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Preface

This volume contains papers presented at the 19th Annual Conference on Learn-
ing Theory (previously known as the Conference on Computational Learning
Theory) held at the Carnegie Mellon University in Pittsburgh, USA, June 22–25,
2006.

The technical program contained 43 papers selected from 102 submissions, 2
open problems selected from among 4 contributed, and 3 invited lectures. The
invited lectures were given by Luc Devroye on “Random Multivariate Search
Trees,” by György Turán on “Learning and Logic,” and by Vladimir Vovk on
“Predictions as Statements and Decisions.” The abstracts of these papers are
included in this volume.

The Mark Fulk Award is presented annually for the best paper co-authored
by a student. This year the Mark Fulk award was supplemented with three
further awards funded by the Machine Learning Journal. We were therefore able
to select four student papers for prizes. The students selected were Guillaume
Lecué for the single-author paper “Optimal Oracle Inequality for Aggregation
of Classifiers Under Low Noise Condition,” Homin K. Lee and Andrew Wan for
the paper “DNF are Teachable in the Average Case” (co-authored by Rocco
A. Servedio), Alexander A. Sherstov for the paper “Improved Lower Bounds for
Learning the Intersections of Halfspaces” (co-authored by Adam R. Klivans), and
Dávid Pál for the paper “A Sober Look at Clustering Stability” (co-authored by
Ulrike von Luxburg and Shai Ben-David).

The trend of the previous two years of receiving more than 100 submissions
continued. The selected papers cover a wide range of topics (including clustering,
un- and semisupervised learning, statistical learning theory, regularized learning
and kernel methods, query learning and teaching, inductive inference, learning
algorithms and limitations on learning, online aggregation, online prediction and
reinforcement learning). Online Prediction with 11 selected papers is particularly
well represented. The large number of quality submissions placed a heavy burden
on the Program Committee of the conference: Peter Auer (University of Leoben),
Peter Bartlett (UC Berkeley), Léon Bottou (NEC Laboratories America), Nicolò
Cesa-Bianchi (Università degli Studi di Milano), Koby Crammer (University
of Pennsylvania), Yoav Freund (UC, San Diego), Claudio Gentile (Universitá
dell’Insubria, Varese), Lisa Hellerstein (Polytechnic University, Brooklyn, NY),
Ralf Herbrich (Microsoft Research Cambridge), Sham M. Kakade (Toyota Tech-
nology Institute), Ravi Kannan (Yale University), Jyrki Kivinen (University
of Helsinki), Shie Mannor (McGill University), Shahar Mendelson (The Aus-
tralian National University and Technion, I.I.T.), Massimiliano Pontil (Univer-
sity College London), Dan Roth (University of Illinois at Urbana-Champaign),
Alex Smola (National ICT Australia), Ingo Steinwart (Los Alamos National
Laboratory), Christino Tamon (Clarkson University), Santosh Vempala (MIT),
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Ulrike von Luxburg (Fraunhofer IPSI), Vladimir Vovk (Royal Holloway), Thomas
Zeugmann (Hokkaido University), and Tong Zhang (Yahoo). We are extremely
grateful for their careful and thorough reviewing and for the detailed discussions
that ensured the very high quality of the final program. We would like to have
mentioned the sub-reviewers who assisted the Program Committee, but unfor-
tunately space constraints do not permit us to include this long list of names
and we must simply ask them to accept our thanks anonymously.

We are particularly grateful to Avrim Blum, the conference Local Chair, and
his administrative assistant Nicole Stenger. They handled the conference pub-
licity and all the local arrangements to ensure a successful event. We would also
like to thank Microsoft for providing the software used in the Program Com-
mittee deliberations, Niko List for creating the conference website, and Sanjoy
Dasgupta for maintaining the learningtheory.org website. Jyrki Kivinen assisted
the organization of the conference in his role as head of the COLT Steering Com-
mittee. We would also like to thank the ICML organizers for ensuring a smooth
co-location of the two conferences including an “overlap day,” June 25.

Finally, we would like to thank Google, IBM, the Machine Learning Journal,
and National ICT Australia (Statistical Machine Learning Program) for their
sponsorship of the conference.

April 2006 Gábor Lugosi
Hans Ulrich Simon
Program Co-chairs

COLT 2006

Sponsored by:
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Random Multivariate Search Trees

Luc Devroye

School of Computer Science, McGill Univeristy
Montreal, Canada
luc@cs.mcgill.ca

Trees are commonly used to store data so that they can be efficiently retrieved
and used in applications. For multidimensional data, one could consider kd-trees,
quadtrees, BSP trees, simplex trees, grid trees, epsilon nets, and many other
structures. The height of these trees is logarithmic in the data size for random
input. Some search operations such as range search and nearest neighbor search
have surprising complexities. So, we will give a brief survey of the known results
on random multivariate trees and point out the challenges ahead of us.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On Learning and Logic�

György Turán

University of Illinois at Chicago, Chicago, USA,
Hungarian Academy of Sciences and University of Szeged
Research Group on Artificial Intelligence, Szeged, Hungary

gyt@uic.edu

A brief survey is given of learning theory in a logic framework, concluding with
some topics for further research. The idea of learning using logic is traced back
to Turing’s 1951 radio address [15]. An early seminal result is that clauses have a
least general generalization [18]. Another important concept is inverse resolution
[16]. As the most common formalism is logic programs, the area is often referred
to as inductive logic programming, with yearly ILP conferences since 1991.

Positive learnability results include an equivalence and membership query
algorithm for CLASSIC, a version of description logic [4], a PAC algorithm
obtained with the product homomorphism method [10], and an algorithm for
first-order Horn formulas [12], which also uses queries but has an efficient im-
plementation using examples only [2]. Each algorithm is based on some kind of
product of structures. Positive and negative PAC-learnability results for ILP are
surveyed in [3]. The notion of a certificate of exclusion from a concept class, char-
acterizing query complexity [8, 9], could be of interest outside of learning theory
as well. A certificate size upper bound for monadic second order logic over trees,
implying a theoretically efficient, though not practical, learning algorithm, is
given in [7].

The integration of both learning and reasoning, and of logical and probabilis-
tic approaches is important for the development of intelligent systems [13, 5, 19].
Another related objective is to provide agents with commonsense reasoning ca-
pability. It stands to reason that such agents should be able to learn. A point
of entry into this many-faceted problem area is belief revision, the study of how
to revise a knowledge base if new information is received that may be inconsis-
tent with what is known. Here one usually begins with postulates required of a
rational revision process, such as the AGM postulates [1], aimed at formalizing
the requirement of minimal change. There are representation results, construc-
tions (akin to learning algorithms) and connections to probabilistic reasoning.
It seems to be a challenging general question whether successful learning and
rational revision can be combined. Sofar, this has been considered mostly in in-
ductive inference [11, 14], but it is also discussed in machine learning ([20] and
recently [17]). The efficient revision of theories with queries is studied in [6].

� This material is based upon work supported by the National Science Foundation
under Grant No. CCF-0431059.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 2–3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Predictions as Statements and Decisions

Vladimir Vovk

Computer Learning Research Centre, Department of Computer Science
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

vovk@cs.rhul.ac.uk

Prediction is a complex notion, and different predictors (such as people, com-
puter programs, and probabilistic theories) can pursue very different goals. In
this talk I will review some popular kinds of prediction and argue that the theory
of competitive on-line learning can benefit from the kinds of prediction that are
now foreign to it.

The standard goal for predictor in learning theory is to incur a small loss
for a given loss function measuring the discrepancy between the predictions and
the actual outcomes. Competitive on-line learning concentrates on a “relative”
version of this goal: the predictor is to perform almost as well as the best strate-
gies in a given benchmark class of prediction strategies. Such predictions can
be interpreted as decisions made by a “small” decision maker (i.e., one whose
decisions do not affect the future outcomes).

Predictions, or probability forecasts, considered in the foundations of proba-
bility are statements rather than decisions; the loss function is replaced by a
procedure for testing the forecasts. The two main approaches to the foundations
of probability are measure-theoretic (as formulated by Kolmogorov) and game-
theoretic (as developed by von Mises and Ville); the former is now dominant in
mathematical probability theory, but the latter appears to be better adapted for
uses in learning theory discussed in this talk.

An important achievement of Kolmogorov’s school of the foundations of prob-
ability was construction of a universal testing procedure and realization (Levin,
1976) that there exists a forecasting strategy that produces ideal forecasts.
Levin’s ideal forecasting strategy, however, is not computable. Its more prac-
tical versions can be obtained from the results of game-theoretic probability
theory. For a wide class of forecasting protocols, it can be shown that for any
computable game-theoretic law of probability there exists a computable fore-
casting strategy that produces ideal forecasts, as far as this law of probability is
concerned. Choosing suitable laws of probability we can ensure that the forecasts
agree with reality in requisite ways.

Probability forecasts that are known to agree with reality can be used for
making good decisions: the most straightforward procedure is to select decisions
that are optimal under the forecasts (the principle of minimum expected loss).
This gives, inter alia, a powerful tool for competitive on-line learning; I will
describe its use for designing prediction algorithms that satisfy the property of
universal consistency and its more practical versions.

In conclusion of the talk I will discuss some limitations of competitive on-line
learning and possible directions of further research.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, p. 4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Sober Look at Clustering Stability

Shai Ben-David1, Ulrike von Luxburg2, and Dávid Pál1

1 David R. Cheriton School of Computer Science,
University of Waterloo,

Waterloo, Ontario, Canada
{shai, dpal}@cs.uwaterloo.ca

2 Fraunhofer IPSI, Darmstadt, Germany
ulrike.luxburg@ipsi.fraunhofer.de

Abstract. Stability is a common tool to verify the validity of sample
based algorithms. In clustering it is widely used to tune the parameters of
the algorithm, such as the number k of clusters. In spite of the popularity
of stability in practical applications, there has been very little theoreti-
cal analysis of this notion. In this paper we provide a formal definition
of stability and analyze some of its basic properties. Quite surprisingly,
the conclusion of our analysis is that for large sample size, stability is
fully determined by the behavior of the objective function which the
clustering algorithm is aiming to minimize. If the objective function has
a unique global minimizer, the algorithm is stable, otherwise it is un-
stable. In particular we conclude that stability is not a well-suited tool
to determine the number of clusters - it is determined by the symme-
tries of the data which may be unrelated to clustering parameters. We
prove our results for center-based clusterings and for spectral clustering,
and support our conclusions by many examples in which the behavior of
stability is counter-intuitive.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analy-
sis. Across all disciplines, from social sciences over biology to computer science,
people try to get a first intuition about their data by identifying meaningful
groups among the data points. Despite this popularity of clustering, distress-
ingly little is known about theoretical properties of clustering (von Luxburg and
Ben-David, 2005). In particular, the problem of choosing parameters such as the
number k of clusters is still more or less unsolved.

One popular method for model selection in clustering has been the notion of
stability, see for instance Ben-Hur et al. (2002), Lange et al. (2004). The intu-
itive idea behind that method is that if we repeatedly sample data points and
apply the clustering algorithm, then a “good” algorithm should produce clus-
terings that do not vary much from one sample to another. In other words, the
algorithm is stable with respect to input randomization. As an example, stability
measurements are often employed in practice for choosing the number, k, of clus-
ters. The rational behind this heuristics is that in a situation where k is too large,

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 5–19, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



6 S. Ben-David, U. von Luxburg, and D. Pál

the algorithm “randomly” has to split true clusters, and the choice of the cluster
it splits might change with the randomness of the sample at hand, resulting in
instability. Alternatively, if we choose k too small, then we “randomly” have to
merge several true clusters, the choice of which might similarly change with each
particular random sample, in which case, once again, instability occurs. For an
illustration see Figure 1.

The natural framework for a discussion of stability is that of sample-based al-
gorithms. Much like statistical learning, this framework assumes that there exist
some fixed but unknown probability distribution of the data, and the algorithm
gets an i.i.d. random sample as input and aims to approximate a solution that
is optimal w.r.t. that data distribution. In this paper we focus on clustering al-
gorithms which choose their clustering based on some objective function which
they minimize or maximize. The advantage of such cost-based clusterings is that
they enjoy an explicit notion of the quality of a clustering. Popular examples in
this class are center based and algorithms and spectral clustering.

For such algorithms there are two different sources of instability. The first one
is based on the structure of the underlying space and has nothing to do with
the sampling process. If there exist several different clusterings which minimize
the objective function on the whole data space, then the clustering algorithm
cannot decide which one to choose. The clustering algorithm cannot resolve this
ambiguity which lies in the structure of the space. This is the kind of instability
that is usually expected to occur when stability is applied to detect the correct
number of clusters. However, in this article we argue that this intuition is not
justified and that stability rarely does what we want in this respect. The reason
is that for many clustering algorithms, this kind of ambiguity usually happens
only if the data space has some symmetry structure. As soon the space is not
perfectly symmetric, the objective function has a unique minimizer (see Figure
1) and stability prevails. Since we believe that most real world data sets are not
perfectly symmetric, this leads to the conclusion that for this purpose, stability
is not the correct tool to use.

A completely different notion of instability is the one based on the sampling
process. As we can only evaluate the objective function on the given sample
points, the variance in the sampling process leads to variance in the values
of the empirically computed objective function, which in turn results in vari-
ance in the choice of the clusterings. This is the kind of stability that has
been studied extensively in supervised learning (Bousquet and Elisseeff, 2002,
Kutin and Niyogi, 2002, Rakhlin and Caponnetto, 2005). A similar effect hap-
pens if we do not have the computational power to exactly compute the global
minimum of the objective function, as it for example is the case for the highly
non-convex k-means objective function. This type of instability typically dimin-
ishes as sample sizes grow. Alternatively, one can reduce this type of instability
to the previous case by considering the set of ε-minimizers of the objective func-
tion (Rakhlin and Caponnetto, 2005). The set of ε-minimizers of a function is
the set of all clusterings for which the quality function is at most ε from the min-
imal value. If we now know that we only have enough sample points to estimate
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Fig. 1. The left two panels show situations where the constructed clustering (depicted
by the dashed line) is highly instable, either because the chosen number of clusters is
too small or too large. Note that both figures depict very symmetric situations. The
right two panels show situations where clustering algorithms return stable results even
though they construct a wrong number of clusters. Note that those two figures are not
symmetric.

the objective function up to precision ε, then the instability in the algorithm
consists in “randomly” picking one of the clusterings in the set of ε-minimizers.
In this paper we mainly focus on the first kind of stability. Therefore, we mainly
consider the asymptotic behavior of stability as sample sizes grow to infinity.

In this work we analyze the behavior of stability of a large abstract family of
clustering algorithms - algorithms that are driven by an objective function (or
’risk’) that they aim to minimize. We postulate some basic abstract requirements
on such algorithms (such as convergence in probability to a minimum risk solu-
tions as cluster sizes grow to infinity), and show that for algorithms satisfying
these requirements, stability is fully determined by the symmetry structure of
the underlying data distribution. Specifically, if the risk has a unique minimizer
the algorithm is stable, and if there exist a non-trivial symmetry of the set of
risk-minimizing solutions, stability fails. Since these symmetry parameters are
independent of the number of clusters, we can easily prove that in many cases
stability fails to indicate the correct (or even a reasonable) number of cluster-
ings. Our results apply in particular to two large families of clustering algorithms,
center based clustering and spectral clustering.

We would like to stress that our findings do not contradict the stability results
for supervised learning. The main difference between classification and cluster-
ing is that in classification we are only interested in some function which mini-
mizes the risk, but we never explicitly look at this function. In clustering how-
ever, we do distinguish between functions even though they have the same risk.
It is exactly this fundamental difference which makes clustering so difficult to
analyze.

After formulating our basic definitions in Section 2, we formulate an intuitive
notion of risk minimizing clustering in Section 3. Section 4 presents our first
central result, namely that existence of a unique risk-minimizer implies stability,
and Section 5 present the complementary, instability result, for symmetric data
structures. We end in section 6 by showing that two popular versions of spectral
clustering display similar characterizations of stability in terms of basic data
symmetry structure. Throughout the paper, we demonstrate the impact of our
results by describing simple examples of data structures for which stability fails
to meet ’common knowledge’ expectations.
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2 Definitions

In the rest of the paper we use the following standard notation. We consider a
data space X endowed with probability measure P . If X happens to be a metric
space, we denote by � its metric. A sample S = {x1, ..., xm} is drawn i.i.d from
(X, P ).

Definition 1 (Clustering). A clustering C of a set X is a finite partition
C : X → N. The sets Ci := {x ∈ X ; C(x) = i} are called clusters. We introduce
the notation x ∼C y if C(x) = C(y) and x �C y otherwise. In case the
clustering is clear from context we drop the subscript and simply write x ∼ y or
x � y.

Definition 2 (Clustering algorithm). Any function A, that for any given
finite sample S ⊂ X computes a clustering of X, is called a clustering algorithm.

Note that by default, the clustering constructed by an algorithm is only defined
on the sample points. However, many algorithms such as center-based clusterings
or spectral clustering have natural extensions of the clustering constructed on
the sample to the whole data space X . For details see section 6.

Notation 1. For a finite sample (a multiset), S, let PS be the uniform proba-
bility distribution over S.

Definition 3 (Clustering distance). Let P be family of probability distribu-
tions over some domain X. Let S be a family of clusterings of X. A clustering
distance is function d : P × S × S → [0, 1] satisfying for any P ∈ P and any
C1, C2, C3 ∈ S

1. dP (C1, C1) = 0
2. dP (C1, C2) = dP (C2, C1) (symmetry)
3. dP (C1, C3) ≤ dP (C1, C2) + dP (C2, C3) (triangle inequality)

We do not require that a clustering distance satisfies that if dP (C1, C2) = 0
then C1 = C2. As a prototypic example we consider the Hamming distance (or
pair-counting distance):

Definition 4 (Hamming distance). For two clusterings C1, C2 of (X, P ), the
Hamming distance is defined as

dP (C1, C2) = Pr
x∼P
y∼P

[(x ∼C1 y)⊕ (x ∼C2 y)] ,

where ⊕ denotes the logical XOR operation.

It can easily be checked that dP indeed is a clustering distance. The first two
properties trivially hold, and the triangle inequality follows from
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dP (C1, C3) = Pr
x∼P
y∼P

[(x ∼C1 y)⊕ (x ∼C3 y)]

= Pr
x∼P
y∼P

[((x ∼C1 y)⊕ (x ∼C2 y))⊕ ((x ∼C2 y)⊕ (x ∼C3 y))]

≤ Pr
x∼P
y∼P

[(x ∼C1 y)⊕ (x ∼C2 y)] + Pr
x∼P
y∼P

[(x ∼C2 y)⊕ (x ∼C3 y)]

= dP (C1, C2) + dP (C2, C3).

Proposition 5. The Hamming distance dP satisfies

dP (C, D) ≤ 1−
∑
i

∑
j

(Pr[Ci ∩Dj])
2

Proof. This follows by straight forward transformations:

dP (C, D) = 1− Pr
x∼P
y∼P

[(x ∼C y) ∧ (x ∼D y)]− Pr
x∼P
y∼P

[(x �C y) ∧ (x �D y)]

≤ 1− Pr
x∼P
y∼P

[(x ∼C y) ∧ (x ∼D y)]

= 1−
∑
i

∑
j

Pr
x∼P
y∼P

[(x, y ∈ Ci) ∧ (x, y ∈ Dj)]

= 1−
∑
i

∑
j

(Pr[Ci ∩Dj ])
2 
�

Now we define the fundamental notion of this paper:

Definition 6. Let P be probability distribution over X. Let d be a clustering
distance. Let A be clustering algorithm. The stability of the algorithm A for the
sample size m with respect to the probability distribution P is

stab(A, P, m) = E
S1∼Pm

S2∼Pm

dP (A(S1), A(S2)).

The stability of the algorithm A with respect to the probability distribution P is

stab(A, P ) = lim sup
m→∞

stab(A, P, m).

We say that algorithm A is stable for P , if stab(A, P ) = 0.

Note that the algorithm A which for any input only produces the clustering
consisting of one cluster X , is stable on any probability distribution P . More
generally, any A which is a constant function is stable.

3 Risk Optimizing Clustering Algorithms

A large class of clustering algorithms choose the clustering by optimizing some
risk function. The large class of center based algorithms falls into this category,
and spectral clustering can also be interpreted in this way.
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Definition 7 (Risk optimization scheme). A risk optimization scheme is
defined by a quadruple (X, S, P, R), where X is some domain set, S is a set of
legal clusterings of X, and P is a set of probability distributions over X, and
R : P× S → R+

0 is an objective function (or risk) that the clustering algorithm
aims to minimize.

Denote opt(P ) := infC∈S R(P, C). For a sample S ⊆ X, we call R(PS , C)
the empirical risk of C. A clustering algorithm A is called R-minimizing, if
R(PS , A(S)) = opt(PS), for any sample S.

Generic examples are center based algorithms such as k-means and k-medians.
Those clusterings pick a set of k center points c1, ..., ck and then assign each
point in the metric space to the closest center point. Such a clustering is a k-cell
Voronoi diagram over (X, �). To choose the centers, k-means minimizes the risk
function

R(P, C) = E
x∼P

min
1≤i≤k

(�(x, ci))2 | Vor(c1, c2, . . . , ck) = C

while k-medians algorithm minimizes

R(P, C) = E
x∼P

min
1≤i≤k

�(x, ci) | Vor(c1, c2, . . . , ck) = C

Usually, risk based algorithms are meant to converge to the true risk as sample
sizes grow to infinity.

Definition 8 (Risk convergence). Let A be an R-minimizing clustering al-
gorithm. We say that A is risk converging, if for every ε > 0 and every δ ∈ (0, 1)
there is m0 such that for all m > m0

Pr
S∼Pm

[R(P, A(S)) < opt(P ) + ε] > 1− δ

for any probability distribution P ∈ P.

For example, in the case of k-mean and k-medians on bounded subset of Rd

with Euclidean metric, Ben-David (2004) has shown that they both minimize
risk from samples.

4 Stability of Risk Minimizing Algorithms

In this section we investigate the stability of risk optimizing clustering algo-
rithms. We will see that their stability solely depends on the existence of a
unique minimizer of the risk function. In this section we fix a risk minimization
scheme (X, S, P, R).

Definition 9. Let d be a clustering distance. We say that a probability distrib-
ution P has unique minimizer C∗ if

(∀η > 0) (∃ε > 0) (R(P, C) < opt(P ) + ε =⇒ dP (C∗, C) < η) .
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More generally, we say a probability distribution P has n distinct minimizers, if
there exists C∗

1, C
∗
2, . . . ,C

∗
n such that dP (C∗

i , C
∗
j ) > 0 for all i �= j, and

(∀η > 0) (∃ε > 0) (R(P, C) < opt(P ) + ε =⇒ (∃ 1 ≤ i ≤ n) dP (C∗
i , C) < η) .

Note that there is a technical subtlety here; the definition does not require that
there is only a single clustering with the minimal cost, but rather that for any
two optima C∗

1, C
∗
2, dP (C∗

1, C
∗
2) = 0. Technically, we can overcome this differ-

ence by forming equivalence classes of clusterings, saying that two clusterings
are equivalent if their clustering distance is zero. Similarly, n distinct optima
correspond n such equivalence classes of optimal clusterings.

Theorem 10 (Stability theorem). If P has unique minimizer C∗, then any
R-minimizing clustering algorithm which is risk converging is stable on P .

Proof. Let A be a risk converging R-minimizing clustering algorithm. Suppose
we are given ζ > 0 and want to show that for large enough m is stab(A, P, m) < ζ.
Let us pick δ ∈ (0, 1) and η > 0, both small enough so that

2(η + δ) < ζ. (1)

Let C∗ be the unique minimizer, then for η there is some ε > 0 such that

R(P, C) < opt(P ) + ε =⇒ dP (C, C∗) < η. (2)

Since A is risk converging, there is m0 such that for all m > m0

Pr
S∼Pm

[R(P, A(S)) ≥ opt(P ) + ε] < δ. (3)

Combining (2) and (3), for m > m0 we have

Pr
S∼Pm

[dP (A(S), C∗) ≥ η] ≤ Pr
S∼Pm

[R(P, A(S)) ≥ opt(P ) + ε] < δ. (4)

Finally, for m > m0 we bound the stability as

stab(A, P, m) = E
S1∼Pm

S2∼Pm

dP (A(S1), A(S2))

≤ E
S1∼Pm

S2∼Pm

[dP (A(S1), C∗) + dP (C∗, A(S2))]

= 2 E
S∼Pm

dP (A(S), C∗)

≤ 2
(
η · Pr

S∼Pm
[dP (A(S), C∗) < η] + 1 · Pr

S∼Pm
[dP (A(S), C∗) ≥ η]

)
≤ 2

(
η + Pr

S∼Pm
[R(P, A(S)) ≥ opt(P ) + ε]

)
≤ 2(η + δ)
< ζ.


�
Note that this result applies in particular to the k-means and the k-median
clustering paradigms (namely, to clustering algorithms that minimize any of
these common risk functions).
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4.1 Unexpected Behaviors of Stability

As a first example to the surprising consequences of Theorem 10, consider the
uniform distribution over the unit interval [0, 1]. It is not hard to figure out that,
for any number of clusters, k, both k-medians and k-means have exactly one risk
minimizer—the clustering

C(x) = i, x ∈
[
i− 1

k
,

i

k

)
.

Therefore, from the stability theorem, it follows that both k-medians and k-
means clustering are stable on the interval uniform distribution for any value of
k. Similarly consider the stability of k-means and k-medians on the two rightmost
examples on the Figure 1. The rightmost example on the picture has for k = 3
unique minimizer as shown and therefore is stable, although the correct choice of
k should be 2. The second from right example has, for k = 2, a unique minimizer
as shown, and therefore is again stable, although the correct choice of k should
be 3 in that case. Note also that in both cases, the uniqueness of minimizer is
implied by the asymmetry of the data distributions. It seems that the number of
optimal solutions is the key to instability. For the important case of Euclidean
space Rd we are not aware of any example such that the existence of two optimal
sets of centers does not lead to instability. We therefore conjecture:

Conjecture 11 (Instability). If P has multiple minimizers then any R-minimizing
algorithm which is risk converging is unstable on P .

While we cannot, at this stage, prove the above conjecture in the generality, we
can prove that a stronger condition, symmetry, does imply instability for center
based algorithms and spectral clustering algorithms.

5 Symmetry and Instability

In this subsection we define a formal notion of symmetry for metric spaces with a
probability distribution. We prove that if there are several risk minimizers which
are “symmetric” to each other, then risk minimizing algorithms are bound to be
unstable on this distribution. Before we can formulate claim precisely we need
introduce some further notation and definitions.

Definition 12 (Measure-preserving symmetry). Let P be a probability dis-
tribution over (X, �). A function g : X → X, is called P -preserving symmetry
of (X, �) if,

1. For any P -measurable set A ⊆ X, Pr[A] = Pr[g(A)].
2. Prx∼P

y∼P
[�(x, y) = �(g(x), g(y))] = 1.

Note 1: For any finite sample S (a multi-set), if g is an isometry on S then g
is also an Ŝ-preserving symmetry, where Ŝ is any discrete distribution on S. In



A Sober Look at Clustering Stability 13

what follows we adopt the following notation: If g : X → X , then for set A ⊂ X
by g[A] = {g(x) | x ∈ A}. For a probability distribution P let Pg be defined by
Pg[A] = P [g−1(A)] for every set A whose pre-image is measurable. If g is one-
to-one then for a clustering C : X → N we define g[C] by (g[C])(x) = C(g−1(x)),
or in other words that the clusters of g[C] are images of clusters of C under g.1

Definition 13 (Distance-Distribution dependent risk). We say that a risk
function R is ODD if it depends only on distances and distribution. Formally,
R is ODD if for every probability distribution P , every P -preserving symmetry
g, and every clustering C

R(P, C) = R(P, g(C)).

Note 2: For any finite sample S, if g is an isometry on S and R is ODD, then
for every clustering C, R(PS , C) = R(PS , g(C)) = R(g(PS), g(C)). This follows
from Note 1 and the definition of R being ODD.

Definition 14 (Distance-Distribution dependent clustering distance).
We say that a clustering distance d is ODD if it depends only on distances and
distribution. Formally, d is ODD if for every probability distribution P , every
P -preserving symmetry g, and any two clusterings C1, C2

dP (C1, C2) = dP (g(C1), g(C2)).

Note that every natural notion of distance (in particular the Hamming distance
and information based distances) is ODD.

Theorem 15 (Instability from symmetry). Let R be an ODD risk function,
and d an ODD clustering distance. Let P be probability distribution so that for
some n, P has n distinct minimizers, and let g be a P -symmetry such that for
every R-minimizer C∗, dP (C∗, g(C∗)) > 0, then any R-minimizing clustering
algorithm which is risk convergent is unstable on P .

Proof. Let the optimal solutions minimizing the risk be {C∗
1, C

∗
2, . . . ,C

∗
n}. Let

r = min1≤i≤n dP (C∗
i , g(C∗

i )). Let ε > 0 be such that

R(P, C) < opt(P ) + ε =⇒ (∃ 1 ≤ i ≤ n) dP (C∗
i , C) < r/4

(the existence of such an ε is implied by having n distinct minimizers for P ). Let
T = {S ∈ Xm | R(P, A(S)) < opt(P ) + ε}. By the risk-convergence of A, there
exist some m0 such that for all m > m0, P (T ) > 0.9.

For 1 ≤ i ≤ n, let Ti = {S ∈ T | dp(C∗
i , A(S)) ≤ r/4}. Clearly, there

exist some i0 for which P (Ti0) ≥ 0.9/n. Since g is a symmetry, and R is ODD,
g(S) ∈ T for every sample S ∈ T .

Since dP (C∗
i0 , g(C∗

i0)) ≥ r, and, for all S ∈ Ti0 , dP (C∗
i0 , A(S)) ≤ r/4, and dP

is ODD, we get that for all S ∈ Ti0 , dP (g(C∗
i0

), A(g(S))) ≤ r/4. The triangle

1 We can also handle the case where g fails to be one-to-one on a set of probability of
zero. For the sake of clarity we omit this technicality.
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inequality for dP implies now that for every S ∈ Ti0 and every S′ ∈ g[Ti0 ],
dP (A(S), A(S′)) ≥ r/2. Finally, since g is a P -symmetry, one gets P (g[Ti0 ]) ≥
0.9/n.

We are now in a position to lower-bound the stability for all m ≥ m0:

stab(A, P, m) = E
S∼Pm

S′∼Pm

dP (A(S), A(S′))

≥ r

2
Pr

S∼Pm

S′∼Pm

[
dP (A(S), A(S′)) ≥ r

2

]
≥ r

2
Pr

S∼Pm

S′∼Pm

[S ∈ Ti0 ∧ S′ ∈ g[Ti0 ]]

=
r

2
Pr

S∼Pm
[S ∈ Ti0 ] Pr

S′∼Pm
[S′ ∈ g[Ti0 ]]

≥ r(0.9)2

2n2

Therefore the stability at infinity, stab(A, P ), is positive as well, and hence A is
unstable on P . 
�
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Fig. 2. The densities of two “almost the same” probability distributions over R are
shown. (a) For k = 3, are the k-means and k-medians unstable. (b) For k = 3, are the
k-means and k-medians stable.

For example, if X is the real line R with the standard metric �(x, y) = |x− y|
and P is the uniform distribution over [0, 4] ∪ [12, 16] (see Figure 2a), then
g(x) = 16−x is a P -preserving symmetry. For k = 3, both k-means and k-median
have exactly two optimal triples of centers (2, 13, 15) and (1, 3, 14). Hence, for
k = 3, both k-means and k-medians are unstable on P .

However, if we change the distribution slightly, such that the weight of the
first interval is little bit less than 1/2 and the weight of the second interval is
accordingly a little bit above 1/2, while retaining uniformity on each individual
interval (see Figure 2b), there will be only one optimal triple of centers, namely,
(2, 13, 15). Hence, for the same value, k = 3, k-means and k-medians become
stable. This illustrates again how unreliable is stability as an indicator of a
meaningful number of clusters.
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6 Stability of Spectral Clustering

In this section we show similar stability results for spectral clustering. Namely,
we show that the existence of a unique minimizer for the associated risk implies
stability, and that the existence of non-trivial symmetries implies instability. We
consider two variants of spectral clustering, the standard one, and a less standard
version related to kernel k-means.

Assume we are given n data points x1, ..., xm and their pairwise similarities
s(xi, xj). Let W denote the similarity matrix, D the corresponding degree ma-
trix, and L the normalized graph Laplacian L = D−1(D−W ). One of the stan-
dard derivations of normalized spectral clustering is by the normalized cut crite-
rion (Shi and Malik, 2000). The ultimate goal is to construct k indicator vectors
vi = (v1

i , ..., v
m
i )t with vji ∈ {0, 1} such that the normalized cutNcut = tr(V tLV )

is minimized. Here V denotes the m× k matrix containing the indicator vectors
vi as columns. As it is NP hard to solve this discrete optimization problem ex-
actly, we have to resort to relaxations. In the next two subsections we investigate
the stability of two different spectral clustering algorithms based on two different
relaxations.

6.1 Stability of the Standard Spectral Clustering Algorithm

The “standard relaxation” as used in Shi and Malik (2000) is to relax the integer
condition vji ∈ {0, 1} to vji ∈ R. It can be seen that the solution of the relaxed
problem is then given by the first k eigenvectors v1, ..., vk of the matrix L. To
construct a clustering from those eigenvectors we then embed the data points
xi into the k-dimensional Euclidean space by Tv : xi �→ zi := (v(i)

1 , ..., v
(i)
k ).

Then we apply the standard k-means clustering algorithm to the embedded
points z1, ..., zm to obtain the final clustering C into k clusters. This algorithm
cannot easily be cast into a problem where we minimize one single cost function.
Instead we proceed in two stages. In the first one we minimize the eigenvector
cost function tr(V tLV ), and in the second one the standard k-means objective
function on the embedded points zi.

To discuss the distance between spectral clusterings based on different sam-
ples, we first have to extend a clustering constructed on each sample to the
whole data space X . For spectral clustering there exists a natural extension
operator as follows (see von Luxburg et al. (2004) for details). We extend an
eigenvector vi of eigenvalue λi to a function f̂i : X → R by defining f̂i(x) =
(
∑m

j=1 s(x, xj)v
(j)
i )/(m(1−λi)). Next we extend the embedding Tv :{x1, .., xm}→

Rk to an embedding Tf̂ : X → Rk by Tf̂ : x �→ z := (f̂ (i)
1 , ..., f̂

(i)
k ). Note that

Tf̂(xi) = Tv(xi). Now we perform k-means clustering on the images of the sample
points zi in Rk. Finally, this clustering is extended by the standard extension op-
erator for k-means, that is we assign all points z to the closest center ci, where
c1, ..., ck ∈ Rk are the centers constructed by k-means on the embedded data
points z1, ..., zm. Then we define the exended clustering on X by setting x ∼C y
if the images of x and y are in the same cluster in Rk.
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Theorem 16 (Stability of normalized spectral clustering). Let the data
space X be compact, and the similarity function s be non-negative, symmetric,
continuous, and bounded away from 0. Assume that the limit clustering based
on L is unique (that is, the first k eigenfunctions f1, ..., fk of the limit oper-
ator L are unique and the k-means objective function applied to Tf (X) has
a unique minimizer). Let C and D be the extensions of the spectral cluster-
ings computed from two independent samples x1, ..., xm and x′1, ..., x

′
m. Then

limm→∞ dP (C,D) = 0 in probability.

Proof. (Sketch) The proof is based on techniques developed in von Luxburg et al.
(2004), to where we refer for all details. The uniqueness of the first eigenfunctions
implies that for large enough m, the first k eigenvalues of L have multiplicity
one. Denote the eigenfunctions of L by fi, the eigenvectors based on the first
sample by vi, and the ones based on the second sample by wi. Let f̂i and ĝi the
extensions of those eigenvectors. In von Luxburg et al. (2004) it has been proved
that ‖f̂i − fi‖∞ → 0 and ‖ĝi − fi‖∞ → 0 almost surely. Now denote by Tf̂ the

embedding of X to Rk based on the functions (f̂i)i=1,...,k, by Tĝ the one based
on (ĝi)i=1,...,k, and by Tf the one based on (fi)i=1,...,k. Assume that we are given
a fixed set of centers c1, ..., ck ∈ Rk. By the convergence of the eigenfunctions
we can conclude that sups=1,...,k | ‖Tf̂(x) − cs‖ − ‖(Tf(x) − cs‖ | → 0 a.s.. In
particular, this implies that if we fix a set of centers c1, ..., ck and cluster the
space X based on the embeddings Tf̂ and Tf , then the two resulting clusterings
C and D of X will be very similar if the sample size m is large. In particu-
lar, supi=1,...,k P (Ci�Di) → 0 a.s., where � denotes the symmetric difference
between sets. Together with Proposition 5, for a fixed set of centers this im-
plies dP (C,D) → 0 almost surely. Finally we have to deal with the fact that
the centers used by spectral clustering are not fixed, but are the ones computed
by minimizing the k-means objective function on the embedded sample. Note
that the convergence of the eigenvectors also implies that the k-means objective
functions based ẑi and zi, respectively, are uniformly close to each other. As a
consequence, the minimizers of both functions are uniformly close to each other,
which by the stability results proved above leads to the desired result. 
�

6.2 Stability of the Kernel-k-Means Version of Spectral Clustering

In this subsection we would like to consider another spectral relaxation. It
can be seen that minimizing Ncut is equivalent to solving a weighted kernel-
k-means problem with weight matrix 1/nD and the kernel matrix D−1WD−1

(cf. I. Dhillon, 2005). The solution of this problem can also be interpreted as a
relaxation of the original problem, as we can only compute a local instead of
the global minimum of the kernel-k-means objective function. This approximate
solution usually does not coincide with the solution of the standard relaxation
presented in the last section.

Theorem 17 (Stability of kernel-k-means spectral clustering). Let the
data space X be compact, and the similarity function s be non-negative, sym-
metric, continuous, and bounded away from 0. If there exists a unique optimizer



A Sober Look at Clustering Stability 17

of the kernel-k-means objective function, then the kernel-k-means relaxation of
spectral clustering is stable.

Proof. First we need to show that the sample based objective function con-
verges to the true objective function. This is a combination of the results of
von Luxburg et al. (2004) and those above. In von Luxburg et al. (2004) it has
been proved that the sample based degree function converges to a continuous
function d on the space X . This implies that the weights used in the weight
matrix W = D converge. Then we can apply the same techniques as in the stan-
dard k-means setting to show the convergence of the weighted kernel-k-means
objective function and the stability of the algorithm. 
�

6.3 Symmetry Leads to Instability of Spectral Clustering

As it is the case for center based clustering, symmetry is one of the main rea-
sons why standard spectral clustering can be instable. In this section we would
like to briefly sketch how this can be seen. Symmetry of graphs is usually de-
scribed in terms of their automorphism groups (see Chan and Godsil (1997) for
an overview). An automorphism of an undirected graphG with vertices x1, ..., xm
and edge weights w(xi, xj) is a surjective mapping φ : {1, ...,m} → {1, ...,m}
such that w(xφ(i), xφ(j)) = w(xi, xj) for all i, j. The set of all automorphisms of
a graph forms a group, the automorphism group Aut(G). It is a subgroup of the
symmetric group Sm. It is easy to see that if v = (v1, ..., vm)t is an eigenvector of
L with eigenvalue λ, and φ a graph automorphism, then φ(v) := (vφ(1), ..., vφ(m))
is also an eigenvector of L with eigenvalue λ. If v and φ(v) are linearly inde-
pendent, then the eigenvalue λ will have geometric multiplicity larger than 1.
This immediately leads to ambiguity: from the point of view of spectral cluster-
ing, all vectors in the eigenspace of λ are equally suitable, as all of them have
the same Rayleigh coefficient. But different eigenvectors can lead to different
clusterings. As a very simple example consider the graph with 4 vertices con-
nected as a square. The Laplacian L of this graph has the eigenvalues 0, 1, 1, 2
and the eigenvectors v1 = (1, 1, 1, 1), v2 = (1, 0,−1, 0), v3 = (0, 1, 0,−1), and
v4 = (−1, 1,−1, 1). The eigenspace of the second eigenvalue thus consists of all
vectors of the form (a, b,−a,−b). The spectral embedding based on this eigen-
vector maps the data points to R by x1 �→ a, x2 �→ b, x3 �→ −a, and x4 �→ −b.
The centers construcuted by k-means are then either ±(a+ b)/2 or ±(a− b)/2,
depending on whether a and b have the same sign or not. In the first case, the re-
sulting clustering is {x1, x2}, {x3, x4}, in the second case it is {x1, x3}, {x2, x4}.
Thus we obtain the two completely symmetric solutions of spectral clustering
which we would expect from the square symmetry of the data points.

Now let us consider the underlying data space X . The role of automorphisms
is now played by measure preserving symmetries as defined above. Assume that
(X,P ) possesses such a symmetry. Of course, even if X is symmetric, the simi-
larity graph based on a finite sample drawn from X usually will not be perfectly
symmetric. However, if the sample size is large enough, it will be “nearly sym-
metric”. It can be seen by perturbation theory that the resulting eigenvalues
and eigenvectors will be “nearly” the same ones as resulting from a perfectly
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symmetric graph. In particular, which eigenvectors exactly will be used by the
spectral embedding will only depend on small perturbations in the sample. This
will exactly lead to the unstable situation sketched above.

7 Conclusions

Stability is being widely used in practical applications as a heuristics for tun-
ing parameters of clustering algorithms, like the number of clusters, or various
stopping criteria. In this work, we have set forward formal definitions for sta-
bility and some related clustering notions and used this framework to provide
theoretical analysis of stability. Our results show that stability is determined
by the structure of the set of optimal solutions to the risk minimization ob-
jective. Namely, the existence of a unique minimizer implies stability, and the
existence of a symmetry permuting such minimizers implies instability. These
results indicate that, contrary to common belief (and practice), stability does
NOT reflect the validity or meaningfulness of the choice of the number of clus-
ters. Instead, the parameters it measures are rather independent of clustering
parameters. Furthermore, our results reduce the problem of stability estimation
to concrete geometric and optimization properties of the data distribution. In
this paper we prove these results for a wide class of center based and spectral
clustering algorithms.

It would be interesting to investigate similar questions with respect to other
popular clustering paradigms. Another intriguing issue is to try to figure out
what features of real life data make stability successful as a clustering validation
tool in practice. As shown in this paper, by our results and examples, stability is
not the right tool for such purposes. The success of stability in choosing number
of clusters should be viewed as an exception rather than the rule.

Bibliography

S. Ben-David. A framework for statistical clustering with constant time ap-
proximation algorithms for k-median clustering. In J. Shawe-Taylor and
Y. Singer, editors, Proceedings of the 17th Annual Conference on Learning
Theory (COLT), pages 415–426. Springer, 2004.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering
structure in clustered data. In Pacific Symposium on Biocomputing, 2002.

O. Bousquet and A. Elisseeff. Stability and generalization. JMLR, 2(3):499–526,
2002.

A. Chan and C. Godsil. Symmetry and eigenvectors. In G. Hahn and
G. Sabidussi, editors, Graph Symmetry, Algebraic Methods and Applications.
Kluwer, 1997.

B. Kulis I. Dhillon, Y. Guan. A unified view of kernel k-means, spectral clus-
tering, and graph partitioning. Technical Report TR-04-25, UTCS Technical
Report, 2005.



A Sober Look at Clustering Stability 19

S. Kutin and P. Niyogi. Almost-everywhere algorithmic stability and general-
ization error. Technical report, TR-2002-03, University of of Chicago, 2002.

T. Lange, V. Roth, M. Braun, and J.Buhmann. Stability-based validation of
clustering solutions. Neural Computation, 2004.

A. Rakhlin and A. Caponnetto. Stability properties of empirical risk minimiza-
tion over donsker classes. Technical report, MIT AI Memo 2005-018, 2005.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering.
Technical Report 134, Max Planck Institute for Biological Cybernetics, 2004.

U. von Luxburg and S. Ben-David. Towards a statistical theory of clustering.
In PASCAL workshop on Statistics and Optimization of Clustering, 2005.



PAC Learning Axis-Aligned Mixtures of
Gaussians with No Separation Assumption

Jon Feldman1,�, Rocco A. Servedio2,��, and Ryan O’Donnell3,� � �

1 Google
jonfeld@google.com

2 Columbia University
rocco@cs.columbia.edu

3 Microsoft Research
odonnell@microsoft.com

Abstract. We propose and analyze a new vantage point for the learn-
ing of mixtures of Gaussians: namely, the PAC-style model of learning
probability distributions introduced by Kearns et al. [13]. Here the task
is to construct a hypothesis mixture of Gaussians that is statistically in-
distinguishable from the actual mixture generating the data; specifically,
the KL divergence should be at most ε.

In this scenario, we give a poly(n/ε) time algorithm that learns the
class of mixtures of any constant number of axis-aligned Gaussians in
Rn. Our algorithm makes no assumptions about the separation between
the means of the Gaussians, nor does it have any dependence on the
minimum mixing weight. This is in contrast to learning results known in
the “clustering” model, where such assumptions are unavoidable.

Our algorithm relies on the method of moments, and a subalgorithm
developed in [9] for a discrete mixture-learning problem.

1 Introduction

In [13] Kearns et al. introduced an elegant and natural model of learning un-
known probability distributions. In this framework we are given a class C of
probability distributions over Rn and access to random data sampled from an
unknown distribution Z that belongs to C. The goal is to output a hypothesis
distribution Z′ which with high confidence is ε-close to Z as measured by the the
Kullback-Leibler (KL) divergence, a standard measure of the distance between
probability distributions (see Section 2 for details on this distance measure). The
learning algorithm should run in time poly(n/ε). This model is well-motivated by
its close analogy to Valiant’s classical Probably Approximately Correct (PAC)
framework for learning Boolean functions [17].
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Several notable results, both positive and negative, have been obtained for
learning in the Kearns et al. framework of [13], see, e.g., [10, 15]. Here we briefly
survey some of the positive results that have been obtained for learning vari-
ous types of mixture distributions. (Recall that given distributions X1, . . . ,Xk

and mixing weights π1, . . . , πk that sum to 1, a draw from the corresponding
mixture distribution is obtained by first selecting i with probability πi and then
making a draw from Xi.) Kearns et al. gave an efficient algorithm for learning
certain mixtures of Hamming balls; these are product distributions over {0, 1}n
in which each coordinate mean is either p or 1 − p for some p fixed over all
mixture components. Subsequently Freund and Mansour [11] and independently
Cryan et al. [4] gave efficient algorithms for learning a mixture of two arbitrary
product distributions over {0, 1}n. Recently, Feldman et al. [9] gave a poly(n)-
time algorithm that learns a mixture of any k = O(1) many arbitrary product
distributions over the discrete domain {0, 1, . . . , b− 1}n for any b = O(1).

1.1 Results

As described above, research on learning mixture distributions in the PAC-style
model of Kearns et al. has focused on distributions over discrete domains. In
this paper we consider the natural problem of learning mixtures of Gaussians in
the PAC-style framework of [13]. Our main result is the following theorem:

Theorem 1. (Informal version) Fix any k = O(1), and let Z be any unknown
mixture of axis-aligned Gaussians over Rn. There is an algorithm that, given
samples from Z and any ε, δ > 0 as inputs, runs in time poly(n/ε) · log(1/δ)
and with probability 1− δ outputs a mixture Z′ of k axis-aligned Gaussians over
Rn satisfying KL(Z||Z′) ≤ ε.

A signal feature of this result is that it requires no assumptions about the Gaus-
sians being “separated” in space. It also has no dependence on the minimum
mixing weight. We compare our result with other works on learning mixtures of
Gaussians in the next section.

Our proof of Theorem 1 works by extending the basic approach for learning
mixtures of product distributions over discrete domains from [9]. The main tech-
nical tool introduced in [9] is the WAM (Weights And Means) algorithm; the
correctness proof of WAM is based on an intricate error analysis using ideas
from the singular value theory of matrices. In this paper, we use this algorithm
in a continuous domain to estimate the parameters of the Gaussian mixture.
Dealing with this more complex class of distributions requires tackling a whole
new set of issues around sampling error that did not exist in the discrete case.

Our results strongly suggest that the techniques introduced in [9] (and extended
here) extend to PAC learning mixtures of other classes of product distributions,
both discrete and continuous, such as exponential distributions or Poisson distri-
butions. Though we have not explicitly worked out those extensions in this paper,
we briefly discuss general conditions under which our techniques are applicable in
Section 7.
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1.2 Comparison with Other Frameworks for Learning Mixtures of
Gaussians

There is a vast literature in statistics on modeling with mixture distributions, and
on estimating the parameters of unknown such distributions from data. The case
of mixtures of Gaussians is by far the most studied case; see, e.g., [14, 16] for sur-
veys. Statistical work on mixtures of Gaussians has mainly focused on finding the
distribution parameters (mixing weights, means, and variances) of maximum like-
lihood, given a set of data. Although one can write down equations whose solutions
give these maximum likelihood values, solving the equations appears to be a com-
putationally intractable problem. In particular, the most popular algorithm used
for solving the equations, the EM Algorithm of Dempster et al. [7], has no efficiency
guarantees and may run slowly or converge only to local optima on some instances.

A change in perspective led to the first provably efficient algorithm for learn-
ing: In 1999, Dasgupta [5] suggested learning in the clustering framework. In this
scenario, the learner’s goal is to group all the sample points according to which
Gaussian in the mixture they came from. This is the strongest possible criterion
for success one could demand; when the learner succeeds, it can easily recover
accurate approximations of all parameters of the mixture distribution. However,
a strong assumption is required to get such a strong outcome: it is clear that
the learner cannot possibly succeed unless the Gaussians are guaranteed to be
sufficiently “separated” in space. Informally, it must at least be the case that,
with high probability, no sample point “looks like” it might have come from a
different Gaussian in the mixture other than the one that actually generated it.

Dasgupta gave a polynomial time algorithm that could cluster a mixture of
spherical Gaussians of equal radius. His algorithm required separation on the
order of n1/2 times the standard deviation. This was improved to n1/4 by Das-
gupta and Schulman [6], and this in turn was significantly generalized to the
case of completely general (i.e., elliptical) Gaussians by Arora and Kannan [2].
Another breakthrough came from Vempala and Wang [18] who showed how the
separation could be reduced, in the case of mixtures of k spherical Gaussians (of
different radii), to the order of k1/4 times the standard deviation, times factors
logarithmic in n. This result was extended to mixtures of general Gaussians (in-
deed, log-concave distributions) in works by Kannan et al. [12] and Achlioptas
and McSherry [1], with some slightly worse separation requirements. It should
also be mentioned that these results all have a running time dependence that
is polynomial in 1/πmin, where πmin denotes the minimum mixing weight.

Our work gives another learning perspective that allows us to deal with mix-
tures of Gaussians that satisfy no separation assumption. In this case clustering
is simply not possible; for any data set, there may be many different mixtures
of Gaussians under which the data are plausible. This possibility also leads to
the seeming intractability of finding the maximum likelihood mixture of Gaus-
sians. Nevertheless, we feel that this case is both interesting and important, and
that under these circumstances identifying some mixture of Gaussians which is
statistically indistinguishable from the true mixture is a worthy task. This is
precisely what the PAC-style learning scenario we work in requires, and what
our main algorithm efficiently achieves.
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Reminding the reader that they work in significantly different scenarios, we
end this section with a comparison between other aspects of our algorithm and
algorithms in the clustering model. Our algorithm works for mixtures of axis-
aligned Gaussians. This is stronger than the case of spherical Gaussians con-
sidered in [5, 6, 18], but weaker than the case of general Gaussians handled
in [2, 12, 1]. On the other hand, in Section 7 we discuss the fact that our meth-
ods should be readily adaptable to mixtures of a wide variety of discrete and
continuous distributions — essentially, any distribution where the “method of
moments” from statistics succeeds. The clustering algorithms discussed have
polynomial running time dependence on k, the number of mixture components,
whereas our algorithm’s running time is polynomial in n only if k is a constant.
We note that in [9], strong evidence was given that (for the PAC-style learn-
ing problem that we consider) such a dependence is unavoidable at least in the
case of learning mixtures of product distributions on the Boolean cube. Finally,
unlike the clustering algorithms mentioned, our algorithm has no running time
dependence on 1/πmin.

1.3 Overview of the Approach and the Paper

An important ingredient of our approach is a slight extension of the WAM al-
gorithm, the main technical tool introduced in [9]. The algorithm takes as input
a parameter ε > 0 and samples from an unknown mixture Z of k product distri-
butions X1, . . . ,Xk over Rn. The output of the algorithm is a list of candidate
descriptions of the k mixing weights and kn coordinate means of the distrib-
utions X1, . . . ,Xk. Roughly speaking, the guarantee for the algorithm proved
in [9] is that with high probability at least one of the candidate descriptions
that the algorithm outputs is “good” in the following sense: it is an additive
ε-accurate approximation to each of the k true mixing weights π1, . . . , πk and
to each of the true coordinate means μij = E[Xi

j ] for which the corresponding
mixing weight πi is not too small. We give a precise specification in Section 3.

As described above, when WAM is run on a mixture distribution it gener-
ates candidate estimates of mixing weights and means. However, to describe a
Gaussian we need not only its mean but also its variance. To achieve this we
run WAM twice, once on Z and once on what might be called “Z2” — i.e., for
the second run, each time a draw (z1, . . . , zn) is obtained from Z we convert it
to (z2

1 , . . . , z
2
n) and use that instead. It is easy to see that Z2 corresponds to a

mixture of the distributions (X1)2, . . . , (Xk)2, and thus this second run gives
us estimates of the mixing weights (again) and also of the coordinate second
moments E[(Xi

j)
2]. Having thus run WAM twice, we essentially take the “cross-

product” of the two output lists to obtain a list of candidate descriptions, each
of which specifies mixing weights, means, and second moments of the component
Gaussians. In Section 4 we give a detailed description of this process and prove
that with high probability at least one of the resulting candidates is a “good”
description (in the sense of the preceding paragraph) of the mixing weights,
coordinate means, and coordinate variances of the Gaussians X1, . . . ,Xk.

To actually PAC learn the distribution Z, we must find this good description
among the candidates in the list. A natural idea is to apply some sort of
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maximum likelihood procedure. However, to make this work, we need to guar-
antee that the list contains a distribution that is close to the target in the sense
of KL divergence. Thus, in Section 5, we show how to convert each “parametric”
candidate description into a mixture of Gaussians such that any additively accu-
rate description indeed becomes a mixture distribution with close KL divergence
to the unknown target. (This procedure also guarantees that the candidate distri-
butions satisfy some other technical conditions that are needed by the maximum
likelihood procedure.) Finally, in Section 6 we put the pieces together and show
how a maximum likelihood procedure can be used to identify a hypothesis mixture
of Gaussians that has small KL divergence relative to the target mixture.

2 Preliminaries

The PAC learning framework for probability distributions. We work
in the Probably Approximately Correct model of learning probability distribu-
tions which was proposed by Kearns et al. [13]. In this framework the learning
algorithm is given access to samples drawn from the target distribution Z to
be learned, and the learning algorithm must (with high probability) output an
accurate approximation Z′ of the target distribution Z. Following [13], we use
the Kullback-Leibler (KL) divergence (also known as the relative entropy) as our
notion of distance. The KL divergence between distributions Z and Z′ is

KL(Z||Z′) :=
∫

Z(x) ln(Z(x)/Z′(x)) dx

where here we have identified the distributions with their pdfs. The reader is
reminded that KL divergence is not symmetric and is thus not a metric. KL
divergence is a stringent measure of the distance between probability distances.
In particular, it holds [3] that 0 ≤ ‖Z−Z′‖2 ≤ (2 ln 2)

√
KL(Z||Z′), where ‖ · ‖1

denotes total variation distance; hence if the KL divergence is small then so is
the total variation distance.

We make the following formal definition:

Definition 1. Let D be a class of probability distributions over Rn. An efficient
(proper) learning algorithm for D is an algorithm which, given ε, δ > 0 and
samples drawn from any distribution Z ∈ D, runs in poly(n, 1/ε, 1/δ) time and,
with probability at least 1− δ, outputs a representation of a distribution Z′ ∈ D
such that KL(Z||Z′) ≤ ε.

Mixtures of axis-aligned Gaussians. Here we recall some basic definitions
and establish useful notational conventions for later.

A Gaussian distribution over R with mean μ and variance σ has probability
density function f(x) = (1/

√
2πσ) exp

(
− (x−μ)2

2σ2

)
. An axis-aligned Gaussian

over Rn is a product distribution over n univariate Gaussians.
If we expect to learn a mixture of Gaussians, we need each Gaussian to have

reasonable parameters in each of its coordinates. Indeed, consider just the prob-
lem of learning the parameters of a single one-dimensional Gaussian: If the vari-
ance is enormous, we could not expect to estimate the mean efficiently; or, if
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the variance was extremely close to 0, any slight error in the hypothesis would
lead to a severe penalty in KL divergence. These issues motivate the following
definition:

Definition 2. We say that X is a d-dimensional (μmax, σ
2
min, σ

2
max)-bounded Gau-

ssian if X is a d-dimensional axis-aligned Gaussian with the property that each of
its one-dimensional coordinate Gaussians Xj has mean μj ∈ [−μmax, μmax] and
variance (σj)2 ∈ [σ2

min, σ
2
max].

Notational convention: Throughout the rest of the paper all Gaussians we
consider are (μmax, σ

2
min, σ

2
max)-bounded, where for notational convenience we

assume that the numbers μmax, σ2
max are at least 1 and that the number σ2

min is
at most 1. We will denote by L the quantity μmaxσmax/σmin, which in some sense
measures the bit-complexity of the problem. Given distributions X1, . . . ,Xk over
Rn, we write μij to denote E[Xi

j ], the j-th coordinate mean of the i-th component
distribution, and we write (σij)

2 to denote Var[Xi
j ], the variance in coordinate j

of the i-th distribution.

A mixture of k axis-aligned Gaussians Z = π1X1 + · · ·+ πkXk is completely
specified by the parameters πi, μij , and (σij)

2. Our learning algorithm for Gaus-
sians will have a running time that depends polynomially on L; thus the algo-
rithm is not strongly polynomial.

3 Listing Candidate Weights and Means with WAM

We first recall the basic features of the WAM algorithm from [9] and then ex-
plain the extension we require. The algorithm described in [9] takes as input a
parameter ε > 0 and samples from an unknown mixture Z of k distributions
X1, . . . ,Xk where each Xi = (Xi

1, . . . ,X
i
n) is assumed to be a product dis-

tribution over the bounded domain [−1, 1]n. The goal of WAM is to output
accurate estimates for the mixing weights πi and coordinate means μij ; what the
algorithm actually outputs is a list of candidate “parametric descriptions” of
the means and mixing weights, where each candidate description is of the form
({π̂1, . . . , π̂k}, {μ̂1

1, μ̂
1
2, . . . , μ̂

k
n}).

We now explain the notion of a “good” estimate of parameters from Section 1.3
in more detail. As motivation, note that if a mixing weight πi is very low then
the WAM algorithm (or indeed any algorithm that only draws a limited number
of samples from Z) may not receive any samples from Xi, and thus we would
not expect WAM to construct an accurate estimate for the coordinate means
μi1, . . . , μ

i
n. We thus have the following definition from [9]:

Definition 3. A candidate ({π̂1, . . . , π̂k}, {μ̂1
1, μ̂

1
2, . . . , μ̂

k
n}) is said to be para-

metrically ε-accurate if:

1. |π̂i − πi| ≤ ε for all 1 ≤ i ≤ k;
2. |μ̂ij − μij | ≤ ε for all 1 ≤ i ≤ k and 1 ≤ j ≤ n such that πi ≥ ε.
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Very roughly speaking, the WAM algorithm in [9] works by exhaustively
“guessing” (to a certain prescribed granularity that depends on ε) values for
the mixing weights and for k2 of the kn coordinate means. Given a guess, the
algorithm tries to approximately solve for the remaining k(n − k) coordinate
means using the guessed values and the sample data; in the course of doing
this the algorithm uses estimates of the expectations E[ZjZj′ ] that are obtained
from the sample data. From each guess the algorithm thus obtains one of the
candidates in the list that it ultimately outputs.

The assumption [9] that each distribution Xi in the mixture is over [−1, 1]n

has two nice consequences: each coordinate mean need only be guessed within
a bounded domain [−1, 1], and estimating E[ZjZj′ ] is easy for a mixture Z of
such distributions. Inspection of the proof of correctness of the WAM algorithm
shows that these two conditions are all that is really required. We thus introduce
the following:

Definition 4. Let X be a distribution over R. We say that X is λ(ε, δ)-samplable
if there is an algorithmA which, given access to draws from X, runs for λ(ε, δ) steps
and outputs (with probability at least 1 − δ over the draws from X) a quantity μ̂
satisfying |μ̂−E[X]| ≤ ε.

With this definition in hand an obvious (slight) generalization of WAM, which
we denote WAM′, suggests itself. The main result about WAM′ that we need
is the following (the proof is essentially identical to the proof in [9] so we omit
it):

Theorem 2. Let Z be a mixture of product distributions X1, . . . ,Xk with mix-
ing weights π1, . . . , πk where each μij = E[Xi

j ] satisfies |μij | ≤ U and ZjZj′

is poly(U/ε) · log(1/δ)-samplable for all j �= j′. Given U and any ε, δ > 0,
WAM′ runs in time (nU/ε)O(k3) · log(1/δ) and outputs a list of (nU/ε)O(k3)

many candidates descriptions, at least one of which (with probability at least
1− δ) is parametrically ε-accurate.

4 Listing Candidate Weights, Means, and Variances

Through the rest of the paper we assume that Z is a k-wise mixture of inde-
pendent (μmax, σ

2
min, σ

2
max)-bounded Gaussians X1, . . . ,Xk, as discussed in Sec-

tion 2. Recall also the notation L from that section.
As described in Section 1.3, we will run WAM′ twice, once on the original

mixture of Gaussians Z and once on the squared mixture Z2. In order to do this,
we must show that both Z = π1X1+· · ·+πkXk and Z2 = π1(X1)2+· · ·+πk(Xk)2

satisfy the conditions of Theorem 2. The bound |μij | ≤ μmax on coordinate means
is satisfied by assumption for Z, and for Z2 we have that each E[(Xi

j)
2] is at

most σ2
max + μ2

max. It remains to verify the required samplability condition on
products of two coordinates for both Z and Z2; i.e. we must show that both the
random variables ZjZj′ are samplable and that the random variables Z2

jZ
2
j′ are

samplable. We do this in the following proposition, whose straightforward but
technical proof is deferred to the full version of this paper [8]:
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Proposition 1. Suppose Z = (Z1,Z2) is the mixture of k two-dimensional
(μmax, σ

2
min, σ

2
max)-bounded Gaussians. Then both the random variable W :=

Z1Z2 and the random variable W2 are poly(L/ε) · log(1/δ)-samplable.

The proof of the following theorem explains precisely how we can run WAM′

twice and how we can combine the two resulting lists (one containing candi-
date descriptions consisting of mixing weights and coordinate means, the other
containing candidate descriptions consisting of mixing weights and coordinate
second moments) to obtain a single list of candidate descriptions consisting of
mixing weights, coordinate means, and coordinate variances.

Theorem 3. Let Z be a mixture of k = O(1) axis-aligned Gaussians X1, . . . ,Xk

over Rn, described by parameters ({πi}, {μij}, {σij}). There is an algorithm with
the following property: For any ε, δ > 0, given samples from Z the algorithm runs
in poly(nL/ε)·log(1/δ) time and with probability 1−δ outputs a list of poly(nL/ε)
many candidates ({π̂i}, {μ̂ij}, {σ̂ij}) such that for at least one candidate in the
list, the following holds:

1. |π̂i − πi| ≤ ε for all i ∈ [k]; and
2. |μ̂ij − μij | ≤ ε and |(σ̂ij)2 − (σij)

2| ≤ ε for all i, j such that πi ≥ ε.

Proof. First run the algorithm WAM′ with the random variable Z, taking the
parameter “U” in WAM′ to be L, taking “δ” to be δ/2, and taking “ε” to
be ε/(6μmax). By Proposition 1 and Theorem 2, this takes at most the claimed
running time. WAM′ outputs a list List1 of candidate descriptions for the mixing
weights and expectations, List1 = [. . . , (π̂i, μ̂ij), . . . ], which with probability at
least 1− δ/2 contains at least one candidate description which is parametrically
ε/(6μmax)-accurate.

Define (sij)
2 = E[(Xi

j)
2] = (σij)

2 + (μij)
2. Run the algorithm WAM′ again

on the squared random variable Z2, with “U” = σ2
max + μ2

max, “δ” = δ/2, and
“ε” = ε/2. By Proposition 1, this again takes at most the claimed running time.
This time WAM′ outputs a list List2 of candidates for the mixing weights (again)
and second moments, List2 = [. . . , (ˆ̂πi, (ŝij)

2) . . . ], which with probability at least
1− δ/2 has a “good” entry which satisfies

1. |ˆ̂πi − πi| ≤ ε/2 for all i = 1 . . . k; and
2. |(ŝij)2 − (sij)

2| ≤ ε/2 for all i, j such that πi ≥ ε/2.

We now form the “cross product” of the two lists. (Again, this can be done in
the claimed running time.) Specifically, for each pair consisting of a candidate
(π̂i, μ̂ij) in List1 and a candidate (ˆ̂πi, (ŝij)

2) in List2, we form a new candidate
consisting of mixing weights, means, and variances, namely (π̂i, μ̂ij , (σ̂

i
j)

2) where
(σ̂ij)

2 = (ŝij)
2 − (μ̂ij)

2. (Note that we simply discard ˆ̂πi.)
When the “good” candidate from List1 is matched with the “good” candi-

date from List2, the resulting candidate’s mixing weights and means satisfy the
desired bounds. For the variances, we have that |(σ̂ij)2 − (σij)

2| is at most

|(ŝij)2−(sij)
2|+ |(μ̂ij)2−(μij)

2| ≤ ε

2
+ |μ̂ij−μij | · |μ̂ij+μij | ≤

ε

2
+

ε

6μmax
·3μmax = ε.

This proves the theorem.
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5 From Parametric Estimates to Bona Fide Distributions

At this point we have a list of candidate “parametric” descriptions ({π̂i}, {μ̂ij},
{(σ̂ij)2}) of mixtures of Gaussians, at least one of which is parametrically accu-
rate in the sense of Theorem 3. In Section 5.1 we describe an efficient way to
convert any parametric description into a true mixture of Gaussians such that:

(i) any parametrically accurate description becomes a distribution with close
KL divergence to the target distribution; and

(ii) every mixture distribution that results from the conversion has a pdf that
satisfies certain upper and lower bounds (that will be required for the max-
imum likelihood procedure).

The conversion procedure is conceptually straightforward — it essentially just
truncates any extreme parameters to put them in a “reasonable” range — but the
details establishing correctness are fairly technical. By applying this conversion
to each of the parametric descriptions in our list from Section 4, we obtain a list
of mixture distribution hypotheses all of which have bounded pdfs and at least
one of which is close to the target Z in KL divergence (see Section 5.2). With
such a list in hand, we will be able to use maximum likelihood (in Section 6) to
identify a single hypothesis which is close in KL divergence.

5.1 The Conversion Procedure

In this section we prove:

Theorem 4. There is a simple efficient procedure A which takes values
({π̂i}, {μ̂ij}, {(σ̂ij)2}) and a value M > μmax as inputs and outputs a true mixture
Ż of k many n-dimensional (μmax, σ

2
min, σ

2
max)-bounded Gaussians with mixing

weights π̇1, . . . , π̇k satisfying

(a)
∑k

i=1 π̇
i = 1, and

(b) α0 ≤ Ż(x) ≤ β0 for all x ∈ [−M,M ]n,

where α0 :=
[

1√
2πσmax

· exp
(

−2M2

σ2
min

)]n
and β0 := 1/(

√
2πσmin)n.

Furthermore, suppose Z is a mixture of Gaussians X1, . . . ,Xk with mixing
weights πi, means μij, and variances (σij)

2 and that the following are satisfied:

(c) for i = 1 . . . k we have |πi − π̂i| ≤ εwts where εwts ≤ 1/(12k)3; and
(d) for all i, j such that πi ≥ εminwt we have |μij − μ̂ij | ≤ εmeans and |(σij)2 −

(σ̂ij)
2| ≤ εvars.

Then Ż will satisfy KL(Z||Ż) ≤ η(εmeans, εvars, εwts, εminwt), where

η(εmeans, εvars, εwts, εminwt) := n ·
(

εvars
2σ2

min
+

ε2means + εvars
2(σ2

min − εvars)

)
+ kεminwt · n ·

(
σ2

max + 2μ2
max

σ2
min

)
+ 13kε1/3wts.
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Proof. We construct a mixture Ż of product distributions Ẋ1, . . . , Ẋk by defining
new mixing weights π̇i, expectations μ̇ij , and variances (σ̇ij)

2. The procedure A
is defined as follows:

1. For all i, j, set

μ̇ij =

⎧⎨⎩
−μmax if μ̂ij < −μmax

μmax if μ̂ij > μmax

μ̂ij o.w.
and σ̇ij =

⎧⎨⎩
σmin if σ̂ij < σmin

σmax if σ̂ij > σmax

σ̂ij o.w.

2. For all i = 1, . . . , k let π̈i =
{
π̂i if π̂i ≥ εwts
εwts if π̂i < εwts.

Let s be such that s
∑k

i=1 π̈
i = 1. Take π̇i = sπ̈i. (This is just a normalization

so the mixing weights sum to precisely 1.)

It is clear from this construction that condition (a) is satisfied. For (b), the
bounds on σ̇ij are easily seen to imply that Ẋi(x) ≤ 1/(

√
2πσmin)n =: β0 for

all x ∈ Rn, and hence the same upper bound holds for the mixture Ż(x), be-
ing a convex combination of the values Ẋi(x). Similarly, using the fact that
M ≥ μmax together with the bounds on μ̇ij and σ̇ij , we have that Ẋi(x) ≥[

1√
2πσmax

· exp
(

−2M2

σ2
min

)]n
=: α0, for all x ∈ [−M,M ]n, and this lower bound

holds for Ż(x) as well.
We now prove the second half of the theorem; so suppose that conditions (c)

and (d) hold. Our goal is to apply the following proposition (proved in [9]) to
bound KL(Z||Ż):

Proposition 2. Let π1, . . . , πk, γ1, . . . , γk ≥ 0 be mixing weights satisfying∑
πi =

∑
γi = 1. Let I = {i : πi ≥ ε3}. Let P1, . . . ,Pk and Q1, . . . ,Qk be

distributions. Suppose that

1. |πi − γi| ≤ ε1 for all i ∈ [k];
2. γi ≥ ε2 for all i ∈ [k];
3. KL(Pi||Qi) ≤ εI for all i ∈ I;
4. KL(Pi||Qi) ≤ εall for all i ∈ [k].

Then, letting P denote the π-mixture of the Pi’s and Q the γ-mixture of the
Qi’s, for any ε4 > ε1 we have KL(P||Q) ≤ εI + kε3εall + kε4 ln ε4

ε2
+ ε1

ε4−ε1 .

More precisely, our goal is to apply this proposition with parameters

ε1 = 3kεwts; ε2 = εwts/2; ε3 = εminwt; εI = n ·
(
εvars
2σ2

min
+ ε2means+εvars

2(σ2
min−εvars)

)
;

εall = n ·
(
σ2
max+2μ2

max
σ2
min

)
; ε4 = ε

2/3
wts/2.

To satisfy the conditions of the proposition, we must (1) upper bound |πi − π̇i|
for all i; (2) lower bound π̇i for all i; (3) upper bound KL(Xi||Ẋi) for all i such
that πi ≥ εminwt; and (4) upper bound KL(Xi||Ẋi) for all i. We now do this.
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(1) Upper bounding |πi− π̇i|. A straightforward argument given in [9] shows
that assuming εwts ≤ 1/(2k), we get |πi − π̇i| ≤ 3kεwts.

(2) Lower bounding π̇i. In [9] it is also shown that π̇i ≥ εwts
2 assuming that

εwts ≤ 1/k.

(3) Upper bounding KL(Xi||Ẋi) for all i such that πi ≥ εminwt. Fix an i
such that πi ≥ εminwt and fix any j ∈ [n]. Consider some particular μij and μ̇ij and
σij and σ̇ij , so we have |μij − μ̂ij | ≤ εmeans and |(σij)2− (σ̂ij)

2| ≤ εvars. Since |μij | ≤
μmax, by the definition of μ̇ij we have that |μij − μ̇ij | ≤ εmeans, and likewise we
have |(σij)2− (σ̇ij)

2| ≤ εvars. Let P and Q be the one-dimensional Gaussians with
means μij and μ̇ij and variances σij and σ̇ij respectively. Using standard properties
of the KL-divergence of one-dimensional Gaussians (see Appendix C of [8]), it
can be shown that KL(P||Q) ≤ εvars

2σ2
min

+ ε2means+εvars
2(σ2

min−εvars)
. Each Ẋi is the product

of n such Gaussians. Since KL divergence is additive for product distributions
(again see Appendix C of [8]) we have the following bound for each i such that
πi ≥ εminwt:

KL(Xi||Ẋi) ≤ n ·
(

εvars
2σ2

min
+

ε2means + εvars
2(σ2

min − εvars)

)
.

(4) Upper bounding KL(Xi||Ẋi) for all i ∈ [k]. Using the fact that both Xi

and Ẋi are (μmax, σ
2
min, σ

2
max)-bounded, it can be shown (see [8]) that we have

KL(Xi||Ẋi) ≤ n
(
σ2

max + 2μ2
max

σ2
min

)
.

Proposition 2 now gives us

KL(Z||Ż) ≤ n ·
(

εvars
2σ2

min
+

ε2means + εvars
2(σ2

min − εvars)

)
+ kεminwt ·n ·

(
σ2

max + 2μ2
max

σ2
min

)
+R,

where R = kε4 ln ε4
ε2

+ ε1
ε4−ε1 = k

2 ε
2/3
wts ln(ε−1/3

wts )+ 3kεwts

ε
2/3
wts/2−3kεwts

. Using the fact that

lnx ≤ x1/2 for x > 1, the first of these two terms is at most k
2 ε

1/2
wts. Using the

fact that εwts < 1/(12k)3, the second of these terms is at most 12kε1/3wts. So R is
at most 13kε1/3wts and the theorem is proved.

5.2 Getting a List of Distributions One of Which Is KL-Close to
the Target

In this section we show that combining the conversion procedure from the pre-
vious subsection with the results of Section 4 lets us obtain the following:

Theorem 5. Let Z be any unknown mixture of k = O(1) axis-aligned Gaussians
over Rn. There is an algorithm with the following property: for any ε, δ > 0,
given samples from Z the algorithm runs in poly(nL/ε) · log(1/δ) time and with
probability 1 − δ outputs a list of poly(nL/ε) many mixtures of Gaussians with
the following properties:
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1. For any M > μmax such that M = poly(nL/ε), every distribution Z′ in the
list satisfies exp(−poly(nL/ε)) ≤ Z′(x) ≤ poly(L)n for all x ∈ [−M,M ]n.

2. Some distribution Z� in the list satisfies KL(Z||Z�) ≤ ε.

Note that Theorem 5 guarantees that Z′(x) has bounded mass only on the
range [−M,M ]n, whereas the support of Z goes beyond this range. This issue is
addressed in the proof of Theorem 7, where we put together Theorem 5 and the
maximum likelihood procedure.

Proof of Theorem 5: We will use a specialization of Theorem 3 in which we
have different parameters for the different roles that ε plays:

Theorem 3′ Let Z be a mixture of k = O(1) axis-aligned Gaussians X1, . . . ,Xk

over Rn, described by parameters ({πi}, {μij}, {σij}). There is an algorithm with
the following property: for any εmeans, εvars, εwts, εminwt, δ > 0, given samples
from Z, with probability 1 − δ it outputs a list of candidates ({π̂i}, {μ̂ij}, {σ̂ij})
such that for at least one candidate in the list, the following holds:

1. |π̂i − πi| ≤ εwts for all i ∈ [k]; and
2. |μ̂ij−μij | ≤ εmeans and |(σ̂ij)2−(σij)

2| ≤ εvars for all i, j such that πi ≥ εminwt.

The runtime is poly(nL/ε′) · log(1/δ) where ε′ = min{εwts, εmeans, εvars, εminwt}.
Let ε, δ > 0 be given. We run the algorithm of Theorem 3′ with parameters

εmeans = εσ2
min

12n , εvars = 2εmeans, εminwt = εσ2
min

3kn(σ2
max+2μ2

max) and εwts = ε3

(39k)3 .

With these parameters the algorithm runs in time poly(nL/ε) · log(1/δ). By
Theorem 3′, we get as output a list of poly(nL/ε) many candidate parameter
settings ({π̂i}, {μ̂ij}, {σ̂ij}) with the guarantee that with probability 1−δ at least
one of the settings satisfies

– |πi − π̂i| ≤ εwts for all i ∈ [k], and
– |μ̂ij−μij| ≤ εmeans and |(σ̂ij)2−(σij)

2| ≤ εvars for all i, j such that πi ≥ εminwt.

We now pass each of these candidate parameter settings through Theorem 4.
(Note that εwts < 1/(12k3) as required by Theorem 4.) By Theorem 4, for any
M = poly(nL/ε) all the resulting distributions will satisfy exp(−poly(nL/ε)) ≤
Z′(x) ≤ poly(L)n for all x ∈ [−M,M ]n. It is easy to check that under our parame-
ter settings, each of the three component terms of η (i.e. n·

(
εvars
2σ2

min
+ ε2means+εvars

2(σ2
min−εvars)

)
,

kεminwt · n
(
σ2
max+2μ2

max
σ2
min

)
, and 13kε1/3wts) is at most ε/3. Thus η(εmeans, εvars, εwts,

εminwt) ≤ ε, so one of the resulting distributions Z� must satisfy KL(Z||Z�) ≤ ε.

6 Putting It All Together

6.1 Identifying a Good Distribution Using Maximum Likelihood

Theorem 5 gives us a list of distributions at least one of which is close to the
target distribution we are trying to learn. Now we must identify some distribution
in the list which is close to the target. We use a natural maximum likelihood
algorithm described in [9] to help us accomplish this:
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Theorem 6. [9] Let β, α, ε > 0 be such that α < β. Let Q be a set of hypothesis
distributions for some distribution P over the space X such that at least one
Q∗ ∈ Q has KL(P||Q∗) ≤ ε. Suppose also that α ≤ Q(x) ≤ β for all Q ∈ Q and
all x such that P(x) > 0.

Run the ML algorithm onQ using a set S of independent samples from P, where
S = m. Then, with probability 1 − δ, where δ ≤ (|Q| + 1) · exp

(
−2m ε2

log2(β/α)

)
,

the algorithm outputs some distribution QML ∈ Q which has KL(P||QML) ≤ 4ε.

6.2 The Main Result

Here we put the pieces together and give our main learning result for mixtures
of Gaussians.

Theorem 7. Let Z be any unknown mixture of k n-dimensional Gaussians.
There is a (nL/ε)O(k3) · log(1/δ) time algorithm which, given samples from Z
and any ε, δ > 0 as inputs, outputs a mixture Z′ of k Gaussians which with
probability at least 1− δ satisfies KL(Z||Z′) ≤ ε.

Proof. Run the algorithm given by Theorem 5. With probability 1− δ this pro-
duces a list of T = (nL/ε)O(k3) · log(1/δ) hypothesis distributions, one of which,
Z�, has KL divergence at most ε from Z and all of which have their pdfs bounded
between exp(−poly(nL/ε)) and poly(L)n for all x ∈ [−M,M ]n, whereM > μmax
is any poly(nL/ε).

We now consider ZM , the M -truncated version of Z; this is simply the distri-
bution obtained by restricting the support of Z to be [−M,M ]n and scaling so
that ZM is a distribution. The proof of the following proposition appears in the
full version of this paper [8], with ZM being formally defined there as well:

Proposition 3. Let P and Q be any mixtures of n-dimensional Gaussians. Let
PM denote the M -truncated version of P. For some M = poly(nL/ε) we have
|KL(PM ||Q)−KL(P||Q)| ≤ 4ε + 2ε ·KL(P||Q).

This proposition implies that KL(ZM ||Z�) ≤ 7ε.
Now run the ML algorithm with m = poly(nL/ε) log(M/δ) on this list of

hypothesis distributions using ZM as the target distribution. (We can obtain
draws from ZM using rejection sampling from Z; with probability 1 − δ this
incurs only a negligible increase in the time required to obtain m draws.) Note
that running the algorithm with ZM as the target distribution lets us assert that
all hypothesis distributions have pdfs bounded above and below on the support
of the target distribution, as is required by Theorem 6. (In contrast, since the
support of Z is all of Rn, we cannot guarantee that our hypothesis distributions
have pdf bounds on the support of Z.) By Theorem 6, with probability at least
1−δ the ML algorithm outputs a hypothesis ZML such that KL(ZM ||ZML) ≤ 28ε.

It remains only to bound KL(Z||ZML). By Proposition 3 we have

KL(Z||ZML) ≤ 28ε + 4ε + 2ε ·KL(Z||ZML)

which implies that KL(Z||ZML) ≤ 33ε. The running time of the overall algorithm
is (nL/ε)O(k3) · log(1/δ) and the theorem is proved.
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7 Extensions to Other Distributions

In this paper we have shown how to PAC learn mixtures of any constant number
of distributions, each of which is an n-dimensional Gaussian product distribu-
tion. This expands upon the work by Feldman et al. [9] which worked for discrete
distributions in place of Gaussians. It should be clear from our work that in fact
many “nice” univariate distributions can be handled similarly. Also, it should
be noted that the n coordinates need not come from the same family of distrib-
utions; for example, our methods would handle mixtures where some attributes
had discrete distributions and the remainder had Gaussian distributions.

What level of “niceness” do our methods require for a parameterized family
of univariate distributions on R? First and foremost, it should be amenable to
the “method of moments” from statistics. By this it is meant that it should be
possible to solve for the parameters of the distribution given a constant number
of the moments. Distributions in this category include gamma distributions, chi-
square distributions, beta distributions, exponential — more generally, Weibull
— distributions, and more. As a trivial example, the unknown parameter of an
exponential distribution is simply its mean. As a slightly more involved example,
given a beta distribution with unknown parameters α and β (the pdf for which
is proportional to xα−1(1−x)β−1 on [0, 1]), these parameters can be determined
from mean and variance estimates via

α = E[X]
(

E[X](1−E[X])
Var[X]

− 1
)
, β = (1−E[X])

(
E[X](1−E[X])

Var[X]
− 1

)
.

So long as the univariate distribution family can be determined by a constant
number of moments, our basic strategy of running WAM multiple times to
determine moment estimates and then taking the cross-products of these lists
can be employed.

There are only two more concerns that need to be addressed for a given pa-
rameterized family of distributions. First, one needs an analogue of Proposi-
tion 1, showing that products of independent random variables from the distri-
bution family are efficiently samplable. (In fact, this should hold for mixtures of
such, but this is very likely to be implied in any reasonable case.) This immedi-
ately holds for any distribution with bounded support; it will also typically hold
for “reasonable” probability distributions that have pdfs with rapidly decaying
tails.

Second, one needs an analogue of Theorem 4. This requires that it should be
possible to convert accurate candidate parameter values into a KL-close actual
distribution. It seems that this will typically be possible so long as the distribu-
tions in the family are not highly concentrated at any particular point. The con-
version procedure should also have the property that the distributions it output
have pdfs that are bounded below/above by at most exponentially small/large
values, at least on polynomially-sized domains. This again seems to be a mild
constraint, satisfiable for reasonable distributions with rapidly decaying tails.

In summary, we believe that for most parameterized distribution families “D”
of interest, performing a small amount of technical work should be sufficient to



34 J. Feldman, R.A. Servedio, and R. O’Donnell

show that our methods can learn “mixtures of products of D’s”. We leave the
problem of checking these conditions for distribution families of interest as an
avenue for future research.
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Abstract. We develop a new error bound for transductive learning al-
gorithms. The slack term in the new bound is a function of a relaxed
notion of transductive stability, which measures the sensitivity of the al-
gorithm to most pairwise exchanges of training and test set points. Our
bound is based on a novel concentration inequality for symmetric func-
tions of permutations. We also present a simple sampling technique that
can estimate, with high probability, the weak stability of transductive
learning algorithms with respect to a given dataset. We demonstrate
the usefulness of our estimation technique on a well known transductive
learning algorithm.

1 Introduction

Unlike supervised or semi-supervised inductive learning models, in transduction
the learning algorithm is not required to generate a general hypothesis that can
predict the label of any unobserved point. It is only required to predict the
labels of a given test set of points, provided to the learner before training. At
the outset, it may appear that this learning framework should be “easier” in
some sense than induction. Since its introduction by Vapnik more than 20 years
ago [18], the theory of transductive learning has not advanced much despite the
growing attention it has been receiving in the past few years.

We consider Vapnik’s distribution-free transductive setting where the learner
is given an “individual sample” of m+u unlabeled points in some space and then
receives the labels of points in an m-subset that is chosen uniformly at random
from the m+ u points. The goal of the learner is to label the remaining test set
of u unlabeled points as accurately as possible. Our goal is to identify learning
principles and algorithms that will guarantee small as possible error in this game.
As shown in [19], error bounds for learning algorithms in this distribution-free
setting apply to a more popular distributional transductive setting where both
the labeled sample of m points and the test set of u points are sampled i.i.d.
from some unknown distribution.

Here we present novel transductive error bounds that are based on new no-
tions of transductive stability. The uniform stability of a transductive algorithm
is its worst case sensitivity for an exchange of two points, one from the labeled
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training set and one from the test set. Our uniform stability result is a rather
straightforward adaptation of the results of Bousquet and Elisseeff [4] for induc-
tive learning. Unfortunately, our empirical evaluation of this new bound (that
will be presented elsewhere) indicates that it is of little practical merit because
the required stability rates, which enable a non-vacuous bound, are not met by
useful transductive algorithms.

We, therefore, follow the approach taken by Kutin and Niyogi [12] in in-
duction and define a notion of weak transductive stability that requires overall
stability ‘almost everywhere’ but still allows the algorithm to be sensitive to
some fraction of the possible input exchanges. To utilize this weak transductive
stability we develop a novel concentration inequality for symmetric functions of
permutations based on Azuma’s martingale bound. We show that for sufficiently
stable algorithms, their empirical error is concentrated near their transductive
error and the slack term is a function of their weak stability parameters. The
resulting error bound is potentially applicable to any transductive algorithm.

To apply our transductive error bound to a specific algorithm, it is necessary
to know a bound on the weak stability of the algorithm. To this end, we develop
a data-dependent estimation technique based on sampling that provides high
probability estimates of the algorithm’s weak stability parameters. We apply
this routine on the algorithm of [20].

2 Related Work

The transductive learning framework was proposed by Vapnik [18, 19]. Two
transductive settings, distribution-free and distributional, are considered and it is
shown that error bounds for the distribution-free setting imply the same bounds
in the distributional case. Vapnik also presented general bounds for transductive
algorithms in the distribution-free setting. Observing that any hypothesis space
is effectively finite in transduction, the Vapnik bounds are similar to VC bounds
for finite hypothesis spaces but they are implicit in the sense that tail probabil-
ities are not estimated but are specified in the bound as the outcome of some
computational routine. Vapnik bounds can be refined to include prior “beliefs”
as noted in [5]. Similar implicit but somewhat tighter bounds were developed in
[3]. Explicit general bounds of a similar form as well as PAC-Bayesian bounds
for transduction were presented in [5].

Exponential concentration bounds in terms of unform stability were first con-
sidered by Bousquet and Elisseeff [4] in the context of induction. Quite a few vari-
ations of the inductive stability concept were defined and studied in [4, 12, 15].
It is not clear, however, what is the precise relation between these definitions
and the associated error bounds. It is noted in [9, 15] that many important
learning algorithms (e.g., SVM) are not stable under any of the stability defini-
tions, including the significantly relaxed notion of weak stability introduced by
Kutin and Niyogi [11, 12]. Hush et al. [9] attempted to remedy this by considering
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‘graphical algorithms’ and a new geometrical stability definition, which captures
a modified SVM (see also [4]).

Stability was first considered in the context of transductive learning by Belkin
et al. [2]. There the authors applied uniform inductive stability notions and
results of [4] to a specific graph-based transductive learning algorithm.1 However,
the algorithm considered has the deficiency that it always labels half of the points
by ‘-1’ and the other half by ‘+1’.

We present general bounds for transduction based on particularly designed
definitions of transductive stability, which we believe are better suited for captur-
ing practical algorithms. Our weak stability bounds have relatively “standard”
form of empirical error plus a slack term (unlike most weak stability bounds for
induction [12, 15, 16]). Kearns and Ron [10] were the first to develop standard
risk bounds based on weak stability. Their bounds are “polynomial”, depending
on 1/δ, unlike the “exponential” bounds we develop here (depending on ln 1/δ).

3 Problem Setup and Preliminaries

We consider the following transductive setting [18]. A full sample Xm+u =
{xi}m+u

i=1 consisting of m + u unlabeled examples in some space X is given.
For each point xj ∈ Xm+u, let yj ∈ {±1} be its unknown deterministic label. A
training set Sm consisting of m labeled points is generated as follows. Sample
a subset of m points Xm ⊂ Xm+u uniformly at random from all m-subsets of
the full sample. For each point xi ∈ Xm, obtain its uniquely determined label
yi from the teacher. Then, Sm = (Xm, Ym) = (zi = 〈xi, yi〉)mi=1. The set of re-
maining u (unlabeled) points Xu = Xm+u \Xm is called the test set. We use the
notation Isr for the set of (indices) {r, . . . , s} (for integers r < s). For simplicity
we abuse notation, and unless otherwise stated, the indices Im1 are reserved for
training set points and the indices Im+u

m+1 for test set points.
The goal of the transductive learning algorithm A is to utilize both the la-

beled training points Sm and the unlabeled test points Xu and generate a soft
classification ASm,Xu(xi) ∈ [−1, 1] for each (test) point xi so as to minimize its
transductive error with respect to some loss function �, Ru(A) �= Ru(ASm,Xu) �=
1
u

∑m+u
i=m+1 �(ASm,Xu(xi), yi). We consider the standard 0/1-loss and margin-loss

functions denoted by � and �γ , respectively.2 In applications of the 0/1 loss func-
tion we always apply the sign function on the soft classification ASm,Xu(x). The
empirical error of A is R̂m(A) �= R̂m(ASm,Xu) �= 1

m

∑m
i=1 �(ASm,Xu(xi), yi).

When using the margin loss function we denote the training and transductive
errors of A by R̂γm(A) and Rγu(A), respectively.

1 There is still some disagreement between authors about the definitions of ‘semi-
supervised’ and ‘transductive’ learning. The authors of [2] study a transductive set-
ting (according to the terminology presented here) but call it ‘semi-supervised’.

2 For a positive real γ, �γ(y1, y2) = 0 if y1y2 ≥ γ and �γ(y1, y2) = min{1, 1 − y1y2/γ}
otherwise.
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Note that in this transductive setting there is no underlying distribution as in
(semi-supervised) inductive models.3 Also, training examples are dependent due
to the sampling without replacement of the training set from the full sample.

We require the following standard definitions and facts about martingales.4

Let Bn
1

�= (B1, . . . , Bn) be a sequence of random variables. The sequence Wn
0

�=
(W0,W1, . . . ,Wn) is called a martingale w.r.t. the underlying sequence Bn

1 if
for any 1 ≤ i ≤ n, Wi is a function of Bi

1 and EBi

{
Wi|Bi−1

1

}
= Wi−1. The

sequence of random variables dn1 = (d1, d2, . . . , dn), where di
�= Wi − Wi−1,

is called the martingale difference sequence of Wn. An elementary fact is that
EBi

{
di|Bi−1

1

}
= 0.

Let f(Zn1 ) �= f(Z1, . . . , Zn) be an arbitrary function of n (possibly dependent)
random variables. Let W0

�= EZn
1
{f(Zn1 )} and Wi

�= EZn
1

{
f(Zn1 )|Zi1

}
for any

1 ≤ i ≤ n. An elementary fact is that Wn
0 is a martingale w.r.t. the underlying

sequence Zn. Thus we can obtain a martingale from any function of (possibly
dependent) random variables. This routine of obtaining a martingale from an
arbitrary function is called Doob’s martingale process. Let dn1 be the martingale
difference sequence of Wn

0 . Then
∑n

i=1 di = Wn −W0 = f(Z) − EZn
1
{f(Zn1 )}.

Consequently, to bound the deviation of f(Z) from its mean it is sufficient to
bound the martingale difference sum. A fundamental inequality, providing such
a bound, is the Azuma inequality.

Lemma 1 (Azuma,[1]). Let Wn
0 be a martingale w.r.t. Bn

1 and dn1 be its dif-
ference sequences. Suppose that for all i ∈ In1 , |di| ≤ bi. Then

PBn
1
{Wn −W0 > ε} < exp

(
− ε2

2
∑n

i=1 b
2
i

)
. (1)

4 Uniform Stability Bound

Given a training set Sm and a test set Xu and two indices i ∈ Im1 and j ∈ Im+u
m+1 ,

let Sijm
�= Sm \ {zi} ∪ {zj = 〈xj , yj〉} and X ij

u
�= Xu \ {xj}∪ {xi} (e.g., Sijm is Sm

with the ith example (from the training set) and jth example (from the test set)
exchanged). The following definition of stability is a straightforward adaptation
of the uniform stability definition from [4] to our transductive setting.

Definition 1 (Uniform Transductive Stability). A transductive learning
algorithm A has uniform transductive stability β if for all choices of Sm ⊂
Sm+u, for all i ∈ Im1 , j ∈ Im+u

m+1 ,

max
1≤k≤m+u

∣∣∣ASm,Xu(xk)−ASij
m,Xij

u
(xk)

∣∣∣ ≤ β . (2)

3 As discussed earlier, Vapnik also considers a second transductive setting where ex-
amples are drawn from some unknown distribution; see Chapter 8 in [19]. Results in
the model we study here apply to the other model (Theorem 8.1 in [19]).

4 See, e.g., [7], Chapt. 12 and [6] Sec. 9.1 for more details.
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Let Z �= Zm+u
1

�= (Z1, . . . , Zm+u) be a random permutation vector where the
variable Zk, k ∈ Im+u

1 , is the kth component of a permutation of Im+u
1 , chosen

uniformly at random. Let Zij be a perturbed permutation vector obtained by
exchanging Zi and Zj in Z. A function f on permutations of Im+u

1 is called
(m,u)-symmetric permutation function if f(Z) = f(Z1, . . . , Zm+u) is symmetric
on Z1, . . . , Zm as well as on Zm+1, . . . , Zm+u.

Let H2(n) �=
∑n

i=1
1
i2 andK(m,u) �= u2(H2(m+u)−H2(u)). It can be verified

that K(m,u) < m. The following lemma is obtained5 by a straightforward ap-
plication of the Azuma inequality to a martingale obtained from f(Z) by Doob’s
process.

Lemma 2. Let Z be a random permutation vector. Let f(Z) be an (m,u)-
symmetric permutation function satisfying

∣∣f(Z)− f(Zij)
∣∣ ≤ β for all i ∈ Im1 ,

j ∈ Im+u
m+1 . Then

PZ {f(Z)−EZ {f(Z)} ≥ ε} ≤ exp
(
− ε2

2β2K(m,u)

)
. (3)

Our first transductive error bound is obtained by applying Lemma 2 to the
function Rγu(A)−R̂γm(A) and bounding E{Rγu(A)−R̂γm(A)} using an adaptation
of Lemma 7 from [4] to our setting.

Theorem 1. Let A be a transductive learning algorithm with transductive uni-
form stability β. Let β̃ �= (u−1)β

uγ + (m−1)β
mγ + 1

m + 1
u . Then, for all γ > 0 and

δ ∈ (0, 1), with probability at least 1 − δ over the draw of the training/test sets
(Sm, Xu),

Ru(A) ≤ R̂γm(A) + β/γ + β̃
√

2K(m,u) ln(1/δ) . (4)

The tightness of the bound (4) depends on the transductive uniform stability
β of algorithm A. If β = O(1/m) and u = Ω(m), then the slack terms in (4)
amount to O(

√
ln(1/δ)/m/γ). However, in our experience this stability rate is

never met by useful transductive algorithms.

5 Weak Stability Bound

The impractical requirement of the uniform stability concept motivates a weaker
notion of stability that we develop here. The following definition is inspired by
a definition of Kutin for inductive learning (see Definition 1.7 in [11]).

Definition 2 (Weak Permutation Stability). Let Z be a random permuta-
tion vector. A function f(Z) has weak permutation stability (β, β1, δ1) if f has
uniform stability β and

PZ,i∼Im
1 ,j∼Im+u

m+1

{∣∣f(Z)− f(Zij)
∣∣ ≤ β1

}
≥ 1− δ1 , (5)

where i ∼ I denotes a choice of i ∈ I uniformly at random.
5 All omitted proofs will appear in the full version of the paper.
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This weaker notion of stability only requires that |f(Z) − f(Zij)| be bounded
with respect to most exchanges, allowing for a δ1-fraction of outliers. To utilize
Definition 2 we develop in Lemma 3 a new concentration inequality for symmetric
permutation functions that satisfy the new weak stability property.

Lemma 3. Let Z be a random permutation vector and f(Z) be an (m,u)-
symmetric permutation function. Suppose that f(Z) has weak permutation sta-
bility (β, β1, δ1). Let δ ∈ (0, 1) be given, and for i ∈ Im1 , let θi ∈ (0, 1), Ψ �=
δ1
∑m

i=1 1/θi and bi
�= ((1−θi)β1+θiβ)

(m+u−i+1)(1−Ψ) . If Ψ < 1, then with probability at least
(1− δ) · (1− Ψ) over the choices of Z,

f(Z) ≤ EZ {f(Z)} + u

√√√√2
m∑
i=1

b2i ln
1
δ
. (6)

Note that the confidence level can be made arbitrarily small by selecting appro-
priate θi and δ1 (thus trading-off β1).

Proof. Let Wm+u
0 be a martingale generated from f(Z) by Doob’s process. We

derive bounds on the martingale differences di, i ∈ Im+u
1 , and apply Lemma 1.

Let πππm+u
1 = π1, . . . , πm+u be a specific permutation of Im+u

1 . In the proof
we use the following shortcut: Zr1 = πππr1 abbreviates the r equalities Z1 =
π1, . . . , Zr = πr. Let θi be given. For r ∈ Im1 , we say that the prefix πππr1 of a
permutation πππm+u

1 is (r, θr)-admissible (w.r.t. a fixed β1) if it guarantees that

PZ,j∼Im+u
m+1

{∣∣f(Z)− f(Zrj)
∣∣ ≤ β1 | Zr1 = πππr1

}
≥ 1− θr . (7)

If the prefix πππr1 does not satisfy (7), we say that it is not (r, θr)-admissible. Let
ζ(r, θr) be the probability that Zr1 is not (r, θr)-admissible. Our goal is to bound
ζ(r, θr). For any fixed 1 ≤ r ≤ m we have,

t(r) �= PZ,j∼Im+u
m+1

{∣∣f(Z)− f(Zrj)
∣∣ > β1

}
=

∑
all possible
prefixes πππr

1

(
PZ,j∼Im+u

m+1

{∣∣f(Z)− f(Zrj)
∣∣ > β1 | Zr1 = πππr1

}
·PZ {Zr1 = πππr1}

)

≥
∑
non-

admissible
prefixes πππr

1

(
PZ,j∼Im+u

m+1

{∣∣f(Z)− f(Zrj)
∣∣ > β1 | Zr1 = πππr1

}
·PZ {Zr1 = πππr1}

)

≥ θr ·
∑

non-admissible
prefixes πππr

1

PZ {Zr1 = πππr1} = θrζ(r, θr) . (8)

Since f(Z) is (m,u)-permutation symmetric, t(r) = t is constant. Since f(Z)
has weak permutation stability (β, β1, δ1),

δ1 ≥ PZ,i∼Im
1 ,j∼Im+u

m+1

{∣∣f(Z)− f(Zij)
∣∣ > β1

}
=

m∑
r=1

1
m
· t(r) = t ≥ θrζ(r, θr) .

(9)
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Consequently, ζ(r, θr) ≤ δ1/θr. Or next goal is to bound dr for (r, θr)-admissible
prefixes. Let l(k) be an index l such that Zl = k. If πππr1 = (πππr−1

1 , πr = k) is
(r, θr)-admissible, then

|dr| = |Wr −Wr−1| =
∣∣EZ {f(Z) | Zr1 = πππr1} −EZ

{
f(Z) | Zr−1

1 = πππr−1
1

}∣∣
=
∣∣∣EZ

{
f(Zrl(k))− f(Z) | Zr−1

1 = πππr−1
1

}∣∣∣
=
∣∣∣EZ,j∼Im+u

r

{
f(Z)− f(Zrj) | Zr1 = πππr1

}∣∣∣ (10)

≤ EZ,j∼Im+u
r

{∣∣f(Zrj)− f(Z)
∣∣ | Zr1 = πππr1

}
= Pj∼Im+u

r
{j ∈ Imr } · EZ,j∼Im

r

{∣∣f(Zrj)− f(Z)
∣∣ | Zr1 = πππr1

}
} (11)

+Pj∼Im+u
r
{j ∈ Im+u

m+1 } · EZ,j∼Im+u
m+1

{∣∣f(Zrj)− f(Z)
∣∣ | Zr1 = πππr1

}
(12)

≤ u ((1− θr)β1 + θrβ)
m+ u− r + 1

�= br . (13)

The inequality (13) follows because (i) the expectation in (11) is zero since f
is (m,u)-permutation symmetric; and (ii) πππr1 is (r, θr)-admissible, implying that
the expectation in (12) is bounded by (1− θr)β1 + θrβ.

A permutation πππm+u
1 is good if for all r ∈ Im1 its r-prefixes, πππr1, are admissible

(w.r.t. the corresponding θr). Since ζ(r, θr) ≤ δ1/θr, we have

PZ {Z not good} ≤
m∑
r=1

PZ {Zr1 not admissible} =
m∑
r=1

ζ(r, θr) ≤
m∑
r=1

δ1
θr

= Ψ .

(14)
Thus, with probability at least 1 − Ψ , the random permutation Z is good, in
which case we have |dr| ≤ br for all r ∈ Im1 .

Consider the space G of all good permutations. Let Vm+u
0 be a martingale

obtained by Doob’s process operated on f and G. Then, using (13) we bound
the martingale difference sequence d′m+u

1 of Vm+u
0 as follows.

|d′i| ≤ Pj∼Im+u
r
{j ∈ Im+u

m+1 } ×
EZ∈G,j∼Im+u

m+1

{∣∣f(Zrj)− f(Z)
∣∣ | Zr1 = πππr1, πππ

r
1 is admissible

}
(15)

≤ Pj∼Im+u
r
{j ∈ Im+u

m+1 } ×
EZ,j∼Im+u

m+1

{∣∣f(Zrj)− f(Z)
∣∣ | Zr1 = πππr1, πππ

r
1 is admissible

}
PZ{Z ∈ G}

≤ u ((1− θr)β1 + θrβ)
(m+ u− r + 1)(1− Ψ)

�= br . (16)

Since f(Z) is (m,u)-permutation symmetric, it follows from (10) that for any
r ∈ Im+u

m+1 , d′r = 0. Therefore, we can apply Lemma 1 to the martingale Vm+u
0 .

We obtain a bound on the deviation of Vm+u − V0 = f(Z) − EZ {f(Z)}. Our
result (6) is completed by equating the resulting bound to δ and isolating ε. �
It follows from Definition 2 that β1 depends on δ1. Hence, the bound (6) depends
on the following parameters: δ1, θi, i ∈ Im1 . It can be shown that if β1 = O(1/m),
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δ1 = O(1/m2) and θi = O(1/m) for all i ∈ Im1 , then the slack term in (6) is
O(

√
ln(1/δ)/m) and the bound’s confidence can be made arbitrarily close to 1.

Our goal now is to derive an error bound for transductive algorithms by
utilizing the weak stability notion. To this end, we now define weak trans-
ductive stability for algorithms. The following definition, which contains three
conditions and six parameters, is somewhat cumbersome but we believe it fa-
cilitates tighter bounds than can possibly be achieved using a simpler defini-
tion (that only includes condition (18) below); see also the discussion that fol-
lows this definition. For a fixed full sample, we abbreviate Aij(x, (Sm, Xu))

�=
|ASm,Xu(x)−ASij

m ,Xij
u

(x)|.
Definition 3 (Weak Transductive Stability). A transductive learning algo-
rithm A has weak transductive stability (β, β1, β2, δ

a
1 , δ

b
1, δ2) if it has uniform

transductive stability β and the following conditions (17) and (18) hold.

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1

{
Px∼Xm+u

{
Aij(x, (Sm, Xu)) ≤ β1

}
≥ 1− δa1

}
≥ 1− δb1 .

(17)

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1

{
Aij(xi, (Sm, Xu)) ≤ β2

}
≥ 1− δ2 . (18)

While in (17) we quantify the sensitivity of the algorithm w.r.t. all examples in
Xm+u, in (18) only the exchanged examples are considered. A number of weak
stability definitions for induction is given in [10, 12, 15]. Ignoring the differences
between induction and transduction, our condition (17) poses a qualitatively
weaker constraint than the ‘weak hypothesis stability’ (Definition 3.5 in [12]), and
a stronger constraint than the ‘weak error stability’ (Definition 3.8 in [12]). Our
condition (18) is a straightforward adaptation of the ‘cross-validation stability’
(Definition 3.12 in [12]) to our transductive setting.

It should be possible to show, using a technique similar to the one used in
the proof of Theorem 3.16 in [12], that (18) implies (17). In this case a simpler
weak stability definition may suffice but, using our techniques, the resulting error
bound would be looser.

Let Δ(i, j, s, t) �= �γ(ASij
m,Xij

u
(xt), yt) − �γ(ASm,Xu(xs), ys). For the proof of

the forthcoming error bound we need the following technical lemma.

Lemma 4. E(Sm,Xu)

{
Rγu(A)− R̂γm(A)

}
= E(Sm,Xu),i∼Im

1 ,j∼Im+u
m+1
{Δ(i, j, i, i)}.

Theorem 2. Let A be an algorithm with weak transductive classification sta-
bility (β, β1, β2, δ

a
1 , δ

b
1, δ2). Suppose that u ≥ m and δa1 < m

m+u .6 Let γ > 0,
δ ∈ (0, 1) be given and set

β̃1
�=
u− 1
u
· β1

γ
+
δa1 (m+ u)β + [m− 1− δa1 (m+ u)]β1

mγ
+

1
m

+
1
u
, (19)

β̃
�=
u− 1
u
· β
γ

+
m− 1
m

· β
γ

+
1
m

+
1
u
. (20)

6 The proof for the cases δa
1 > m

m+u
and m > u is very similar to the proof given below

and is omitted.
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For any θi ∈ (0, 1), i ∈ Im1 , set Ψ �=
∑m

i=1
δb
1
θi

and bi
�=

u((1−θi)β̃1+θiβ̃)
(m+u−i+1)(1−Ψ) . If Ψ < 1,

then with probability at least (1 − δ) · (1− Ψ) over the draw of the training/test
sets (Sm, Xu),

Ru(A) ≤ R̂γm(A) +
[
(1− δ2)

β2

γ
+ δ2

β

γ

]
+

√√√√2
m∑
i=1

b2i ln
1
δ
. (21)

Proof. We derive bounds on the weak permutation stability of the function
f(Sm, Xu)

�= Rγu(A)− R̂γm(A) and its expected value. Then we apply Lemma 3.
For i ∈ Im1 , j ∈ Im+u

m+1 , we have (by expanding the risk expressions),∣∣∣Rγu(A)− R̂γm(A) −
(
Rγu(ASij

m,Xij
u

)− R̂γm(ASij
m ,Xij

u
)
)∣∣∣ ≤

1
u

m+u∑
k=m+1,
k �=j

|Δ(i, j, k, k)|+ 1
u
|Δ(i, j, j, i)|+ 1

m

m∑
k=1,
k �=i

|Δ(i, j, k, k)|+ 1
m
|Δ(i, j, i, j)| .

(22)

Since �γ has Lipschitz constant γ, it follows from (17) that

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1

{
Pk∼Im+u

1
{|Δ(i, j, k, k)| ≤ β1/γ} ≥ 1− δa1

}
≥ 1− δb1 .

(23)
We say that the example xk is bad if |Δ(i, j, k, k)| > β1/γ. According to (23),
with probability at least 1 − δb1 over the choices of ((Sm, Xu), i, j), there are
at most (1− δa1 ) (m + u) bad examples. If u ≥ m, the terms in the second
summation in (22) have greater weight (which is 1/m) than the terms in the
first summation (weighted by 1/u). In the worst case all bad examples appear
in the second summation in which case (22) is bounded by (19) with probability
at least 1− δb1 over the choices of ((Sm, Xu), i, j).

The right hand side of (22) is always bounded by β̃. Therefore, the function
f(Sm, Xu) has weak permutation stability (β̃, β̃1, δ

b
1). By applying Lemma 3 to

f(Sm, Xu), we obtain that with probability at least (1− δ) (1− Ψ),

Rγu(A) ≤ R̂γm(A) + E(Sm,Xu)

{
Rγu(A) − R̂γm(A)

}
+

√√√√2
m∑
i=1

b2i ln
1
δ
. (24)

Since �γ has Lipschitz constant γ, it follows from (18) that

P(Sm,Xu),i∼Im
1 ,j∼Im+u

m+1
{|Δ(i, j, i, i)| ≤ β2/γ} ≥ 1− δ2 . (25)

Therefore, the right hand side of the equality in Lemma 4 is bounded from
above by β2(1− δ2)/γ+βδ2/γ. By substituting this bound to (24) and using the
inequality Rγu(A) ≥ Ru(A), we obtain (21). �
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It follows from Definition 3 that β1 depends on δa1 and δb1, and that β2 depends
on δ2. Hence the bound (21) depends on the following parameters: δa1 , δ

b
1, δ2, θi,

i ∈ Im1 . It is possible to show that if u = Ω(m), δb1 = O(1/m2) and β1, β2, δa1 , δ2,
θi are each O(1/m), then the slack term in (21) is O(

√
ln(1/δ)/m/γ) and the

bound’s confidence can be made arbitrarily close to 1.

6 High Confidence Stability Estimation

In this section we describe a routine that can generate useful upper bounds
on the weak stability parameters (Definition 3) of transductive algorithms. The
routine generates these estimates with arbitrarily high probability and is based
on a sampling-based quantile estimation technique. Given a particular learning
algorithm, our stability estimation routine relies on an “oracle” that bounds the
sensitivity of the transductive algorithm with respect to a small change in the
input. We present such an oracle for a familiar practical algorithm. In Sec. 6.1 we
describe the quantile estimation method, which is similar to the one presented
in [14]; in Sec. 6.2 we present the bounding algorithm, and in Sec. 6.3 we consider
a known transductive algorithm and present a few numerical examples of the
application of these methods.

6.1 Quantile Estimation

Consider a very large set Ω of N numbers. Define the q-quantile of Ω to be the
�qN�-th smallest element of Ω (i.e., it is the �qN�-th element in an increasing
order sorted list of all elements in Ω). Our goal is to bound the q-quantile xq
from above as tightly as possible, with high confidence, by sampling a “small”
number k � N of elements. For any ε ∈ (0, 1) we generate a bound β such that
P{xq ≤ β} ≥ 1− ε. The idea is to sample k = k(q, ε) elements from Ω uniformly
at random, compute their exact (q̄ �= q + 1−q

2 )-quantile xq̄ , and output β �= xq̄.
Denote by quantile(q, ε, Ω) the resulting routine whose output is β = xq̄ .

Lemma 5. For any q, ε ∈ (0, 1). If k = k(q, ε) = 2 ln(1/ε)
(1−q)2 , then

P {xq ≤ quantile(q, ε, Ω)} ≥ 1− ε . (26)

Proof. For i ∈ Ik1 let Xi be the indicator random variable obtaining 1 if the ith
drawn element (from Ω) is smaller than xq, and 0 otherwise. Set Q = 1

k

∑k
i=1Xi.

Clearly, EQ ≤ q. By Hoeffding’s inequality and using the definition of q̄, we get

P {Q > q̄} = P
{
Q− q > 1− q

2

}
≤ P

{
Q−EQ >

1− q
2

}
≤ exp

(
−k(1− q)

2

2

)
. (27)

Therefore, with “high probability” the number kQ of sample points that are
smaller than xq is smaller than kq̄. Hence, at least (1− q̄)k points in the sample
are larger than xq. quantile returns the smallest of them. Equating the right
hand side of (27) to ε and solving for k yields the stated sample size. �
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6.2 Stability Estimation Algorithm

Let A be a transductive learning algorithm. We assume that some (rough) bound
on A’s uniform stability β is known. If no tight bound is known, we take the
maximal default value, which is 2, as can be seen in Definition 1. Our goal is
to find useful bounds for the weak stability parameters of Definition 3. Let the
values of δa1 , δb1 and δ2 be given. We aim at finding upper bounds on β1 and β2.

Definition 4 (The diff Oracle). Consider a fixed labeled training set Sm =
(Xm, Ym) given to the learning algorithm. Let diff(X̃m, X̃u, i, j, r|Sm) be an
“oracle” function defined for any possible partition (X̃m, X̃u) of the full sample
and indices i ∈ Im1 , j ∈ Im+u

m+1 and r ∈ Im+u
1 . diff provides an upper bound on∣∣∣AS̃m,X̃u

(xr)−AS̃ij
m,X̃ij

u
(xr)

∣∣∣ , (28)

where S̃m is any possible labeling of X̃m that “agrees” with Sm on points in
Xm ∩ X̃m. Note that here we assume that Im1 is the set indices of points in X̃m

(and indices in Xm are not specified and can be arbitrary indices in Im+u
1 ).

We assume that we have an accesses to a useful diff(X̃m, X̃u, i, j, r|Sm) func-
tion that provides a tight upper bound on (28). We now describe our stability
estimation algorithm that applies diff.

Let K be the set of all possible quadruples (X̃m, X̃u, i, j) as in Definition 4.
Define Ω1 = {ω(t) : t ∈ K}, ω(t) = ω(X̃m, X̃u, i, j) is a (1 − δa1 )-quantile of the
set Φ =

{
diff(X̃m, X̃u, i, j, r|Sm), r = 1, . . . ,m+ u

}
. It is not hard to see that

for any ε ∈ (0, 1), with probability at least 1− ε (over random choices made by
the quantile routine), quantile(1 − δb1, ε, Ω1) is an upper bound on the weak
stability parameter β1 of Definition 3. Likewise, let Ω2 = {ω(t) : t ∈ K}, but
now ω(t) = ω(X̃m, X̃u, i, j) = diff(X̃m, X̃u, i, j, i). It is not hard to see that for
any ε, with probability at least 1− ε, quantile(1− δ2, ε, Ω2) is an upper bound
on the weak stability parameter β2 of Definition 3.

Thus, our weak stability estimation algorithm simply applies quantile twice
with appropriate parameters. To actually draw the samples, quantile utilizes
the diff function. Let v be the time complexity of computing diff oracle.
By Lemma 5 the number of samples that should be drawn, in order to obtain
with probability at least 1 − ε the bound on q-quantile, is O(ln(1/ε)/(1 − q)2).
It can be verified that the complexity of our stability estimation algorithm is
O(ln(1/ε)(m+ u)v/min{(δb1)2, (δ2)2}). As discussed after Theorem 2, δb1 should
be O(1/m2) to ensure that the bound (21) has arbitrarily high confidence. This
constraint entails a time complexity of Ω(m4(m+u)). Hence currently our ability
to use the stability estimation routine in conjunction with the transductive error
bound is limited to very small values of m.

6.3 Stability Estimation Examples

In this section we consider the transductive learning algorithm of Zhou et al. [20]
and demonstrate a data-dependent estimation of its weak stability parameters
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using our method. While currently there is no comprehensive empirical com-
parison between all available transductive algorithms, this algorithm appears to
be among the more promising ones [8]. We chose this algorithm, denoted by
CM (stands for ‘Consistency Method’; see [8]), because we could easily develop
a useful diff “oracle” for it. We were also able to efficiently implement diff
“oracle” for the algorithm of Zhu et al. [21], which will be presented elsewhere.

