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Abstract. Frequent itemset mining (FIM) is one of the core problems
in the field of Data Mining and occupies a central place in its literature.
One equivalent form of FIM can be stated as follows: given a rectangu-
lar data matrix with binary entries, find every submatrix of 1s having a
minimum number of columns. This paper presents a theoretical analy-
sis of several statistical questions related to this problem when noise is
present. We begin by establishing several results concerning the extremal
behavior of submatrices of ones in a binary matrix with random entries.
These results provide simple significance bounds for the output of FIM
algorithms. We then consider the noise sensitivity of FIM algorithms un-
der a simple binary additive noise model, and show that, even at small
noise levels, large blocks of 1s leave behind fragments of only logarithmic
size. Thus such blocks cannot be directly recovered by FIM algorithms,
which search for submatrices of all 1s. On the positive side, we show how,
in the presence of noise, an error-tolerant criterion can recover a square
submatrix of 1s against a background of 0s, even when the size of the
target submatrix is very small.

1 Introduction

Frequent itemset mining (FIM) [1, 2], also known as market basket analysis, is
a central and well-studied problem in the field of Data Mining, and occupies a
central place in its literature. It is closely related to a variety of related, more
general problems, such as bi-clustering and subspace clustering [28, 7, 3, 10] that
are of active interest to the Data Mining community. A variety of applications
using FIM and other related bi-clustering algorithms can be found in [21, 14].
In the FIM problem the available data is described by a list S = {s1, . . . , sn} of
items and a set T = {t1, . . . , tm} of transactions. Each transaction ti consists of
a subset of the items in S. (If S contains the items available for purchase at a
store, then each ti represents a record of items purchased during one transaction,
without multiplicity.) The goal of FIM is to identify sets of items that appear
together in more than k transactions, where k ≥ 1 is a threshold for “frequent”.
The data for the FIM problem can readily be represented by an m × n binary
matrix X, with xi,j = 1 if transaction ti contains item sj , and xi,j = 0 otherwise.
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In this form the FIM problem can be stated as follows: given X and k ≥ 1,
find every submatrix of 1s in X having at least k columns. Frequent itemset
algorithms perform an exhaustive search for such submatrices.

The application of FIM to large data sets for the purposes of exploratory
analysis raises a number of natural statistical questions. In this paper we present
(preliminary) answers to three such questions. The first question considers sig-
nificance. In particular, how significant is the the discovery of a moderately sized
submatrix of 1s in a large data matrix? To address this question, we establish
probability bounds on the size of the largest submatrix of 1s in a random binary
matrix. These bounds improve upon existing inequalities in the literature, and
yield approximate p-values for discovered submatrices under the null hypothesis
that the data consists of independent Bernoulli random variables.

Much of the data to which data mining methods are applied are obtained by
high-throughput technologies or the automated collection of data from diverse
sources with varying levels of reliability. The resulting data sets are often subject
to moderate levels of error and noise. Our second question involves the behavior
and performance of FIM in the presence of noise. Standard frequent itemset
algorithms do not account for noise or errors in their search for submatrices
of 1s. We consider the noise sensitivity of FIM under a simple binary additive
noise model and show that, even at small noise levels, blocks of 1s is broken into
fragments of logarithmic size. Thus such blocks cannot be directly recovered by
standard frequent itemset algorithms.

Lastly, we consider the problem of recovering a block of 1s in the presence of
additive noise using an error-tolerant criterion (approximate frequent itemsets)
that allows submatrices containing a limited fraction of zeros. We show how the
AFI criterion can recover a square submatrix of 1s against a background of 0s,
even when the size of the target submatrix is very small.

1.1 Overview

The next section contains several results on the size of maximal submatrices of
ones in a random matrix with independent Bernoulli entries. In addition, we
present a small simulation study that explores the applicability of the asymp-
totic theory to small samples. Section 2 is devoted to the description of the
additive noise model and the noise sensitivity of standard FIM. In Section 3 we
consider the recoverability of block structures in the presence of noise using the
approximate frequent itemset criterion.

