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Università dell’Insubria, Varese, Italy
claudio.gentile@uninsubria.it

Abstract. Shifting bounds for on-line classification algorithms ensure
good performance on any sequence of examples that is well predicted by a
sequence of smoothly changing classifiers. When proving shifting bounds
for kernel-based classifiers, one also faces the problem of storing a number
of support vectors that can grow unboundedly, unless an eviction policy
is used to keep this number under control. In this paper, we show that
shifting and on-line learning on a budget can be combined surprisingly
well. First, we introduce and analyze a shifting Perceptron algorithm
achieving the best known shifting bounds while using an unlimited bud-
get. Second, we show that by applying to the Perceptron algorithm the
simplest possible eviction policy, which discards a random support vector
each time a new one comes in, we achieve a shifting bound close to the
one we obtained with no budget restrictions. More importantly, we show
that our randomized algorithm strikes the optimal trade-off U = Θ

�√
B
�

between budget B and norm U of the largest classifier in the comparison
sequence.

1 Introduction

On-line or incremental learning is a powerful technique for building kernel-based
classifiers. On-line algorithms, like the kernel Perceptron algorithm and its many
variants, are typically easy to implement, efficient to run, and have strong per-
formance guarantees. In this paper, we study two important aspects related to
incremental learning: tracking ability and memory boundedness. The need for
tracking abilities arises from the fact that on-line algorithms are often designed
to perform well with respect to the best fixed classifier in hindsight within a given
comparison class. However, this is a weak guarantee: in many real-world tasks,
such as categorization of text generated by a newsfeed, it is not plausible to
assume that a fixed classifier could perform consistently well on a long sequence
of newsitems generated by the feed. For this reason, a “shifting” performance
model has been introduced (e.g., [19, 13, 2, 14, 15], and references therein) where
the on-line algorithm is evaluated against an arbitrary sequence of comparison
classifiers. In this shifting model, which is strictly harder than the traditional
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nonshifting performance model, the tracking ability refers to the fact that the
performance of the algorithm is good to the extent that the data sequence is
well predicted by a sequence of classifiers whose coefficients change gradually
with time. If the algorithm is kernel-based, then we face the additional issue
of the time and space needed to compute the classifier. In fact, kernel-based
learners typically use a subset of previously observed data to encode a classifier
(borrowing the Support Vector Machine [22, 21] terminology, we call these data
“support vectors”). The problem is that nearly all on-line algorithms need to
store a new support vector after each prediction mistake. Thus, the number of
supports grows unboundedly unless the data sequence is linearly separable in the
RKHS induced by the kernel under consideration. To address this specific issue,
variants of the Perceptron algorithm have been proposed [6, 23] and analyzed [7]
that work using a fixed budget of support vectors. These algorithms use a rule
that, once the number of stored supports has reached the budget, evicts a sup-
port from the storage each time a new vector comes in. Our eviction rule, at the
basis of the Randomized Budget Perceptron algorithm, is surprisingly simple:
On a mistaken trial, the algorithm adds in the new support vector after an old
one has been chosen at random from the storage and discarded.

Since the tracking ability is naturally connected to a weakened dependence on
the past, memory boundedness could be viewed as a way to obtain a good shifting
performance. In fact, we will show that our Randomized Budget Perceptron
algorithm has a strong performance guarantee in the shifting model. In addition,
and more importantly, this algorithm strikes the optimal trade-off U = Θ

(√
B
)

between the largest norm U of a classifier in the comparison sequence and the
required budget B. This improves on U = O

(√
B/(ln B)

)
obtained in [7], via a

more complicated algorithm.
The paper is organized as follows. In the rest of this section we introduce our

main notation, along with preliminary definitions. Section 2 introduces the Shift-
ing Perceptron algorithm, a simple variant of the Perceptron algorithm achieving
the best known shifting bound without budget restriction. This result will be
used as a yardstick for the results of Section 3, where our simple Randomized
Budget Perceptron algorithm is described and analyzed. Finally, Section 4 is
devoted to conclusions and open problems.

All of our algorithms are kernel-based. For notational simplicity, we define
and analyze them without using kernels.

Basic definitions, preliminaries and notation
An example is a pair (x, y), where x ∈ R

d is an instance vector and y ∈
{−1, +1} is the associated binary label. We consider the standard on-line learn-
ing model [1, 17] in which learning proceeds in a sequence of trials. In the generic
trial t the algorithm observes instance xt and outputs a prediction ŷt ∈ {−1, +1}
for the label yt associated with xt. We say that the algorithm has made a pre-
diction mistake if ŷt �= yt.

