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Abstract. We consider two variants of a model for learning languages
in the limit from positive data and a limited number of short negative
counterexamples (counterexamples are considered to be short if they are
smaller that the largest element of input seen so far). Negative coun-
terexamples to a conjecture are examples which belong to the conjec-
tured language but do not belong to the input language. Within this
framework, we explore how/when learners using n short (arbitrary) neg-
ative counterexamples can be simulated (or simulate) using least short
counterexamples or just ‘no’ answers from a teacher. We also study how
a limited number of short counterexamples fairs against unconstrained
counterexamples. A surprising result is that just one short counterexam-
ple (if present) can sometimes be more useful than any bounded number
of counterexamples of least size. Most of results exhibit salient examples
of languages learnable or not learnable within corresponding variants of
our models.

1 Introduction

Our goal in this paper is to explore how limited amount of negative data, rela-
tively easily available from a teacher, can help learning languages in the limit.
There is a long tradition of using two popular different paradigms for exploring
learning languages in the limit. One paradigm, learning languages from full pos-
itive data (all correct statements of the language), was introduced by Gold in
his classical paper [Gol67]. In this model, TxtEx, the learner stabilizes in the
limit to a grammar generating the target language. In another popular variant of
this model, TxtBc, defined in [CL82] and [OW82] (see also [Bār74] and [CS83])
almost all conjectures outputted by the learner are correct grammars describ-
ing the target language. The second popular paradigm, learning using queries
to a teacher (oracle) was introduced by D. Angluin in [Ang88]. In particular,
D. Angluin considered three types of queries: subset, superset, and equivalence
queries — when a learner asks if a current hypothesis generates a subset or a
superset of the target language, or, respectively, generates exactly the target
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language. If the answer is negative, the teacher may provide a counterexample
showing where the current hypothesis errs. This model has been used for explor-
ing language learning primarily in the situation when no data was available in
advance (see, for example, [LZ04b], [LZ04a]). In [JK06b], the two models were
combined together: a learner gets full positive data and can query the teacher if
the current conjecture is correct. On one hand, this model reflects the fact that a
learner, during a process of acquisition of a new language, potentially gets access
to all correct statements. On the other hand, this model adds another important
tool, typically available, say, to a child learning a new language: a possibility
to communicate with a teacher. Sometimes, this possibility may be really vital
for successful learning. For example, if a learner of English past tense, having
received on the input “call – called”, “fall – fell”, infers the rule implying that
both past tense forms “called, cell” and “falled, fell” are possible, then this rule
can be refuted only by counterexamples from a teacher.

In this context, subset queries are of primary interest, as they provide nega-
tive counterexamples if the learner errs, while other types of queries may provide
positive ‘counterexamples’ eventually available on the input anyway (still, as it
was shown in [JK06a], the sequel paper to [JK06b], superset and equivalence
queries can make some difference even in presense of full positive data). Con-
sequently, one can consider the learner for NCEx model as defined in [JK06b]
(and its variant NCBc corresponding to TxtBc — NC here stands for ‘negative
counterexamples’), as making a subset query for each of its conjectures. When
a learner tests every conjecture, potentially he/she can get indefinite number of
counterexamples (still this number is, of course, finite if the learner learns the
target language in the limit correctly). In [JK06a] the authors explored learn-
ing from positive data and bounded amount of additional negative data. In this
context, one can consider three different scenarios of how subset queries and
corresponding negative counterexamples (if any) can be used:

— only a bounded number (up to n) of subset queries is allowed during the
learning process; this model was considered in [JK06a] under the name SubQn;

— the learner makes subset query for every conjecture until n negative answers
have been received; that is, the learner can ask potentially indefinite number of
questions (however, still finite if the learning process eventually gives a correct
grammar), but he is charged only when receiving a negative answer; this model
was considered in [JK06a] under the name NCn;

— the learner makes subset queries for conjectures, when deemed necessary,
until n negative answers have been received; in the sequel, we will refer to this
model as GNCn, where GNC denotes ‘generalized model of learning via nega-
tive counterexamples’.

Note that the GNCn model combines the features of the first two (we have
also demonstrated that it is stronger than each of the first two). All three models
SubQn, NCn, and GNCn provide certain complexity measure (in the spirit of
[GM98]) for learning languages that cannot be learned from positive data alone.

Negative counterexamples provided by the teacher in all these models are of
arbitrary size. Some researchers in the field considered other types of negative
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data available for learners from full positive data. For example, negative data
provided to learners in the model considered in [BCJ95] is preselected — in this
situation just a very small amount of negative data can greatly enhance learning
capabilities. A similar model was considered in [Mot91].

