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Abstract. We study polynomial time learning algorithms for Multiplic-
ity Automata (MA) and Multiplicity Automata Function (MAF) that
minimize the access to one or more of the following resources: Equiva-
lence queries, Membership queries or Arithmetic operations in the field
F . This is in particular interesting when access to one or more of the
above resources is significantly more expensive than the others.

We apply new algebraic approach based on Matrix Theory to sim-
plify the algorithms and the proofs of their correctness. We improve the
arithmetic complexity of the problem and argue that it is almost opti-
mal. Then we prove tight bound for the minimal number of equivalence
queries and almost (up to log factor) tight bound for the number of
membership queries.

1 Introduction

In computational learning theory, one of the interesting problems studied in the
literature is learning the classes of Multiplicity Automata (MA) and Multiplicity
Automata Function (MAF) over any field from membership (substitution) and
equivalence queries [20, 12, 6, 13, 7, 4, 5, 11, 10]. This class includes many interest-
ing classes such as: decision trees, disjoint DNF, O(log n)-term DNF, multivariate
polynomials, DFA, boxes and more. In all the algorithms in the literature, it is
assumed that the cost of all the resources are the same. In practice, one resource
may be more expensive than the others. For example, if the field is the reals
then arithmetic operation is not one unit step.

In this paper we study polynomial time learning algorithms for Multiplicity Au-
tomata that minimize the access to one or more of the following resources: Equiv-
alence queries, Membership queries or Arithmetic operations in the field F . First,
we improve the arithmetic complexity of the problem and argue that it is optimal.
Then prove tight bound for the minimal number of equivalence queries and almost
(up to log factor) tight bound for the number of membership queries.

We summarize the contributions of the paper in the following:

1. Matrix Approach: Representing MA in algebraic structure enables using
the theory of matrices. We show that the representation of any MA is unique
up to similarity of matrices. This gives simple algorithms and analysis.

2. Arithmetic Complexity: With this new algebraic approach we use tech-
niques from algebraic complexity to improve the arithmetic complexity of
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the problem. We also introduce a new hypothesis class called the Extended
Multiplicity Automata class (EMA) and learn MA from this class with arith-
metic complexity that is independent of the alphabet size. We show that the
arithmetic complexity in this algorithm is optimal in the sense that it is
equal to the arithmetic complexity of computing the target function in all
the counterexamples received by the algorithm.

3. Equivalence Query Complexity: We prove a lower bound for the number
of equivalence queries. Then we give a polynomial time learning algorithm
for MA that is optimal in the equivalence query complexity.

4. Membership Query Complexity: We give a lower bound for the number
of queries which is almost tight (up to log factor). This gives an almost tight
lower bound for the number of membership queries.

5. Results for MAF: In the full paper, we also obtain results similar to
the above for MAF. We introduce a new representation of a MAF called
the compressed MAF and use it to show learnability that obtains optimal
number of equivalence queries and almost optimal number of membership
queries and arithmetic operations for MAF.

2 Preliminaries

2.1 Concept Classes

Let Σ = {σ1, . . . , σt} be a finite alphabet of size t and F be a field. A Multiplicity
Automaton Function (MAF) with an alphabet Σ over a field F with n variables
is a function f : Σn → F of the form f(w1w2 · · · wn) = Λ

(w1)
1 · · ·Λ(wn)

n where
for every σ ∈ Σ and every i, Λ

(σ)
i is si × si+1 matrix with entries from F and

s1 = sn+1 = 1. We define the size of f at level i as sizei(f) = si, the width of f
is sizemax(f) = maxi si and the size of f , size(f), is

∑
i si. See full paper for a

graph representation of MAF.
A Multiplicity Automaton (MA) with an alphabet Σ over a field F is a function

f : Σ∗ → F of the form f(w1w2 · · ·wm) = βΛ(w1)Λ(w2) · · ·Λ(wm)γT where for
each σ ∈ Σ, Λ(σ) is s×s matrix and β, γ are s vectors over F . We define Λ(ε) = I
the identity matrix and Λ(σw) = Λ(σ)Λ(w) for every σ ∈ Σ and string w. Then
we can write f(w) = βΛ(w)γT for any string w. We call s the size of the MA f .
See full paper for a graph representation of MA.

An Extended Multiplicity Automaton (EMA) with an alphabet Σ over a field
F is a function f : Σ∗ → F of the form f(w1w2 · · · wm) = βΛ(w1)Λ̂Λ(w2)Λ̂ · · ·
Λ(wm)Λ̂γT , where Λ(σ), Λ̂ are s × s matrices and β, γ are s vectors. Obviously,
an EMA is an MA with Λ̃(σ) = Λ(σ)Λ̂. See full paper for a graph representation
of EMA.

