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Abstract. Recently, Kalai et al. [1] have shown (among other things)
that linear threshold functions over the Boolean cube and unit sphere are
agnostically learnable with respect to the uniform distribution using the
hypothesis class of polynomial threshold functions. Their primary algo-
rithm computes monomials of large constant degree, although they also
analyze a low-degree algorithm for learning origin-centered halfspaces
over the unit sphere. This paper explores noise-tolerant learnability of
linear thresholds over the cube when the learner sees a very limited por-
tion of each instance. Uniform-distribution weak learnability results are
derived for the agnostic, unknown attribute noise, and malicious noise
models. The noise rates that can be tolerated vary: the rate is essentially
optimal for attribute noise, constant (roughly 1/8) for agnostic learning,
and non-trivial (Ω(1/

√
n)) for malicious noise. In addition, a new model

that lies between the product attribute and malicious noise models is
introduced, and in this stronger model results similar to those for the
standard attribute noise model are obtained for learning homogeneous
linear thresholds with respect to the uniform distribution over the cube.
The learning algorithms presented are simple and have small-polynomial
running times.

1 Introduction

A linear threshold function over the Boolean cube {0, 1}n is any function that can
be defined by taking the sign of the sum of a constant threshold value plus the
dot product of a fixed vector of weights and the vector of the function’s inputs.
While the class of linear threshold functions can be learned in polynomial time
with respect to arbitrary distributions over the cube (by using any polynomial-
time linear programming solver), many open questions remain concerning the
learnability of linear thresholds in the presence of noise.

Significant progress on noise-tolerant learning of linear thresholds was made
recently when Kalai et al. [1] showed (among other things) that linear thresh-
old functions over the Boolean cube are agnostically learnable with respect to
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the uniform distribution Un. Specifically, their algorithm, given ε > 0 and a
uniform-distribution oracle for any function f : {0, 1}n → {−1, 1}, produces an
approximator h such that PrUn [f �= h] is at most ε greater than the minimal
error of any linear threshold used as an approximator to f . As there are rela-
tively few positive results for the agnostic learning model, it is perhaps somewhat
surprising that a positive result could be obtained for such a rich class.

Kalai et al.’s polynomial regression algorithm, while polynomial-time for con-
stant ε, produces as its hypothesis h a large-constant-degree polynomial threshold
function. Furthermore, to produce this hypothesis, the algorithm uses estimates
of Fourier coefficients of the target f that involve computing monomials of degree
up to d over the examples, where d is a large constant. While Kalai et al. also show
that a degree-1 version of their algorithm produces reasonably good agnostic re-
sults when learning over the unit sphere, there is not an obvious translation of
their analysis to uniform-distribution learning over the discrete cube.

This paper considers uniform-distribution learning of noisy linear thresholds
over the Boolean cube when the learner is restricted to look at only a very
few bits k of each example. This Restricted Focus of Attention (k-RFA) model
was introduced by Ben-David and Dichterman [2] and has been considered in
several settings. One reason for considering this model is that, when positive
RFA results are possible, the resulting learning algorithms may be—and are, in
this paper—relatively simple and efficient, since they are using relatively little
information in each example.

In addition, there are theoretical reasons to be particularly interested in RFA
learnability of linear thresholds. It has long been known that the Chow parame-
ters of a linear threshold function f over the cube—parameters which can be effi-
ciently estimated while looking at only one input bit plus the label per example—
provide a unique signature for f : no other Boolean function has exactly the same
Chow parameters. Thus, noiseless linear thresholds are information-theoretically
learnable in the 1-RFA model. It is therefore natural to ask how much we can
learn about a noisy linear threshold function given a similarly limited amount
of information.

Algorithms are presented for RFA-learning linear threshold functions over
the cube with respect to the uniform distribution in several noise models (de-
scribed later): a weak version of agnostic learning, attribute noise generated by
an unknown noise process, malicious noise, and a new model called restricted
context-sensitive attribute noise (RCSAN, pronounced arc-san). In this model,
unlike attribute noise, the noise process is allowed to specify multiple noise rates
for an attribute, with the choice of rate for an example (x, f(x)) based on the
values of a restricted set of attributes of x as well as the label f(x). This gener-
alizes the product version of the attribute noise model, in which noise is applied
to each attribute i of an example independently at rate pi.

In each of these models, our algorithms produce approximating hypotheses
that (with high probability) agree with the target function with probability at
least 1/2+γ for some γ that depends on how far the actual noise rate falls below
the limits given next. For agnostic learning, any function f for which the optimal
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linear threshold function has error non-negligibly less than 1/8 can be efficiently
weakly learned. For unknown attribute noise applied to a linear threshold func-
tion, weak learning is achieved for any noise process for which the marginal
attribute noise rates are all non-negligibly less than 1/2. For malicious noise, a
rate of Ω(1/

√
n) can be tolerated. We consider several constrained versions of

the RCSAN model. Our strongest RCSAN result shows, roughly speaking, that
homogeneous linear threshold functions (linear thresholds that have a constant
threshold value of 0) can be 2-RFA learned with respect to the uniform distrib-
ution as long as the maximum average noise rate over the attributes is less than
1/2 and there is at least one known relevant attribute with no noise.