In this paper we consider variants of the standard Perceptron algorithm [3, 20].
At each trial t = 1, 2, . . . this algorithm predicts yt through the linear-threshold
function ŷt = sgn

(
w�xt

)
, where w ∈ R

d is a weight vector that is initially set
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to the zero vector 0. If a mistake is made at trial t, the algorithm updates w by
performing the assignment w ← w + ytxt.

When the Perceptron algorithm is run in a RKHS the current hypothesis is
represented as a linear combination of (kernel) dot-products with all past mis-
taken (”support”) vectors xt. Since in any given trial the running time required
to make a prediction scales linearly with the number of mistakes made so far, the
overall running time needed by the kernel Perceptron algorithm is quadratic in
the total number m of mistakes made. A memory bounded Perceptron algorithm
tries to overcome this drawback by maintaining only a prearranged number of
past support vectors, thereby turning the quadratic dependence on m into a
linear one.

We measure the performance of our linear-threshold algorithms by the total
number of mistakes they make on an arbitrary sequence of examples. In the
standard performance model, the goal is to bound this total number of mistakes
in terms of the performance of the best fixed linear classifier u ∈ R

d in hindsight
(note that we identify an arbitrary linear-threshold classifier with its coefficient
vector u). Since the general problem of finding u ∈ R

d that minimizes the
number of mistakes on a known sequence is a computationally hard problem,
the performance of the best predictor in hindsight is often measured using the
cumulative hinge loss [8, 11]. The hinge loss of a linear classifier u on example
(x, y) is defined by d(u; (x, y)) = max{0, 1 − yu�x}. Note that d is a convex
function of the margin yu�x, and is also an upper bound on the indicator
function of sgn

(
u�x
)

�= y.
In the shifting or tracking performance model the learning algorithm faces the

harder goal of bounding its total number of mistakes in terms of the cumulative
hinge loss achieved by an arbitrary sequence u0, u1 . . . , un−1 ∈ R

d of linear
classifiers (also called comparison vectors). To make this goal feasible, the bound
is allowed to scale also with the maximum norm U = maxt ‖ut‖ of the classifiers
in the sequence and with the total shift

Stot =
n−1∑

t=1

‖ut−1 − ut‖ (1)

of the classifier sequence. We assume for simplicity that all instances xt are
normalized, that is, ‖xt‖ = 1 for all t ≥ 1. Finally, throughout this paper, we
will use {φ} to denote the indicator function of the event defined by a predicate φ.

2 The Shifting Perceptron Algorithm

Our learning algorithm for shifting hyperplanes (Shifting Perceptron Algorithm,
spa) is described in Figure 1. spa has a positive input parameter λ which de-
termines the rate of weight decay. The algorithm maintains a weight vector w
(initially set to zero) and two more variables: a mistake counter k (initialized to
zero) and a time-changing decaying factor λk (initialized to 1). When a mistake
is made on some example (xt, yt) the signed instance vector ytxt is added to
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the old weight vector, just like in the Perceptron update rule. However, unlike
the Perceptron rule, before adding ytxt spa scales down the old weight, so as to
diminish the importance of early update stages. The important thing to observe
here is that the scaling factor (1 − λk) changes with time, since λk → 0 as more
mistakes are made. Note that subscript t runs over all trials, while subscript k
runs over mistaken trials only, thus k serves as an index for quantities (wk and
λk) which get updated only in those trials. In particular, at the end of each trial,
k is equal to the number of mistakes made so far.

Algorithm: Shifting Perceptron.
Parameters: λ > 0;
Initialization: w0 = 0, λ0 = 1, k = 0.

For t = 1, 2, . . .

1. Get instance vector xt ∈ R
d, ‖xt‖ = 1;

2. Predict with �yt = sgn(w�
k xt) ∈ {−1, +1};

3. Get label yt ∈ {−1, +1};
4. If �yt �= yt then

wk+1 = (1 − λk)wk + ytxt , k ← k + 1 , λk =
λ

λ + k
.

Fig. 1. The shifting Perceptron algorithm

It is worth observing what the algorithm really does by unwrapping the re-
currence wk+1 = (1 − λk)wk + ytxt. Assume at the end of trial t the algorithm
has made k + 1 mistakes, and denote the mistaken trials by t0, t1, . . . , tk. We
have wk+1 = α0 yt0xt0 + α1 yt1xt1 + · · · + αk ytk

xtk
with1

αi =
k∏

j=i+1

(1 − λj) = exp
( k∑

j=i+1

log(1 − λj)
)
≈ exp

(
−

k∑

j=i+1

λj

)

= exp
(
−

k∑

j=i+1

λ

λ + j

)
≈
(

λ + i + 1
λ + k + 1

)λ

≈ ck (i + 1)λ,

ck being a positive constant independent of i. Thus spa is basically following a
(degree-λ) polynomial vector decaying scheme, where the most recent “support
vector” xtk

is roughly worth (k+1)λ times the least recent one (i.e., xt0). Clearly
enough, if λ = 0 all support vectors are equally important and we recover the
classical Perceptron algorithm.