2.2 Properties of MA

In this section we give some properties of MA
The next Theorem shows that if we have 2s strings x1, . . . , xs, y1, . . . , ys such

that the matrix [f(xi · yj)]i,j (the i, jth entry is f(xi · yj)) is non-singular, then
we can construct the MA for f .
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Theorem 1. Let f(x) = βΛ(x)γT be an MA of size s. Let x1, . . . , xs, y1, . . . , ys

be strings in Σ∗ such that [f(xi · yj)]i,j is non-singular. Then f(x) = β0Λ
(x)
0 γT

0
where

Λ
(σ)
0 = M (σ)N−1, γ0 = (f(x1), . . . , f(xs)), β0 = (f(y1), . . . , f(ys))N−1

and M (σ) = [f(xi · σ · yj)]i,j and N = [f(xi · yj)]i,j .

Proof. Let

K =

⎛

⎜
⎜
⎜
⎝

βΛ(x1)

βΛ(x2)

...
βΛ(xs)

⎞

⎟
⎟
⎟
⎠

and L = (Λ(y1)γT | · · · |Λ(ys)γT ).

Now we have N = KL, M (σ) = KΛ(σ)L, (f(x1), . . . , f(xs))T = KγT and
(f(y1), . . . , f(ys)) = βL. Since N = KL is non-singular, K and L are non-
singular. Now it straightforward to show that for any word w we have β0Λ

(w)
0 γT

0 =
βΛ(w)γT = f(w).

Now, we show that the MA representation is unique up to similarity

Lemma 1. Let f(x) = β1Λ
(x)
1 γT

1 and g(x) = β2Λ
(x)
2 γT

2 be two MAs of size s.
We have f(x) ≡ g(x) if and only if there is a non-singular matrix J such that
β2 = β1J

−1, γT
2 = JγT

1 and Λ
(σ)
2 = JΛ

(σ)
1 J−1 for every σ ∈ Σ.

Proof. The “If” part of the Lemma is straightforward. For the “only if” part,
define K1, L1 and K2, L2, as defined in the proof of Theorem 1, for β1Λ

(x)
1 γT

1

and β2Λ
(x)
2 γT

2 , respectively. Then N = K1L1 = K2L2 and M (σ) = K1Λ
(σ)
1 L1 =

K2Λ
(σ)
2 L2. Now for J = K−1

2 K1 we have J = L2L
−1
1 and Λ

(σ)
2 = JΛ

(σ)
1 J−1.

A similar result is proved for MAF in the full paper.

2.3 The Learning Model

Our learning model is the exact learning model [2, 17]. In this model a teacher
has a target function f that the learner (learning algorithm) wants to learn from
queries. In the equivalence query, the learner gives the teacher a hypothesis h.
The teacher returns either yes, signifying that h is equivalent to f , or no with
a counterexample, which is an assignment (b, f(b)) such that h(b) �= f(b). In the
membership query, the learner gives the teacher an assignment a. The teacher
returns f(a).

We say that the learner learns a class of functions C, if for every function
f ∈ C, the learner outputs a hypothesis h that is equivalent to f . The goal of the
learner is to learn in polynomial time where “polynomial time” means polynomial
in the size of the shortest representation of f and the longest counterexample
returned by the teacher.



On Optimal Learning Algorithms for Multiplicity Automata 187

3 The Algorithm and Its Analysis

In this section we introduce a simple algorithm similar to the one in [4] with
the theory of matrices. Then we give a simple proof for its correctness. We will
assume |Σ| > 1. See the full paper for unary alphabet.

3.1 The Learning Algorithm for MA

The algorithm initially asks EQ(0) and receives a counterexample x1. Then it
defines X = {x1} and Y = {y1 = ε}. At stage � it uses two sets of strings X =
{x1, x2, . . . , x�} and Y = {y1 = ε, y2, . . . , y�} where N(X, Y ) = N = [f(xi ·yj)]i,j
is a non-singular matrix. Then the algorithm defines the hypothesis defined in
Theorem 1. That is, h(x) = β0Λ

(x)
0 γT

0 where

Λ
(σ)
0 = M (σ)N−1, γ0 = (f(x1), . . . , f(x�)), β0 = (f(y1), . . . , f(y�))N−1

and
M (σ) = [f(xi · σ · yj)]i,j

for every σ ∈ Σ. Notice that γT
0 = NeT

1 where ei is the ith unit vector.
Now the algorithm asks equivalence query with h(x) and receives a counterex-

ample z ∈ Σ∗ where f(z) �= h(z). The algorithm then finds a prefix w · σ of z,
where σ ∈ Σ, such that (see Fact 1 in the next subsection)

(f(w · y1), . . . , f(w · y�)) = β0Λ
(w)
0 N (1)

and

(f(w · σ · y1), . . . , f(w · σ · y�)) �= β0Λ
(w·σ)
0 N, (2)

and adds x�+1 = w to X and y�+1 = σ · yi0 to Y where i0 is any entry that
satisfies f(w · σ · yi0) �= β0Λ

(w·σ)
0 NeT

i0
. Such entry exists because of (2). Then it

goes to stage � + 1.

