
Exact Learning Composed Classes
with a Small Number of Mistakes

Nader H. Bshouty and Hanna Mazzawi

Department of Computer Science
Technion, Haifa, 32000, Israel

{bshouty, hanna}@cs.technion.ac.il

Abstract. The Composition Lemma is one of the strongest tools for
learning complex classes. It shows that if a class is learnable then com-
posing the class with a class of polynomial number of concepts gives a
learnable class. In this paper we extend the Composition Lemma as fol-
lows: we show that composing an attribute efficient learnable class with a
learnable class with polynomial shatter coefficient gives a learnable class.

This result extends many results in the literature and gives polynomial
learning algorithms for new classes.

1 Introduction

The Composition Lemma is one of the strongest tools for learning complex
classes. It shows that if a class C is learnable then composing C with poly-
nomial number of concepts G gives a learnable class C(G). This Lemma is used
for learning k-CNF of size s (CNF with s terms where each term is of size at most
k) in time O(nk) and O(sk log n) equivalence queries, k-DL (decision list with
terms in the nodes of size at most k) in time O(n3k) and O(n2k) equivalence
queries. Those results was later applied to learning decision tree and CDNF
(boolean functions with polynomial size CNF and DNF) in quasi-polynomial
time [6, 3], and DNF in sub-exponential time [4, 8, 13].

In this paper we extend the Composition Lemma as follows: We show that
composing an attribute efficient learnable class with a learnable class with poly-
nomial shatter coefficient gives a learnable class. Since classes of constant VC
dimension has polynomial shatter coefficient, we can apply our result for any
class of constant VC dimension.

The following subsections give some results and compare them with the results
known from the literature.

1.1 Conjunction of Concepts

Let C be a class with constant VC-dimension, d, that is learnable in polynomial
time with q equivalence queries. It is known from [5] that

∧
k C = {g1 ∧ · · · ∧

gk | gi ∈ C} is learnable in (2kq)dd⊥
time and equivalence queries where d⊥

is the VC-dimension of the dual class1 of C. In most applications d⊥ ≥ d (for
1 The dual class C⊥ of C is the set of functions gx : C → {0, 1} where gx(f) = f(x).

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 199–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

200 N.H. Bshouty and H. Mazzawi

example halfspaces), which gives at least (2kq)d2
time and query complexity.

Our algorithm in this paper runs in time O((k2q)d+2) and asks

O(k2q log(kq))

equivalence queries. This significantly improves the query complexity of the al-
gorithm.

Our algorithm also runs in polynomial time for classes with polynomial shatter
coefficient. This cannot be handled by the previous technique developed in [5].
In particular, if C1, C2, . . . , C� are learnable classes with polynomial shatter co-
efficient then

C1 ∧ C2 ∧ · · · ∧ C� = {f1 ∧ f2 ∧ · · · ∧ f� | fi ∈ Ci}
is learnable.

1.2 Halfspace of Functions and Other Classes

Let C be a class with polynomial shatter coefficient that is learnable in polyno-
mial time. Then the class HS(C) = {a1f1+a2f2+ · · ·+a�f� ≥ 0 | f1, . . . , f� ∈ C}
and k-CNF(C) = {H(f1, . . . , f�) | H is k-CNF } are learnable in polynomial
time. Those classes includes many interesting classes. For example, let X =
{1, 2, . . . , n}d and let C be the set of all halfspaces over X that depends on
a constant number of variables. Then HS(C) is the class of depth two Neural
Networks with constant fan-in at the hidden nodes [2]. Also the class k-CNF(C)
is interesting because it includes the geometric class of union of k = O(1) n-
dimensional polytopes with facets that depends on j = O(1) variables. In par-
ticular, it includes the class of union of O(1) boxes in the n-dimensional space.
In the constant dimensional space it includes the classes: union of any number
of polytopes with constant number of facets, a polytope (with any number of
facets) and union of constant number of polytopes. In particular, it contains the
union of any number of boxes in the constant dimensional space.

In [2], Auer et. al. already showed that HS(C) and k-CNF(C) are learnable in
polynomial time for C that is halfspaces that depends on a constant number of
variables. Our result in this paper shows that HS(C) and k-CNF(C) are learnable
in polynomial time for any learnable class C with polynomial shatter coefficient.

Another example is the class of boolean functions on strings that is a threshold
of weighted substrings. For w ∈ {0, 1}≤n let fw : {0, 1}n → {0, 1} be the function
fw(x) = 1 if and only if w is a substring of x, i.e., there is i such that w =
xixi+1 · · · xi+|w|−1. Consider the class C of all fw where w is a string over {0, 1}.
Then the class of threshold of weighted substrings is HS(C). We show that C
has a polynomial shatter coefficient and therefore the class HS(C) is learnable
in polynomial time.

