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Abstract. The present paper introduces a new model for teaching ran-
domized learners. Our new model, though based on the classical teach-
ing dimension model, allows to study the influence of various parameters
such as the learner’s memory size, its ability to provide or to not provide
feedback, and the influence of the order in which examples are presented.
Furthermore, within the new model it is possible to investigate new as-
pects of teaching like teaching from positive data only or teaching with
inconsistent teachers.

Furthermore, we provide characterization theorems for teachability
from positive data for both ordinary teachers and inconsistent teachers
with and without feedback.

1 Introduction

A natural teaching model consists of a teacher giving examples to a set of
students with the goal that all students eventually hypothesize a certain tar-
get concept. Typically the admissible students are deterministic learning algo-
rithms and the teaching performance is measured with respect to the worst
case student. In the present paper we modify this model by assuming a partly
randomized student and by measuring teaching performance in an average case
fashion.

Our model is based on the teaching model introduced independently, and in
different forms, by Shinohara and Miyano [19], Goldman et al. [11], Goldman
and Kearns [9] as well as Anthony et al. [5]. Here, a teacher has to give enough
examples to uniquely identify the target concept among all concepts in a given
class. Thus, the students are all deterministic consistent learning algorithms.

By varying the set of admissible learners, the influence of different properties
of the learners on the teaching process can be studied. For example, learners
with limited memory should be harder to teach, whereas learners that show
their current hypothesis to the teacher should ease the teaching process.

Let us consider the concept class of all Boolean functions over {0, 1}n. To teach
a concept to all consistent learning algorithms, the teacher must present all 2n

examples. Teaching a concept to all consistent learners that can memorize less
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than 2n examples is impossible; there is always a learner with a consistent, but
wrong hypothesis. So teaching gets indeed harder, but in a rather abrupt way.
Moreover, it does not matter whether or not the teacher knows the learner’s
hypothesis, since there are deterministic learners choosing their next hypothesis
independently of their current one.

It seems that the worst case analysis style makes it impossible to investigate
the influence of memory limitations or learner’s feedback. A common remedy
for this is to perform an average case analysis instead. In the present paper, we
propose a rather radical approach, i.e., we replace the set of learners by a single
one that is intended to represent an “average learner.”

We achieve this goal by substituting the set of deterministic learners by a
single randomized one. Basically, such a learner picks a hypothesis at random
from all hypotheses consistent with the known examples. Teaching is successful
as soon as the learner hypothesizes the target concept. For ensuring that the
learner maintains this correct hypothesis, we additionally require the learner to
be conservative, i.e., it can change its hypotheses only on examples that are
inconsistent with its current hypothesis. The complexity of teaching is measured
by the expected teaching time (cf. Section 2).

Next, we explain why this model should work. Intuitively, since at every round
there is a chance to reach the target, the target will eventually be reached even if,
for instance, the randomized learner can only memorize few examples. Moreover,
the ability of the teacher to observe the learner’s current hypothesis should be
advantageous, since it enables the teacher to teach an inconsistent example in
every round. Recall that only these examples can cause a hypothesis change. In
Section 3, we show these intuitions to be valid.

Randomized learners show another phenomenon, too: The complexity of the
teaching process now does not only depend on the examples, but also on the
order in which they are given.

The randomized teaching model can be regarded as a Markov Decision Process.
Such processes have been studied for several decades and we will make use of some
results from this theory (cf. Subsection 2.3).

Sections 4 and 5 study teaching with and without feedback, respectively.
Here, we focus on computing the optimal teaching times. In Sections 6 to 8 we
study variations of our model: teaching from positive data, inconsistent teachers
and another restriction on teachers. Theorems characterizing teachability within
these model are shown.

Note that there are also other approaches to teaching. They differ from the one
discussed here, since the learner is not given, but constructed to fit to the teacher.
One such model is learning from good examples (cf. Freivalds et al. [8] and Jain
et al. [13]). Jackson and Tomkins [12] as well as Goldman and Mathias [10] and
Mathias [15] defined models of teacher/learner pairs. In their models, a kind of
adversary disturbing the teaching process is necessary to avoid collusion between
the teacher and the learner. Angluin and Kriķis’ [3, 4] model prevents collusion
by giving incompatible hypothesis spaces to teacher and learner.
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2 Preliminaries

2.1 Notations

Set inclusion and proper set inclusion is denoted by “⊆” and “⊂,” respectively.
For numbers a, b with a < b we write [a, b] to denote the set {a, a + 1, . . . , b} or
{a, a + 1, . . . } if b = ∞.

Let X be a finite instance space and X = X × {0, 1} the corresponding set of
examples. A concept class is a set C ⊆ 2X of concepts c ⊆ X . An example (x, v)
is positive if v = 1 and negative if v = 0. We denote the set of all examples for
a concept c by X (c) = {(x, v) v = 1 ⇐⇒ x ∈ c} ⊂ X . An example (x, v) is
called consistent with c iff (x, v) ∈ X (c).