Our results are based on the observation of Kalai et al. [1] that the so-called
low-degree Fourier algorithm is a weak agnostic learner. In particular, our basic
learning algorithm is a combination of the low-degree algorithm with a ran-
domized algorithm due to Blum et al. [4]) that improves on the error bound of
the basic low-degree algorithm. The proof of the algorithm’s error bound also
depends critically on a Fourier property of linear threshold functions over the
cube due to Gotsman and Linial [3]. This basic algorithm provides the agnostic,
attribute, and malicious noise results. The RCSAN algorithm adds on top of
this basic algorithm some Fourier-based machinery for eliminating certain noise
elements that the basic algorithm does not handle especially well.

Finally, we show that in relation to our learning algorithm for the standard
attribute-noise model, the RCSAN model produces noise effects that are similar
to those that can be produced by the malicious model. Potentially, then, the
RCSAN model could be an interesting intermediary between the attribute noise
model and the more difficult malicious model in other contexts as well.

2 Preliminaries

2.1 Fourier Transform

Many of our results make use of Fourier notation and basic results. For any func-
tion f : {0, 1}n → R and for all a ∈ {0, 1}n, we define f̂(a) ≡ Ex∼Un [f(x)χa(x)],
where Un denotes the uniform distribution over {0, 1}n, χa(x) ≡ (−1)a·x, and
a ·x represents the dot product of the bit vectors a and x. Each f̂(a) is a Fourier
coefficient of f . The Fourier representation (or expansion) of f is

∑
a f̂(a)χa

and is equivalent to f . f̂(0n) (0n denotes the n-bit vector containing only 0’s)
is called the constant Fourier coefficient. The first-order Fourier coefficients are
those coefficients for which |a| = 1, that is, for which a contains a single 1 bit.

We use ei to denote the n-bit vector that has a single 1 in position i (bit
locations are assumed to be numbered 1 through n). For two n-bit vectors a and
b, a ⊕ b denotes the bitwise exclusive OR of the vectors. In particular, if i �= j
then ei ⊕ ej represents the vector with 1’s only in positions i and j.

In this paper, Boolean functions map to {−1, 1}. Parseval’s identity says that
for any f , EU [f2]=

∑
a f̂2(a). This implies that if f is Boolean then

∑
a f̂2(a) = 1.

It is easily seen that for all Boolean f and for all a ∈ {0, 1}n, f̂(a) =
2 PrUn [f = χa] − 1 = 1 − 2 PrUn [f �= χa].
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This paper focuses on noise-tolerant learnability of the class L of linearly
separable functions over the Boolean cube. In Fourier terms, L = ∪n≥0Ln, where
Ln = {� : {0, 1}n → {−1, 1} | ∃F =

∑
|a|≤1 F̂ (a)χa s.t. � = sign(F )}.

2.2 Learning Models

The underlying learning model for this paper is PAC learning [5] with respect to
the uniform distribution (or with respect to uniform for short); we assume that
the reader is familiar with this model. We will often state that certain results hold
“with high probability”; this should be understood to mean that these results
hold with probability 1 − δ for arbitrary PAC confidence parameter δ > 0. In
this paper, algorithms will be considered efficient if they run in polynomial time
in the number of inputs n, in an estimation tolerance parameter τ (bounds on
which will in turn depend on parameters of the noise model), and in log(1/δ).

With one exception, each noise model considered can be thought of as defining
a noisy oracle that, on each query, first draws a noiseless example from a standard
PAC example oracle EX(f, Un) and then applies some noise process to this
example, returning the resulting (possibly noisy) example as the response to the
query. A noiseless example of a function f consists of a pair (x, f(x)), where x
is called an instance (or input) and f(x) is called the label (or output) of the
example. The bits of an instance x are sometimes called the attributes of the
instance. The notation (xj , f j) is used to represent the jth example returned by
an oracle (either noiseless or noisy). If the example comes from a noisy oracle
then—depending on the noise model—either or both of xj and f j may be noisy
versions of an underlying noiseless example.

The agnostic learning model introduced by Kearns et al. [6] is the one ex-
ception mentioned above. It can be thought of as a particularly strong form
of noise applied to the labels of examples, that is, as a form of classification
noise. When learning L with respect to the uniform distribution, the strong
version of this model becomes the following: the learner has access to an ora-
cle EX(f, Un) for an arbitrary Boolean function f : {0, 1}n → {−1, 1}. Given
ε > 0, the goal of the learner is to output a (possibly randomized) hypothesis
h : {0, 1}n → {−1, 1} such that Prx∼Un [f(x) �= h(x)] ≤ opt + ε, where opt is
the minimum of PrUn [� �= f(x)] over all � ∈ Ln. Here and elsewhere, in addition
to the probability being over the uniform choice of x, it is also implicitly over
the random choices made by h, if h is randomized (as it will be for our algo-
rithms). Kearns et al. also consider a weak version of agnostic learning, wherein
the goal is to find a weak approximator h to the target f (i.e., h such that
PrUn [h �= f ] ≤ 1/2 − 1/p for some p polynomial in the learning parameters),
given that f is weakly approximable by some function in L.

