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Abstract. We study the average number of well-chosen labeled exam-
ples that are required for a helpful teacher to uniquely specify a target
function within a concept class. This “average teaching dimension” has
been studied in learning theory and combinatorics and is an attractive al-
ternative to the “worst-case” teaching dimension of Goldman and Kearns
[7] which is exponential for many interesting concept classes. Recently
Balbach [3] showed that the classes of 1-decision lists and 2-term DNF
each have linear average teaching dimension.

As our main result, we extend Balbach’s teaching result for 2-term
DNF by showing that for any 1 < s < 290" the well-studied concept
classes of at-most-s-term DNF and at-most-s-term monotone DNF each
have average teaching dimension O(ns). The proofs use detailed analyses
of the combinatorial structure of “most” DNF formulas and monotone
DNF formulas. We also establish asymptotic separations between the
worst-case and average teaching dimension for various other interesting
Boolean concept classes such as juntas and sparse GF» polynomials.

1 Introduction

Many results in computational learning theory consider learners that have some
form of access to an oracle that provides labeled examples. Viewed as teachers,
these oracles tend to be unhelpful as they typically either provide random exam-
ples selected according to some distribution, or they put the onus on the learner
to select the examples herself. In noisy learning models, oracles are even allowed
to lie from time to time.

In this paper we study a learning model in which the oracle acts as a helpful
teacher [71[8]. Given a target concept ¢ (this is simply a Boolean function over
some domain X) that belongs to a concept class C, the teacher provides the
learner with a carefully chosen set of examples that are labeled according to c.
This set of labeled examples is called a teaching set and must have the property
that no other concept ¢’ # ¢ in C is consistent with the teaching set; thus every
learner that outputs a consistent hypothesis will correctly identify c as the target
concept. The minimum number of examples in any teaching set for ¢ is called
the teaching dimension of ¢ with respect to C, and the maximum value of the
teaching dimension over all concepts in C is the teaching dimension of C.

Some concept classes that are easy to learn can be very difficult to teach in
the worst case in this framework. As one example, let the concept class C over
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finite domain X contain |X |+ 1 concepts which are the | X| singletons and the
empty set. Any teaching set for the empty set must contain every example in
X, since if © € X is missing from the set then the singleton concept {z} is not
ruled out by the set. Thus the teaching dimension for this concept class is | X|.

Many interesting concept classes include the empty set and all singletons,
and thus have teaching dimension |X|. Consequently for many concept classes
the (worst-case) teaching dimension is not a very interesting measure. With this
motivation, researchers have considered the average teaching dimension, namely
the average value of the teaching dimension of ¢ as ¢ ranges over all of C.

Anthony et al. [2] showed that the average teaching dimension of the class of
linearly separable Boolean functions over {0, 1}" is O(n?). Kuhlmann [9] showed
that concept classes with VC dimension 1 over finite domains have constant aver-
age teaching dimension and also gave a bound on the average teaching dimension
of concept classes B%(c) (balls of center ¢ and size < d). Kushilevitz et al. [10]
constructed a concept class C that has an average teaching dimension of £2(1/|C)
(this lower bound was also proved in [6]) and also showed that every concept
class has average teaching dimension at most O(+/|C|). More recently, Balbach
[3] showed that the classes of 2-term DNF and 1-decision lists each have average
teaching dimension linear in n.

Our Results. Our main results are the following theorems, proved in Sections [3]
and @] which show that the well-studied concept classes of monotone DNF for-
mulas and DNF formulas are efficiently teachable in the average case:

Theorem 1. Fiz any1 < s < 29 and let C be the concept class of all Boolean
functions over {0,1}" representable as a monotone DNF with at most s terms.
Then the average teaching dimension of C is O(ns).

Theorem 2. Fiz any1 < s < 29 and let C be the concept class of all Boolean
functions over {0,1}" representable as a DNF with at most s terms. Then the
average teaching dimension of C is O(ns).

Theorem [2is a broad generalization of Balbach’s result on the average teaching
dimension of the concept class of DNF with at most two terms. It is easy to see
that even the class of at-most-2-term DNF's has exponential worst-case teaching
dimension; as we show in Section[3] the worst-case teaching dimension of at-most-
s-term monotone DNF's is exponential as well. Thus our results show that there
is a dramatic difference between the worst-case and average teaching dimensions
for these concept classes.

We also consider some other well-studied concept classes, namely juntas and
sparse GF5 polynomials. For the class of k-juntas, we show in Section [ that
while the worst-case teaching dimension has a logarithmic dependence on n (the
number of irrelevant variables), the average teaching dimension has no depen-
dence on n. For a certain class of sparse GFy polynomials (roughly, the class
of GFy polynomials with fewer than logn terms; see Section [6]), we show that
while the worst-case teaching dimension is n®1°81°87) the average teaching di-
mension is O(nlogn). Thus in each case we establish an asymptotic separation
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between the worst-case teaching dimension and the average teaching dimension.
Our results suggest that rich and interesting concept classes that are difficult to
learn in many models may in fact be easy to teach in the average case.