Now, since we are facing a shifting target problem, it is reasonable to expect
that the optimal degree λ depends on how fast the underlying target is drifting
with time. As we will see in a moment, the above polynomial weighting scheme
gives spa a desirable robustness to parameter tuning, beyond making the analysis
fairly simple.

1 See the appendix for more precise approximations.
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2.1 Analysis

The analysis is a standard potential-based analysis for mistake-driven on-line
algorithms [3, 17, 20].

The following simple lemma is central to our analysis. The lemma bounds
the growth rate of the norm of the algorithm’s weight vector. The key point to
remark is that, unlike previous algorithms and analyses (e.g., [7, 14, 15]), we do
not force the weight vector wk to live in a ball of bounded radius. Instead, we
allow the weight vector to grow unboundedly, at a pace controlled in a rather
precise way by the input parameter λ. The proof is given in the appendix.

Lemma 1. With the notation introduced in Figure 1, we have

‖wk+1‖ ≤ e

√
λ + k + 2
2λ + 1

for any k = 0, 1, 2 . . ., where e is the base of natural logarithms.

The following theorem contains our mistake bounds for spa. The theorem deliv-
ers shifting bounds for any constant value of parameter λ. For instance, λ = 0
gives a shifting bound for the classical (non-shifting) Perceptron algorithm.2 For
any sequence (u0, u1, . . .) of comparison vectors, the bound is expressed in terms
of the cumulative hinge loss D, the shift S, and the maximum norm U of the
sequence. These quantities are defined as follows:

D =
m−1∑

k=0

d(uk; (xtk
, ytk

)), S =
m−1∑

k=1

‖uk − uk−1‖ , U = max
t=0,...,n−1

‖ut‖ . (2)

We recall that tk is the trial at the end of which wk gets updated and uk is the
comparison vector in trial tk. Note that D and S are only summed over mistaken
trials. Larger, but more interpretable bounds, can be obtained if these sums are
replaced by sums running over all trials t. In particular, S may be replaced by
Stot defined in (1).

As expected, the optimal tuning of λ grows with S and, in turn, yields a
mistake bound which scales linearly with S. We emphasize that, unlike previous
investigations (such as [15]) our shifting algorithm is independent of scaling para-
meters (like the margin of the comparison classifiers 〈ut〉). In fact, our “optimal”
tuning of λ turns out to be scale-free.

Theorem 1. For any n ∈ N, any sequence of examples (x1, y1), . . . , (xn, yn) ∈
R

d × {−1, +1} such that ‖xt‖ = 1 for each t, and any sequence of comparison
vectors u0, . . . , un−1 ∈ R

d, the algorithm in Figure 1 makes a number m of
mistakes bounded by

m ≤ D + K2 + K
√

D + λ + 1 , (3)

2 Thus, even in a shifting framework the Perceptron algorithm, with no modifications,
achieves a (suboptimal) shifting bound.
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where K =
e√

2λ + 1
(S + (4 λ + 1)U) . Moreover, if we set λ =

S

4U
, then we

have K ≤ e
√

8SU + U2 and

m ≤ D + e
√

(8SU + U2)D + e2 (8SU + U2) + e (2S + 3U) . (4)

Proof. Consider how the potential u�
k wk+1 evolves over mistaken trials. We can

write

u�
k wk+1 = u�

k ((1 − λk)wk + ytk
xtk

)
= (1 − λk)

(
u�

k wk − u�
k−1wk + u�

k−1wk

)
+ ytk

u�
k xtk

= (1 − λk)(uk − uk−1)�wk + (1 − λk)u�
k−1wk + ytk

u�
k xtk

≥ −(1 − λk) ‖uk − uk−1‖ ‖wk‖ − λk ‖uk−1‖ ‖wk‖ + u�
k−1wk + ytk

u�
k xtk

≥ −(1 − λk) ‖uk − uk−1‖ ‖wk‖ − λk ‖uk−1‖ ‖wk‖ + u�
k−1wk

+ 1 − d(uk; (xtk
, ytk

))

the last inequality following from the very definition of d(uk; (xtk
, ytk

)). Rear-
ranging yields

u�
k wk+1 − u�

k−1wk

≥ −(1 − λk) ‖uk − uk−1‖ ‖wk‖ − λk ‖uk−1‖ ‖wk‖ + 1 − d(uk; (xtk
, ytk

)) .