A teaching set for a concept c ∈ C with respect to C is a set S of examples such
that c is the only concept in C consistent with S. The teaching dimension TD(c)
is the size of the smallest teaching set. We set TD(C) := max{TD(c) c ∈ C}.

For any set S, we denote by S∗ the set of all finite lists of elements from S, by
Sm and S≤m the set of all lists with length m and at most length m, respectively.
The operator ◦μ concatenates a list of length at most μ with a single element
resulting in a list of length at most μ: 〈x1, . . . , x�〉 ◦μ 〈y〉 equals 〈x1, . . . , x�, y〉 if
� < μ and 〈x2, . . . , x�, y〉 if � = μ. We regard ◦∞ as the usual list concatenation.
For a list x of examples, we set C(x) = {c ∈ C x is consistent with c}.

We denote by Mn the concept class of monomials over {0, 1}n. We exclude
the empty concept from Mn and can thus identify each monomial with a string
from {0, 1, ∗}n and vice versa. Dn is the set of all 2n concepts over [1, n]. The
singleton classes are defined as Sn = {{x} x ∈ [1, n]}.

2.2 The Teaching Model

The teaching process is divided into rounds. In each round the teacher gives the
learner an example of a target concept. The learner memorizes this example and
computes a new hypothesis based on its last hypothesis and the known examples.

The Learner. In a sense, consistency is a minimum requirement for a learner.
We thus require our learners to be consistent with all examples they know.
However, the hypothesis is chosen at random from all consistent ones.

The memory of our learners may be limited to μ ≥ 1 examples. If the memory
is full and a new example arrives, the oldest example is erased. In other words,
the memory works like a queue. Setting μ = ∞ models unlimited memory.

The goal of teaching is making the learner to hypothesize the target and to
maintain it. Consistency alone cannot guarantee this behavior if the memory is
too small. In this case, there is more than one consistent hypothesis at every
round and the learner would oscillate between them rather than maintaining a
single one. To avoid this, conservativeness is required, i.e., the learner can change
its hypothesis only when taught an example inconsistent with its current one.

To study the influence of the learners’ feedback to the teacher, we distinguish
between private and public output of the learner. The private output is the result
of the calculation during a round (i.e., new memory content and hypothesis), the
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public output is that part of the private one observable by the teacher. So, if
the learner gives feedback, the teacher can observe in every round the complete
hypothesis computed by the learner. If the learner does not give feedback, the
teacher can observe nothing.

The following algorithm describes the behavior of the μ-memory learner with/
without feedback (short: L+

μ / L−
μ ) during one round of the teaching process.

Input : memory x ∈ X≤μ, hypothesis h ∈ C, example z ∈ X .
Private Output : memory x′, hypothesis h′.
Public Output : hypothesis h′ / nothing.

1 x′ := x ◦μ 〈z〉;
2 if z /∈ X (h) then pick h′ uniformly at random from C(x′);
3 else h′ := h;

For making our results dependent on C alone, rather than on an arbitrary
initial state of the learner, we stipulate a special initial hypothesis, called init.
We assume every example inconsistent with init. Thus, init is left after the first
example and cannot be reached again. Moreover, the initial memory is empty.

The Teacher. A teacher is an algorithm taking initially a given target concept
c∗ as input. Then, in each round, it receives the public output of the learner (if
any) and outputs an example for c∗.

Definition 1. Let C be a concept class and c∗ ∈ C. Let Lσ
μ be a learner (σ ∈

{+, −}) and T be a teacher and (hi)i∈� be the series of random variables for
the hypothesis at round i. The event “teaching success in round t,” denoted by
Gt, is defined as

ht−1 = c∗ ∧ ∀t′ ≥ t : ht′ = c∗ .

The success probability of T is Pr
[⋃

t≥1 Gt

]
. A teaching process is success-

ful iff the success probability equals 1. A successful teaching process is called
finite iff there is a t′ such that Pr

[⋃
1≤t≤t′ Gt

]
= 1, otherwise it is called infi-

nite. For a successful teaching process we define the expected teaching time as
�[T, Lσ

μ, c∗, C] :=
∑

t≥1 t · Pr[Gt].

Definition 2. Let C be a concept class, c∗ ∈ C and Lσ
μ a learner. We call c∗

teachable to Lσ
μ iff there is a successful teacher T . The optimal teaching time

for c∗ is
Eσ

μ(c∗) := inf
T
�[T, Lσ

μ, c∗, C]

and the optimal teaching time for C is denoted by Eσ
μ(C) := maxc∈C Eσ

μ(c).

