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Abstract. We present a unified and complete account of maximum entropy distri-
bution estimation subject to constraints represented by convex potential functions
or, alternatively, by convex regularization. We provide fully general performance
guarantees and an algorithm with a complete convergence proof. As special cases,
we can easily derive performance guarantees for many known regularization types,
including �1, �2, �22 and �1+ �22 style regularization. Furthermore, our general ap-
proach enables us to use information about the structure of the feature space or
about sample selection bias to derive entirely new regularization functions with
superior guarantees. We propose an algorithm solving a large and general sub-
class of generalized maxent problems, including all discussed in the paper, and
prove its convergence. Our approach generalizes techniques based on informa-
tion geometry and Bregman divergences as well as those based more directly on
compactness.

1 Introduction

The maximum entropy (maxent) approach to probability distribution estimation was
first proposed by Jaynes [1], and has since been used in many areas of computer science
and statistical learning, especially natural language processing [2, 3], and more recently
in species habitat modeling [4]. In maxent, one is given a set of samples from a target
distribution over some space, and a set of known constraints on the distribution. The
distribution is then estimated by a distribution of maximum entropy satisfying the given
constraints. The constraints are often represented using a set of features (real-valued
functions) on the space, with the expectation of every feature required to match its
empirical average. By convex duality, this turns out to be the unique Gibbs distribution
maximizing the likelihood of the samples.

While intuitively appealing, this approach fails to produce good estimates when the
number of features is large compared with the number of samples. Conceptually, con-
straining maxent to match a large number of feature averages exactly forces the algo-
rithm to approximate the empirical distribution too closely. From the dual perspective,
the family of Gibbs distributions is too expressive and the algorithm overfits. Common
approaches to counter overfitting are regularization [5, 6, 7, 8], introduction of a prior [9],
feature selection [2, 3], discounting [5, 6] and constraint relaxation [10, 11]. Thus, there
are many ways to control overfitting in maxent calling for a general treatment.

In this work, we study a generalized form of maxent. Although mentioned by other
authors as fuzzy maxent [5, 6, 7], we give the first complete theoretical treatment of this
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very general framework, including fully general performance guarantees, algorithms
and convergence proofs. Independently, Altun and Smola [12] derive a different theo-
retical treatment (see discussion below). As special cases, our results allow us to easily
derive performance guarantees for many known regularized formulations, including �1,
�2, �2

2 and �1+ �2
2 regularizations.

A crucial insight of our general analysis is that maxent relaxations corresponding to
tighter constraints on the feature expectations yield better performance guarantees. Ap-
plying our analysis to the special case in which such a confidence region is polyhedral
allows us to derive novel regularization functions and a corresponding analysis for two
cases of particular interest. The first case is when some information about structure of
the feature space is available, for example, when some features are known to be squares
or products of other “base” features, corresponding to constraints on variances or co-
variances of the base features. The second case is when the sample selection process is
known to be biased. Both of these cases were studied previously [4, 13]. Here, we apply
our general framework to derive improved generalization bounds using an entirely new
form of regularization. These results improve on bounds for previous forms of regu-
larization by up to a factor of eight — an improvement that would otherwise require a
64-fold increase in the number of training examples.

In the second part, we propose an algorithm solving a large and general subclass of
generalized maxent problems. We show convergence of our algorithm using techniques
that unify previous approaches and extend them to a more general setting. Specifically,
our unified approach generalizes techniques based on information geometry and Breg-
man divergences [3, 14] as well as those based more directly on compactness [11]. The
main novel ingredient is a modified definition of an auxiliary function, a customary
measure of progress, which we view as a surrogate for the difference between the pri-
mal and dual objective rather than a bound on the change in the dual objective.

There are many standard maxent algorithms, such as iterative scaling [3, 15], gradi-
ent descent, Newton and quasi-Newton methods [16] and their regularized versions [5,
6, 9, 10, 17]. In this paper, we focus on an algorithm that performs sequential up-
dates of feature weights similarly to boosting and sequential algorithms considered
in [11, 14]. Sequential updates are especially desirable when the number of features
is very large or when they are produced by a weak learner. When the number of fea-
tures is small, techniques developed here can be directly applied to derive a parallel
update algorithm analogous to the one proposed in [11] for �1-regularized maxent
(details omitted).

Previous Work. There have been many studies of maxent and logistic regression, which
is a conditional version of maxent, with �1-style regularization [9, 10, 11, 17, 18], �2

2-
style regularization [5, 6, 7, 8] as well as some other types of regularization such as
�1+�2

2-style [10] and �2-style regularization [19]. In a recent work, Altun and Smola [12]
explore regularized formulations (with duality and performance guarantees) where the
entropy is replaced by an arbitrary Bregman or Csiszár divergence and regularization
equals a norm raised to a power greater than one. With the exception of [8, 11, 12], pre-
vious work does not include guarantees applicable to our case, albeit Krishnapuram et
al. [17] and Ng [18] give guarantees for �1-regularized logistic regression.
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2 Preliminaries

The goal is to estimate an unknown target distribution π over a sample space X based
on samples x1, . . . , xm ∈ X . We assume that samples are independently distributed
according to π and denote the empirical distribution by π̃(x) = |{1 ≤ i ≤ m : xi =
x}|/m. The structure of the problem is specified by real valued functions f1, . . . , fn on
the sample space, called features and by a distribution q0 representing a default estimate.
The vector of all n features is denoted by f and the image of X under f , the feature
space, is denoted by f(X ). We assume that features capture all the relevant information
available for the problem at hand and q0 is the distribution we would choose if we were
given no samples. The distribution q0 is most often assumed uniform.