In this paper we explore models SubQn, NCn, and GNCn when the teacher
provides a negative counterexample only if there is one whose size does not exceed
the size of the longest statement seen so far. While learning from full positive data
and negative counterexamples of arbitrary size can be interesting and insightful
on its own right, providing arbitrary examples immediately (as it is assumed in
the models under consideration) may be somewhat unrealistic — in fact, it may
significantly slow down learning process, if not making it impossible. On the
other hand, it is quite realistic to assume that the teacher can always reasonably
quickly provide a counterexample (if any), if its size is bounded by the largest
statement on the input seen so far. Following notation in [JK06a], we denote
corresponding variants of our three models by BSubQn, BNCn, and BGNCn,
respectively. Following [Ang88] and [JK06a] we also consider restricted variants
of the above three models — when the teacher, responding to a query, answers
just ‘no’ if a counterexample of the size not exceeding the size of the largest
statement seen so far exists — not providing the actual example; otherwise,
the teacher answers ‘yes’. To reflect this variant in the name of a model, we,
following [JK06a], add the prefix Res to its name (for example, ResBNCn). It
must be noted that, as it is shown in [JK06a], BSubQn does not provides any
advantages over learning just from positive data. Therefore, we concentrate on
BNCn, BGNCn and their Res variants.

Our first goal in this research was to explore relationships between these
two models as well as their restricted variants. Following [JK06b] and [JK06a],
we also consider Res variants for models NCn, and GNCn as well as their
variants when the least (rather than arbitrary) counterexample is provided —
in this case we use the prefix L (for example, LNCn). Consequently, we explore
relationships between B-models and models using limited number of queries
(including those getting just answers ‘yes’ or ‘no’), or limited number of arbitrary
or least counterexamples, or just answers ‘no’. In this context, we, in particular,
demonstrate advantages that our B-variants of learning (even ResB) can have
over GNCn in terms of the number of mind changes needed to arrive to the
right conjecture.

In the full version of the paper (see [JK05]), we give also a number of re-
sults relating to comparison of GNC-model with NC model and comparison
of learning via limited number of short counterexamples and finite number of
queries. Most of our results provide salient examples of classes learnable (or not
learnable) within corresponding models.

The paper has the following structure. In Section 2 we introduce necessary
notation and definitions needed for the rest of the paper. In particular, we
define some variants of the classical Gold’s model of learning from texts (posi-
tive data): TxtEx — when the learner stabilizes to a correct (or nearly correct)
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conjecture generating the target language, and TxtBc — its behaviorally correct
counterpart.

In Section 3, for both major models of learnability in the limit, TxtEx and
TxtBc, we define two variants of learning from positive data and a uniformly
bounded number of counterexamples: NCn and GNCn, where the learner makes
subset queries and is ‘charged’ for every negative answer from a teacher. We then
define the main models considered in this paper: BNCn and BGNCn, as well
as ResB variants of both. We also formally define the L variant for all these
models.

In Section 4 we explore relationships between different bounded negative coun-
terexample models. In particular, we study the following two problems: under
which circumstances, (a) B-learners receiving just answers ‘yes’ or ‘no’ can sim-
ulate the learners receiving short (possibly, even least) counterexamples; (b)
learners receiving arbitrary short counterexamples can simulate the ones receiv-
ing the least short counterexamples. First, we note that in all variants of the
paradigms TxtEx and TxtBc, an LBNCn-learner can be always simulated by
a ResBNC2n−1-learner: 2n − 1 ‘no’ answers are enough to simulate n explicit
negative counterexamples (similar fact holds also for the LBGNCn-learners).
Moreover, for the Bc∗ type of learnability (when almost all conjectures contain
any finite number of errors), the number 2n − 1 in the above result drops to
n (Theorem 6; note that, for learning via limited number of arbitrary or least
counterexamples, the number 2n−1 could not be lowered even for Bc∗-learners,
as shown in [JK06a]). On the other hand, the number 2n − 1 of negative an-
swers/counterexamples cannot be lowered for the learning types Ex∗ (when any
finite number of errors in the limiting correct conjecture) and Bcm (when the
number of errors in almost all conjectures is uniformly bounded by some m) for
both tasks (a) and (b). Namely, there exist LBNCnEx-learnable classes of lan-
guages that cannot be learned by BGNC2n−2Bcm or BGNC2n−2Ex∗-learners
(Theorem 4) and there exist BNCnEx-learnable classes that cannot be learned
by ResBGNC2n−2Bcm or ResBGNC2n−2Ex∗-learners (Theorem 5). We also
show that a LBNCEx∗-learner can be always simulated by a ResBNCBc-
learner — when the number of negative answers/counterexamples is unbounded.