3.2 Correctness of the Algorithm

We first show that such w · σ, that satisfies (2), exists and then show that the
new matrix N(X̂, Ŷ ), where X̂ = {x1, . . . , x�, x�+1} and Ŷ = {y1, . . . , y�, y�+1},
is non-singular.

Fact 1. If f(z) �= h(z) then there is a prefix w · σ for z that satisfies (1).

Proof. It is enough to show that the first equality in (1) is true for w = ε and
the second inequality in (2) is true for w = z. For the prefix w = ε we have
(f(y1), . . . , f(y�)) = β0N = β0Λ

(ε)
0 N . Now for w = z, f(z · y1) = f(z) �= h(z) =

β0Λ
(z)
0 γT

0 = β0Λ
(z)
0 NeT

1 .
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Now we show

Fact 2. The new matrix N̂ = N(X̂, Ŷ ) is non-singular.

Proof. We have X̂ = X ∪ {w} and Ŷ = Y ∪ {σ · yi0}. Therefore

N̂ =
(

N M (σ)eT
i0

β0Λ
(w)
0 N f(w · σ · yi0)

)

.

Now since M (σ) = Λ
(σ)
0 N ,

(
I 0

β0Λ
(w)
0 −1

)

N̂ =
(

N M (σ)eT
i0

0 β0Λ
(w·σ)
0 NeT

i0
− f(w · σ · yi0)

)

,

and β0Λ
(w·σ)
0 NeT

i0
− f(w · σ · yi0) �= 0, the rank of N̂ is � + 1.

3.3 The Complexity of the Algorithm

In all the results, m is the longest counterexample received by the learner and
the time complexity is linear in the number of queries and arithmetic operations.

A straightforward algebraic computation gives the same query and arithmetic
complexity as in [4]. In [4], Beimel et. al. proved the following.

Theorem 2. Let F be a field, and f : Σ∗ → F be an MA of size s. Then
f is learnable as MA from s + 1 equivalence queries and O((|Σ| + log m)s2)
membership queries in

O(|Σ|sM(s) + ms3) = O(|Σ|s3.37 + ms3)

arithmetic operations. Here, M(s) is the complexity of s×s matrix multiplication.

In the next section we improve the arithmetic complexity to O(|Σ|s3 + ms3)
using MA hypothesis and then to O(ms3) using EMA hypothesis.

4 Almost Optimal Arithmetic Complexity

In this section we prove the following

Theorem 3. Let F be a field, and f : Σ∗ → F be an MA of size s. Then
f is learnable as EMA from s + 1 equivalence queries and O((|Σ| + log m)s2)
membership queries with

O(ms3)

arithmetic operations.

Notice that the arithmetic complexity in the Theorem is independent of how
large is the alphabet. The arithmetic complexity is almost optimal in the follow-
ing sense: It is known, [9], that the equivalence query complexity of any poly-
nomial time learning algorithm for MA is at least Ω̃(s) . Computing the target
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hypothesis in Ω̃(s) strings of length m takes Ω̃(ms3) arithmetic operations in the
field. So the optimality is in the sense that the arithmetic complexity of the al-
gorithm is within logarithmic factor of the arithmetic complexity for computing
the target hypothesis in all the counterexamples received in the algorithm.
Proof of Theorem 3. At stage � the algorithm asks equivalence query with a
hypothesis h(x) and receives a counterexample z ∈ Σ∗. Then for every prefix w

of z it computes β0Λ
(w)
0 and β0Λ

(w)
0 N . This can be done in O(m�2) arithmetic

operations. Then the algorithm does a binary search to find a prefix that satisfies
(1). This takes � log m membership queries. Then it builds N̂ . Notice that all the
entries of N̂ are already known from previous computations. To build M̂ (σ) for
all σ ∈ Σ it needs to ask membership queries to find f(x�+1 ·σ ·yi), f(xi ·σ ·y�+1)
and f(x�+1 · σ · y�+1). This takes (2� + 1)|Σ| membership queries. By Lemma 2
below N̂−1 and each Λ̂

(σ)
0 can be computed with O(�2) arithmetic operations.

Therefore it needs O(|Σ|�2) arithmetic operations to compute all Λ̂
(σ)
0 . Finally,

to compute β̂0 it needs O(�2) arithmetic operations.
This gives arithmetic complexity O(|Σ|s3 + ms3) and the algorithm outputs

MA. In the case where the output can be EMA, we can omit the step that
computes Λ

(σ)
0 for every σ and output the EMA

f(w) = β̂0M
(w1)N−1M (w2)N−1 · · · M (w|w|)N−1γ̂T

0 .