2 Preliminaries

Let X be a set of instances. We call X the instance space. A concept over X is a
boolean function f : X → {0, 1}. A concept class C over X is a set of concepts
over X .

Exact Learning Composed Classes with a Small Number of Mistakes 201

We say that f is positive (respectively, negative) on x ∈ X if f(x) = 1 (respec-
tively, f(x) = 0). We say that f is positive (respectively, negative) on X ′ ⊂ X if
for every x ∈ X ′ we have f(x) = 1 (respectively, f(x) = 0).

For a concept f over X and X ′ ⊆ X we define the projection f |X′ : X ′ →
{0, 1} where f |X′(x) = f(x) for every x ∈ X ′. For a concept class C over X , the
projection of C over X ′ is C|X′ = {f |X′ : f ∈ C}. We say that f1 agrees with
f2 on X ′ if f1|X′ ≡ f2|X′ , i.e., for every x ∈ X ′ we have f1(x) = f2(x).

Let Q ⊆ X . We say that the concept class F over X is complete (concept
class) for Q (with respect to C) if C|Q ⊆ F |Q. In other words, for every f ∈ C
there is h ∈ F that agrees with f on Q. We say that Q is shattered by C if
C|Q = 2Q. The Vapnik-Chervonenkis VC-dimension of C, VCdim(C), is the size
of the largest set shattered by C. We define the shatter coefficient S(C, m) to be
the maximal size of C|Q where |Q| = m.

The following is proved by Sauer, [12], and independently by Perles and She-
lah.

Lemma 1. Let C be a concept class over X. For a finite set Q ⊆ X and C′ =
C|Q we have

|C′| ≤ g(|Q|, d) Δ=
d∑

i=0

(
|Q|
i

)

≤
(

e|Q|
d

)d

where d = VCdim(C).
In particular, there is a complete concept class for Q with respect to C of size

at most g(|Q|, d).

Sauer Lemma does not always give the best bound. Consider the following
example

Example. Let X =
n where
 is the set of the real numbers and suppose
n = 2�. Consider the function fi,a : X → {0, 1} where fi,a(x1, . . . , xn) = 1 if and
only if xi > a. Consider the concept class C = {fi,a | i = 1, . . . , n and a ∈
}.
The VC-dimension of C is at least � = log n because the set {q1, . . . , q�} where
{(q1,i, q2,i, . . . , q�,i) | i = 1, . . . , �} = {0, 1}� is shattered by the set of functions
{fi,0 | i = 1, . . . , n} ⊂ C. Now Sauer bound for C|Q gives at least (|Q|/logn)log n

where it is easy to see that the size of C|Q is at most n(|Q| + 1).

Therefore, we will sometimes use the following properties to find upper bounds
on the shatter coefficient

Lemma 2. Let C, C1 and C2 be concept classes over X and σ : {0, 1}2 → {0, 1}.
Define σ(C1, C2) = {σ(f1, f2)| f1 ∈ C1, f2 ∈ C2} and C1 ⊗σ C2 = {f : X × X →
{0, 1}; f(x, y) = σ(f1(x), f2(y)) | f1 ∈ C1, f2 ∈ C2}. We have

1. S(C, m) ≤ g(m, VCdim(C)).
2. S(C1 ∪ C2, m) ≤ S(C1, m) + S(C2, m).
3. S(σ(C1, C2), m) ≤ S(C1, m)S(C2, m).
4. S(C, m1 + m2) ≤ S(C, m1)S(C, m2).
5. S(C1 ⊗σ C2, m) ≤ S(C1, m)S(C2, m).

202 N.H. Bshouty and H. Mazzawi

We will also consider a family of concept classes C = {C(n)}, n = 1, 2, · · ·
where C(n) is a concept class over an instance space X(n). When it is clear from
the context, we will just call C a concept class.

For the instance space X(n) = {0, 1}n and a concept class C, we say that C is
closed under combinations (with repetition) if for every xi1 , . . . , xik

∈ {x1, . . . , x�}
and a concept f̂ ∈ C(k) there is a concept f ∈ C(�) such that

f̂(xi1 , . . . , xik
) ≡ f(x1, . . . , x�).

Let C1 = {C
(n)
1 } be a concept class over {0, 1}n and let C2 be a concept class

over X . The composition of the two concept classes is a concept class over X
defined as

C1(C2) = {f(p1, . . . , pk) | f ∈ C
(k)
1 , p1, . . . , pk ∈ C2, k = 1, 2, · · ·}.

2.1 The Learning Model

In the exact learning model, [1, 9], a teacher has a boolean function f , called the
target function, which is a member of a concept class C over an instance space X .
The goal of the learner is to find a hypothesis h that is logically equivalent to f .
The learner can ask the teacher equivalence queries. In each equivalence query
the learner sends the teacher a hypothesis h : X → {0, 1} from some class
of hypothesis H . The teacher answers “YES” if h is logically equivalent to f ,
and provides a counterexample, x0 such that f(x0)
= h(x0), otherwise. We will
regard the learner as a learning algorithm, the teacher as an oracle EQ, and the
equivalence query as a call to this oracle, EQ(h).