In all of the other noise models considered, our goal will be to produce a hy-
pothesis h that weakly approximates f with respect to uniform. In particular, we
will say that L is φ-learnable for φ a function of the tolerance τ mentioned above
and various parameters of the noise processes if there is a learning algorithm A
that, given a noisy oracle for any f ∈ L, produces (with high probability) a
hypothesis h such that PrUn [h �= f ] ≤ φ.
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In the attribute noise model introduced by Shackelford and Volper [7], a noise
distribution N over {0, 1}n defines the behavior of the noise oracle EXN (f, U).
After drawing a noiseless example (x, f(x)), the attribute noise oracle draws
a ∼ N and returns as its output the noisy example (x ⊕ a, f(x)).

In the malicious noise model introduced by Valiant [8], we will think of the
noisy oracle marking each noiseless example (x, f(x)) with probability η. If an
noiseless example is not marked, then it is returned as the oracle’s output. Oth-
erwise, the oracle is allowed to return an arbitrary, maliciously-chosen noisy
example. The oracle can be assumed to be computationally unbounded, to know
the target f , and even to know the current state of the learning algorithm.

The primary remaining noise model considered, the restricted context-sensitive
attribute noise (RCSAN) model, will be described in a later section.

2.3 Restricted Focus of Attention

In the Restricted Focus of Attention (k-RFA) learning model introduced by Ben-
David and Dichterman [2], the learner is only allowed to see k bits of each
instance. The learner chooses the bits to be seen. The primary learning algo-
rithm presented in this paper uses examples only to estimate the constant and
first-order Fourier coefficients (over noisy examples). It is easy to see from the de-
finition of these coefficients that they can all be estimated to inverse-polynomial
accuracy given a polynomially large set of examples in the 1-RFA model. One
version of RCSAN learning also needs to compute estimates of E[χei(x)χej (x)]
over noisy examples; this can clearly be accomplished in the 2-RFA model. Thus,
all of our results apply in the 1-RFA or 2-RFA models, but in the sequel we will
present the algorithms as if they are operating without any restriction on focus.

3 Weak Agnostic/Adversarial Noise Learning

In this section, we will show that L is weakly agnostically learnable with respect
to the uniform distribution by a 1-RFA learner as long as the target f is such
that there is some � ∈ L satisfying (roughly) PrU [� �= f ] < 1/8. However, we
will find it convenient to first develop a learning result in a closely related noise
model and return later to how this relates to weak agnostic learning. In the
uniform-distribution adversarial noise model, after a target function f ∈ L has
been selected but before learning begins, for some fixed η > 0 (the adversarial
noise rate) an adversary is allowed to choose an arbitrary set of instances and
corrupt their labels, producing a noisy Boolean function fη that we will refer to
as the η-corrupted version of f . The only limitation on fη is that it must satisfy
PrUn [fη �= f ] ≤ η.

Theorem 1. For any η, τ > 0, L is efficiently 1-RFA (2η + τ + 1/4)-learnable
with respect to the uniform distribution despite adversarial noise of rate η.

Proof. Fix any η and τ , let f ∈ L, and let fη be any adversarially η-corrupted
version of f . Also assume that the PAC confidence parameter δ > 0 is specified.
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Our learning algorithm A will begin by drawing a set of m = 25(n+1)2 ln(2(n+
1)/δ)/2τ2 examples (xj , f j) from the noisy example oracle EX(fη, U). For each
|a| ≤ 1, A will then calculate ĝ(a) ≡ (1/m)

∑
j f jχa(xj). That is, for each

such a, ĝ(a) is an estimate of the Fourier coefficient f̂η(a) of the noisy function.
Standard Hoeffding bounds [9] show that, with probability at least 1−δ over the
choice of examples, every ĝ(a) will be within an additive factor of τ/2.5(n + 1)
of the corresponding f̂η(a). Next, from these estimated coefficients A constructs
the (non-Boolean) function

g ≡
∑

|a|≤1

ĝ(a)χa .

Finally, A defines the randomized Boolean function h as follows: h(x) = −1 with
probability p ≡ (1 − g(x))2/2(1 + g2(x)) and h(x) = 1 with probability 1 − p. A
outputs h as its hypothesis.

Clearly we can convert A to a 1-RFA algorithm by drawing a separate sample
to compute each ĝ(a), and both this RFA algorithm and the original are efficient.
What remains to be shown is that for h as given above, with high probability
Pr[h �= f ] ≤ 2η + τ + 1/4.

The algorithm’s definition of randomized Boolean h in terms of deterministic
non-Boolean approximator g comes from Blum et al. [4], who show (in their
Lemma 3) that for such an h and for any Boolean function f , Pr[h �= f ] ≤
E[(f−g)2]/2. Furthermore, by Parseval’s identity and the linearity of the Fourier
transform, EU [(f −g)2] =

∑
a(f̂(a)− ĝ(a))2. Since by the definition of g we have

that ĝ(a) = 0 for all |a| > 1, breaking this sum into two parts gives us

Pr
U

[h �= f ] ≤ 1
2

∑

|a|≤1

(
f̂(a) − ĝ(a)

)2
+

1
2

∑

|a|>1

f̂2(a) . (1)

Gotsman and Linial [3] have shown that for any f ∈ L,
∑

|a|>1 f̂2(a) ≤ 1/2.
Thus, what remains is to upper bound the first term of (1) by 2η+τ . The proof of
this bound is similar to the proof of Observation 3 in [1] but uses an observation
of Bshouty (personal communication) to achieve an improved 2η term rather
than the 4η that would result from using the “almost triangle” inequality as in
[1].