2 Frequent Itemsets in Random Matrices

There is a large literature on ordinary (full-space) clustering that spans 50 years.
While there has been recent attention and progress on the problem of cluster
validation [30], [17], [11], there is no general and systematic treatment of sig-
nifiance for full-space clustering. FIM is more amenable to significance analysis
than full-space clustering, as attention shifts from high-dimensional objects (the
rows or columns of the data matrix) to the entries of the data matrix itself,
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which are organized into a simple two-dimensional array. Here we consider sev-
eral questions related to the size and statistical significance of frequent itemsets
in a random matrix. The focus is on the size of the largest submatrix of 1s, or a
specified fraction of 1s, in a binary matrix with Bernoulli entries. For simplicity
of exposition, we emphasize the case of square matrices and square submatrices.
Some extensions to the non-square case are described in Section 2.3 below.

2.1 Square Submatrices of 1s

Let X be an m × n binary matrix. A submatrix of X is a collection U = {xi,j :
i ∈ A, j ∈ B} where A ⊆ {1, . . . , m} and B ⊆ {1, . . . , n}. The Cartesian product
C = A × B will be called the index set of U. Given C = A × B, define X[C]
to be the submatrix of X with index set C. When no ambiguity will arise, C
will also be referred to as a submatrix of X. Note that X can be viewed as the
adjacency matrix of a bi-partite graph G(X). The graph G(X) has vertex set V
equal to the disjoint union V = Vr ∪ Vc, where Vr corresponds to the rows of X,
Vc corresponds to its columns, and there is an edge between i ∈ Vr and j ∈ Vc

if and only if xi,j = 1. With this association, submatrices of ones in X are in
one-to-one correspondence with bi-cliques in G(W). This connection is the basis
for the SAMBA bi-cluster algorithm of Tanay et al. [29].

Definition. Given any binary matrix X, let M(X) be the largest value of k such
that X contains a k × k submatrix of 1s.

Definition. Let Zn denote an n×n binary matrix whose entries are independent
Bernoulli(p) random variables, with p ∈ (0, 1). We will write Zn ∼ Bern(p).

A natural starting point for studying the significance of FIM is M(Zn), the size of
the largest submatrix of 1s in a binary matrix with independent Bernoulli entries.
To obtain bounds on M(Zn), let Uk(n) be the number of k×k submatrices of 1s
in Zn. Then, using Stirling’s approximation, it is easy to show that EUk(n) =(
n
k

)2
pk2 ≈ (2π)−1 n2n+1 k−2k−1 (n−k)−2(n−k)−1 pk2

. The first moment method
from combinatorial probability suggests that M(Zn) will be close to the value
of k for which EUk(n) = 1. Accordingly, define s(n) to be any positive solution
of the equation

1 = φn(s) = (2π)−
1
2 nn+ 1

2 s−s− 1
2 (n − s)−(n−s)− 1

2 p
s2
2 . (1)

A routine but involved analysis shows that any solution s(n) of (1) must satisfy
the relation

s(n) = 2 logb n − 2 logb logb n + C + o(1), (2)

where b = p−1 and C is a positive constant. Moreover, by standard calculus,
it can be shown that φn(·) is monotone decreasing when logb n < s < 2 logb n.
Thus when n is sufficiently large, there is only one solution of (1) in the interval
(logb n, 2 logb n), and therefore s(n) is uniquely defined. Define k(n) = �s(n)	. A
simple application of the first moment method yields a bound on the probability
that M(Zn) is larger than k(n), which can be used to assess the statistical
significance of submatrices of ones identified by bi-clustering algorithms.



112 X. Sun and A. Nobel

Proposition 1. Fix 0 < γ < 1. When n is sufficiently large, for every integer
1 ≤ r ≤ γ n we have P{M(Zn) ≥ k(n) + r} ≤ 2 n−2 r (logb n)3r, where b = p−1.