We start with the brief description of the CM algorithm. Let W be a symmetric
(m + u) × (m + u) affinity matrix of the full sample Xm+u. We assume that
Wii = 0. In this paper we use RBF kernels, parameterized by σ, to construct
W . Let D be a diagonal matrix, whose (i, i)-element is the sum of the ith row in
W . A normalized Laplacian of W is L = D−1/2WD−1/2. Let α be a parameter
in (0, 1). Let Y be an (m + u) × 1 vector of available full sample labels, where
the entries corresponding to training examples are ±1 and entries of unlabeled
examples are 0. We assume w.l.o.g. that the first m entries in Y correspond
to the m labeled training examples. Let P = (I − αL)−1. The CM algorithm
produces soft-classification F = P · Y . In other words, if pij is the (i, j)th entry
of P and fi is the ith entry of F , the point xi receives the soft-classification

fi =
m∑
j=1

pijyj . (29)

To obtain useful bounds on the (weak) stability of CM we require the following
benign technical modifications of CM that would not change the hard classification
it generates over test set examples.

1. We prevent over-fitting to the training set by setting pii = 0.
2. To enable a comparison between stability values corresponding to different

settings of the parameters α and σ, we ensure that the dynamic range of fi
is normalized w.r.t. different values of α and σ. That is, instead of using (29)
for prediction we use

fi =

∑m
j=1 pijyj∑m
j=1 pij

. (30)

The first modification prevents possible over-fitting to the training set since for
any i ∈ Im+u

1 , in the original CM the value of pii is much larger than any of the
other pij , j �= i, and therefore, the soft classification of the training example xi
is almost completely determined by its given label yi. Hence by (29), when xi
is exchanged with some test set example xj , the soft classification change of xi
will probably be large. Therefore, the stability condition (18) cannot be satisfied
with small values of β2. By setting pii = 0 we prevent this problem and only
affect the soft and hard classification of training examples (and keep the soft
classifications of test points intact). The second modification clearly changes the
dynamic range of all soft classifications but does not alter any hard classification.

To use our stability estimation algorithm one should provide an implemen-
tation of diff. We show that for the CM algorithm diff(X̃m, X̃u, i, j, r|Sm) can
be effectively implemented as follows. For notational convenience we assume
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here (and also in Definition 4) that examples in X̃m have indices in Im1 . Let
τ(r) =

∑m
k=1,k �=i prk and τy(r) =

∑m
k=1,k �=i prkyk. It follows from (30) that∣∣∣AS̃m,X̃u

(xr)−AS̃ij
m,X̃ij

u
(xr)

∣∣∣ ==

∣∣∣∣∣ (prj − pri) ·
∑m

k=1,k �=i,xk /∈Xm
prkyk + T

(τ(r) + pri)(τ(r) + prj)

∣∣∣∣∣ ,
(31)

where T �= (prj−pri)·
∑m

k=1,k �=i,xk∈Xm
prkyk+τ(r)·(priyi−prjyj)+priprj(yi−yj).

To implement diff(X̃m, X̃u, i, j, r|Sm) we should upper bound (31). Suppose
first that the values of yi and yj are known. Then, T is constant and the only un-
knowns in (31) are the yk’s in the first summation. Observe that (31) is maximal
when all values of these yk’s are −1 or all of them are +1. Hence by taking the
maximum over these possibilities we obtain an upper bound on (31). If yi (or yj)
is unknown then, similarly, for each of its possible assignments we compute (31)
and take the maximum. In the worst case, when both yi and yj are unknown, we
compute the maximum of (31) over the eight possible assignments for these two
variables and the yk’s in the first summation. it can be verified that the time
complexity of the above diff oracle is O(m).

We now show two numerical examples of stability estimations for the CM algo-
rithm with respect to two UCI datasets. These results were obtained by imple-
menting the modified CM algorithm and the stability estimation routine applied
with the above implementation of diff. For each “experiment” we ran the mod-
ified CM algorithm with 21 different hyper-parameter settings for α and σ, each
resulting in a different application of the algorithm.7

We considered two UCI datasets, musk and mush. From each dataset we gen-
erated 30 random full samples Xm+u each consisting of 400 points. We divided
each full sample instance to equally sized training and test sets uniformly at
random. The high confidence (95%) estimation of stability parameter β1 (see
Definition 3) w.r.t. δa1 = δb1 = 0.1, and the corresponding empirical and true
risks are shown in Fig. 1. The graphs for the β2 parameter are qualitatively sim-
ilar and are omitted here. Indices in the x-axis correspond to the 21 applications
of CM and are sorted in increasing order of true risk. Each stability and error
value depicted is an average over the 30 random full samples. We also depict a
high confidence (95%) true stability estimates, obtained in hindsight by using
the unknown labels in the computation of diff. The uniform stability graphs
correspond to lower bounds obtained by taking the maximal soft classification
change encountered while estimating the true weak stability.

It is evident that the (true) weak stability is often significantly lower than the
(lower bound on) the uniform stability. In cases where the weak and uniform
stabilities are similar, the CM algorithm performs poorly. The estimated weak
stability behaves qualitatively the same as the true weak stability. When the
uniform stability obtains lower values the algorithm performs very poorly. This
may indicate that a good uniform stability is correlated with degenerated be-
havior (similar phenomenon was observed in [2]). In contrast, we see that very
7 We naively took α ∈ {0.01, 0.5, 0.99} and σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1, 2} and these

were our first and only choices.
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Fig. 1. Stability estimates (left) and the corresponding empirical/true errors (right)
for musk and mush datasets

good weak stability can coincide with very high performance. Finally, we note
that these graphs do not demonstrate that good weak stability is proportional
to low discrepancy between the empirical end true errors.

7 Concluding Remarks

This paper has presented new error bounds for transductive learning. The bounds
are based on novel definitions of uniform and weak transductive stability. We
have also shown that weak transductive stability can be bounded with high
confidence in a data-dependent manner and demonstrated the application of this
estimation routine on a known transductive algorithm. As far as we know this
is the first attempt to generate truly data-dependent high confidence stability
estimates based on all available information including the labeled samples.

We note that similar risk bounds based on weak stability can be obtained
for induction. However, the adaptation of Definition 3 to induction (see also
inductive definitions of weak stability in [10, 12, 15]) depends on the probability
space of training sets, which is unknown in general. This prevents the estimation
of weak stability using our method.

As discussed, to derive stability bounds with sufficient confidence our stability
estimation routine is required to run in Ω(m4(m + u)) time, which precluded,
at this stage, an empirical evaluation of our bounds. In future work we will
attempt to overcome this obstacle by tightening our bound, perhaps using the
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techniques from [13, 17]. A second direction would be to develop a more suitable
weak stability definition. We also plan to consider other known transductive
algorithms and develop for them a suitable implementation of the diff oracle.
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Uniform Convergence of Adaptive Graph-Based
Regularization

Matthias Hein

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Abstract. The regularization functional induced by the graph Lapla-
cian of a random neighborhood graph based on the data is adaptive in
two ways. First it adapts to an underlying manifold structure and second
to the density of the data-generating probability measure. We identify in
this paper the limit of the regularizer and show uniform convergence over
the space of Hölder functions. As an intermediate step we derive upper
bounds on the covering numbers of Hölder functions on compact Rie-
mannian manifolds, which are of independent interest for the theoretical
analysis of manifold-based learning methods.

1 Introduction

Naturally graphs are inherently discrete objects. However if there exists an un-
derlying continuous structure certain neighborhood graphs can be seen as ap-
proximations of the underlying continuous structure. The main goal of this paper
is to show how that the smoothness functional S(f) induced by the graph Lapla-
cian of a neighborhood graph built from random samples can be defined in such
a way that its continuum limit approximates a desired continuous quantity.

In principle such considerations have been the motivation to build algorithms
based on the graph Laplacian for dimensionality reduction, clustering and semi-
supervised learning, see e.g. [2, 1, 15, 6]. However the theoretical study of this
motivation in particular when the data in Rd lies on a Euclidean submanifold
has been only started quite recently. In [9], see also [3], it was shown that the
pointwise limit of the normalized graph Laplacian is the weighted Laplace Bel-
trami operator. The first work where the limit of S(f) has been studied was [4].
There the limit of S(f) for a single function in the case when the data generating
probability measure P has full support in Rd was derived in a two step process,
first n→∞, then letting the neighborhood size h→ 0. In this paper we extend
this result in several ways. First we extend it to the setting where the data lies
on a submanifold1 M of Rd, second we introduce data-dependent weights for the
graph which are used to control the influence of the density p of P on the limit
functional, third we do the limit process n → ∞ and h → 0 simultaneously, so
that we actually get rates for h(n) and finally we perform this limit uniformly
over the function space of Hölder functions.

1 All the results apply also in the case where P has full d-dimensional support in Rd.
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We include also an extensive discussion of the properties of the limit smooth-
ness functional and why and how it can be interesting in different learning algo-
rithms such as regression, semi-supervised learning and clustering. In particular
the adaptation to the two independent structures inherent to the data, the geom-
etry of the data manifold M and the density p of P , are discussed.

2 Regularization with the Graph Laplacian and Its
Continuous Limit

The first part of this section introduces the smoothness functional induced by the
graph Laplacian for an undirected graph, in particular the neighborhood graph
studied in this paper. In the second part we will sketch our main result, the uni-
form convergence of the smoothness functional induced by the graph Laplacian
over the space of α-Hoelder functions. In particular we study the adaptation
of the continuous limit functional to the geometry of the data manifold and
the density of the data generating measure and possible applications thereof in
semi-supervised learning, regression and clustering.

2.1 The Graph Laplacian and Its Induced Smoothness Functional

Let (V,E) be a undirected graph, where V is the set of vertices with |V | = n and
E the set of edges. Since the graph is undirected we have a symmetric adjacency
matrixW . Moreover we define the degree function as di =

∑n
j=1 wij . Then it can

be shown, see [9], that once one has fixed Hilbert spaces HV ,HE of functions
on V and E and a discrete differential operator ∇ : HV → HE , the graph
Laplacian2 Δ : HV → HV is defined as Δ = ∇∗∇, where ∇∗ is the adjoint of d.
In the literature one mainly finds two types of graph Laplacian, the normalized
one Δnorm = −D−1W and the unnormalized one Δunnorm = D −W , where
Dij = diδij . The smoothness functional S(f) : HV → R+ induced by the graph
Laplacian is defined as

S(f) = 〈∇f,∇f〉HE
= 〈f,Δf〉HV

.

Note that S(f) defines a semi-norm on HV . It is can be shown that Δnorm and
Δunnorm induce the same S(f) explicitly given as:

S(f) =
1

2n(n− 1)

n∑
i�=j

wij
(
f(i)− f(j)

)2
.

S(f) coincides for the two graph Laplacians since S(f) is independent of the
choice of the inner product in HV , see [8, sec. 2.1.5]. Note that the smoothness
functional S(f) penalizes a discrete version of the first derivative of f .

In this paper we study certain neighborhood graphs that is the weights depend
on the Euclidean distance. The vertex set is an i.i.d. sample {Xi}ni=1 of the data

2 This holds also for directed graphs, see [8, sec. 2.1].
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generating probability measure P . Of special interest is the case where P has
support on am-dimensional submanifoldM in Rd. Similar to Coifman and Lafon
in [6] for the continuous case we define the weights of the graph as follows:

wλ,h,n(Xi, Xj) =
1
hm

k(‖i(Xi)− i(Xj)‖2 /h2)
(dh,n(Xi)dh,n(Xj))λ

, λ ∈ R.

where dh,n(Xi) = 1
nhm

∑n
j=1 k(‖Xi −Xj‖2 /h2) is the degree function corre-

sponding to the weights k. Note that since k is assumed to have compact sup-
port, the parameter h determines the neighborhood of a point. We will denote
by Sλ,h,n(f) the smoothness functional with respect to the weights wλ,h,n,

Sλ,h,n(f) =
1

2n(n− 1)h2

n∑
i,j=1

(f(Xj)− f(Xi))2wλ,h,n(Xi, Xj).

2.2 The Continuous Regularizer Induced by the Weighted Laplacian

The weighted Laplacian is the natural extension of the Laplace-Beltrami opera-
tor3 on a Riemannian manifold, when the manifold is equipped with a measure
P which is in our case the probability measure generating the data.

Definition 1 (Weighted Laplacian). Let (M, gab) be a Riemannian manifold
with measure P where P has a differentiable density p with respect to the natural
volume element dV =

√
det g dx, and let ΔM be the Laplace-Beltrami operator

on M . Then we define the s-th weighted Laplacian Δs as

Δs := ΔM +
s

p
gab(∇ap)∇b =

1
ps
gab∇a(ps∇b) =

1
ps

div(ps grad). (1)

The weighted Laplacian induces a smoothness functional SΔs : C∞
c (M)→ R+,

SΔs(f) := −
∫
M

f(Δsf) psdV =
∫
M

〈∇f,∇f〉 psdV,

The following sketch of our main Theorem 6 shows that one can choose a function
h(n) such that Sλ,h,n(f) approximates SΔγ (f) uniformly for γ = 2− 2λ.

Sketch of main result. Let Fα(s) be the ball of radius s in the space of Hölder
functions on M . Define γ = 2−2λ, then there exists a constant c depending only
on k such that for α ≥ 3 and h(n) = O(n−

α
2α+2m+m2+mα ),

sup
f∈Fα(s)

∣∣Sλ,h,n(f)− c SΔγ (f)
∣∣ = O

(
n
− α

2α+2m+m2+mα

)
a.s.

3 The Laplace-Beltrami operator on a manifold M is the natural equivalent of the
Laplacian in Rd, defined as

ΔMf = div(grad f) = ∇a∇af
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We refer to Section 4 for a more detailed account of the results. Let us analyze
now the properties of the limit smoothness functional SΔγ

SΔγ (f) =
∫
M

‖∇f‖2TxM
p(x)2−2λ

√
det g dx

Note first that ‖∇f‖TxM
is the norm of the gradient of f on M . The meaning

becomes clearer when we express ‖f‖TxM
as a local Lipschitz constant4 LMx (f),

‖∇f‖TxM
= LMx (f) = sup

y∈M

|f(x)− f(y)|
dM (x, y)

�= sup
y∈M

|f(x)− f(y)|
‖x− y‖ = LRd

x (f)

Most important the smoothness of f is measured with respect to the metric of
M or in other words with respect to the intrinsic parameterization. That is a
small ‖f‖TxM

implies that f(x) � f(y) if x and y are close in the metric of M
but not in the metric5 of Rd. Therefore as desired the graph Laplacian based
smoothness functional adapts to the intrinsic geometry of the data.

Next we motivate how the adaptation to the density p controlled by λ can
be used in learning algorithms. For γ > 0 the functional SΔγ prefers functions
f which are smooth in high-density regions whereas changes are less penalized
in low-density regions. This is a desired property for semi-supervised learning
where one assumes especially if one has only a few labeled points that the clas-
sifier should be almost constant in high-density regions whereas changes of the
classifier are allowed in low-density regions, see e.g [4]. However also the case
γ < 0 is interesting. Then minimizing SΔγ (f) implies the opposite: smoothness
of the function f is enforced where one has little data, and more variation of
f is allowed where more data points are sampled. Such a penalization seems
appropriate for regression and has been considered by Canu and Elisseeff in [5].
Another application is spectral clustering. The eigenfunctions of Δγ can be seen
as the limit partioning of spectral clustering for the normalized graph Laplacian
(however a rigorous proof has not been given yet). We show now that for γ > 0
the eigenfunction correponding to the first non-zero eigenvalue is likely to change
its sign in a low-density region. Let us assume for a moment that M is compact
without boundary and that p(x) > 0, ∀x ∈M , then the eigenspace for the first
eigenvalue λ0 = 0 is given by the constant functions. The next eigenvalue λ1 can
be determined by the Rayleigh-Ritz variational principle

λ1 = inf
u∈C∞(M)

{∫
M
‖∇u‖2 p(x)γdV (x)∫

M
u2(x)p(x)γdV (x)

∣∣∣ ∫
M

u(x) p(x)γdV (x) = 0

}
.

Since the first eigenfunction has to be orthogonal to the constant functions, it
has to change its sign. However since ‖∇u‖2 is weighted by pγ it is obvious that
for γ > 0 the function changes its sign in a region of low density.

4 f is continuously differentiable so both terms coincide.
5 Note that small ‖x − y‖ does not imply that dM (x, y) is small e.g. imagine a spiral.
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3 Covering Numbers for α-Hölder Functions on Compact
Riemannian Manifolds with Boundary

In this section we derive bounds on the covering numbers of α-Hölder functions
on compact Riemannian manifolds with boundary. This generalizes the classical
bounds for Euclidean space derived by Kolmogorov and Tihomirov [12, 14]. We
use in this section the following short notation: For any vector k = (k1, . . . , kd)
of d integers, Dk = ∂k

∂x
k1
1 ...∂x

kd
d

with k =
∑d

i=1 ki.

3.1 Technicalities on Compact Riemannian Manifolds with
Boundary

We briefly introduce the framework of manifolds with boundary of bounded
geometry developed by Schick in [13] for non-compact Riemannian manifolds,
which we will use frequently in the following. It makes explicit several geomet-
ric properties which are usually implicitly assumed due to compactness of the
manifold. Note that the boundary ∂M is an isometric submanifold of M . It has
a second fundamental form Π which should not be mixed up with the second
fundamental form Π of M with respect to the ambient space Rd. We denote by
∇ the connection and by R the curvature of ∂M . Moreover let ν be the nor-
mal inward vector field at ∂M and let K be the normal geodesic flow defined
as K : ∂M × [0,∞) → M : (x′, t) → expMx′ (tνx′). Then the collar set N(s) is
defined as N(s) := K(∂M × [0, s]) for s ≥ 0.

Definition 2 (Manifold with boundary of bounded geometry). Let M
be a manifold with boundary ∂M (possibly empty). It has bounded geometry if
the following holds:

– (N) Normal Collar: there exists rC > 0 so that the geodesic collar

∂M × [0, rC)→M : (t, x)→ expx(tνx)

is a diffeomorphism onto its image (νx is the inward normal vector).
– (IC) The injectivity radius6 rinj(∂M) of ∂M is positive.
– (I) Injectivity radius of M : There is ri > 0 so that if r ≤ ri then for x ∈
M\N(r) the exponential map is a diffeomorphism on BM (0, r) ⊂ TxM so
that normal coordinates are defined on every ball BM (x, r) for x ∈M\N(r).

– (B) Curvature bounds: For every k ∈ N there is Ck so that |∇iR| ≤ Ck and
∇iΠ ≤ Ck for 0 ≤ i ≤ k.

The injectivity radius makes no sense at the boundary since inj(x) → 0 as
d(x, ∂M) → 0. Therefore we replace next to the boundary normal coordinates
with normal collar coordinates. In our proofs we divide M into the set N(r)7

and M\N(r). On M\N(r) we work like on a manifold without boundary and
on N(r) we use normal collar coordinates defined below.
6 The injectivity radius inj(x) at a point x is the largest r such that the exponential

map expx is defined on BRm(0, r) and injective. In general we refer the reader to
Section 2.2. of [8] for basic notions of differential geometry needed in this paper.

7 Note that for sufficiently small r, N(r) = {x ∈ M | d(x, ∂M) ≤ r}.
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Definition 3 (normal collar coordinates). LetM be a Riemannian manifold
with boundary ∂M . Fix x′ ∈ ∂M and an orthonormal basis of Tx′∂M to identify
Tx′∂M with Rm−1. For r1, r2 > 0 sufficiently small (such that the following map
is injective) define normal collar coordinates,

nx′ : BRm−1(0, r1)× [0, r2]→M : (v, t)→ expMexp∂M
x′ (v)(tν).

The tuple (r1, r2) is called the width of the normal collar chart nx′ and we denote
by n(x′, r1, r2) the set nx′(BRm−1(0, r1)× [0, r2]).

We denote further by n(x, r) the set expx(BRm(0, r)). The next lemma is often
used in the following.

Lemma 1 ([13]). Let (M, g) be a m-dimensional Riemannian manifold with
boundary of bounded geometry. Then there exists R0 > 0 and constants S1 > 0
and S2 such that for all x ∈M and r ≤ R0 one has

S1r
m ≤ vol(BM (x, r)) ≤ S2r

m, ∀x ∈M
S1r

m ≤ vol(n(x′, r, r)) ≤ S2r
m, ∀x′ ∈ ∂M

Definition 4 (radius of curvature). The radius of curvature of M is defined
as ρ = 1

Πmax+Πmax
, where Πmax = supx∈M ‖Π‖x and Πmax = supx∈∂M

∥∥Π∥∥
x
.

The radius of curvature tells us how much the manifold M and its boundary ∂M
are curved with respect to the ambient space Rd. It is used in the next lemma
to compare distances in Rd with distances in M .

Lemma 2 ([8]). Let M have a finite radius of curvature ρ > 0. We further
assume that κ := infx∈M infy∈M\BM (x,πρ) ‖x− y‖ > 0. Then BRd(x, κ/2)∩M ⊂
BM (x, κ) ⊂ BM (x, πρ). Particularly, if x, y ∈M and ‖x− y‖ ≤ κ/2,

1
2
dM (x, y) ≤ ‖x− y‖Rd ≤ dM (x, y) ≤ κ.

Note that for a compact manifold (with boundary) one has ρ > 0 and κ > 0.

3.2 Covering Numbers for α-Hölder Functions

Definition 5 (α-Hölder functions). For α > 0 denote by α the greatest inte-
ger smaller than α. Let M be a compact Riemannian manifold and let (Ui, φi)i∈I
be an atlas of normal coordinate charts, φi : Ui ⊂ Rm → M , such that M ⊂
∪iφi(Ui). Then for a Cα-function f : M → R, let

‖f‖α =max
k≤α

sup
i∈I

sup
x∈Ui

∣∣Dk(f ◦ φi)(x)
∣∣

+ max
k=α

sup
i∈I

sup
x,y∈Ui

∣∣Dk(f ◦ φi)(x) −Dk(f ◦ φi)(y)
∣∣

d(x, y)α−α

The function space Fα = {f ∈ Cα | ‖f‖α < ∞} is the Banach space of Hölder
functions. Fα(s) denotes a ball of radius s in Fα. We define further

‖f‖Ck(M) = max
k≤α

sup
i∈I

sup
x∈Ui

∣∣Dk(f ◦ φi)(x)
∣∣.
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Note that since all transition maps between normal charts and their derivatives
are uniformly bounded the above definition of ‖f‖Ck(M) could be equivalently re-
placed8 with the invariant (coordinate independent) norm of the k-th derivatives
defined by Hebey in [7] as,

∥∥∇kf∥∥2 = gi1j1 . . . gikjk∇i1 . . .∇ikf ∇j1 . . .∇jkf . For
the Lipschitz type condition it is unclear if there exists an equivalent invariant
definition. However the following results for Fα remain true if we assume that
the α + 1-first derivatives are uniformly bounded. This small change leads for
sure to a norm which is equivalent to a coordinate independent norm on M .

In order to construct a convering of Fα we first need a covering of M with
normal and normal collar charts.

Theorem 1. Let M be a compact m-dimensional Riemannian manifold and
let ε ≤ min{R0, inj(∂M), ri}. Then there exists a maximal ε-separated subset
T1 := {x′i1}i∈I1 of ∂M and a maximal ε-separated subset T2 := {xi2}i∈I2 of
M\N(ε) such that

– N(ε) ⊂
⋃
i∈I1 n(x′i, ε, ε) and M\N(ε) ⊂

⋃
i∈I2 n(xi, ε),

– |I1| ≤ 2S2 vol(∂M)
S1

( 2
ε

)m−1, and |I2| ≤ vol(M)
S1

( 2
ε

)m.

Theorem 2. Let M be a compact m-dimensional manifold and let s > 0 and
ε ≤ (3se2m)(min{R0, inj(∂M), ri})α. Then there exists a constant K depending
only on α, m and M such that

logN (ε,Fα(s), ‖·‖∞) ≤ K
(s

ε

)m
α

The proof of these theorems can be found in the appendix. The main differences
of the proof of Theorem 2 to the classical one in [12, 14] are that the function
and its derivatives are discretized in different normal charts so that one has to
check that coordinate changes between these normal charts do not destroy the
usual argument and an explicit treatment of the boundary.

4 Uniform Convergence of the Smoothness Functional
Induced by the Graph Laplacian

4.1 Assumptions

We ignore in this paper measurability problems, see [14] for a discussion. All
results in this section are formulated under the following assumptions on the
submanifold M , the density p and the kernel k:

Assumption 1. – i : M → Rd is a smooth, isometric embedding,
– M is a smooth compact manifold with boundary (∂M can be empty),
– P has a density p with respect to the natural volume element dV on M ,
– p ∈ C3(M) and p(x) > 0, ∀ x ∈M ,

8 In the sense that the resulting norms are equivalent.
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– the sample Xi, i = 1, . . . , n is drawn i.i.d. from P .
– k : R∗

+ → R is measurable, non-negative and non-increasing,
– k ∈ C2(R∗

+), that is in particular k, ∂k
∂x and ∂2k

∂x2 are bounded,
– k has compact support on [0, R2

k],
– k(0) = 0, and ∃rk > 0 such that k(x) ≥ ‖k‖∞

2 for x ∈ ]0, rk].

Since M is compact, M is automatically a manifold of bounded geometry. In
particular all curvatures (intrinsic as well as extrinsic) are bounded. In order
to emphasize the distinction between extrinsic and intrinsic properties of the
manifold we always use the slightly cumbersome notations x ∈ M (intrinsic)
and i(x) ∈ Rd (extrinsic). The kernel functions k which are used to define the
weights of the graph are always functions of the squared norm in Rd. The con-
dition k(0) = 0 implies that the graph has no loops9. In particular the kernel
is not continuous at the origin. All statements could also be proved without
this condition. The advantage of this condition is that some estimators become
thereby unbiased. Finally let us introduce the notation , kh(t) = 1

hm k
(
t
h2

)
. and

the following two constants related to the kernel function k,

C1 =
∫

Rm

k(‖y‖2)dy <∞, C2 =
∫

Rm

k(‖y‖2)y2
1dy <∞. (2)

4.2 Results and Proofs

The smoothness functional Sλ,h,n(f) has been defined in Section 2 as

Sλ,h,n(f) =
1

2n(n− 1)h2

n∑
i,j=1

(f(Xj)− f(Xi))2
1
hm

k(‖i(Xi)− i(Xj)‖2 /h2)
(dh,n(Xi)dh,n(Xj))λ

.

Note that this sum is a U -statistic of order 2. We define further ph as the
convolution of the density with the kernel

ph(x) =
∫
M

kh(‖i(x)− i(y)‖2)p(y)
√

det g dy. (3)

and S̃λ,h,n(f) as Sλ,h,n(f) with dh,n(x) replaced by ph(x). The following propo-
sition will be often used.

Proposition 1 ([9]). For any x ∈M\∂M , there exists an h0(x) > 0 such that
for all h < h0(x) and any f ∈ C3(M),∫

M

kh

(
‖i(x)− i(y)‖2Rd

)
f(y)p(y)

√
det g dy

=C1p(x)f(x) +
h2

2
C2

(
p(x)f(x)S(x) + (ΔM (pf))(x)

)
+O(h3),

where S(x) = 1
2

[
− R

∣∣
x

+ 1
2 ‖

∑
aΠ(∂a, ∂a)‖2Ti(x)Rd

]
and O(h3) is a function

depending on x, ‖f‖C3 and ‖p‖C3 .
9 An edge from a vertex to itself is called a loop.
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Furthermore we use the following result which basically identifies the extended
degree-function of the graph defined as dh,n(x) = 1

n

∑n
i=1 kh(‖x−Xi‖), as a

kernel density estimator on the submanifold M .

Proposition 2 (Pointwise consistency of dh,n(x) [8]). Let x ∈M/∂M , then
there exist constants b1, b2 such that

P(|dh,n(x) − ph(x)| > ε) ≤ 2 exp
(
− nhm ε2

2b2 + 2/3b1 ε

)
In particular if h→ 0 and nhm/ logn→∞, limn→∞ dh,n(x) = C1 p(x) a.s..

We refer to [8] for a comparison with a similar result of Hendricks et al. in [10]. In
[8] the limit of the smoothness functional Sλ,h,n was shown for a single function
using a Bernstein-type inequality of Hoeffding [11] for U -statistics.

Theorem 3 (Strong consistency of the smoothness functional Sλ,h,n).
Let f ∈ C3(M). If h→ 0 and nhm/ logn→∞,

lim
n→∞

Sλ,h,n(f) =
C2

2Cλ1

∫
M

‖∇f‖2TxM
p(x)2−2λ

√
det g dx, almost surely.

We extend now this theorem to uniform convergence over balls in the function
space of α-Hölder functions. As a first step we prove an abstract uniform con-
vergence result without specifying the function class F .

Theorem 4. Let F be a function class with supf∈F supx∈M ‖∇xf‖ ≤ s. Then
there exist constants C′, C > 0 such that for all C′s2

nhm < ε < 1/C and 0 < h <

hmax, with probability greater than 1−2
(
C n+N

(
ε hm+1

2C s ,F , ‖·‖∞
))
e−

nhm (1/s)4 ε2

4C ,

sup
f∈F

∣∣Sλ,h,n(f)− E S̃λ,h,n(f)
∣∣ ≤ ε

Proof. First we decompose the term as follows:

sup
f∈F
|Sλ,h,n(f)− E S̃λ,h,n(f)|

≤ sup
f∈F
|Sλ,h,n(f)− S̃λ,h,n(f)|+ sup

f∈F
|S̃λ,h,n(f)− E S̃λ,h,n(f)| =: I + II

We start with the term I. Define Un,h(f) = 2R2
k s

2

n(n−1)

∑n
i,j=1 kh(‖i(Xi)− i(Xj)‖)

and let us work in the following on the event E1 where

max
1≤i≤n

|dh,n(Xi)− ph(Xi)| ≤ τ, and |Un,h(f)− EUn,h(f)| ≤ τ

From Proposition 2 and the proof of Theorem 3 we know that there exists a
constant C such that E1 holds with probability greater than 1−Cne−nhmτ2

C for
τ ≥ C

nhm . Since M is compact, we have ∀x ∈M , 0 < D1 ≤ ph(x) ≤ D2. Using a
Taylor expansion of x→ x−λ with

β = min{dh,n(Xi)dh,n(Xj), ph(Xi)ph(Xj)}−λ−1 ≤ (D1 − τ)−2(λ+1),
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we get for τ < D1/2,∣∣∣∣ 1
(dh,n(Xi)dh,n(Xj))λ

− 1
(ph(Xi)ph(Xj))λ

∣∣∣∣ ≤ λβ [(D2 + τ)τ +D2τ ] ≤ C′τ,

where C′ is independent of Xi and Xj . By Lemma 1 and 2 we get for hRk ≤
min{κ/2, R0/2}, EUn,h(f) ≤ 2m+1S2R

m+2
k s2D2 ‖k‖∞ so that for τ ≤

EUn,h(f) we get on E1

sup
f∈F
|Sλ,h,n(f)− S̃λ,h,n(f)| ≤ 2R2

k s
2 C′ τ

n(n− 1)

n∑
i,j=1

kh(‖i(Xi)− i(Xj)‖)

≤
(
2m+1S2R

m+2
k s2D2 ‖k‖∞ + τ

)
C′τ ≤ ε

4
,

where we have set τ = ε
C′ 2m+2S2 R

m+2
k s2 D2 ‖k‖∞

. Now let us deal with II. By as-

sumption we have a δ-covering of F in the ‖·‖∞-norm. We rewrite the U -statistic
S̃λ,h,n(f) = 1

n(n−1)

∑
i,j hf (Xi, Xj) with kernels hf indexed by f ∈ F , where

hf (x, y) =
1

hm+2

k(‖i(x)− i(y)‖)
(ph(x)ph(y))λ

[
f(x)− f(y)

]2
The δ-covering Cδ(F) of F induces a covering of HF = {hf | f ∈ F}.

|hf (x, y)− hg(x, y)| ≤
8 ‖k‖∞
h1+mD2λ

1
sRk ‖f − g‖∞ ≤

C

2
s
‖f − g‖∞
hm+1 ,

where we have used Lemmas 1,2 and have set C = 16‖k‖∞ Rk

D2λ
1

. We conclude that

a δ-covering of F induces a Cs
hm+1 δ-covering of HF . This implies that for any

f ∈ F there exists a g ∈ Cδ(F) such that,

|S̃λ,h,n(f)− E S̃λ,h,n(f)| ≤ C s δ

hm+1 + |S̃λ,h,n(g)− E S̃λ,h,n(g)|

We denote by E2 the event where supg∈Cδ(F) |S̃λ,h,n(g)− E S̃λ,h,n(g)| ≤ ε/4 and

choose δ ≤ hm+1

C s
ε
2 . In the proof of Theorem 3 it is shown that for one function

g there exist constants K1 and K2 independent of h, s and the function class F
such that the following Bernstein-type inequality holds

P
(
|S̃λ,h,n(g)− E S̃λ,h,n(g)| ≥ ε

4

)
≤ 2 e

− [n/2]hm (1/s)4 ε2

32K1+32/3 ε
s2 K2 .

Taking the union bound over the covering Cδ(F) yields

P

(
sup

g∈Cδ(F )
|S̃λ,h,n(g)− E S̃λ,h,n(g)| ≥ ε

4

)
≤ 2N

(
δ, F , ‖·‖∞

)
e
− [n/2]hm (1/s)4 ε2

32K1+32/3 ε
s2 K2
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In total we have on the event E1 and E2

sup
g∈F
|Sλ,h,n(g)− E S̃λ,h,n(g)| ≤ I + II ≤ ε

4
+

ε

2
+

ε

4
≤ ε

Putting the results for E1 and E2 together we are done. �

Note that despite F is not required to be uniformly bounded in the previous
theorem, one gets only finite covering numbers in the ‖·‖∞ norm under this
condition. In order to get finite sample bounds, we need to know how far E S̃λ,h,n
is away from its limit for finite h uniformly over a certain function class F .

Theorem 5. Let F be a function class such that supf∈F ‖f‖C3(M) ≤ s. Then
there exist constants C′, C′′ > 0 depending only on M,p and the kernel k such
that for all h < C′ min{πρ3 ,

ri

3 ,
κ

2Rk
, R0
Rk
},

sup
f∈F

∣∣∣E S̃λ,h,n − C2

2Cλ1

∫
M

〈∇f,∇f〉TxM
p(x)2−2λ

√
det g dx

∣∣∣ ≤ C′′ s2h

Proof. Let us first define

Bλ,h(x) :=
1

2h2

∫
M

(f(x)− f(y))2kh(‖i(x)− i(y)‖)
p(y)

(ph(x)ph(y))λ
dV (y).

so that E S̃λ,h,n =
∫
M Bλ,h(x) p(x) dV (x). Now we decompose M as M =

M\N(r) ∪ N(r), where r ≤ ri (see Definition 2), which implies that for all
x ∈ M\N(r) there exist normal coordinates on the ball BM (x, r), that is
inj(M\N(r)) = r. The expansion of Proposition 1 holds pointwise for h0 ≤
C′
3 min{πρ, inj(x)}10. Since ρ is lower-bounded due to compactness of M and

inj(M\N(r)) = r we can use Proposition 1 uniformly overM\N(r), which yields

sup
x∈M\N(r)

∣∣∣Bλ,h(x)− C2

2Cλ1
〈∇f,∇f〉TxM

p(x)1−2λ
∣∣∣ ≤ C′′s2h,

where C′′ is independent of F . Therefore the bound holds uniformly over the
function class F . Next we have two error terms I and II:

I :=
∫
N(r)

Bλ,h(x)p(x)dV (x), II :=
C2

2Cλ1

∫
N(r)
‖∇f‖2 p2−2λ(x)dV (x)

Let us first deal with I. By Lemma 2 we have for hRk ≤ κ
2 , dM (x, y) ≤

2 ‖x− y‖ ≤ 2hRk (due to compact support of k). Together with the volume
bound from Lemma 1 we get for hRk ≤ min{κ/2, R0/2}:

|Bλ,h(x)| ≤
2s2R2

k ‖k‖∞ ‖p‖∞
D2λ

1
S22mRmk

10 The factor 1/3 arises since we have to take care that also for all points y ∈ BM (x, r/3)
we can do the expansion for ph(y).
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Again using the volume bound from Proposition 1 for r ≤ R0 yields:

I ≤ 2s2R2
k ‖k‖∞ ‖p‖

2
∞

D2λ
1

S22mRmk S2 r vol(∂M) := C′′′s2 r

By the volume bound and ‖∇f‖∞ ≤ s we get II ≤ C′′′′s2r. For r ≤ πρ we
choose h = C r for some constant C so that all error terms are of order s2 h. �
Theorems 4 and 5 together provide a finite sample result for the convergence of
Sλ,h,n over a sufficiently smooth function class F . We use now the upper bounds
on the covering numbers of a ball of α-Hölder functions in order to get an explicit
finite sample bound and rates for h(n). Moreover we let s(n) → ∞ so that in
the limit we get uniform convergence for all α-Hölder functions.

Theorem 6. Let Fα(s) be the ball of radius s in the space of Hölder functions
Fα on M . Define γ = 2 − 2λ and c = C2

2Cλ
1
, then for α ≥ 3 and h → 0 and

nh
m2+m+αm

α →∞,

sup
f∈Fα(s)

∣∣Sλ,h,n(f)− c SΔγ (f)
∣∣ = O

(
s2

(nh
m2+m+αm

α )
α

2α+m

)
+O(s2 h) a.s.

The optimal rate for h is h = O(n−
α

2α+2m+m2+mα ).

Let s = log(n), then if h→ 0 and nh
m2+m+αm

α /log(n)
4α+2m

α →∞ one has,

∀ f ∈ Fα, lim
n→∞

Sλ,h,n(f) =
C2

2Cλ1

∫
M

‖∇f‖2TxM
p(x)2−2λ

√
det g dx, a.s..

Proof. For α > 3, we have Fα ⊂ C3(M) and ‖f‖C3(M) ≤ ‖f‖Fα
, ∀ f ∈

Fα, so that we can apply Theorems 4 and 5. The first statement follows for
sufficiently small h and by plugging the bound on the covering numbers of Fα(s)
from Theorem 2 into Theorem 4 and putting Theorem 4 and 5 together. The
dominating terms of log P(supf∈Fα(s) |Sλ,h,n(f)− ESλ,h,n(f)| > ε) are(

2C s2

εhm+1

)m
α

−nh
m (1/s)4 ε2

4C
=
(

2C s2

εhm+1

)m
α

[
1− nh

m2+m+αm
α (1/s)4+2 m

α ε2+
m
α

C′

]
so that for the given rate the term in the bracket can be made negative and
and the whole term is summable so that almost sure convergence follows by the
Borel-Cantelli Lemma. The optimal rate for h(n) can be computed by equating
the two order-terms. For the second statement we simply choose s = log(n). �
This theorem provides uniform convergence of the adaptive regularization func-
tional Sλ,h,n(f) over the large class of α-Hölder functions. We think that this
theorem will be helpful to prove consistency results for algorithms which use
Sλ,h,n(f) as a regularizer. As expected the rate depends only on the intrinsic
dimension m and not on the extrinsic dimension d. At least for low-dimensional
submanifolds we can therefore get a good approximation of the continuous reg-
ularization functional even if we work in a high-dimensional space.
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Appendix. Covering Numbers for α-Hölder Functions on
Compact Riemannian Manifolds (with Boundary)

Proof. [Proof of Theorem 1] The first property follows by the maximality of the
separated subsets. It remains to prove the upper bounds on the cardinality of I1
and I2. The sets {n(x′i,

ε
2 ,

ε
2 )}i∈I1 and {n(xi, ε2 )}i∈I2 are disjoint. Therefore∑

i∈I1

vol
(
n(x′i1 ,

ε

2
,
ε

2
)
)
≤ vol

(
N(ε)

)
,

∑
i∈I2

vol
(
n(xi2 ,

ε

2
)
)
≤ vol

(
M
)
.
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Then use vol
(
N(ε)

)
≤ S2ε vol

(
∂M

)
and the volume bounds in Lemma 1. �

Now we are ready to prove the result on covering numbers for Fα(s).
Proof. [Proof of Theorem 2] Let δ =

(
ε

3s e2m

)1/α and let T1 = {z′i}i∈I1 and
T2 = {zi}i∈I2 describe a maximal δ-separated set of ∂M and M\N(δ) as in
Theorem 1. For each vector k = (k1, . . . , kd) with k ≤ α we form for each
f ∈ Fα(s) the two vectors

Akf =

([Dk(f ◦ φz′
1
)(0)

s δα−k

]
, . . . ,

[Dk(f ◦ φz′
|I1|

)(0)

s δα−k

])

Bkf =

([Dk(f ◦ φz1)(0)
s δα−k

]
, . . . ,

[Dk(f ◦ φz|I2|)(0)
s δα−k

])
,

where [·] denotes rounding to the closest integer and φ denotes the normal charts
corresponding to the points in T1 and T2. Note that the vector Akf is well-
defined since all derivatives of f are uniformly bounded. Now let f1 and f2 be
two functions such that Akf1 = Akf2 and Bkf1 = Bkf2 for each k ≤ α. Define
g = f1 − f2, then one has for every z ∈ T1 ∪ T2

|Dkg(z)| = |Dkf1(z)−Dkf2(z)| ≤ s δα−k (4)

Moreover for every x ∈ M\N(δ) there exists an zi ∈ T2 such that d(x, zi) ≤ δ
and for every x ∈ N(δ) there exists an z′i ∈ T1 such that d(x, z′i) ≤ 2δ (this
follows from the definition of normal collar charts and the triangle inequality11).
Since M ⊂M\N(δ)∪N(δ) there exists for each x ∈M a corresponding normal
chart φz based on z ∈ N1∪N2 such that for each coordinate xi = (φ−1

z (x))i, i =
1, . . . ,m of x one has xi ≤ max{δ, 2δ} = 2δ. Now we do a Taylor expansion of g
around z = φz(0) in the normal chart φz and get for x = φz((x1, . . . , xm)):

g(x)=
∑
k≤α

Dk(g ◦ φz)(0)
m∏
i=1

xki

i

ki!
+
∑
k=α

(
Dk(g ◦ φz)(λxi)−Dk(g ◦ φz)(0)

) m∏
i=1

xki

i

ki!

with λ ∈ [0, 1]. By (4) and the Lipschitz property of functions in Fα(s) we get

|g(x)| ≤
∑
k≤α

sδα−k
(2δ)k

k!
+ 2s

mα

α!
2αδα ≤ δαe2m(s+ 2s) ≤ 3se2mδα = ε,

so that the covering numbers of an ε-covering of Fα(s) are upper bounded by
the number of possible matrices Af and Bf for f ∈ Fα(s). The number of
possible derivatives ≤ α is upper bounded by

∑α
i=0m

i = mα−1
m−1 for m > 1 and

α for m = 1. Since in Fα(s) the derivatives fulfill |Dkf(x)| ≤ s for each k,
Akf contains 2

δα−k + 2 values which is upper bounded by 2
δα + 2. Thus for one

11 One follows the geodesic along the boundary which is shorter than δ and then the
geodesic along the inward normal vector which has also length shorter than δ.
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point in the covering the number of different values in Af is upper bounded by( 2
δα + 2

)2mα

for m ≥ 2 and
( 2
δα + 2

)α for m = 1. The same holds for Bkf .
Assume now we reorder the set N1 in such a way that for each j > 1 there is

an index i < j such that d(z′i, z
′
j) ≤ 2δ. We compute now the range over which

values of Akf(z′j) vary given the values of Akf(z′i). The problem is that the
derivatives of f at z′j and z′i are given with respect to different normal charts φz′

j

and φz′
i
. In order to compare Akf(z′j) with Akf(z′i) we therefore have to change

coordinates. Let xμ be the coordinates with respect to φz′
j

and yμ with respect
to φz′

i
. Then one has e.g. for the second derivative,

∂2f

∂xμ∂xν
=

∂2f

∂yβ∂yγ

∂yβ
∂xμ

∂yγ
∂xν

+
∂f

∂yα

∂2yα
∂xμ∂xν

=: C2
yf,

with the obvious generalization to higher orders. By Taylor’s theorem one gets

Dk
xf(xj) = Dk

x(f ◦ φz′
j
)(0)=

∑
k+l≤α

Dk+l
x (f ◦ φz′

j
)(xi)

xl

l!
+R=

∑
k+l≤α

Ck+ly (0)
xl

l!
+R

Define Bk+l
y (0) as Ck+ly (0) with derivatives replaced by their discretized values,

∂kf

∂yi1 . . . ∂yik
(0) −→ s δα−k

[
∂kf

∂yi1 . . . ∂yik
(0)

1
s δα−k

]
Given now all the discretized values Af(z′i) we arrive at∣∣∣Dk

x(f ◦ φz′
j
)(0)−

∑
k+l≤α

Bk+l
y (0)

xl

l!

∣∣∣ ≤ ∑
k+l≤α

∣∣∣Ck+ly (0)−Bk+l
y (0)

∣∣∣xl
l!

+ |R|

The leading term of the summands can be upper bounded as follows∣∣∣Ck+ly (0)−Bk+l
y (0)

∣∣∣ ≤ s (Γ m)kδα−k−l

where Γ = maxi,j maxk≤α supx∈M Dk(φ−1
z′

i
◦ φz′

j
). It can be shown that the

remainder term |R| is of order s δα−k, so that in total we get that there exists a
constant C depending on Γ , m and α such that∣∣∣Dk

x(f ◦ φz′
j
)(0)−

∑
k+l≤α

Bk+l
y (0)

xl

l!

∣∣∣ ≤ C s δα−k
That implies that given the values of Af at xi the values of Af at xj vary over
an interval of size C s δ

α−k

δα−k = C s. Using our previous bound on the number of
possible values of Af for one point we get that the total number of values of Af
is upper bounded as follows:

|Af | ≤
(

2
δα

+ 2
)2mα (

(C s)2m
α

)|I1|

The same can be done for |Bf |. Replacing |I1| resp. |I2| with the numbers from
Theorem 1 and upper bounding log(1/ε) by (1/ε)m/α finishes the proof. �



The Rademacher Complexity of Linear
Transformation Classes

Andreas Maurer

Adalbertstr. 55
D-80799 München

andreasmaurer@compuserve.com

Abstract. Bounds are given for the empirical and expected Rademacher
complexity of classes of linear transformations from a Hilbert space H to
a finite dimensional space. The results imply generalization guarantees
for graph regularization and multi-task subspace learning.

1 Introduction

Rademacher averages have been introduced to learning theory as an efficient
complexity measure for function classes, motivated by tight, sample or dis-
tribution dependent generalization bounds ([10], [2]). Both the definition of
Rademacher complexity and the generalization bounds extend easily from real-
valued function classes to function classes with values in Rm, as they are relevant
to multi-task learning ([1], [12]).

There has been an increasing interest in multi-task learning which has shown
to be very effective in experiments ([7], [1]), and there have been some general
studies of its generalisation performance ([4], [5]). For a large collection of tasks
there are usually more data available than for a single task and these data may be
put to a coherent use by some constraint of ’relatedness’. A practically interesting
case is linear multi-task learning, extending linear large margin classifiers to
vector valued large-margin classifiers. Different types of constraints have been
proposed: Evgeniou et al ([8], [9]) propose graph regularization, where the vectors
defining the classifiers of related tasks have to be near each other. They also show
that their scheme can be implemented in the framework of kernel machines.
Ando and Zhang [1] on the other hand require the classifiers to be members
of a common low dimensional subspace. They also give generalization bounds
using Rademacher complexity, but these bounds increase with the dimension of
the input space. This paper gives dimension free bounds which apply to both
approaches.

1.1 Multi-task Generalization and Rademacher Complexity

Suppose we have m classification tasks, represented by m independent random
variables

(
X l, Y l

)
taking values in X×{−1, 1}, where X l models the random

occurrence of input data in some input space X , and Y l models the corresponding
binary output for learning task l ∈ {1, ...,m}. The draw of an iid sample for the

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 65–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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l-th task is described by a sequence
(
X l
i , Y

l
i

)n
i=1 of independent random variables,

each identically distributed to
(
X l, Y l

)
. Write (X,Y) for the combined random

variable taking values in Xmn × {−1, 1}mn.
One now seeks a function f =

(
f1, ..., fm

)
: X → Rm such that predicting Y l

to be sgn
(
f l
)

is correct with high average probability. To this end one searches
a function class F of functions f : X → Rm for a member with a small average
empirical error estimate. The choice of the function class F expresses the con-
straints of ’relatedness’ which we want to impose. This procedure is justified by
the following result. ([1], [12]):

Theorem 1. Let φ be the function on R defined by

φ (t) =

⎧⎨⎩ 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1

0 if 1 ≤ t
.

Let F be a class of functions f =
(
f1, ..., fm

)
: X → Rm and fix δ > 0. Then

with probability greater than 1− δ we have for all f ∈ F

1
m

m∑
l=1

Pr
{
sgn

(
f l
(
X l

))
�= Y l

}
≤ 1
mn

m∑
l=1

n∑
i=1

φ
(
Y lf l

(
X l
i

))
+ R̂mn (F) (X) +

√
9 ln (2/δ)

2mn
.

The first term on the right hand side is an empirical large-margin error estimate.
Selecting a function class F means that we make a bet that we will be able to
find within F a solution with a reasonably low value for this term. The other
two terms bound the estimation error. The last term decays quickly with the
product mn and depends only logarithmically on the confidence parameter δ
and will not concern us very much. The remaining term is a complexity measure
of the class F when acting on the data set X.

Definition 1. For l ∈ {1, ...,m} and i ∈ {1, ..., n} let σli be independent random
variables, distributed uniformly in {−1, 1}. The empirical Rademacher complex-
ity of a class F of functions f : X → Rm is the function R̂mn (F) defined on Xnm
by

R̂mn (F) (x) = Eσ

[
sup

f=(f1,...,fm)∈F

2
mn

m∑
l=1

n∑
i=1

σlif
l
(
xli
)]
.

Theorem 1 above explains the value of bounds on this function, the principal sub-
ject of this paper. There is also a version of Theorem 1 involving the expectation
EX

[
R̂mn (F) (X)

]
with a slightly better final term. We have restricted ourselves

to classification for definiteness. Substitution of our results in other generaliza-
tion bounds using Rademacher complexities should make them applicable to
multi-task regression.
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1.2 Bounds on the Rademacher Complexity

This paper assumes that the input space X is contained in the closed unit ball
of a real separable Hilbert space H (fixed from now on) and that F is a class of
bounded linear transformations V : H → Rm. Such transformations correspond
to m-tuples

(
v1, ..., vm

)
∈ Hm of vectors in H such that the l-th component of

V is given by V (x)l =
〈
vl, x

〉
(we denote this by V ↔

(
v1, ..., vm

)
). Thresh-

olding the functional x →
〈
vl, x

〉
gives the classifier for the l-th task. The as-

sumption
∥∥X l

∥∥ ≤ 1 is also a notational convenience, but we would always need

E
[∥∥X l

∥∥2
]
< ∞ for part (I) and E

[∥∥X l
∥∥4
]
< ∞ for part (II) of the following

theorem, which is the main contribution of this work.

Theorem 2. Let F be a set of linear transformations V : H → Rm and x ∈
Hmn with

∥∥xli∥∥2 ≤ 1.
(I) Then for every positive definite operator A on Rm

R̂mn (F) (x) ≤ 2√
n

sup
V ∈F

(∥∥A1/2V
∥∥

2√
m

)√
tr (A−1)
m

.

(II) Let p ∈ [4,∞] and let q be the conjugate exponent, that is p−1 + q−1 = 1.
Then

R̂mn (F) (x) ≤ 2√
n

sup
V ∈F

(‖V ‖q√
m

)√∥∥∥Ĉ (x)
∥∥∥
p/2

+

√
2
m

and

E
[
R̂mn (F) (X)

]
≤ 2√

n
sup
V ∈F

(‖V ‖q√
m

)√
‖Cm‖p/2 +

√
3
m

Here Ĉ (x) is the empirical covariance operator of the data set x, that is the
covariance operator corresponding to the empirical distribution 1/ (mn)

∑
l,i δxl

i

on H , while Cm is the covariance operator corresponding to the mixture of
data-distributions1. Cm = (1/m)Cl, where Cl is the covariance operator for
the data-distribution of the l-th task. The Schatten-norms ‖...‖p are defined for
compact operators T by

‖T ‖p =

(∑
i

μpi

)1/p

,

where the μi are the singular values of T . The norms ‖T ‖p are a decreasing
function in p. See section 2 for more detailed definitions. For V ↔

(
v1, ..., vm

)
:

H → Rm we have

‖V ‖2 =

(∑
l

∥∥vl∥∥2
)1/2

.

1 Here δx is the unit mass concentrated at x.
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1.3 Interpretation of the Bounds

Each of the bounds in Theorem 2 has been grouped in three factors: The factor
2/
√
n is important, because it insures learnability as long as the other two factors

remain bounded or increase slowly enough with the sample size n.
Next comes a regularization factor depending on F and a norm, which encodes

the relatedness-constraint. Equating the supremum to some chosen constant B
defines a maximal function class F which is necessarily convex. The first bound
for example gives rise to the function class F =

{
V : m−1/2

∥∥A1/2V
∥∥

2 < B
}
.

For such classes the constant B can of course be substituted for the supremum,
giving the bounds a simpler appearance. The m−1/2 will typically be cancelled
by allowing the individual functional components vi of V ↔

(
v1, ..., vm

)
∈ F

to have norm of unit order on average, that is ‖V ‖22 =
∑

l

∥∥vl∥∥2 = O (m) or∥∥A1/2V
∥∥2

2 = O (m).
The third factor gives the bound proper and depends on the situation studied.

It will typically decrease to some limiting positive value, as the number of tasks
m increases.

If we set A = I then part (I) above can be recognized as a trival extension of
existing bounds ([2]) for single task linear large margin classifiers. It corresponds
to the noninteracting case, essentially equivalent to single task learning. If we
set A = L+ ηI, where L is the Laplacian on a graph with m vertices, and η > 0
a small regularization constant, then we obtain bounds to justify the graph
regularization schemes in [9], concisely relating generalization to the spectrum
of the Laplacian. This will be explained in some detail in section 3.

Part (II) of the theorem can be applied to subspace learning. The norms
‖T ‖p can be viewed as combined measures of amplitude and dimensionality (or
rank if T has finite dimensional range), and imposing a bound on ‖V ‖q is a
combined form of amplitude and dimensional regularization. The conceptually
simplest way to do this is to consider the class FB,d of transformations V ↔(
v1, ..., vm

)
such that ‖V ‖22 =

∑
l

∥∥vl∥∥2 ≤ B2m and rank (V ) ≤ d (a notation
which extends to the case d =∞). Then all the individual linear classifiers vl are
constrained to lie in some d-dimensional subspace of H . This subspace can be
freely chosen after seeing the data, so the above bounds become generalisation
guarantees for subspace selection through multitask learning. This corresponds
to the regularization in [1]. In this case the regularization factor can be shown
to be equal to

sup
V ∈FB,d

(‖V ‖q√
m

)
= Bd

2−q
2q = Bd

p−2
2p .

If p = q = 2 then this is just B and there will be no penalty on dimension.
Correspondingly the bound will exhibit no benefit from constraining d. If p = 4
and q = 4/3 then we obtain Bd1/4 and for p = ∞ and q = 1 it is Bd1/2,
corresponding to increasing penalties on the dimensionality. The class FB,d is
practical and corresponds to the scheme in [1], but it is not convex, while setting
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F =
{
V : ‖V ‖q ≤ B

}
and replacing φ by the hinge loss always results in a convex

optimization problem.
The data- or distribution dependent third factor in (II) contains two terms.

The decrease in m with essentially the fourth root may be an artifact of our
proof. As the number of tasks increases the norm of the covariances becomes
dominant. Since we restricted ourselves to data in the unit ball, we will have∥∥∥Ĉ (x)

∥∥∥
1
≤ 1 and ‖Cm‖1 ≤ 1, so the amplitude is essentially normalized. Let us

assume that the mixture of data-distributions is uniform on a k-dimensional unit
sphere in H . Then Cm has k eigenvalues, all equal to 1/k, so ‖Cm‖p/2 = k

2−p
p .

If we combine this with the FB,d regularization considered above we obtain the
bound

E
[
R̂mn (FB,d)X

]
≤ 2B√

n

((
d

k

) p−2
p

+ d
p−2

p

√
3
m

)1/2

.

The limiting value as the number m of tasks increases depends only on the
fraction ρ = d/k, which might be viewed as the ratio of utilized information
to totally present information k. If ρ < 1 multi-task learning will always be
an improvement over single task learning for sufficiently large m (modulo the
important requirement that the tasks are sufficiently related to arrive at a small
empirical error despite the regularisation). In the limitm→∞ the best exponent
is p =∞ leading to the bound

lim sup
m→∞

E
[
R̂mn (FB,d) (X)

]
≤ 2B√

n
ρ1/2.

For small values of m and large d smaller values of p will give a better bound.
If ρ ≥ 1 constraining to FB,d will bring no improvement over FB,∞. This is un-

derstandable because constraining to at most d-dimensional subspaces has little
effect when the data-distribution is already less than d-dimensional. Normally
we expect that there exist low-dimensional subspaces expressing the relevant
information in a chaos of data, which is the same as assuming ρ� 1.

A precursor of this paper is [12], where a result like part (II) of Theorem 2 is
given for the case p = 4. It does not extend to larger values of p however, nor is
it directly applicable to graph regularization.

The next section gives missing definitions and some important preliminary
result. Section 3 gives a proof of part (I) of Theorem 2 and applies it to graph
regularization. Section 4 is dedicated to the proof of part (II) of Theorem 2.

2 Definitions, Schatten-Norms and Hoelders Inequality

Throughout this paper we will use superscripts l, r ∈ {1, ...,m} to index one of
m learning tasks and we fix a real, separable Hilbert space H with inner product
〈., .〉 and norm ‖.‖, and assume the random variables X l

i to be as described in
the introduction. For a bounded operator T on H we generally use T ∗ to denote
the adjoint and write |T |2 = T ∗T .
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Let T be a compact operator from H to a Hilbert space H ′ and μi = μi (T )
its sequence of singular values in descending order, counting multiplicities. The
μi are just the necessarily nonnegative eigenvalues of (T ∗T )1/2 = |T | (see [14]
for background). For such operators T and p ≥ 1 define

‖T ‖p =

(∑
i

μpi

)1/p

and Ip =
{
T : ‖T ‖p <∞

}
.

We also define ‖T ‖∞ = supi μi = μ0 and I∞ as the set of all compact operators
from H to another Hilbert space H ′. As the notation indicates, ‖.‖p does indeed
define a norm making Ip into a Banach space. For 1 ≤ p1 ≤ p2 ≤ ∞ we have
‖T ‖p2 ≤ ‖T ‖p1 . For T ∈ I1 the trace tr (T ) is defined by

tr (T ) =
∑
i

〈Tei, ei〉 ,

where (ei) is an orthonormal basis of H . This series converges absolutely and its
limit is independent of the choice of basis. If A and B are in I2 then A∗B is in
I1 and the inner product

〈A,B〉2 = tr (A∗B)

makes I2 into a Hilbert space, the space of Hilbert-Schmidt operators. This
work will rely on Hoelder’s inequality for compact operators, a beautiful classical
theorem (see e.g. Reed-Simon [13]).

Theorem 3. Let 1 ≤ p ≤ ∞ and q−1 + p−1 = 1. If A ∈ Ip and B ∈ Iq then
AB ∈ I1 and |〈A,B〉2| = |tr (A∗B)| ≤ ‖A‖p ‖B‖q.

Let V be a bounded operator V : H → Rm. Let
(
el
)m
l=1 be the canonical basis

for Rm. By the Riesz theorem there is an m-tuples
(
v1, ..., vm

)
∈ Hm of vectors

in H such that 〈
V x, el

〉
=
〈
vl, x

〉
(1)

holds for all l. Conversely, if
(
v1, ..., vm

)
∈ Hm then the formula

V x =
m∑
l=1

〈
vl, x

〉
el

defines a bounded linear transformation V such that (1) holds. We will just
write V ↔

(
v1, ..., vm

)
for this bijection. Observe that if V,W : H → Rm with

V ↔
(
v1, ..., vm

)
and W ↔

(
w1, ..., wm

)
, then

tr (W ∗V ) =
m∑
l=1

〈
vl, wl

〉
. (2)



The Rademacher Complexity of Linear Transformation Classes 71

Definition 2. For a configuration σ =
(
σli
)(m,n)
(l,i)=1 ∈ {−1, 1}nm of the Radema-

cher variables and x =
(
xli
)(m,n)
(l,i)=1 ∈ H

nm with
∥∥xli∥∥ ≤ 1 define a linear transfor-

mation W (σ,x) : H → Rm by W (σ,x)↔
(
w1 (σ,x) , ..., wm (σ,x)

)
and

wl (σ,x) =
n∑
i=1

σlix
l
i.

When there is no ambiguity we drop the explicit dependance on either σ or
x or both. W is thus an operator-valued random variable and its components
wl =

∑n
i=1 σ

l
ix
l
i are vector valued random variables.

In our context the beauty of Hoelder’s inequality is that it immediately splits
the Rademacher complexity into a regularizing factor, depending on the function
class F used for learning, and a data dependent factor:

Lemma 1. For conjugate exponents p, q ≥ 1 with 1/p + 1/q = 1 and x =(
xli
)(m,n)
(l,i)=1 ∈ H

nm and a class F of bounded linear transformations V : H → Rm,
we have

R̂mn (F) (x) ≤ 2√
n

(
sup
V ∈F

‖V ‖q√
m

)⎛⎝Eσ
[
‖W (σ,x)‖p

]
√
mn

⎞⎠ .

Proof. Using the trace formula (2) and Hoelder’s inequality (Theorem 3) we
obtain

R̂mn (F) (x) = Eσ

[
sup
V ∈F

2
mn

m∑
l=1

n∑
i=1

σli
〈
xli, v

l
〉]

= Eσ

[
sup
V ∈F

2
mn

m∑
l=1

〈
wl, vl

〉]

= Eσ

[
sup
V ∈F

2
mn

tr (W ∗V )
]

≤ 2
mn

Eσ

[
sup
V ∈F
‖V ‖q ‖W‖p

]
.

�

For every x ∈ H we define an operator Qx by Qxy = 〈y, x〉x for y ∈ H . The
following facts are easily verified:

Lemma 2. Let x, y ∈ H and p ∈ [1,∞]. Then
(i) Qx ∈ Ip and ‖Qx‖p = ‖x‖2 .
(ii) 〈Qx, Qy〉2 = 〈x, y〉2 .
(iii) If V ↔

(
v1, ..., vm

)
: H → Rm then |V |2 =

∑m
l=1Qvl .
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Let X be a random variable with values inH , such that E [‖X‖] ≤ ∞. The linear
functional y ∈ H �→ E [〈X, y〉] is bounded by E [‖X‖] and thus defines (by the
Riesz Lemma) a unique vector E [X ] ∈ H such that E [〈X, y〉] = 〈E [X ] , y〉 , ∀y ∈
H , with ‖E [X ]‖ ≤ E [‖X‖].

If we also have E
[
‖X‖2

]
≤ ∞ then we can apply the same construction to

the random variable QX with values in the Hilbert space I2: By Lemma 2 (i)
E [‖QX‖2] = E

[
‖X‖2

]
≤ ∞, so there is a unique operator E [QX ] ∈ I2 such

that E [〈QX , T 〉2] = 〈E [QX ] , T 〉2 , ∀T ∈ I2.

Definition 3. The operator E [QX ] is called the covariance operator of X.

We summarize some of its properties in the following lemma (see e.g. [12]). Prop-
erty (ii) is sometimes taken as the defining property of the covariance operator.

Lemma 3. The covariance operator E [QX ] ∈ I2 has the following properties.
(i) ‖E [QX ]‖2 ≤ E [‖QX‖2].
(ii) 〈E [QX ] y, z〉 = E [〈y,X〉 〈z,X〉] , ∀y, z ∈ H.
(iii) tr (E [QX ]) = E

[
‖X‖2

]
.

If x ∈ Hmn with x =
(
xli : l ∈ {1, ...,m} , i ∈ {1, ..., n}

)
is a data-set, Ê be the

expectation corresponding to the empirical distribution 1/ (mn)
∑m,n

l,i=1 δxl
i
. The

corresponding empirical covariance Ĉ (x) is the operator

Ĉ (x) = Ê [QX ] =
1
mn

m∑
l=1

n∑
i=1

Qxl
i
.

3 Graph Regularization

We give a proof of part (I) of Theorem 2 and sketch how it applies to graph
regularization as described in [8] and [9].

Proof (of Theorem 2, part (I)). Beginning as in the proof of Lemma 1 we obtain
from Hoelder’s inequality in the simplest (Schwarz-) case p = q = 2

R̂mn (F) (x) = Eσ

[
sup
V ∈F

2
mn

tr (W ∗V )
]

= Eσ

[
sup
V ∈F

2
mn

tr
(
W ∗A−1/2A1/2V

)]
≤ 2√

n
sup
V ∈F

(∥∥A1/2V
∥∥

2√
m

)
Eσ

[∥∥W ∗A−1/2
∥∥

2

]
√
mn

.

To prove part (I) it therefore suffices to show that Eσ
[∥∥W ∗A−1/2

∥∥
2

]
≤(

n tr
(
A−1

))1/2. Using Jensen’s inequality, independence and symmetry of the
Rademacher variables, we obtain
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Eσ

[∥∥∥W ∗A−1/2
∥∥∥

2

]2
≤ E

[∥∥∥W ∗A−1/2
∥∥∥2

2

]
= E

[
tr
(
W ∗A−1W

)]
=

m∑
l=1

m∑
r=1

A−1
lr

n∑
i=1

n∑
j=1

E
[
σliσ

r
j

] 〈
xli, x

r
j

〉
=

m∑
l=1

A−1
ll

n∑
i=1

∥∥xli∥∥2

≤ n tr
(
A−1) ,

as required. �

Suppose that we have some way to quantify the ’relatedness’ ωlr of any pair (l, r)
of distinct learning tasks, where we require symmetry ωlr = ωrl and nonnega-
tivity ωlr ≥ 0. For simplicity we will assume connectivity in the sense that for
all pairs (l, r), there is a sequence of indices (li)

K
i=0 such that l = l0 and r = lK

and ωlk−1lk > 0 for all 1 ≤ k ≤ K.
The idea of graph regularization ([8], [9]) is to use a regularizer J (V ) =

J
(
v1, ..., vm

)
, which forces the classifiers of related tasks to be near each other,

penalizing the squared distance
∥∥vl − vr∥∥2 proportional to ωlr. Such a regularizer

is

J (V ) =
1

2m

∑
l,r

ωlr
∥∥vl − vr∥∥2

+
η

m

m∑
l=1

∥∥vl∥∥2

=
1
m

∑
l,r

(L+ ηI)lr
〈
vl, vr

〉
,

where L is the Laplacian of the graph with m vertices and edge-weights ω, and
I is the identity in Rm. We have slightly departed from the form given in [9]
by adding the term in η. We will however see, that a large number m of tasks
allows η to be chosen small.

Fix B > 0. We will bound the Rademacher complexity of the function class
F =

{
V : J (V ) ≤ B2

}
. Substitution of our bound in Theorem 1 will then lead

to generalisation guarantees for graph regularisation.
To bound R̂mn (F) note that a transformation V ↔

(
v1, ..., vm

)
belongs to F

if and only if

∑
l,r

(L+ ηI)lr
〈
vl, vr

〉
≤ mB2 ⇐⇒ tr (V ∗ (L+ ηI)V ) ≤ mB2

⇐⇒ m−1/2
∥∥∥(L+ ηI)1/2 V

∥∥∥
2
≤ B.

Using Theorem 2 (I) with A = L+ ηI therefore gives



74 A. Maurer

R̂mn (F) ≤ 2B√
n

√√√√ tr
(
(L+ ηI)−1

)
m

=
2B√
n

√√√√ 1
m

m∑
i=2

1
λi + η

+
1
mη

(3)

≤ 2B√
n

√
1
λ2

+
1
mη

, (4)

where λ2, ..., λm are the nonzero eigenvalues of the Laplacian in (now) ascending
order (with λ1 = 0 having multiplicity 1 - it is here that we used connectivity).
For a large number of tasks m we can choose η small, say η = O (1/

√
m), and

the contribution of the Laplacian becomes dominant. Which of the bounds (3) or
(4) is preferable depends on the nature of the Laplacian, which in turn depends
on the coupling constants ωlr.

For a particularly simple example consider ωlr = c/m for all distinct tasks l
and r, where c is some positive constant. The regularizer then becomes

J (V ) =
1

2m

∑
l,r

c

m

∥∥vl − vr∥∥2
+
η

m

m∑
l=1

∥∥vl∥∥2

=
c

m

∑
l

∥∥∥∥∥vl − 1
m

∑
r

vr

∥∥∥∥∥
2

+
η

m

m∑
l=1

∥∥vl∥∥2
,

and can be recognized as the regularizer in section 3.1.1 in [9]. The corresponding
Laplacian is Llr = c (δlr − 1/m), and the nonzero eigenvalues are all equal to c.
Substitution in the bound (4) then gives

R̂mn (F) ≤ 2B√
n

√
1
c

+
1
mη

,

exhibiting both the benefit of assuming a large ’relatedness’ c of the tasks, and
the increasing irrelevance of the general regularization parameter η for a large
number m of tasks.

4 Bounding the Expected Norm of W (σ, x)

Now we prove part (II) of Theorem 2. Hoelders inequality essentially reduces
the problem of the proof to the analysis of the expected norm of W = W (σ,x) ,
W ↔

(
w1, ..., wm

)
. Our idea of proof is to instead study |W |2, which is easier to

deal with. We compute the expectation and bound the variance of this random
variable

Lemma 4. We have the two identities

(i) Eσ
[
|W (σ,x)|2

]
= mnĈ (x)

(ii) EXEσ

[
|W (σ,X)|2

]
= mnCm
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Proof. For a fixed configuration x and any y, z ∈ H we have, by independence
and symmetry of the Rademacher variables,

〈Eσ [W ∗W ] y, z〉 = Eσ [〈Wy,Wz〉] =
m∑
l=1

Eσ
[〈
wl, y

〉 〈
wl, z

〉]
=

m∑
l=1

n∑
i=1

n∑
j=1

Eσ
[
σliσ

l
j

] 〈
xli, y

〉 〈
xlj , z

〉
=

m∑
l=1

n∑
i=1

〈
xli, y

〉 〈
xli, z

〉
=

〈
m∑
l=1

n∑
i=1

Qxl
i
y, z

〉
= mn

〈
Ĉ (x) y, z

〉
.

The second equation follows from replacing x by X in the first one and applying
EX. �

Lemma 5. For fixed x ∈ Hmn with
∥∥xli∥∥ ≤ 1 we have

Eσ

[∥∥∥|W (σ,x)|2 − Eσ
[
|W (σ,x)|2

]∥∥∥
2

]
≤ n
√

2m.

Also
EXEσ

[∥∥∥|W (σ,X)|2 − EXEσ

[
|W (σ,X)|2

]∥∥∥
2

]
≤ n
√

3m

Proof. We use the representation |W |2 = |W (σ,x)|2 =
∑m

l=1Qwl as introduced
in section 2, Lemma 2, with

wl = wl (σ,x) =
n∑
i=1

σlix
l
i.

To prove the first inequality we keep x fixed. Let the ηli be iid copies of σli and
write Ŵ = W (η,x) and ŵl = wl (η,x). Then

Eσ

[∥∥∥|W |2 − Eσ [|W |2]∥∥∥2

2

]
= Eσ,η

[〈
|W |2 , |W |2

〉
2
−
〈
|W |2 ,

∣∣∣Ŵ ∣∣∣2〉
2

]
=

m∑
l=1

m∑
r=1

Eσ,η [〈Qwl , Qwr〉2 − 〈Qwl , Qŵr〉2]

=
m∑
l=1

Eσ,η [〈Qwl , Qwl〉2 − 〈Qwl , Qŵl〉2] ,

because of the independence of wl and wr for l �= r. The l-th term in the last
expression is equal to

Eσ,η

[∥∥wl∥∥4 −
〈
wl, ŵl

〉2]
=

∑
i,j,i′,j′

Eσ,η
[
σliσ

l
jσ

l
i′σ

l
j′−σliηljσli′ηlj′

] 〈
xli, x

l
j

〉 〈
xli′ , x

l
j′
〉
.
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By independence and symmetry of the σ variables the expectation on the right
will have the value one if i = j and i′ = j′ or if i = j′ and i′ = j. If i = i′ and
j = j′ a cancellation will occur, so the expectation will be zero. In all other cases
it vanishes because there will be some factor of the σlk occurring only once. We
conclude that

Eσ,η

[∥∥wl∥∥4 −
〈
wl, ŵl

〉2]
=
∑
i,j

(∥∥xli∥∥2 ∥∥xlj∥∥2
+
〈
xli, x

l
j

〉2) ≤ 2n2.

Summing over l we get with Jensen’s inequality,

Eσ

[∥∥∥|W |2 − Eσ [|W |2]∥∥∥
2

]
≤
(
Eσ

[∥∥∥|W |2 − Eσ [|W |2]∥∥∥2

2

])1/2

≤
(
2mn2)1/2 ,

which is the first inequality.
To prove the second inequality we also introduce iid copies X̂ l

i of X l
i and write

W = W (σ,X) and Ŵ = W
(
η, X̂

)
. Proceeding as before we obtain

Eσ,X

[∥∥∥|W |2 − Eσ,X [
|W |2

]∥∥∥2

2

]
=

m∑
l=1

Eσ,η,X,X̂

[∥∥wl∥∥4 −
〈
wl, ŵl

〉2]
.

Now we have

Eσ,η,X,X̂

[∥∥wl∥∥4 −
〈
wl, ŵl

〉2] ≤ Eσ,X [∥∥wl∥∥4
]

=
∑

i,j,i′,j′
Eσ

[
σliσ

l
jσ

l
i′σ

l
j′
]
EX

[〈
xli, x

l
j

〉 〈
xli′ , x

l
j′
〉]
.

Now Eσ
[
σliσ

l
jσ

l
i′σ

l
j′
]

will be nonzero and equal to one if either i = j and i′ = j′

or i = i′ and j = j′ or i = j′ and j = i′, which gives a bound of 3n2 on the
above expectation. Summing over l we obtain

Eσ,X

[
‖W ∗W − E [W ∗W ]‖22

]
≤ 3mn2

and the conclusion follows from Jensen’s inequality. �
Proof (of Theorem 2, part (II)). We have from Lemma 4, the triangle inequality,
the nonincreasing nature of spectral norms ‖.‖q and Lemma 5 for any q ≥ 2

Eσ

[∥∥∥|W |2∥∥∥
q

]
−mn

∥∥∥Ĉ (x)
∥∥∥
q

= Eσ

[∥∥∥|W |2∥∥∥
q
−
∥∥∥Eσ [|W |2]∥∥∥

q

]
≤ Eσ

[∥∥∥|W |2 − Eσ [|W |2]∥∥∥
q

]
≤ Eσ

[∥∥∥|W |2 − Eσ [|W |2]∥∥∥
2

]
≤ n
√

2m.

Similarly we obtain EXEσ

[∥∥∥|W |2∥∥∥
q

]
− mn ‖Cm‖q ≤ n

√
3m. It follows from

Jensen’s inequality that for p ≥ 4
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(mn)−1/2
Eσ

[
‖W‖p

]
= (mn)−1/2

Eσ

[∥∥∥|W |2∥∥∥1/2

p/2

]
≤ (mn)−1/2

(
Eσ

[∥∥∥|W |2∥∥∥
p/2

])1/2

≤ (mn)−1/2
(
mn

∥∥∥Ĉ (x)
∥∥∥
p/2

+ n
√

2m
)1/2

=

(∥∥∥Ĉ (x)
∥∥∥
p/2

+

√
2
m

)1/2

.

In the same way we obtain

(mn)−1/2
EXEσ

[
‖W‖p

]
≤
(
‖Cm‖p/2 +

√
3
m

)1/2

.

Substitution in Lemma 1 completes the proof. �

5 Conclusion

We showed that an application of Hoelder’s inequality to bound the Rademacher
complexity of linear transformation classes leads to generalization bounds for
various regularization schemes of multi-task learning. Two major defects of the
results presented are the following:

– The decrease in the r.h.s of the bound in part II of Theorem 2 withO
(
m−1/4

)
.

Is this a necessary feature or an artifact of a clumsy proof? In [12] there is a
similar bound with O

(
m−1/2

)
, but it requires that the transformations can

be factored V = ST where S : H → Rm has the property
∥∥S∗el

∥∥ ≤ 1 for the
canonical basis

(
el
)

of Rm. Also the result in [12] is worse in the limitm→∞,
diverging for constant ρ and d→∞ (in context and notation of section 1.3).

– Part II of Theorem 2 might well be valid for all p ∈ [2,∞], instead of just
p ∈ {2} ∪ [4,∞] (the case p = 2 follows trivially from part I). This would
follow if something like Lemma 5 was true also for the 1-norm instead of the
2-norm.
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Abstract. Many learning algorithms approximately minimize a risk
functional over a predefined function class. In order to establish con-
sistency for such algorithms it is therefore necessary to know whether
this function class approximates the Bayes risk. In this work we present
necessary and sufficient conditions for the latter. We then apply these
results to reproducing kernel Hilbert spaces used in support vector ma-
chines (SVMs). Finally, we briefly discuss universal consistency of SVMs
for non-compact input domains.

1 Introduction

Many learning problems such as classification and regression are characterized
by a loss function L : X × Y × R → [0,∞] and an unknown distribution P on
X ×Y . Having a sample set T ∈ (X ×Y )n drawn in an i.i.d. fashion from P the
learning goal is then to find a measurable function f : X → R whose L-risk

RL,P(f) :=
∫
X×Y

L
(
x, y, f(x)

)
dP(x, y)

is close to the Bayes L-risk, i.e. the smallest possible risk

R∗
L,P := inf

{
RL,P(f)

∣∣ f : X → R measurable
}
.

In order to find such a function many learning methods minimize a (modi-
fied) empirical risk over a predefined function class F . Examples of such learn-
ing methods include empirical risk minimization, SVMs, (regularized) boosting,
some neural networks, and certain decision trees.

In a first step of the consistency analysis of such a learning method one typ-
ically shows that the algorithm produces with high probability a function fT
whose risk RL,P(fT ) is close to the F -optimal L-risk R∗

L,P,F := inff∈F RL,P(f).
In order to show that RL,P(fT ) is close to the Bayes risk R∗

L,P it thus remains
to prove that the function class F is (L,P)-rich, i.e. that it satisfies

R∗
L,P,F = R∗

L,P . (1)

In this work we provide both necessary and sufficient conditions for (1) for a va-
riety of loss functions and distributions. Moreover, we apply these general condi-
tions to reproducing kernel Hilbert spaces (RKHSs) used in SVMs. In particular,

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 79–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



80 I. Steinwart, D. Hush, and C. Scovel

for universal kernels introduced in [1] we establish (L,P)-richness for essentially
all reasonable continuous loss functions. Furthermore, for kernels acting on dis-
crete spaces X we establish the first sufficient conditions for (L,P)-richness, and
we also show that the Gaussian RBF kernels are rich forX := Rd. Finally, we use
these results to discuss consistency of SVMs over non-compact input domains.

The rest of this work is organized as follows. In Section 2 we introduce basic
notions for loss functions and provide various examples of losses satisfying these
notions. In Section 3 we then present our main results on richness and apply
them to RKHSs. Finally, the proofs of all results are gathered in Section 4.

2 Preliminaries: Losses and Their Risks

In the following X is always a measurable space if not mentioned otherwise
and Y ⊂ R is always a closed subset. Moreover, L0(X) denotes the set of all
measurable functions f : X → R, and Lp(μ) stands for the standard space of
p-integrable functions with respect to the measure μ on X .

Let us now introduce the fundamental definitions of this work:

Definition 1. A function L : X × Y × R→ [0,∞] is called a loss function if it
is measurable. In this case L is called:
i) convex if L(x, y, . ) : R→ [0,∞] is convex for all x ∈ X, y ∈ Y .
ii) continuous if L(x, y, . ) : R→ [0,∞] is continuous for all x ∈ X, y ∈ Y .

It is obvious that the risk of a convex loss is convex on L0(X). However, in
general the risk of a continuous loss is not continuous. In order to ensure this
continuity (cf. Lemma 2) we need the following definition:

Definition 2. We call a loss function L : X × Y × R → [0,∞] a Nemitski
loss function if there exist a measurable function b : X × Y → [0,∞) and an
increasing function h : [0,∞)→ [0,∞) with

L(x, y, t) ≤ b(x, y) + h
(
|t|
)
, (x, y, t) ∈ X × Y × R. (2)

Furthermore, we say that L is a Nemitski loss of order p ∈ (0,∞), if there exists
a constant c > 0 with h(t) = c tp for all t ≥ 0. Finally, if P is a distribution on
X × Y with b ∈ L1(P) we say that L is a P-integrable Nemitski loss.

Note that P-integrable Nemitski loss functions L satisfy RL,P(f) < ∞ for all
f ∈ L∞(PX), and consequently we also have RL,P(0) <∞ and R∗

L,P <∞.
Let us now present some examples of loss functions that satisfy the above

definitions. We begin with the class of locally Lipschitz continuous loss functions:

Example 1. A loss L : X×Y×R→ [0,∞) is called locally Lipschitz continuous if

|L|a,1 := sup
t,t′∈[−a,a]

t�=t′

sup
x∈X
y∈Y

∣∣L(x, y, t)− L(x, y, t′)
∣∣

|t− t′| < ∞ , a > 0. (3)

Moreover, L is called Lipschitz continuous if |L|1 := supa>0 |L|a,1 <∞.
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Note that if Y ⊂ R is a finite subset and L : Y × R → [0,∞) is a convex
loss function then L is a locally Lipschitz continuous loss function. Moreover, a
locally Lipschitz continuous loss function L is a Nemitski loss since (3) yields

L(x, y, t) ≤ L(x, y, 0) + |L||t|,1|t| , (x, y, t) ∈ X × Y × R. (4)

In particular, a locally Lipschitz continuous loss L is a P-integrable Nemitski
loss if and only if RL,P(0) < ∞. Moreover, if L is Lipschitz continuous then L
is a Nemitski loss of order 1. �

The following two examples present some commonly used types of loss functions
that satisfy the above definitions:

Example 2. A loss L : Y ×R→ [0,∞) of the form L(y, t) = ϕ(yt) for a suitable
function ϕ : R → R and all y ∈ Y := {−1, 1} and t ∈ R, is called margin-based.
Recall that margin-based losses such as the (squared) hinge loss, the AdaBoost
loss, the logistic loss and the least squares loss are used in many classification
algorithms. Obviously, L is convex, continuous, or (locally) Lipschitz continuous
if and only if ϕ is. In addition, convexity of L implies local Lipschitz continuity
of L. Moreover, L is always a P-integrable Nemitski loss since we have

L(y, t) ≤ max{ϕ(−t), ϕ(t)}

for all y ∈ Y and all t ∈ R. From this we can also easily derive a characterization
for L being a P-integrable Nemitski loss of order p. �

Example 3. A loss L : Y × R → [0,∞) of the form L(y, t) = ψ(y − t) for a
suitable function ψ : R → R and all y ∈ Y := R and t ∈ R, is called distance-
based. Distance-based losses such as the least squares loss, Huber’s insensitive
loss, the logistic loss, or the ε-insensitive loss are usually used for regression. It
is easy to see that L is convex, continuous, or Lipschitz continuous if and only
if ψ is. Let us say that L is of upper growth p ∈ [1,∞) if there is a c > 0 with

ψ(r) ≤ c
(
|r|p + 1

)
, r ∈ R.

Then it is obvious that L is of upper growth type 1 if it is Lipschitz continuous,
and if L is convex the converse implication also holds. In addition, a distance-
based loss function of upper growth type p ∈ [1,∞) is a Nemitski loss of order
p, and if the distribution P satisfies E(x,y)∼P|y|p <∞ it is also P-integrable. �

3 Main Results

In this section we present our main results establishing (L,P)-richness, i.e. Equa-
tion (1). Let us begin with some sufficient conditions:

Theorem 1. Let L : X × Y × R → [0,∞] be a continuous loss function, P
be a distribution on X × Y such that L is a P-integrable Nemitski loss, and
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F ⊂ L∞(PX). Furthermore, assume that for all g ∈ L∞(PX) there exists a
sequence (fn) ⊂ F with supn≥1 ‖fn‖∞ <∞ and

lim
n→∞

fn(x) = g(x) (5)

for PX-almost all x ∈ X. Then F is (L,P)-rich.

Note that the assumptions on F in Theorem 1 are satisfied if and only if for
all g ∈ L∞(PX) there exists a sequence (fn) ⊂ F with supn≥1 ‖fn‖∞ < ∞ and
fn → g in probability PX .

Let us now provide an interesting example of a set F satisfying the assump-
tion of Theorem 1. To this end let X be a compact topological Hausdorff space,
k : X×X → R be a continuous kernel and H be its associated RKHS. Following
[1] we say thatH (or k) is universal ifH is dense in the space C(X) of continuous
functions f : X → R, equipped with the ‖.‖∞-norm. For examples of such kernels
we refer to [1]. Now the following result applies Theorem 1 to universal kernels:

Corollary 1. Let X be a compact metric space, L : X × Y × R → [0,∞] be
a continuous loss function, and P be a distribution on X × Y such that L is a
P-integrable Nemitski loss. Then every universal RKHS over X is (L,P)-rich.

At first glance it seems disappointing that Corollary 1 only holds for compact
metric spaces. However, the following theorem shows that these spaces are the
only ones which permit universal kernels:

Theorem 2. For a compact topological Hausdorff space X the following state-
ments are equivalent:

i) There exists a universal kernel k on X.
ii) X is metrizable, i.e. there exists a metric generating the topology.

Most common losses are of some order p ∈ [1,∞). For such losses we now present
a weaker sufficient condition for richness than that of Theorem 1:

Theorem 3. Let L : X × Y × R → [0,∞] be a continuous loss function and
P be a distribution on X × Y such L is a P-integrable Nemitski loss of order
p ∈ [1,∞). Then every dense subset F ⊂ Lp(PX) is (L,P)-rich.

Note that if F is a dense subset of Lp(PX) for some p ∈ [1,∞) then it is also
a dense subset of Lq(PX) for all q with 1 ≤ q ≤ p. Consequently, the denseness
assumption in Theorem 3 becomes stronger for loss functions of higher order.

The condition that F is dense in Lp(μ) can often be guaranteed by means
from functional analysis. In the following we will illustrate this for RKHSs. To
this end let k : X × X → R be a measurable kernel and H be its associated
RKHS. Given a measure μ on X and a real number p ∈ [1,∞) we define

‖k‖Lp(μ) :=
(∫

X

k
p
2 (x, x)dμ(x)

) 1
p

.
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It is elementary to check that the inclusion I : H → Lp(μ) is well-defined and
continuous if ‖k‖Lp(μ) <∞. Furthermore, its adjoint operator I ′ is the integral
operator Tk : Lp′(μ)→ H defined by

Tkg(x) :=
∫
X

k(x, x′)g(x′)dμ(x′) , g ∈ Lp′(μ), x ∈ X, (6)

where p′ is defined by 1
p + 1

p′ = 1. With these preparations we can now charac-
terize when H is dense in Lp(μ):

Proposition 1. Let X be a measurable space, μ be a measure on X, k be a
measurable kernel on X with RKHS H such that ‖k‖Lp(μ) < ∞ for some p ∈
[1,∞). Then the following statements are equivalent:

i) H is dense in Lp(μ).
ii) The integral operator Tk : Lp′(μ)→ H defined by (6) is injective.

The next result provides injectivity for the integral operators of the Gaussian
RBF kernels kσ defined by kσ(x, x′) := exp(−‖x− x′‖22/σ2), x, x′ ∈ Rd, σ > 0.

Theorem 4. Let μ be a finite measure on Rd and Hσ be the RKHS of kσ. Then
Tkσ : Lp′(μ)→ Hσ is injective for all p ∈ (1,∞) and all σ > 0.

Combining Theorem 4 with a stability argument in the sense of [2], it is not
hard to show that an SVM with e.g. the hinge loss and a Gaussian RBF kernel
is classification consistent for all distributions P on Rd × {−1, 1}. This extends
the known consistency result [3, 4] from bounded to unbounded input domains.

If PX is absolutely continuous with respect to some measure μ then Proposi-
tion 1 yields the following sufficient condition for H being dense in Lp(PX):

Corollary 2. Let X be a measurable space, μ be a measure on X, and k be a
measurable kernel on X with RKHS H and ‖k‖Lp(μ) < ∞ for some p ∈ [1,∞).
Assume that Tk : Lp′(μ) → H is injective. Then H is dense in Lq(hμ) for all
q ∈ [1, p] and all measurable h : X → [0,∞) with h ∈ Ls(μ), where s := p

p−q .

Let us now investigate denseness properties of RKHSs over discrete spaces X .
To this end let us write �p(X) := Lp(ν), where p ∈ [1,∞] and ν is the counting
measure on X . Note that these spaces obviously satisfy �p(X) ⊂ �q(X) for p ≤ q
which is used in the proof of the following corollary:

Corollary 3. Let X be a countable set and k be a kernel on X with ‖k‖�p(X) <
∞ for some p ∈ [1,∞). If k satisfies∑

x,x′∈X
k(x, x′)f(x)f(x′) > 0 (7)

for all f ∈ �p′(X) with f �= 0 then the RKHS of k is dense in Lq(μ) for all
q ∈ [1,∞) and all distributions μ on X.
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Note that the sharpest case p = q = ∞ is excluded in the above corollary. The
reason for this is that the dual of �∞(X) is not �1(X). However, if instead we
consider the pre-dual of �1(X), namely the Banach space

c0(X) :=
{
f : X → R

∣∣ ∀ε > 0 ∃ finite A ⊂ X such that ∀x ∈ X\A : |f(x)| ≤ ε
}

which is equipped with the usual ‖.‖∞-norm, then we obtain:

Theorem 5. Let X be a countable set and k be a bounded kernel on X that
satisfies k(., x) ∈ c0(X) for all x ∈ X, and (7) for all f ∈ �1(X) with f �= 0.
Then the RKHS of k is (L,P)-rich for all distribution P on X × Y and all
continuous, P-integrable Nemitski losses L : X × Y × R→ [0,∞).

It is not hard to see that there exist non-trivial kernels satisfying the assumptions
of Theorem 3 and Theorem 5. Using a stability argument we hence see that for
all countable X there exist non-trivial, universally consistent SVMs.

Let us now present some necessary conditions for (L,P)-richness. To this end
we first recall some concepts from [5]: let L : Y × R→ [0,∞] be a loss function
and Q be a distribution on Y . We define the inner L-risk of Q by

CL,Q(t) :=
∫
Y

L(y, t) dQ(y) , t ∈ R .

Furthermore, the minimal inner L-risk is denoted by C∗L,Q := inft∈R CL,Q(t), and
the corresponding set of (non-trivial) minimizers is defined by

ML,Q(0+) :=
{
t ∈ R : CL,Q(t) = C∗L,Q

}
if C∗L,Q < ∞, and by ML,Q(0+) := ∅ otherwise. Finally, we need the self-
calibration function which is defined by

δmax,L(ε,Q):=inf
{
CL,Q(t)−C∗L,Q : t ∈ R with |t−t′| ≥ ε for all t′ ∈ML,Q(0+)

}
for ε ∈ [0,∞) and Q with C∗L,Q < ∞. Note that in [5] this function is denoted
by δmax,L̆,L(ε,Q). Moreover, in [5] it was shown thatML,Q(0+) = {t∗Q} implies

δmax,L(|t− t∗L,Q|,Q) ≤ CL,Q(t)− C∗L,Q , t ∈ R,

i.e. the self-calibration function quantifies how well an approximate minimizer of
CL,Q(.) approximates the exact minimizer t∗Q. Finally, given a set of distributions
Q on Y we say that a distribution P on X × Y is of type Q if its conditional
probabilities satisfy P(.|x) ∈ Q for PX-almost all x ∈ X .

Now we can formulate our first necessary condition for (L,P)-richness:

Theorem 6. Let L : Y × R → [0,∞) be a convex loss function such that
there exists two distributions Q1, Q2 on Y , and two real numbers t∗1 �= t∗2 with
ML,Q1(0+) = {t∗1} and ML,Q2(0+) = {t∗2}. Furthermore, let X be a measurable
space and μ be a distribution on X. Assume that F ⊂ L∞(μ) is a (L,P)-rich
linear subspace for all {Q1,Q2}-type distributions P on X × Y with PX = μ.
Then for all g ∈ L∞(μ) there exists a sequence (fn) ⊂ F with

lim
n→∞

fn(x) = g(x) for μ-almost all x ∈ X.
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Corollary 4. Let X, L and Q1, Q2 be as in Theorem 6. Furthermore, let k be
a measurable kernel on X whose RKHS H is (L,P)-rich for all {Q1,Q2}-type
distributions P on X × Y . Then k is strictly positive definite.

There is an gap between the sufficient condition of Theorem 1 and the necessary
condition of Theorem 6. Our next goal is to close this gap for certain Nemitski
losses of order p. To this end we first present the following necessary condition
which uses an additional assumption on the self-calibration function:

Theorem 7. Let L : Y × R → [0,∞) be a convex loss function such that
there exists two distributions Q1, Q2 on Y , and two real numbers t∗1 �= t∗2 with
ML,Q1(0+) = {t∗1} and ML,Q2(0+) = {t∗2}. In addition assume that there exist
constants B > 0 and p > 0 with

δmax,L(ε,Qi) ≥ B εp , ε > 0, i = 1, 2.

Furthermore, let X be a measurable space, μ be a distribution on X, and F ⊂
Lp(μ) be a (L,P)-rich linear subspace for all {Q1,Q2}-type distributions P on
X × Y with PX = μ. Then F is dense in Lp(μ).

By combining Theorem 3 with Theorem 7 we now obtain the following charac-
terization of (L,P)-richness:

Theorem 8. Let L : Y × R → [0,∞) be a convex Nemitski loss of order
p ∈ [1,∞), i.e. we have (2) with b : Y → [0,∞). Furthermore, let Q1, Q2
be distributions on Y with b ∈ L1(Q1) ∩ L1(Q2), and t∗1, t∗2 ∈ R be real numbers
with ML,Q1(0+) = {t∗1}, ML,Q2(0+) = {t∗2}, and t∗1 �= t∗2. In addition, assume
that there exists a constant B > 0 such that their self-calibration functions satisfy

δmax,L(ε,Qi) ≥ B εp , ε > 0, i = 1, 2.

Furthermore, let X be a measurable space, μ be a distribution on X, and F ⊂
Lp(μ) be a subspace. Then the following statements are equivalent:

i) F is (L,P )-rich for all distributions P on X × Y with PX = μ for which L
is a P-integrable Nemitski loss of order p.

ii) F is (L,P )-rich for all {Q1,Q2}-type distributions P on X×Y with PX=μ.
iii) F is dense in Lp(μ).

The following examples illustrate that many important loss functions satisfy the
assumptions of Theorem 8:

Example 4. For p ≥ 1 let L be the loss defined by L(y, t) := |y − t|p, y, t ∈ R.
Furthermore, let Q1 := δ{y1}, Q1 := δ{y2} be two Dirac distributions on R with
y1 �= y2. Then L, Q1, and Q2 satisfy the assumptions of Theorem 8 for p.

In order to see this, we first observe with Example 3 that L is a Nemitski loss of
order p. Furthermore, for the Dirac measure Q := δ{y0} at some y0 ∈ R we have
CL,Q(t) = |t−y0|p, t ∈ R. Consequently, we have C∗L,Q = 0 andML,Q(0+) = {y0}.
With these equalities it is easy to check that the self-calibration function of L is

δmax,L(ε,Q) = εp , ε ≥ 0. �
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The above example shows that F being a dense subspace of Lp(PX) characterizes
the (L,P)-richness. Moreover, it also shows that restricting the class of distri-
butions to noise-free distributions P, i.e. to distributions with P(.|x) = δ{f(x)}
for measurable functions f : X → R, does not change this characterization. In
other words, if we do not want to impose further assumptions on P then F being
dense in Lp(PX) is the condition we should look for.

The following example provides a similar characterization for the ε-insensitive
loss function used in the standard SVM formulation for regression:

Example 5. Let ε > 0 and L be the ε-insensitive loss defined by L(y, t) :=
max{0, |y − t| − ε}, y, t ∈ R. Furthermore, for y1, y2 ∈ R with y1 �= y2 we define
Qi := 1

2δ{yi−ε} + 1
2δ{yi+ε}, i = 1, 2. Then L, Q1, and Q2 satisfy the assumptions

of Theorem 8 for p = 1.
In order to see this, we first observe that L is a Nemitski loss of order 1. Let

us define ψ(r) := max{0, |r| − ε}, r ∈ R. For Qi, i = 1, 2 we then have

2CL,Qi(t) = ψ(yi − ε− t) + ψ(yi + ε− t) , t ∈ R,

and thus we have CL,Qi(yi) = 0 ≤ CL,Qi(t) for all t ∈ R. For t ≥ 0 this yields

CL,Qi(yi ± t)− C∗L,Qi
=

1
2
ψ(ε + t) +

1
2
ψ(ε− t) ≥ 1

2
ψ(ε + t) =

t

2
,

and hence we find both ML,Qi(0+) = {yi} and δmax,L(ε,Q) = ε
2 for ε ≥ 0. �

Our last example provides a characterization of richness for the hinge loss used
in the standard SVM formulation for classification:

Example 6. Let L be the hinge loss defined by L(y, t) := max{0, 1 − yt}, y ∈
Y := {−1, 1}, t ∈ R. Furthermore, let Q1, Q2 be distributions on Y with η1 :=
Q1({1}) ∈ (0, 1/2) and η2 := Q2({1}) ∈ (1/2, 1). Then L, Q1, and Q2 satisfy the
assumptions of Theorem 8 for p = 1.

In order to see this we first observe that L is Lipschitz continuous and hence a
Nemitski loss of order 1. Moreover, it is well-known thatML,η(0+) = {sign(2η−
1)} for η �= 0, 1

2 , 1, and in addition, for such η an elementary calculation shows

δmax,L(ε, η) = ε min
{
η, 1− η, 2η − 1

}
, ε ≥ 0. �

Note that unlike the distributions in Example 4 the distributions in Example 6
are noisy. This is due to the fact that only noise makes the hinge loss minimizer
unique. Moreover, note that using e.g. the least squares loss for a classification
problem requires L2(μ)-denseness which in general is a strictly stronger condition
than the L1(μ)-denseness required for the hinge loss or the logistic loss. This is
remarkable since the target functions for the former two losses are bounded,
whereas in general the target function for the logistic loss is not even integrable.

Obviously, Condition (7) implies that k is strictly positive definite, and we
have already seen in Corollary 1 that this property is necessary for richness. Our
last result now shows that in general it is not sufficient :

Theorem 9. There exists a bounded strictly positive definite kernel k on X :=
N0 with k(., x) ∈ c0(X) for all x ∈ X, such that for all measures μ on X with
μ({x}) > 0, x ∈ X, the RKHS H of k is not dense in L1(μ).
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4 Proofs

Lemma 1. Let L : X×Y ×R→ [0,∞] be a continuous loss, P be a distribution
on X × Y , and (fn) ⊂ L0(X) be a sequence that converges to an f ∈ L0(X) in
probability PX. Then we have RL,P(f) ≤ lim infn→∞RL,P(fn).

Proof. Since (fn) converges in probability, there exists a subsequence (fnk
) of

(fn) with
lim
k→∞

RL,P(fnk
) = lim inf

n→∞
RL,P(fn)

and fnk
(x)→ f(x) for PX-almost all x ∈ X . By the continuity of L we then have

L(x, y, fnk
(x))→ L(x, y, f(x)) almost surely and hence Fatou’s lemma gives

RL,P(f) =
∫

X×Y

lim
k→∞

L
(
x, y, fnk

(x)
)
dP(x, y) ≤ lim inf

k→∞

∫
X×Y

L
(
x, y, fnk

(x)
)
dP(x, y)

= lim inf
n→∞

RL,P(fn) . 
�

Lemma 2. Let P be a distribution on X × Y and L : X × Y ×R→ [0,∞] be a
continuous, P-integrable Nemitski loss function. Then we have:

i) Let fn ∈ L0(X), n ≥ 1, be functions with B := supn≥1 ‖fn‖∞ < ∞. If the
sequence (fn) converges PX-almost surely to an f ∈ L0(X) then we have

lim
n→∞

RL,P(fn) = RL,P(f) .

ii) The map RL,P : L∞(PX)→ [0,∞) is continuous.
iii) If L is of order p ∈ [1,∞) then RL,P : Lp(PX)→ [0,∞) is continuous.

Proof. i). Obviously, f is a bounded and measurable function with ‖f‖∞ ≤ B.
Furthermore, the continuity of L shows L(x, y, fnk

(x)) → L(x, y, f(x)) almost
surely. In addition, for P-almost all (x, y) ∈ X × Y and all n ≥ 1 we have∣∣L(x, y, fn(x)

)
− L

(
x, y, f(x)

)∣∣ ≤ 2b(x, y) + 2h(B) .

Since the function on the right hand side is P-integrable, we then obtain the
assertion from Lebesgue’s convergence theorem and∣∣RL,P(fn)−RL,P(f)

∣∣ ≤ ∫
X

∣∣∣L(x, y, fn(x)
)
− L

(
x, y, f(x)

)∣∣∣ dP(x, y) .

ii). This is a direct consequence of Condition (2) and i).
iii). Since L is a P-integrable Nemitski loss of order p we find RL,P(f) < ∞
for all f ∈ Lp(PX). Now let (fn) ⊂ Lp(PX) be a sequence converging to some
f ∈ Lp(PX). Lemma 1 then yields RL,P(f) ≤ lim infn→∞RL,P(fn). Moreover,
L̃(x, y, t) := b(x, y)+c|t|p−L(x, y, t) is also a continuous loss, and hence we have

‖b‖L1(P) + c‖f‖pp −RL,P(f) = RL̃,P(f) ≤ lim inf
n→∞

RL̃,P(fn)

= ‖b‖L1(P) + lim inf
n→∞

c‖fn‖pp −RL,P(fn)

by Lemma 1. Using the fact that ‖.‖pp is a continuous function on Lp(PX), we
thus obtain lim supn→∞RL,P(fn) ≤ RL,P(f). 
�
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Lemma 3. Let L : X × Y × R → [0,∞] be a loss, and P be a distribution on
X×Y such that L is a P-integrable Nemitski loss. Then L∞(PX) is (L,P)-rich.

Proof. Let us fix a measurable function f : X → R with RL,P(f) <∞. Then the
functions fn := 1{|f |≤n}f , n ≥ 1, are bounded, and an easy calculation shows

∣∣RL,P(fn)−RL,P(f)
∣∣ ≤ ∫

{|f |>n}×Y

∣∣L(x, y, 0)− L(x, y, f(x))
∣∣ dP(x, y)

≤
∫
{|f |>n}×Y

b(x, y) + h(0) + L
(
x, y, f(x)

)
dP(x, y)

for all n ≥ 1. In addition, the integrand in the last integral is integrable since
RL,P(f) < ∞ and b ∈ L1(P), and consequently Lebesgue’s theorem yields
RL,P(fn)→RL,P(f) for n→∞. From this we easily get the assertion. 
�

Proof (of Theorem 1). By Lemma 3 we know R∗
L,P,L∞(PX) = R∗

L,P, and since
F ⊂ L∞(PX) we also haveR∗

L,P,F ≥ R∗
L,P,L∞(PX). In order to show the converse

inequality we fix a g ∈ L∞(PX). Let (fn) ⊂ F be a sequence of functions
according to the assumptions of the theorem. Lemma 2 then yields RL,P(fn)→
RL,P(g), and hence we easily find R∗

L,P,F ≤ R∗
L,P,L∞(PX). 
�

Proof (of Corollary 1). Let us fix a g ∈ L∞(PX). Then there exists a sequence
(gn) ⊂ C(X) with ‖gn‖∞ ≤ ‖g‖∞ for all n ≥ 1 and gn(x) → g(x) for PX -
almost all x ∈ X . Moreover, the universality of H gives functions fn ∈ H with
‖fn−gn‖∞ ≤ 1/n for all n ≥ 1. Since this yields both ‖fn‖∞ ≤ 1+‖g‖∞, n ≥ 1,
and fn(x)→ g(x) almost surely, we obtain the assertion by Theorem 1. 
�

Proof (of Theorem 2). By [6, Thm. 3.2.11 and Cor. 3.3.2] we know that X is
completely regular and hence [7, Thm. V.6.6.] shows that X is metrizable if and
only if C(X) is separable.
i) ⇒ ii). Let H be the RKHS of k and Φ : X → H be the canonical feature
map. Then Φ is continuous and thus Φ(X) is compact. Since H is obviously
a metric space we hence see that Φ(X) is separable, and consequently so is
H = spanΦ(X). SinceH is dense in C(X) we then obtain that C(X) is separable.
ii) ⇒ i). Since our preliminary consideration shows that C(X) is separable
there exists a dense subset {fn : n ∈ N} of C(X). For n ∈ N we define Φn :=
2−n‖fn‖−1

∞ fn if fn �= 0 and Φn := 0 otherwise. Then it is easy to see that
Φ(x) := (Φn(x))n satisfies Φ(x) ∈ �2 for all x ∈ X and hence

k(x, x′) :=
〈
Φ(x), Φ(x′)

〉
�2
, x, x′ ∈ X,

defines a kernel on X with feature map Φ : X → �2. Let us now fix an f ∈ C(X)
and an ε > 0. Then there exists an integer n with ‖fn − f‖∞ ≤ ε. We define
w := 2n‖fn‖∞en, where (en) is the canonical orthonormal basis (ONB) of �2.
This gives 〈w,Φ(x)〉 = fn(x) for all x ∈ X , and since H :=

{
〈v, Φ(.)〉 : v ∈ �2} is

the RKHS of k we obtain the universality of k. 
�
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Proof (of Theorem 3). Since L∞(PX) ⊂ Lp(PX) we have R∗
L,P,Lp(PX) = R∗

L,P

by Lemma 3. Now the assertion easily follows from the denseness of F in Lp(PX)
and the continuity of RL,P : Lp(PX)→ [0,∞) established in Lemma 2. 
�

Proof (of Proposition 1). It is easy to check that Tk is the adjoint operator of
the inclusion map I : H → Lp(μ). Recalling that I has dense image if and only if
its adjoint is injective (see e.g. [8, Satz III.4.5]) we then obtain the assertion. 
�

Proof (of Theorem 4). Let us fix an f ∈ Lp′(μ) with Tkσf = 0. For t > 0 we
write gt(x, x′) := (4πt)−d/2k2

√
t(x, x

′), and define

u(x, t) :=
∫

Rd

gt(x, x′)f(x′)dμ(x′), x ∈ Rd, t > 0.

Differentiation then shows that u satisfies the heat equation ∂tu = ∂xxu and
since Tkσf = 0 implies u(x, σ

2

4 ) = 0 for all x ∈ Rd the unique continuation
theorem of Itô and Yamabe [9] implies that u(x, t) = 0 for all x ∈ Rd and t > 0.
Now let h : Rd → R be a continuous function with compact support. Then we
obviously have ‖h‖∞ <∞, h ∈ Lp(μ), and

0 =
∫

Rd

h(x)u(x, t)dx =
∫

Rd

h(x)
(∫

Rd

gt(x, x′)f(x′)dμ(x′)
)
dx, t > 0. (8)

Since μ is finite it follows that f ∈ L1(μ) and that h(x)gt(x, x′)f(x′) is integrable
with respect to the product of μ and the Lebesgue measure on Rd. Let us define

ht(x′) :=
∫

Rd

gt(x, x′)h(x)dx, x′ ∈ Rd.

For t > 0 Fubini’s theorem and (8) then yields

0 =
∫

Rd

f(x′)
(∫

Rd

gt(x, x′)h(x)dx
)
dμ(x′) =

∫
Rd

f(x′)ht(x′)dμ(x′) . (9)

Now fix an x ∈ Rd and an ε > 0. Then there exists a δ > 0 such that for all x′ ∈
Rd with |x′−x| ≤ δ we have |h(x′)−h(x)| ≤ ε. Since

∫
Rd gt(x, x′)dx = 1, x′ ∈ Rd

we hence obtain

ht(x)−h(x) =
∫

|x′−x|≤δ

(
h(x′)− h(x)

)
gt(x, x′)dx′+

∫
|x′−x|>δ

(
h(x′)− h(x)

)
gt(x, x′)dx′.

The absolute value of the first term is bounded by ε and the absolute value of
the second term can be made less than ε by choosing t small enough. Therefore
we conclude that limt→0 ht(x) = h(x), x ∈ Rd. Moreover, we have |ht(x)| ≤
‖h‖∞ <∞ , and hence the dominated convergence theorem and (9) yield

0 =
∫

Rd

f(x′)h(x′)dμ(x′) = 〈f, h〉Lp′(μ),Lp(μ).

Since it follows from [10, Thm. 29.12] and [10, Thm. 29.14] that the continuous
functions with compact support are dense in Lp(μ), we conclude f = 0. 
�
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Proof (of Corollary 2). Let us fix an f ∈ Lq′(hμ). Then we have f |h|
1
q′ ∈ Lq′(μ)

and for r defined by 1
q′ + 1

r = 1
p′ Hölder’s inequality and r

q = s thus yield

‖fh‖Lp′(μ) =
∥∥ f |h| 1q′ |h| 1q

∥∥
Lp′(μ) ≤

∥∥ f |h| 1q′
∥∥
Lq′ (μ)

∥∥ |h| 1q ∥∥
Lr(μ) < ∞ .

Moreover, if f �= 0 in Lq′(hμ) we have μ{fh �= 0} > 0 and hence we obtain

0 �= Tk(fh) =
∫
X

f(x)h(x)k(., x) dμ(x) =
∫
X

f(x)k(., x) d(hμ)(x) .

Since the latter integral describes the integral operator Lq′(hμ) → H we then
obtain the assertion by Proposition 1. 
�

Proof (of Corollary 3). Let us fix an f ∈ �p′(X) with f �= 0. Then we have
Tkf ∈ H ⊂ �p(X) and hence we obtain

〈Tkf, f〉�p(X),�p′(X) =
∑

x,x′∈X
k(x, x′)f(x)f(x′) > 0 .

This shows that Tk : �p′(X)→ H is injective. Now let μ be a distribution on X
and ν be the counting measure on X . Then there exists a function h ∈ �1(X)
with μ = hν. Since for q ∈ [1, p] we have s := p

p−q ≥ 1 we then find h ∈ �s(X)
and hence we obtain the assertion by applying Corollary 2. In addition, for q > p
we have ‖k‖�q(X) ≤ ‖k‖�p(X) < ∞ and �q′(X) ⊂ �p′(X), and consequently, this
case follows from the already shown case q = p. 
�

Proof (of Theorem 5). The completeness of c0(X) and k(., x) ∈ c0(X), x ∈ X ,
implies that the inclusion I : H → c0(X) is well-defined. In addition, k is
bounded and thus I is continuous. Moreover, a simple calculation shows that
its adjoint operator is the integral operator Tk : �1(X) → H which is injective
by (7). Consequently, H is dense in c0(X), and by Lemma 2 we hence find
R∗
L,P,H = R∗

L,P,c0(X). Therefore it remains to show that c0(X) is (L,P)-rich. To
this end let ν be the counting measure on X and h : X → [0, 1] be the map that
satisfies PX = hν. In addition recall that we have RL,P(0) < ∞ since L is a
P-integrable Nemitski loss. Given an ε > 0 there hence exists a finite set A ⊂ X
with ∑

x∈X\A
h(x)

∫
Y

L(x, y, 0)dP(y|x) ≤ ε .

In addition, there exists a g : X → R with RL,P(g) ≤ R∗
L,P + ε. Let us define

f := 1Ag. Then we have f ∈ c0(X) and

RL,P(f) =
∑
x∈A

h(x)
∫
Y

L
(
x, y, g(x)

)
dP(y|x) +

∑
x∈X\A

h(x)
∫
Y

L(x, y, 0)dP(y|x)

≤ RL,P(g) + ε . 
�
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Lemma 4. Let μ be a distribution on X. Assume that we have a subspace F ⊂
L∞(μ) such that for all measurable A ⊂ X there exists a sequence (fn) ⊂ F with
limn→∞ fn(x) = 1A(x) for μ-almost all x ∈ X. Then for all g ∈ L∞(μ) there
exists a sequence (fn) ⊂ F with limn→∞ fn(x) = g(x) for μ-almost all x ∈ X.

Proof. We first observe that for step functions g ∈ L∞(μ) the assertion immedi-
ately follows from the fact that F is a vector space. Let us now fix an arbitrary
g ∈ L∞(μ). For n ≥ 1 there then exists a step function gn ∈ L∞(μ) with
‖gn − g‖∞ ≤ 1/n. Moreover, for this gn there exists a sequence (fm,n)m≥1 ⊂ F
with limm→∞ fm,n(x) = gn(x) for μ-almost all x ∈ X . By Egoroff’s theorem we
then find a measurable subset An ⊂ X with μ(X\An) ≤ 1/n and

lim
m→∞

‖(fm,n − gn)|An
‖∞ = 0 .

Consequently, there is an index mn ≥ 1 with ‖(fmn,n − gn)|An
‖∞ ≤ 1/n. By

putting all estimates together we now obtain

μ
(
{x ∈ X : |fmn,n(x)− g(x)| ≤ 2/n}

)
≥ 1− 1/n , n ≥ 1.

This shows that (fmn,n)n≥1 converges to g in probability μ, and consequently
there exists a subsequence of it that converges to g almost surely. 
�

Proof (of Theorem 6). Let A be the σ-algebra of X . We fix an A1 ∈ A, and
write A2 := ∅. Let us define two distributions P1 and P2 on X × Y by

Pi( . |x) :=

{
Q1 if x ∈ Ai
Q2 if x ∈ X\Ai

and (Pi)X := μ for i = 1, 2. Our assumptions on Q1 and Q2 guarantee C∗L,Q1
<∞

and C∗L,Q2
< ∞, and hence we find R∗

L,Pi
< ∞ for i = 1, 2. Moreover, every

function minimizing RL,Pi has μ-almost surely the form

f∗L,Pi
:= t∗11Ai + t∗21X\Ai

, i = 1, 2.

Now, our assumptions yield R∗
L,Pi,F

= R∗
L,Pi

, i = 1, 2, and hence there are

sequences (f (1)
n ) ⊂ F and (f (2)

n ) ⊂ F with limn→∞RL,Pi(f
(i)
n ) = R∗

L,Pi
for

i = 1, 2. By Remark 2.39 in [5] we then have

lim
n→∞

f (i)
n = f∗L,Pi

, i = 1, 2, (10)

in probability μ̂, where μ̂ is the extension of μ to the μ-completed σ-algebra
of A. Now observe that all functions in (10) are A-measurable, and hence (10)
actually holds in probability μ. Consequently, there exist subsequences (f (1)

nj )
and (f (2)

nj ) for which (10) holds μ-almost surely. For

fj :=
1

t∗1 − t∗2
(
f (1)
nj
− f (2)

nj

)
, j ≥ 1,
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we then have fj ∈ F , and in addition our construction yields

lim
j→∞

fj =
1

t∗1 − t∗2
(
f∗L,P1

− f∗L,P2

)
=

1
t∗1 − t∗2

(
t∗11A1 + t∗21X\A1 − t∗21X

)
= 1A1

μ-almost surely. By Lemma 4 we thus obtain the assertion. 
�

Proof (of Corollary 4). Let x1, . . . , xn ∈ X be mutually different points and μ
be the associated empirical distribution. Obviously, it suffices to show that the
kernel matrixK := (k(xi, xj)) has full rank. Let us assume the converse, i.e. that
there exists an y ∈ Rn with Kα �= y for all α ∈ Rn. Since KRn is closed there
exists an ε > 0 with ‖Kα− y‖∞ ≥ ε for all α ∈ Rn. Moreover, by decomposing
H into span{k(., xi) : i = 1, . . . , n} and its orthogonal complement we see that
for every f ∈ H there is an α ∈ Rn with

f(xj) =
n∑
i=1

αik(xj , xi) , j = 1, . . . , n,

and hence for all f ∈ H there is an index j ∈ {1, . . . , n} with |f(xj)−yj | > ε. On
the other hand, Theorem 6 gives a sequence (fn) ⊂ H with fn(xi) → yi for all
i ∈ {1, . . . , n}. Since {1, . . . , n} is finite we then easily find a contradiction. 
�

Lemma 5. Let μ be a distribution on X and p > 0. Assume that F ⊂ Lp(μ)
is a linear subspace such that for all measurable A ⊂ X there exists a sequence
(fn) ⊂ F with limn→∞ ‖fn − 1A‖Lp(μ) = 0. Then F is dense in Lp(μ).