Let p[f ] denote the expectation of a function f(x) when x is chosen randomly ac-
cording to distribution p. For a limited number of samples, we expect that π̃ will be
a poor estimate of π under any reasonable distance measure. On the other hand, for a
given function f , we do expect π̃[f ], the empirical average of f , to be rather close to
its true expectation π[f ]. It is quite natural, therefore, to seek an approximation p under
which fj’s expectation is equal to π̃[fj ] for every fj .

There will typically be many distributions satisfying these constraints. The maxi-
mum entropy principle suggests that, from among all distributions that satisfy them, we
choose the distribution that minimizes entropy relative to the default estimate q0. When
q0 is uniform this is the same as maximizing the entropy. Here, as usual, the entropy of
a distribution p is defined as H(p) = p[ln(1/p)] and the relative entropy, or Kullback-
Leibler divergence, as D(p ‖ q) = p[ln(p/q)]. Thus, the maximum entropy principle
chooses the distribution that satisfies the constraints, but imposes as little additional
information as possible when compared with q0.

Instead of minimizing entropy relative to q0, we can consider all Gibbs distributions

qλ(x) = q0(x)eλ·f(x)/Zλ

where Zλ =
∑

x∈X q0(x)eλ·f(x) is a normalizing constant and λ ∈ R
n. It can be

proved [3] that the maxent distribution is the maximum likelihood distribution from the
closure of the set of Gibbs distributions. Equivalently, it is the distribution that achieves
the infimum over all values of λ of the empirical log loss Lπ̃(λ) = − 1

m

∑m
i=1 ln qλ(xi).

The convex programs corresponding to the two optimization problems are

Pbasic : min
p∈Δ

D(p ‖ q0) subject to p[f ] = π̃[f ]

Qbasic : inf
λ∈Rn

Lπ̃(λ)

where Δ is the simplex of probability distributions over X .
In general, we use Lp(λ) = −p[ln qλ] to denote the log loss of qλ relative to the

distribution p. It differs from relative entropy D(p ‖ qλ) only by the constant H(p). We
will use the two interchangeably as objective functions.

3 Convex Analysis Background

Throughout this paper we make use of convex analysis. The most relevant concepts are
convex conjugacy and Fenchel’s duality which we introduce here (see also [20, 21]).
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Consider a function ψ : R
n → (−∞, ∞]. The effective domain of ψ is the set

dom ψ = {u ∈ R
n | ψ(u) < ∞}. A point u where ψ(u) < ∞ is called feasible.

The epigraph of ψ is the set of points above its graph {(u, t) ∈ R
n × R | t ≥ ψ(u)}.

We say that ψ is convex if its epigraph is a convex set. A convex function is called
proper if it is not uniformly equal to ∞. It is called closed if its epigraph is closed. For
a proper convex function, closedness is equivalent to lower semi-continuity (ψ is lower
semi-continuous if lim infu′→u ψ(u′) ≥ ψ(u) for all u).

If ψ is a closed proper convex function then its conjugate is defined by

ψ∗(λ) = sup
u∈Rn

[λ · u − ψ(u)].

The conjugate provides an alternative description of ψ in terms of tangents to ψ’s
epigraph. It turns out that ψ∗ is also a closed proper convex function and ψ∗∗ = ψ
(for a proof see Corollary 12.2.1 of [20]). From the definition of conjugate, we obtain
Fenchel’s inequality

∀λ, u : λ · u ≤ ψ∗(λ) + ψ(u).

In this work we use several examples of closed proper convex functions. The first of
them is relative entropy, with the second argument fixed, viewed as a function of its first
argument and extended to R

X in the following manner: ψ(p) = D(p ‖ q0) if p ∈ Δ and
equals infinity otherwise. The conjugate of relative entropy is the log partition function
ψ∗(r) = ln

(∑
x∈X q0(x)er(x)

)
.

Relative entropy is also an example of a Bregman divergence which generalizes some
common distance measures including the squared Euclidean distance. We use two prop-
erties satisfied by any Bregman divergence B(· ‖ ·):

(B1) B(a ‖ b) ≥ 0
(B2) if B(at ‖ bt) → 0 and bt → b∗ then at → b∗.

Another example of a closed proper convex function is an indicator function of a
closed convex set C ⊆ R

n, denoted by IC , which equals 0 when its argument lies in
C and infinity otherwise. The conjugate of an indicator function is a support function.
For C = {v}, we obtain I∗{v}(λ) = λ · v. For a box R = [−β, β]n, we obtain a scaled
�1 norm I∗R(λ) = β‖λ‖1, and for a Euclidean ball B = {u | ‖u‖2 ≤ β}, a scaled �2
norm, I∗B(λ) = β‖λ‖2. If C is a convex hull of closed convex sets C1, C2 then

I∗C(λ) = max{I∗C1
(λ), I∗C2

(λ)}. (1)

The following identities can be proved from the definition of the conjugate function:

if ϕ(u) = ψ(γu + c) then ϕ∗(λ) = ψ∗(λ/γ) − λ · c/γ (2)

if ϕ(u) =
∑

j ϕj(uj) then ϕ∗(λ) =
∑

j ϕ∗
j (λj) (3)

where γ ∈ R \ {0} and c ∈ R
n are constants and uj , λj refer to components of u, λ.

We conclude with a version of Fenchel’s Duality Theorem which relates a convex
minimization problem to a concave maximization problem using conjugates. The fol-
lowing result is essentially Corollary 31.2.1 of [20] under a stronger set of assumptions.
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Theorem 1 (Fenchel’s Duality). Let ψ : R
n → (−∞, ∞] and ϕ : R

m → (−∞, ∞]
be closed proper convex functions and A a real-valued m × n matrix. Assume that
dom ψ∗ = R

n or dom ϕ = R
m. Then

inf
u

[
ψ(u) + ϕ(Au)

]
= sup

λ

[
−ψ∗(A�λ) − ϕ∗(−λ)

]
.

