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Abstract. U-shaped learning is a learning behaviour in which the learner
first learns something, then unlearns it and finally relearns it. Such a
behaviour, observed by psychologists, for example, in the learning of
past-tenses of English verbs, has been widely discussed among psychol-
ogists and cognitive scientists as a fundamental example of the non-
monotonicity of learning. Previous theory literature has studied whether
or not U-shaped learning, in the context of Gold’s formal model of learn-
ing languages from positive data, is necessary for learning some tasks.

It is clear that human learning involves memory limitations. In the
present paper we consider, then, this question of the necessity of U-
shaped learning for some learning models featuring memory limitations.
Our results show that the question of the necessity of U-shaped learning
in this memory-limited setting depends on delicate tradeoffs between
the learner’s ability to remember its own previous conjecture, to store
some values in its long-term memory, to make queries about whether or
not items occur in previously seen data and on the learner’s choice of
hypothesis space.

1 Introduction and Motivation

U-Shaped learning. U-shaped learning occurs when the learner first learns a
correct behaviour, then abandons that correct behaviour and finally returns to it
once again. This pattern of learning has been observed by cognitive and develop-
mental psychologists in a variety of child development phenomena, such as lan-
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guage learning [6, 19, 24], understanding of temperature [24, 25], understanding
of weight conservation [5, 24], object permanence [5, 24] and face recognition [7].

The case of language acquisition is paradigmatic. In the case of the past tense
of English verbs, it has been observed that children learn correct syntactic forms
(call/called, go/went), then undergo a period of overregularization in which they
attach regular verb endings such as ‘ed’ to the present tense forms even in the
case of irregular verbs (break/breaked, speak/speaked) and finally reach a final
phase in which they correctly handle both regular and irregular verbs. This
example of U-shaped learning behaviour has figured so prominently in the so-
called “Past Tense Debate” in cognitive science that competing models of human
learning are often judged on their capacity for modeling the U-shaped learning
phenomenon [19, 22, 26].

Recent interest in U-shaped learning is witnessed by the fact that the Journal
of Cognition and Development dedicated its first issue in the year 2004 to this
phenomenon.

While the prior cognitive science literature on U-shaped learning was typi-
cally concerned with modeling how humans achieve U-shaped behaviour, [2, 8]
are motivated by the question of why humans exhibit this seemingly inefficient
behaviour. Is it a mere harmless evolutionary inefficiency or is it necessary for
full human learning power? A technically answerable version of this question is:
are there some formal learning tasks for which U-shaped behaviour is logically
necessary? The answer to this latter question requires that we first describe some
formal criteria of successful learning.

A learning machine M reads an infinite sequence consisting of the elements
of any language L in arbitrary order with possibly some pause symbols # in
between elements. During this process the machine outputs a corresponding
sequence e0 e1 . . . of hypotheses (grammars) which may generate the language L
to be learned. Sometimes, especially when numerically coded, we also call these
hypotheses indices. A fundamental criterion of successful learning of a language
is called explanatory learning (Ex-learning) and was introduced by Gold in [13].
Explanatory learning requires that the learner’s output conjectures stabilize in
the limit to a single conjecture (grammar/program, description/explanation)
that generates the input language.

For each such criterion, a non U-shaped learner is naturally modeled as a
learner that never semantically returns to a previously abandoned correct con-
jecture on languages it learns according to that criterion. It is shown in [2] that
every Ex-learnable class of languages is Ex-learnable by a non U-shaped learner,
that is, for Ex-learnability, U-shaped learning is not necessary. In [2], it is also
noted that, by contrast, for behaviourally correct learning, U-shaped learning is
necessary for full learning power. In [8] it is shown that, for non-trivial vacilla-
tory learning, U-shaped learning is again necessary for full learning power.

Memory-Limited Learning. It is clear that human learning involves memory
limitations. In the present paper we consider the necessity of U-shaped learning
in formal memory-limited versions of language learning. In the prior literature
at least the following three types of memory-limited learning have been studied.
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A most basic concept of memory-limited learning is iterative learning [18, 28],
according to which the learner reacts to its current data item, can remember its
own last conjecture but cannot store any of the strictly previously seen data items.