This gives the result.

The results for MAF are in the full paper.

Lemma 2. Let N and M be two � × � matrices with entries from F and Λ =
MN−1. Let u, λ ∈ F� be such that u = λN . Let

N̂ =
(

N vT

u ξ

)

, M̂ =
(

M pT

q η

)

where N̂ is nonsingular matrix where v, q, p ∈ F� and ξ, η ∈ F . Then

N̂−1 =
1
ω

(
ωN−1 − (N−1vT )λ N−1vT

λ −1

)

where ω = λvT − ξ and

M̂N̂−1 =
1
ω

(
ωΛ − (ΛvT )λ + pT λ ΛvT − pT

ω(qN−1) − ((qN−1)vT )λ + ηλ (qN−1)vT − η

)

.

From the definitions of MA and EMA we have

Fact 3. 1. For an MA f of size s and a string a ∈ Σ∗, f(a) can be computed
in |a|s2 arithmetic operations.

2. For an EMA f of size s and a string a ∈ Σ∗, f(a) can be computed in 2|a|s2

arithmetic operations.
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Can we compute f(a) faster? Proving lower bounds for the number of arith-
metic complexity of problems is one of the hardest tasks in algebraic complexity.
Techniques used today give only lower bounds that are linear in the number of
distinct variables of the problem. For example, the best lower bound for ma-
trix multiplication is 2.5s2 for any field, [3] and 3s2 for the binary field, [21]. In
the problem of computing f(a) for any MA f and any a ∈ Σ∗, the number of
distinct variables is min(|Σ|, |a|)s2 + 2s, which is the number of the entries of
Λ(σ), β and γ. To the best of our knowledge, no better lower bound is known for
this problem. This bound does not match the upper bound in Fact 3, which we
believe is optimal up to some log factor.

In the full paper, the following slightly better upper bound is proved

Fact 4. We have
For an MA or EMA f of size s and t strings a1, . . . , at, ai ∈ Σ∗ and |ai| ≤ m

for every i, f(ai) can be computed in

O

(
ts2m log |Σ|

log(ts2m/M(s))

)

arithmetic operations when (ts2m)/M(s) > 2 and O(ts2m) arithmetic opera-
tions otherwise.

5 An Optimal Arithmetic Complexity

In this section we define a compressed MA that, with the results of the previous
section, will further improve the arithmetic complexity of the algorithm. The
bound we achieve here matches the arithmetic complexity of computing the
target in all the s counterexamples received in the algorithm.

We first add a new symbol � to the alphabet Σ and call it blank . For this
symbol Λ

(�)
0 = I the identity matrix. This means that for any w ∈ (Σ ∪ {�})∗,

f(w) is equal to f(ŵ) where ŵ is w without the blanks.
Let f̂ be a function f̂ : Σ∗ → F . Define a function f : (Σ ∪ {�})∗ → F where

f(w) = f̂(ŵ). It is clear that the size of f̂ is equal to the MA size of f .
For an alphabet Σ we define the alphabet Σ[�] = {[w1w2 · · · w�] | wi ∈ Σ}.

Define an operator φ : Σ[�] → Σ� where φ([w1w2 · · ·w�]) = w1w2 · · · w�. For a
function f : Σ∗ → F we define the �-compressed function f [�] : (Σ[�])∗ → F as
follows: f [�](u1u2 · · · ut) = f(φ(u1)φ(u2) · · · φ(ut)).

It is easy to see that the MA size of f [�] is at most the MA size of f . Just
define Λ

([w1w2···w�])
0 = Λ

(w1)
0 Λ

(w2)
0 · · · Λ(w�)

0 . It is also easy to see that member-
ship queries and equivalence queries to f [�] can be simulated using membership
queries and equivalence queries to f and if we learn f [�] we can construct f in
linear time.

Using the above representation with � = (ε(log m + log s))/(log |Σ|) we have

Lemma 3. Let F be a field, and f : Σ∗ → F be an MA of size s. Then for any
constant ε, f is learnable as EMA from s + 1 equivalence queries and mεs2+ε

membership queries with
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O

(
ms3 log |Σ|

log m + log s

)

arithmetic operations.

In the full paper we show that this bound is true even if the learner does not
know m and s.

6 Almost Optimal Query Complexity

In this section we prove a lower bound for the number of queries and show that
the main algorithm is optimal up to (log m)/|Σ|.

We first prove the following

Theorem 4. Any learning algorithm that learns MA of size at most s over any
field must ask at least |Σ|s2 − s2 queries.