Recalling that w0 = 0, we sum the above inequality over3 k = 0, 1, . . . , m − 1,
then we rearrange and overapproximate. This results in

m ≤ D

+
m−1∑

k=1

(1 − λk)||uk − uk−1|| ||wk||
︸ ︷︷ ︸

(I)

+
m−1∑

k=1

λk||uk−1|| ||wk||
︸ ︷︷ ︸

(II)

+ ||um−1|| ||wm||
︸ ︷︷ ︸

(III)

.

We now use Lemma 1 to bound from above the three terms (I), (II), and (III):

(I) ≤ S max
k=1,...,m−1

(
(1 − λk) ‖wk‖

)

≤ S
e (m − 1)
λ + m − 1

√
λ + m

2λ + 1
(from Lemma 1 and the definition of λk)

≤ e S

√
λ + m

2λ + 1
. (5)

Moreover, from Lemma 1 and the inequality
√

x+1
x ≤ 4(

√
x + 1 −

√
x), ∀x ≥ 1,

applied with x = λ + k, we have

3 For definiteness, we set u−1 = 0, though w0 = 0 makes this setting immaterial.
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(II) ≤ U

m−1∑

k=1

λk ‖wk‖

≤ U

m−1∑

k=1

eλ

λ + k

√
λ + k + 1
2λ + 1

≤ U
4eλ√
2λ + 1

m−1∑

k=1

(√
λ + k + 1 −

√
λ + k

)

= U
4eλ√
2λ + 1

(√
λ + m −

√
λ + 1

)
. (6)

Finally, again from Lemma 1, we derive

(III) ≤ e ‖um−1‖
√

λ + m + 1
2λ + 1

. (7)

At this point, in order to ease the subsequent calculations, we compute upper
bounds on (5), (6) and (7) so as to obtain expressions having a similar depen-
dence4 on the relevant quantities around. We can write

(5) ≤ e S

√
λ + m + 1

2λ + 1
, (6) ≤ 4 e λU

√
λ + m + 1

2λ + 1
, (7) ≤ e U

√
λ + m + 1

2λ + 1
.

Putting together gives

m ≤ D + e (S + (4 λ + 1)U)

√
λ + m + 1

2λ + 1
.

Solving for m and overapproximating once again gets

m ≤ D + K2 + K
√

D + λ + 1 ,

where K = K(λ) =
e√

2λ + 1
(S + (4 λ + 1)U) . This is the claimed bound (3).

We now turn to the choice of λ. Choosing λ minimizing the above bound would
require, among other things, prior knowledge of D. In order to strike a good
balance between optimality and simplicity (and to rely on as little information
as possible) we come to minimizing (an upper bound on) K(λ). Set λ = cS/U ,
where c is some positive constant to be determined. This yields

K(λ) = e U
(4c + 1)S/U + 1
√

2cS/U + 1
≤ e

√
(4c + 1)2

2c
SU + U2, (8)

where we used
α r + 1√
β r + 1

≤

√
α2

β
r + 1, α, r ≥ 0, β > 0, with α = 4c+1, β = 2c,

and r = S/U . We minimize (8) w.r.t. c by selecting c = 1/4. Plugging back
into (3) and overapproximating once more gives (4). �
4 This seems to be a reasonable trade-off between simplicity and tightness.
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3 A Randomized Perceptron with Budget

Consider the update wk+1 = (1−λk)wk+ytxt used by the algorithm in Figure 1.
In the special case λk = λ for all k ≥ 1, this corresponds to associating with
each support vector xt a coefficient decreasing exponentially with the number
of additional mistakes made. This exponential decay is at the core of many
algorithms in the on-line learning literature, and has the immediate consequence
of keeping bounded the norm of weight vectors. This same idea is used by the
Forgetron [7], a recently proposed variant of the Perceptron algorithm that learns
using a fixed budget of support vectors. In fact, it is not hard to show that the
Forgetron analysis can be extended to the shifting model. In this section, we
turn our attention to a way of combining shifting and budgeted algorithms by
means of randomization, with no explicit weighting on the support vectors. As
we show, this alternative approach yields a simple algorithm and a crisp analysis.

Consider a generic Perceptron algorithm with bounded memory. The algo-
rithm has at its disposal a fixed number B of “support vectors”, in the sense
that, at any given trial, the weight vector w maintained by the algorithm is a
linear combination of yi1xi1 , yi2xi2 , . . . , yiBxiB where i1, . . . , iB is a subset of
past trials where a mistake was made. Following [6, 7, 23], we call B the algo-
rithm’s budget. As in the standard Perceptron algorithm, each example on which
the algorithm makes a mistake becomes a support vector. However, in order not
to exceed the budget, before adding a new support the algorithm has to discard
an old one.

