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Abstract. Several hardness results are presented for the parent assign-
ment problem: Given m observations of n attributes x1, . . . , xn, find the
best parents for xn, that is, a subset of the preceding attributes so as to
minimize a fixed cost function. This attribute or feature selection task
plays an important role, e.g., in structure learning in Bayesian networks,
yet little is known about its computational complexity. In this paper
we prove that, under the commonly adopted full-multinomial likelihood
model, the MDL, BIC, or AIC cost cannot be approximated in polyno-
mial time to a ratio less than 2 unless there exists a polynomial-time
algorithm for determining whether a directed graph with n nodes has a
dominating set of size log n, a LOGSNP-complete problem for which no
polynomial-time algorithm is known; as we also show, it is unlikely that
these penalized maximum likelihood costs can be approximated to within
any constant ratio. For the NML (normalized maximum likelihood) cost
we prove an NP-completeness result. These results both justify the ap-
plication of existing methods and motivate research on heuristic and
super-polynomial-time algorithms.

1 Introduction

Structure learning in Bayesian networks is often approached by minimizing a
sum of costs assigned to each local structure consisting of an attribute and its
parents [1, 2]. If an ordering of the attributes is given, then the subtasks of as-
signing optimal parents to each attribute can be solved independently of each
other. Unfortunately, for many objective functions of interest, no polynomial
time algorithm is known, unless one is willing to bound the number of parents
above by a constant, in which case the problem can be solved in polynomial
time. Consequently, researchers have proposed greedy algorithms with no per-
formance guarantees [1] and heuristic branch-and-bound methods that find a
global optimum but can be very slow in the worst case [3, 4]. However, the pre-
cise complexity of the parent assignment problem, even for the most commonly
used cost functions, is unknown.

This paper focuses on the following variant of the parent assignment problem:
given a data set containing m observations on n discrete attributes x1, . . . , xn,
find the parents xs1 , . . . , xsk

for xn so as to minimize the Minimum Description
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Length (MDL) cost [5] under the full-multinomial model1 [6]. This commonly
adopted cost function has the important property that the optimal number
of parents is always at most log m (throughout this paper we write log m for
�log2 m�). This is because the number of parameters of the multinomial model
grows exponentially in the number of parents k, whereas the error, or the neg-
ative log-likelihood, grows at most linearly in the number of observations m
[7]. That said, only O(nlog m) smallest subsets of the n − 1 attributes need to
be evaluated, suggesting that the problem is very unlikely to be NP-hard (see,
e.g., Papadimitriou and Yannakakis [8]). Still, it is important and intriguing to
determine whether the problem can be solved in polynomial time.

In this paper we show that for the (two-part) MDL cost the parent assign-
ment problem is LOGSNP-hard, in other words, at least as hard as determining
whether a directed graph with n nodes has a dominating set of size log n [8]; for
this Log Dominating Set problem no polynomial-time algorithm is known.

Having this result, it is natural to ask whether similar results hold for other pe-
nalized maximum likelihood costs, such as Akaike’s information criterion (AIC)
[9] and the Normalized Maximum Likelihood (NML) criterion [10, 11]; note that
the Bayesian information criterion (BIC) [12] coincides with the MDL cost. Our
finding is that while MDL and AIC obey identical characterizations in terms
of LOGSNP-hardness, the behavior of NML seems to be radically different: On
one hand, we show that approximating the MDL or AIC cost to a ratio less
than 2 is LOGSNP-hard. On the other hand, for the NML cost we can obtain
an NP-completeness result; however, we currently do not know any nontrivial
inapproximability result for NML.

While these results are somewhat theoretical and perhaps not very surprising,
they provide evidence that the considered parent assignment problem is very
unlikely to have a polynomial-time algorithm with a good quality guarantee.
This justifies and motivates the application of existing search heuristics and,
more importantly, research on novel super-polynomial-time algorithms.

The rest of this paper is structured as follows. In Sect. 2 we formulate some
decision and optimization variants of the parent assignment problem for penal-
ized maximum likelihood costs under the full-multinomial model. In Sect. 3 we
prove the LOGSNP-hardness result for MDL by a simple reduction from Log

Dominating Set; this part introduces the reduction in a relatively easy and
clean manner. We then use essentially the same reduction in Sect. 4 to prove
the inapproximability results for MDL and AIC. We consider the case of NML
in Sect. 5. In Sect. 6 we discuss some open problems and related previous work.