Proof. Let F be any field and Σ = {σ1, . . . , σ|Σ|}. Define the field extension
K = F({zi,j,k}) of F with s2|Σ| algebraically independent elements {zi,j,k| i, j =
1, . . . , s , k = 1, . . . , |Σ|}. Denote by z the vector ((zi,j,k)i,j,k) (that contains zi,j,k

in some order). Consider any algorithm A that learns MA over any field. Then
A, in particular, learns MA over K.

Consider Λ(σk) = [zi,j,k]i,j , γ = β = e1 and the MA f(x) = βΛ(x)γT . We run
the algorithm A on the target f . Let f(w1), . . . , f(wt) be the queries asked to
the membership query or received by the equivalence query in A. Notice that for
all r = 1, . . . , t, f(wr) = βΛ(wr)γT = pr(z) for some multivariate polynomial pr.
The algorithm finds β0, Λ

(σ)
0 and γ0 where f(x) = β0Λ

(x)
0 γT

0 . By Lemma 1 there
is a non-singular matrix K with entries from K such that Λ(σk) = K−1Λ

(σk)
0 K for

every k. Since the entries of Λ(σk), k = 1, . . . , |Σ| are algebraically independent
and are generated from the entries of K and pr(z) we must have: The number
of entries of K, plus, the number of the polynomials pr is at least the number
of entries of Λ(σk), k = 1, . . . , |Σ|. This gives t + s2 ≥ |Σ|s2 which implies the
result.

Notice that the lower bound in Theorem 4 is true for learning algorithms that
are independent of the ground field F , i.e., learning algorithms that learn MA
for any field. We now show that any algorithm that learns MA in some specific
field F requires the same number of queries (up to constant factor).

Theorem 5. Let F be any field. Any algorithm that learns MA of size at most
s over F must ask at least (|Σ|s2 − s2 − O(s))/4 = Ω(|Σ|s2) queries.

Proof. Assume w.l.o.g that s is even and r = s/2. Let Σ = {σ0, σ1, . . . , σt−1}.
Let A be an algorithm that learns MA of size at most s over F . Notice here that
A may not learn MA over larger fields, so the technique used in the previous
Theorem cannot be applied here. We will show an adversarial strategy that forces
A to ask at least |Σ|r2 − r2 queries. Consider the r × r matrix
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Λ0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Define the subset C ⊂MA where for each f ∈ C we have

Λ(σ0) =
(

Λ0 0
0 Λ0

)

and Λ(σi) =
(

Λi Λi

−Λi −Λi

)

for i > 0. where each Λi is r × r 0-1 matrix, and β = er and γ = e1 are
(2r)-vectors.

We now show the following properties of the functions in C

Claim. We have: for every f ∈ C

1. f(x · σi
0 · y) = f(x · σi mod r

0 · y) for any two strings x and y.
2. f(σi

0 · σk · σr−j+1
0 ) = Λk[i, j] for 1 ≤ i, j ≤ r.

3. f(x) = 0 for every x that contains more than one symbol from {σ1, . . . , σt−1}.

Proof of Claim. (1) follows from the fact that Λr
0 = I, the identity matrix.

To prove (2), let 1 ≤ i, j ≤ r. Notice that β(Λ(σ0))i = ei and (Λ(σ0))jγT =
eT

r−j+1. Also, for any s × s matrix Z we have β(Λ(σ0))iZ(Λ(σ0))r−j+1γT = Zi,j .
Then

f(σi
0 ·σk ·σr−j+1

0 ) = βΛ(σi
0·σk·σr−j+1

0 )γT =β(Λ(σ0))iΛ(σk)(Λ(σ0))r−j+1γT =Λk[i, j].

Now (Λ(σ0))iΛ(σk)(Λ(σ0))j is of the form
(

Δ Δ
−Δ −Δ

)

and multiplying two

matrices of such form gives the zero matrix. This implies (3).

Now when the algorithm asks membership query with a string x. If x contains
two symbols from {σ1, . . . , σt−1} then the adversary returns 0 and if x = σi

0
then the algorithm returns 1 if i mod r = 1 and 0 otherwise. In those cases the
learner does not gain any information about the function. When the algorithm
asks membership query with x = σi

0 · σk · σj
0 then the adversary answers with

arbitrary value from {0, 1}. The learner then knows one of the entries of Λ(σk).
If the learner asks again a membership query with x = σi

0 · σk · σj
0 the adversary

returns the same answer.
If the algorithm asks equivalence query with any hypothesis h, the adversary

finds some entry Λk[i, j] that the learner doesn’t know from previous query and
returns the string σi

0 · σk · σr−j+1
0 as a counterexample.

Notice that each query determines exactly one entry in Λk[i, j]. Since we have
|Σ|r2 − r2 entries the algorithm will ask at least |Σ|r2 − r2 queries.

The lower bound for the MAF is in the full paper.
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7 Optimal Equivalence Query Complexity

In this section we prove a tight bound for the number of equivalence queries of
any polynomial time algorithm for MA.