Iterative learning admits of learning non-trivial classes. For example, the class
of finite sets is iteratively learnable as is a class of self-describing sets, for ex-
ample, the class of languages with the least element coding a grammar for the
language. Furthermore, for each m ≥ 1, the class of unions of m of Angluin’s [1]
pattern languages is iteratively learnable [11].

The criterion of n-feedback learning is a variant of iterative learning where,
in addition, the learner can make n simultaneous queries asking whether some
datum has been seen in the past [11, 18]. Finally, a learner is called an n-bounded
example memory learner [11, 18, 21] if, besides reacting to its currently seen data
item and remembering its own last conjecture, it is allowed to store in “long
term memory” at most n strictly previously seen data items.

For the present paper, our first intention was to study the impact of forbidding
U-shaped learning in each of the above three models of memory-limited learning.
So far we have had success for these problems only for some more restricted
variants of the three models. Hence, we now describe these variants.

Our variants of iterative learning are motivated by two aspects of Gold’s
model.

The first aspect is the absolute freedom allowed regarding the semantic rela-
tions between successive conjectures, and between the conjectures and the input.
Many forms of semantic constraints on the learner’s sequence of hypotheses have
been studied in the previous literature (for example, conservativity [1], consis-
tency [1, 3], monotonicity [15, 29], set-drivenness [27]) and it is reasonable to
explore their interplay with U-shaped learning in the memory-bounded setting
of iterative learning.

Secondly, it is well-known that the choice of the hypothesis space from which
the learner can pick its conjectures has an impact on the learning power [17, 18].
We accordingly also consider herein U-shaped iterative learning with restrictions
on the hypothesis space.

For the case of feedback learning, we introduce and consider a model called
n-memoryless feedback learning which restricts n-feedback learning so that the
learner does not remember its last conjecture. These criteria form a hierarchy
of more and more powerful learning criteria increasing in n and, for n > 0,
are incomparable to iterative learning. The criterion of 0-memoryless feedback
learning is properly contained in the criterion of iterative learning.

Finally, we introduce a more limited variant of bounded example memory,
c-bounded memory states learning for which the learner does not remember its
previous conjecture but can store any one out of c different values in its long
term memory [12, 16]. For example, when c = 2k, the memory is equivalent to
k bits of memory. By Theorem 16, these criteria form a hierarchy of more and
more powerful learning criteria increasing in c. Furthermore, the comparisons
between bounded memory states learning, iterative learning and memoryless
feedback learning are presented in Remark 17.
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Non U-Shaped Learning. Our main objective is to investigate the relations
of above discussed notions of memory limited learning with respect to non U-
shapedness. In Section 3 we investigate this question first with respect to iter-
ative learning and state the major open problem whether non U-shapedness is
restrictive for iterative learning. In this regard, Theorem 5 shows that U-shaped
learning is necessary for the full learning power of class-preserving iterative learn-
ing [18].

In Section 4 we study, in the context of iterative learning, the relation of the
non U-shapedness constraint to other well studied constraints on the seman-
tic behaviour of the learner’s conjectures. We consider class-consistent learning
[1, 3], according to which the learner’s conjectures, on the languages it learns,
must generate all the data on which they are based. Monotonic learning by a
machine M [29] requires that, on any input language L that M Ex-learns, a new
hypothesis cannot reject an element x ∈ L that a previous hypothesis already
included. Theorem 9 shows that class-consistent iterative learners can be turned
into iterative non U-shaped and monotonic learners.

In Section 5, we consider the impact of forbidding U-shaped learning for n-
memoryless feedback learning. Theorem 12 shows that U-shaped learning is nec-
essary for the full learning power of n-memoryless feedback learners.

In Section 6, Theorem 18 shows that U-shaped behaviour does not enhance
the learning power of 2-bounded memory states learners, that is, learners having
1 bit of memory.

Note. Our results herein on memory-limited models are presented only for Ex-
learning. Furthermore, because of space limitations, many proofs and some re-
sults have been omitted. We refer the reader to [9] for details.

2 Notation and Preliminaries

For general background on Recursion Theory and any unexplained recursion
theoretic notation, we refer the reader to [20]. The symbol N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}. Cardinality of a set S is denoted by card(S).
card(S) ≤ ∗ denotes that S is finite. We let 〈·, ·〉 stand for Cantor’s computable,
bijective mapping 〈x, y〉 = 1

2 (x+ y)(x+ y +1)+x from N× N onto N. Note that
〈·, ·〉 is monotonically increasing in both of its arguments.