2 Preliminaries

For simplicity, we restrict our consideration to {0, 1}-valued attributes. Let X be
an m×n data matrix, where the entry at the ith row and jth column, denoted as
xi

j , represents the ith observation of the jth attribute; submatrices are referred

1 In the full-multinomial model each value configuration of the parent attributes is
assigned an independent multinomial distribution of xn.
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to by indexing with subsets of row and column indexes. To distinguish between
attributes and columns of the data matrix we denote xj and xS for the attributes,
but xj and xS for the respective columns of X .

2.1 Penalized Maximum Likelihood Under the Full-Multinomial
Model

The multinomial model of conditional probability concerns the probability dis-
tribution of a “child” variable, say xi

n, given a set of “parents,” say xi
S where

S ⊆ {1, . . . , n − 1}. In case of binary variables, this model has 2|S| parameters
θ1|u, one for each possible value u of xS , specifying the probability of xi

n = 1
given xi

S = u, for all i = 1, . . . , m; this is, in fact, a Bernoulli distribution for each
value of xS . It is convenient to also define θ0|u = 1−θ1|u. The m observations are
treated as independent draws, so that the total likelihood of xn, conditionally
on xS , is given by

m∏

i=1

θxi
n|xi

S
=

∏

u∈{0,1}|S|

∏

v∈{0,1}
θ muv

v|u ,

where muv = |{i : xi
S = u, xi

n = v}| is the number of observations that has value
u on columns S and value v on column n. It is easy to find the maximizing
parameter values: θv|u = muv/mu, where mu = |{i : xi

S = u}| is the number of
observations that has value u on column n.

Various forms of penalized maximum likelihood can be used as a criterion for
choosing between different sets of parents. These criteria operate quantitatively
in the logarithmic scale. The negative of the maximum log likelihood,

β(xS ,xn) = −
∑

u∈{0,1}|S|

∑

v∈{0,1}
muv log

muv

mu
,

gets a small value when the model fits well the data; β(xn,xS) can be viewed
as the number of bits needed to describe xn given xS and the estimated model
parameters. The MDL, AIC, and NML criteria introduce specific additive pe-
nalization terms αMDL, αAIC, and αNML, respectively, defined by

αMDL(X, S) = 2|S|−1 log m ,

αAIC(X, S) = 2|S| ,

αNML(X, S) = log
∑

x′
n∈{0,1}m

2−β(xS,x′
n) .

As αMDL(X, S) and αAIC(X, S) depend on (X, S) only through the number of
rows m in X and the number of elements in S, we may conveniently treat them
as functions of (m, |S|). If M is a label of a criterion, e.g., from {MDL, AIC,
NML}, we define the corresponding penalized maximum likelihood cost as

γM (X, S) = αM (X, S) + β(xS ,xn) .

Notice that 2−γNML(X,S) is a conditional probability distribution of xn given xS .
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2.2 Variants of the Parent Assignment Problem

We will formally look at the parent assignment problem in the guise of one
optimization problem as well as of two decision problems, which are suitable for
complexity considerations. The following problems will be fixed once the penalty
term α has been fixed:

Min Parent Assignment (α)

Input: A 0-1 matrix X of size m × n.
Output: A subset S ⊆ {1, . . . , n − 1} such that γ(X, S) = α(X, S) +

β(xS ,xn) is minimized.

Parent Assignment (α)

Instance: A 0-1 matrix X of size m × n and a number t.
Question: Is there a subset S ⊆ {1, . . . , n − 1} such that γ(X, S) =

α(X, S) + β(xS ,xn) is at most t?

Small Parent Assignment (α)

Instance: A 0-1 matrix X of size m × n and numbers t and k.
Question: Is there a subset S ⊆ {1, . . . , n − 1} of size at most k such

that γ(X, S) = α(X, S) + β(xS ,xn) is at most t?

Of these problems, Min Parent Assignment is the most natural optimiza-
tion formulation of the parent assignment problem. Obviously, it is at least as
hard as the corresponding decision variant, Parent Assignment. The second
decision problem, Small Parent Assignment, involves an upper bound for the
number of parents, which renders it at least as hard as Parent Assignment;
we will not consider Small Parent Assignment until in Sect. 5.