2.3 Markov Decision Processes

For an extensive treatment of this topic see Puterman [17] and Bertsekas [6]. A
Markov Decision Process (MDP) is a probabilistic system whose state transitions
can be influenced during the process by actions which incur costs. Formally, an
MDP consists of a finite set S of states, an initial state s0 ∈ S , a finite set A
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of actions, a function cost : S × A → �, and a function p : S × A × S → [0, 1];
cost(s, a) is the cost incurred by action a in state s; p(s, a, s′) is the probability
for the MDP to change from state s to s′ under action a.

In the total cost infinite horizon setting, the goal is to choose actions such that
the expected total cost, when the MDP runs forever, is minimal. This makes
sense only if there is a costless absorbing state s∗ ∈ S . In the finite horizon
setting the MDP is only run for finitely many rounds.

The actions chosen at each point in time are described by a policy. This is a
function depending on the observed history of the MDP and the current state.
A basic result says that there is a minimum-cost policy that is stationary, i.e.,
that depends only on the current state. A stationary policy π : S → A defines a
Markov chain over S and for all s ∈ S an expected time H(s) to reach s∗ from s.
Such a policy is optimal iff for all s ∈ S :

π(s) ∈ argmin
a∈A

(
cost(s, a) +

∑
s′∈S

p(s, a, s′) · H(s′)

)
.

Finding optimal policies can be phrased as a linear programming problem and
can thus be done in polynomial time in the representation size of the MDP.

3 Varying Memory Size and Feedback

As a simple example, we calculate the optimal teaching times for Dn. To the
learner L+

μ (1 ≤ μ ≤ n) the teacher can give an example inconsistent with
the current hypothesis in each round. For all such examples, there are 2n−μ

hypotheses consistent with the μ examples in the learner’s memory and learner
chooses one of them. Therefore the probability of choosing the target concept is
2−(n−μ). Thus, considering that in the first μ − 1 rounds the memory contains
less then μ examples, E+

μ (Dn) is, for constant μ, asymptotically equal to 2n−μ.
Clearly, teaching becomes faster with growing μ. Moreover the teaching speed

increases continuously with μ and not abruptly as in the classical deterministic
model. In particular, teaching is possible even with the smallest memory size
(μ = 1), although it takes very long (2n−1 rounds).

Teaching is more difficult when feedback is unavailable. In this situation the
teacher can merely guess examples hoping that they are inconsistent with the
current hypothesis. Roughly speaking, when teaching Dn, the teacher needs two
guesses on average to find such an example. Hence, the expected teaching time
E−

μ is about two times E+
μ . Thus feedback doubles the teaching speed for Dn.

Fact 3. For all C and μ ∈ [1, ∞] all c∗ ∈ C and σ ∈ {+, −}:
(1) E+

μ (c∗) ≤ E−
μ (c∗), (2) Eσ∞(c∗) ≤ Eσ

μ+1(c∗) ≤ Eσ
μ(c∗).

Proper inequality holds for the concepts in Dn.

Next, we relate the deterministic model (in terms of the teaching dimension) to
the randomized model (in terms of the expected teaching time). Essentially, the
teaching dimension can be used to lower bound the teaching time.



234 F.J. Balbach and T. Zeugmann

Lemma 4. Let C be a class and let c∗ ∈ C be a target. For all μ ∈ [1,TD(c∗)],

E−
μ (c∗) ≥ E+

μ (c∗) ≥ μ(μ − 1)
2TD(c∗)

+ TD(c∗) + 1 − μ,

and for all μ > TD(c∗), E−
μ (c∗) ≥ E+

μ (c∗) ≥ TD(c∗)/2.

Proof. Let k = TD(c∗) and μ ∈ [1,TD(c∗)]. We show the statement for E+
μ .

Claim: For i examples z0, . . . , zi−1 ∈ X (c∗): |C(z0, . . . , zi−1)| ≥ k + 1 − i.
Proof : Suppose |C(z0, . . . , zi−1)| ≤ k−i. Then c∗ can be specified with k−i−1

examples with respect to C(z0, . . . , zi−1) (each example rules out at least one
concept). Thus, c∗ can be specified with z0, . . . , zi−1 plus k−i−1 other examples,
which amounts to k − 1 examples. This contradicts TD(c∗) = k. �� Claim

Using the claim we upper bound the probabilities for reaching the target in
round i = 0, . . . , μ − 2. After round i the learner knows i + 1 examples and
therefore can choose between at least k − i consistent hypotheses (see Claim).
Thus, the probability for reaching c∗ in round i is at most pi := 1

k−i . Beginning
with round μ−1, the learner knows μ examples and has in each following round
i ≥ μ − 1 a probability of at most pi = pμ−1 = 1/(k + 1 − μ) of reaching c∗.