Due to space constraints some proofs are omitted; see [11] for these proofs.

2 Preliminaries

Our domain is X = {0,1}", and we refer to Boolean functions ¢ : {0,1}" — {0,1}
as concepts. A collection of concepts C C 2101}" is a concept class. For a given
instance z € X, the value of ¢(z) is referred to as a label, and for y € {0,1}, the
pair (z,y), is referred to as a labeled example. If y = 0 (y = 1) then the pair is
called a negative (positive) example. A concept class C is consistent with a set
of labeled examples if ¢(z) = y for all the examples in the set.

A set S of labeled examples is a teaching set for ¢ with respect to C if ¢ is the only
concept in C that is consistent with S; thus every learner that outputs a consistent
hypothesis from C will correctly identify ¢ as the target concept. The minimum
number of examples in any teaching set for c is called the teaching dimension of ¢
with respect to C (sometimes written T'D(c¢) when C is understood), and the max-
imum value of the teaching dimension over all concepts in C is the (worst-case)
teaching dimension of C. The average teaching dimension of C is the average value
of the teaching dimension of ¢ with respect to C for all ¢, i.e., |é| Y ece T'D(c).

We use Boolean variables x4, . .. ,z, and write Z; to denote the negated literal
on variable x;. We will often refer to a logical assignment of the variables as
a string and vice-versa; thus, a string y € {0,1}" corresponds to a truth-value
assignment to the variables x1, ... ,z,. Given a set S of variables, we write 0|g—1
to denote the truth assignment that sets each variable in S to 1 and sets all
other variables to 0. The truth assignment 1|s—g is defined similarly.

Two strings y, z € {0,1}" are neighbors if they differ in exactly one bit posi-
tion. Given z,y € {0,1}"™ we write x < y if ; < y; for alli = 1,...,n, and we
write z < y if we have z <y and = # y.

DNF Formulas. A term is a conjunction of Boolean literals. A term over n
variables is represented by a string T' € {0, 1, x}", where the k-th character of T
is denoted T'[k]. The value of T'[k] is 0, 1, or * depending on whether xj, occurs
negated, unnegated, or not at all in the term. If z € {0,1}" is an assignment
that satisfies T, we sometimes say that T covers x. Note that the satisfying
assignments of a term T form a subcube of dimension n — |T'| within {0,1}",
where |T'| denotes the number of non-* entries in 7.

An s-term DNF formula ¢ is an OR of s terms ¢ =T V- --VTs. A satisfying
assignment to the DNF is sometimes referred to as a positive point and an
unsatisfying assignment as a negative point.

A term T; is said to be compatible with a set of labeled examples S if T; does not
cover any negative examplein S. A term T; is said to éimply another term T} if every
positive point of T; is also a positive point of T;. We similarly say that a term T’
implies a DNF formula ¢, or that a DNF formula ¢; implies another DNF formula
¢2. Two different DNF formulas ¢; and ¢- are said to be logically equivalent if
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each implies the other, i.e., if they are different syntactic representations of the
same Boolean function. Throughout the paper we will use Greek letters ¢, ¢, . ..
to denote formulas (which are syntactic objects) and Roman letters f,g,... to
denote Boolean functions (which are abstract mappings from {0,1}" to {0,1}).

We write Dy to denote the class of “exactly-s-term” DNFs; this is the class of
all Boolean functions f: {0,1}"—{0,1} that have some s-term DNF representa-
tion and have no s’-term DNF representation for any s’ < s. Similarly, we write
D<, to denote the class of “at-most-s-term” DNFs, which is D<y = Ug<sDsr.
Note that the elements of D, and D<; are “semantic” functions, not syntactic
formulas. The class D<; corresponds to the standard notion of “s-term DNF”
which is a well studied concept class in computational learning theory.

A monotone DNF formula, or mDNF, is a DNF formula that contains no
negated literals. The classes of exactly-s-term mDNFs and at-most-s-term mD-
NFs are denoted My and M<, and are defined in analogy with D, and D<,
above. The following fact is well known:

Fact 1. If f € My then there is a unique (up to ordering of the terms) s-term
mDNF representation ¢ =Ty V ---V Ty for f.

3 Monotone DNF's

Worst-case teaching dimension of at-most-s-term mDNFs. Here we state
upper and lower bounds on the worst-case teaching dimension of M<;. See [11]
for proofs of these statements.

Theorem 3. The teaching dimension of M<s is at most n® + s.

Theorem 4. Given s, let s’ < s be any value such that (s’ — 1) divides n. Then

the teaching dimension of M« is at least (s,zl)sl*l.

Average-case teaching dimension of at-most-s-term mDNFs. We now
prove Theorem [l The idea is to show that almost every at-most-s-term mono-
tone DNF' in fact has exactly s terms; as we will see, these exactly-s-term
monotone DNF's can be taught very efficiently with O(ns) examples. The remain-
ing concepts are so few that they can be handled with a brute-force approach
and the overall average teaching dimension will still be O(ns).