3 MDL Parent Assignment Is Hard

In this section we show that Parent Assignment (αMDL), or MDL-PA for
short, is LOGSNP-hard. Papadimitriou and Yannakakis [8] defined the complex-
ity class LOGSNP in order to capture computational problems that are unlikely
to be NP-hard but very likely to have time complexity that scales, roughly, as
nlog n where n is the input size.

Our proof is based on a reduction from a restricted dominating set problem
defined below. As usual, for a directed graph G we call a node subset S a
dominating set if each node i outside S is dominated by some node j in S,
i.e., (i, j) is an arc in G.

Log Dominating Set (Log-DS)
Instance: A directed graph with n − 1 nodes.
Question: Does the graph have a dominating set of size log n?

A couple of details are here worth noting. First, we define the problem in terms
of n − 1 rather than n nodes, as this leads to somewhat simpler expressions in
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the sequel. Second, the standard problem definition (e.g., Papadimitriou and
Yannakakis [8]) has log n replaced by log(n − 1) (or n − 1 by n), however, it is
not difficult to show that the two problems are polynomially equivalent.

We known that Log Dominating Set is an ideal representative of the class
LOGSNP:

Theorem 1 ([8]). Log Dominating Set is LOGSNP-complete.

A key observation we will exploit in our reduction is that the maximum likelihood
score is highly sensitive to “collisions.” We say that a subset S has a collision
in X if there exist two rows i and i′ such that

xi
S = xi′

S but xi
n �= xi′

n .

Thus, a collision occurs if some value on the parents appears with both values,
0 and 1, on the child.

On one hand, if no collision occurs, then the fit is perfect.

Lemma 1. Let X be a 0-1 matrix of size n×n and S a subset of {1, . . . , n−1}.
If S has no collision in X, then β(xn,xS) = 0.

Proof. Suppose that S has no collision in X . Then for any u either mu0 =
0 or mu1 = 0 or both. Thus, either mu0 = mu or mu1 = mu, implying
mu0 log(mu0/mu) + mu1 log(mu1/mu) = mu log 1 = 0. As β(xn,xS) is a sum
of these terms, one for each value of u, it must equal 0. ��

On the other hand, the more collisions, the larger the minimum error. We will
use the following lower bound.

Lemma 2. Let X be a 0-1 matrix of size n×n and S a subset of {1, . . . , n−1}.
If S has a collision in X, then β(xn,xS) ≥ 2.

Proof. Suppose that xi
S = xi′

S = u and 0 = xi
n �= xi′

n = 1. Since mu1, mu0 ≥ 1
and mu1 + mu0 = mu, we have

β(xn,xS) ≥ −
(
mu0 log

mu0

mu
+ mu1 log

mu1

mu

)
≥ min

0<p<1
{− log p − log(1 − p)} = 2 .

��

To amplify the effect of a collision, we consider simple repetitions. We say that
an m×n matrix B is obtained by stacking r copies of a q ×n matrix A, or, that
B is the r-stack of A, if m = rq and the (tq + i)th row vector of B equals the
ith row vector of A for all t = 0, . . . , r − 1 and i = 1, . . . , q.

Lemma 3. Let X be a 0-1 matrix of size n×n and S a subset of {1, . . . , n−1}.
Let X ′ be the matrix obtained by stacking r copies of X. Then β(x′

n,x′
S) =

r · β(xn,xS).

Proof. For X ′ the maximum likelihood estimate for any parameter θv|u is simply
(rmuv)/(rmu) = muv/mu, that is, the same as for the original matrix X . ��
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We apply these simple observations with the following strategy. First, we map
an arbitrary instance of Log-DS, a graph G with n − 1 nodes, to a suitable
square matrix X of size n × n. Here we ensure that a set S is a dominating
set in G if and only if S has no collision in X . Then, we make a matrix X ′ by
stacking a polynomial number of copies of X . Finally, the instance of MDL-PA

is defined as (X ′, t), where the threshold t is set to the MDL cost due to the
number of model parameters. With this construction we are able to show that
G has a dominating set of size log n if and only if the MDL cost is at most t for
some set of parents. We next fill in the necessary details.

