unknown parameter of an
exponential distribution is simply its mean. As a slightly more involved example,
given a beta distribution with unknown parameters α and β (the pdf for which
is proportional to xα−1(1−x)β−1 on [0, 1]), these parameters can be determined
from mean and variance estimates via

α = E[X]
(

E[X](1 − E[X])
Var[X]

− 1
)

, β = (1 − E[X])
(

E[X](1 − E[X])
Var[X]

− 1
)

.

So long as the univariate distribution family can be determined by a constant
number of moments, our basic strategy of running WAM multiple times to
determine moment estimates and then taking the cross-products of these lists
can be employed.

There are only two more concerns that need to be addressed for a given pa-
rameterized family of distributions. First, one needs an analogue of Proposi-
tion 1, showing that products of independent random variables from the distri-
bution family are efficiently samplable. (In fact, this should hold for mixtures of
such, but this is very likely to be implied in any reasonable case.) This immedi-
ately holds for any distribution with bounded support; it will also typically hold
for “reasonable” probability distributions that have pdfs with rapidly decaying
tails.

Second, one needs an analogue of Theorem 4. This requires that it should be
possible to convert accurate candidate parameter values into a KL-close actual
distribution. It seems that this will typically be possible so long as the distribu-
tions in the family are not highly concentrated at any particular point. The con-
version procedure should also have the property that the distributions it output
have pdfs that are bounded below/above by at most exponentially small/large
values, at least on polynomially-sized domains. This again seems to be a mild
constraint, satisfiable for reasonable distributions with rapidly decaying tails.

In summary, we believe that for most parameterized distribution families “D”
of interest, performing a small amount of technical work should be sufficient to
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show that our methods can learn “mixtures of products of D’s”. We leave the
problem of checking these conditions for distribution families of interest as an
avenue for future research.
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