By ϕ we denote a fixed acceptable numbering (programming system) for the
partial-recursive functions mapping N to N. By ϕi we denote the partial-recursive
function computed by the program with number i in the ϕ-system. By Φ we
denote an arbitrary fixed Blum complexity measure [4] for the ϕ-system. By Wi

we denote the domain of ϕi. That is, Wi is then the recursively enumerable (r.e.)
subset of N accepted by the ϕ-program i. The symbol L ranges over classes of
r.e. sets and L, H range over r.e. sets. By L, we denote the complement of L,
that is N − L. By Wi,s we denote the set {x ≤ s : Φi(x) ≤ s}.

Quite frequently used in this paper is the existence of a one-one recursive func-
tion pad(e, X) with Wpad(e,X) = We, where — according to the context — X
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might be a number, a finite set or a finite sequence. In particular, pad is chosen
such that e, X can be computed from pad(e, X) by a recursive function.

We now present concepts from language learning theory [13, 14]. A sequence
σ is a mapping from an initial segment of N into (N∪{#}). The empty sequence
is denoted by λ. The content of a sequence σ, denoted content(σ), is the set
of natural numbers in the range of σ. The length of σ, denoted by |σ|, is the
number of elements in σ. So, |λ| = 0. For n ≤ |σ|, the initial sequence of σ of
length n is denoted by σ[n]. So, σ[0] is λ.

Intuitively, the pause-symbol # represents a pause in the presentation of data.
We let σ, τ and γ range over finite sequences. We denote the sequence formed
by the concatenation of τ at the end of σ by στ . (N ∪ {#})∗ denotes the set of
all finite sequences.

A text T for a language L is a mapping from N into (N ∪ {#}) such that L
is the set of natural numbers in the range of T . T (i) represents the (i + 1)-th
element in the text. The content of a text T , denoted by content(T ), is the set
of natural numbers in the range of T ; that is, the language which T is a text for.
T [n] denotes the finite initial sequence of T with length n. We now define the
basic paradigm of learning in the limit, explanatory learning.

Definition 1. A learner M : (N ∪ {#})∗ → (N ∪ {?}) is a (possibly partial)
recursive function which assigns hypotheses to finite strings of data. M Ex-
learns a class L (equivalently M is an Ex-learner for L) iff, for every L ∈ L and
every text T for L, M is defined on all initial segments of T , and there is an
index n such that M(T [n]) 
= ?, WM(T [n]) = L and M(T [m]) ∈ {M(T [n]), ?}
for all m ≥ n. Ex denotes the collection of all classes of languages that can be
Ex-learned from text.

For Ex-learnability one may assume without loss of generality that the learner
is total. However, for some of the criteria below, such as class consistency and
iterative learning, this cannot be assumed without loss of generality. The require-
ment for M to be defined on each initial segment of each text for a language in
L is also assumed for learners with other criteria considered below.

Now we define non U-shaped learning. A non U-shaped learner never makes
the sequence correct–incorrect–correct while learning a language that it actually
learns. Thus, since such a learner has eventually to be correct, one can make the
definition a bit simpler than the idea behind the notion suggests.

Definition 2. [2] (a) We say that M is non U-shaped on text T , if M never
makes a mind change from a conjecture for content(T ) to a conjecture for a
different set.

(b) We say that M is non U-shaped on L if M is non U-shaped on each text
for L. We say that M is non U-shaped on L if M is non U-shaped on each L ∈ L.

(c) Let I be a learning criterion. Then NUI denotes the collection of all classes
L such that there exists a machine M that learns L according to I and is non
U-shaped on L.
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3 Iterative Learning

The Ex-model makes the assumption that the learner has access to the full
history of previous data. On the other hand it is reasonable to think that humans
have more or less severe memory limitations. This observation motivates, among
other criteria discussed in the present paper, the concept of iterative learning.
An iterative learner features a severe memory limitation: it can remember its
own previous conjecture but not its past data items. Moreover, each conjecture
of an iterative learner is determined as an algorithmic function of the previous
conjecture and of the current input data item.