Let G be a directed graph on n−1 nodes labeled by 1, . . . , n−1. We define the
reflex of G as the n × n matrix R = ref(G) whose entry at the ith row and jth
column, Ri

j , equals 1 if (i, j) is an arc in G or i = j, else Ri
j equals 0. In words,

ref(G) is made from G by adding a new node, n, with no incoming nor outgoing
arcs, and then enforcing the graph be reflexive; see Fig. 1 for an example. This
matrix has a desired property, as stated in the next key lemma.

Lemma 4. Let G be a directed graph with nodes 1, . . . , n − 1. Then, for any
subset S ⊆ {1, . . . , n − 1}, we have

S is a dominating set in G if and only if S has no collision in ref(G) .

Proof. Let S be a subset of {1, . . . , n − 1}. Denote R = ref(G) for short.
Assume first that S is a dominating set in G. Then, if S had a collision in

the matrix R, we should have an index i < n such that Ri
S = Rn

S , since only Rn
n

equals 1. Accordingly, Ri
S should be a vector of 0s. But this is impossible since

S is a dominating set in G, implying that G has an arc (i, j) for some j ∈ S and,
consequently, Ri

j = 1 by the definition of reflex.
Assume then that S is not a dominating set in G. Now it is sufficient to show

that for some i < n the vector Ri
S contains only 0s. Assume the contrary, that

for all i < n we have a j ∈ S such that Ri
j = 1. But this means that every node

i of G is dominated by a node j ∈ S, a contradiction. ��

Let us summarize the above four lemmas:

Lemma 5. Let G be a directed graph with nodes 1, . . . , n − 1. Let X be the
matrix obtained by stacking r copies of the reflex of G. Then, for any subset
S ⊆ {1, . . . , n − 1}, we have

β(xS ,xn) = 0 , if S is a dominating set in G;
β(xS ,xn) ≥ 2r , if S is not a dominating set in G.

Proof. Immediate from Lemmas 1, 2, 3, and 4. ��

In the sequel we will use this result (Lemma 5) as a key argument. The first
example of its usage is given in the proof of the next main result.

Theorem 2. MDL-PA is LOGSNP-hard.
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(a)

1 2

3

4

5

6

(b)

�
�������

0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 0
1 0 0 1 1 0
0 0 1 0 0 1
0 0 0 1 0 0

�
�������

(c)

�
���������

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1

�
���������

Fig. 1. The reflex of a directed graph. (a) A graph with 6 nodes, (b) the adjacency
matrix of the graph, and (c) the reflex of the graph. Nodes 3 and 4 form a dominating
set: every other node has an arc that points to 3 or 4.

Proof. Let G be a directed graph with nodes 1, . . . , n − 1, an instance of Log-

DS. Let R be the reflex of G. Let X be the rn × n matrix obtained by stacking
r = n2 copies of R. Finally, set t to the value αMDL(rn, log n).

Our first claim is that G is a positive instance of Log-DS if (X, t) is a positive
instance of MDL-PA. Assume the latter holds. Then there exists a set of parents
S such that

γMDL(X, S) = αMDL(rn, |S|) + β(xS ,xn) ≤ t = αMDL(rn, log n) .

Clearly, S can have at most log n elements. It remains to show that S is a
dominating set in G. To see this, assume the contrary: that S is not a dom-
inating set in G. Then, by Lemma 5, β(xS ,xn) ≥ 2r = 2n2 and, thereby,
γMDL(X, S) ≥ 2n2. But this contradicts with the earlier conclusion that
γMDL(X, S) ≤ αMDL(rn, log n) ≤ (1/2)n log(n3).

Our second claim is that G is a positive instance of Log-DS only if (X, t)
is a positive instance of MDL-PA. Assume the former holds. Then there exists
a dominating set S in G such that |S| ≤ log n. Now, by Lemma 5, we have
β(xS ,xn) = 0. Using this we see that

αMDL(rn, |S|) + β(xS ,xn) ≤ t = αMDL(rn, log n) ,
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since |S| ≤ log n. Thus we have shown that (X, t) is a positive instance of
MDL-PA.