Proof. If g ∈ Lp(μ) is a measurable step function there obviously exists a se-
quence (fn) ⊂ F with limn→∞ ‖fn − g‖p = 0. Moreover, if g ∈ Lp(μ) is
bounded and n is an integer there exists a measurable step function gn with
‖gn− g‖∞ ≤ 1/n. In addition, we have just see that there exists an fn ∈ F with
‖fn− gn‖p ≤ 1/n, and hence we find limn→∞ ‖fn− g‖p = 0. Finally, for general
g ∈ Lp(μ) we then find an approximating sequence by first approximating g with
the bounded measurable functions gn := 1|g|≤ng, n ≥ 1, and then approximating
these gn with suitable functions fn ∈ F . 
�

Proof (of Theorem 7). Following the argument used in the proof of Theorem
6 we may assume without loss of generality that X is a complete measurable
space. Let us now fix a measurable A1 ⊂ X , and write A2 := ∅. Furthermore, we
define the distributions Pi, the functions f∗L,Pi

, and the approximating sequences

(f (i)
n ) ⊂ F , i = 1, 2, as in the proof of Theorem 6. Then limn→∞RL,Pi(f

(i)
n ) =

R∗
L,Pi

, i = 1, 2, together with Remark 2.41 in [5] yields

lim
n→∞

‖f (i)
n − f∗L,Pi

‖Lp(μ) = 0 .

For fn := 1
t∗1−t∗2

(
f

(1)
n −f (2)

n

)
, n ≥ 1, we then obtain limn→∞ ‖fn−1A1‖Lp(μ) = 0,

and hence we obtain the assertion by Lemma 5. 
�
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Proof (of Theorem 9). Let us write pn := μ({n}), n ∈ N0. Moreover, let (bi)i≥1
be a strictly positive sequence with ‖(bi)‖2 = 1 and (bi) ∈ �1. Furthermore, let
(en) be the canonical ONB of �2. We write Φ(0) := (bi) and Φ(n) := en, n ≥ 1.
Then we have Φ(n) ∈ �2 for all n ∈ N0 and hence

k(n,m) :=
〈
Φ(n), Φ(m)

〉
�2
, n,m ≥ 0,

defines a kernel. Obviously, {Φ(n) : n ≥ 1} is (algebraically) linearly independent
and from this it is easy to conclude that k is strictly positive definite. Moreover,
an easy calculation shows k(0, 0) = 1, k(n,m) = δn,m, and k(n, 0) = bn for
n,m ≥ 1. Since bn → 0 we hence find k(., n) ∈ c0(X) for all n ∈ N0. Let us
define f : N0 → R by f(0) := 1 and f(n) := − bn

pn
p0 for n ≥ 1. Then we have

‖f‖L1(μ) = p0 + p0‖(bi)‖�1 <∞, and a simple calculation shows

Tkf(0) = k(0, 0)f(0)p0 +
∞∑
n=1

k(0, n)f(n)pn = p0 − p0
∞∑
n=1

b2n = 0 .

Moreover, for m ≥ 1 our construction yields

Tkf(m) = k(m, 0)f(0)p0 +
∞∑
n=1

k(m,n)f(n)pn = bmf(0)p0 − f(m)pm = 0 . 
�
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Abstract. Let (X, Y ) be a X ×{0, 1}-valued random pair and consider a
sample (X1, Y1), . . . , (Xn, Yn) drawn from the distribution of (X, Y ). We
aim at constructing from this sample a classifier that is a function which
would predict the value of Y from the observation of X. The special case
where X is a functional space is of particular interest due to the so called
curse of dimensionality. In a recent paper, Biau et al. [1] propose to filter
the Xi’s in the Fourier basis and to apply the classical k−Nearest Neigh-
bor rule to the first d coefficients of the expansion. The selection of both
k and d is made automatically via a penalized criterion. We extend this
study, and note here the penalty used by Biau et al. is too heavy when
we consider the minimax point of view under some margin type assump-
tions. We prove that using a penalty of smaller order or equal to zero is
preferable both in theory and practice. Our experimental study further-
more shows that the introduction of a small-order penalty stabilizes the
selection process, while preserving rather good performances.

1 Introduction

Let (X,Y ) be a random pair of variables such that X takes its values in a
measurable space X and Y in {0, 1}, with unknown distribution denoted by
P . Given n independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), the purpose
of classification is to construct a function, called a classifier, φn : X → {0, 1}
based on (X1, Y1), . . . , (Xn, Yn), which allows to predict the value of Y from
the observation of X . When the value of Y is not fully determined by X and
(X1, Y1), . . . , (Xn, Yn), the prediction suffers from the classification error de-
fined by L(φn) = P[φn(X) �= Y |(Xi, Yi), i = 1 . . . n]. Introducing the regression
function η : x �→ P[Y = 1|X = x], the function φ∗ minimizing the classification
error L(φ) = P[φ(X) �= Y ] over all the measurable functions φ : X → {0, 1}
is defined by φ∗(x) = Iη(x)>1/2. In statistical terms, classification deals with
the estimation of this function φ∗ called the Bayes classifier from the sample
(X1, Y1), . . . , (Xn, Yn), and the theoretical performance of any estimator φn can

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 94–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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be evaluated by comparing E[L(φn)] with L(φ∗). In particular, φn is said to be
universally consistent if E[L(φn)] tends to L(φ∗) as n tends to ∞ for every P .

The case where X = Rd has been widely studied and many references are
devoted to it (see [2] and [3] for a review).

In many real-worldapplications, coming from food processing industry or speech
recognition for example, the data are more accurately represented by discretized
functions than by standard vectors. In this paper, we focus on such applications,
and hence we assume that X is a functional space, for example L2(R).

The most simple and popular classifiers are probably the kernel and k-Nearest
Neighbor rules. From a theoretical point of view, these rules are known to be uni-
versally consistent when X = Rd since Stone’s [4] and Devroye and Krzyżak’s [5]
striking results. But the issue is not so clear when X is an infinite dimen-
sional space, and authors investigate it only since a few years. Dabo-Niang and
Rhomari [6], and Abraham et al. [7] deal with kernel rules. Kulkarni and Pos-
ner [8] give convergence rates of the k-Nearest Neighbor regression estimator
under some regularity conditions on η. Cerou and Guyader [9] establish a uni-
versal consistency result for the k-Nearest Neighbor rule in a separable space
under a less restrictive regularity condition termed the Besicovich condition.

However, such direct approaches suffer from the phenomenon commonly re-
ferred to as the curse of dimensionality. Thus, they are not expected to achieve
good rates of convergence. To overcome this difficulty, most of the traditional
effective methods for Rd-valued data analysis have been adapted to handle func-
tional data under the general name of Functional Data Analysis. A key reference
for this growing research field is the series of books by Ramsay and Silverman
([10] and [11]). Both linear and nonlinear classification schemes have thus been
exploited (see [12], [13], [14], [15]).

In a recent paper, Biau et al. [1] propose to filter the functional data Xi in the
Fourier basis and to apply the k-Nearest Neighbor rule to the first d coefficients
of the expansion. The choice of both the dimension d and number of neighbors k
is made automatically by a minimization of a penalized empirical classification
error performed after some data-splitting device. The resulting classifier is proved
to satisfy an oracle type inequality, and hence to be universally consistent. As
noted by the authors, similar results could be obtained for other universally
consistent classification procedures in finite dimension. In this spirit, the Support
Vector Machines procedures are investigated by Rossi and Villa [16].

The approach of Biau et al. [1] is central to our paper. After a careful study
of this work, two main issues remain unsolved. The authors underline their pre-
ferring to implement the procedure based on the minimization of the empirical
classification error without any penalization. However, the theoretical proper-
ties presented do not explain why this choice is expected to give good results.
Furthermore, as pointed out in the beginning of the simulation study and pre-
viously by Hengartner et al. [17] for the question of bandwidth selection in local
linear regression smoothers, the data-splitting device can be unstable. Such an
instability has particularly notable effects on the selected d and k, as investi-
gated in Section 4 of the paper by Biau et al. [1]. To overcome this problem,



96 M. Fromont and C. Tuleau

Biau et al. suggest to consider many random splits of the data, and to take the
classifier corresponding to the medians of the selected d’s and k’s, or to take a
combination of the different classifiers. Whereas such techniques are commonly
used in practice, they have no theoretical foundation in the present classification
context. In this paper, we address to both issues.

In Section 2, we prove that the penalty of order n−1/2 considered by Biau et
al. [1] is too large when some margin-type assumptions hold. From a recent result
of Boucheron, Bousquet and Massart, we obtain a new oracle type inequality
that justifies the use of a penalty equal to zero or of order smaller than n−1/2. In
Section 3, we illustrate this theoretical advance with an experimental study. We
deal with realistic data coming from speech recognition or food industry contexts
and with simple simulated data. Section 4 is then devoted to the problem of the
instability of the data-splitting device. Our intention is not to give a justification
for the combination techniques used by Biau et al. [1], since we are not able to.
In fact, we show that the introduction of a small-order penalization, such as the
one allowed by the theoretical result can be viewed as a stabilization tool for the
selection process.

2 Functional Classification Via (Non)Penalized Criteria

We present here Biau et al.’s [1] classification scheme that we consider all along
the paper. After describing the procedure and the theoretical properties obtained
in [1] in a general context, we investigate them under some margin assumptions.

2.1 Functional Classification in a General Context

By using the same framework and notation as in the introduction, we assume
that X is an infinite dimensional separable space. We consider a complete system
of X that we denote by {ψj , j ∈ N\{0}}. For every i in {1, . . . , n}, Xi can thus
be expressed as a series expansion Xi =

∑∞
j=1Xi,jψj and for d in N\{0}, we

set Xd
i = (Xi,1, . . . , Xi,d). In the same way, xd denotes the first d coefficients in

the expansion of any new element x in X . The procedure developed by Biau et
al. [1] is described as follows.

– The data are split into a training set DTl
= {(Xi, Yi), i ∈ Tl} of length l and

a validation set DVm = {(Xi, Yi), i ∈ Vm} of length m such that n = l +m
with 1 ≤ l ≤ n− 1. A usual choice for l will be [n/2].

– For each k in {1, . . . , l}, d in a subset D of N\{0}, let p̂l,k,d be the k-Nearest
Neighbor rule on Rd constructed from the set {(Xd

i , Yi), i ∈ Tl}. Let x be an
element of Rd. The set {(Xd

i , Yi), i ∈ Tl} is reordered according to increas-
ing Euclidean distances ‖Xd

i − x‖, and the reordered variables are denoted
by (Xd

(1)(x), Y(1)(x)), . . . , (Xd
(l)(x), Y(l)(x)). Thus Xd

(k)(x) is the k-th nearest
neighbor of x amongst {Xd

i , i ∈ Tl}. When ‖Xd
i1
− x‖ = ‖Xd

i2
− x‖, Xd

i1
is

declared closer to x if i1 < i2. Then p̂l,k,d(x) is defined by

p̂l,k,d(x) =
{

0 if
∑k

i=1 IY(i)(x)=0 ≥
∑k

i=1 IY(i)(x)=1

1 otherwise.
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We introduce the corresponding functional classifier defined by

φ̂l,k,d(x) = p̂l,k,d(xd) for all x in X .

– The appropriate k and d are simultaneously selected from the validation set
by minimizing a penalized empirical classification error:

(k̂, d̂) = argmin
k∈{1,...,l}, d∈D

(
1
m

∑
i∈Vm

I{φ̂l,k,d(Xi) �=Yi} + pen(d)

)
, (1)

where pen(d) is a positive penalty term that can be equal to zero.
– The final classifier is defined by

φ̂n(x) = φ̂l,k̂,d̂(x) for all x in X . (2)

Let us recall the central result of the paper by Biau et al. [1].

Proposition 1 (Biau, Bunea, Wegkamp). Introduce (λd, d ∈ N\{0}) such
that Δ =

∑
d∈N\{0} e

−2λ2
d < +∞. Let l > 1/Δ, m with l + m = n, and φ̂n

be the classification rule defined by (2) with D = N\{0} and pen(d) = λd/
√
m

(penalized case). Then there exists a constant c(Δ) > 0 such that

E[L(φ̂n)]− L(φ∗) ≤

inf
d∈N\{0}

{
L∗
d − L(φ∗) + inf

1≤k≤l

{
E[L(φ̂l,k,d)]− L∗

d

}
+ pen(d)

}
+ c(Δ)

√
log l
m

,

(3)

where L∗
d is the minimal classification error when the feature space is Rd.

The same result holds when φ̂n is the classification rule defined by (2) with
D = {1, . . . , dn} and pen(d) = 0 (nonpenalized case), but at the price that the
last term c(Δ)

√
log l/m is replaced by c(Δ)

√
log ldn/m.

The quantity L∗
d − L(φ∗) can be viewed as an approximation term. By using

some classical martingale arguments, one proves that it tends to 0 as d tends to
∞. Moreover, from Stone’s [18] consistency result in Rd, one deduces that for
d in N\{0}, E[L(φ̂l,k,d)] tends to L∗

d as l → ∞, k → ∞, k/l → 0 whatever the
distribution P . The classifier φ̂n is thus universally consistent. A universal strong
consistency result can also be obtained under a mild condition on the distribution
of X . Of course, such results are fully satisfactory from an asymptotic point
of view. In the following section, we consider the proposed classifier from a
nonasymptotic point of view. In particular, in order to evaluate the accuracy
of the rates achieved in (3), a brief overview of the present knowledge on the
minimax bounds in the general classification framework is given.
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2.2 Minimax Bounds

Classical Bounds for Vapnik-Chervonenkis Classes. We consider here a
class of classifiers S = {IC , C ∈ C}, where C is a class of subsets of X , with
Vapnik-Chervonenkis dimension V (C) <∞.
A first risk bound was given by Vapnik and Chervonenkis [19] for the Em-
pirical Risk Minimizer ϕ̂n. For any distribution P such that φ∗ ∈ S, one has
E[L(ϕ̂n)]−L(φ∗) ≤ κ1

√
V (C) log n/n. As pointed out by Lugosi [20], the factor

logn in the upper bound can be removed by using a chaining argument, and
the bound becomes optimal in a minimax sense. Vapnik and Chervonenkis [21]
actually proved that for any classifier ϕn,

supP, φ∗∈SE[L(ϕn)]− L(φ∗) ≥ κ2
√
V (C)/n if n ≥ κ3V (C).

In the following, we call this case the global case, since the risk bounds are
obtained without any restriction on the class S except it is based on a VC class.
Considering the over-optimistic situation called the zero-error case where the
Bayes classification error is assumed to be equal to zero, Devroye and Wagner
[22], Vapnik [23], and Blumer et al. [24] obtained various forms of the following
result: if L(φ∗) = 0, then the ERM ϕ̂n has a mean classification error not larger
than κ4V (C) logn/n. Up to a logarithmic factor, this upper bound is known to
be optimal in a minimax sense since Vapnik and Chervonenkis [21] and Haussler
et al. [25] established that for any classifier ϕn,

supP, φ∗∈S, L(φ∗)=0E[L(ϕn)] ≥ κ5V (C)/n if n ≥ κ6V (C).

The main point here is that the minimax risk in the zero-error case is of smaller
order of magnitude than in the global case, and that the difference is really
significant (V (C) logn/n instead of

√
V (C)/n). This leads to the intuition that

if the Bayes classification error is not exactly equal to zero but very small, the
bounds in the global case can be refined.

Lugosi [20] and Devroye and Lugosi [26] give such refined bounds as a kind
of interpolation between the global case and the zero-error one. By carefully
studying their proofs, the behavior of the regression function η around 1/2 turns
out to be crucial. Mammen and Tsybakov [27] first analyzed the influence of this
behaviour by introducing some margin assumptions.

Risk Bounds Under Margin Assumptions. Let PX be the marginal dis-
tribution of X , and EX be the expectation w.r.t. PX . For θ ≥ 1, we denote by
GMA(θ) the following general margin assumption introduced by Mammen and
Tsybakov [27] and Tsybakov [28]:

GMA(θ) : ∃h > 0, L(φ)− L(φ∗) ≥ hEX [|φ(X)− φ∗(X)|]θ, ∀φ : X → {0, 1}.
We also introduce some versions of this general margin assumption that can be
more easily interpreted with

MA(α) : P[|η(X)− 1/2| ≤ u] ≤ C1u
α, ∀u > 0,

MA(∞) : ∃h > 0, |2η(x) − 1| ≥ h, ∀x ∈ X .
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The limit case MA(∞) is studied in details by Massart and Nédélec [29].
It is easy to see that MA(α) implies GMA((1 + α)/α) (See Proposition 1 from
Tsybakov [28] for instance), and that MA(∞) implies GMA(1).
The risk bounds are now given under two kinds of complexity assumptions.
CA1: φ∗ ∈ S = {IC , C ∈ C}, C being a class of subsets of X , with VC dimension
V (C) <∞, and there exists some countable subset S of S such that for every φ
in S, there exists a sequence (φk)k≥1 of elements of S such that for all (x, y) in
X × {0, 1}, Iy �=φk(x) tends to Iy �=φ(x) as k tends to ∞.
CA2: φ∗ ∈ S, H(ε,S,L1(PX)) ≤ C2ε

−ρ for any ε > 0, where H(ε,S,L1(PX)) is
the ε-entropy with bracketing of the set S with respect to the L1(PX) norm.
Massart and Nédélec [29] establish that if the assumption CA1 is satisfied, and
GMA(θ) holds with θ ≥ 1 and h ≥ (V (C)/n)1/(2θ), then the ERM ϕ̂n satisfies:

E[L(ϕ̂n)]− L(φ∗) ≤ κ7
(
V (C)(1 + log(nh2θ/V (C)))/(nh)

) θ
2θ−1 . (4)

They also discuss the optimality of this upper bound in a minimax sense for the
case MA(∞). They prove in particular that for any classifier ϕn, if 2 ≤ V (C) ≤ n,

supP, MA(∞), CA1E[L(ϕn)]− L(φ∗) ≥ κ8

{
(V (C)/(nh)) ∧

√
V (C)/(nh)

}
.

As for the assumption CA2, Tsybakov [28] obtains the following upper bound
for the ERM ϕ̂n computed on an ε−net on S with respect to the L1(PX) norm.
For ε = cn−1/(1+ρ), if GMA(θ) and CA2 are satisfied, then

E[L(ϕ̂n)]− L(φ∗) ≤ κ9

{
n−

θ
2θ+ρ−1 ∧ n−1/2

}
.

Massart and Nédélec [29] refine this result by exhibiting the dependency of the
risk bound with respect to the margin parameter h in GMA(θ). This upper
bound is then proved to be optimal in a minimax sense by Tsybakov [28] when
X = [0, 1]d, and by Massart and Nédélec [29] in the special case MA(∞).
It has been proved recently that such fast rates of convergence are not only
achieved by ERM type classifiers. Bartlett et al. [30] thus obtained striking
results for the minimizer of the empirical risk based on convex loss functions.
Audibert and Tsybakov [31] also proved that when X = Rd, under another
type of margin assumption (expressed in terms of smoothness for the regression
function η), fast rates of convergence can be achieved by some plug-in classifiers.
In view of these results, Proposition 1 gives some rates of convergence that
fit the minimax risk bounds in the global case. However, under some margin
assumption, the rates of convergence will not be satisfactory any more. Indeed,
on the one hand, one can see that the order of magnitude of the penalty term
(λd/
√
m) in the penalized case is too large as compared to the rates faster than

1/
√
m that are expected. On the other hand, in the nonpenalized case, the right

hand side of the inequality (3) makes a term of order
√

log ldn/m appear. This
term can not be seen as a residual term when considering any margin assumption
any more, and hence the oracle type inequality (3) has to be refined.
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2.3 Functional Classification with Margin Conditions

The key point in the proof of Proposition 1 is a general inequality which is at the
root of many model selection results. This inequality follows from the definition
of φ̂n. Setting Lm(φ) = m−1 ∑

i∈Vm
I{φ(Xi) �=Yi} for all φ : X → {0, 1}, one has

L(φ̂n)− L(φ∗) ≤ L(φ̂l,k,d)− L(φ∗) + pen(d) − pen(d̂)

+ L(φ̂l,k̂,d̂)− Lm(φ̂l,k̂,d̂)− L(φ̂l,k,d) + Lm(φ̂l,k,d). (5)

Since L(φ̂l,k,d)− Lm(φ̂l,k,d) is centered, the inequality (3) is obtained by choos-
ing a penalty such that pen(d̂) is large enough to compensate for L(φ̂l,k̂,d̂) −
Lm(φ̂l,k̂,d̂), but such that pen(d) is small enough (of order at most 1/

√
m) to fit

the minimax risk bounds in the global case. The main issue is then to evaluate the
fluctuations of L(φ̂l,k̂,d̂)−Lm(φ̂l,k̂,d̂). Biau et al. use Hoeffding’s inequality. Their
inequality is thus essentially based on the fact that the functions are bounded.
The following result is obtained via Bernstein’s inequality which allows to con-
trol the fluctuations of the quantity L(φ̂l,k̂,d̂)−Lm(φ̂l,k̂,d̂)−L(φ̂l,k,d)+Lm(φ̂l,k,d)
by taking its variance into account. Its proof follows the same lines as the proof
of a general result of Boucheron, Bousquet and Massart (see [32]).

Proposition 2. Assume that n ≥ 2 and let φ̂n be the classifier defined by (2)
with a finite subset D of N\{0} and with penalty terms pen(d) that can be equal
to zero. For any β > 0, if GMA(θ) holds with θ ≥ 1 and h ≤ 1, then

(1− β)E[L(φ̂n)− L(φ∗)|DTl
]

≤ (1 + β) inf
k∈{1,...,l}, d∈D

{(
L(φ̂l,k,d)− L(φ∗)

)
+ pen(d)

}
+
β−1 (1 + log(l|D|)) + 4β

2(mh)
θ

2θ−1
+

1 + log(l|D|)
3m

. (6)

Comments. With the same arguments as Biau et al. [1], the oracle type inequality
(6) directly leads to a consistency result. Now, from a nonasymptotic point of
view, the terms ((2β)−1 (1 + log(l|D|))+2β)(mh)−θ/(2θ−1) and (1+log(l|D|))/3m
are at most of the same order as the minimax risk given by (4). This guarantees
that they can actually be viewed as residual terms in the final risk bound.

Furthermore, as soon as the penalty terms pen(d) are small enough, that is
with a smaller order of magnitude than the residual terms or than
inf1≤k≤l{E[L(φ̂l,k,d)] − L∗

d}, they will not alterate the rate of convergence. In
a recent work, Györfi [33] proved that under some local Lipschitz condition on
the regression function η, assuming that the margin condition MA(α) is satisfied,
then inf1≤k≤l{E[L(φ̂l,k,d)]−L∗

d} is at most of order (logm)(1+α)/2m−(1+α)/(2+d).
This allows us to consider in practice penalties such that pen(d) = 0, pen(d) =
log d/m, pen(d) = d1/γ/m with γ ∈ N\{0} or pen(d) = d/m2 for instance. Some
experimental results are presented in Section 3 in order to compare the perfor-
mances of the classification procedure with these various penalties.
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Proof. Starting from the general inequality (5), we need to evaluate the fluc-
tuations of L(φ̂l,k̂,d̂)− Lm(φ̂l,k̂,d̂)− L(φ̂l,k,d) + Lm(φ̂l,k,d). The pair (k̂, d̂) being
randomly selected, it is therefore a matter of controlling L(φ̂l,k′,d′)−Lm(φ̂l,k′,d′)−
L(φ̂l,k,d) + Lm(φ̂l,k,d) uniformly for (k′, d′) in {1, . . . , l} × D. We use here the
following version of Bernstein’s inequality due to Birgé and Massart.

Lemma 1 (Birgé, Massart [34]). Let ξ1, . . . , ξn be independent random vari-
ables such that E [

∑n
i=1 |ξi|q/n] ≤ (q!/2)vcq−2 for all q ≥ 2, for some positive

constants v and c. Then, for any positive x,

P

(
1
n

n∑
i=1

(ξi − E[ξi]) ≥
√

2vx
n

+
cx

n

)
≤ e−x.

Since

L(φ̂l,k′,d′)− Lm(φ̂l,k′,d′)− L(φ̂l,k,d) + Lm(φ̂l,k,d)

=
1
m

∑
i∈Vm

(
I{φ̂l,k,d(Xi) �=Yi} − I{φ̂l,k′,d′(Xi) �=Yi}

− E
[
I{φ̂l,k,d(Xi) �=Yi} − I{φ̂l,k′,d′(Xi) �=Yi}

∣∣DTl

])
,

we have to find an upper bound for E
[∣∣∣I{φ̂l,k,d(Xi) �=Yi} − I{φ̂l,k′,d′ (Xi) �=Yi}

∣∣∣q∣∣DTl

]
for every i in Vm, q ≥ 2. For any integer q ≥ 2,

E
[∣∣∣I{φ̂l,k,d(Xi) �=Yi} − I{φ̂l,k′,d′(Xi) �=Yi}

∣∣∣q ∣∣DTl

]
≤ EX

[∣∣∣φ̂l,k,d(X)− φ∗(X)
∣∣∣]+ EX

[∣∣∣φ̂l,k′,d′(X)− φ∗(X)
∣∣∣] .

Under the assumption GMA(θ), we then have

E
[∣∣I{φ̂l,k,d(Xi) �=Yi} − I{φ̂l,k′,d′(Xi) �=Yi}

∣∣q∣∣DTl

]
≤
(L(φ̂l,k,d)− L(φ∗)

h

) 1
θ

+
(L(φ̂l,k′,d′)− L(φ∗)

h

) 1
θ

≤ q!
2

(
1
3

)q−2
((L(φ̂l,k,d)− L(φ∗)

h

) 1
θ

+
(L(φ̂l,k′,d′)− L(φ∗)

h

) 1
θ

)
.

Introduce now a collection of positive numbers {x(k′,d′), k
′ ∈ {1, . . . , l}, d′ ∈ D}

such that Σ =
∑

k′∈{1,...,l},d′∈D e
−x(k′,d′) <∞. From Lemma 1, we deduce that

for any x > 0, k′ ∈ {1, . . . , l}, d′ ∈ D, conditionally given DTl
, with probability

at least
(
1− e−(x+x(k′,d′))),

L(φ̂l,k′,d′) − Lm(φ̂l,k′,d′) − L(φ̂l,k,d) + Lm(φ̂l,k,d)

≤ 2(x + x(k′,d′))
m

L(φ̂l,k,d) − L(φ∗)
h

1
θ +

L(φ̂l,k′,d′) − L(φ∗)
h

1
θ +

1
3

x + x(k′,d′)

m
.
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From the general inequality (5), we obtain that conditionally given DTl
, with

probability at least (1−Σe−x),

L(φ̂n)− L(φ∗) ≤ L(φ̂l,k,d)− L(φ∗) + pen(d) − pen(d̂) +
1
3

x+ x(k̂,d̂)

m

+

√
2(x+ x(k̂,d̂))

m

√(L(φ̂l,k,d)− L(φ∗)
h

) 1
θ

+
(L(φ̂n)− L(φ∗)

h

) 1
θ

. (7)

Since h is assumed to be smaller than 1, and θ ≥ 1, we have

2(x + x(k̂,d̂))

m

L(φ̂l,k,d) − L(φ∗)
h

1
θ +

L(φ̂n) − L(φ∗)
h

1
θ

≤ 2(x + x(k̂,d̂))

(mh)
θ

2θ−1
L(φ̂l,k,d)−L(φ∗)

1
θ + L(φ̂n) − L(φ∗)

1
θ (mh)− θ

2θ−1
1− 1

θ
.

By successively using the elementary inequalities a
1
θ b1−

1
θ ≤ a + b and

√
ab ≤

β−1a/4 + βb for a ≥ 0, b ≥ 0, β > 0, we establish that√
2(x+ x(k̂,d̂))

m

√(L(φ̂l,k,d)− L(φ∗)
h

) 1
θ

+
(L(φ̂n)− L(φ∗)

h

) 1
θ

≤
β−1(x+ x(k̂,d̂))

2(mh)
θ

2θ−1
+ β

(
L(φ̂l,k,d)− L(φ∗) + L(φ̂n)− L(φ∗) +

2

(mh)
θ

2θ−1

)
.

It follows from (7) that conditionally given DTl
, with probability at least

(1−Σe−x),

L(φ̂n)− L(φ∗) ≤ L(φ̂l,k,d)− L(φ∗) + pen(d)− pen(d̂) +
1
3

x+ x(k̂,d̂)

m

+β

(
L(φ̂l,k,d)− L(φ∗) + L(φ̂n)− L(φ∗) +

2

(mh)
θ

2θ−1

)
+
β−1

(
x+ x(k̂,d̂)

)
2(mh)

θ
2θ−1

.

By taking x(k′,d′) = log(l|D|) for every k′ ∈ {1, . . . , l}, d′ ∈ D, we have that
conditionally given DTl

, with probability at least (1− e−x),

(1− β)(L(φ̂n)− L(φ∗)) ≤ (1 + β)(L(φ̂l,k,d)− L(φ∗)) + pen(d) +
2β

(mh)
θ

2θ−1

+
β−1 (x+ log(l|D|))

2(mh)
θ

2θ−1
+

1
3
x+ log(l|D|)

m
.

Integrating the inequality
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P

([
(1− β)(L(φ̂n)− L(φ∗))− (1 + β)(L(φ̂l,k,d)− L(φ∗))− pen(d)

− 2β

(mh)
θ

2θ−1
−β

−1 log(l|D|)
2(mh)

θ
2θ−1

−1
3

log(l|D|)
m

]
+

≥
(

β−1

2(mh)
θ

2θ−1
+

1
3m

)
x

∣∣∣∣∣DTl

)
≤e−x,

with respect to x finally leads to

(1− β)E[L(φ̂n)− L(φ∗)|DTl
] ≤ (1 + β)

(
L(φ̂l,k,d)− L(φ∗)

)
+ pen(d)

+
β−1 (1 + log(l|D|)) + 4β

2(mh)
θ

2θ−1
+

1 + log(l|D|)
3m

.

Since (k, d) can be arbitrarily chosen, this concludes the proof of Proposition 2.

3 Experimental Study

In this section, we study from a practical point of view the performance of the
classifier φ̂n defined by (2) with various penalty functions defined as follows:
pen0(d) = 0, penB(d) = log(d)/

√
n, pen1(d) = log(d)/n, pen2(d) =

√
d/n,

pen3(d) = log(d)/n2, pen4(d) =
√
d/n2. In particular, we aim at showing that

the penalty penB proposed by Biau et al. [1] is too heavy and that lower penaliza-
tion schemes can have a significant impact on the performance of the procedure.

To quantify this impact, we investigate the test error as defined below. The
available data are randomly split into two parts of size n = 3p/4 and t = p/4
respectively. The first part is then split into a training set DTl

of length l = p/4
and a validation set DVm of lengthm = p/2, and the classifier φ̂n is constructed as
described in Section 2.1. Precisely, the training set is used to build the collection
of estimators {φ̂l,k,d, k ∈ {1, . . . , l}, d ∈ D}, whereas the validation set is used to
select the parameters k̂ and d̂, and thus to select the estimator φ̂n = φ̂l,k̂,d̂ in the
collection. The responses of the second part of the data can hence be predicted
thanks to this estimator, and compared to the “true” labels. Finally, the test
error that we consider is the mean of the differences between the predictions and
the “true” responses. In addition to the test error, we evaluate the performance
of the procedure in terms of dimension selection. More precisely, we study the
order and stability of the selected dimension d̂, as investigated in [1].

We actually recall that our main purpose consists in constructing a classifier
that satisfies an oracle type inequality such as (6). This means that we want to
select a classifier that mimicks the oracle which is defined here as the element
φ̂l,k̄,d̄ minimizing the risk E[L(φ̂l,k,d)] − L(φ∗). Our classifier φ̂n = φ̂l,k̂,d̂ will
then mimick this oracle only if the selected dimension d̂ is close to the one of the
oracle d̄, that achieves the best trade-off between the bias and variance terms
(or the best trade-off between efficiency and consistency). We refer to a recent
paper by Yang [35] for further details about this question in a regression model.
For our experiments, we use both realistic data coming from speech recognition
and food industry problems and simple simulated data.
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3.1 A Speech Recognition Problem

In this section, we study data coming from the speech recognition problem
considered by Biau et al. [1]. These data, created by Biau and available at
http://www.math.univ-montp2fr/∼biau/bbwdata.tgz, consist of three sets,
each containing p = 100 recordings of two words. The first set deals with the
words “boat” and “goat” whose labels are respectively 1 and 0. The second set
corresponds to the phonemes “sh” and “ao” with labels 1 and 0 respectively,
and the third to the words “yes” (label 1) and “no” (label 0). Each recording is
the discretization of the corresponding signal and it contains 8192 points.

Assuming that the original speech signals belong to L2(R), we choose, for the
complete system {ψj, j ∈ N\{0}} involved in the procedure, the Fourier basis:

ψ1(t) = 1, ψ2q(t) =
√

2cos(2πqt), ψ2q+1(t) =
√

2sin(2πqt), q = 1, 2, . . . .

The coefficients of the Fourier series expansion of each data are evaluated using a
Fast Fourier Transform. We compute the mean of the test error for the classifier
φ̂n over N = 100 iterations of the splitting device of the data (into two parts of
size n = l +m, with l = 25 and m = 50, and t = 25 respectively).

Table 1 summarizes the results obtained for each of the three data sets.

Table 1. For each penalty, on the first row, the mean of test error is given. On the
second row, the first number is the median of the selected dimension d and the number
in parentheses is the standard deviation.

Comments:
(i) We can notice that the penalty penB first proposed by Biau, Bunea and
Wegkamp from a theoretical point of view is not relevant since the corresponding
mean of test error is the largest one observed. For example, for the third set,
the mean of test error with penB is more than twice the one with pen0. This
phenomenon has already been pointed out by Biau, Bunea and Wegkamp, as
they chose to study in practice the nonpenalized procedure. Furthermore, the
fact that the selected dimension d̂ with penB is always very small (d̂ = 1 for
more than 90% of the experiments) corroborates the idea that this penalty is too
heavy, and that the nonpenalized procedure will be more appropriate. However, a
refined study of the other penalization schemes shows that it can be interesting
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to consider procedures with some penalties of small order. For the penalties
pen1 and pen2, we obtain larger mean test errors than the ones obtained with
the nonpenalized procedure. Nevertheless, the difference between these mean
tests errors and the best one is not so great for at least one set of data, whereas
we can see that they allow to select lower dimensions d̂ with smaller standard
deviations. This stabilization of the dimension selection process does not occur
with the penalties pen3 and pen4, which are too small to have a real impact. In
view of these results, it is clear that the use of a penalized procedure, but with
an appropriate penalty, could be of particular relevance.

(ii) We should here notice that the Fourier basis may not be the most appro-
priate one for the decomposition of the data in the present case. Indeed, a recent
work by Berlinet, Biau and Rouvière [36] proves that the above mean test errors
can be improved by considering wavelet expansions. However, it appears that
the instability in the selection of the dimension d̂ by the nonpenalized procedure
still holds, and that slightly penalizing the criteria could overcome this difficulty.

(iii) We have to take into account the fact that the number of observations is
small (p = 100), and that this could entail some difficulties in the interpretation
of the results.

3.2 A Food Industry Problem

We focus here on a classification problem which comes from the food indus-
try. The data available on statlib are recorded on a Tecator Infratec Food and
Feed Analyzer working in the wavelet range 850-1050 nm by the Near Infrared
Transmission principle. They contain p = 215 observations of the neared infrared
absorbance spectrum of finely chopped pure meat, with different fat contents.
Each observation is composed of a 100 channel spectrum of absorbances and
the corresponding fat content. The absorbance is − log10 of the transmittance
measured by the spectrometer, and the fat content, measured in percent, is de-
termined by analytic chemistry. The classification problem consists in separating
meat samples with a high fat content (more than 20%) from samples with a low
fat content (less than 20%).

We use here the same procedure as in the previous section, with a number of
iterations N equal to 100. The splitting device is made with n = l +m, l = 53,
m = 108, and t = 54. The obtained results are summarized in Table 2.

The same behavior as in the previous application to the speech recognition
problem can be observed here. Hence, our conclusions remain valid, all the more
as the number of observations is more important here.

Table 2. For each penalty, on the first row, the mean of test error is given. On the
second row, the first number is the median of the selected dimension d and the number
in parentheses is the standard deviation.
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We performed the same procedure on simple simulated data with a great
number of observations. The results detailed in Tuleau [37] confirm our previous
conclusions, in the sense that they show that using a penalized procedure with a
well-chosen penalty term (of order log(d)/n or

√
d/n) may improve the stability

of the dimension selection process, whereas it does not alterate the mean test
error too much. Such procedures may hence be a good compromise between
the requirement of efficiency in terms of mean test error and stability of the
dimension selection process.

The question of the stabilization process however requires more attention. In
the above experimental study, we have to take into account that the observed
instability of the nonpenalized procedure may come not only from the procedure
used to construct the estimator φ̂n itself, but also from the split of the original
data set into two parts, the second one being used for the computation of the
test error. In the following section, we address the question of the stabilization
of the procedure used to construct the estimator φ̂n only.

4 Stabilizing the Data-Splitting Device

As explained in Section 2, the classification scheme proposed by Biau et al.
requires a data-splitting device, which can lead to some instability. We aim here
at confirming the intuition, emerged from the previous section, that penalizing
the procedure with a well-chosen penalty may overcome this difficulty, without
altering too much the performance of the procedure in terms of test error.

Since we exclusively focus on the data-splitting device involved in the proce-
dure itself, we first split the original data into two fixed parts of size n = 2p/3
and t = p/3 respectively. Then, on the first part, we perform, N times, the pro-
cedure described in Section 2.1 involving for each repetition a random splitting.
The test error is finally computed through the second part of the data. The
results obtained for Biau’s data are given in Table 3.

Table 3. For each penalty, on the first row, the mean of test error is given. On the
second row, the first number is the median of the selected dimension d and the number
in parentheses is the standard deviation.
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The analysis of the results of Table 3 shows that a real stabilization occurs
for well-adapted penalties (pen1 and pen2). The results for the other data sets
(food industry and simple simulated data) are similar. For sake of shortness, we
do not include them.

At this stage, we can reasonably say that we have an idea of the good order
of the appropriate penalization, which is log(d)/m or

√
d/m. It is clear that the

precise determination of the appropriate penalty to use (that is of the possible
multiplicative factor in the penalty) is still a question of interest. We hope that a
future theoretical work will lead to the calibration of such a precise penalty that
would achieve the best trade-off between the mean test error and the stability
of the selection process.
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Abstract. Frequent itemset mining (FIM) is one of the core problems
in the field of Data Mining and occupies a central place in its literature.
One equivalent form of FIM can be stated as follows: given a rectangu-
lar data matrix with binary entries, find every submatrix of 1s having a
minimum number of columns. This paper presents a theoretical analy-
sis of several statistical questions related to this problem when noise is
present. We begin by establishing several results concerning the extremal
behavior of submatrices of ones in a binary matrix with random entries.
These results provide simple significance bounds for the output of FIM
algorithms. We then consider the noise sensitivity of FIM algorithms un-
der a simple binary additive noise model, and show that, even at small
noise levels, large blocks of 1s leave behind fragments of only logarithmic
size. Thus such blocks cannot be directly recovered by FIM algorithms,
which search for submatrices of all 1s. On the positive side, we show how,
in the presence of noise, an error-tolerant criterion can recover a square
submatrix of 1s against a background of 0s, even when the size of the
target submatrix is very small.

1 Introduction

Frequent itemset mining (FIM) [1, 2], also known as market basket analysis, is
a central and well-studied problem in the field of Data Mining, and occupies a
central place in its literature. It is closely related to a variety of related, more
general problems, such as bi-clustering and subspace clustering [28, 7, 3, 10] that
are of active interest to the Data Mining community. A variety of applications
using FIM and other related bi-clustering algorithms can be found in [21, 14].
In the FIM problem the available data is described by a list S = {s1, . . . , sn} of
items and a set T = {t1, . . . , tm} of transactions. Each transaction ti consists of
a subset of the items in S. (If S contains the items available for purchase at a
store, then each ti represents a record of items purchased during one transaction,
without multiplicity.) The goal of FIM is to identify sets of items that appear
together in more than k transactions, where k ≥ 1 is a threshold for “frequent”.
The data for the FIM problem can readily be represented by an m × n binary
matrix X, with xi,j = 1 if transaction ti contains item sj , and xi,j = 0 otherwise.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 109–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this form the FIM problem can be stated as follows: given X and k ≥ 1,
find every submatrix of 1s in X having at least k columns. Frequent itemset
algorithms perform an exhaustive search for such submatrices.

The application of FIM to large data sets for the purposes of exploratory
analysis raises a number of natural statistical questions. In this paper we present
(preliminary) answers to three such questions. The first question considers sig-
nificance. In particular, how significant is the the discovery of a moderately sized
submatrix of 1s in a large data matrix? To address this question, we establish
probability bounds on the size of the largest submatrix of 1s in a random binary
matrix. These bounds improve upon existing inequalities in the literature, and
yield approximate p-values for discovered submatrices under the null hypothesis
that the data consists of independent Bernoulli random variables.

Much of the data to which data mining methods are applied are obtained by
high-throughput technologies or the automated collection of data from diverse
sources with varying levels of reliability. The resulting data sets are often subject
to moderate levels of error and noise. Our second question involves the behavior
and performance of FIM in the presence of noise. Standard frequent itemset
algorithms do not account for noise or errors in their search for submatrices
of 1s. We consider the noise sensitivity of FIM under a simple binary additive
noise model and show that, even at small noise levels, blocks of 1s is broken into
fragments of logarithmic size. Thus such blocks cannot be directly recovered by
standard frequent itemset algorithms.

Lastly, we consider the problem of recovering a block of 1s in the presence of
additive noise using an error-tolerant criterion (approximate frequent itemsets)
that allows submatrices containing a limited fraction of zeros. We show how the
AFI criterion can recover a square submatrix of 1s against a background of 0s,
even when the size of the target submatrix is very small.

1.1 Overview

The next section contains several results on the size of maximal submatrices of
ones in a random matrix with independent Bernoulli entries. In addition, we
present a small simulation study that explores the applicability of the asymp-
totic theory to small samples. Section 2 is devoted to the description of the
additive noise model and the noise sensitivity of standard FIM. In Section 3 we
consider the recoverability of block structures in the presence of noise using the
approximate frequent itemset criterion.

2 Frequent Itemsets in Random Matrices

There is a large literature on ordinary (full-space) clustering that spans 50 years.
While there has been recent attention and progress on the problem of cluster
validation [30], [17], [11], there is no general and systematic treatment of sig-
nifiance for full-space clustering. FIM is more amenable to significance analysis
than full-space clustering, as attention shifts from high-dimensional objects (the
rows or columns of the data matrix) to the entries of the data matrix itself,
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which are organized into a simple two-dimensional array. Here we consider sev-
eral questions related to the size and statistical significance of frequent itemsets
in a random matrix. The focus is on the size of the largest submatrix of 1s, or a
specified fraction of 1s, in a binary matrix with Bernoulli entries. For simplicity
of exposition, we emphasize the case of square matrices and square submatrices.
Some extensions to the non-square case are described in Section 2.3 below.

2.1 Square Submatrices of 1s

Let X be an m× n binary matrix. A submatrix of X is a collection U = {xi,j :
i ∈ A, j ∈ B} where A ⊆ {1, . . . ,m} and B ⊆ {1, . . . , n}. The Cartesian product
C = A × B will be called the index set of U. Given C = A × B, define X[C]
to be the submatrix of X with index set C. When no ambiguity will arise, C
will also be referred to as a submatrix of X. Note that X can be viewed as the
adjacency matrix of a bi-partite graph G(X). The graph G(X) has vertex set V
equal to the disjoint union V = Vr ∪ Vc, where Vr corresponds to the rows of X,
Vc corresponds to its columns, and there is an edge between i ∈ Vr and j ∈ Vc
if and only if xi,j = 1. With this association, submatrices of ones in X are in
one-to-one correspondence with bi-cliques in G(W). This connection is the basis
for the SAMBA bi-cluster algorithm of Tanay et al. [29].

Definition. Given any binary matrix X, let M(X) be the largest value of k such
that X contains a k × k submatrix of 1s.

Definition. Let Zn denote an n×n binary matrix whose entries are independent
Bernoulli(p) random variables, with p ∈ (0, 1). We will write Zn ∼ Bern(p).

A natural starting point for studying the significance of FIM isM(Zn), the size of
the largest submatrix of 1s in a binary matrix with independent Bernoulli entries.
To obtain bounds on M(Zn), let Uk(n) be the number of k×k submatrices of 1s
in Zn. Then, using Stirling’s approximation, it is easy to show that EUk(n) =(
n
k

)2
pk

2 ≈ (2π)−1 n2n+1 k−2k−1 (n−k)−2(n−k)−1 pk
2
. The first moment method

from combinatorial probability suggests that M(Zn) will be close to the value
of k for which EUk(n) = 1. Accordingly, define s(n) to be any positive solution
of the equation

1 = φn(s) = (2π)−
1
2 nn+ 1

2 s−s−
1
2 (n− s)−(n−s)− 1

2 p
s2
2 . (1)

A routine but involved analysis shows that any solution s(n) of (1) must satisfy
the relation

s(n) = 2 logb n − 2 logb logb n+ C + o(1), (2)

where b = p−1 and C is a positive constant. Moreover, by standard calculus,
it can be shown that φn(·) is monotone decreasing when logb n < s < 2 logb n.
Thus when n is sufficiently large, there is only one solution of (1) in the interval
(logb n, 2 logb n), and therefore s(n) is uniquely defined. Define k(n) = �s(n)�. A
simple application of the first moment method yields a bound on the probability
that M(Zn) is larger than k(n), which can be used to assess the statistical
significance of submatrices of ones identified by bi-clustering algorithms.
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Proposition 1. Fix 0 < γ < 1. When n is sufficiently large, for every integer
1 ≤ r ≤ γ n we have P{M(Zn) ≥ k(n) + r} ≤ 2n−2 r (logb n)3r, where b = p−1.

Proof. To establish the bound with n independent of r, it suffices to consider a
sequence r = rn that changes with n in such a way that 1 ≤ rn ≤ γ n. Fix n for
the moment, let l = k(n)+rn, and let Ul(n) be be the number of l×l submatrices
of 1s in Zn. Then by Markov’s inequality and Stirling’s approximation,

P (M(Zn) ≥ r) = P (Ul ≥ 1) ≤ E(Ul) =
(
n

l

)2

pl
2 ≤ 2φn(l)2. (3)

A straightforward calculation using the definition of φn(·) shows that

2φn(l)2 = 2φ2
n(k(n)) pr·k(n) [An(r)Bn(r)Cn(r)Dn(r) ]2, (4)

where

An(r) =
(
n− r − k(n)
n− k(n)

)−n+r+k(n)+ 1
2

Bn(r) =
(
r + k(n)
k(n)

)−k(n)− 1
2

Cn(r) =
(
n− k(n)
r + k(n)

p
k(n)

2

)r
Dn(r) = p

r2
2

Note that pr·k(n) = o(n−2r(logb n)3r), and that φ2
n(k(n)) ≤ 1 by the monotonic-

ity of φn(·) and the definition of k(n). Thus it suffices to show that An(r)·Bn(r)·
Cn(r) ·Dn(r) ≤ 1 when n is sufficiently large. To begin, note that for any fixed
δ ∈ (0, 1/2), when n is sufficiently large,

Cn(r)
1
r =

n− k(n)
r + k(n)

p
k(n)

2 ≤ n

k(n)
p

k(n)
2 ≤ n

(2− δ) logb n

2+δ
2 logb n
n

which is less than one. In order to show An(r) · Bn(r) ·Dn(r) ≤ 1, we consider
two possibilities for the asymptotic behavior of r = rn.

Case 1. Suppose r/k(n)→ 0 as n→∞. In this case, Bn(r)
1
r = (1 + o(1)) e−1.

Moreover, r/n→ 0, which implies that An(r)
1
r = (1 + o(1)) e. Thus

An(r) · Bn(r) ·Dn(r) = ((1 + o(1))2 p
r
2 )r ≤ 1

when n is sufficiently large.

Case 2. Suppose lim infn r/k(n) > 0. In this case a routine calculation shows
that Bn(r) ≤ 1 for any r ≥ 1, so it suffices to show that

An(r) ·Dn(r) ≤ 1. (5)

Note that Dn(r) = (p
r
2 )r and An(r)

1
r = (1+ o(1)) e when r = o(n− k(n)). Thus

(5) holds when r = o(n− k(n)).
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It remains to consider the case o(n−k(n)) < r < γ n. As
√

(2 + 2
1−γ )n/ log b =

o(n−k(n)), it suffices to assume that
√

(2 + 2
1−γ )n/ log b < r < γ n. In this case,

logbAn(r) ·Dn(r) = logb

[(
1 +

r

n− k(n)− r

)n−r−k(n)− 1
2

p
r2
2

]

≤ n logb

(
1 +

r

n− r − k(n)

)
−

(2 + 2
1−γ )n

2 log b
≤ 0,

where the last inequality comes from the fact that logb(1 + x) ≤ x/ log b for
x ≥ 0.

An inspection of the proof shows that the inequality of Proposition 1 is obtained
via a standard union (Bonferroni) type bound on the probability of finding a k×k
submatrix of 1s in Zn. In general, union bounds are rather loose, and indeed,
with additional calculation, one can improve the upper bound in Proposition 1 to
n−(4−δ) r (logb n)3r for any δ > 0. Nevertheless, a more refined second moment
argument (see Theorem 1 below) shows that the threshold k(n) can not be
improved.

Bollobás [5] and Grimmett and McDiarmid [12] established analogous bounds
for the size of a maximal clique in a random graph, with the larger threshold
k(n) = 2 logb n. Koyutürk and Szpankowski [16] studied the problem of finding
dense patterns in binary data matrices. They used a Chernoff type bound for the
binomial distribution to assess whether an individual submatrix has an enriched
fraction of ones, and employed the resulting test as the basis for a heuristic search
for significant bi-clusters. Tanay et al. [28] assessed the significance of bi-clusters
in a real-valued matrix using likelihood-based weights, a normal approximation
and a standard Bonferroni bound to account for the multiplicity of submatrices.

As noted above, M(Zn) is the size of the largest bi-clique in a random n× n
bi-partite graph. Bollobás and Erdős [4] and Matula [20] studied the size of the
largest clique in a standard random graph with n vertices, where each edge is
included with probability p, independent of the other edges. In particular, they
obtained strong almost sure results on the asymptotic size of maximal cliques.
Bollobás [5] gives a good account of these results. By extending the arguments
in [4, 20] to bi-cliques one may establish the following analogous result; the proof
is rather technical and is omitted. Assume that for each n the matrix Zn is the
upper left corner of an infinite array {zi,j : i, j ≥ 1} of Bernoulli(p) random
variables with 0 < p < 1.

Theorem 1. With probability one, |M(Zn) − s(n)| < 3
2 when n is sufficiently

large. Thus M(Zn) eventually concentrates on one of the (at most three) integers
within distance 3/2 of the real number s(n).

Dawande et al. [8] used first and second moment arguments to show (in our
terminology) that P (logb n ≤ M(Zn) ≤ 2 logb n) → 1 as n tends to infinity.
Extending this work, Park and Szpankowski [25] showed that if M̃ is the side-
length of the largest square submatrix of 1s in an m× n Bernoulli matrix, then
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P (|M̃ − logb(mn)| > ε log(mn)) ≤ O((mn)−1(log(mn))6). When m = n their
result implies that (2 − ε) logb n ≤ M(Zn) ≤ (2 + ε) logb n eventually almost
surely.

2.2 Submatrices with Large Fraction of Ones

In situations where noise is present, one may wish to look for submatrices having
a large fraction of 1s, rather than requiring the stronger condition that every
entry be equal to 1. Let X be a binary matrix, and let U be a submatrix of X
with index set C. Let

F (U) = |C|−1 ∑
(i,j)∈C xi,j

be the fraction of ones in U. Fix τ ∈ (0, 1) and define Mτ (X) to be the largest
k such that X contains a k × k submatrix U with F (U) ≥ τ .

Proposition 2. Fix 0 < γ < 1 and suppose that 0 < p < τ < 1. When n
is sufficiently large, P (Mτ (Zn) ≥ 2 logb∗ n + r) ≤ 2n−2r (logb∗ n)3r for each
1 ≤ r ≤ γ n. Here b∗ = exp{3(τ − p)2/8p}.

Proof. For l ≥ 1 let Vl(n) be the number of l × l submatrices U of Zn with
F (U) ≥ τ . Note that E(Vl(n)) =

(
n
l

)2
P (F (Zl) ≥ τ). The random variable

l2 · F (Zl) has a Binomial(l2, p) distribution. Using a standard inequality for
the tails of the binomial distribution, (c.f. Problem 8.3 of [9]), we find that
P (F (Zl) ≥ τ) ≤ ql

2
where q = 1/b∗. It then follows from Stirling’s approxima-

tion that EVl(n) ≤ 2 when l = l(n) = 2 logb∗ n. For l = r + l(n), P (Mτ (Zn) ≥
l) ≤ E(Vl(n)) and the stated inequality then follows from arguments analogous
to those in the proof of Proposition 1.

Note that the base b∗ = exp{3(τ − p)2/8p} may not always yield the best upper
bound. When p ≥ 1

2 , b∗ can be replaced by exp{(τ − p)2/2p(1 − p)} (cf. [22]).
When τ → 1, b∗ = exp{3(τ − p)2/8p} fails to converge to p−1, so that the
probability bound above does not coincide with that of Proposition 1. In this
case, the disparity may be remedied by using an alternative bound for the tails
of the binomial (e.g. [15]) and a corresponding base for the logarithm.

2.3 Non-square Matrices

The restriction to square matrices above can readily be relaxed, yielding bounds
for data sets with more transactions than items, or vice versa. Suppose that
Zm,n ∼ Bern(p) is an m × n random matrix with m

n = α for some α > 0. For
any ρ ≥ 1, let Mρ

α(Z) be the largest k such that there exists at least one �ρk�×k
submatrix of 1s in Z. One may extend Proposition 1 as follows.

Proposition 3. Fix 0 < γ < 1. When n is sufficiently large,

P{Mρ
α(Z) ≥ k(α, ρ, n) + r} ≤ n−(ρ+1) r 2(logb n)(ρ+2)r (6)

for each 1 ≤ r ≤ γ n. Here k(α, ρ, n) = ρ+1
ρ logb n+ logb

α
ρ .
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One may generalize Proposition 3 to submatrices with large fractions of 1s by
replacing b with the base b∗ of Proposition 2.

Park and Szpankowski [25] established probability bounds on the maximum
area of non-square submatrices and showed that such submatrices have aspect ra-
tio close to zero. In addition they established probability bounds for square sub-
matrices (discussed above) that provide weaker inequalities like those in Propo-
sition 3 when ρ = 1.

Propositions 1, 2 and 3 can provide bounds on the statistical significance of
submatrices discovered by frequent itemset mining algorithms, under the null
hypothesis that the observed data is purely random. Suppose for example that
an FIM algorithm is applied to a 4, 000 × 100 binary matrix Y, 65% of whose
entries are equal to 1. Suppose that the algorithm finds a 44× 25 submatrix U
of ones in Y. Applying Proposition 3 with p = 0.65, α = 40 and ρ = 1.76 we
find that k(α, ρ, n) = 24 and that the probability of finding such a matrix U in
a purely random matrix is at most

2n−(1.76+1)×(25−24) (logb n)(1.76+2)×(25−24) ≈ 0.04467.

Thus U may be assigned a p-value p(U) ≤ 0.04467. On the other hand, consider
the case that an error tolerant FIM algorithm finds an 73 × 25 submatrix U′

in Y with 95% 1s. Since in this case p > 1
2 , the discussion immediately after

Proposition 2 suggests using b∗ = exp{(0.95 − p)2/2p(1 − p)} = 1.2187 for
a better bound. By plugging each corresponding term into (6), one obtains a
nominal p-value p(U′) ≤ 0.04802.

2.4 Simulations

The results of the previous section hold for n sufficiently large. To test their
validity for moderate values of n, we carried out a simple simulation study on
Zn with n = 40 and 80, and p = .2. In each case, we generated 400 such matrices
and applied the FP-growth algorithm [13] to identify all maximal submatrices of
ones. For each maximal submatrix of ones we recorded the length of its shorter
side. The maximum of these values is M(Zn). We recorded M(Zn) in each
of the 400 simulations and compared its value to the corresponding bounds
s(40) ≈ 3.553 and s(80) ≈ 4.582. Table 1 summarizes the results. In each case
|M(Zn)− s(n)| ≤ 1.

Table 1. Simulation results on M̂(Zn) based on 400 replications for each n

n s(n) k Proportion of M(Zn) = k

40 3.553
3 85.75%
4 14.25%

80 4.582
4 97%
5 3%
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3 Noise Sensitivity of FIM

3.1 Statistical Noise Model

In order to account for and study the potential effects of noise on FIM, we
consider a simple noise model. Under the model the observed data matrix Y is
equal to the component-wise modulo 2 sum of a “true” unobserved data matrix
X and a noise matrix Z whose entries are independent Bernoulli(p) random
variables. Formally,

Y = X⊕ Z (7)

so that yi,j = xi,j if zi,j = 0 and yi,j = 1− xi,j if zi,j = 1. The model (7) is the
binary version of the standard additive noise model in statistical inference. It
is equivalent to the simple communication model, widely studied in information
theory, in which the values of X are observed after being passed through a
memoryless binary symmetric channel.

3.2 Noise Sensitivity

If the matrix X in (7) contains interesting structure, for example a large subma-
trix of ones, there is reason to hope that this structure would be readily apparent
in the observed matrix Y and could be recovered by standard frequent itemset
algorithms without much effort. Unfortunately this is not necessarily the case,
as the next result shows.

Let X be an n× n binary matrix, and let Y = X⊕ Z with Z ∼ Bern(p) and
0 < p < 1

2 . We are interested in how M(Y) depends on X, and in particular how
the value of M(Y) reflects block structures (submatrices of 1s) in X. If X = 0
then Y ∼ Bern(p). In this case, Proposition 1 and Theorem 1 ensure that M(Y)
is roughly 2 logb n with b = p−1. At the other extreme, if X = 1 then it is easy
to see that Y ∼ Bern(1 − p), and in this case M(Y) is roughly 2 logb′ n with
b′ = (1 − p)−1. The latter case represents the best possible situation in regards
to maximizing M(Y).

Proposition 4. Let b′ = (1 − p)−1 and fix 0 < γ < 1. When n is sufficiently
large, P{M(Y) ≥ 2 logb′ n+ r} ≤ 2n−2 r (logb′ n)3r for every matrix X and for
every integer 1 ≤ r ≤ γ n.

Proof. Fix n and let Wn = {wi,j} be an n×n binary matrix with independent
entries, defined on the same probability space as {zi,j}, such that

wi,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bern

(
1−2p
1−p

)
if xij = yij = 0

1 if xij = 0, yij = 1

yi,j if xij = 1

(8)

Note that the above definition is valid since we assume p < 1
2 here. Define Ỹn =

Yn∨Wn to be the entrywise maximum ofYn andWn. ClearlyM(Yn) ≤M(Ỹn),
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as any submatrix of ones in Yn must also be present in Ỹn. Moreover, it is easy
to check that P (ỹi,j = 1) = 1− p for each 1 ≤ i, j ≤ n, so that Ỹn ∼ Bern(1− p).
The result now follows from Proposition 1.

Proposition 4 has the following consequence. No matter what type of block
structures might exist in X, in the presence of random noise these structures
leave behind only logarithmic sized fragments in the observed data matrix. In
particular, under the additive noise model (7) block structures in X cannot be
recovered, even approximately, by standard frequent itemset algorithms that
look for submatrices of ones without errors.

4 Recovery

Here we consider the simple problem of recovering, in the presence of noise,
a submatrix of ones against a background of zeros. Proposition 4 shows that
standard FIM algorithms are sensitive to noise, and are not readily applicable
to the recovery problem. This shortcoming can be remedied by algorithms that
look instead for submatrices having a large fraction of ones. Several recent papers
[24, 18, 19, 27, 23, 6, 31] in the data mining literature have addressed this
question, each using a criterion that weakens the all 1s model of FIM. Below we
show how one such criterion, introduced in [18], can be used to recover block
structures in noise.

Let X be an n× n binary matrix that consists of an l × l submatrix of ones,
with index set C∗, and all other entries equal to 0. (The rows and columns of C∗

need not be contiguous.) Given an observation Y = X⊕Z of X with Z ∼ Bern(p)
and 0 < p < 1/2, we wish to recover the submatrix C∗.

Let p0 be any number such that p < p0 < 1/2, and let τ = 1 − p0 be an
associated error threshold. If U is an a× b submatrix of Y, denote its rows and
columns by u1∗, . . . , ua∗ and u∗1, . . . , u∗b, respectively. The following definition
of error-tolerant itemsets was introduced in [18]. An algorithm for finding such
itemsets is given in [19].

Definition. An a × b submatrix C of Y is a τ-approximate frequent itemset
(AFI) if F (ui∗) ≥ τ and F (u∗j) ≥ τ for each i = 1, . . . , a and j = 1, . . . , b. Let
AFIτ (Y) be the collection of all τ -AFIs in Y.

We estimate C∗ by the index of the largest square AFI in the observed matrix
Y. More precisely, let C be the family of index sets of square submatrices C ∈
AFIτ (Y), and define

Ĉ = argmaxC∈C |C|
to be any maximal sized submatrix in C. Note that C and Ĉ depend only on the
observed matrix Y. Let the ratio

Λ = |Ĉ ∩C∗|/|Ĉ ∪ C∗|

measure the overlap between the estimated index set Ĉ and the true index set
C∗. Thus 0 ≤ Λ ≤ 1, and values of Λ close to one indicate better overlap.
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Theorem 2. Let 0 < p < p0 < 1/2 and τ = 1−p0. When n is sufficiently large,
for any 0 < α < 1 such that 12α−1(logb n+ 2) ≤ l we have

P

(
Λ ≤ 1− α

1 + α

)
≤ Δ1(l) +Δ2(α, l).

HereΔ1(l)=2e−
l(p−p0)2

3p ,Δ2(α, l)=2n−
1
6αl+2 logb n, and b = exp{3(1−2 p0)2/8p}.

The conditions of Theorem 2 require that the noise level p < 1/2 and that the
user-specified parameter p0 satisfies p < p0 < 1/2. Thus, in advance, one only
needs to know an upper bound on the noise level p. Theorem 2 can readily
be applied to the asymptotic recovery of structure in a sequential framework.
Suppose that {Xn : n ≥ 1} is a sequence of square binary matrices, where Xn

is n × n and consists of an ln × ln submatrix C∗
n of 1s with all other entries

equal to 0. For each n we observe Yn = Xn ⊕ Zn, where Zn ∼Bern(p). Let
Λn measure the overlap between C∗

n and the estimate Ĉn produced by the AFI
recovery method above. The following result follows from Theorem 2 and the
Borel Cantelli lemma.

Corollary 1. If ln ≥ 12ψ(n)(logb n + 2) where ψ(n) → ∞ as n → ∞, then
eventually almost surely

Λn ≤
1− ψ(n)−1

1 + ψ(n)−1 .

Reuning-Scherer studied several recovery problems in [26]. In the case considered
above, he calculated the fraction of 1s in every row and every column of Y, and
then selected those rows and columns with a large fraction of 1s. His algorithm
is consistent when l ≥ nα for α > 1/2. However, a simple calculation using the
central limit theorem demonstrates that individual row and column sums alone
are not sufficient to recover C∗ when l ≤ nα for α < 1/2. In this case, one gains
considerable power by directly considering submatrices and, as the result above
demonstrates, one can consistently recover C∗

n if ln/ logn→∞.
The following two lemmas will be used in the proof of Theorem 2. Lemma 1

implies that |Ĉ| is greater than or equal to |C∗| with high probability. Lemma
2 shows that Ĉ can only contain a small proportion of entries outside C∗. The
proofs of Lemma 1, and a sketch of the proof of Lemma 2, can be found in the
Appendix.

Lemma 1. Under the conditions of Theorem 2, P
(
|Ĉ| < l2

)
≤ Δ1(l).

Lemma 2. Let A be the collection of C ∈ C such that |C| > l2

2 and |C∩C∗c|
|C| ≥ α.

Let A be the event that A �= ∅. If n is sufficiently large, then l ≥ 12α−1(logb n+2)
implies

P (A) ≤ Δ2(α, l)

Proof of Theorem 2. Let E be the event that {Λ ≤ 1−α
1+α}. It is clear that E

can be expressed as the union of two disjoint events E1 and E2, where

E1 = {|Ĉ| < |C∗|} ∩ E (9)
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and
E2 = {|Ĉ| ≥ |C∗|} ∩ E (10)

One can bound P (E1) by Δ1(l) via Lemma 1.
It remains to bound P (E2). By the definition of Λ, the inequality Λ ≤ 1−α

1+α
can be rewritten equivalently as

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩C∗|
|Ĉ ∩C∗|

≥ 1 + α

1− α.

When |Ĉ| ≥ |C∗|, one can verify that |Ĉ ∩C∗c| ≥ |Ĉc ∩C∗|, which implies that

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩ C∗|
|Ĉ ∩ C|

≤ 1 + 2
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

.

Therefore, E2 ⊂ E∗
2 , where

E∗
2 = {|Ĉ| ≥ |C∗|} ∩

{
1 + 2

|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

≥ 1 + α

1− α

}

⊂ {|Ĉ| > l2

2
} ∩

{
1 + 2

|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

≥ 1 + α

1− α

}
.

Notice that 1 + 2 |Ĉ∩C∗c|
|Ĉ∩C∗| ≥

1+α
1−α implies |Ĉ∩C∗c|

|Ĉ| ≥ α. Therefore, by Lemma 2,
P (E∗

2 ) ≤ Δ2(α, l).

5 Conclusion

The problem of data mining has commonly been approached from the point
of view of data structures and algorithms, in a setting that is primarily deter-
ministic. This paper addresses several statistical questions related to the basic
problem of frequent itemset mining, namely significance, noise-tolerance and
recovery. The probabilistic bounds given here provide a preliminary basis for
assessing the significance of discovered itemsets, with or without errors, and
give one objective criterion for sifting through the (potentially large) number
of frequent itemsets in a data matrix. The results on the noise sensitivity of
standard FIM provide some justification for the current efforts on error-tolerant
algorithms. Further justification is provided by the use of one such method for
recovery of block structures.
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Appendix

Proof of Lemma 1. Let u1∗, ..., ul∗ be corresponding rows of C∗ in Y and let
V be the number of rows satisfying F (ui∗) < 1 − p0, where F (·) is the function
measuring the fraction of ones. By Markov’s inequality,

P (V ≥ 1) ≤ E(V ) =
l∑

i=1

P (F (ui∗) < 1− p0). (11)

Using standard bounds on the tails of the binomial distribution, when ln is
sufficiently large,

P (V ≥ 1) ≤ l · e−
3l(p−p0)2

8p ≤ e− 1
3p l(p−p0)2 , (12)

when l is sufficiently large.
Let u∗1, ..., u∗l be corresponding columns of C∗ in Y and let V ′ be the number

of columns satisfying F (u∗i) < 1− p0. A similar calculation as above shows that

P (V ′ ≥ 1) ≤ E(V ′) ≤ l · e−3 l(p−p0)2

8p

≤ e−
1
3p l(p−p0)2 .
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Since {|Ĉ| < l2 = |C∗|} ⊂ {C∗ /∈ AFIτ (Y)} ⊂ {V ≥ 1} ∪ {V ′ ≥ 1},
P{|Ĉ| < l2} ≤ P (V ≥ 1) + P (V ′ ≥ 1)

≤ 2e−
1
3p ln(p−p0)2 = Δ1(l).

The proof of Lemma 2, relies on two basic facts below. The proof of Fact 2 is
technical and is omitted.

Fact 1. Given 0 < τ0 < 1, if there exists a k × r binary matrix M satisfying
F (M) ≥ τ0, then for v = min{k, r}, there exists a v× v submatrix D of M such
that F (D) ≥ τ0.

Proof. Without loss of generality, we assume v = k ≤ r. Then we rank each
column according to its fraction of ones, and reorder the columns in descending
order. Let the reordered matrix be M1. Let D = M1[(1, ..., v) × (1, ..., v)]. One
can verify that F (D) ≥ τ0.

Fact 2. Let 1 < γ < 2 be a constant, and let W be an n × n binary matrix.
Let R1 and R2 be two square submatrices of W satisfying (i) |R2| = k2, (ii)
|R1\R2| > kγ and (iii) R1 ∈ AFIτ (W ). Then there exists a square submatrix
D ⊂ R1\R2 such that |D| ≥ k2γ−2/9 and F (D) ≥ τ .

Proof of Lemma 2. If C ∈ A then
(i) |C∗| = l2,
(ii) |C\C∗| = |C| · |C∩C∗c|

|C| ≥ l2 · α
2 = lγ , where γ = 2 + logl

α
2 ,

(iii) C ∈ AFI1−p0(Y).
Thus, by Fact 2, there exists a v × v submatrix D of C\C∗ such that F (D) ≥
1− p0 and v ≥ αl

6 , which implies that

max
c∈C

M τ (C ∩ C∗c) ≥ v ≥ αl

6
,

where τ = 1− p0.
Let W(Y, C∗) be a n×n binary random matrix, where wij = yij if (i, j) /∈ C∗,

and wij ∼ Bern(p) otherwise. It is clear that

M τ (W) ≥ max
c∈C

M τ (C ∩ C∗c) ≥ αl

6
.

By Proposition 2, when n is sufficiently large and l ≥ 12α−1(logb n+ 2), we can
bound P (A) with

P (A) ≤ P (max
c∈C

M τ (C ∩ C∗c) ≥ αl

6
)

≤ P (M τ (W) ≥ αl

6
) ≤ 2n−(αl/6−2 logb′ n), (13)

where b′ = e
3(1−p0−p)2

8p . As p0 > p, it is trivial to verify that b < b′. Consequently,
one can bound the RHS of inequality (13) by Δ2(α, l).
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Abstract. We present a unified and complete account of maximum entropy distri-
bution estimation subject to constraints represented by convex potential functions
or, alternatively, by convex regularization. We provide fully general performance
guarantees and an algorithm with a complete convergence proof. As special cases,
we can easily derive performance guarantees for many known regularization types,
including �1, �2, �22 and �1+ �22 style regularization. Furthermore, our general ap-
proach enables us to use information about the structure of the feature space or
about sample selection bias to derive entirely new regularization functions with
superior guarantees. We propose an algorithm solving a large and general sub-
class of generalized maxent problems, including all discussed in the paper, and
prove its convergence. Our approach generalizes techniques based on informa-
tion geometry and Bregman divergences as well as those based more directly on
compactness.

1 Introduction

The maximum entropy (maxent) approach to probability distribution estimation was
first proposed by Jaynes [1], and has since been used in many areas of computer science
and statistical learning, especially natural language processing [2, 3], and more recently
in species habitat modeling [4]. In maxent, one is given a set of samples from a target
distribution over some space, and a set of known constraints on the distribution. The
distribution is then estimated by a distribution of maximum entropy satisfying the given
constraints. The constraints are often represented using a set of features (real-valued
functions) on the space, with the expectation of every feature required to match its
empirical average. By convex duality, this turns out to be the unique Gibbs distribution
maximizing the likelihood of the samples.

While intuitively appealing, this approach fails to produce good estimates when the
number of features is large compared with the number of samples. Conceptually, con-
straining maxent to match a large number of feature averages exactly forces the algo-
rithm to approximate the empirical distribution too closely. From the dual perspective,
the family of Gibbs distributions is too expressive and the algorithm overfits. Common
approaches to counter overfitting are regularization [5, 6, 7, 8], introduction of a prior [9],
feature selection [2, 3], discounting [5, 6] and constraint relaxation [10, 11]. Thus, there
are many ways to control overfitting in maxent calling for a general treatment.

In this work, we study a generalized form of maxent. Although mentioned by other
authors as fuzzy maxent [5, 6, 7], we give the first complete theoretical treatment of this
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very general framework, including fully general performance guarantees, algorithms
and convergence proofs. Independently, Altun and Smola [12] derive a different theo-
retical treatment (see discussion below). As special cases, our results allow us to easily
derive performance guarantees for many known regularized formulations, including �1,
�2, �22 and �1+ �22 regularizations.

A crucial insight of our general analysis is that maxent relaxations corresponding to
tighter constraints on the feature expectations yield better performance guarantees. Ap-
plying our analysis to the special case in which such a confidence region is polyhedral
allows us to derive novel regularization functions and a corresponding analysis for two
cases of particular interest. The first case is when some information about structure of
the feature space is available, for example, when some features are known to be squares
or products of other “base” features, corresponding to constraints on variances or co-
variances of the base features. The second case is when the sample selection process is
known to be biased. Both of these cases were studied previously [4, 13]. Here, we apply
our general framework to derive improved generalization bounds using an entirely new
form of regularization. These results improve on bounds for previous forms of regu-
larization by up to a factor of eight — an improvement that would otherwise require a
64-fold increase in the number of training examples.

In the second part, we propose an algorithm solving a large and general subclass of
generalized maxent problems. We show convergence of our algorithm using techniques
that unify previous approaches and extend them to a more general setting. Specifically,
our unified approach generalizes techniques based on information geometry and Breg-
man divergences [3, 14] as well as those based more directly on compactness [11]. The
main novel ingredient is a modified definition of an auxiliary function, a customary
measure of progress, which we view as a surrogate for the difference between the pri-
mal and dual objective rather than a bound on the change in the dual objective.

There are many standard maxent algorithms, such as iterative scaling [3, 15], gradi-
ent descent, Newton and quasi-Newton methods [16] and their regularized versions [5,
6, 9, 10, 17]. In this paper, we focus on an algorithm that performs sequential up-
dates of feature weights similarly to boosting and sequential algorithms considered
in [11, 14]. Sequential updates are especially desirable when the number of features
is very large or when they are produced by a weak learner. When the number of fea-
tures is small, techniques developed here can be directly applied to derive a parallel
update algorithm analogous to the one proposed in [11] for �1-regularized maxent
(details omitted).

Previous Work. There have been many studies of maxent and logistic regression, which
is a conditional version of maxent, with �1-style regularization [9, 10, 11, 17, 18], �22-
style regularization [5, 6, 7, 8] as well as some other types of regularization such as
�1+�22-style [10] and �2-style regularization [19]. In a recent work, Altun and Smola [12]
explore regularized formulations (with duality and performance guarantees) where the
entropy is replaced by an arbitrary Bregman or Csiszár divergence and regularization
equals a norm raised to a power greater than one. With the exception of [8, 11, 12], pre-
vious work does not include guarantees applicable to our case, albeit Krishnapuram et
al. [17] and Ng [18] give guarantees for �1-regularized logistic regression.
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2 Preliminaries

The goal is to estimate an unknown target distribution π over a sample space X based
on samples x1, . . . , xm ∈ X . We assume that samples are independently distributed
according to π and denote the empirical distribution by π̃(x) = |{1 ≤ i ≤ m : xi =
x}|/m. The structure of the problem is specified by real valued functions f1, . . . , fn on
the sample space, called features and by a distribution q0 representing a default estimate.
The vector of all n features is denoted by f and the image of X under f , the feature
space, is denoted by f(X ). We assume that features capture all the relevant information
available for the problem at hand and q0 is the distribution we would choose if we were
given no samples. The distribution q0 is most often assumed uniform.

Let p[f ] denote the expectation of a function f(x) when x is chosen randomly ac-
cording to distribution p. For a limited number of samples, we expect that π̃ will be
a poor estimate of π under any reasonable distance measure. On the other hand, for a
given function f , we do expect π̃[f ], the empirical average of f , to be rather close to
its true expectation π[f ]. It is quite natural, therefore, to seek an approximation p under
which fj’s expectation is equal to π̃[fj ] for every fj .

There will typically be many distributions satisfying these constraints. The maxi-
mum entropy principle suggests that, from among all distributions that satisfy them, we
choose the distribution that minimizes entropy relative to the default estimate q0. When
q0 is uniform this is the same as maximizing the entropy. Here, as usual, the entropy of
a distribution p is defined as H(p) = p[ln(1/p)] and the relative entropy, or Kullback-
Leibler divergence, as D(p ‖ q) = p[ln(p/q)]. Thus, the maximum entropy principle
chooses the distribution that satisfies the constraints, but imposes as little additional
information as possible when compared with q0.

Instead of minimizing entropy relative to q0, we can consider all Gibbs distributions

qλ(x) = q0(x)eλ·f(x)/Zλ

where Zλ =
∑

x∈X q0(x)e
λ·f(x) is a normalizing constant and λ ∈ Rn. It can be

proved [3] that the maxent distribution is the maximum likelihood distribution from the
closure of the set of Gibbs distributions. Equivalently, it is the distribution that achieves
the infimum over all values of λ of the empirical log loss Lπ̃(λ) = − 1

m

∑m
i=1 ln qλ(xi).

The convex programs corresponding to the two optimization problems are

Pbasic : min
p∈Δ

D(p ‖ q0) subject to p[f ] = π̃[f ]

Qbasic : inf
λ∈Rn

Lπ̃(λ)

whereΔ is the simplex of probability distributions over X .
In general, we use Lp(λ) = −p[ln qλ] to denote the log loss of qλ relative to the

distribution p. It differs from relative entropy D(p ‖ qλ) only by the constant H(p). We
will use the two interchangeably as objective functions.

3 Convex Analysis Background

Throughout this paper we make use of convex analysis. The most relevant concepts are
convex conjugacy and Fenchel’s duality which we introduce here (see also [20, 21]).
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Consider a function ψ : Rn → (−∞,∞]. The effective domain of ψ is the set
domψ = {u ∈ Rn | ψ(u) < ∞}. A point u where ψ(u) < ∞ is called feasible.
The epigraph of ψ is the set of points above its graph {(u, t) ∈ Rn × R | t ≥ ψ(u)}.
We say that ψ is convex if its epigraph is a convex set. A convex function is called
proper if it is not uniformly equal to∞. It is called closed if its epigraph is closed. For
a proper convex function, closedness is equivalent to lower semi-continuity (ψ is lower
semi-continuous if lim infu′→u ψ(u′) ≥ ψ(u) for all u).

If ψ is a closed proper convex function then its conjugate is defined by

ψ∗(λ) = sup
u∈Rn

[λ · u− ψ(u)].

The conjugate provides an alternative description of ψ in terms of tangents to ψ’s
epigraph. It turns out that ψ∗ is also a closed proper convex function and ψ∗∗ = ψ
(for a proof see Corollary 12.2.1 of [20]). From the definition of conjugate, we obtain
Fenchel’s inequality

∀λ,u : λ · u ≤ ψ∗(λ) + ψ(u).

In this work we use several examples of closed proper convex functions. The first of
them is relative entropy, with the second argument fixed, viewed as a function of its first
argument and extended to RX in the following manner: ψ(p) = D(p ‖ q0) if p ∈ Δ and
equals infinity otherwise. The conjugate of relative entropy is the log partition function
ψ∗(r) = ln

(∑
x∈X q0(x)e

r(x)
)
.

Relative entropy is also an example of a Bregman divergence which generalizes some
common distance measures including the squared Euclidean distance. We use two prop-
erties satisfied by any Bregman divergence B(· ‖ ·):

(B1) B(a ‖ b) ≥ 0
(B2) if B(at ‖ bt)→ 0 and bt → b∗ then at → b∗.

Another example of a closed proper convex function is an indicator function of a
closed convex set C ⊆ Rn, denoted by IC , which equals 0 when its argument lies in
C and infinity otherwise. The conjugate of an indicator function is a support function.
For C = {v}, we obtain I∗{v}(λ) = λ · v. For a box R = [−β, β]n, we obtain a scaled
�1 norm I∗R(λ) = β‖λ‖1, and for a Euclidean ball B = {u | ‖u‖2 ≤ β}, a scaled �2
norm, I∗B(λ) = β‖λ‖2. If C is a convex hull of closed convex sets C1, C2 then

I∗C(λ) = max{I∗C1
(λ), I∗C2

(λ)}. (1)

The following identities can be proved from the definition of the conjugate function:

if ϕ(u) = ψ(γu + c) then ϕ∗(λ) = ψ∗(λ/γ)− λ · c/γ (2)

if ϕ(u) =
∑

j ϕj(uj) then ϕ∗(λ) =
∑

j ϕ
∗
j (λj) (3)

where γ ∈ R \ {0} and c ∈ Rn are constants and uj , λj refer to components of u,λ.
We conclude with a version of Fenchel’s Duality Theorem which relates a convex

minimization problem to a concave maximization problem using conjugates. The fol-
lowing result is essentially Corollary 31.2.1 of [20] under a stronger set of assumptions.
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Theorem 1 (Fenchel’s Duality). Let ψ : Rn → (−∞,∞] and ϕ : Rm → (−∞,∞]
be closed proper convex functions and A a real-valued m × n matrix. Assume that
domψ∗ = Rn or domϕ = Rm. Then

inf
u

[
ψ(u) + ϕ(Au)

]
= sup

λ

[
−ψ∗(A�λ)− ϕ∗(−λ)

]
.

We refer to the minimization over u as the primal problem and the maximization over
λ as the dual problem. When no ambiguity arises, we also refer to the minimization
over λ of the negative objective as the dual problem. We call u a primal feasible point
if the primal objective is finite at u and analogously define a dual feasible point.

4 Generalized Maximum Entropy

In this paper we study a generalized maxent problem

P : min
p∈Δ

[
D(p ‖ q0) + U(p[f ])

]
where U : Rn → (−∞,∞] is an arbitrary closed proper convex function. It is viewed
as a potential for the maxent problem. We further assume that q0 is positive on X , i.e.
D(p ‖ q0) is finite for all p ∈ Δ, and p0[f ] is a feasible point of U for at least one
distribution p0. The latter will typically be satisfied by the empirical distribution.

The definition of generalized maxent captures many cases of interest including the
basic maxent, �1-regularized maxent and �22-regularized maxent. The basic maxent is
obtained by using a point indicator potential U(0)(u) = I{π̃[f ]}(u), whereas, as shown
in [11], �1-regularized maxent corresponds to box constraints |π̃[fj ]−p[fj ]| ≤ β, which
can be represented by U(1)(u) = IC(u) whereC = π̃[f ]+[−β, β]n. Finally, as pointed
out in [6, 7], �22-regularized maxent is obtained using the potential U(2)(u) = ‖π̃[f ]−
u‖22/(2α) which incurs an �22-style penalty for deviating from empirical averages.

To simplify the exposition, we use the notation Up0(u) = U(p0[f ] − u) for a po-
tential centered at p0. Thus the basic maxent potential U(0)(u) = I{π̃[f ]}(u) could
have been specified by defining U(0)

π̃ (u) = I{0}(u) and similarly the box potential by
defining U(1)

π̃ (u) = I[−β,β]n(u) and the �22 penalty by defining U(2)
π̃ (u) = ‖u‖22/(2α).

The primal objective of generalized maxent will be referred to as P :

P (p) = D(p ‖ q0) + U(p[f ]).

Note that P attains its minimum over Δ, because Δ is compact and P is lower semi-
continuous. The minimizer of P is unique by strict convexity of D(p ‖ q0).

To derive the dual of P , define the matrix Fjx = fj(x) and use Fenchel’s duality:

min
p∈Δ

[D(p ‖ q0) + U(p[f ])] = min
p∈Δ

[D(p ‖ q0) + U(F p)]

= sup
λ∈Rn

[
− ln

(∑
x∈X q0(x) exp

{
(F�λ)x

})
−U∗(−λ)

]
(4)

= sup
λ∈Rn

[− lnZλ −U∗(−λ)] . (5)
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In Eq. (4), we apply Theorem 1. We use (F�λ)x to denote the entry of F�λ indexed
by x. In Eq. (5), we note that (F�λ)x = λ · f(x) and thus the expression inside the
logarithm equals the normalization constant of qλ. The dual objective will be referred
to as Q:

Q(λ) = − lnZλ −U∗(−λ).

We could rewrite Q in terms of the conjugate of a centered potential. By Eq. (2)

U∗
p0(λ) = U∗(−λ) + λ · p0[f ], (6)

hence the dual objective can be rewritten as

Q(λ) = −D(p0 ‖ qλ) + D(p0 ‖ q0)−U∗
p0(λ).

For any fixed distribution p0, D(p0 ‖ q0) is a finite constant, so maximizing Q(λ) is
equivalent to minimizing D(p0 ‖ qλ) + U∗

p0(λ), or Lp0(λ) + U∗
p0(λ). Using p0 = π̃

we obtain a dual analogous to Qbasic:

Q : inf
λ∈Rn

[
Lπ̃(λ) + U∗

π̃(λ)
]
.

Note that a minimizing λ does not depend on a particular choice of p0. In particular, a
minimizer of Q is also a minimizer of Lπ(λ) + U∗

π(λ). This observation will be used
in Section 5 to prove performance guarantees.

The objective of Q has two terms. The first of them is the empirical log loss and
the second one can be viewed as a regularization term penalizing “complex” solutions.
From a Bayesian perspective, U∗

π̃ corresponds to negative log of the prior. Thus, mini-
mizing Lπ̃(λ) + U∗

π̃(λ) is equivalent to maximizing the posterior.
In case of the basic maxent, we obtain U(0)∗

π̃ (λ) = I∗{0}(λ) = 0 and thus recover the

basic dual. For the box potential, we obtain U(1)∗
π̃ (λ) = I∗[−β,β]n(λ) = β‖λ‖1 which

corresponds to an �1-style regularization and a Laplace prior. For the �22 potential, we
obtain U(2)∗

π̃ (λ) = α‖λ‖22/2 which corresponds to an �22-style regularization and a
Gaussian prior.

Results of this section are summarized in the following theorem:

Theorem 2 (Maxent Duality). Let q0,U, P,Q be as above. Then

min
p∈Δ

P (p) = sup
λ∈Rn

Q(λ). (i)

Moreover, if limt→∞Q(λt) = supλ∈Rn Q(λ) then the sequence of qt = qλt
has a

limit and
P
(

lim
t→∞

qt

)
= min

p∈Δ
P (p). (ii)

Sketch of proof. Eq. (i) is a consequence of Fenchel’s duality as was shown earlier. It
remains to prove Eq. (ii). Let p0 be the minimizer of P . Centering primal and dual
objectives at p0, we obtain by Eq. (i) and the assumption

D(p0 ‖ q0) + Up0(0) = lim
t→∞

[
−D(p0 ‖ qt) + D(p0 ‖ q0)−U∗

p0(λt)
]
.
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Denoting terms with the limit 0 by o(1) and rearranging yields

Up0(0) + U∗
p0(λt) = −D(p0 ‖ qt) + o(1).

The left-hand side is by Fenchel’s inequality nonnegative, so D(p0 ‖ qt) → 0 by prop-
erty (B1). Therefore, by property (B2), every convergent subsequence of q1, q2, . . . has
the limit p0. Since the qt’s come from the compact set Δ, we obtain qt → p0. 
�

Thus, in order to solve the primal, it suffices to find a sequence of λ’s maximizing the
dual. This will be the goal of the algorithm in Section 6.

5 Bounding the Loss on the Target Distribution

In this section, we derive bounds on the performance of generalized maxent relative to
the true distribution π. That is, we are able to bound Lπ(λ̂) in terms of Lπ(λ∗) when
qλ̂ maximizes the dual objective Q and qλ∗ is any Gibbs distribution. In particular,
bounds hold for the Gibbs distribution minimizing the true loss. Note that D(π ‖ qλ)
differs from Lπ(λ) only by the constant term H(π), so identical bounds also hold for
D(π ‖ qλ̂) in terms of D(π ‖ qλ∗).

The crux of our method is the lemma below. Even though its proof is remarkably
simple, it is sufficiently general to cover all cases of interest.

Lemma 1. Let λ̂ maximize Q. Then for an arbitrary Gibbs distribution qλ∗

Lπ(λ̂) ≤ Lπ(λ∗) + 2U(π[f ]) + U∗(λ∗) + U∗(−λ∗) (i)

Lπ(λ̂) ≤ Lπ(λ∗) + (λ∗ − λ̂) · (π[f ]− π̃[f ]) + U∗
π̃(λ∗)−U∗

π̃(λ̂). (ii)

Proof. Optimality of λ̂ with respect to Lπ(λ) + Uπ(λ) = −Q(λ) + const. yields

Lπ(λ̂) ≤ Lπ(λ∗) + U∗
π(λ∗)−U∗

π(λ̂)

≤ Lπ(λ∗) + (λ∗ − λ̂) · π[f ] + U∗(−λ∗)−U∗(−λ̂). (7)

Eq. (7) follows from Eq. (6). Now Eq. (i) can be obtained by applying Fenchel’s in-
equality to the second term of Eq. (7):

(λ∗ − λ̂) · π[f ] ≤ U∗(λ∗) + U(π[f ]) + U∗(−λ̂) + U(π[f ]).

Eq. (ii) also follows from (7) by centering the conjugate potential at π̃. 
�

A special case which we discuss in more detail is when U is an indicator of a closed
convex set C, such as U(0) and U(1) of the previous section. In this case, the right hand
side of Lemma 1.i will be infinite unless π[f ] lies in C. In order to apply Lemma 1.i,
we ensure that π[f ] ∈ C with high probability. Therefore, we choose C as a confidence
region for π[f ]. If π[f ] ∈ C then for any Gibbs distribution qλ∗

Lπ(λ̂) ≤ Lπ(λ∗) + I∗C(λ∗) + I∗C(−λ∗). (8)
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For a fixed λ∗ and non-emptyC, I∗C(λ∗)+ I∗C(−λ∗) is always nonnegative and propor-
tional to the size ofC’s projection onto a line parallel with λ∗. Thus, smaller confidence
regions yield better performance guarantees.

A common method of obtaining confidence regions is to bound the difference be-
tween empirical averages and true expectations. There exists a huge array of techniques
to achieve this. Before moving to specific examples, we state a general result which fol-
lows directly from Eq. (8). We assume that confidence regions are obtained by scaling
some symmetric prototype C0 and shifting it to empirical averages.

Theorem 3. Assume that π̃[f ]−π[f ] ∈ βC0 whereC0 is a closed convex set symmetric
around the origin, β > 0 and βC0 denotes {βu | u ∈ C0}. Let λ̂ minimize the
regularized log loss Lπ̃(λ) + βI∗C0

(λ). Then for an arbitrary Gibbs distribution qλ∗

Lπ(λ̂) ≤ Lπ(λ∗) + 2βI∗C0
(λ∗).

5.1 Maxent with Polyhedral Regularization

We now apply the foregoing general results to some specific cases of interest. To begin,
we consider potentials which are indicator functions of polytopes. The simplest case is
the box indicator U(1), for which Dudı́k, Phillips and Schapire [11] give generalization
bounds. However, when additional knowledge about structure of the feature space is
available or when samples are biased, other polytopes yield tighter confidence regions
and hence better performance guarantees, as we now show.

Feature Space Derived Potential. When values of f (x) lie inside a polytope with a
possibly very large number of facets then a symmetrized version of this polytope can be
used as a prototype for the confidence region. For example, suppose that values f(x) lie
inside the polytope {u | aj̄ ≤ μj̄ ·u ≤ bj̄ for j̄ = 1, . . . , n̄} where μj̄ ∈ Rn, aj̄, bj̄ ∈ R

are constants. Then the following holds:

Theorem 4. Let μj̄, aj̄, bj̄ be as above. Let δ > 0 and let λ̂ minimize Lπ̃(λ)+βI∗C0
(λ)

with β =
√

ln(2n̄/δ)/(2m) and C0 = {u | |μj̄ · u| ≤ bj̄ − aj̄ for all j̄}. Then with
probability at least 1− δ, for every Gibbs distribution qλ∗ ,

Lπ(λ̂) ≤ Lπ(λ∗) + I∗C0
(λ)

√
2 ln(2n̄/δ)/m.

Proof. By Hoeffding’s inequality, for a fixed j̄, the probability that |μj̄ · (π̃[f ]− π[f ])|
exceeds β(bj̄ − aj̄) is at most 2e−2β2m = δ/n̄. By the union bound, the probability of
this happening for any j̄ is at most δ. Thus, π̃[f ]− π[f ] ∈ βC0 with probability at least
1− δ and the claim follows from Theorem 3. 
�

This performance bound decreases as 1/
√
m with an increasing number of samples

and grows only logarithmically with the number of facets of the bounding polytope.
Thus, bounding polytopes can have a very large number of facets and still yield good
bounds for moderate sample sizes. When deciding between several polytopes based on
this bound, the increase in the number of facets should be weighed against the decrease
in the regularization I∗C0

as will be demonstrated in examples below.
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Means and Variances. As a specific application, consider a set of n = 2K features in-
dexed as fk, fkk, 1 ≤ k ≤ K , such that 0 ≤ fk(x) ≤ 1 and fkk(x) = f2

k (x). Note that
the best Gibbs distribution is the one that matches fk’s true means and variances. These
types of features were successfully used with box constraints in habitat modeling [4].
Box constraints yield the guarantee

Lπ(λ̂) ≤ Lπ(λ∗) + ‖λ∗‖1
√

2 ln(4K/δ)/m.

Noting that t− 1/4 ≤ t2 ≤ t for t ∈ [0, 1], it is possible to obtain a tighter polytope

C0 = {u | |uk| ≤ 1, |ukk| ≤ 1, |uk − ukk| ≤ 1/4 for all k}

and the guarantee

Lπ(λ̂) ≤ Lπ(λ∗) + I∗C0
(λ∗)

√
2 ln(6K/δ)/m.

In this case, it is possible to derive I∗C0
explicitly:

I∗C0
(λ) =

∑
k (7|λk + λkk|+ |λk|+ |λkk|)/8.

Note that I∗C0
(λ) may be up to eight times smaller than ‖λ‖1 while the relative in-

crease of the bound due to an increase in n̄ is close to 1 for moderate sizes of K . Thus,
the bound may decrease up to eight times for moderate K . Such improvement would
require a 64-fold increase in the number of training samples using �1-regularization.

Means, Variances and Covariances. In this example, we expand the feature set to in-
clude also covariance terms fkl(x) = fk(x)fl(x) where 1 ≤ k < l ≤ K . In this case
the box can be restricted to a much tighter set

C0 = {u | |uk| ≤ 1, |ukk| ≤ 1, |uk − ukk| ≤ 1/4 for all k,

|ukl| ≤ 1, |uk − ukl| ≤ 1, |ul − ukl| ≤ 1,
|uk + ul − 2ukl| ≤ 1, |ukk + ull − 2ukl| ≤ 1 for all k < l}.

Note that n̄ increases approximately fivefold fromK(K +3)/2 to 5K(K +1/5)/2 re-
sulting in only slight relative increase of the bound for moderateK . This is outweighed
by the decrease of the bound due to a tighter confidence region.

Debiased Potential. In previous work [13], we considered the problem of using maxent
when the data was sampled in a biased manner. Here we show how superior bounds can
be obtained using our generalized maxent framework.

In previous examples, confidence regions were symmetric sets centered at empir-
ical averages of features. Here, however, asymmetric regions are more appropriate.
We assume now that samples do not come from the target distribution π, but from
the biased distribution πs, where s ∈ Δ is the sampling distribution and πs(x) =
π(x)s(x)

/∑
x′∈X π(x′)s(x′) corresponds to the probability of observing x given that

it is sampled by both π and s. We assume that s is known and strictly positive. Further,
let smin = minx s(x) and smax = maxx s(x). We use the following theorem to derive
confidence intervals of true feature expectations from biased samples.
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Theorem 5 (Theorem 2 of [13]). πs[f/s]
/
πs[1/s] = π[f ].

Earlier [13] we derived, for example by Hoeffding’s inequality, confidence intervals
[cj , dj ] for πs[fj/s] and an interval [c0, d0] for πs[1/s]. We converted these into box
constraints for π[f ] by Theorem 5. However, Theorem 5 can also be used to obtain a
tighter confidence region:

C =
⋃

c0≤t≤d0

{u | cj/t ≤ uj ≤ dj/t for all j}

= convex hull
t=c0,d0

{u | cj/t ≤ uj ≤ dj/t for all j}. (9)

Eq. (1) can be used to obtain an explicit form of I∗C . Working out Hoeffding’s bounds,
applying Lemma 1.i and converting I∗C(λ) + I∗C(−λ) into a sample independent form
under the assumption that terms on the left-hand side of Theorem 5 lie in their confi-
dence intervals, we obtain the following guarantee (the proof is omitted):

Theorem 6. Assume that features f1, . . . , fn are bounded in [0, 1]. Let s be as above
and let π̃s denote the empirical distribution of samples drawn from πs. Let δ > 0 and
let λ̂ minimize lnZλ + I∗C(−λ) where

I∗C(−λ) = max
t=c0,d0

[
−λ · π̃s[f/s] + β‖λ‖1

t

]
with β =

√
ln(2(n+ 1)/δ)/(2m)/smin, c0 = max

{
1/smax, π̃s[1/s] − β

}
, d0 =

π̃s[1/s] + β. Then with probability at least 1− δ, for every Gibbs distribution qλ∗ ,

Lπ(λ̂) ≤ Lπ(λ∗) +
‖λ∗‖1 + |λ∗ · π[f ]|√

m
· π[s]
smin

·
(
α+ α2 smax

smin
√
m

)
(10)

where α =
√

2 ln(2(n+ 1)/δ).

This bound shares many of the favorable properties of the bound of Theorem 4. In
particular, it decreases as the square root of the number of samples and grows only log-
arithmically with the number of features. It also increases with the level of correlation
between the sampling and target distributions as measured by the ratio π[s]/smin. In-
tuitively, this dependence should not be surprising, because high values of π[s]/smin
mean that π puts more weight on points with larger bias. As a result, it is more difficult
to disambiguate effects of s and π on the sampling process.

When using box constraints, as in [13], we obtain an analogous bound with the term
|λ∗ · π[f ]| in Eq. (10) replaced by a larger term

∑
j |λ∗j |π[fj]. Improvement in the

guarantee due to the new regularization will be the most significant when λ∗ and π[f ]
are close to orthogonal. This is true for almost all directions of λ∗ as the dimension of
the feature space increases.

5.2 Maxent with �2-Regularization

In some cases, tighter performance guarantees can be obtained by using non-polyhedral
confidence regions. In this section we consider confidence regions which take the shape
of a Euclidean ball. We use an �2 version of Hoeffding’s inequality and apply Theorem 3
to obtain performance guarantees (the proof is omitted).
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Theorem 7. Let D2 = supx,x′∈X‖f(x) − f(x′)‖2 be the �2 diameter of f (X ). Let

δ > 0 and let λ̂ minimize Lπ̃(λ)+β‖λ‖2 with β = D2
[
1+(2+

√
2)
√

ln(1/δ)
]
/
√

2m.
Then with probability at least 1− δ, for every Gibbs distribution qλ∗ ,

Lπ(λ̂) ≤ Lπ(λ∗) + ‖λ∗‖2D2
[√

2 + 2(1 +
√

2)
√

ln(1/δ)
]/√

m.

Unlike results of the previous section, this bound does not explicitly depend on the
number of features and only grows with the �2 diameter of the feature space. The �2
diameter is small for example when the feature space consists of sparse binary vectors.

An analogous bound can also be obtained for �1-regularized maxent by Theorem 4:

Lπ(λ̂) ≤ Lπ(λ∗) + ‖λ∗‖1D∞
√

2 ln(2n/δ)/m.

This bound increases with the �∞ diameter of the feature space and also grows slowly
with the number of features. It provides some insight for when we expect �1-regulariza-
tion to perform better than �2-regularization. For example, consider a scenario when the
total number of features is large, but the best approximation of π can be derived from a
small number of relevant features. Increasing the number of irrelevant features, we may
keep ‖λ∗‖1, ‖λ∗‖2 andD∞ fixed whileD2 may increase asΩ(

√
n). Thus the guarantee

for �2-regularized maxent grows asΩ(
√
n) while the guarantee for �1-regularized max-

ent grows only as Ω(
√

lnn). Note, however, that in practice the distribution returned
by �2-regularized maxent may perform better than indicated by this guarantee. For a
comparison of �1 and �22 regularization in the context of logistic regression see [18].

5.3 Maxent with �2
2-Regularization

So far we have considered potentials that take the form of an indicator function. In this
section we present a result for the �22 potential U(2)

π̃ (u) = ‖u‖22/(2α) which grows con-
tinuously with increasing distance from empirical averages. In addition to probabilistic
guarantees (which we do not discuss in this section), it is possible to derive guarantees
on the expected performance. However, these guarantees require an a priori bound on
‖λ∗‖2 and thus are not entirely uniform.

Expectation guarantees can be simply obtained by taking an expectation in Lem-
ma 1.i and bounding the trace of the feature covariance matrix by D2

2/2. Instead, we
use a stability bound on ‖λ∗ − λ̂‖2 along the lines of [8], then apply Lemma 1.ii and
only then bound the trace. This results in tighter guarantees (also tighter than those
in [8]). Optimizing α under the condition ‖λ∗‖2 ≤ L2 then yields the following:

Theorem 8. Let D2 be the �2 diameter of f (X ) and let L2 > 0. Let λ̂ minimize
Lπ̃(λ) + α‖λ‖22/2 with α = D2/(L2

√
m). Then for all λ∗ such that ‖λ∗‖ ≤ L2

E
[
Lπ(λ̂)

]
≤ Lπ(λ∗) + L2D2/

√
m.

Expectation guarantees can also be obtained for regularization types of the form
U∗
π̃(λ) = βI∗C0

(λ) + α‖λ‖22/2. Using that Uπ̃(u) ≤ min{IβC0(u), ‖u‖22/(2α)},
the expectation is derived by distinguishing whether π̃[f ] − π[f ] lies in βC0 or not
(with a small probability δ). The resulting guarantee contains one term proportional to
I∗C0

(λ∗)/
√
m and another proportional to L2D2/

√
m with δ controlling the tradeoff.
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6 A Sequential-Update Algorithm and Convergence Proof

In this section, we present an algorithm for the generalized maxent and proof of conver-
gence. The algorithm covers a wide class of potentials including the basic, box and �22
potential. Polyhedral and �2-ball potentials do not fall in this class, but the correspond-
ing maxent problems can be transformed and our algorithm can still be applied.

As explained in Section 4, the goal of the algorithm is to produce a sequence
λ1,λ2, . . . maximizing the objective functionQ in the limit. We assume that the poten-
tial U is decomposable in the sense that it can be written as a sum of coordinate poten-
tials U(u) =

∑
j Uj(uj), each of which is a closed proper convex functions bounded

from below. The conjugate potential U∗ then equals the sum of conjugate coordinate
potentials U∗

j (see Eq. (3)) and U∗
j (0) = supuj

[−Uj(uj)] is finite for all j.
Throughout this section we assume that values of features fj lie in the interval [0, 1]

and that features and coordinate potentials are non-degenerate in the sense that ranges
fj(X ) and intersections dom Uj ∩ [0, 1] differ from {0} and {1}.

Our algorithm works by iteratively adjusting the single weight λj that maximizes (an
approximation of) the change in Q. To be more precise, suppose we add δ to λj . Let
λ′ be the resulting vector of weights. By decomposability and convexity, we can bound
the change in the objective (analogously to [11]):

Q(λ′)−Q(λ) ≥ − ln
(
1 + (eδ − 1)qλ[fj ]

)
−U∗

j (−λj − δ) + U∗
j (−λj). (11)

Our algorithm starts with λ1 = 0 and then, on each iteration, maximizes this lower
bound over all choices of (j, δ). For the maximizing j, it adds the corresponding δ to
λj . This is repeated until convergence. We assume that for each j the maximizing δ is
finite. This will be the case if the potential and features are non-degenerate.

For maxent with box constraints, the minimizing δ can be derived explicitly yielding
the algorithm of [11]. For a general potential note that (11) is strictly concave in δ so
we can use any of a number of search methods to find the optimal δ.

Reductions from Non-decomposable Potentials. Polyhedral and �2-ball potentials
are not decomposable. When a polyhedral potential is represented as an intersection of
halfspaces μj̄ · u ≥ aj̄, it suffices to use transformed features f̄j̄(x) = μj̄ · f(x) with
coordinate potentials corresponding to inequality constraints. Note that the debiased
potential polytope (9) is not described in this form. However, it is not too difficult to
obtain such a representation. It turns out that this representation uses O(n2) halfspaces
and is thus polynomial in the original problem size.

In case of an �2-ball potential, we replace the constraint ‖π̃[f ] − p[f ]‖2 ≤ β by
‖π̃[f ] − p[f ]‖22 ≤ β2 which yields an equivalent primal P ′. If β > 0 then, by the
Lagrange duality and Slater’s conditions [21], we know there exists μ ≥ 0 such that the
solution of P ′ is the same as the solution of

P ′′ : min
p∈Δ

[
D(p ‖ q0) + μ

(
‖π̃[f ]− p[f ]‖22 − β2)].

The sought-after μ is the one which maximizes the value of P ′′. Since the value of P ′′

is concave in μ, we can employ a range of search techniques to find the optimal μ, using
our algorithm to solve an instance of �22-regularized maxent in each iteration.
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Convergence. In order to prove convergence of our algorithm, we will measure its
progress towards solving the primal and dual. One measure of progress is the difference
between the primal evaluated at qλ and the dual at λ:

P (qλ)−Q(λ) = U(qλ[f ]) + U∗(−λ) + λ · qλ[f ].

By Theorem 1, this difference is non-negative and equals zero exactly when qλ solves
primal and λ solves the dual.

However, for many potentials of interest, including equality and inequality con-
straints, the difference between primal and dual may remain infinite throughout the
computation. Therefore, we introduce an auxiliary function, defined, somewhat non-
standardly, as a surrogate for this difference.

Definition 1. A function A : Rn × Rn → (−∞,∞] is called an auxiliary function if

A(λ,a) = U(a) + U∗(−λ) + λ · a + B(a ‖ qλ[f ]) (12)

where B(· ‖ ·) : Rn × Rn → (−∞,∞] satisfies conditions (B1) and (B2).

Unlike the previous applications of auxiliary functions [3, 14], we do not assume that
A(λ,a) bounds a change in the dual objective and we also make no continuity as-
sumptions. However, an auxiliary function is always non-negative since by Fenchel’s
inequality U(a) + U∗(−λ) ≥ −λ · a and hence A(λ,a) ≥ B(a ‖ qλ[f ]) ≥ 0. More-
over, ifA(λ,a) = 0 then qλ[f ] = a andA(λ,a) = P (qλ)−Q(λ) = 0, i.e. by maxent
duality, qλ solves the primal and λ solves the dual.

It turns out, as we show in Lemma 3 below, that the optimality property generalizes
to the case when A(λt,at)→ 0 provided that Q(λt) has a finite limit. In particular, it
suffices to find a suitable sequence of at’s for λt’s produced by our algorithm to show
its convergence. Note that the optimality in the limit trivially holds when λt’s and at’s
come from a compact set, because A(λ̂, â) = 0 at a cluster point of {(λt,at)} by the
lower semi-continuity of U and U∗.

In the general case, we follow the technique used by [3] for the basic maxent: we
consider a cluster point q̂ of {qλt

} and show that (i) q̂ is primal feasible and (ii) the
difference P (q̂) − Q(λt) approaches zero. In case of the basic maxent, A(λ,a) =
B(π̃[f ] ‖ qλ[f ]) whenever finite. Thus, (i) is obtained by (B2), and noting that P (q̂)−
Q(λ) = D(q̂ ‖ qλ) yields (ii). For a general potential, however, claims (i) and (ii) seem
to require a novel approach. In both steps, we use decomposability and the technical
Lemma 2 (the proof is omitted).

Lemma 2. Let Up0 be a decomposable potential centered at a feasible point p0. Let
S = dom Up0 = {u ∈ Rn | Up0(u) < ∞} and Tc = {λ ∈ Rn | U∗

p0(λ) ≤ c}. Then
there exists αc ≥ 0 such that λ · u ≤ αc‖u‖1 for all u ∈ S,λ ∈ Tc.

Lemma 3. Let λ1,λ2, . . . ∈ Rn, a1,a2, . . . ∈ Rn be sequences such that Q(λt) has
a finite limit and A(λt,at)→ 0 as t→∞. Then limt→∞Q(λt) = supλQ(λ).

Sketch of proof. Let qt denote qλt
. Consider a convergent subsequence of qt’s, index

it by τ and denote its limit by q̂. As noted earlier, A(λ,a) ≥ B(a ‖ qλ[f ]). Since



136 M. Dudı́k and R.E. Schapire

A(λτ ,aτ ) → 0, we obtain that B(aτ ‖ qτ [f ])→ 0 and thus aτ → q̂[f ]. Rewrite
Eq. (12) in terms of potentials and conjugate potentials centered at an arbitrary feasible
point p0 (which must exist by assumption), denoting terms with zero limits by o(1):

Up0(p0[f ]− aτ ) = −U∗
p0(λτ ) + λτ · (p0[f ]− aτ ) + o(1). (13)

We use Eq. (13) to show first the feasibility and then the optimality of q̂.

Feasibility. We bound the right hand side of Eq. (13). The first term −U∗
p0(λτ ) is, by

Fenchel’s inequality, bounded above by Up0(0). The second term λτ · (p0[f ]−aτ ) can
be bounded above by Lemma 2. Taking limits yields feasibility.

Optimality. Since q̂ is feasible, we can set p0 equal to q̂ in Eq. (13). Using Lemma 2
and taking limits we obtain that Uq̂(0) ≤ limτ→∞[−U∗

q̂(λτ )]. Adding D(q̂ ‖ q0) to
both sides yields P (q̂) ≤ limτ→∞Q(λτ ) which by the maxent duality implies the
optimality of q̂. 
�

Theorem 9. The sequential-update algorithm produces a sequence λ1,λ2, . . . for
which limt→∞Q(λt) = supλQ(λ).

Sketch of proof. It suffices to show thatQ(λt) has a finite limit and present an auxiliary
functionA and a sequence a1,a2, . . . for which A(λt,at)→ 0.

Note that Q(λ1) = Q(0) = −U∗(0) is finite by decomposability and Q is bounded
above by feasibility of the primal. For each j let Ft,j denote the maximum over δ of the
lower bound (11) in step t. Note that Ft,j is nonnegative since the bound is zero when
δ = 0. ThusQ(λt) is nondecreasing and hence has a finite limit.

In each step,Q(λt+1)−Q(λt) ≥ Ft,j ≥ 0. SinceQ(λt) has a finite limit, we obtain
Ft,j → 0. We will use Ft,j to construct A. Rewrite Ft,j using Fenchel’s duality:

Ft,j = max
δ

[
− ln(1 + (eδ − 1)qt[fj ])−U∗

j (−λt,j − δ) + U∗
j (−λt,j)

]
= max

δ

[
− ln

{(
1− qt[fj]

)
e0·δ + qt[fj ]e1·δ

}
−U′∗

j (−δ)
]

+ U∗
j (−λt,j) (14)

= min
ā,a

[
D
(
(ā, a)

∥∥ (1− qt[fj ], qt[fj ])
)

+ U′
j(0 · ā+ 1 · a)

]
+ U∗

j (−λt,j) (15)

= min
0≤a≤1

[
D(a ‖ qt[fj ]) + Uj(a) + a · λt,j

]
+ U∗

j (−λt,j). (16)

In Eq. (14), we write U′∗
j (u) for U∗

j (u − λt,j). In Eq. (15), we applied Theorem 1,
noting that the conjugate of the log partition function is the relative entropy. The value
of relative entropy D((ā, a) ‖ (1− qt[fj], qt[fj])) is infinite whenever (ā, a) is not a
probability distribution, so it suffices to consider pairs where 0 ≤ a ≤ 1 and ā = 1− a.
In Eq. (16), we use D(a ‖ qt[fj]) as a shorthand for D((1− a, a) ‖ (1− qt[fj], qt[fj ]))
and use Eq. (2) to convert U′

j into Uj .
The minimum in Eq. (16) is always attained because a comes from a compact set. Let

at,j denote a value attaining this minimum. We define the auxiliary function A(λ,a)
as the sum over j of Eq. (16) (evaluated at a = aj and with λt,j replaced by λj ). Now
A(λt,at) =

∑
j Ft,j → 0 and the result follows by Lemma 3. 
�
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7 Conclusion and Future Work

In this work, we have explored one direction of generalizing maxent: replacing equal-
ity constraints in the primal by an arbitrary convex potential or, equivalently, adding a
convex regularization term to the maximum likelihood estimation in the dual. In our
unified approach, we derived performance guarantees for many existing and novel reg-
ularization types and presented an algorithm covering a wide range of potentials.

As the next step, we would like to explore whether theoretical superiority of the new
regularization types results in improved performance on real-world data. If this turns out
to be the case, we would like to investigate strategies for obtaining tighter confidence
regions and hence better performing regularizations using sample-derived statistics or
properties of the feature space.

An alternative line of generalizations arises by replacing relative entropy in the pri-
mal objective by an arbitrary Bregman or Csiszár divergence along the lines of [12, 14].
Analogous duality results as well as a modified algorithm apply in the new setting, but
performance guarantees do not directly translate to the case when divergences are de-
rived from samples. Divergences of this kind are used in many cases of interest such as
logistic regression (a conditional version of maxent), boosting or linear regression. In
the future, we would like to generalize performance guarantees to this setting.

Finally, the convergence rate of the present algorithm and a possible tradeoff between
statistical guarantees and computational efficiency of different regularizations is open
for future research.

Acknowledgements. We would like to thank Steven Phillips for many helpful discus-
sions. Authors received support through NSF grant CCR-0325463.
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Abstract. In this paper we unify divergence minimization and statisti-
cal inference by means of convex duality. In the process of doing so, we
prove that the dual of approximate maximum entropy estimation is max-
imum a posteriori estimation as a special case. Moreover, our treatment
leads to stability and convergence bounds for many statistical learning
problems. Finally, we show how an algorithm by Zhang can be used to
solve this class of optimization problems efficiently.

1 Introduction

It is quite well-known that maximum likelihood optimization is the convex dual
of maximum entropy estimation. An immediate question one can raise is whether
maximum a posteriori (MAP) estimates have similar counterparts. In this paper,
we are interested in a general form of this question, that is which statistical
inference methods can be cast as duals of various maximum entropy optimization
and whether such estimates can be obtained efficiently. To this extent, we develop
a theory of regularized divergence minimization that unifies a collection of related
approaches. By means of convex duality, we are able to give a common treatment
to methods such as the following.

– In the regularized LMS minimization methods of Arsenin and Tikhonov [24],
and of Morozov [16], the problem of minimizing

‖x‖22 subject to ‖Ax− b‖22 ≤ ε

is studied as a means of improving the stability of the problem Ax = b.
– Ruderman and Bialek [21] study a related problem where instead of a quad-

ratic penalty on x, the negative Shannon entropy function is minimized

−H(x) subject to ‖Ax− b‖22 ≤ ε

In other words, the problem of solving Ax = b is stabilized by finding the
maximum entropy distribution which satisfies the constraint.
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– Dudik et al. [10] study a density estimation problem that can be viewed as
one of solving a variant of the above, namely that of minimizing

−H(x) subject to ‖Ax− b‖∞ ≤ ε

where the constraint encode deviations of the measured values of some mo-
ments or features and their expected values.