Definition 3. [27] An iterative learner is a (possibly partial) function M : (N∪
{?}) × (N ∪ {#}) → (N ∪ {?}) together with an initial hypothesis e0 ∈ N ∪ {?}.
M It-learns a class L iff, for every L ∈ L and every text T for L, the sequence
e0, e1, . . . defined inductively by the rule en+1 = M(en, T (n)) satisfies: there
exists an m such that em is an index for L and for all n ≥ m, en ∈ {em, ?}. It
denotes the collection of all iteratively learnable classes.

For iterative learners (without other constraints), one may assume without loss
of generality that they never output ?.

It is well-known that It ⊂ Ex [28]. On the other hand, iterative learning is
not restrictive for behaviourally correct learning. Thus, all our notions regarding
iterative learning will be modifications of the basic Ex-learning paradigm.

In [2] the main question regarding the necessity of U-shaped behaviour in
the context of Ex-learning was answered in the negative. It was shown that
Ex = NUEx, meaning that every Ex-learnable class can be learned by a
non U-shaped Ex-learner. However, non U-shaped learning is restrictive for
behaviourally correct learning and vacillatory learning [8]. Similarly, non U-
shaped learning may become restrictive when we put memory limitations on
Ex-learning. Our main motivation for the results presented in this section is the
following problem, which remains open.

Problem 4. Is It = NUIt?

Many results in the present work were obtained in order to approximate an
answer to this open problem.

We now briefly recall some basic relations of iterative learning with two criteria
of learning that feature, like non U-shaped learning, a semantic constraint on
the learner’s sequence of hypotheses.

The first such notion is set-driven learning [27], where the hypotheses of a
learner on inputs σ, τ are the same whenever content(σ) = content(τ). We denote
by SD the collection of all classes learnable by a set-driven learner. It is shown
in [16, Theorem 7.7] that It ⊂ SD.

A criterion that implies non U-shapedness is conservative learning [1]. A
learner is conservative iff whenever it make a mind change from a hypothesis
i to j then it has already seen some datum x /∈ Wi. Consv denotes the collec-
tion of all classes having a conservative learner.
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It is shown in [16] that SD ⊆ Consv, thus, It ⊂ Consv. By definition, every
hypothesis abandoned by a conservative learner is incorrect and thus Consv ⊆
NUEx follows. It is well known that the latter inclusion is proper. The easiest
way to establish it is to use Angluin’s proper inclusion Consv ⊂ Ex [1] and the
equality from Ex = NUEx [2].

Normally, in Gold-style language learning, a learner outputs as hypotheses
just indices from a fixed acceptable enumeration of all r.e. languages, since all
types of output (programs, grammars and so on) can be translated into these
indices. There have also been investigations [1, 17, 18] where the hypothesis space
is fixed in the sense that the learner has to choose its hypotheses either from
this fixed space (exact learning) or from a space containing exactly the same
languages (class-preserving learning).

We introduce a bit of terminology (from [1]) to explain the notion. An infinite
sequence L0, L1, L2, . . . of recursive languages is called uniformly recursive if the
set {〈i, x〉 : x ∈ Li} is recursive. A class L of recursive languages is said to be
an indexed family of recursive languages if L = {Li : i ∈ N} for some uniformly
recursive sequence L0, L1, L2, . . .; the latter is called a recursive indexing of L. As
indexed families are quite well-behaved, Angluin found a nice characterization
for when an indexed family is explanatorily learnable and they became a frequent
topic for the study of more restrictive notions of learnability as, for example, in
[12, 17, 18].

Let L be an indexed family of recursive sets. We say that a machine M
explanatorily identifies L using a hypothesis space L0, L1, L2, . . . iff M, for every
L ∈ L and for every text for L, M converges to some j such that L = Lj. The
hypothesis space L0, L1, L2, . . . is class preserving for L iff it contains all and
only the languages in L. In what follows, for a learning criterion I, Icp stands
for class-preserving I-learning, the collection of all classes of languages that can
be I-learned by some learner using a class-preserving hypothesis space.

Theorem 5. There exists an indexed family in Itcp − NUExcp.

The positive side can be done using an indexed (recursive) family as hypothesis
space, whereas the diagonalization against negative side can be done for any r.e.
class preserving hypothesis space.

4 Consistent and Monotonic Iterative Learning

Forbidding U-shapes is a semantic constraint on a learner’s sequence of con-
jectures. In this section we study the interplay of this constraint with other
well-studied semantic constraints, but in the memory-limited setting of iterative
learning.