To complete the proof, we notice that the mapping from G to X can be com-
puted in polynomial time. Since Log-DS is LOGSNP-complete (Theorem 1),
we conclude that MDL-PA is LOGSNP-hard. ��

Regarding the above proof, it is worth noting that the particular choice for the
number of repetitions, r, is not crucial as long as r is polynomial in n and,
roughly, of order Ω(n log n).

4 Parent Assignment Is Hard to Approximate for the
MDL and AIC Costs

We next extend the result from the previous section in two dimensions. First, we
show that LOGSNP-hardness holds also for other penalized maximum likelihood
costs, such as AIC, that have certain properties. Second, we state the hardness
result in a stronger form: the optimization variant of the parent assignment
problem cannot be approximated in polynomial time to a ratio smaller than 2
unless LOGSNP = P.

We consider a generic cost function γ(X, S) = α(X, S) + β(xS ,xn), where
the penalization term α(X, S) is a function of the number of records m and
the number of parents k = |S|, hence denoted as α(m, k). In addition, we will
assume that

(A1) α(m, k) grows at most logarithmically in m and exponentially in k,
(A2) α(m, k) can be evaluated in time polynomial in m and k, and
(A3) α(m, k + 1)

/
α(m, k) ≥ 2 for all m and k.

These properties obviously hold for the MDL and AIC measures.

Proposition 1. The functions αMDL and αAIC satisfy conditions (A1–A3).

4.1 Approximating to a Ratio Less Than 2 Is Hard

We are now ready to prove the main result of this section.

Theorem 3. Let α be a function that satisfies conditions (A1–A3). Then, for
any ε > 0, approximating Min Parent Assignment (α) to the ratio 2 − ε is
LOGSNP-hard.

Proof. Assume that we have a polynomial-time algorithm A that, given any 0-1
input matrix X of size n × n, outputs a set S ⊆ {1, . . . , n − 1} such that

γ(X, S)/OPT (X) ≤ 2 − ε < 2 ,

for some ε > 0; here OPT (X) denotes the minimum of γ(X, S′) over all possible
subsets S′.



Parent Assignment Is Hard for the MDL, AIC, and NML Costs 297

We construct a reduction from Log-DS, similar to the one in the proof of
Theorem 2. First, choose constants a and b such that α(m, k) ≤ a2bk log m for
all k and m with k ≤ m; this we can do due to condition (A1). Then, let G be a
directed graph with n − 1 nodes, an instance of Log-DS. Let R be the reflex of
G, and let X be the rn × n matrix obtained by stacking r = nn+1 copies of R.
Let S be the set given by algorithm A for the input X . We claim that G has a
dominating set of size at most log n if and only if

γ(X, S) < 2 · α(rn, log n) . (1)

We prove the two directions separately. First, suppose G has a dominating
set S∗ of size |S∗| ≤ log n. Then

OPT (X) ≤ γ(X, S∗) = α(rn, |S∗|) ≤ α(rn, log n) ;

the equality follows from Lemma 5, while the last inequality is due to the
monotonicity of α in the second argument (implied by (A3)). Using the ap-
proximation guarantee we obtain γ(X, S) < 2 · OPT (X) ≤ 2 · α(rn, log n), as
desired.

For the other direction, suppose G has no dominating set of size log n. Then
OPT (X) ≥ α(rn, 1 + log n), since any set S smaller than 1 + log n has a cost at
least β(xS ,xn) ≥ 2r = 2n2 ≥ α(rn, 1+ log n); the first inequality is by Lemma 5
and the last one is due to the choice of b (for sufficiently large n). Thus, for any
set S we have that γ(X, S) ≥ 2 ·α(rn, log n), by condition (A3). This contradicts
with inequality (1), as desired.

To complete the proof, we recall that Log-DS is LOGSNP-hard and notice
that the mapping from G to X as well as the condition in inequality (1) can be
computed in polynomial time. ��

We notice that the main theorem of the previous section, Theorem 2, follows as
a direct corollary to the above, stronger result. Let it be also noted that an even
slightly stronger result holds: we may allow the number ε > 0 in the statement
of Theorem 3 depend on the instance of the Min Parent Assignment (α)

problem.
By Theorem 3 and Proposition 1 we immediately have the following.