No teaching process can be faster than one with the probabilities pi described
above. The expectation of such a process is

μ−2∑
i=0

(i + 1) · pi ·
i−1∏
j=0

(1 − pj) +
∞∑

i=μ−1

(i + 1) · pi ·
i−1∏
j=0

(1 − pj) . (1)

We start with the second sum in (1). Since
∏μ−2

j=0 (1 − pj) = k−μ+1
k the product∏i−1

j=0(1 − pj) in the this sum equals k−μ+1
k · (1 − pμ−1)i−μ+1. So, this sum is

∞∑
i=μ−1

(i + 1) · pμ−1 · k−μ+1
k · (1 − pμ−1)i−μ+1

= k−μ+1
k ·

∞∑
i=0

(μ + i) · pμ−1 · (1 − pμ−1)i

= k−μ+1
k ·

(
μ − 1 +

∞∑
i=0

(i + 1) · pμ−1 · (1 − pμ−1)i

)
.

The sum appearing in the last line is the expectation of the first success in a
Bernoulli experiment with probability pμ−1 and thus equals 1/pμ−1 = k −μ+1.
For the second sum in (1) we therefore get k−μ+1

k ·(μ−1+k−μ+1) = k−μ+1 .
Calculating the first sum in (1) yields

μ−2∑
i=0

(i + 1) · 1
k−i ·

i−1∏
j=0

k−j−1
k−j =

μ−2∑
i=0

(i + 1) · 1
k−i · k−i

k =
μ(μ − 1)

2k
.

Putting it together we obtain μ(μ−1)
2k + k + 1 − μ as the value of (1).

For μ > TD(c∗) the teaching process described above takes at most TD(c∗)
rounds. The lower bound is therefore the same as for μ = TD(c∗). ��
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Input : Target c∗ ∈ Mn represented by γ1 . . . γn ∈ {0, 1, ∗}n;
Hypothesis h ∈ Mn represented by η1 . . . ηn ∈ {0, 1, ∗}n.

Output : Example z ∈ X (c∗).

1 if h ⊃ c∗ output (χ1 . . . χn, 0) with χi =

���
��

γi if ηi = γi �= ∗,

1 − γi if i = min{j ηj = ∗ �= γj},

0 otherwise;
2 else output (x, 1) with arbitrary x ∈ c∗.

Fig. 1. Optimal teacher for monomials and the learner L+
1

4 Learners with Feedback

4.1 Learners with 1-Memory

A teaching process involving L+
1 can be modeled as an MDP with S = C∪{init},

A = X (c∗), cost(h, z) = 1 for h = c∗ and cost(c∗, z) = 0. Furthermore, for h = c∗,
p(h, z, h′) = 1/|C(z)| if z ∈ X (h′) \ X (h) and p(h, z, h′) = 0 otherwise; finally
p(c∗, z, c∗) = 1. The initial state is init and the state c∗ is costless and absorbing.
The memory does not need to be part of the state, since the next hypothesis
only depends on the newly given example which is modeled as an action.

An example z ∈ X (h) does not change the learner’s state h and is therefore
useless. An optimal teacher refrains from teaching such examples and thus we
can derive the following criterion by using the results from Subsection 2.3.

Lemma 5. Let C be a class over X and c∗ be a target. A teacher T : C∪{init} →
X (c∗) with expectations H : C ∪ {init} → � is optimal iff for all h ∈ C ∪ {init}:

T (h) ∈ argmin
z∈X (c∗)
z /∈X (h)

⎛
⎝1 +

1
|C(z)|

∑
h′∈C(z)

H(h′)

⎞
⎠ .

This criterion can be used to prove optimality for teaching algorithms.

Fact 6. The teacher in Fig. 1 is an optimal teacher for Mn and the learner L+
1 .

Proof. We define H : C∪{init} → � as H(h) = (3n−2n)(2n+2k)−2n+k−1

3n−2n+2k−1 for h ⊃ c∗

and H(h) = (3n−2n)(2n+2k)−2n+k−1+2n+1−3n

3n−2n+2k−1 for all other h, including init .
It is possible (though tedious) to show that H describes the teaching times

for T and that T and H satisfy the criterion of Lemma 5. ��

The teacher from Fig. 1 can be computed in linear time. It outputs a positive
example whenever possible (i.e., when h ⊃ c∗). Since there are 2n hypotheses
consistent with a positive example and 3n − 2n consistent with a negative one,
this means following a greedy strategy minimizing the number of consistent
hypotheses for the learner to choose from, thus maximizing the probability for
reaching c∗ in the next step.

Such a greedy strategy seems sensible and is provably optimal in the case
of Mn. However, there are classes where no greedy teacher is optimal.
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Definition 7. Let C be a class over X and c∗ ∈ C. A stationary teacher T : C ∪
{init} → X for c∗ is called greedy iff for all h ∈ C: T (h) ∈ argminz∈X (c∗)

z /∈C(h)
|C(z)|.

Fact 8. There is a class C and target c0 such that no greedy teacher is optimal.