Proof. To establish the bound with n independent of r, it suffices to consider a
sequence r = rn that changes with n in such a way that 1 ≤ rn ≤ γ n. Fix n for
the moment, let l = k(n)+rn, and let Ul(n) be be the number of l×l submatrices
of 1s in Zn. Then by Markov’s inequality and Stirling’s approximation,

P (M(Zn) ≥ r) = P (Ul ≥ 1) ≤ E(Ul) =
(

n

l

)2

pl2 ≤ 2φn(l)2. (3)

A straightforward calculation using the definition of φn(·) shows that

2φn(l)2 = 2 φ2
n(k(n)) pr·k(n) [ An(r)Bn(r)Cn(r)Dn(r) ]2, (4)

where

An(r) =
(

n − r − k(n)
n − k(n)

)−n+r+k(n)+ 1
2

Bn(r) =
(

r + k(n)
k(n)

)−k(n)− 1
2

Cn(r) =
(

n − k(n)
r + k(n)

p
k(n)

2

)r

Dn(r) = p
r2
2

Note that pr·k(n) = o(n−2r(logb n)3r), and that φ2
n(k(n)) ≤ 1 by the monotonic-

ity of φn(·) and the definition of k(n). Thus it suffices to show that An(r)·Bn(r)·
Cn(r) · Dn(r) ≤ 1 when n is sufficiently large. To begin, note that for any fixed
δ ∈ (0, 1/2), when n is sufficiently large,

Cn(r)
1
r =

n − k(n)
r + k(n)

p
k(n)

2 ≤ n

k(n)
p

k(n)
2 ≤ n

(2 − δ) logb n

2+δ
2 logb n

n

which is less than one. In order to show An(r) · Bn(r) · Dn(r) ≤ 1, we consider
two possibilities for the asymptotic behavior of r = rn.

Case 1. Suppose r/k(n) → 0 as n → ∞. In this case, Bn(r)
1
r = (1 + o(1)) e−1.

Moreover, r/n → 0, which implies that An(r)
1
r = (1 + o(1)) e. Thus

An(r) · Bn(r) · Dn(r) = ((1 + o(1))2 p
r
2 )r ≤ 1

when n is sufficiently large.

Case 2. Suppose lim infn r/k(n) > 0. In this case a routine calculation shows
that Bn(r) ≤ 1 for any r ≥ 1, so it suffices to show that

An(r) · Dn(r) ≤ 1. (5)

Note that Dn(r) = (p
r
2 )r and An(r)

1
r = (1+ o(1)) e when r = o(n− k(n)). Thus

(5) holds when r = o(n − k(n)).
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It remains to consider the case o(n−k(n)) < r < γ n. As
√

(2 + 2
1−γ )n/ log b =

o(n−k(n)), it suffices to assume that
√

(2 + 2
1−γ )n/ log b < r < γ n. In this case,

logb An(r) · Dn(r) = logb

[(
1 +

r

n − k(n) − r

)n−r−k(n)− 1
2

p
r2
2

]

≤ n logb

(
1 +

r

n − r − k(n)

)
−

(2 + 2
1−γ )n

2 log b
≤ 0,

where the last inequality comes from the fact that logb(1 + x) ≤ x/ log b for
x ≥ 0.

An inspection of the proof shows that the inequality of Proposition 1 is obtained
via a standard union (Bonferroni) type bound on the probability of finding a k×k
submatrix of 1s in Zn. In general, union bounds are rather loose, and indeed,
with additional calculation, one can improve the upper bound in Proposition 1 to
n−(4−δ) r (logb n)3r for any δ > 0. Nevertheless, a more refined second moment
argument (see Theorem 1 below) shows that the threshold k(n) can not be
improved.

Bollobás [5] and Grimmett and McDiarmid [12] established analogous bounds
for the size of a maximal clique in a random graph, with the larger threshold
k(n) = 2 logb n. Koyutürk and Szpankowski [16] studied the problem of finding
dense patterns in binary data matrices. They used a Chernoff type bound for the
binomial distribution to assess whether an individual submatrix has an enriched
fraction of ones, and employed the resulting test as the basis for a heuristic search
for significant bi-clusters. Tanay et al. [28] assessed the significance of bi-clusters
in a real-valued matrix using likelihood-based weights, a normal approximation
and a standard Bonferroni bound to account for the multiplicity of submatrices.