In Section 5 we explore relationships between our models when the coun-
terexamples considered are short or unconstrained. First, we demonstrate how
short counterexamples can be of advantage over unconstrained ones while learn-
ing from positive data and a bounded number of counterexamples. One of
our central — somewhat surprising — results is that sometimes one ‘no’ an-
swer, just indicating that a short counterexample exists, can do more than any
number n of arbitrary (or even least) counterexamples used by (the strongest)
LGNCnBc∗-learners (Theorem 9). Note that the advantages of least exam-
ples/counterexamples in speeding up learning has been studied in other situa-
tions also, such as learning of non-erasing pattern languages ([WZ94]). However,
in our model of BNC-learning versus LNC-learning, the LNC-learner does get
least counterexamples, and BNC learner gets just a counterexample, if there ex-
ists one below the maximal positive data seen so far. This seems on the surface
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to hurt, as BNC-learner is likely to get less (negative) data. In fact, that is the
case when we do not bound the number of counterexamples received. However,
when we consider counting/bounding, there is a charge for every counterexample.
Consequently, a BNC-learner is not being charged for (unnecessary) negative
data, if it does not receive it. As a result, the possibility of getting negative data
which are ≤ maximal positive data seen in the input so far can be turned to an
advantage — in terms of cost of learning. This is what is exploited in getting
this result. We also show that sometimes a ResBNC1Ex-learner can use just
one mind change (and one ‘no’ answer witnessing existence of a short counterex-
ample) to learn classes of languages not learnable by any GNCEx-learner using
any bounded number of mind changes and an unbounded (finite) number of arbi-
trary counterexamples (Theorem 10). On the other hand, least counterexamples
used by NC-type learners make a difference: any LBNCEx-learner using at
most m mind changes and any (unbounded) number of counterexamples can be
simulated by a LNCm-learner using at most m mind changes and at most m
least counterexamples.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N
denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇, and
⊃ denote empty set, subset, proper subset, superset, and proper superset, re-
spectively. Cardinality of a set S is denoted by card(S). Im denotes the set
{x | x ≤ m}. The maximum and minimum of a set are denoted by max(·), min(·),
respectively, where max(∅) = 0 and min(∅) = ∞. L1ΔL2 denotes the symmetric
difference of L1 and L2, that is L1ΔL2 = (L1 − L2) ∪ (L2 − L1). For a natural
number a, we say that L1 =a L2, iff card(L1ΔL2) ≤ a. We say that L1 =∗ L2,
iff card(L1ΔL2) < ∞. Thus, we take n < ∗ < ∞, for all n ∈ N . If L1 =a L2,
then we say that L1 is an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N ×N
onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is monotonically
increasing in both of its arguments. We define π1(〈x, y〉) = x and π2(〈x, y〉) = y.
We can extend pairing function to multiple arguments by using 〈i1, i2, . . . , ik〉 =
〈i1, 〈i2, 〈. . . , 〈ik−1, ik〉〉〉〉.

We let {Wi}i∈N denote an acceptable numbering of all r.e. sets. Symbol E
will denote the set of all r.e. languages. Symbol L, with or without decorations,
ranges over E . By L, we denote the complement of L, that is N − L. Symbol
L, with or without decorations, ranges over subsets of E . By Wi,s we denote
the set Wi enumerated within s steps, in some standard computable method of
enumerating Wi.

We now present concepts from language learning theory. A sequence σ is a
mapping from an initial segment of N into (N ∪{#}). Intuitively, #’s represent
pauses in the presentation of data. The empty sequence is denoted by Λ. The
content of a sequence σ, denoted content(σ), is the set of natural numbers in
the range of σ. The length of σ, denoted by |σ|, is the number of elements in σ.
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So, |Λ| = 0. For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n].
So, σ[0] is Λ. We let σ, τ , and γ, with or without decorations, range over finite
sequences. We denote the sequence formed by the concatenation of τ at the end
of σ by στ . SEQ denotes the set of all finite sequences.

A text T (see [Gol67]) for a language L is a mapping from N into (N ∪ {#})
such that L is the set of natural numbers in the range of T . T (i) represents the
(i + 1)-th element in the text. The content of a text T , denoted by content(T ),
is the set of natural numbers in the range of T ; that is, the language which T is
a text for. T [n] denotes the finite initial sequence of T with length n.

A language learning machine from texts (see [Gol67]) is an algorithmic device
which computes a mapping from SEQ into N . We let M, with or without dec-
orations, range over learning machines. M(T [n]) is interpreted as the grammar
(index for an accepting program) conjectured by the learning machine M on the
initial sequence T [n]. We say that M converges on T to i, (written: M(T )↓ = i)
iff (∀∞n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a lan-
guage. Below we define some of them. All of the criteria defined below are
variants of the Ex-style and Bc-style learning described in the Introduction;
in addition, they allow a finite number of errors in almost all conjectures (uni-
formly bounded, or arbitrary). TxtEx-criteria is due to [Gol67]. TxtExa (for
a > 0), and TxtBca-criteria are due to [CL82]. Osherson and Weinstein [OW82]
independently considered TxtBc.

Suppose a ∈ N ∪ {∗}. M TxtExa-identifies a language L (written: L ∈
TxtExa(M)) just in case for all texts T for L, (∃i | Wi =a L) (∀∞n)[M(T [n]) =
i]. M TxtExa-identifies a class L of r.e. languages (written: L ⊆ TxtExa(M))
just in case M TxtExa-identifies each language from L. TxtExa = {L ⊆ E |
(∃M)[L ⊆ TxtExa(M)]}.