We refer to the minimization over u as the primal problem and the maximization over
λ as the dual problem. When no ambiguity arises, we also refer to the minimization
over λ of the negative objective as the dual problem. We call u a primal feasible point
if the primal objective is finite at u and analogously define a dual feasible point.

4 Generalized Maximum Entropy

In this paper we study a generalized maxent problem

P : min
p∈Δ

[
D(p ‖ q0) + U(p[f ])

]

where U : R
n → (−∞, ∞] is an arbitrary closed proper convex function. It is viewed

as a potential for the maxent problem. We further assume that q0 is positive on X , i.e.
D(p ‖ q0) is finite for all p ∈ Δ, and p0[f ] is a feasible point of U for at least one
distribution p0. The latter will typically be satisfied by the empirical distribution.

The definition of generalized maxent captures many cases of interest including the
basic maxent, �1-regularized maxent and �2

2-regularized maxent. The basic maxent is
obtained by using a point indicator potential U(0)(u) = I{π̃[f ]}(u), whereas, as shown
in [11], �1-regularized maxent corresponds to box constraints |π̃[fj ]−p[fj ]| ≤ β, which
can be represented by U(1)(u) = IC(u) where C = π̃[f ]+[−β, β]n. Finally, as pointed
out in [6, 7], �2

2-regularized maxent is obtained using the potential U(2)(u) = ‖π̃[f ] −
u‖2

2/(2α) which incurs an �2
2-style penalty for deviating from empirical averages.

To simplify the exposition, we use the notation Up0(u) = U(p0[f ] − u) for a po-
tential centered at p0. Thus the basic maxent potential U(0)(u) = I{π̃[f ]}(u) could
have been specified by defining U(0)

π̃ (u) = I{0}(u) and similarly the box potential by
defining U(1)

π̃ (u) = I[−β,β]n(u) and the �2
2 penalty by defining U(2)

π̃ (u) = ‖u‖2
2/(2α).

The primal objective of generalized maxent will be referred to as P :

P (p) = D(p ‖ q0) + U(p[f ]).

Note that P attains its minimum over Δ, because Δ is compact and P is lower semi-
continuous. The minimizer of P is unique by strict convexity of D(p ‖ q0).

To derive the dual of P , define the matrix Fjx = fj(x) and use Fenchel’s duality:

min
p∈Δ

[D(p ‖ q0) + U(p[f ])] = min
p∈Δ

[D(p ‖ q0) + U(F p)]

= sup
λ∈Rn

[
− ln

(∑
x∈X q0(x) exp

{
(F�λ)x

})
− U∗(−λ)

]
(4)

= sup
λ∈Rn

[− lnZλ − U∗(−λ)] . (5)
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In Eq. (4), we apply Theorem 1. We use (F�λ)x to denote the entry of F�λ indexed
by x. In Eq. (5), we note that (F�λ)x = λ · f(x) and thus the expression inside the
logarithm equals the normalization constant of qλ. The dual objective will be referred
to as Q:

Q(λ) = − lnZλ − U∗(−λ).

We could rewrite Q in terms of the conjugate of a centered potential. By Eq. (2)

U∗
p0

(λ) = U∗(−λ) + λ · p0[f ], (6)

hence the dual objective can be rewritten as

Q(λ) = −D(p0 ‖ qλ) + D(p0 ‖ q0) − U∗
p0

(λ).

For any fixed distribution p0, D(p0 ‖ q0) is a finite constant, so maximizing Q(λ) is
equivalent to minimizing D(p0 ‖ qλ) + U∗

p0
(λ), or Lp0(λ) + U∗

p0
(λ). Using p0 = π̃

we obtain a dual analogous to Qbasic:

Q : inf
λ∈Rn

[
Lπ̃(λ) + U∗

π̃(λ)
]
.

Note that a minimizing λ does not depend on a particular choice of p0. In particular, a
minimizer of Q is also a minimizer of Lπ(λ) + U∗

π(λ). This observation will be used
in Section 5 to prove performance guarantees.

The objective of Q has two terms. The first of them is the empirical log loss and
the second one can be viewed as a regularization term penalizing “complex” solutions.
From a Bayesian perspective, U∗

π̃ corresponds to negative log of the prior. Thus, mini-
mizing Lπ̃(λ) + U∗

π̃(λ) is equivalent to maximizing the posterior.
In case of the basic maxent, we obtain U(0)∗

π̃ (λ) = I∗{0}(λ) = 0 and thus recover the

basic dual. For the box potential, we obtain U(1)∗
π̃ (λ) = I∗[−β,β]n(λ) = β‖λ‖1 which

corresponds to an �1-style regularization and a Laplace prior. For the �2
2 potential, we

obtain U(2)∗
π̃ (λ) = α‖λ‖2

2/2 which corresponds to an �2
2-style regularization and a

Gaussian prior.
Results of this section are summarized in the following theorem:

Theorem 2 (Maxent Duality). Let q0, U, P, Q be as above. Then

min
p∈Δ

P (p) = sup
λ∈Rn

Q(λ). (i)

Moreover, if limt→∞ Q(λt) = supλ∈Rn Q(λ) then the sequence of qt = qλt
has a

limit and
P

(
lim

t→∞ qt

)
= min

p∈Δ
P (p). (ii)

Sketch of proof. Eq. (i) is a consequence of Fenchel’s duality as was shown earlier. It
remains to prove Eq. (ii). Let p0 be the minimizer of P . Centering primal and dual
objectives at p0, we obtain by Eq. (i) and the assumption

D(p0 ‖ q0) + Up0(0) = lim
t→∞

[
−D(p0 ‖ qt) + D(p0 ‖ q0) − U∗

p0
(λt)

]
.
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Denoting terms with the limit 0 by o(1) and rearranging yields

Up0(0) + U∗
p0

(λt) = −D(p0 ‖ qt) + o(1).