It is known from [16] that under certain cryptographic assumptions DFA (and
therefore MA) is not learnable from equivalence queries only in polynomial time.
Similar to the technique used in [8, 9] one can prove the following:

Theorem 6. Any polynomial time learning algorithm for MA must ask at least

Ω

(
s log |Σ|

log s

)

equivalence queries.

This proves that the main algorithm in this paper in almost optimal. We now
show that this lower bound is tight.

7.1 The Algorithm

Let f(x) = βΛ(x)γT be the target MA. The algorithm begins by asking MQ(ε),
we assume, without loss of generality, that f(ε) �= 0, [4]. The algorithm then
defines X = {x1 = ε} and Y = {y1 = ε}. As in the main algorithm, the algorithm
maintains two sets of strings X = {x1, x2, . . . , x�} and Y = {y1, y2, . . . , y�}. Also,
N(X, Y ) = N = [f(xi ·yj)]i,j is non-singular matrix. For some fixed integer k ≥ 3
the algorithm defines h(x) = β0Λ

(x)
0 γT

0 , where Λ
(σ)
0 = M (σ)N−1,

γ0 = (f(x1), f(x2), . . . , f(x�)), β0 = (f(y1), f(y2), . . . , f(y�))N−1

and M (τ) = [f(xi · τ · yj)]i,j for τ ∈ Σ≤k def= ∪i≤kΣi. Note that γ0 = NeT
1 and

β0 = e1.
Now instead of asking an equivalence query, the algorithm performs an inter-

nal checking step. It tries to find a counterexample using membership queries.
The algorithm checks for all i,j and τ ∈ Σ≤k whether f(xi ·τ ·yj) = h(xi ·τ ·yj) by
asking membership queries. If for some i,j and τ ∈ Σ≤k, f(xi ·τ ·yj) �= h(xi ·τ ·yj)
then the algorithm has found a counterexample and it proceeds as in the main
algorithm. Otherwise, the algorithm asks an equivalence query and receives a
counterexample z = z1z2 · · · z|z|.

Our goal is to show that the algorithm uses z to generate k additional inde-
pendent rows and columns in N . For k = (log s)/ log |Σ| we obtain a polynomial
time learning algorithm that asks at most

s

k
= O

(
s log |Σ|

log s

)

equivalence queries.

Fact 5. Before the algorithm asks an equivalence query M (τ) = Λ
(τ)
0 N for every

τ ∈ Σ≤k.
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Proof. Let

K =

⎛

⎜
⎜
⎜
⎜
⎝

β0Λ
(x1)
0

β0Λ
(x2)
0
...

β0Λ
(x�)
0

⎞

⎟
⎟
⎟
⎟
⎠

and L = (Λ(y1)
0 γT

0 | · · · |Λ(y�)
0 γT

0 ).

For every σ ∈ Σ we have

M (σ) = KΛ
(σ)
0 L and N = KL.

Thus,
Λ

(σ)
0 = M (σ)N−1 = KΛ

(σ)
0 K−1.

Now, for every τ = τ1τ2 · · · τ|τ | ∈ Σ≤k, we have

M (τ) = [f(xi · τ · yj)]i,j = [h(xi · τ · yj)]i,j = KΛ
(τ)
0 L = KΛ

(τ1)
0 Λ

(τ2)
0 · · · Λ(τ|τ|)

0 L

= KΛ
(τ1)
0 K−1 · KΛ

(τ2)
0 K−1 · · · · KΛ

(τ|τ|)
0 K−1 · KL = Λ

(τ)
0 N.

Next, the algorithm searches for the minimal length prefix w1 of z, such that for
some σ1 ∈ Σ

(f(w1 · σ1 · y1), f(w1 · σ1 · y2), . . . , f(w1 · σ1 · y�)) �= β0Λ
(w1·σ1)
0 N.

Such prefix exists since f(z · y1) = f(z) �= h(z) = β0Λ
(z)
0 γT

0 = β0Λ
(z)
0 NeT

1 . Since
w1 is minimal, we get that (f(w1 · y1), f(w1 · y2), . . . , f(w1 · y�)) = β0Λ

(w1)
0 N. By

Fact 5 for all τ ∈ Σ≤2, M (τ) = Λ
(τ)
0 N and thus,

(f(τ · y1), f(τ · y2), . . . , f(τ · y�)) = e1M
(τ) = e1Λ

(τ)
0 N = β0Λ

(τ)
0 N, (3)

and therefore we have |w1| > 1.
Now the algorithm searches for minimal length prefix w2 of w1, such that for

some σ2 ∈ Σ

(f(w2 · σ2σ1 · y1), f(w2 · σ2σ1 · y2), . . . , f(w2 · σ2σ1 · y�)) �= β0Λ
(w2·σ2σ1)
0 N.