– When x is the conditional probability of the outputs given observations, the
above optimization corresponds to conditional maximum entropy methods.

The problem we study is abstractly the regularized inverse problem

minimize
x∈X

f(x) subject to ‖Ax− b‖B ≤ ε,

where X and B are Banach spaces. By defining X, B and f appropriately, the
above methods become examples of this general problem. Using the convex du-
ality framework, Fenchel’s duality in particular, the regularized inverse problem
can be solved by optimizing the unconstraint dual problem.

There are many studies that investigate specific forms of this duality. Most
of these focus on analyzing various loss functions on exponential families as
the convex dual of entropy maximization via equality constraints, i. e. Ax = b.
For example, Lafferty [14] analyze logistic regression and exponential loss as
a special case of Bregman divergence minimization and propose a family of
sequential update algorithms. Similar treatments are given in [13, 8]. Previous
work on approximate divergence minimization (ε > 0) focused on minimizing
KL divergence such that its convex dual is penalized by �1 or �2 norm terms,
eg. [7]. In [10], which is the starting point of our work, Dudik et al. show that if f
is KL divergence and B is �∞, the convex dual is �1 norm regularized maximum
likelihood. Recently, [12] and [11] generalized these results to �p and �2, �1 + �2
norm regularizations respectively.

In this paper, we improve over previous work by providing a unified frame-
work of relating various statistical inference methods to a large family of diver-
gence functions with inequality constraints in Banach spaces. In particular, we
investigate two important classes of divergences, namely Csiszár and Bregman
divergences as the minimization function f . These divergences, parameterized
by a function h, include many important special cases, such as KL divergence.
Once the dual counterparts of h, X and B are determined, the dual optimization
problems, which correspond to various statistical inference methods, are derived
immediately. This allows us to produce the cited work as special cases and can
establish other inference methods. For example, we prove that the MAP estimate
is the convex dual of approximate maximum entropy optimization. This general
framework also points at directions to develop new learning methods by using
different combinations of entropy functions and regularization methods.

By relating a class of methods through our framework, we unify previous
results in terms of stability and convergence bounds with simpler proofs and
provide bounds for some techniques with no such results. We also derive risk
bounds for arbitrary linear classes and divergences. Finally, we show that a single
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algorithm can efficiently optimize this large class of optimization problems with
good convergence rates.

One important advantage of working in Banach spaces, apart from its unifying
property, is its ability to allow sophisticated regularization schemes via norm
definitions. For example, we can perform different regularizations on subsets
of basis functions which is particularly useful when there are several distinctly
different sets of basis functions. Eg. in structured output prediction, the basis
functions capturing inter-label dependencies have very different properties than
the basis functions capturing observation-label dependencies.

From a regularization point of view, our approach provides a natural interpre-
tation to the regularization coefficient ε, which corresponds to the approxima-
tion parameter in the primal problem. Studying the concentration of empirical
means, we show that a good value of ε is proportional to O(1/

√
m) where m

is the sample size. Noting that the regularization parameter is generally cho-
sen by cross validation techniques in practice, our framework gives an enhanced
interpretation of regularized optimization problems.

2 Fenchel Duality

We now give a formal definition of the class of inverse problems we solve. Denote
by X and B Banach spaces and let A : X → B be a bounded linear operator
between those two spaces. Here A corresponds to an “observation operator”,
e.g. mapping distributions into a set of moments, marginals, etc. Moreover, let
b ∈ B be the target of the estimation problem. Finally, denote by f : X → R

and g : B→ R convex functions and let ε ≥ 0.

Problem 1 (Regularized inverse). Our goal is to find x ∈ X which solves
the following convex optimization problem:

minimize
x∈X

f(x) subject to ‖Ax− b‖B ≤ ε.

Example 2 (Density estimation). Assume that x is a density, f is the neg-
ative Shannon-Boltzmann entropy, b contains the observed values of some mo-
ments or features, A is the expectation operator of those features wrt. the density
x and the Banach space B is �p.

We show in Section 3.2 that the dual to Example 2 is a MAP estimation problem.
In cases where B and X are finite dimensional the problem is easily solved by

calculating the corresponding Lagrangian, setting its derivative to 0 and solving
for x. In the infinite dimensional case, more careful analysis is required to ensure
continuity and differentiability. We use Fenchel’s conjugate duality theorem to
study this problem by formulating the primal-dual space relations of convex
optimization problems in our general setting. We need the following definition:

Definition 3. Denote by dom f the domain of f , cont f the set of points where f
if finite and continuous. Define core(S) such that s ∈ core(S) if

⋃
λ>0 λ(S−s) ⊆

X where X is a Banach space and S ⊆ X.
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Definition 4 (Convex conjugate). Denote by X a Banach space and let X∗

be its dual. The convex conjugate of a function f : X→ R is

f∗(x∗) = sup
x∈X
{〈x, x∗〉 − f(x)} .

We present Fenchel’s theorem1 where the primal problem is of the form f(x) +
g(Ax). Problem 1 becomes an instance of the latter for suitably defined g.

Theorem 5 (Fenchel Duality [3, Th. 4.4.3]). Let g : B → R be a convex
function on B and other variables as above. Define t and d as follows:

t = inf
x∈X
{f(x) + g(Ax)} and d = sup

x∗∈B∗
{−f∗(A∗x∗)− g∗(−x∗)} .

Assume that f , g and A satisfy one of the following constraint qualifications:
a) 0 ∈ core(dom g −Adom f) and f and g are lower semi continuous (lsc)
b) Adom f ∩ cont g �= ∅
In this case t = d, where the dual solution d is attainable if it is finite.

We now apply Fenchel’s duality theorem to convex constraint optimization prob-
lems, such as Problem 1, since the dual problem is easier to solve in certain cases.

Lemma 6 (Fenchel duality with constraints). In addition to the assump-
tions of Theorem 5, let b ∈ B and ε ≥ 0. Define t and d as follows:

t = inf
x∈X
{f(x) subject to ‖Ax− b‖B ≤ ε}

and d = sup
x∗∈B∗

{−f∗(A∗x∗) + 〈b, x∗〉 − ε ‖x∗‖B∗}

t = d with dual attainment, if f is lsc and for B :=
{
b̄ ∈ B with

∥∥b̄∥∥ ≤ 1
}

the
following constraint qualification holds:

core(Adom f) ∩ (b + ε int(B)) �= ∅. (CQ)

Proof. Define g in Theorem 5 as the characteristic function on εB + b, i.e.

g(b̄) = χεB+b(b̄) =
{
0 if b̄ ∈ εB + b ; ∞ otherwise

}
(1)

The convex conjugate of g is given by

g∗(x∗) = sup
b̄

{〈
b̄, x∗

〉
subject to b̄− b ∈ εB

}
= −〈x∗, b〉+ ε sup

b̄

{〈
b̄, x∗

〉
subject to b̄ ∈ B

}
= ε ‖x∗‖B∗ − 〈x∗, b〉

Theorem 5 and the relation core(B) = int(B) prove the lemma. This result can
trivially be extend to other convex sets, with the unit ball as an instance.
1 For a comprehensive presentation of Fenchel’s duality, we refer the reader to [3, 20].
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The constraint qualification (CQ) ensures the non-emptiness of the sub-
differential. ε = 0 leads to equality constraints Ax = b, for which CQ requires
b to be an element of core(Adom f). If the equality constraints are not feasible
b /∈ core(Adom f), which can be the case in real problems, the solution diverges.

Such problems may be rendered feasible by relaxing the constraints (ε > 0),
which corresponds to expanding the search space by defining an ε ball around b
and searching for a point in the intersection of this ball and core(Adom f). In
the convex dual problem, this relaxation is penalized with the norm of the dual
parameters scaling linearly with the relaxation parameter ε.

In practice it is difficult to check whether (CQ) holds. One solution is to solve
the dual optimization problem and infer that the condition holds if the solution
does not diverge. To assure a finite solution, we restrict the function class such
that f∗ is Lipschitz and perturb the regularization slightly by taking its kth

power, resulting in a Lipschitz continuous optimization. For instance Support
Vector Machines perform this type of adjustment to ensure feasibility [9].

Lemma 7. Denote by X a Banach space, let b ∈ X∗ and let k > 1. Assume that
f(Ax) is convex and Lipschitz continuous in x with Lipschitz constant C. Then

inf
x∈X

{
f(Ax)− 〈b, x〉+ ε ‖x‖k

}
(2)

does not diverge and the norm of x is bounded by ‖x‖X ≤ [(‖b‖X∗ + C) /kε]
1

k−1 .

Proof [sketch]. Note that the overall Lipschitz constant of the objective function
(except for the norm) is bounded by ‖b‖X∗ + C. The objective function cannot
increase further if the slope due to the norm is larger than what the Lipschitz
constant admits. Solving for εk ‖x‖k−1

X = ‖b‖X∗ + C proves the claim.

3 Divergence Minimization and Convex Duality

Given this general framework of duality for regularized inverse problems, we
consider applications to problems in statistics. For the remainder of the section
x is either a density or a conditional density over the domain T. For this reason
we use p instead of x to denote the variable of the optimization problem.

Denote by ψ : T → B feature functions and let A : X→ B be the expectation
operator of the feature map with respect to p. In other words, Ap := Et∼p [ψ(t)].
With some abuse of notation we will use the shorthand Ep[ψ] whenever conve-
nient. Finally denote by ψ̃ = b the observed value of the features ψ(t), which are
derived, e.g. via b = m−1 ∑m

i=1 ψ(ti) for ti ∈ S, the sample of size m.
This setting allows us to study various statistical learning methods within

convex duality framework. One of the corollaries which follows immediately from
the more general result in Lemma 12 is the well-known duality of maximum
(Shannon) entropy is maximum likelihood (ML) estimation. Another is that the
dual of approximate maximum entropy is MAP estimation.
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Theorem 8. Assume that f is the negative Shannon entropy, that is f(p) :=
−H(p) =

∫
T

log p(t)dp(t). Under the above conditions we have

min
p
−H(p) subject to

∥∥∥Ep[ψ]− ψ̃]
∥∥∥ ≤ ε and

∫
T

dp(t) = 1 (3)

= max
φ

〈
φ, ψ̃

〉
− log

∫
T

exp(〈φ, ψ(t)〉)dt− ε ‖φ‖+ e−1

Equivalently φ maximizes Pr(S|φ) Pr(φ) and Pr(φ) ∝ exp(−ε ‖φ‖).
In order to provide a common treatment to various statistical inference tech-
niques, as well as give insight into the development of new ones, we study two
important classes of divergence functions, Csiszár’s divergences and Bregman
divergences. Csiszár divergence, which includes Amari’s α divergences as special
cases, gives an asymmetric distance between two infinite-dimensional density
functions induced by a manifold. Bregman divergences are commonly defined
over distributions over a finite domain. The two classes of divergences intersect
at the KL divergence. To avoid technical problems we assume that the constraint
qualifications are satisfied (e.g. via Lemma 7).

3.1 Csiszár Divergences

Definition 9. Denote by h : R → R a convex lsc function and let p, q be two
distributions on T. Then the Csiszár divergence is given by

fh(q, p) =
∫
q(t)h

(
p(t)
q(t)

)
dt. (4)

Different choices for h lead to different divergence measures. For instance h(ξ) =
ξ log ξ yields the Kullback-Leibler divergence. Commonly, q is fixed and optimiza-
tion is performed with respect to p, which we denote by fh,q(p). Since fh,q(p) is
convex and expectation is a linear operator, we can apply Lemma 6 to obtain
the convex conjugate of Csiszár’s divergence optimization:

Lemma 10 (Duality of Csiszár Divergence). Assume that the conditions
of Lemma 6 hold. Moreover let f be defined as a Csiszár divergence. Then

min
p

{
fh,q(p)|‖Ep[ψ]− ψ̃]‖B ≤ ε

}
=max

φ

{
−f∗h,q(〈φ, ψ(.)〉) +

〈
φ, ψ̃

〉
− ε‖φ‖B∗

}
.

Moreover the solutions p̂ and φ̂ are connected by p̂(t) = q(t)(h∗)′
(〈
ψ(t), φ̂

〉)
.

Proof. The adjoint of the linear operator A is given by 〈Ax, φ〉 = 〈A∗φ, x〉. Let-
ting A be the expectation wrt p, we have

〈∫
T p(t)ψ(t), φ

〉
=
∫

T p(t) 〈ψ(t), φ〉 dt =
(A∗φ)(p) forA∗φ=〈φ, ψ(.)〉. Next note that f∗(〈φ, ψ(·)〉)=

∫
T
q(t)h∗(〈φ, ψ(t)〉)dt.

Plugging this into Lemma 6, we obtain the first claim.
Using attainability of the solution it follows that there exist p̂ and φ̂ which

solve the corresponding optimization problems. Equating both sides we have

T

q(t)h p̂(t)
q(t) dt=−f∗(〈φ, ψ(.)〉) + ψ̃, φ̂ − ε‖φ̂‖B∗=−f∗(〈φ,ψ(.)〉) + φ̂, Ep̂[ψ] .
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Here the last equality follows from the definition of the constraints (see the
proof of Lemma 6). Taking the derivative at the solution p̂ (due to constraint
qualification) and noticing the derivative of the first term on RHS vanishes, we
get h′

(
p̂
q

)
=
〈
φ̂, ψ

〉
. Using the relation (h′)−1 = (h∗)′ completes the proof.

Since we are dealing with probability distributions, it is convenient to add the
constraint

∫
T
dp(t) = 1. We have the following corollary.

Corollary 11 (Csiszár divergence and probability constraints). Define
all variables as in Lemma 10. We have

min
p

{
fh,q(p) subject to

∥∥∥Ep [ψ]− ψ̃
∥∥∥

B
≤ ε and

∫
T

dp(t) = 1
}

= max
φ

{
−f∗h,q (〈φ, ψ(.)〉 − Λ) +

〈
φ, ψ̃

〉
− Λ− ε ‖φ‖B∗

}
=: −LC

ψ̃
(φ). (5)

Here the solution is given by p̂(t) = q(t)(h∗)′(
〈
ψ(t), φ̂

〉
− Λ(φ̂)) where Λ(φ̂) is

the log-partition function which ensures that p be a probability distribution (Λ(φ̂)
is the minimizer of (5) with respect to Λ).

Proof [sketch]. Define P = {p|
∫

T dp(t) = 1} and f in Lemma 6 as f(p) =
fh,q(p) + χP(p). Then, for Λp = ∞ if p /∈ P, the convex conjugate of f is
f∗(p∗) = supp{〈p, p∗〉 − fh,q(p) − Λp(

∫
T
dp(t) − 1)} = Λp∗ + (fh,q)∗(p∗ − Λp∗).

Performing the steps in the proof of Lemma 10 gives the result.

A special case of this duality is the minimization of KL divergence as we inves-
tigate in the next section. Note that new inference techniques can be derived
using other h functions, eg. Tsallis’ entropy, which is preferable over Shannon’s
entropy in fields as statistical mechanics, as it does not diverge for p(t) = 0.

3.2 MAP and Maximum Likelihood Via KL Divergence

Defining h in (4) as h(ξ) := ξ ln(ξ) we have h∗(ξ∗) = exp(ξ∗−1). Then Csiszár’s
divergence becomes the KL divergence. Applying Corollary 11 we have:

Lemma 12 (KL divergence with probability constraints). Define all vari-
ables as in Lemma 11. We have

min
p

{
KL(p‖q) subject to

∥∥∥Ep [ψ]− ψ̃
∥∥∥

B
≤ ε and

∫
T

dp(t) = 1
}

= max
φ

{〈
φ, ψ̃

〉
− log

∫
T

q(t) exp(〈φ, ψ(t)〉)dt− ε‖φ‖B∗ + e−1
}

(6)

where the unique solution is given by p̂φ̂(t) = q(t) exp
(〈
φ̂, ψ(t)

〉
− Λφ̂

)
.

Proof. The dual of f is f∗h,q(x
∗) =

∫
T
q(t) exp(x∗(t)− 1)dt. Hence we have∫

T

q(t) exp (〈φ, ψ(t)〉 − Λφ − 1) dt+
〈
φ, ψ̃

〉
− Λφ − ε ‖φ‖B∗
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We can solve for optimality in Λφ which yields Λφ = log
∫

T
q(t) exp (〈φ, ψ(t)〉) dt.

Substituting this into the objective function proves the claim.

Thus, optimizing approximate KL divergence leads to exponential families. Many
well known statistical inference methods can be viewed as special cases. Let
P = {p|p ∈ X,

∫
T
dp(t) = 1} and q(t) = 1, ∀t ∈ T.

Example 13. For ε = 0, we get the well known duality between Maximum En-
tropy and Maximum Likelihood estimation.

min
p∈P

{
−H(p) subject to Ep [ψ]= ψ̃

}
= max

φ

〈
φ, ψ̃

〉
−log

∫
T

exp(〈φ, ψ(t)〉)dt+e−1

Example 14. For B = �∞ we get the density estimation problem of [10]

min
p∈P

{
−H(p) subject to

∥∥∥Ep [ψ]− ψ̃
∥∥∥
∞
≤ ε

}
=max

φ

〈
φ, ψ̃

〉
− log

∫
T

exp(〈φ, ψ〉 (t))dt− ε‖φ‖1 + e−1

If B is a reproducing kernel Hilbert space of spline functions we obtain the density
estimator of [18], who use an RKHS penalty on φ.

The well-known overfitting behavior of ML can be explained by the constraint
qualification (CQ) of Section 2. While it can be shown that in exponential fam-
ilies the constraint qualifications are satisfied [25] if we consider the closure of
the marginal polytope, the solution may be on (or close to) a vertex of the mar-
ginal polytope. This can lead to large (or possibly diverging) values of φ. Hence,
regularization by approximate moment matching is useful to ensure that such
divergence does not occur.

Regularizing ML with �2 and �1 norm terms is a common practice [7], where
the regularization coefficient ε is determined by cross validation techniques. The
analysis above provides a unified treatment of the regularization methods. More
importantly, it leads to a principled way of determining ε as in Section 4.

Note that if t ∈ T is an input-output pair t = (x, y) we could maximize the
entropy of either the joint probability density p(x, y) or the conditional model
p(y|x), which is what we really need to estimate y|x. If we maximize the entropy
of p(y|x) and B is a RKHS with kernel k(t, t′) := 〈ψ(t), ψ(t′)〉 we obtain a range
of conditional estimation methods:

– ψ(t)=yψx(x) and y∈{±1} gives binary Gaussian Process classification [17].
– ψ(t)=(y, y2)ψx(x) gives the heteroscedastic GP regression estimates of [15].
– Decomposing ψ(t) gives various graphical models and conditional random

fields as described in [1].
– ψ(t)=yψx(x) and �∞ space gives as its dual �1 regularization typically used

in sparse classification methods.

One advantage of using convex duality in Banach spaces is that it provides
a unified approach (including bounds) for different regularization/relaxation
schemes as above. It also provides flexibility for complex choices of regularization,
eg. defining different regularizations for features with different characteristics.
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3.3 Bregman Divergence

The Bregman divergence between two distributions p and q for a convex function
h acting on the space of probabilities is given by

�h(p, q) = h(p)− h(q)− 〈(p− q),∇qh(q)〉 . (7)

Note �h(p, q) is convex in p. Applying Fenchel’s duality theory, we have

Corollary 15 (Duality of Bregman Divergence). Assume that the condi-
tions of Lemma 6 hold. Moreover let f be defined as a Bregman divergence. Then

min
p

{
�h(p, q) subject to

∥∥∥Ep [ψ]− ψ̃
∥∥∥

B
≤ ε

}
= max

φ

{
−h∗ (〈φ− φq, ψ〉) +

〈
φ, ψ̃

〉
− ε ‖φ‖B∗

}
=: −LB

ψ̃
(φ). (8)

Proof. Defining Hq(p) = h(p) − 〈p, h′(q)〉, �h(p, q) = Hq(p) − h∗(φq). The
convex conjugate of Hq is H∗

q (φ) = supp 〈p, φ+ h′(q)〉−h(p) = h∗(φ−φq), since
h′(q) = φq. Since q is constant, we get the equality (up to a constant) by plug-
ging H∗

q into Lemma 6.

As in Csiszár’s divergence, the KL divergence becomes a special case of Breg-
man divergence by defining h as h(p) :=

∫
T
p(t) ln(p(t))dt. Thus, we can achieve

the same results in Section 3.2 using Bregman divergences as well. Also, it has
been shown in various studies that Boosting which minimizes exponential loss
can be cast as a special case of Bregman divergence problem with linear equality
constraints [8, 13]. An immediate result of Corollary 15, then, is to generalize
these approaches by relaxing the equality constraints wrt. various norms and
achieve regularized exp-loss optimization problems leading to different regular-
ized boosting approaches. Due to space limitations, we omit the details.

4 Bounds on the Dual Problem and Uniform Stability

Generalization performances of estimators achieved by optimizing various convex
functions in Reproducing Kernel Hilbert Spaces have been studied extensively.
See e.g. [22, 5] and references therein. Producing similar results in the general
form of convex analysis allows us to unify previous results via simpler proofs and
tight bounds.

4.1 Concentration of Empirical Means

One of the key tools in the analysis of divergence estimates is the fact that
deviations of the random variable ψ̃ = 1

m

∑
i ψ(ti) are well controlled.

Theorem 16. Denote by T := {t1, . . . , tm} ⊆ T a set of random variables drawn
from p. Let ψ : T → B be a feature map into a Banach space B which is uniformly
bounded by R. Then the following bound holds∥∥∥∥ 1

m
ψ̃ −Ep [ψ(t)]

∥∥∥∥
B

≤ 2Rm(F, p) + ε (9)
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with probability at least 1−exp
(
− ε2m

R2

)
. Here Rm(F, p) denotes the Rademacher

average wrt the function class F := {φp(·) = 〈ψ(t), φp〉 where ‖φ‖B∗ ≤ 1}.
Moreover, if B is a RKHS with kernel k(t, t′) the RHS of (9) can be tightened

to
√
m−1Ep [k(t, t)− k(t, t′)] + ε. The same bound for ε as above applies.

See [2] for more details and [23] for earlier results on Hilbert Spaces.

Proof. The first claim follows immediately from [2, Theorem 9 and 10]. The
second part is due to an improved calculation of the expected value of the LHS
of (9). We have by convexity

Ep

[∥∥∥∥∥ 1
m

m∑
i=1

ψ(ti)−Ep [ψ(t)]

∥∥∥∥∥
B

]
≤ Ep

⎡⎣∥∥∥∥∥ 1
m

m∑
i=1

ψ(ti)−Ep [ψ(t)]

∥∥∥∥∥
2

B

⎤⎦
1
2

= m− 1
2

√
Ep

[
‖ψ(t)−Ep [ψ(t)]‖2

]
= m− 1

2

√
Ep [k(t, t)− k(t, t′)]

The concentration inequality for bounding large deviations remains unchanged
wrt. the Banach space case, where the same tail bound holds.

The usefulness of Theorem 16 arises from the fact that it allows us to determine
ε in the inverse problem. If m is small, it is sensible to choose a large value of ε
and with increasing m our precision should improve with O( 1√

m
). 2 This gives

us a principled way of determining ε based on statistical principles.

4.2 Stability with Respect to Changes in b

Next we study the stability of constrained optimization problems when changing
the empirical mean parameter b. To denote the generality, we use A, b notation
rather than E, ψ̃. Consider the convex dual problem of Lemma 6 and the objec-
tive function of its special case (7). Both can be summarized as

L(φ, b) := f(Aφ) − 〈b, φ〉+ ε ‖φ‖kB∗ (10)

where ε > 0 and f(Aφ) is a convex function. We first show that for any b′,
the difference between the value of L(φ, b′) obtained by minimizing L(φ, b) with
respect to φ and vice versa is bounded.

Theorem 17. Denote by φ, φ′ the minimizers of L(·, b) and L(·, b′) respectively.
Then the following chain of inequalities holds:

L(φ, b′)− L(φ′, b′) ≤ 〈b′ − b, φ′ − φ〉 ≤ ‖b′ − b‖B ‖φ′ − φ‖B∗ (11)
and L(φ, b)− L(φ′, b′) ≤ 〈φ, b′ − b〉 ≤ ‖b′ − b‖B ‖φ′‖B∗ (12)

2 Rademacher averages typically scale as O( 1√
m

). Setting ε larger than that loosens
the bound. If ε is set for a smaller value, then the constraints become stricter than
necessary, since the bound is going to be dominated by the Rademacher term.
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Proof. To show (11) we only need to prove the first inequality. The second one
follows by Hölder’s theorem:

L(φ, b′)− L(φ′, b′) =L(φ, b′)− L(φ, b) + L(φ, b)− L(φ′, b) + L(φ′, b)− L(φ′, b′)
≤〈b− b′, φ〉 + 〈φ′, b′ − b〉

We used the fact that by construction L(φ′, b) ≥ L(φ, b). To show (12) we use
almost the same chain of inequalities, bar the first two terms.

In general, ‖φ− φ′‖ can be bounded using Lemma 7,

‖φ′ − φ‖B∗ ≤ ‖φ‖B∗ + ‖φ′‖B∗ ≤ 2 (C/kε)
1

k−1 . (13)

For the special case of B being a RKHS, however, one can obtain considerably
tighter bounds directly on ‖φ′ − φ‖ in terms of the deviations in b′ and b:

Lemma 18. Assume that B is a Hilbert space and let k = 2, ε > 0 in (10). Let
φ and φ′ be the minimizers of L(·, b) and L(·, b′) respectively, where L is defined
as in (10). The the following bound holds:

‖φ− φ′‖ ≤ 1
ε ‖b− b

′‖ (14)

Proof. The proof idea is similar to that of [6, 22]. We construct an auxiliary
function R : B→ R via

R(z) = 〈A∗[f ′(Aφ) − f ′(Aφ′)] + b′ − b, z − φ′〉+ ε ‖z − φ′‖2 .

Clearly R(φ′) = 0 and R is a convex function in z. Taking derivatives of R(z)
one can check that its minimum is attained at φ:

∂zR(z) = A∗f ′(Aφ) − b−A∗f ′(Aφ′) + b′ + 2ε(z − φ′)

For z = φ, this equals ∂φL(φ, b)− ∂φ′L(φ′, b′) which vanishes due to optimality
in L. From this, we have

0 ≥ 〈A∗[f ′(Aφ)− f ′(Aφ′)] + b′ − b, φ− φ′〉+ ε ‖φ− φ′‖2 .
≥ 〈b′ − b, φ− φ′〉+ ε ‖φ− φ′‖2 ≥ −‖b− b′‖ ‖φ− φ′‖+ ε ‖φ− φ′‖2

Here the first inequality follows from R(φ′) > R(φ), the second follows from the
fact that for convex functions 〈g′(a)− g′(b), a− b〉 ≥ 0, and the third inequality
is an application of Cauchy-Schwartz. Solving for ‖φ− φ′‖ proves the claim.

4.3 Risk Bounds

We are now in a position to combine concentration and stability results derived
in the previous two sections into risk bounds for the values of divergences.
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Theorem 19. Assume that b = 1
m

∑m
i=1 ψ(t) and let b∗ := Ep [ψ(t)]. Moreover,

denote by φ, φ∗ the minimizers of L(·, b) and L(·, b∗) respectively. Finally assume
that ‖ψ(t)‖ ≤ R for all t ∈ T. Then

‖φ‖ [2Rm(F, p) + ε] ≤ L(φ∗, b∗)− L(φ, b) ≤ ‖φ∗‖ [2Rm(F, p) + ε] (15)

where each inequality holds with probability 1− exp
(
− ε2m

R2

)
.

Proof. Combination of Theorem 16 and (12) of Theorem 17.

Note that this is considerably stronger than a corresponding result of [10], as it
applies to arbitrary linear classes and divergences as opposed to �∞ spaces and
Shannon entropy. A stronger version of the above bounds can be obtained easily
for RKHSs, where the Rademacher average is replaced by a variance bound.

If we want to bound the performance of estimate x with respect to the actual
loss L(·, b∗) rather than L(·, b) we need to invoke (11). In other words, we show
that on the true statistics the loss of the estimated parameter cannot be much
larger than the loss of true parameter.

Theorem 20. With the same assumptions as Theorem 19 we have with proba-
bility at least 1− exp

(
− ε2m

R2

)
L(φ, b∗)− L(φ∗, b∗) ≤ 2

(
C
kε

) 1
k−1 (2Rn(FB) + ε) . (16)

Here C is the Lipschitz constant of f(A·). If B is an RKHS we have with prob-
ability at least 1− exp

(
− ε2m

50R4

)
for m ≥ 2

L(φ, b∗)− L(φ∗, b∗) ≤ 1
ε

[
1
m

Ep [k(t, t)− k(t, t′)] + ε

]
. (17)

Proof. To prove (16) we use (11) which bounds

L(φ, b∗)− L(φ∗, b∗) ≤ ‖b∗ − b‖B (‖φ‖B∗ + ‖φ∗‖B∗) .

The first factor is bounded by (9) of Theorem 16. The second term is bounded via
Lemma 7. A much tighter bound is available for RKHS. Using (11) in conjunction
with (14) of Lemma (18) yields

L(φ, b∗)− L(φ∗, b∗) ≤ 1
ε
‖b− b∗‖2

We establish a bound for ‖b− b∗‖2 by a standard approach, i.e. by computing
the mean and then bounding the tail of the random variable. By construction

E
[
‖b− b∗‖2

]
= E

⎡⎣∥∥∥∥∥ 1
m

m∑
i=1

ψ(ti)−E [ψ(t)]

∥∥∥∥∥
2
⎤⎦ =

1
m

E
[
‖ψ(t)−E [ψ(t′)]‖2

]
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Using k(t, t′) = 〈ψ(t), ψ(t′)〉 yields the mean term. To bound the tail we use
McDiarmid’s bound. For this, we need to check by how much ‖b− b∗‖2 changes
if we replace one term ψ(ti) by an arbitrary ψ(t′i) for some t′i ∈ T. We have∥∥b+ 1

m (ψ(t′i)− ψ(ti))− b∗
∥∥2 − ‖b− b∗‖2

≤ 1
m ‖ψ(t′i)− ψ(ti)‖

∥∥2(b+ b∗) + 1
m (ψ(t′i)− ψ(ti))

∥∥ ≤ 10R2/m

for m ≥ 2. Plugging this into McDiarmid’s bound yields that ‖b− b∗‖2 deviates
from its expectation by more than ε with probability less than exp

(
− mε2

50R4

)
.

Theorem 20 also holds for LBψ . Since the KL divergence is an example of Csiszár’s
divergence, using this bound allows us to achieve stability results for MAP esti-
mates immediately.

5 Optimization Algorithm and Convergence Properties

In the most general form, our primal, f(x) subject to ‖Ax − b‖B ≤ ε, is an
abstract program, where both the constraint space B and the domain X may be
infinite, i.e. both the primal and the dual are infinite programs. Thus, except for
special cases finding an optimal solution in polynomial time may be impossible. A
sparse greedy approximation algorithm proposed by Zhang [26] is an efficient way
of solving this class of problems efficiently, providing good rates of convergence
(in contrast, the question of a convergence rate remains open in [10]).

Algorithm 1. Sequential greedy approximation [26]
1: input: sample of size m, statistics b, base function class B∗

base, approximation ε,
number of iterations K, and radius of the space of solutions R

2: Set φ = 0.
3: for k = 1, . . . , K do
4: Find (̂ı, λ̂) such that for ei ∈ B∗

base and λ ∈ [0, 1] the following is approximately
minimized:

L((1 − λ)φ + λRei, b)

5: Update φ ← (1 − λ̂)φ + λ̂Reı̂

6: end for

Algorithm 1 requires that we have an efficient way of updating φ by drawing
from a base class of parameters B∗

base which “generates” the space of parameters
B∗. In other words, we require that spanB∗

base = B∗. For instance we could pick
B∗

base to be the set of vertices of the unit ball in B∗.
Since Step 4 in Algorithm 1 only needs to be approximate. In other words,

we only need to find (̂ı, λ̂) such that the so-found solution is within δk of the
optimal solution, as long as δk → 0 for k →∞.

Note the dependency on R: one needs to modify the setting of [26] to make
it applicable to arbitrary convex sets. As long as R is chosen sufficiently large
such as to include the optimal solution the conditions of [26] apply.
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Theorem 21 ([26, Theorem II.1]). Let Mβ be an upper bound on L′′(φ). If
the optimization is performed exactly at each step (i.e. δk = 0 for all k) we have

L(φk, b)− L(φ̂, b) ≤ 2M/(k + 2) (18)

where φ̂ is the true minimizer of L(φ, b).

This has an interesting implication when considering the fact that deviations
between the optimal solution of L(φ∗, b∗) for the true parameter b∗ and the
solution achieved via L(φ, b) are O(1/

√
m), as discussed in Section 4.3. It is

essentially pointless to find a better solution than within O(1/
√
m) for a sample

of size m. Hence we have the following corollary:

Corollary 22. Zhang’s algorithm only needs O(
√
m) steps for a set of observa-

tions of size m to obtain almost optimal performance.

When the dual is a finite program, it is possible to achieve linear convergence
rates (where the difference in (18) goes to 0 exponentially fast in k) [19]. The
obvious special case when the dual is a finite dimensional optimization problem
is when the index set I over the statistics is finite.

Let us now consider X itself is a finite dimensional problem, for example, when
we want to estimate the conditional density p(y|x) of a classification task wrt in-
equality constraints in a Banach space. In that case, our primal is a semi-infinite
program (SIP), i.e. optimization over a finite dimensional vector space wrt infi-
nite number of constraints. Then, using a Helly-type theorem [4], one can show
that the SIP can be reduced to a finite program (i.e. with finite number of con-
straints) and we immediately get a finite dual program. This is a generalization
of a family of results commonly referred to as Representer Theorems.

6 Conclusion

We presented a generalized framework of convex duality that allows us to unify
a large class of existing inference algorithms via divergence minimization, to
provide statistical bounds for the estimates, and to provide a practical algorithm.

We expect the following set of problems to be a fertile ground for future
research. Alternative divergence measures, such as Tsallis or Sharma-Mittal en-
tropy and combining these with various constraint relaxation schemes can lead to
new statistical inference techniques. The generality of Banach spaces allow us to
define useful regularization schemes. An interesting question is what becomes of
structured estimation methods when applied in conjunction with Zhang’s algo-
rithm. Likewise, the connection between Boosting and an approximate solution
of inverse problems has not been explored yet. Finally, it may be possible to
minimize the divergence directly in transductive settings.
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Abstract. We study Mercer’s theorem and feature maps for several
positive definite kernels that are widely used in practice. The smoothing
properties of these kernels will also be explored.

1 Introduction

Kernel-based methods have become increasingly popular and important in ma-
chine learning. The central idea behind the so-called “kernel trick” is that a
closed form Mercer kernel allows one to efficiently solve a variety of non-linear
optimization problems that arise in regression, classification, inverse problems,
and the like. It is well known in the machine learning community that kernels are
associated with “feature maps” and a kernel based procedure may be interpreted
as mapping the data from the original input space into a potentially higher di-
mensional “feature space” where linear methods may then be used. One finds
many accounts of this idea where the input space X is mapped by a feature map
Φ : X → H (where H is a Hilbert space) so that for any two points x, y ∈ X , we
have K(x, y) = 〈φ(x), φ(y)〉H .

Yet, while much has been written about kernels and many different kinds
of kernels have been discussed in the literature, much less has been explicitly
written about their associated feature maps. In general, we do not have a clear
and concrete understanding of what exactly these feature maps are. Our goal
in this paper is to take steps toward a better understanding of feature maps
by explicitly computing them for a number of popular kernels for a variety of
domains. By doing so, we hope to clarify the precise nature of feature maps in
very concrete terms so that machine learning researchers may have a better feel
for them.

Following are the main points and new results of our paper:

1. As we will illustrate, feature maps and feature spaces are not unique. For a
given domain X and a fixed kernel K on X×X , there exist in fact infinitely
many feature maps associated with K. Although these maps are essentially
equivalent, in a sense to be made precise in Section 4.3, there are subtleties
that we wish to emphasize. For a given kernel K, the feature maps of K

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 154–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Mercer’s Theorem, Feature Maps, and Smoothing 155

induced by Mercer’s theorem depend fundamentally on the domain X , as
will be seen in the examples of Section 2. Moreover, feature maps do not
necessarily arise from Mercer’s theorem, examples of which will be given in
Section 4.2. The importance of Mercer’s theorem, however, goes far beyond
the feature maps that it induces: the eigenvalues and eigenfunctions asso-
ciated with K play a central role in obtaining error estimates in learning
theory, see for example [8], [4]. For this reason, the determination of the
spectrum of K, which is highly nontrivial in general, is crucially important
in its own right. Theorems 2 and 3 in Section 2 give the complete spectrum
of the polynomial and Gaussian kernels on Sn−1, including sharp rates of
decay of their eigenvalues. Theorem 4 gives the eigenfunctions and a recur-
sive formula for the computation of eigenvalues of the polynomial kernel on
the hypercube {−1, 1}n.

2. One domain that we particularly focus on is the unit sphere Sn−1 in Rn,
for several reasons. First, it is a special example of a compact Riemannian
manifold and the problem of learning on manifolds has attracted attention
recently, see for example [2], [3]. Second, its symmetric and homogeneous
nature allows us to obtain complete and explicit results in many cases. We
believe that Sn−1 together with kernels defined on it is a fruitful source
of examples and counterexamples for theoretical analysis of kernel-based
learning. We will point out that intuitions based on low dimensions such as
n = 2 in general do not carry over to higher dimensions - Theorem 5 in
Section 3 gives an important example along this line. We will also consider
the unit ball Bn, the hypercube {−1, 1}n, and Rn itself.

3. We will also try to understand the smoothness property of kernels on Sn−1.
In particular, we will show that the polynomial and Gaussian kernels define
Hilbert spaces of functions whose norms may be interpreted as smoothness
functionals, similar to those of splines on Sn−1. We will obtain precise and
sharp results on this question in the paper. This is the content of Section 5.
The smoothness implications allow us to better understand the applicability
of such kernels in solving smoothing problems.

Notation. For X ⊂ Rn and μ a Borel measure on X , L2
μ(X) = {f : X → C :∫

X |f(x)|2dμ(x) < ∞}. We will also use L2(X) for L2
μ(X) and dx for dμ(x) if

μ is the Lebesgue measure on X . The surface area of the unit sphere Sn−1 is
denoted by |Sn−1| = 2π

n
2

Γ ( n
2 ) .

2 Mercer’s Theorem

One of the fundamental mathematical results underlying learning theory with
kernels is Mercer’s theorem. Let X be a closed subset of Rn, n ∈ N, μ a Borel
measure on X , and K : X × X → R a symmetric function satisfying: for any
finite set of points {xi}Ni=1 in X and real numbers {ai}Ni=1

N∑
i,j=1

aiajK(xi, xj) ≥ 0 (1)
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K is said to be a positive definite kernel on X . Assume further that∫
X

∫
X

K(x, t)2dμ(x)dμ(t) <∞ (2)

Consider the induced integral operator LK : L2
μ(X)→ L2

μ(X) defined by

LKf(x) =
∫
X

K(x, t)f(t)dμ(t) (3)

This is a self-adjoint, positive, compact operator with a countable system of non-
negative eigenvalues {λk}∞k=1 satisfying

∑∞
k=1 λ

2
k <∞. LK is said to be Hilbert-

Schmidt and the corresponding L2
μ(X)-normalized eigenfunctions {φk}∞k=1 form

an orthonormal basis of L2
μ(X). We recall that a Borel measure μ on X is said

to be strictly positive if the measure of every nonempty open subset in X is
positive, an example being the Lebesgue measure in Rn.

Theorem 1 (Mercer). Let X ⊂ Rn be closed, μ a strictly positive Borel mea-
sure on X, K a continuous function on X ×X satisfying (1) and (2). Then

K(x, t) =
∞∑
k=1

λkφk(x)φk(t) (4)

where the series converges absolutely for each pair (x, t) ∈ X×X and uniformly
on each compact subset of X.

Mercer’s theorem still holds if X is a finite set {xi}, such as X = {−1, 1}n, K
is pointwise-defined positive definite and μ(xi) > 0 for each i.

2.1 Examples on the Sphere Sn−1

We will give explicit examples of the eigenvalues and eigenfunctions in Mercer’s
theorem on the unit sphere Sn−1 for the polynomial and Gaussian kernels. We
need the concept of spherical harmonics, a modern and authoritative account of
which is [6]. Some of the material below was first reported in the kernel learning
literature in [9], where the eigenvalues for the polynomial kernels with n = 3,
were computed. In this section, we will carry out computations for a general
n ∈ N, n ≥ 2.

Definition 1 (Spherical Harmonics). Let Δn = −
[
∂2

∂x2
1

+ . . .+ ∂2

∂x2
n

]
denote

the Laplacian operator on Rn. A homogeneous polynomial of degree k in Rn

whose Laplacian vanishes is called a homogeneous harmonic of order k. Let Yk(n)
denote the subspace of all homogeneous harmonics of order k on the unit sphere
Sn−1 in Rn. The functions in Yk(n) are called spherical harmonics of order k.
We will denote by {Yk,j(n;x)}N(n,k)

j=1 any fixed orthonormal basis for Yk(n) where
N(n, k) = dimYk(n) = (2k+n−2)(k+n−3)!

k!(n−2)! , k ≥ 0.
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Theorem 2. Let X = Sn−1, n ∈ N, n ≥ 2. Let μ be the uniform probability
distribution on Sn−1. For K(x, t) = exp(− ||x−t||2

σ2 ), σ > 0

λk = e−2/σ2
σn−2Ik+n/2−1(

2
σ2 )Γ (

n

2
) (5)

for all k ∈ N ∪ {0}, where I denotes the modified Bessel function of the first
kind, defined below. Each λk occurs with multiplicity N(n, k) with the corre-
sponding eigenfunctions being spherical harmonics of order k on Sn−1. The λk’s
are decreasing if σ ≥ ( 2

n )1/2. Furthermore

(
2e
σ2 )k

A1

(2k + n− 2)k+
n−1

2

< λk < (
2e
σ2 )k

A2

(2k + n− 2)k+
n−1

2

(6)

for A1, A2 depending on σ and n given below.

Remark 1. A1 =e−2/σ2−1/12 1√
π
(2e)

n
2 −1Γ (n2 ), A2 =e−2/σ2+1/σ4 1√

π
(2e)

n
2 −1Γ (n2 ).

For ν, z ∈ C, Iν(z) =
∑∞

j=0
1

j!Γ (ν+j+1)

(
z
2

)ν+2j .

Theorem 3. Let X = Sn−1, n ∈ N, n ≥ 2, and d ∈ N. Let μ be the uni-
form probability distribution on Sn−1. For K(x, t) = (1 + 〈x, t〉)d, the nonzero
eigenvalues of LK : L2

μ(X)→ L2
μ(X) are

λk = 2d+n−2 d!
(d− k)!

Γ (d+ n−1
2 )Γ (n2 )√

πΓ (d+ k + n− 1)
(7)

for 0 ≤ k ≤ d. Each λk occurs with multiplicity N(n, k), with the corresponding
eigenfunctions being spherical harmonics of order k on Sn−1. Furthermore, the
λk’s form a decreasing sequence and

B1

(k + d+ n− 2)2d+n−
3
2
< λk <

B2

(k + d+ n− 2)d+n−
3
2

(8)

where 0 ≤ k ≤ d, for B1, B2 depending on d, n given below.

Remark 2. B1 =ed(2e)d+n−2d!Γ (d+ n−1
2 )Γ ( n

2 )

2π
√
πe1/6dd+1

2
, B2 =ed(2e)d+n−2d!Γ (d+ n−1

2 )Γ ( n
2 )√

2π
.

2.2 Example on the Hypercube {−1, 1}n

We will now give an example with the hypercube {−1, 1}n. Let Mk = {α =
(αi)ni=1, αi ∈ {0, 1}, |α| = α1 + · · · + αn = k}, then the set {xα}α∈Mk,0≤k≤n,
consists of multilinear mononomials {1, x1, x1x2, . . . , x1 . . . xn}.

Theorem 4. Let X = {−1, 1}n. Let d ∈ N, d ≤ n be fixed. Let K(x, t) =
(1+ 〈x, t〉)d on X×X. Let μ be the uniform distribution on X, then the nonzero
eigenvalues λdk’s of LK : L2

μ(X)→ L2
μ(X) satisfy

λd+1
k = kλdk−1 + λdk + (n− k)λdk+1 (9)



158 H.Q. Minh, P. Niyogi, and Y. Yao

λd0 ≥ λd1 ≥ . . . ≥ λdd−1 = λdd = d! (10)

and λdk = 0 for k > d. The corresponding L2
μ(X)-normalized eigenfunctions for

each λk are {xα}α∈Mk
.

Example 1 (d = 2). The recurrence relation (9) is nonlinear in two indexes
and hence a closed analytic expression for λdk is hard to find for large d. It is
straightforward, however, to write a computer program for computing λdk. For
d = 2

λ2
0 = n+ 1 λ2

1 = 2 λ2
2 = 2

with corresponding eigenfunctions 1, {x1, . . . , xn}, and {x1x2, x1x3, . . . , xn−1xn},
respectively.

2.3 Example on the Unit Ball Bn

Except for the homogeneous polynomial kernel K(x, t) = 〈x, t〉d, the computa-
tion of the spectrum of LK on the unit ball Bn is much more difficult analytically
than that on Sn−1. For K(x, t) = (1 + 〈x, t〉)d and small values of d, it is still
possible, however, to obtain explicit answers.

Example 2 (X = Bn, K(x, t) = (1 + 〈x, t〉)2). Let μ be the uniform measure on
Bn. The eigenspace spanned by {x1, . . . , xn} corresponds to the eigenvalue λ1 =

2
(n+2) . The eigenspace spanned by {||x||2Y2,j(n; x

||x||)}
N(n,2)
j=1 corresponds to the

eigenvalue λ2 = 2
(n+2)(n+4) . The eigenvalues that correspond to span{1, ||x||2}

are

λ0,1 =
(n+ 2)(n+ 5) +

√
D

2(n+ 2)(n+ 4)
λ0,2 =

(n+ 2)(n+ 5)−
√
D

2(n+ 2)(n+ 4)

where D = (n+ 2)2(n+ 5)2 − 16(n+ 4).

3 Unboundedness of Normalized Eigenfunctions

It is known that the L2
μ-normalized eigenfunctions {φk} are generally unbounded,

that is in general

supk∈N ||φk||∞ =∞

This was first pointed out by Smale, with the first counterexample given in [14].
This phenomenon is very common, however, as the following result shows.

Theorem 5. Let X = Sn−1, n ≥ 3. Let μ be the Lebesgue measure on Sn−1.
Let f : [−1, 1] → R be a continuous function, giving rise to a Mercer kernel
K(x, t) = f(〈x, t〉) on Sn−1 × Sn−1. If infinitely many of the eigenvalues of
LK : L2

μ(S
n−1) → L2

μ(S
n−1) are nonzero, then for the set of corresponding

L2
μ-normalized eigenfunctions {φk}∞k=1

sup
k∈N

||φk||∞ =∞ (11)
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Remark 3. This is in sharp contrast with the case n = 2, where we will show
that

sup
k
||φk||∞ ≤

1√
π

with the supremum attained on the functions { cos kθ√
π
, sin kθ√

π
}k∈N. Theorem 5 ap-

plies in particular to the Gaussian kernel K(x, t) = exp(− ||x−t||2
σ2 ). Hence care

needs to be taken in applying analysis that requires CK = supk ||φk||∞ <∞, for
example [5].

4 Feature Maps

4.1 Examples of Feature Maps Via Mercer’s Theorem

A natural feature map that arises immediately from Mercer’s theorem is

Φμ : X → �2 Φμ(x) = (
√
λkφk(x))∞k=1 (12)

where if only N <∞ of the eigenvalues are strictly positive, then Φμ : X → RN .
This is the map that is often covered in the machine learning literature.

Example 3 (n = d = 2,X = Sn−1). Theorem 3 gives the eigenvalues (3π, 2π, π2 ),

with eigenfunctions ( 1√
2π
, x1√

π
, x2√

π
, 2x1x2√

π
,
x2
1−x

2
2√

π
) = ( 1√

2π
, cos θ√

π
, sin θ√

π
, sin 2θ√

π
, cos 2θ√

π
),

where x1 = cos θ, x2 = sin θ, giving rise to the feature map

Φμ(x) = (

√
3
2
,
√

2x1,
√

2x2,
√

2x1x2,
x2

1 − x2
2√

2
)

Example 4 (n = d = 2, X = {−1, 1}2). Theorem 4 gives

Φμ(x) = (
√

3,
√

2x1,
√

2x2,
√

2x1x2)

Observation 1. (i) As our notation suggests, Φμ depends on the particular
measure μ that is in the definition of the operator LK and thus is not unique.
Each measure μ gives rise to a different system of eigenvalues and eigenfunctions
(λk, φk)∞k=1 and therefore a different Φμ.

(ii) In Theorem 3 and 2, the multiplicity of the λk’s means that for each choice
of orthonormal bases of the space Yk(n) of spherical harmonics of order k, there
is a different feature map. Thus are infinitely many feature maps arising from
the uniform probability distribution on Sn−1 alone.

4.2 Examples of Feature Maps Not Via Mercer’s Theorem

Feature maps do not necessarily arise from Mercer’s theorem. Consider any set
X and any pointwise-defined, positive definite kernel K on X × X . For each
x ∈ X , let Kx : X → R be defined by Kx(t) = K(x, t) and

HK = span{Kx : x ∈ X} (13)
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be the Reproducing Kernel Hilbert Space (RKHS) induced by K, with the in-
ner product 〈Kx,Kt〉K = K(x, t), see [1]. The following feature map is then
immediate:

ΦK : X → HK ΦK(x) = Kx (14)

In this section we discuss, via examples, two other methods for obtaining
feature maps. LetX ⊂ Rn be any subset. Consider the Gaussian kernelK(x, t) =
exp(− ||x−t||2

σ2 ) on X ×X , which admits the following expansion

K(x, t) = exp(−||x− t||
2

σ2 ) = e−
||x||2

σ2 e−
||t||2

σ2

∞∑
k=0

(2/σ2)k

k!

∑
|α|=k

Ckαx
αtα (15)

where Ckα = k!
(α1)!...(αn)! , which implies the feature map: Φg : X → �2 where

Φg(x) = e−
||x||2

σ2 (
√

(2/σ2)kCk
α

k! xα)∞|α|=k,k=0

Remark 4. The standard polynomial feature maps in machine learning, see for
example ([7], page 28), are obtained exactly in the same way.

Consider next a special class of kernels that is widely used in practice, called
convolution kernels. We recall that for a function f ∈ L1(Rn), its Fourier
transform is defined to be

f̂(ξ) =
∫

Rn

f(x)e−i〈ξ,x〉dx

By Fourier transform computation, it may be shown that if μ : Rn → R is even,
nonnegative, such that μ,

√
μ ∈ L1(Rn), then the kernel K : Rn × Rn → R

defined by

K(x, t) =
∫

Rn

μ(u)e−i〈x−t,u〉du (16)

is continuous, symmetric, positive definite. Further more, for any x, t ∈ Rn

K(x, t) =
1

(2π)n

∫
Rn

√̂
μ(x− u)√̂μ(t− u)du (17)

The following then is a feature map of K on X ×X

Φconv : X → L2(Rn) (18)

Φconv(x)(u) = 1
(2π)

n
2

√̂
μ(x− u)

For the Gaussian kernel e−
||x−t||2

σ2 = ( σ
2
√
π
)n
∫

Rn e
−σ2||u||2

4 e−i〈x−t,u〉du and

(Φconv(x))(u) = ( 2
σ
√
π
)

n
2 e−

2||x−u||2
σ2

One can similarly obtain feature maps for the inverse multiquadric, exponential,

or B-spline kernels. The identity e−
||x−t||2

σ2 = ( 4
πσ2 )

n
2
∫

Rn e
− 2||x−u||2

σ2 e−
2||t−u||2

σ2 du
can also be verified directly, as done in [10], where implications of the Gaussian
feature map Φconv(x) above are also discussed.
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4.3 Equivalence of Feature Maps

It is known ([7], page 39) that, given a set X and a pointwise-defined, symmetric,
positive definite kernel K on X×X , all feature maps from X into Hilbert spaces
are essentially equivalent. In this section, we will make this statement precise.
Let H be a Hilbert space and Φ : X → H be such that 〈Φx, Φt〉H = K(x, t) for
all x, t ∈ X , where Φx = Φ(x). The evaluation functional Lx : H → R given by
Lxv = 〈v, Φx〉H, where x varies over X , defines an inclusion map

LΦ : H → RX (LΦv)(x) = 〈v, Φx〉H

where RX denotes the vector space of pointwise-defined, real-valued functions
on X . Observe that as a vector space of functions, HK ⊂ RX .

Proposition 1. Let HΦ = span{Φx : x ∈ X}, a subspace of H. The restriction
of LΦ on HΦ is an isometric isomorphism between HΦ and HK .

Proof. First, LΦ is bijective from HΦ to the image LΦ(HΦ), since kerLΦ =
H⊥
Φ . Under the map LΦ, for each x, t ∈ X , (LΦΦx)(t) = 〈Φx, Φt〉 = Kx(t),

thus Kx ≡ LΦΦx as functions on X . This implies that span{Kx : x ∈ X} is
isomorphic to span{Φx : x ∈ X} as vector spaces. The isometric isomorphism
of HΦ = span{Φx : x ∈ X} and HK = span{Kx : x ∈ X} then follows from
〈Φx, Φt〉H = K(x, t) = 〈Kx,Kt〉K . This completes the proof.

Remark 5. Each choice of Φ is thus equivalent to a factorization of the map
ΦK : x→ Kx ∈ HK , that is the following diagram is commutative

x ∈ X
Φ

������������
ΦK �� Kx ∈ HK

Φx ∈ HΦ

LΦ

�������������

(19)

We will call ΦK : x→ Kx ∈ HK the canonical feature map associated with K.

5 Smoothing Properties of Kernels on the Sphere

Having discussed feature maps, we will in this section analyze the smoothing
properties of the polynomial and Gaussian kernels and compare them with those
of spline kernels on the sphere Sn−1. In the spline smoothing problem on S1 as
described in [11], one solves the minimization problem

1
m

m∑
i=1

(f(xi)− yi)2 + λ

∫ 2π

0
(f (m)(t))2dt (20)

for xi ∈ [0, 2π] and f ∈Wm, where Jm(f) =
∫ 2π
0 (f (m)(t))2dt is the square norm

of the RKHS
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W 0
m = {f : f, f

′
, . . . , f (m−1) absolutely continuous, f (m) ∈ L2[0, 2π],
f (j)(0) = f (j)(2π), j = 0, 1, . . . ,m− 1}

The space Wm is then the RKHS defined by

Wm = {1} ⊕W 0
m = {f : ||f ||2K = 1

4π2

(∫ 2π
0 f(t)dt

)2
+
∫ 2π
0 (f (m)(t))2dt <∞}

induced by a kernel K. One particular feature of spline smoothing, on S1, S2,
or Rn, is that in general the RKHS Wm does not have a closed form kernel K
that is efficiently computable. This is in contrast with the RKHS that are used
in kernel machine learning, all of which correspond to closed-form kernels that
can be evaluated efficiently. It is not clear, however, whether the norms in these
RKHS correspond to smoothness functionals. In this section, we will show that
for the polynomial and Gaussian kernels on Sn−1, they do.

5.1 The Iterated Laplacian and Splines on the Sphere Sn−1

Splines on Sn−1 for n = 2 and n = 3, as treated by Wahba [11], [12], can be
generalized to any n ≥ 2, n ∈ N, via the iterated Laplacian (also called the
Laplace-Beltrami operator) on Sn−1. The RKHS corresponding to Wm in (20)
is a subspace of L2(Sn−1) described by

HK = {f : ||f ||2K =
1

|Sn−1|2

(∫
Sn−1

f(x)dx
)2

+
∫
Sn−1

f(x)Δmf(x)dx <∞}

The Laplacian Δ on Sn−1 has eigenvalues λk = k(k+ n− 2), k ≥ 0, with corre-
sponding eigenfunctions {Yk,j(n;x)}N(n,k)

j=1 , which form an orthonormal basis in
the space Yk(n) of spherical harmonics of order k . For f ∈ L2(Sn−1), if we use
the expansion f = a0√

|Sn−1|
+
∑∞

k=1
∑N(n,k)

j=1 ak,jYk,j(n;x) then the space HK
takes the form

HK = {f ∈ L2(Sn−1) : ||f ||2K =
a2
0

|Sn−1| +
∞∑
k=1

[k(k + n− 2)]m
N(n,k)∑
j=1

a2
k,j <∞}

and thus the corresponding kernel is

K(x, t) = 1 +
∞∑
k=1

1
[k(k + n− 2)]m

N(n,k)∑
j=1

Yk,j(n;x)Yk,j(n; t) (21)

which is well-defined iff m > n−1
2 . Let Pk(n; t) denote the Legendre polynomial

of degree k in dimension n, then (21) takes the form

K(x, t) = 1 +
1

|Sn−1|

∞∑
k=1

N(n, k)
[k(k + n− 2)]m

Pk(n; 〈x, t〉) (22)

which does not have a closed form in general - for the case n = 3, see [11].

Remark 6. Clearly m can be replaced by any real number s > n−1
2 .



Mercer’s Theorem, Feature Maps, and Smoothing 163

5.2 Smoothing Properties of Polynomial and Gaussian Kernels

Let ∇∗
n−1 denote the gradient operator on Sn−1 (also called the first-order Bel-

trami operator, see [6] page 79 for a definition). Let Yk ∈ Yk(n), k ≥ 0, then

||∇∗
n−1Yk||2L2(Sn−1) =

∫
Sn−1

|∇∗
n−1Yk(x)|2dSn−1(x) = k(k + n− 2) (23)

This shows that spherical harmonics of higher-order are less smooth. This is
particularly straightforward in the case n = 2 with the Fourier basis functions
{1, coskθ, sin kθ}k∈N - as k increases, the functions oscillate more rapidly.

It follows that any regularization term ||f ||2K in problems such as (20), where
K possesses a decreasing spectrum λk - k corresponds to the order of the spher-
ical harmonics - will have a smoothing effect. That is, the higher-order spherical
harmonics, which are less smooth, will be penalized more. The decreasing spec-
trum property is true for the spline kernels, the polynomial kernel (1 + 〈x, t〉)d,
and the Gaussian kernel for σ ≥ ( 2

n )1/2, as we showed in Theorems 2 and 3.
Hence all these kernels possess smoothing properties on Sn−1.

Furthermore, Theorem 2 shows that for the Gaussian kernel, for all k ≥ 1

(
2e
σ2 )k

A1

(2k + n− 2)k+
n−1

2

< λk < (
2e
σ2 )k

A2

(2k + n− 2)k+
n−1

2

and Theorem 3 shows that for the polynomial kernel (1 + 〈x, t〉)d

B1

(k + d+ n− 2)2d+n−
3
2
< λk <

B2

(k + d+ n− 2)d+n−
3
2

for 0 ≤ k ≤ d. Compare these with the eigenvalues of the spline kernels

λk =
1

[k(k + n− 2)]m

for k ≥ 1, we see that the Gaussian kernel has the sharpest smoothing property,
as can be seen from the exponential decay of the eigenvalues.

For K(x, t) = (1 + 〈x, t〉)d , if d > 2m−n+ 3
2 , then K has sharper smoothing

property than a spline kernel of order m. Moreover, all spherical harmonics of
order greater than d are filtered out, hence choosing K amounts to choosing a
hypothesis space of bandlimited functions on Sn−1.
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A Proofs of Results

The proofs for results on Sn−1 all make use of properties of spherical harmonics
on Sn−1, which can be found in [6]. We will prove Theorem 2 (Theorem 3 is
similar) and Theorem 5.

A.1 Proof of Theorem 2

Let f : [−1, 1] → R be a continuous function. Let Yk ∈ Yk(n) for k ≥ 0. Then
the Funk-Hecke formula ([6], page 30) states that for any x ∈ Sn−1:∫

Sn−1
f(〈x, t〉)Yk(t)dSn−1(t) = λkYk(x) (24)

where

λk = |Sn−2|
∫ 1

−1
f(t)Pk(n; t)(1− t2)

n−3
2 dt (25)

and Pk(n; t) denotes the Legendre polynomial of degree k in dimension n. Since
the spherical harmonics {{Yk,j(n;x)}N(n,k)

j=1 }∞k=0 form an orthonormal basis for
L2(Sn−1), an immediate consequence of the Funk-Hecke formula is that if K on
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Sn−1 × Sn−1 is defined by K(x, t) = f(〈x, t〉), and μ is the Lebesgue measure
on Sn−1, then the eigenvalues of LK : L2

μ(S
n−1) → L2

μ(S
n−1) are given pre-

cisely by (25), with the corresponding orthonormal eigenfunctions of λk being
{Yk,j(n;x)}N(n,k)

j=1 . The multiplicity of λk is therefore N(n, k) = dim(Yk(n)).

On Sn−1 e−
||x−t||2

σ2 = e−
2

σ2 e
2〈x,t〉

σ2 . Thus

λk = e−
2

σ2 |Sn−2|
∫ 1
−1 e

2t
σ2 Pk(n; t)(1− t2)n−3

2 dt

= e−
2

σ2 |Sn−2|
√
πΓ (n−1

2 )(σ2)n/2−1Ik+n/2−1( 2
σ2 ) by Lemma 1

= e−2/σ2
σn−2Ik+n/2−1( 2

σ2 )Γ (n2 )|Sn−1|

Normalizing by setting |Sn−1| = 1 gives the required expression for λk as in (5).

Lemma 1. Let f(t) = ert, then∫ 1

−1
f(t)Pk(n; t)(1− t2)

n−3
2 dt =

√
πΓ (

n− 1
2

)
(

2
r

)n/2−1

Ik+n/2−1(r) (26)

Proof. We apply the following which follows from ([13], page 79, formula 9)∫ 1

−1
ert(1− t2)ν−1dt =

√
π

(
2
r

)ν−1/2

Γ (ν)Iν−1/2(r) (27)

and Rodrigues’ rule ([6], page 23), which states that for f ∈ Ck([−1, 1])∫ 1

−1
f(t)Pk(n; t)(1− t2)

n−3
2 dt = Rk(n)

∫ 1

−1
f (k)(t)(1 − t2)k+

n−3
2 dt (28)

where Rk(n) = 1
2k

Γ ( n−1
2 )

Γ (k+ n−1
2 )

. For f(t) = ert, we have∫ 1
−1 e

rtPk(n; t)(1− t2)n−3
2 dt = Rk(n)rk

∫ 1
−1 e

rt(1− t2)k+ n−3
2

= Rk(n)rk
√
π
( 2
r

)k+n/2−1
Γ (k + n−1

2 )Ik+n/2−1(r)

Substituting in the values of Rk(n) gives the desired answer. 
�

Lemma 2. The sequence {λk}∞k=0 is decreasing if σ ≥
( 2
n

)1/2.
Proof. We will first prove that λk

λk+1
> (k + n/2)σ2. We have

Ik+n/2( 2
σ2 ) = ( 1

σ2 )k+n/2
∑∞

j=0
( 1

σ2 )2j

j!Γ (j+k+n/2+1)

= ( 1
σ2 )k+n/2

∑∞
j=0

( 1
σ2 )2j

j!(j+k+n/2)Γ (j+k+n/2)

< ( 1
σ2 )k+n/2 1

k+n/2

∑∞
j=0

( 1
σ2 )2j

j!Γ (j+k+n/2) = 1
σ2(k+n/2) Ik+n/2−1( 2

σ2 )
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which implies λk

λk+1
> (k + n/2)σ2. The inequality λk

λk+1
≥ 1 thus is satisfied if

σ2(k + n/2) ≥ 1 for all k ≥ 0. It suffices to require that it holds for k = 0, that
is σ2n/2 ≥ 1⇐⇒ σ ≥

( 2
n

)1/2. 
�

Proof (of (6)). By definition of Iν(z), we have for z > 0

Iν(z) <
( z
2 )ν

Γ (ν+1)

∑∞
j=0

( z
2 )2j

j! = ( z
2 )ν

Γ (ν+1)e
z2/4

Then for ν = k + n
2 − 1 and z = 2

σ2 : Ik+ n
2 −1( 2

σ2 ) < 1
Γ (k+ n

2 ) (
1
σ )2k+n−2e1/σ

4
.

Consider Stirling’s series for a > 0

Γ (a+ 1) =
√

2πa
(a
e

)a [
1 +

1
12a

+
1

288a2 −
139

51840a3 + . . .

]
(29)

Thus for all a > 0 we can write Γ (a+1) = eA(a)
√

2πe
(
a
e

)a+ 1
2 where 0 < A(a) <

1
12a . Hence for all k ≥ 1

Γ (k +
n

2
) = eA(k,n)

√
2πe(

k + n
2 − 1
e

)k+
n−1

2 = eA(k,n)
√

2πe(
2k + n− 2

2e
)k+

n−1
2

where 0 < A(k, n) < 1
12(k+ n

2 −1) ≤
1
12 . Then

Ik+ n
2 −1( 2

σ2 ) < 1√
π

(2e)k+ n
2 −1

(2k+n−2)k+ n−1
2

( 1
σ )2k+n−2e1/σ

4
implying (6).

The other direction is obtained similarly. 
�

A.2 Proof of Theorem 5

We will first show an upper bound for ||Yk||∞, where Yk is any L2(Sn−1)-
normalized function in Yk(n), then exhibit a one-dimensional subspace of func-
tions in Yk(n) that attain this upper bound. Observe that Yk belongs to an
orthonormal basis {Yk,j(n;x)}N(n,k)

j=1 of Yk(n). The following highlights the cru-
cial difference between the case n = 2 and n ≥ 3.

Lemma 3. For any n ≥ 2, k ≥ 0, for all j ∈ N, 1 ≤ j ≤ N(n, k)

||Yk,j(n; .)||∞ ≤
√
N(n, k)
|Sn−1| (30)

In particular, for n = 2 and all k ≥ 0: ||Yk,j(n; .)||∞ ≤ 1√
π
.

Proof. The Addition Theorem for spherical harmonics ([6], page 18) states that
for any x, α ∈ Sn−1

N(n,k)∑
j=1

Yk,j(n;x)Yk,j(n;α) =
N(n, k)
|Sn−1| Pk(n; 〈x, α〉)

which implies that for any x ∈ Sn−1
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|Yk,j(n;x)|2 ≤ N(n, k)
|Sn−1| Pk(n; 〈x, x〉) =

N(n, k)
|Sn−1| Pk(n; 1) =

N(n, k)
|Sn−1|

giving us the first result. For n = 2, we have N(n, k) = 1 for k = 0, N(n, k) = 2
for k ≥ 1, and |S1| = 2π, giving us the second result. 
�

Definition 2. Consider the group O(n) of all orthogonal transformations in Rn,
that is O(n) = {A ∈ Rn×n : ATA = AAT = I}. A function f : Sn−1 → R is said
to be invariant under a transformation A ∈ O(n) if fA(x) = f(Ax) = f(x) for
all x ∈ Sn−1. Let α ∈ Sn−1. The isotropy group Jn,α is defined by Jn,α = {A ∈
O(n) : Aα = α}.

Lemma 4. Assume that Yk ∈ Yk(n) is invariant with respect to Jn,α and satis-
fies

∫
Sn−1 |Yk(x)|2dSn−1(x) = 1. Then Yk is unique up to a multiplicative con-

stant Cα,n,k with |Cα,n,k| = 1 and

||Yk||∞ = |Yk(α)| =
√
N(n, k)
|Sn−1| (31)

Proof. If Yk is invariant with respect to Jn,α, then by ([6], Lemma 3, page 17),
it must satisfy Yk(x) = Yk(α)Pk(n; 〈x, α〉), showing that the subspace of Yk(n)
invariant with respect to Jn,α is one-dimensional. The Addition Theorem implies
that for any α ∈ Sn−1∫

Sn−1 |Pk(n; 〈x, α〉)|2dSn−1(x) = |Sn−1|
N(n,k)

By assumption, we then have

1 =
∫
Sn−1 |Yk(x)|2dSn−1(x) = |Yk(α)|2

∫
Sn−1 |Pk(n; 〈x, α〉)|2dSn−1(x)

= |Yk(α)|2 |Sn−1|
N(n,k) , giving us |Yk(α)| =

√
N(n,k)
|Sn−1| . Thus we for all x ∈ Sn−1

|Yk(x)| =
√

N(n,k)
|Sn−1| |Pk(n; 〈x, α〉)| ≤

√
N(n,k)
|Sn−1|

by the property |Pk(n; t)| ≤ 1 for |t| ≤ 1. Thus ||Yk||∞ =
√

N(n,k)
|Sn−1| as desired. 
�

Proposition 2 (Orthonormal basis of Yk(n) [6]). Let n ≥ 3. Let e1, . . . , en

be the canonical basis of Rn. Let x ∈ Sn−1. We write x = ten+
√

1− t2
(
x(n−1)

0

)
where t ∈ [−1, 1] and x(n−1) ∈ Sn−2, (x(n−1), 0)T ∈ span{e1, . . . , en−1}. Suppose
that for m = 0, 1, . . . , k, the orthonormal bases Ym,j, j = 1, . . . , N(n− 1,m) of
Ym(n− 1) are given, then an orthonormal basis for Yk(n) is

Yk,m,j(n;x) = Amk (n; t)Ym,j(n− 1;x(n−1)) : j = 1, 2 . . . , N(n− 1,m) (32)

starting with the Fourier basis for n = 2, where

Amk (n; t) =

√
22−n(2k + n− 2)(k −m)!(k + n+m− 3)!

k!Γ (n−1
2 )

Pmk (n; t) (33)
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Proposition 3. Let n ∈ N, n ≥ 3. Let μ be the Lebesgue measure on Sn−1. For
each k ≥ 0, any orthonormal basis of the space Yk(n) of spherical harmonics of
order k contains an L2

μ-normalized spherical harmonic Yk such that

||Yk||∞ =

√
N(n, k)
|Sn−1| =

√
(2k + n− 2)(k + n− 3)!

k!(n− 2)!|Sn−1| → ∞ (34)

as k →∞, where |Sn−1| = 2π
n
2

Γ ( n
2 ) is the surface area of Sn−1.

Proof. Let x = ten +
√

1− t2
(
x(n−1)

0

)
, −1 ≤ t ≤ 1. For each k ≥ 0, the

orthonormal basis for Yk(n) in Proposition 2 contains the function

Yk,0,1(n;x) = A0
k(t)Y0,1(n− 1;x(n−1)) = A0

k(t)
1√
|Sn−2|

(35)

Yk,0,1(n;x) = 1
Γ ( n−1

2 )

√
(2k+n−2)(k+n−3)!

2n−2k!|Sn−2| Pk(n; t) =
√

N(n,k)
|Sn−1|Pk(n; t)

Then Yk,0,1(n;x) is invariant with respect to Jn,α where α = (0, . . . , 0, 1). Thus
Yk = Yk,0,1 is the desired function for the current orthonormal basis. For any
orthonormal basis of Yk(n), the result follows by Lemma 4 and rotational sym-
metry on the sphere. 
�

Proof (of Theorem 5). By the Funk-Hecke formula, all spherical harmonics of
order k are eigenfunctions corresponding to the eigenvalue λk as given by (25). If
infinitely many of the λk’s are nonzero, then the corresponding set of L2(Sn−1)-
orthonormal eigenfunctions {φk}, being an orthonormal basis of L2(Sn−1), con-
tains a spherical harmonic Yk satisfying (34), for infinitely many k. It follows
from Proposition 3 then that supk ||φk||∞ =∞. 
�
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Abstract. Consider the problem of learning a kernel for use in SVM
classification. We bound the estimation error of a large margin classifier
when the kernel, relative to which this margin is defined, is chosen from a
family of kernels based on the training sample. For a kernel family with

pseudodimension dφ, we present a bound of Õ(dφ + 1/γ2)/n on the
estimation error for SVMs with margin γ. This is the first bound in which
the relation between the margin term and the family-of-kernels term is
additive rather then multiplicative. The pseudodimension of families
of linear combinations of base kernels is the number of base kernels.
Unlike in previous (multiplicative) bounds, there is no non-negativity
requirement on the coefficients of the linear combinations. We also give
simple bounds on the pseudodimension for families of Gaussian kernels.

1 Introduction

In support vector machines (SVMs), as well as other similar methods, prior
knowledge is represented through a kernel function specifying the inner products
between an implicit representation of input points in some Hilbert space. A
large margin linear classifier is then sought in this implicit Hilbert space. Using
a “good” kernel function, appropriate for the problem, is crucial for successful
learning: The kernel function essentially specifies the permitted hypothesis class,
or at least which hypotheses are preferred.

In the standard SVM framework, one commits to a fixed kernel function
apriori, and then searches for a large margin classifier with respect to this kernel.
If it turns out that this fixed kernel in inappropriate for the data, it might be
impossible to find a good large margin classifier. Instead, one can search for a
data-appropriate kernel function, from some class of allowed kernels, permitting
large margin classification. That is, search for both a kernel and a large margin
classifier with respect to the kernel. In this paper we develop bounds for the
sample complexity cost of allowing such kernel adaptation.

1.1 Learning the Kernel

As in standard hypothesis learning, the process of learning a kernel is guided
by some family of potential kernels. A popular type of kernel family consists of

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 169–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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kernels that are a linear, or convex, combinations of several base kernels [1, 2, 3]1:

Klinear(K1, . . . ,Kk)
def=

{
Kλ =

k∑
i=1

λiKi | Kλ � 0 and
k∑
i=1

λi = 1

}
(1)

Kconvex(K1, . . . ,Kk)
def=

{
Kλ =

k∑
i=1

λiKi | λi ≥ 0 and
k∑
i=1

λi = 1

}
(2)

Such kernel families are useful for integrating several sources of information,
each encoded in a different kernel, and are especially popular in bioninformatics
applications [4, 5, 6, and others].

Another common approach is learning (or “tuning”) parameters of a para-
meterized kernel, such as the covariance matrix of a Gaussian kernel, based on
training data [7, 8, 9, 10, and others]. This amounts to learning a kernel from a
parametric family, such as the family of Gaussian kernels:

K�Gaussian
def=

{
KA : (x1, x2) �→ e−(x1−x2)′A(x1−x2) | A ∈ R�×� , A � 0

}
(3)

Infinite-dimensional kernel families have also been considered, either through
hyperkernels [11] or as convex combinations of a continuum of base kernels (e.g.
convex combinations of Gaussian kernels) [12, 13]. In this paper we focus on
finite-dimensional kernel families, such as those defined by equations (1)–(3).

Learning the kernel matrix allows for greater flexibility in matching the target
function, but this of course comes at the cost of higher estimation error, i.e.
a looser bound on the expected error of the learned classifier in terms of its
empirical error. Bounding this estimation gap is essential for building theoretical
support for kernel learning, and this is the focus of this paper.

1.2 Learning Bounds with Learned Kernels—Previous Work

For standard SVM learning, with a fixed kernel, one can show that, with high
probability, the estimation error (gap between the expected error and empirical

error) of a learned classifier with margin γ is bounded by
√
Õ(1/γ2)/n where

n is the sample size and the Õ() notation hides logarithmic factors in its argu-
ment, the sample size and the allowed failure probability. That is, the number
of samples needed for learning is Õ

(
1/γ2

)
.

Lanckriet et al. [1] showed that when a kernel is chosen from a convex combi-
nation of k base kernels, the estimation error of the learned classifier is bounded

by
√
Õ(k/γ2)/n where γ is the margin of the learned classifier under the learned

kernel. Note the multiplicative interaction between the margin complexity term
1/γ2 and the number of base kernels k. Recently, Micchelli et al. [14] derived
bounds for the family of Gaussian kernels of equation (3). The dependence of

1 Lanckriet et al. [1] impose a bound on the trace of the Gram matrix of Kλ—this is
equivalent to bounding λi when the base kernels are normalized.
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these bounds on the margin and the complexity of the kernel family is also

multiplicative—the estimation error is bounded by
√
Õ(C�/γ2)/n, where C� is

a constant that depends on the input dimensionality �.
The multiplicative interaction between the margin and the complexity mea-

sure of the kernel class is disappointing. It suggests that learning even a few
kernel parameters (e.g. the coefficients λ) leads to a multiplicative increase in
the required sample size. It is important to understand whether such a multi-
plicative increase in the number of training samples is in fact necessary.

Bousquet and Herrmann [2, Theorem 2] and Lanckriet et al. [1] also discuss
bounds for families of convex and linear combinations of kernels that appear to
be independent of the number of base kernels. However, we show in the Appendix
that these bounds are meaningless: The bound on the expected error is never less
than one. We are not aware of any previous work describing meaningful explicit
bounds for the family of linear combinations of kernels given in equation (1).

1.3 New, Additive, Learning Bounds

In this paper, we bound the estimation error, when the kernel is chosen from

a kernel family K, by
√
Õ(dφ + 1/γ2)/n, where dφ is the pseudodimension of

the family K (Theorem 2; the pseudodimension is defined in Definition 5). This
establishes that the bound on the required sample size, Õ

(
dφ + 1/γ2

)
grows only

additively with the dimensionality of the allowed kernel family (up to logarith-
mic factors). This is a much more reasonable price to pay for not committing to
a single kernel apriori.

The pseudodimension of most kernel families matches our intuitive notion of
the dimensionality of the family, and in particular:

– The pseudodimension of a family of linear, or convex, combinations of k base
kernels (equations 1,2) is at most k (Lemma 7).

– The pseudodimension of the family K�Gaussian of Gaussian kernels (equation
3) for inputs x ∈ R�, is at most �(� + 1)/2 (Lemma 9). If only diagonal
covariances are allowed, the pseudodimension is � (Lemma 10). If the co-
variances (and therefore A) are constrained to be of rank at most k, the
pseudodimension is at most k� log2(22k�) (Lemma 11).

1.4 Plan of Attack

For a fixed kernel, it is well known that, with probability at least 1 − δ, the
estimation error of all margin-γ classifiers is at most

√
O(1/γ2 − log δ)/n [15].

To obtain a bound that holds for all margin-γ classifiers with respect to any
kernel K in some finite kernel family K, consider a union bound over the |K|
events “the estimation error is large for some margin-γ classifier with respect to
K” for each K ∈ K. Using the above bound with δ scaled by the cardinality |K|,
the union bound ensures us that with probability at least 1− δ, the estimation
error will be bounded by

√
O(log |K|+ 1/γ2 − log δ)/n for all margin-γ classifiers

with respect to any kernel in the family.
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In order to extend this type of result also to infinite-cardinality families, we
employ the standard notion of ε-nets: Roughly speaking, even though a continu-
ous family K might be infinite, many kernels in it will be very similar and it will
not matter which one we use. Instead of taking a union bound over all kernels in
K, we only take a union bound over “essentially different” kernels. In Section 4
we use standard results to show that the number of “essentially different” ker-
nels in a family grows exponentially only with the dimensionality of the family,
yielding an additive term (almost) proportional to the dimensionality.

As is standard in obtaining such bounds, our notion of “essentially different”
refers to a specific sample and so symmetrization arguments are required in order
to make the above conceptual arguments concrete. To do so cleanly and cheaply,
we use an ε-net of kernels to construct an ε-net of classifiers with respect to the
kernels, noting that the size of the ε-net increases only multiplicatively relative to
the size of an ε-net for any one kernel (Section 3). An important component of this
construction is the observation that kernels that are close as real-valued functions
also yield similar classes of classifiers (Lemma 2). Using our constructed ε-net, we
can apply standard results bounding the estimation error in terms of the log-size
of ε-nets, without needing to invoke symmetrization arguments directly.

For the sake of simplicity and conciseness of presentation, the results in this
paper are stated for binary classification using a homogeneous large-margin clas-
sifier, i.e. not allowing a bias term, and refer to zero-one error. The results can
be easily extended to other loss functions and to allow a bias term.

2 Preliminaries

Notation: We use ||v|| to denote the norm of a vector in an abstract Hilbert space.
For a vector v ∈ Rn, ‖v‖ is the Euclidean norm of v. For a matrix A ∈ Rn×n,
‖A‖2 = max‖v‖=1 ‖Av‖ is the L2 operator norm of A, |A|∞ = maxij |Aij | is the
l∞ norm of A and A � 0 indicates that A is positive semi-definite (p.s.d.) and
symmetric. We use boldface x for samples (multisets, though we refer to them
simply as sets) of points, where |x| is the number of points in a sample.

2.1 Support Vector Machines

Let (x1, y1), . . . , (xn, yn) be a training set of n pairs of input points xi ∈ X
and target labels yi ∈ {±1}. Let φ : X → H be a mapping of input points
into a Hilbert space H with inner product 〈·, ·〉. A vector w ∈ H can be used
as a predictor for points in X , predicting the label sign(〈w, φ(x)〉) for input x.
Consider learning by seeking a unit-norm predictor w achieving low empirical
hinge loss ĥγ(w) = 1

n

∑n
i=1 max(γ − yi〈w, φ(xi)〉, 0), relative to a margin γ > 0.

The Representer Theorem [16, Theorem 4.2] guarantees that the predictor w
minimizing ĥγ(w) can be written as w =

∑n
i=1 αiφ(xi). For such w, predictions

〈w, φ(x)〉 =
∑

i αi〈φ(xi), φ(x)〉 and the norm ||w||2 =
∑

ij αiαj〈φ(xi), φ(xj)〉 de-
pend only on inner products between mappings of input points. The Hilbert
space H and mapping φ can therefore be represented implicitly by a kernel func-
tion K:X×X → R specifying these inner products: K(x♥, x♠) = 〈φ(x♥), φ(x♠)〉.
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Definition 1. A function K : X × X → R is a kernel function if for some
Hilbert space H and mapping φ : X → H, K(x♥, x♠) = 〈φ(x♥), φ(x♠)〉 for all x♥, x♠.

For a set x = {x1, . . . , xn} ⊂ X of points, it will be useful to consider their Gram
matrix Kx ∈ Rn×n, Kx[i, j] = K(xi, xj). A function K : X ×X → R is a kernel
function iff for any finite x ⊂ X , the Gram matrix Kx is p.s.d [16].

When specifying the mapping φ implicitly through a kernel function, it is
useful to think about a predictor as a function f : X → R instead of considering
w explicitly. Given a kernel K, learning can then be phrased as choosing a
predictor from the class

FK def= {x �→ 〈w, φ(x)〉 | ||w|| ≤ 1 , K(x♥, x♠) = 〈φ(x♥), φ(x♠)〉} (4)

minimizing

ĥγ(f) def=
1
n

n∑
i=1

max(γ − yif(xi), 0). (5)

For a set of points x = {x1, . . . , xn}, let f(x) ∈ Rn be the vector whose entries
are f(xi). The following restricted variant of the Representer Theorem charac-
terizes the possible prediction vectors f(x) by suggesting the matrix square root
of the Gram matrix (K1/2

x � 0 such that Kx = K1/2
x K1/2

x ) as a possible “feature
mapping” for points in x:

Lemma 1. For any kernel function K and set x = {x1, . . . , xn} of n points:

{f(x) | f ∈ FK} = {K1/2
x w̃ | w̃ ∈ Rn, ‖w̃‖ ≤ 1} ,

Proof. For any f ∈ FK we can write f(x) = 〈w, φ(x)〉 with ||w|| ≤ 1 (equation
4). Consider the projection w‖ =

∑
i αiφ(xi) of w onto span(φ(x1), . . . , φ(xn)).

We have f(xi) = 〈w, φ(xi)〉 =
〈
w‖, φ(xi)

〉
=

∑
j αjK(xj , xi) and 1 ≥ ||w||2 ≥∣∣∣∣w‖

∣∣∣∣2 =
∑

ij αiαjK(xi, xj). In matrix form: f(x) = Kxα and α′Kxα ≤ 1.
Setting w̃ = K1/2

x α we have f(x) = Kxα = K1/2
x K1/2

x α = K1/2
x w̃ while ‖w̃‖2 =

α′K1/2
x K1/2

x α = αKxα ≤ 1. This establishes that the left-hand side is a subset of
the right-hand side.

For any w̃ ∈ Rn with ‖w̃‖ ≤ 1 we would like to define w =
∑

i αiφ(xi) with
α = K−1/2

x w̃ and get 〈w, φ(xi)〉 =
∑

j αj〈φ(xj), φ(xi)〉 = Kxα = KxK
−1/2
x w̃ =

K1/2
x w̃. However, Kx might be singular. Instead, consider the singular value de-

composition Kx = USU ′, with U ′U = I, where zero singular values have been
removed, i.e. S is an all-positive diagonal matrix and U might be rectangular.
Set α = US−1/2U ′w̃ and consider w =

∑
i αiφ(xi). We can now calculate:

〈w, φ(xi)〉 =
∑
j

αj〈φ(xj), φ(xi)〉 = Kxα

= USU ′ · US−1/2U ′w̃ = US1/2U ′w̃ = K1/2
x w̃ (6)

while ||w||2 = α′Kα = w̃′US−1/2U ′·USU ′·US−1/2U ′w̃ = w̃′UU ′w̃ ≤ ‖w̃‖2 ≤ 1 
�
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To remove confusion we note some differences between the presentation here
and other common, and equivalent, presentations of SVMs. Instead of fixing
the margin γ and minimizing the empirical hinge loss, it is common to try to
maximize γ while minimizing the loss. The most common combined objective,
in our notation, is to minimize 1

γ2 +C · 1
γ ĥ

γ(w) for some trade-off parameter C.
This is usually done with a change of variable to w̃ = w/γ, which results in an
equivalent problem where the margin is fixed to one, and the norm of w̃ varies.
Expressed in terms of w̃ the objective is ||w̃||2 +C · ĥ1(w̃). Varying the trade-off
parameter C is equivalent to varying the margin and minimizing the loss. The
variant of the Representer Theorem given in Lemma 1 applies to any predictor
in FK , but only describes the behavior of the predictor on the set x. This will
be sufficient for our purposes.

2.2 Learning Bounds and Covering Numbers

We derive generalization error bounds in the standard agnostic learning set-
ting. That is, we assume data is generated by some unknown joint distribution
P (X,Y ) over input points in X and labels in ±1. The training set consists of
n i.i.d. samples (xi, yi) from this joint distribution. We would like to bound the
difference estγ(f) = err(f)− êrrγ(f) (the estimation error) between the expected
error rate

err(f) = Pr
X,Y

(Y f(X) ≤ 0), (7)

and the empirical margin error rate

êrrγ(f) =
|{i|yif(xi) < γ}|

n
. (8)

The main challenge of deriving such bounds is bounding the estimation error
uniformly over all predictors in a class. The technique we employ in this paper
to obtain such uniform bounds is bounding the covering numbers of classes.

Definition 2. A subset Ã ⊂ A is an ε-net of A under the metric d if for any
a ∈ A there exists ã ∈ Ã with d(a, ã) ≤ ε. The covering number Nd(A, ε) is
the size of the smallest ε-net of A.

We will study coverings of classes of predictors under the sample-based l∞ metric,
which depends on a sample x = {x1, . . . , xn}:

dx∞(f1, f2) =
n

max
i=1
|f1(xi)− f2(xi)| (9)

Definition 3. The uniform l∞ covering number Nn(F , ε) of a predictor
class F is given by considering all possible samples x of size n:

Nn(F , ε) = sup
|x|=n

Ndx∞(F , ε)
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The uniform l∞ covering number can be used to bound the estimation error
uniformly. For a predictor class F and fixed γ > 0, with probability at least
1− δ over the choice of a training set of size n [17, Theorem 10.1]:

sup
f∈F

estγ(f) ≤
√

8
1 + logN2n(F , γ/2)− log δ

n
(10)

The uniform covering number of the class FK (unit-norm predictors corre-
sponding to a kernel function K; recall eq. (4)), with K(x, x) ≤ B for all x, can
be bounded by applying Theorems 14.21 and 12.8 of Anthony and Bartlett [17]:

Nn(F , ε) ≤ 2
(

4nB
ε2

)16B
ε2 log2

(
εen
4√

B

)
(11)

yielding supf∈FK
estγ(f) =

√
Õ(B/γ2)/n and implying that Õ

(
B/γ2

)
training

examples are enough to guarantee that the estimation error diminishes.

2.3 Learning the Kernel

Instead of committing to a fixed kernel, we consider a family K ⊆ {K :X×X→R}
of allowed kernels and the corresponding predictor class:

FK = ∪K∈KFK (12)

The learning problem is now one of minimizing ĥγ(f) for f ∈ FK. We are
interested in bounding the estimation error uniformly for the class FK and will
do so by bounding the covering numbers of the class. The bounds will depend on
the “dimensionality” of K, which we will define later, the margin γ, and a bound
B such that K(x, x) ≤ B for all K ∈ K and all x. We will say that such a kernel
family is bounded by B. Note that

√
B is the radius of a ball (around the origin)

containing φ(x) in the implied Hilbert space, and scaling φ scales both
√
B and

γ linearly. Our bounds will therefore depend on the relative margin γ/
√
B.

3 Covering Numbers with Multiple Kernels

In this section, we will show how to use bounds on covering numbers of a familyK
of kernels to obtain bounds on the covering number of the class FK of predictors
that are low-norm linear predictors under some kernel K ∈ K. We will show how
to combine an ε-net of K with ε-nets for the classes FK to obtain an ε-net for the
class FK. In the next section, we will see how to bound the covering numbers of
a kernel family K and will then be able to apply the main result of this section
to get a bound on the covering number of FK.

In order to state the main result of this section, we will need to consider cov-
ering numbers of kernel families. We will use the following sample-based metric
between kernels. For a sample x = {x1, . . . , xn}:

Dx
∞(K, K̃) def=

n
max
i,j=1

|K(xi, xj)− K̃(xi, xj)| =
∣∣∣Kx − K̃x

∣∣∣
∞

(13)
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Definition 4. The uniform l∞ kernel covering number ND
n (K, ε) of a ker-

nel class K is given by considering all possible samples x of size n:

ND
n (K, ε) = sup

|x|=n
NDx∞(K, ε)

Theorem 1. For a family K of kernels bounded by B and any ε < 1:

Nn(FK, ε) ≤ 2 · ND
n (K, ε24n ) ·

( 16nB
ε2

) 64B
ε2 log

(
εen
8√

B

)
In order to prove Theorem 1, we will first show how all the predictors of one

kernel can be approximated by predictors of a nearby kernel. Roughly speaking,
we do so by showing that the possible “feature mapping” K1/2

x of Lemma 1 does
not change too much:

Lemma 2. Let K, K̃ be two kernel functions. Then for any predictor f ∈ FK
there exists a predictor f̃ ∈ FK̃ with dx∞(f, f̃) ≤

√
nDx

∞(K, K̃).

Proof. Let w ∈ Rn, ‖w‖ = 1 such that f(x) = K1/2
x w, as guaranteed by Lemma 1.

Consider the predictor f̃ ∈ FK̃ such that f̃(x) = K̃1/2
x w, guaranteed by the

reverse direction of Lemma 1:

dx∞(f, f̃) = max
i

∣∣∣f(xi)− f̃(xi)
∣∣∣ ≤ ∥∥∥f(x)− f̃(x)

∥∥∥ (14)

=
∥∥∥K1/2

x w − K̃1/2
x w

∥∥∥ ≤ ∥∥∥K1/2
x − K̃1/2

x

∥∥∥
2
‖w‖ ≤

√∥∥∥Kx − K̃x

∥∥∥
2
· 1 (15)

≤
√
n
∣∣∣Kx − K̃x

∣∣∣
∞

=
√
nDx

∞(K, K̃) (16)

See, e.g., Theorem X.1.1 of Bhatia [18] for the third inequality in (15). 
�

Proof of Theorem 1: Set εk = ε2

4n and εf = ε/2. Let K̃ be an εk-net of K. For
each K̃ ∈ K̃, let F̃K̃ be an εf-net of FK̃ . We will show that

F̃K
def= ∪K̃∈K̃F̃K̃ (17)

is an ε-net of FK. For any f ∈ FK we have f ∈ FK for some K ∈ K. The kernel
K is covered by some K̃ ∈ K̃ with Dx

∞(K, K̃) ≤ εk. Let f̃ ∈ FK̃ be a predictor

with dx∞(f, f̃) ≤
√
nDx

∞(K, K̃) ≤ √nεk guaranteed by Lemma 2, and ˜̃f ∈ F̃K̃
such that dx∞(f̃ , ˜̃

f) ≤ εf. Then ˜̃
f ∈ F̃K is a predictor with:

dx∞(f, ˜̃f) ≤ dx∞(f, f̃) + dx∞(f̃ , ˜̃f) ≤ √nεk + εf = ε (18)

This establishes that F̃K is indeed an ε-net. Its size is bounded by∣∣∣F̃K

∣∣∣ ≤ ∑
K̃∈K̃

∣∣∣F̃K̃∣∣∣ ≤ ∣∣∣K̃∣∣∣ ·max
K

∣∣∣F̃K̃∣∣∣ ≤ ND
n (K, ε24n ) ·max

K
Nn(FK , ε/2). (19)

Substituting in (11) yields the desired bound. 
�
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4 Learning Bounds in Terms of the Pseudodimension

We saw that if we could bound the covering numbers of a kernel family K, we
could use Theorem 1 to obtain a bound on the covering numbers of the class FK
of predictors that are low-norm linear predictors under some kernel K ∈ K. We
could then use (10) to establish a learning bound. In this section, we will see how
to bound the covering numbers of a kernel family by its pseudodimension, and
use this to state learning bounds in terms of this measure. To do so, we will use
well-known results bounding covering numbers in terms of the pseudodimension,
paying a bit of attention to the subtleties of the differences between Definition 4
of uniform kernel covering numbers, and the standard Definition 3 of uniform
covering numbers.

To define the pseudodimension of a kernel family we will treat kernels as
functions from pairs of points to the reals:

Definition 5. Let K = {K : X × X → R} be a kernel family. The class K
pseudo-shatters a set of n pairs of points (x♥

1, x
♠
1), . . . , (x

♥
n, x

♠
n) if there exist

thresholds t1, . . . , tn ∈ R such that for any b1, . . . , bn ∈ {±1} there exists K ∈ K
with sign(K(x♥

i, x
♠
i) − ti) = bi. The pseudodimension dφ(K) is the largest n

such that there exists a set of n pairs of points that are pseudo-shattered by K.

The uniform l∞ covering numbers of a class G of real-valued functions taking
values in [−B,B] can be bounded in terms of its pseudodimension. Let dφ be
the pseudodimension of G; then for any n > dφ and ε > 0 [17, Theorem 12.2]:

Nn(G, ε) ≤
(
enB

εdφ

)dφ

(20)

We should be careful here, since the covering numbers Nn(K, ε) are in relation
to the metrics:

dx
♥♠
∞ (K, K̃) =

n
max
i=1
|K(x♥

i, x
♠
i)− K̃(x♥

i, x
♠
i)| (21)

defined for a sample x♥♠ ⊂ X × X of pairs of points (x♥
i, x

♠
i). The supremum

in Definition 3 of Nn(K, ε) should then be taken over all samples of n pairs of
points. Compare with (13) where the kernels are evaluated over the n2 pairs of
points (xi, xj) arising from a sample of n points.

However, for any sample of n points x = {x1, . . . , xn} ⊂ X , we can al-
ways consider the n2 point pairs x2 = {(xi, xj)|i, j = 1..n} and observe that
Dx

∞(K, K̃) = dx
2

∞ (K, K̃) and so NDx∞(K, ε) = Ndx2
∞

(K, ε). Although such sets
of point pairs do not account for all sets of n2 point pairs in the supremum of
Definition 3, we can still conclude that for any K, n, ε > 0:

ND
n (K, ε) ≤ Nn2(K, ε) (22)

Combining (22) and (20):

Lemma 3. For any kernel family K bounded by B with pseudodimension dφ:

ND
n (K, ε) ≤

(
en2B

εdφ

)dφ
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Using Lemma 3 and relying on (10) and Theorem 1 we have:

Theorem 2. For any kernel family K, bounded by B and with pseudodimension
dφ, and any fixed γ > 0, with probability at least 1−δ over the choice of a training
set of size n:

sup
f∈FK

estγ(f) ≤

√
8
2 + dφ log 128en3B

γ2dφ
+ 256 Bγ2 log γen

8√
B

log 128nB
γ2 − log δ

n

Theorem 2 is stated for a fixed margin but it can also be stated uniformly over
all margins, at the price of an additional |log γ| term (e.g. [15]). Also, instead
of bounding K(x, x) for all x, it is enough to bound it only on average, i.e.
require E[K(X,X)] ≤ B. This corresponds to bounding the trace of the Gram
matrix as was done by Lanckriet et al.. In any case, we can set B = 1 without
loss of generality and scale the kernel and margin appropriately. The learning
setting investigated here differs slightly from that of Lanckriet et al., who studied
transduction, but learning bounds can easily be translated between the two
settings.

5 The Pseudodimension of Common Kernel Families

In this section, we analyze the pseudodimension of several kernel families in
common use. Most pseudodimension bounds we present follow easily from well-
known properties of the pseudodimension of function families, which we review at
the beginning of the section. The analyses in this section serve also as examples
of how the pseudodimension of other kernel families can be bounded.

5.1 Preliminaries

We review some basic properties of the pseudodimension of a class of functions:

Fact 4. If G′ ⊆ G then dφ(G′) ≤ dφ(G).

Fact 5 ([17, Theorem 11.3]). Let G be a class of real-valued functions and
σ : R �→ R a monotone function. Then dφ ({σ ◦ g | g ∈ G}) ≤ dφ(G).

Fact 6 ([17, Theorem 11.4]). The pseudodimension of a k-dimensional vector
space of real-valued functions is k.

We will also use a classic result of Warren that is useful, among other things, for
bounding the pseudodimension of classes involving low-rank matrices. We say
that the real-valued functions (g1, g2, . . . , gm) realize a sign vector b ∈ {±1}m iff
there exists an input x for which bi = sign gi(x) for all i. The number of sign
vectors realizable by m polynomials of degree at most d over Rn, where m ≥ n,
is at most (4edm/n)n [19].
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5.2 Combination of Base Kernels

Since families of linear or convex combinations of k base kernels are subsets of
k-dimensional vector spaces of functions, we can easily bound their pseudodi-
mension by k. Note that the pseudodimension depends only on the number of
base kernels, but does not depend on the particular choice of base kernels.

Lemma 7. For any finite set of kernels S = {K1, . . .Kk},

dφ(Kconvex(S)) ≤ dφ(Klinear(S)) ≤ k

Proof. We have Kconvex ⊆ Klinear ⊆ spanS where spanS = {
∑

i λiKi|λi ∈ R} is
a vector space of dimensionality ≤ k. The bounds follow from Facts 4 and 6. 
�

5.3 Gaussian Kernels with a Learned Covariance Matrix

Before considering the family KGaussian of Gaussian kernels, let us consider a
single-parameter family that generalizes tuning a single scale parameter (i.e. vari-
ance) of a Gaussian kernel. For a function d : X × X → R+, consider the class

Kscale(d)
def=

{
Kd
λ : (x1, x2) �→ e−λd(x1,x2) | λ ∈ R+

}
. (23)

The family of spherical Gaussian kernels is obtained with d(x1, x2) = ‖x1 − x2‖2.

Lemma 8. For any function d, dφ(Kscale(d)) ≤ 1.

Proof. The set {−λd | λ ∈ R+} of functions over X × X is a subset of a one-
dimensional vector space and so has pseudodimension at most one. Composing
them with the monotone exponentiation function and using Fact 5 yields the
desired bound. 
�

In order to analyze the pseudodimension of more general families of Gaussian
kernels, we will use the same technique of analyzing the functions in the exponent
and then composing them with the exponentiation function. Recall that class
K�Gaussian of Gaussian kernels over R� defined in (3).

Lemma 9. dφ(K�Gaussian) ≤ �(�+ 1)/2

Proof. Consider the functions at the exponent: {(x1, x2) �→ −(x1 − x2)A(x1−
x2) | A ∈ R�×� , A � 0} ⊂ span{(x1, x2) �→ (x1−x2)[i] · (x1−x2)[j] | i ≤
j ≤ �} where v[i] denotes the ith coordinate of a vector in R�. This is a vector
space of dimensionality �(�+ 1) and the result follows by composition with the
exponentiation function. 
�

We next analyze the pseudodimension of the family of Gaussian kernels with
a diagonal covariance matrix, i.e. when we apply an arbitrary scaling to input
coordinates:

K(�−diag)
Gaussian =

{
Kλ̄ : (x1, x2) �→ e−(λ̄′(x1−x2))2 | λ̄ ∈ R�

}
(24)
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Lemma 10. dφ(K(�−diag)
Gaussian) ≤ �

Proof. We use the same arguments. The exponents are spanned by the � func-
tions (x1, x2) �→ ((x1−x2)[i])

2. 
�

As a final example, we analyze the pseudodimension of the family of Gaussian
kernels with a low-rank covariance matrix, corresponding to a low-rank A in our
notation:

K�,kGaussian =
{

(x1, x2) �→ e−(x1−x2)′A(x1−x2) | A ∈ R�×�, A � 0, rankA ≤ k
}

This family corresponds to learning a dimensionality reducing linear transfor-
mation of the inputs that is applied before calculating the Gaussian kernel.

Lemma 11. dφ(K�,kGaussian) ≤ kl log2(8ek�)

Proof. Any A � 0 of rank at most k can be written as A = U ′U with U ∈ Rk×�.
Consider the set G = {(x♥, x♠) �→ −(x♥− x♠)′U ′U(x♥− x♠) | U ∈ Rk×�} of
functions at the exponent. Assume G pseudo-shatters a set of m point pairs
S = {(x♥

1, x
♠
1) . . . , (x

♥
m, x

♠
m)}. By the definition of pseudo-shattering, we get that

there exist t1, . . . , tm ∈ R so that for every b ∈ {±1}m there exist Ub ∈ Rk×�

with bi = sign (−(x♥
i−x♠

i)
′U ′U(x♥

i−x♠
i)− ti) for all i ≤ m. Viewing each

pi(U) def= −(x♥
i−x♠

i)
′U ′U(x♥

i−x♠
i) − ti as a quadratic polynomial in the k� en-

tries of U , where x♥
i−x♠

i and ti determine the coefficients of pi, we get a set
of m quadratic polynomials over k� variables which realize all 2m sign vectors.
Applying Warren’s bound [19] discussed above we get 2m ≤ (8em/k�)k� which
implies m ≤ kl log2(8ek�). This is a bound on the number of points that can be
pseudo-shattered by G, and hence on the pseudodimension of G, and by com-
position with exponentiation we get the desired bound. 
�

6 Conclusion and Discussion

Learning with a family of allowed kernel matrices has been a topic of significant
interest and the focus of considerable body of research in recent years, and several
attempts have been made to establish learning bounds for this setting. In this
paper we establish the first generalization error bounds for kernel-learning SVMs
where the margin complexity term and the dimensionality of the kernel family
interact additively rather then multiplicatively (up to log factors). The additive
interaction yields stronger bounds. We believe that the implied additive bounds
on the sample complexity represent its correct behavior (up to log factors),
although this remains to be proved.

The results we present significantly improve on previous results for convex
combinations of base kernels, for which the only previously known bound had a
multiplicative interaction [1], and for Gaussian kernels with a learned covariance
matrix, for which only a bound with a multiplicative interaction and an un-
specified dependence on the input dimensionality was previously shown [14]. We
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also provide the first explicit non-trivial bound for linear combinations of base
kernels—a bound that depends only on the (relative) margin and the number
of base kernels. The techniques we introduce for obtaining bounds based on the
pseudodimension of the class of kernels should readily apply to straightforward
derivation of bounds for many other classes.

We note that previous attempts at establishing bounds for this setting [1, 2, 14]
relied on bounding the Rademacher complexity [15] of the class FK. However,
generalization error bounds derived solely from the Rademacher complexity
R[FK] of the class FK must have a multiplicative dependence on

√
B/γ: The

Rademacher complexity R[FK] scales linearly with the scale
√
B of functions in

FK, and to obtain an estimation error bound it is multiplied by the Lipschitz
constant 1/γ [15]. This might be avoidable by clipping predictors in FK to the
range [−γ, γ]:

FγK
def= {f[±γ] | f ∈ FK}, f[±γ](x) =

⎧⎪⎨⎪⎩
γ if f(x) ≥ γ
f(x) if γ ≥ f(x) ≥ −γ
−γ if −γ ≥ f(x)

(25)

When using the Rademacher complexity R[FK] to obtain generalization error
bounds in terms of the margin error, the class is implicitly clipped and only the
Rademacher complexity of FγK is actually relevant. This Rademacher complexity
R[FγK] is bounded by R[FK]. In our case, it seems that this last bound is loose.
It is possible though, that covering numbers of K can be used to bound R[FγK]

by O
(
γ logND

2n(K, 4B/n2) +
√
B
)
/
√
n, yielding a generalization error bound

with an additive interaction, and perhaps avoiding the log factors of the margin
complexity term Õ

(
B/γ2

)
of Theorem 2.
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A Analysis of Previous Bounds

We show that some of the previously suggested bounds for SVM kernel learning
can never lead to meaningful bounds on the expected error.

Lanckriet et al. [1, Theorem 24] show that for any class K and margin γ, with
probability at least 1− δ, every f ∈ FK satisfies:

err(f) ≤ êrrγ(f) + 1√
n

(
4 +

√
2 log(1/δ) +

√
C(K)
nγ2

)
(26)

Where C(K) = Eσ[maxK∈K σ
′Kxσ], with σ chosen uniformly from {±1}2n and x

being a set of n training and n test points. The bound is for a transductive setting
and the Gram matrix of both training and test data is considered. We continue
denoting the empirical margin error, on the n training points, by êrrγ(f), but
now err(f) is the test error on the specific n test points.

The expectation C(K) is not easy to compute in general, and Lanckriet et al.
provide specific bounds for families of linear, and convex, combinations of base
kernels.

A.1 Bound for Linear Combinations of Base Kernels

For the family K = Klinear of linear combinations of base kernels (equation (1)),
Lanckriet et al. note that C(K) ≤ c · n, where c = maxK∈K trKx is an upper
bound on the trace of the possible Gram matrices. Substituting this explicit
bound on C(K) in (26) results in:
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err(f) ≤ êrrγ(f) + 1√
n

(
4 +

√
2 log(1/δ) +

√
c
γ2

)
(27)

However, the following lemma shows that if a kernel allows classifying much of
the training points within a large margin, then the trace of its Gram matrix
cannot be too small:

Lemma 12. For all f ∈ FK: trKx ≥ γ2(1− êrrγ(f))n

Proof. Let f(x) = 〈w, φ(x)〉, ‖w‖ = 1. Then for any i for which yif(xi) =
yi〈w, φ(xi)〉 ≥ γ we must have

√
K(xi,xi) = ‖φ(xi)‖ ≥ γ. Hence trKx ≥∑

i|yif(xi)≥γ K(xi, xi) ≥ |{i|yif(xi) ≥ γ}| · γ2 = (1− êrrγ(f))n · γ2. 
�

Using Lemma 12 we get that the right-hand side of (27) is at least:

êrrγ(f) + 4+
√

2 log(1/δ)√
n

+
√

γ2(1−errγ(f))n
nγ2 > êrrγ(f) +

√
1− êrrγ(f) ≥ 1 (28)

A.2 Bound for Convex Combinations of Base Kernels

For the family K = Kconvex of convex combinations of base kernels (equation

(2)), Lanckriet et al. bound C(K) ≤ c ·min
(
m,nmaxKi

‖(Ki)x‖2
tr((Ki)x)

)
, where m is

the number of base kernels, c = maxK∈K tr(Kx) as before, and the maximum is
over the base kernels Ki. The first minimization argument yields a non-trivial
generalization bound that is multiplicative in the number of base kernels, and is
discussed in Section 1.2. The second argument yields the following bound, which
was also obtained by Bousquet and Herrmann [2]:

err(f) ≤ êrrγ(f) + 1√
n

(
4 +

√
2 log(1/δ) +

√
c·b
γ2

)
(29)

where b = maxKi ‖(Ki)x‖2 / tr (Ki)x. This implies ‖Kx‖2 ≤ b · trKx ≤ b · c for
all base kernels and so (by convexity) also for all K ∈ K. However, similar to
the bound on the trace of Gram matrices in Lemma 12, we can also bound the
L2 operator norm required for classification of most points with a margin:

Lemma 13. For all f ∈ FK: ‖Kx‖2 ≥ γ2(1 − êrrγ(f))n

Proof. From Lemma 1 we have f(x) = K1/2
x w for some w such that ‖w‖ ≤ 1,

and so ‖Kx‖2 = ‖K1/2
x ‖

2
2 ≥ ‖K1/2

x w‖2 = ‖f(x)‖2. To bound the right-hand side,
consider that for (1− êrrγ(f))n of the points in x we have |f(xi)| = |yif(xi)| ≥ γ,
and so ‖f(x)‖2 =

∑
i f(xi)2 ≥ (1− êrrγ(f))n · γ2. 
�

Lemma 13 implies bc ≥ γ2(1− êrrγ(f))n and a calculation similar to (28) reveals
that the right-hand side of (29) is always greater than one.
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Abstract. We study polynomial time learning algorithms for Multiplic-
ity Automata (MA) and Multiplicity Automata Function (MAF) that
minimize the access to one or more of the following resources: Equiva-
lence queries, Membership queries or Arithmetic operations in the field
F . This is in particular interesting when access to one or more of the
above resources is significantly more expensive than the others.

We apply new algebraic approach based on Matrix Theory to sim-
plify the algorithms and the proofs of their correctness. We improve the
arithmetic complexity of the problem and argue that it is almost opti-
mal. Then we prove tight bound for the minimal number of equivalence
queries and almost (up to log factor) tight bound for the number of
membership queries.

1 Introduction

In computational learning theory, one of the interesting problems studied in the
literature is learning the classes of Multiplicity Automata (MA) and Multiplicity
Automata Function (MAF) over any field from membership (substitution) and
equivalence queries [20, 12, 6, 13, 7, 4, 5, 11, 10]. This class includes many interest-
ing classes such as: decision trees, disjoint DNF, O(log n)-term DNF, multivariate
polynomials, DFA, boxes and more. In all the algorithms in the literature, it is
assumed that the cost of all the resources are the same. In practice, one resource
may be more expensive than the others. For example, if the field is the reals
then arithmetic operation is not one unit step.

In this paper we study polynomial time learning algorithms for Multiplicity Au-
tomata that minimize the access to one or more of the following resources: Equiv-
alence queries, Membership queries or Arithmetic operations in the field F . First,
we improve the arithmetic complexity of the problem and argue that it is optimal.
Then prove tight bound for the minimal number of equivalence queries and almost
(up to log factor) tight bound for the number of membership queries.

We summarize the contributions of the paper in the following:

1. Matrix Approach: Representing MA in algebraic structure enables using
the theory of matrices. We show that the representation of any MA is unique
up to similarity of matrices. This gives simple algorithms and analysis.

2. Arithmetic Complexity: With this new algebraic approach we use tech-
niques from algebraic complexity to improve the arithmetic complexity of

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 184–198, 2006.
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the problem. We also introduce a new hypothesis class called the Extended
Multiplicity Automata class (EMA) and learn MA from this class with arith-
metic complexity that is independent of the alphabet size. We show that the
arithmetic complexity in this algorithm is optimal in the sense that it is
equal to the arithmetic complexity of computing the target function in all
the counterexamples received by the algorithm.

3. Equivalence Query Complexity: We prove a lower bound for the number
of equivalence queries. Then we give a polynomial time learning algorithm
for MA that is optimal in the equivalence query complexity.

4. Membership Query Complexity: We give a lower bound for the number
of queries which is almost tight (up to log factor). This gives an almost tight
lower bound for the number of membership queries.

5. Results for MAF: In the full paper, we also obtain results similar to
the above for MAF. We introduce a new representation of a MAF called
the compressed MAF and use it to show learnability that obtains optimal
number of equivalence queries and almost optimal number of membership
queries and arithmetic operations for MAF.

2 Preliminaries

2.1 Concept Classes

Let Σ = {σ1, . . . , σt} be a finite alphabet of size t and F be a field. A Multiplicity
Automaton Function (MAF) with an alphabet Σ over a field F with n variables
is a function f : Σn → F of the form f(w1w2 · · ·wn) = Λ

(w1)
1 · · ·Λ(wn)

n where
for every σ ∈ Σ and every i, Λ(σ)

i is si × si+1 matrix with entries from F and
s1 = sn+1 = 1. We define the size of f at level i as sizei(f) = si, the width of f
is sizemax(f) = maxi si and the size of f , size(f), is

∑
i si. See full paper for a

graph representation of MAF.
A Multiplicity Automaton (MA) with an alphabetΣ over a field F is a function

f : Σ∗ → F of the form f(w1w2 · · ·wm) = βΛ(w1)Λ(w2) · · ·Λ(wm)γT where for
each σ ∈ Σ, Λ(σ) is s×s matrix and β, γ are s vectors over F . We define Λ(ε) = I
the identity matrix and Λ(σw) = Λ(σ)Λ(w) for every σ ∈ Σ and string w. Then
we can write f(w) = βΛ(w)γT for any string w. We call s the size of the MA f .
See full paper for a graph representation of MA.

An Extended Multiplicity Automaton (EMA) with an alphabet Σ over a field
F is a function f : Σ∗ → F of the form f(w1w2 · · ·wm) = βΛ(w1)Λ̂Λ(w2)Λ̂ · · ·
Λ(wm)Λ̂γT , where Λ(σ), Λ̂ are s× s matrices and β, γ are s vectors. Obviously,
an EMA is an MA with Λ̃(σ) = Λ(σ)Λ̂. See full paper for a graph representation
of EMA.

2.2 Properties of MA

In this section we give some properties of MA
The next Theorem shows that if we have 2s strings x1, . . . , xs, y1, . . . , ys such

that the matrix [f(xi · yj)]i,j (the i, jth entry is f(xi · yj)) is non-singular, then
we can construct the MA for f .
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Theorem 1. Let f(x) = βΛ(x)γT be an MA of size s. Let x1, . . . , xs, y1, . . . , ys

be strings in Σ∗ such that [f(xi · yj)]i,j is non-singular. Then f(x) = β0Λ
(x)
0 γT0

where

Λ
(σ)
0 = M (σ)N−1, γ0 = (f(x1), . . . , f(xs)), β0 = (f(y1), . . . , f(ys))N−1

and M (σ) = [f(xi · σ · yj)]i,j and N = [f(xi · yj)]i,j .

Proof. Let

K =

⎛⎜⎜⎜⎝
βΛ(x1)

βΛ(x2)

...
βΛ(xs)

⎞⎟⎟⎟⎠ and L = (Λ(y1)γT | · · · |Λ(ys)γT ).

Now we have N = KL, M (σ) = KΛ(σ)L, (f(x1), . . . , f(xs))T = KγT and
(f(y1), . . . , f(ys)) = βL. Since N = KL is non-singular, K and L are non-
singular. Now it straightforward to show that for any wordw we have β0Λ

(w)
0 γT0 =

βΛ(w)γT = f(w).

Now, we show that the MA representation is unique up to similarity

Lemma 1. Let f(x) = β1Λ
(x)
1 γT1 and g(x) = β2Λ

(x)
2 γT2 be two MAs of size s.

We have f(x) ≡ g(x) if and only if there is a non-singular matrix J such that
β2 = β1J

−1, γT2 = JγT1 and Λ(σ)
2 = JΛ

(σ)
1 J−1 for every σ ∈ Σ.

Proof. The “If” part of the Lemma is straightforward. For the “only if” part,
define K1, L1 and K2, L2, as defined in the proof of Theorem 1, for β1Λ

(x)
1 γT1

and β2Λ
(x)
2 γT2 , respectively. Then N = K1L1 = K2L2 and M (σ) = K1Λ

(σ)
1 L1 =

K2Λ
(σ)
2 L2. Now for J = K−1

2 K1 we have J = L2L
−1
1 and Λ(σ)

2 = JΛ
(σ)
1 J−1.

A similar result is proved for MAF in the full paper.

2.3 The Learning Model

Our learning model is the exact learning model [2, 17]. In this model a teacher
has a target function f that the learner (learning algorithm) wants to learn from
queries. In the equivalence query, the learner gives the teacher a hypothesis h.
The teacher returns either yes, signifying that h is equivalent to f , or no with
a counterexample, which is an assignment (b, f(b)) such that h(b) �= f(b). In the
membership query, the learner gives the teacher an assignment a. The teacher
returns f(a).