Proof. Figure 2 displays such a concept class C and target c0. T ∗ with teaching
times H∗ is an optimal teacher and T g with Hg is the only greedy teacher. ��

h x1 x2 x3 x4 x5 T ∗(h) H∗(h) T g(h) Hg(h)
init – – – – – x1 176/35=5.0285. . . x1 2536/504=5.0317. . .
c0 1 1 1 1 1 – 0 – 0
c1 0 0 0 0 1 x1 176/35 x1 2536/504
c2 0 0 0 1 1 x1 176/35 x1 2536/504
c3 0 0 1 0 1 x1 176/35 x1 2536/504
c4 0 0 1 1 1 x1 176/35 x1 2536/504
c5 0 1 0 1 1 x1 176/35 x1 2536/504
c6 0 1 1 0 1 x1 176/35 x1 2536/504
c7 0 1 1 1 1 x1 176/35 x1 2536/504
c8 1 0 0 1 0 x2 186/35 x2 2680/504
c9 1 1 1 0 0 x5 189/35 x4 2725/504
c10 1 1 1 1 0 x5 189/35 x5 2723/504

Fig. 2. Class with an optimal teacher T ∗ and a greedy teacher T g that is not optimal.
Both teachers teach c0 to the learner L+

1 .

We now compare E+
1 with other dimensions. The comparison of E+

1 with the
number MQ of membership queries (see Angluin [1]) is interesting because MQ
and E+

1 are both lower bounded by the teaching dimension.

Fact 9. (1) For all C and c∗ ∈ C: E+
1 (c∗) ≥ TD(c∗).

(2) There is no function of TD upper bounding E+
1 (c).

(3) There is no function of E+
1 upper bounding MQ.

(4) There is a concept class C with E+
1 (C) > MQ(C).

(5) For all concept classes C, E+
1 (C) ≤ 2MQ(C).

Proof. (1) This follows from Lemma 4. (2) Let Cn = {c ⊆ [1, n] |c| = 2}. Then
TD(Cn) = 2, but E+

1 (Cn) = n − 1 because the optimal teacher gives positive
examples all the time and there are n − 1 hypotheses consistent to such an
example. (3) E+

1 (c) = 1 for all c ∈ Sn, but MQ(Sn) = n−1. (4) MQ(Dn) = n and
E+

1 (D) = 2n−1. (5) It is known (see e.g., Angluin [2]) that log |C| ≤ MQ(C) for
all classes C. Also, E+

1 (C) ≤ |C| because in every step the learner cannot choose
from more than |C| hypotheses. Combining both inequalities yields the fact. ��

Roughly speaking, teaching L+
1 can take arbitrarily longer than teaching in the

classical model, but is still incomparable with membership query learning.
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4.2 Learners with ∞-Memory

A straightforward MDP for teaching c∗ to L+∞ has states S = (C ∪ {init}) ×
X (c∗)≤|X|. The number of states can be reduced because two states (h, m) and
(h, m′) with C(m) = C(m′) are equivalent from a teacher’s perspective, but in
general the size of the resulting MDP will not be polynomial in the size of the
matrix representation of C. Therefore, optimal teachers cannot be computed
efficiently by the known general MDP algorithms.

A similar criterion as Lemma 5 can be stated for the L+
∞ learner, too, and

used to prove optimality of algorithms. We mention, without the technical proof,
that a slight modification of the algorithm in Fig. 1 is optimal for L+∞ and Mn.

That computing E+∞ is already a hard problem can be seen as follows. First,
there is always a teacher that needs at most TD(c∗) rounds by giving a minimal
teaching set, hence E+

∞(c∗) ≤ TD(c∗). Second, it follows from Lemma 4 that
E+∞(c∗) ≥ TD(c∗)/2. This means that every algorithm computing E+∞(c∗) also
computes a factor 2 approximation of the teaching dimension.

As it has often been noted [19, 5, 9], the problem of computing the teaching
dimension is essentially equivalent to the SET-COVER (or HITTING-SET) problem
which is a difficult approximation problem. Raz and Safra [18] have shown that
there is no polynomial time constant-factor approximation (unless P = NP).
Moreover, Feige [7] proved that SET-COVER cannot be approximated better than
within a logarithmic factor (unless NP ⊆ DTime(nlog log n)).

Corollary 10. Unless NP ⊆ DTime(nlog log n), computing E+
∞ is NP-hard and

cannot be approximated with a factor of (1 − ε) log |C| for any ε > 0.

Fact 11. Let C be a concept class and c∗ ∈ C a target. Then there is a successful
teacher for the learner L+

∞ halting after at most |X | rounds that is also optimal.

Proof. Every given example is memorized forever. Hence, an optimal teacher
never presents the same example twice and after at most |X | rounds there is
only one consistent hypothesis for the learner to choose from, namely c∗. ��

As there is always a successful teacher giving at most TD(c∗) examples, one
could conjecture that there is also an optimal teacher teaching finitely within at
most TD(c∗) rounds. But this not the case.

Fact 12. There is a concept class C and a concept c∗ ∈ C such that all teachers
teaching c∗ to the learner L+

∞ finitely within TD(c∗) rounds are suboptimal.