M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) just
in case, for each text T for L, for all but finitely many n, WM(T [n]) =a L.
M TxtBca-identifies a class L of r.e. languages (written: L ⊆ TxtBca(M))
just in case M TxtBca-identifies each language from L. TxtBca = {L ⊆ E |
(∃M)[L ⊆ TxtBca(M)]}. For a = 0, we often write TxtEx and TxtBc, instead
of TxtEx0 and TxtBc0, respectively.

The following proposition is useful in proving many of our results.

Proposition 1. [Gol67] Suppose L is an infinite language, S ⊆ L, and L − S
is infinite. Let C0 ⊆ C1 ⊆ · · · be an infinite sequence of finite sets such that⋃

i∈N Ci = L. Then {L} ∪ {S ∪ Ci | i ∈ N} is not in TxtBc∗.

We let CYLi denote the language {〈i, x〉 | x ∈ N}.

3 Learning with Negative Counterexamples to
Conjectures

In this section we define two models of learning languages from positive data and
negative counterexamples to conjectures. Both models are based on the general
idea of learning from positive data and subset queries for the conjectures.
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Intuitively, for learning with negative counterexamples to conjectures, we may
consider the learner being provided a text, one element at a time, along with
a negative counterexample to the latest conjecture, if any. (One may view this
counterexample as a response of the teacher to the subset query when it is tested
if the language generated by the conjecture is a subset of the target language).
One may model the list of counterexamples as a second text for negative coun-
terexamples being provided to the learner. Thus the learning machines get as
input two texts, one for positive data, and other for negative counterexamples.

We say that M(T, T ′) converges to a grammar i, iff for all but finitely many
n, M(T [n], T ′[n]) = i.

First, we define the basic model of learning from positive data and negative
counterexamples to conjectures. In this model, if a conjecture contains elements
not in the target language, then a counterexample is provided to the learner.
NC in the definition below stands for ‘negative counterexample’.

Definition 1. [JK06b] Suppose a ∈ N ∪ {∗}.
(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all

texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn �= ∅ and T ′(n) = #, if Sn = ∅,
where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.
(b) M NCExa-identifies a class L of languages (written: L ⊆ NCExa(M)),

iff M NCExa-identifies each language in the class.
(c) NCExa = {L | (∃M)[L ⊆ NCExa(M)]}.

For LNCExa criteria of inference, we consider providing the learner with the
least counterexample rather than an arbitrary one. The criteria LNCExa of
learning can thus be defined similarly to NCExa, by requiring T ′(n) = min(Sn),
if Sn �= ∅ and T ′(n) = #, if Sn = ∅ in clause (a) above (instead of T ′(n) being
an arbitrary member of Sn).

Similarly, one can define ResNCExa, where the learner is just told that the
latest conjecture is or is not a subset of the input language, but is not provided
any counterexamples in the case of ‘no’ answer.

For BNCExa criteria of inference, we update the definition of Sn in clause (a)
of the definition of NCExa-identification as follows: Sn = L∩WM(T [n],T ′[n])∩{x |
x ≤ max(content(T [n]))}.

We can similarly define the criteria of inference ResBNCExa, and
LBNCExa, NCBca, LNCBca, ResBca, BNCBca, ResBNCBca and
LBNCBca. We refer the reader to [JK06b] for more details, discussion and
results about the various variations of NCI-criteria.

For m ∈ N , one may also consider the model, NCmI, where, for learning a
language L, the NCI learner is provided counterexamples only for its first m
conjectures which are not subsets of L. For remaining conjectures, the answer
provided is always #. In other words, the learner is ‘charged’ only for the first
m negative counterexamples, and the subset queries for later conjectures are not
answered. Following is the formal definition.
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Definition 2. [JK06a] Suppose a ∈ N ∪ {∗}, and m ∈ N .
(a) M NCmExa-identifies a language L (written: L ∈ NCmExa(M)) iff for

all texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn �= ∅ and card({r | r < n, T ′(r) �= #}) < m; T ′(n) = #,
if Sn = ∅ or card({r | r < n, T ′(r) �= #}) ≥ m,

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.
(b) M NCmExa-identifies a class L of languages (written: L ⊆

NCmExa(M)), iff M NCmExa-identifies each language in the class.
(c) NCmExa = {L | (∃M)[L ⊆ NCmExa(M)]}.

For a ∈ N ∪ {∗} and I ∈ {Exa,Bca}, one can similarly define BNCmI,
LBNCmI, ResBNCmI and LNCmI, ResNCmI and NCmBca.