Corollary 1. For the MDL and AIC costs, approximating Min Parent As-

signment to a ratio less than 2 is LOGSNP-hard.

4.2 Approximating to a Constant Ratio Looks Hard

Given the above hardness result, it is natural to ask whether Min Parent

Assignment (α) can be approximated to any constant ratio. As we show next,
the answer is likely to be negative. Namely, the positive answer would imply a
polynomial-time approximation scheme (PTAS) for the following optimization
version of Log Dominating Set, a problem for which no polynomial-time
constant-ratio approximation algorithm is known (see Cai et al. [13]).
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Min Log Dominating Set (Min-Log-DS)
Input: A directed graph G with n−1 nodes such that G has a dominating

set of size log n.
Output: A minimum-cardinality dominating set of G.

The next result provides a connection between the approximation ratio of the
two problems; the result concerning constant approximation ratios follows as a
corollary, as made explicit below.

Theorem 4. Let α be a function that satisfies conditions (A1–A3). Let c > 0
be constant and f an integer function with f(n) = O(nμ) for some constant
μ ∈ [0, 1). Then Min Parent Assignment (α) on input matrix of size m × n
cannot be approximated in polynomial time to the ratio f(mn) unless Min-Log-

DS on input graph with n nodes can be approximated in polynomial time to the
ratio 1 + c · log f(n).

Proof. Let us first fix some constants. Choose μ ∈ [0, 1) such that f(n) ≤ nμ, for
all sufficiently large n; this we obviously can do. In addition, choose constants a
and b such that α(m, k) ≤ a2bk log m for all k and m with k ≤ m; this we can
do due to condition (A1).

Then, assume that we have a polynomial-time algorithm A that, given any
0-1 input matrix X of size n × n, outputs a set S ⊆ {1, . . . , n − 1} such that
γ(X, S)/OPT (X) ≤ f(mn).

We now construct a reduction from the minimum dominating set problem.
We fix yet another constant q = (b + 1 + 2μ)/(1 − μ) whose role soon becomes
clear. Let G be a directed graph with n− 1 nodes such that G has a dominating
set of size log n. We can assume that the smallest dominating set of G, denoted
by S∗, has cardinality at least (q + 2)/c. Namely, this restriction obviously does
not change the problem complexity (up to a polynomial factor), since one can
enumerate all node subsets up to a constant cardinality in polynomial time. Let
R be the reflex of G. Let X be the rn × n matrix obtained by stacking r = nq

copies of R. Let S be the set given by algorithm A for the input X . We want
to show that S is approximatively minimum dominating set of G, that is, S is a
dominating set and

|S|/|S∗| ≤ 1 + c · log f(n) . (2)

To see that S is, indeed, a dominating set of G we derive a relatively small
upper bound for γ(X, S), as follows. For the optimal set S∗ we have

γ(X, S∗) ≤ α(m, log n) ≤ anb log m ,

which together with the assumed approximation guarantee yields

γ(X, S) ≤ f(mn) · anb log m

≤ a(rn2)μnb log(rn)
= a(q + 1)nμ(q+2)+b log n

< nμ(q+2)+b+1

= nq ,
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where the strict inequality holds for large enough n (as a(q + 1) log n = o(n))
and the last identity holds by the choice of q. This means that S must be a
dominating set of G; else, by Lemma 5, we should have γ(X, S) ≥ 2r = 2nq.

It remains to show that inequality (2) holds. To this end, we first bound

f(mn) ≥ γ(X, S)/OPT (X)
= α(m, |S|)/α(m, |S∗|)
≥ 2|S|−|S∗|

= 2|S
∗|(|S|/|S∗|−1) ,

where the first identity holds because S and S∗ are dominating sets of G, and
the second inequality is due to condition (A3). Taking logs of both sides gives
us, after a little rearrangement,

|S|/|S∗| ≤ 1 +
1

|S∗| log f(mn)

≤ 1 +
c

q + 2
log f(nq+2)

≤ 1 + c · log f(n) ,

since we assumed that |S∗| ≥ (q + 2)/c and that f(nq+2) ≤ f(n)q+2 (that is, f
does not grow too rapidly; a polynomial f suffices here).