The left-hand side is by Fenchel’s inequality nonnegative, so D(p0 ‖ qt) → 0 by prop-
erty (B1). Therefore, by property (B2), every convergent subsequence of q1, q2, . . . has
the limit p0. Since the qt’s come from the compact set Δ, we obtain qt → p0. 
�

Thus, in order to solve the primal, it suffices to find a sequence of λ’s maximizing the
dual. This will be the goal of the algorithm in Section 6.

5 Bounding the Loss on the Target Distribution

In this section, we derive bounds on the performance of generalized maxent relative to
the true distribution π. That is, we are able to bound Lπ(λ̂) in terms of Lπ(λ∗) when
qλ̂ maximizes the dual objective Q and qλ∗ is any Gibbs distribution. In particular,
bounds hold for the Gibbs distribution minimizing the true loss. Note that D(π ‖ qλ)
differs from Lπ(λ) only by the constant term H(π), so identical bounds also hold for
D(π ‖ qλ̂) in terms of D(π ‖ qλ∗).

The crux of our method is the lemma below. Even though its proof is remarkably
simple, it is sufficiently general to cover all cases of interest.

Lemma 1. Let λ̂ maximize Q. Then for an arbitrary Gibbs distribution qλ∗

Lπ(λ̂) ≤ Lπ(λ∗) + 2U(π[f ]) + U∗(λ∗) + U∗(−λ∗) (i)

Lπ(λ̂) ≤ Lπ(λ∗) + (λ∗ − λ̂) · (π[f ] − π̃[f ]) + U∗
π̃(λ∗) − U∗

π̃(λ̂). (ii)

Proof. Optimality of λ̂ with respect to Lπ(λ) + Uπ(λ) = −Q(λ) + const. yields

Lπ(λ̂) ≤ Lπ(λ∗) + U∗
π(λ∗) − U∗

π(λ̂)

≤ Lπ(λ∗) + (λ∗ − λ̂) · π[f ] + U∗(−λ∗) − U∗(−λ̂). (7)

Eq. (7) follows from Eq. (6). Now Eq. (i) can be obtained by applying Fenchel’s in-
equality to the second term of Eq. (7):

(λ∗ − λ̂) · π[f ] ≤ U∗(λ∗) + U(π[f ]) + U∗(−λ̂) + U(π[f ]).

Eq. (ii) also follows from (7) by centering the conjugate potential at π̃. 
�

A special case which we discuss in more detail is when U is an indicator of a closed
convex set C, such as U(0) and U(1) of the previous section. In this case, the right hand
side of Lemma 1.i will be infinite unless π[f ] lies in C. In order to apply Lemma 1.i,
we ensure that π[f ] ∈ C with high probability. Therefore, we choose C as a confidence
region for π[f ]. If π[f ] ∈ C then for any Gibbs distribution qλ∗

Lπ(λ̂) ≤ Lπ(λ∗) + I∗C(λ∗) + I∗C(−λ∗). (8)
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For a fixed λ∗ and non-empty C, I∗C(λ∗)+ I∗C(−λ∗) is always nonnegative and propor-
tional to the size of C’s projection onto a line parallel with λ∗. Thus, smaller confidence
regions yield better performance guarantees.

A common method of obtaining confidence regions is to bound the difference be-
tween empirical averages and true expectations. There exists a huge array of techniques
to achieve this. Before moving to specific examples, we state a general result which fol-
lows directly from Eq. (8). We assume that confidence regions are obtained by scaling
some symmetric prototype C0 and shifting it to empirical averages.

Theorem 3. Assume that π̃[f ]−π[f ] ∈ βC0 where C0 is a closed convex set symmetric
around the origin, β > 0 and βC0 denotes {βu | u ∈ C0}. Let λ̂ minimize the
regularized log loss Lπ̃(λ) + βI∗C0

(λ). Then for an arbitrary Gibbs distribution qλ∗

Lπ(λ̂) ≤ Lπ(λ∗) + 2βI∗C0
(λ∗).

5.1 Maxent with Polyhedral Regularization

We now apply the foregoing general results to some specific cases of interest. To begin,
we consider potentials which are indicator functions of polytopes. The simplest case is
the box indicator U(1), for which Dudı́k, Phillips and Schapire [11] give generalization
bounds. However, when additional knowledge about structure of the feature space is
available or when samples are biased, other polytopes yield tighter confidence regions
and hence better performance guarantees, as we now show.

Feature Space Derived Potential. When values of f (x) lie inside a polytope with a
possibly very large number of facets then a symmetrized version of this polytope can be
used as a prototype for the confidence region. For example, suppose that values f(x) lie
inside the polytope {u | aj̄ ≤ μj̄ · u ≤ bj̄ for j̄ = 1, . . . , n̄} where μj̄ ∈ R

n, aj̄, bj̄ ∈ R

are constants. Then the following holds:

Theorem 4. Let μj̄, aj̄, bj̄ be as above. Let δ > 0 and let λ̂ minimize Lπ̃(λ)+βI∗C0
(λ)

with β =
√

ln(2n̄/δ)/(2m) and C0 = {u | |μj̄ · u| ≤ bj̄ − aj̄ for all j̄}. Then with
probability at least 1 − δ, for every Gibbs distribution qλ∗ ,

Lπ(λ̂) ≤ Lπ(λ∗) + I∗C0
(λ)

√
2 ln(2n̄/δ)/m.