We now describe and then formally define the relevant variants of semantic
constraints on the sequence of conjectures. Consistent learning was introduced
in [3] (in the context of function learning) and essentially requires that the
learner’s conjectures do not contradict known data, strong monotonic learning
was introduced in [15] and requires that semantically the learner’s conjectures on
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every text for any language (even the ones that the learner does not learn) are set-
theoretically nondecreasing. Monotonic learning, as introduced in [29], relaxes
the condition of strong-monotonicity by requiring that, for each language L that
the learner actually learns, the intersection of L with the language generated by
a learner’s conjecture is a superset of the intersection of L with the language
generated by any of the learner’s previous conjectures.

Definition 6. [3, 15, 29] A learner M is consistent on a class L iff for all L ∈ L
and all σ with content(σ) ⊆ L, M(σ) it defined and an index of a set containing
content(σ). Cons denotes the collection of all classes which have a Ex-learner
which is consistent on the class of all sets. ClassCons denotes the collection of
all classes L which have a Ex-learner which is consistent on L.

A learner M is strong monotonic iff Wi ⊆ Wj whenever M outputs on any
text for any language at some time i and later j. SMon denotes the collection
of all classes having a strong monotonic Ex-learner.

A learner M for L is monotonic iff L ∩ Wi ⊆ L ∩ Wj whenever M outputs on
a text for some language L ∈ L at some time i and later j. Mon denotes the
criterion of all classes having a monotonic Ex-learner.

Note that there are classes L ∈ ClassCons such that only partial learners wit-
ness this fact. Criteria can be combined. For example, ItCons is the criterion
consisting of all classes which have an iterative and consistent learner. The in-
dication of an oracle as in the criterion ItConsSMon[K] below denotes that
a learner for the given class must on the one hand be iterative, consistent and
strong-monotonic while on the other hand the constraint of being recursive is
weakened to the permission to access a halting-problem oracle for the inference
process. The next result gives some basic connections between iterative, strongly
monotonic and consistent learning.

Theorem 7. (a) ItCons ⊆ ItConsSMon.
(b) ConsSMon ⊆ ItConsSMon.
(c) ItSMon ⊆ NUIt.
(d) SMon ⊆ ItConsSMon[K].

Proof. (a) Given an iterative consistent learner M for L, let — as in the case
of normal learners — M(σ) denote the hypothesis which M makes after hav-
ing seen the sequence σ. Now define a recursive one-one function f such that,
for every index e, Wf(e) =

⋃
σ∈{σ′:M(σ′)=e} content(σ). Since M is consistent,

content(σ) ⊆ WM(σ) for all σ and so Wf(e) ⊆ We. The new learner N is the
modification of M which outputs f(e) instead of e; N is consistent since when-
ever one can reach a hypothesis e through a string containing a datum x then
x ∈ Wf(e). Since f is one-one, N is also iterative and follows the update rule
N(f(e), x) = f(M(e, x)).

It is easy to see that N is strongly monotonic: Assume that M(e, y) = e′ and
x is any element of Wf(e). Then there is a σ with M(σ) = e and x ∈ content(σ).
It follows that M(σy) = e′, x ∈ content(σy) and x ∈ Wf(e′). So Wf(e) ⊆ Wf(e′)
and the transitiveness of the inclusion gives the strong monotonicity of N.
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It remains to show that N learns L. Let L ∈ L and T be a text for L and e
be the index to which M converges on T . The learner N converges on T to f(e).
Since We = L it holds that Wf(e) ⊆ L. Furthermore, for every n there is m > n
with M(T [m]) = e, thus T (n) ∈ Wf(e) and L ⊆ Wf(e). This completes the proof
of part (a).

(b) A consistent learner never outputs ?. Now, given a strong monotonic and
consistent learner M for some class L, one defines a recursive one-one function
f : (N ∪ {#})∗ → N such that

Wf(σ) = WM(σ) ∪ content(σ)

and initializes a new iterative learner N with the hypothesis f(λ) and the fol-
lowing update rule for the hypothesis f(σ) and observed datum x:

– If M(σx) = M(σ) then N(f(σ), x) = f(σ);
– If M(σx) 
= M(σ) then one takes the length-lexicographic first extension τ of

σx such that WM(η),|σ| ⊆ content(τ), for all η � σ, and defines N(f(σ), x) =
f(τ).