We say that a learning algorithm A learns C from H in time t(A) and q(A)
equivalence queries if for every target function f ∈ C, A runs in time at most
t(A), asks at most q(A) equivalence queries with hypothesis from H and output
a hypothesis from H that is logically equivalent to the target function f . If such
algorithm exists, then we say that C is learnable from H in time t(A) and q(A)
equivalence queries.

Throughout the paper we will assume that H is decidable in polynomial time.
That is, given a boolean formula h, the learner can decide in polynomial time
whether h ∈ H .

For a concept class C = {C(n)} over {0, 1}n. We say that algorithm A learns
C from H = {H(n)} in time t(A(n)) and q(A(n)) equivalence queries if for every
n, A(n) learns C(n) from H(n) in time t(A(n)) and q(A(n)) equivalence queries.

3 The Composition Lemma

In this section we prove (for completeness) the following well known composition
Lemma [7, 11].

Lemma 3. (Composition Lemma) Let C = {C(n)} be a concept class over
{0, 1}n that is closed under combinations. Suppose C is learnable from H in time

Exact Learning Composed Classes with a Small Number of Mistakes 203

t(A(n)) and q(A(n)) equivalence queries. Let G = {g1, . . . , g�} be a concept class
over X where each gi is computable in time Com(G). Then, the algorithm A(G)
in Figure 1 learns C(G) from H(G) in time O(� · q(A(�)) · Com(G) + t(A(�)))
and asks q(A(�)) equivalence queries.

Algorithm A(G = {g1, . . . , g�}).

1. � ← |G|;
2. Run A(�) with the following changes in each step
3. If A(�) asks EQ(h(x1, . . . , x�))
4. then Ask EQ(h(g1, . . . , g�)).
5. If the oracle answers “YES” then return(h(g1, . . . , g�))
6. If the oracle answers q ∈ X
7. then give (g1(q), . . . , g�(q)) to A(�)
8. If A(�) outputs h then return(h(g1, . . . , g�))

Fig. 1. An algorithm that learns C(G)

Proof. Let f̂(gi1 , . . . , gik
) ∈ C(G) be the target function where f̂ ∈ C(k) and

gi1 , . . . , gik
∈ G. Since the concept class is close under combinations, there is a

function f ∈ C(�) such that f̂(gi1 , . . . , gik
) ≡ f(g1, . . . , g�).

Now since each counterexample q for h(g1, . . . , g�) satisfies

h(g1(q), . . . , g�(q))
= f̂(gi1(q), . . . , gik
(q)) = f(g1(q), . . . , g�(q)),

the assignment (g1(q), . . . , g�(q)) is a counterexample for h with respect to the
function f . Since A learns C from H, it will learn some h ∈ H(�) that is logically
equivalent to the function f ∈ C(�). Then

f̂(gi1 , . . . , gik
) ≡ f(g1, . . . , g�) ≡ h(g1, . . . , g�).

The algorithm runs in time at most O(� · q(A(�)) · Com(G) + t(A(�))) and
asks q(A(�)) equivalence queries.

Notice that when |G| is exponentially large then the complexity is exponential.
In the next section we show that, with some constraints on C and G, a modified
version of the composition lemma gives an algorithm with small time and query
complexity even when G is exponentially large.

4 The Algorithm

In this section we give our main algorithm. The main idea of our algorithm
is the following: The learner wants to learn C1(C2) for a large concept class

204 N.H. Bshouty and H. Mazzawi

C2 using learning algorithms A1 and A2 for C1 and C2, respectively. Since the
complexity in the composition lemma (Lemma 3) depends on |C2|, which may
be exponentially large, the learner cannot use the composition lemma. Instead
it does the following: Let f(p1, . . . , pk) be the target function that the learner
is trying to learn. At some stage of the learning process the learner has a set of
examples Q. It uses this set with the algorithm A2 to learn a complete concept for
Q, G = {g1, . . . , g�} ⊂ C2 with respect to C2. This set may not contain p1, . . . , pk

but for each pi there is gri that is “close” to pi. By “close” we mean that gri is a
hypothesis of some equivalence query in A2 when A2 runs with the target pi over
the instance space Q. Then the learner assumes that p1, . . . , pk ∈ G and runs
the algorithm A1(G). When A1(G) runs more than it should or gets stuck then
the learner knows that the assumption was wrong. But fortunately, we are able
to prove that one of the new counterexamples the learner obtains from running
A1(G) provides a counterexample for one of the gri. The learner then adds all
the counterexamples to Q and runs the algorithm again. Eventually, the set G
will contain p1, . . . , pk and A1(G) will learn the target function.

We show that if C2|Q is small and A1 has small complexity then C1(C2) is
learnable.