GNCI-identification model is same as the model of NCI-identification, ex-
cept that counterexamples are provided to the learner only when it explicitly
requests for such via a ‘is this conjecture a subset of the target language’ ques-
tion (which we refer to as conjecture-subset question). This clearly does not make
a difference if there is no bound on the number of questions asked resulting in
counterexamples. However when there is a bound on number of counterexam-
ples, then this may make a difference, as the GNC-learner may avoid getting
a counterexample on some conjecture by not asking the conjecture-subset ques-
tion. Thus, we will only deal with GNC model when there is a requirement of
a bounded number of counterexamples. For a ∈ N ∪ {∗} and I ∈ {Exa,Bca},
one can define GNCmI, LGNCmI, ResGNCmI and BGNCmI, LBGNCmI,
ResBGNCmI, similarly to NC variants.

Note a subtle difference between models LBGNCn and LGNCn: in the
model LBGNCn, the teacher provides the shortest counterexample only if it is
smaller than some element of the input, whereas there is no such requirement
for LGNCn (the same is true also for NC-variant).

4 Relations Among Bounded Negative Counterexample
Models

In this section we establish relationships between B-variants of NC and GNC-
models when any short, or the least short counterexamples, or just the ‘no’
answers about existence of short counterexamples are used.

First we establish that, similarly to the known result about NC-model
([JK06a]), number of counterexamples matters to the extent that n + 1 ‘no’
answers used by BNCEx-style learners can sometimes do more that n least
counterexamples obtained by LBGNCBc∗-style learners.

Theorem 1. ResBNCn+1Ex − LBGNCnBc∗ �= ∅.

The next result gives advantages of GNC model.



On Learning Languages from Positive Data and a Limited Number 267

Theorem 2. For all n, m ∈ N , ResBGNC1Ex − (LBNCnBcm ∪
LBNCnEx∗) �= ∅.

Our main results in this section deal with the following problems: if and under
which conditions, (a) B-learners receiving just ‘yes’ or ‘no’ answers can simulate
learners receiving short (or, possibly, even least short) counterexamples, and (b)
learners using arbitrary short counterexamples can simulate the ones receiving
the least short counterexamples. We establish that, for both tasks (a) and (b),
for the Bcm and Ex∗ types of learnability, 2n − 1 is the upper and the lower
bound on the number of negative answers/examples needed for such a simulation.
These results are similar to the corresponding results in [JK06a] for the model
NC, however, there is also an interesting difference: as it will be shown below, for
Bc∗-learnability, the bound 2n−1 can be lowered to just n (for NCBc∗-learners,
the lower bound 2n − 1 still holds).

First we establish the upper bound 2n − 1 for both tasks (a) and (b).

Theorem 3. For all n ≥ 1,
(a) LBNCnI ⊆ ResBNC2n−1I.
(b) LBGNCnI ⊆ ResBGNC2n−1I.

Our next result shows that, for the Bcm and Ex∗ types of learnability, the
bound 2n − 1 is tight in the strongest sense for the task (b). Namely, we show
that BNC-learners using n least short counterexamples cannot be simulated by
BGNC-learners using 2n − 2 (arbitrary short) counterexamples.

Theorem 4. For all n ≥ 1, LBNCnEx − (BGNC2n−2Bcm ∪
BGNC2n−2Ex∗) �= ∅.

Now we show that the bound 2n − 1 on the number of negative answers is tight
for Bcm and Ex∗ types of learnability when ResBNC-learners try to simulate
BNCn-learners.

Theorem 5. For all m ∈ N , BNCnEx − (ResBGNC2n−2Bcm ∪
ResBGNC2n−2Ex∗) �= ∅.

Proof. Recall that 〈x, y, z〉 = 〈x, 〈y, z〉〉. Thus, CYLj = {〈j, x, y〉 | x, y ∈ N},
and 〈·, ·, ·〉 is increasing in all its arguments. Consider L defined as follows. For
each L ∈ L, there exists a set S, card(S) ≤ n, such that the conditions (1)–(3)
hold.
(1) L ⊆

⋃
j∈S CYLj .

(2) L ∩ CYLj ∩ {〈j, 0, x〉 | x ∈ N} contains exactly one element for each j ∈ S.
Let this element be 〈j, 0, 〈pj , qj〉〉.
(3) For each j ∈ S,

(3.1) Wpj is a grammar for L ∩ CYLj or
(3.2) Wpj �⊆ L and Wpj − L consists only of elements of form 〈j, 1, 2x〉
or only of elements of form 〈j, 1, 2x + 1〉. Furthermore at least one such
element is smaller than max(L). If this element is of form 〈j, 1, 2z〉, then
Wqj = L ∩ CYLj . Otherwise, L ∩ CYLj is finite.
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Intuitively, L may be considered as being divided into upto n parts, each part
being subset of a cylinder, where each part satisfies the properties as given in
(2) and (3).