Note that in the second case, content(τ) = content(σx) ∪ (
⋃

η�σ WM(η),|σ|) and
that the length-lexicographic ordering is just taken to single out the first string
with this property with respect to some ordering. The new iterative learner is
strongly monotonic since whenever it changes the hypothesis then it does so from
f(σ) to f(τ), for some τ extending σ, and thus Wf(σ) = content(σ) ∪ WM(σ) ⊆
content(τ) ∪ WM(τ) = Wf(τ) as M is strong monotonic. Furthermore, N is
also consistent: whenever it sees a number x outside Wf(σ) then x is also outside
WM(σ) and M(σx) 
= M(σ) by the consistency of M. Then the new τ constructed
contains x explicitly and therefore x ∈ WN(f(σ),x). By the strong monotonicity
of N, an element once incorporated into a hypothesis is also contained in all
future hypotheses. So it remains to show that N actually learns L.

Given L ∈ L and a text T for L, there is a sequence of strings σ0, σ1, . . . such
that σ0 = λ and N(f(σn), T (n)) = f(σn+1). By induction one can show that
σn ∈ (L ∪ {#})∗ and WM(σn) ⊆ L for all n. There are two cases.

First, there is an n such that σm = σn for all m ≥ n. Then L ⊆ Wf(σn) since
N is a consistent learner and eventually converges to this hypothesis on the text
L. Furthermore, Wf(σn) ⊆ L as mentioned above, so N learns L.

Second, for every n there is an m > n such that σm is a proper extension of
σn. Let T ′ be the limit of all σn. One can easily see that T ′ contains data from
two sources, some items taken over from T and some elements taken from sets
WM(η) with η � σn for some n; since M is strong monotonic these elements
are all contained in L and so content(T ′) ⊆ L. Furthermore, for every n the
element T (n) is contained in Wf(σn+1) and thus there is an extension σk of σn+1
which is so long that T (n) ∈ WM(σn+1),|σk| ∪ content(σn+1). If then for some
m ≥ k the string σm+1 is a proper extension of σm, then T (n) ∈ content(σm+1).
As a consequence, T ′ is a text for L on which M converges to a hypothesis e.
Then, one has that for all sufficiently large m, where σm+1 is a proper extension
of σm, σm+1 is actually an extension of σmT (m) and M(σmT (m)) = M(σm),
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which would by construction enforce that N does not update its hypothesis and
σm+1 = σm. By this contradiction, the second case does not hold and the first
applies, thus M learns L. This completes the proof of part (b).

(c) follows from the definition and (d) can be proved using techniques similar to
part (b). ��

Thus, ItCons and ConsSMon are contained in NUIt. Regarding part (d)
above, it can be shown that one can replace K only by oracles A ≥T K. Thus
K is the optimal oracle in part (d).

Note that the proof of Theorem 7 (a) needs that the learner is an ItCons-
learner and not just an ItClassCons-learner. In the latter case, the inference
process cannot be enforced to be strong-monotonic as the following example
shows.

Example 8. The class L containing the set {0, 2, 4, 6, 8, . . .} of even numbers
and all sets {0, 2, 4, . . . , 2n}∪ {2n+ 1} with n ∈ N is in ItClassCons−SMon.

So class-consistent, iterative learners cannot be made strong monotonic, even
with an oracle. However, the next result shows that they can still be made
monotonic, and, simultaneously, non U-shaped.

Theorem 9. ItClassCons ⊆ NUItMon.

5 Memoryless Feedback Learning

An iterative learner has a severe memory limitation: it can store no previously
seen data. On the other hand, crucially, an iterative learner remembers its pre-
vious conjecture. In this section we introduce a model of learning in which the
learner does not remember its last conjecture and can store no previous input
data. The learner is instead allowed to make, at each stage of its learning process,
n feedback queries asking whether some n data items have been previously seen.
We call such learners n-memoryless feedback learners. Theorem 12 shows that
U-shaped behaviour is necessary for the full learning power of n-memoryless
feedback learning.