Proof. (Sketch) The concept class C and the concept c∗ are defined by Figure 3.
The teaching dimension of c∗ is three and the only smallest teaching set S :=
{(x1, 1), (x2, 1), (x3, 1)}. The only teachers finite after 3 rounds are those always
giving an inconsistent example from S. Their expected teaching time is 2.6.

A teacher starting with (x4, 1) and then giving examples from S is not finite
after three rounds, but has an expected teaching time of only 2.5 rounds. ��
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x1 x2 x3 x4 x5 x6

init: – – – – – –
c∗: 1 1 1 1 1 1

1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1
1 1 0 0 1 0
1 0 1 0 1 0
0 1 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1
0 1 1 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0

Fig. 3. Concept class and target whose optimal L+
∞-teacher is not finite after TD(c∗) =

3 rounds. The optimal teacher starts with x4 and is finite after 4 rounds (see Fact 12).

5 Learners Without Feedback

The problem of finding the optimal cost in an MDP whose states cannot be ob-
served is much harder than in an observable MDP. In general, it is not even de-
cidable whether the optimal cost is below a given threshold (see Madani, Hanks,
and Condon [14]). We know of no obvious algorithm to decide this problem in
the special case of teaching 1-memory learners.

Teaching ∞-memory learners can be seen as a finite horizon unobservable
MDP since any reasonable teacher presents a different example in every round
and thus can stop after at most |X | rounds. The decision problem for finite
horizon unobservable MDPs is NP-complete (Mundhenk et. al. [16]) and the
inapproximability result of Corollary 10 holds for the feedbackless case as well,
since TD(c∗)/2 ≤ E−∞(c∗) ≤ TD(c∗).

6 Teaching Positive Examples Only

The learnability of classes from positive data is a typical question in learning
theory. Similar restrictions on the data can be posed in teaching models, too.
In contrast to teaching with positive and negative data, where all classes are
teachable, we now get classes that are not teachable. More precisely we have the
following characterization for teachability with positive data.

Theorem 13. Let C be a concept class and c∗ ∈ C a target concept. Then for
all learners Lσ

μ with μ ∈ [1, ∞], σ ∈ {+, −}: The concept c∗ is teachable from
positive data iff there is no c ∈ C with c ⊃ c∗.

Proof. For the if part, assume there is no proper superset of c∗ in the class. Then
the set S+ of all positive examples for c∗ is a teaching set for c∗. Learners with ∞-
memory can be taught by presenting S+, since they remember all examples and
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are always consistent. Learners with smaller memory can be taught by infinitely
repeating S+ in any order.

For the only-if part, assume there is a c ∈ C with c ⊃ c∗. Let z = (x, 1) ∈ X (c∗)
be the first example taught. Then c ∈ C(z) and therefore there is a positive
probability that the randomized learner picks c as first hypothesis. In this case,
it is impossible to trigger any further mind changes by giving positive examples.
Thus, with positive probability the number of examples is infinite, leading to an
infinite expected number of examples. ��

Theorem 13 also characterizes teaching with positive data in the classical teach-
ing dimension model. If there is no c ⊃ c∗, the set of all positive examples of c∗

is a teaching set, but if there is a c ⊃ c∗, then every set of positive examples for
c∗ is also consistent with c.

We have seen that teachability with positive data has a simple characteriza-
tion. Things become a little more complicated when combined with inconsistent
teachers discussed in the next section.

7 Inconsistent Teachers

Until now, teachers were required to always tell the truth, i.e., to provide exam-
ples z ∈ X (c∗). In reality it might sometimes be worthwhile to teach something
which is, strictly speaking, not fully correct, but nevertheless helpful for the stu-
dents. For example, human teachers sometimes oversimplify to give a clearer,
yet slightly incorrect, view on the subject matter.

To model this we allow the teacher to present any example from X × {0, 1},
even inconsistent ones. One can see this as an analog to inconsistent learners in
learning theory, as these learners also contradict something they actually know.

Clearly, teaching learners with ∞-memory becomes difficult after giving an
inconsistent example because the target is not consistent with the memory con-
tents any more. Even worse, there might be no consistent hypothesis available.
However, the model can be adapted to this, e.g., by stipulating that a memorized
example (x, v) can be “erased” by the example (x, 1 − v), but here we will not
pursue this further. We restrict ourselves to consider only the 1-memory learner.

We first look at inconsistent teachers in combination with teaching from pos-
itive data. In this case, for a target concept c, the only inconsistent examples
allowed are of the form (x, 1), where x /∈ c. The class C1 in Figure 4 shows that,
when only positive data are allowed, inconsistent teachers can teach concepts to
L+

1 that consistent teachers cannot. First, the teacher gives (x1, 1). If the learner
guesses c∗, we are done. Otherwise, the learner must return c1 and the teacher
gives (x3, 1) which is inconsistent with c∗. Now, the learner has to guess c2. Next,
(x1, 1) is again given and the process is iterated until the learner returns c∗.