Above class of languages can be seen to be in BNCnEx as follows. On input
σ, for each j such that content(σ) contains an element of CYLj , find pj and
qj as defined in condition 2 above (if σ does not contain any element of form
〈j, 0, 〈pj , qj〉〉, then grammar for ∅ is output on σ). Then for each of these j,
learner computes a grammar for:

(a) Wpj (if it has not received any counterexample from CYLj),
(b) Wqj (if the negative counterexample from CYLj is of form 〈j, 1, 2z〉), and
(c) content(T ) ∩ CYLj , otherwise.
Then, the learner outputs a grammar for the union of the languages enumer-

ated by the grammars computed for each j above. It is easy to verify that the
above learner gets at most one counterexample from each CYLj such that CYLj

intersects with the input language, and thus BNCnEx-identifies L.
Proof of L �∈ ResBGNC2n−2Bcm ∪ ResBGNC2n−2Ex∗ is complex and we

refer the reader to [JK05] for details.

Interestingly, if we consider behaviorally correct learners that are allowed to
make any finite number of errors in almost all correct conjectures, then n short
(even least) counterexamples can be always substituted by just n ‘no’ answers.
(For the model NC, the lower bound 2n − 1 for the simulation by Res-type
learners still holds even for Bc∗-learnability, as shown in [JK06a]).

Theorem 6. For all n ∈ N , LBGNCnBc∗ ⊆ ResBNCnBc∗.

Proof. First note that one can simulate a LBGNCnBc∗ learner M by a
LBNCnBc∗ learner M′ as follows. If M(σ, σ′) does not ask a conjecture-subset
question, then M′(σ, σ′) is a grammar for WM(σ,σ′)−{x | x ≤ max(content(σ))};
otherwise M′(σ, σ′) = M(σ, σ′). It is easy to verify that on any input text T ,
M′ gets exactly the same counterexamples as M does, and all conjectures of
M′ are finite variants of corresponding conjectures of M. Thus, any language
LBGNCnBc∗-identified by M is LBNCnBc∗-identified by M′.

Hence, it suffices to show that LBNCnBc∗ ⊆ ResBNCnBc∗. Suppose M
LBNCnBc∗-identifies L. Define M′ as follows. Suppose T is the input text.

The idea is for M′ to output max(content(T [m])) + 1 variations of grammar
output by M on T [m]. These grammars would be for the languages: WM(T [m]) −
{x | x �= i and x ≤ max(content(T [m′]))}, where T [m′] is the input seen by M′

when generating this i-th variant (where 0 ≤ i ≤ max(content(T [m]))). These
grammars would thus allow M′ to determine the least counterexample, if any,
that the grammar output by M on T [m] would have generated.

Formally conjectures of M′ will be of form P (j, m, i, s), where WP (j,m,i,s) =
Wj − {x | x �= i and x ≤ s}.

We assume that M outputs ∅ until it sees at least one element in the input.
This is to avoid having any counterexamples until input contains at least one
element (which in turn makes the notation easier for the following proof).

On input T [0], conjecture of M′ is P (M(Λ, Λ), 0, 0, 0).
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The invariants we will have is: If M′(T [m], T ′[m]) = P (j, r, i, s), then, (i)
j = M(T [r], T ′′[r]), where T ′′[r] is the sequence of least counterexamples for
M on input T [r] (for the language content(T )), (ii) s = max(content(T [m])),
(iii) r ≤ m, (iv) i ≤ max(content(T [r])), and (v) Wj − L does not contain any
element < i. Invariants are clearly satisfied for m = 0.

Suppose M′(T [m], T ′[m]) = P (M(T [r], T ′′[r]), r, i, s). Then we define
M′(T [m + 1], T ′[m + 1]) as follows.

If T ′(m) is ‘no’ answer, then let T ′′(r) = i, and let M′(T [m+1], T ′[m+1]) =
P (M(T [r + 1], T ′′[r + 1]), r + 1, 0, max(content(T [m + 1]))).

Else if i = max(content(T [r])), then let T ′′(r) = #, and let M′(T [m +
1], T ′[m + 1]) = P (M(T [r + 1], T ′′[r + 1]), r + 1, 0, max(content(T [m + 1]))).

Else, M′(T [m+1], T ′[m+1]) = P (M(T [r], T ′′[r]), r, i+1, max(content(T [m+
1]))).

Now it is easy to verify that invariant is maintained. It also follows that
T ′′ constructed as above is correct sequence of least counterexamples for M
on input T . Moreover, each restricted ‘no’ answer in T ′ corresponds to a least
counterexample in T ′′. Thus, M′ gets exactly as many counterexamples as M
does, and M′ conjectures are ∗-variants of the conjectures of M (except that each
conjecture of M is repeated finitely many times by M′, with finite variations).
It follows that M′ ResBNCnBc∗-identifies L.

Corollary 1. For all n ∈ N , LBNCnBc∗ = BNCnBc∗ = ResBNCnBc∗ =
LBGNCnBc∗ = BGNCnBc∗ = ResBGNCnBc∗.

Our next result in this section shows how BNCBc-learners using just answers
‘yes’ or ‘no’ can simulate LBNCEx∗-learners getting unbounded number of
negative answers/counterexamples.