We say that the learner learns a class of functions C, if for every function
f ∈ C, the learner outputs a hypothesis h that is equivalent to f . The goal of the
learner is to learn in polynomial time where “polynomial time” means polynomial
in the size of the shortest representation of f and the longest counterexample
returned by the teacher.
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3 The Algorithm and Its Analysis

In this section we introduce a simple algorithm similar to the one in [4] with
the theory of matrices. Then we give a simple proof for its correctness. We will
assume |Σ| > 1. See the full paper for unary alphabet.

3.1 The Learning Algorithm for MA

The algorithm initially asks EQ(0) and receives a counterexample x1. Then it
defines X = {x1} and Y = {y1 = ε}. At stage � it uses two sets of strings X =
{x1, x2, . . . , x�} and Y = {y1 = ε, y2, . . . , y�} where N(X,Y ) = N = [f(xi ·yj)]i,j
is a non-singular matrix. Then the algorithm defines the hypothesis defined in
Theorem 1. That is, h(x) = β0Λ

(x)
0 γT0 where

Λ
(σ)
0 = M (σ)N−1, γ0 = (f(x1), . . . , f(x�)), β0 = (f(y1), . . . , f(y�))N−1

and
M (σ) = [f(xi · σ · yj)]i,j

for every σ ∈ Σ. Notice that γT0 = NeT1 where ei is the ith unit vector.
Now the algorithm asks equivalence query with h(x) and receives a counterex-

ample z ∈ Σ∗ where f(z) �= h(z). The algorithm then finds a prefix w · σ of z,
where σ ∈ Σ, such that (see Fact 1 in the next subsection)

(f(w · y1), . . . , f(w · y�)) = β0Λ
(w)
0 N (1)

and

(f(w · σ · y1), . . . , f(w · σ · y�)) �= β0Λ
(w·σ)
0 N, (2)

and adds x�+1 = w to X and y�+1 = σ · yi0 to Y where i0 is any entry that
satisfies f(w · σ · yi0) �= β0Λ

(w·σ)
0 NeTi0 . Such entry exists because of (2). Then it

goes to stage �+ 1.

3.2 Correctness of the Algorithm

We first show that such w · σ, that satisfies (2), exists and then show that the
new matrix N(X̂, Ŷ ), where X̂ = {x1, . . . , x�, x�+1} and Ŷ = {y1, . . . , y�, y�+1},
is non-singular.

Fact 1. If f(z) �= h(z) then there is a prefix w · σ for z that satisfies (1).

Proof. It is enough to show that the first equality in (1) is true for w = ε and
the second inequality in (2) is true for w = z. For the prefix w = ε we have
(f(y1), . . . , f(y�)) = β0N = β0Λ

(ε)
0 N . Now for w = z, f(z · y1) = f(z) �= h(z) =

β0Λ
(z)
0 γT0 = β0Λ

(z)
0 NeT1 .
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Now we show

Fact 2. The new matrix N̂ = N(X̂, Ŷ ) is non-singular.

Proof. We have X̂ = X ∪ {w} and Ŷ = Y ∪ {σ · yi0}. Therefore

N̂ =
(

N M (σ)eTi0
β0Λ

(w)
0 N f(w · σ · yi0)

)
.

Now since M (σ) = Λ
(σ)
0 N ,(

I 0
β0Λ

(w)
0 −1

)
N̂ =

(
N M (σ)eTi0
0 β0Λ

(w·σ)
0 NeTi0 − f(w · σ · yi0)

)
,

and β0Λ
(w·σ)
0 NeTi0 − f(w · σ · yi0) �= 0, the rank of N̂ is �+ 1.

3.3 The Complexity of the Algorithm

In all the results, m is the longest counterexample received by the learner and
the time complexity is linear in the number of queries and arithmetic operations.

A straightforward algebraic computation gives the same query and arithmetic
complexity as in [4]. In [4], Beimel et. al. proved the following.

Theorem 2. Let F be a field, and f : Σ∗ → F be an MA of size s. Then
f is learnable as MA from s + 1 equivalence queries and O((|Σ| + logm)s2)
membership queries in

O(|Σ|sM(s) +ms3) = O(|Σ|s3.37 +ms3)

arithmetic operations. Here,M(s) is the complexity of s×smatrix multiplication.

In the next section we improve the arithmetic complexity to O(|Σ|s3 + ms3)
using MA hypothesis and then to O(ms3) using EMA hypothesis.

4 Almost Optimal Arithmetic Complexity

In this section we prove the following

Theorem 3. Let F be a field, and f : Σ∗ → F be an MA of size s. Then
f is learnable as EMA from s + 1 equivalence queries and O((|Σ| + logm)s2)
membership queries with

O(ms3)

arithmetic operations.

Notice that the arithmetic complexity in the Theorem is independent of how
large is the alphabet. The arithmetic complexity is almost optimal in the follow-
ing sense: It is known, [9], that the equivalence query complexity of any poly-
nomial time learning algorithm for MA is at least Ω̃(s) . Computing the target
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hypothesis in Ω̃(s) strings of lengthm takes Ω̃(ms3) arithmetic operations in the
field. So the optimality is in the sense that the arithmetic complexity of the al-
gorithm is within logarithmic factor of the arithmetic complexity for computing
the target hypothesis in all the counterexamples received in the algorithm.
Proof of Theorem 3. At stage � the algorithm asks equivalence query with a
hypothesis h(x) and receives a counterexample z ∈ Σ∗. Then for every prefix w
of z it computes β0Λ

(w)
0 and β0Λ

(w)
0 N . This can be done in O(m�2) arithmetic

operations. Then the algorithm does a binary search to find a prefix that satisfies
(1). This takes � logm membership queries. Then it builds N̂ . Notice that all the
entries of N̂ are already known from previous computations. To build M̂ (σ) for
all σ ∈ Σ it needs to ask membership queries to find f(x�+1 ·σ ·yi), f(xi ·σ ·y�+1)
and f(x�+1 · σ · y�+1). This takes (2�+ 1)|Σ| membership queries. By Lemma 2
below N̂−1 and each Λ̂(σ)

0 can be computed with O(�2) arithmetic operations.
Therefore it needs O(|Σ|�2) arithmetic operations to compute all Λ̂(σ)

0 . Finally,
to compute β̂0 it needs O(�2) arithmetic operations.

This gives arithmetic complexity O(|Σ|s3 +ms3) and the algorithm outputs
MA. In the case where the output can be EMA, we can omit the step that
computes Λ(σ)

0 for every σ and output the EMA

f(w) = β̂0M
(w1)N−1M (w2)N−1 · · ·M (w|w|)N−1γ̂T0 .

This gives the result.

The results for MAF are in the full paper.

Lemma 2. Let N and M be two � × � matrices with entries from F and Λ =
MN−1. Let u, λ ∈ F� be such that u = λN . Let

N̂ =
(
N vT

u ξ

)
, M̂ =

(
M pT

q η

)
where N̂ is nonsingular matrix where v, q, p ∈ F� and ξ, η ∈ F . Then

N̂−1 =
1
ω

(
ωN−1 − (N−1vT )λ N−1vT

λ −1

)
where ω = λvT − ξ and

M̂N̂−1 =
1
ω

(
ωΛ− (ΛvT )λ + pTλ ΛvT − pT

ω(qN−1)− ((qN−1)vT )λ+ ηλ (qN−1)vT − η

)
.

From the definitions of MA and EMA we have

Fact 3. 1. For an MA f of size s and a string a ∈ Σ∗, f(a) can be computed
in |a|s2 arithmetic operations.

2. For an EMA f of size s and a string a ∈ Σ∗, f(a) can be computed in 2|a|s2
arithmetic operations.
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Can we compute f(a) faster? Proving lower bounds for the number of arith-
metic complexity of problems is one of the hardest tasks in algebraic complexity.
Techniques used today give only lower bounds that are linear in the number of
distinct variables of the problem. For example, the best lower bound for ma-
trix multiplication is 2.5s2 for any field, [3] and 3s2 for the binary field, [21]. In
the problem of computing f(a) for any MA f and any a ∈ Σ∗, the number of
distinct variables is min(|Σ|, |a|)s2 + 2s, which is the number of the entries of
Λ(σ), β and γ. To the best of our knowledge, no better lower bound is known for
this problem. This bound does not match the upper bound in Fact 3, which we
believe is optimal up to some log factor.

In the full paper, the following slightly better upper bound is proved

Fact 4. We have
For an MA or EMA f of size s and t strings a1, . . . , at, ai ∈ Σ∗ and |ai| ≤ m

for every i, f(ai) can be computed in

O

(
ts2m log |Σ|

log(ts2m/M(s))

)
arithmetic operations when (ts2m)/M(s) > 2 and O(ts2m) arithmetic opera-

tions otherwise.

5 An Optimal Arithmetic Complexity

In this section we define a compressed MA that, with the results of the previous
section, will further improve the arithmetic complexity of the algorithm. The
bound we achieve here matches the arithmetic complexity of computing the
target in all the s counterexamples received in the algorithm.

We first add a new symbol # to the alphabet Σ and call it blank . For this
symbol Λ(�)

0 = I the identity matrix. This means that for any w ∈ (Σ ∪ {#})∗,
f(w) is equal to f(ŵ) where ŵ is w without the blanks.

Let f̂ be a function f̂ : Σ∗ → F . Define a function f : (Σ ∪ {#})∗ → F where
f(w) = f̂(ŵ). It is clear that the size of f̂ is equal to the MA size of f .

For an alphabet Σ we define the alphabet Σ[�] = {[w1w2 · · ·w�] | wi ∈ Σ}.
Define an operator φ : Σ[�] → Σ� where φ([w1w2 · · ·w�]) = w1w2 · · ·w�. For a
function f : Σ∗ → F we define the �-compressed function f [�] : (Σ[�])∗ → F as
follows: f [�](u1u2 · · ·ut) = f(φ(u1)φ(u2) · · ·φ(ut)).

It is easy to see that the MA size of f [�] is at most the MA size of f . Just
define Λ([w1w2···w�])

0 = Λ
(w1)
0 Λ

(w2)
0 · · ·Λ(w�)

0 . It is also easy to see that member-
ship queries and equivalence queries to f [�] can be simulated using membership
queries and equivalence queries to f and if we learn f [�] we can construct f in
linear time.

Using the above representation with � = (ε(logm+ log s))/(log |Σ|) we have

Lemma 3. Let F be a field, and f : Σ∗ → F be an MA of size s. Then for any
constant ε, f is learnable as EMA from s + 1 equivalence queries and mεs2+ε

membership queries with
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O

(
ms3 log |Σ|

logm+ log s

)
arithmetic operations.

In the full paper we show that this bound is true even if the learner does not
know m and s.

6 Almost Optimal Query Complexity

In this section we prove a lower bound for the number of queries and show that
the main algorithm is optimal up to (logm)/|Σ|.

We first prove the following

Theorem 4. Any learning algorithm that learns MA of size at most s over any
field must ask at least |Σ|s2 − s2 queries.

Proof. Let F be any field and Σ = {σ1, . . . , σ|Σ|}. Define the field extension
K = F({zi,j,k}) of F with s2|Σ| algebraically independent elements {zi,j,k| i, j =
1, . . . , s , k = 1, . . . , |Σ|}. Denote by z the vector ((zi,j,k)i,j,k) (that contains zi,j,k
in some order). Consider any algorithm A that learns MA over any field. Then
A, in particular, learns MA over K.

Consider Λ(σk) = [zi,j,k]i,j , γ = β = e1 and the MA f(x) = βΛ(x)γT . We run
the algorithm A on the target f . Let f(w1), . . . , f(wt) be the queries asked to
the membership query or received by the equivalence query in A. Notice that for
all r = 1, . . . , t, f(wr) = βΛ(wr)γT = pr(z) for some multivariate polynomial pr.
The algorithm finds β0, Λ

(σ)
0 and γ0 where f(x) = β0Λ

(x)
0 γT0 . By Lemma 1 there

is a non-singular matrixK with entries from K such that Λ(σk) = K−1Λ
(σk)
0 K for

every k. Since the entries of Λ(σk), k = 1, . . . , |Σ| are algebraically independent
and are generated from the entries of K and pr(z) we must have: The number
of entries of K, plus, the number of the polynomials pr is at least the number
of entries of Λ(σk), k = 1, . . . , |Σ|. This gives t + s2 ≥ |Σ|s2 which implies the
result.

Notice that the lower bound in Theorem 4 is true for learning algorithms that
are independent of the ground field F , i.e., learning algorithms that learn MA
for any field. We now show that any algorithm that learns MA in some specific
field F requires the same number of queries (up to constant factor).

Theorem 5. Let F be any field. Any algorithm that learns MA of size at most
s over F must ask at least (|Σ|s2 − s2 −O(s))/4 = Ω(|Σ|s2) queries.

Proof. Assume w.l.o.g that s is even and r = s/2. Let Σ = {σ0, σ1, . . . , σt−1}.
Let A be an algorithm that learns MA of size at most s over F . Notice here that
A may not learn MA over larger fields, so the technique used in the previous
Theorem cannot be applied here. We will show an adversarial strategy that forces
A to ask at least |Σ|r2 − r2 queries. Consider the r × r matrix
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Λ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Define the subset C ⊂MA where for each f ∈ C we have

Λ(σ0) =
(
Λ0 0
0 Λ0

)
and Λ(σi) =

(
Λi Λi
−Λi −Λi

)
for i > 0. where each Λi is r × r 0-1 matrix, and β = er and γ = e1 are
(2r)-vectors.

We now show the following properties of the functions in C

Claim. We have: for every f ∈ C

1. f(x · σi0 · y) = f(x · σi mod r
0 · y) for any two strings x and y.

2. f(σi0 · σk · σ
r−j+1
0 ) = Λk[i, j] for 1 ≤ i, j ≤ r.

3. f(x) = 0 for every x that contains more than one symbol from {σ1, . . . , σt−1}.

Proof of Claim. (1) follows from the fact that Λr0 = I, the identity matrix.
To prove (2), let 1 ≤ i, j ≤ r. Notice that β(Λ(σ0))i = ei and (Λ(σ0))jγT =

eTr−j+1. Also, for any s× s matrix Z we have β(Λ(σ0))iZ(Λ(σ0))r−j+1γT = Zi,j .
Then

f(σi0 ·σk ·σ
r−j+1
0 ) = βΛ(σi

0·σk·σr−j+1
0 )γT =β(Λ(σ0))iΛ(σk)(Λ(σ0))r−j+1γT =Λk[i, j].

Now (Λ(σ0))iΛ(σk)(Λ(σ0))j is of the form
(
Δ Δ
−Δ −Δ

)
and multiplying two

matrices of such form gives the zero matrix. This implies (3).

Now when the algorithm asks membership query with a string x. If x contains
two symbols from {σ1, . . . , σt−1} then the adversary returns 0 and if x = σi0
then the algorithm returns 1 if i mod r = 1 and 0 otherwise. In those cases the
learner does not gain any information about the function. When the algorithm
asks membership query with x = σi0 · σk · σ

j
0 then the adversary answers with

arbitrary value from {0, 1}. The learner then knows one of the entries of Λ(σk).
If the learner asks again a membership query with x = σi0 · σk · σ

j
0 the adversary

returns the same answer.
If the algorithm asks equivalence query with any hypothesis h, the adversary

finds some entry Λk[i, j] that the learner doesn’t know from previous query and
returns the string σi0 · σk · σ

r−j+1
0 as a counterexample.

Notice that each query determines exactly one entry in Λk[i, j]. Since we have
|Σ|r2 − r2 entries the algorithm will ask at least |Σ|r2 − r2 queries.

The lower bound for the MAF is in the full paper.
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7 Optimal Equivalence Query Complexity

In this section we prove a tight bound for the number of equivalence queries of
any polynomial time algorithm for MA.

It is known from [16] that under certain cryptographic assumptions DFA (and
therefore MA) is not learnable from equivalence queries only in polynomial time.
Similar to the technique used in [8, 9] one can prove the following:

Theorem 6. Any polynomial time learning algorithm for MA must ask at least

Ω

(
s log |Σ|

log s

)
equivalence queries.

This proves that the main algorithm in this paper in almost optimal. We now
show that this lower bound is tight.

7.1 The Algorithm

Let f(x) = βΛ(x)γT be the target MA. The algorithm begins by asking MQ(ε),
we assume, without loss of generality, that f(ε) �= 0, [4]. The algorithm then
definesX = {x1 = ε} and Y = {y1 = ε}. As in the main algorithm, the algorithm
maintains two sets of strings X = {x1, x2, . . . , x�} and Y = {y1, y2, . . . , y�}. Also,
N(X,Y ) = N = [f(xi ·yj)]i,j is non-singular matrix. For some fixed integer k ≥ 3
the algorithm defines h(x) = β0Λ

(x)
0 γT0 , where Λ(σ)

0 = M (σ)N−1,

γ0 = (f(x1), f(x2), . . . , f(x�)), β0 = (f(y1), f(y2), . . . , f(y�))N−1

and M (τ) = [f(xi · τ · yj)]i,j for τ ∈ Σ≤k def= ∪i≤kΣi. Note that γ0 = NeT1 and
β0 = e1.

Now instead of asking an equivalence query, the algorithm performs an inter-
nal checking step. It tries to find a counterexample using membership queries.
The algorithm checks for all i,j and τ ∈ Σ≤k whether f(xi ·τ ·yj) = h(xi ·τ ·yj) by
asking membership queries. If for some i,j and τ ∈ Σ≤k, f(xi ·τ ·yj) �= h(xi ·τ ·yj)
then the algorithm has found a counterexample and it proceeds as in the main
algorithm. Otherwise, the algorithm asks an equivalence query and receives a
counterexample z = z1z2 · · · z|z|.

Our goal is to show that the algorithm uses z to generate k additional inde-
pendent rows and columns in N . For k = (log s)/ log |Σ| we obtain a polynomial
time learning algorithm that asks at most

s

k
= O

(
s log |Σ|

log s

)
equivalence queries.

Fact 5. Before the algorithm asks an equivalence query M (τ) = Λ
(τ)
0 N for every

τ ∈ Σ≤k.



194 L. Bisht, N.H. Bshouty, and H. Mazzawi

Proof. Let

K =

⎛⎜⎜⎜⎜⎝
β0Λ

(x1)
0

β0Λ
(x2)
0
...

β0Λ
(x�)
0

⎞⎟⎟⎟⎟⎠ and L = (Λ(y1)
0 γT0 | · · · |Λ

(y�)
0 γT0 ).

For every σ ∈ Σ we have

M (σ) = KΛ
(σ)
0 L and N = KL.

Thus,
Λ

(σ)
0 = M (σ)N−1 = KΛ

(σ)
0 K−1.

Now, for every τ = τ1τ2 · · · τ|τ | ∈ Σ≤k, we have

M (τ) = [f(xi · τ · yj)]i,j = [h(xi · τ · yj)]i,j = KΛ
(τ)
0 L = KΛ

(τ1)
0 Λ

(τ2)
0 · · ·Λ(τ|τ|)

0 L

= KΛ
(τ1)
0 K−1 ·KΛ(τ2)

0 K−1 · · · ·KΛ(τ|τ|)
0 K−1 ·KL = Λ

(τ)
0 N.

Next, the algorithm searches for the minimal length prefix w1 of z, such that for
some σ1 ∈ Σ

(f(w1 · σ1 · y1), f(w1 · σ1 · y2), . . . , f(w1 · σ1 · y�)) �= β0Λ
(w1·σ1)
0 N.

Such prefix exists since f(z · y1) = f(z) �= h(z) = β0Λ
(z)
0 γT0 = β0Λ

(z)
0 NeT1 . Since

w1 is minimal, we get that (f(w1 · y1), f(w1 · y2), . . . , f(w1 · y�)) = β0Λ
(w1)
0 N. By

Fact 5 for all τ ∈ Σ≤2, M (τ) = Λ
(τ)
0 N and thus,

(f(τ · y1), f(τ · y2), . . . , f(τ · y�)) = e1M
(τ) = e1Λ

(τ)
0 N = β0Λ

(τ)
0 N, (3)

and therefore we have |w1| > 1.
Now the algorithm searches for minimal length prefix w2 of w1, such that for

some σ2 ∈ Σ

(f(w2 · σ2σ1 · y1), f(w2 · σ2σ1 · y2), . . . , f(w2 · σ2σ1 · y�)) �= β0Λ
(w2·σ2σ1)
0 N.

Again by Fact 5 for all τ ∈ Σ≤3 it follows that M (τ) = Λ
(τ)
0 N and, as in (3) we

conclude that |w2| > 1.
The algorithm repeats the above construction k times. Denote by σ(i) =

σiσi−1 · · ·σ1. In the jth iteration it searches for a minimal length prefix wj of
wj−1 such that for some σj ∈ Σ

(f(wj · σj · σ(j−1) · y1), . . . , f(wj · σj · σ(j−1) · y�)) �= β0Λ
(wj ·σj ·σ(j−1))
0 N.

After k iterations, the algorithm has a set of strings W = {w1, w2, . . . , wk} and
strings σ(i) for 1 ≤ i ≤ k.
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Lemma 4. For every 1 ≤ i ≤ k and i > j it follows that

(f(wi · σ(j) · y1), f(wi · σ(j) · y2), . . . , f(wi · σ(j) · y�)) = β0Λ
(wi·σ(j))
0 N

Proof. Suppose on the contrary that there exists i and j, such that, i > j and

(f(wi · σ(j) · y1), f(wi · σ(j) · y2), . . . , f(wi · σ(j) · y�)) �= β0Λ
(wi·σ(j))
0 N,

since i > j then wi is a prefix of wj , contradiction to the minimality of wj .

To conclude, we found a set of strings W = {w1, w2, . . . , wk} and strings σ(i)

that satisfy the following properties for every 1 ≤ i ≤ k and i > j:

(f(wi · σ(j) · y1), f(wi · σ(j) · y2), . . . , f(wi · σ(j) · y�)) = β0Λ
(wi·σ(j))
0 N (4)

and

(f(wi · σ(i) · y1), f(wi · σ(i) · y2), . . . , f(wi · σ(i) · y�)) �= β0Λ
(wi·σ(i))
0 N. (5)

Now the algorithm adds W to X, that is, X̂ = X
⋃
W , and σ(j) · yij to Y

where ij is any entry that satisfies

f(wj · σ(j) · yij ) �= β0Λ
(wj ·σ(j))
0 NeTij , (6)

that is, Ŷ = Y
⋃
{σ(1) · yi1 , σ(2) · yi2 , . . . , σ(k) · yik}.

We now prove that the new matrix N̂ = N̂(X̂, Ŷ )

N̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

N M (σ(1))eTi1 M (σ(2))eTi2 . . . M (σ(k))eTik
β0Λ

(w1)
0 N f(w1 · σ(1) · yi1) f(w1 · σ(2) · yi2) . . . f(w1 · σ(k) · yik)

β0Λ
(w2)
0 N f(w2 · σ(1) · yi1) f(w2 · σ(2) · yi2) . . . f(w2 · σ(k) · yik)

β0Λ
(w3)
0 N f(w3 · σ(1) · yi1) f(w3 · σ(2) · yi2) . . . f(w3 · σ(k) · yik)
...

...
...

. . .
...

β0Λ
(wk)
0 N f(wk · σ(1) · yi1) f(wk · σ(2) · yi2) . . . f(wk · σ(k) · yik)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is non-singular.

By Fact 5 above, M (τ) = Λ
(τ)
0 N for all τ ∈ Σ≤k and by (5) and (6) for all j:

β0Λ
(wj ·σ(j))NeTij − f(wj · σ(j) · yij ) �= 0,

we get that: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 . . . 0
β0Λ

(w1)
0 −1 0 0 . . . 0

β0Λ
(w2)
0 0 −1 0 . . . 0

β0Λ
(w3)
0 0 0 −1 . . . 0
...

...
...

...
. . .

...
β0Λ

(wk)
0 0 0 0 . . . −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
N̂ =
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N M (σ(1))eTi1 M (σ(2))eTi2 . . . M (σ(k))eTik
0 ζ1 − f(w1 · σ(1) · yi1) . . . . . . . . .

0 0 ζ2 − f(w2 · σ(2) · yi2) . . . . . .
...

...
...

. . .
...

0 0 0 . . . ζk − f(wk · σ(k) · yik)

⎞⎟⎟⎟⎟⎟⎠ ,

where
ζj = β0Λ

(wj ·σ(j))
0 Neij .

Therefore the result follows.

7.2 The Complexity

In this subsection we analyze the complexity of the algorithm above. We will
show that this algorithm achieves the lower bound of equivalence queries com-
plexity for learning MA.

We show

Theorem 7. Let F be a field, and f : Σ∗ → F be an MA of size s. Then f is
learnable as MA from r ≤ �s/k� equivalence queries and O(r|Σ| ·msk+ |Σ|ks2)
membership queries in O(r · |Σ|ms2k + (s − r · (k − 1))|Σ|kM(s)) arithmetic
operations, for some fixed integer k.

Proof. We already proved that each time a counterexample is received we add
k rows and columns to N . As a result, when the size of the target MA is s, r is
bounded by �s/k�.

When the algorithm asks an equivalence query and gets a counterexample z,
it finds the sets W and {σ(i)|1 ≤ i ≤ k}. Denote by w0 = z, the algorithm finds
a minimal length prefix w′ of w0 for which

(f(w′ · σ′ · y1), f(w′ · σ′ · y2), . . . , f(w′ · σ′ · y�)) �= β0Λ
(w′·σ′)
0 N

for some σ′ ∈ Σ.
Then it assigns W ← {w1 = w′} and σ(1) = σ′. In the jth iteration, it finds

a minimal prefix w′ of wj−1 such that

(f(w′·σ′·σ(j−1)·y1), f(w′·σ′·σ(j−1)·y2), ..., f(w′·σ′·σ(j−1)·y�)) �=β0Λ
(w′·σ′·σ(j−1))
0 N

for some σ′ ∈ Σ.
Then W ←W ∪ {wj = w′} and σ(j) = σ′ · σ(j−1). The algorithm runs k iter-

ations, each iteration j takes at most |Σ|ms membership queries and computes

β0Λ
(w′·σ′·σ(j−1))
0 N for every prefix w′ of wj−1 which takes O(|Σ|ms2) arithmetic

operations. Thus after each counterexample, the total number of membership
queries asked is O(|Σ|msk) and the total number of arithmetic operations is
O(|Σ|ms2k). Notice that, we already computed Λσ

(j−1)

0 N since |σ(j−1)| ≤ k.
Now, we have X̂ = W

⋃
X and Ŷ = Y

⋃
{σ(j) · yij |j = 1 . . . , k} and ij is any

entry that satisfies (6).
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All entries of N̂ are known. To update the matrices M̂ (τ) for all τ ∈ Σ≤k, the
algorithm asks O(s2 · |Σ|k) membership queries during its run.

By Lemma 5 below we can findN−1 andΛ(σ)
0 , for everyσ∈Σ, inO(s2 log(s)|Σ|)

arithmetic operations.
Finally our algorithm performs the internal checking step, it needs to compute

Λ
(τ)
0 N for every τ ∈ Σ≤k. For this, the algorithm multiplies

∑k
i=1 |Σ|i = O(|Σ|k)

matrices each of size at most s× s. Since multiplying two matrices of size s× s
takes M(s) arithmetic operations, to perform internal checking the algorithm
needs O(|Σ|kM(s)) arithmetic operations.

When finding a counterexample z during the internal checking, z will be of
the form xi · τ ′ · yj for some xi ∈ X , yj ∈ Y and τ ′ ∈ Σ≤k. For minimal length
τ ′ = τ ′1τ

′
2 · · · τ ′|τ ′|, such that z remains a counterexample, the algorithm adds

xi · τ ′1τ ′2 . . . τ ′|τ ′|−1 to X and τ ′|τ ′| · yj to Y .
In this case, updating N and Λ(σ), for every σ ∈ Σ, will be as in the proof of

Theorem 3 and it will cost O(|Σ|s2) arithmetic operations at most.
To conclude, if the algorithm asks r equivalence queries, each time it asks

O(|Σ|msk) membership queries and needs O(|Σ|ms2k) arithmetic operations.
Consequently, the algorithm will find s− r · k counterexamples, by asking mem-
bership queries in the internal check, each time it needs O(|Σ|s2) arithmetic
operations. Moreover, each time the algorithm performs an internal checking it
takes O(|Σ|kM(s)) arithmetic operations.

Summing all the above, when learning a target MA function of size s, we need
O(r · |Σ|msk + |Σ|ks2) membership queries and O(r · |Σ|ms2k + (s − r · (k −
1))|Σ|kM(s)) arithmetic operations.

Lemma 5. Let N and M be two � × � matrices with entries from F and Λ =
MN−1. Let u,Δ ∈ F log �×� be such that u = ΔN .

N̂ =
(
N vT

u ξ

)
, M̂ =

(
M pT

q η

)

where N̂ is nonsingular matrix where v, q, p ∈ F log �×� and ξ, η ∈ F log �×�. Then

N̂−1 =
(
N−1 − (N−1vTω−1)Δ N−1vTω−1

ω−1Δ −ω−1

)
where ω = λvT − ξ and

M̂N̂−1 =
(

Λ− (ΛvTω−1)Δ+ pTω−1Δ ΛvTω−1 − pTω−1

(qN−1)− ((qN−1)vTω−1)Δ+ ηω−1Δ (qN−1)vTω−1 − ηω−1

)
.

See the full paper for the MAF results.
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Abstract. The Composition Lemma is one of the strongest tools for
learning complex classes. It shows that if a class is learnable then com-
posing the class with a class of polynomial number of concepts gives a
learnable class. In this paper we extend the Composition Lemma as fol-
lows: we show that composing an attribute efficient learnable class with a
learnable class with polynomial shatter coefficient gives a learnable class.

This result extends many results in the literature and gives polynomial
learning algorithms for new classes.

1 Introduction

The Composition Lemma is one of the strongest tools for learning complex
classes. It shows that if a class C is learnable then composing C with poly-
nomial number of concepts G gives a learnable class C(G). This Lemma is used
for learning k-CNF of size s (CNF with s terms where each term is of size at most
k) in time O(nk) and O(sk logn) equivalence queries, k-DL (decision list with
terms in the nodes of size at most k) in time O(n3k) and O(n2k) equivalence
queries. Those results was later applied to learning decision tree and CDNF
(boolean functions with polynomial size CNF and DNF) in quasi-polynomial
time [6, 3], and DNF in sub-exponential time [4, 8, 13].

In this paper we extend the Composition Lemma as follows: We show that
composing an attribute efficient learnable class with a learnable class with poly-
nomial shatter coefficient gives a learnable class. Since classes of constant VC
dimension has polynomial shatter coefficient, we can apply our result for any
class of constant VC dimension.

The following subsections give some results and compare them with the results
known from the literature.

1.1 Conjunction of Concepts

Let C be a class with constant VC-dimension, d, that is learnable in polynomial
time with q equivalence queries. It is known from [5] that

∧
k C = {g1 ∧ · · · ∧

gk | gi ∈ C} is learnable in (2kq)dd
⊥

time and equivalence queries where d⊥

is the VC-dimension of the dual class1 of C. In most applications d⊥ ≥ d (for
1 The dual class C⊥ of C is the set of functions gx : C → {0, 1} where gx(f) = f(x).

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 199–213, 2006.
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example halfspaces), which gives at least (2kq)d
2

time and query complexity.
Our algorithm in this paper runs in time O((k2q)d+2) and asks

O(k2q log(kq))

equivalence queries. This significantly improves the query complexity of the al-
gorithm.

Our algorithm also runs in polynomial time for classes with polynomial shatter
coefficient. This cannot be handled by the previous technique developed in [5].
In particular, if C1, C2, . . . , C� are learnable classes with polynomial shatter co-
efficient then

C1 ∧ C2 ∧ · · · ∧ C� = {f1 ∧ f2 ∧ · · · ∧ f� | fi ∈ Ci}
is learnable.

1.2 Halfspace of Functions and Other Classes

Let C be a class with polynomial shatter coefficient that is learnable in polyno-
mial time. Then the class HS(C) = {a1f1+a2f2+ · · ·+a�f� ≥ 0 | f1, . . . , f� ∈ C}
and k-CNF(C) = {H(f1, . . . , f�) | H is k-CNF } are learnable in polynomial
time. Those classes includes many interesting classes. For example, let X =
{1, 2, . . . , n}d and let C be the set of all halfspaces over X that depends on
a constant number of variables. Then HS(C) is the class of depth two Neural
Networks with constant fan-in at the hidden nodes [2]. Also the class k-CNF(C)
is interesting because it includes the geometric class of union of k = O(1) n-
dimensional polytopes with facets that depends on j = O(1) variables. In par-
ticular, it includes the class of union of O(1) boxes in the n-dimensional space.
In the constant dimensional space it includes the classes: union of any number
of polytopes with constant number of facets, a polytope (with any number of
facets) and union of constant number of polytopes. In particular, it contains the
union of any number of boxes in the constant dimensional space.

In [2], Auer et. al. already showed that HS(C) and k-CNF(C) are learnable in
polynomial time for C that is halfspaces that depends on a constant number of
variables. Our result in this paper shows that HS(C) and k-CNF(C) are learnable
in polynomial time for any learnable class C with polynomial shatter coefficient.

Another example is the class of boolean functions on strings that is a threshold
of weighted substrings. For w ∈ {0, 1}≤n let fw : {0, 1}n → {0, 1} be the function
fw(x) = 1 if and only if w is a substring of x, i.e., there is i such that w =
xixi+1 · · ·xi+|w|−1. Consider the class C of all fw where w is a string over {0, 1}.
Then the class of threshold of weighted substrings is HS(C). We show that C
has a polynomial shatter coefficient and therefore the class HS(C) is learnable
in polynomial time.

2 Preliminaries

Let X be a set of instances. We call X the instance space. A concept over X is a
boolean function f : X → {0, 1}. A concept class C over X is a set of concepts
over X .
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We say that f is positive (respectively, negative) on x ∈ X if f(x) = 1 (respec-
tively, f(x) = 0). We say that f is positive (respectively, negative) on X ′ ⊂ X if
for every x ∈ X ′ we have f(x) = 1 (respectively, f(x) = 0).

For a concept f over X and X ′ ⊆ X we define the projection f |X′ : X ′ →
{0, 1} where f |X′(x) = f(x) for every x ∈ X ′. For a concept class C over X , the
projection of C over X ′ is C|X′ = {f |X′ : f ∈ C}. We say that f1 agrees with
f2 on X ′ if f1|X′ ≡ f2|X′ , i.e., for every x ∈ X ′ we have f1(x) = f2(x).

Let Q ⊆ X . We say that the concept class F over X is complete (concept
class) for Q (with respect to C) if C|Q ⊆ F |Q. In other words, for every f ∈ C
there is h ∈ F that agrees with f on Q. We say that Q is shattered by C if
C|Q = 2Q. The Vapnik-Chervonenkis VC-dimension of C, VCdim(C), is the size
of the largest set shattered by C. We define the shatter coefficient S(C,m) to be
the maximal size of C|Q where |Q| = m.

The following is proved by Sauer, [12], and independently by Perles and She-
lah.

Lemma 1. Let C be a concept class over X. For a finite set Q ⊆ X and C′ =
C|Q we have

|C′| ≤ g(|Q|, d) Δ=
d∑
i=0

(
|Q|
i

)
≤
(
e|Q|
d

)d
where d = VCdim(C).

In particular, there is a complete concept class for Q with respect to C of size
at most g(|Q|, d).

Sauer Lemma does not always give the best bound. Consider the following
example

Example. Let X = (n where ( is the set of the real numbers and suppose
n = 2�. Consider the function fi,a : X → {0, 1} where fi,a(x1, . . . , xn) = 1 if and
only if xi > a. Consider the concept class C = {fi,a | i = 1, . . . , n and a ∈ (}.
The VC-dimension of C is at least � = logn because the set {q1, . . . , q�} where
{(q1,i, q2,i, . . . , q�,i) | i = 1, . . . , �} = {0, 1}� is shattered by the set of functions
{fi,0 | i = 1, . . . , n} ⊂ C. Now Sauer bound for C|Q gives at least (|Q|/logn)log n

where it is easy to see that the size of C|Q is at most n(|Q|+ 1).

Therefore, we will sometimes use the following properties to find upper bounds
on the shatter coefficient

Lemma 2. Let C, C1 and C2 be concept classes over X and σ : {0, 1}2 → {0, 1}.
Define σ(C1, C2) = {σ(f1, f2)| f1 ∈ C1, f2 ∈ C2} and C1⊗σ C2 = {f : X ×X →
{0, 1}; f(x, y) = σ(f1(x), f2(y)) | f1 ∈ C1, f2 ∈ C2}. We have

1. S(C,m) ≤ g(m,VCdim(C)).
2. S(C1 ∪ C2,m) ≤ S(C1,m) + S(C2,m).
3. S(σ(C1, C2),m) ≤ S(C1,m)S(C2,m).
4. S(C,m1 +m2) ≤ S(C,m1)S(C,m2).
5. S(C1 ⊗σ C2,m) ≤ S(C1,m)S(C2,m).
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We will also consider a family of concept classes C = {C(n)}, n = 1, 2, · · ·
where C(n) is a concept class over an instance space X(n). When it is clear from
the context, we will just call C a concept class.

For the instance space X(n) = {0, 1}n and a concept class C, we say that C is
closed under combinations (with repetition) if for every xi1 , . . . , xik ∈ {x1, . . . , x�}
and a concept f̂ ∈ C(k) there is a concept f ∈ C(�) such that

f̂(xi1 , . . . , xik) ≡ f(x1, . . . , x�).

Let C1 = {C(n)
1 } be a concept class over {0, 1}n and let C2 be a concept class

over X . The composition of the two concept classes is a concept class over X
defined as

C1(C2) = {f(p1, . . . , pk) | f ∈ C(k)
1 , p1, . . . , pk ∈ C2, k = 1, 2, · · ·}.

2.1 The Learning Model

In the exact learning model, [1, 9], a teacher has a boolean function f , called the
target function, which is a member of a concept class C over an instance spaceX .
The goal of the learner is to find a hypothesis h that is logically equivalent to f .
The learner can ask the teacher equivalence queries. In each equivalence query
the learner sends the teacher a hypothesis h : X → {0, 1} from some class
of hypothesis H . The teacher answers “YES” if h is logically equivalent to f ,
and provides a counterexample, x0 such that f(x0) �= h(x0), otherwise. We will
regard the learner as a learning algorithm, the teacher as an oracle EQ, and the
equivalence query as a call to this oracle, EQ(h).

We say that a learning algorithm A learns C from H in time t(A) and q(A)
equivalence queries if for every target function f ∈ C, A runs in time at most
t(A), asks at most q(A) equivalence queries with hypothesis from H and output
a hypothesis from H that is logically equivalent to the target function f . If such
algorithm exists, then we say that C is learnable from H in time t(A) and q(A)
equivalence queries.

Throughout the paper we will assume that H is decidable in polynomial time.
That is, given a boolean formula h, the learner can decide in polynomial time
whether h ∈ H .

For a concept class C = {C(n)} over {0, 1}n. We say that algorithm A learns
C from H = {H(n)} in time t(A(n)) and q(A(n)) equivalence queries if for every
n, A(n) learns C(n) from H(n) in time t(A(n)) and q(A(n)) equivalence queries.

3 The Composition Lemma

In this section we prove (for completeness) the following well known composition
Lemma [7, 11].

Lemma 3. (Composition Lemma) Let C = {C(n)} be a concept class over
{0, 1}n that is closed under combinations. Suppose C is learnable from H in time
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t(A(n)) and q(A(n)) equivalence queries. Let G = {g1, . . . , g�} be a concept class
over X where each gi is computable in time Com(G). Then, the algorithm A(G)
in Figure 1 learns C(G) from H(G) in time O(� · q(A(�)) · Com(G) + t(A(�)))
and asks q(A(�)) equivalence queries.

Algorithm A(G = {g1, . . . , g�}).
1. � ← |G|;
2. Run A(�) with the following changes in each step
3. If A(�) asks EQ(h(x1, . . . , x�))
4. then Ask EQ(h(g1, . . . , g�)).
5. If the oracle answers “YES” then return(h(g1, . . . , g�))
6. If the oracle answers q ∈ X
7. then give (g1(q), . . . , g�(q)) to A(�)
8. If A(�) outputs h then return(h(g1, . . . , g�))

Fig. 1. An algorithm that learns C(G)

Proof. Let f̂(gi1 , . . . , gik) ∈ C(G) be the target function where f̂ ∈ C(k) and
gi1 , . . . , gik ∈ G. Since the concept class is close under combinations, there is a
function f ∈ C(�) such that f̂(gi1 , . . . , gik) ≡ f(g1, . . . , g�).

Now since each counterexample q for h(g1, . . . , g�) satisfies

h(g1(q), . . . , g�(q)) �= f̂(gi1(q), . . . , gik(q)) = f(g1(q), . . . , g�(q)),

the assignment (g1(q), . . . , g�(q)) is a counterexample for h with respect to the
function f . Since A learns C from H, it will learn some h ∈ H(�) that is logically
equivalent to the function f ∈ C(�). Then

f̂(gi1 , . . . , gik) ≡ f(g1, . . . , g�) ≡ h(g1, . . . , g�).

The algorithm runs in time at most O(� · q(A(�)) · Com(G) + t(A(�))) and
asks q(A(�)) equivalence queries.

Notice that when |G| is exponentially large then the complexity is exponential.
In the next section we show that, with some constraints on C and G, a modified
version of the composition lemma gives an algorithm with small time and query
complexity even when G is exponentially large.

4 The Algorithm

In this section we give our main algorithm. The main idea of our algorithm
is the following: The learner wants to learn C1(C2) for a large concept class
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C2 using learning algorithms A1 and A2 for C1 and C2, respectively. Since the
complexity in the composition lemma (Lemma 3) depends on |C2|, which may
be exponentially large, the learner cannot use the composition lemma. Instead
it does the following: Let f(p1, . . . , pk) be the target function that the learner
is trying to learn. At some stage of the learning process the learner has a set of
examplesQ. It uses this set with the algorithmA2 to learn a complete concept for
Q, G = {g1, . . . , g�} ⊂ C2 with respect to C2. This set may not contain p1, . . . , pk
but for each pi there is gri that is “close” to pi. By “close” we mean that gri is a
hypothesis of some equivalence query in A2 when A2 runs with the target pi over
the instance space Q. Then the learner assumes that p1, . . . , pk ∈ G and runs
the algorithm A1(G). When A1(G) runs more than it should or gets stuck then
the learner knows that the assumption was wrong. But fortunately, we are able
to prove that one of the new counterexamples the learner obtains from running
A1(G) provides a counterexample for one of the gri. The learner then adds all
the counterexamples to Q and runs the algorithm again. Eventually, the set G
will contain p1, . . . , pk and A1(G) will learn the target function.

We show that if C2|Q is small and A1 has small complexity then C1(C2) is
learnable.

In subsection 4.1 we show how to build G and then in subsection 4.2 we give
our main algorithm followed by a proof of correctness and complexity analysis.

4.1 Find All Consistent Hypotheses

Let C be a concept class and H be a hypothesis class. Let A be a learning
algorithm that learns C from H in time t(A) and q(A) equivalence queries. In
this subsection we give an algorithm that, for a set of points Q = {q1, q2, . . . , q�},
outputs a set of hypothesis F ⊂ H such that C|Q ⊆ F |Q. That is, the algorithm
generates F ⊆ H that is complete for Q with respect to C.

The first algorithm in this subsection is Find Hypothesis(A, P,Q\P ) in
Figure 2. It searches for a hypothesis h ∈ H that is positive on P and negative
on Q\P for some P ⊆ Q. For such hypothesis h we say that h is consistent with
(P,Q\P ). The algorithm is very similar to the algorithm in [5].

We now prove

Fact 1. Let C be a concept class over X. Let A be a learning algorithm that
learns C from H in time t(A) and q(A) equivalence queries. Let Q be a set of �
instances from X and P ⊆ Q. Find Hypothesis(A, P,Q\P ) in Figure 2 runs
in time O(t(A) + � · q(A)) and outputs h ∈ H that satisfies the following:

1. If there is f ∈ C that is consistent with (P,Q\P ) then h is consistent
with (P,Q\P ).

2. If there in no f ∈ H that is consistent with (P,Q\P ) then h is “NULL”.
3. If there is f ∈ C that is consistent with (P,Q\P ) and A halts then h ≡ f .

Proof. The algorithm runs the learning algorithm A (line 2), counts the number
of its steps (lines 1 and 3) and the number of times it asks equivalence queries
(lines 1 and 5). If A runs more than t(A) steps, asks more than q(A) equivalence
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queries or gets stuck (this also includes the cases where the algorithm asks EQ(h)
or outputs h where h �∈ H), then it returns “NULL” (lines 3,5 and 13). This
indicates that there exists no consistent hypothesis in C for (P,Q\P ).

For each equivalence query EQ(h) that A asks, the algorithm returns to A
a counterexample from P or Q\P , i.e., some point q ∈ P where h(q) = 0 or
q ∈ Q\P where h(q) = 1 (lines 4-8). Obviously, if the algorithm cannot find such
point then the hypothesis h is consistent with (P,Q\P ) (line 6-7).

Algorithm Find Hypothesis(A, P, Q\P ).

1. time ← 0; query ← 0;
2. Run A with the following changes in each step
3. time ← time + 1;
4. If A asks EQ(h) where h ∈ H
5. then query ← query + 1;
6. If h consistent with (P, Q\P )
7. then return(h);
8. else give A a counterexample from P or Q\P .
9. If A outputs h
10. then If h consistent with (P, Q\P )
11. then return(h)
12. else return(NULL);
13. If A cannot execute this step or time > t(A) or query > q(A)
14. then return(NULL);

Fig. 2. An algorithm that finds a hypothesis that is consistent with (P, Q\P )

Now if there is f ∈ C that is consistent with (P,Q\P ) then either one of
the hypothesis h ∈ H in the equivalence queries is consistent with (P,Q\P )
or, since the learning algorithm A learns C, the algorithm A halts and outputs
h ∈ H that is equivalent to f . In both cases, the output hypothesis is in H and
consistent with (P,Q\P ).

If there is no f ∈ C that is consistent with (P,Q\P ) then either A outputs
an h ∈ H that is consistent with (P,Q\P ), gets stuck, goes into an infinite loop
or outputs a hypothesis that is not consistent with (P,Q\P ). In the latter three
cases the algorithm outputs “NULL”.

The second algorithm, Find Complete Concept in Figure 3, finds F ⊆ H
that is complete for Q with respect to C. It starts with a hypothesis h0 that
is consistent with (∅, ∅) (line 1). At stage i in the For command (line 2) the
set (of hypothesis h in) Fi−1 is complete for Qi−1 = {q1, . . . , qi−1} with respect
to C. For each hypothesis g that is consistent with (P,Qi−1\P ) (line 4) it runs
Find Hypothesis to try to find a hypothesis g1 ∈ H that is consistent with
(P ∪ {qi}, Qi−1\P ) (line 5) and a hypothesis g2 ∈ H that is consistent with



206 N.H. Bshouty and H. Mazzawi

Algorithm Find Complete Concept(A, Q = {q1, . . . , q�}).
1. h0 ←Find Hypothesis(A, ∅, ∅); F0 ← {((∅, ∅), h0)};
2. For i = 1 to � do
3. Fi ← ∅; Qi−1 ← {q1, . . . , qi−1};
4. For all ((P, Qi−1\P ), g) ∈ Fi−1 do
5. g1 ←Find Hypothesis(A, P ∪ {qi}, Qi−1\P ).
6. g2 ←Find Hypothesis(A, P, (Qi−1\P ) ∪ {qi}).
7. If g1 �=“NULL” then Fi ← Fi ∪ {((P ∪ {qi}, Qi−1\P ), g1)}
8. If g2 �=“NULL” then Fi ← Fi ∪ {((P, (Qi−1\P ) ∪ {qi}), g2)}
9. F ← {h | ((P, Q\P ), h) ∈ F�}
10.output(F ).

Fig. 3. An algorithm that outputs a complete concept for Q with respect to C

(P, (Qi−1\P ) ∪ {qi}) (line 6). That is, it assumes that qi is positive and then
tries to find a consistent hypothesis g1 ∈ H and then assumes that it is negative
and again tries to find a consistent hypothesis g2 ∈ H . If such hypothesis exists
then it puts it in Fi (lines 7 and 8).

We now show

Fact 2. Let C be a concept class over X. Let A be a learning algorithm that
learns C from H in time t(A) and q(A) equivalence queries. Let Q be a subset
of X. Find Complete Concept(A, Q) runs in time at most

O (|Q|(t(A) + |Q| · q(A)) · S(H, |Q|))

and outputsF ⊆H that is complete forQwith respect toC of size at most S(H, |Q|).

Proof. Obviously, S(H, i−1) ≤ S(H, i) and therefore, |Fi| ≤ |F|Q|| ≤ S(H, |Q|).
Therefore, the algorithm Find Complete Concept(A, Q) runs Find Hypo-
thesis at most 2|Q|S(H, |Q|) times. By Fact 1 the result follows.

We will further improve the complexity of Find Complete Concept and prove
some new properties of the algorithm that will be used in the sequel.

First, we will assume that in Find Hypothesis when A asks equivalence
query, the algorithm always chooses the counterexample in Q with the smallest
index and sends it to A. See the algorithm in Figure 2 line 8. This requirement is
not necessary but it simplifies the analysis. Second, if Find Hypothesis stops
in step 7, i.e., the hypothesis in the equivalence query h (in step 4) is consistent
with (P,Q\P ), then the next time we call Find Hypothesis (A, P ∪{q}, Q\P )
and Find Hypothesis (A, P, (Q\P ) ∪ {q}) the following facts are true:

1. The hypothesis h is consistent either with (P ∪{q}, Q\P ) or (P, (Q\P )∪{q})
and therefore for one of them the algorithm Find Complete Concept does
not need to call Find Hypothesis.
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2. For the other one, Find Hypothesis does not need to start running A from
the beginning. It can just continue running it from step 4, i.e., returns the
counterexample q to A and continue running A until either a new consistent
hypothesis is found or it returns “NULL”.

Third, if Find Hypothesis stops in step 11, then the algorithm can stop calling
Find Hypothesis for the descendants of (P,Q\P ) and add h to F .

We will call this new algorithm Find Complete. Now we have

Fact 3. Let C be a concept class over X. Let A be a learning algorithm that
learns C from H in time t(A) and q(A) equivalence queries. Let Q be a subset
of X. Find Complete(A, Q) runs in time at most

O ((t(A) + |Q| · q(A)) · S(H, |Q|))

and outputs F ⊆ H of size at most S(H, |Q|) that is complete for Q with respect
to C.

Proof. This follows from the fact that the algorithm runs only one time for every
hypothesis in F|Q|.

4.2 The Main Algorithm

In this section we give our main algorithm.
Let C1 = {C(n)

1 } be a concept class over {0, 1}n andA1 be a learning algorithm
for C1. Let C2 be a concept class over X and A2 be a learning algorithm for C2.
Consider the algorithm A1(A2) in Figure 4. At some stage of the algorithm it
has some set of examples Q. It generates a set G ⊆ H that is complete for Q with
respect to C2 (line 2). The algorithm then learns A1(G) using the composition
Lemma (see lines 4-19). If the algorithm fails (see lines 3, 5, 12-18 and 19) then
it reruns the algorithm with the examples in Q and all the counterexamples
received from A1(G) (see steps 11 and 17).

We prove

Theorem 1. Let C1 = {C(n)
1 } be a concept class over {0, 1}n that is closed

under combinations and A1 be a learning algorithm that learns C1 from H1 in
time t(A1(n)) and q(A1(n)) equivalence queries. Let C2 be a concept class over
X and A2 be a learning algorithm that learns C2 from H2 in time t(A2) and
q(A2) equivalence queries. Then A1(A2) learns C1(C2) from H1(H2) in time

O (S(H2, ρτ )(t(A2) + ρτ · q(A2)) + τ · t(A1(S(H2, ρτ ))))

and ρτ equivalence queries where τ = q(A2) · k, ρ0 = 0,

ρi+1 = ρi + q(A1(S(H2, ρi))),

and the target function is f(p1, p2, . . . , pk).
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Algorithm A1(A2).

1. Q ← ∅; s ← 0;
2. G ←Find Complete(A2, Q);
3. time ← 0; query ← 0; � ← |G|;
4. Run A1(�) with the following changes in each step
5. time ← time + 1;
6. If A1(�) asks EQ(h(x1, . . . , x�))
7. then Ask EQ(h(g1, . . . , g�)) where G = {g1, . . . , g�}.
8. If the oracle answers “YES” then return(h(g1, . . . , g�))
9. If the oracle answers q ∈ X
10. then give (g1(q), . . . , g�(q)) to A1(�)
11. s ← s + 1; qs ← q; Q ← Q ∪ {qs};
12. query ← query + 1;
13. If A1(�) outputs h
14. then Ask EQ(h(g1, . . . , g�)) where G = {g1, . . . , g�}.
15. If the oracle answer “YES” then return(h(g1, . . . , g�))
16. If the oracle answer q ∈ X
17. then s ← s + 1; qs ← q; Q ← Q ∪ {qs};
18. goto 2.
19. If A1(�) cannot execute this step or

time > t(A1(�)) or query > q(A1(�)) + 1
20. then goto 2.;

Fig. 4. An algorithm that learns C1(C2)

Proof. Let f(p1, . . . , pk) be the target function where f ∈ C(k)
1 and p1, . . . , pk ∈

C2. At stage i the algorithm has a set of instances Q collected from the equiv-
alence queries. Since G ←Find Complete(A2, Q), for every P ⊆ Q, if there
is a concept in C2 that is consistent with (P,Q\P ) then there is g ∈ G that
is consistent with (P,Q\P ). Therefore, for every j = 1, . . . , k there is grj ∈ G
that is consistent with (Pj , Q\Pj) where Pj = {q ∈ Q | pj(q) = 1}. That
is, pj|Q = grj |Q. Each grj was obtained by running A2 with (Pj , Q\Pj) in
Find Hypothesis(A2, Pj , Q\Pj). We denote bym(A2, Pj , Q\Pj) the number of
equivalence queries that A2 asks in Find Hypothesis(A2, Pj , Q\Pj) before it
outputs grj . By Fact 1, ifA2 halts then pj ≡ grj and thereforem(A2, Pj , Q\Pj) ≤
q(A2) for every j.

Now we will show that if the algorithm goes to step 2 (from step 18 or 20),
i.e., A1 fails to find the target, the new set Q′ which is Q with the new coun-
terexamples from A1(G), satisfies m(A2, P

′
j , Q

′\P ′
j) > m(A2, Pj , Q\Pj) for at

least one j where P ′
j = {q ∈ Q′ | pj(q) = 1}. In other words, one of the new

points in Q′ is a counterexample for one of the hypothesis grj . This will show
that after at most q(A2) ·k stages the set G contains p1, . . . , pk. When p1, . . . , pk
are in G then the algorithm A1(G) (steps 4-20) will learn the target.
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We will now show that either one of the new points is a counterexample for
one of the grj or the learner has learned the target. Suppose none of the points
in Q′\Q is a counterexample for gr1 , . . . , grk

. That is, for every j ≤ k and every
q ∈ Q′\Q we have grj(q) = pj(q). Then, for every q ∈ Q′\Q we have

f(p1(q), . . . , pk(q)) = f(gr1(q), . . . , grk
(q)).

Since the algorithm runs A1(G) and each counterexample for the target
f(p1, . . . , pk) is also a counterexample for f(gr1, . . . , grk

), the algorithm A1(G)
will learn h that is equivalent to f(gr1 , . . . , grk

). Then, when the algorithm
asks equivalence queries with h ≡ f(gr1 , . . . , grk

) it either receives a counterex-
ample q and then for this q ∈ Q′\Q we have f(p1(q), . . . , pk(q)) �= h(q) =
f(gr1(q), . . . , grk

(q)) which is a contradiction, or, it receives “YES” and then we
have f(gr1 , . . . , grk

) ≡ h ≡ f(p1, . . . , pk). This completes the correctness of the
algorithm.

We now prove its complexity. Let ρi be the size of |Q| at stage i. Then ρ0 = 0
and at stage i + 1 we have |G| = S(H2, ρi) and therefore A1(G) generates
q(A1(S(H2, ρi))) more counterexamples. Therefore, ρi+1 = q(A1(S(H2, ρi))) +
ρi. Since the algorithm runs at most τ = q(A2) · k stages, the number of equiv-
alence queries in the algorithm is at most ρτ .

The time complexity is the time for Find Complete with ρτ examples, which
is equal to O (S(H2, ρτ )(t(A2) + ρτ · q(A2))) plus the time for runningA1 at each
stage, which is equal to

∑τ
i=1 t(A1(S(H2, ρi))) ≤ τ · t(A1(S(H2, ρτ ))).

In the following section we give some applications of the main Theorem

5 Applications

In this section we first prove

Theorem 2. Let
∧

be the set of monotone conjunctions (monomials) over V =
{x1, x2, · · ·}. Let C be a concept class that is learnable from H in time t and
q equivalence queries. Suppose S(H,m) ≤ γmd for some d and γ ≥ 2 that are
independent of m. Then

∧
k C = {g1 ∧ · · · ∧ gk | gi ∈ C} is learnable in time

O(γρd(t+ ρq)) and
ρ = O(k2qd log(kqdγ1/d log γ))

equivalence queries.
In particular, when H has polynomial size shatter coefficient then

∧
k C is

learnable in time O(γρd0(t+ ρ0q)) and

ρ0 = O(k2q log(kqγ))

equivalence queries.

Proof. We use WINNOW1 for learning
∧

, [9]. For a conjunction over {0, 1}n
with k relevant variables, WINNOW1 runs in time O(nk logn) and asks ck logn
equivalent queries for some constants c. By Theorem 1 the number of equivalence
queries ρ satisfies ρ ≤ ρτ where τ = qk, ρ0 = 0 and
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ρi+1 = ρi + ck log(S(H, ρi)) ≤ ρi + cdk log ρi + ck log γ.

Then

ρτ =
τ−1∑
i=0

(ρi+1 − ρi)

≤
τ−1∑
i=1

cdk log ρi + ck log γ

≤ cdkτ log ρτ + ckτ log γ.

Now, using Fact 4 below, we have

ρ ≤ ρτ ≤ 2cdkτ log(c2dk2τ2 log γ) + ckτ log γ = O(k2qd log(kqdγ1/d log γ)).

By Theorem 1 the time complexity follows.

Fact 4. Let α, β > 2 be constants and ρ ≥ 1 that satisfies

ρ ≤ α log ρ+ β.

Then
ρ ≤ 2α log(αβ) + β.

Proof. Consider the two increasing monotone functions f(x) = x and g(x) =
α log x + β for x ≥ 1. Both functions intersect at one point ρ0 that satisfies
ρ0 = α log ρ0 + β. For x > ρ0 we have f(x) > g(x) and for 1 < x < ρ0 we have
f(x) < g(x). Therefore, it is enough to show that for ρ1 = 2α log(αβ) + β we
have g(ρ1) < f(ρ1).

Now since α, β > 2 we have

g(ρ1) = α log(2α log(αβ) + β) + β

< α log(2αβ log(αβ)) + β

< α log((αβ)2) + β = ρ1 = f(ρ1).

Let C be a concept class with constant VC-dimension, d, that is learnable in
polynomial time with q equivalence queries. It is known from [5] that

∧
k C =

{g1∧· · ·∧gk | gi ∈ C} is learnable in (2kq)dd
⊥

time and equivalence queries where
d⊥ is the VC-dimension of the dual concept class of C. In most applications d⊥ ≥
d (for example halfspaces), which gives at least (2kq)d

2
time and equivalence

queries. Theorem 2 shows that this concept class is learnable in time O((k2q)d+2)
and

O(k2q log(kq))

equivalence queries. This significantly improves the query complexity in [5].
Our algorithm also runs in polynomial time for concept classes with poly-

nomial shatter coefficient. This cannot be handled by the previous technique
developed in [5].
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We now show

Corollary 1. Let Ci be a concept class that is learnable from Hi in time ti and
qi equivalence queries for i = 1, . . . , k. Suppose S(Hi,m) ≤ γimdi for i = 1, . . . , k
where each di and γi > 2 are independent of m. Then the concept class

C1 ∧ C2 ∧ · · · ∧ Ck = {f1 ∧ f2 ∧ · · · ∧ fk | fi ∈ Ci}

is learnable in time O(γkρd(t+ ρq)) and

ρ = O(k2qd log(kqdγ1/d log γ))

equivalence queries where q =
∑

i qi, t =
∑

i ti, γ = maxi γi and d = maxi di.
In particular, when each Hi has polynomial size shatter coefficient then C1 ∧

C2 ∧ · · · ∧ Ck is learnable in time O(γkρd0(t+ ρ0q)) and

ρ = O(k2q log(kqγ))

equivalence queries.

Proof Sketch. Consider C = ∪iCi and H = ∪iHi. Then C is learnable in time t
and q equivalence queries. Now since

S(H1 ∪ · · · ∪Hk,m) ≤
k∑
i=1

γim
di ≤ kγmd,

by Theorem 2 the result follows.

We now show the above results with WINNOW2, [9].
For any halfspace f(x) = [a1x1 + · · · + anxn ≥ b] let α(f) be the minimal∑n
i=1 μi/δ

2 such that for all (x1, . . . , xn) ∈ {0, 1}n we have
n∑
i=1

μixi ≥ 1 if f(x1, . . . , xn) = 1

and
n∑
i=1

μixi ≤ 1− δ if f(x1, . . . , xn) = 0.

Then we have

Theorem 3. Let HSα be the set of halfspaces f over V = {x1, x2, · · ·} with
α(f) ≤ α. Let C be a concept class that is learnable from H in time t and q
equivalence queries. Suppose S(H,m) ≤ γmd for some d and γ ≥ 2 that are
independent of m. Then HSα(C) is learnable in time O(γρd(t+ ρq)) and

ρ = O(αkqd log(αkqdγ1/d log γ))

equivalence queries.
In particular, when H has polynomial size shatter coefficient then HSα(C) is

learnable in time O(γρd0(t+ ρ0q)) and

ρ0 = O(αkq log(αkqγ))

equivalence queries.
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As an application of Theorem 3 consider the concept class of boolean functions
on strings that is a threshold of weighted substrings. For w ∈ {0, 1}≤n let fw :
{0, 1}n → {0, 1} be the function fw(x) = 1 if and only if x contains w as a
substring, i.e., there is i such that w = xixi+1 · · ·xi+|w|−1. Consider the concept
class W of all fw for all strings w over {0, 1}. Then the concept class of threshold
of weighted substrings is HSα(W ).

We show

Theorem 4. Let HSα be the set of halfspaces f over V = {x1, x2, · · ·} with
α(f) ≤ α. Then HSα(W ) is learnable in time O(γρd0(t+ ρ0q)) and asks

ρ0 = O(αkn2 log(αkn))

equivalence queries.

Proof. Since m strings can have at most n2m different substrings, we have
S(W,m) ≤ n2m. Now it is easy to see that W is learnable from W with q ≤ n2

equivalence queries. Then with Theorem 3 the result follows.

In the full paper we give more results on learning k-CNF(C) and show how to
handle errors in the answers to the equivalence queries.

Acknowledgement. We would like to thank Adam Klivans for pointing to us
some of the work done in the area.
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Sci. 68(2), 303–318, 2004.

9. N. Littlestone. Learning when irrelevant attributes abound. A new linear-threshold
algorithm. Machine Learning, 2, 285–318, 1988.

10. W. Maass and M. K. Warmuth. Efficienct Learning with Virtual Threshold Gates.
Information and Computation, 141, 66–83, 1998.



Exact Learning Composed Classes with a Small Number of Mistakes 213

11. L. Pitt and M. K. Warmuth. Prediction-preserving reducibility. Journal of Com-
puter and System Science, 41(3), 430–467, 1990.

12. N. Sauer. On the dencity of families of sets. J. Combinatorial Theory, Ser. A 13,
145–147, 1972.

13. J. Tarui, T. Tsukiji. Learning DNF by Approximating Inclusion-Exclusion Formu-
lae.IEEE Conference on Computational Complexity, 215–220, 1999.

14. L. G. Valiant. A theory of the learnable. Communication of the ACM, 27(11), 1984.



DNF Are Teachable in the Average Case
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Abstract. We study the average number of well-chosen labeled exam-
ples that are required for a helpful teacher to uniquely specify a target
function within a concept class. This “average teaching dimension” has
been studied in learning theory and combinatorics and is an attractive al-
ternative to the “worst-case” teaching dimension of Goldman and Kearns
[7] which is exponential for many interesting concept classes. Recently
Balbach [3] showed that the classes of 1-decision lists and 2-term DNF
each have linear average teaching dimension.

As our main result, we extend Balbach’s teaching result for 2-term
DNF by showing that for any 1 ≤ s ≤ 2Θ(n), the well-studied concept
classes of at-most-s-term DNF and at-most-s-term monotone DNF each
have average teaching dimension O(ns). The proofs use detailed analyses
of the combinatorial structure of “most” DNF formulas and monotone
DNF formulas. We also establish asymptotic separations between the
worst-case and average teaching dimension for various other interesting
Boolean concept classes such as juntas and sparse GF2 polynomials.

1 Introduction

Many results in computational learning theory consider learners that have some
form of access to an oracle that provides labeled examples. Viewed as teachers,
these oracles tend to be unhelpful as they typically either provide random exam-
ples selected according to some distribution, or they put the onus on the learner
to select the examples herself. In noisy learning models, oracles are even allowed
to lie from time to time.

In this paper we study a learning model in which the oracle acts as a helpful
teacher [7, 8]. Given a target concept c (this is simply a Boolean function over
some domain X) that belongs to a concept class C, the teacher provides the
learner with a carefully chosen set of examples that are labeled according to c.
This set of labeled examples is called a teaching set and must have the property
that no other concept c′ �= c in C is consistent with the teaching set; thus every
learner that outputs a consistent hypothesis will correctly identify c as the target
concept. The minimum number of examples in any teaching set for c is called
the teaching dimension of c with respect to C, and the maximum value of the
teaching dimension over all concepts in C is the teaching dimension of C.

Some concept classes that are easy to learn can be very difficult to teach in
the worst case in this framework. As one example, let the concept class C over
� Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and

by a Sloan Foundation Fellowship.
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finite domain X contain |X |+ 1 concepts which are the |X | singletons and the
empty set. Any teaching set for the empty set must contain every example in
X , since if x ∈ X is missing from the set then the singleton concept {x} is not
ruled out by the set. Thus the teaching dimension for this concept class is |X |.

Many interesting concept classes include the empty set and all singletons,
and thus have teaching dimension |X |. Consequently for many concept classes
the (worst-case) teaching dimension is not a very interesting measure. With this
motivation, researchers have considered the average teaching dimension, namely
the average value of the teaching dimension of c as c ranges over all of C.

Anthony et al. [2] showed that the average teaching dimension of the class of
linearly separable Boolean functions over {0, 1}n is O(n2). Kuhlmann [9] showed
that concept classes with VC dimension 1 over finite domains have constant aver-
age teaching dimension and also gave a bound on the average teaching dimension
of concept classes Bd(c) (balls of center c and size ≤ d). Kushilevitz et al. [10]
constructed a concept class C that has an average teaching dimension of Ω(

√
|C|)

(this lower bound was also proved in [6]) and also showed that every concept
class has average teaching dimension at most O(

√
|C|). More recently, Balbach

[3] showed that the classes of 2-term DNF and 1-decision lists each have average
teaching dimension linear in n.

Our Results. Our main results are the following theorems, proved in Sections 3
and 4, which show that the well-studied concept classes of monotone DNF for-
mulas and DNF formulas are efficiently teachable in the average case:

Theorem 1. Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean
functions over {0, 1}n representable as a monotone DNF with at most s terms.
Then the average teaching dimension of C is O(ns).

Theorem 2. Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean
functions over {0, 1}n representable as a DNF with at most s terms. Then the
average teaching dimension of C is O(ns).

Theorem 2 is a broad generalization of Balbach’s result on the average teaching
dimension of the concept class of DNF with at most two terms. It is easy to see
that even the class of at-most-2-term DNFs has exponential worst-case teaching
dimension; as we show in Section 3, the worst-case teaching dimension of at-most-
s-term monotone DNFs is exponential as well. Thus our results show that there
is a dramatic difference between the worst-case and average teaching dimensions
for these concept classes.

We also consider some other well-studied concept classes, namely juntas and
sparse GF2 polynomials. For the class of k-juntas, we show in Section 5 that
while the worst-case teaching dimension has a logarithmic dependence on n (the
number of irrelevant variables), the average teaching dimension has no depen-
dence on n. For a certain class of sparse GF2 polynomials (roughly, the class
of GF2 polynomials with fewer than logn terms; see Section 6), we show that
while the worst-case teaching dimension is nΘ(log log n), the average teaching di-
mension is O(n log n). Thus in each case we establish an asymptotic separation



216 H.K. Lee, R.A. Servedio, and A. Wan

between the worst-case teaching dimension and the average teaching dimension.
Our results suggest that rich and interesting concept classes that are difficult to
learn in many models may in fact be easy to teach in the average case.

Due to space constraints some proofs are omitted; see [11] for these proofs.

2 Preliminaries

Our domain isX = {0, 1}n, and we refer to Boolean functions c : {0, 1}n → {0, 1}
as concepts. A collection of concepts C ⊆ 2{0,1}

n

is a concept class. For a given
instance x ∈ X , the value of c(x) is referred to as a label, and for y ∈ {0, 1}, the
pair (x, y), is referred to as a labeled example. If y = 0 (y = 1) then the pair is
called a negative (positive) example. A concept class C is consistent with a set
of labeled examples if c(x) = y for all the examples in the set.

A set S of labeled examples is a teaching set for c with respect to C if c is the only
concept in C that is consistent with S; thus every learner that outputs a consistent
hypothesis from C will correctly identify c as the target concept. The minimum
number of examples in any teaching set for c is called the teaching dimension of c
with respect to C (sometimes written TD(c) when C is understood), and the max-
imum value of the teaching dimension over all concepts in C is the (worst-case)
teaching dimension of C. The average teaching dimension of C is the average value
of the teaching dimension of c with respect to C for all c, i.e., 1

|C|
∑

c∈C TD(c).
We use Boolean variables x1, . . . ,xn and write x̄i to denote the negated literal

on variable xi. We will often refer to a logical assignment of the variables as
a string and vice-versa; thus, a string y ∈ {0, 1}n corresponds to a truth-value
assignment to the variables x1, . . . ,xn. Given a set S of variables, we write 0|S=1
to denote the truth assignment that sets each variable in S to 1 and sets all
other variables to 0. The truth assignment 1|S=0 is defined similarly.

Two strings y, z ∈ {0, 1}n are neighbors if they differ in exactly one bit posi-
tion. Given x, y ∈ {0, 1}n we write x ≤ y if xi ≤ yi for all i = 1, . . . , n, and we
write x < y if we have x ≤ y and x �= y.

DNF Formulas. A term is a conjunction of Boolean literals. A term over n
variables is represented by a string T ∈ {0, 1, ∗}n, where the k-th character of T
is denoted T [k]. The value of T [k] is 0, 1, or ∗ depending on whether xk occurs
negated, unnegated, or not at all in the term. If x ∈ {0, 1}n is an assignment
that satisfies T , we sometimes say that T covers x. Note that the satisfying
assignments of a term T form a subcube of dimension n − |T | within {0, 1}n,
where |T | denotes the number of non-∗ entries in T.

An s-term DNF formula φ is an OR of s terms φ = T1 ∨ · · · ∨Ts. A satisfying
assignment to the DNF is sometimes referred to as a positive point and an
unsatisfying assignment as a negative point.

A term Ti is said to be compatible with a set of labeled examples S if Ti does not
cover any negative example in S. A term Ti is said to imply another termTj if every
positive point of Ti is also a positive point of Tj. We similarly say that a term T
implies a DNF formula φ, or that a DNF formula φ1 implies another DNF formula
φ2. Two different DNF formulas φ1 and φ2 are said to be logically equivalent if
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each implies the other, i.e., if they are different syntactic representations of the
same Boolean function. Throughout the paper we will use Greek letters φ, ϕ, . . .
to denote formulas (which are syntactic objects) and Roman letters f, g, . . . to
denote Boolean functions (which are abstract mappings from {0, 1}n to {0, 1}).

We write Ds to denote the class of “exactly-s-term” DNFs; this is the class of
all Boolean functions f : {0, 1}n→{0, 1} that have some s-term DNF representa-
tion and have no s′-term DNF representation for any s′ < s. Similarly, we write
D≤s to denote the class of “at-most-s-term” DNFs, which is D≤s = ∪s′≤sDs′ .
Note that the elements of Ds and D≤s are “semantic” functions, not syntactic
formulas. The class D≤s corresponds to the standard notion of “s-term DNF”
which is a well studied concept class in computational learning theory.

A monotone DNF formula, or mDNF, is a DNF formula that contains no
negated literals. The classes of exactly-s-term mDNFs and at-most-s-term mD-
NFs are denoted Ms and M≤s and are defined in analogy with Ds and D≤s
above. The following fact is well known:

Fact 1. If f ∈ Ms then there is a unique (up to ordering of the terms) s-term
mDNF representation φ = T1 ∨ · · · ∨ Ts for f.

3 Monotone DNFs

Worst-case teaching dimension of at-most-s-term mDNFs. Here we state
upper and lower bounds on the worst-case teaching dimension ofM≤s. See [11]
for proofs of these statements.

Theorem 3. The teaching dimension of M≤s is at most ns + s.

Theorem 4. Given s, let s′ ≤ s be any value such that (s′− 1) divides n. Then
the teaching dimension of M≤s is at least ( n

s′−1 )s
′−1.

Average-case teaching dimension of at-most-s-term mDNFs. We now
prove Theorem 1. The idea is to show that almost every at-most-s-term mono-
tone DNF in fact has exactly s terms; as we will see, these exactly-s-term
monotone DNFs can be taught very efficiently with O(ns) examples. The remain-
ing concepts are so few that they can be handled with a brute-force approach
and the overall average teaching dimension will still be O(ns).

We start with a simple lemma from [7]:

Lemma 1 ([7]). Let c be any concept in Ms. Then the teaching dimension of
c with respect to M≤s is at most (n+ 1)s.

Lemma 2. For 1 ≤ i < 1
4e

n
72 , we have 2ni−1

i! ≤ |Mi| ≤ 2ni

i! .

Proof. The upper bound is easy: the number of i-term mDNFs is at most the
number of ways to choose i terms from the set of all 2n many monotone terms
over variables x1, . . . ,xn. The latter quantity is

(2n

i

)
≤ 2ni

i! .
For the lower bound we consider all 2ni ways to select a sequence of i terms

(with replacement) from the set of all 2n possible monotone terms. We show



218 H.K. Lee, R.A. Servedio, and A. Wan

that at least half of these 2ni ways result in a sequence T1, . . . , Ti of terms which
are pairwise incomparable, i.e., no Ti implies any other Tj. Each such sequence
yields an i-term mDNF, and each such mDNF occurs i! times because of different
orderings of the terms in a sequence. This gives the lower bound.

Note that a collection of i monotone terms T1, . . . , Ti will be pairwise incom-
parable if the following two conditions hold: (1) Each of the i terms contains
between 5n/12 and 7n/12 many variables, and (2) Viewing each term Ti as a
set of variables, for any j �= k the symmetric difference |TjΔTk| is of size at
least n/4. (This is because if |Tj |, |Tk| ∈ [5n/12, 7n/12] and Tj ⊆ Tk, then the
symmetric difference must be of size at most n/6.)

For condition (1), Hoeffding’s bound implies that a uniformly selected mono-
tone term T will contain fewer than 5n/12 or more than 7n/12 many variables
with probability at most 2e−n/72, so a union bound gives that condition (1)
fails with probability at most 2ie−n/72. For condition 2, observe that given
two uniform random terms Tj, Tk, each variable x� is independently in their
symmetric difference with probability 1/2. Thus Hoeffding’s bound implies that
|TjΔTk| < n/4 with probability at most e−n/8. By a union bound, the probabil-
ity that condition (2) fails is at most

(
i
2

)
e−n/8. Thus for i < 1

4e
n
72 , the probability

that conditions (1) and (2) both hold is at least 1/2. 
�

Fix 1 ≤ s ≤ 1
4e

n
72 . It is easy to check that by Lemma 2, for any k < s we have

|Mk| < 1
2 |Mk+1|. Thus (again by Lemma 2) we have |M≤s−1| ≤ 2ns−n+1

(s−1)! while

|Ms| ≥ 2ns−1

s! . Combining these bounds gives that |Ms|
|M≤s−1| ≥

2n

4s . By Lemma 1,
each concept c ∈ M≤s which is in Ms can be taught using n(s + 1) examples.
Each of the remaining concepts can surely be taught using at most 2n examples.
We thus have that the average teaching dimension ofM≤s is at most

(n+ 1)s|Ms|+ 2n|M≤s−1|
|Ms|+ |M≤s−1|

≤ (n+ 1)s+
2n

1 + 2n/4s
≤ (n+ 1)s+ 4s,

giving us the following result which is a slightly sharper version of Theorem 1:

Theorem 5. Let s be any value 1 ≤ s ≤ 1
4e

n
72 . The classM≤s of at-most-s-term

monotone DNF has average teaching dimension at most s(n+ 5).

Note that if s > 1
4e

n
72 , then 2n is bounded by some fixed polynomial in s, and

thus the worst-case teaching number 2n is actually poly(n, s) for such a large
s. This gives the following corollary which says that the class of at-most-s-term
monotone DNF is efficiently teachable on average for all possible values of s:

Corollary 1. Let s be any value 1 ≤ s ≤ 2n. The class M≤s of at-most-s-term
monotone DNF has average teaching dimension poly(n, s).

4 DNFs

Now we will tackle the teaching dimension of the unrestricted class of size-at-
most-s DNFs. The high-level approach is similar to the monotone case, but the
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details are more complicated. The idea is to identify a subset S of D≤s and show
that (i) any function f ∈ S can be uniquely specified within all of D≤s using
only O(ns) examples; and (ii) at most a O(s)

2n fraction of all functions in D≤s
do not belong to S. Given (i) and (ii) it is easy to conclude that the average
teaching number of D≤s is O(ns).

The challenge is to devise a set S that satisfies both conditions (i) and (ii). In
the monotone case using Fact 1 it was easy to show thatMs is an easy-to-teach
subset, but non-monotone DNF are much more complicated (no analogue of
Fact 1 holds for non-monotone DNF) and it is not at all clear that all functions
in Ds are easy to teach. Thus we must use a more complicated set S of easy-
to-teach functions; we define this set and prove that it is indeed easy to teach
in Section 4.2. (This argument uses Balbach’s results for exactly-2-term DNFs.)
The argument that (ii) holds for S is correspondingly more complex than the
counting argument for mDNFs because of S’s more involved structure; we give
this in Section 4.3.

4.1 Preliminaries

We will borrow some terminology from Balbach [3]. Two terms Ti and Tj have
a strong difference at k if Ti[k], Tj [k] ∈ {0, 1} and Ti[k] �= Tj [k] (e.g., x1x̄5x6
and x̄5x̄6x12x23 have a strong difference at position 6). Two terms have a weak
difference at k if Ti[k] ∈ {0, 1} and Tj [k] = ∗ or vice-versa. Two weak differences
at positions k and � are of the same kind if Ti[k], Ti[�] ∈ {0, 1} and Tj[k] = Tj[�] =
∗ or vice-versa, that is both ∗’s occur in the same term (e.g., x̄5x6 and x̄5x̄6x12x23
have two weak differences of the same kind at positions 12 and 23). Two weak
differences at positions k and � are of different kinds if Ti[k], Tj[�] ∈ {0, 1} and
Tj[k] = Ti[�] = ∗ or vice-versa (e.g., x̄5x6 and x̄5x12 have two weak differences
of different kinds at positions 6 and 12).

Now we introduce some new terminology. Given y ∈ {0, 1}n which satisfies a
term T , we denote by NT (y) the set consisting of y and all its neighbors that do
not satisfy T. A satisfying assignment y ∈ {0, 1}n of a term T in φ is called a
cogent corner point of T if all the neighbors of y that satisfy φ satisfy T , and all
the neighbors that do not satisfy T do not satisfy φ. Note that if y is a cogent
corner point of T , then each of the neighbors of y in NT (y) does not satisfy φ. A
pair of points y, z ∈ {0, 1}n that satisfy a term T are said to be antipodal around
T if yk = zk for all k such that T [k] = ∗. A pair of points are cogent antipodal
points around T if they are both cogent corner points of T and antipodal around
T . This leads us to our first preliminary lemma:

Lemma 3. Let φ = T1 ∨ · · · ∨Ts be any DNF. Let y be a cogent corner point of
Ti. Any T̂ that covers y and is compatible with NTi(y) must imply Ti.

Proof. Let T̂ be any term that covers y. Observe that for each literal � in Ti,
if T̂ did not contain � then T̂ would not be compatible with NTi(y) since the
corresponding negative neighbor of y is contained inNTi(y) but would be covered
by T̂ . It follows that every literal in Ti is also present in T̂ , and consequently T̂
implies Ti. 
�
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Two terms are said to be close if they have at most one strong difference. Note
that there is no strong difference between two terms if and only if they have some
satisfying assignment in common, and there is one strong difference between two
terms if and only if they have neighboring satisfying assignments.

Given a Boolean function f : {0, 1}n→{0, 1}, we let Gf denote the undirected
graph whose vertices are the satisfying assignments of f and whose edges are
pairs of neighboring satisfying assignments. A cluster C of f is a set of satisfying
assignments that form a connected component in Gf . We sometimes abuse no-
tation and write C to refer to the Boolean function whose satisfying assignments
are precisely the points in C. We say that a DNF φ computes cluster C if the set
of satisfying assignments for φ is precisely C. The DNF-size of a cluster C is the
minimum number of terms in any DNF that computes C. For intuition, we can
view a cluster as being a connected set of positive points that have a “buffer”
of negative points separating them from all other positive points. The following
lemma is immediate:

Lemma 4. Let f be an element of Ds, i.e. f is an exactly-s-term DNF. Let
C1, . . . , Cr be the clusters of f . Then DNF-size(C1) + · · ·+ DNF-size(Cr) = s.

4.2 Teaching S
We are now ready to define our “nice” (easy to teach) subset S ⊆ D≤s of
size-at-most-s DNFs. (We emphasize that S is a set of functions, not of DNF
expressions.) S consists of those exactly-s-term DNFs (so in fact S ⊆ Ds) all
of whose clusters either: (1) have DNF-size 1; (2) have DNF-size 2; or (3) have
DNF-size k, for some k, and are computed by a DNF φ = T1 ∨ · · · ∨ Tk in which
each Ti has a pair of cogent antipodal points around it.

Note that if a cluster has DNF-size 1, then it clearly satisfies condition (3)
above (in fact every pair of antipodal points for the term is cogent). Thus we can
simplify the description of S: it is the set of all exactly s-term DNFs all of whose
clusters either: (i) have DNF-size k and are computed by a DNF φ = T1∨· · ·∨Tk
in which each Ti has a pair of cogent antipodal points around it, or (ii) have
DNF-size exactly 2. (Note that there do in fact exist Boolean functions of DNF-
size 2 for which any two-term representation T1 ∨ T2 has some term Ti with no
pair of cogent antipodal points around it, e.g., x1x3 ∨ x2x3, and thus condition
(ii) is non-redundant.)

The teaching set for functions in S. We will use the following theorem due
to Balbach [3]:

Theorem 6. Let c be any element of D2 (i.e., an exactly-2-term DNF). The
teaching dimension of c with respect to D≤2 is at most 2n+ 4.

The teaching set specified in [3] to prove Theorem 6 consists of at most 5 positive
points along with some negative points. Given f ∈ D2, we define BTS(f) to be
the union of the teaching set specified in [3] together with all negative neighbors
of the (at most five) positive points described above (the set specified in [3]
already contains some of these points). With this definition a straightforward
consequence of the analysis of [3] is the following:
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Lemma 5. Let φ = T1∨· · ·∨Ts be a DNF that has a cluster C with DNF-size 2.
Let BTS(C) be as described above. Let y be a satisfying assignment for φ that is
contained in C. Then any term T̂ that covers y and is consistent with BTS(C)
must imply C.

Given any function f ∈ S, our teaching set TS(f) for f will be as follows. For
each cluster C of f , if C:

– satisfies condition (i): then for each term Ti described in condition (i),
the set TS(f) contains a pair y, z of cogent antipodal points for Ti (these are
positive examples) and contains all negative neighbors of these two positive
examples (i.e., TS(f) contains NTi(y) and NTi(z)). Thus TS(f) includes at
most k(2 + 2n) many points from such a cluster.

– does not satisfy condition (i) but satisfies (ii): then we will give the
set BTS(C) described above. By Theorem 6 and the definition of BTS(C),
we have that BTS(C) contains at most 7n+ 4 points.

Lemma 4 now implies that TS(f) contains at most O(ns) points.

Correctness of the teaching set construction. We now prove that the set
TS(f) is indeed a teaching set that uniquely specifies f within all of D≤s.

We first observe that any term compatible with TS(f) can only cover positive
examples from one cluster of φ.

Lemma 6. Let y be any positive example in TS(f) and let T be any term that
covers y and is compatible with TS(f). Let C be the cluster of φ that covers y.
Then if z is any positive example in TS(f) that is not covered by C, T does not
cover z.

Proof. If C satisfies condition (i) then y must be a cogent corner point and
Lemma 3 gives the desired conclusion. If C does not satisfy (i) but satisfies (ii),
then the conclusion follows from Lemma 5. 
�

The next two lemmas show that any set of terms that covers the positive ex-
amples of a given cluster must precisely compute the entire cluster and only the
cluster of the original function:

Lemma 7. Let C be any case (i) cluster of DNF-size k. Let PC be the intersec-
tion of the positive examples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ k
terms such that the DNF T̂1∨· · ·∨ T̂j both: (a) is compatible with TS(f), and (b)
covers every point in PC . Then it must be the case that j = k and T̂1 ∨ · · · ∨ T̂j
exactly computes C (in fact each term T̂i is equivalent to Ti up to reordering).

Proof. By Lemma 3, a term T̂ that covers a cogent antipodal point from term Ti
cannot cover any of the other 2k − 2 cogent antipodal points from other terms,
and thus we must have j = k since fewer than k terms cannot cover all of PC .
Moreover, any term T̂i must cover a pair of antipodal points corresponding to
a single term (which wlog we call Ti). For each antipodal pair corresponding to
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a term Ti, the covering term T̂i must be of size at least |Ti|, and since they are
cogent antipodal points, the covering term cannot be any longer than |Ti|, so in
fact we have that T̂i and Ti are identical. This proves the lemma. 
�

Lemma 8. Let C be any case (ii) cluster. Let PC be the intersection of the
positive examples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ 2 terms such
that the DNF T̂1 ∨ · · · ∨ T̂j both: (a) is compatible with TS(f), and (b) covers
every point in PC . Then it must be the case that j = 2 and T̂1 ∨ T̂2 exactly
computes C.

Proof. The fact that BTS(C) is a teaching set (for the exactly-2-term DNF
corresponding to C, relative to D≤2) implies the desired result, since no single
term or 2-term DNF not equivalent to C can be consistent with BTS(C), and
any DNF T̂1 ∨ · · · ∨ T̂j as in the lemma must be consistent with BTS(C). 
�

The pieces are in place for us to prove our theorem:

Theorem 7. For any f ∈ S, the set TS(f) uniquely specifies f within D≤s.

Proof. By Lemma 6, positive points from each cluster can only be covered by
terms that do not include any positive points from other clusters. By Lemmas 7
and 8, for each cluster C, the minimum number of terms required to cover all
positive points in the cluster (and still be compatible with TS(f)) is precisely
the DNF-size of C. Since f is an exactly-s-term DNF, Lemma 4 implies that
using more than DNF-size(C) many terms to cover all the positive points in any
cluster C will “short-change” some other cluster and cause some positive point
to be uncovered. Thus any at-most-s-term DNF φ that is consistent with TS(f)
must have the property that for each cluster C, at most DNF-size(C) of its terms
cover the points in PC ; so by Lemmas 7 and 8, these terms exactly compute C,
and thus φ must exactly compute f. 
�

4.3 Average-Case Teaching Dimension of DNFs

Now we will show that all but at most a O(s)
2n fraction of functions in D≤s are in

fact in S. We do this by showing that at least a 1− O(s)
2n fraction of functions in

D≤s are in the easy-to-teach set S, i.e. they belong to Ds and are such that each
cluster satisfies either condition (i) or (ii) from Section 4.2. Since we have shown
that each f ∈ S can be uniquely specified within D≤s using O(ns) examples,
this will easily yield that the average teaching number over all of D≤s is O(ns).

First we show that most functions in D≤s are in fact in Ds. We can bound
|Di| using the same approach as we did for monotone DNFs.

Lemma 9. For i < (9/7)n/3, we have 1
2 ·

3ni

i! ≤ |Di| ≤
3ni

i! .

Proof. As in Lemma 2, the upper bound is easy; we may bound the number of
functions in Di by the number of ways to choose i terms from the set of all 3n

possible terms over variables x1, . . . ,xn. This is
(3n

i

)
≤ 3ni

i! .
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For the lower bound, we first note that a DNF formula consisting of i terms
that are all pairwise far from each other cannot be logically equivalent to any
other DNF over a different set of i terms. We will show that at least half of
all 3ni possible sequences of i terms have the property that all i terms in the
sequence are pairwise far from each other; this gives the lower bound (since each
such set of i terms can be ordered in i! different ways).

So consider a uniform random draw of i terms T1, . . . , Ti from the set of all 3n

possible terms. The probability that T1 and T2 are close is the probability that
they have no strong differences plus the probability that they have exactly one
strong difference. This is (7/9)n + n(7/9)n−1(2/9) < (n + 1)(7/9)n. By a union
bound over all pairs of terms, the probability that any pair of terms is close at
most

(
i
2

)
(n+ 1)(7/9)n which is less than 1/2 for i < (9/7)n/3. 
�

As in Section 3, as a corollary we have that |Ds|
|D≤s−1| ≥

3n

4s for s ≤ (9/7)n/3.
We now bound the number of DNFs in Ds that are not in S. To do this, we

consider choosing s terms at random with replacement from all 3n terms:

Lemma 10. Fix any s ≤ (9/8)n/25. Let f = T1, . . . , Ts be a sequence of exactly
s terms selected by independently choosing each Ti uniformly from the set of all
3n possible terms. Let A(Ti) denote the event that term Ti in f has no cogent
antipodal pairs, and B(Ti) denote the event that there is more than one other
term close to Ti in f . Then Pr[∃Ti ∈ f : A(Ti)&B(Ti)] ≤ O(s)

2n , where the
probability is taken over the choice of f .

Using Lemma 10 we can bound the number of functions f ∈ Ds that are not in
S. If f ∈ Ds\S, then f must have a DNF formula representation φ = T1∨· · ·∨Ts
in which some term Ti (1) has no cogent antipodal pairs, and (2) has at least
two other terms Tj, Tk that are close to it. (If there were no such term, then for
any representation φ = T1 ∨ · · · ∨ Ts for the function f , every Ti is contained
in either a cluster of DNF-size 1 or 2, or a cluster of DNF-size k with a pair
of good antipodal points around it. But then φ would be in S.) We will call
such a syntactic DNF formula “bad.” Lemma 10 tells us that the number of
bad syntactic formulas is at most 3nsO(s)

2n , since there are 3ns syntactic formulas.
Notice that any bad formula φ must have s distinct terms (since the function it
computes belongs to Ds), and since these terms can be ordered in s! different
ways, there are at least s! bad formulas that compute the same function as φ.
Consequently the number of bad functions in Ds, |Ds \ S|, is at most O(s)

2n
3ns

s! .
By Lemma 9, |Ds| is at at least 3ns

2s! . This gives the following:

Corollary 2. |Ds\S|
|Ds| ≤

O(s)
2n .

We now proceed to prove Lemma 10.

Proof. The bulk of the argument is in showing that Pr[A(T1) & B(T1)] is at
most O(1) · 2−n; once this is shown a union bound gives the final result.

We condition on the outcome of T1. Using the fact that each variable occurs
independently in T1 (either positive or negated) with probability 2/3, a Chernoff
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bound gives that Pr[|T1| < .08n] ≤ 2−n, so we have that

Pr[A(T1) & B(T1)] ≤ 2−n+
∑

T :|T |≥.08n
Pr[A(T1) & B(T1) | (T1 = T )]·Pr[T1 = T ].

Next we show that Pr[A(T1) & B(T1) | (T1 = T )] ≤ O(1) · 2−n for every T
satisfying |T | ≥ .08n; this implies an O(1) · 2−n bound on Pr[A(T1) & B(T1)].
To do this we consider a third event which we denote by C(T1); this is the event
that T1 is close to at most 25 of the terms T2, . . . , Ts. Clearly we have that

Pr[A(T1) & B(T1) | (T1 = T )] = Pr[A(T1) & B(T1) & ¬C(T1) | (T1 = T )]
+ Pr[A(T1) & B(T1) & C(T1) | (T1 = T )] (1)

and we proceed by bounding each of the terms in (1).
The first term is at most Pr[¬C(T1) | (T1 = T )]. Fix any α ∈ [.08, 1] and any

term T of length αn, and fix T1 = T . Then the probability (over a random draw
of T2 as in the statement of the lemma) that T2 is close to T1 is the probability
that T1 and T2 have one strong difference plus the probability that T1 and T2 have
no strong difference, which is exactly αn 1

3

( 2
3

)αn−1 +
(2

3

)αn ≤ 2αn
(2

3

)αn
. Using

the independence of the terms T2, . . . , Ts and a union bound, it follows that the
probability that there exists any set ofK terms in f which are all close to T1 is at
most

(
s
K

)
(2αn)K

( 2
3

)Kαn. It is not hard to verify that for any 1 ≤ s ≤ (9/8)n/25,
any K ≥ 26, and any α ∈ [.08, 1], this quantity is asymptotically less than 2−n.

It remains to bound the second term of (1) by O(1) · 2−n. We do this using
the following observation:

Proposition 1. Let f = T1, . . . , Ts be any sequence of s terms. If T1 has no
cogent antipodal pairs with respect to f and is close to at most K of the terms
T2, . . . , Ts, then there must be some term among T2, . . . , Ts that is close to T1
and contains at most k = �logK�+ 1 variables not already in T1.

Proof. We show that if every term in f close to T1 contains more than k variables,
there must remain some cogent antipodal pair for T1. Let r be the number of
variables in T1 and let � = n− r. For any z ∈ {0, 1}� let QT1(z) denote the set of
points in {0, 1}n consisting of the antipodal pair induced by z on T1 (these two
points each satisfy T1) and the 2r neighbors of these points that do not satisfy
T1. Thus QT1(z) = QT1(z), and there are 2�−1 distinct QT1(z), each representing
a possible cogent antipodal pair.

Consider a term Ti that is close to T1, and partition its satisfying assignments
according to the 2� assignments on the � variables not contained in T1. Since Ti
will only eliminate the cogent antipodal pair represented by the neighborhood
QT1(z) if it covers some point in QT1(z), Ti can only eliminate as many cogent
antipodal pairs as it has partitions. But if Ti contains more than k of the �
variables not already in T1, then there are fewer than 2�−k different ways to
set the � bits outside of T1 to construct a satisfying assignment for Ti, and Ti
has fewer than 2�−k different partitions. Since by assumption there are at most
K ≤ 2k−1 terms close to T1, there are fewer than 2k−1 · 2�−k = 2�−1 different
QT (z) eliminated, and T must have a cogent antipodal pair left. 
�
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By Proposition 1, we know that ifA(T1) occurs (T1 has no cogent antipodal pairs)
and C(T1) occurs (T1 is close to no more than K = 25 other terms), then there
must be some term close to T1 that has at most k = 6 variables not in T1. Thus we
have that Pr[A(T1) & B(T1) & C(T1) | (T1 = T )] is at most the probability there
exist two terms close to T1, one of which contains at most k = 6 variables not in
T1. We saw earlier that the probability that a randomly chosen term is close to
T1 is at most 2αn(2/3)αn. However, the probability that a randomly chosen term
is close to T1 and contains at most 6 variables not in T1 is much lower (because
almost all of the (1−α)n variables not in T1 are constrained to be absent from the
term); more precisely this probability is at most 2αn

((1−α)n
6

) ( 2
3

)αn ( 1
3

)(1−α)n−6
.

A union bound over all possible pairs of terms gives us that the second term of
(1) is at most 2αn

(
s
2

)((1−α)n
6

)
36

( 2
3

)2αn ( 1
3

)(1−α)n
. It is straightforward to check

that this is at most O(1) · 2−n for all 1 ≤ s ≤ (9/8)n/25 and all α ∈ [0, 1].
Thus, we have bounded Pr[A(T1) & B(T1)] by O(1) ·2−n. A union bound over

the s terms gives that Pr[∃Ti ∈ f : A(Ti) & B(Ti)] is at most O(s)2−n, and the
lemma is proved. 
�

Theorem 8. Let s ≤ (9/8)n/25. The average teaching dimension of D≤s, the
class of DNFs over n variables with at most s terms, is O(ns).

Proof. Theorem 7 gives us that the teaching number of any concept in S ⊂ Ds is
O(ns). By Lemma 9, we have that |D≤s−1| ≤ 4s

3n |Ds|. This leaves us with Ds \S,
whose size we bounded by O(s)

2n |Ds| in Corollary 2. Combining these bounds, we
are ready to bound the average teaching number of |D≤s|. Since we can teach
any bad concept with at most 2n examples, the average teaching number is at
most

O(ns)|S| + 2n(|D≤s−1|+ |Ds \ S|)
|Ds|+ |D≤s−1|

≤
O(ns)|Ds|+ 2n( 4s

3n |Ds|+ O(s)
2n |Ds|)

|Ds|+ |D≤s−1|
≤ O(ns) + (2/3)n · 4s+O(s) = O(ns)

and the theorem is proved. 
�

As in Corollary 1, we have 2n ≤ poly(s) if s > (9/8)n/25, and thus the worst-
case teaching number 2n is actually poly(n, s) for such large s. This gives the
following corollary:

Corollary 3. Let s be any value 1 ≤ s ≤ 2n. The class D≤s of at-most-s-term
DNF has average teaching number poly(n, s).

5 Teaching Dimension of k-Juntas

A Boolean function f over n variables depends on its i-th variable if there are
two inputs x, x′ ∈ {0, 1}n that differ only in the i-th coordinate and that have
f(x) �= f(x′). A k-junta is a Boolean function which depends on at most k of its
n input variables. The class of k-juntas (or equivalently NC0

k functions) is well
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studied in computational learning theory, see e.g., [4, 12, 1]. We write Jk to
denote the class of Boolean functions f : {0, 1}n→{0, 1} that depend on exactly
k variables, and we write J≤k to denote the class J≤k = ∪k′≤kJk′ of Boolean
functions over {0, 1}n that depend on at most k variables, i.e., J≤k is the class
of all k-juntas.

We analyze the worst-case and average-case teaching dimensions of the class
of k-juntas, and show that while the worst-case teaching dimension has a log-
arithmic dependence on n, the average-case dimension has no dependence on
n. Thus k-juntas are another natural concept class where there is a substantial
asymptotic difference between the worst-case and average teaching dimensions.

Worst-Case teaching dimension of k-juntas. We recall the following:

Definition 1. Let k ≤ n. A set S ⊆ {0, 1}n is said to be an (n, k)-universal set
if for any 1 ≤ i1 < i2 . . . < ik ≤ n, it holds that ∀y ∈ {0, 1}k, ∃x ∈ S satisfying
(xi1 , . . . , xik ) = (y1, . . . , yk)

Nearly matching upper and lower bounds are known for the size of (n, k)-
universal sets:

Theorem 9 ([15]). Let k ≤ n. Any (n, k)-universal set is of size Ω(2k logn),
and there exists an (n, k)-universal set of size O(k2k logn).

This straightforwardly yields the following theorem (see [11] for proof):

Theorem 10. The teaching dimension of J≤k is at least Ω(2k logn) and at
most O(k2k logn).

Average-case teaching dimension of k-juntas. The idea is similar to the
case of monotone DNF: we show that k-juntas with exactly k relevant variables
can be taught with 2k examples (independent of n), and then use the fact that
the overwhelming majority of k-juntas have exactly k relevant variables. (See [11]
for full proofs.) Using this approach it is possible to prove:

Theorem 11. The average teaching dimension of the class J≤k of k-juntas is
at most 2k + o(1).

6 Sparse GF2 Polynomials

A GF2 polynomial is a multilinear polynomial with 0/1 coefficients that maps
{0, 1}n to {0, 1} where all arithmetic is done modulo 2. Since addition mod 2
corresponds to parity and multiplication corresponds to AND, a GF2 polynomial
can be viewed as a parity of monotone conjunctions. It is well known, and not
hard to show, that every Boolean function f : {0, 1}n→{0, 1} has a unique GF2
polynomial representation.

A natural measure of the size of a GF2 polynomial is the number of monomials
that it contains. In keeping with our usual notation, let Gs denote the class of all
Boolean functions f : {0, 1}n→{0, 1} that have GF2 polynomial representations
with exactly s monomials and let G≤s denote ∪s′≤sGs′ . We sometimes refer
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to functions in G≤s as being s-sparse GF2 polynomials. The class of s-sparse
GF2 polynomials has been studied by several researchers in learning theory and
complexity theory, see e.g., [13, 5, 14].

Roth and Benedek [13] showed that any f ∈ G≤s is uniquely determined by
the values it assumes on those x ∈ {0, 1}n that contain at least n− (1+ +log2 s,)
many 1s. They also showed that it is in fact necessary to specify the value of
f on every such point even in order to uniquely determine the parity (even or
odd) of |f−1(1)| where f ranges over all of G≤s. We thus have:

Theorem 12 ([13]). Fix any 1 ≤ s ≤ 2n. The (worst-case) teaching dimension
of G≤s is

∑1+�log2 s�
i=0

(
n
i

)
(which is nΘ(log s) for s subexponential in n).

In contrast, we show in the next subsection that if s is sufficiently small, the
average-case teaching dimension of G≤s is O(ns):

Theorem 13. Fix 1 ≤ s ≤ (1− ε) log2 n, where ε > 0 is any constant. Then the
average-case teaching dimension of G≤s is at most ns+ 2s.

For s = ω(1), s < (1− ε) log2 n, this gives a superpolynomial separation between
worst-case and average-case teaching dimension of s-sparse GF2 polynomials.

Proof of Theorem 13. We now define the “nice” (easy-to-teach) subset of G≤s,
in analogy with S in Section 4. We say that a function f = M1 ⊕ · · · ⊕Ms ∈ Gs
is individuated if for each i = 1, . . . , s there is some j ∈ {1, . . . , n} such that the
variable xj occurs in monomial Mi and does not occur in any of the other s− 1
monomials. Let I ⊆ Gs denote the set of all functions in Gs that are individuated.

Any function in I can be specified using few examples (see [11] for proof):

Lemma 11. For any f ∈ I, the teaching dimension of f with respect to G≤s is
at most ns+ 2s− 1.

Now observe that |Gs| =
(2n

s

)
< 2ns

s! , and thus (2n

s )s ≤ |G≤s| = |Gs|+ |G≤s−1| <
2ns

s! + (s − 1) 2ns−n

(s−1)! = 2ns

s! + 2ns−n

(s−2)! . Our next lemma shows that almost every
function in Gs (and thus almost every function in G≤s) is in fact individuated
(see [11] for proof):

Lemma 12. We have |I| ≥ 2ns

s! (1 − s · e−nε

), and thus there are at most s ·
e−n

ε · 2ns

s! + 2ns−n

(s−2)! many functions in G≤s \ I.

By Lemma 11 we can specify any function in I with at most N examples, and
by Theorem 12 we can specify any of the other functions in G≤s with at most
nO(log s) many examples. It follows from Lemma 12 that the average teaching
dimension of G≤s is at most

N |I|+ nO(log s) · |G≤s \ I|
|G≤s|

≤ N +
nO(log s) · (s · e−nε · 2ns

s! + 2ns−n

(s−2)! )

(2n

s )s
.
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The second term on the right simplifies to ss ·nO(log s) ·(s ·e−nε

/s!+2−n/(s−2)!),
which is easily seen to be o(1) since ε is a constant greater than 0 and s ≤
(1− ε) logn. This proves Theorem 13. 
�

While our proof technique does not extend to s that are larger than logn, it
is possible that different methods could establish a poly(n, s) upper bound on
average teaching dimension for the class G≤s of s-sparse GF2 polynomials for a
much larger range of values of s. This is an interesting goal for future work.
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Abstract. The present paper introduces a new model for teaching ran-
domized learners. Our new model, though based on the classical teach-
ing dimension model, allows to study the influence of various parameters
such as the learner’s memory size, its ability to provide or to not provide
feedback, and the influence of the order in which examples are presented.
Furthermore, within the new model it is possible to investigate new as-
pects of teaching like teaching from positive data only or teaching with
inconsistent teachers.

Furthermore, we provide characterization theorems for teachability
from positive data for both ordinary teachers and inconsistent teachers
with and without feedback.

1 Introduction

A natural teaching model consists of a teacher giving examples to a set of
students with the goal that all students eventually hypothesize a certain tar-
get concept. Typically the admissible students are deterministic learning algo-
rithms and the teaching performance is measured with respect to the worst
case student. In the present paper we modify this model by assuming a partly
randomized student and by measuring teaching performance in an average case
fashion.

Our model is based on the teaching model introduced independently, and in
different forms, by Shinohara and Miyano [19], Goldman et al. [11], Goldman
and Kearns [9] as well as Anthony et al. [5]. Here, a teacher has to give enough
examples to uniquely identify the target concept among all concepts in a given
class. Thus, the students are all deterministic consistent learning algorithms.

By varying the set of admissible learners, the influence of different properties
of the learners on the teaching process can be studied. For example, learners
with limited memory should be harder to teach, whereas learners that show
their current hypothesis to the teacher should ease the teaching process.

Let us consider the concept class of all Boolean functions over {0, 1}n. To teach
a concept to all consistent learning algorithms, the teacher must present all 2n

examples. Teaching a concept to all consistent learners that can memorize less

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 229–243, 2006.
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than 2n examples is impossible; there is always a learner with a consistent, but
wrong hypothesis. So teaching gets indeed harder, but in a rather abrupt way.
Moreover, it does not matter whether or not the teacher knows the learner’s
hypothesis, since there are deterministic learners choosing their next hypothesis
independently of their current one.

It seems that the worst case analysis style makes it impossible to investigate
the influence of memory limitations or learner’s feedback. A common remedy
for this is to perform an average case analysis instead. In the present paper, we
propose a rather radical approach, i.e., we replace the set of learners by a single
one that is intended to represent an “average learner.”

We achieve this goal by substituting the set of deterministic learners by a
single randomized one. Basically, such a learner picks a hypothesis at random
from all hypotheses consistent with the known examples. Teaching is successful
as soon as the learner hypothesizes the target concept. For ensuring that the
learner maintains this correct hypothesis, we additionally require the learner to
be conservative, i.e., it can change its hypotheses only on examples that are
inconsistent with its current hypothesis. The complexity of teaching is measured
by the expected teaching time (cf. Section 2).

Next, we explain why this model should work. Intuitively, since at every round
there is a chance to reach the target, the target will eventually be reached even if,
for instance, the randomized learner can only memorize few examples. Moreover,
the ability of the teacher to observe the learner’s current hypothesis should be
advantageous, since it enables the teacher to teach an inconsistent example in
every round. Recall that only these examples can cause a hypothesis change. In
Section 3, we show these intuitions to be valid.

Randomized learners show another phenomenon, too: The complexity of the
teaching process now does not only depend on the examples, but also on the
order in which they are given.

The randomized teaching model can be regarded as a Markov Decision Process.
Such processes have been studied for several decades and we will make use of some
results from this theory (cf. Subsection 2.3).

Sections 4 and 5 study teaching with and without feedback, respectively.
Here, we focus on computing the optimal teaching times. In Sections 6 to 8 we
study variations of our model: teaching from positive data, inconsistent teachers
and another restriction on teachers. Theorems characterizing teachability within
these model are shown.

Note that there are also other approaches to teaching. They differ from the one
discussed here, since the learner is not given, but constructed to fit to the teacher.
One such model is learning from good examples (cf. Freivalds et al. [8] and Jain
et al. [13]). Jackson and Tomkins [12] as well as Goldman and Mathias [10] and
Mathias [15] defined models of teacher/learner pairs. In their models, a kind of
adversary disturbing the teaching process is necessary to avoid collusion between
the teacher and the learner. Angluin and Kriķis’ [3, 4] model prevents collusion
by giving incompatible hypothesis spaces to teacher and learner.
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2 Preliminaries

2.1 Notations

Set inclusion and proper set inclusion is denoted by “⊆” and “⊂,” respectively.
For numbers a, b with a < b we write [a, b] to denote the set {a, a+ 1, . . . , b} or
{a, a+ 1, . . . } if b =∞.

Let X be a finite instance space and X = X ×{0, 1} the corresponding set of
examples. A concept class is a set C ⊆ 2X of concepts c ⊆ X . An example (x, v)
is positive if v = 1 and negative if v = 0. We denote the set of all examples for
a concept c by X (c) = {(x, v) v = 1 ⇐⇒ x ∈ c} ⊂ X . An example (x, v) is
called consistent with c iff (x, v) ∈ X (c).

A teaching set for a concept c ∈ C with respect to C is a set S of examples such
that c is the only concept in C consistent with S. The teaching dimension TD(c)
is the size of the smallest teaching set. We set TD(C) := max{TD(c) c ∈ C}.

For any set S, we denote by S∗ the set of all finite lists of elements from S, by
Sm and S≤m the set of all lists with lengthm and at most lengthm, respectively.
The operator ◦μ concatenates a list of length at most μ with a single element
resulting in a list of length at most μ: 〈x1, . . . , x�〉 ◦μ 〈y〉 equals 〈x1, . . . , x�, y〉 if
� < μ and 〈x2, . . . , x�, y〉 if � = μ. We regard ◦∞ as the usual list concatenation.
For a list x of examples, we set C(x) = {c ∈ C x is consistent with c}.

We denote by Mn the concept class of monomials over {0, 1}n. We exclude
the empty concept fromMn and can thus identify each monomial with a string
from {0, 1, ∗}n and vice versa. Dn is the set of all 2n concepts over [1, n]. The
singleton classes are defined as Sn = {{x} x ∈ [1, n]}.

2.2 The Teaching Model

The teaching process is divided into rounds. In each round the teacher gives the
learner an example of a target concept. The learner memorizes this example and
computes a new hypothesis based on its last hypothesis and the known examples.

The Learner. In a sense, consistency is a minimum requirement for a learner.
We thus require our learners to be consistent with all examples they know.
However, the hypothesis is chosen at random from all consistent ones.

The memory of our learners may be limited to μ ≥ 1 examples. If the memory
is full and a new example arrives, the oldest example is erased. In other words,
the memory works like a queue. Setting μ =∞ models unlimited memory.

The goal of teaching is making the learner to hypothesize the target and to
maintain it. Consistency alone cannot guarantee this behavior if the memory is
too small. In this case, there is more than one consistent hypothesis at every
round and the learner would oscillate between them rather than maintaining a
single one. To avoid this, conservativeness is required, i.e., the learner can change
its hypothesis only when taught an example inconsistent with its current one.

To study the influence of the learners’ feedback to the teacher, we distinguish
between private and public output of the learner. The private output is the result
of the calculation during a round (i.e., new memory content and hypothesis), the
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public output is that part of the private one observable by the teacher. So, if
the learner gives feedback, the teacher can observe in every round the complete
hypothesis computed by the learner. If the learner does not give feedback, the
teacher can observe nothing.

The following algorithm describes the behavior of the μ-memory learner with/
without feedback (short: L+

μ / L−
μ ) during one round of the teaching process.

Input : memory x ∈ X≤μ, hypothesis h ∈ C, example z ∈ X .
Private Output : memory x′, hypothesis h′.
Public Output : hypothesis h′ / nothing.

1 x′ := x ◦μ 〈z〉;
2 if z /∈ X (h) then pick h′ uniformly at random from C(x′);
3 else h′ := h;

For making our results dependent on C alone, rather than on an arbitrary
initial state of the learner, we stipulate a special initial hypothesis, called init.
We assume every example inconsistent with init. Thus, init is left after the first
example and cannot be reached again. Moreover, the initial memory is empty.

The Teacher. A teacher is an algorithm taking initially a given target concept
c∗ as input. Then, in each round, it receives the public output of the learner (if
any) and outputs an example for c∗.

Definition 1. Let C be a concept class and c∗ ∈ C. Let Lσμ be a learner (σ ∈
{+,−}) and T be a teacher and (hi)i∈ be the series of random variables for
the hypothesis at round i. The event “teaching success in round t,” denoted by
Gt, is defined as

ht−1 �= c∗ ∧ ∀t′ ≥ t : ht′ = c∗ .

The success probability of T is Pr
[⋃

t≥1Gt

]
. A teaching process is success-

ful iff the success probability equals 1. A successful teaching process is called
finite iff there is a t′ such that Pr

[⋃
1≤t≤t′ Gt

]
= 1, otherwise it is called infi-

nite. For a successful teaching process we define the expected teaching time as
[T, Lσμ, c

∗, C] :=
∑

t≥1 t · Pr[Gt].

Definition 2. Let C be a concept class, c∗ ∈ C and Lσμ a learner. We call c∗

teachable to Lσμ iff there is a successful teacher T . The optimal teaching time
for c∗ is

Eσμ(c∗) := inf
T

[T, Lσμ, c
∗, C]

and the optimal teaching time for C is denoted by Eσμ(C) := maxc∈C E
σ
μ(c).

2.3 Markov Decision Processes

For an extensive treatment of this topic see Puterman [17] and Bertsekas [6]. A
Markov Decision Process (MDP) is a probabilistic system whose state transitions
can be influenced during the process by actions which incur costs. Formally, an
MDP consists of a finite set S of states, an initial state s0 ∈ S , a finite set A
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of actions, a function cost : S × A → , and a function p : S × A × S → [0, 1];
cost(s, a) is the cost incurred by action a in state s; p(s, a, s′) is the probability
for the MDP to change from state s to s′ under action a.

In the total cost infinite horizon setting, the goal is to choose actions such that
the expected total cost, when the MDP runs forever, is minimal. This makes
sense only if there is a costless absorbing state s∗ ∈ S . In the finite horizon
setting the MDP is only run for finitely many rounds.

The actions chosen at each point in time are described by a policy. This is a
function depending on the observed history of the MDP and the current state.
A basic result says that there is a minimum-cost policy that is stationary, i.e.,
that depends only on the current state. A stationary policy π : S → A defines a
Markov chain over S and for all s ∈ S an expected time H(s) to reach s∗ from s.
Such a policy is optimal iff for all s ∈ S :

π(s) ∈ argmin
a∈A

(
cost(s, a) +

∑
s′∈S

p(s, a, s′) ·H(s′)

)
.

Finding optimal policies can be phrased as a linear programming problem and
can thus be done in polynomial time in the representation size of the MDP.

3 Varying Memory Size and Feedback

As a simple example, we calculate the optimal teaching times for Dn. To the
learner L+

μ (1 ≤ μ ≤ n) the teacher can give an example inconsistent with
the current hypothesis in each round. For all such examples, there are 2n−μ

hypotheses consistent with the μ examples in the learner’s memory and learner
chooses one of them. Therefore the probability of choosing the target concept is
2−(n−μ). Thus, considering that in the first μ − 1 rounds the memory contains
less then μ examples, E+

μ (Dn) is, for constant μ, asymptotically equal to 2n−μ.
Clearly, teaching becomes faster with growing μ. Moreover the teaching speed

increases continuously with μ and not abruptly as in the classical deterministic
model. In particular, teaching is possible even with the smallest memory size
(μ = 1), although it takes very long (2n−1 rounds).