In subsection 4.1 we show how to build G and then in subsection 4.2 we give
our main algorithm followed by a proof of correctness and complexity analysis.

4.1 Find All Consistent Hypotheses

Let C be a concept class and H be a hypothesis class. Let A be a learning
algorithm that learns C from H in time t(A) and q(A) equivalence queries. In
this subsection we give an algorithm that, for a set of points Q = {q1, q2, . . . , q�},
outputs a set of hypothesis F ⊂ H such that C|Q ⊆ F |Q. That is, the algorithm
generates F ⊆ H that is complete for Q with respect to C.

The first algorithm in this subsection is Find Hypothesis(A, P, Q\P) in
Figure 2. It searches for a hypothesis h ∈ H that is positive on P and negative
on Q\P for some P ⊆ Q. For such hypothesis h we say that h is consistent with
(P, Q\P). The algorithm is very similar to the algorithm in [5].

We now prove

Fact 1. Let C be a concept class over X. Let A be a learning algorithm that
learns C from H in time t(A) and q(A) equivalence queries. Let Q be a set of �
instances from X and P ⊆ Q. Find Hypothesis(A, P, Q\P) in Figure 2 runs
in time O(t(A) + � · q(A)) and outputs h ∈ H that satisfies the following:

1. If there is f ∈ C that is consistent with (P, Q\P) then h is consistent
with (P, Q\P).

2. If there in no f ∈ H that is consistent with (P, Q\P) then h is “NULL”.
3. If there is f ∈ C that is consistent with (P, Q\P) and A halts then h ≡ f .

Proof. The algorithm runs the learning algorithm A (line 2), counts the number
of its steps (lines 1 and 3) and the number of times it asks equivalence queries
(lines 1 and 5). If A runs more than t(A) steps, asks more than q(A) equivalence

Exact Learning Composed Classes with a Small Number of Mistakes 205

queries or gets stuck (this also includes the cases where the algorithm asks EQ(h)
or outputs h where h
∈ H), then it returns “NULL” (lines 3,5 and 13). This
indicates that there exists no consistent hypothesis in C for (P, Q\P).

For each equivalence query EQ(h) that A asks, the algorithm returns to A
a counterexample from P or Q\P , i.e., some point q ∈ P where h(q) = 0 or
q ∈ Q\P where h(q) = 1 (lines 4-8). Obviously, if the algorithm cannot find such
point then the hypothesis h is consistent with (P, Q\P) (line 6-7).

Algorithm Find Hypothesis(A, P, Q\P).

1. time ← 0; query ← 0;
2. Run A with the following changes in each step
3. time ← time + 1;
4. If A asks EQ(h) where h ∈ H
5. then query ← query + 1;
6. If h consistent with (P, Q\P)
7. then return(h);
8. else give A a counterexample from P or Q\P .
9. If A outputs h
10. then If h consistent with (P, Q\P)
11. then return(h)
12. else return(NULL);
13. If A cannot execute this step or time > t(A) or query > q(A)
14. then return(NULL);

Fig. 2. An algorithm that finds a hypothesis that is consistent with (P, Q\P)

Now if there is f ∈ C that is consistent with (P, Q\P) then either one of
the hypothesis h ∈ H in the equivalence queries is consistent with (P, Q\P)
or, since the learning algorithm A learns C, the algorithm A halts and outputs
h ∈ H that is equivalent to f . In both cases, the output hypothesis is in H and
consistent with (P, Q\P).

If there is no f ∈ C that is consistent with (P, Q\P) then either A outputs
an h ∈ H that is consistent with (P, Q\P), gets stuck, goes into an infinite loop
or outputs a hypothesis that is not consistent with (P, Q\P). In the latter three
cases the algorithm outputs “NULL”.

The second algorithm, Find Complete Concept in Figure 3, finds F ⊆ H
that is complete for Q with respect to C. It starts with a hypothesis h0 that
is consistent with (∅, ∅) (line 1). At stage i in the For command (line 2) the
set (of hypothesis h in) Fi−1 is complete for Qi−1 = {q1, . . . , qi−1} with respect
to C. For each hypothesis g that is consistent with (P, Qi−1\P) (line 4) it runs
Find Hypothesis to try to find a hypothesis g1 ∈ H that is consistent with
(P ∪ {qi}, Qi−1\P) (line 5) and a hypothesis g2 ∈ H that is consistent with

206 N.H. Bshouty and H. Mazzawi

Algorithm Find Complete Concept(A, Q = {q1, . . . , q�}).