First, let α ≡ τ/2.5(n + 1) and recall that A chooses a sufficiently large
set of examples such that, with high probability, for all |a| ≤ 1 we have that
|ĝ(a) − f̂η(a)| ≤ α. This means that
∑

|a|≤1

(
f̂(a) − ĝ(a)

)2
≤

∑

|a|≤1

(
|f̂(a) − f̂η(a)| + α

)2

≤
∑

|a|≤1

(
f̂(a) − f̂η(a)

)2
+ 2

∑

|a|≤1

|f̂(a) − f̂η(a)|α +
∑

|a|≤1

α2

≤
∑

|a|≤1

(
f̂(a) − f̂η(a)

)2
+ 5

∑

|a|≤1

α
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since the Fourier coefficients of the Boolean functions f and fη all fall in the range
[−1, 1]. Thus the first term in (1) is bounded by (1/2)

∑
|a|≤1(f̂(a)− f̂η(a))2 +τ .

Furthermore,

∑

|a|≤1

(
f̂(a) − f̂η(a)

)2
≤

∑

a∈{0,1}n

(
f̂(a) − f̂η(a)

)2

= E
[
(f − fη)2

]

= 4 Pr[f �= fη]
≤ 4η

where the first equality follows by again applying Parseval’s identity and the
second because f and fη are both {−1, 1}-valued. �

In agnostic learning terms, what we have shown is that if the target f is such
that there exists an � ∈ L and a γ > τ satisfying PrU [f �= �] ≤ 1/8 − γ/2 then
algorithm A above will (with high probability) output a randomized hypothesis
h such that PrU [h �= f ] ≤ 1/2 − (γ − τ), which for sufficiently large γ − τ
means that h weakly approximates f . Thus, algorithm A in fact 1-RFA weakly
agnostically learns L with respect to uniform.

4 Attribute Noise

Bshouty et al. [10] showed that the class AC0 of polynomial-size constant-depth
AND/OR circuits can be learned despite certain types of attribute noise. In
particular, given mild constraints on ε and δ, if the attribute noise is defined
by a known product distribution in which the noise rate for each bit is at most
inverse polylogarithmic in n then AC0 is learnable with respect to the uniform
distribution despite such attribute noise. Based on their analysis and the ob-
servations above, we will next show that L is weakly learnable with respect to
uniform despite an unknown attribute noise process, subject to only the mildest
of constraints.

Specifically, we will make use of the following easily-shown observation from
Bshouty et al. (part of the proof of their Theorem 8):

Lemma 1 (Bshouty et al.). Let N be any noise distribution over {0, 1}n and
let f : {0, 1}n → {−1, 1} be any Boolean function. Then for each c ∈ {0, 1}n,
Ex∼Un,a∼N [f(x)χc(x ⊕ a)] = f̂(c)Ea∼N [χc(a)].

For the linear Fourier coefficients f̂(ei), note that

Ea∼N [χei(a)] = Ea∼N [(−1)ai ] = 1 − 2 Pr
a∼N

[ai = 1] .

Thus, for any attribute noise distribution N and Boolean function f , given a set
S of examples {(xj , f j)} generated by the attribute-noise oracle EXN (f, U), the
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expected value of (1/|S|)
∑

S f jχei(xj) is f̂(ei)(1 − 2 Pra∼N [ai = 1]). We write
f̂N (ei) to denote this expected value.

For any given noise distribution N define pN ≡ max1≤i≤n Pra∼N [ai = 1].
That is, pN is an upper bound on the marginal error rate of each of the at-
tributes. We will show that L can be weakly learned with respect to uniform
despite unknown attribute noise N , where N is arbitrary except for the con-
straint that pN must be non-negligibly less than 1/2 in order to achieve weak
learning efficiently. Since learning is information-theoretically impossible given
uniform attribute noise of rate 1/2 (as this in effect replaces each instance with
some other uniform-random instance), this is a very weak constraint on the noise
process.

Theorem 2. For any τ > 0 and any unknown distribution N over {0, 1}n such
that pN < 1/2, L is efficiently 1-RFA (p2

N + τ + 1/4)-learnable with respect to
uniform despite unknown N -attribute noise.

Proof. The proof is very similar to that of Theorem 1, except that the algorithm
A described in that proof now operates on examples generated by an EXN (f, U)
oracle rather than by an EX(fη, U) oracle. Specifically, A will use the N oracle
to estimate, for all |a| ≤ 1, ĝ(a)’s that are approximations to the coefficients
f̂N (a) = f̂(a)(1 − 2 Pra∼N [ai = 1]) to a tolerance of τ/2.5(n + 1). The function
g is defined in terms of these estimated coefficients as before, and h is again
defined in terms of g. From the proof of Theorem 1 we have that

Pr[h �= f ] ≤ 1
2

∑

|a|≤1

(f̂(a) − f̂N (a))2 + τ +
1
2

∑

|a|>1

f̂2(a) .