Teaching is more difficult when feedback is unavailable. In this situation the
teacher can merely guess examples hoping that they are inconsistent with the
current hypothesis. Roughly speaking, when teaching Dn, the teacher needs two
guesses on average to find such an example. Hence, the expected teaching time
E−
μ is about two times E+

μ . Thus feedback doubles the teaching speed for Dn.

Fact 3. For all C and μ ∈ [1,∞] all c∗ ∈ C and σ ∈ {+,−}:
(1) E+

μ (c∗) ≤ E−
μ (c∗), (2) Eσ∞(c∗) ≤ Eσμ+1(c∗) ≤ Eσμ(c∗).

Proper inequality holds for the concepts in Dn.

Next, we relate the deterministic model (in terms of the teaching dimension) to
the randomized model (in terms of the expected teaching time). Essentially, the
teaching dimension can be used to lower bound the teaching time.
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Lemma 4. Let C be a class and let c∗ ∈ C be a target. For all μ ∈ [1,TD(c∗)],

E−
μ (c∗) ≥ E+

μ (c∗) ≥ μ(μ− 1)
2TD(c∗)

+ TD(c∗) + 1− μ,

and for all μ > TD(c∗), E−
μ (c∗) ≥ E+

μ (c∗) ≥ TD(c∗)/2.

Proof. Let k = TD(c∗) and μ ∈ [1,TD(c∗)]. We show the statement for E+
μ .

Claim: For i examples z0, . . . , zi−1 ∈ X (c∗): |C(z0, . . . , zi−1)| ≥ k + 1− i.
Proof : Suppose |C(z0, . . . , zi−1)| ≤ k−i. Then c∗ can be specified with k−i−1

examples with respect to C(z0, . . . , zi−1) (each example rules out at least one
concept). Thus, c∗ can be specified with z0, . . . , zi−1 plus k−i−1 other examples,
which amounts to k − 1 examples. This contradicts TD(c∗) = k. 
� Claim

Using the claim we upper bound the probabilities for reaching the target in
round i = 0, . . . , μ − 2. After round i the learner knows i + 1 examples and
therefore can choose between at least k − i consistent hypotheses (see Claim).
Thus, the probability for reaching c∗ in round i is at most pi := 1

k−i . Beginning
with round μ−1, the learner knows μ examples and has in each following round
i ≥ μ− 1 a probability of at most pi = pμ−1 = 1/(k + 1− μ) of reaching c∗.

No teaching process can be faster than one with the probabilities pi described
above. The expectation of such a process is

μ−2∑
i=0

(i+ 1) · pi ·
i−1∏
j=0

(1 − pj) +
∞∑

i=μ−1

(i+ 1) · pi ·
i−1∏
j=0

(1− pj) . (1)

We start with the second sum in (1). Since
∏μ−2
j=0 (1− pj) = k−μ+1

k the product∏i−1
j=0(1 − pj) in the this sum equals k−μ+1

k · (1 − pμ−1)i−μ+1. So, this sum is
∞∑

i=μ−1

(i+ 1) · pμ−1 · k−μ+1
k · (1 − pμ−1)i−μ+1

= k−μ+1
k ·

∞∑
i=0

(μ+ i) · pμ−1 · (1− pμ−1)i

= k−μ+1
k ·

(
μ− 1 +

∞∑
i=0

(i+ 1) · pμ−1 · (1− pμ−1)i
)
.

The sum appearing in the last line is the expectation of the first success in a
Bernoulli experiment with probability pμ−1 and thus equals 1/pμ−1 = k−μ+1.
For the second sum in (1) we therefore get k−μ+1

k ·(μ−1+k−μ+1) = k−μ+1 .
Calculating the first sum in (1) yields

μ−2∑
i=0

(i+ 1) · 1
k−i ·

i−1∏
j=0

k−j−1
k−j =

μ−2∑
i=0

(i+ 1) · 1
k−i ·

k−i
k =

μ(μ− 1)
2k

.

Putting it together we obtain μ(μ−1)
2k + k + 1− μ as the value of (1).

For μ > TD(c∗) the teaching process described above takes at most TD(c∗)
rounds. The lower bound is therefore the same as for μ = TD(c∗). 
�
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Input : Target c∗ ∈ Mn represented by γ1 . . . γn ∈ {0, 1, ∗}n;
Hypothesis h ∈ Mn represented by η1 . . . ηn ∈ {0, 1, ∗}n.

Output : Example z ∈ X (c∗).

1 if h ⊃ c∗ output (χ1 . . . χn, 0) with χi =
γi if ηi = γi �= ∗,

1 − γi if i = min{j ηj = ∗ �= γj},

0 otherwise;
2 else output (x, 1) with arbitrary x ∈ c∗.

Fig. 1. Optimal teacher for monomials and the learner L+
1

4 Learners with Feedback

4.1 Learners with 1-Memory

A teaching process involving L+
1 can be modeled as an MDP with S = C∪{init},

A = X (c∗), cost(h, z) = 1 for h �= c∗ and cost(c∗, z) = 0. Furthermore, for h �= c∗,
p(h, z, h′) = 1/|C(z)| if z ∈ X (h′) \ X (h) and p(h, z, h′) = 0 otherwise; finally
p(c∗, z, c∗) = 1. The initial state is init and the state c∗ is costless and absorbing.
The memory does not need to be part of the state, since the next hypothesis
only depends on the newly given example which is modeled as an action.

An example z ∈ X (h) does not change the learner’s state h and is therefore
useless. An optimal teacher refrains from teaching such examples and thus we
can derive the following criterion by using the results from Subsection 2.3.

Lemma 5. Let C be a class over X and c∗ be a target. A teacher T : C∪{init} →
X (c∗) with expectations H : C ∪ {init} → is optimal iff for all h ∈ C ∪ {init}:

T (h) ∈ argmin
z∈X (c∗)
z /∈X (h)

⎛⎝1 +
1
|C(z)|

∑
h′∈C(z)

H(h′)

⎞⎠ .

This criterion can be used to prove optimality for teaching algorithms.

Fact 6. The teacher in Fig. 1 is an optimal teacher forMn and the learner L+
1 .

Proof. We define H : C∪{init} → as H(h) = (3n−2n)(2n+2k)−2n+k−1

3n−2n+2k−1 for h ⊃ c∗

and H(h) = (3n−2n)(2n+2k)−2n+k−1+2n+1−3n

3n−2n+2k−1 for all other h, including init .
It is possible (though tedious) to show that H describes the teaching times

for T and that T and H satisfy the criterion of Lemma 5. 
�

The teacher from Fig. 1 can be computed in linear time. It outputs a positive
example whenever possible (i.e., when h �⊃ c∗). Since there are 2n hypotheses
consistent with a positive example and 3n − 2n consistent with a negative one,
this means following a greedy strategy minimizing the number of consistent
hypotheses for the learner to choose from, thus maximizing the probability for
reaching c∗ in the next step.

Such a greedy strategy seems sensible and is provably optimal in the case
ofMn. However, there are classes where no greedy teacher is optimal.
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Definition 7. Let C be a class over X and c∗ ∈ C. A stationary teacher T : C ∪
{init} → X for c∗ is called greedy iff for all h ∈ C: T (h) ∈ argminz∈X (c∗)

z /∈C(h)
|C(z)|.

Fact 8. There is a class C and target c0 such that no greedy teacher is optimal.

Proof. Figure 2 displays such a concept class C and target c0. T ∗ with teaching
times H∗ is an optimal teacher and T g with Hg is the only greedy teacher. 
�

h x1 x2 x3 x4 x5 T ∗(h) H∗(h) T g(h) Hg(h)
init – – – – – x1 176/35=5.0285. . . x1 2536/504=5.0317. . .
c0 1 1 1 1 1 – 0 – 0
c1 0 0 0 0 1 x1 176/35 x1 2536/504
c2 0 0 0 1 1 x1 176/35 x1 2536/504
c3 0 0 1 0 1 x1 176/35 x1 2536/504
c4 0 0 1 1 1 x1 176/35 x1 2536/504
c5 0 1 0 1 1 x1 176/35 x1 2536/504
c6 0 1 1 0 1 x1 176/35 x1 2536/504
c7 0 1 1 1 1 x1 176/35 x1 2536/504
c8 1 0 0 1 0 x2 186/35 x2 2680/504
c9 1 1 1 0 0 x5 189/35 x4 2725/504
c10 1 1 1 1 0 x5 189/35 x5 2723/504

Fig. 2. Class with an optimal teacher T ∗ and a greedy teacher T g that is not optimal.
Both teachers teach c0 to the learner L+

1 .

We now compare E+
1 with other dimensions. The comparison of E+

1 with the
number MQ of membership queries (see Angluin [1]) is interesting because MQ
and E+

1 are both lower bounded by the teaching dimension.

Fact 9. (1) For all C and c∗ ∈ C: E+
1 (c∗) ≥ TD(c∗).

(2) There is no function of TD upper bounding E+
1 (c).

(3) There is no function of E+
1 upper bounding MQ.

(4) There is a concept class C with E+
1 (C) > MQ(C).

(5) For all concept classes C, E+
1 (C) ≤ 2MQ(C).

Proof. (1) This follows from Lemma 4. (2) Let Cn = {c ⊆ [1, n] |c| = 2}. Then
TD(Cn) = 2, but E+

1 (Cn) = n − 1 because the optimal teacher gives positive
examples all the time and there are n − 1 hypotheses consistent to such an
example. (3) E+

1 (c) = 1 for all c ∈ Sn, but MQ(Sn) = n−1. (4) MQ(Dn) = n and
E+

1 (D) = 2n−1. (5) It is known (see e.g., Angluin [2]) that log |C| ≤ MQ(C) for
all classes C. Also, E+

1 (C) ≤ |C| because in every step the learner cannot choose
from more than |C| hypotheses. Combining both inequalities yields the fact. 
�

Roughly speaking, teaching L+
1 can take arbitrarily longer than teaching in the

classical model, but is still incomparable with membership query learning.
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4.2 Learners with ∞-Memory

A straightforward MDP for teaching c∗ to L+
∞ has states S = (C ∪ {init}) ×

X (c∗)≤|X|. The number of states can be reduced because two states (h,m) and
(h,m′) with C(m) = C(m′) are equivalent from a teacher’s perspective, but in
general the size of the resulting MDP will not be polynomial in the size of the
matrix representation of C. Therefore, optimal teachers cannot be computed
efficiently by the known general MDP algorithms.

A similar criterion as Lemma 5 can be stated for the L+
∞ learner, too, and

used to prove optimality of algorithms. We mention, without the technical proof,
that a slight modification of the algorithm in Fig. 1 is optimal for L+

∞ andMn.

That computing E+
∞ is already a hard problem can be seen as follows. First,

there is always a teacher that needs at most TD(c∗) rounds by giving a minimal
teaching set, hence E+

∞(c∗) ≤ TD(c∗). Second, it follows from Lemma 4 that
E+

∞(c∗) ≥ TD(c∗)/2. This means that every algorithm computing E+
∞(c∗) also

computes a factor 2 approximation of the teaching dimension.
As it has often been noted [19, 5, 9], the problem of computing the teaching

dimension is essentially equivalent to the SET-COVER (or HITTING-SET) problem
which is a difficult approximation problem. Raz and Safra [18] have shown that
there is no polynomial time constant-factor approximation (unless P = NP).
Moreover, Feige [7] proved that SET-COVER cannot be approximated better than
within a logarithmic factor (unless NP ⊆ DTime(nlog logn)).

Corollary 10. Unless NP ⊆ DTime(nlog logn), computing E+
∞ is NP-hard and

cannot be approximated with a factor of (1 − ε) log |C| for any ε > 0.

Fact 11. Let C be a concept class and c∗ ∈ C a target. Then there is a successful
teacher for the learner L+

∞ halting after at most |X | rounds that is also optimal.

Proof. Every given example is memorized forever. Hence, an optimal teacher
never presents the same example twice and after at most |X | rounds there is
only one consistent hypothesis for the learner to choose from, namely c∗. 
�

As there is always a successful teacher giving at most TD(c∗) examples, one
could conjecture that there is also an optimal teacher teaching finitely within at
most TD(c∗) rounds. But this not the case.

Fact 12. There is a concept class C and a concept c∗ ∈ C such that all teachers
teaching c∗ to the learner L+

∞ finitely within TD(c∗) rounds are suboptimal.

Proof. (Sketch) The concept class C and the concept c∗ are defined by Figure 3.
The teaching dimension of c∗ is three and the only smallest teaching set S :=
{(x1, 1), (x2, 1), (x3, 1)}. The only teachers finite after 3 rounds are those always
giving an inconsistent example from S. Their expected teaching time is 2.6.

A teacher starting with (x4, 1) and then giving examples from S is not finite
after three rounds, but has an expected teaching time of only 2.5 rounds. 
�
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x1 x2 x3 x4 x5 x6

init: – – – – – –
c∗: 1 1 1 1 1 1

1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1
1 1 0 0 1 0
1 0 1 0 1 0
0 1 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1
0 1 1 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0

Fig. 3. Concept class and target whose optimal L+
∞-teacher is not finite after TD(c∗) =

3 rounds. The optimal teacher starts with x4 and is finite after 4 rounds (see Fact 12).

5 Learners Without Feedback

The problem of finding the optimal cost in an MDP whose states cannot be ob-
served is much harder than in an observable MDP. In general, it is not even de-
cidable whether the optimal cost is below a given threshold (see Madani, Hanks,
and Condon [14]). We know of no obvious algorithm to decide this problem in
the special case of teaching 1-memory learners.

Teaching ∞-memory learners can be seen as a finite horizon unobservable
MDP since any reasonable teacher presents a different example in every round
and thus can stop after at most |X | rounds. The decision problem for finite
horizon unobservable MDPs is NP-complete (Mundhenk et. al. [16]) and the
inapproximability result of Corollary 10 holds for the feedbackless case as well,
since TD(c∗)/2 ≤ E−

∞(c∗) ≤ TD(c∗).

6 Teaching Positive Examples Only

The learnability of classes from positive data is a typical question in learning
theory. Similar restrictions on the data can be posed in teaching models, too.
In contrast to teaching with positive and negative data, where all classes are
teachable, we now get classes that are not teachable. More precisely we have the
following characterization for teachability with positive data.

Theorem 13. Let C be a concept class and c∗ ∈ C a target concept. Then for
all learners Lσμ with μ ∈ [1,∞], σ ∈ {+,−}: The concept c∗ is teachable from
positive data iff there is no c ∈ C with c ⊃ c∗.

Proof. For the if part, assume there is no proper superset of c∗ in the class. Then
the set S+ of all positive examples for c∗ is a teaching set for c∗. Learners with∞-
memory can be taught by presenting S+, since they remember all examples and
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are always consistent. Learners with smaller memory can be taught by infinitely
repeating S+ in any order.

For the only-if part, assume there is a c ∈ C with c ⊃ c∗. Let z = (x, 1) ∈ X (c∗)
be the first example taught. Then c ∈ C(z) and therefore there is a positive
probability that the randomized learner picks c as first hypothesis. In this case,
it is impossible to trigger any further mind changes by giving positive examples.
Thus, with positive probability the number of examples is infinite, leading to an
infinite expected number of examples. 
�

Theorem 13 also characterizes teaching with positive data in the classical teach-
ing dimension model. If there is no c ⊃ c∗, the set of all positive examples of c∗

is a teaching set, but if there is a c ⊃ c∗, then every set of positive examples for
c∗ is also consistent with c.

We have seen that teachability with positive data has a simple characteriza-
tion. Things become a little more complicated when combined with inconsistent
teachers discussed in the next section.

7 Inconsistent Teachers

Until now, teachers were required to always tell the truth, i.e., to provide exam-
ples z ∈ X (c∗). In reality it might sometimes be worthwhile to teach something
which is, strictly speaking, not fully correct, but nevertheless helpful for the stu-
dents. For example, human teachers sometimes oversimplify to give a clearer,
yet slightly incorrect, view on the subject matter.

To model this we allow the teacher to present any example from X × {0, 1},
even inconsistent ones. One can see this as an analog to inconsistent learners in
learning theory, as these learners also contradict something they actually know.

Clearly, teaching learners with ∞-memory becomes difficult after giving an
inconsistent example because the target is not consistent with the memory con-
tents any more. Even worse, there might be no consistent hypothesis available.
However, the model can be adapted to this, e.g., by stipulating that a memorized
example (x, v) can be “erased” by the example (x, 1 − v), but here we will not
pursue this further. We restrict ourselves to consider only the 1-memory learner.

We first look at inconsistent teachers in combination with teaching from pos-
itive data. In this case, for a target concept c, the only inconsistent examples
allowed are of the form (x, 1), where x /∈ c. The class C1 in Figure 4 shows that,
when only positive data are allowed, inconsistent teachers can teach concepts to
L+

1 that consistent teachers cannot. First, the teacher gives (x1, 1). If the learner
guesses c∗, we are done. Otherwise, the learner must return c1 and the teacher
gives (x3, 1) which is inconsistent with c∗. Now, the learner has to guess c2. Next,
(x1, 1) is again given and the process is iterated until the learner returns c∗.

However, consistent teachers with both positive and negative data are more
powerful as we show next.

Fact 14. There is a class that cannot be taught to L+
1 by an inconsistent teacher

from positive data.
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C1: x1 x2 x3 T

init: – – – x1

c∗: 1 0 0 –
c1: 1 1 0 x3

c2: 0 0 1 x1

C2: x1 x2 x3

init: – – –
c∗: 0 1 0
c1: 1 1 0
c2: 0 1 1

Fig. 4. The class C1 can be taught to L+
1 by the inconsistent positive-data teacher T ,

but cannot be taught by a consistent positive-data teacher (Theorem 13). The class C2

cannot be taught by an inconsistent positive-data teacher (Fact 14).

Proof. We show that C2 from Figure 4 is such a class. Let T be a teacher for
L+

1 mapping C2 ∪ {init} to {x1, x2, x3} × {1}. No matter what T (init) is, the
probability that the learner switches to c1 or c2 is positive. If the learner guesses
c1 (the c2 case is analog), the teacher must teach (x3, 1), since all other examples
are consistent with the current hypothesis c1. But the only hypothesis consistent
with (x3, 1) is c2. Analogously, T must give (x1, 1) when the learner is in c2,
leading again to c1. So, the probability that L+

1 never reaches c∗ is positive. 
�

Classes teachable by inconsistent teachers from positive data can be character-
ized. We associate a directed graph with the class C. Define the graph G(C) =
(V,A) by V = C and A = {(c, d) d \ c �= ∅}, i.e., there is an arc from c to d iff
there is a positive example inconsistent with c but consistent with d.

Theorem 15. Let C be a concept class and G(C) = (V,A) its associated graph.
For the learner L+

1 a concept c∗ ∈ C is teachable by an inconsistent teacher from
positive data iff for all c ∈ V there is a path to c∗ in G(C).

Proof. For the if part we have to describe a teacher. For each c let c′ be a
neighbor of c on a shortest path to c∗. Let T be such that for all c, T (c) is
consistent with c′, but not with c. There is always such an example due to the
definition of G(C) and the reachability assumption.

Denote by n = |C| and by p = 1/n the minimum probability for reaching c′

when the learner receives T (c) in state c. If the learner is in any state c, there
is a probability of at least pn > 0 for reaching c∗ within the next n rounds by
traversing the shortest path from c to c∗. Therefore, no matter in which state
the learner is, the expected number of n-round blocks until reaching the target
is at most 1/pn. Thus, the expected time to reach the target from any state, in
particular from init, is at most n/pn <∞.

For the only-if part, let T be a teacher for c∗ ∈ C. Suppose there is a state c
with no path to c∗. Then c ⊃ c∗ (otherwise c∗ \ c �= ∅ and (c, c∗) ∈ A). At some
time, T must teach an example consistent with c∗, which is then also consis-
tent with c. Hence, the probability for reaching c during the teaching process is
positive. The graph G(C) contains all transitions that are possible between the
hypotheses by positive examples. Since c∗ is not reachable from c in G(C) there
is no sequence of positive examples that can trigger hypothesis changes from c
to c∗. Thus, the expected teaching time from c is infinite and hence the expected
teaching time altogether. A contradiction to c∗ being teachable by T . 
�
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The criterion in Theorem 15 requires to check the reachability of a certain
node from all other nodes in a directed graph. This problem is related to the
REACHABILITY problem and also complete for the complexity class NL.

While inconsistent teachers can teach classes to 1-memory learners with feed-
back from positive data that consistent teachers cannot teach to L+

1 (cf. Fig-
ure 4), the situation changes if no feedback is available. That is, 1-memory
learners without feedback can be taught the same classes by inconsistent teach-
ers as by consistent teachers (cf. Theorem 13 and Theorem 16 below).

Theorem 16. For the learner L−
1 a concept c∗ ∈ C is teachable by an inconsis-

tent teacher from positive data iff there is no c ∈ C with c ⊃ c∗.
Proof. The if-direction follows from Theorem 13.

For the only-if part suppose that c∗ is teachable by a teacher T and there is
a c with c ⊃ c∗. Let (zi)i∈ be the series of examples taught.

Claim: T teaches inconsistent examples only finitely often.
Proof : Suppose T teaches an example (x, 1) /∈ X (c∗) infinitely often. Without

loss of generality we assume that there is a concept containing x (otherwise
(x, 1) would be useless and a teacher T ′ never giving this example would be
successful, too). Whenever (x, 1) is taught, the learner will not be in state c∗

afterwards, i.e., there are infinitely many t such that Pr[ht �= c∗] = 1. It follows
that Pr[Gt] = Pr[ht−1 �= c∗ ∧∀t′ ≥ t : ht = c∗] = 0 for all t ≥ 1. This means that
the success probability is zero, a contradiction. This proves the claim. 
�Claim

From the claim it follows that there is a t′ such that zt ∈ X (c∗) for all t ≥ t′.
We now show that Pr[ht′ = c∗] < 1, i.e., it is uncertain whether the learner
is in the target state. Suppose that Pr[ht′ = c∗] = 1. Let t ≤ t′ be minimal
with Pr[ht = c∗] = 1. If zt ∈ X (c∗) then zt is consistent with c, too, and thus
Pr[ht = c∗] ≤ 1/2. If zt /∈ X (c∗), then Pr[ht = c∗] = 0, a contradiction.

Hence, the probability that the learner is not in the target state at time t′ is
positive. After t′ only consistent examples are given. So there is a probability
of at least 1/|C| that the learner switches to c on the next example. As c ⊃ c∗

the target cannot be reached by positive examples any more. Thus, the success
probability is less than one, a contradiction. This proves the only-if part. 
�

8 Mind Change Forcing Teachers

In this section we deal again with consistent teachers. When teaching L+
1 it is

useless to provide an example consistent with the current hypothesis, since it does
not change the state of L+

1 . In this situation the optimal teacher is necessarily
“mind change forcing.” But if we look at L+

μ (μ > 1), it is not obvious that an
optimal teacher has to force the learner to change its mind in every round until
successful learning. While we could prove that for L+

∞ an optimal teacher can
be made “mind change forcing,” it remains open whether a similar statement is
true for L+

μ with 1 < μ <∞.

Theorem 17. Let C be a class and c∗ be a target. Then there is an optimal
teacher for L+

∞ never giving an example consistent with the current hypothesis.
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Proof. Let T be a successful teacher that teaches a consistent example z1 in a
state (h,m) that is reached with positive probability and is not a target state.
Then z1 ∈ X (h) ∩ X (c∗) and h �= c∗. We show that T is not optimal for this
state and hence for the initial state. We do this by showing that there is another
teacher T ′ giving an inconsistent example and being not worse than T .

After receiving z1, the learner reaches (h,m ∪ {z1}) due to the conservative-
ness property. Then T teaches z1 = T (h,m ∪ {z1}) leading to (h,m ∪ {z1, z2})
and so on. Since h �= c∗, T must eventually teach an example zk /∈ C(h).
After teaching z1, . . . , zk the learner has either reached the target or assumes
one of the hypotheses in C(m ∪ {z1, . . . , zk}) \ {c∗} with equal probability p :=
1/|C(m ∪ {z1, . . . , zk})| − 1. For the expected teaching time we have

H(h,m) = k +
∑

h′∈C(m∪{z1,...,zk})
p ·H(h′,m ∪ {z1, . . . , zk})

The teacher T ′ teaches the same examples z1, . . . , zk, but in different order,
namely zk, z1, . . . , zk−1, that is with the inconsistent example first. Formally:
T ′(h,m) = zk and furthermore for all i = 0, . . . , k − 1 and for all h′ ∈ C(m ∪
{zk, z1, . . . , zi}): T ′(h′,m ∪ {zk, z1, . . . , zi}) = zi+1.

Beginning in (h,m) and being taught by T ′ for k rounds, the learner has either
arrived at the target or assumes one of the hypotheses in C(m ∪ {z1, . . . , zk}) \
{c∗}. Furthermore all these hypotheses are equally likely. This follows induc-
tively from the fact that whenever a hypothesis change is triggered, say after
zk, z1 . . . , zi, all hypotheses from C(m ∪ {zk, z1, . . . , zi}), and in particular all
hypotheses from the subset C(m ∪ {z1, . . . , zk}), are equally likely; no hypoth-
esis is preferred. The probability p′ for each of these hypotheses is at most
1/(|C(m ∪ {z1, . . . , zk})| − 1) = p. The expected teaching time under T ′ is

H ′(h,m) ≤ k +
∑

h′∈C(m∪{z1,...,zk})
p′ ·H ′(h′,m ∪ {z1, . . . , zk})

= k +
∑

h′∈C(m∪{z1,...,zk})
p′ ·H(h′,m ∪ {z1, . . . , zk}) ≤ H(h,m)

where the equality in the second line holds because T and T ′ are identical in the
states (h′,m ∪ {z1, . . . , zk}).

We have shown that T ′ is not worse than T and gives an inconsistent example
in (h,m). By repeating the above argument the states in which T gives consistent
examples can be moved to the “end” where they finally disappear. 
�

9 Conclusions and Future Work

We have presented a model for teaching randomized learners based on the clas-
sical teaching dimension model. In our model, teachability depends, in a qualita-
tively plausible way, on the learner’s memory size, on its ability to give feedback,
and on the order of the examples taught. The model also allows to study learn-
ing theory like questions such as teaching from positive data only or teaching
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by inconsistent teachers. Randomization also gives more flexibility in defining
the learner’s behavior by using certain a priori probability distributions over the
hypotheses. So, one can define and study learners preferring simple hypotheses.
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Abstract. U-shaped learning is a learning behaviour in which the learner
first learns something, then unlearns it and finally relearns it. Such a
behaviour, observed by psychologists, for example, in the learning of
past-tenses of English verbs, has been widely discussed among psychol-
ogists and cognitive scientists as a fundamental example of the non-
monotonicity of learning. Previous theory literature has studied whether
or not U-shaped learning, in the context of Gold’s formal model of learn-
ing languages from positive data, is necessary for learning some tasks.

It is clear that human learning involves memory limitations. In the
present paper we consider, then, this question of the necessity of U-
shaped learning for some learning models featuring memory limitations.
Our results show that the question of the necessity of U-shaped learning
in this memory-limited setting depends on delicate tradeoffs between
the learner’s ability to remember its own previous conjecture, to store
some values in its long-term memory, to make queries about whether or
not items occur in previously seen data and on the learner’s choice of
hypothesis space.

1 Introduction and Motivation

U-Shaped learning. U-shaped learning occurs when the learner first learns a
correct behaviour, then abandons that correct behaviour and finally returns to it
once again. This pattern of learning has been observed by cognitive and develop-
mental psychologists in a variety of child development phenomena, such as lan-
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guage learning [6, 19, 24], understanding of temperature [24, 25], understanding
of weight conservation [5, 24], object permanence [5, 24] and face recognition [7].

The case of language acquisition is paradigmatic. In the case of the past tense
of English verbs, it has been observed that children learn correct syntactic forms
(call/called, go/went), then undergo a period of overregularization in which they
attach regular verb endings such as ‘ed’ to the present tense forms even in the
case of irregular verbs (break/breaked, speak/speaked) and finally reach a final
phase in which they correctly handle both regular and irregular verbs. This
example of U-shaped learning behaviour has figured so prominently in the so-
called “Past Tense Debate” in cognitive science that competing models of human
learning are often judged on their capacity for modeling the U-shaped learning
phenomenon [19, 22, 26].

Recent interest in U-shaped learning is witnessed by the fact that the Journal
of Cognition and Development dedicated its first issue in the year 2004 to this
phenomenon.

While the prior cognitive science literature on U-shaped learning was typi-
cally concerned with modeling how humans achieve U-shaped behaviour, [2, 8]
are motivated by the question of why humans exhibit this seemingly inefficient
behaviour. Is it a mere harmless evolutionary inefficiency or is it necessary for
full human learning power? A technically answerable version of this question is:
are there some formal learning tasks for which U-shaped behaviour is logically
necessary? The answer to this latter question requires that we first describe some
formal criteria of successful learning.

A learning machine M reads an infinite sequence consisting of the elements
of any language L in arbitrary order with possibly some pause symbols # in
between elements. During this process the machine outputs a corresponding
sequence e0 e1 . . . of hypotheses (grammars) which may generate the language L
to be learned. Sometimes, especially when numerically coded, we also call these
hypotheses indices. A fundamental criterion of successful learning of a language
is called explanatory learning (Ex-learning) and was introduced by Gold in [13].
Explanatory learning requires that the learner’s output conjectures stabilize in
the limit to a single conjecture (grammar/program, description/explanation)
that generates the input language.

For each such criterion, a non U-shaped learner is naturally modeled as a
learner that never semantically returns to a previously abandoned correct con-
jecture on languages it learns according to that criterion. It is shown in [2] that
every Ex-learnable class of languages is Ex-learnable by a non U-shaped learner,
that is, for Ex-learnability, U-shaped learning is not necessary. In [2], it is also
noted that, by contrast, for behaviourally correct learning, U-shaped learning is
necessary for full learning power. In [8] it is shown that, for non-trivial vacilla-
tory learning, U-shaped learning is again necessary for full learning power.

Memory-Limited Learning. It is clear that human learning involves memory
limitations. In the present paper we consider the necessity of U-shaped learning
in formal memory-limited versions of language learning. In the prior literature
at least the following three types of memory-limited learning have been studied.
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A most basic concept of memory-limited learning is iterative learning [18, 28],
according to which the learner reacts to its current data item, can remember its
own last conjecture but cannot store any of the strictly previously seen data items.

Iterative learning admits of learning non-trivial classes. For example, the class
of finite sets is iteratively learnable as is a class of self-describing sets, for ex-
ample, the class of languages with the least element coding a grammar for the
language. Furthermore, for each m ≥ 1, the class of unions of m of Angluin’s [1]
pattern languages is iteratively learnable [11].

The criterion of n-feedback learning is a variant of iterative learning where,
in addition, the learner can make n simultaneous queries asking whether some
datum has been seen in the past [11, 18]. Finally, a learner is called an n-bounded
example memory learner [11, 18, 21] if, besides reacting to its currently seen data
item and remembering its own last conjecture, it is allowed to store in “long
term memory” at most n strictly previously seen data items.

For the present paper, our first intention was to study the impact of forbidding
U-shaped learning in each of the above three models of memory-limited learning.
So far we have had success for these problems only for some more restricted
variants of the three models. Hence, we now describe these variants.

Our variants of iterative learning are motivated by two aspects of Gold’s
model.

The first aspect is the absolute freedom allowed regarding the semantic rela-
tions between successive conjectures, and between the conjectures and the input.
Many forms of semantic constraints on the learner’s sequence of hypotheses have
been studied in the previous literature (for example, conservativity [1], consis-
tency [1, 3], monotonicity [15, 29], set-drivenness [27]) and it is reasonable to
explore their interplay with U-shaped learning in the memory-bounded setting
of iterative learning.

Secondly, it is well-known that the choice of the hypothesis space from which
the learner can pick its conjectures has an impact on the learning power [17, 18].
We accordingly also consider herein U-shaped iterative learning with restrictions
on the hypothesis space.

For the case of feedback learning, we introduce and consider a model called
n-memoryless feedback learning which restricts n-feedback learning so that the
learner does not remember its last conjecture. These criteria form a hierarchy
of more and more powerful learning criteria increasing in n and, for n > 0,
are incomparable to iterative learning. The criterion of 0-memoryless feedback
learning is properly contained in the criterion of iterative learning.

Finally, we introduce a more limited variant of bounded example memory,
c-bounded memory states learning for which the learner does not remember its
previous conjecture but can store any one out of c different values in its long
term memory [12, 16]. For example, when c = 2k, the memory is equivalent to
k bits of memory. By Theorem 16, these criteria form a hierarchy of more and
more powerful learning criteria increasing in c. Furthermore, the comparisons
between bounded memory states learning, iterative learning and memoryless
feedback learning are presented in Remark 17.
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Non U-Shaped Learning. Our main objective is to investigate the relations
of above discussed notions of memory limited learning with respect to non U-
shapedness. In Section 3 we investigate this question first with respect to iter-
ative learning and state the major open problem whether non U-shapedness is
restrictive for iterative learning. In this regard, Theorem 5 shows that U-shaped
learning is necessary for the full learning power of class-preserving iterative learn-
ing [18].

In Section 4 we study, in the context of iterative learning, the relation of the
non U-shapedness constraint to other well studied constraints on the seman-
tic behaviour of the learner’s conjectures. We consider class-consistent learning
[1, 3], according to which the learner’s conjectures, on the languages it learns,
must generate all the data on which they are based. Monotonic learning by a
machine M [29] requires that, on any input language L that M Ex-learns, a new
hypothesis cannot reject an element x ∈ L that a previous hypothesis already
included. Theorem 9 shows that class-consistent iterative learners can be turned
into iterative non U-shaped and monotonic learners.

In Section 5, we consider the impact of forbidding U-shaped learning for n-
memoryless feedback learning. Theorem 12 shows that U-shaped learning is nec-
essary for the full learning power of n-memoryless feedback learners.

In Section 6, Theorem 18 shows that U-shaped behaviour does not enhance
the learning power of 2-bounded memory states learners, that is, learners having
1 bit of memory.

Note. Our results herein on memory-limited models are presented only for Ex-
learning. Furthermore, because of space limitations, many proofs and some re-
sults have been omitted. We refer the reader to [9] for details.

2 Notation and Preliminaries

For general background on Recursion Theory and any unexplained recursion
theoretic notation, we refer the reader to [20]. The symbol N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}. Cardinality of a set S is denoted by card(S).
card(S) ≤ ∗ denotes that S is finite. We let 〈·, ·〉 stand for Cantor’s computable,
bijective mapping 〈x, y〉 = 1

2 (x+ y)(x+ y+1)+x from N×N onto N. Note that
〈·, ·〉 is monotonically increasing in both of its arguments.

By ϕ we denote a fixed acceptable numbering (programming system) for the
partial-recursive functions mapping N to N. By ϕi we denote the partial-recursive
function computed by the program with number i in the ϕ-system. By Φ we
denote an arbitrary fixed Blum complexity measure [4] for the ϕ-system. By Wi

we denote the domain of ϕi. That is, Wi is then the recursively enumerable (r.e.)
subset of N accepted by the ϕ-program i. The symbol L ranges over classes of
r.e. sets and L,H range over r.e. sets. By L, we denote the complement of L,
that is N− L. By Wi,s we denote the set {x ≤ s : Φi(x) ≤ s}.

Quite frequently used in this paper is the existence of a one-one recursive func-
tion pad(e,X) with Wpad(e,X) = We, where — according to the context — X



248 L. Carlucci et al.

might be a number, a finite set or a finite sequence. In particular, pad is chosen
such that e,X can be computed from pad(e,X) by a recursive function.

We now present concepts from language learning theory [13, 14]. A sequence
σ is a mapping from an initial segment of N into (N∪{#}). The empty sequence
is denoted by λ. The content of a sequence σ, denoted content(σ), is the set
of natural numbers in the range of σ. The length of σ, denoted by |σ|, is the
number of elements in σ. So, |λ| = 0. For n ≤ |σ|, the initial sequence of σ of
length n is denoted by σ[n]. So, σ[0] is λ.

Intuitively, the pause-symbol # represents a pause in the presentation of data.
We let σ, τ and γ range over finite sequences. We denote the sequence formed
by the concatenation of τ at the end of σ by στ . (N ∪ {#})∗ denotes the set of
all finite sequences.

A text T for a language L is a mapping from N into (N ∪ {#}) such that L
is the set of natural numbers in the range of T . T (i) represents the (i + 1)-th
element in the text. The content of a text T , denoted by content(T ), is the set
of natural numbers in the range of T ; that is, the language which T is a text for.
T [n] denotes the finite initial sequence of T with length n. We now define the
basic paradigm of learning in the limit, explanatory learning.

Definition 1. A learner M : (N ∪ {#})∗ → (N ∪ {?}) is a (possibly partial)
recursive function which assigns hypotheses to finite strings of data. M Ex-
learns a class L (equivalently M is an Ex-learner for L) iff, for every L ∈ L and
every text T for L, M is defined on all initial segments of T , and there is an
index n such that M(T [n]) �= ?, WM(T [n]) = L and M(T [m]) ∈ {M(T [n]), ?}
for all m ≥ n. Ex denotes the collection of all classes of languages that can be
Ex-learned from text.

For Ex-learnability one may assume without loss of generality that the learner
is total. However, for some of the criteria below, such as class consistency and
iterative learning, this cannot be assumed without loss of generality. The require-
ment for M to be defined on each initial segment of each text for a language in
L is also assumed for learners with other criteria considered below.

Now we define non U-shaped learning. A non U-shaped learner never makes
the sequence correct–incorrect–correct while learning a language that it actually
learns. Thus, since such a learner has eventually to be correct, one can make the
definition a bit simpler than the idea behind the notion suggests.

Definition 2. [2] (a) We say that M is non U-shaped on text T , if M never
makes a mind change from a conjecture for content(T ) to a conjecture for a
different set.

(b) We say that M is non U-shaped on L if M is non U-shaped on each text
for L. We say that M is non U-shaped on L if M is non U-shaped on each L ∈ L.

(c) Let I be a learning criterion. Then NUI denotes the collection of all classes
L such that there exists a machine M that learns L according to I and is non
U-shaped on L.
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3 Iterative Learning

The Ex-model makes the assumption that the learner has access to the full
history of previous data. On the other hand it is reasonable to think that humans
have more or less severe memory limitations. This observation motivates, among
other criteria discussed in the present paper, the concept of iterative learning.
An iterative learner features a severe memory limitation: it can remember its
own previous conjecture but not its past data items. Moreover, each conjecture
of an iterative learner is determined as an algorithmic function of the previous
conjecture and of the current input data item.

Definition 3. [27] An iterative learner is a (possibly partial) function M : (N∪
{?})× (N ∪ {#})→ (N ∪ {?}) together with an initial hypothesis e0 ∈ N ∪ {?}.
M It-learns a class L iff, for every L ∈ L and every text T for L, the sequence
e0, e1, . . . defined inductively by the rule en+1 = M(en, T (n)) satisfies: there
exists an m such that em is an index for L and for all n ≥ m, en ∈ {em, ?}. It
denotes the collection of all iteratively learnable classes.

For iterative learners (without other constraints), one may assume without loss
of generality that they never output ?.

It is well-known that It ⊂ Ex [28]. On the other hand, iterative learning is
not restrictive for behaviourally correct learning. Thus, all our notions regarding
iterative learning will be modifications of the basic Ex-learning paradigm.

In [2] the main question regarding the necessity of U-shaped behaviour in
the context of Ex-learning was answered in the negative. It was shown that
Ex = NUEx, meaning that every Ex-learnable class can be learned by a
non U-shaped Ex-learner. However, non U-shaped learning is restrictive for
behaviourally correct learning and vacillatory learning [8]. Similarly, non U-
shaped learning may become restrictive when we put memory limitations on
Ex-learning. Our main motivation for the results presented in this section is the
following problem, which remains open.

Problem 4. Is It = NUIt?

Many results in the present work were obtained in order to approximate an
answer to this open problem.

We now briefly recall some basic relations of iterative learning with two criteria
of learning that feature, like non U-shaped learning, a semantic constraint on
the learner’s sequence of hypotheses.

The first such notion is set-driven learning [27], where the hypotheses of a
learner on inputs σ, τ are the same whenever content(σ) = content(τ). We denote
by SD the collection of all classes learnable by a set-driven learner. It is shown
in [16, Theorem 7.7] that It ⊂ SD.

A criterion that implies non U-shapedness is conservative learning [1]. A
learner is conservative iff whenever it make a mind change from a hypothesis
i to j then it has already seen some datum x /∈ Wi. Consv denotes the collec-
tion of all classes having a conservative learner.
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It is shown in [16] that SD ⊆ Consv, thus, It ⊂ Consv. By definition, every
hypothesis abandoned by a conservative learner is incorrect and thus Consv ⊆
NUEx follows. It is well known that the latter inclusion is proper. The easiest
way to establish it is to use Angluin’s proper inclusion Consv ⊂ Ex [1] and the
equality from Ex = NUEx [2].

Normally, in Gold-style language learning, a learner outputs as hypotheses
just indices from a fixed acceptable enumeration of all r.e. languages, since all
types of output (programs, grammars and so on) can be translated into these
indices. There have also been investigations [1, 17, 18] where the hypothesis space
is fixed in the sense that the learner has to choose its hypotheses either from
this fixed space (exact learning) or from a space containing exactly the same
languages (class-preserving learning).

We introduce a bit of terminology (from [1]) to explain the notion. An infinite
sequence L0, L1, L2, . . . of recursive languages is called uniformly recursive if the
set {〈i, x〉 : x ∈ Li} is recursive. A class L of recursive languages is said to be
an indexed family of recursive languages if L = {Li : i ∈ N} for some uniformly
recursive sequence L0, L1, L2, . . .; the latter is called a recursive indexing of L. As
indexed families are quite well-behaved, Angluin found a nice characterization
for when an indexed family is explanatorily learnable and they became a frequent
topic for the study of more restrictive notions of learnability as, for example, in
[12, 17, 18].

Let L be an indexed family of recursive sets. We say that a machine M
explanatorily identifies L using a hypothesis space L0, L1, L2, . . . iff M, for every
L ∈ L and for every text for L, M converges to some j such that L = Lj. The
hypothesis space L0, L1, L2, . . . is class preserving for L iff it contains all and
only the languages in L. In what follows, for a learning criterion I, Icp stands
for class-preserving I-learning, the collection of all classes of languages that can
be I-learned by some learner using a class-preserving hypothesis space.

Theorem 5. There exists an indexed family in Itcp −NUExcp.

The positive side can be done using an indexed (recursive) family as hypothesis
space, whereas the diagonalization against negative side can be done for any r.e.
class preserving hypothesis space.

4 Consistent and Monotonic Iterative Learning

Forbidding U-shapes is a semantic constraint on a learner’s sequence of con-
jectures. In this section we study the interplay of this constraint with other
well-studied semantic constraints, but in the memory-limited setting of iterative
learning.

We now describe and then formally define the relevant variants of semantic
constraints on the sequence of conjectures. Consistent learning was introduced
in [3] (in the context of function learning) and essentially requires that the
learner’s conjectures do not contradict known data, strong monotonic learning
was introduced in [15] and requires that semantically the learner’s conjectures on



Memory-Limited U-Shaped Learning 251

every text for any language (even the ones that the learner does not learn) are set-
theoretically nondecreasing. Monotonic learning, as introduced in [29], relaxes
the condition of strong-monotonicity by requiring that, for each language L that
the learner actually learns, the intersection of L with the language generated by
a learner’s conjecture is a superset of the intersection of L with the language
generated by any of the learner’s previous conjectures.

Definition 6. [3, 15, 29] A learner M is consistent on a class L iff for all L ∈ L
and all σ with content(σ) ⊆ L, M(σ) it defined and an index of a set containing
content(σ). Cons denotes the collection of all classes which have a Ex-learner
which is consistent on the class of all sets. ClassCons denotes the collection of
all classes L which have a Ex-learner which is consistent on L.

A learner M is strong monotonic iff Wi ⊆ Wj whenever M outputs on any
text for any language at some time i and later j. SMon denotes the collection
of all classes having a strong monotonic Ex-learner.

A learner M for L is monotonic iff L∩Wi ⊆ L∩Wj whenever M outputs on
a text for some language L ∈ L at some time i and later j. Mon denotes the
criterion of all classes having a monotonic Ex-learner.

Note that there are classes L ∈ ClassCons such that only partial learners wit-
ness this fact. Criteria can be combined. For example, ItCons is the criterion
consisting of all classes which have an iterative and consistent learner. The in-
dication of an oracle as in the criterion ItConsSMon[K] below denotes that
a learner for the given class must on the one hand be iterative, consistent and
strong-monotonic while on the other hand the constraint of being recursive is
weakened to the permission to access a halting-problem oracle for the inference
process. The next result gives some basic connections between iterative, strongly
monotonic and consistent learning.

Theorem 7. (a) ItCons ⊆ ItConsSMon.
(b) ConsSMon ⊆ ItConsSMon.
(c) ItSMon ⊆ NUIt.
(d) SMon ⊆ ItConsSMon[K].

Proof. (a) Given an iterative consistent learner M for L, let — as in the case
of normal learners — M(σ) denote the hypothesis which M makes after hav-
ing seen the sequence σ. Now define a recursive one-one function f such that,
for every index e, Wf(e) =

⋃
σ∈{σ′:M(σ′)=e} content(σ). Since M is consistent,

content(σ) ⊆ WM(σ) for all σ and so Wf(e) ⊆ We. The new learner N is the
modification of M which outputs f(e) instead of e; N is consistent since when-
ever one can reach a hypothesis e through a string containing a datum x then
x ∈ Wf(e). Since f is one-one, N is also iterative and follows the update rule
N(f(e), x) = f(M(e, x)).

It is easy to see that N is strongly monotonic: Assume that M(e, y) = e′ and
x is any element of Wf(e). Then there is a σ with M(σ) = e and x ∈ content(σ).
It follows that M(σy) = e′, x ∈ content(σy) and x ∈ Wf(e′). So Wf(e) ⊆ Wf(e′)
and the transitiveness of the inclusion gives the strong monotonicity of N.
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It remains to show that N learns L. Let L ∈ L and T be a text for L and e
be the index to which M converges on T . The learner N converges on T to f(e).
Since We = L it holds that Wf(e) ⊆ L. Furthermore, for every n there is m > n
with M(T [m]) = e, thus T (n) ∈ Wf(e) and L ⊆Wf(e). This completes the proof
of part (a).

(b) A consistent learner never outputs ?. Now, given a strong monotonic and
consistent learner M for some class L, one defines a recursive one-one function
f : (N ∪ {#})∗ → N such that

Wf(σ) = WM(σ) ∪ content(σ)

and initializes a new iterative learner N with the hypothesis f(λ) and the fol-
lowing update rule for the hypothesis f(σ) and observed datum x:

– If M(σx) = M(σ) then N(f(σ), x) = f(σ);
– If M(σx) �= M(σ) then one takes the length-lexicographic first extension τ of
σx such that WM(η),|σ| ⊆ content(τ), for all η . σ, and defines N(f(σ), x) =
f(τ).

Note that in the second case, content(τ) = content(σx) ∪ (
⋃
η�σWM(η),|σ|) and

that the length-lexicographic ordering is just taken to single out the first string
with this property with respect to some ordering. The new iterative learner is
strongly monotonic since whenever it changes the hypothesis then it does so from
f(σ) to f(τ), for some τ extending σ, and thus Wf(σ) = content(σ) ∪WM(σ) ⊆
content(τ) ∪ WM(τ) = Wf(τ) as M is strong monotonic. Furthermore, N is
also consistent: whenever it sees a number x outside Wf(σ) then x is also outside
WM(σ) and M(σx) �= M(σ) by the consistency of M. Then the new τ constructed
contains x explicitly and therefore x ∈ WN(f(σ),x). By the strong monotonicity
of N, an element once incorporated into a hypothesis is also contained in all
future hypotheses. So it remains to show that N actually learns L.

Given L ∈ L and a text T for L, there is a sequence of strings σ0, σ1, . . . such
that σ0 = λ and N(f(σn), T (n)) = f(σn+1). By induction one can show that
σn ∈ (L ∪ {#})∗ and WM(σn) ⊆ L for all n. There are two cases.

First, there is an n such that σm = σn for all m ≥ n. Then L ⊆Wf(σn) since
N is a consistent learner and eventually converges to this hypothesis on the text
L. Furthermore, Wf(σn) ⊆ L as mentioned above, so N learns L.

Second, for every n there is an m > n such that σm is a proper extension of
σn. Let T ′ be the limit of all σn. One can easily see that T ′ contains data from
two sources, some items taken over from T and some elements taken from sets
WM(η) with η . σn for some n; since M is strong monotonic these elements
are all contained in L and so content(T ′) ⊆ L. Furthermore, for every n the
element T (n) is contained in Wf(σn+1) and thus there is an extension σk of σn+1
which is so long that T (n) ∈ WM(σn+1),|σk| ∪ content(σn+1). If then for some
m ≥ k the string σm+1 is a proper extension of σm, then T (n) ∈ content(σm+1).
As a consequence, T ′ is a text for L on which M converges to a hypothesis e.
Then, one has that for all sufficiently large m, where σm+1 is a proper extension
of σm, σm+1 is actually an extension of σmT (m) and M(σmT (m)) = M(σm),
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which would by construction enforce that N does not update its hypothesis and
σm+1 = σm. By this contradiction, the second case does not hold and the first
applies, thus M learns L. This completes the proof of part (b).

(c) follows from the definition and (d) can be proved using techniques similar to
part (b). 
�

Thus, ItCons and ConsSMon are contained in NUIt. Regarding part (d)
above, it can be shown that one can replace K only by oracles A ≥T K. Thus
K is the optimal oracle in part (d).

Note that the proof of Theorem 7 (a) needs that the learner is an ItCons-
learner and not just an ItClassCons-learner. In the latter case, the inference
process cannot be enforced to be strong-monotonic as the following example
shows.

Example 8. The class L containing the set {0, 2, 4, 6, 8, . . .} of even numbers
and all sets {0, 2, 4, . . . , 2n}∪ {2n+ 1} with n ∈ N is in ItClassCons−SMon.

So class-consistent, iterative learners cannot be made strong monotonic, even
with an oracle. However, the next result shows that they can still be made
monotonic, and, simultaneously, non U-shaped.

Theorem 9. ItClassCons ⊆ NUItMon.

5 Memoryless Feedback Learning

An iterative learner has a severe memory limitation: it can store no previously
seen data. On the other hand, crucially, an iterative learner remembers its pre-
vious conjecture. In this section we introduce a model of learning in which the
learner does not remember its last conjecture and can store no previous input
data. The learner is instead allowed to make, at each stage of its learning process,
n feedback queries asking whether some n data items have been previously seen.
We call such learners n-memoryless feedback learners. Theorem 12 shows that
U-shaped behaviour is necessary for the full learning power of n-memoryless
feedback learning.

Definition 10. Suppose n ≥ 0. An n-memoryless feedback learner M has as
input one datum from a text. It then can make n-queries which are calculated
from its input datum. These queries are as to whether some n data items were
already seen previously in the text. From its input and the answers to these
queries, it either outputs a conjecture or the ? symbol. That is, given a language L
and a text T for L, M(T (k)) is determined as follows: First, n-values qi(T (k)), i =
1, . . . , n, are computed. Second, n bits bi, i = 1, . . . , n are determined and passed
on to M, where each bi is 1 if qi(T (k)) ∈ content(T [k]) and 0 otherwise. Third,
an hypothesis ek is computed from T (k) and the bi’s. M MLFn-learns L if, for
all T for L, for M on T , there is an k such that Wek

= L and em ∈ {?, ek} for
all m > k. MLFn denotes the class of all classes learnable by a n-memoryless
feedback learner.
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Theorem 11. For all n > 0, NUMLFn+1 �⊆MLFn.

It can be shown that It and MLFn are incomparable for all n > 0. The next
result shows that non U-shaped n-memoryless feedback learners are strictly less
powerful than unrestricted n-memoryless feedback learners.

Theorem 12. For n > 0, NUMLFn ⊂MLFn.

Proof Sketch. Let F (e) = max({1 + ϕi(e) : i ≤ e and ϕi(e)↓ } ∪ {0}). Note
that F grows faster than any partial or total recursive function. Based on this
function F one now defines the family L = {L0, L1, L2, . . .} ∪ {H0, H1, H2, . . .}
where

Le = {〈e, x〉 : x < F (e) or x is even};
He = {〈e, x〉 : x < F (e) or x is odd}.

We first show that L ∈MLF1. Note that the learning algorithm cannot store the
last guess due to its memory limitation but might output a ‘?’ in order to repeat
that hypothesis. The parameter e is visible from each current input except ‘#’.
The algorithm is the following:

If the new input is # or if the input is 〈e, x〉 and the Feedback says that
〈e, x+ 1〉 has already appeared in the input earlier, then output ?. Otherwise,
if input is 〈e, x〉 and 〈e, x+ 1〉 has not yet appeared in input, then output a
canonical grammar for Le (He) if x is even (odd).

Consider any text T for Le. Let n be such that content(T [n]) ⊇ Le ∩
{〈e, x〉 : x ≤ F (e) + 1}. Then, it is easy to verify that, the learner will either
output ? or a conjecture for Le beyond T [n]. On the other hand, for any even
x > F (e), if T (m) = 〈e, x〉, then the learner outputs a conjecture for Le after
having seen T [m+ 1] (this happens infinitely often, by definition of Le). Thus,
the learner MLF1-identifies Le. Similar argument applies forHe. A detailed case
analysis shows that L /∈ NUMLF1, see [9]. 
�

Proposition 13. NUIt �⊆ NUMLF1.

Finally, an iterative total learner that can store one selected previous datum is
called a Bem1-learner (1-bounded example memory learner) in [11, 21]. One can
also consider a “memoryless” version of this concept, where a learner does not
memorize its previous hypothesis, but, instead, memorizes one selected previous
datum.

Proposition 14. NUBem1 �⊆ NUMLF1.

6 Bounded Memory States Learning

Memoryless feedback learners store no information about the past. Bounded
memory states learners, introduced in this section, have no memory of previous
conjectures but can store a bounded number of values in their long term memory.
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This model allows one to separate the issue of a learner’s ability to remember
its previous conjecture from the issue of a learner’s ability to store information
about the previously seen input. Similar models of machines with bounded long
term memory are studied in [16]. We now proceed with the formal definition.

Definition 15. [16] For c > 0, a c-bounded memory states learner is a (possibly
partial) function

M : {0, 1, . . . , c− 1} × (N ∪#)→ (N ∪ {?})× {0, 1, . . . , c− 1}

which maps the old long term memory content plus a datum to the current
hypothesis plus the new long term memory content. The long term memory has
the initial value 0. There is no initial hypothesis.

M learns a class L iff, for every L ∈ L and every text T for L, there is a se-
quence a0, a1, . . . of long term memory contents and e0, e1, . . . of hypotheses and
a number n such that, for all m, a0 = 0, Wen = L, M(am, T (m)) = (em, am+1)
and m ≥ n ⇒ em ∈ {?, en}. We denote by BMSc the collection of classes
learnable by a c-bounded memory states learner.

Theorem 16. For all c > 1, BMSc−1 ⊂ BMSc.

Remark 17. One can generalize BMSc to ClassBMS and BMS. The learners
for these criteria use natural numbers as long term memory. For ClassBMS we
have the additional constraint that for every text of a language inside the learnt
class, there is a constant c depending on the text such that the value of the
long term memory is never a number larger than c. For BMS the corresponding
constraint applies to all texts for all sets, even those outside the class.

One can show that ClassBMS = It. Furthermore, a class is in BMS iff it
has a confident iterative learner, that is, an iterative learner which converges on
every text, whether this text is for a language in the class to be learned or not.

It is easy to see that
⋃
cBMSc ⊂ BMS ⊂ ClassBMS. Furthermore, MLF0 =

BMS1 = NUMLF0 = NUBMS1, which are nontrivial. One can also show that
MLFm and BMSn are incomparable for all m > 0 and n > 1.

We now give the main result of the present section, showing that every 2-bounded
memory states learner can be simulated by a non U-shaped one.

Theorem 18. BMS2 ⊆NUBMS2.

Proof Sketch. Suppose M witnesses L ∈ BMS2. We assume without loss of
generality that M does not change its memory on input #, as otherwise we could
easily modify M to work without any memory.

In the following, “∗” stands for the case that the value does not matter and
in all (legal) cases the same is done.

Define a function P such that P (?) =? and, for e ∈ N, P (e) is an index of the
set WP (e) =

⋃
s∈S(e)We,s where S(e) is the set of all s satisfying either (a) or

((b) and (c) and (d)) below:

(a) There exists an x ∈ We,s, M(1, x) = (∗, 0);
(b) For all x ∈We,s, [M(0, x) = (∗, 1)⇒M(1, x) = (?, 1)];
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(c) There exists an x ∈We,s, M(0, x) = (?, 1) or for all x ∈We,s, M(0, x) =
(∗, 0);

(d) For all x ∈We,s ∪ {#}, [M(0, x) = (j, ∗)⇒We,s ⊆Wj ∧ Wj,s ⊆We].

Now we define for all m ∈ {0, 1}, j ∈ N ∪ {?} and x ∈ N ∪ {#},

N(m,x) =

⎧⎪⎨⎪⎩
(P (j), 0), if m = 0 and M(0, x) = (j, 0);
(j, 1), if m = 0 and ((M(0, x) = (j, 1) and M(1, x) = (?, ∗))

or (M(0, x) = (∗, 1) and M(1, x) = (j, ∗) and j �=?));
(j, 1), if m = 1 and M(1, x) = (j, ∗).

A detailed case analysis shows that N NUBMS2-identifies L, see [9]. 
�

7 Conclusions and Open Problems

Numerous results related to non U-shaped learning for machines with severe
memory limitations were obtained. In particular, it was shown that

– there are class-preservingly iteratively learnable classes that cannot be learn-
ed without U-shapes by any iterative class-preserving learner (Theorem 5),

– class-consistent iterative learners for a class can be turned into iterative non
U-shaped and monotonic learners for that class (Theorem 9),

– for all n > 0, there are n-memoryless feedback learnable classes that cannot
be learned without U-shapes by any n-memoryless feedback learner (Theo-
rem 12) and, by contrast,

– every class learnable by a 2-bounded memory states learner can be learned
by a 2-bounded memory states learner without U-shapes (Theorem 18).

The above results are, in our opinion, interesting in that they show how the im-
pact of forbidding U-shaped learning in the context of severely memory-limited
models of learning is far from trivial. In particular, the tradeoffs that our results
reveal between remembering one’s previous conjecture, having a long-term mem-
ory, and being able to make feedback queries are delicate and perhaps surprising.
The following are some of the main open problems.

– Is NUIt ⊂ It?
– Is MLF1 ⊆NUMLFn, for n > 1?
– Is BMSc ⊆ NUBMSc, for c > 2?

Also, the question of the necessity of U-shaped behaviour with respect to the
stronger memory-limited variants of Ex-learning (bounded example memory and
feedback learning) from the previous literature [11, 18] remains wide open. Hu-
mans can remember much more than one bit and likely retain something of their
prior hypotheses; furthermore, they have some access to knowledge of whether
they’ve seen something before. Hence, the open problems of this section may
prove interesting for cognitive science.
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Abstract. We consider two variants of a model for learning languages
in the limit from positive data and a limited number of short negative
counterexamples (counterexamples are considered to be short if they are
smaller that the largest element of input seen so far). Negative coun-
terexamples to a conjecture are examples which belong to the conjec-
tured language but do not belong to the input language. Within this
framework, we explore how/when learners using n short (arbitrary) neg-
ative counterexamples can be simulated (or simulate) using least short
counterexamples or just ‘no’ answers from a teacher. We also study how
a limited number of short counterexamples fairs against unconstrained
counterexamples. A surprising result is that just one short counterexam-
ple (if present) can sometimes be more useful than any bounded number
of counterexamples of least size. Most of results exhibit salient examples
of languages learnable or not learnable within corresponding variants of
our models.

1 Introduction

Our goal in this paper is to explore how limited amount of negative data, rela-
tively easily available from a teacher, can help learning languages in the limit.
There is a long tradition of using two popular different paradigms for exploring
learning languages in the limit. One paradigm, learning languages from full pos-
itive data (all correct statements of the language), was introduced by Gold in
his classical paper [Gol67]. In this model, TxtEx, the learner stabilizes in the
limit to a grammar generating the target language. In another popular variant of
this model, TxtBc, defined in [CL82] and [OW82] (see also [Bār74] and [CS83])
almost all conjectures outputted by the learner are correct grammars describ-
ing the target language. The second popular paradigm, learning using queries
to a teacher (oracle) was introduced by D. Angluin in [Ang88]. In particular,
D. Angluin considered three types of queries: subset, superset, and equivalence
queries — when a learner asks if a current hypothesis generates a subset or a
superset of the target language, or, respectively, generates exactly the target
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language. If the answer is negative, the teacher may provide a counterexample
showing where the current hypothesis errs. This model has been used for explor-
ing language learning primarily in the situation when no data was available in
advance (see, for example, [LZ04b], [LZ04a]). In [JK06b], the two models were
combined together: a learner gets full positive data and can query the teacher if
the current conjecture is correct. On one hand, this model reflects the fact that a
learner, during a process of acquisition of a new language, potentially gets access
to all correct statements. On the other hand, this model adds another important
tool, typically available, say, to a child learning a new language: a possibility
to communicate with a teacher. Sometimes, this possibility may be really vital
for successful learning. For example, if a learner of English past tense, having
received on the input “call – called”, “fall – fell”, infers the rule implying that
both past tense forms “called, cell” and “falled, fell” are possible, then this rule
can be refuted only by counterexamples from a teacher.

In this context, subset queries are of primary interest, as they provide nega-
tive counterexamples if the learner errs, while other types of queries may provide
positive ‘counterexamples’ eventually available on the input anyway (still, as it
was shown in [JK06a], the sequel paper to [JK06b], superset and equivalence
queries can make some difference even in presense of full positive data). Con-
sequently, one can consider the learner for NCEx model as defined in [JK06b]
(and its variant NCBc corresponding to TxtBc — NC here stands for ‘negative
counterexamples’), as making a subset query for each of its conjectures. When
a learner tests every conjecture, potentially he/she can get indefinite number of
counterexamples (still this number is, of course, finite if the learner learns the
target language in the limit correctly). In [JK06a] the authors explored learn-
ing from positive data and bounded amount of additional negative data. In this
context, one can consider three different scenarios of how subset queries and
corresponding negative counterexamples (if any) can be used:

— only a bounded number (up to n) of subset queries is allowed during the
learning process; this model was considered in [JK06a] under the name SubQn;

— the learner makes subset query for every conjecture until n negative answers
have been received; that is, the learner can ask potentially indefinite number of
questions (however, still finite if the learning process eventually gives a correct
grammar), but he is charged only when receiving a negative answer; this model
was considered in [JK06a] under the name NCn;

— the learner makes subset queries for conjectures, when deemed necessary,
until n negative answers have been received; in the sequel, we will refer to this
model as GNCn, where GNC denotes ‘generalized model of learning via nega-
tive counterexamples’.

Note that the GNCn model combines the features of the first two (we have
also demonstrated that it is stronger than each of the first two). All three models
SubQn, NCn, and GNCn provide certain complexity measure (in the spirit of
[GM98]) for learning languages that cannot be learned from positive data alone.

Negative counterexamples provided by the teacher in all these models are of
arbitrary size. Some researchers in the field considered other types of negative
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data available for learners from full positive data. For example, negative data
provided to learners in the model considered in [BCJ95] is preselected — in this
situation just a very small amount of negative data can greatly enhance learning
capabilities. A similar model was considered in [Mot91].

In this paper we explore models SubQn, NCn, and GNCn when the teacher
provides a negative counterexample only if there is one whose size does not exceed
the size of the longest statement seen so far. While learning from full positive data
and negative counterexamples of arbitrary size can be interesting and insightful
on its own right, providing arbitrary examples immediately (as it is assumed in
the models under consideration) may be somewhat unrealistic — in fact, it may
significantly slow down learning process, if not making it impossible. On the
other hand, it is quite realistic to assume that the teacher can always reasonably
quickly provide a counterexample (if any), if its size is bounded by the largest
statement on the input seen so far. Following notation in [JK06a], we denote
corresponding variants of our three models by BSubQn, BNCn, and BGNCn,
respectively. Following [Ang88] and [JK06a] we also consider restricted variants
of the above three models — when the teacher, responding to a query, answers
just ‘no’ if a counterexample of the size not exceeding the size of the largest
statement seen so far exists — not providing the actual example; otherwise,
the teacher answers ‘yes’. To reflect this variant in the name of a model, we,
following [JK06a], add the prefix Res to its name (for example, ResBNCn). It
must be noted that, as it is shown in [JK06a], BSubQn does not provides any
advantages over learning just from positive data. Therefore, we concentrate on
BNCn, BGNCn and their Res variants.

Our first goal in this research was to explore relationships between these
two models as well as their restricted variants. Following [JK06b] and [JK06a],
we also consider Res variants for models NCn, and GNCn as well as their
variants when the least (rather than arbitrary) counterexample is provided —
in this case we use the prefix L (for example, LNCn). Consequently, we explore
relationships between B-models and models using limited number of queries
(including those getting just answers ‘yes’ or ‘no’), or limited number of arbitrary
or least counterexamples, or just answers ‘no’. In this context, we, in particular,
demonstrate advantages that our B-variants of learning (even ResB) can have
over GNCn in terms of the number of mind changes needed to arrive to the
right conjecture.

In the full version of the paper (see [JK05]), we give also a number of re-
sults relating to comparison of GNC-model with NC model and comparison
of learning via limited number of short counterexamples and finite number of
queries. Most of our results provide salient examples of classes learnable (or not
learnable) within corresponding models.

The paper has the following structure. In Section 2 we introduce necessary
notation and definitions needed for the rest of the paper. In particular, we
define some variants of the classical Gold’s model of learning from texts (posi-
tive data): TxtEx — when the learner stabilizes to a correct (or nearly correct)
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conjecture generating the target language, and TxtBc — its behaviorally correct
counterpart.

In Section 3, for both major models of learnability in the limit, TxtEx and
TxtBc, we define two variants of learning from positive data and a uniformly
bounded number of counterexamples: NCn and GNCn, where the learner makes
subset queries and is ‘charged’ for every negative answer from a teacher. We then
define the main models considered in this paper: BNCn and BGNCn, as well
as ResB variants of both. We also formally define the L variant for all these
models.

In Section 4 we explore relationships between different bounded negative coun-
terexample models. In particular, we study the following two problems: under
which circumstances, (a) B-learners receiving just answers ‘yes’ or ‘no’ can sim-
ulate the learners receiving short (possibly, even least) counterexamples; (b)
learners receiving arbitrary short counterexamples can simulate the ones receiv-
ing the least short counterexamples. First, we note that in all variants of the
paradigms TxtEx and TxtBc, an LBNCn-learner can be always simulated by
a ResBNC2n−1-learner: 2n− 1 ‘no’ answers are enough to simulate n explicit
negative counterexamples (similar fact holds also for the LBGNCn-learners).
Moreover, for the Bc∗ type of learnability (when almost all conjectures contain
any finite number of errors), the number 2n − 1 in the above result drops to
n (Theorem 6; note that, for learning via limited number of arbitrary or least
counterexamples, the number 2n−1 could not be lowered even for Bc∗-learners,
as shown in [JK06a]). On the other hand, the number 2n − 1 of negative an-
swers/counterexamples cannot be lowered for the learning types Ex∗ (when any
finite number of errors in the limiting correct conjecture) and Bcm (when the
number of errors in almost all conjectures is uniformly bounded by some m) for
both tasks (a) and (b). Namely, there exist LBNCnEx-learnable classes of lan-
guages that cannot be learned by BGNC2n−2Bcm or BGNC2n−2Ex∗-learners
(Theorem 4) and there exist BNCnEx-learnable classes that cannot be learned
by ResBGNC2n−2Bcm or ResBGNC2n−2Ex∗-learners (Theorem 5). We also
show that a LBNCEx∗-learner can be always simulated by a ResBNCBc-
learner — when the number of negative answers/counterexamples is unbounded.

In Section 5 we explore relationships between our models when the coun-
terexamples considered are short or unconstrained. First, we demonstrate how
short counterexamples can be of advantage over unconstrained ones while learn-
ing from positive data and a bounded number of counterexamples. One of
our central — somewhat surprising — results is that sometimes one ‘no’ an-
swer, just indicating that a short counterexample exists, can do more than any
number n of arbitrary (or even least) counterexamples used by (the strongest)
LGNCnBc∗-learners (Theorem 9). Note that the advantages of least exam-
ples/counterexamples in speeding up learning has been studied in other situa-
tions also, such as learning of non-erasing pattern languages ([WZ94]). However,
in our model of BNC-learning versus LNC-learning, the LNC-learner does get
least counterexamples, and BNC learner gets just a counterexample, if there ex-
ists one below the maximal positive data seen so far. This seems on the surface
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to hurt, as BNC-learner is likely to get less (negative) data. In fact, that is the
case when we do not bound the number of counterexamples received. However,
when we consider counting/bounding, there is a charge for every counterexample.
Consequently, a BNC-learner is not being charged for (unnecessary) negative
data, if it does not receive it. As a result, the possibility of getting negative data
which are ≤ maximal positive data seen in the input so far can be turned to an
advantage — in terms of cost of learning. This is what is exploited in getting
this result. We also show that sometimes a ResBNC1Ex-learner can use just
one mind change (and one ‘no’ answer witnessing existence of a short counterex-
ample) to learn classes of languages not learnable by any GNCEx-learner using
any bounded number of mind changes and an unbounded (finite) number of arbi-
trary counterexamples (Theorem 10). On the other hand, least counterexamples
used by NC-type learners make a difference: any LBNCEx-learner using at
most m mind changes and any (unbounded) number of counterexamples can be
simulated by a LNCm-learner using at most m mind changes and at most m
least counterexamples.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N
denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇, and
⊃ denote empty set, subset, proper subset, superset, and proper superset, re-
spectively. Cardinality of a set S is denoted by card(S). Im denotes the set
{x | x ≤ m}. The maximum and minimum of a set are denoted by max(·),min(·),
respectively, where max(∅) = 0 and min(∅) =∞. L1ΔL2 denotes the symmetric
difference of L1 and L2, that is L1ΔL2 = (L1 − L2) ∪ (L2 − L1). For a natural
number a, we say that L1 =a L2, iff card(L1ΔL2) ≤ a. We say that L1 =∗ L2,
iff card(L1ΔL2) < ∞. Thus, we take n < ∗ < ∞, for all n ∈ N . If L1 =a L2,
then we say that L1 is an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N×N
onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is monotonically
increasing in both of its arguments. We define π1(〈x, y〉) = x and π2(〈x, y〉) = y.
We can extend pairing function to multiple arguments by using 〈i1, i2, . . . , ik〉 =
〈i1, 〈i2, 〈. . . , 〈ik−1, ik〉〉〉〉.

We let {Wi}i∈N denote an acceptable numbering of all r.e. sets. Symbol E
will denote the set of all r.e. languages. Symbol L, with or without decorations,
ranges over E . By L, we denote the complement of L, that is N − L. Symbol
L, with or without decorations, ranges over subsets of E . By Wi,s we denote
the set Wi enumerated within s steps, in some standard computable method of
enumerating Wi.

We now present concepts from language learning theory. A sequence σ is a
mapping from an initial segment of N into (N ∪{#}). Intuitively, #’s represent
pauses in the presentation of data. The empty sequence is denoted by Λ. The
content of a sequence σ, denoted content(σ), is the set of natural numbers in
the range of σ. The length of σ, denoted by |σ|, is the number of elements in σ.
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So, |Λ| = 0. For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n].
So, σ[0] is Λ. We let σ, τ , and γ, with or without decorations, range over finite
sequences. We denote the sequence formed by the concatenation of τ at the end
of σ by στ . SEQ denotes the set of all finite sequences.

A text T (see [Gol67]) for a language L is a mapping from N into (N ∪ {#})
such that L is the set of natural numbers in the range of T . T (i) represents the
(i + 1)-th element in the text. The content of a text T , denoted by content(T ),
is the set of natural numbers in the range of T ; that is, the language which T is
a text for. T [n] denotes the finite initial sequence of T with length n.

A language learning machine from texts (see [Gol67]) is an algorithmic device
which computes a mapping from SEQ into N . We let M, with or without dec-
orations, range over learning machines. M(T [n]) is interpreted as the grammar
(index for an accepting program) conjectured by the learning machine M on the
initial sequence T [n]. We say that M converges on T to i, (written: M(T )↓ = i)
iff (∀∞n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a lan-
guage. Below we define some of them. All of the criteria defined below are
variants of the Ex-style and Bc-style learning described in the Introduction;
in addition, they allow a finite number of errors in almost all conjectures (uni-
formly bounded, or arbitrary). TxtEx-criteria is due to [Gol67]. TxtExa (for
a > 0), and TxtBca-criteria are due to [CL82]. Osherson and Weinstein [OW82]
independently considered TxtBc.

Suppose a ∈ N ∪ {∗}. M TxtExa-identifies a language L (written: L ∈
TxtExa(M)) just in case for all texts T for L, (∃i |Wi =a L) (∀∞n)[M(T [n]) =
i]. M TxtExa-identifies a class L of r.e. languages (written: L ⊆ TxtExa(M))
just in case M TxtExa-identifies each language from L. TxtExa = {L ⊆ E |
(∃M)[L ⊆ TxtExa(M)]}.

M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) just
in case, for each text T for L, for all but finitely many n, WM(T [n]) =a L.
M TxtBca-identifies a class L of r.e. languages (written: L ⊆ TxtBca(M))
just in case M TxtBca-identifies each language from L. TxtBca = {L ⊆ E |
(∃M)[L ⊆ TxtBca(M)]}. For a = 0, we often write TxtEx and TxtBc, instead
of TxtEx0 and TxtBc0, respectively.

The following proposition is useful in proving many of our results.

Proposition 1. [Gol67] Suppose L is an infinite language, S ⊆ L, and L − S
is infinite. Let C0 ⊆ C1 ⊆ · · · be an infinite sequence of finite sets such that⋃
i∈N Ci = L. Then {L} ∪ {S ∪ Ci | i ∈ N} is not in TxtBc∗.

We let CYLi denote the language {〈i, x〉 | x ∈ N}.

3 Learning with Negative Counterexamples to
Conjectures

In this section we define two models of learning languages from positive data and
negative counterexamples to conjectures. Both models are based on the general
idea of learning from positive data and subset queries for the conjectures.
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Intuitively, for learning with negative counterexamples to conjectures, we may
consider the learner being provided a text, one element at a time, along with
a negative counterexample to the latest conjecture, if any. (One may view this
counterexample as a response of the teacher to the subset query when it is tested
if the language generated by the conjecture is a subset of the target language).
One may model the list of counterexamples as a second text for negative coun-
terexamples being provided to the learner. Thus the learning machines get as
input two texts, one for positive data, and other for negative counterexamples.

We say that M(T, T ′) converges to a grammar i, iff for all but finitely many
n, M(T [n], T ′[n]) = i.

First, we define the basic model of learning from positive data and negative
counterexamples to conjectures. In this model, if a conjecture contains elements
not in the target language, then a counterexample is provided to the learner.
NC in the definition below stands for ‘negative counterexample’.

Definition 1. [JK06b] Suppose a ∈ N ∪ {∗}.
(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all

texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn �= ∅ and T ′(n) = #, if Sn = ∅,
where Sn = L ∩WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.
(b) M NCExa-identifies a class L of languages (written: L ⊆ NCExa(M)),

iff M NCExa-identifies each language in the class.
(c) NCExa = {L | (∃M)[L ⊆NCExa(M)]}.

For LNCExa criteria of inference, we consider providing the learner with the
least counterexample rather than an arbitrary one. The criteria LNCExa of
learning can thus be defined similarly to NCExa, by requiring T ′(n) = min(Sn),
if Sn �= ∅ and T ′(n) = #, if Sn = ∅ in clause (a) above (instead of T ′(n) being
an arbitrary member of Sn).

Similarly, one can define ResNCExa, where the learner is just told that the
latest conjecture is or is not a subset of the input language, but is not provided
any counterexamples in the case of ‘no’ answer.

For BNCExa criteria of inference, we update the definition of Sn in clause (a)
of the definition of NCExa-identification as follows: Sn = L∩WM(T [n],T ′[n])∩{x |
x ≤ max(content(T [n]))}.

We can similarly define the criteria of inference ResBNCExa, and
LBNCExa, NCBca, LNCBca, ResBca, BNCBca, ResBNCBca and
LBNCBca. We refer the reader to [JK06b] for more details, discussion and
results about the various variations of NCI-criteria.

For m ∈ N , one may also consider the model, NCmI, where, for learning a
language L, the NCI learner is provided counterexamples only for its first m
conjectures which are not subsets of L. For remaining conjectures, the answer
provided is always #. In other words, the learner is ‘charged’ only for the first
m negative counterexamples, and the subset queries for later conjectures are not
answered. Following is the formal definition.
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Definition 2. [JK06a] Suppose a ∈ N ∪ {∗}, and m ∈ N .
(a) M NCmExa-identifies a language L (written: L ∈ NCmExa(M)) iff for

all texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn �= ∅ and card({r | r < n, T ′(r) �= #}) < m; T ′(n) = #,
if Sn = ∅ or card({r | r < n, T ′(r) �= #}) ≥ m,

where Sn = L ∩WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.
(b) M NCmExa-identifies a class L of languages (written: L ⊆

NCmExa(M)), iff M NCmExa-identifies each language in the class.
(c) NCmExa = {L | (∃M)[L ⊆ NCmExa(M)]}.

For a ∈ N ∪ {∗} and I ∈ {Exa,Bca}, one can similarly define BNCmI,
LBNCmI, ResBNCmI and LNCmI, ResNCmI and NCmBca.

GNCI-identification model is same as the model of NCI-identification, ex-
cept that counterexamples are provided to the learner only when it explicitly
requests for such via a ‘is this conjecture a subset of the target language’ ques-
tion (which we refer to as conjecture-subset question). This clearly does not make
a difference if there is no bound on the number of questions asked resulting in
counterexamples. However when there is a bound on number of counterexam-
ples, then this may make a difference, as the GNC-learner may avoid getting
a counterexample on some conjecture by not asking the conjecture-subset ques-
tion. Thus, we will only deal with GNC model when there is a requirement of
a bounded number of counterexamples. For a ∈ N ∪ {∗} and I ∈ {Exa,Bca},
one can define GNCmI, LGNCmI, ResGNCmI and BGNCmI, LBGNCmI,
ResBGNCmI, similarly to NC variants.

Note a subtle difference between models LBGNCn and LGNCn: in the
model LBGNCn, the teacher provides the shortest counterexample only if it is
smaller than some element of the input, whereas there is no such requirement
for LGNCn (the same is true also for NC-variant).

4 Relations Among Bounded Negative Counterexample
Models

In this section we establish relationships between B-variants of NC and GNC-
models when any short, or the least short counterexamples, or just the ‘no’
answers about existence of short counterexamples are used.

First we establish that, similarly to the known result about NC-model
([JK06a]), number of counterexamples matters to the extent that n + 1 ‘no’
answers used by BNCEx-style learners can sometimes do more that n least
counterexamples obtained by LBGNCBc∗-style learners.

Theorem 1. ResBNCn+1Ex− LBGNCnBc∗ �= ∅.

The next result gives advantages of GNC model.
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Theorem 2. For all n,m ∈ N , ResBGNC1Ex − (LBNCnBcm ∪
LBNCnEx∗) �= ∅.

Our main results in this section deal with the following problems: if and under
which conditions, (a) B-learners receiving just ‘yes’ or ‘no’ answers can simulate
learners receiving short (or, possibly, even least short) counterexamples, and (b)
learners using arbitrary short counterexamples can simulate the ones receiving
the least short counterexamples. We establish that, for both tasks (a) and (b),
for the Bcm and Ex∗ types of learnability, 2n − 1 is the upper and the lower
bound on the number of negative answers/examples needed for such a simulation.
These results are similar to the corresponding results in [JK06a] for the model
NC, however, there is also an interesting difference: as it will be shown below, for
Bc∗-learnability, the bound 2n−1 can be lowered to just n (for NCBc∗-learners,
the lower bound 2n− 1 still holds).

First we establish the upper bound 2n− 1 for both tasks (a) and (b).

Theorem 3. For all n ≥ 1,
(a) LBNCnI ⊆ ResBNC2n−1I.
(b) LBGNCnI ⊆ ResBGNC2n−1I.

Our next result shows that, for the Bcm and Ex∗ types of learnability, the
bound 2n − 1 is tight in the strongest sense for the task (b). Namely, we show
that BNC-learners using n least short counterexamples cannot be simulated by
BGNC-learners using 2n− 2 (arbitrary short) counterexamples.

Theorem 4. For all n ≥ 1, LBNCnEx − (BGNC2n−2Bcm ∪
BGNC2n−2Ex∗) �= ∅.

Now we show that the bound 2n− 1 on the number of negative answers is tight
for Bcm and Ex∗ types of learnability when ResBNC-learners try to simulate
BNCn-learners.

Theorem 5. For all m ∈ N , BNCnEx − (ResBGNC2n−2Bcm ∪
ResBGNC2n−2Ex∗) �= ∅.

Proof. Recall that 〈x, y, z〉 = 〈x, 〈y, z〉〉. Thus, CYLj = {〈j, x, y〉 | x, y ∈ N},
and 〈·, ·, ·〉 is increasing in all its arguments. Consider L defined as follows. For
each L ∈ L, there exists a set S, card(S) ≤ n, such that the conditions (1)–(3)
hold.
(1) L ⊆

⋃
j∈S CYLj .

(2) L ∩ CYLj ∩ {〈j, 0, x〉 | x ∈ N} contains exactly one element for each j ∈ S.
Let this element be 〈j, 0, 〈pj , qj〉〉.
(3) For each j ∈ S,

(3.1) Wpj is a grammar for L ∩ CYLj or
(3.2) Wpj �⊆ L and Wpj − L consists only of elements of form 〈j, 1, 2x〉
or only of elements of form 〈j, 1, 2x+ 1〉. Furthermore at least one such
element is smaller than max(L). If this element is of form 〈j, 1, 2z〉, then
Wqj = L ∩CYLj . Otherwise, L ∩ CYLj is finite.
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Intuitively, L may be considered as being divided into upto n parts, each part
being subset of a cylinder, where each part satisfies the properties as given in
(2) and (3).

Above class of languages can be seen to be in BNCnEx as follows. On input
σ, for each j such that content(σ) contains an element of CYLj , find pj and
qj as defined in condition 2 above (if σ does not contain any element of form
〈j, 0, 〈pj , qj〉〉, then grammar for ∅ is output on σ). Then for each of these j,
learner computes a grammar for:

(a) Wpj (if it has not received any counterexample from CYLj),
(b) Wqj (if the negative counterexample from CYLj is of form 〈j, 1, 2z〉), and
(c) content(T ) ∩ CYLj , otherwise.
Then, the learner outputs a grammar for the union of the languages enumer-

ated by the grammars computed for each j above. It is easy to verify that the
above learner gets at most one counterexample from each CYLj such that CYLj
intersects with the input language, and thus BNCnEx-identifies L.

Proof of L �∈ ResBGNC2n−2Bcm ∪ResBGNC2n−2Ex∗ is complex and we
refer the reader to [JK05] for details.

Interestingly, if we consider behaviorally correct learners that are allowed to
make any finite number of errors in almost all correct conjectures, then n short
(even least) counterexamples can be always substituted by just n ‘no’ answers.
(For the model NC, the lower bound 2n − 1 for the simulation by Res-type
learners still holds even for Bc∗-learnability, as shown in [JK06a]).

Theorem 6. For all n ∈ N , LBGNCnBc∗ ⊆ ResBNCnBc∗.

Proof. First note that one can simulate a LBGNCnBc∗ learner M by a
LBNCnBc∗ learner M′ as follows. If M(σ, σ′) does not ask a conjecture-subset
question, then M′(σ, σ′) is a grammar forWM(σ,σ′)−{x | x ≤ max(content(σ))};
otherwise M′(σ, σ′) = M(σ, σ′). It is easy to verify that on any input text T ,
M′ gets exactly the same counterexamples as M does, and all conjectures of
M′ are finite variants of corresponding conjectures of M. Thus, any language
LBGNCnBc∗-identified by M is LBNCnBc∗-identified by M′.

Hence, it suffices to show that LBNCnBc∗ ⊆ ResBNCnBc∗. Suppose M
LBNCnBc∗-identifies L. Define M′ as follows. Suppose T is the input text.

The idea is for M′ to output max(content(T [m])) + 1 variations of grammar
output by M on T [m]. These grammars would be for the languages:WM(T [m])−
{x | x �= i and x ≤ max(content(T [m′]))}, where T [m′] is the input seen by M′

when generating this i-th variant (where 0 ≤ i ≤ max(content(T [m]))). These
grammars would thus allow M′ to determine the least counterexample, if any,
that the grammar output by M on T [m] would have generated.

Formally conjectures of M′ will be of form P (j,m, i, s), where WP (j,m,i,s) =
Wj − {x | x �= i and x ≤ s}.

We assume that M outputs ∅ until it sees at least one element in the input.
This is to avoid having any counterexamples until input contains at least one
element (which in turn makes the notation easier for the following proof).

On input T [0], conjecture of M′ is P (M(Λ,Λ), 0, 0, 0).
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The invariants we will have is: If M′(T [m], T ′[m]) = P (j, r, i, s), then, (i)
j = M(T [r], T ′′[r]), where T ′′[r] is the sequence of least counterexamples for
M on input T [r] (for the language content(T )), (ii) s = max(content(T [m])),
(iii) r ≤ m, (iv) i ≤ max(content(T [r])), and (v) Wj − L does not contain any
element < i. Invariants are clearly satisfied for m = 0.

Suppose M′(T [m], T ′[m]) = P (M(T [r], T ′′[r]), r, i, s). Then we define
M′(T [m+ 1], T ′[m+ 1]) as follows.

If T ′(m) is ‘no’ answer, then let T ′′(r) = i, and let M′(T [m+1], T ′[m+1]) =
P (M(T [r + 1], T ′′[r + 1]), r + 1, 0,max(content(T [m+ 1]))).

Else if i = max(content(T [r])), then let T ′′(r) = #, and let M′(T [m +
1], T ′[m+ 1]) = P (M(T [r + 1], T ′′[r + 1]), r + 1, 0,max(content(T [m+ 1]))).

Else, M′(T [m+1], T ′[m+1]) = P (M(T [r], T ′′[r]), r, i+1,max(content(T [m+
1]))).

Now it is easy to verify that invariant is maintained. It also follows that
T ′′ constructed as above is correct sequence of least counterexamples for M
on input T . Moreover, each restricted ‘no’ answer in T ′ corresponds to a least
counterexample in T ′′. Thus, M′ gets exactly as many counterexamples as M
does, and M′ conjectures are ∗-variants of the conjectures of M (except that each
conjecture of M is repeated finitely many times by M′, with finite variations).
It follows that M′ ResBNCnBc∗-identifies L.

Corollary 1. For all n ∈ N , LBNCnBc∗ = BNCnBc∗ = ResBNCnBc∗ =
LBGNCnBc∗ = BGNCnBc∗ = ResBGNCnBc∗.

Our next result in this section shows how BNCBc-learners using just answers
‘yes’ or ‘no’ can simulate LBNCEx∗-learners getting unbounded number of
negative answers/counterexamples.

Proposition 2. LBNCEx∗ ⊆ ResBNCBc.

We now consider error hierarchy for BNCm-learning model.

Theorem 7. For all m,n ∈ N ,
(a) TxtEx2n+1 − LBGNCmBcn �= ∅.
(b) TxtExn+1 − LBGNCmExn �= ∅.
(c) For I ∈ {ResBNCm, BNCm, LBNCm, ResBGNCm, BGNCm,

LBGNCm}, IEx2n ⊆ IBcn.

5 Effects of Counterexamples Being Constrained/
Not-Constrained to Be Short

In this section we explore how, within the framework of our models, short coun-
terexamples fair against arbitrary or least counterexamples (this includes also
the cases when just answers ‘no’ are returned instead of counterexamples).

First, we use a result from [JK06a] to establish that one answer ‘no’ used
by an NCEx-learner can sometimes do more than unbounded number of least
(short) counterexamples used by Bc∗-learners.
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Theorem 8. (based on [JK06a]) ResNC1Ex− LBGNCBc∗ �= ∅.

From [JK06b] we have that, for a ∈ N ∪ {∗}, for I ∈ {Exa,Bca}, LBNCI ⊂
ResNCI. Thus the next result is somewhat surprising. It shows that one short
counterexample can sometimes give a learner more than any bounded number of
least counterexamples. The proof exploits the fact that the learner is not charged
if it does not get a counterexample.

Theorem 9. For all n ∈ N , ResBNC1Ex− LGNCnBc∗ �= ∅.

Proof. Let Ajk = {〈k, x〉 | x ≤ j}. Let

L = {L | (∃S | card(S) <∞)(∃f : S → N)[
1. [k, k′ ∈ S ∧ k < k′]⇒ [〈k, f(k)〉 < 〈k′, 0〉] ∧
2. [L = CYLmax(S) ∪

⋃
k∈S−max(S)A

f(k)
k or

L = {〈max(S), f(max(S) + 2)〉} ∪
⋃
k∈S A

f(k)
k ] ]}.

To see that L ∈ ResBNC1Ex consider the following learner. On input σ, if
no ‘no’ answers are yet received, then the learner first computes k = max({j |
〈j, x〉 ∈ content(σ)}). Then it outputs a grammar for L = CYLk ∪ (content(σ)−
CYLk). If there is a ‘no’ answer which has been received, then the learner
outputs a grammar for content(σ). It is easy to verify that the above learner
ResBNC1Ex-identifies L.

Now suppose by way of contradiction that some M LGNCnBc∗-identifies L.
Let σ0 = σ′0 = Λ, k0 = 0. Inductively define σi+1, σ′i+1, f(ki), ki+1 (for i < n) as
follows.

Let σ be smallest extension of σi, if any, such that content(σ) ⊆ CYLki ∪⋃
i′<iA

f(ki′ )
ki′ and M asks a conjecture-subset question on (σ, σ′i#

|σ|−|σi|) and

WM(σ,σ′
i#

|σ|−|σi|) contains an element which is not in CYLki ∪
⋃
i′<iA

f(ki′ )
ki′ or is

larger than max(content(σ)).
If there is such a σ, then let σi+1 = σ#, and σ′i+1 = σ′i#

|σ|−|σi|w (where w is
the least element in WM(σ,σ′

i#
|σ|−|σi|) which is not in CYLki ∪

⋃
i′<iA

f(ki′ )
ki′ or is

larger than max(content(σ))). Let f(ki) = max({y | 〈ki, y〉 ∈ content(σ)}). Let
ki+1 be such that ki+1 > 〈ki, f(ki)〉 and no element from CYLki+1 is present in
content(σ′i+1).

Let m be largest value such that σm, σ′m are defined above. Now, M has
to TxtBc∗-identify both CYLkm ∪

⋃
i<mA

f(km)
km

and Arkm
∪ {〈km, r + 2〉} ∪⋃

i<mA
f(ki)
ki

, for all possible r, without any further counterexamples. An im-
possible task by Proposition 1.

The above is the strongest possible result, as ResNCI ⊇ LBNCI (see [JK06b]).
We now consider the complexity (mind change) advantages of having only

short counterexamples. For this purpose, we need to modify the definition of
learner slightly, to avoid biasing the number of mind changes. (This modification
is used only for the rest of the current section).
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Definition 3. A learner is a mapping from SEQ to N ∪ {?}.
A learner M TxtExn-identifies L, iff it TxtEx-identifies L, and for all texts

T for L ∈ L, card({m |? �= M(T [m]) �= M(T [m+ 1])}) is bounded by n.

One can similarly define the criteria with mind change bounds for learners receiv-
ing counterexamples. Our next result demonstrates that there exists a TxtEx-
learnable language (that is, learnable just from positive data — without any
subset queries) that can be learned by a BNC1Ex-learner using just one nega-
tive answer and at most one mind change and cannot be learned by Ex-learners
using any number of arbitrary counterexamples and any bounded number of
mind changes.

Theorem 10. There exists a L such that
(a) L ∈ ResBNC1Ex1.
(b) L ∈ TxtEx, and thus in NCEx and GNCEx.
(c) For all m, L �∈ GNCExm.

Proof. Let Ln = {x | x < n or x = n+ 1}. Let L = {Ln | n ∈ N}.
Consider the following learner. Initially output a grammar for N . If and when

a ‘no’ answer is received, output a grammar for Ln, where n is the only counterex-
ample received. It is easy to verify that above learner ResBNC1Ex1-identifies
L. Also, it is also easy to verify that L ∈ TxtEx as one could output, in the
limit on text T , a grammar for Ln, for the least n such that n �∈ content(T ).

We now show that L �∈ NCExm. As the number of counterexamples are not
bounded, it follows that L �∈ GNCExm. Suppose by way of contradiction that
M NCExm-identifies L. Then consider the following strategy to construct a
diagonalizing language. We will construct the diagonalizing language in stages.
Construction is non-effective. We will try to define ls and us, and segments σs, σ′s
(σ′s is the sequence of counterexamples), for s ≤ m+ 1.

The following invariants will be satisfied.
(A) us − ls = 4m+3−s.
(B) M on proper prefixes of σs has made s different conjectures.
(C) content(σs) ⊆ {x | x < ls}.
(D) None of the conjectures made by M on proper prefixes of σs are for the

language Lr, for ls ≤ r ≤ us.
(E) |σ′s| = |σs|.
(F) For r < |σs|, σ′s(r) = #, implies WM(σs[r],σ′

s[r]) ⊆ {x | x < ls}.
(G) For r < |σs|, σ′s(r) �= #, implies σ′s(r) ∈ WM(σs[r],σ′

s[r]), and σ′s(r) >
us + 1.

Initially, we let l0 = 0 and u0 = l0 + 4m+3, and σ0 = σ′0 = Λ. Note that
invariants are satisfied.

Stage s (for s = 0 to s = m)
1. Let T be a text for Lls which extends σs.
2. Let t ≥ |σs|, be the least value, if any, such that M(T [t], T ′[t]) is a conjecture

different from any conjecture M(T [w], T ′[w]), for w < |σs|, where
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T ′(w) =

⎧⎪⎨⎪⎩
σ′s(w), if w < |σs|;
#, if w ≥ |σs| and M(T [w], T ′[w]) =?;
T ′(r), if w ≥ |σs| and M(T [w], T ′[w]) = M(T [r], T ′[r]),

for some r < |σs|.

(* Note that, in this step, we do not need the definition of T ′(w) when
M(T [w], T ′[w]) makes a new conjecture at or beyond σs. For first such w
(which is t found above) T ′(w) will be defined below). *)

If and when such a t is found, proceed to step 3.
3. Suppose j = M(T [t], T ′[t]).

If Wj contains an element z ≥ ls + 3(us−ls)
4 , then

Let ls+1 = ls + us−ls
4 .

Let us+1 = ls + 2(us−ls)
4 .

Let σs+1 = T [t]#.
Let σ′s+1 = T ′[t]z.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr, where
ls+1 ≤ r ≤ us+1. *)

Else,
Let ls+1 = ls + 3(us−ls)

4 .
Let us+1 = us.
Let σs+1 = T [t]#.
Let σ′s+1 = T ′[t]#.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr, where
ls+1 ≤ r ≤ us+1. *)

End stage s

It is easy to verify that invariants are satisfied. (A) clearly holds by definition
of ls+1 and us+1 in step 3. (B) holds as one extra new conjecture is found at
stage s, before proceeding to stage s+1. (C) holds, as ls+1 ≥ ls+ us−ls

4 > ls+2,
and content(T ) as defined in step 1 is a subset of Lls . (D) holds by induction,
and noting that the conjecture at T [t] as found in step 2 of stage s, is made
explicitly wrong by appropriate choice of ls+1 and us+1 in step 4. (E) easily
holds by construction. (F) and (G) hold by the definition of σ′s+1 at step 3.

Now, if step 2 does not succeed at a stage s ≤ m, then clearly M does not
NCEx-identify Lls . On the other hand if stage m does complete then M has
already made m+1 different conjectures (and thus at least m mind changes) on
prefixes of σm+1, which are not grammars for Llm+1 . Thus, M cannot NCExm-
identify Llm+1 .

Let X = {x | x > 0}. If we consider the class L = {Ln | n > 0} ∪ {X}, then we
can get the above result using class preserving learnability (that is, the learner
always uses grammars from the numbering defining the target class of languages
for its conjectures, see [ZL95] for formal definition) for ResBNC1Ex.

Theorem 11. For all m ∈ N , (a) LBNCExm ⊆ LNCExm.
(b) LBGNCExm ⊆ LGNCExm.
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Abstract. Given a finite set of words w1, . . . , wn independently drawn accord-
ing to a fixed unknown distribution law P called a stochastic language, a usual
goal in Grammatical Inference is to infer an estimate of P in some class of prob-
abilistic models, such as Probabilistic Automata (PA). Here, we study the class
Srat

R (Σ) of rational stochastic languages, which consists in stochastic languages
that can be generated by Multiplicity Automata (MA) and which strictly includes
the class of stochastic languages generated by PA. Rational stochastic languages
have minimal normal representation which may be very concise, and whose pa-
rameters can be efficiently estimated from stochastic samples. We design an ef-
ficient inference algorithm DEES which aims at building a minimal normal rep-
resentation of the target. Despite the fact that no recursively enumerable class of
MA computes exactly Srat

Q (Σ), we show that DEES strongly identifies Srat
Q (Σ)

in the limit. We study the intermediary MA output by DEES and show that they
compute rational series which converge absolutely and which can be used to pro-
vide stochastic languages which closely estimate the target.

1 Introduction

In probabilistic grammatical inference, it is supposed that data arise in the form of a
finite set of words w1, . . . , wn, built on a predefined alphabet Σ, and independently
drawn according to a fixed unknown distribution law on Σ∗ called a stochastic lan-
guage. Then, a usual goal is to try to infer an estimate of this distribution law in some
class of probabilistic models, such as Probabilistic Automata (PA), which have the same
expressivity as Hidden Markov Models (HMM). PA are identifiable in the limit [6].
However, to our knowledge, there exists no efficient inference algorithm able to deal
with the whole class of stochastic languages that can be generated from PA. Most of
the previous works use restricted subclasses of PA such as Probabilistic Determinis-
tic Automata (PDA) [5, 13]. On the other hand, Probabilistic Automata are particular
cases of Multiplicity Automata, and stochastic languages which can be generated by
multiplicity automata are special cases of rational languages that we call rational sto-
chastic languages. MA have been used in grammatical inference in a variant of the
exact learning model of Angluin [3, 1, 2] but not in probabilistic grammatical inference.
Let us design by SratK (Σ), the class of rational stochastic languages over K , where
K ∈ {R,Q,R+,Q+}. When K = Q+ or K = R+, SratK (Σ) is exactly the class
of stochastic languages generated by PA with parameters in K . But, when K = Q

or K = R, we obtain strictly greater classes which provide several advantages and at
least one drawback: elements of SratK+(Σ) may have significantly smaller representa-
tion in SratK (Σ) which is clearly an advantage from a learning perspective; elements of

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 274–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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SratK (Σ) have a minimal normal representation while such normal representations do
not exist for PA [7]; parameters of these minimal representations are directly related to
probabilities of some natural events of the form uΣ∗, which can be efficiently estimated
from stochastic samples; lastly, when K is a field, rational series overK form a vector
space and efficient linear algebra techniques can be used to deal with rational stochastic
languages. However, the class SratQ (Σ) presents a serious drawback : there exists no re-
cursively enumerable subset of MA which exactly generates it [6]. Moreover, this class
of representations is unstable: arbitrarily close to an MA which generates a stochastic
language, we may find MA whose associated rational series r takes negative values
and is not absolutely convergent: the global weight

∑
w∈Σ∗ r(w) may be unbounded

or not (absolutely) defined. However, we show that SratQ (Σ) is strongly identifiable in
the limit: we design an algorithm DEES which, for any target P ∈ SratQ (Σ) and given
access to an infinite sample S drawn according to P , will converge in a finite but un-
bounded number of steps to a minimal normal representation of P . Moreover, DEES
is efficient: it runs within polynomial time in the size of the input and it computes a
minimal number of parameters with classical statistical rates of convergence. However,
before converging to the target, DEES output MA which are close to the target but
which do not compute stochastic languages. The question is: what kind of guarantees
do we have on these intermediary hypotheses and how can we use them for a proba-
bilistic inference purpose? We show that, since the algorithm aims at building a minimal
normal representation of the target, the intermediary hypotheses r output by DEES have
a nice property: they converge absolutely and their limit is 1, i.e.

∑
w∈Σ∗ |r(w)| < ∞

and
∑

k≥0 r(Σ
k) = 1. As a consequence, r(X) is defined without ambiguity for any

X ⊆ Σ∗, and it can be shown that Nr =
∑

r(u)<0 |r(u)| tends to 0 as the learning
proceeds. Given any such series r, we can efficiently compute a stochastic language pr,
which is not rational, but satisfies

∑
u∈Σ∗ |r(u) − pr(u)| = 2Nr. Our conclusion is

that, despite the fact that no recursively enumerable class of MA represents the whole
class of rational stochastic languages, MA can be used efficiently to infer them.

Classical notions on stochastic languages, rational series, and multiplicity automata
are recalled in Section 2. We study an example which shows that the representation
of rational stochastic languages by MA with real parameters may be very concise. We
introduce our inference algorithm DEES in Section 3 and we show that SratQ (Σ) is
strongly indentifiable in the limit. We study the properties of the MA output by DEES
in Section 4 and we show that they define absolutely convergent rational series which
can be used to compute stochastic languages which are estimates of the target.

2 Preliminaries

Formal power series and stochastic languages. LetΣ∗ be the set of words on the finite
alphabet Σ. The empty word is denoted by ε and the length of a word u is denoted
by |u|. For any integer k, let Σk = {u ∈ Σ∗ : |u| = k} and Σ≤k = {u ∈ Σ∗ :
|u| ≤ k}. We denote by < the length-lexicographic order on Σ∗ and by MinU the
minimal element of a non empty set U according to this order;< is extended to 2Σ

∗
as

follows: U < V iff [U = ∅ and V �= ∅ or MinU < MinV or (MinU = MinV and
U \{MinU} < V \{MinV })]. A subset P ofΣ∗ is prefix-closed if for any u, v ∈ Σ∗,
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uv ∈ P ⇒ u ∈ P . For any S ⊆ Σ∗, let pref(S) = {u ∈ Σ∗ : ∃v ∈ Σ∗, uv ∈ S} and
fact(S) = {v ∈ Σ∗ : ∃u,w ∈ Σ∗, uvw ∈ S}.

Let Σ be a finite alphabet and K ∈ {R,Q,R+,Q+}. A formal power series is a
mapping r ofΣ∗ into K . The set of all formal power series is denoted by K〈〈Σ〉〉. Let
us denote by supp(r) the support of r, i.e. the set {w ∈ Σ∗ : r(w) �= 0}.

A stochastic language is a formal series p which takes its values in R+ and such that∑
w∈Σ∗ p(w) = 1. For any language L ⊆ Σ∗, let us denote

∑
w∈L p(w) by p(L). The

set of all stochastic languages overΣ is denoted by S(Σ). For any stochastic language
p and any word u such that p(uΣ∗) �= 0, we define the stochastic language u−1p by
u−1p(w) = p(uw)

p(uΣ∗) · u−1p is called the residual language of p wrt u. Let us denote by

res(p) the set {u ∈ Σ∗ : p(uΣ∗) �= 0} and by Res(p) the set {u−1p : u ∈ res(p)}.
We call sample any finite sequence of words. Let S be a sample. We denote by PS the
empirical distribution on Σ∗ associated with S. An infinite sample of P is an infinite
i.i.d. sample drawn according to P . We denote by Sn the sequence composed of the
n first words of S. We shall make a frequent use of the Borel-Cantelli Lemma which
states that if (Ak)k∈N is a sequence of events such that

∑
k∈N Pr(Ak) < ∞, then the

probability that a finite number of Ak occurs is 1.

Automata. Let K ∈ {R,Q,R+,Q+}. A K-multiplicity automaton (MA) is a 5-tuple
〈Σ,Q, ϕ, ι, τ〉 where Q is a finite set of states, ϕ : Q × Σ × Q → K is the tran-
sition function, ι : Q → K is the initialization function and τ : Q → K is the
termination function. Let QI = {q ∈ Q|ι(q) �= 0} be the set of initial states and
QT = {q ∈ Q|τ(q) �= 0} be the set of terminal states. The support of an MA
A = 〈Σ,Q,ϕ, ι, τ〉 is the NFA supp(A) = 〈Σ,Q,QI , QT , δ〉 where δ(q, x) = {q′ ∈
Q|ϕ(q, x, q′) �= 0}. We extend the transition functionϕ toQ×Σ∗×Q by ϕ(q, wx, r) =∑

s∈Q ϕ(q, w, s)ϕ(s, x, r) and ϕ(q, ε, r) = 1 if q = r and 0 otherwise, for any q, r ∈
Q, x ∈ Σ and w ∈ Σ∗. For any finite subset L ⊂ Σ∗ and any R ⊆ Q, define
ϕ(q, L,R) =

∑
w∈L,r∈Rϕ(q, w, r).

For any MA A, let rA be the series defined by rA(w) =
∑

q,r∈Q ι(q)ϕ(q, w, r)τ(r).
For any q ∈ Q, we define the series rA,q by rA,q(w) =

∑
r∈Q ϕ(q, w, r)τ(r). A state

q ∈ Q is accessible (resp. co-accessible) if there exists q0 ∈ QI (resp. qt ∈ QT ) and
u ∈ Σ∗ such that ϕ(q0, u, q) �= 0 (resp. ϕ(q, u, qt) �= 0). An MA is trimmed if all its
states are accessible and co-accessible. From now, we only consider trimmed MA.

A Probabilistic Automaton (PA) is a trimmed MA 〈Σ,Q,ϕ, ι, τ〉 s.t. ι, ϕ and τ take
their values in [0, 1], such that

∑
q∈Q ι(q) = 1 and for any state q, τ(q)+ϕ(q,Σ,Q) =

1. Probabilistic automata generate stochastic languages. A Probabilistic Deterministic
Automaton (PDA) is a PA whose support is deterministic.

For any class C of multiplicity automata over K , let us denote by SCK(Σ) the class
of all stochastic languages which are recognized by an element of C.

Rational series and rational stochastic languages. Rational series have several charac-
terization ([12, 4, 11]). Here, we shall say that a formal power series over Σ is
K-rational iff there exists a K-multiplicity automaton A such that r = rA, where
K ∈ {R,R+,Q,Q+}. Let us denote byKrat〈〈Σ〉〉 the set ofK-rational series overΣ
and by SratK (Σ) = Krat〈〈Σ〉〉 ∩ S(Σ), the set of rational stochastic languages over
K . Rational stochastic languages have been studied in [7] from a language theoretical
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S(Σ)

Srat
Q+ (Σ) = SPA

Q+ (Σ)

Srat
R (Σ)

Srat
R+ (Σ) = SP A

R+ (Σ)

Srat
Q (Σ) = Srat

R (Σ) ∩ Q+(Σ)

S(Σ) ∩ Q+〈〈Σ〉〉

Srat
R+ (Σ) ∩ Q+〈〈Σ〉〉

SPDA
R (Σ) = SPDA

R+ (Σ) SPDA
Q (Σ) = SPDA

Q+ (Σ) = SPDA
R (Σ) ∩ Q〈〈Σ〉〉

Fig. 1. Inclusion relations between classes of rational stochastic languages (see [7])

point of view. Inclusion relations between classes of rational stochastic languages are
summarized on Fig 1. It is worth noting that SPDAR (Σ) � SPAR (Σ) � SratR (Σ).

Let P be a rational stochastic language. The MA A = 〈Σ,Q,ϕ, ι, τ〉 is a reduced
representation of P if (i) P = PA, (ii) ∀q ∈ Q,PA,q ∈ S(Σ) and (iii) the set {PA,q :
q ∈ Q} is linearly independent. It can be shown thatRes(P ) spans a finite dimensional
vector subspace [Res(P )] of R〈〈Σ〉〉. Let QP be the smallest subset of res(P ) s.t.
{u−1P : u ∈ QP } spans [Res(P )]. It is a finite prefix-closed subset of Σ∗. Let A =
〈Σ,QP , ϕ, ι, τ〉 be the MA defined by:

– ι(ε) = 1, ι(u) = 0 otherwise; τ(u) = u−1P (ε),
– ϕ(u, x, ux) = u−1P (xΣ∗) if u, ux ∈ QP and x ∈ Σ,
– ϕ(u, x, v)=αvu−1P (xΣ∗) if x ∈ Σ, ux ∈ (QPΣ\QP )∩res(P ) and (ux)−1P =∑

v∈QP
αvv

−1P .

It can be shown that A is a reduced representation of P ; A is called the prefix-closed
reduced representation of P . Note that the parameters of A correspond to natural com-
ponents of the residual of P and can be estimated by using samples of P .

We give below an example of a rational stochastic language which cannot be gener-
ated by a PA. Moreover, for any integer N there exists a rational stochastic language
which can be generated by a multiplicity automaton with 3 states and such that the
smallest PA which generates it has N states. That is, considering rational stochastic
language makes it possible to deal with stochastic languages which cannot be gener-
ated by PA; it also permits to significantly decrease the size of their representation.

Proposition 1. For any α ∈ R, let Aα be the MA described on Fig. 2. Let Sα =
{(λ0, λ1, λ2) ∈ R3 : rAα ∈ S(Σ)}. If α/(2π) = p/q ∈ Q where p and q are rela-
tively prime, Sα is the convex hull of a polygon with q vertices which are the residual
languages of any one of them. If α/(2π) �∈ Q, Sα is the convex hull of an ellipse, any
point of which is a stochastic language that cannot be computed by a PA.

Proof (sketch). Let rq0 , rq1 and rq2 be the series associated with the states of Aα. We
have

rq0(a
n) =

cosnα− sinnα
2n

, rq1 (a
n) =

cosnα+ sinnα
2n

and rq2 (a
n) =

1
2n
.

The sums
∑

n∈N rq0(a
n),

∑
n∈N rq1(a

n) and
∑

n∈N rq2(a
n) converge since |rqi(an)|

= O(2−n) for i = 0, 1, 2. Let us denote σi =
∑

n∈N rqi (a
n) for i = 0, 1, 2. Check that
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σ0 =
4− 2 cosα− 2 sinα

5− 4 cosα
, σ1 =

4− 2 cosα+ 2 sinα
5− 4 cosα

and σ2 = 2.

Consider the 3-dimensional vector subspace V of R〈〈Σ〉〉 generated by rq0 , rq1 and rq2
and let r = λ0rq0 + λ1rq1 + λ2rq2 be a generic element of V . We have

∑
n∈N r(a

n) =
λ0σ0 + λ1σ1 + λ2σ2. The equation λ0σ0 + λ1σ1 + λ2σ2 = 1 defines a planeH in V .

Consider the constraints r(an) ≥ 0 for any n ≥ 0. The elements r of H which
satisfies all the constraints r(an) ≥ 0 are exactly the stochastic languages inH.

If α/(2π) = k/h ∈ Q where k and h are relatively prime, the set of constraints
{r(an) ≥ 0} is finite: it delimites a convex regular polygon P in the planeH. Let p be
a vertex of P . It can be shown that its residual languages are exactly the h vertices of P
and any PA generating p must have at least h states.

If α/(2π) �∈ Q, the constraints delimite an ellipse E. Let p be an element ofE. It can
be shown, by using techniques developed in [7], that its residual languages are dense in
E and that no PA can generate p. 
�

Matrices. We consider the Euclidan norm on Rn: ‖(x1, . . . , xn)‖ = (x2
1+. . .+x2

n)1/2.
For any R ≥ 0, let us denote by B(

−→
0 , R) the set {x ∈ Rn : ‖x‖ ≤ R}. The in-

duced norm on the set of n × n square matrices M over R is defined by: ‖M‖ =
sup{‖Mx‖ : x ∈ Rn with ‖x‖ = 1}. Some properties of the induced norm: ‖Mx‖ ≤
‖M‖ · ‖x‖ for all M ∈ Rn×n, x ∈ Rn; ‖MN‖ ≤ ‖M‖ · ‖N‖ for all M,N ∈ Rn×n;
limk→∞ ‖Mk‖1/k = ρ(M) where ρ(M) is the spectral radius ofM , i.e. the maximum
magnitude of the eigenvalues ofM (Gelfand’s Formula).

1 0.575

0.632a,0.425 0.69
a,0.368

0.741
a,0.31

0.717
a,0.259 0.339a,0.283 1e-20a,0.661

0.128
a,1

0.726
a,0.872

0.377
a,0.726

0.454
a,0.623

0.518

a,0.546

a,0.482

B

q1
1 0.575

q2
0.632

q3
0.69

a, 0.425 a, 0.368

a, 0.0708

a,−0.345
a, 0.584

C

Aα

q1
λ0 1

q2
λ1 1

q3
λ2 1

a, cos α
2 a, − sin α

2

a, sin α
2

a, cos α
2 a, 1

2

Fig. 2. When λ0 = λ2 = 1 and λ1 = 0, the MA Aπ/6 defines a stochastic language P whose
prefixed reduced representation is the MA B (with approximate values on transitions). In fact, P
can be computed by a PDA and the smallest PA computing it is C.

3 Identifying Srat
Q

(Σ) in the Limit

In this section, we show that the class of rational stochastic languages is strongly iden-
tifiable in the limit (see [8, 6] for a definition of this learning model).

Let S be a non empty finite sample ofΣ∗, letQ be a prefix-closed subset of pref(S),
let v ∈ pref(S) \ Q, and let ε > 0. We denote by I(Q, v, S, ε) the following set of
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inequalities over the set of variables {xu|u ∈ Q}:

I(Q,v, S, ε) = {|v−1PS(wΣ∗)−
u∈Q

xuu−1PS(wΣ∗)| ≤ ε|w ∈ fact(S)}∪{
u∈Q

xu = 1}.

Let DEES be the following algorithm:

Input: a sample S
0utput: a prefix-closed reduced MA A = 〈Σ, Q, ϕ, ι, τ 〉
Q ← {ε}, ι(ε) = 1, τ (ε) = PS(ε), F ← Σ ∩ pref(S)
while F �= ∅ do {

v = ux = MinF where u ∈ Σ∗ and x ∈ Σ, F ← F \ {v}
if I(Q,v, S, |S|−1/3) has no solution then{

Q ← Q ∪ {v}, ι(v) = 0, τ (v) = PS(v)/PS(vΣ∗),
ϕ(u, x, v) = PS(vΣ∗)/PS(uΣ∗),F ← F ∪ {vx ∈ res(PS)|x ∈ Σ}}

else{

let (αw)w∈Q be a solution of I(Q,v, S, |S|−1/3)
ϕ(u, x, w) = αwPS(vΣ∗) for any w ∈ Q}}

Lemma 1. Let P be a stochastic language and let u0, u1, . . . , un ∈ Res(P ) be such
that {u−1

0 P, u−1
1 P, . . . , u−1

n P} is linearly independent. Then, with probability one, for
any infinite sample S of P , there exist a positive number ε and an integer M such that
I({u1, . . . , un}, u0, Sm, ε) has no solution for every m ≥M .

Proof. Let S be an infinite sample of P . Suppose that for every ε > 0 and every integer
M , there exists m ≥ M such that I({u1, . . . , un}, u0, Sm, ε) has a solution. Then,
for any integer k, there exists mk ≥ k such that I({u1, . . . , un}, u0, Smk

, 1/k) has
a solution (α1,k, . . . , αn,k). Let ρk = Max{1, |α1,k|, . . . , |αn,k|}, γ0,k = 1/ρk and
γi,k = −αi,k/ρk for 1 ≤ i ≤ n. For every k, Max{|γi,k| : 0 ≤ i ≤ n} = 1. Check
that

∀k ≥ 0,

∣∣∣∣∣
n∑
i=0

γi,ku
−1
i PSmk

(wΣ∗)

∣∣∣∣∣ ≤ 1
ρkk
≤ 1
k
.