1. h0 ←Find Hypothesis(A, ∅, ∅); F0 ← {((∅, ∅), h0)};
2. For i = 1 to � do
3. Fi ← ∅; Qi−1 ← {q1, . . . , qi−1};
4. For all ((P, Qi−1\P), g) ∈ Fi−1 do
5. g1 ←Find Hypothesis(A, P ∪ {qi}, Qi−1\P).
6. g2 ←Find Hypothesis(A, P, (Qi−1\P) ∪ {qi}).
7. If g1 �=“NULL” then Fi ← Fi ∪ {((P ∪ {qi}, Qi−1\P), g1)}
8. If g2 �=“NULL” then Fi ← Fi ∪ {((P, (Qi−1\P) ∪ {qi}), g2)}
9. F ← {h | ((P, Q\P), h) ∈ F�}
10.output(F).

Fig. 3. An algorithm that outputs a complete concept for Q with respect to C

(P, (Qi−1\P) ∪ {qi}) (line 6). That is, it assumes that qi is positive and then
tries to find a consistent hypothesis g1 ∈ H and then assumes that it is negative
and again tries to find a consistent hypothesis g2 ∈ H . If such hypothesis exists
then it puts it in Fi (lines 7 and 8).

We now show

Fact 2. Let C be a concept class over X. Let A be a learning algorithm that
learns C from H in time t(A) and q(A) equivalence queries. Let Q be a subset
of X. Find Complete Concept(A, Q) runs in time at most

O (|Q|(t(A) + |Q| · q(A)) · S(H, |Q|))

and outputs F ⊆H that is complete for Q with respect to C of size at most S(H, |Q|).

Proof. Obviously, S(H, i−1) ≤ S(H, i) and therefore, |Fi| ≤ |F|Q|| ≤ S(H, |Q|).
Therefore, the algorithm Find Complete Concept(A, Q) runs Find Hypo-
thesis at most 2|Q|S(H, |Q|) times. By Fact 1 the result follows.

We will further improve the complexity of Find Complete Concept and prove
some new properties of the algorithm that will be used in the sequel.

First, we will assume that in Find Hypothesis when A asks equivalence
query, the algorithm always chooses the counterexample in Q with the smallest
index and sends it to A. See the algorithm in Figure 2 line 8. This requirement is
not necessary but it simplifies the analysis. Second, if Find Hypothesis stops
in step 7, i.e., the hypothesis in the equivalence query h (in step 4) is consistent
with (P, Q\P), then the next time we call Find Hypothesis (A, P ∪{q}, Q\P)
and Find Hypothesis (A, P, (Q\P) ∪ {q}) the following facts are true:

1. The hypothesis h is consistent either with (P ∪{q}, Q\P) or (P, (Q\P)∪{q})
and therefore for one of them the algorithm Find Complete Concept does
not need to call Find Hypothesis.

Exact Learning Composed Classes with a Small Number of Mistakes 207

2. For the other one, Find Hypothesis does not need to start running A from
the beginning. It can just continue running it from step 4, i.e., returns the
counterexample q to A and continue running A until either a new consistent
hypothesis is found or it returns “NULL”.

Third, if Find Hypothesis stops in step 11, then the algorithm can stop calling
Find Hypothesis for the descendants of (P, Q\P) and add h to F .

We will call this new algorithm Find Complete. Now we have

Fact 3. Let C be a concept class over X. Let A be a learning algorithm that
learns C from H in time t(A) and q(A) equivalence queries. Let Q be a subset
of X. Find Complete(A, Q) runs in time at most

O ((t(A) + |Q| · q(A)) · S(H, |Q|))

and outputs F ⊆ H of size at most S(H, |Q|) that is complete for Q with respect
to C.

Proof. This follows from the fact that the algorithm runs only one time for every
hypothesis in F|Q|.

4.2 The Main Algorithm

In this section we give our main algorithm.
Let C1 = {C

(n)
1 } be a concept class over {0, 1}n and A1 be a learning algorithm

for C1. Let C2 be a concept class over X and A2 be a learning algorithm for C2.
Consider the algorithm A1(A2) in Figure 4. At some stage of the algorithm it
has some set of examples Q. It generates a set G ⊆ H that is complete for Q with
respect to C2 (line 2). The algorithm then learns A1(G) using the composition
Lemma (see lines 4-19). If the algorithm fails (see lines 3, 5, 12-18 and 19) then
it reruns the algorithm with the examples in Q and all the counterexamples
received from A1(G) (see steps 11 and 17).

We prove

Theorem 1. Let C1 = {C
(n)
1 } be a concept class over {0, 1}n that is closed

under combinations and A1 be a learning algorithm that learns C1 from H1 in
time t(A1(n)) and q(A1(n)) equivalence queries. Let C2 be a concept class over
X and A2 be a learning algorithm that learns C2 from H2 in time t(A2) and
q(A2) equivalence queries. Then A1(A2) learns C1(C2) from H1(H2) in time

O (S(H2, ρτ)(t(A2) + ρτ · q(A2)) + τ · t(A1(S(H2, ρτ))))

and ρτ equivalence queries where τ = q(A2) · k, ρ0 = 0,

ρi+1 = ρi + q(A1(S(H2, ρi))),

and the target function is f(p1, p2, . . . , pk).