Proposition 2. LBNCEx∗ ⊆ ResBNCBc.

We now consider error hierarchy for BNCm-learning model.

Theorem 7. For all m, n ∈ N ,
(a) TxtEx2n+1 − LBGNCmBcn �= ∅.
(b) TxtExn+1 − LBGNCmExn �= ∅.
(c) For I ∈ {ResBNCm, BNCm, LBNCm, ResBGNCm, BGNCm,

LBGNCm}, IEx2n ⊆ IBcn.

5 Effects of Counterexamples Being Constrained/
Not-Constrained to Be Short

In this section we explore how, within the framework of our models, short coun-
terexamples fair against arbitrary or least counterexamples (this includes also
the cases when just answers ‘no’ are returned instead of counterexamples).

First, we use a result from [JK06a] to establish that one answer ‘no’ used
by an NCEx-learner can sometimes do more than unbounded number of least
(short) counterexamples used by Bc∗-learners.
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Theorem 8. (based on [JK06a]) ResNC1Ex − LBGNCBc∗ �= ∅.

From [JK06b] we have that, for a ∈ N ∪ {∗}, for I ∈ {Exa,Bca}, LBNCI ⊂
ResNCI. Thus the next result is somewhat surprising. It shows that one short
counterexample can sometimes give a learner more than any bounded number of
least counterexamples. The proof exploits the fact that the learner is not charged
if it does not get a counterexample.

Theorem 9. For all n ∈ N , ResBNC1Ex − LGNCnBc∗ �= ∅.

Proof. Let Aj
k = {〈k, x〉 | x ≤ j}. Let

L = {L | (∃S | card(S) < ∞)(∃f : S → N)[
1. [k, k′ ∈ S ∧ k < k′] ⇒ [〈k, f(k)〉 < 〈k′, 0〉] ∧
2. [L = CYLmax(S) ∪

⋃
k∈S−max(S) A

f(k)
k or

L = {〈max(S), f(max(S) + 2)〉} ∪
⋃

k∈S A
f(k)
k ] ]}.

To see that L ∈ ResBNC1Ex consider the following learner. On input σ, if
no ‘no’ answers are yet received, then the learner first computes k = max({j |
〈j, x〉 ∈ content(σ)}). Then it outputs a grammar for L = CYLk ∪ (content(σ)−
CYLk). If there is a ‘no’ answer which has been received, then the learner
outputs a grammar for content(σ). It is easy to verify that the above learner
ResBNC1Ex-identifies L.

Now suppose by way of contradiction that some M LGNCnBc∗-identifies L.
Let σ0 = σ′

0 = Λ, k0 = 0. Inductively define σi+1, σ′
i+1, f(ki), ki+1 (for i < n) as

follows.
Let σ be smallest extension of σi, if any, such that content(σ) ⊆ CYLki ∪

⋃
i′<i A

f(ki′ )
ki′ and M asks a conjecture-subset question on (σ, σ′

i#
|σ|−|σi|) and

WM(σ,σ′
i#

|σ|−|σi|) contains an element which is not in CYLki ∪
⋃

i′<i A
f(ki′ )
ki′ or is

larger than max(content(σ)).
If there is such a σ, then let σi+1 = σ#, and σ′

i+1 = σ′
i#

|σ|−|σi|w (where w is
the least element in WM(σ,σ′

i#
|σ|−|σi|) which is not in CYLki ∪

⋃
i′<i A

f(ki′ )
ki′ or is

larger than max(content(σ))). Let f(ki) = max({y | 〈ki, y〉 ∈ content(σ)}). Let
ki+1 be such that ki+1 > 〈ki, f(ki)〉 and no element from CYLki+1 is present in
content(σ′

i+1).
Let m be largest value such that σm, σ′

m are defined above. Now, M has
to TxtBc∗-identify both CYLkm ∪

⋃
i<m A

f(km)
km

and Ar
km

∪ {〈km, r + 2〉} ∪
⋃

i<m A
f(ki)
ki

, for all possible r, without any further counterexamples. An im-
possible task by Proposition 1.

The above is the strongest possible result, as ResNCI ⊇ LBNCI (see [JK06b]).
We now consider the complexity (mind change) advantages of having only

short counterexamples. For this purpose, we need to modify the definition of
learner slightly, to avoid biasing the number of mind changes. (This modification
is used only for the rest of the current section).
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Definition 3. A learner is a mapping from SEQ to N ∪ {?}.
A learner M TxtExn-identifies L, iff it TxtEx-identifies L, and for all texts

T for L ∈ L, card({m |? �= M(T [m]) �= M(T [m + 1])}) is bounded by n.

One can similarly define the criteria with mind change bounds for learners receiv-
ing counterexamples. Our next result demonstrates that there exists a TxtEx-
learnable language (that is, learnable just from positive data — without any
subset queries) that can be learned by a BNC1Ex-learner using just one nega-
tive answer and at most one mind change and cannot be learned by Ex-learners
using any number of arbitrary counterexamples and any bounded number of
mind changes.