Since we are considering attribute noise only, f̂(0n) = f̂N (0n). For every |a| = 1,
by the definition of pN , (f̂(a)−f̂N (a))2 ≤ 4p2

N f̂2(a). So
∑

|a|≤1(f̂(a)−f̂N (a))2 ≤
4p2

N
∑

|a|≤1 f̂2(a) = 4p2
N − 4p2

N
∑

|a|>1 f̂2(a), where the equality follows from
Parseval’s identity. Inserting this into bound on Pr[h �= f ] above gives

Pr[h �= f ] ≤ 2p2
N + τ +

(
1
2

− 2p2
N

) ∑

|a|>1

f̂2(a) .

Since our assumed constraint on pN implies that 1/2 > 2p2
N , this bound is

maximized when
∑

|a|>1 f̂2(a) is maximized. Using the fact that
∑

|a|>1 f̂2(a) ≤
1/2 completes the proof. �

5 Malicious Noise

Recall that in the malicious noise model, conceptually each example is “marked”
independently with probability η, and those that are marked can be corrupted
arbitrarily by a malicious adversary. In this model, the worst case for the algo-
rithm A of Theorem 1—in terms of the bound we can prove on the approximation



312 J.C. Jackson

error of A’s hypothesis h relative to the target f—is when the adversary chooses
to make every marked example identical to all the other marked examples. This
approach can be used to maximize the difference that can be achieved for a
given set of marked examples between A’s estimated coefficients {ĝ(a) : |a| ≤ 1}
and the corresponding true coefficients f̂(a), which in turn maximally increases
(weakens) the bound on Pr[h �= f ] provided by (1) over the 1/4 + τ bound that
would apply in the noise-free setting.

The magnitude of the error induced by this worst-case malicious noise process
in the estimate of a fixed first-order coefficient f̂(ei) depends on the magnitude of
the coefficient. For instance, if the coefficient value is 0 (that is, the attribute i is
irrelevant) then on average the adversary will only change the value of attribute
i in half of the marked examples; the other half will already have the desired
attribute value. On the other hand, if |f̂(ei)| = 1 then attribute i will be changed
in every marked example, and the magnitude of the expected difference between
A’s estimate of f̂(ei) and the true value will be 2η. The error induced in the
estimate of f̂(0n) similarly depends on the magnitude of this coefficient.

It follows that, for fixed marking rate η and estimation tolerance τ > 0, apply-
ing algorithm A of the proof of Theorem 1 to malicious noise examples will with
high probability produce Fourier estimates ĝ(a) such that (1/2)

∑
|a|≤1(f̂

2(a) −
ĝ2(a)) ≤ 4(n + 1)η2 + τ . Thus, the algorithm without modification will weakly
learn L despite malicious noise of rate η = Ω(1/

√
n).

However, it would obviously be a simple matter to modify the algorithm to
detect a large number of identical examples and, once detected, to ignore them
in computing the coefficients ĝ(a). In fact, notice that a set of such examples
corrupted in this way would no longer be uniformly distributed over the in-
stance space, and in particular notice that the attributes would no longer be
independent.

Comparing the attribute and malicious noise models, then, there are (at least)
two key differences. First, while the attribute noise model adds an error vector
to an underlying instance, the malicious noise model replaces the underlying
instance in its entirety. Second, as Bshouty et al. [10] point out, uniformly dis-
tributed instances remain uniform after arbitrary attribute noise is applied, while
(as we have just seen) this is not necessarily the case with malicious noise. That
said, the malicious noise model does allow the adversary to consider the entire ex-
ample when corrupting an individual attribute, so the adversary can potentially
craft the corrupted examples so that the overall set of examples still appears to
be drawn uniformly.

This comparison of models suggests that it might be worthwhile to consider
noise models that lie between the attribute and malicious models. We consider
this direction in the next section.

6 Context-Sensitive Attribute Noise

In the restricted context-sensitive attribute noise (RCSAN) model, the noise
process is similar to that of attribute noise, but the process is potentially sensitive
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to the label and a limited number of attribute values. This is somewhat analogous
to the RFA learning model, except it is the noise process that is restricted here.
The specific version of the model considered here could be called 1-RCSAN, since
we will allow the noise applied to an attribute i of an example to depend only
on the example label and on the value of i itself. In the sequel, we will simply
call this the RCSAN model.

Each instantiation of the RCSAN model defines four noise rates p++
i , p+−

i ,
p−+

i , and p−−
i for each attribute 1 ≤ i ≤ n. If a given pre-noise example (x, f(x))

is such that χei(x) = +1 (that is, xi = 0) and f(x) = −1 then the noise
process will flip xi from 0 to 1 with probability p+−

i . The other three noise rates
similarly define the probability of attribute i being corrupted in the remaining
three attribute/label contexts.