208 N.H. Bshouty and H. Mazzawi

Algorithm A1(A2).

1. Q ← ∅; s ← 0;
2. G ←Find Complete(A2, Q);
3. time ← 0; query ← 0; � ← |G|;
4. Run A1(�) with the following changes in each step
5. time ← time + 1;
6. If A1(�) asks EQ(h(x1, . . . , x�))
7. then Ask EQ(h(g1, . . . , g�)) where G = {g1, . . . , g�}.
8. If the oracle answers “YES” then return(h(g1, . . . , g�))
9. If the oracle answers q ∈ X
10. then give (g1(q), . . . , g�(q)) to A1(�)
11. s ← s + 1; qs ← q; Q ← Q ∪ {qs};
12. query ← query + 1;
13. If A1(�) outputs h
14. then Ask EQ(h(g1, . . . , g�)) where G = {g1, . . . , g�}.
15. If the oracle answer “YES” then return(h(g1, . . . , g�))
16. If the oracle answer q ∈ X
17. then s ← s + 1; qs ← q; Q ← Q ∪ {qs};
18. goto 2.
19. If A1(�) cannot execute this step or

time > t(A1(�)) or query > q(A1(�)) + 1
20. then goto 2.;

Fig. 4. An algorithm that learns C1(C2)

Proof. Let f(p1, . . . , pk) be the target function where f ∈ C
(k)
1 and p1, . . . , pk ∈

C2. At stage i the algorithm has a set of instances Q collected from the equiv-
alence queries. Since G ←Find Complete(A2, Q), for every P ⊆ Q, if there
is a concept in C2 that is consistent with (P, Q\P) then there is g ∈ G that
is consistent with (P, Q\P). Therefore, for every j = 1, . . . , k there is grj ∈ G
that is consistent with (Pj , Q\Pj) where Pj = {q ∈ Q | pj(q) = 1}. That
is, pj|Q = grj |Q. Each grj was obtained by running A2 with (Pj , Q\Pj) in
Find Hypothesis(A2, Pj , Q\Pj). We denote by m(A2, Pj , Q\Pj) the number of
equivalence queries that A2 asks in Find Hypothesis(A2, Pj , Q\Pj) before it
outputs grj . By Fact 1, if A2 halts then pj ≡ grj and therefore m(A2, Pj , Q\Pj) ≤
q(A2) for every j.

Now we will show that if the algorithm goes to step 2 (from step 18 or 20),
i.e., A1 fails to find the target, the new set Q′ which is Q with the new coun-
terexamples from A1(G), satisfies m(A2, P

′
j , Q

′\P ′
j) > m(A2, Pj , Q\Pj) for at

least one j where P ′
j = {q ∈ Q′ | pj(q) = 1}. In other words, one of the new

points in Q′ is a counterexample for one of the hypothesis grj . This will show
that after at most q(A2) ·k stages the set G contains p1, . . . , pk. When p1, . . . , pk

are in G then the algorithm A1(G) (steps 4-20) will learn the target.

Exact Learning Composed Classes with a Small Number of Mistakes 209

We will now show that either one of the new points is a counterexample for
one of the grj or the learner has learned the target. Suppose none of the points
in Q′\Q is a counterexample for gr1 , . . . , grk

. That is, for every j ≤ k and every
q ∈ Q′\Q we have grj(q) = pj(q). Then, for every q ∈ Q′\Q we have

f(p1(q), . . . , pk(q)) = f(gr1(q), . . . , grk
(q)).

Since the algorithm runs A1(G) and each counterexample for the target
f(p1, . . . , pk) is also a counterexample for f(gr1, . . . , grk

), the algorithm A1(G)
will learn h that is equivalent to f(gr1 , . . . , grk

). Then, when the algorithm
asks equivalence queries with h ≡ f(gr1 , . . . , grk

) it either receives a counterex-
ample q and then for this q ∈ Q′\Q we have f(p1(q), . . . , pk(q))
= h(q) =
f(gr1(q), . . . , grk

(q)) which is a contradiction, or, it receives “YES” and then we
have f(gr1 , . . . , grk

) ≡ h ≡ f(p1, . . . , pk). This completes the correctness of the
algorithm.

We now prove its complexity. Let ρi be the size of |Q| at stage i. Then ρ0 = 0
and at stage i + 1 we have |G| = S(H2, ρi) and therefore A1(G) generates
q(A1(S(H2, ρi))) more counterexamples. Therefore, ρi+1 = q(A1(S(H2, ρi))) +
ρi. Since the algorithm runs at most τ = q(A2) · k stages, the number of equiv-
alence queries in the algorithm is at most ρτ .