We start with a simple lemma from [7]:

Lemma 1 ([7]). Let ¢ be any concept in Ms. Then the teaching dimension of
¢ with respect to M« is at most (n + 1)s.

Lemma 2. For1<i< }le?nz, we have 2n;_1 < M| < 2;
Proof. The upper bound is easy: the number of i-term mDNFs is at most the
number of ways to choose i terms from the set of all 2™ many monotone terms
over variables x1,...,x,. The latter quantity is (2:) < 2;

For the lower bound we consider all 2™ ways to select a sequence of i terms
(with replacement) from the set of all 2™ possible monotone terms. We show
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that at least half of these 2 ways result in a sequence T4, ..., T; of terms which
are pairwise incomparable, i.e., no T; implies any other 7;. Each such sequence
yields an i-term mDNF, and each such mDNF occurs 4! times because of different
orderings of the terms in a sequence. This gives the lower bound.

Note that a collection of i monotone terms T7,...,T; will be pairwise incom-
parable if the following two conditions hold: (1) Each of the i terms contains
between 5n/12 and 7n/12 many variables, and (2) Viewing each term T; as a
set of variables, for any j # k the symmetric difference |T;ATy| is of size at
least n/4. (This is because if |T}|, |T}| € [5n/12,7n/12] and T; C Ty, then the
symmetric difference must be of size at most n/6.)

For condition (1), Hoeffding’s bound implies that a uniformly selected mono-
tone term T will contain fewer than 5n/12 or more than 7n/12 many variables
with probability at most 2e~"/72, so a union bound gives that condition (1)
fails with probability at most 2ie~™/72. For condition 2, observe that given
two uniform random terms T},7}, each variable x, is independently in their
symmetric difference with probability 1/2. Thus Hoeffding’s bound implies that
|T; ATy| < n/4 with probability at most e~"/8. By a union bound, the probabil-
ity that condition (2) fails is at most (3)e~"/®. Thus for i < }e72, the probability
that conditions (1) and (2) both hold is at least 1/2. O

Fix 1 <s< }167"2. It is easy to check that by Lemma [ for any k < s we have

ns—n+1

M| < 3|Mpy1]. Thus (again by Lemma ) we have [M<,_;| < 2(5—1)! while

|IM| > Qn::l_l. Combining these bounds gives that | /\lt/:[s_lﬂ > i: By Lemmal/[T]
each concept ¢ € M<, which is in M, can be taught_using n(s + 1) examples.
Each of the remaining concepts can surely be taught using at most 2™ examples.

We thus have that the average teaching dimension of M<; is at most

(n+1)s| M| + 2n‘Mszl| < 2"

<(n+1)s+ <(n-+1)s+4s,
M|+ [Mey ] (n+1) (n+1)

1+2n/4s —
giving us the following result which is a slightly sharper version of Theorem [T}

Theorem 5. Let s be any valuel < s < }167"2 . The class M<s of at-most-s-term
monotone DNF has average teaching dimension at most s(n + 5).

Note that if s > }e2, then 2" is bounded by some fixed polynomial in s, and
thus the worst-case teaching number 2" is actually poly(n, s) for such a large
s. This gives the following corollary which says that the class of at-most-s-term
monotone DNF is efficiently teachable on average for all possible values of s:

Corollary 1. Let s be any value 1 < s <2". The class M<, of at-most-s-term
monotone DNF has average teaching dimension poly(n, s).

4 DNFs

Now we will tackle the teaching dimension of the unrestricted class of size-at-
most-s DNFs. The high-level approach is similar to the monotone case, but the
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details are more complicated. The idea is to identify a subset S of D<, and show
that (i) any function f € S can be uniquely specified within all of D<; using
only O(ns) examples; and (ii) at most a 02(5) fraction of all functions in D«
do not belong to S. Given (i) and (ii) it is easy to conclude that the average
teaching number of D<; is O(ns).

The challenge is to devise a set S that satisfies both conditions (i) and (ii). In
the monotone case using Fact [Ilit was easy to show that M is an easy-to-teach
subset, but non-monotone DNF are much more complicated (no analogue of
Fact [M holds for non-monotone DNF) and it is not at all clear that all functions
in D, are easy to teach. Thus we must use a more complicated set S of easy-
to-teach functions; we define this set and prove that it is indeed easy to teach
in Section L2l (This argument uses Balbach’s results for exactly-2-term DNF's.)
The argument that (ii) holds for S is correspondingly more complex than the
counting argument for mDNFs because of S’s more involved structure; we give
this in Section 3

4.1 Preliminaries

We will borrow some terminology from Balbach [3]. Two terms T; and T} have
a strong difference at k if T;[k], T;[k] € {0,1} and T;[k] # T;[k] (e.g., z1Z5z6
and T5Tgr12223 have a strong difference at position 6). Two terms have a weak
difference at k if T;[k] € {0,1} and T} [k] = * or vice-versa. Two weak differences
at positions k and £ are of the same kind if T; k], T;[¢] € {0,1} and T;[k] = T;[¢] =
* or vice-versa, that is both *’s occur in the same term (e.g., T5xs and T5Ter12T23
have two weak differences of the same kind at positions 12 and 23). Two weak
differences at positions k and ¢ are of different kinds if T;[k], T;[¢] € {0,1} and
T;[k] = T;[¢] = = or vice-versa (e.g., Tsxg and Tsx12 have two weak differences
of different kinds at positions 6 and 12).