This model generalizes the product attribute noise model, in which each at-
tribute i is assigned a single context-free noise rate pi that is applied to attribute i
in every example, regardless of the value of the attribute or the label. As we saw
earlier, when a uniform-distribution learning algorithm is based on estimates
of first-order Fourier coefficients, the general attribute noise model—in which
an arbitrary (possibly non-product) noise distribution N is allowed—effectively
reduces to a form of product attribute noise. So, for algorithms based on esti-
mating first-order Fourier coefficients, the restricted context-sensitive attribute
noise model is strictly stronger than the attribute noise model considered in
section 4.

Furthermore, with respect to the type of error induced in Fourier coefficients,
the RCSAN model is in some ways more similar to malicious noise than to
attribute noise. In particular, recall that the errors induced by the attribute noise
model in the first-order Fourier coefficients of a target function are multiplicative
in nature: each coefficient is reduced by a multiplicative factor as small as 1−2pN .
On the other hand, like the malicious noise model, the RCSAN model can induce
additive error in the first-order Fourier coefficients. For example, consider an
irrelevant attribute i, that is, an attribute for which f̂(ei) = 0. If this coefficient is
estimated as the sample mean of f jχei(xj) over a set of noisy examples {(xj , f j)}
where the noise rates are p++

i = p−−
i = 0 and p+−

i = p−+
i = η > 0, then the

expected value of the estimate will be η.
In the remainder of this section, we will examine uniform-distribution RCSAN-

tolerant learning of a subclass of linear threshold functions, the class Lh of homo-
geneous linear threshold functions. This class is the discrete analog of the origin-
centered halfspaces considered by Kalai et al. [1] and others. Specifically, Lh is
the set of all functions f : {0, 1}n → {−1, 1} such that there is a function F =∑

|a|=1 F̂ (a)χa and f = sign(F ). We’ll begin with several simple lemmas showing
that Lh has a number of nice Fourier properties.

6.1 Properties of Lh

Lemma 2. If f ∈ Lh then f is balanced, that is, Ex∼Un [f(x)] = f̂(0n) = 0.

Proof. Let x̄ represent the bitwise-complement of x ∈ {0, 1}n. Since f ∈ Lh,
there is some F such that for every x ∈ {0, 1}n, f(x) = sign(

∑
|a|=1 F̂ (a)χa(x)).
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Fixing such an F we have that for all x, f(x̄) = sign(
∑

|a|=1 F̂ (a)χa(x̄)) =

sign(−
∑

|a|=1 F̂ (a)χa(x)) = −f(x). It follows that Ex∼Un [f(x)] = 0. �

Lemma 3. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i ≤ n then for any
b ∈ {−1, 1}, Prx∼Un [f(x) = 1∧χei(x) = b] = Prx∼Un [f(x) = −1∧χei(x) = −b].

Proof. Fix arbitrary b ∈ {−1, 1}. By the proof of the preceding lemma, we know
that for all x ∈ {0, 1}n, f(x̄) = −f(x). Thus, for every x ∈ {0, 1}n such that
f(x) = 1 and χei(x) = b there is a distinct y = x̄ such that f(y) = −1 and
χei(y) = −b. Therefore, the set of such x’s is no larger than the set of such y’s.
But it is similarly easy to see that the set of such y’s is no larger than the set of
such x’s. Thus the sets are of equal size and have equal probability with respect
to the uniform distribution. �

Lemma 4. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i ≤ n then for any
b ∈ {−1, 1},

Pr
x∼Un

[f(x) = 1 ∧ χei(x) = b] =
1 + bf̂(ei)

4
.

Proof. By the definition of Fourier coefficients and the previous lemma, f̂(ei) =
2 Pr[f = χei ] − 1 = 2(Pr[f = χei = 1] + Pr[f = χei = −1]) − 1 = 4 Pr[f = χei =
1] − 1. This proves the b = 1 case. The b = −1 case can be proved similarly by
starting with f̂(e1) = 1 − 2 Pr[f �= χei ]. �

Lemma 5. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i �= j ≤ n then for any
b1, b2 ∈ {−1, 1}, Prx∼Un [f(x) = 1 ∧ χei(x) = b1 ∧ χej (x) = b2] = Prx∼Un [f(x) =
−1 ∧ χei(x) = −b1 ∧ χej (x) = −b2]

Proof. The proof is essentially the same as that of Lemma 3. �

Lemma 6. If f : {0, 1}n →{−1, 1} is in Lh and 1 ≤ i �= j ≤ n then f̂(ei⊕ej) = 0.

Proof. Let χij represent χei⊕ej and define χi and χj similarly in terms of ei

and ej, respectively. Then applying the definition of Fourier coefficients and the
preceding lemma, we have that

f̂(ei ⊕ ej) = 2 Pr
x∼Un

[f = χij ] − 1

= 2(Pr[f = 1 ∧ χi = 1 ∧ χj = 1] + Pr[f = 1 ∧ χi = −1 ∧ χj = −1] +
Pr[f =−1 ∧ χi =1 ∧ χj = −1]+Pr[f = −1 ∧ χi = −1 ∧ χj = 1])−1

= 2(Pr[f = 1 ∧ χi = 1 ∧ χj = 1] + Pr[f = 1 ∧ χi = −1 ∧ χj = −1] +
Pr[f = 1 ∧ χi = −1 ∧ χj = 1] + Pr[f = 1 ∧ χi = 1 ∧ χj = −1]) − 1

= 2 Pr[f = 1] − 1.