Proof. By Hoeffding’s inequality, for a fixed j̄, the probability that |μj̄ · (π̃[f ] − π[f ])|
exceeds β(bj̄ − aj̄) is at most 2e−2β2m = δ/n̄. By the union bound, the probability of
this happening for any j̄ is at most δ. Thus, π̃[f ] − π[f ] ∈ βC0 with probability at least
1 − δ and the claim follows from Theorem 3. 
�

This performance bound decreases as 1/
√

m with an increasing number of samples
and grows only logarithmically with the number of facets of the bounding polytope.
Thus, bounding polytopes can have a very large number of facets and still yield good
bounds for moderate sample sizes. When deciding between several polytopes based on
this bound, the increase in the number of facets should be weighed against the decrease
in the regularization I∗C0

as will be demonstrated in examples below.
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Means and Variances. As a specific application, consider a set of n = 2K features in-
dexed as fk, fkk, 1 ≤ k ≤ K , such that 0 ≤ fk(x) ≤ 1 and fkk(x) = f2

k (x). Note that
the best Gibbs distribution is the one that matches fk’s true means and variances. These
types of features were successfully used with box constraints in habitat modeling [4].
Box constraints yield the guarantee

Lπ(λ̂) ≤ Lπ(λ∗) + ‖λ∗‖1
√

2 ln(4K/δ)/m.

Noting that t − 1/4 ≤ t2 ≤ t for t ∈ [0, 1], it is possible to obtain a tighter polytope

C0 = {u | |uk| ≤ 1, |ukk| ≤ 1, |uk − ukk| ≤ 1/4 for all k}

and the guarantee

Lπ(λ̂) ≤ Lπ(λ∗) + I∗C0
(λ∗)

√
2 ln(6K/δ)/m.

In this case, it is possible to derive I∗C0
explicitly:

I∗C0
(λ) =

∑
k (7|λk + λkk| + |λk| + |λkk|)/8.

Note that I∗C0
(λ) may be up to eight times smaller than ‖λ‖1 while the relative in-

crease of the bound due to an increase in n̄ is close to 1 for moderate sizes of K . Thus,
the bound may decrease up to eight times for moderate K . Such improvement would
require a 64-fold increase in the number of training samples using �1-regularization.

Means, Variances and Covariances. In this example, we expand the feature set to in-
clude also covariance terms fkl(x) = fk(x)fl(x) where 1 ≤ k < l ≤ K . In this case
the box can be restricted to a much tighter set

C0 = {u | |uk| ≤ 1, |ukk| ≤ 1, |uk − ukk| ≤ 1/4 for all k,

|ukl| ≤ 1, |uk − ukl| ≤ 1, |ul − ukl| ≤ 1,

|uk + ul − 2ukl| ≤ 1, |ukk + ull − 2ukl| ≤ 1 for all k < l}.

Note that n̄ increases approximately fivefold from K(K +3)/2 to 5K(K +1/5)/2 re-
sulting in only slight relative increase of the bound for moderate K . This is outweighed
by the decrease of the bound due to a tighter confidence region.

Debiased Potential. In previous work [13], we considered the problem of using maxent
when the data was sampled in a biased manner. Here we show how superior bounds can
be obtained using our generalized maxent framework.

In previous examples, confidence regions were symmetric sets centered at empir-
ical averages of features. Here, however, asymmetric regions are more appropriate.
We assume now that samples do not come from the target distribution π, but from
the biased distribution πs, where s ∈ Δ is the sampling distribution and πs(x) =
π(x)s(x)

/∑
x′∈X π(x′)s(x′) corresponds to the probability of observing x given that

it is sampled by both π and s. We assume that s is known and strictly positive. Further,
let smin = minx s(x) and smax = maxx s(x). We use the following theorem to derive
confidence intervals of true feature expectations from biased samples.
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Theorem 5 (Theorem 2 of [13]). πs[f/s]
/
πs[1/s] = π[f ].

Earlier [13] we derived, for example by Hoeffding’s inequality, confidence intervals
[cj , dj ] for πs[fj/s] and an interval [c0, d0] for πs[1/s]. We converted these into box
constraints for π[f ] by Theorem 5. However, Theorem 5 can also be used to obtain a
tighter confidence region:

C =
⋃

c0≤t≤d0

{u | cj/t ≤ uj ≤ dj/t for all j}

= convex hull
t=c0,d0

{u | cj/t ≤ uj ≤ dj/t for all j}. (9)

Eq. (1) can be used to obtain an explicit form of I∗C . Working out Hoeffding’s bounds,
applying Lemma 1.i and converting I∗C(λ) + I∗C(−λ) into a sample independent form
under the assumption that terms on the left-hand side of Theorem 5 lie in their confi-
dence intervals, we obtain the following guarantee (the proof is omitted):

Theorem 6. Assume that features f1, . . . , fn are bounded in [0, 1]. Let s be as above
and let π̃s denote the empirical distribution of samples drawn from πs. Let δ > 0 and
let λ̂ minimize ln Zλ + I∗C(−λ) where

I∗C(−λ) = max
t=c0,d0

[
−λ · π̃s[f/s] + β‖λ‖1

t

]

with β =
√

ln(2(n + 1)/δ)/(2m)/smin, c0 = max
{
1/smax, π̃s[1/s] − β

}
, d0 =

π̃s[1/s] + β. Then with probability at least 1 − δ, for every Gibbs distribution qλ∗ ,

Lπ(λ̂) ≤ Lπ(λ∗) +
‖λ∗‖1 + |λ∗ · π[f ]|√

m
· π[s]
smin

·
(

α + α2 smax

smin
√

m

)

(10)

where α =
√

2 ln(2(n + 1)/δ).