Now we introduce some new terminology. Given y € {0, 1}" which satisfies a
term T', we denote by Np(y) the set consisting of y and all its neighbors that do
not satisfy T. A satisfying assignment y € {0,1}" of a term T in ¢ is called a
cogent corner point of T if all the neighbors of y that satisfy ¢ satisfy T', and all
the neighbors that do not satisfy T do not satisfy ¢. Note that if y is a cogent
corner point of T', then each of the neighbors of y in Np(y) does not satisfy ¢. A
pair of points y, z € {0,1}" that satisfy a term T are said to be antipodal around
T if yr, = zj, for all k such that T[k] = x. A pair of points are cogent antipodal
points around T if they are both cogent corner points of T" and antipodal around
T. This leads us to our first preliminary lemma:

Lemma 3. Let ¢ =T1V--- VT be any DNF. Let y be a cogent corner point of
T;. Any T that covers y and is compatible with Nrt,(y) must imply T;.

Proof. Let T be any term that covers y. Observe that for each literal ¢ in Tj,
if T did not contain ¢ then 7' would not be compatible with Np,(y) since the
corresponding negative neighbor of y is contained in N7, (y) but would be covered

by T. It follows that every literal in T; is also present in T', and consequently T
implies T;. a
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Two terms are said to be close if they have at most one strong difference. Note
that there is no strong difference between two terms if and only if they have some
satisfying assignment in common, and there is one strong difference between two
terms if and only if they have neighboring satisfying assignments.

Given a Boolean function f: {0,1}"—{0,1}, we let Gy denote the undirected
graph whose vertices are the satisfying assignments of f and whose edges are
pairs of neighboring satisfying assignments. A cluster C of f is a set of satisfying
assignments that form a connected component in Gy. We sometimes abuse no-
tation and write C' to refer to the Boolean function whose satisfying assignments
are precisely the points in C. We say that a DNF ¢ computes cluster C' if the set
of satisfying assignments for ¢ is precisely C. The DNF-size of a cluster C' is the
minimum number of terms in any DNF that computes C. For intuition, we can
view a cluster as being a connected set of positive points that have a “buffer”
of negative points separating them from all other positive points. The following
lemma is immediate:

Lemma 4. Let f be an element of Dy, i.e. f is an exactly-s-term DNF. Let
Cy,...,Cy be the clusters of f. Then DNF-size(Cy) + - - - + DNF-size(C)) = s.

4.2 Teaching S

We are now ready to define our “nice” (easy to teach) subset S C D<, of
size-at-most-s DNFs. (We emphasize that S is a set of functions, not of DNF
expressions.) S consists of those exactly-s-term DNFs (so in fact S C D) all
of whose clusters either: (1) have DNF-size 1; (2) have DNF-size 2; or (3) have
DNF-size k, for some k, and are computed by a DNF ¢ = T7 V- - - V T}, in which
each T; has a pair of cogent antipodal points around it.

Note that if a cluster has DNF-size 1, then it clearly satisfies condition (3)
above (in fact every pair of antipodal points for the term is cogent). Thus we can
simplify the description of S: it is the set of all exactly s-term DNF's all of whose
clusters either: (i) have DNF-size k and are computed by a DNF ¢ =Ty V- - -V T},
in which each T; has a pair of cogent antipodal points around it, or (ii) have
DNF-size exactly 2. (Note that there do in fact exist Boolean functions of DNF-
size 2 for which any two-term representation 737 V T, has some term 7; with no
pair of cogent antipodal points around it, e.g., x1x3 V zox3, and thus condition
(ii) is non-redundant.)

The teaching set for functions in S. We will use the following theorem due
to Balbach [3]:

Theorem 6. Let ¢ be any element of Dy (i.e., an exactly-2-term DNF). The
teaching dimension of ¢ with respect to D<s is at most 2n + 4.

The teaching set specified in [3] to prove Theorem [B] consists of at most 5 positive
points along with some negative points. Given f € Ds, we define BT'S(f) to be
the union of the teaching set specified in [3] together with all negative neighbors
of the (at most five) positive points described above (the set specified in [3]
already contains some of these points). With this definition a straightforward
consequence of the analysis of [3] is the following:
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Lemma 5. Let ¢ =T1V---VTs be a DNF that has a cluster C' with DNF-size 2.
Let BT'S(C) be as described above. Let y be a satisfying assignment for ¢ that is
contained in C. Then any term T that covers y and is consistent with BT S(C')
must imply C.