Again by Fact 5 for all τ ∈ Σ≤3 it follows that M (τ) = Λ
(τ)
0 N and, as in (3) we

conclude that |w2| > 1.
The algorithm repeats the above construction k times. Denote by σ(i) =

σiσi−1 · · · σ1. In the jth iteration it searches for a minimal length prefix wj of
wj−1 such that for some σj ∈ Σ

(f(wj · σj · σ(j−1) · y1), . . . , f(wj · σj · σ(j−1) · y�)) �= β0Λ
(wj ·σj ·σ(j−1))
0 N.

After k iterations, the algorithm has a set of strings W = {w1, w2, . . . , wk} and
strings σ(i) for 1 ≤ i ≤ k.
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Lemma 4. For every 1 ≤ i ≤ k and i > j it follows that

(f(wi · σ(j) · y1), f(wi · σ(j) · y2), . . . , f(wi · σ(j) · y�)) = β0Λ
(wi·σ(j))
0 N

Proof. Suppose on the contrary that there exists i and j, such that, i > j and

(f(wi · σ(j) · y1), f(wi · σ(j) · y2), . . . , f(wi · σ(j) · y�)) �= β0Λ
(wi·σ(j))
0 N,

since i > j then wi is a prefix of wj , contradiction to the minimality of wj .

To conclude, we found a set of strings W = {w1, w2, . . . , wk} and strings σ(i)

that satisfy the following properties for every 1 ≤ i ≤ k and i > j:

(f(wi · σ(j) · y1), f(wi · σ(j) · y2), . . . , f(wi · σ(j) · y�)) = β0Λ
(wi·σ(j))
0 N (4)

and

(f(wi · σ(i) · y1), f(wi · σ(i) · y2), . . . , f(wi · σ(i) · y�)) �= β0Λ
(wi·σ(i))
0 N. (5)

Now the algorithm adds W to X, that is, X̂ = X
⋃

W , and σ(j) · yij to Y
where ij is any entry that satisfies

f(wj · σ(j) · yij ) �= β0Λ
(wj ·σ(j))
0 NeT

ij
, (6)

that is, Ŷ = Y
⋃

{σ(1) · yi1 , σ(2) · yi2 , . . . , σ(k) · yik
}.

We now prove that the new matrix N̂ = N̂(X̂, Ŷ )

N̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N M (σ(1))eT
i1 M (σ(2))eT

i2 . . . M (σ(k))eT
ik

β0Λ
(w1)
0 N f(w1 · σ(1) · yi1) f(w1 · σ(2) · yi2) . . . f(w1 · σ(k) · yik

)
β0Λ

(w2)
0 N f(w2 · σ(1) · yi1) f(w2 · σ(2) · yi2) . . . f(w2 · σ(k) · yik

)
β0Λ

(w3)
0 N f(w3 · σ(1) · yi1) f(w3 · σ(2) · yi2) . . . f(w3 · σ(k) · yik

)
...

...
...

. . .
...

β0Λ
(wk)
0 N f(wk · σ(1) · yi1) f(wk · σ(2) · yi2) . . . f(wk · σ(k) · yik

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is non-singular.
By Fact 5 above, M (τ) = Λ

(τ)
0 N for all τ ∈ Σ≤k and by (5) and (6) for all j:

β0Λ
(wj ·σ(j))NeT

ij
− f(wj · σ(j) · yij ) �= 0,

we get that: ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 . . . 0
β0Λ

(w1)
0 −1 0 0 . . . 0

β0Λ
(w2)
0 0 −1 0 . . . 0

β0Λ
(w3)
0 0 0 −1 . . . 0
...

...
...

...
. . .

...
β0Λ

(wk)
0 0 0 0 . . . −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

N̂ =
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⎛

⎜
⎜
⎜
⎜
⎜
⎝

N M (σ(1))eT
i1 M (σ(2))eT

i2 . . . M (σ(k))eT
ik

0 ζ1 − f(w1 · σ(1) · yi1) . . . . . . . . .

0 0 ζ2 − f(w2 · σ(2) · yi2) . . . . . .
...

...
...

. . .
...

0 0 0 . . . ζk − f(wk · σ(k) · yik
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where
ζj = β0Λ

(wj ·σ(j))
0 Neij .

Therefore the result follows.

7.2 The Complexity

In this subsection we analyze the complexity of the algorithm above. We will
show that this algorithm achieves the lower bound of equivalence queries com-
plexity for learning MA.

We show

Theorem 7. Let F be a field, and f : Σ∗ → F be an MA of size s. Then f is
learnable as MA from r ≤ 
s/k� equivalence queries and O(r|Σ| · msk + |Σ|ks2)
membership queries in O(r · |Σ|ms2k + (s − r · (k − 1))|Σ|kM(s)) arithmetic
operations, for some fixed integer k.