Definition 10. Suppose n ≥ 0. An n-memoryless feedback learner M has as
input one datum from a text. It then can make n-queries which are calculated
from its input datum. These queries are as to whether some n data items were
already seen previously in the text. From its input and the answers to these
queries, it either outputs a conjecture or the ? symbol. That is, given a language L
and a text T for L, M(T (k)) is determined as follows: First, n-values qi(T (k)), i =
1, . . . , n, are computed. Second, n bits bi, i = 1, . . . , n are determined and passed
on to M, where each bi is 1 if qi(T (k)) ∈ content(T [k]) and 0 otherwise. Third,
an hypothesis ek is computed from T (k) and the bi’s. M MLFn-learns L if, for
all T for L, for M on T , there is an k such that Wek

= L and em ∈ {?, ek} for
all m > k. MLFn denotes the class of all classes learnable by a n-memoryless
feedback learner.
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Theorem 11. For all n > 0, NUMLFn+1 
⊆ MLFn.

It can be shown that It and MLFn are incomparable for all n > 0. The next
result shows that non U-shaped n-memoryless feedback learners are strictly less
powerful than unrestricted n-memoryless feedback learners.

Theorem 12. For n > 0, NUMLFn ⊂ MLFn.

Proof Sketch. Let F (e) = max({1 + ϕi(e) : i ≤ e and ϕi(e)↓ } ∪ {0}). Note
that F grows faster than any partial or total recursive function. Based on this
function F one now defines the family L = {L0, L1, L2, . . .} ∪ {H0, H1, H2, . . .}
where

Le = {〈e, x〉 : x < F (e) or x is even};
He = {〈e, x〉 : x < F (e) or x is odd}.

We first show that L ∈ MLF1. Note that the learning algorithm cannot store the
last guess due to its memory limitation but might output a ‘?’ in order to repeat
that hypothesis. The parameter e is visible from each current input except ‘#’.
The algorithm is the following:

If the new input is # or if the input is 〈e, x〉 and the Feedback says that
〈e, x + 1〉 has already appeared in the input earlier, then output ?. Otherwise,
if input is 〈e, x〉 and 〈e, x + 1〉 has not yet appeared in input, then output a
canonical grammar for Le (He) if x is even (odd).

Consider any text T for Le. Let n be such that content(T [n]) ⊇ Le ∩
{〈e, x〉 : x ≤ F (e) + 1}. Then, it is easy to verify that, the learner will either
output ? or a conjecture for Le beyond T [n]. On the other hand, for any even
x > F (e), if T (m) = 〈e, x〉, then the learner outputs a conjecture for Le after
having seen T [m + 1] (this happens infinitely often, by definition of Le). Thus,
the learner MLF1-identifies Le. Similar argument applies for He. A detailed case
analysis shows that L /∈ NUMLF1, see [9]. ��

Proposition 13. NUIt 
⊆ NUMLF1.

Finally, an iterative total learner that can store one selected previous datum is
called a Bem1-learner (1-bounded example memory learner) in [11, 21]. One can
also consider a “memoryless” version of this concept, where a learner does not
memorize its previous hypothesis, but, instead, memorizes one selected previous
datum.

Proposition 14. NUBem1 
⊆ NUMLF1.

6 Bounded Memory States Learning

Memoryless feedback learners store no information about the past. Bounded
memory states learners, introduced in this section, have no memory of previous
conjectures but can store a bounded number of values in their long term memory.
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This model allows one to separate the issue of a learner’s ability to remember
its previous conjecture from the issue of a learner’s ability to store information
about the previously seen input. Similar models of machines with bounded long
term memory are studied in [16]. We now proceed with the formal definition.

Definition 15. [16] For c > 0, a c-bounded memory states learner is a (possibly
partial) function

M : {0, 1, . . . , c − 1} × (N ∪ #) → (N ∪ {?}) × {0, 1, . . . , c − 1}

which maps the old long term memory content plus a datum to the current
hypothesis plus the new long term memory content. The long term memory has
the initial value 0. There is no initial hypothesis.

M learns a class L iff, for every L ∈ L and every text T for L, there is a se-
quence a0, a1, . . . of long term memory contents and e0, e1, . . . of hypotheses and
a number n such that, for all m, a0 = 0, Wen = L, M(am, T (m)) = (em, am+1)
and m ≥ n ⇒ em ∈ {?, en}. We denote by BMSc the collection of classes
learnable by a c-bounded memory states learner.

Theorem 16. For all c > 1, BMSc−1 ⊂ BMSc.