As noted above, M(Zn) is the size of the largest bi-clique in a random n × n
bi-partite graph. Bollobás and Erdős [4] and Matula [20] studied the size of the
largest clique in a standard random graph with n vertices, where each edge is
included with probability p, independent of the other edges. In particular, they
obtained strong almost sure results on the asymptotic size of maximal cliques.
Bollobás [5] gives a good account of these results. By extending the arguments
in [4, 20] to bi-cliques one may establish the following analogous result; the proof
is rather technical and is omitted. Assume that for each n the matrix Zn is the
upper left corner of an infinite array {zi,j : i, j ≥ 1} of Bernoulli(p) random
variables with 0 < p < 1.

Theorem 1. With probability one, |M(Zn) − s(n)| < 3
2 when n is sufficiently

large. Thus M(Zn) eventually concentrates on one of the (at most three) integers
within distance 3/2 of the real number s(n).

Dawande et al. [8] used first and second moment arguments to show (in our
terminology) that P (logb n ≤ M(Zn) ≤ 2 logb n) → 1 as n tends to infinity.
Extending this work, Park and Szpankowski [25] showed that if M̃ is the side-
length of the largest square submatrix of 1s in an m × n Bernoulli matrix, then
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P (|M̃ − logb(mn)| > ε log(mn)) ≤ O((mn)−1(log(mn))6). When m = n their
result implies that (2 − ε) logb n ≤ M(Zn) ≤ (2 + ε) logb n eventually almost
surely.

2.2 Submatrices with Large Fraction of Ones

In situations where noise is present, one may wish to look for submatrices having
a large fraction of 1s, rather than requiring the stronger condition that every
entry be equal to 1. Let X be a binary matrix, and let U be a submatrix of X
with index set C. Let

F (U) = |C|−1 ∑
(i,j)∈C xi,j

be the fraction of ones in U. Fix τ ∈ (0, 1) and define Mτ (X) to be the largest
k such that X contains a k × k submatrix U with F (U) ≥ τ .

Proposition 2. Fix 0 < γ < 1 and suppose that 0 < p < τ < 1. When n
is sufficiently large, P (Mτ (Zn) ≥ 2 logb∗ n + r) ≤ 2n−2r (logb∗ n)3r for each
1 ≤ r ≤ γ n. Here b∗ = exp{3(τ − p)2/8p}.

Proof. For l ≥ 1 let Vl(n) be the number of l × l submatrices U of Zn with
F (U) ≥ τ . Note that E(Vl(n)) =

(
n
l

)2
P (F (Zl) ≥ τ). The random variable

l2 · F (Zl) has a Binomial(l2, p) distribution. Using a standard inequality for
the tails of the binomial distribution, (c.f. Problem 8.3 of [9]), we find that
P (F (Zl) ≥ τ) ≤ ql2 where q = 1/b∗. It then follows from Stirling’s approxima-
tion that EVl(n) ≤ 2 when l = l(n) = 2 logb∗ n. For l = r + l(n), P (Mτ (Zn) ≥
l) ≤ E(Vl(n)) and the stated inequality then follows from arguments analogous
to those in the proof of Proposition 1.

Note that the base b∗ = exp{3(τ − p)2/8p} may not always yield the best upper
bound. When p ≥ 1

2 , b∗ can be replaced by exp{(τ − p)2/2p(1 − p)} (cf. [22]).
When τ → 1, b∗ = exp{3(τ − p)2/8p} fails to converge to p−1, so that the
probability bound above does not coincide with that of Proposition 1. In this
case, the disparity may be remedied by using an alternative bound for the tails
of the binomial (e.g. [15]) and a corresponding base for the logarithm.

2.3 Non-square Matrices

The restriction to square matrices above can readily be relaxed, yielding bounds
for data sets with more transactions than items, or vice versa. Suppose that
Zm,n ∼ Bern(p) is an m × n random matrix with m

n = α for some α > 0. For
any ρ ≥ 1, let Mρ

α(Z) be the largest k such that there exists at least one �ρk	×k
submatrix of 1s in Z. One may extend Proposition 1 as follows.