This bound shares many of the favorable properties of the bound of Theorem 4. In
particular, it decreases as the square root of the number of samples and grows only log-
arithmically with the number of features. It also increases with the level of correlation
between the sampling and target distributions as measured by the ratio π[s]/smin. In-
tuitively, this dependence should not be surprising, because high values of π[s]/smin
mean that π puts more weight on points with larger bias. As a result, it is more difficult
to disambiguate effects of s and π on the sampling process.

When using box constraints, as in [13], we obtain an analogous bound with the term
|λ∗ · π[f ]| in Eq. (10) replaced by a larger term

∑
j |λ∗

j |π[fj]. Improvement in the
guarantee due to the new regularization will be the most significant when λ∗ and π[f ]
are close to orthogonal. This is true for almost all directions of λ∗ as the dimension of
the feature space increases.

5.2 Maxent with �2-Regularization

In some cases, tighter performance guarantees can be obtained by using non-polyhedral
confidence regions. In this section we consider confidence regions which take the shape
of a Euclidean ball. We use an �2 version of Hoeffding’s inequality and apply Theorem 3
to obtain performance guarantees (the proof is omitted).



Maximum Entropy Distribution Estimation with Generalized Regularization 133

Theorem 7. Let D2 = supx,x′∈X‖f(x) − f(x′)‖2 be the �2 diameter of f (X ). Let

δ > 0 and let λ̂ minimize Lπ̃(λ)+β‖λ‖2 with β = D2
[
1+(2+

√
2)

√
ln(1/δ)

]
/
√

2m.
Then with probability at least 1 − δ, for every Gibbs distribution qλ∗ ,

Lπ(λ̂) ≤ Lπ(λ∗) + ‖λ∗‖2D2
[√

2 + 2(1 +
√

2)
√

ln(1/δ)
]/√

m.

Unlike results of the previous section, this bound does not explicitly depend on the
number of features and only grows with the �2 diameter of the feature space. The �2
diameter is small for example when the feature space consists of sparse binary vectors.

An analogous bound can also be obtained for �1-regularized maxent by Theorem 4:

Lπ(λ̂) ≤ Lπ(λ∗) + ‖λ∗‖1D∞
√

2 ln(2n/δ)/m.

This bound increases with the �∞ diameter of the feature space and also grows slowly
with the number of features. It provides some insight for when we expect �1-regulariza-
tion to perform better than �2-regularization. For example, consider a scenario when the
total number of features is large, but the best approximation of π can be derived from a
small number of relevant features. Increasing the number of irrelevant features, we may
keep ‖λ∗‖1, ‖λ∗‖2 and D∞ fixed while D2 may increase as Ω(

√
n). Thus the guarantee

for �2-regularized maxent grows as Ω(
√

n) while the guarantee for �1-regularized max-
ent grows only as Ω(

√
ln n). Note, however, that in practice the distribution returned

by �2-regularized maxent may perform better than indicated by this guarantee. For a
comparison of �1 and �2

2 regularization in the context of logistic regression see [18].

5.3 Maxent with �2
2-Regularization

So far we have considered potentials that take the form of an indicator function. In this
section we present a result for the �2

2 potential U(2)
π̃ (u) = ‖u‖2

2/(2α) which grows con-
tinuously with increasing distance from empirical averages. In addition to probabilistic
guarantees (which we do not discuss in this section), it is possible to derive guarantees
on the expected performance. However, these guarantees require an a priori bound on
‖λ∗‖2 and thus are not entirely uniform.

Expectation guarantees can be simply obtained by taking an expectation in Lem-
ma 1.i and bounding the trace of the feature covariance matrix by D2

2/2. Instead, we
use a stability bound on ‖λ∗ − λ̂‖2 along the lines of [8], then apply Lemma 1.ii and
only then bound the trace. This results in tighter guarantees (also tighter than those
in [8]). Optimizing α under the condition ‖λ∗‖2 ≤ L2 then yields the following:

Theorem 8. Let D2 be the �2 diameter of f (X ) and let L2 > 0. Let λ̂ minimize
Lπ̃(λ) + α‖λ‖2

2/2 with α = D2/(L2
√

m). Then for all λ∗ such that ‖λ∗‖ ≤ L2

E
[
Lπ(λ̂)

]
≤ Lπ(λ∗) + L2D2/

√
m.

Expectation guarantees can also be obtained for regularization types of the form
U∗

π̃(λ) = βI∗C0
(λ) + α‖λ‖2

2/2. Using that Uπ̃(u) ≤ min{IβC0(u), ‖u‖2
2/(2α)},

the expectation is derived by distinguishing whether π̃[f ] − π[f ] lies in βC0 or not
(with a small probability δ). The resulting guarantee contains one term proportional to
I∗C0

(λ∗)/
√

m and another proportional to L2D2/
√

m with δ controlling the tradeoff.
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6 A Sequential-Update Algorithm and Convergence Proof

In this section, we present an algorithm for the generalized maxent and proof of conver-
gence. The algorithm covers a wide class of potentials including the basic, box and �2

2
potential. Polyhedral and �2-ball potentials do not fall in this class, but the correspond-
ing maxent problems can be transformed and our algorithm can still be applied.