Given any function f € S, our teaching set T'S(f) for f will be as follows. For
each cluster C' of f, if C:

— satisfies condition (i): then for each term 7T; described in condition (i),
the set T'S(f) contains a pair y, z of cogent antipodal points for T; (these are
positive examples) and contains all negative neighbors of these two positive
examples (i.e., TS(f) contains Nr,(y) and N, (z)). Thus T'S(f) includes at
most k(2 + 2n) many points from such a cluster.

— does not satisfy condition (i) but satisfies (ii): then we will give the
set BT'S(C) described above. By Theorem [ and the definition of BT'S(C)),
we have that BT'S(C)) contains at most 7n + 4 points.

Lemma [l now implies that 7°'S(f) contains at most O(ns) points.

Correctness of the teaching set construction. We now prove that the set
TS(f) is indeed a teaching set that uniquely specifies f within all of D<;.

We first observe that any term compatible with T'S(f) can only cover positive
examples from one cluster of ¢.

Lemma 6. Let y be any positive example in TS(f) and let T be any term that
covers y and is compatible with TS(f). Let C be the cluster of ¢ that covers y.
Then if z is any positive example in T'S(f) that is not covered by C, T does not
cover z.

Proof. If C satisfies condition (i) then y must be a cogent corner point and
Lemma [B] gives the desired conclusion. If C' does not satisfy (i) but satisfies (ii),
then the conclusion follows from Lemma O

The next two lemmas show that any set of terms that covers the positive ex-
amples of a given cluster must precisely compute the entire cluster and only the
cluster of the original function:

Lemma 7. Let C be any case (i) cluster of DNF-size k. Let Pc be the intersec-
tion of the positive examples in TS(f) with C. Let ﬁ, e ,ZIA} be any set of j < k
terms such that the DNF Ty V - -\/fj both: (a) is compatible with T'S(f), and (b)
covers every point in Po. Then it must be the case that j = k and ToV---V Z/A’J
exactly computes C (in fact each term ﬁ is equivalent to T; up to reordering).

Proof. By Lemma[3] a term T that covers a cogent antipodal point from term T;
cannot cover any of the other 2k — 2 cogent antipodal points from other terms,
and thus we must have j = k since fewer than & terms cannot cover all of Pc.
Moreover, any term 7; must cover a pair of antipodal points corresponding to
a single term (which wlog we call T;). For each antipodal pair corresponding to
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a term T}, the covering term 7; must be of size at least |T}|, and since they are
cogent antipodal points, the covering term cannot be any longer than |T;|, so in
fact we have that T; and T; are identical. This proves the lemma. O

Lemma 8. Let C' be any case (ii) cluster. Let Pc be the intersection of the
positive examples in T'S(f) with C. Let fl, e ,fj be any set of j < 2 terms such
that the DNF Ty V/ -+ V YA} both: (a) is compatible with TS(f), and (b) covers
every point in Po. Then it must be the case that 7 = 2 and ﬁ \Y fg exactly
computes C.

Proof. The fact that BT'S(C) is a teaching set (for the exactly-2-term DNF
corresponding to C, relative to D<2) implies the desired result, since no single
term or 2-term DNF not equivalent to C' can be consistent with BT'S(C'), and
any DNF T} V - -+ V IA’] as in the lemma must be consistent with BT'S(C). O

The pieces are in place for us to prove our theorem:
Theorem 7. For any f € S, the set T'S(f) uniquely specifies f within D<s.

Proof. By Lemma [6] positive points from each cluster can only be covered by
terms that do not include any positive points from other clusters. By Lemmas [1]
and B for each cluster C, the minimum number of terms required to cover all
positive points in the cluster (and still be compatible with T'S(f)) is precisely
the DNF-size of C. Since f is an exactly-s-term DNF, Lemma [ implies that
using more than DNF-size(C') many terms to cover all the positive points in any
cluster C' will “short-change” some other cluster and cause some positive point
to be uncovered. Thus any at-most-s-term DNF ¢ that is consistent with 7°S(f)
must have the property that for each cluster C, at most DNF-size(C) of its terms
cover the points in Pg; so by Lemmas [l and 8 these terms exactly compute C,
and thus ¢ must exactly compute f. ad

4.3 Average-Case Teaching Dimension of DNFs

Now we will show that all but at most a 02(5) fraction of functions in D<, are in

fact in S. We do this by showing that at least a 1 — 02(;7 ) fraction of functions in
D« are in the easy-to-teach set S, i.e. they belong to D, and are such that each
cluster satisfies either condition (i) or (ii) from Section Since we have shown
that each f € S can be uniquely specified within D<, using O(ns) examples,
this will easily yield that the average teaching number over all of D<; is O(ns).