Proposition 3. Fix 0 < γ < 1. When n is sufficiently large,

P{Mρ
α(Z) ≥ k(α, ρ, n) + r} ≤ n−(ρ+1) r 2(logb n)(ρ+2)r (6)

for each 1 ≤ r ≤ γ n. Here k(α, ρ, n) = ρ+1
ρ logb n + logb

α
ρ .
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One may generalize Proposition 3 to submatrices with large fractions of 1s by
replacing b with the base b∗ of Proposition 2.

Park and Szpankowski [25] established probability bounds on the maximum
area of non-square submatrices and showed that such submatrices have aspect ra-
tio close to zero. In addition they established probability bounds for square sub-
matrices (discussed above) that provide weaker inequalities like those in Propo-
sition 3 when ρ = 1.

Propositions 1, 2 and 3 can provide bounds on the statistical significance of
submatrices discovered by frequent itemset mining algorithms, under the null
hypothesis that the observed data is purely random. Suppose for example that
an FIM algorithm is applied to a 4, 000 × 100 binary matrix Y, 65% of whose
entries are equal to 1. Suppose that the algorithm finds a 44 × 25 submatrix U
of ones in Y. Applying Proposition 3 with p = 0.65, α = 40 and ρ = 1.76 we
find that k(α, ρ, n) = 24 and that the probability of finding such a matrix U in
a purely random matrix is at most

2 n−(1.76+1)×(25−24) (logb n)(1.76+2)×(25−24) ≈ 0.04467.

Thus U may be assigned a p-value p(U) ≤ 0.04467. On the other hand, consider
the case that an error tolerant FIM algorithm finds an 73 × 25 submatrix U′

in Y with 95% 1s. Since in this case p > 1
2 , the discussion immediately after

Proposition 2 suggests using b∗ = exp{(0.95 − p)2/2p(1 − p)} = 1.2187 for
a better bound. By plugging each corresponding term into (6), one obtains a
nominal p-value p(U′) ≤ 0.04802.

2.4 Simulations

The results of the previous section hold for n sufficiently large. To test their
validity for moderate values of n, we carried out a simple simulation study on
Zn with n = 40 and 80, and p = .2. In each case, we generated 400 such matrices
and applied the FP-growth algorithm [13] to identify all maximal submatrices of
ones. For each maximal submatrix of ones we recorded the length of its shorter
side. The maximum of these values is M(Zn). We recorded M(Zn) in each
of the 400 simulations and compared its value to the corresponding bounds
s(40) ≈ 3.553 and s(80) ≈ 4.582. Table 1 summarizes the results. In each case
|M(Zn) − s(n)| ≤ 1.

Table 1. Simulation results on M̂(Zn) based on 400 replications for each n

n s(n) k Proportion of M(Zn) = k

40 3.553
3 85.75%
4 14.25%

80 4.582
4 97%
5 3%
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3 Noise Sensitivity of FIM

3.1 Statistical Noise Model

In order to account for and study the potential effects of noise on FIM, we
consider a simple noise model. Under the model the observed data matrix Y is
equal to the component-wise modulo 2 sum of a “true” unobserved data matrix
X and a noise matrix Z whose entries are independent Bernoulli(p) random
variables. Formally,

Y = X ⊕ Z (7)

so that yi,j = xi,j if zi,j = 0 and yi,j = 1 − xi,j if zi,j = 1. The model (7) is the
binary version of the standard additive noise model in statistical inference. It
is equivalent to the simple communication model, widely studied in information
theory, in which the values of X are observed after being passed through a
memoryless binary symmetric channel.

3.2 Noise Sensitivity

If the matrix X in (7) contains interesting structure, for example a large subma-
trix of ones, there is reason to hope that this structure would be readily apparent
in the observed matrix Y and could be recovered by standard frequent itemset
algorithms without much effort. Unfortunately this is not necessarily the case,
as the next result shows.

Let X be an n × n binary matrix, and let Y = X ⊕ Z with Z ∼ Bern(p) and
0 < p < 1

2 . We are interested in how M(Y) depends on X, and in particular how
the value of M(Y) reflects block structures (submatrices of 1s) in X. If X = 0
then Y ∼ Bern(p). In this case, Proposition 1 and Theorem 1 ensure that M(Y)
is roughly 2 logb n with b = p−1. At the other extreme, if X = 1 then it is easy
to see that Y ∼ Bern(1 − p), and in this case M(Y) is roughly 2 logb′ n with
b′ = (1 − p)−1. The latter case represents the best possible situation in regards
to maximizing M(Y).