As explained in Section 4, the goal of the algorithm is to produce a sequence
λ1, λ2, . . . maximizing the objective function Q in the limit. We assume that the poten-
tial U is decomposable in the sense that it can be written as a sum of coordinate poten-
tials U(u) =

∑
j Uj(uj), each of which is a closed proper convex functions bounded

from below. The conjugate potential U∗ then equals the sum of conjugate coordinate
potentials U∗

j (see Eq. (3)) and U∗
j (0) = supuj

[−Uj(uj)] is finite for all j.
Throughout this section we assume that values of features fj lie in the interval [0, 1]

and that features and coordinate potentials are non-degenerate in the sense that ranges
fj(X ) and intersections dom Uj ∩ [0, 1] differ from {0} and {1}.

Our algorithm works by iteratively adjusting the single weight λj that maximizes (an
approximation of) the change in Q. To be more precise, suppose we add δ to λj . Let
λ′ be the resulting vector of weights. By decomposability and convexity, we can bound
the change in the objective (analogously to [11]):

Q(λ′) − Q(λ) ≥ − ln
(
1 + (eδ − 1)qλ[fj ]

)
− U∗

j (−λj − δ) + U∗
j (−λj). (11)

Our algorithm starts with λ1 = 0 and then, on each iteration, maximizes this lower
bound over all choices of (j, δ). For the maximizing j, it adds the corresponding δ to
λj . This is repeated until convergence. We assume that for each j the maximizing δ is
finite. This will be the case if the potential and features are non-degenerate.

For maxent with box constraints, the minimizing δ can be derived explicitly yielding
the algorithm of [11]. For a general potential note that (11) is strictly concave in δ so
we can use any of a number of search methods to find the optimal δ.

Reductions from Non-decomposable Potentials. Polyhedral and �2-ball potentials
are not decomposable. When a polyhedral potential is represented as an intersection of
halfspaces μj̄ · u ≥ aj̄, it suffices to use transformed features f̄j̄(x) = μj̄ · f(x) with
coordinate potentials corresponding to inequality constraints. Note that the debiased
potential polytope (9) is not described in this form. However, it is not too difficult to
obtain such a representation. It turns out that this representation uses O(n2) halfspaces
and is thus polynomial in the original problem size.

In case of an �2-ball potential, we replace the constraint ‖π̃[f ] − p[f ]‖2 ≤ β by
‖π̃[f ] − p[f ]‖2

2 ≤ β2 which yields an equivalent primal P ′. If β > 0 then, by the
Lagrange duality and Slater’s conditions [21], we know there exists μ ≥ 0 such that the
solution of P ′ is the same as the solution of

P ′′ : min
p∈Δ

[
D(p ‖ q0) + μ

(
‖π̃[f ] − p[f ]‖2

2 − β2)].

The sought-after μ is the one which maximizes the value of P ′′. Since the value of P ′′

is concave in μ, we can employ a range of search techniques to find the optimal μ, using
our algorithm to solve an instance of �2

2-regularized maxent in each iteration.
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Convergence. In order to prove convergence of our algorithm, we will measure its
progress towards solving the primal and dual. One measure of progress is the difference
between the primal evaluated at qλ and the dual at λ:

P (qλ) − Q(λ) = U(qλ[f ]) + U∗(−λ) + λ · qλ[f ].

By Theorem 1, this difference is non-negative and equals zero exactly when qλ solves
primal and λ solves the dual.

However, for many potentials of interest, including equality and inequality con-
straints, the difference between primal and dual may remain infinite throughout the
computation. Therefore, we introduce an auxiliary function, defined, somewhat non-
standardly, as a surrogate for this difference.

Definition 1. A function A : R
n × R

n → (−∞, ∞] is called an auxiliary function if

A(λ, a) = U(a) + U∗(−λ) + λ · a + B(a ‖ qλ[f ]) (12)

where B(· ‖ ·) : R
n × R

n → (−∞, ∞] satisfies conditions (B1) and (B2).

Unlike the previous applications of auxiliary functions [3, 14], we do not assume that
A(λ, a) bounds a change in the dual objective and we also make no continuity as-
sumptions. However, an auxiliary function is always non-negative since by Fenchel’s
inequality U(a) + U∗(−λ) ≥ −λ · a and hence A(λ, a) ≥ B(a ‖ qλ[f ]) ≥ 0. More-
over, if A(λ, a) = 0 then qλ[f ] = a and A(λ, a) = P (qλ)−Q(λ) = 0, i.e. by maxent
duality, qλ solves the primal and λ solves the dual.

It turns out, as we show in Lemma 3 below, that the optimality property generalizes
to the case when A(λt, at) → 0 provided that Q(λt) has a finite limit. In particular, it
suffices to find a suitable sequence of at’s for λt’s produced by our algorithm to show
its convergence. Note that the optimality in the limit trivially holds when λt’s and at’s
come from a compact set, because A(λ̂, â) = 0 at a cluster point of {(λt, at)} by the
lower semi-continuity of U and U∗.

In the general case, we follow the technique used by [3] for the basic maxent: we
consider a cluster point q̂ of {qλt

} and show that (i) q̂ is primal feasible and (ii) the
difference P (q̂) − Q(λt) approaches zero. In case of the basic maxent, A(λ, a) =
B(π̃[f ] ‖ qλ[f ]) whenever finite. Thus, (i) is obtained by (B2), and noting that P (q̂) −
Q(λ) = D(q̂ ‖ qλ) yields (ii). For a general potential, however, claims (i) and (ii) seem
to require a novel approach. In both steps, we use decomposability and the technical
Lemma 2 (the proof is omitted).

Lemma 2. Let Up0 be a decomposable potential centered at a feasible point p0. Let
S = dom Up0 = {u ∈ R

n | Up0(u) < ∞} and Tc = {λ ∈ R
n | U∗

p0
(λ) ≤ c}. Then

there exists αc ≥ 0 such that λ · u ≤ αc‖u‖1 for all u ∈ S, λ ∈ Tc.