Theorem 10. There exists a L such that
(a) L ∈ ResBNC1Ex1.
(b) L ∈ TxtEx, and thus in NCEx and GNCEx.
(c) For all m, L �∈ GNCExm.

Proof. Let Ln = {x | x < n or x = n + 1}. Let L = {Ln | n ∈ N}.
Consider the following learner. Initially output a grammar for N . If and when

a ‘no’ answer is received, output a grammar for Ln, where n is the only counterex-
ample received. It is easy to verify that above learner ResBNC1Ex1-identifies
L. Also, it is also easy to verify that L ∈ TxtEx as one could output, in the
limit on text T , a grammar for Ln, for the least n such that n �∈ content(T ).

We now show that L �∈ NCExm. As the number of counterexamples are not
bounded, it follows that L �∈ GNCExm. Suppose by way of contradiction that
M NCExm-identifies L. Then consider the following strategy to construct a
diagonalizing language. We will construct the diagonalizing language in stages.
Construction is non-effective. We will try to define ls and us, and segments σs, σ

′
s

(σ′
s is the sequence of counterexamples), for s ≤ m + 1.
The following invariants will be satisfied.
(A) us − ls = 4m+3−s.
(B) M on proper prefixes of σs has made s different conjectures.
(C) content(σs) ⊆ {x | x < ls}.
(D) None of the conjectures made by M on proper prefixes of σs are for the

language Lr, for ls ≤ r ≤ us.
(E) |σ′

s| = |σs|.
(F) For r < |σs|, σ′

s(r) = #, implies WM(σs[r],σ′
s[r]) ⊆ {x | x < ls}.

(G) For r < |σs|, σ′
s(r) �= #, implies σ′

s(r) ∈ WM(σs[r],σ′
s[r]), and σ′

s(r) >
us + 1.

Initially, we let l0 = 0 and u0 = l0 + 4m+3, and σ0 = σ′
0 = Λ. Note that

invariants are satisfied.

Stage s (for s = 0 to s = m)
1. Let T be a text for Lls which extends σs.
2. Let t ≥ |σs|, be the least value, if any, such that M(T [t], T ′[t]) is a conjecture

different from any conjecture M(T [w], T ′[w]), for w < |σs|, where
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T ′(w) =

⎧
⎪⎨

⎪⎩

σ′
s(w), if w < |σs|;

#, if w ≥ |σs| and M(T [w], T ′[w]) =?;
T ′(r), if w ≥ |σs| and M(T [w], T ′[w]) = M(T [r], T ′[r]),

for some r < |σs|.

(* Note that, in this step, we do not need the definition of T ′(w) when
M(T [w], T ′[w]) makes a new conjecture at or beyond σs. For first such w
(which is t found above) T ′(w) will be defined below). *)

If and when such a t is found, proceed to step 3.
3. Suppose j = M(T [t], T ′[t]).

If Wj contains an element z ≥ ls + 3(us−ls)
4 , then

Let ls+1 = ls + us−ls
4 .

Let us+1 = ls + 2(us−ls)
4 .

Let σs+1 = T [t]#.
Let σ′

s+1 = T ′[t]z.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr, where

ls+1 ≤ r ≤ us+1. *)
Else,

Let ls+1 = ls + 3(us−ls)
4 .

Let us+1 = us.
Let σs+1 = T [t]#.
Let σ′

s+1 = T ′[t]#.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr, where

ls+1 ≤ r ≤ us+1. *)
End stage s

It is easy to verify that invariants are satisfied. (A) clearly holds by definition
of ls+1 and us+1 in step 3. (B) holds as one extra new conjecture is found at
stage s, before proceeding to stage s+1. (C) holds, as ls+1 ≥ ls + us−ls

4 > ls +2,
and content(T ) as defined in step 1 is a subset of Lls . (D) holds by induction,
and noting that the conjecture at T [t] as found in step 2 of stage s, is made
explicitly wrong by appropriate choice of ls+1 and us+1 in step 4. (E) easily
holds by construction. (F) and (G) hold by the definition of σ′

s+1 at step 3.
Now, if step 2 does not succeed at a stage s ≤ m, then clearly M does not

NCEx-identify Lls . On the other hand if stage m does complete then M has
already made m+1 different conjectures (and thus at least m mind changes) on
prefixes of σm+1, which are not grammars for Llm+1 . Thus, M cannot NCExm-
identify Llm+1 .

Let X = {x | x > 0}. If we consider the class L = {Ln | n > 0} ∪ {X}, then we
can get the above result using class preserving learnability (that is, the learner
always uses grammars from the numbering defining the target class of languages
for its conjectures, see [ZL95] for formal definition) for ResBNC1Ex.

Theorem 11. For all m ∈ N , (a) LBNCExm ⊆ LNCExm.
(b) LBGNCExm ⊆ LGNCExm.
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