However, consistent teachers with both positive and negative data are more
powerful as we show next.

Fact 14. There is a class that cannot be taught to L+
1 by an inconsistent teacher

from positive data.
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C1: x1 x2 x3 T

init: – – – x1

c∗: 1 0 0 –
c1: 1 1 0 x3

c2: 0 0 1 x1

C2: x1 x2 x3

init: – – –
c∗: 0 1 0
c1: 1 1 0
c2: 0 1 1

Fig. 4. The class C1 can be taught to L+
1 by the inconsistent positive-data teacher T ,

but cannot be taught by a consistent positive-data teacher (Theorem 13). The class C2

cannot be taught by an inconsistent positive-data teacher (Fact 14).

Proof. We show that C2 from Figure 4 is such a class. Let T be a teacher for
L+

1 mapping C2 ∪ {init} to {x1, x2, x3} × {1}. No matter what T (init) is, the
probability that the learner switches to c1 or c2 is positive. If the learner guesses
c1 (the c2 case is analog), the teacher must teach (x3, 1), since all other examples
are consistent with the current hypothesis c1. But the only hypothesis consistent
with (x3, 1) is c2. Analogously, T must give (x1, 1) when the learner is in c2,
leading again to c1. So, the probability that L+

1 never reaches c∗ is positive. ��

Classes teachable by inconsistent teachers from positive data can be character-
ized. We associate a directed graph with the class C. Define the graph G(C) =
(V, A) by V = C and A = {(c, d) d \ c = ∅}, i.e., there is an arc from c to d iff
there is a positive example inconsistent with c but consistent with d.

Theorem 15. Let C be a concept class and G(C) = (V, A) its associated graph.
For the learner L+

1 a concept c∗ ∈ C is teachable by an inconsistent teacher from
positive data iff for all c ∈ V there is a path to c∗ in G(C).

Proof. For the if part we have to describe a teacher. For each c let c′ be a
neighbor of c on a shortest path to c∗. Let T be such that for all c, T (c) is
consistent with c′, but not with c. There is always such an example due to the
definition of G(C) and the reachability assumption.

Denote by n = |C| and by p = 1/n the minimum probability for reaching c′

when the learner receives T (c) in state c. If the learner is in any state c, there
is a probability of at least pn > 0 for reaching c∗ within the next n rounds by
traversing the shortest path from c to c∗. Therefore, no matter in which state
the learner is, the expected number of n-round blocks until reaching the target
is at most 1/pn. Thus, the expected time to reach the target from any state, in
particular from init, is at most n/pn < ∞.

For the only-if part, let T be a teacher for c∗ ∈ C. Suppose there is a state c
with no path to c∗. Then c ⊃ c∗ (otherwise c∗ \ c = ∅ and (c, c∗) ∈ A). At some
time, T must teach an example consistent with c∗, which is then also consis-
tent with c. Hence, the probability for reaching c during the teaching process is
positive. The graph G(C) contains all transitions that are possible between the
hypotheses by positive examples. Since c∗ is not reachable from c in G(C) there
is no sequence of positive examples that can trigger hypothesis changes from c
to c∗. Thus, the expected teaching time from c is infinite and hence the expected
teaching time altogether. A contradiction to c∗ being teachable by T . ��
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The criterion in Theorem 15 requires to check the reachability of a certain
node from all other nodes in a directed graph. This problem is related to the
REACHABILITY problem and also complete for the complexity class NL.

While inconsistent teachers can teach classes to 1-memory learners with feed-
back from positive data that consistent teachers cannot teach to L+

1 (cf. Fig-
ure 4), the situation changes if no feedback is available. That is, 1-memory
learners without feedback can be taught the same classes by inconsistent teach-
ers as by consistent teachers (cf. Theorem 13 and Theorem 16 below).

Theorem 16. For the learner L−
1 a concept c∗ ∈ C is teachable by an inconsis-

tent teacher from positive data iff there is no c ∈ C with c ⊃ c∗.

Proof. The if-direction follows from Theorem 13.
For the only-if part suppose that c∗ is teachable by a teacher T and there is

a c with c ⊃ c∗. Let (zi)i∈� be the series of examples taught.
Claim: T teaches inconsistent examples only finitely often.
Proof : Suppose T teaches an example (x, 1) /∈ X (c∗) infinitely often. Without

loss of generality we assume that there is a concept containing x (otherwise
(x, 1) would be useless and a teacher T ′ never giving this example would be
successful, too). Whenever (x, 1) is taught, the learner will not be in state c∗

afterwards, i.e., there are infinitely many t such that Pr[ht = c∗] = 1. It follows
that Pr[Gt] = Pr[ht−1 = c∗ ∧∀t′ ≥ t : ht = c∗] = 0 for all t ≥ 1. This means that
the success probability is zero, a contradiction. This proves the claim. ��Claim

From the claim it follows that there is a t′ such that zt ∈ X (c∗) for all t ≥ t′.
We now show that Pr[ht′ = c∗] < 1, i.e., it is uncertain whether the learner
is in the target state. Suppose that Pr[ht′ = c∗] = 1. Let t ≤ t′ be minimal
with Pr[ht = c∗] = 1. If zt ∈ X (c∗) then zt is consistent with c, too, and thus
Pr[ht = c∗] ≤ 1/2. If zt /∈ X (c∗), then Pr[ht = c∗] = 0, a contradiction.