Lemma 3. Let λ1, λ2, . . . ∈ R
n, a1, a2, . . . ∈ R

n be sequences such that Q(λt) has
a finite limit and A(λt, at) → 0 as t → ∞. Then limt→∞ Q(λt) = supλ Q(λ).

Sketch of proof. Let qt denote qλt
. Consider a convergent subsequence of qt’s, index

it by τ and denote its limit by q̂. As noted earlier, A(λ, a) ≥ B(a ‖ qλ[f ]). Since
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A(λτ , aτ ) → 0, we obtain that B(aτ ‖ qτ [f ]) → 0 and thus aτ → q̂[f ]. Rewrite
Eq. (12) in terms of potentials and conjugate potentials centered at an arbitrary feasible
point p0 (which must exist by assumption), denoting terms with zero limits by o(1):

Up0(p0[f ] − aτ ) = −U∗
p0

(λτ ) + λτ · (p0[f ] − aτ ) + o(1). (13)

We use Eq. (13) to show first the feasibility and then the optimality of q̂.

Feasibility. We bound the right hand side of Eq. (13). The first term −U∗
p0

(λτ ) is, by
Fenchel’s inequality, bounded above by Up0(0). The second term λτ · (p0[f ]−aτ ) can
be bounded above by Lemma 2. Taking limits yields feasibility.

Optimality. Since q̂ is feasible, we can set p0 equal to q̂ in Eq. (13). Using Lemma 2
and taking limits we obtain that Uq̂(0) ≤ limτ→∞[−U∗

q̂(λτ )]. Adding D(q̂ ‖ q0) to
both sides yields P (q̂) ≤ limτ→∞ Q(λτ ) which by the maxent duality implies the
optimality of q̂. 
�

Theorem 9. The sequential-update algorithm produces a sequence λ1, λ2, . . . for
which limt→∞ Q(λt) = supλ Q(λ).

Sketch of proof. It suffices to show that Q(λt) has a finite limit and present an auxiliary
function A and a sequence a1, a2, . . . for which A(λt, at) → 0.

Note that Q(λ1) = Q(0) = −U∗(0) is finite by decomposability and Q is bounded
above by feasibility of the primal. For each j let Ft,j denote the maximum over δ of the
lower bound (11) in step t. Note that Ft,j is nonnegative since the bound is zero when
δ = 0. Thus Q(λt) is nondecreasing and hence has a finite limit.

In each step, Q(λt+1)−Q(λt) ≥ Ft,j ≥ 0. Since Q(λt) has a finite limit, we obtain
Ft,j → 0. We will use Ft,j to construct A. Rewrite Ft,j using Fenchel’s duality:

Ft,j = max
δ

[
− ln(1 + (eδ − 1)qt[fj ]) − U∗

j (−λt,j − δ) + U∗
j (−λt,j)

]

= max
δ

[
− ln

{(
1 − qt[fj]

)
e0·δ + qt[fj ]e1·δ} − U′∗

j (−δ)
]

+ U∗
j (−λt,j) (14)

= min
ā,a

[
D

(
(ā, a)

∥
∥ (1 − qt[fj ], qt[fj ])

)
+ U′

j(0 · ā + 1 · a)
]

+ U∗
j (−λt,j) (15)

= min
0≤a≤1

[
D(a ‖ qt[fj ]) + Uj(a) + a · λt,j

]
+ U∗

j (−λt,j). (16)

In Eq. (14), we write U′∗
j (u) for U∗

j (u − λt,j). In Eq. (15), we applied Theorem 1,
noting that the conjugate of the log partition function is the relative entropy. The value
of relative entropy D((ā, a) ‖ (1 − qt[fj], qt[fj])) is infinite whenever (ā, a) is not a
probability distribution, so it suffices to consider pairs where 0 ≤ a ≤ 1 and ā = 1− a.
In Eq. (16), we use D(a ‖ qt[fj]) as a shorthand for D((1 − a, a) ‖ (1 − qt[fj], qt[fj ]))
and use Eq. (2) to convert U′

j into Uj .
The minimum in Eq. (16) is always attained because a comes from a compact set. Let

at,j denote a value attaining this minimum. We define the auxiliary function A(λ, a)
as the sum over j of Eq. (16) (evaluated at a = aj and with λt,j replaced by λj ). Now
A(λt, at) =

∑
j Ft,j → 0 and the result follows by Lemma 3. 
�
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7 Conclusion and Future Work

In this work, we have explored one direction of generalizing maxent: replacing equal-
ity constraints in the primal by an arbitrary convex potential or, equivalently, adding a
convex regularization term to the maximum likelihood estimation in the dual. In our
unified approach, we derived performance guarantees for many existing and novel reg-
ularization types and presented an algorithm covering a wide range of potentials.

As the next step, we would like to explore whether theoretical superiority of the new
regularization types results in improved performance on real-world data. If this turns out
to be the case, we would like to investigate strategies for obtaining tighter confidence
regions and hence better performing regularizations using sample-derived statistics or
properties of the feature space.

An alternative line of generalizations arises by replacing relative entropy in the pri-
mal objective by an arbitrary Bregman or Csiszár divergence along the lines of [12, 14].
Analogous duality results as well as a modified algorithm apply in the new setting, but
performance guarantees do not directly translate to the case when divergences are de-
rived from samples. Divergences of this kind are used in many cases of interest such as
logistic regression (a conditional version of maxent), boosting or linear regression. In
the future, we would like to generalize performance guarantees to this setting.

Finally, the convergence rate of the present algorithm and a possible tradeoff between
statistical guarantees and computational efficiency of different regularizations is open
for future research.
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