First we show that most functions in D<, are in fact in D,. We can bound

|D;| using the same approach as we did for monotone DNF's.
Lemma 9. Fori < (9/7)"/3, we have % . 3;1 <D < 3::L

Proof. As in Lemma [2], the upper bound is easy; we may bound the number of
functions in D; by the number of ways to choose i terms from the set of all 3"

. . . . n ni
possible terms over variables 1, ... ,z,. This is (3i ) < Si, .
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For the lower bound, we first note that a DNF formula consisting of 7 terms
that are all pairwise far from each other cannot be logically equivalent to any
other DNF over a different set of ¢ terms. We will show that at least half of
all 3™ possible sequences of i terms have the property that all 4 terms in the
sequence are pairwise far from each other; this gives the lower bound (since each
such set of ¢ terms can be ordered in 4! different ways).

So consider a uniform random draw of ¢ terms 77, ..., T; from the set of all 3™
possible terms. The probability that 77 and Tb are close is the probability that
they have no strong differences plus the probability that they have exactly one
strong difference. This is (7/9)" + n(7/9)"71(2/9) < (n + 1)(7/9)". By a union
bound over all pairs of terms, the probability that any pair of terms is close at
most (3)(n + 1)(7/9)™ which is less than 1/2 for i < (9/7)"/3. O
As in Section B as a corollary we have that |D|21|1| > i’; for s < (9/7)"/3.

We now bound the number of DNFs in D, that are not in S. To do this, we
consider choosing s terms at random with replacement from all 3™ terms:

Lemma 10. Fiz any s < (9/8)"/?>. Let f =Ty,...,Ts be a sequence of exactly
s terms selected by independently choosing each T; uniformly from the set of all
3™ possible terms. Let A(T;) denote the event that term T; in f has no cogent
antipodal pairs, and B(T;) denote the event that there is more than one other
term close to T; in f. Then Pr[3T; € f : A(T;)&B(T})] < 02(5), where the
probability is taken over the choice of f.

Using Lemma [I0] we can bound the number of functions f € Dy that are not in
S.If f € D,\S, then f must have a DNF formula representation ¢ = Ty V- - -V Ty
in which some term T; (1) has no cogent antipodal pairs, and (2) has at least
two other terms Tj, T}, that are close to it. (If there were no such term, then for
any representation ¢ = Ty V --- V Ty for the function f, every T; is contained
in either a cluster of DNF-size 1 or 2, or a cluster of DNF-size k with a pair
of good antipodal points around it. But then ¢ would be in S.) We will call
such a syntactic DNF formula “bad.” Lemma tells us that the number of
bad syntactic formulas is at most 3n;2(5), since there are 3™° syntactic formulas.
Notice that any bad formula ¢ must have s distinct terms (since the function it
computes belongs to Dy), and since these terms can be ordered in s! different
ways, there are at least s! bad formulas that compute the same function as ¢.

Consequently the number of bad functions in Ds, |D; \ S|, is at most 02(5) 3:.

By Lemma[d |D;| is at at least ?éz, This gives the following:

Corollary 2. |1|71-;\S«|9| < 02(5).

We now proceed to prove Lemma

Proof. The bulk of the argument is in showing that Pr[A(Ty) & B(T1)] is at
most O(1) - 27™; once this is shown a union bound gives the final result.

We condition on the outcome of T;. Using the fact that each variable occurs
independently in 77 (either positive or negated) with probability 2/3, a Chernoff
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bound gives that Pr[|T1| < .08n] < 27", so we have that

Pr{A(Ty) & B(Ty)] < 27"+ Y Pr[A(Th) & B(Ty) | (Ty = T)]-Px[T} = T].
T:|7T|>.08n

Next we show that Pr[A(Ty) & B(Th) | (Ty = 7)] < O(1) - 27" for every T
satisfying |7| > .08n; this implies an O(1) - 27" bound on Pr[A(Ty) & B(T1)].
To do this we consider a third event which we denote by C(T}); this is the event
that T3 is close to at most 25 of the terms T5,...,Ts. Clearly we have that

PrA(TY) & B(T)) | (Ti = T)] = PrA(Th) & B(Ty) & =C(Ty) | (T} = T)]
+PHATY) & B(TY) & C(T) | (Ty = T (1)

and we proceed by bounding each of the terms in (IJ).

The first term is at most Pr[-~C(T1) | (71 = T)]. Fix any « € [.08,1] and any
term 7 of length an, and fix T3 = 7. Then the probability (over a random draw
of Ty as in the statement of the lemma) that T5 is close to Tj is the probability
that 77 and T» have one strong difference plus the probability that 77 and T5 have
no strong difference, which is exactly an} (g)om_l + (3™ <2an (2)™". Using
the independence of the terms 75, ..., T, and a union bound, it follows that the

probability that there exists any set of K terms in f which are all close to T is at

most () (2am)* (g)Kom. It is not hard to verify that for any 1 < s < (9/8)"/2°,
any K > 26, and any « € [.08, 1], this quantity is asymptotically less than 27™.
It remains to bound the second term of (@) by O(1) - 2=". We do this using

the following observation:

Proposition 1. Let f = T1,...,Ts be any sequence of s terms. If T1 has no
cogent antipodal pairs with respect to f and is close to at most K of the terms
Ts,...,Ts, then there must be some term among To,...,Ts that is close to Ty
and contains at most k = [log K| + 1 variables not already in T;.