Proposition 4. Let b′ = (1 − p)−1 and fix 0 < γ < 1. When n is sufficiently
large, P{M(Y) ≥ 2 logb′ n + r} ≤ 2 n−2 r (logb′ n)3r for every matrix X and for
every integer 1 ≤ r ≤ γ n.

Proof. Fix n and let Wn = {wi,j} be an n × n binary matrix with independent
entries, defined on the same probability space as {zi,j}, such that

wi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bern
(

1−2p
1−p

)
if xij = yij = 0

1 if xij = 0, yij = 1

yi,j if xij = 1

(8)

Note that the above definition is valid since we assume p < 1
2 here. Define Ỹn =

Yn∨Wn to be the entrywise maximum ofYn andWn. Clearly M(Yn) ≤ M(Ỹn),
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as any submatrix of ones in Yn must also be present in Ỹn. Moreover, it is easy
to check that P (ỹi,j = 1) = 1− p for each 1 ≤ i, j ≤ n, so that Ỹn ∼ Bern(1− p).
The result now follows from Proposition 1.

Proposition 4 has the following consequence. No matter what type of block
structures might exist in X, in the presence of random noise these structures
leave behind only logarithmic sized fragments in the observed data matrix. In
particular, under the additive noise model (7) block structures in X cannot be
recovered, even approximately, by standard frequent itemset algorithms that
look for submatrices of ones without errors.

4 Recovery

Here we consider the simple problem of recovering, in the presence of noise,
a submatrix of ones against a background of zeros. Proposition 4 shows that
standard FIM algorithms are sensitive to noise, and are not readily applicable
to the recovery problem. This shortcoming can be remedied by algorithms that
look instead for submatrices having a large fraction of ones. Several recent papers
[24, 18, 19, 27, 23, 6, 31] in the data mining literature have addressed this
question, each using a criterion that weakens the all 1s model of FIM. Below we
show how one such criterion, introduced in [18], can be used to recover block
structures in noise.

Let X be an n × n binary matrix that consists of an l × l submatrix of ones,
with index set C∗, and all other entries equal to 0. (The rows and columns of C∗

need not be contiguous.) Given an observation Y = X⊕Z of X with Z ∼ Bern(p)
and 0 < p < 1/2, we wish to recover the submatrix C∗.

Let p0 be any number such that p < p0 < 1/2, and let τ = 1 − p0 be an
associated error threshold. If U is an a × b submatrix of Y, denote its rows and
columns by u1∗, . . . , ua∗ and u∗1, . . . , u∗b, respectively. The following definition
of error-tolerant itemsets was introduced in [18]. An algorithm for finding such
itemsets is given in [19].

Definition. An a × b submatrix C of Y is a τ-approximate frequent itemset
(AFI) if F (ui∗) ≥ τ and F (u∗j) ≥ τ for each i = 1, . . . , a and j = 1, . . . , b. Let
AFIτ (Y) be the collection of all τ -AFIs in Y.

We estimate C∗ by the index of the largest square AFI in the observed matrix
Y. More precisely, let C be the family of index sets of square submatrices C ∈
AFIτ (Y), and define

Ĉ = argmaxC∈C |C|

to be any maximal sized submatrix in C. Note that C and Ĉ depend only on the
observed matrix Y. Let the ratio

Λ = |Ĉ ∩ C∗|/|Ĉ ∪ C∗|

measure the overlap between the estimated index set Ĉ and the true index set
C∗. Thus 0 ≤ Λ ≤ 1, and values of Λ close to one indicate better overlap.
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Theorem 2. Let 0 < p < p0 < 1/2 and τ = 1−p0. When n is sufficiently large,
for any 0 < α < 1 such that 12α−1(logb n + 2) ≤ l we have

P

(
Λ ≤ 1 − α

1 + α

)
≤ Δ1(l) + Δ2(α, l).

Here Δ1(l)=2e−
l(p−p0)2

3p , Δ2(α, l)=2n− 1
6 αl+2 logb n, and b = exp{3(1−2 p0)2/8p}.