The time complexity is the time for Find Complete with ρτ examples, which
is equal to O (S(H2, ρτ)(t(A2) + ρτ · q(A2))) plus the time for running A1 at each
stage, which is equal to

∑τ
i=1 t(A1(S(H2, ρi))) ≤ τ · t(A1(S(H2, ρτ))).

In the following section we give some applications of the main Theorem

5 Applications

In this section we first prove

Theorem 2. Let
∧

be the set of monotone conjunctions (monomials) over V =
{x1, x2, · · ·}. Let C be a concept class that is learnable from H in time t and
q equivalence queries. Suppose S(H, m) ≤ γmd for some d and γ ≥ 2 that are
independent of m. Then

∧
k C = {g1 ∧ · · · ∧ gk | gi ∈ C} is learnable in time

O(γρd(t + ρq)) and
ρ = O(k2qd log(kqdγ1/d log γ))

equivalence queries.
In particular, when H has polynomial size shatter coefficient then

∧
k C is

learnable in time O(γρd
0(t + ρ0q)) and

ρ0 = O(k2q log(kqγ))

equivalence queries.

Proof. We use WINNOW1 for learning
∧

, [9]. For a conjunction over {0, 1}n

with k relevant variables, WINNOW1 runs in time O(nk log n) and asks ck log n
equivalent queries for some constants c. By Theorem 1 the number of equivalence
queries ρ satisfies ρ ≤ ρτ where τ = qk, ρ0 = 0 and

210 N.H. Bshouty and H. Mazzawi

ρi+1 = ρi + ck log(S(H, ρi)) ≤ ρi + cdk log ρi + ck log γ.

Then

ρτ =
τ−1∑

i=0

(ρi+1 − ρi)

≤
τ−1∑

i=1

cdk log ρi + ck log γ

≤ cdkτ log ρτ + ckτ log γ.

Now, using Fact 4 below, we have

ρ ≤ ρτ ≤ 2cdkτ log(c2dk2τ2 log γ) + ckτ log γ = O(k2qd log(kqdγ1/d log γ)).

By Theorem 1 the time complexity follows.

Fact 4. Let α, β > 2 be constants and ρ ≥ 1 that satisfies

ρ ≤ α log ρ + β.

Then
ρ ≤ 2α log(αβ) + β.

Proof. Consider the two increasing monotone functions f(x) = x and g(x) =
α log x + β for x ≥ 1. Both functions intersect at one point ρ0 that satisfies
ρ0 = α log ρ0 + β. For x > ρ0 we have f(x) > g(x) and for 1 < x < ρ0 we have
f(x) < g(x). Therefore, it is enough to show that for ρ1 = 2α log(αβ) + β we
have g(ρ1) < f(ρ1).

Now since α, β > 2 we have

g(ρ1) = α log(2α log(αβ) + β) + β

< α log(2αβ log(αβ)) + β

< α log((αβ)2) + β = ρ1 = f(ρ1).

Let C be a concept class with constant VC-dimension, d, that is learnable in
polynomial time with q equivalence queries. It is known from [5] that

∧
k C =

{g1∧· · ·∧gk | gi ∈ C} is learnable in (2kq)dd⊥
time and equivalence queries where

d⊥ is the VC-dimension of the dual concept class of C. In most applications d⊥ ≥
d (for example halfspaces), which gives at least (2kq)d2

time and equivalence
queries. Theorem 2 shows that this concept class is learnable in time O((k2q)d+2)
and

O(k2q log(kq))

equivalence queries. This significantly improves the query complexity in [5].
Our algorithm also runs in polynomial time for concept classes with poly-

nomial shatter coefficient. This cannot be handled by the previous technique
developed in [5].

Exact Learning Composed Classes with a Small Number of Mistakes 211

We now show

Corollary 1. Let Ci be a concept class that is learnable from Hi in time ti and
qi equivalence queries for i = 1, . . . , k. Suppose S(Hi, m) ≤ γim

di for i = 1, . . . , k
where each di and γi > 2 are independent of m. Then the concept class

C1 ∧ C2 ∧ · · · ∧ Ck = {f1 ∧ f2 ∧ · · · ∧ fk | fi ∈ Ci}

is learnable in time O(γkρd(t + ρq)) and

ρ = O(k2qd log(kqdγ1/d log γ))

equivalence queries where q =
∑

i qi, t =
∑

i ti, γ = maxi γi and d = maxi di.
In particular, when each Hi has polynomial size shatter coefficient then C1 ∧

C2 ∧ · · · ∧ Ck is learnable in time O(γkρd
0(t + ρ0q)) and

ρ = O(k2q log(kqγ))

equivalence queries.

Proof Sketch. Consider C = ∪iCi and H = ∪iHi. Then C is learnable in time t
and q equivalence queries. Now since

S(H1 ∪ · · · ∪ Hk, m) ≤
k∑

i=1

γim
di ≤ kγmd,

by Theorem 2 the result follows.