Since f is balanced (by Lemma 2), Pr[f = 1] = 1/2. �
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Lemma 7. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i �= j ≤ n then for any
b1, b2 ∈ {−1, 1},

Pr
x∼Un

[f(x) = 1 ∧ χei(x) = b1 ∧ χej = b2] =
1 + b1f̂(ei) + b2f̂(ej)

8
.

Proof. Fix b1, b2, i, and j and let fij represent the projection of f that ignores
attributes i and j and instead treats every example x as if these attributes
have constant values such that χei(x) = b1 and χej (x) = b2. It follows from the
Fourier representation of f that E[fij ] = f̂(0n)+b1f̂(ei)+b2f̂(ej)+b1b2f̂(ei⊕ej).
Furthermore, based on Lemma 2 and the preceding lemma, we know that this
sum reduces to b1f̂(ei) + b2f̂(ej). Of course, E[fij ] is also equal to 2 Pr[fij =
1] − 1 = 2 Pr[f = 1 | χei = b1 ∧ χej = b2] − 1. Applying the definition of
conditional probability and solving for Pr[f = 1 ∧ χei = b1 ∧ χej = b2] gives the
lemma. �

6.2 Learning Lh

With these lemmas in hand, let us now consider the effect of context-sensitive
noise on the estimate of a first-order Fourier coefficient of a homogeneous linear
threshold function.

Lemma 8. Let f : {0, 1}n → {−1, 1} be any function in Lh and let 1 ≤ i ≤ n.
Then for any RCSAN process, the expected value of the sample mean of f jχei(xj)
over a set of noisy examples {(xj , f j)} is

p+−
i + p−+

i − p++
i − p−−

i

2
+ f̂(ei)

(

1 − p+−
i + p−+

i + p++
i + p−−

i

2

)

(2)

Proof. The expected value without noise is of course f̂(ei). By Lemma 4, the
probability that f = χei = 1—which is also the probability that noise rate p++

i

applies—is (1 + f̂(ei))/4. The effect of attribute noise on these examples is to
subtract 1 rather than adding 1 to

∑
j f jχei(xj). Thus, the expected effect of

noise due to examples where f = χei = 1 is to add −p++
i (1 + f̂(ei))/2 to the

true expected value f̂(ei). Similarly, applying Lemma 3 as well as Lemma 4,
the expected contribution of noise due to examples where f = χei = −1 is
−p−−

i (1 + f̂(ei))/2. Further applications of Lemmas 3 and 4 to the remaining
cases gives that the expected value of the sample mean is

f̂(ei) +
(p+−

i + p−+
i )(1 − f̂(ei)) − (p++

i + p−−
i )(1 + f̂(ei))

2
.

Rearranging this expression gives the lemma. �
Thus, in general, the noise induced in a coefficient f̂(ei) by an RCSAN process
is a combination of additive error (of rate (p+−

i + p−+
i − p++

i − p−−
i )/2) and

multiplicative error (of rate 1 − (p+−
i + p−+

i + p++
i + p−−

i )/2).
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Obviously, if the RCSAN process generating noisy examples is known, then
this theorem can be used to recover a close approximation to the noiseless Fourier
coefficient f̂(ei) from the noisy estimate of this coefficient as long as the mul-
tiplicative factor in (2) is bounded away from 0, or equivalently, as long as the
average noise rate p̄i ≡ (p+−

i + p−+
i + p++

i + p−−
i )/4 is bounded away from 1/2.

So it is easy to learn Lh in the RCSAN model if the noise process is known and
does not completely obscure the target function.

The more interesting case, then, is if the noise process is unknown but perhaps
constrained in some way. For instance, consider the constraint that for all i, the
average noise probability when f and χei agree ((p++

i + p−−
i )/2) is equal to

the average noise probability when they disagree. Then the additive term in (2)
will vanish. In this situation, it can be seen that Theorem 2 applies, with the
modification that we will use p̄ ≡ maxi=1..n p̄i in place of pN . In fact, if the
additive term in (2) is nonzero but less than, say, τ/5(n + 1) for all i, then
we can modify A to use a (polynomial) sample size m′ such that the ĝ(a)’s
computed are all (with high probability) within τ/5(n + 1) of the true mean
values they estimate. The result is that (with high probability) each ĝ(a) will be
within τ/2.5(n+1) of its mean value, as needed for the remainder of the proof of
Theorem 2. In short, as long as for every attribute i the average noise rate p̄i is
non-negligibly less than 1/2 and the differences (p+−

i + p−+
i ) − (p++

i + p−−
i ) are

all sufficiently small, then Theorem 2 applies and Lh is weakly learnable with
respect to uniform despite an unknown RCSAN process.

This is of course a very strong constraint on the RCSAN process. The main
result of this section shows how to learn Lh with a much milder constraint on
the RCSAN process.