The conditions of Theorem 2 require that the noise level p < 1/2 and that the
user-specified parameter p0 satisfies p < p0 < 1/2. Thus, in advance, one only
needs to know an upper bound on the noise level p. Theorem 2 can readily
be applied to the asymptotic recovery of structure in a sequential framework.
Suppose that {Xn : n ≥ 1} is a sequence of square binary matrices, where Xn

is n × n and consists of an ln × ln submatrix C∗
n of 1s with all other entries

equal to 0. For each n we observe Yn = Xn ⊕ Zn, where Zn ∼Bern(p). Let
Λn measure the overlap between C∗

n and the estimate Ĉn produced by the AFI
recovery method above. The following result follows from Theorem 2 and the
Borel Cantelli lemma.

Corollary 1. If ln ≥ 12ψ(n)(logb n + 2) where ψ(n) → ∞ as n → ∞, then
eventually almost surely

Λn ≤ 1 − ψ(n)−1

1 + ψ(n)−1 .

Reuning-Scherer studied several recovery problems in [26]. In the case considered
above, he calculated the fraction of 1s in every row and every column of Y, and
then selected those rows and columns with a large fraction of 1s. His algorithm
is consistent when l ≥ nα for α > 1/2. However, a simple calculation using the
central limit theorem demonstrates that individual row and column sums alone
are not sufficient to recover C∗ when l ≤ nα for α < 1/2. In this case, one gains
considerable power by directly considering submatrices and, as the result above
demonstrates, one can consistently recover C∗

n if ln/ log n → ∞.
The following two lemmas will be used in the proof of Theorem 2. Lemma 1

implies that |Ĉ| is greater than or equal to |C∗| with high probability. Lemma
2 shows that Ĉ can only contain a small proportion of entries outside C∗. The
proofs of Lemma 1, and a sketch of the proof of Lemma 2, can be found in the
Appendix.

Lemma 1. Under the conditions of Theorem 2, P
(
|Ĉ| < l2

)
≤ Δ1(l).

Lemma 2. Let A be the collection of C ∈ C such that |C| > l2

2 and |C∩C∗c|
|C| ≥ α.

Let A be the event that A �= ∅. If n is sufficiently large, then l ≥ 12α−1(logb n+2)
implies

P (A) ≤ Δ2(α, l)

Proof of Theorem 2. Let E be the event that {Λ ≤ 1−α
1+α}. It is clear that E

can be expressed as the union of two disjoint events E1 and E2, where

E1 = {|Ĉ| < |C∗|} ∩ E (9)
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and
E2 = {|Ĉ| ≥ |C∗|} ∩ E (10)

One can bound P (E1) by Δ1(l) via Lemma 1.
It remains to bound P (E2). By the definition of Λ, the inequality Λ ≤ 1−α

1+α
can be rewritten equivalently as

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩ C∗|
|Ĉ ∩ C∗|

≥ 1 + α

1 − α
.

When |Ĉ| ≥ |C∗|, one can verify that |Ĉ ∩ C∗c| ≥ |Ĉc ∩ C∗|, which implies that

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩ C∗|
|Ĉ ∩ C|

≤ 1 + 2
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

.

Therefore, E2 ⊂ E∗
2 , where

E∗
2 = {|Ĉ| ≥ |C∗|} ∩

{

1 + 2
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

≥ 1 + α

1 − α

}

⊂ {|Ĉ| >
l2

2
} ∩

{

1 + 2
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

≥ 1 + α

1 − α

}

.

Notice that 1 + 2 |Ĉ∩C∗c|
|Ĉ∩C∗| ≥ 1+α

1−α implies |Ĉ∩C∗c|
|Ĉ| ≥ α. Therefore, by Lemma 2,

P (E∗
2 ) ≤ Δ2(α, l).