To complete the proof we notice that the reduction mapping can be evaluated
in polynomial time. ��

Corollary 2. Let α be a function that satisfies conditions (A1–A3). Then Min

Parent Assignment (α) cannot be approximated to any constant ratio unless
Min-Log-DS has a polynomial-time approximation scheme.

Proof. Suppose that Min Parent Assignment (α) can be approximated to the
constant ratio ρ > 1 in polynomial time. Let ε > 0 be fixed. Applying Theorem 4
with f(n) := ρ, for all n, and c := ε/ log ρ gives the approximation ratio of 1 + ε
for Min-Log-DS. ��

Cai et al. [13] discuss the computational complexity of Min-Log-DS. They
argue that no polynomial-time algorithm can even approximate Min-Log-DS

to any constant factor. However, the needed complexity theoretic assumptions
are substantially stronger than the conventional P �= NP. Despite this gap, it
is reasonable to assume that no PTAS exists for Min-Log-DS, implying the
inapproximability of Min Parent Assignment (α).

5 NML Parent Assignment Is NP-Complete

In this section we show that Small Parent Assignment is NP-complete for
the NML cost. Recall that this formulation of the parent assignment task assumes
two input numbers: an upper bound for the cost (as in Parent Assignment)
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and another upper bound for the cardinality of the parent set. The latter bound
will correspond to the analogous cardinality parameter of the NP-complete Dom-

inating Set problem [14]: Given a directed graph G and a number k, does G
contain a dominating set of size at most k?

We can apply the reduction scheme presented in Sect. 3. Unlike αMDL and
αAIC, however, αNML does not have any simple, data-independent expression.
Therefore, we have to work a bit to show that αNML grows relatively slowly in
the number of parents and in the number of data records, assuming that the
data set is obtained via our reduction.

Lemma 6. Let r ≥ 1 be an integer and X the r-stack of a 0–1 matrix of size
n × n. Then, for any subset S ⊆ {1, . . . , n − 1}, we have

αNML(X, S) ≤ n log(r + 1) .

Proof. Denote by m = rn the number of rows in X . Write

2αNML(X,S) =
∑

x′
n∈{0,1}m

2−β(X′,S)

=
∑

x′
n∈{0,1}m

∏

u∈{0,1}|S|:mu>0

(m′
u0

mu

)m′
u0

(m′
u1

mu

)m′
u1

,

where X ′ denotes the matrix obtained by replacing the nth column of X by the
column x′

n, and m′
uv is the number of rows in X ′ where the attributes xS are

set to u and the attribute xn is set to v.
We can split the summation over x′

n into (at most) 2|S| separate summations,
one for each value u ∈ {0, 1}|S| (that occurs in X). Within each summation it is
sufficient to sum over the sufficient statistic m′

u0. Thus,

2αNML(X,S) =
∏

u∈{0,1}|S|:mu>0

mu∑

m′
u0=0

(
mu

m′
u0

)(m′
u0

mu

)m′
u0

(m′
u1

mu

)m′
u1

. (3)

Since
(
k
j

)
zj(1 − z)k−j ≤ 1 whenever 0 ≤ z ≤ 1 and 0 ≤ j ≤ k, we obtain

2αNML(X,S) ≤
∏

u∈{0,1}|S|:mu>0

(mu + 1) .

Finally, we examine how large a value the expression on the right-hand side
can take, subject to the constraints implied by the construction: mu = r · tu
with tu ∈ {0, 1, . . . , n} and

∑
u tu = n. We observe that if tu ≥ tw + 2, then

(rtu + 1)(rtw + 1) < (r(tu − 1) + 1)(r(tw + 1) + 1). Without loss of generality
we may now consider the case where u takes values from the largest possible
set, {0, 1}n−1, in which case at least one tu must equal 0 (for n ≥ 3) or every
tu equals 1 (for n ≤ 2). Consequently, the product

∏
u(rtu + 1) achieves its

maximum value when each tu is either 0 or 1. Hence,

2αNML(X,S) ≤ (r + 1)n .

Taking logarithms on both sides gives the claimed inequality. ��
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This upper bound proved above is rather tight and, actually, significantly larger
bounds for α(X, S) would already suffice for rendering Small Parent Assign-

ment (α) NP-hard. Motivated by this fact, we formulate the hardness result in
a relatively general terms.