There exists a subsequence (α1,φ(k), . . . , αn,φ(k)) of (α1,k, . . . , αn,k) such that
(γ0,φ(k), . . . , γn,φ(k)) converges to (γ0, . . . , γn). We show below that we should have∑n

i=0 γiu
−1
i P (wΣ∗) = 0 for every word w, which is contradictory with the indepen-

dence assumption since Max{γi : 0 ≤ i ≤ n} = 1.
Let w ∈ fact(supp(P )). With probability 1, there exists an integer k0 such that

w ∈ fact(Smk
) for any k ≥ k0. For such a k, we can write

γiu
−1
i P = (γiu−1

i P − γiu−1
i PSmk

) + (γi − γi,φ(k))u−1
i PSmk

+ γi,φ(k)u
−1
i PSmk

and therefore

|
n∑
i=0

γiu
−1
i P (wΣ∗)| ≤

n∑
i=0

|u−1
i (P − PSmk

)(wΣ∗))|+
n∑
i=0

|γi − γi,φ(k)|+
1
k

which converges to 0 when k tends to infinity. 
�
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Let P be a stochastic language over Σ, let A = (Ai)i∈I be a family of subsets of Σ∗,
let S be a finite sample drawn according to P , and let PS be the empirical distribution
associated with S. It can be shown [14, 10] that for any confidence parameter δ, with a
probability greater than 1− δ, for any i ∈ I ,

|PS(Ai)− P (Ai)| ≤ c
√

VC(A)−log δ
4

Card(S) (1)

where VC(A) is the dimension of Vapnik-Chervonenkis of A and c is a universal
constant. When A = ({wΣ∗})w∈Σ∗ , VC(A) ≤ 2. Indeed, let r, s, t ∈ Σ∗ and let
Y = {r, s, t}. Let urs (resp. urt, ust) be the longest prefix shared by r and s (resp. r
and t, s and t). One of these 3 words is a prefix of the two other ones. Suppose that urs
is a prefix of urt and ust. Then, there exists no word w such that wΣ∗ ∩ Y = {r, s}.
Therefore, no subset containing more than two elements can be shattered byA.

Let Ψ(ε, δ) = c2

ε2 (2− log δ
4 ).

Lemma 2. Let P ∈ S(Σ) and let S be an infinite sample of P . For any precision
parameter ε, any confidence parameter δ, any n ≥ Ψ (ε, δ), with a probability greater
than 1− δ, |Pn(wΣ∗)− P (wΣ∗)| ≤ ε for all w ∈ Σ∗.

Proof. Use inequality (1). 
�

Check that for any α such that −1/2 < α < 0 and any β < −1, if we define εk = kα

and δk = kβ , there exists K such that for all k ≥ K , we have k ≥ Ψ(εk, δk). For such
choices of α and β, we have limk→∞ εk = 0 and

∑
k≥1 δk <∞.

Lemma 3. Let P ∈ S(Σ), u0, u1, . . . , un ∈ res(P ) and α1, . . . , αn ∈ R be such that
u−1

0 P =
∑n

i=1 αiu
−1
i P . Then, with probability one, for any infinite sample S of P ,

there exists K s.t. I({u1, . . . , un}, u0, Sk, k
−1/3) has a solution for every k ≥ K .

Proof. Let S be an infinite sample of P . Let α0 = 1 and let R = Max{|αi| : 0 ≤
i ≤ n}. With probability one, there exists K1 s.t. ∀k ≥ K1, ∀i = 0, . . . , n, |u−1

i Sk| ≥
Ψ([k1/3(n+ 1)R]−1, [(n+ 1)k2]−1). Let k ≥ K1. For anyX ⊆ Σ∗,

|u−1
0 PSk

(X) −
n

i=1

αiu
−1
i PSk

(X)| ≤ |u−1
0 PSk

(X) − u−1
0 P (X)| +

n

i=1

|αi||u−1
i PSk

(X) − u−1
i P (X)|.

From Lemma 2, with probability greater than 1 − 1/k2, for any i = 0, . . . , n and
any word w, |u−1

i PSk
(wΣ∗) − u−1

i P (wΣ∗)| ≤ [k1/3(n + 1)R]−1 and therefore,
|u−1

0 PSk
(wΣ∗)−

∑n
i=1 αiu

−1
i PSk

(wΣ∗)| ≤ k−1/3.
For any integer k ≥ K1, letAk be the event: |u−1

0 PSk(wΣ∗)− n
i=1 αiu

−1
i PSk(wΣ∗)|

> k−1/3. Since Pr(Ak) < 1/k2, the probability that a finite number of Ak occurs is 1.
Therefore, with probability 1, there exists an integer K such that for any k ≥ K ,

I({u1, . . . , un}, u0, Sk, k
−1/3) has a solution. 
�

Lemma 4. Let P ∈ S(Σ), let u0, u1, . . . , un ∈ res(P ) such that {u−1
1 P, . . . , u−1

n P}
is linearly independent and let α1, . . . , αn ∈ R be such that u−1

0 P =
∑n

i=1 αiu
−1
i P .

Then, with probability one, for any infinite sample S of P , there exists an integer K
such that ∀k ≥ K , any solution α̂1, . . . , α̂n of I({u1, . . . , un}, u0, Sk, k

−1/3) satisfies
|α̂i − αi| < O(k−1/3) for 1 ≤ i ≤ n.
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Proof. Let w1, . . . , wn ∈ Σ∗ be such that the square matrix M defined by M [i, j] =
u−1
j P (wiΣ∗) for 1 ≤ i, j ≤ n is invertible. Let A = (α1, . . . , αn)t, U0 =

(u−1
0 P (w1Σ

∗), . . . , u−1
0 P (wnΣ∗))t. We have MA = U0. Let S be an infinite sam-

ple of P , let k ∈ N and let α̂1, . . . , α̂n be a solution of I({u1, . . . , un}, u0, Sk, k
−1/3).

Let Mk be the square matrix defined by Mk[i, j] = u−1
j PSk

(wiΣ∗) for 1 ≤ i, j ≤ n,

letAk = (α̂1, . . . , α̂n)t andU0,k = (u−1
0 PSk

(w1Σ
∗), . . . , u−1

0 PSk
(wnΣ∗))t. We have

‖MkAk − U0,k‖2 =
n∑
i=1

[u−1
0 PSk

(wiΣ∗)−
n∑
j=1

α̂ju
−1
j PSk

(wiΣ∗)]2 ≤ nk−2/3.

Check that

A−Ak = M−1(MA− U0 + U0 − U0,k + U0,k −MkAk +MkAk −MAk)

and therefore, for any 1 ≤ i ≤ n

|αi − α̂i| ≤ ‖A−Ak‖ ≤ ‖M−1‖(‖U0 − U0,k‖+ n1/2k−1/3 + ‖Mk −M‖‖Ak‖).

Now, by using Lemma 2 and Borel-Cantelli Lemma as in the proof of Lemma 3, with
probability 1, there exists K such that for all k ≥ K , ‖U0 − U0,k‖ < O(k−1/3)
and ‖Mk − M‖ < O(k−1/3). Therefore, for all k ≥ K , any solution α̂1, . . . , α̂n
of I({u1, . . . , un}, u0, Sk, k

−1/3) satisfies |α̂i − αi| < O(k−1/3) for 1 ≤ i ≤ n. 
�

Theorem 1. Let P ∈ SratR (Σ) andA be the prefix-closed reduced representation of P .
Then, with probability one, for any infinite sample S ofP , there exists an integerK such
that for any k ≥ K ,DEES(Sk) returns a multiplicity automatonAk whose support is
the same as A’s. Moreover, there exists a constant C such that for any parameter α of
A, the corresponding parameter αk in Ak satisfies |α− αk| ≤ Ck−1/3.

Proof. Let QP be the set of states of A, i.e. the smallest prefix-closed subset of res(P )
such that {u−1P : u ∈ QP } spans the same vector space as Res(P ). Let u ∈ QP , let
Qu = {v ∈ QP |v < u} and let x ∈ Σ.

– If {v−1P |v ∈ Qu∪{ux}} is linearly independent, from Lemma 1, with probability
1, there exists εux and Kux such that for any k ≥ Kux, I(Qu, ux, Sk, εux) has no
solution.

– If there exists (αv)v∈Qu such that (ux)−1P =
∑

v∈Qu
αvv

−1P , from Lemma 3,
with probability 1, there exists an integerKux such that for any k ≥ Kux,
I(Qu, ux, Sk, k−1/3) has a solution.

Therefore, with probability one, there exists an integer K such that for any k ≥ K ,
DEES(Sk) returns a multiplicity automaton Ak whose set of states is equal to QP .
Use Lemmas 2 and 4 to check the last part of the proposition. 
�

When the target is in SratQ (Σ), DEES can be used to exactly identify it. The proof is
based on the representation of real numbers by continuous fraction. See [9] for a survey
on continuous fraction and [6] for a similar application.

Let (εn) be a sequence of non negative real numbers which converges to 0, let x ∈ Q,
let (yn) be a sequence of elements of Q such that |x−yn| ≤ εn for all but finitely many
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n. It can be shown that there exists an integer N such that, for any n ≥ N , x is the

unique rational number p
q which satisfies

∣∣∣yn − p
q

∣∣∣ ≤ εn ≤ 1
q2 . Moreover, the unique

solution of these inequalities can be computed from yn.
Let P ∈ SratQ (Σ), let S be an infinite sample of P and let Ak the MA output by

DEES on input Sk. Let Ak be the MA derived from Ak by replacing every parameter

αk with a solution p
q of

∣∣∣α− p
q

∣∣∣ ≤ k−1/4 ≤ 1
q2 .

Theorem 2. Let P ∈ SratQ (Σ) and A be the prefix-closed reduced representation of
P . Then, with probability one, for any infinite sample S of P , there exists an integerK
such that ∀k ≥ K , DEES(Sk) returns an MA Ak such that Ak = A.

Proof. From previous theorem, for every parameter α of A, the corresponding para-
meter αk in Ak satisfies |α − αk| ≤ Ck−1/3 for some constant C. Therefore, if k is
sufficiently large, we have |α − αk| ≤ k−1/4 and there exists an integer K such that

α = p/q is the unique solution of
∣∣∣α− p

q

∣∣∣ ≤ k−1/4 ≤ 1
q2 . 
�

4 Learning Rational Stochastic Languages

DEES runs in polynomial time within the size of the input sample and aims at com-
puting a representation of the target which is minimal and whose parameters depends
only on the target. DEES computes estimates which converge reasonably fast to these
parameters. That is, DEES compute functions which tend to the target but which are
not stochastic languages and it remains to study how they can be used in a grammatical
inference perspective.

Any rational stochastic language P defines a vector subspace of R〈〈Σ〉〉 in which
the stochastic languages form a compact convex subset.

Proposition 2. Let p1, . . . , pn be n independent stochastic languages. Then,Λ={−→α =
(α1, . . . , αn) ∈ Rn :

∑n
i=1 αipi ∈ S(Σ)} is a compact convex subset of Rn.

Proof. Check that Λ is closed and convex.
Now, let us show that Λ is bounded. Suppose that for any integer k, there exists

−→α k ∈ Λ such that ‖−→α k‖ ≥ k. Since−→α k/‖−→α k‖ belongs to the unit sphere in Rn, which
is compact, there exists a subsequence −→α φ(k) such that −→α φ(k)/‖−→α φ(k)‖ converges to
some −→α satisfying ‖−→α ‖ = 1. Let qk =

∑n
i=1 αk,ipi and r =

∑n
i=1 αipi.

For any 0 < λ ≤ ‖−→α k‖, p1 + λ qk−p1
‖−→α k‖ = (1 − λ

‖−→α k‖ )p1 + λ
‖−→α k‖qk is a stochastic

language since S(Σ) is convex; for every λ > 0, p1 + λ
qφ(k)−p1
‖−→α φ(k)‖

converges to p1 + λr

when k → ∞, since αφ(k),i/‖−→α φ(k)‖ → αi and ‖−→α φ(k)‖ → ∞) and p1 + λr is a
stochastic language since Λ is closed. Therefore, for any λ > 0, p1 + λr is a stochastic
language. Since p1(w) + λr(w) ∈ [0, 1] for every word w, we must have r = 0, i.e.
αi = 0 for any 1 ≤ i ≤ n since the languages p1, . . . , pn are independent, which is
impossible since ‖−→α ‖ = 1. Therefore,Λ is bounded. 
�

The MA A output by DEES generally do not compute stochastic languages. However,
we wish that the series rA they compute share some properties with them. Next propo-
sition gives sufficient conditions which guaranty that

∑
k≥0 rA(Σk) = 1.
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Proposition 3. Let A = 〈Σ,Q = {q1, . . . , qn}, ϕ, ι, τ〉 be an MA and let M be the
square matrix defined by M [i, j] = [ϕ(qi, Σ, qj)]1≤i,j≤n. Suppose that the spectral ra-
dius ofM satisfies ρ(M) < 1. Let−→ι =(ι(q1), . . . , ι(qn)) and−→τ =(τ(q1), . . . , τ(qn))t.

1. Then, the matrix (I −M) is invertible and
∑

k≥0M
k converges to (I −M)−1.

2. ∀qi ∈ Q,∀K ≥ 0,
∑

k≥K rA,qi(Σk) converges toMK
∑n

j=1(I−M)−1[i, j]τ(qj)
and

∑
k≥K rA(Σk) converges to −→ι MK(I −M)−1−→τ .

3. If ∀q ∈ Q, τ(q) +ϕ(q,Σ,Q) = 1, then ∀q ∈ Q, rA,q(
∑

k≥0Σ
k) = 1. If moreover∑

q∈Q ι(q) = 1, then r(
∑

k≥0Σ
k) = 1.

Proof. 1. Since ρ(M) < 1, 1 is not an eigenvalue ofM and I−M is invertible. From
Gelfand’s formula, limk→∞ ‖Mk‖ = 0. Since for any integer k, (I−M)(I+M+
. . .+Mk) = I −Mk+1, the sum

∑
k≥0M

k converges to (I −M)−1.
2. Since rA,qi(Σk) =

∑n
j=1M

k[i, j]τ(qj),
∑

k≥K rA,qi(Σk) = MK
∑n

j=1(1 −
M)−1[i, j]τ(qj) and

∑
k≥K rA(Σk) =

∑n
i=1 ι(qi)rA,qi(Σ≥K) = −→ι MK(I −

M)−1−→τ .
3. Let si = rA,qi(Σ∗) for 1 ≤ i ≤ n and −→s = (s1, . . . , sn)t. We have (I −M)−→s =
−→τ . Since I−M is invertible, there exists one and only one s such that (I−M)−→s =
−→τ . But since τ(q) + ϕ(q,Σ,Q) = 1 for any state q, the vector (1, . . . , 1)t is
clearly a solution. Therefore, si = 1 for 1 ≤ i ≤ n. If

∑
q∈Q ι(q) = 1, then

r(Σ∗) =
∑

q∈Q ι(q)rA,q(Σ
∗) = 1. 
�

Proposition 4. Let A = 〈Σ,Q,ϕ, ι, τ〉 be a reduced representation of a stochastic
languageP . LetQ = {q1, . . . , qn} and letM be the square matrix defined byM [i, j] =
[ϕ(qi, Σ, qj)]1≤i,j≤n. Then the spectral radius of M satisfies ρ(M) < 1.

Proof. From Prop. 2, let R be such that {−→α ∈ Rn :
∑n

i=1 αiPA,qi ∈ S(Σ)} ⊆
B(
−→
0 , R). For every u ∈ res(PA) and every 1 ≤ i ≤ n, we have

u−1PA,qi =

∑
1≤j≤n ϕ(qi, u, qj)PA,qj

PA,qi(uΣ∗)
·

Therefore, for every word u and every k, we have |ϕ(qi, u, qj)| ≤ R · PA,qi(uΣ∗) and∣∣ϕ(qi, Σk, qj)
∣∣ ≤ ∑

u∈Σk

|ϕ(qi, u, qj)| ≤ R · PA,qi(Σ
≥k).

Now, let λ be an eigenvalue of M associated with the eigenvector v and let i be an
index such that |vi| = Max{|vj| : j = 1, . . . , n}. For every integer k, we have

Mkv = λkv and |λkvi| = |
n∑
j=1

ϕ(qi, Σk, qj)vj | ≤ nR · PA,qi(Σ
≥k)|vi|

which implies that |λ| < 1 since PA,qi(Σ≥k) converges to 0 when k →∞. 
�

If the spectral radius of a matrix is < 1, the power of M decrease exponentially fast.
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Lemma 5. Let M ∈ Rn×n be such that ρ(M) < 1. Then, there exists C ∈ R and
ρ ∈ [0, 1[ such that for any integer k ≥ 0, ‖Mk‖ ≤ Cρk .

Proof. Let ρ ∈]ρ(M), 1[. From Gelfand’s formula, there exists an integer K such that
for any k ≥ K , ‖Mk‖1/k ≤ ρ. Let C = Max{‖Mh‖/ρh : h < K}. Let k ∈ N and let
a, b ∈ N be such that k = aK + b and b < K . We have

‖Mk‖ = ‖MaK+b‖ ≤ ‖MaK‖‖M b‖ ≤ ρaK‖M b‖ ≤ ρk ‖M
b‖

ρb
≤ Cρk.

Proposition 5. Let P ∈ SratR (Σ). There exists a constant C and ρ ∈ [0, 1[ such that
for any integer k, P (Σ≥k) ≤ Cρk.

Proof. Let A = 〈Σ,Q,ϕ, ι, τ〉 be a reduced representation of P and let M be the
square matrix defined by M [i, j] = [ϕ(qi, Σ, qj)]1≤i,j≤n. From Prop. 4, the spectral

radius of M is <1. From Lemma 5, there exists C1 and ρ ∈ [0, 1[ such that ‖Mk‖ ≤
C1ρ

k for every integer k. Let −→ιA = (ι(q1), . . . , ι(qn)) and −→τA = (τ(q1), . . . , τ(qn))t.
We have

P (Σ≥k) ≤ ‖ιA‖ · ‖Mk‖ · ‖(I −M)−1‖ · ‖−→τA‖ ≤ Cρk

with C = C1‖−→ιA‖ · ‖(1−M)−1‖ · ‖−→τA‖. 
�

It is not difficult to design an MA A which generates a stochastic language P and such
that ϕ(q, u, q′) is unbounded when u ∈ Σ∗. However, the next proposition proves that
this situation never happens when A is a reduced representation of P .

Proposition 6. Let P ∈ SratR (Σ) and let A = 〈Σ,Q,ϕ, ι, τ〉 be a reduced representa-
tion of P . Then, there exists a constant C and ρ ∈ [0, 1[ such that for any integer k and
any pair of states q, q′,

∑
u∈Σk |ϕ(q, u, q′)| ≤ Cρk.

Proof. Let k be an integer and let q, q′ ∈ Q. Let Pk = {u ∈ Σk : ϕ(q, u, q′) ≥ 0} and
Nk = Σk \ Pk.

P−1
k PA,q =

∑
u∈Pk

PA,q(uΣ∗)∑
u∈Pk

PA,q(uΣ∗)
u−1PA,q =

∑
q′′∈Q

∑
u∈Pk

ϕ(q, u, q′′)∑
u∈Pk

PA,q(uΣ∗)
PA,q′′

is a stochastic language which is a linear combination of the independent stochastic
languages PA,q′′ . From prop. 2, there exists a constantR which depends only on A s.t.∣∣∣∣∣∑

u∈Pk

ϕ(q, u, q′)

∣∣∣∣∣ =
∑
u∈Pk

ϕ(q, u, q′) ≤ R
∑
u∈Pk

PA,q(uΣ∗).

Similarly, we have
∣∣∑

u∈Nk
ϕ(q, u, q′)

∣∣=∑
u∈Nk

|ϕ(q, u, q′)|≤R
∑

u∈Nk
PA,q(uΣ∗).

Let C and ρ ∈]0, 1[ be such that PA,q(Σ≥k) ≤ Cρk for any state q and any integer k.
We have ∑

u∈Σk

|ϕ(q, u, q′)| ≤ R
∑
u∈Σk

PA,q(uΣ∗) ≤ RCρk.


�
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MA representation of rational stochastic languages are unstable (see Fig. 3). Arbitrar-
ily close to an MA A which generates a stochastic language, we can find an MA B
such that the sum

∑
w∈Σ∗ rB(w) converges to any real number or even diverges. How-

ever, the next theorem shows that when A is a reduced representation of a stochastic
language, any MAB sufficiently close toA defines a series which is absolutely conver-
gent. Moreover, simple syntactical conditions ensure that rB(Σ∗) = 1.

q1

1 1
2

q2

−1
4

a, 1
2

a, 1
2 + ε

a, 3
4 − ε

Fig. 3. These MA compute a series rε such that w∈Σ∗ rε(w) = 1 if ε �= 0 and

w∈Σ∗ r0(w) = 2/5. Note that when ε = 0, the series r0,q1 and r0,q2 are dependent.

Theorem 3. Let P ∈ SratR (Σ) and let A = 〈Σ,Q,ϕA, ιA, τA〉 be a reduced represen-
tation of P . Let CA and ρA ∈]0, 1[ be such that for any integer k and any pair of states
q, q′,

∑
u∈Σk |ϕA(q, u, q′)| ≤ CAρkA. Then, for any ρ > ρA, there exists C and α > 0

such that for any MA B = 〈Σ,Q,ϕB, ιB, τB〉 satisfying

∀q, q′ ∈ Q,∀x ∈ Σ, |ϕA(q, x, q′)− ϕB(q, x, q′)| < α (2)

we have
∑

u∈Σk |ϕB(q, u, q′)| ≤ Cρk for any pair of states q, q′ and any integer k. As
a consequence, the series rB is absolutely convergent. Moreover, if B satisfies also

∀q ∈ Q, τB(q) + ϕB(q,Σ,Q) = 1 and
∑
q∈Q

ιB(q) = 1 (3)

then, α can be chosen s.t. (2) implies rB,q(Σ∗) = 1 for any state q and rB(Σ∗) = 1.

Proof. Let k be such that (2nCA)1/k ≤ ρ/ρA where n = |Q|. There exists α > 0 such
that for any MA B = 〈Σ,Q,ϕB, ιB , τB〉 satisfying (2), we have

∀q, q′ ∈ Q,
∑
u∈Σk

|ϕB(q, u, q′)− ϕA(q, u, q′)| < CAρ
k
A.

Since
∑

u∈Σk |ϕA(q, u, q′)| ≤ CAρkA, we must have also∑
u∈Σk

|ϕB(q, u, q′)| ≤ 2CAρkA ≤
ρk

n
·

Let C1 = Max{
∑

u∈Σ<k |ϕB(q, u, q′)| : q, q′ ∈ Q}. Let l, a, b ∈ N such that
l = ak + b and b < k. Let u ∈ Σl and let u = u0 . . . ua where |ui| = k for 0 ≤ i < a
and |ua| = b. For any pair of states q0, qa+1, we have

ϕB(q0, u, qa+1) =
∑

q1,...,qa∈Q

a∏
i=0

ϕB(qi, ui, qi+1) and
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∑
u∈Σl

ϕB(q0, u, qa+1) =
∑

u0,...,ua−1∈Σk

∑
ua∈Σb

∑
q1,...,qa∈Q

a∏
i=0

ϕB(qi, ui, qi+1)

=
∑

q1,...,qa∈Q

∑
u0,...,ua−1∈Σk

∑
ua∈Σb

a∏
i=0

ϕB(qi, ui, qi+1)

=
∑

q1,...,qa∈Q

a−1∏
i=0

(
∑
u∈Σk

ϕB(qi, u, qi+1))(
∑
u∈Σb

ϕB(qa, ui, qa+1)).

Hence,
∑

u∈Σl |ϕB(q0, u, qm+1)| ≤ na ·
(
ρk

n

)a
· C1 ≤ Cρl where C = C1

ρk−1 .

Now, let us prove that rB is absolutely convergent.∑
w∈Σ∗

|rB(w)| ≤
∑
k∈N

∑
u∈Σk

∑
q,q′∈Q

ιB(q)ϕB(q, u, q′)τB(q′) ≤ C′

where C′ = Cn2Max{|ιB(q)τB(q′)| : q, q′ ∈ Q}/(1− ρ).
Lastly, let MB be the square matrix defined by MB[i, j] = ϕB(qi, Σ, qj). Since

the spectral radius of a matrix depends continuously on its coefficients and since A
is a reduced representation of a stochastic language, any MA satisfying (2) with α
sufficiently small must have a spectral radius <1 (Prop. 4). Therefore, if B satisfies (3)
and (2) with α sufficiently small, the Prop. 3 entails the conclusion. 
�

As a consequence, when the input samples are drawn according to a stochastic rational
language P , with probability one, DEES computes rational series r which converge
absolutely from some step and satisfy r(Σ∗) = 1. Moreover, it can easily be shown
that for any ε > 0,

∑
u∈Σ∗ |r(u)− P (u)| < ε from some step of learning.

It remains to show how a series which converges absolutely and whose limit is 1 can
be used to approximate a stochastic language.

Let r be a series overΣ such that
∑

w∈Σ∗ r(w) converges absolutely and whose limit
is 1. Therefore, r(X) =

∑
u∈X r(u) is defined without ambiguity for every X ⊆ Σ∗

and r(X) is bounded by
∑

u∈Σ∗ |r(u)|. Let S be the smallest subset of Σ∗ such that
ε ∈ S and ∀u ∈ Σ∗, ∀x ∈ Σ, u ∈ S and r(uxΣ∗) > 0⇒ ux ∈ S. S is a prefix-closed
subset of Σ∗ and ∀u ∈ S, r(uΣ∗) > 0. For every word u ∈ S, let us define N(u) =
∪{uxΣ∗ : x ∈ Σ, r(uxΣ∗) ≤ 0} ∪ {u : if r(u) ≤ 0} and N = ∪{N(u) : u ∈ Σ∗}.
Then, for every u ∈ S, let us define λu by:

λε = (1− r(N(ε)))−1 and λux = λu
r(uxΣ∗)

r(uxΣ∗)− r(N(ux))
.

Check that r(N(u)) ≤ 0 for every u ∈ S and therefore, λu ≤ 1.
Let pr be the series defined by: pr(u) = 0 if u ∈ N and pr(u) = λur(u) otherwise.

We show that pr is a stochastic language.
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Lemma 6. 1. pr(ε) + λε
∑

x∈S∩Σ r(xΣ
∗) = 1.

2. For any u ∈ Σ∗ and any x ∈ Σ, if ux ∈ S then

pr(ux) + λux
∑

{y∈Σ:uxy∈S}
r(uxyΣ∗) = λur(uxΣ∗).

Proof. First, check that for every u ∈ S,

pr(u) + λu
∑

x∈u−1S∩Σ
r(uxΣ∗) = λu(r(uΣ∗)− r(N(u)).

Then, pr(ε) + λε
∑

x∈S∩Σ r(xΣ
∗) = λε(1 − r(N(ε))) = 1. Now, let u ∈ Σ∗ and

x ∈ Σ s.t. ux ∈ S, pr(ux) + λux
∑

{y∈Σ:uxy∈S} r(uxyΣ
∗) = λux(r(uxΣ∗) −

r(N(ux))) = λur(uxΣ∗). 
�

Lemma 7. Let Q be a prefix-closed finite subset of Σ∗ and let Qs = (QΣ \ Q) ∩ S.
Then

pr(Q) = 1−
∑

ux∈Qs,x∈Σ
λur(uxΣ∗).

Proof. By induction onQ. When Q = {ε}, the relation comes directly from Lemma 6.
Now, suppose that the relation is true for a prefix-closed subset Q′, let u0 ∈ Q′ and
x0 ∈ Σ such that u0x0 �∈ Q′ and let Q = Q′ ∪ {u0x0}. We have

pr(Q) = pr(Q′) + pr(u0x0) = 1−
∑

ux∈Q′
s,x∈Σ

λur(uxΣ∗) + pr(u0x0)

whereQ′
s = (Q′Σ \Q′) ∩ S, from inductive hypothesis.

If u0x0 �∈ S, check that pr(u0x0) = 0 and that Qs = Q′
s. Therefore, pr(Q) =

1−
∑

ux∈Qs,x∈Σ λur(uxΣ
∗).

If u0x0 ∈ S, thenQs = Q′
s \ {u0x0} ∪ (u0x0Σ ∩ S). Therefore,

pr(Q) = 1−
∑

ux∈Qs,x∈Σ
λur(uxΣ∗)− λu0r(u0x0Σ

∗)

+ λu0x0

∑
u0x0x∈S,x∈Σ

r(u0x0xΣ
∗) + pr(u0x0)

= 1−
∑

ux∈Qs,x∈Σ
λur(uxΣ∗) from Lemma 6. 
�

Proposition 7. Let r be a formal series over Σ such that
∑

w∈Σ∗ r(w) = 1 the con-
vergence being absolute. Then, pr is a stochastic language. Moreover,

∑
u∈Σ∗ |r(u)−

pr(u)| = 2Nr, where Nr =
∑

r(u)<0 |r(u)|.

Proof. Clearly, pr(u) ∈ [0, 1] for every word u. From Lemma 7, for any integer k,
|1−pr(Σ≤k)| ≤

∑
|u|>k |r(u)|which tends to 0 since r is absolutely convergent. Next,∑

u∈Σ∗ |r(u)− pr(u)| =
∑

r(u)≥0(r(u)− pr(u))−
∑

r(u)<0 r(u) since r(u) < 0 im-
plies that pr(u)=0 and r(u) ≥ 0 implies that pr(u) ≤ r(u). Therefore,

∑
u∈Σ∗ |r(u)−

pr(u)| = 2Nr since
∑

u∈Σ∗ pr(u) = 1 and
∑

r(u)≥0 r(u) = 1 +Nr. 
�
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To sum up, given samples of a rational stochastic language p, from some steps, DEES
computes MA whose structure is equal to the structure of the prefix-closed reduced
representation of the target and whose parameters tend reasonably fast to the true pa-
rameters. These MA define absolutely convergent rational series r that converge to 1.
Stochastic langages pr can naturally be associated with these series, with the property
that

∑
u∈Σ∗ |p(u)− pr(u)| tends to 0 as the learning proceeds.

5 Conclusion

We have defined an inference algorithme DEES designed to learn rational stochastic
languages which strictly contains the class of stochastic languages computable by PA
(or HMM). We have shown that the class of rational stochastic languages over Q is
strongly identifiable in the limit. Moreover, DEES is an efficient inference algorithm
which can be used in practical cases of grammatical inference. The experiments we have
already carried out confirm the theoretical results of this paper: the fact that DEES aims
at building a natural and minimal representation of the target provides a very significant
improvement of the results obtained by classical probabilistic inference algorithms.
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Abstract. Several hardness results are presented for the parent assign-
ment problem: Given m observations of n attributes x1, . . . , xn, find the
best parents for xn, that is, a subset of the preceding attributes so as to
minimize a fixed cost function. This attribute or feature selection task
plays an important role, e.g., in structure learning in Bayesian networks,
yet little is known about its computational complexity. In this paper
we prove that, under the commonly adopted full-multinomial likelihood
model, the MDL, BIC, or AIC cost cannot be approximated in polyno-
mial time to a ratio less than 2 unless there exists a polynomial-time
algorithm for determining whether a directed graph with n nodes has a
dominating set of size log n, a LOGSNP-complete problem for which no
polynomial-time algorithm is known; as we also show, it is unlikely that
these penalized maximum likelihood costs can be approximated to within
any constant ratio. For the NML (normalized maximum likelihood) cost
we prove an NP-completeness result. These results both justify the ap-
plication of existing methods and motivate research on heuristic and
super-polynomial-time algorithms.

1 Introduction

Structure learning in Bayesian networks is often approached by minimizing a
sum of costs assigned to each local structure consisting of an attribute and its
parents [1, 2]. If an ordering of the attributes is given, then the subtasks of as-
signing optimal parents to each attribute can be solved independently of each
other. Unfortunately, for many objective functions of interest, no polynomial
time algorithm is known, unless one is willing to bound the number of parents
above by a constant, in which case the problem can be solved in polynomial
time. Consequently, researchers have proposed greedy algorithms with no per-
formance guarantees [1] and heuristic branch-and-bound methods that find a
global optimum but can be very slow in the worst case [3, 4]. However, the pre-
cise complexity of the parent assignment problem, even for the most commonly
used cost functions, is unknown.

This paper focuses on the following variant of the parent assignment problem:
given a data set containing m observations on n discrete attributes x1, . . . , xn,
find the parents xs1 , . . . , xsk

for xn so as to minimize the Minimum Description

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 289–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Length (MDL) cost [5] under the full-multinomial model1 [6]. This commonly
adopted cost function has the important property that the optimal number
of parents is always at most logm (throughout this paper we write logm for
�log2m�). This is because the number of parameters of the multinomial model
grows exponentially in the number of parents k, whereas the error, or the neg-
ative log-likelihood, grows at most linearly in the number of observations m
[7]. That said, only O(nlogm) smallest subsets of the n − 1 attributes need to
be evaluated, suggesting that the problem is very unlikely to be NP-hard (see,
e.g., Papadimitriou and Yannakakis [8]). Still, it is important and intriguing to
determine whether the problem can be solved in polynomial time.

In this paper we show that for the (two-part) MDL cost the parent assign-
ment problem is LOGSNP-hard, in other words, at least as hard as determining
whether a directed graph with n nodes has a dominating set of size logn [8]; for
this Log Dominating Set problem no polynomial-time algorithm is known.

Having this result, it is natural to ask whether similar results hold for other pe-
nalized maximum likelihood costs, such as Akaike’s information criterion (AIC)
[9] and the Normalized Maximum Likelihood (NML) criterion [10, 11]; note that
the Bayesian information criterion (BIC) [12] coincides with the MDL cost. Our
finding is that while MDL and AIC obey identical characterizations in terms
of LOGSNP-hardness, the behavior of NML seems to be radically different: On
one hand, we show that approximating the MDL or AIC cost to a ratio less
than 2 is LOGSNP-hard. On the other hand, for the NML cost we can obtain
an NP-completeness result; however, we currently do not know any nontrivial
inapproximability result for NML.

While these results are somewhat theoretical and perhaps not very surprising,
they provide evidence that the considered parent assignment problem is very
unlikely to have a polynomial-time algorithm with a good quality guarantee.
This justifies and motivates the application of existing search heuristics and,
more importantly, research on novel super-polynomial-time algorithms.

The rest of this paper is structured as follows. In Sect. 2 we formulate some
decision and optimization variants of the parent assignment problem for penal-
ized maximum likelihood costs under the full-multinomial model. In Sect. 3 we
prove the LOGSNP-hardness result for MDL by a simple reduction from Log
Dominating Set; this part introduces the reduction in a relatively easy and
clean manner. We then use essentially the same reduction in Sect. 4 to prove
the inapproximability results for MDL and AIC. We consider the case of NML
in Sect. 5. In Sect. 6 we discuss some open problems and related previous work.

2 Preliminaries

For simplicity, we restrict our consideration to {0, 1}-valued attributes. Let X be
anm×n data matrix, where the entry at the ith row and jth column, denoted as
xij , represents the ith observation of the jth attribute; submatrices are referred

1 In the full-multinomial model each value configuration of the parent attributes is
assigned an independent multinomial distribution of xn.
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to by indexing with subsets of row and column indexes. To distinguish between
attributes and columns of the data matrix we denote xj and xS for the attributes,
but xj and xS for the respective columns of X .

2.1 Penalized Maximum Likelihood Under the Full-Multinomial
Model

The multinomial model of conditional probability concerns the probability dis-
tribution of a “child” variable, say xin, given a set of “parents,” say xiS where
S ⊆ {1, . . . , n − 1}. In case of binary variables, this model has 2|S| parameters
θ1|u, one for each possible value u of xS , specifying the probability of xin = 1
given xiS = u, for all i = 1, . . . ,m; this is, in fact, a Bernoulli distribution for each
value of xS . It is convenient to also define θ0|u = 1−θ1|u. The m observations are
treated as independent draws, so that the total likelihood of xn, conditionally
on xS , is given by

m∏
i=1

θxi
n|xi

S
=

∏
u∈{0,1}|S|

∏
v∈{0,1}

θ muv

v|u ,

where muv = |{i : xiS = u, xin = v}| is the number of observations that has value
u on columns S and value v on column n. It is easy to find the maximizing
parameter values: θv|u = muv/mu, where mu = |{i : xiS = u}| is the number of
observations that has value u on column n.

Various forms of penalized maximum likelihood can be used as a criterion for
choosing between different sets of parents. These criteria operate quantitatively
in the logarithmic scale. The negative of the maximum log likelihood,

β(xS ,xn) = −
∑

u∈{0,1}|S|

∑
v∈{0,1}

muv log
muv

mu
,

gets a small value when the model fits well the data; β(xn,xS) can be viewed
as the number of bits needed to describe xn given xS and the estimated model
parameters. The MDL, AIC, and NML criteria introduce specific additive pe-
nalization terms αMDL, αAIC, and αNML, respectively, defined by

αMDL(X,S) = 2|S|−1 logm,

αAIC(X,S) = 2|S| ,

αNML(X,S) = log
∑

x′
n∈{0,1}m

2−β(xS,x′
n) .

As αMDL(X,S) and αAIC(X,S) depend on (X,S) only through the number of
rows m in X and the number of elements in S, we may conveniently treat them
as functions of (m, |S|). If M is a label of a criterion, e.g., from {MDL, AIC,
NML}, we define the corresponding penalized maximum likelihood cost as

γM (X,S) = αM (X,S) + β(xS ,xn) .

Notice that 2−γNML(X,S) is a conditional probability distribution of xn given xS .
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2.2 Variants of the Parent Assignment Problem

We will formally look at the parent assignment problem in the guise of one
optimization problem as well as of two decision problems, which are suitable for
complexity considerations. The following problems will be fixed once the penalty
term α has been fixed:

Min Parent Assignment (α)
Input: A 0-1 matrix X of size m× n.
Output: A subset S ⊆ {1, . . . , n − 1} such that γ(X,S) = α(X,S) +

β(xS ,xn) is minimized.

Parent Assignment (α)
Instance: A 0-1 matrix X of size m× n and a number t.
Question: Is there a subset S ⊆ {1, . . . , n − 1} such that γ(X,S) =

α(X,S) + β(xS ,xn) is at most t?

Small Parent Assignment (α)
Instance: A 0-1 matrix X of size m× n and numbers t and k.
Question: Is there a subset S ⊆ {1, . . . , n − 1} of size at most k such

that γ(X,S) = α(X,S) + β(xS ,xn) is at most t?

Of these problems, Min Parent Assignment is the most natural optimiza-
tion formulation of the parent assignment problem. Obviously, it is at least as
hard as the corresponding decision variant, Parent Assignment. The second
decision problem, Small Parent Assignment, involves an upper bound for the
number of parents, which renders it at least as hard as Parent Assignment;
we will not consider Small Parent Assignment until in Sect. 5.

3 MDL Parent Assignment Is Hard

In this section we show that Parent Assignment (αMDL), or MDL-PA for
short, is LOGSNP-hard. Papadimitriou and Yannakakis [8] defined the complex-
ity class LOGSNP in order to capture computational problems that are unlikely
to be NP-hard but very likely to have time complexity that scales, roughly, as
nlogn where n is the input size.

Our proof is based on a reduction from a restricted dominating set problem
defined below. As usual, for a directed graph G we call a node subset S a
dominating set if each node i outside S is dominated by some node j in S,
i.e., (i, j) is an arc in G.

Log Dominating Set (Log-DS)
Instance: A directed graph with n− 1 nodes.
Question: Does the graph have a dominating set of size logn?

A couple of details are here worth noting. First, we define the problem in terms
of n − 1 rather than n nodes, as this leads to somewhat simpler expressions in
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the sequel. Second, the standard problem definition (e.g., Papadimitriou and
Yannakakis [8]) has logn replaced by log(n − 1) (or n − 1 by n), however, it is
not difficult to show that the two problems are polynomially equivalent.

We known that Log Dominating Set is an ideal representative of the class
LOGSNP:

Theorem 1 ([8]). Log Dominating Set is LOGSNP-complete.

A key observation we will exploit in our reduction is that the maximum likelihood
score is highly sensitive to “collisions.” We say that a subset S has a collision
in X if there exist two rows i and i′ such that

xiS = xi
′
S but xin �= xi

′
n .

Thus, a collision occurs if some value on the parents appears with both values,
0 and 1, on the child.

On one hand, if no collision occurs, then the fit is perfect.

Lemma 1. Let X be a 0-1 matrix of size n×n and S a subset of {1, . . . , n−1}.
If S has no collision in X, then β(xn,xS) = 0.

Proof. Suppose that S has no collision in X . Then for any u either mu0 =
0 or mu1 = 0 or both. Thus, either mu0 = mu or mu1 = mu, implying
mu0 log(mu0/mu) + mu1 log(mu1/mu) = mu log 1 = 0. As β(xn,xS) is a sum
of these terms, one for each value of u, it must equal 0. 
�

On the other hand, the more collisions, the larger the minimum error. We will
use the following lower bound.

Lemma 2. Let X be a 0-1 matrix of size n×n and S a subset of {1, . . . , n−1}.
If S has a collision in X, then β(xn,xS) ≥ 2.

Proof. Suppose that xiS = xi
′
S = u and 0 = xin �= xi

′
n = 1. Since mu1,mu0 ≥ 1

and mu1 +mu0 = mu, we have

β(xn,xS) ≥ −
(
mu0 log

mu0

mu
+mu1 log

mu1

mu

)
≥ min

0<p<1
{− log p− log(1− p)} = 2 .


�

To amplify the effect of a collision, we consider simple repetitions. We say that
an m×n matrix B is obtained by stacking r copies of a q×n matrix A, or, that
B is the r-stack of A, if m = rq and the (tq + i)th row vector of B equals the
ith row vector of A for all t = 0, . . . , r − 1 and i = 1, . . . , q.

Lemma 3. Let X be a 0-1 matrix of size n×n and S a subset of {1, . . . , n−1}.
Let X ′ be the matrix obtained by stacking r copies of X. Then β(x′

n,x
′
S) =

r · β(xn,xS).

Proof. For X ′ the maximum likelihood estimate for any parameter θv|u is simply
(rmuv)/(rmu) = muv/mu, that is, the same as for the original matrix X . 
�
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We apply these simple observations with the following strategy. First, we map
an arbitrary instance of Log-DS, a graph G with n − 1 nodes, to a suitable
square matrix X of size n × n. Here we ensure that a set S is a dominating
set in G if and only if S has no collision in X . Then, we make a matrix X ′ by
stacking a polynomial number of copies of X . Finally, the instance of MDL-PA
is defined as (X ′, t), where the threshold t is set to the MDL cost due to the
number of model parameters. With this construction we are able to show that
G has a dominating set of size logn if and only if the MDL cost is at most t for
some set of parents. We next fill in the necessary details.

Let G be a directed graph on n−1 nodes labeled by 1, . . . , n−1. We define the
reflex of G as the n× n matrix R = ref(G) whose entry at the ith row and jth
column, Rij , equals 1 if (i, j) is an arc in G or i = j, else Rij equals 0. In words,
ref(G) is made from G by adding a new node, n, with no incoming nor outgoing
arcs, and then enforcing the graph be reflexive; see Fig. 1 for an example. This
matrix has a desired property, as stated in the next key lemma.

Lemma 4. Let G be a directed graph with nodes 1, . . . , n − 1. Then, for any
subset S ⊆ {1, . . . , n− 1}, we have

S is a dominating set in G if and only if S has no collision in ref(G) .

Proof. Let S be a subset of {1, . . . , n− 1}. Denote R = ref(G) for short.
Assume first that S is a dominating set in G. Then, if S had a collision in

the matrix R, we should have an index i < n such that RiS = RnS , since only Rnn
equals 1. Accordingly, RiS should be a vector of 0s. But this is impossible since
S is a dominating set in G, implying that G has an arc (i, j) for some j ∈ S and,
consequently, Rij = 1 by the definition of reflex.

Assume then that S is not a dominating set in G. Now it is sufficient to show
that for some i < n the vector RiS contains only 0s. Assume the contrary, that
for all i < n we have a j ∈ S such that Rij = 1. But this means that every node
i of G is dominated by a node j ∈ S, a contradiction. 
�

Let us summarize the above four lemmas:

Lemma 5. Let G be a directed graph with nodes 1, . . . , n − 1. Let X be the
matrix obtained by stacking r copies of the reflex of G. Then, for any subset
S ⊆ {1, . . . , n− 1}, we have

β(xS ,xn) = 0 , if S is a dominating set in G;
β(xS ,xn) ≥ 2r , if S is not a dominating set in G.

Proof. Immediate from Lemmas 1, 2, 3, and 4. 
�

In the sequel we will use this result (Lemma 5) as a key argument. The first
example of its usage is given in the proof of the next main result.

Theorem 2. MDL-PA is LOGSNP-hard.
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(a)

1 2

3

4

5

6

(b)

0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 0
1 0 0 1 1 0
0 0 1 0 0 1
0 0 0 1 0 0

(c)

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1

Fig. 1. The reflex of a directed graph. (a) A graph with 6 nodes, (b) the adjacency
matrix of the graph, and (c) the reflex of the graph. Nodes 3 and 4 form a dominating
set: every other node has an arc that points to 3 or 4.

Proof. Let G be a directed graph with nodes 1, . . . , n − 1, an instance of Log-
DS. Let R be the reflex of G. Let X be the rn× n matrix obtained by stacking
r = n2 copies of R. Finally, set t to the value αMDL(rn, log n).

Our first claim is that G is a positive instance of Log-DS if (X, t) is a positive
instance of MDL-PA. Assume the latter holds. Then there exists a set of parents
S such that

γMDL(X,S) = αMDL(rn, |S|) + β(xS ,xn) ≤ t = αMDL(rn, log n) .

Clearly, S can have at most logn elements. It remains to show that S is a
dominating set in G. To see this, assume the contrary: that S is not a dom-
inating set in G. Then, by Lemma 5, β(xS ,xn) ≥ 2r = 2n2 and, thereby,
γMDL(X,S) ≥ 2n2. But this contradicts with the earlier conclusion that
γMDL(X,S) ≤ αMDL(rn, log n) ≤ (1/2)n log(n3).

Our second claim is that G is a positive instance of Log-DS only if (X, t)
is a positive instance of MDL-PA. Assume the former holds. Then there exists
a dominating set S in G such that |S| ≤ logn. Now, by Lemma 5, we have
β(xS ,xn) = 0. Using this we see that

αMDL(rn, |S|) + β(xS ,xn) ≤ t = αMDL(rn, log n) ,
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since |S| ≤ logn. Thus we have shown that (X, t) is a positive instance of
MDL-PA.

To complete the proof, we notice that the mapping from G to X can be com-
puted in polynomial time. Since Log-DS is LOGSNP-complete (Theorem 1),
we conclude that MDL-PA is LOGSNP-hard. 
�

Regarding the above proof, it is worth noting that the particular choice for the
number of repetitions, r, is not crucial as long as r is polynomial in n and,
roughly, of order Ω(n logn).

4 Parent Assignment Is Hard to Approximate for the
MDL and AIC Costs

We next extend the result from the previous section in two dimensions. First, we
show that LOGSNP-hardness holds also for other penalized maximum likelihood
costs, such as AIC, that have certain properties. Second, we state the hardness
result in a stronger form: the optimization variant of the parent assignment
problem cannot be approximated in polynomial time to a ratio smaller than 2
unless LOGSNP = P.

We consider a generic cost function γ(X,S) = α(X,S) + β(xS ,xn), where
the penalization term α(X,S) is a function of the number of records m and
the number of parents k = |S|, hence denoted as α(m, k). In addition, we will
assume that

(A1) α(m, k) grows at most logarithmically in m and exponentially in k,
(A2) α(m, k) can be evaluated in time polynomial in m and k, and
(A3) α(m, k + 1)

/
α(m, k) ≥ 2 for all m and k.

These properties obviously hold for the MDL and AIC measures.

Proposition 1. The functions αMDL and αAIC satisfy conditions (A1–A3).

4.1 Approximating to a Ratio Less Than 2 Is Hard

We are now ready to prove the main result of this section.

Theorem 3. Let α be a function that satisfies conditions (A1–A3). Then, for
any ε > 0, approximating Min Parent Assignment (α) to the ratio 2 − ε is
LOGSNP-hard.

Proof. Assume that we have a polynomial-time algorithm A that, given any 0-1
input matrix X of size n× n, outputs a set S ⊆ {1, . . . , n− 1} such that

γ(X,S)/OPT (X) ≤ 2− ε < 2 ,

for some ε > 0; here OPT (X) denotes the minimum of γ(X,S′) over all possible
subsets S′.
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We construct a reduction from Log-DS, similar to the one in the proof of
Theorem 2. First, choose constants a and b such that α(m, k) ≤ a2bk logm for
all k and m with k ≤ m; this we can do due to condition (A1). Then, let G be a
directed graph with n− 1 nodes, an instance of Log-DS. Let R be the reflex of
G, and let X be the rn × n matrix obtained by stacking r = nn+1 copies of R.
Let S be the set given by algorithm A for the input X . We claim that G has a
dominating set of size at most logn if and only if

γ(X,S) < 2 · α(rn, log n) . (1)

We prove the two directions separately. First, suppose G has a dominating
set S∗ of size |S∗| ≤ logn. Then

OPT (X) ≤ γ(X,S∗) = α(rn, |S∗|) ≤ α(rn, log n) ;

the equality follows from Lemma 5, while the last inequality is due to the
monotonicity of α in the second argument (implied by (A3)). Using the ap-
proximation guarantee we obtain γ(X,S) < 2 · OPT (X) ≤ 2 · α(rn, log n), as
desired.

For the other direction, suppose G has no dominating set of size logn. Then
OPT (X) ≥ α(rn, 1 + logn), since any set S smaller than 1 + logn has a cost at
least β(xS ,xn) ≥ 2r = 2n2 ≥ α(rn, 1+ logn); the first inequality is by Lemma 5
and the last one is due to the choice of b (for sufficiently large n). Thus, for any
set S we have that γ(X,S) ≥ 2 ·α(rn, log n), by condition (A3). This contradicts
with inequality (1), as desired.

To complete the proof, we recall that Log-DS is LOGSNP-hard and notice
that the mapping from G to X as well as the condition in inequality (1) can be
computed in polynomial time. 
�

We notice that the main theorem of the previous section, Theorem 2, follows as
a direct corollary to the above, stronger result. Let it be also noted that an even
slightly stronger result holds: we may allow the number ε > 0 in the statement
of Theorem 3 depend on the instance of the Min Parent Assignment (α)
problem.

By Theorem 3 and Proposition 1 we immediately have the following.

Corollary 1. For the MDL and AIC costs, approximating Min Parent As-
signment to a ratio less than 2 is LOGSNP-hard.

4.2 Approximating to a Constant Ratio Looks Hard

Given the above hardness result, it is natural to ask whether Min Parent
Assignment (α) can be approximated to any constant ratio. As we show next,
the answer is likely to be negative. Namely, the positive answer would imply a
polynomial-time approximation scheme (PTAS) for the following optimization
version of Log Dominating Set, a problem for which no polynomial-time
constant-ratio approximation algorithm is known (see Cai et al. [13]).
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Min Log Dominating Set (Min-Log-DS)
Input: A directed graphG with n−1 nodes such thatG has a dominating

set of size logn.
Output: A minimum-cardinality dominating set of G.

The next result provides a connection between the approximation ratio of the
two problems; the result concerning constant approximation ratios follows as a
corollary, as made explicit below.

Theorem 4. Let α be a function that satisfies conditions (A1–A3). Let c > 0
be constant and f an integer function with f(n) = O(nμ) for some constant
μ ∈ [0, 1). Then Min Parent Assignment (α) on input matrix of size m× n
cannot be approximated in polynomial time to the ratio f(mn) unless Min-Log-
DS on input graph with n nodes can be approximated in polynomial time to the
ratio 1 + c · log f(n).

Proof. Let us first fix some constants. Choose μ ∈ [0, 1) such that f(n) ≤ nμ, for
all sufficiently large n; this we obviously can do. In addition, choose constants a
and b such that α(m, k) ≤ a2bk logm for all k and m with k ≤ m; this we can
do due to condition (A1).

Then, assume that we have a polynomial-time algorithm A that, given any
0-1 input matrix X of size n × n, outputs a set S ⊆ {1, . . . , n − 1} such that
γ(X,S)/OPT (X) ≤ f(mn).

We now construct a reduction from the minimum dominating set problem.
We fix yet another constant q = (b + 1 + 2μ)/(1 − μ) whose role soon becomes
clear. Let G be a directed graph with n− 1 nodes such that G has a dominating
set of size logn. We can assume that the smallest dominating set of G, denoted
by S∗, has cardinality at least (q+ 2)/c. Namely, this restriction obviously does
not change the problem complexity (up to a polynomial factor), since one can
enumerate all node subsets up to a constant cardinality in polynomial time. Let
R be the reflex of G. Let X be the rn × n matrix obtained by stacking r = nq

copies of R. Let S be the set given by algorithm A for the input X . We want
to show that S is approximatively minimum dominating set of G, that is, S is a
dominating set and

|S|/|S∗| ≤ 1 + c · log f(n) . (2)

To see that S is, indeed, a dominating set of G we derive a relatively small
upper bound for γ(X,S), as follows. For the optimal set S∗ we have

γ(X,S∗) ≤ α(m, log n) ≤ anb logm,

which together with the assumed approximation guarantee yields

γ(X,S) ≤ f(mn) · anb logm
≤ a(rn2)μnb log(rn)
= a(q + 1)nμ(q+2)+b logn
< nμ(q+2)+b+1

= nq ,
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where the strict inequality holds for large enough n (as a(q + 1) logn = o(n))
and the last identity holds by the choice of q. This means that S must be a
dominating set of G; else, by Lemma 5, we should have γ(X,S) ≥ 2r = 2nq.

It remains to show that inequality (2) holds. To this end, we first bound

f(mn) ≥ γ(X,S)/OPT (X)
= α(m, |S|)/α(m, |S∗|)
≥ 2|S|−|S∗|

= 2|S
∗|(|S|/|S∗|−1) ,

where the first identity holds because S and S∗ are dominating sets of G, and
the second inequality is due to condition (A3). Taking logs of both sides gives
us, after a little rearrangement,

|S|/|S∗| ≤ 1 +
1
|S∗| log f(mn)

≤ 1 +
c

q + 2
log f(nq+2)

≤ 1 + c · log f(n) ,

since we assumed that |S∗| ≥ (q + 2)/c and that f(nq+2) ≤ f(n)q+2 (that is, f
does not grow too rapidly; a polynomial f suffices here).

To complete the proof we notice that the reduction mapping can be evaluated
in polynomial time. 
�

Corollary 2. Let α be a function that satisfies conditions (A1–A3). Then Min
Parent Assignment (α) cannot be approximated to any constant ratio unless
Min-Log-DS has a polynomial-time approximation scheme.

Proof. Suppose that Min Parent Assignment (α) can be approximated to the
constant ratio ρ > 1 in polynomial time. Let ε > 0 be fixed. Applying Theorem 4
with f(n) := ρ, for all n, and c := ε/ log ρ gives the approximation ratio of 1 + ε
for Min-Log-DS. 
�

Cai et al. [13] discuss the computational complexity of Min-Log-DS. They
argue that no polynomial-time algorithm can even approximate Min-Log-DS
to any constant factor. However, the needed complexity theoretic assumptions
are substantially stronger than the conventional P �= NP. Despite this gap, it
is reasonable to assume that no PTAS exists for Min-Log-DS, implying the
inapproximability of Min Parent Assignment (α).

5 NML Parent Assignment Is NP-Complete

In this section we show that Small Parent Assignment is NP-complete for
the NML cost. Recall that this formulation of the parent assignment task assumes
two input numbers: an upper bound for the cost (as in Parent Assignment)
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and another upper bound for the cardinality of the parent set. The latter bound
will correspond to the analogous cardinality parameter of the NP-complete Dom-
inating Set problem [14]: Given a directed graph G and a number k, does G
contain a dominating set of size at most k?

We can apply the reduction scheme presented in Sect. 3. Unlike αMDL and
αAIC, however, αNML does not have any simple, data-independent expression.
Therefore, we have to work a bit to show that αNML grows relatively slowly in
the number of parents and in the number of data records, assuming that the
data set is obtained via our reduction.

Lemma 6. Let r ≥ 1 be an integer and X the r-stack of a 0–1 matrix of size
n× n. Then, for any subset S ⊆ {1, . . . , n− 1}, we have

αNML(X,S) ≤ n log(r + 1) .

Proof. Denote by m = rn the number of rows in X . Write

2αNML(X,S) =
∑

x′
n∈{0,1}m

2−β(X′,S)

=
∑

x′
n∈{0,1}m

∏
u∈{0,1}|S|:mu>0

(m′
u0

mu

)m′
u0
(m′

u1

mu

)m′
u1
,

where X ′ denotes the matrix obtained by replacing the nth column of X by the
column x′

n, and m′
uv is the number of rows in X ′ where the attributes xS are

set to u and the attribute xn is set to v.
We can split the summation over x′

n into (at most) 2|S| separate summations,
one for each value u ∈ {0, 1}|S| (that occurs in X). Within each summation it is
sufficient to sum over the sufficient statistic m′

u0. Thus,

2αNML(X,S) =
∏

u∈{0,1}|S|:mu>0

mu∑
m′

u0=0

(
mu

m′
u0

)(m′
u0

mu

)m′
u0
(m′

u1

mu

)m′
u1
. (3)

Since
(
k
j

)
zj(1− z)k−j ≤ 1 whenever 0 ≤ z ≤ 1 and 0 ≤ j ≤ k, we obtain

2αNML(X,S) ≤
∏

u∈{0,1}|S|:mu>0

(mu + 1) .

Finally, we examine how large a value the expression on the right-hand side
can take, subject to the constraints implied by the construction: mu = r · tu
with tu ∈ {0, 1, . . . , n} and

∑
u tu = n. We observe that if tu ≥ tw + 2, then

(rtu + 1)(rtw + 1) < (r(tu − 1) + 1)(r(tw + 1) + 1). Without loss of generality
we may now consider the case where u takes values from the largest possible
set, {0, 1}n−1, in which case at least one tu must equal 0 (for n ≥ 3) or every
tu equals 1 (for n ≤ 2). Consequently, the product

∏
u(rtu + 1) achieves its

maximum value when each tu is either 0 or 1. Hence,

2αNML(X,S) ≤ (r + 1)n .

Taking logarithms on both sides gives the claimed inequality. 
�
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This upper bound proved above is rather tight and, actually, significantly larger
bounds for α(X,S) would already suffice for rendering Small Parent Assign-
ment (α) NP-hard. Motivated by this fact, we formulate the hardness result in
a relatively general terms.

Theorem 5. Let g(n) = O(poly(n)) and α(X,S) < 2 · g(n) whenever X is the
g(n)-stack of a 0–1 matrix of size n × n and S ⊆ {1, . . . , n − 1}. Then Small
Parent Assignment (α) is NP-hard.

Proof. Let (G, k) be an instance of Dominating Set, where G is a directed
graph with nodes 1, . . . , n − 1 and k is a number between 1 and n − 1. Set
r = g(n) and let X denote the r-stack of the reflex of G.

It is sufficient to show that G has a dominating set of size at most k if and
only if there exists a subset S ⊆ {1, . . . , n − 1} of size at most k such that the
cost α(X,S) + β(xS ,xn) is less than the threshold t := 2 · g(n) = 2r.

Suppose first that S is a dominating set of G with |S| ≤ k. Then, by Lemma 5,
we have β(xS ,xn) = 0. Since we assumed that α(X,S) < 2 · g(n), the total cost
is less than t.

Then suppose that S ⊆ {1, . . . , n− 1} is a set with at most k elements and a
cost α(X,S)+β(xS ,xn) less than t = 2 ·g(n) = 2r. Then, of course, β(xS ,xn) <
2r, and so, by Lemma 5, the set S is a dominating set of G. 
�

Now it is easy to prove the main result of this section:

Theorem 6. Small Parent Assignment (αNML) is NP-complete.

Proof. To see NP-hardness, we use the substitution r = g(n) = n2 in Lemma 6
and Theorem 5. Note that then n log(r + 1) < 2 · g(n).

To see that Small Parent Assignment (αNML) is in NP, it is sufficient to
notice that αNML(X,S), for arbitrary X and S, can be evaluated in polynomial
time with respect to the size of the matrix X , for example, by using the factor-
ization (3) in the general case of r = 1. 
�

6 Concluding Remarks

We showed that the parent assignment problem is computationally hard for some
widely-used cost functions. According to the presented results, it is unlikely that
one even finds a polynomial-time algorithm with a good approximation guaran-
tee. Our reduction from the LOGSNP-hard log dominating set problem proved
a relatively direct link between the two problems, however, we do not know
whether the parent assignment problem for the MDL or AIC cost is LOGSNP-
complete; we leave the precise complexity characterization for future research.

Our hardness results arise from three ingredients, each representing a restric-
tion to the general parent assignment problem. Below we discuss each restriction
in turn.

First, we assumed that the conditional probability model is the full-multinomial
model. While this model has arguably been the most common choice in both the-
oretical and practical works on Bayesian networks, several other models have also
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been proposed, not excluding models for continuous data. To what extend similar
hardness results can be proved for those models is an open question.

Second, we considered penalized maximum-likelihood costs, such as MDL, AIC,
and NML, which separate the model complexity cost and the goodness of fit in a
simple manner. Other important cost functions include the Bayesian cost, which is
obtained by integrating the model parameters out [1, 2]. Characterizing the com-
plexity of parent assignment for the Bayesian cost is a natural direction for future
research. Although we cannot use the key lemma (Lemma 5) as such, similar ar-
gumentation based on a reduction from the (log) dominating set problem might
work. Like the NML cost, the Bayesian cost does not imply the O(logm) bound
for the size of the parent set [7], which probably renders the problem NP-hard.

Third, our reduction from the dominating set problem yields hard instances
that, however, do not necessary represent typical datasets one encounters in prac-
tice. This motivates seeking of appropriate constraints that would allow efficient
parent assignment; works on a related large-sample setting have produced inter-
esting characterizations of the needed assumptions and the type of optimality
one can achieve [15].

Finally, it should be noted that the parent assignment problem studied in this
paper falls in the broad framework of combinatorial feature selection problems
(e.g., [16, 17]). Koller and Sahami [16] and Charikar et al. [17] provide insightful
results concerning some interesting problem classes. However, neither of these
works provides any hardness or (in)approximability result for the parent assign-
ment problem. For linear classifiers (hyperplanes, perceptrons) Amaldi and Kann
[18] show that finding, or approximating the number of, the relevant attributes
is hard, proving that “black-box” feature selection can be hard; this result, of
course, does not imply that feature selection is hard for richer hypothesis classes,
e.g., the full-multinomial model.
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Abstract. Recently, Kalai et al. [1] have shown (among other things)
that linear threshold functions over the Boolean cube and unit sphere are
agnostically learnable with respect to the uniform distribution using the
hypothesis class of polynomial threshold functions. Their primary algo-
rithm computes monomials of large constant degree, although they also
analyze a low-degree algorithm for learning origin-centered halfspaces
over the unit sphere. This paper explores noise-tolerant learnability of
linear thresholds over the cube when the learner sees a very limited por-
tion of each instance. Uniform-distribution weak learnability results are
derived for the agnostic, unknown attribute noise, and malicious noise
models. The noise rates that can be tolerated vary: the rate is essentially
optimal for attribute noise, constant (roughly 1/8) for agnostic learning,
and non-trivial (Ω(1/

√
n)) for malicious noise. In addition, a new model

that lies between the product attribute and malicious noise models is
introduced, and in this stronger model results similar to those for the
standard attribute noise model are obtained for learning homogeneous
linear thresholds with respect to the uniform distribution over the cube.
The learning algorithms presented are simple and have small-polynomial
running times.

1 Introduction

A linear threshold function over the Boolean cube {0, 1}n is any function that can
be defined by taking the sign of the sum of a constant threshold value plus the
dot product of a fixed vector of weights and the vector of the function’s inputs.
While the class of linear threshold functions can be learned in polynomial time
with respect to arbitrary distributions over the cube (by using any polynomial-
time linear programming solver), many open questions remain concerning the
learnability of linear thresholds in the presence of noise.

Significant progress on noise-tolerant learning of linear thresholds was made
recently when Kalai et al. [1] showed (among other things) that linear thresh-
old functions over the Boolean cube are agnostically learnable with respect to
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the uniform distribution Un. Specifically, their algorithm, given ε > 0 and a
uniform-distribution oracle for any function f : {0, 1}n → {−1, 1}, produces an
approximator h such that PrUn [f �= h] is at most ε greater than the minimal
error of any linear threshold used as an approximator to f . As there are rela-
tively few positive results for the agnostic learning model, it is perhaps somewhat
surprising that a positive result could be obtained for such a rich class.

Kalai et al.’s polynomial regression algorithm, while polynomial-time for con-
stant ε, produces as its hypothesis h a large-constant-degree polynomial threshold
function. Furthermore, to produce this hypothesis, the algorithm uses estimates
of Fourier coefficients of the target f that involve computing monomials of degree
up to d over the examples, where d is a large constant. While Kalai et al. also show
that a degree-1 version of their algorithm produces reasonably good agnostic re-
sults when learning over the unit sphere, there is not an obvious translation of
their analysis to uniform-distribution learning over the discrete cube.

This paper considers uniform-distribution learning of noisy linear thresholds
over the Boolean cube when the learner is restricted to look at only a very
few bits k of each example. This Restricted Focus of Attention (k-RFA) model
was introduced by Ben-David and Dichterman [2] and has been considered in
several settings. One reason for considering this model is that, when positive
RFA results are possible, the resulting learning algorithms may be—and are, in
this paper—relatively simple and efficient, since they are using relatively little
information in each example.

In addition, there are theoretical reasons to be particularly interested in RFA
learnability of linear thresholds. It has long been known that the Chow parame-
ters of a linear threshold function f over the cube—parameters which can be effi-
ciently estimated while looking at only one input bit plus the label per example—
provide a unique signature for f : no other Boolean function has exactly the same
Chow parameters. Thus, noiseless linear thresholds are information-theoretically
learnable in the 1-RFA model. It is therefore natural to ask how much we can
learn about a noisy linear threshold function given a similarly limited amount
of information.

Algorithms are presented for RFA-learning linear threshold functions over
the cube with respect to the uniform distribution in several noise models (de-
scribed later): a weak version of agnostic learning, attribute noise generated by
an unknown noise process, malicious noise, and a new model called restricted
context-sensitive attribute noise (RCSAN, pronounced arc-san). In this model,
unlike attribute noise, the noise process is allowed to specify multiple noise rates
for an attribute, with the choice of rate for an example (x, f(x)) based on the
values of a restricted set of attributes of x as well as the label f(x). This gener-
alizes the product version of the attribute noise model, in which noise is applied
to each attribute i of an example independently at rate pi.

In each of these models, our algorithms produce approximating hypotheses
that (with high probability) agree with the target function with probability at
least 1/2+γ for some γ that depends on how far the actual noise rate falls below
the limits given next. For agnostic learning, any function f for which the optimal
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linear threshold function has error non-negligibly less than 1/8 can be efficiently
weakly learned. For unknown attribute noise applied to a linear threshold func-
tion, weak learning is achieved for any noise process for which the marginal
attribute noise rates are all non-negligibly less than 1/2. For malicious noise, a
rate of Ω(1/

√
n) can be tolerated. We consider several constrained versions of

the RCSAN model. Our strongest RCSAN result shows, roughly speaking, that
homogeneous linear threshold functions (linear thresholds that have a constant
threshold value of 0) can be 2-RFA learned with respect to the uniform distrib-
ution as long as the maximum average noise rate over the attributes is less than
1/2 and there is at least one known relevant attribute with no noise.

Our results are based on the observation of Kalai et al. [1] that the so-called
low-degree Fourier algorithm is a weak agnostic learner. In particular, our basic
learning algorithm is a combination of the low-degree algorithm with a ran-
domized algorithm due to Blum et al. [4]) that improves on the error bound of
the basic low-degree algorithm. The proof of the algorithm’s error bound also
depends critically on a Fourier property of linear threshold functions over the
cube due to Gotsman and Linial [3]. This basic algorithm provides the agnostic,
attribute, and malicious noise results. The RCSAN algorithm adds on top of
this basic algorithm some Fourier-based machinery for eliminating certain noise
elements that the basic algorithm does not handle especially well.

Finally, we show that in relation to our learning algorithm for the standard
attribute-noise model, the RCSAN model produces noise effects that are similar
to those that can be produced by the malicious model. Potentially, then, the
RCSAN model could be an interesting intermediary between the attribute noise
model and the more difficult malicious model in other contexts as well.

2 Preliminaries

2.1 Fourier Transform

Many of our results make use of Fourier notation and basic results. For any func-
tion f : {0, 1}n → R and for all a ∈ {0, 1}n, we define f̂(a) ≡ Ex∼Un [f(x)χa(x)],
where Un denotes the uniform distribution over {0, 1}n, χa(x) ≡ (−1)a·x, and
a ·x represents the dot product of the bit vectors a and x. Each f̂(a) is a Fourier
coefficient of f . The Fourier representation (or expansion) of f is

∑
a f̂(a)χa

and is equivalent to f . f̂(0n) (0n denotes the n-bit vector containing only 0’s)
is called the constant Fourier coefficient. The first-order Fourier coefficients are
those coefficients for which |a| = 1, that is, for which a contains a single 1 bit.

We use ei to denote the n-bit vector that has a single 1 in position i (bit
locations are assumed to be numbered 1 through n). For two n-bit vectors a and
b, a ⊕ b denotes the bitwise exclusive OR of the vectors. In particular, if i �= j
then ei ⊕ ej represents the vector with 1’s only in positions i and j.

In this paper, Boolean functions map to {−1, 1}. Parseval’s identity says that
for any f ,EU [f2]=

∑
a f̂

2(a). This implies that if f is Boolean then
∑

a f̂
2(a) = 1.

It is easily seen that for all Boolean f and for all a ∈ {0, 1}n, f̂(a) =
2 PrUn [f = χa]− 1 = 1− 2 PrUn [f �= χa].
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This paper focuses on noise-tolerant learnability of the class L of linearly
separable functions over the Boolean cube. In Fourier terms, L = ∪n≥0Ln, where
Ln = {� : {0, 1}n → {−1, 1} | ∃F =

∑
|a|≤1 F̂ (a)χa s.t. � = sign(F )}.

2.2 Learning Models

The underlying learning model for this paper is PAC learning [5] with respect to
the uniform distribution (or with respect to uniform for short); we assume that
the reader is familiar with this model. We will often state that certain results hold
“with high probability”; this should be understood to mean that these results
hold with probability 1 − δ for arbitrary PAC confidence parameter δ > 0. In
this paper, algorithms will be considered efficient if they run in polynomial time
in the number of inputs n, in an estimation tolerance parameter τ (bounds on
which will in turn depend on parameters of the noise model), and in log(1/δ).

With one exception, each noise model considered can be thought of as defining
a noisy oracle that, on each query, first draws a noiseless example from a standard
PAC example oracle EX(f,Un) and then applies some noise process to this
example, returning the resulting (possibly noisy) example as the response to the
query. A noiseless example of a function f consists of a pair (x, f(x)), where x
is called an instance (or input) and f(x) is called the label (or output) of the
example. The bits of an instance x are sometimes called the attributes of the
instance. The notation (xj , f j) is used to represent the jth example returned by
an oracle (either noiseless or noisy). If the example comes from a noisy oracle
then—depending on the noise model—either or both of xj and f j may be noisy
versions of an underlying noiseless example.

The agnostic learning model introduced by Kearns et al. [6] is the one ex-
ception mentioned above. It can be thought of as a particularly strong form
of noise applied to the labels of examples, that is, as a form of classification
noise. When learning L with respect to the uniform distribution, the strong
version of this model becomes the following: the learner has access to an ora-
cle EX(f,Un) for an arbitrary Boolean function f : {0, 1}n → {−1, 1}. Given
ε > 0, the goal of the learner is to output a (possibly randomized) hypothesis
h : {0, 1}n → {−1, 1} such that Prx∼Un [f(x) �= h(x)] ≤ opt + ε, where opt is
the minimum of PrUn [� �= f(x)] over all � ∈ Ln. Here and elsewhere, in addition
to the probability being over the uniform choice of x, it is also implicitly over
the random choices made by h, if h is randomized (as it will be for our algo-
rithms). Kearns et al. also consider a weak version of agnostic learning, wherein
the goal is to find a weak approximator h to the target f (i.e., h such that
PrUn [h �= f ] ≤ 1/2 − 1/p for some p polynomial in the learning parameters),
given that f is weakly approximable by some function in L.

In all of the other noise models considered, our goal will be to produce a hy-
pothesis h that weakly approximates f with respect to uniform. In particular, we
will say that L is φ-learnable for φ a function of the tolerance τ mentioned above
and various parameters of the noise processes if there is a learning algorithm A
that, given a noisy oracle for any f ∈ L, produces (with high probability) a
hypothesis h such that PrUn [h �= f ] ≤ φ.
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In the attribute noise model introduced by Shackelford and Volper [7], a noise
distribution N over {0, 1}n defines the behavior of the noise oracle EXN (f,U).
After drawing a noiseless example (x, f(x)), the attribute noise oracle draws
a ∼ N and returns as its output the noisy example (x⊕ a, f(x)).

In the malicious noise model introduced by Valiant [8], we will think of the
noisy oracle marking each noiseless example (x, f(x)) with probability η. If an
noiseless example is not marked, then it is returned as the oracle’s output. Oth-
erwise, the oracle is allowed to return an arbitrary, maliciously-chosen noisy
example. The oracle can be assumed to be computationally unbounded, to know
the target f , and even to know the current state of the learning algorithm.

The primary remaining noise model considered, the restricted context-sensitive
attribute noise (RCSAN) model, will be described in a later section.

2.3 Restricted Focus of Attention

In the Restricted Focus of Attention (k-RFA) learning model introduced by Ben-
David and Dichterman [2], the learner is only allowed to see k bits of each
instance. The learner chooses the bits to be seen. The primary learning algo-
rithm presented in this paper uses examples only to estimate the constant and
first-order Fourier coefficients (over noisy examples). It is easy to see from the de-
finition of these coefficients that they can all be estimated to inverse-polynomial
accuracy given a polynomially large set of examples in the 1-RFA model. One
version of RCSAN learning also needs to compute estimates of E[χei(x)χej (x)]
over noisy examples; this can clearly be accomplished in the 2-RFA model. Thus,
all of our results apply in the 1-RFA or 2-RFA models, but in the sequel we will
present the algorithms as if they are operating without any restriction on focus.

3 Weak Agnostic/Adversarial Noise Learning

In this section, we will show that L is weakly agnostically learnable with respect
to the uniform distribution by a 1-RFA learner as long as the target f is such
that there is some � ∈ L satisfying (roughly) PrU [� �= f ] < 1/8. However, we
will find it convenient to first develop a learning result in a closely related noise
model and return later to how this relates to weak agnostic learning. In the
uniform-distribution adversarial noise model, after a target function f ∈ L has
been selected but before learning begins, for some fixed η > 0 (the adversarial
noise rate) an adversary is allowed to choose an arbitrary set of instances and
corrupt their labels, producing a noisy Boolean function fη that we will refer to
as the η-corrupted version of f . The only limitation on fη is that it must satisfy
PrUn [fη �= f ] ≤ η.

Theorem 1. For any η, τ > 0, L is efficiently 1-RFA (2η + τ + 1/4)-learnable
with respect to the uniform distribution despite adversarial noise of rate η.

Proof. Fix any η and τ , let f ∈ L, and let fη be any adversarially η-corrupted
version of f . Also assume that the PAC confidence parameter δ > 0 is specified.
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Our learning algorithm A will begin by drawing a set of m = 25(n+1)2 ln(2(n+
1)/δ)/2τ2 examples (xj , f j) from the noisy example oracle EX(fη,U). For each
|a| ≤ 1, A will then calculate ĝ(a) ≡ (1/m)

∑
j f

jχa(xj). That is, for each

such a, ĝ(a) is an estimate of the Fourier coefficient f̂η(a) of the noisy function.
Standard Hoeffding bounds [9] show that, with probability at least 1−δ over the
choice of examples, every ĝ(a) will be within an additive factor of τ/2.5(n+ 1)
of the corresponding f̂η(a). Next, from these estimated coefficients A constructs
the (non-Boolean) function

g ≡
∑
|a|≤1

ĝ(a)χa .

Finally, A defines the randomized Boolean function h as follows: h(x) = −1 with
probability p ≡ (1− g(x))2/2(1 + g2(x)) and h(x) = 1 with probability 1− p. A
outputs h as its hypothesis.

Clearly we can convert A to a 1-RFA algorithm by drawing a separate sample
to compute each ĝ(a), and both this RFA algorithm and the original are efficient.
What remains to be shown is that for h as given above, with high probability
Pr[h �= f ] ≤ 2η + τ + 1/4.

The algorithm’s definition of randomized Boolean h in terms of deterministic
non-Boolean approximator g comes from Blum et al. [4], who show (in their
Lemma 3) that for such an h and for any Boolean function f , Pr[h �= f ] ≤
E[(f−g)2]/2. Furthermore, by Parseval’s identity and the linearity of the Fourier
transform, EU [(f−g)2] =

∑
a(f̂(a)− ĝ(a))2. Since by the definition of g we have

that ĝ(a) = 0 for all |a| > 1, breaking this sum into two parts gives us

Pr
U

[h �= f ] ≤ 1
2

∑
|a|≤1

(
f̂(a)− ĝ(a)

)2
+

1
2

∑
|a|>1

f̂2(a) . (1)

Gotsman and Linial [3] have shown that for any f ∈ L,
∑

|a|>1 f̂
2(a) ≤ 1/2.

Thus, what remains is to upper bound the first term of (1) by 2η+τ . The proof of
this bound is similar to the proof of Observation 3 in [1] but uses an observation
of Bshouty (personal communication) to achieve an improved 2η term rather
than the 4η that would result from using the “almost triangle” inequality as in
[1].

First, let α ≡ τ/2.5(n + 1) and recall that A chooses a sufficiently large
set of examples such that, with high probability, for all |a| ≤ 1 we have that
|ĝ(a)− f̂η(a)| ≤ α. This means that∑
|a|≤1

(
f̂(a)− ĝ(a)

)2
≤

∑
|a|≤1

(
|f̂(a)− f̂η(a)|+ α

)2

≤
∑
|a|≤1

(
f̂(a)− f̂η(a)

)2
+ 2

∑
|a|≤1

|f̂(a)− f̂η(a)|α +
∑
|a|≤1

α2

≤
∑
|a|≤1

(
f̂(a)− f̂η(a)

)2
+ 5

∑
|a|≤1

α
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since the Fourier coefficients of the Boolean functions f and fη all fall in the range
[−1, 1]. Thus the first term in (1) is bounded by (1/2)

∑
|a|≤1(f̂(a)− f̂η(a))2 +τ .

Furthermore, ∑
|a|≤1

(
f̂(a)− f̂η(a)

)2
≤

∑
a∈{0,1}n

(
f̂(a)− f̂η(a)

)2

= E
[
(f − fη)2

]
= 4 Pr[f �= fη]
≤ 4η

where the first equality follows by again applying Parseval’s identity and the
second because f and fη are both {−1, 1}-valued. 
�

In agnostic learning terms, what we have shown is that if the target f is such
that there exists an � ∈ L and a γ > τ satisfying PrU [f �= �] ≤ 1/8− γ/2 then
algorithm A above will (with high probability) output a randomized hypothesis
h such that PrU [h �= f ] ≤ 1/2 − (γ − τ), which for sufficiently large γ − τ
means that h weakly approximates f . Thus, algorithm A in fact 1-RFA weakly
agnostically learns L with respect to uniform.

4 Attribute Noise

Bshouty et al. [10] showed that the class AC0 of polynomial-size constant-depth
AND/OR circuits can be learned despite certain types of attribute noise. In
particular, given mild constraints on ε and δ, if the attribute noise is defined
by a known product distribution in which the noise rate for each bit is at most
inverse polylogarithmic in n then AC0 is learnable with respect to the uniform
distribution despite such attribute noise. Based on their analysis and the ob-
servations above, we will next show that L is weakly learnable with respect to
uniform despite an unknown attribute noise process, subject to only the mildest
of constraints.

Specifically, we will make use of the following easily-shown observation from
Bshouty et al. (part of the proof of their Theorem 8):

Lemma 1 (Bshouty et al.). Let N be any noise distribution over {0, 1}n and
let f : {0, 1}n → {−1, 1} be any Boolean function. Then for each c ∈ {0, 1}n,
Ex∼Un,a∼N [f(x)χc(x⊕ a)] = f̂(c)Ea∼N [χc(a)].

For the linear Fourier coefficients f̂(ei), note that

Ea∼N [χei(a)] = Ea∼N [(−1)ai ] = 1− 2 Pr
a∼N

[ai = 1] .

Thus, for any attribute noise distribution N and Boolean function f , given a set
S of examples {(xj , f j)} generated by the attribute-noise oracle EXN (f,U), the
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expected value of (1/|S|)
∑

S f
jχei(xj) is f̂(ei)(1 − 2 Pra∼N [ai = 1]). We write

f̂N (ei) to denote this expected value.
For any given noise distribution N define pN ≡ max1≤i≤n Pra∼N [ai = 1].

That is, pN is an upper bound on the marginal error rate of each of the at-
tributes. We will show that L can be weakly learned with respect to uniform
despite unknown attribute noise N , where N is arbitrary except for the con-
straint that pN must be non-negligibly less than 1/2 in order to achieve weak
learning efficiently. Since learning is information-theoretically impossible given
uniform attribute noise of rate 1/2 (as this in effect replaces each instance with
some other uniform-random instance), this is a very weak constraint on the noise
process.

Theorem 2. For any τ > 0 and any unknown distribution N over {0, 1}n such
that pN < 1/2, L is efficiently 1-RFA (p2N + τ + 1/4)-learnable with respect to
uniform despite unknown N -attribute noise.

Proof. The proof is very similar to that of Theorem 1, except that the algorithm
A described in that proof now operates on examples generated by an EXN (f,U)
oracle rather than by an EX(fη,U) oracle. Specifically, A will use the N oracle
to estimate, for all |a| ≤ 1, ĝ(a)’s that are approximations to the coefficients
f̂N (a) = f̂(a)(1− 2 Pra∼N [ai = 1]) to a tolerance of τ/2.5(n+ 1). The function
g is defined in terms of these estimated coefficients as before, and h is again
defined in terms of g. From the proof of Theorem 1 we have that

Pr[h �= f ] ≤ 1
2

∑
|a|≤1

(f̂(a)− f̂N (a))2 + τ +
1
2

∑
|a|>1

f̂2(a) .

Since we are considering attribute noise only, f̂(0n) = f̂N (0n). For every |a| = 1,
by the definition of pN , (f̂(a)−f̂N (a))2 ≤ 4p2N f̂

2(a). So
∑

|a|≤1(f̂(a)−f̂N (a))2 ≤
4p2N

∑
|a|≤1 f̂

2(a) = 4p2N − 4p2N
∑

|a|>1 f̂
2(a), where the equality follows from

Parseval’s identity. Inserting this into bound on Pr[h �= f ] above gives

Pr[h �= f ] ≤ 2p2N + τ +
(

1
2
− 2p2N

) ∑
|a|>1

f̂2(a) .

Since our assumed constraint on pN implies that 1/2 > 2p2N , this bound is
maximized when

∑
|a|>1 f̂

2(a) is maximized. Using the fact that
∑

|a|>1 f̂
2(a) ≤

1/2 completes the proof. 
�

5 Malicious Noise

Recall that in the malicious noise model, conceptually each example is “marked”
independently with probability η, and those that are marked can be corrupted
arbitrarily by a malicious adversary. In this model, the worst case for the algo-
rithmA of Theorem 1—in terms of the bound we can prove on the approximation
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error of A’s hypothesis h relative to the target f—is when the adversary chooses
to make every marked example identical to all the other marked examples. This
approach can be used to maximize the difference that can be achieved for a
given set of marked examples between A’s estimated coefficients {ĝ(a) : |a| ≤ 1}
and the corresponding true coefficients f̂(a), which in turn maximally increases
(weakens) the bound on Pr[h �= f ] provided by (1) over the 1/4 + τ bound that
would apply in the noise-free setting.

The magnitude of the error induced by this worst-case malicious noise process
in the estimate of a fixed first-order coefficient f̂(ei) depends on the magnitude of
the coefficient. For instance, if the coefficient value is 0 (that is, the attribute i is
irrelevant) then on average the adversary will only change the value of attribute
i in half of the marked examples; the other half will already have the desired
attribute value. On the other hand, if |f̂(ei)| = 1 then attribute i will be changed
in every marked example, and the magnitude of the expected difference between
A’s estimate of f̂(ei) and the true value will be 2η. The error induced in the
estimate of f̂(0n) similarly depends on the magnitude of this coefficient.

It follows that, for fixed marking rate η and estimation tolerance τ > 0, apply-
ing algorithm A of the proof of Theorem 1 to malicious noise examples will with
high probability produce Fourier estimates ĝ(a) such that (1/2)

∑
|a|≤1(f̂

2(a)−
ĝ2(a)) ≤ 4(n + 1)η2 + τ . Thus, the algorithm without modification will weakly
learn L despite malicious noise of rate η = Ω(1/

√
n).

However, it would obviously be a simple matter to modify the algorithm to
detect a large number of identical examples and, once detected, to ignore them
in computing the coefficients ĝ(a). In fact, notice that a set of such examples
corrupted in this way would no longer be uniformly distributed over the in-
stance space, and in particular notice that the attributes would no longer be
independent.

Comparing the attribute and malicious noise models, then, there are (at least)
two key differences. First, while the attribute noise model adds an error vector
to an underlying instance, the malicious noise model replaces the underlying
instance in its entirety. Second, as Bshouty et al. [10] point out, uniformly dis-
tributed instances remain uniform after arbitrary attribute noise is applied, while
(as we have just seen) this is not necessarily the case with malicious noise. That
said, the malicious noise model does allow the adversary to consider the entire ex-
ample when corrupting an individual attribute, so the adversary can potentially
craft the corrupted examples so that the overall set of examples still appears to
be drawn uniformly.

This comparison of models suggests that it might be worthwhile to consider
noise models that lie between the attribute and malicious models. We consider
this direction in the next section.

6 Context-Sensitive Attribute Noise

In the restricted context-sensitive attribute noise (RCSAN) model, the noise
process is similar to that of attribute noise, but the process is potentially sensitive
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to the label and a limited number of attribute values. This is somewhat analogous
to the RFA learning model, except it is the noise process that is restricted here.
The specific version of the model considered here could be called 1-RCSAN, since
we will allow the noise applied to an attribute i of an example to depend only
on the example label and on the value of i itself. In the sequel, we will simply
call this the RCSAN model.

Each instantiation of the RCSAN model defines four noise rates p++
i , p+−

i ,
p−+
i , and p−−

i for each attribute 1 ≤ i ≤ n. If a given pre-noise example (x, f(x))
is such that χei(x) = +1 (that is, xi = 0) and f(x) = −1 then the noise
process will flip xi from 0 to 1 with probability p+−

i . The other three noise rates
similarly define the probability of attribute i being corrupted in the remaining
three attribute/label contexts.

This model generalizes the product attribute noise model, in which each at-
tribute i is assigned a single context-free noise rate pi that is applied to attribute i
in every example, regardless of the value of the attribute or the label. As we saw
earlier, when a uniform-distribution learning algorithm is based on estimates
of first-order Fourier coefficients, the general attribute noise model—in which
an arbitrary (possibly non-product) noise distribution N is allowed—effectively
reduces to a form of product attribute noise. So, for algorithms based on esti-
mating first-order Fourier coefficients, the restricted context-sensitive attribute
noise model is strictly stronger than the attribute noise model considered in
section 4.

Furthermore, with respect to the type of error induced in Fourier coefficients,
the RCSAN model is in some ways more similar to malicious noise than to
attribute noise. In particular, recall that the errors induced by the attribute noise
model in the first-order Fourier coefficients of a target function are multiplicative
in nature: each coefficient is reduced by a multiplicative factor as small as 1−2pN .
On the other hand, like the malicious noise model, the RCSAN model can induce
additive error in the first-order Fourier coefficients. For example, consider an
irrelevant attribute i, that is, an attribute for which f̂(ei) = 0. If this coefficient is
estimated as the sample mean of f jχei(xj) over a set of noisy examples {(xj , f j)}
where the noise rates are p++

i = p−−
i = 0 and p+−

i = p−+
i = η > 0, then the

expected value of the estimate will be η.
In the remainder of this section, we will examine uniform-distribution RCSAN-

tolerant learning of a subclass of linear threshold functions, the class Lh of homo-
geneous linear threshold functions. This class is the discrete analog of the origin-
centered halfspaces considered by Kalai et al. [1] and others. Specifically, Lh is
the set of all functions f : {0, 1}n → {−1, 1} such that there is a function F =∑

|a|=1 F̂ (a)χa and f = sign(F ). We’ll begin with several simple lemmas showing
that Lh has a number of nice Fourier properties.

6.1 Properties of Lh

Lemma 2. If f ∈ Lh then f is balanced, that is, Ex∼Un [f(x)] = f̂(0n) = 0.

Proof. Let x̄ represent the bitwise-complement of x ∈ {0, 1}n. Since f ∈ Lh,
there is some F such that for every x ∈ {0, 1}n, f(x) = sign(

∑
|a|=1 F̂ (a)χa(x)).
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Fixing such an F we have that for all x, f(x̄) = sign(
∑

|a|=1 F̂ (a)χa(x̄)) =

sign(−
∑

|a|=1 F̂ (a)χa(x)) = −f(x). It follows that Ex∼Un [f(x)] = 0. 
�

Lemma 3. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i ≤ n then for any
b ∈ {−1, 1}, Prx∼Un [f(x) = 1∧χei(x) = b] = Prx∼Un [f(x) = −1∧χei(x) = −b].

Proof. Fix arbitrary b ∈ {−1, 1}. By the proof of the preceding lemma, we know
that for all x ∈ {0, 1}n, f(x̄) = −f(x). Thus, for every x ∈ {0, 1}n such that
f(x) = 1 and χei(x) = b there is a distinct y = x̄ such that f(y) = −1 and
χei(y) = −b. Therefore, the set of such x’s is no larger than the set of such y’s.
But it is similarly easy to see that the set of such y’s is no larger than the set of
such x’s. Thus the sets are of equal size and have equal probability with respect
to the uniform distribution. 
�

Lemma 4. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i ≤ n then for any
b ∈ {−1, 1},

Pr
x∼Un

[f(x) = 1 ∧ χei(x) = b] =
1 + bf̂(ei)

4
.

Proof. By the definition of Fourier coefficients and the previous lemma, f̂(ei) =
2 Pr[f = χei ]− 1 = 2(Pr[f = χei = 1] + Pr[f = χei = −1])− 1 = 4 Pr[f = χei =
1]− 1. This proves the b = 1 case. The b = −1 case can be proved similarly by
starting with f̂(e1) = 1− 2 Pr[f �= χei ]. 
�

Lemma 5. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i �= j ≤ n then for any
b1, b2 ∈ {−1, 1}, Prx∼Un [f(x) = 1∧ χei(x) = b1 ∧ χej (x) = b2] = Prx∼Un [f(x) =
−1 ∧ χei(x) = −b1 ∧ χej (x) = −b2]

Proof. The proof is essentially the same as that of Lemma 3. 
�

Lemma 6. If f : {0, 1}n→{−1, 1} is inLh and 1 ≤ i �= j ≤ n then f̂(ei⊕ej) = 0.

Proof. Let χij represent χei⊕ej and define χi and χj similarly in terms of ei
and ej, respectively. Then applying the definition of Fourier coefficients and the
preceding lemma, we have that

f̂(ei ⊕ ej) = 2 Pr
x∼Un

[f = χij ]− 1

= 2(Pr[f = 1 ∧ χi = 1 ∧ χj = 1] + Pr[f = 1 ∧ χi = −1 ∧ χj = −1] +
Pr[f=−1 ∧ χi=1 ∧ χj = −1]+Pr[f = −1 ∧ χi = −1 ∧ χj = 1])−1

= 2(Pr[f = 1 ∧ χi = 1 ∧ χj = 1] + Pr[f = 1 ∧ χi = −1 ∧ χj = −1] +
Pr[f = 1 ∧ χi = −1 ∧ χj = 1] + Pr[f = 1 ∧ χi = 1 ∧ χj = −1])− 1

= 2 Pr[f = 1]− 1.

Since f is balanced (by Lemma 2), Pr[f = 1] = 1/2. 
�
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Lemma 7. If f : {0, 1}n → {−1, 1} is in Lh and 1 ≤ i �= j ≤ n then for any
b1, b2 ∈ {−1, 1},

Pr
x∼Un

[f(x) = 1 ∧ χei(x) = b1 ∧ χej = b2] =
1 + b1f̂(ei) + b2f̂(ej)

8
.

Proof. Fix b1, b2, i, and j and let fij represent the projection of f that ignores
attributes i and j and instead treats every example x as if these attributes
have constant values such that χei(x) = b1 and χej (x) = b2. It follows from the
Fourier representation of f that E[fij ] = f̂(0n)+b1f̂(ei)+b2f̂(ej)+b1b2f̂(ei⊕ej).
Furthermore, based on Lemma 2 and the preceding lemma, we know that this
sum reduces to b1f̂(ei) + b2f̂(ej). Of course, E[fij ] is also equal to 2 Pr[fij =
1] − 1 = 2 Pr[f = 1 | χei = b1 ∧ χej = b2] − 1. Applying the definition of
conditional probability and solving for Pr[f = 1 ∧ χei = b1 ∧ χej = b2] gives the
lemma. 
�

6.2 Learning Lh

With these lemmas in hand, let us now consider the effect of context-sensitive
noise on the estimate of a first-order Fourier coefficient of a homogeneous linear
threshold function.

Lemma 8. Let f : {0, 1}n → {−1, 1} be any function in Lh and let 1 ≤ i ≤ n.
Then for any RCSAN process, the expected value of the sample mean of f jχei(xj)
over a set of noisy examples {(xj , f j)} is

p+−
i + p−+

i − p++
i − p−−

i

2
+ f̂(ei)

(
1− p+−

i + p−+
i + p++

i + p−−
i

2

)
(2)

Proof. The expected value without noise is of course f̂(ei). By Lemma 4, the
probability that f = χei = 1—which is also the probability that noise rate p++

i

applies—is (1 + f̂(ei))/4. The effect of attribute noise on these examples is to
subtract 1 rather than adding 1 to

∑
j f

jχei(xj). Thus, the expected effect of
noise due to examples where f = χei = 1 is to add −p++

i (1 + f̂(ei))/2 to the
true expected value f̂(ei). Similarly, applying Lemma 3 as well as Lemma 4,
the expected contribution of noise due to examples where f = χei = −1 is
−p−−

i (1 + f̂(ei))/2. Further applications of Lemmas 3 and 4 to the remaining
cases gives that the expected value of the sample mean is

f̂(ei) +
(p+−
i + p−+

i )(1 − f̂(ei))− (p++
i + p−−

i )(1 + f̂(ei))
2

.

Rearranging this expression gives the lemma. 
�
Thus, in general, the noise induced in a coefficient f̂(ei) by an RCSAN process
is a combination of additive error (of rate (p+−

i + p−+
i − p++

i − p−−
i )/2) and

multiplicative error (of rate 1− (p+−
i + p−+

i + p++
i + p−−

i )/2).
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Obviously, if the RCSAN process generating noisy examples is known, then
this theorem can be used to recover a close approximation to the noiseless Fourier
coefficient f̂(ei) from the noisy estimate of this coefficient as long as the mul-
tiplicative factor in (2) is bounded away from 0, or equivalently, as long as the
average noise rate p̄i ≡ (p+−

i + p−+
i + p++

i + p−−
i )/4 is bounded away from 1/2.

So it is easy to learn Lh in the RCSAN model if the noise process is known and
does not completely obscure the target function.

The more interesting case, then, is if the noise process is unknown but perhaps
constrained in some way. For instance, consider the constraint that for all i, the
average noise probability when f and χei agree ((p++

i + p−−
i )/2) is equal to

the average noise probability when they disagree. Then the additive term in (2)
will vanish. In this situation, it can be seen that Theorem 2 applies, with the
modification that we will use p̄ ≡ maxi=1..n p̄i in place of pN . In fact, if the
additive term in (2) is nonzero but less than, say, τ/5(n + 1) for all i, then
we can modify A to use a (polynomial) sample size m′ such that the ĝ(a)’s
computed are all (with high probability) within τ/5(n + 1) of the true mean
values they estimate. The result is that (with high probability) each ĝ(a) will be
within τ/2.5(n+1) of its mean value, as needed for the remainder of the proof of
Theorem 2. In short, as long as for every attribute i the average noise rate p̄i is
non-negligibly less than 1/2 and the differences (p+−

i + p−+
i )− (p++

i + p−−
i ) are

all sufficiently small, then Theorem 2 applies and Lh is weakly learnable with
respect to uniform despite an unknown RCSAN process.

This is of course a very strong constraint on the RCSAN process. The main
result of this section shows how to learn Lh with a much milder constraint on
the RCSAN process.

Theorem 3. For any τ > 0 and given any RCSAN process, Lh is efficiently
2-RFA (p̄2 + τ + 1/4)-learnable with respect to uniform. The RCSAN process
is unknown and unconstrained except that p̄ < 1/2, there must be one known
attribute k for which p̄k = 0, and there must be a known non-negligible value
β > 0 such that |f̂(ek)| > β.

Proof. (Sketch) The key is showing that, for every attribute i �= k, we can obtain
a good approximation to the additive error ((p+−

i +p−+
i )−(p++

i +p−−
i ))/2 present

in ĝ(ei) computed as the mean value of f jχi(xj) over a set of RCSAN examples
{(xj , f j)} (where as before χi is shorthand for χei). Once this additive error has
been (mostly) eliminated from the ĝ(ei)’s, the analysis above applies, and we
can use a slight modification of the algorithm of Theorem 2 to obtain our result.
So we will show how to estimate the additive error.

Let Eik represent the expected value of χi(xj)χk(xj) over random noisy ex-
amples (xj , f j) drawn according to some fixed RCSAN process. Note that, since
attribute k is assumed to be noise free, if attribute i is also noise free then
Eik = EU [χiχk] = 0. Now consider how this changes if p++

i > 0. By Lemma 7
we know that with probability (1 + f̂(ei) + f̂(ek))/8 a pre-noise example x is
such that f(x) = χi(x) = χk(x) = 1. Since corrupting bit i of such an x changes
χi(x)χk(x) from +1 to −1, the net change in Eik due to positive p++

i over
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these x’s is −p++
i (1 + f̂(ei) + f̂(ek))/4. On the other hand, with probability

(1 + f̂(ei) − f̂(ek))/8 we have f(x) = χi(x) = 1 and χk(x) = −1, and the net
change in Eik due to positive p++

i over these x’s is p++
i (1 + f̂(ei) − f̂(ek))/4.

Combining these effects, the overall change in Eik due to positive p++
i will be

−p++
i f̂(ek)/2. Applying Lemma 5 along with Lemma 7, we can similarly see that

the contribution to Eik due to positive p−−
i will be −p−−

i f̂(ek)/2. On the other
hand, the total change due to positive p+−

i and p−+
i will be (p+−

i +p−+
i )f̂(ek)/2.

Overall, then, we see that Eik = f̂(ek)((p+−
i + p−+

i )− (p++
i + p−−

i ))/2.
Our estimate for the additive error term in ĝ(ei), then, will be obtained by

drawing a noisy sample, computing sample means that approximate Eik and
f̂(ek), and dividing the approximation of Eik by the approximation of f̂(ek). We
will use a sample size large enough so that this quotient is, with high probability,
within an additive factor of τ/5(n + 1) of the expected additive error term in
(2). Based on the earlier discussion, it should be clear that such an estimate will
be sufficiently close to give us the learning result claimed.

Specifically, we will use a sample large enough to guarantee with high proba-
bility that the noisy estimate of Eik is additively within O(βτ/n) of its expected
value. By standard Hoeffding bounds, a polynomial number of examples will
suffice. We will then estimate (with high probability) f̂(ek) to within a multi-
plicative factor c close enough to 1 to achieve the desired bound on the additive
error in the quotient of our estimates. It can be shown that |1 − c| = O(βτ/n)
is sufficient for this purpose, and Chernoff bounds tell us that the sample size
required will again be polynomial. 
�

7 Further Work

An obvious question whenever uniform-distribution weak learning results are de-
rived is how far the results can be extended beyond uniform. The extant proofs
of the results underlying Gotsman-Linial’s observation seem to rely heavily on
independence and other properties of the uniform distribution, so such a general-
ization may not be easy. However, if the results could be extended to a sufficiently
general set of distributions, this might lead to noise-tolerant uniform-distribution
strong learning algorithms for L.

There may be interesting subclasses of L such that for any function f in the
class the constant and first-order Fourier coefficients represent much more than
half of the power spectrum of f . If the spectral power of the low-order coefficients
of all of the functions in such a class were over 3/4, then results of Kalai et al.
[1] could be applied to give an efficient algorithm weakly agnostically learning
L using L as the hypothesis class. Do such subclasses of L exist? The class of
Majority functions is not such a subclass, as it can be shown that asymptotically
the low-order coefficients for odd Majority functions represent roughly 2/π ≈ .64
of the power spectrum. Alternatively, can the Kalai et al. results be strengthened
so that they could be applied to weaker approximators?

The fact that L can be weakly learned despite an essentially optimal rate of
adversarial noise can be shown to imply that the constant 2 in the bound of
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Theorem 1 cannot be improved unless the bound is also changed in some other
way. How tight is the bound of Theorem 1?

Kalai et al. [1] also explore malicious noise learning and give a simple algorithm
for uniformly learning halfspaces over the unit sphere that tolerates noise rate η
up to roughly Ω(1/n1/4). It would be nice to have a comparable result over the
cube (although it may require unrestricted focus of attention).

Can an RCSAN result similar to Theorem 3 be obtained without the need
for a known noise-free attribute? Beyond this, it may be interesting to explore
1-RCSAN learnability of other classes as well as k-RCSAN learning of L and
other classes for k > 1.
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Abstract. Generative algorithms for learning classifiers use training
data to separately estimate a probability model for each class. New items
are then classified by comparing their probabilities under these models.
In contrast, discriminative learning algorithms try to find classifiers that
perform well on all the training data.

We show that there is a learning problem that can be solved by a
discriminative learning algorithm, but not by any generative learning
algorithm (given minimal cryptographic assumptions). This statement is
formalized using a framework inspired by previous work of Goldberg [3].

1 Introduction

If objects and their classifications are generated randomly from a joint prob-
ability distribution, then the optimal way to predict the class y of an item x
to is maximize Pr[y|x]. Applying Bayes’ rule, this is equivalent to maximizing
Pr[x|y] Pr[y]. This motivates what has become known as the generative approach
to learning a classifier, in which the training data is used to learn Pr[·|y] and
Pr[y] for the different classes y, and the results are used to approximate the
behavior of the optimal predictor for the source (see [1, 5]).

In the discriminative approach, the learning algorithm simply tries to find
a classifier that performs well on the training data [12, 5, 9, 6]. Discriminative
algorithms can (and usually do) process examples from several classes together at
once, e.g. maximum margin algorithms use both positive and negative examples
together to find a large margin hypothesis separating the two classes.

The main result of this paper is a computational separation between genera-
tive and discriminative learning. We describe a learning problem and prove that
it has the following property: a discriminative algorithm can solve the problem
in polynomial time, but no generative learning algorithm can (assuming that
cryptographic one-way functions exist).

Our analysis demonstrates the possible cost of largely processing the examples
from different classes separately, as generative methods do. Goldberg [3] was the
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first to study the effect of this limitation. His analyses concerned a modification
of the PAC model in which

– the examples belonging to each class are analyzed separately,
– each analysis results in a scoring function for that class, and
– future class predictions are made by comparing the scores assigned by the

different scoring functions.

He designed algorithms that provably solve a number of concrete learning prob-
lems despite the constraint of processing examples from different classes sepa-
rately, and identified conditions that allow a discriminative PAC learner to be
modified to work in the generative setting. The main open question formulated
in [3] is whether there is a learning problem that can be solved by a discrimina-
tive algorithm but cannot be solved by a generative algorithm. We establish our
main result in a framework closely related to the one proposed in [3]. The main
difference between our formulation and Goldberg’s is that we define a learning
problem to be a collection of possible joint probability distributions over items
and their classifications, whereas Goldberg defined a learning problem to be a
concept class as in the PAC model.

Roughly, our proof works as follows. In the learning problem we consider the
domain is divided into three parts, and a separate function provides 100% accu-
racy on each part. The third part is really hard: its function is cryptographically
secure against any adversary (or learner) which does not “know” the “key” to
the function. On the other hand, the first two parts are easy, and descriptions of
their two functions can be combined to compute the key of the third function.

A discriminative algorithm can succeed by learning the first two parts and
using the results to obtain the key to the third function. On the other hand,
each of the first two parts is hard to learn from one kind of example: one part is
hard to learn from positive examples only, and the other is hard to learn from
negative examples only. Thus in the generative learning framework, the scoring
function obtained using positive examples only contains no information about
the subfunction which is hard to learn from positive examples, and thus in and of
itself this positive scoring function contains no useful information about the key
for the third function. An analogous statement is true for the negative scoring
function. The tricky part of the analysis is to show that the overall predictor
used by the generative algorithm – which incorporates information from both
the positive and negative scoring functions – is similarly useless on the third
part. Intuitively this is the case because the two scoring functions are combined
in a very restricted way (simply by comparing the values that they output), and
this makes it impossible for the final classifier to fully exploit the information
contained in the two scoring functions.

Related work. Aside from Goldberg’s paper, the most closely related work of
which we are aware is due to Ng and Jordan [8]. They showed that Naive Bayes,
a generative algorithm, can converge to the large-sample limit of its accuracy
much more quickly than a corresponding discriminative method. For generative
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algorithms that work by performing maximum likelihood over restricted classes
of models, they also showed, given minimal assumptions, that the large-sample
limit of their accuracy is no better than a corresponding discriminative method.
Note that these results compare a particular generative algorithm with a partic-
ular discriminative algorithm. In contrast, the analysis in this paper exposes a
fundamental limitation faced by any generative learning algorithm, due to the
fact that it processes the two classes separately.

Section 2 contains preliminaries including a detailed description and motiva-
tion of the learning model. In Section 3 we give our construction of a learning
problem that separates the two models and give a high-level idea of the proof.
Sections 4 and 5 give the proof of the separation.

Due to space constraints some proofs are omitted; see [7] for these proofs.

2 Definitions and Main Result

Given a domain X , we say that a source is a probability distribution P over
X × {−1, 1}, and a learning problem P is a set of sources. Throughout this
paper the domain X will be {0, 1}n × {1, 2, 3}.

2.1 Discriminative Learning

The discriminative learning framework that we analyze is the Probably Ap-
proximately Bayes (PAB) [2] variant of the PAC [11] learning model. In the
PAB model, in a learning problem P a learning algorithm is given a set of
m labeled examples drawn from an unknown source P ∈ P . The goal is to
output a hypothesis function h : X → {−1, 1} which with probability 1 − δ
satisfies Pr(x,y)∈P [h(x) �= y] ≤ Bayes(P ) + ε, where Bayes(P ) is the least er-
ror rate that can be achieved on P , i.e. the minimum, over all functions h, of
Pr(x,y)∈P [h(x) �= y]. In a setting (such as ours) where the domain X is parame-
terized by n, an efficient learning algorithm for P is one that uses poly(n, 1

ε ,
1
δ )

many examples, runs in poly(n, 1
ε ,

1
δ ) time, and outputs a hypothesis that can

be evaluated on any point in poly(n, 1
ε ,

1
δ ) time.

2.2 Generative Learning

Goldberg [3] defined a restricted “generative” variant of PAC learning. Our
analysis will concern a natural extension of his ideas to the PAB model.

Roughly speaking, in the generative model studied in this paper, the algorithm
first uses only positive examples to construct a “positive scoring function” h+ :
X → R that assigns a “positiveness” score to each example in the input domain.
It then uses only negative examples to construct (using the same algorithm) a
“negative scoring function” h− : X → R that assigns a “negativeness” score
to each example. The classifier output by the algorithm is the following: given
example x, output 1 or −1 according to whether or not h+(x) > h−(x).
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We now give a precise description of our learning framework. In our model

– A sample S = (x1, y1),...,(xm, ym) is drawn from the unknown source P ;
– An algorithm A is given a filtered version of S in which
• examples (xt, yt) for which yt = 1 are replaced with xt, and
• examples (xt, yt) for which yt = −1 are replaced with 1

and A outputs h+ : X → R.
– Next, the same algorithm A is given a filtered version of S in which
• examples (xt, yt) for which yt = 1 are replaced with 1, and
• examples (xt, yt) for which yt = −1 are replaced with xt

and A outputs h− : X → R.
– Finally, let h : X → {−1, 1} be defined as h(x) = sgn(h+(x) − h−(x)). If
h+(x) = h−(x) then we view h(x) as outputing ⊥ (undefined).

Algorithm A is said to be a generative PAB learning algorithm for P if for
all P ∈ P , for all 0 < ε < 1

2 , 0 < δ < 1, the hypothesis h obtained as above,
with probability at least 1− δ, satisfies Pr(x,y)∈P [h(x) �= y] ≤ Bayes(P )+ ε. The
notions of runtime and efficiency are the same as in the standard PAB framework.
It is easy to see that any learning problem that can be efficiently PAB learned
in the generative framework we have described can also be efficiently learned in
the standard PAB framework.

2.3 Main Result

With these definitions in place we can state our main result:

Theorem 1. If one-way functions exist, there is a learning problem that is ef-
ficiently learnable in the PAB model, but not in the generative PAB model.

2.4 Two Unsupervised Learners Are Not Better Than One

Using different algorithms for the positive and negative examples cannot help a
generative learning algorithm much; this can be formalized using an idea due to
Goldberg [3]. This leads to the following extension of Theorem 1 (see Section 6
of [7] for a proof of this extension):

Theorem 2. Suppose the generative PAB learning model is relaxed so that sep-
arate algorithms can be applied to the positive and negative examples. Then it
remains true that if one-way functions exist, then there is a learning problem
that can be solved in polynomial time in the standard PAB model, but not in the
generative PAB model.

3 The Construction and the Main Idea

Our construction uses pseudorandom functions; defined by Goldreich et al. in
1986 [4], these are central objects in modern cryptography.
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Definition 1. A pseudorandom function family (PRFF) is a collection of func-
tions {fs : {0, 1}|s| → {1,−1}}s∈{0,1}∗ with the following two properties:

1. (efficient evaluation) there is a deterministic algorithm which, given an n-bit
seed s and an n-bit input x, runs in time poly(n) and outputs fs(x);

2. (pseudorandomness) for all constants c > 0, all probabilistic polynomial-time
(p.p.t.) oracle algorithms A, and all sufficiently large n, we have that

| Pr
F∈Rn

[AF (1n) outputs 1]− Pr
s∈{0,1}n

[Afs(1n) outputs 1]| < 1/nc.

Here “ PrF∈Rn” indicates that F is a truly random function chosen uni-
formly from the set of all 22n

Boolean functions mapping {0, 1}n to {−1, 1},
and “ Prs∈{0,1}n” indicates that s is chosen uniformly from {0, 1}n.

The notation “Ag(1n)” indicates that A is run with black-box oracle access to
g on a vacuous input of length n (so since A is a polynomial-time algorithm, it
runs for at most poly(n) time steps). Intuitively, the pseudorandomess property
ensures that in any probabilistic poly(n)-time computation which is executed
with oracle access to a truly random function, a randomly chosen pseudorandom
function may be used instead without affecting the outcome of the computation
in a noticeable way. Well known results [4, 10] imply that pseudorandom function
families exist if and only if any one-way function exists.

3.1 The Construction

We first define a class C of Boolean functions in which each function is specified
by a triple (r, s, b) where r, s ∈ {−1, 0, 1}n and b ∈ {−1, 1}. We will use the
functions in C to define the set of sources which constitute our learning problem.

A function cr,s,b ∈ C takes two inputs: an n-bit string x ∈ {0, 1}n and an
index i ∈ {1, 2, 3}. We refer to examples of the form (x, i) as type-i examples for
i = 1, 2, 3. The value of cr,s,b(x, i) is defined as follows:

cr,s,1(x, i) =

⎧⎪⎨⎪⎩
ANDr(x) if i = 1
ORs(x) if i = 2
f|r|⊕|s|(x) if i = 3,

cr,s,−1(x, i) =

⎧⎪⎨⎪⎩
ORr(x) if i = 1
ANDs(x) if i = 2
f|r|⊕|s|(x) if i = 3.

Here ANDr is the conjunction of literals over x1, . . . , xn that is indexed by r;
for instance if n = 3 and r = (r1, r2, r3) = (1, 0,−1) then ANDr(x) is x1 ∧ x3.
ORs is similarly the disjunction that is indexed by s. The notation “|r|” denotes
the n-bit string (|r1|, . . . , |rn|) ∈ {0, 1}n, and the bitwise XOR y ⊕ z of two n-
bit strings y, z ∈ {0, 1}n is the n-bit string (y1 ⊕ z1, . . . , yn ⊕ zn). The family
{ft}t∈{0,1}n is a PRFF as described at the start of Section 3 above.

Now we describe the learning problem P that we use to prove our main result.
Each source P in P is realizable, i.e. there is a function mapping X to {−1, 1}
with 100% accuracy (so the Bayes optimal error is 0). Specifically, for each
cr,s,b ∈ C, there is a source Pr,s,b which is a distribution over labelled examples
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((x, i), cr,s,b(x, i)). Thus to describe Pr,s,b it suffices to describe the marginal
distributions over the domain X = {0, 1}n × {1, 2, 3} of inputs to cr,s,b; i.e. we
need to describe the distribution over positive examples, and the distribution
over negative examples. These marginal distributions are as follows: for each
i = 1, 2, 3 the distribution allocates 1/3 of the total probability mass to type-i
examples. For each i = 1, 2, 3, half of this 1/3 mass is distributed uniformly over
the positive type-i examples, and half over the negative type-i examples.

Note that the above description assumes that there are indeed both positive
and negative examples of type i. If for some i all type-i examples have the same
label, then the entire 1/3 probability mass for type-i examples is uniformly
distributed over all 2n examples (x, i). Note that ANDr always has at least
one positive example and ORs always has at least one negative example, and
consequently each source in P has at least 1/6 probability weight on each label.
Note also that it is possible that for a given t ∈ {0, 1}n, the member ft of the
pseudo-random function family used on the type-3 examples could be identically
1 or identically −1. However, the pseudorandomness of {ft} ensures that for any
c > 0, for large enough n, at least a 1− 1

nc fraction of functions in {ft}t∈{0,1}n

have a fraction of positive (negative) examples which is bounded in [12 −
1
nc ,

1
2 +

1
nc ]. (Otherwise, by drawing poly(n) many random examples and estimating the
fraction of positive examples using this sample, a poly(n)-time algorithm would
be able to distinguish a random function from {ft}t∈{0,1}n from a truly random
function with nonnegligible advantage over random guessing.)

3.2 The Idea

In this section we sketch the high-level idea of why discriminative algorithms
can efficiently solve this learning problem while generative algorithms cannot.

Discriminative learners can succeed: Let Pr,s,b be any element of P . A
simple argument which we sketch in Section 4 shows that a discriminative learner
can use the labelled type-1 examples (type-2 respectively) to efficiently exactly
identify r (s, respectively). It can guess and check the value of b, and thus can
w.h.p. exactly identify the unknown source in poly(n) time.
Generative learners cannot succeed: We show that no generative algorithm
can construct a hypothesis that w.h.p. has high accuracy on type-3 examples.

More precisely, we define a particular probability distribution D over the
sources in P and show that for a source selected from this distribution, no
poly(n)-time generative learning algorithm can w.h.p. output a hypothesis h
whose accuracy on type-3 examples is bounded away from 1/2. This means that
the overall accuracy of such a learner cannot be substantially greater than 5/6.