We now show the above results with WINNOW2, [9].
For any halfspace f(x) = [a1x1 + · · · + anxn ≥ b] let α(f) be the minimal∑n
i=1 μi/δ2 such that for all (x1, . . . , xn) ∈ {0, 1}n we have

n∑

i=1

μixi ≥ 1 if f(x1, . . . , xn) = 1

and
n∑

i=1

μixi ≤ 1 − δ if f(x1, . . . , xn) = 0.

Then we have

Theorem 3. Let HSα be the set of halfspaces f over V = {x1, x2, · · ·} with
α(f) ≤ α. Let C be a concept class that is learnable from H in time t and q
equivalence queries. Suppose S(H, m) ≤ γmd for some d and γ ≥ 2 that are
independent of m. Then HSα(C) is learnable in time O(γρd(t + ρq)) and

ρ = O(αkqd log(αkqdγ1/d log γ))

equivalence queries.
In particular, when H has polynomial size shatter coefficient then HSα(C) is

learnable in time O(γρd
0(t + ρ0q)) and

ρ0 = O(αkq log(αkqγ))

equivalence queries.

212 N.H. Bshouty and H. Mazzawi

As an application of Theorem 3 consider the concept class of boolean functions
on strings that is a threshold of weighted substrings. For w ∈ {0, 1}≤n let fw :
{0, 1}n → {0, 1} be the function fw(x) = 1 if and only if x contains w as a
substring, i.e., there is i such that w = xixi+1 · · · xi+|w|−1. Consider the concept
class W of all fw for all strings w over {0, 1}. Then the concept class of threshold
of weighted substrings is HSα(W).

We show

Theorem 4. Let HSα be the set of halfspaces f over V = {x1, x2, · · ·} with
α(f) ≤ α. Then HSα(W) is learnable in time O(γρd

0(t + ρ0q)) and asks

ρ0 = O(αkn2 log(αkn))

equivalence queries.

Proof. Since m strings can have at most n2m different substrings, we have
S(W, m) ≤ n2m. Now it is easy to see that W is learnable from W with q ≤ n2

equivalence queries. Then with Theorem 3 the result follows.

In the full paper we give more results on learning k-CNF(C) and show how to
handle errors in the answers to the equivalence queries.

Acknowledgement. We would like to thank Adam Klivans for pointing to us
some of the work done in the area.

References

1. D. Angluin. Queries and Concept Learning. Machine Learning, 2, 319–342, 1988.
2. P. Auer, S. Kwek, W. Maass, M. K. Warmuth. Learning of Depth Two Neural

Networks with Constant Fan-in at the Hidden Nodes. Electronic Colloquium on
Computational Complexity (ECCC), 7(55), 2000.

3. A. Blum. Rank-r Decision Trees are a Subclass of r-Decision Lists. Inf. Process.
Lett. 42(4), 183–185, 1992.

4. N. H. Bshouty. A Subexponential Exact Learning Algorithm for DNF Using Equiv-
alence Queries. Inf. Process. Lett. 59(1), 37–39 1996.

5. N. H. Bshouty. A new Composition Theorem for Learning Algorithms. In Pro-
ceedings of the 30th annual ACM Symposium on Theory of Computing (STOC),
583–589, 1998.

6. A. Ehrenfeucht, D. Haussler. Learning Decision Trees from Random Examples. Inf.
Comput. 82(3), 231–246, 1989.

7. M. Kearns, M. Li, L. Pitt and L. Valiant. On the learnability of boolean formulae.
In Proceeding of the 19th ACM Symposium on the Theory of Computing, 285–294,
1987.

8. A. R. Klivans, R. A. Servedio. Learning DNF in time 2Õ(n1/3). J. Comput. Syst.
Sci. 68(2), 303–318, 2004.

9. N. Littlestone. Learning when irrelevant attributes abound. A new linear-threshold
algorithm. Machine Learning, 2, 285–318, 1988.

10. W. Maass and M. K. Warmuth. Efficienct Learning with Virtual Threshold Gates.
Information and Computation, 141, 66–83, 1998.

Exact Learning Composed Classes with a Small Number of Mistakes 213

11. L. Pitt and M. K. Warmuth. Prediction-preserving reducibility. Journal of Com-
puter and System Science, 41(3), 430–467, 1990.

12. N. Sauer. On the dencity of families of sets. J. Combinatorial Theory, Ser. A 13,
145–147, 1972.

13. J. Tarui, T. Tsukiji. Learning DNF by Approximating Inclusion-Exclusion Formu-
lae.IEEE Conference on Computational Complexity, 215–220, 1999.

14. L. G. Valiant. A theory of the learnable. Communication of the ACM, 27(11), 1984.

	Introduction
	Conjunction of Concepts
	Halfspace of Functions and Other Classes

	Preliminaries
	The Learning Model

	The Composition Lemma
	The Algorithm
	Find All Consistent Hypotheses
	The Main Algorithm

	Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