Proof. We show that if every term in f close to T} contains more than k variables,
there must remain some cogent antipodal pair for T;. Let r be the number of
variables in T} and let £ = n—r. For any z € {0, 1}z let @1, (2) denote the set of
points in {0,1}™ consisting of the antipodal pair induced by z on T} (these two
points each satisfy 77) and the 2r neighbors of these points that do not satisfy
Ty. Thus Q1 (2) = Qr,(2), and there are 2= distinct Q7 (2), each representing
a possible cogent antipodal pair.

Consider a term T; that is close to 71, and partition its satisfying assignments
according to the 2¢ assignments on the ¢ variables not contained in 7T}. Since T
will only eliminate the cogent antipodal pair represented by the neighborhood
Qr, (z) if it covers some point in Qr,(z), T; can only eliminate as many cogent
antipodal pairs as it has partitions. But if 7; contains more than k of the /¢
variables not already in 7T}, then there are fewer than 2¢=% different ways to
set the ¢ bits outside of 77 to construct a satisfying assignment for T}, and T;
has fewer than 2¢~% different partitions. Since by assumption there are at most
K < 281 terms close to Ty, there are fewer than ok=1 . 9l=k — 9t=1 (Jifferent
Q7(z) eliminated, and T' must have a cogent antipodal pair left. a
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By Proposition[I] we know that if A(T}) occurs (77 has no cogent antipodal pairs)
and C(T1) occurs (T is close to no more than K = 25 other terms), then there
must be some term close to T that has at most £ = 6 variables not in 77. Thus we
have that Pr[A(T1) & B(T1) & C(T1) | (Th = T)] is at most the probability there
exist two terms close to T3, one of which contains at most k = 6 variables not in
T;. We saw earlier that the probability that a randomly chosen term is close to
T, is at most 2an(2/3)*". However, the probability that a randomly chosen term
is close to T and contains at most 6 variables not in T is much lower (because
almost all of the (1—a)n variables not in Ty are constrained to be absent from the

term); more precisely this probability is at most 2an((1760‘)”) ()™ (})’)(1_&)”_6 )

A union bound over all possible pairs of terms gives us that the second term of

(@ is at most 2an(3) (1™)30 (g)mn (é)(l_a)n . It is straightforward to check
that this is at most O(1) - 27" for all 1 < s < (9/8)"/?® and all « € [0, 1].

Thus, we have bounded Pr[A(T}) & B(11)] by O(1)-2~™. A union bound over
the s terms gives that Pr[3T; € f: A(T;) & B(T;)] is at most O(s)2™™, and the
lemma, is proved. a

Theorem 8. Let s < (9/8)"/?. The average teaching dimension of D<s, the
class of DNFs over n variables with at most s terms, is O(ns).

Proof. Theorem[7 gives us that the teaching number of any concept in S C Dy is
O(ns). By Lemma[d] we have that |D<s_1] < gf, |Ds|. This leaves us with D\ S,
whose size we bounded by 02(5) |Ds| in Corollary[2l Combining these bounds, we
are ready to bound the average teaching number of |D<;|. Since we can teach
any bad concept with at most 2" examples, the average teaching number is at

most

Oms)|S| +2"(|D<s-t| + D\ S|) _ O(ns)|Dal +2°(531Dal + % D)
"DS‘ + |DS571‘ o ‘Ds‘ + |D§s—1‘
< O(ns) + (2/3)" - 4s + O(s) = O(ns)

and the theorem is proved. a

As in Corollary [l we have 2" < poly(s) if s > (9/8)"/?  and thus the worst-
case teaching number 2™ is actually poly(n, s) for such large s. This gives the
following corollary:

Corollary 3. Let s be any value 1 < s < 2". The class D<; of at-most-s-term
DNF has average teaching number poly(n, s).

5 Teaching Dimension of k-Juntas

A Boolean function f over n variables depends on its i-th variable if there are
two inputs z, 2’ € {0,1}" that differ only in the i-th coordinate and that have
f(z) # f(a’). A k-junta is a Boolean function which depends on at most & of its
n input variables. The class of k-juntas (or equivalently NC} functions) is well
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studied in computational learning theory, see e.g., [AI2I[0]. We write Jj to
denote the class of Boolean functions f: {0,1}"—{0, 1} that depend on exactly
k variables, and we write J<j to denote the class J<p = Up<rJir of Boolean
functions over {0,1}™ that depend on at most k variables, i.e., J<i is the class
of all k-juntas.

We analyze the worst-case and average-case teaching dimensions of the class
of k-juntas, and show that while the worst-case teaching dimension has a log-
arithmic dependence on n, the average-case dimension has no dependence on
n. Thus k-juntas are another natural concept class where there is a substantial
asymptotic difference between the worst-case and average teaching dimensions.