Theorem 3. For any τ > 0 and given any RCSAN process, Lh is efficiently
2-RFA (p̄2 + τ + 1/4)-learnable with respect to uniform. The RCSAN process
is unknown and unconstrained except that p̄ < 1/2, there must be one known
attribute k for which p̄k = 0, and there must be a known non-negligible value
β > 0 such that |f̂(ek)| > β.

Proof. (Sketch) The key is showing that, for every attribute i �= k, we can obtain
a good approximation to the additive error ((p+−

i +p−+
i )−(p++

i +p−−
i ))/2 present

in ĝ(ei) computed as the mean value of f jχi(xj) over a set of RCSAN examples
{(xj , f j)} (where as before χi is shorthand for χei). Once this additive error has
been (mostly) eliminated from the ĝ(ei)’s, the analysis above applies, and we
can use a slight modification of the algorithm of Theorem 2 to obtain our result.
So we will show how to estimate the additive error.

Let Eik represent the expected value of χi(xj)χk(xj) over random noisy ex-
amples (xj , f j) drawn according to some fixed RCSAN process. Note that, since
attribute k is assumed to be noise free, if attribute i is also noise free then
Eik = EU [χiχk] = 0. Now consider how this changes if p++

i > 0. By Lemma 7
we know that with probability (1 + f̂(ei) + f̂(ek))/8 a pre-noise example x is
such that f(x) = χi(x) = χk(x) = 1. Since corrupting bit i of such an x changes
χi(x)χk(x) from +1 to −1, the net change in Eik due to positive p++

i over
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these x’s is −p++
i (1 + f̂(ei) + f̂(ek))/4. On the other hand, with probability

(1 + f̂(ei) − f̂(ek))/8 we have f(x) = χi(x) = 1 and χk(x) = −1, and the net
change in Eik due to positive p++

i over these x’s is p++
i (1 + f̂(ei) − f̂(ek))/4.

Combining these effects, the overall change in Eik due to positive p++
i will be

−p++
i f̂(ek)/2. Applying Lemma 5 along with Lemma 7, we can similarly see that

the contribution to Eik due to positive p−−
i will be −p−−

i f̂(ek)/2. On the other
hand, the total change due to positive p+−

i and p−+
i will be (p+−

i +p−+
i )f̂(ek)/2.

Overall, then, we see that Eik = f̂(ek)((p+−
i + p−+

i ) − (p++
i + p−−

i ))/2.
Our estimate for the additive error term in ĝ(ei), then, will be obtained by

drawing a noisy sample, computing sample means that approximate Eik and
f̂(ek), and dividing the approximation of Eik by the approximation of f̂(ek). We
will use a sample size large enough so that this quotient is, with high probability,
within an additive factor of τ/5(n + 1) of the expected additive error term in
(2). Based on the earlier discussion, it should be clear that such an estimate will
be sufficiently close to give us the learning result claimed.

Specifically, we will use a sample large enough to guarantee with high proba-
bility that the noisy estimate of Eik is additively within O(βτ/n) of its expected
value. By standard Hoeffding bounds, a polynomial number of examples will
suffice. We will then estimate (with high probability) f̂(ek) to within a multi-
plicative factor c close enough to 1 to achieve the desired bound on the additive
error in the quotient of our estimates. It can be shown that |1 − c| = O(βτ/n)
is sufficient for this purpose, and Chernoff bounds tell us that the sample size
required will again be polynomial. �

7 Further Work

An obvious question whenever uniform-distribution weak learning results are de-
rived is how far the results can be extended beyond uniform. The extant proofs
of the results underlying Gotsman-Linial’s observation seem to rely heavily on
independence and other properties of the uniform distribution, so such a general-
ization may not be easy. However, if the results could be extended to a sufficiently
general set of distributions, this might lead to noise-tolerant uniform-distribution
strong learning algorithms for L.

There may be interesting subclasses of L such that for any function f in the
class the constant and first-order Fourier coefficients represent much more than
half of the power spectrum of f . If the spectral power of the low-order coefficients
of all of the functions in such a class were over 3/4, then results of Kalai et al.
[1] could be applied to give an efficient algorithm weakly agnostically learning
L using L as the hypothesis class. Do such subclasses of L exist? The class of
Majority functions is not such a subclass, as it can be shown that asymptotically
the low-order coefficients for odd Majority functions represent roughly 2/π ≈ .64
of the power spectrum. Alternatively, can the Kalai et al. results be strengthened
so that they could be applied to weaker approximators?

The fact that L can be weakly learned despite an essentially optimal rate of
adversarial noise can be shown to imply that the constant 2 in the bound of
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Theorem 1 cannot be improved unless the bound is also changed in some other
way. How tight is the bound of Theorem 1?

Kalai et al. [1] also explore malicious noise learning and give a simple algorithm
for uniformly learning halfspaces over the unit sphere that tolerates noise rate η
up to roughly Ω(1/n1/4). It would be nice to have a comparable result over the
cube (although it may require unrestricted focus of attention).

Can an RCSAN result similar to Theorem 3 be obtained without the need
for a known noise-free attribute? Beyond this, it may be interesting to explore
1-RCSAN learnability of other classes as well as k-RCSAN learning of L and
other classes for k > 1.
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