The analysis of the Forgetron is based on discarding the oldest support. The
exponential coefficients (1 − λ)k assigned to supports guarantee that, when λ
is properly chosen as a function of B, the norm of the discarded vector is at
most 1/

√
B. In addition, it can be proven that the norm of wk is at most√

B/(ln B) for all k ≥ B. These facts can be used to prove a mistake bound
in terms of the hinge loss of the best linear classifier u in hindsight, as long as
‖u‖ = O

(√
B/(ln B)

)
. In this section we show that a completely random policy

of discarding support vectors achieves a mistake bound without imposing on ‖u‖
any constraint stronger than ‖u‖ = O

(√
B
)
, which must be provably obeyed by

any algorithm using budget B.
More precisely, suppose wk makes a mistake on example (xt, yt). If the current

number of support vectors is less than B, then our algorithm performs the usual
additive update wk+1 = wk + ytxt (with no exponential scaling). Otherwise the
algorithm chooses a random support vector Qk, where P

(
Qk = yij xij

)
= 1/B

for j = 1, . . . , B, and performs the update wk+1 = wk +ytxt −Qk. Note that Qk

satisfies EkQk = wk/B where Ek[ · ] denotes the conditional expectation E[ · |
w0, . . . , wk]. The resulting algorithm, called Randomized Budget Perceptron
(rbp), is summarized in Figure 2.

The main idea behind this algorithm is the following: by removing a random
support we guarantee that, in expectation, the squared norm of the weight wk+1
increases by at most 2− (2/B) ‖wk‖2 each time we make an update (Lemma 2).
This in turn implies that, at any fixed point in time, the expected norm of the
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Algorithm: Randomized Budget Perceptron.
Parameters: Budget B ∈ N, B ≥ 2;
Initialization: w0 = 0, s = 0, k = 0.

For t = 1, 2, . . .

1. Get instance vector xt ∈ R
d, ||xt|| = 1;

2. Predict with �yt = sgn(w�
k xt) ∈ {−1, +1};

3. Get label yt ∈ {−1, +1};
4. If �yt �= yt then

(a) If s < B then

wk+1 = wk + ytxt, k ← k + 1, s ← s + 1

(b) else let Qk be a random support vector of wk and perform the assignment

wk+1 = wk + ytxt − Qk, k ← k + 1 .

Fig. 2. The randomized Budget Perceptron algorithm

current weight is O(
√

B). The hard part of the proof (Lemma 3) is showing that
the sum of the norms of all distinct weights generated during a run has expected
value O(

√
B) E M + O

(
B3/2 ln B

)
, where M is the random number of mistakes.

3.1 Analysis

Similarly to Section 2.1, we state a simple lemma (whose proof is deferred to
the appendix) that bounds in a suitable way the norm of the algorithm’s weight
vector. Unlike Lemma 1, here we do not solve the recurrence involved. We rather
stop earlier at a bound expressed in terms of conditional expectations, to be
exploited in the proof of Lemma 3 below.

Lemma 2. With the notation introduced in this section, we have

Ek ‖wk+1‖2 ≤
{

k + 1 for k = 0, . . . , B − 1(
1 − 2

B

)
‖wk‖2 + 2 for k ≥ B.

Moreover, using Jensen’s inequality,

Ek ‖wk+1‖ ≤

⎧
⎨

⎩

√
k + 1 for k = 0, . . . , B − 1

√(
1 − 2

B

)
‖wk‖2 + 2 for k ≥ B.

The main result of this section bounds the expected number of mistakes, E M ,
made by rbp in the shifting case. For any sequence (u0, u1, . . . , un−1) of com-
parison vectors, this bound is expressed in terms of the expectations of the
cumulative hinge loss D, the shift S, and the maximal norm U of the se-
quence, defined in (2). (All expectations are understood with respect to the
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algorithm’s randomization.) Following the notation of previous sections, tk de-
notes the (random) trial where wk is updated and uk is the comparison vector
in trial tk. Moreover, in what follows, we assume the underlying sequence of
examples and the sequence u0, u1, . . . of linear classifiers are fixed and arbitrary.
This implies that the value of the random variable {M = k} is determined
given w0, . . . , wk−1 (i.e., the event {M = k} is measurable w.r.t. the σ-algebra
generated by w0, . . . , wk−1).

The next lemma is our key tool for proving expectation bounds. It may be
viewed as a simple extension of Wald’s equation to certain dependent processes.