5 Conclusion

The problem of data mining has commonly been approached from the point
of view of data structures and algorithms, in a setting that is primarily deter-
ministic. This paper addresses several statistical questions related to the basic
problem of frequent itemset mining, namely significance, noise-tolerance and
recovery. The probabilistic bounds given here provide a preliminary basis for
assessing the significance of discovered itemsets, with or without errors, and
give one objective criterion for sifting through the (potentially large) number
of frequent itemsets in a data matrix. The results on the noise sensitivity of
standard FIM provide some justification for the current efforts on error-tolerant
algorithms. Further justification is provided by the use of one such method for
recovery of block structures.
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Appendix

Proof of Lemma 1. Let u1∗, ..., ul∗ be corresponding rows of C∗ in Y and let
V be the number of rows satisfying F (ui∗) < 1 − p0, where F (·) is the function
measuring the fraction of ones. By Markov’s inequality,

P (V ≥ 1) ≤ E(V ) =
l∑

i=1

P (F (ui∗) < 1 − p0). (11)

Using standard bounds on the tails of the binomial distribution, when ln is
sufficiently large,

P (V ≥ 1) ≤ l · e−
3l(p−p0)2

8p ≤ e−
1
3p l(p−p0)2 , (12)

when l is sufficiently large.
Let u∗1, ..., u∗l be corresponding columns of C∗ in Y and let V ′ be the number

of columns satisfying F (u∗i) < 1− p0. A similar calculation as above shows that

P (V ′ ≥ 1) ≤ E(V ′) ≤ l · e−3 l(p−p0)2

8p

≤ e−
1
3p l(p−p0)2 .
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Since {|Ĉ| < l2 = |C∗|} ⊂ {C∗ /∈ AFIτ (Y)} ⊂ {V ≥ 1} ∪ {V ′ ≥ 1},

P{|Ĉ| < l2} ≤ P (V ≥ 1) + P (V ′ ≥ 1)

≤ 2e−
1
3p ln(p−p0)2 = Δ1(l).

The proof of Lemma 2, relies on two basic facts below. The proof of Fact 2 is
technical and is omitted.

Fact 1. Given 0 < τ0 < 1, if there exists a k × r binary matrix M satisfying
F (M) ≥ τ0, then for v = min{k, r}, there exists a v × v submatrix D of M such
that F (D) ≥ τ0.

Proof. Without loss of generality, we assume v = k ≤ r. Then we rank each
column according to its fraction of ones, and reorder the columns in descending
order. Let the reordered matrix be M1. Let D = M1[(1, ..., v) × (1, ..., v)]. One
can verify that F (D) ≥ τ0.

Fact 2. Let 1 < γ < 2 be a constant, and let W be an n × n binary matrix.
Let R1 and R2 be two square submatrices of W satisfying (i) |R2| = k2, (ii)
|R1\R2| > kγ and (iii) R1 ∈ AFIτ (W ). Then there exists a square submatrix
D ⊂ R1\R2 such that |D| ≥ k2γ−2/9 and F (D) ≥ τ .

Proof of Lemma 2. If C ∈ A then
(i) |C∗| = l2,
(ii) |C\C∗| = |C| · |C∩C∗c|

|C| ≥ l2 · α
2 = lγ , where γ = 2 + logl

α
2 ,

(iii) C ∈ AFI1−p0(Y).
Thus, by Fact 2, there exists a v × v submatrix D of C\C∗ such that F (D) ≥
1 − p0 and v ≥ αl

6 , which implies that

max
c∈C

M τ (C ∩ C∗c) ≥ v ≥ αl

6
,

where τ = 1 − p0.
Let W(Y, C∗) be a n×n binary random matrix, where wij = yij if (i, j) /∈ C∗,

and wij ∼ Bern(p) otherwise. It is clear that

M τ (W) ≥ max
c∈C

M τ (C ∩ C∗c) ≥ αl

6
.

By Proposition 2, when n is sufficiently large and l ≥ 12α−1(logb n + 2), we can
bound P (A) with

P (A) ≤ P (max
c∈C

M τ (C ∩ C∗c) ≥ αl

6
)

≤ P (M τ (W) ≥ αl

6
) ≤ 2n−(αl/6−2 logb′ n), (13)

where b′ = e
3(1−p0−p)2

8p . As p0 > p, it is trivial to verify that b < b′. Consequently,
one can bound the RHS of inequality (13) by Δ2(α, l).
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