Proof. We already proved that each time a counterexample is received we add
k rows and columns to N . As a result, when the size of the target MA is s, r is
bounded by 
s/k�.

When the algorithm asks an equivalence query and gets a counterexample z,
it finds the sets W and {σ(i)|1 ≤ i ≤ k}. Denote by w0 = z, the algorithm finds
a minimal length prefix w′ of w0 for which

(f(w′ · σ′ · y1), f(w′ · σ′ · y2), . . . , f(w′ · σ′ · y�)) �= β0Λ
(w′·σ′)
0 N

for some σ′ ∈ Σ.
Then it assigns W ← {w1 = w′} and σ(1) = σ′. In the jth iteration, it finds

a minimal prefix w′ of wj−1 such that

(f(w′·σ′·σ(j−1)·y1), f(w′·σ′·σ(j−1)·y2), ..., f(w′·σ′·σ(j−1)·y�)) �=β0Λ
(w′·σ′·σ(j−1))
0 N

for some σ′ ∈ Σ.
Then W ← W ∪ {wj = w′} and σ(j) = σ′ · σ(j−1). The algorithm runs k iter-

ations, each iteration j takes at most |Σ|ms membership queries and computes

β0Λ
(w′·σ′·σ(j−1))
0 N for every prefix w′ of wj−1 which takes O(|Σ|ms2) arithmetic

operations. Thus after each counterexample, the total number of membership
queries asked is O(|Σ|msk) and the total number of arithmetic operations is
O(|Σ|ms2k). Notice that, we already computed Λσ(j−1)

0 N since |σ(j−1)| ≤ k.
Now, we have X̂ = W

⋃
X and Ŷ = Y

⋃
{σ(j) · yij |j = 1 . . . , k} and ij is any

entry that satisfies (6).
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All entries of N̂ are known. To update the matrices M̂ (τ) for all τ ∈ Σ≤k, the
algorithm asks O(s2 · |Σ|k) membership queries during its run.

By Lemma 5 below we can find N−1 and Λ
(σ)
0 , for everyσ∈Σ, in O(s2 log(s)|Σ|)

arithmetic operations.
Finally our algorithm performs the internal checking step, it needs to compute

Λ
(τ)
0 N for every τ ∈ Σ≤k. For this, the algorithm multiplies

∑k
i=1 |Σ|i = O(|Σ|k)

matrices each of size at most s × s. Since multiplying two matrices of size s × s
takes M(s) arithmetic operations, to perform internal checking the algorithm
needs O(|Σ|kM(s)) arithmetic operations.

When finding a counterexample z during the internal checking, z will be of
the form xi · τ ′ · yj for some xi ∈ X , yj ∈ Y and τ ′ ∈ Σ≤k. For minimal length
τ ′ = τ ′

1τ
′
2 · · · τ ′

|τ ′|, such that z remains a counterexample, the algorithm adds
xi · τ ′

1τ
′
2 . . . τ ′

|τ ′|−1 to X and τ ′
|τ ′| · yj to Y .

In this case, updating N and Λ(σ), for every σ ∈ Σ, will be as in the proof of
Theorem 3 and it will cost O(|Σ|s2) arithmetic operations at most.

To conclude, if the algorithm asks r equivalence queries, each time it asks
O(|Σ|msk) membership queries and needs O(|Σ|ms2k) arithmetic operations.
Consequently, the algorithm will find s − r · k counterexamples, by asking mem-
bership queries in the internal check, each time it needs O(|Σ|s2) arithmetic
operations. Moreover, each time the algorithm performs an internal checking it
takes O(|Σ|kM(s)) arithmetic operations.

Summing all the above, when learning a target MA function of size s, we need
O(r · |Σ|msk + |Σ|ks2) membership queries and O(r · |Σ|ms2k + (s − r · (k −
1))|Σ|kM(s)) arithmetic operations.

Lemma 5. Let N and M be two � × � matrices with entries from F and Λ =
MN−1. Let u, Δ ∈ F log �×� be such that u = ΔN .

N̂ =
(

N vT

u ξ

)

, M̂ =
(

M pT

q η

)

where N̂ is nonsingular matrix where v, q, p ∈ F log �×� and ξ, η ∈ F log �×�. Then

N̂−1 =
(

N−1 − (N−1vT ω−1)Δ N−1vT ω−1

ω−1Δ −ω−1

)

where ω = λvT − ξ and

M̂N̂−1 =
(

Λ − (ΛvT ω−1)Δ + pT ω−1Δ ΛvT ω−1 − pT ω−1

(qN−1) − ((qN−1)vT ω−1)Δ + ηω−1Δ (qN−1)vT ω−1 − ηω−1

)

.

See the full paper for the MAF results.
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