Lemma 3. With the notation and the assumptions introduced so far, we have,
for any constant ε > 0,

E

[
M∑

k=B

‖wk‖
]

≤ B3/2

2
ln

B2

2ε
+ (1 + ε)

√
B E
[
max{0, M − B}

]
.

Proof. Set for brevity ρ = 1 − B/2. We can write

E

[
M∑

k=B

‖wk‖
]

= E

[ ∞∑

k=B

{M ≥ k} ‖wk‖
]

= E

[ ∞∑

k=B

Ek−1

[
{M ≥ k} ‖wk‖

]
]

= E

[ ∞∑

k=B

{M ≥ k}Ek−1 ‖wk‖
]

(since {M ≥ k} is determined by w0, . . . , wk−1)

≤ E

[ ∞∑

k=B

{M ≥ k}
√

ρ ‖wk−1‖2 + 2

]

(from Lemma 2)

≤ E

[ ∞∑

k=B

{M ≥ k − 1}
√

ρ ‖wk−1‖2 + 2

]

= E

[ ∞∑

k=B−1

{M ≥ k}
√

ρ ‖wk‖2 + 2

]

≤
√

ρB + 2 + E

[ ∞∑

k=B

{M ≥ k}
√

ρ ‖wk‖2 + 2

]

(9)

the last inequality following from Lemma 2, which implies ‖wB−1‖2 ≤ B.
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Now, (9) can be treated in a similar fashion. We have

(9) =
√

ρB + 2 + E

[ ∞∑

k=B

{M ≥ k}Ek−1

[√
ρ ‖wk‖2 + 2

]]

(since, as before, {M ≥ k} is determined by w0, . . . , wk−1)

≤
√

ρB + 2 + E

[ ∞∑

k=B

{M ≥ k}
√

ρ
(
ρ ‖wk−1‖2 + 2

)
+ 2

]

(from Jensen’s inequality and Lemma 2)

≤
√

ρB + 2 + E

[ ∞∑

k=B

{M ≥ k − 1}
√

ρ
(
ρ ‖wk−1‖2 + 2

)
+ 2

]

=
√

ρB + 2 + E

[ ∞∑

k=B−1

{M ≥ k}
√

ρ
(
ρ ‖wk‖2 + 2

)
+ 2

]

≤
√

ρB + 2 +
√

ρ(ρB + 2) + 2 + E

[ ∞∑

k=B

{M ≥ k}
√

ρ
(
ρ ‖wk‖2 + 2

)
+ 2

]

the last inequality following again from ‖wB−1‖2 ≤ B. Iterating for a total of i
times we obtain that (9) is at most

i−1∑

j=0

√√
√
√ρj+1B + 2

j∑

�=0

ρ� + E

⎡

⎣
∞∑

k=B

{M ≥ k}

√√
√
√ρi ‖wk‖2 + 2

i−1∑

j=0

ρj

⎤

⎦

≤
i−1∑

j=0

√
ρj+1B + B − ρj+1B +

√
ρiB2 + B E

[ ∞∑

k=B

{M ≥ k}
]

,

where for the first term we used
∑j

�=0 ρ� = 1−ρj+1

1−ρ = B(1 − ρj+1)/2, and for

the second term we used the trivial upper bound ‖wk‖2 ≤ B2 for all k ≥ 1 and∑j
�=0 ρ� ≤ 1

1−ρ = B/2. We thus obtain

E

[ ∞∑

k=B

{M ≥ k} ‖wk‖
]

≤ i
√

B +
√

ρiB2 + B E

[ ∞∑

k=B

{M ≥ k}
]

.

We are free to choose the number i of iterations. We set i in a way that the factor√
ρiB2 + B gets as small as (1+ε)

√
B. Since ρi ≤ e−2i/B and

√
1 + x ≤ 1+x/2

for any x ≥ 0, it suffices to pick i ≥ B
2 ln B2

2ε , yielding the claimed inequality. �

Theorem 2. Given any ε ∈ (0, 1), any n ∈ N, any sequence of examples
(x1, y1), . . . , (xn, yn) ∈ R

d × {−1, +1} such that ‖xt‖ = 1 for each t, the algo-
rithm in Figure 2 makes a number M of mistakes whose expectation is bounded
as

E M ≤ 1
ε

E D +
Stot

√
B

ε
+

U B

ε
+

U
√

B

2ε
ln

B2

2ε
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for any sequence of comparison vectors u0, . . . , un−1 ∈ R
d, with expected hinge

loss E D, total shift Stot, and such that maxt ‖ut‖ = U ≤ 1−ε
1+ε

√
B.