Worst-Case teaching dimension of k-juntas. We recall the following:

Definition 1. Let k <n. A set S C {0,1}" is said to be an (n,k)-universal set
if for any 1 < iy <'ia... < i < n, it holds that Yy € {0, 1}k, dx € S satisfying
('ri17""xik-) = (yla"'7yk)

Nearly matching upper and lower bounds are known for the size of (n,k)-
universal sets:

Theorem 9 ([15]). Let k < n. Any (n, k)-universal set is of size 2(2¥logn),
and there exists an (n, k)-universal set of size O(k2¥ logn).

This straightforwardly yields the following theorem (see [II] for proof):

Theorem 10. The teaching dimension of J<i 1is at least 2(2Flogn) and at
most O(k2Flogn).

Average-case teaching dimension of k-juntas. The idea is similar to the
case of monotone DNF: we show that k-juntas with exactly k relevant variables
can be taught with 2* examples (independent of n), and then use the fact that
the overwhelming majority of k-juntas have exactly k relevant variables. (See [I1]
for full proofs.) Using this approach it is possible to prove:

Theorem 11. The average teaching dimension of the class J<i of k-juntas is
at most 2F + o(1).

6 Sparse GF, Polynomials

A GF; polynomial is a multilinear polynomial with 0/1 coefficients that maps
{0,1}" to {0,1} where all arithmetic is done modulo 2. Since addition mod 2
corresponds to parity and multiplication corresponds to AND, a GF, polynomial
can be viewed as a parity of monotone conjunctions. It is well known, and not
hard to show, that every Boolean function f: {0,1}"—{0,1} has a unique GF;
polynomial representation.

A natural measure of the size of a GF5 polynomial is the number of monomials
that it contains. In keeping with our usual notation, let G; denote the class of all
Boolean functions f: {0,1}"—{0,1} that have GF; polynomial representations
with exactly s monomials and let G<, denote Uy <s;Gs. We sometimes refer
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to functions in G<s as being s-sparse GF, polynomials. The class of s-sparse
GF;, polynomials has been studied by several researchers in learning theory and
complexity theory, see e.g., [13}[5L[14].

Roth and Benedek [13] showed that any f € G<, is uniquely determined by
the values it assumes on those x € {0,1}" that contain at least n— (1+ |log, s])
many 1s. They also showed that it is in fact necessary to specify the value of
f on every such point even in order to uniquely determine the parity (even or
odd) of [f~1(1)| where f ranges over all of G<,. We thus have:

Theorem 12 ([13]). Fiz any 1 < s < 2". The (worst-case) teaching dimension
of G<s 18 ZZZFOUO& . (") (which is n®U°8%) for s subezponential in n).

In contrast, we show in the next subsection that if s is sufficiently small, the
average-case teaching dimension of G<; is O(ns):

Theorem 13. Fiz 1 < s < (1—¢)logyn, where € > 0 is any constant. Then the
average-case teaching dimension of G<s is at most ns + 2s.

For s = w(1), s < (1 —¢€) logy n, this gives a superpolynomial separation between
worst-case and average-case teaching dimension of s-sparse GF» polynomials.

Proof of Theorem [I3l We now define the “nice” (easy-to-teach) subset of G<s,
in analogy with S in Section @l We say that a function f = My @ ---® M, € G,
is individuated if for each i = 1,..., s there is some j € {1,...,n} such that the
variable z; occurs in monomial M; and does not occur in any of the other s — 1
monomials. Let Z C G, denote the set of all functions in G, that are individuated.

Any function in Z can be specified using few examples (see [I1] for proof):

Lemma 11. For any f € I, the teaching dimension of f with respect to G<s is
at most ns + 2s — 1.

Now observe that |G, = (%) < %, and thus (% )* < |G| = G| + [G<s1] <

s sl s

20+ (s — 1)?:_1)", =27+ (2:_;;, Our next lemma shows that almost every

function in G5 (and thus almost every function in G<;) is in fact individuated
(see [11] for proof):
Lemma 12. We have |Z| > "

_ne gns ns—n

+ (23_2)! many functions in G<s \ L.

(1 —s-e™), and thus there are at most s -

€ s!
By Lemma [IT] we can specify any function in Z with at most N examples, and
by Theorem [[2] we can specify any of the other functions in G<s with at most
n20o2s) many examples. It follows from Lemma that the average teaching
dimension of G<, is at most

N|I| + nO(logs) . |g<s \II nO(log s) . (S . e*’ﬂe . 2:15 + (Q:j;;)
=\ N4 ,n .
|G<s] ()
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The second term on the right simplifies to 5% -nC1°85) . (5.e¢="" /514277 /(s —2)!),
which is easily seen to be o(1) since € is a constant greater than 0 and s <
(1 — €)logn. This proves Theorem O

While our proof technique does not extend to s that are larger than logn, it
is possible that different methods could establish a poly(n,s) upper bound on
average teaching dimension for the class G<; of s-sparse GF, polynomials for a
much larger range of values of s. This is an interesting goal for future work.
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