Hence, the probability that the learner is not in the target state at time t′ is
positive. After t′ only consistent examples are given. So there is a probability
of at least 1/|C| that the learner switches to c on the next example. As c ⊃ c∗

the target cannot be reached by positive examples any more. Thus, the success
probability is less than one, a contradiction. This proves the only-if part. ��

8 Mind Change Forcing Teachers

In this section we deal again with consistent teachers. When teaching L+
1 it is

useless to provide an example consistent with the current hypothesis, since it does
not change the state of L+

1 . In this situation the optimal teacher is necessarily
“mind change forcing.” But if we look at L+

μ (μ > 1), it is not obvious that an
optimal teacher has to force the learner to change its mind in every round until
successful learning. While we could prove that for L+

∞ an optimal teacher can
be made “mind change forcing,” it remains open whether a similar statement is
true for L+

μ with 1 < μ < ∞.

Theorem 17. Let C be a class and c∗ be a target. Then there is an optimal
teacher for L+

∞ never giving an example consistent with the current hypothesis.
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Proof. Let T be a successful teacher that teaches a consistent example z1 in a
state (h, m) that is reached with positive probability and is not a target state.
Then z1 ∈ X (h) ∩ X (c∗) and h = c∗. We show that T is not optimal for this
state and hence for the initial state. We do this by showing that there is another
teacher T ′ giving an inconsistent example and being not worse than T .

After receiving z1, the learner reaches (h, m ∪ {z1}) due to the conservative-
ness property. Then T teaches z1 = T (h, m ∪ {z1}) leading to (h, m ∪ {z1, z2})
and so on. Since h = c∗, T must eventually teach an example zk /∈ C(h).
After teaching z1, . . . , zk the learner has either reached the target or assumes
one of the hypotheses in C(m ∪ {z1, . . . , zk}) \ {c∗} with equal probability p :=
1/|C(m ∪ {z1, . . . , zk})| − 1. For the expected teaching time we have

H(h, m) = k +
∑

h′∈C(m∪{z1,...,zk})
p · H(h′, m ∪ {z1, . . . , zk})

The teacher T ′ teaches the same examples z1, . . . , zk, but in different order,
namely zk, z1, . . . , zk−1, that is with the inconsistent example first. Formally:
T ′(h, m) = zk and furthermore for all i = 0, . . . , k − 1 and for all h′ ∈ C(m ∪
{zk, z1, . . . , zi}): T ′(h′, m ∪ {zk, z1, . . . , zi}) = zi+1.

Beginning in (h, m) and being taught by T ′ for k rounds, the learner has either
arrived at the target or assumes one of the hypotheses in C(m ∪ {z1, . . . , zk}) \
{c∗}. Furthermore all these hypotheses are equally likely. This follows induc-
tively from the fact that whenever a hypothesis change is triggered, say after
zk, z1 . . . , zi, all hypotheses from C(m ∪ {zk, z1, . . . , zi}), and in particular all
hypotheses from the subset C(m ∪ {z1, . . . , zk}), are equally likely; no hypoth-
esis is preferred. The probability p′ for each of these hypotheses is at most
1/(|C(m ∪ {z1, . . . , zk})| − 1) = p. The expected teaching time under T ′ is

H ′(h, m) ≤ k +
∑

h′∈C(m∪{z1,...,zk})
p′ · H ′(h′, m ∪ {z1, . . . , zk})

= k +
∑

h′∈C(m∪{z1,...,zk})
p′ · H(h′, m ∪ {z1, . . . , zk}) ≤ H(h, m)

where the equality in the second line holds because T and T ′ are identical in the
states (h′, m ∪ {z1, . . . , zk}).

We have shown that T ′ is not worse than T and gives an inconsistent example
in (h, m). By repeating the above argument the states in which T gives consistent
examples can be moved to the “end” where they finally disappear. ��

9 Conclusions and Future Work

We have presented a model for teaching randomized learners based on the clas-
sical teaching dimension model. In our model, teachability depends, in a qualita-
tively plausible way, on the learner’s memory size, on its ability to give feedback,
and on the order of the examples taught. The model also allows to study learn-
ing theory like questions such as teaching from positive data only or teaching
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by inconsistent teachers. Randomization also gives more flexibility in defining
the learner’s behavior by using certain a priori probability distributions over the
hypotheses. So, one can define and study learners preferring simple hypotheses.
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