Remark 1. Note the role played by the free parameter ε ∈ (0, 1). If ε is close to
0, then the comparison vectors u0, . . . , un−1 are chosen from a large class, but
the bound is loose. On the other hand, if ε is close to 1, our bound gets sharper
but applies to a smaller comparison class. We can rewrite the above bound in
terms of U = 1−ε

1+ε

√
B. For instance, setting ε = 1/2 results in

EM ≤ 2 E D + 18 U
(
Stot + U2)+ 12 U2 ln(3 U) .

The dependence on Stot is linear as in (4), which is the best bound we could
prove on Perceptron-like algorithms without imposing a budget.

Remark 2. In the nonshifting case our bound reduces to

E M ≤ 1
ε

E D +
U B

ε
+

U
√

B

2ε
ln

B2

2ε
.

This is similar to the (deterministic) Forgetron bound shown in [7], though we
have a better dependence on D and a worse dependence on U and B. However,
and more importantly, whereas the Forgetron bound can be proven only for
‖u‖ = O

(√
B/(ln B)

)
, our result just requires ‖u‖ = O

(√
B
)
. This is basically

optimal, since it was shown in [7] that the condition ‖u‖ <
√

B + 1 is necessary
for any on-line algorithm working on a budget B.

Remark 3. From a computational standpoint, our simple randomized policy
compares favourably with other eviction strategies that need to check the prop-
erties of all support vectors in the currect storage, such as those in [6, 23]. Thus,
in this context, randomization exhibits a clear computational advantage.

Proof (of Theorem 2). We proceed as in the proof of Theorem 1 and adopt the
same notation used there. Note, however, that the weights w0, w1, . . . are now
the realization of a random process on R

d and that the number M of mistakes
on a given sequence of example is a random variable. Without loss of generality,
in what follows we assume wk = wM for all k > M . We can write

u�
k wk+1 = u�

k

(
wk + ytk

xtk
− {k ≥ B}Qk

)

= (uk − uk−1)�wk + u�
k−1wk + ytk

u�
k xtk

− {k ≥ B} u�
k Qk

≥ (uk − uk−1)�wk + u�
k−1wk + 1 − d(uk; (xtk

, ytk
)) − {k ≥ B} u�

k Qk .

We rearrange, sum over k = 0, . . . , M − 1, recall that w0 = 0, and take expec-
tations on both sides of the resulting inequality,

EM ≤ E

[
M−1∑

k=0

d(uk; (xtk
, ytk

))

]

+ E
[
u�

M−1wM

]

︸ ︷︷ ︸
(I)

+ E

[
M−1∑

k=B

u�
k Qk

]

︸ ︷︷ ︸
(II)

+ E

[
M−1∑

k=1

(uk−1 − uk)�wk

]

︸ ︷︷ ︸
(III)

.
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The first term in the right-hand side equals E D. Thus we need to find suitable
upper bounds on (I), (II), and (III). Recalling that U = maxt ‖ut‖, and noting
that ‖wk‖ ≤ B for all k, we have (I) ≤ U B. To bound (II), we write

(II) = E

[ ∞∑

k=B

{M ≥ k + 1} u�
k Qk

]

= E

[ ∞∑

k=B

Ek

[
{M ≥ k + 1} u�

k Qk

]
]

= E

[ ∞∑

k=B

{M ≥ k + 1}u�
k Ek Qk

]

(since {M ≥ k + 1} and uk are determined given w0, . . . , wk)

= E

[ ∞∑

k=B

{M ≥ k + 1}u�
k wk

B

]

(since Ek Qk = wk/B) .

Hence

(II) ≤ U

B
E

[ ∞∑

k=B

{M ≥ k + 1} ‖wk‖
]

≤ U

B
E

[
M∑

k=B

‖wk‖
]

≤ U
√

B

2
ln

B2

2ε
+ (1 + ε)

U√
B

E M (from Lemma 3).

Next, we bound (III) as follows

E

[
M−1∑

k=1

(uk−1 − uk)�wk

]

= E

⎡

⎣
M−1∑

k=1

tk∑

t=tk−1+1

(ut−1 − ut)�wk

⎤

⎦

≤ E

⎡

⎣
M−1∑

k=1

tk∑

t=tk−1+1

‖ut−1 − ut‖ ‖wk‖

⎤

⎦

≤ E

[
n−1∑

t=1

‖ut−1 − ut‖ ‖wt‖
]

where wt is the random weight used by the algorithm at time t. A simple
adaptation of Lemma 2 and an easy induction argument together imply that
E ‖wt‖ ≤

√
B for all t. Thus we have

E

[
n−1∑

t=1

‖ut−1 − ut‖ ‖wt‖
]

=
n−1∑

t=1

‖ut−1 − ut‖ E ‖wt‖ ≤ Stot
√

B .