Theorem 5. Let g(n) = O(poly(n)) and α(X, S) < 2 · g(n) whenever X is the
g(n)-stack of a 0–1 matrix of size n × n and S ⊆ {1, . . . , n − 1}. Then Small

Parent Assignment (α) is NP-hard.

Proof. Let (G, k) be an instance of Dominating Set, where G is a directed
graph with nodes 1, . . . , n − 1 and k is a number between 1 and n − 1. Set
r = g(n) and let X denote the r-stack of the reflex of G.

It is sufficient to show that G has a dominating set of size at most k if and
only if there exists a subset S ⊆ {1, . . . , n − 1} of size at most k such that the
cost α(X, S) + β(xS ,xn) is less than the threshold t := 2 · g(n) = 2r.

Suppose first that S is a dominating set of G with |S| ≤ k. Then, by Lemma 5,
we have β(xS ,xn) = 0. Since we assumed that α(X, S) < 2 · g(n), the total cost
is less than t.

Then suppose that S ⊆ {1, . . . , n − 1} is a set with at most k elements and a
cost α(X, S)+β(xS ,xn) less than t = 2 ·g(n) = 2r. Then, of course, β(xS ,xn) <
2r, and so, by Lemma 5, the set S is a dominating set of G. ��

Now it is easy to prove the main result of this section:

Theorem 6. Small Parent Assignment (αNML) is NP-complete.

Proof. To see NP-hardness, we use the substitution r = g(n) = n2 in Lemma 6
and Theorem 5. Note that then n log(r + 1) < 2 · g(n).

To see that Small Parent Assignment (αNML) is in NP, it is sufficient to
notice that αNML(X, S), for arbitrary X and S, can be evaluated in polynomial
time with respect to the size of the matrix X , for example, by using the factor-
ization (3) in the general case of r = 1. ��

6 Concluding Remarks

We showed that the parent assignment problem is computationally hard for some
widely-used cost functions. According to the presented results, it is unlikely that
one even finds a polynomial-time algorithm with a good approximation guaran-
tee. Our reduction from the LOGSNP-hard log dominating set problem proved
a relatively direct link between the two problems, however, we do not know
whether the parent assignment problem for the MDL or AIC cost is LOGSNP-
complete; we leave the precise complexity characterization for future research.

Our hardness results arise from three ingredients, each representing a restric-
tion to the general parent assignment problem. Below we discuss each restriction
in turn.

First, we assumed that the conditional probability model is the full-multinomial
model. While this model has arguably been the most common choice in both the-
oretical and practical works on Bayesian networks, several other models have also
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been proposed, not excluding models for continuous data. To what extend similar
hardness results can be proved for those models is an open question.

Second, we considered penalized maximum-likelihood costs, such as MDL, AIC,
and NML, which separate the model complexity cost and the goodness of fit in a
simple manner. Other important cost functions include the Bayesian cost, which is
obtained by integrating the model parameters out [1, 2]. Characterizing the com-
plexity of parent assignment for the Bayesian cost is a natural direction for future
research. Although we cannot use the key lemma (Lemma 5) as such, similar ar-
gumentation based on a reduction from the (log) dominating set problem might
work. Like the NML cost, the Bayesian cost does not imply the O(log m) bound
for the size of the parent set [7], which probably renders the problem NP-hard.

Third, our reduction from the dominating set problem yields hard instances
that, however, do not necessary represent typical datasets one encounters in prac-
tice. This motivates seeking of appropriate constraints that would allow efficient
parent assignment; works on a related large-sample setting have produced inter-
esting characterizations of the needed assumptions and the type of optimality
one can achieve [15].

Finally, it should be noted that the parent assignment problem studied in this
paper falls in the broad framework of combinatorial feature selection problems
(e.g., [16, 17]). Koller and Sahami [16] and Charikar et al. [17] provide insightful
results concerning some interesting problem classes. However, neither of these
works provides any hardness or (in)approximability result for the parent assign-
ment problem. For linear classifiers (hyperplanes, perceptrons) Amaldi and Kann
[18] show that finding, or approximating the number of, the relevant attributes
is hard, proving that “black-box” feature selection can be hard; this result, of
course, does not imply that feature selection is hard for richer hypothesis classes,
e.g., the full-multinomial model.
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