Remark 17. One can generalize BMSc to ClassBMS and BMS. The learners
for these criteria use natural numbers as long term memory. For ClassBMS we
have the additional constraint that for every text of a language inside the learnt
class, there is a constant c depending on the text such that the value of the
long term memory is never a number larger than c. For BMS the corresponding
constraint applies to all texts for all sets, even those outside the class.

One can show that ClassBMS = It. Furthermore, a class is in BMS iff it
has a confident iterative learner, that is, an iterative learner which converges on
every text, whether this text is for a language in the class to be learned or not.

It is easy to see that
⋃

c BMSc ⊂ BMS ⊂ ClassBMS. Furthermore, MLF0 =
BMS1 = NUMLF0 = NUBMS1, which are nontrivial. One can also show that
MLFm and BMSn are incomparable for all m > 0 and n > 1.

We now give the main result of the present section, showing that every 2-bounded
memory states learner can be simulated by a non U-shaped one.

Theorem 18. BMS2 ⊆ NUBMS2.

Proof Sketch. Suppose M witnesses L ∈ BMS2. We assume without loss of
generality that M does not change its memory on input #, as otherwise we could
easily modify M to work without any memory.

In the following, “∗” stands for the case that the value does not matter and
in all (legal) cases the same is done.

Define a function P such that P (?) =? and, for e ∈ N, P (e) is an index of the
set WP (e) =

⋃
s∈S(e) We,s where S(e) is the set of all s satisfying either (a) or

((b) and (c) and (d)) below:

(a) There exists an x ∈ We,s, M(1, x) = (∗, 0);
(b) For all x ∈ We,s, [M(0, x) = (∗, 1) ⇒ M(1, x) = (?, 1)];
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(c) There exists an x ∈ We,s, M(0, x) = (?, 1) or for all x ∈ We,s, M(0, x) =
(∗, 0);

(d) For all x ∈ We,s ∪ {#}, [M(0, x) = (j, ∗) ⇒ We,s ⊆ Wj ∧ Wj,s ⊆ We].

Now we define for all m ∈ {0, 1}, j ∈ N ∪ {?} and x ∈ N ∪ {#},

N(m, x) =

⎧
⎪⎨

⎪⎩

(P (j), 0), if m = 0 and M(0, x) = (j, 0);
(j, 1), if m = 0 and ((M(0, x) = (j, 1) and M(1, x) = (?, ∗))

or (M(0, x) = (∗, 1) and M(1, x) = (j, ∗) and j 
=?));
(j, 1), if m = 1 and M(1, x) = (j, ∗).

A detailed case analysis shows that N NUBMS2-identifies L, see [9]. ��

7 Conclusions and Open Problems

Numerous results related to non U-shaped learning for machines with severe
memory limitations were obtained. In particular, it was shown that

– there are class-preservingly iteratively learnable classes that cannot be learn-
ed without U-shapes by any iterative class-preserving learner (Theorem 5),

– class-consistent iterative learners for a class can be turned into iterative non
U-shaped and monotonic learners for that class (Theorem 9),

– for all n > 0, there are n-memoryless feedback learnable classes that cannot
be learned without U-shapes by any n-memoryless feedback learner (Theo-
rem 12) and, by contrast,

– every class learnable by a 2-bounded memory states learner can be learned
by a 2-bounded memory states learner without U-shapes (Theorem 18).

The above results are, in our opinion, interesting in that they show how the im-
pact of forbidding U-shaped learning in the context of severely memory-limited
models of learning is far from trivial. In particular, the tradeoffs that our results
reveal between remembering one’s previous conjecture, having a long-term mem-
ory, and being able to make feedback queries are delicate and perhaps surprising.
The following are some of the main open problems.

– Is NUIt ⊂ It?
– Is MLF1 ⊆ NUMLFn, for n > 1?
– Is BMSc ⊆ NUBMSc, for c > 2?

Also, the question of the necessity of U-shaped behaviour with respect to the
stronger memory-limited variants of Ex-learning (bounded example memory and
feedback learning) from the previous literature [11, 18] remains wide open. Hu-
mans can remember much more than one bit and likely retain something of their
prior hypotheses; furthermore, they have some access to knowledge of whether
they’ve seen something before. Hence, the open problems of this section may
prove interesting for cognitive science.
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