Piecing together gives

E M ≤ E D + (1 + ε)
U√
B

E M + Stot
√

B + U B +
U

√
B

2
ln

B2

2ε
.

The condition U ≤ 1−ε
1+ε

√
B implies the desired result. �
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4 Conclusions and Ongoing Research

In this paper we have shown that simple changes to the standard (kernel) Per-
ceptron algorithm suffice to obtain efficient shifting and memory bounded algo-
rithms. Our elaborations deliver robust on-line procedures which we expect to
be of practical relevance in many real-world data-intensive learning settings.

From the theoretical point of view, we have shown that these simple algorithms
compare favourably with the existing kernel-based algorithms working in the on-
line shifting framework. Many of the results we have proven here can easily be
extended to the family of p-norm algorithms [12, 10], to large margin on-line
algorithms (e.g., [16, 9]) and to other Perceptron-like algorithms, such as the
second-order Perceptron algorithm [5].

A few issues we are currently working on are the following. The bound ex-
hibited in Theorem 2 shows an unsatisfactory dependence on U . This is due to
the technical difficulty of finding a more sophisticated argument than the crude
upper bound we use to handle expression (I) occurring in the proof. In fact, we
believe this argument is within reach. Finally, we are trying to see whether our
statement also holds with high probability, rather than just in expectation.

This paper introduces new on-line learning technologies which, as we said,
can be combined with several existing techniques. We are planning to make
experiments to give evidence of the theoretical behavior of algorithms resulting
from such combinations.
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A Proof of Lemma 1

Let t = tk be the trial at the end of which wk is updated. The update rule of
Figure 1 along with the condition ytw

�
k xt ≤ 0 allow us to write for each k ≥ 0

‖wk+1‖2 = (1 − λk)2 ‖wk‖2 + 2(1 − λk)ytw
�
k xt + ‖xt‖2

≤ (1 − λk)2 ‖wk‖2 + 1 .

Unwrapping the recurrence yields ‖wk+1‖2 ≤
∑k

i=0
∏k

j=i+1(1 − λj)2 , where
the product is meant to be 1 if i + 1 > k. The above, in turn, can be bounded
as follows.

k∑

i=0

k∏

j=i+1

(1 − λj)2 ≤
k∑

i=0

exp

(

−2
k∑

j=i+1

λj

)

=
k∑

i=0

exp

(

−2λ
k∑

j=i+1

1
λ + j

)

≤
k∑

i=0

exp

(

−2λ

∫ k+1

i+1

dx

λ + x

)

=
k∑

i=0

(
λ + i + 1
λ + k + 1

)2λ
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≤ 1
(λ + k + 1)2λ

∫ λ+k+2

λ+1
x2λdx

≤ 1
2λ + 1

(λ + k + 2)2λ+1

(λ + k + 1)2λ

=
(

λ + k + 2
2λ + 1

)[(
1 +

1
λ + k + 1

)λ+k+1
] 2λ

λ+k+1

≤
(

λ + k + 2
2λ + 1

)
e2 ,

where the last inequality uses (1 + 1/x)x ≤ e for all x > 0, and 2λ
λ+k+1 ≤ 2.

Taking the square root completes the proof. �

B Proof of Lemma 2

Let t = tk be the trial where wk gets updated. We distinguish the two cases
k < B and k ≥ B. In the first case no randomization is involved, and we have
the standard (e.g., [3, 20]) Perceptron weight bound ‖wk‖ ≤

√
k, k = 1, . . . , B.

In the case k ≥ B the update rule in Figure 2 allows us to write
‖wk+1‖2 = ‖wk + ytxt − Qk‖2

= ‖wk‖2 + ‖xt‖2 + ‖Qk‖2 − 2w�
k Qk + 2yt(wk − Qk)�xt

≤ ‖wk‖2 + 2 − 2w�
k Qk + 2yt(wk − Qk)�xt .

Recalling Ek Qk = wk/B, we take conditional expectation Ek on both sides:

Ek ‖wk+1‖2 ≤ ‖wk‖2 + 2 − 2
w�

k wk

B
+ 2
(
1 − 1

B

)
yt w�

k xt

≤
(
1 − 2

B

)
‖wk‖2 + 2

the last step following from yt w�
k xt ≤ 0. This gives the desired bound on

Ek ‖wk+1‖2. The bound on Ek ‖wk+1‖ is a direct consequence of Jensen’s in-
equality. �
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