The distribution D is as follows: to draw a source Pr,s,b from D,

– Toss a fair coin and set b to ±1 accordingly;
– Select r and s by drawing each one from the following distribution TARGET

over {−1, 0, 1}n: a string x drawn from TARGET has each xi independently
set to be −1, 0 or 1 with probabilities 1/4, 1/2 and 1/4 respectively.
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Note that under D the strings |r| and |s| are independently and uniformly
distributed over {0, 1}n. This will be useful later since it means that even if one
of the strings r, s is given, the seed |r|⊕ |s| to the pseudorandom function f|r|⊕|s|
is uniformly distributed over {0, 1}n as required by Definition 1.

Let Pr,s,b be a source drawn from D. Let us suppose for now that b = 1, and
let us consider the execution of A when it is run using a sample in which only
positive examples drawn from Pr,s,1 (i.e. positive examples of the concept cr,s,1)
are uncovered. Recall that under the conditions of the generative model that we
consider, the algorithm A does not “know” that it is being run using positive
versus negative examples; it only receives a set of unlabelled examples.

(Throughout the following informal discussion we assume that both r �= 0n

and s �= 0n; note that the probability that either of these strings is 0n is at
most 2/2n. We further assume that f|r|⊕|s| is not identically 1 or identically −1;
recall from the discussion at the end of Section 3.1 that this fails to hold with
probability 1/nω(1). Under these assumptions a random example from Pr,s,1 has
a 1/6 chance of being a positive/negative type-1/2/3 example.)

The examples that A receives will be distributed as follows:

– Type-1 examples (x, 1): By our assumptions, 1/3 of the uncovered exam-
ples that A receives will be type-1 examples; these examples are uniformly
distributed over all x ∈ {0, 1}n that satisfy ANDr(x). As we will see in
Section 4, it is easy for A to completely identify r using these examples.

– Type-2 examples (x, 2): By our assumptions, 1/3 of the uncovered ex-
amples A receives will be type-2 examples, each of which has x uniformly
distributed over all strings that satisfy ORs. As we will show in Section 5,
for any r ∈ {−1, 0, 1}n the distribution of these type-2 examples (taken over
the random choice of s from TARGET and the random draw of the examples
from Pr,s,1) is statistically indistinguishable from the uniform distribution
over {0, 1}n to any algorithm (such as A) that receives only poly(n) many
draws. Thus, as far as A can tell, the type-2 examples it receives are indepen-
dently and uniformly drawn from {0, 1}n; intuitively we view this as meaning
that A gets no useful information about s from the type-2 examples, so we
informally view |s| as uniform random and unknown to A.

– Type-3 examples (x, 3): By our assumptions, 1/3 of the uncovered exam-
ples A receives will be type-3 examples. Intuitively, since |s| is uniform ran-
dom and unknown to A, even though r is known to A, the seed t = |r|⊕|s| to
the pseudorandom function is uniform random and unknown to A. It follows
from the definition of pseudorandomness that the function ft is indistin-
guishable to algorithm A from a truly random function, so type-3 examples
give no useful information to A; as far as A can tell, the type-3 examples it
receives are simply uniform random strings drawn from {0, 1}n.

Thus we may informally view the hypothesis that A constructs, when run on
positive examples drawn from Pr,s,1 where r and s were drawn from TARGET,
as being determined only by the information “(r, 1)” (meaning that r is the
string that governs the distribution of type-1 examples in the sample used for
learning); the type-2 and type-3 examples that A receives are indistinguishable



326 P.M. Long and R.A. Servedio

from uniform random strings. (The indistinguishability is statistical for the
type-2 examples and computational for the type-3 examples; see Proposition 1
and Lemma 1 respectively of Section 5, where we make these arguments precise.)
We thus write hr,1 to denote the hypothesis that A constructs in this case.

An analogous argument shows that we may view the hypothesis that A con-
structs when run on negative examples drawn from cr,s,1 as being determined
only by the information “(s, 2)” (meaning that s is the string that governs the
distribution of type-2 examples in the sample); in this case the type-1 and type-
3 examples in the sample are indistinguishable from truly random strings. We
write hs,2 to denote the hypothesis that A constructs in this case.

Now let us consider a setting in which the target source is P−r,−s,−1 (where for
z ∈ {−1, 0, 1}n, the string −z is simply (−z1, . . . ,−zn)) and r, s (or equivalently
−r,−s) are independently drawn from TARGET. This time we will consider the
execution of A when it is run using a sample in which only negative examples
from P−r,−s,−1 are uncovered, with the same assumptions on r, s and f|r⊕s| as
above. The examples that A receives will be distributed as follows:

– Type-1 examples (x, 1): By definition of P−r,−s,−1, 1/3 of the uncovered
examples that A receives will be type-1 examples. These examples are uni-
formly distributed over all x ∈ {0, 1}n that do not satisfy OR−r(x), i.e. over
all x that satisfy ANDr. Thus the negative type-1 examples in this case are
distributed identically to the positive type-1 examples for Pr,s,1.

– Type-2 examples (x, 2): 1/3 of the uncovered examples A receives will be
type-2 examples, each of which has x uniformly distributed over all strings
that do not satisfy AND−s, i.e over all strings that satisfy ORs. Thus the
negative type-2 examples for P−r,−s,−1 are distributed identically to the
positive type-2 examples for Pr,s,1 (and as in that case, algorithm A gets no
useful information about s from the type-2 examples, so we may view s as
uniform random and unknown to A).

– Type-3 examples (x, 3): The seed |− r|⊕ |−s| ∈ {0, 1}n is identical to the
seed t = |r| ⊕ |s| that arose from Pr,s,1 above. As above, since s is uniform
random and unknown to A, the function ft is indistinguishable from a truly
random function to A.

Thus we have arrived at the following crucial observation: A cannot distin-
guish between when it is run on positive examples from Pr,s,1 versus negative
examples from P−r,−s,−1. (The two distributions differ only in the type-3 exam-
ples, where in the negative c−r,−s,−1 case they are uniform over ft(−1) and in
the positive cr,s,−1 case they are uniform over ft(1). By the pseudorandomness
of ft these distributions are indistinguishable from each other, since they are
each indistinguishable from the uniform distribution over {0, 1}n.) So we may
informally view the hypothesis that A constructs as being hr,1 in both cases.

Likewise, whether A is run on negative examples from Pr,s,1 or positive ex-
amples from P−r,−s,−1, the resulting hypothesis is hs,2 in both cases.

Now suppose that A is a successful generative learning algorithm in the PAB
sense, i.e. the final hypothesis obtained from source Pr,s,1 (which we denote
hr,s,1, and which equals sgn(hr,1(x, i)−hs,2(x, i))) has very high accuracy. Since
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the overall error rate of hr,s,1 is at least 1/3 of its error rate on type-3 exam-
ples, this means that hr,s,1(x, 3) must be well-correlated with f|r|⊕|s|(x). On
the other hand, as argued above, the final hypothesis h−r,−s,−1 obtained from
source P−r,−s,−1 is sgn(hs,2(x, i)− hr,1(x, i)), and this must have high accuracy
on type-3 examples from this source; so h−r,−s,−1(x, 3) is well-correlated with
f|−r|⊕|−s∗|(x). But this is impossible because f|−r|⊕|−s| is identical to f|r|⊕|s|
whereas h−r,−s,−1(x, 3) is easily seen to be the negation of hr,s,1(x, 3).

This concludes our informal presentation of why learning problem P is hard for
any generative learning algorithm. In Section 5 we give a precise cryptographic
instantiation of the above intuitive argument to prove that generative algorithms
cannot succeed.

4 Discriminative Algorithms Can Succeed

Theorem 3. There is a polynomial-time discriminative learning algorithm that
can solve learning problem P .

Proof Sketch. We use Valiant’s algorithm [11], which keeps all literals that are
not eliminated as possibilities by the training data, to learn r and s. The prob-
ability that any incorrect literal is not eliminated by q examples is at most
2n(1/2)q. So r and s can be learned exactly; it is easy to “guess and check” b,
and thus learn the target cr,s,b exactly. (See [7] for a full proof.)

5 Generative Algorithms Must Fail

We prove the following theorem, which shows that no generative learning algo-
rithm can succeed on learning problem P .

Theorem 4. Let A be any poly(n)-time algorithm that operates in the generative
learning framework and has the following property: when run on examples from
any source in P, with probability at least 1− 1/n A outputs a final hypothesis h
whose error rate is at most ε. Then ε ≥ 1

6 − o(1).

Let us set up the framework. Let A be any poly(n) time generative algorithm.
We can view A as a mapping from (filtered) samples to hypotheses. Given a
sample S we write A(S) to denote the hypothesis that A outputs on S, and we
write A(S)(x) to denote the real-valued output of this hypothesis on x.

5.1 Positive Examples from Pr,s,1

Fix any r ∈ {−1, 0, 1}n. Consider a source Pr,s,1 where s is drawn from TARGET.
We first show that for any generative algorithm A that takes as input a sample of
m = poly(n) many examples from such a source with only the positive examples
exposed, the type-2 examples in its sample are statistically indistinguishable from
uniform random examples over {0, 1}n.

To make this precise, we need the following definitions.
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Definition 2. If P is a source, define P+ to be the probability distribution over
X ∪ {1} obtained by (i) choosing (x, y) according to P , and (ii) emitting x if
y = 1 and emitting 1 if y = −1. Define P− analogously with the labels reversed.

Definition 3. Let D+
r,1 be the distribution over sets S+ of m examples from

({0, 1}n×{1, 2, 3})∪{1} which is defined as follows: to draw a set S+ from D+
r,1

(i) first draw s from TARGET, and (ii) then draw each of the m examples in
S+ independently from (Pr,s,1)+.

Definition 4. Let D̃+
r,1 be the distribution over sets S̃+ of m examples from

({0, 1}n × {1, 2, 3}) ∪ {1} defined as follows: to draw a set S̃+ from D̃+
r,1, (i)

first draw s and S+ as described above from D+
r,1, and (ii) then replace each

type-2 example (x, 2) in S+ with a new example (z, 2) where each time z is an
independent and uniform string in {0, 1}n.

A fairly direct calculation establishes the following (see [7] for full proof):

Proposition 1. For large enough n, for any r ∈ {−1, 0, 1}n, the distributions
D+
r,1 and D̃+

r,1 have statistical distance at most 2−n/8.

Thus the distributions D+
r,1 and D̃+

r,1 are statistically indistinguishable. We now
recall the notion of computational indistinguishability of two distributions:

Definition 5. Let p(n) be a fixed polynomial and let {Xn}n≥1 and {Yn}n≥1 be
two families where for each n, both Xn and Yn are distributions over {0, 1}p(n).
{Xn}n≥1 and {Yn}n≥1 are said to be computationally indistinguishable if for
all constants c > 0, all p.p.t. algorithms A, and all sufficiently large n, we have

| Pr
SX∈Xn

[A(SX) = 1]− Pr
SY ∈Yn

[A(SY ) = 1]| < 1/nc.

Intuitively, two distributions are computationally indistinguishable (henceforth
abbreviated c.i.) if no probabilistic polynomial-time algorithm can distinguish
whether a random draw comes from one of the distributions or the other with
nonnegligible advantage over a random guess. We will use the following facts:

– Computational indistinguishability is transitive: if Xn and Yn are c.i., and
Yn and Zn are c.i., then Xn and Zn are c.i..

– If Xn and Yn are c.i., and Yn and Zn have statistical distance ‖Yn−Zn‖1 =
1/nω(1), then Xn and Zn are c.i..

We now show that for any generative algorithmA that takes as input a sample
of m = poly(n) many positive examples from Pr,s,1 (where 0n �= r is any fixed
string and s is drawn from TARGET), the type-2 and type-3 examples in its
sample are computationally indistinguishable from uniform random examples
over {0, 1}n. That is, positive examples for ORs cannot be reliably distinguished
from uniform draws from {0, 1}n in polynomial time, and neither can uniform
random elements of f−1

|r|⊕|s|(1).
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Definition 6. Let D̂+
r,1 be the distribution over sets Ŝ+ of m examples from

{0, 1}n × {1, 2, 3} which is defined as follows: to draw a set Ŝ+ from D̂+
r,1, (i)

first draw s and S+ as described above from D+
r,1, and (ii) for i = 2, 3 replace

each type-i example (x, i) in S+ with an example (z, i) where each time z is an
independent and uniform random string from {0, 1}n.

Lemma 1. For any 0n �= r ∈ {−1, 0, 1}n, the two distributions D+
r,1 and D̂+

r,1
are computationally indistinguishable.1

Proof. Suppose to the contrary that D+
r,1 and D̂+

r,1 are not computationally
indistinguishable. Let Z be a p.p.t. algorithm which is such that

| Pr
S+∈D+

r,1

[Z(S+) = 1]− Pr
S+∈D+

r,1

[Z(Ŝ+) = 1]| > 1/nc (1)

for some c > 0 and infinitely many n. We show how such a Z can be used to
obtain a distinguishing algorithm that “breaks” the PRFF, and thus obtain a
contradiction.

Consider the following algorithm Z ′, which uses Z as a subroutine and ac-
cesses f as an oracle: Given black-box access to a function f : {0, 1}n → {0, 1},
construct an m-element sample S by performing the following m times:

– Toss a fair coin; if “heads,” output 1. If “tails:”
(*) Choose a uniform random index i ∈ {1, 2, 3}. If i = 1, output “(x, 1)”

where x is a uniformly chosen input that satisfies ANDr (i.e. (x, 1) is a
random type-1 example). If i = 2, output “(x, 2)” where x is a uniform
random n-bit string. If i = 3, give random n-bit inputs to f until one is
obtained (call it x) for which f(x) = 1; output “(x, 3).” If more than n
random n-bit inputs are tried without finding one which has f(x) = 1,
abort the procedure (an arbitrary sample that is fixed ahead of time may
be output in this case, say for example m copies of (0n, 1)).

Now run Z on S and output whatever it outputs.
Recall that our plan is to show that Z, which can tell apart D+

r,1 from D̂+
r,1,

can be used to tell a pseudo-random function from a truly random function.
Roughly speaking, our first proposition says that D̂+

r,1 is a faithful proxy for the
result of applying a truly random function:

Proposition 2. Suppose f is a truly random function. Let Dtruerand denote the
distribution over samples S that results from performing (*) above m = poly(n)
times with f . Then the statistical distance between Dtruerand and D̂+

r,1 is 1
nω(1) .

Proof Sketch for Proposition 2 (see [7] for full proof). We first show that
wlog we can assume that (*) above does not abort, that s (chosen in the definition
of D̂+

r,1) is not 0n, and that f|r|⊕|s| takes both positive and negative values.

1 The lemma also holds for r = 0n, but this result suffices and has a simpler proof.
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Given these assumptions, the uniform random choice of an index i ∈ {1, 2, 3}
in the executions of (*) under Dtruerand faithfully simulates what is going on
in D̂+

r,1. It can be shown that we thus have that the distribution of type-1 and
type-2 examples under the two distributions Dtruerand and D̂+

r,1 are identical.
We now analyze the distribution of type-3 examples. Under D̂+

r,1, each draw
is with probability 1/3 a type-3 example (x, 3) where x is uniform over {0, 1}n.
UnderDtruerand, each draw is with probability 1/3 a type-3 example (x, 3) where
x is drawn uniformly from f−1(1), where f is a truly random function (chosen
once and for all before the m draws are made). Thus, for any m′ ≤ m the
probability of receiving exactly m′ type-3 examples is the same under each of
the two distributions. An easy Chernoff bound shows that with probability at
least 1− 1

2n , the fraction of positive examples for a truly random f is 1
2±1/2Θ(n).

Thus, with high probability, a truly random f has f−1(1) uniformly distributed
over an exponentially large set. This implies that a polynomial-size sample is
exponentially unlikely to have any repetitions among the positive examples of
f . Symmetry implies that, conditioned on a fixed values of the number m′ of
positive type-3 examples, and conditioned on the event that they are distinct,
any set of m′ examples are equally likely to be chosen. This is of course also the
case if we draw m′ examples uniformly from {0, 1}n. This establishes that the
contribution to the statistical distance between D̂+

r,1 and Dtruerand from type-3
examples is at most 1/2Ω(n), and establishes the proposition. (Proposition 2)

Our next proposition shows that D+
r,1 is a faithful proxy for the result of using

a pseudo-random function.

Proposition 3. Suppose f is a pseudorandom function, i.e. f = ft where t
is drawn uniformly from {0, 1}n. Let Dpseudorand denote the distribution over
samples S in which the positive examples are obtained using (*) with this choice
of f . Then the statistical distance between Dpseudorand and D̃+

r,1 is at most 1
nω(1) .

Proof Sketch for Proposition 3 (see [7] for full proof). As in the case of
Proposition 2, we have that with probability 1 − 1/nω(1) both (i) the string s
chosen in the definition of D̃+

r,1 is not 0n and (ii) the seed |r| ⊕ |s| is such that
f|r|⊕|s| assumes both + and − values, so we may assume that (i) and (ii) hold.

As in the earlier proof, since r �= 0n this implies that each positive exam-
ple from D̃+

r,1 has probability 1/3 of being a type-1, type-2, or type-3 example,
and the same is true for each example from Dpseudorand. Given this, the distri-
bution of type-1 examples is easily seen to be the same under D̃+

r,1 and under
Dpseudorand, and the same is true for the distribution of type-2 examples. The
distribution of type-3 examples under Dpseudorand is that each is chosen uni-
formly at random from f−1

t (1) where t is uniform random over {0, 1}n, whereas
the distribution of type-3 examples under D̃+

r,1 is that each is chosen uniformly
at random from f−1

t (1) where t = |r| ⊕ |s|; this string is uniform random condi-
tioned on the event that (i) and (ii) both hold. Since the probability that either
(i) or (ii) fails to hold is 1/nω(1), the proposition follows. (Proposition 3)
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Propositions 3 and 1 together yield that Dpseudorand has statistical distance
1/nω(1) from D+

r,1. Combining this with Proposition 2 and Equation (1), we
have that the p.p.t. algorithm Z ′ satisfies

| Pr
s∈{0,1}n

[(Z ′)fs(1n) outputs 1]− Pr
F∈Rn

[(Z ′)F (1n) outputs 1]| > 1/nc
′
.

for infinitely many n, where c′ is any constant larger than c. But this violates
the fact that {ft} is a PRFF. This proves Lemma 1.

5.2 Negative Examples from P−r,−s,−1

We now give results for negative examples from P−r,−s,−1 that are dual to the
results we gave for positive examples from Pr,s,1 in the last section. This will let
us show (Corollary 1 below) that positive examples drawn from Pr,s,1 are com-
putationally indistinguishable from negative examples drawn from P−r,−s,−1.

Fix any r ∈ {−1, 0, 1}n. We now consider a source P−r,−s,−1 where s (or
equivalently−s) is drawn from TARGET. In analogy with Definitions 3 and 4, let
D−

−r,−1 be the distribution over sets S− ofm examples from ({0, 1}n×{1, 2, 3})∪
{1} which is defined as follows: to draw a set S− from D−

−r,−1, (i) first draw s
from TARGET, and (ii) then draw each of the m examples in S− independently
from (P−r,−s,1)−. Let D̂−

−r,−1 be the distribution over sets Ŝ− of m examples
from {0, 1}n × {1, 2, 3} which is defined as follows: to draw a set Ŝ− from D̂−

r,1,
(i) first draw s and S− as described above from D−

−r,−1, and (ii) for i = 2, 3
replace each type-i example (x, i) in S− with a fresh uniform example (z, i).

Dual arguments to those in Section 5.1 give the following Lemma 1 analogue:

Lemma 2. For any 0n �= r ∈ {−1, 0, 1}n, the distributions D−
−r,−1 and D̂−

−r,−1
are computationally indistinguishable.

The following proposition relates D+
r,1 and D−

−r,−1 (see [7] for proof):

Proposition 4. For any 0 �= r ∈ {−1, 0, 1}n, the distributions D̂+
r,1 and D̂−

−r,−1

have statistical distance at most 1/nω(1).

Lemma 1, Lemma 2 and Proposition 4 together give:

Corollary 1. For any 0 �= r ∈ {−1, 0, 1}n, the distributions D+
r,1 and D−

−r,−1
are computationally indistinguishable.

5.3 Negative Examples from Pr,s,1 & positive examples from
P−r,−s,−1

Dual arguments to those of Sections 5.1 and 5.2 can be used to show that neg-
ative examples from Pr,s,1 and positive examples from P−r,−s,−1 are c.i.. More
precisely, fix any s ∈ {−1, 0, 1}. Similar to Definitions 3 and 4, let D−

s,1 be the
distribution over sets S− of m examples from ({0, 1}n×{1, 2, 3})∪ {1} which is
defined as follows: to draw a set S− fromD−

s,1, (i) first draw r from TARGET, and
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(ii) then draw each of the m examples in S− independently from (Pr,s,1)−. Let
D̂−
s,1 be the distribution over sets Ŝ− ofm examples from ({0, 1}n×{1, 2, 3})∪{1}

which is defined as follows: to draw Ŝ− from D̂−
s,1, (i) first draw r and S− as

described above from D−
s,1, and (ii) for i = 1, 3 replace each type-i example (x, i)

in S− with a new uniform example (z, i). Dual arguments to Section 5.1 give:

Lemma 3. For any 0n �= s ∈ {−1, 0, 1}n, the two distributions D−
s,1 and D̂−

s,1
are computationally indistinguishable.

Fix any s ∈ {−1, 0, 1}. LetD+
−s,−1 be the distribution over sets S+ ofm examples

from ({0, 1}n × {1, 2, 3}) ∪ {1} which is defined as follows: to draw a set S+
from D+

−s,−1, (i) first draw r from TARGET, and (ii) then draw each of the m
examples in S+ independently from (P−r,−s,−1)+. Let D̂+

−s,−1 be the distribution
over sets Ŝ+ of m examples from ({0, 1}n × {1, 2, 3}) ∪ {1} which is defined as
follows: to draw a set Ŝ+ from D̂+

−s,−1, (i) first draw r and S+ as described above
from D+

−s,−1, and (ii) for i = 1, 3 replace each type-i example (x, i) in S+ with
a fresh uniform example (z, i). As before, we have the following:

Lemma 4. For any 0n �= s ∈ {−1, 0, 1}n, the two distributions D+
−s,−1 and

D̂+
−s,−1 are computationally indistinguishable.

Proposition 5. For any 0n �= s ∈ {−1, 0, 1}n, the distributions D̂−
s,1 and D̂+

−s,−1

have statistical distance at most 1/nω(1).

Corollary 2. For any 0n �= s ∈ {−1, 0, 1}n, the distributions D−
s,1 and D+

−s,−1
are computationally indistinguishable.

5.4 Proof of Theorem 4

As in the theorem statement, let A be any poly(n)-time purported generative
learning algorithm which, when run on examples from any source P ∈ P , outputs
a final hypothesis h whose error rate on P is at most ε with probability at least
1− δ where δ = 1/n. We will show that ε ≥ 1

6 − o(1).
Algorithm B will make use of oracle access to distributions DY and DZ over

m examples from ({0, 1}n × {1, 2, 3}) ∪ {1}, and will output a bit. Here it is:

– Draw r, s independently from TARGET. Let t = |r| ⊕ |s|.
– Draw SY from DY and SZ from DZ .
– Apply A to SY to get hY , and to SZ to get hZ , with parameters ε = δ = 1/n.
– Pick a uniform x ∈ {0, 1}n and output the value ft(x) · sgn(hY (x, 3) −
hZ(x, 3)).

hY and hZ will be functions for scoring elements for positivity or negativity.
By applying B with different sources, each function will adopt each role. This
will let us conclude that the final accuracy on type-3 examples must be low.
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1. Suppose first that DY is ((Pr,s,1)+)m and DZ is ((Pr,s,1)−)m. Then with
probability at least 1− δ−3ε−1/n, the output of B must be 1. (To see this,
recall that by assumption, for any r, s ∈ {−1, 0, 1}n the final hypothesis A
produces should be ε-accurate with probability 1− δ. Also, as noted in Sec-
tion 3.1, for r, s drawn from TARGET with probability at least (say) 1−1/n2

we have that both 0n �= r, s and f|r|⊕|s| has a fraction of positive examples
which is bounded by [12 −

1
n2 ,

1
2 + 1

n2 ], and consequently each type-3 example
(x, 3) has total probability weight in [13 (1

2 −
1
n2 ), 1

3 (1
2 + 1

n2 )]. Consequently if
A’s final hypothesis has overall error rate at most ε under Pr,s,1 over all of
{0, 1}n × {1, 2, 3}, then its error rate on uniformly chosen type-3 examples
must certainly be at most 3ε + 1/n.) Let p1 denote the probability that B
outputs 1 in this case.

2. Now, suppose that DY is the distribution ((P−r,−s,−1)−)m and, as in case 1
above, DZ is ((Pr,s,1)−)m. Let p2 denote the probability that B outputs 1 in
this case. By Corollary 1, we know that for every fixed 0n �= r ∈ {−1, 0, 1}n,
the distributions D+

r,1 (where s is drawn from TARGET) and D−
−r,−1 (where

s is again drawn from TARGET) are computationally indistinguishable.
It follows that the distributions ((P−r,−s,−1)−)m (where both r and s are
drawn from TARGET) and ((Pr,s,1)+)m (where both r and s are drawn
from TARGET) are computationally indistinguishable. This gives us that
|p1 − p2| ≤ 1/nω(1), for otherwise B would be a polynomial-time algorithm
that violates the computational indistinguishability of these distributions.

3. Now suppose that, as in Case 2, DY is the distribution ((P−r,−s,−1)−)m,
and that DZ is ((P−r,−s,−1)+)m. Let p3 denote the probability that B
outputs 1 in this case. As argued in case (2) above, Corollary 2 gives us
that ((Pr,s,1)−)m and ((P−r,−s,−1)+)m are computationally indistinguish-
able, where in both cases r, s are drawn from TARGET. This gives us that
|p2 − p3| < 1/nω(1).

Putting together the pieces, we have that p3 ≥ p1 − 1
nω(1) ≥ 1 − δ − 3ε −

1
n −

1
nω(1) = 1 − o(1) − 3ε (since δ = 1/n). But under the assumption that A

is a successful generative algorithm for P , it must be the case in case (3) that
p3 ≤ δ + 3ε + o(1) = 3ε + o(1). This is because in case (3) the hypothesis hY
is the negative example hypothesis and hZ is the positive example hypothesis,
so the generative algorithm’s final hypothesis on type-3 examples (which, as
argued in case (1) above, has error at most 3ε + 1/n-accurate on such examples
with probability at least 1− δ − o(1)) is sgn(hZ(x, 3)− hY (x, 3)). We thus have
3ε + o(1) > p3 > 1− o(1)− 3ε which gives ε ≥ 1

6 − o(1). (Theorem 4)
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Abstract. We prove new lower bounds for learning intersections of half-
spaces, one of the most important concept classes in computational learn-
ing theory. Our main result is that any statistical-query algorithm for
learning the intersection of

√
n halfspaces in n dimensions must make

2Ω(
√

n) queries. This is the first non-trivial lower bound on the statistical
query dimension for this concept class (the previous best lower bound
was nΩ(log n)). Our lower bound holds even for intersections of low-weight
halfspaces. In the latter case, it is nearly tight.

We also show that the intersection of two majorities (low-weight half-
spaces) cannot be computed by a polynomial threshold function (PTF)
with fewer than nΩ((log n)/ log log n) monomials. This is the first super-
polynomial lower bound on the PTF length of this concept class, and
is nearly optimal. For intersections of k = ω(log n) low-weight halfspa-
ces, we improve our lower bound to min{2Ω(

√
n), nΩ(k/ log k)}, which too is

nearly optimal. As a consequence, intersections of even two halfspaces are
not computable by polynomial-weight PTFs, the most expressive class of
functions known to be efficiently learnable via Jackson’s Harmonic Sieve
algorithm. Finally, we report our progress on the weak learnability of
intersections of halfspaces under the uniform distribution.

1 Introduction

Learning intersections of halfspaces is a fundamental and well-studied problem
in computational learning theory. In addition to generalizing well-known concept
classes such as DNF formulas, intersections of halfspaces are capable of repre-
senting arbitrary convex sets. While many efficient algorithms exist for PAC
learning a single halfspace, the problem of learning the intersection of even two
halfspaces remains a difficult challenge. A variety of efficient algorithms have
been developed for learning natural restrictions of intersections of halfspaces in
various learning models [18, 9, 10, 13]. Progress on proving hardness results for
learning intersections of halfspaces, however, has been limited: we are not aware
of any representation-independent hardness results for learning intersections of
halfspaces. The only hardness results known to us are for proper learning: if the
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learner’s output hypothesis must be from a restricted class of functions (e.g., in-
tersections of halfspaces), then the learning problem is NP-hard with respect to
randomized reductions [1].

A major part of this paper pertains to learning intersections of halfspaces in
Kearns’ statistical query model of learning [8], an elegant restriction of Valiant’s
PAC model [17]. A learner in the statistical query model is allowed queries
of the form “What is Prx∼μ[χ(x, f(x)) = 1], approximately?” Here μ is the
underlying distribution on {−1, 1}n, the function χ : {−1, 1}n × {−1, 1} →
{−1, 1} is a polynomial-time computable predicate, and f : {−1, 1}n → {−1, 1}
is the unknown concept. The motivation behind the statistical query model
model is that efficient algorithms in this model are robust to classification noise.

Kearns showed that concept classes learnable via a polynomial number of sta-
tistical queries are efficiently PAC learnable. Perhaps surprisingly, virtually all
known PAC learning algorithms can be adapted to work via statistical queries
only; the one exception known to us is the algorithm of Blum, Kalai, and Wasser-
man [5] for learning parity functions. The SQ dimension of a concept class C
under distribution μ is defined as the size of the largest subset A ⊆ C of concepts
such that the elements of A are “almost” orthogonal under μ (see Section 2.2 for
a precise definition). Blum et al. [4] proved the SQ dimension of a concept class
to be a measure of the number of statistical queries required to learn that class.
It is well known that the concept class of parity functions has SQ dimension 2n

(the maximum possible) under the uniform distribution. This observation has
been the basis of all known statistical query lower bounds.

1.1 Our Results

Our main contribution is a lower bound for learning intersections of halfspaces in
the statistical query model. We construct distributions under which intersections
of halfspaces have a large SQ dimension. Let MAJk denote the concept class of
intersections of k majorities, a subclass of intersections of halfspaces.

Theorem 1. There are (explicitly given) distributions on {−1, 1}n under which

SQ-dim(MAJk) =
{

nΩ(k/ log k) if logn ≤ k ≤
√
n,

max
{
nΩ(k/ log logn), nΩ(log k)

}
if k ≤ logn.

Our result nearly matches the known upper bound of nO(k log k logn) on the SQ
dimension of MAJk (and more generally, intersections of k polynomial-weight
halfspaces) under all distributions. An illustrative instantiation of our theorem
is as follows: for any constant 0 < ε ≤ 1/2, the intersection of nε halfspaces has
SQ dimension 2Ω(nε), the known upper bound being 2O(nε log3 n).

The previous best lower bound for this concept class was nΩ(logn). The
nΩ(logn) bound holds even for nε-term DNF, a subclass of the intersection of nε

halfspaces. The proof is as follows. A DNF formula with 2t terms can compute
any function on t variables. Thus, a polynomial-size DNF can compute parity
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on any subset of logn variables. Since any two distinct parity functions are or-
thogonal under the uniform distribution, the SQ dimension of polynomial-size
DNF is at least

(
n

logn

)
= nΩ(logn).

Our second contribution is a series of lower bounds for the representation
of MAJk as a polynomial threshold function (PTF). Jackson gave the first
polynomial-time algorithm, the celebrated Harmonic Sieve [7], for learning
polynomial-size DNF formulas with membership queries under the uniform dis-
tribution. In addition, he showed that the concept class of polynomial-weight
PTFs is learnable in polynomial time using the Harmonic Sieve. A natural ques-
tion to ask is whether every intersection of k low-weight halfspaces, a straightfor-
ward generalization of k-term DNF, can be represented as a polynomial-weight
PTF. We answer this question in the negative even for k = 2. Let MAJ denote
the majority function, which can be represented as the low-weight halfspace∑
xi ≥ 0. We prove that the intersection of two majority functions not only

requires large weight but also large length:

Theorem 2. The function MAJ(x1, . . . , xn) ∧ MAJ(y1, . . . , yn) requires PTF
length nΩ((logn)/ log log n).

The lower bound of Theorem 2 nearly matches the nO(logn) upper bound
of Beigel et al. [3], proving that their PTF construction is essentially optimal.
As a corollary to Theorem 2, we observe that intersections of even two low-weight
halfspaces cannot be computed by polynomial-weight PTFs, the most expressive
class of concepts known to be learnable via Jackson’s Harmonic Sieve. We note
here that intersections of a constant number of halfspaces are learnable with
membership and equivalence queries in polynomial time via Angluin’s algorithm
for learning finite automata. For the case of intersections of k = ω(1) halfspaces,
however, no polynomial-time algorithms are known. For this case, we prove PTF
length lower bounds with an exponential dependence on k:

Theorem 3. Let k ≤
√
n. Then there are (explicitly given) functions in MAJk

that require PTF length nΩ(k/ log k).

This lower bound is almost tight: every function in MAJk is known [9] to have a
PTF of length nO(k log k log n). Note that Theorem 3 improves on Theorem 2 for
k = ω(logn).

Finally, we consider the feasibility of learning intersections of halfspaces weakly
in polynomial time under the uniform distribution. (Recall that strong learning
refers to constructing a hypothesis with error ε in time poly(n, 1/ε); weak learning
refers to constructing a hypothesis with error 1/2− 1/poly(n) in time poly(n).)
We report our progress on this problem in Section 5, proving negative results for
generalizations of the problem and positive results for several restricted cases.

1.2 Our Techniques

Most of our results follow from a variety of new applications of bent func-
tions, i.e., functions whose Fourier coefficients are as small as possible. Although
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the Fourier analysis of Boolean functions is usually relevant only to uniform-
distribution learning, we apply an observation due to Bruck [6] that the flatness
of a function’s spectrum is directly related to the length of its PTF represen-
tation, a quantity involved with arbitrary-distribution learning. We construct
non-uniform distributions under which various intersections of low-weight half-
spaces are capable of computing bent functions. This in turn yields a variety
of lower bounds on their PTF length, depending on the construction we em-
ploy. We then extend the construction of a single bent function to a family of
bent functions and prove that this yields a large set of nearly orthogonal func-
tions, the critical component of our SQ dimension lower bound. All functions
and distributions we construct are explicitly defined.

For the near-optimal lower bound on the PTF length of the intersection of
two majority functions, we combine results on the PTF degree of intersections
of halfspaces due to O’Donnell and Servedio [15] with a translation lemma in
circuit complexity due to Krause and Pudlák [11].

1.3 Organization

We first prove PTF length lower bounds on intersections of majorities in Sec-
tion 3. We build on these results to prove our main SQ dimension lower bound
in Section 4. Our discussion of weak learning appears in Section 5.

2 Preliminaries

A Boolean function is a mapping {−1, 1}n → {−1, 1}, where 1 corresponds to
“true.” In this representation, the parity χS of a set S ⊆ [n] of bits is given
by the product of the corresponding variables: χS

def=
⊕

i∈S xi =
∏
i∈S xi. A

majority function is a Boolean function of the form

sign(xj1 + xj2 + . . . ),

where the xji are distinct variables from among x1, . . . , xn. A generalization of
majority is a halfspace

sign(a1xj1 + a2xj2 + . . . ),

where the ai are integral weights. Finally, a polynomial threshold function (PTF)
has the form

sign(a1χ1 + a2χ2 + . . . ),

where the ai are integral coefficients and the χi are distinct parity functions over
x1, . . . , xn, possibly including the constant function 1. Note that halfspaces and
majorities are PTFs. One can assume w.l.o.g. that the polynomial a1χ1 +a2χ2 +
. . . sign-representing a PTF is nonzero on all inputs.

Two important characteristics of PTFs from a learning standpoint are weight
and length. The weight of a PTF sign(

∑
i aiχi) is

∑
i |ai|. The length of a PTF

is the number of monomials, i.e., distinct parity functions. Thus, a PTF’s weight
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is never less than its length. A PTF is light (respectively, short) if its weight
(respectively, length) is bounded by a polynomial in n.

In the above description, the polynomial (weighted sum of parities) computing
a PTF f agrees in sign with f on every input. We refer to this type of sign-
representation as strong: a polynomial p strongly represents a Boolean function
f iff p(x) �= 0 and f(x) = sign(p(x)) for all x. We will also need the following
relaxed version of threshold computation [16]: a polynomial p weakly represents
a Boolean function f iff p(x) �= 0 for some x, and f(x) = sign(p(x)) on any such
x. We say that a function has a strong/weak representation on a set of parities
A ⊆ [n] iff there is a polynomial

∑
S∈A aSχS that strongly/weakly represents f .

The following is a useful tool in analyzing PTFs:

Theorem 4. (Theorem of the Alternative) [2, 15] Let A ⊆ [n] denote any set of
parities on x1, . . . , xn, and let P([n]) denote the full set of the 2n parities. Then
exactly one of the following statements holds for any f : {−1, 1}n → {−1, 1} :
(1) f has a strong representation on A;
(2) f has a weak representation on A⊥ = P([n]) \ A.

2.1 Fourier Transform

Consider the vector space of functions {−1, 1}n → R, equipped with the inner
product 〈f, g〉 = Ex∼U [f(x) · g(x)] . The parity functions {χS}S⊆[n] form an or-
thonormal basis for this inner product space. As a result, every Boolean function
f can be uniquely written as its Fourier polynomial

f =
∑
S⊆[n]

f̂(S)χS ,

where f̂(S) def= 〈f, χS〉. Observe that f̂(∅) = 2 Prx[f(x) = 1]− 1. The f -specific
constants f̂(S) are called Fourier coefficients. The orthonormality of the parities
yields Parseval’s identity for Boolean functions:∑

S⊆[n]

f̂2(S) = 〈f, f〉 = 1.

As in signal processing, one can obtain an approximation to a function by
identifying and estimating its large Fourier coefficients (the “dominant frequen-
cies”). Although there are 2n coefficients to consider, the large ones can be
retrieved efficiently by the elegant algorithm of [12], which we refer to as “KM”:

Theorem 5. [12] Let f be any Boolean function and let δ, θ > 0 be parameters.
With probability ≥ 1 − δ, KM outputs every S ∈ [n] for which |f̂(S)| ≥ θ, and
no S ∈ [n] for which |f̂(S)| ≤ θ/2. KM runs in time poly(n, 1

θ , log 1
δ ).

It is thus useful to recognize classes of functions that have large Fourier coeffi-
cients. We denote by L∞(f) the largest absolute value of a Fourier coefficient
of f : L∞(f) def= maxS{|f̂(S)|}. The latter quantity lower-bounds the length of a
PTF computing f :
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Theorem 6. [6] Any PTF computing f has length at least 1/L∞(f).

Theorem 6 implies that functions with short PTFs are weakly learnable under
the uniform distribution:

Proposition 1. If f has a PTF of length �, then f is learnable to accuracy
1
2 + 1

2� under the uniform distribution in time poly(n, �).

Proof. In time poly(n, �), KM identifies all parities that predict f with advantage
1/� or better. It thus suffices to show that for some parity χ, |Ex [χ · f ] | ≥ 1/�.
The latter is equivalent to showing that L∞(f) ≥ 1/�. But if we had L∞(f) <
1/�, any PTF implementing f would require more than � monomials (by Theo-
rem 6). Thus, some parity χ predicts f with advantage 1/� or better. �
Proposition 1 shows that PTF length is an indicator of weak learnability under
the uniform distribution. Additionally, PTF weight is an indicator of strong
learnability under the uniform distribution: Jackson [7] proves that the Harmonic
Sieve strongly learns a function if it can be written as a polynomial-weight PTF.

For all f : {−1, 1}n→ {−1, 1}, we have L∞(f) ≥ 2−n/2 by Parseval’s identity.
For n even, f is called bent if all Fourier coefficients of f are 2n/2 in absolute
value. It is known [6] that bent functions include inner product mod 2

IPn(x) = (x1 ∧ x2)⊕ (x3 ∧ x4)⊕ · · · ⊕ (xn−1 ∧ xn)

and complete quadratic

CQn(x) =
{

1 if (||x|| mod 4) ∈ {0, 1},
−1 otherwise.

Above and throughout the paper, ||x|| stands for the number of −1 bits in x. In
particular, ||x⊕ y|| yields the number of bit positions where x and y differ.

Recall that a Boolean function is called monotone if flipping a bit from −1
to 1 in any input does not decrease the value of the function. For example, the
majority function

∑
xi ≥ 0 is monotone. A function f(x1, . . . , xn) is unate if

f(σ1⊕x1, . . . , σn⊕xn) is monotone for some fixed σ ∈ {−1, 1}n. Here σ is called
the orientation of f. For example, the function x1− 2x2 + x3− 4x5 ≥ 3 is unate
with orientation σ = (1,−1, 1,−1).

2.2 Statistical Query Dimension

The statistical query model, first defined by Kearns [8], is an elegant model
of learning that can withstand classification noise. The SQ model has proven
to be a useful formalism. In fact, a vast majority of today’s efficient learning
algorithms fit in this framework. The SQ dimension of a concept class, defined
shortly, is a tight measure of the hardness of learning in this model. As a result,
SQ dimension estimates are of considerable interest in learning theory.

A concept class C is a set of functions {−1, 1}n → {−1, 1}. The statistical
query dimension of C under distribution μ, denoted SQ-dimμ(C), is the largest
N for which there are N functions f1, . . . , fN ∈ C with
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|Ex∼μ [fi(x) · fj(x)] | ≤
1
N

for all i �= j. We denote SQ-dim(C) def= maxμ{SQ-dimμ(C)}. The SQ dimension
of a concept class fully characterizes its weak learnability in the statistical query
model: a low SQ dimension implies an efficient weak-learning algorithm, and a
high SQ dimension rules out such an algorithm [4]. The following two theorems
make these statements precise.

Theorem 7. [4] (Upper Bound) Let C be a concept class and μ a distribution
s.t. SQ-dimμ(C) = d. Then there is a non-uniform learning algorithm for C that
makes d queries, each of tolerance 1/(3d3), and finds a hypothesis with error at
most 1/2− 1/(3d3) under μ.

Theorem 8. [4] (Lower Bound) Let C be a concept class and μ a distribution
s.t. SQ-dimμ(C) = d ≥ 16. Then if all queries are made with tolerance at least
1/d1/3, at least d1/3/2 queries are required to learn C to error 1/2− 1/d3 under
μ in the statistical query model.

2.3 Notation

We adopt the notation L+
∞(f) def= maxS �=∅{|f̂(S)|}. We denote by MAJk the

family of functions computable by the intersection of k majorities, each on some
subset of the n variables. Throughout the paper, we view k as an arbitrary
function of n, including a constant. MAJ(xi1 , xi2 , . . . ) stands for the majority
value of xi1 , xi2 , . . . . We denote the set {1, 2, . . . , a} by [a]. I[A] denotes 1 if the
statement A is true, and 0 otherwise. The vector with −1 in the ith position and
1’s elsewhere is ei. In particular, x⊕ ei represents x with its ith bit flipped.

3 PTF Length Lower Bounds for MAJk

We begin by developing lower bounds on the PTF representation of intersections
of low-weight halfspaces. In particular, this section establishes two of the results
of this paper: Theorem 2 (proved independently in Section 3.3) and Theorem 3
(immediate from Theorems 2, 9 and 10 of this section). We will need these struc-
tural results to prove our main lower bound on the SQ dimension of intersections
of halfspaces.

3.1 PTF Length of MAJk: An nΩ(log k) Bound

Unlike the lower bound for MAJ2, the results in this section and the next require
k = ω(1) for a super-polynomial lower bound. However, they rely solely on the
fundamental Theorem 6 and are thus considerably simpler. Furthermore, the
constructions below (Lemmas 2 and 3) will allow us to prove a lower bound on
the SQ dimension of MAJk in Section 4. A key to these results is the following
observation.
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Lemma 1. Let f(x1, . . . , xn) have a PTF of length �. Then so does
f(χ1, . . . , χn), where each χi is any parity over x1, . . . , xn or the negation of
a parity.

Proof. Given a polynomial of length � that strongly sign-represents f , make the
replacement xi → χi. This does not increase the number of monomials, while
yielding a PTF for f(χ1, . . . , χn). �
By Lemma 1, it suffices to show that f(χ1, . . . , χn) does not have a short PTF to
prove that neither does f(x1, . . . , xn). We accomplish the former via a reduction
to a known hard function.

Lemma 2. Let k ≤ 2n
o(1)

. Then there are explicitly given functions
χ1, χ2, . . . , χn (each a parity or the negation of a parity) such that for every
fixed y ∈ {−1, 1}n, IP(x ⊕ y) on Ω(log n · log k) variables is computable by
f(χ1, χ2, . . . , χn) for some f ∈ MAJk.

Proof. Let g1, g2, . . . , glog k be copies of the IP function, each on a distinct set
of variables Vi with |Vi| = v for some v = v(n, k) to be chosen later. Thus,
g =

⊕
gi is IP on v log k variables. At the same time, g is computable by the

AND of 2log k−1 < k functions, each of the form h1 ∧ h2 ∧ · · · ∧ hlog k, where
hi ∈ {gi,¬gi}. Each h1 ∧ h2 ∧ · · · ∧ hlog k can be computed by the PTF

h1 + h2 + · · ·+ hlog k ≥ log k,

or 2v/2h1 + 2v/2h2 + · · ·+ 2v/2hlog k ≥ 2v/2 log k. (1)

Every hi is a bent function on the v variables Vi, and thus 2v/2hi is simply the
sum of the 2v parities on Vi, each with a plus or a minus sign.

Create a new set of variables U = {χ1, χ2, . . . } as follows. U will contain a
distinct variable for each parity on Vi (i ∈ [log k]) and one for its negation. In
addition, U will contain 2v/2 log k variables, each of which corresponds to the
constant −1. As a result, each of the k PTFs of the form (1) is a majority
function in terms of U . Therefore, IP(x) on v log k variables is computable by
f(χ1, χ2, . . . ) for some f ∈ MAJk. Furthermore, for every fixed y ∈ {−1, 1}n,
IP(x ⊕ y) is computable by fy(χ1, χ2, . . . ) for some fy ∈ MAJk. This is because
for each parity, U = {χ1, χ2, . . . } additionally contains its negation.

It remains to show that |U | ≤ n. Setting v = logn − log log k − 2 yields
|U | = 2 · 2v log k + 2v/2 log k ≤ n. Thus, for k ≤ 2n

o(1)
the above construction

computes IP on the claimed number of variables:

v log k = (logn− log log k − 2) log k = Ω(log n · log k).

�
Lemma 2 immediately yields the desired lower bound on PTF length.

Theorem 9. Let k ≤ 2n
o(1)

. Then the intersection of k majorities requires a
PTF with nΩ(log k) monomials.
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Proof. Let k ≤ 2n
o(1)

. By Lemma 2, there is a function f ∈ MAJk and a
choice of signed parities χ1, . . . , χn such that f(χ1, . . . , χn) computes IP on
v = Ω(log n · log k) variables. Since L∞(f(χ1, . . . , χn)) = 2v/2, any PTF com-
puting f(χ1, . . . , χn) requires 2v/2 = nΩ(log k) monomials by Theorem 6. By
Lemma 1, the same holds for f(x1, . . . , xn). �

3.2 PTF Length of MAJk: An nΩ(k/ max{log log n,log k}) Bound

This section applies Lemma 1 with a different reduction. The resulting lower
bound is better than that of Theorem 9 for some range of k.

Lemma 3. Let k ≤ √n. Then there are explicitly given functions χ1, χ2, . . . , χn
(each a parity or the negation of a parity) such that for every fixed y ∈
{−1, 1}n, CQ(x⊕y) on min

{
Ω
(

k logn
log log n

)
, Ω

(
k logn
log k

)}
variables is computable

by f(χ1, χ2, . . . , χn) for some f ∈ MAJk.

Proof. Consider CQ on v variables, for some v = v(n, k) to be chosen later. CQ
is symmetric and can thus be represented by the AND of v predicates:

CQ(x) = 1 ⇐⇒
∧
s∈S (

∑
i xi �= s) ,

where S ⊆ {−v, . . . , 0, . . . , v}, |S| ≤ v. A single PTF can check any number t of
these predicates:

(
∑

i xi − s1)
2 (
∑

i xi − s2)
2
. . . (

∑
i xi − st)

2
> 0, (2)

where s1, . . . , st ∈ S.
Consider the PTF (

∑
i xi + v)2t > 0. Multiplying out the l.h.s. yields the

sum of exactly (2v)2t parities (not all distinct). Construct a new set of variables
U = {χ1, χ2, . . . } to contain a variable for each of these (2v)2t parities and their
negations. Over U , the PTF (

∑
i xi + v)2t > 0 is a majority. In fact, any PTF

of the form (2) is a majority over U . CQ(x) on v variables is thus computable
by f(χ1, χ2, . . . ) for some f ∈ MAJk. Furthermore, for every fixed y ∈ {−1, 1}n,
CQ(x⊕ y) is computable by fy(χ1, χ2, . . . ) for some fy ∈ MAJk. This is because
for each parity, U = {χ1, χ2, . . . } additionally contains its negation.

It remains to pick v such that v ≤ kt (the k PTFs must collectively check all
v predicates) and |U | ≤ n (the new variable set can have size at most n):

v = max{v′ : v′ ≤ kt and 2(2v′)2t ≤ n for some integer t ≥ 1}

= min
{
Ω(
√
n), Ω

(
k logn

log logn

)
, Ω

(
k logn
log k

)}
,

which is equivalent to v = min{Ω(k logn/ log logn), Ω(k log n/ log k)} for k ≤√
n. �

Theorem 10. Let k ≤
√
n. Then the intersection of k majorities requires a

PTF with min
{
nΩ(k/ log log n), nΩ(k/ log k)

}
monomials.
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Proof. Let k ≤ √n. By Lemma 3, there is a function f ∈ MAJk and a choice
of signed parities χ1, . . . , χn such that f(χ1, . . . , χn) computes CQ on v =
min{Ω(k/ log logn), Ω(k/ log k)} variables. Since L∞(f(χ1, . . . , χn)) = 2v/2,
any PTF computing f(χ1, . . . , χn) requires 2v/2 monomials by Theorem 6. By
Lemma 1, the same holds for f(x1, . . . , xn). �

3.3 PTF Length of MAJ2: An nΩ((log n)/ log log n) Bound

Our lower bound for the PTF length of MAJ2 exploits two related results in the
literature. The first is a lower bound on the degree of any PTF for MAJ2, due to
O’Donnell and Servedio [15]. We additionally amplify the degree requirements
by replacing each variable in MAJ2 by a parity on a separate set of ≈ logn
variables. Denote the resulting composition by MAJ2 ◦ PARITY. The second
result we use is a general theorem of Krause and Pudlák [11] which, given the
PTF degree of a function f , states a lower bound on the PTF length of a related
function fop. We obtain the result of this section by relating the PTF length of
MAJ2 to that of (MAJ2 ◦ PARITY)op.

The degree of a function f , denoted deg(f), is the minimum degree of any
polynomial that strongly represents it. For MAJ2, we have:

Theorem 11. [15] Let f(x, y) = MAJ(x1, . . . , xn) ∧MAJ(y1, . . . , yn). Then f

has degree Ω
(

logn
log log n

)
.

The key to the lower bound in this section is the following link between PTF
degree and length requirements.

Definition 1. For f : {−1, 1}n → {−1, 1}, define fop : {−1, 1}3n → {−1, 1} as

fop(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = f(u1, . . . , un),

where ui = (zi ∧ xi) ∨ (zi ∧ yi).

Proposition 2. [11] For every Boolean function f , fop requires PTF length
2deg(f).

We need another observation.

Lemma 4. Let g(x) = f

(
k⊕
i=1

x1,i, . . . ,
k⊕
i=1

xn,i

)
. Then deg(g) = k ·deg(f).

Proof. Our proof is inspired by Theorem 13 (the “XOR lemma”) of [15]. The
upper bound k · deg(f) is trivial: take any polynomial of degree deg(f) that
strongly represents f and replace each variable by its corresponding length-k
parity on xi,j . To prove that k ·deg(f) is also a lower bound on deg(g), note that
f has no strong representation over parities of degree less than deg(f). By the
Theorem of the Alternative, f has a weak representation pw over parities of de-
gree at least deg(f). Substituting corresponding parities on xi,j for the variables
of pw yields a weak representation of g; it is nonzero on many assignments to
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xi,j since pw is nonzero on at least one assignment to x1, . . . , xn. The degree of
any monomial in the resulting PTF for g is at least k · deg(f). By the Theorem
of the Alternative, g cannot have a strong representation over the parities of
degree less than k · deg(f). We conclude that deg(g) ≥ k · deg(f). �
Combining the above yields the desired bound:

Theorem 2. (Restated from page 337.) The function MAJ(x1, . . . , xn) ∧
MAJ(y1, . . . , yn) requires PTF length nΩ((logn)/ log logn).

Proof. Let f = MAJ(x1, . . . , xt) ∧ MAJ(xt+1, . . . , x2t). Define a new function
f⊕ : ({−1, 1}k)2t → {−1, 1} as

f⊕(x) = MAJ

(
k⊕
i=1

x1,i, . . . ,
k⊕
i=1

xt,i

)∧
MAJ

(
k⊕
i=1

xt+1,i, . . . ,
k⊕
i=1

x2t,i

)
.

By Lemma 4, deg(f⊕) = k · deg(f). Consider now f⊕ op. For single bits a, b, c ∈
{−1, 1}, we have (c ∧ a) ∨ (c ∧ b) = 1

2 (1 + c)a+ 1
2 (1− c)b. As a result, f⊕ op can

be computed by the intersection of two PTFs:

f⊕ op(x, y, z) =(
k∏
i=1

q1,i + . . . +
k∏
i=1

qt,i ≥ 0

)∧(
k∏
i=1

qt+1,i + . . . +
k∏
i=1

q2t,i ≥ 0

)
,

where qi,j = (1 + zi,j)xi,j + (1 − zi,j)yi,j .
Therefore, f⊕ op is computed by the intersection of two PTFs, each with

weight at most 4kt. Lemma 1 implies that if the intersection of two majorities,
each on a distinct set of 4kt variables, has a PTF with � monomials, then so
does f⊕ op. But by Proposition 2, f⊕ op requires a PTF of length 2deg(f⊕) =
2k·deg(f). Thus, the intersection of two majorities, each on n = 4kt variables,
requires a PTF of length 2

1
2 (logn−log t)·deg(f). Set t =

√
n. Then by Theorem 11,

deg(f) = Ω((log n)/ log logn), which yields a length lower bound of nΩ(deg(f)) =
nΩ(logn/ log log n). �
Using a rational approximation to the sign function, it is possible to obtain a
PTF for MAJ(x1, . . . , xn) ∧MAJ(y1, . . . , yn) with nO(logn) monomials [3]. Our
lower bound of nΩ((logn)/ log logn) nearly matches that upper bound.

A key ingredient in our proof of the nΩ((logn)/ log logn) lower bound on the PTF
length of MAJ2 was the non-trivial degree lower bound for the same function,
due to O’Donnell and Servedio [15]. We could obtain an nω(1) lower bound for
the PTF length of MAJ2 by using the simpler ω(1) lower bound on the degree
of MAJ2 due to Minsky and Papert [14]. That would suffice to show that MAJ2
does not have a short PTF; the proof would be analogous to that of Theorem 2.

4 A Lower Bound on the SQ Dimension of MAJk

Recall that the SQ dimension captures the hardness of a concept class. We
explicitly construct distributions under which the intersection of nε majorities,
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for any constant 0 < ε ≤ 1/2, has SQ dimension 2Ω(nε). This is an exponential
improvement on nΩ(log k), the best previous lower bound that was based on
computing parity functions by intersections of halfspaces. We additionally prove
(Section 4.1) that the latter construction could not give a bound better than
nΘ(log k).

Let f : {−1, 1}n → {−1, 1} be any function. For a fixed string y ∈ {−1, 1}n,
the y-reflection of f is the function fy(x) = f(x⊕y). Any two distinct reflections
of a bent function are uncorrelated under the uniform distribution:

Lemma 5. Let f : {−1, 1}n→ {−1, 1} be a bent function. Then for any distinct
y, y′ ∈ {−1, 1}n, Ex∼U [f(x⊕ y) · f(x⊕ y′)] = 0.

Proof. For a fixed pair y, y′ of distinct strings, we have y ⊕ y′ �= 1n. Thus,

Ex∼U f(x ⊕ y)f(x ⊕ y′) = Ex

S

f̂(S)χS(x)χS(y)
T

f̂(T )χT (x)χT (y′)

=
S T

f̂(S)f̂(T )χS(y)χT (y′) · Ex [χS(x)χT (x)]

=
S

f̂2(S)χS(y)χS(y′)

=
1
2n

S

χS(y ⊕ y′)

= 0.

The last equality holds because on every z ∈ {−1, 1}n \ 1n, exactly half of the
parities evaluate to −1 and the other half, to 1. �
The following is a simple consequence of Lemma 5:

Theorem 12. Let C denote the concept class of bent functions on n variables.
Then SQ-dimU (C) = 2n.

Proof. Fix a bent function f and consider its 2n reflections, themselves bent
functions. By Lemma 5, any two of them are orthogonal. �
Consider a function h : {−1, 1}n → {−1, 1}n. The h-induced distribution on
{−1, 1}n, denoted by h ◦ U , is the distribution given by

(h ◦ U)(z) = Pr
x∼U

[h(x) = z]

for any z ∈ {−1, 1}n. Put differently, h ◦ U is the uniform distribution over the
multiset h({−1, 1}n).

Proposition 3. Let f, g : {−1, 1}n → {−1, 1} and h : {−1, 1}n → {−1, 1}n be
arbitrary functions. Then Ex∼h◦U [f(x) · g(x)] = Ex∼U [f(h(x)) · g(h(x))] .

Proof. By definition of h ◦ U , picking a random input according to h ◦ U is
equivalent to picking x ∈ {−1, 1}n uniformly at random and returning h(x). �
We are ready to prove the claimed SQ lower bound for MAJk.
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Theorem 1. (Restated from page 336.) There are (explicitly given) distribu-
tions on {−1, 1}n under which

SQ-dim(MAJk) =
{

nΩ(k/ log k) if logn ≤ k ≤
√
n,

max
{
nΩ(k/ log logn), nΩ(log k)

}
if k ≤ logn.

Proof. Let k ≤ logn. Fix n monomials χ1, χ2, . . . , χn as in Lemma 2. Let v =
Ω(log n·log k). Then there are 2v functions F = {f1, f2, . . . , f2v} ⊂ MAJk, where
each fi(χ1(x), χ2(x), . . . , χn(x)) computes IP(x⊕ y) on v variables for a distinct
y ∈ {−1, 1}v.

Define h : {−1, 1}n→ {−1, 1}n by h(x) = (χ1(x), χ2(x), . . . , χn(x)). Then for
every two distinct fi, fj ∈ F ,

0 = Ex∼U [fi(χ1(x), . . . , χn(x)) · fj(χ1(x), . . . , χn(x))] by Lemma 5
= Ex∼h◦U [fi(x) · fj(x)] by Proposition 3.

In words, every pair of functions in F are orthogonal under the distribution
h ◦ U . Therefore, SQ-dimh◦U (MAJk) ≥ |F| = 2v = nΩ(log k) for k ≤ logn.
Moreover, the distribution h ◦ U has an explicit description: pick a random
x ∈ {−1, 1}n and return the n-bit string (χ1(x), . . . , χn(x)), where χ1, . . . , χn
are the explicitly given monomials from Lemma 2. Applying an analogous
argument to Lemma 3 yields the alternate lower bound SQ-dim(MAJk) =
min{nΩ(k/ log k), nΩ(k/ log log n)} for k ≤

√
n. �

4.1 On the SQ Dimension Under the Uniform Distribution

The distributions in Theorem 1 are non-uniform. Can we prove a comparable
lower bound on the SQ dimension of MAJk under the uniform distribution? A
natural approach would be to compute different parities with functions in MAJk.
Since the parities are mutually orthogonal under the uniform distribution, this
would yield an SQ lower bound. In what follows, we show that this approach
yields at best a trivial nΩ(log k) SQ lower bound, even for the much larger class
of intersections of unate functions. Specifically, we show that intersections of k
unate functions cannot compute PARITY on more than 1 + log k bits.

Proposition 4. Let f be a unate function with orientation σ. If f is false
on some x with ||x ⊕ σ|| < n, then f is false on some y with PARITY(x) �=
PARITY(y).

Proof. Suppose ||x ⊕ σ|| < n. Then xi = σi for some i. Let y = x ⊕ ei. Then
PARITY(x) �= PARITY(y). But f(y) ≤ f(x) = −1 and thus f(y) = −1. �
Theorem 13. To compute PARITYn by the AND of unate functions, 2n−1

unate functions are necessary and sufficient.

Proof. Sufficiency is straightforward: PARITY has a trivial CNF with 2n−1

clauses, each of which is a unate function. For the lower bound, consider∧
fi = PARITY, where each fi is a unate function with orientation σi. By

Proposition 4, fi can be false only on the input x satisfying ||x ⊕ σi|| = n:
otherwise fi would be false on two inputs of different parity. Thus, 2n−1 unate
functions are needed to exclude the 2n−1 falsifying assignments to PARITY. �
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5 Weakly Learning Intersections of Halfspaces

For the proofs in this section, please refer to the full version of this paper on the
authors’ webpages.

Section 3 showed that the intersection f of even two majorities does not
have a polynomial-length PTF. Thus, there is some distribution on {−1, 1}n
under which the correlation of f with every parity is negligible (inversely super-
polynomial). However, this leaves open the possibility of inverse-polynomial cor-
relation (and thus weak learnability) under the uniform distribution. In other
words, we would like to know if L∞(h1 ∧ · · · ∧ hk) = 1/nO(1) for a slow enough
function k. Trivially, the intersection of k = nω(1) halfspaces has negligible
Fourier coefficients. In fact, the same holds even for a CNF with nω(1) clauses
since it can compute a bent function on ω(logn) variables. Thus, we restrict our
attention to k = nO(1).

First, we consider two generalizations of MAJk: the XOR of k majorities, and
the AND of k unate functions. In both cases, we show that all Fourier coefficients
can be negligible for k = ω(1).

Proposition 5. Let h1, . . . , hk be majority functions, each on a separate set of
n/k variables. Then L∞(h1 ⊕ · · · ⊕ hk) = 1/nω(1) for k = ω(1).

Theorem 14. There are unate functions h1, . . . , hk such that L∞(
∧
hi) =

1/nω(1) for k = ω(1).

On the positive side, we prove that no combining function of k =
√

logn half-
spaces can compute a bent function on ω(logn) variables (which would have
negligible Fourier coefficients).

Theorem 15. Let f = g(h1, h2, . . . , hk), where each hi : {−1, 1}n → {−1, 1}
is a halfspace and g : {−1, 1}k → {−1, 1} is an arbitrary Boolean function. If
k = o(

√
n), then f is not bent.

We now examine two special cases: read-once and unate functions.

Lemma 6. Let f = h1∧h2∧· · ·∧hk, where the hi are arbitrary Boolean functions
on disjoint variable sets. Then L∞(f) ≥ 1

2 maxi{L+
∞(hi)}.

Lemma 6 states that if at least one of h1, . . . , hk has a large nonconstant Fourier
coefficient, then f = h1 ∧ · · · ∧ hk will have a large Fourier coefficient as well.
Weak learnability is also guaranteed for all unate functions in MAJk. We derive
this result from the benign Fourier properties of unate functions.

Theorem 16. Let f = g(h1, . . . , hk), where g : {−1, 1}k → {−1, 1} is a
monotone function (e.g., AND or MAJ) and the functions hi : {−1, 1}n →
{−1, 1} are unate with a common orientation (e.g., halfspaces with a common
orientation or halfspaces on disjoint sets of variables). Then f is unate and
L∞(f) ≥ 1/(n+ 1).
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Abstract. We describe a new approach for understanding the difficulty
of designing efficient learning algorithms. We prove that the existence of
an efficient learning algorithm for a circuit class C in Angluin’s model of
exact learning from membership and equivalence queries or in Valiant’s
PAC model yields a lower bound against C. More specifically, we prove
that any subexponential time, determinstic exact learning algorithm for
C (from membership and equivalence queries) implies the existence of
a function f in EXPNP such that f �∈ C. If C is PAC learnable with
membership queries under the uniform distribution or Exact learnable
in randomized polynomial time, we prove that there exists a function
f ∈ BPEXP (the exponential time analog of BPP) such that f �∈ C.

For C equal to polynomial-size, depth-two threshold circuits (i.e.,
neural networks with a polynomial number of hidden nodes), our result
shows that efficient learning algorithms for this class would solve one of
the most challenging open problems in computational complexity theory:
proving the existence of a function in EXPNP or BPEXP that cannot be
computed by circuits from C. We are not aware of any representation-
independent hardness results for learning polynomial-size depth-2 neural
networks.

Our approach uses the framework of the breakthrough result due to
Kabanets and Impagliazzo showing that derandomizing BPP yields non-
trivial circuit lower bounds.

1 Introduction

Discovering the limits of efficient learnability remains an important challenge in
computational learning theory. Traditionally, computational learning theorists
have reduced problems from computational complexity theory or cryptography
to learning problems in order to better understand the difficulty of various clas-
sification tasks.

There are two lines of research in learning theory in this direction. First,
several researchers have shown that properly PAC learning well-known concept
classes (i.e. learning with the requirement that the output hypothesis be of
the same form as the concept being learned) such as DNF formulas, finite au-
tomata, or intersections of halfspaces is NP-hard with respect to randomized
reductions [1, 2, 3].
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Secondly, in a seminal paper, Kearns and Valiant [4] initiated a line of research
that applied results from cryptography to learning. They proved that learning
polynomial-size circuits, regardless of the representation of the hypothesis of
the learner, would imply the existence of algorithms for breaking cryptographic
primitives. In fact, Kearns and Valiant [4] show that learning constant depth,
poly-size neural networks would imply an efficient algorithm for breaking well-
studied public-key cryptosystems. Various researchers have extended this work
to other restricted classes of circuits [5, 6].

For some classes of circuits, however, we do not know how to create the
cryptographic primitives needed to apply the Kearns-Valiant approach. It is
a difficult open question, for example, as to whether polynomial-size depth-2
threshold circuits (polynomial-size neural networks) can compute cryptographic
primitives. As such, we are unaware of any representation-independent hardness
results for learning this class of circuits.

1.1 Reducing Circuit Lower Bounds to Learning Concept Classes

We give a new approach for showing the difficulty of proving that certain circuits
classes admit efficient learning algorithms. We show that if a class of circuits C
is efficiently learnable in either Angluin’s exact model or Valiant’s PAC model
of learning, then we can prove a circuit lower bound against C. Hence, the
existence of efficient learning algorithms (for many choices of C) would settle
some important and well-studied open questions in circuit complexity.

Our first theorem states that a deterministic subexponential time exact learn-
ing algorithm for a concept class C implies a lower bound for Boolean circuits
for a somewhat large complexity class:

Theorem 1. Let C be a family of non-uniform, polynomial-size circuits. As-
sume that C is exactly learnable from membership and equivalence queries in
time 2n

o(1)
. Then there exists a function f ∈ EXPNP such that f �∈ C.

If we take C to be the class of polynomial-size (depth-2) neural networks we
obtain the following corollary:

Corollary 1. If there exists an algorithm for exactly learning depth-2 neural
networks (with a polynomial number of hidden nodes) in time 2n

o(1)
then there

exists a function f ∈ EXPNP such that f is not computable by any polynomial-
size, depth-2 threshold circuit.

Finding a function in a uniform class such as EXPNP that cannot be computed
by polynomial-size, depth-two threshold circuits has been a challenging open
problem for over two decades in computational complexity. Additionally, we do
not know of any representation independent hardness results for learning (depth-
2) polynomial-size neural networks.

If we assume that our exact learning algorithm runs in polynomial-time rather
than subexponential time we can show that even randomized exact learning
algorithms imply circuit lower bounds against BPEXP, the exponential time
version of BPP:
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Theorem 2. Let C be a family of non-uniform, polynomial-size circuits. As-
sume there exists a randomized polynomial-time algorithm for exactly learn-
ing C from membership and equivalence queries. Then there exists a function
f ∈ BPEXP such that f �∈ C.

We are unaware of any lower bounds for circuit classes such as polynomial-size
depth-2 threshold circuits against BPEXP.

Theorems 1 and 2 also directly applies to arithmetic circuits. If, in addition,
we restrict the output hypothesis of the learner to be an arithmetic circuit or
formula (of possibly larger size and depth) we can replace the NP oracle in
Theorem 1 with an RP oracle and obtain a finer separation of uniform and
non-uniform circuit classes.

Theorem 3. Let C be a family of non-uniform, polynomial-size arithmetic for-
mulas. Assume that C is exactly learnable from membership and equivalence
queries in polynomial-time and the hypothesis of the learner is an arithmetic
formula. Then there exists a function f ∈ EXPRP such that f �∈ C.

If we allow both C and the hypothesis to be arithmetic circuits then there exists
an f ∈ ZPEXPRP such that f �∈ C.

We note here that proving lower bounds against polynomial-size arithmetic for-
mulas and even depth-3 arithmetic circuits remains one of the most difficult
challenges in algebraic complexity. Furthermore, as with polynomial-size neural
networks, we are not aware of any representation independent hardness results
for learning restricted models of arithmetic circuits.

These results also apply to the PAC model. Due to the inherent role of random-
ness in the definition of PAC learning, our lower bounds apply to the complexity
class BPEXP:

Theorem 4. Let C be a family of non-uniform, polynomial-size circuits. As-
sume that C is PAC learnable in polynomial time. Then there exists a function
f ∈ BPEXP such that f �∈ C.

The smallest uniform complexity class known to contain languages with super-
polynomial Boolean circuit complexity is MAEXP, the exponential-time analog of
Merlin-Arthur proofs (see Setion 2.1 for a discussion). BPEXP is easily seen to
be contained in MAEXP.

1.2 Our Approach

The proof of Theorem 1 follows the outline of the work of Kabanets and Im-
pagliazzo [7] on derandomizing algebraic circuits: we assume that EXPNP is com-
putable by some non-uniform circuit classC (otherwise there is nothing to prove).
This implies, via a sequence of well-known reductions in complexity theory, that
the Permanent is complete for EXPNP (the analogous statements with EXPNP re-
placed by BPEXP are not known to be true). At this point we need to use the
supposed exact learning algorithm to construct an algorithm for computing the
Permanent which runs in subexponential time and has access to an NP oracle.
This leads to an immediate contradiction via time hierarchy theorems.
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In the work of Kabanets and Impagliazzo, the assumption of a deterministic
algorithm for polynomial-identity testing is used to develop a non-deterministic
algorithm for computing the Permanent. In this work, we need to use the exact
learning algorithm to construct the circuit c ∈ C that computes the perma-
nent. The main difficulty is that the exact learning algorithm needs access to a
membership and equivalence query oracle, which we do not have. Using an idea
from Impagliazzo and Wigderson’s result on derandomizing BPP, we can simu-
late membership queries by inductively constructing circuits for the permanent
on shorter input lengths. Simulating equivalence queries is slightly trickier and
requires access to an NP oracle to find counterexamples.

To reduce the dependence on the NP oracle we can use randomness, but only
in cases regarding arithmetic circuits and formulas, where output hypotheses can
be suitably interpreted as low-degree polynomials. Our results on PAC learning
and randomized Exact learners require a slightly different approach, as we are
not aware of collapse consequences for the class BPEXP even if it is contained in
P/poly. We appeal to work on derandomization due to Impagliazzo and Wigder-
son [8] that makes use of the random-self-reduciblity of the Permanent.

1.3 Outline

In Section 2 we define various learning models and state all the theorems from
complexity theory necessary for proving our main result. In Section 3 we give
a proof of our main result for exact learning in the Boolean case. Our results
regarding learnability in the PAC model are in Section 4. In Section 5 we discuss
applications to exact learning in the algebraic setting.

2 Preliminaries

Valiant’s PAC model [9] and Angluin’s model of Exact Learning from Mem-
bership and Equivalence queries [10] are two of the most well-studied learning
models in computational learning theory. Recall that in Valiant’s PAC model
we fix a concept class C and a distribution D and a learner receives pairs of the
form (x, c(x)) where x is chosen from D and c is some fixed concept in c. The
learner’s goal is to output, with probability 1− δ, a hypothesis h such that h is
a 1− ε accurate hypothesis with respect to c under D. We say that the learner
is efficient if it requires at most t examples, runs in time at most t and outputs
a hypothesis that can be evaluated in time t where t = poly(n, 1/ε, 1/δ, |c|) (|c|
denotes the size of the unknown concept). If the learner is allowed membership
queries then it may query the unknown concept c at any point x of his choosing.

In Angluin’s model of exact learning, the learner is trying to learn an unknown
concept c : {0, 1}n → {0, 1} and is allowed to make queries of the following form:

1. (Membership Query) What is the value of c(x)?
2. (Equivalence Query) Is h (the learner’s current hypothesis) equal to c?

If the equivalence query is answered affirmatively, the learner outputs h and
halts. Otherwise, the learner receives a counterexample, namely a point z such
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that h(z) �= c(z). We say that an algorithm A exactly learns a concept class C
in time t if for every c ∈ C, A always halts and the time taken by A (including
calls to the membership and equivalence query oracles) is bounded by t.

2.1 Uniform Versus Non-uniform Models of Computation

We frequently mention standard complexity classes EXP,RP,BPP,NP,MA,ZPP,
EE,ZPEXP as well as relativized versions of the classes (e.g., EXPNP). We refer
the reader to the Complexity Zoo (http://www.complexityzoo.com) for further
details on these classes .

We say a language L has polynomial-size circuits (P/poly) if there is a poly-
nomial p and a sequence of logical (AND-OR-NOT) circuits C0, C1, . . . such that
for all n,

1. The size of Cn is bounded by p(n).
2. For all strings x = x1 . . . xn, x is in L iff C(x1, . . . , xn) = 1 where we use 1

for true and 0 for false.

Importantly, circuits describe nonuniform computation: the circuits for one input
length may have no relation to the circuits for other lengths.

An algebraic circuit can only have addition, subtraction and multiplication
gates, in particular no bit operations. All languages computed by algebraic cir-
cuits can be computed by a Boolean circuit (with a polynomial increase in size),
but the converse is not known. A formula is a circuit described by a tree. It is
well known that an arithmetic circuit is equivalent to a multivariate polynomial
of degree at most exponential in the size of the circuit. Arithmetic formulas
compute polynomials whose degree is at most a polynomial in the size of the
formula.

The smallest complexity class known not to contain polynomial-size circuits
is MAEXP ([11], see also [12]), Merlin-Arthur games with an exponential-time
verifier. Kabanets and Impagliazzo [7] use derandomization to show NEXPRP

does not have polynomial-size algebraic circuits. The relationship of NEXPRP

and MAEXP is unknown.
It is a difficult open problem to improve upon MAEXP as the smallest uniform

class containing circuits of superpolynomial size even if we restrict ourselves to
polynomial-size formulas, depth-2 threshold circuits (neural nets), or constant-
depth logical circuits with Modm gates for any m not a prime power.

2.2 Hierarchy Theorems

Theorem 5. EXPNP is not contained in SUBEXPNP, where SUBEXP =
DTIME(2n

o(1)
).

Proof. The seminal paper in computational complexity by Hartmanis and
Stearns [13] shows that for any time-constructible functions t1(n) and t2(n)
with t21(n) = o(t2(n))

DTIME(t1(n)) � DTIME(t2(n))
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and their proof relativizes. Theorem 5 follows by taking t1(n) = 2n, t2(n) = 23n

and relativizing to SAT. �
Let EE denote the class of languages computable in doubly-exponential time.

Theorem 6. EE contains languages with super-polynomial circuit complexity.

Proof. We follow a proof idea of Kannan [14]. We know by counting arguments
there is some function that is not computed by circuits of size 2

√
n. In dou-

ble exponential time we can, by brute force searching, find and evaluate the
lexicographically least such function. �

2.3 Properties of the Permanent

The Permanent of an n× n matrix A is defined by

Perm(A) =
∑
σ∈Sn

a1σ(1)a2σ(2) · · ·anσ(n)

Valiant [15] showed that the Permanent is complete for the class #P, i.e.,
complete for functions counting the number of solutions of NP problems. The
Permanent remains #P-complete if we compute the Permanent over a sufficiently
large finite field. We will frequently abuse notation and write “Permanent is com-
plete for class C,” even though the Permanent (for large fields) is not a Boolean
function. This problem is explicitly resolved in Kabanets and Impagliazzo [7].

Toda [16] shows that the polynomial-time hierarchy reduces to #P and thus
the Permanent.

We will use the following two well known facts about the Permanent:

Fact 1. (Downward Self Reducibility of the Permanent) Computing the perma-
nent of an n × n matrix is polynomial-time (Turing) reducible to computing n
instances of the Permanent over n− 1× n− 1 matrices.

Fact 1 follows easily from the cofactor expansion of the Permanent.
The Permanent, when defined over a finite field, is also random-self re-

ducible [17], i.e., there is an efficient randomized procedure that will take an
n×n matrix A and produce n×n matrices A1, . . . , An+1 and a polynomial-time
function that takes the Permanents of the Ai’s and compute the Permanent of
A. Each Ai is uniformly random over the space of all n× n matrices, though Ai
and Aj are not independent variables.

We state this as follows:
Theorem 7. (Random-self-reducibility of the Permanent) [18, 17] Assume that
we have a circuit c that computes the Permanent on all but a 1/n2 fraction of
inputs (n is the length of the instance) with respect to any field F, |F | ≥ n2.
Then there exists a randomized, polynomial-time algorithm A that uses c as an
oracle such that for every input x, A computes Permanent on x correctly with
probabilty at least 1− 1/n.
Finally, we make use of a lemma due to Kabanets and Impagliazzo:

Lemma 1. [7] Given an arithmetic circuit C, the problem of determining if C
computes the Permanent on all inputs is in coRP.
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2.4 Collapse Theorems

A long line of research in complexity theory is devoted to understanding the
consequences of large uniform complexity classes being contained in small, non-
uniform ones. Perhaps the most well known collapse is due to Karp and Lipton,
stating that if NP ⊆ P/poly then the polynomial-time hierarchy collapses (PH =
Σ2). We will need the following two “collapse” theorems:

Theorem 8. [19] If EXPNP ⊆ EXP/poly then EXPNP = EXP.

Theorem 9. [20] If EXP ⊆ P/poly then EXP = MA.

Since MA ⊆ PH and PH ⊆ P#P [16] we conclude that EXPNP ⊆ P/poly implies
EXPNP = P#P. Applying Valiant’s result on the complexity of the Permanent
[15], we also have that EXPNP ⊆ P/poly implies Permanent is complete for
EXPNP.

3 Lower Bounds from Exact Learning Algorithms

In this section we prove our main result: algorithms for exactly learning circuits
classes yield lower bounds against those same circuit classes.

Theorem 10. Let C be a non-uniform class of polynomial-size circuits. Assume
that C is exactly learnable from membership and equivalence in time t = 2n

o(1)
.

Then EXPNP �⊆ C.

Proof. First assume that EXPNP ⊆ C (since otherwise there is nothing to prove)
and notice that since C is a class of polynomial-size circuits, Theorem 8 implies
that EXPNP = EXP = P#P. As such, the Permanent function is now complete
for EXPNP and is computable by some c ∈ C. We wish to give a poly(n, t) time
algorithm for computing the permanent that is allowed to make calls to an NP
oracle. Because EXPNP can be reduced to Permanent in polynomial-time, such
an algorithm would violate a relativized version the time hierarchy theorem
(Theorem 5) and complete the proof. Consider the following algorithm for
computing the permanent:

Algorithm for Computing Permanent on input x:

For i = 2 to n = |x|:

1. Run the exact learning algorithm to find ci, the circuit that
computes permanent on inputs of length i.

2. Simulate required membership queries and equivalence queries
using ci−1 and the NP oracle.

Output cn(x).

Computing c1, the “base case,” is trivial. The main difficulty is step 2,
simulating the required membership and equivalence query oracles. If we can
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simulate membership and equivalence query oracles using an NP oracle, then the
above steps for computing the permanent can be carried out in time poly(n, t)
with an NP oracle, as desired.

Simulating Membership Queries
Assume that our learning algorithm makes a membership query and requires
the value of the permanent on input y of length i. By induction assume we have
constructed a circuit ci−1 for computing the permanent on inputs of length
i − 1. Then, by applying Fact 1, the permanent on input y can be computed
via i calls to the circuit c′. As we have assumed that c′ is exactly correct for
all inputs of length i − 1, we are certain that we will obtain the correct value
for the permanent on y (this is the same technique used by Impagliazzo and
Wigderson [8] for making certain derandomization reductions more “uniform”).

Simulating Equivalence Queries
Assume that we wish to determine if our current hypothesis h computes per-
manent correctly on all inputs of length i. We make the following query to the
NP oracle: “Does there exist an input z such that h(z) does not equal the value
obtained by using the downward self-reducible property of the permanent and
circuit ci−1 (by Fact 1, we can compute the true value of the permanent via i
calls to circuit ci−1)?” I.e. does there exist an input z where the self-reduction
fails? If there is no such input z then we are guaranteed that our hypothesis h
is exactly correct on all inputs of length n. Otherwise, we can use the NP oracle
to reconstruct the input z where h is incorrect. We first make a query of the
form “Does there exist an input z where the self-reduction fails that begins with
a 0?” If the answer is “no” then we know there must exist a counterexample
that begins with a 1. Our next query is “Does there exist an input z beginning
with 10 such that...” and so on for the remaining bits until we have obtained a
counterexample.

Since we can construct a circuit for exactly computing the permanent on
inputs of length n using an NP oracle and a circuit for the computing the per-
manent on inputs of length n − 1, we can find the circuit c that computes
the permanent as required in step 1 of the above algorithm. Since c is from a
polynomial-size circuit class we can evaluate c(x) in polynomial time. This results
in a time t, NP-oracle algorithm for computing the permanent and completes
the proof. �
We can make a similar statement regarding learnability in the mistake bounded
model. Recall that in the mistake bounded model, the learner is required to make
at most poly(n, s) mistakes on any sequence of examples, where n is the length
of the longest example and s is the size of the unknown concept to be learned.
Assuming that the permanent function is computed by some circuit c, we can
use the NP oracle as above to determine if our current hypothesis is exactly
correct. If not, we can generate a counterexample in exactly the same manner
as in the proof of Theorem 1. We have the following theorem:
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Theorem 11. Let C be a non-uniform class of polynomial-size circuits. Assume
that C is efficiently learnable in the mistake bounded model. Then EXPNP �⊆ C.

Note again that Theorem 1 does not place any restrictions on the output hy-
pothesis of the learner, or of the concept to be class to be learned, other than
the requirement that evaluating c(x) can be carried out in time t = 2n

o(1)
. Ad-

ditionally, it is important to point out that the smallest known complexity class
containing functions of superpolynomial-size circuit complexity is MAEXP, the
exponential-time analogue of MA [11]. Proving MAEXP ⊆ EXPNP would be a
tremendous derandomization.

4 Lower Bounds from Randomized Learning Algorithms

In this section we show that efficient PAC algorithms for learning a circuit class C
or polynomial-time randomized Exact learning algorithms imply the existence
of a function f ∈ BPEXP such that f is not in C. Our result holds even if
the PAC algorithm is allowed to make membership queries to the unknown
concept. As with the complexity class EXPNP, it is a difficult open problem as
to whether BPEXP can be computed by circuit classes such as polynomial-size,
depth-2 threshold circuits, or polynomial-size arithmetic formulas. The smallest
complexity class known to strictly contain these circuit classes is MAEXP. It is
widely believed that BPEXP is strictly less powerful than MAEXP.

We require the following lemma, which states that if the Permanent has
polynomial-size circuits from some class C and C is PAC learnable, then the
Permanent is computable in BPP. This lemma is implicit in the work of Im-
pagliazzo and Wigderson [8] (although it was used there to obtain new results
in derandomization). We provide a proof in the language of PAC learning:

Lemma 2. ([8], restated) Assume that the Permanent is computed by a non-
uniform class of polynomial-size circuits C. If C is PAC learnable with respect
to the uniform distribution (with membership queries) then the Permanent is in
BPP.

Proof. To compute Permanent on input x of length n, assume by induction
we have a randomized circuit cn−1 such that for every x, cn−1 computes the
permanent correctly on x with probabilty at least 2/3. Since C is PAC learnable,
consider its associated learning algorithm A that learns any c ∈ C in time
poly(n, 1/ε, 1/δ, |c|). Set ε = 1/n2 and δ = 1/3n. Let t equal the number of labeled
examples and membership queries required by A for this setting of parameters.

For any input x of length n−1, we can amplify the probability that cn−1 com-
putes x correctly to 1− 1/3n2t by taking a majoriy vote of multiple invocations
of cn−1 on x (note that t = nO(1)).

Now randomly choose the t points z1, . . . , zt (some of which may be mem-
bership queries) required by the learning algorithm. To find the labels of these
points (recall the label of zi is Permanent(zi)), we apply Fact 1 and query cn−1
at the appropriate tn points. Applying a union bound we see that the probabil-
ity some point is mislabeled is less than 1/3n. Hence with probability at least
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1− δ− 1/3n we obtain a hypothesis h that computes Permanent correctly on all
but a 1/n2 fraction of inputs. Applying Theorem 7 (the random self reducibility
of the permanent), we obtain a randomized circuit cn such that cn computes
Permanent correctly on each input with probability at least 1− 1/n.

Applying the union bound over all n iterations of this process, we see that
the probability we fail to construct cn properly is at most nδ + 1/3. Since δ <
1/3n, with probability at least 2/3 we have obtained a randomized circuit for
computing the permanent that is correct on every input with probability at least
1− 1/n. The lemma follows. �
We can now state our main theorem showing PAC learning algorithms imply
lower bounds against BPEXP. Since we do not know if BPEXP ⊆ P/poly implies
BPEXP = EXP, we must use the fact that doubly exponential time contains
languages with superpolynomial circuit complexity:

Theorem 12. Let C be a non-uniform class of polynomial-size circuits. Assume
that C is PAC learnable (with membership queries) with respect to the uniform
distribution in polynomial-time. Then BPEXP �⊆ C.

Proof. First assume that EXP ⊆ C as otherwise we have nothing to prove. Then
applying Theorem 9 we have EXP = PSPACE = P#P. Thus Permanent is com-
plete for EXP, and any EXP complete language L can be reduced to Permanent
in polynomial-time. Applying Lemma 2 we have that Permanent is in BPP and
thus EXP = BPP. This implies that EE ⊆ BPEXP. From Theorem 6, we know
that EE contains a language not computable by C. Hence BPEXP �⊆ C. �
To extend these results to randomized Exact learning algorithms we require the
following lemma:

Lemma 3. Assume that the Permanent is computed by a non-uniform class
of polynomial-size circuits C. If C is Exactly learnable from membership and
equivalence queries in randomized polynomial-time then the Permanent is in
BPP.

Proof. Assume by induction we have a circuit cn−1 that computes Permanent
correctly on at least a 1−1/n2 fraction of inputs. We say a circuit h on n inputs
is good if it computes Permanent on at least a 1 − 1/n3 fraction of inputs of
length n. In order to output, with high probability, a circuit cn that is correct
on at least a 1 − 1/n2 fraction of inputs, we run the exact learning algorithm
and test whether the current hypothesis h is good. We can test, with high prob-
ability, if h is good by choosing sufficiently many random inputs and seeing if
the answers obtained by cn−1 (applying both the downward self-reducible and
random-self-reducible properties of the Permanent) agree with h. If h agrees
with cn−1 on these random points then with high probabiltiy h is good so we
set h = cn. Otherwise, with high probability, we will have found a point where h
differs Permanent, i.e. a counterexample, and we continue running the learning
algorithm. We conclude that with high probability, in polynomial-time, we will
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have a circuit cn computing Permanent on a 1−1/n2 fraction of inputs of length
n. Applying Theorem 7 completes the proof. �
Applying the same proof for Theorem 12 but using Lemma 3 we obtain

Theorem 13. Let C be a non-uniform class of polynomial-size circuits. Assume
that C is Exactly learnable in randomized polynomial-time. Then BPEXP �⊆ C.

Buhrman et al. [11] proved that MAEXP contains languages with superpolyno-
mial size circuits; this is still the smallest class known to contain languages of
superpolynomial circuit complexity. Theorem 12 shows that PAC learnability of
a circuit class such as depth-2 threshold circuits, even under the uniform distri-
bution with membership queries, would implies a new lower bound. To contrast
this with the work of Kabanets and Impagliazzo [7], they showed that under the
assumption that there exists a non-deterministic subexponential time algorithm
for polynomial identity-testing, NEXP contains languages with superpolynomial
arithmetic circuit complexity.

5 Improved Lower Bounds from Learning Arithmetic
Circuits

Several researchers have given deterministic, exact learning algorithms for var-
ious classes of algebraic models of computation including read-once arithmetic
formulas, algebraic branching programs, and arithmetic circuits. Our main the-
orem applies to these models of computation as well. In fact, if we restrict the
output hypothesis to be a polynomial-size arithmetic circuit or formula (or any
hypothesis equal to a multivariate polynomial of degree bounded by 2n

O(1)
), then

we obtain a finer set of separations. We note that many exact learning algorithms
for algebraic concepts do indeed output a hypothesis equal to polynomials of
bounded degree (for example Bshouty et al. [21] or Klivans and Shpilka [22]).
We require the following lemma:

Lemma 4. Assume that polynomial-size arithmetic circuits are exactly learn-
able in polynomial-time and the output hypothesis is an arithmetic circuit. Then
if Permanent is computed by polynomial-size arithmetic circuits, Permanent is
in ZPPRP.

Proof. We iteratively construct circuits c1, . . . , cn such that ci computes the per-
manent on inputs of length i. At stage i, given ci−1, membership queries are
simulated as in the proof of Theorem 1. In order to find a counterexample,
however, we cannot use an NP oracle. Instead, we use the fact that our output
hypothesis is a polynomial-size arithmetic circuit. Lemma 1 shows that the prob-
lem of determining whether an arithmetic circuit computes permanent exactly
is computable in polynomial-time given access to an RP oracle. If we discover
that our hypothesis is correct we stop. Otherwise, we know that our hypothesis
is not equal to the permanent.
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At this point we need to compute a counterexample, namely a point z such
that our current candidate for h(z) does not equal Permanent of z where h is our
current candidate for ci. Since h is a polynomial-size arithmetic circuit it is equal
to a polynomial of degree at most 2O(na) for some fixed constant a (see Section
2.1). Thus a random z will be a counterexample if z is chosen from a field F of
size 2O(n2a). Thus, our algorithm chooses a random z ∈ F and checks if h(z) does
not equal Permanent on z (the label for z can be computed by applying Lemma
1 and using cn−1). With high probability we will obtain such a z. Due to the
correctness of the learning algorithm, we will be assured of a correct hypothesis
after at most nO(1) counterexamples. At each stage i the probability of failure
can be amplified to be less than 1/3n so that the overall probability of failure
(cumulative over all n stages) will be less than 1/3. �

We can now show that learning arithmetic circuits (by arithmetic circuits)
yields a lower bound against ZPEXPRP. Since we know of no collapse theorems
for complexity classes such as ZPEXPRP (or even EXPRP) we need to use a
different argument than in the proof of Theorem 1:

Theorem 14. Let C be a non-uniform class of polynomial-size arithmetic cir-
cuits. Assume that C is exactly learnable from membership and equivalence
queries in time poly(n) and that the output hypothesis is an arithmetic circuit.
Then ZPEXPRP �⊆ C.

Proof. We may assume that 1) the Permanent is computable by circuits from C
and 2) EXP ⊆ C, as otherwise there is nothing to prove. Notice that if EXP ⊆
C then EXP = P#P by Theorem 9 and Permanent is complete for EXP via a
polynomial-time reduction. By Lemma 4, Permanent (and thus EXP) is in ZPPRP.
This implies that EE ⊆ ZPEXPRP, but by Theorem 6, EE contains functions with
superpolynomial circuit complexity. Hence ZPEXPRP must also. �
It is still an open problem is to whether polynomial-size arithmetic formulas are
exactly learnable in polynmial-time; much progress has been made on restricted
versions of this problem (for example [23, 24]). For the case of exactly learning
arithmetic formulas (recall that no superpolynomial-lower bounds are known for
this class) where the learner outputs a polynomial-size formula as its hypothesis,
we can improve on Lemma 4:

Lemma 5. Assume that polynomial-size arithmetic circuits are exactly learn-
able in polynomial-time and the output hypothesis is an arithmetic formula. Then
if Permanent is computed by polynomial-size arithmetic formulas, Permanent is
in PRP.

Proof. The proof is similar to the proof of Lemma 4, except that we can deter-
ministically construct counterexamples using an oracle for RP. This is because
the hypothesis is a formula rather than a circuit, and, as discussed in Section
2.1, its degree as a polynomial is polynomial is O(na) for some constant a. We
can then choose a field F of size O(n2a) and substitute all values of F for x1.
For each substitution to x1, query the RP oracle to determine if this restricted
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polynomial is non-zero. For some value a = x1 ∈ F , the restricted polynomial
must be non-zero. We can repeat this process to find an appropriate setting for
x2, . . . , xn. Since the size of F is at most nO(1), we will have found a polynomial-
time algorithm for computing the permanent using an oracle for RP. �
Following the same outline for the proof of Theorem 14 but using Lemma 5
instead of Lemma 4 we obtain the following theorem:

Theorem 15. Let C be a non-uniform class of polynomial-size arithmetic for-
mulas. Assume that C is exactly learnable from membership and equivalence in
polynomial time and that the output hypothesis is a an arithmetic formula. Then
EXPRP �⊆ C.

Kabanets and Impagliazzo [7] have proved that there exists a function f ∈
NEXPRP that has superpolynomial arithmetic circuit complexity. Note that
NEXPRP is not known to be contained in either EXPRP or ZPEXPRP.

Conclusions and Open Problems. One interpretation of our results is that
we have given added motivation for trying to develop learning algorithms for very
restricted concept classes, as they would settle important and difficult questions
in computational complexity theory. Techniques from circuit lower bounds have
figured prominently in the development of powerful learning algorithms in the
past (e.g., Linial et al. [25]), yet we are unaware of applications from learning
theory to circuit lower bounds. An interesting open problem is to show that ran-
domized subexponential time Exact (and PAC) learning algorithms yield new
circuit lower bounds.
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Abstract. We consider the problem of optimality, in a minimax sense,
and adaptivity to the margin and to regularity in binary classification.
We prove an oracle inequality, under the margin assumption (low noise
condition), satisfied by an aggregation procedure which uses exponential
weights. This oracle inequality has an optimal residual: (log M/n)κ/(2κ−1)

where κ is the margin parameter, M the number of classifiers to aggre-
gate and n the number of observations. We use this inequality first to
construct minimax classifiers under margin and regularity assumptions
and second to aggregate them to obtain a classifier which is adaptive both
to the margin and regularity. Moreover, by aggregating plug-in classifiers
(only log n), we provide an easily implementable classifier adaptive both
to the margin and to regularity.

1 Introduction

Let (X ,A) be a measurable space. We consider a random variable (X,Y ) with
values in X ×{−1, 1} and denote by π the distribution of (X,Y ). We denote by
PX the marginal of π on X and η(x) = P(Y = 1|X = x) the conditional proba-
bility function of Y = 1 given that X = x. We denote by Dn = (Xi, Yi)i=1,...,n,
n i.i.d. observations of the couple (X,Y ).

We recall some usual notions introduced for the classification framework. A
prediction rule is a measurable function f : X �−→ {−1, 1}. The misclassification
error associated to f is

R(f) = P(Y �= f(X)).

It is well known (see, e.g., [12]) that minf R(f) = R(f∗) def= R∗, where the
prediction rule f∗ is called Bayes rule and is defined by

f∗(x) = sign(2η(x)− 1).

The minimal risk R∗ is called the Bayes risk. A classifier is a function, f̂n =
f̂n(X,Dn), measurable with respect to Dn and X with values in {−1, 1}, that
assigns to the sample Dn a prediction rule f̂n(., Dn) : X �−→ {−1, 1}. A key
characteristic of f̂n is the value of generalization error E[R(f̂n)]. Here

R(f̂n) = P(Y �= f̂n(X)|Dn).

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 364–378, 2006.
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The performance of a classifier f̂n is measured by the value E[R(f̂n)−R∗] called
the excess risk of f̂n. We say that the classifier f̂n learns with the convergence
rate φ(n), where (φ(n))n∈N is a decreasing sequence, if there exists an absolute
constant C > 0 such that for any integer n, E[R(f̂n) − R∗] ≤ Cφ(n). Theorem
7.2 of [12] shows that no classifier can learn with a given convergence rate for
arbitrary underlying probability distribution π.

In this paper we focus on entropy assumptions which allow us to work with
finite sieves. Hence, we first work with a finite model for f∗: it means that we
take a finite class of prediction rules F = {f1, . . . , fM}. Our aim is to construct
a classifier f̂n which mimics the best one of them w.r.t. to the excess risk and
with an optimal residual. Namely, we want to state an oracle inequality

E
[
R(f̂n)−R∗

]
≤ a0 min

f∈F
(R(f)−R∗) + Cγ(M,n), (1)

where a0 ≥ 1 and C > 0 are some absolute constants and γ(M,n) is the residual.
The classical procedure, due to Vapnik and Chervonenkis (see, e.g. [12]), is to
look for an ERM classifier,i.e., the one which minimizes the empirical risk

Rn(f) =
1
n

n∑
i=1

1I{Yif(Xi)≤0}, (2)

over all prediction rules f in F , where 1IE denotes the indicator of the set E.
This procedure leads to optimal theoretical results (see, e.g. Chapter 12 of [12]),
but minimizing the empirical risk (2) is computationally intractable for sets
F of classifiers with large cardinality (often depending on the sample size n),
because this risk is neither convex nor continuous. Nevertheless, we might base a
tractable estimation procedure on minimization of a convex surrogate φ for the
loss ( [16], [9], [7], [8], [22] and [23]). A wide variety of classification methods in
machine learning are based on this idea, in particular, on using the convex loss
associated to support vector machines ([11], [21]),

φ(x) = max(0, 1− x),

called the hinge-loss. The risk associated to this loss is called the hinge risk and
is defined by

A(f) = E[max(0, 1− Y f(X))],

for all f : X �−→ R. The optimal hinge risk is defined by

A∗ = inf
f
A(f), (3)

where the infimum is taken over all measurable functions f . The Bayes rule f∗

attains the infimum in (3) and, moreover, denoting by R(f) the misclassification
error of sign(f) for all measurable functions f with values in R, Zhang, cf. [29],
has shown that,

R(f)−R∗ ≤ A(f)−A∗, (4)
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for any real valued measurable function f . Thus, minimization of the excess hinge
risk A(f)− A∗ provides a reasonable alternative for minimization of the excess
risk. In this paper we provide a procedure which does not need any minimization
step. We use a convex combination of the given prediction rules, as explained in
section 2.

The difficulty of classification is closely related to the behavior of the con-
ditional probability function η near 1/2 (the random variable |η(X) − 1/2| is
sometimes called the theoretical margin). Tsybakov has introduced, in [25], an
assumption on the the margin, called margin (or low noise) assumption,
(MA) Margin (or low noise) assumption. The probability distribution π
on the space X × {−1, 1} satisfies the margin assumption MA(κ) with margin
parameter 1 ≤ κ < +∞ if there exists c0 > 0 such that,

E {|f(X)− f∗(X)|} ≤ c0 (R(f)−R∗)1/κ , (5)

for all measurable functions f with values in {−1, 1}.
Under this assumption, the risk of an ERM classifier over some fixed class F can
converge to the minimum risk over the class with fast rates, namely faster than
n−1/2 (cf. [25]). On the other hand, with no margin assumption on the joint
distribution π (but combinatorial or complexity assumption on the class F), the
convergence rate of the excess risk is not faster than n−1/2 (cf. [12]).

In this paper we suggest an easily implementable procedure of aggregation of
classifiers and prove the following results:

1. We obtain an oracle inequality for our procedure and we use it to show
that our classifiers are adaptive both to the margin parameter (low noise
exponent) and to a complexity parameter.

2. We generalize the lower bound inequality stated in Chapter 14 of [12], by
introducing the margin assumption and deduce optimal rates of aggregation
under low noise assumption in the spirit of Tsybakov [24].

3. We obtain classifiers with minimax fast rates of convergence on a Hölder class
of conditional probability functions η and under the margin assumption.

The paper is organized as follows. In Section 2 we prove an oracle inequality for
our convex aggregate, with an optimal residual, which will be used in Section 3
to construct minimax classifiers and to obtain adaptive classifiers by aggregation
of them. Proofs are given in Section 4.

2 Oracle Inequality

We have M prediction rules f1, . . . , fM . We want to mimic the best of them
according to the excess risk under the margin assumption. Our procedure is
using exponential weights. Similar constructions in other context can be found,
e.g., in [3], [28], [13], [2], [17], [18], [27]. Consider the following aggregate which
is a convex combination with exponential weights of M classifiers,

f̃n =
M∑
j=1

w
(n)
j fj , (6)
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where

w
(n)
j =

exp (
∑n

i=1 Yifj(Xi))∑M
k=1 exp (

∑n
i=1 Yifk(Xi))

, ∀j = 1, . . . ,M. (7)

Since f1, . . . , fM take their values in {−1, 1}, we have,

w
(n)
j =

exp (−nAn(fj))∑M
k=1 exp (−nAn(fk))

, (8)

for all j ∈ {1, . . . ,M}, where

An(f) =
1
n

n∑
i=1

max(0, 1− Yif(Xi)) (9)

is the empirical analog of the hinge risk. Since An(fj) = 2Rn(fj) for all j =
1, . . . ,M , these weights can be written in terms of the empirical risks of fj ’s,

w
(n)
j =

exp (−2nRn(fj))∑M
k=1 exp (−2nRn(fk))

, ∀j = 1, . . . ,M.

Remark that, using the definition (8) for the weights, we can aggregate functions
with values in R (like in theorem 1) and not only functions with values in {−1, 1}.

The aggregation procedure defined by (6) with weights (8), that we can called
aggregation with exponential weights (AEW), can be compared to the ERM one.
First, our AEW method does not need any minimization algorithm contrarily
to the ERM procedure. Second, the AEW is less sensitive to the over fitting
problem. Intuitively, if the classifier with smallest empirical risk is over fitted
(it means that the classifier fits too much to the observations) then the ERM
procedure will be over fitted. But, if other classifiers in F are good classifiers,
our procedure will consider their ”opinions” in the final decision procedure and
these opinions can balance with the opinion of the over fitted classifier in F
which can be false because of its over fitting property. The ERM only considers
the ”opinion” of the classifier with the smallest risk, whereas the AEW takes
into account all the opinions of the classifiers in the set F . The AEW is more
temperate contrarily to the ERM. Understanding why aggregation procedure are
often more efficient than the ERM procedure from a theoretical point of view is
a deep question, on which we are still working at this time this paper is written.
Finally, the following proposition shows that the AEW has similar theoretical
property as the ERM procedure up to the residual (logM)/n.

Proposition 1. Let M ≥ 2 be an integer, f1, . . . , fM be M real valued functions
on X . For any integers n, the aggregate defined in (6) with weights (8) f̃n satisfies

An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)
n

.

The following theorem provides first an exact oracle inequality w.r.t. the hinge
risk satisfied by the AEW procedure and second shows its optimality among all
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aggregation procedures. We deduce from it that, for a margin parameter κ ≥ 1
and a set of M functions with values in [−1, 1], F = {f1, . . . , fM},

γ(F , π, n, κ) =

√
minf∈F(A(f)−A∗)

1
κ logM

n
+
(

logM
n

) κ
2κ−1

is an optimal rate of convex aggregation of M functions with values in [−1, 1]
w.r.t. the hinge risk, in the sense of [18].

Theorem 1 (Oracle inequality and Lower bound). Let κ ≥ 1. We assume
that π satisfies MA(κ). We denote by C the convex hull of a finite set of functions
with values in [−1, 1], F = {f1, . . . , fM}. The AEW procedure, introduced in
(6) with weights (8) (remark that the form of the weights in (8) allows to take
real valued functions for the fj’s), satisfies for any integer n ≥ 1 the following
inequality

E
[
A(f̃n)−A∗

]
≤ min

f∈C
(A(f)−A∗) + C0γ(F , π, n, κ),

where C0 > 0 depends only on the constants κ and c0 appearing in MA(κ).
Moreover, there exists a set of prediction rules F = {f1, . . . , fM} such that for

any procedure f̄n with values in R, there exists a probability measure π satisfying
MA(κ) such that for any integers M,n with logM ≤ n we have

E
[
A(f̄n)−A∗] ≥ min

f∈C
(A(f) −A∗) + C′

0γ(F , π, n, κ),

where C′
0 > 0 depends only on the constants κ and c0 appearing in MA(κ).

The hinge loss is linear on [−1, 1], thus, model selection aggregation or convex
aggregation are identical problems if we use the hinge risk and if we aggregate
function with values in [−1, 1]. Namely, minf∈F A(f) = minf∈C A(f). Moreover,
the result of Theorem 1 is obtained for the aggregation of functions with values
in [−1, 1] and not only for prediction rules. In fact, only functions with values in
[−1, 1] have to be considered when we use the hinge loss since, for any real valued
function f , we have max(0, 1− yψ(f(x))) ≤ max(0, 1− yf(x)) for all x ∈ X , y ∈
{−1, 1} where ψ is the projection on [−1, 1], thus, A(ψ(f)) − A∗ ≤ A(f) − A∗.
Remark that, under MA(κ), there exists c > 0 such that,E [|f(X)− f∗(X)|] ≤
c (A(f)−A∗)1/κfor all functions f on X with values in [−1, 1] (cf. [18]) . The
proof of Theorem 1 is not given here by the lack of space. It can be found in
[18]. Instead, we prove here the following slightly less general result that we will
be further used to construct adaptive minimax classifiers.

Theorem 2. Let κ ≥ 1 and let F = {f1, . . . , fM} be a finite set of prediction
rules with M ≥ 3. We denote by C the convex hull of F . We assume that π
satisfies MA(κ). The aggregate defined in (6) with the exponential weights (7)
(or (8)) satisfies for any integers n,M and any a > 0 the following inequality

E
[
A(f̃n)−A∗

]
≤ (1 + a)min

f∈C
(A(f)−A∗) + C

(
logM
n

) κ
2κ−1

,

where C > 0 is a constant depending only on a.
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Corollary 1. Let κ ≥ 1, M ≥ 3 and {f1, . . . , fM} be a finite set of prediction
rules. We assume that π satisfies MA(κ). The AEW procedure satisfies for any
number a > 0 and any integers n,M the following inequality, with C > 0 a
constant depending only on a,

E
[
R(f̃n)−R∗

]
≤ 2(1 + a) min

j=1,...,M
(R(fj)−R∗) + C

(
logM
n

) κ
2κ−1

.

We denote by Pκ the set of all probability measures on X ×{−1, 1} satisfying the
margin assumption MA(κ). Combining Corollary 1 and the following theorem,
we get that the residual (

logM
n

) κ
2κ−1

is a near optimal rate of model selection aggregation in the sense of [18] when
the underlying probability measure π belongs to Pκ.

Theorem 3. For any integers M and n satisfying M ≤ exp(n), there exists M
prediction rules f1, . . . , fM such that for any classifier f̂n and any a > 0, we
have

sup
π∈Pκ

[
E
[
R(f̂n)−R∗

]
− 2(1 + a) min

j=1,...,M
(R(fj)−R∗)

]
≥ C1

(
logM
n

) κ
2κ−1

,

where C1 = cκ0/(4e2
2κ(κ−1)/(2κ−1)(log 2)κ/(2κ−1)).

3 Adaptivity Both to the Margin and to Regularity

In this section we give two applications of the oracle inequality stated in Corol-
lary 1. First, we construct classifiers with minimax rates of convergence and
second, we obtain adaptive classifiers by aggregating the minimax ones. Follow-
ing [1], we focus on the regularity model where η belongs to the Hölder class.

For any multi-index s = (s1, . . . , sd) ∈ Nd and any x = (x1, . . . , xd) ∈ Rd, we
define |s| =

∑d
j=1 si, s! = s1! . . . sd!, xs = xs11 . . . xsd

d and ||x|| = (x2
1+ . . .+x2

d)
1/2.

We denote by Ds the differential operator ∂s1+...+sd

∂x
s1
1 ...∂x

sd
d

.

Let β > 0. We denote by +β, the maximal integer that is strictly less than
β. For any x ∈ (0, 1)d and any +β,-times continuously differentiable real valued
function g on (0, 1)d, we denote by gx its Taylor polynomial of degree +β, at
point x, namely,

gx(y) =
∑

|s|≤�β�

(y − x)s
s!

Dsg(x).

For all L > 0 and β > 0. The (β, L, [0, 1]d)−Hölder class of functions, denoted
by Σ(β, L, [0, 1]d), is the set of all real valued functions g on [0, 1]d that are
+β,-times continuously differentiable on (0, 1)d and satisfy, for any x, y ∈ (0, 1)d,
the inequality

|g(y)− gx(y)| ≤ L||x− y||β .
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A control of the complexity of Hölder classes is given by Kolmogorov and
Tikhomorov (1961):

N
(
Σ(β, L, [0, 1]d), ε, L∞([0, 1]d)

)
≤ A(β, d)ε−

d
β , ∀ε > 0, (10)

where the LHS is the ε−entropy of the (β, L, [0, 1]d)−Hölder class w.r.t. to the
L∞([0, 1]d)−norm and A(β, d) is a constant depending only on β and d.

If we want to use entropy assumptions on the set which η belongs to, we need
to make a link between PX and the Lebesgue measure, since the distance in (10)
is the L∞−norm w.r.t. the Lebesgue measure. Therefore, introduce the following
assumption:
(A1)The marginal distribution PX on X of π is absolutely continuous w.r.t. the
Lebesgue measure λd on [0, 1]d, and there exists a version of its density which is
upper bounded by μmax <∞.

We consider the following class of models. For all κ ≥ 1 and β > 0, we denote
by Pκ,β, the set of all probability measures π on X × {−1, 1}, such that

1. MA(κ) is satisfied.
2. The marginal PX satisfies (A1).
3. The conditional probability function η belongs to Σ(β, L,Rd).

Now, we define the class of classifiers which attain the optimal rate of con-
vergence, in a minimax sense, over the models Pκ,β . Let κ ≥ 1 and β > 0. For
any ε > 0, we denote by Σε(β) an ε-net on Σ(β, L, [0, 1]d) for the L∞−norm,
such that, its cardinal satisfies log Card (Σε(β)) ≤ A(β, d)ε−d/β . We consider the
AEW procedure defined in (6), over the net Σε(β) :

f̃ εn =
∑

η∈Σε(β)

w(n)(fη)fη, where fη(x) = 21I(η(x)≥1/2) − 1. (11)

Theorem 4. Let κ > 1 and β > 0. Let a1 > 0 be an absolute constant and
consider εn = a1n

− β(κ−1)
β(2κ−1)+d(κ−1) . The aggregate (11) with ε = εn, satisfies, for

any π ∈ Pκ,β and any integer n ≥ 1, the following inequality

Eπ

[
R(f̃ εn

n )−R∗
]
≤ C2(κ, β, d)n

− βκ
β(2κ−1)+d(κ−1) ,

where C2(κ, β, d)=2 max
(
4(2c0μmax)κ/(κ−1), CA(β, d)

κ
2κ−1

)
(a1)

κ
κ−1 ∨(a1)

− dκ
β(κ−1)

and C is the constant appearing in Corollary 1.

Audibert and Tsybakov (cf. [1]) have shown the optimality, in a minimax sense,
of the rate obtained in theorem 4. Note that this rate is a fast rate because it
can approach 1/n when κ is close to 1 and β is large.

The construction of the classifier f̃ εn
n needs the knowledge of κ and β which

are not available in practice. Thus, we need to construct classifiers independent
of these parameters and which learn with the optimal rate n−βκ/(β(2κ−1)+d(κ−1))

if the underlying probability measure π belongs to Pκ,β, for different values of κ
and β. We now show that using the procedure (6) to aggregate the classifiers f̃ εn,
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for different values of ε in a grid, the oracle inequality of Corollary 1 provides
the result.

We use a split of the sample for the adaptation step. Denote by D
(1)
m the

subsample containing the first m observations and D(2)
l the one containing the

l(= n−m) last ones. Subsample D(1)
m is used to construct the classifiers f̃ εm for

different values of ε in a finite grid. Subsample D(2)
l is used to aggregate these

classifiers by the procedure (6). We take

l =
⌈

n

logn

⌉
and m = n− l.

Set Δ = logn. We consider a grid of values for ε:

G(n) =
{
φn,k =

k

Δ
: k ∈ {1, . . . , +Δ/2,}

}
.

For any φ ∈ G(n) we consider the step ε
(φ)
m = m−φ. The classifier that we propose

is the sign of
f̃adpn =

∑
φ∈G(n)

w[l](F̃ ε
(φ)
m
m )F̃ ε

(φ)
m
m ,

where F̃ εm(x) = sign(f̃ εm(x)) is the classifier associated to the aggregate f̃ εm for
all ε > 0 and the weights w[l](F ) are the ones introduced in (7) constructed with
the observations D(2)

l for all F ∈ F(n) = {sign(f̃ εm) : ε = m−φ, φ ∈ G(n)}:

w[l](F ) =
exp

(∑n
i=m+1 YiF (Xi)

)∑
G∈F(n) exp

(∑n
i=m+1 YiG(Xi)

) .
The following Theorem shows that f̃adpn is adaptive both to the low noise expo-
nent κ and to the complexity (or regularity) parameter β, provided that (κ, β)
belongs to a compact subset of (1,+∞)× (0,+∞).

Theorem 5. Let K be a compact subset of (1,+∞) × (0,+∞). There exists a
constant C3 > 0 that depends only on K and d such that for any integer n ≥ 1,
any (κ, β) ∈ K and any π ∈ Pκ,β, we have,

Eπ

[
R(f̃adpn )−R∗

]
≤ C3n

− κβ
β(2κ−1)+d(κ−1) .

Classifiers f̃ εn
n are not easily implementable since the cardinality of Σεn(β) is an

exponential of n. An alternative procedure which is easily implementable is to
aggregate plug-in classifiers constructed in Audibert and Tsybakov (cf. [1]).

We introduce the class of models P ′
κ,β composed of all the underlying proba-

bility measures π such that:

1. π satisfies the margin assumption MA(κ).
2. The conditional probability function η ∈ Σ(β, L, [0, 1]d).



372 G. Lecué

3. The marginal distribution of X is supported on [0, 1]d and has a Lebesgue
density lower bounded and upper bounded by two constants.

Theorem 6 (Audibert and Tsybakov (2005)). Let κ > 1, β > 0. The excess
risk of the plug-in classifier f̂ (β)

n = 21I{η̂(β)
n ≥1/2} − 1 satisfies

sup
π∈P′

κ,β

E
[
R(f̂ (β)

n )−R∗
]
≤ C4n

− βκ
(κ−1)(2β+d) ,

where η̂(β)
n (·) is the locally polynomial estimator of η(·) of order +β, with band-

width h = n−
1

2β+d and C4 a positive constant.

In [1], it is shown that the rate n−
βκ

(κ−1)(2β+d) is minimax over P ′
κ,β, if β ≤ d(κ−1).

Remark that the fast rate n−1 can be achieved.
We aggregate the classifiers f̂ (β)

n for different values of β lying in a finite
grid. We use a split of the sample to construct our adaptive classifier: l =
�n/ logn� and m = n− l. The training sample D1

m = ((X1, Y1), . . . , (Xm, Ym))
is used for the construction of the class of plug-in classifiers

F =
{
f̂ (βk)
m : βk =

kd

Δ− 2k
, k ∈ {1, . . . , +Δ/2,}

}
, where Δ = logn.

The validation sample D2
l = ((Xm+1, Ym+1), . . . , (Xn, Yn)) is used for the con-

struction of weights

w[l](f) =
exp

(∑n
i=m+1 Yif(Xi)

)∑
f̄∈F exp

(∑n
i=m+1 Yif̄(Xi)

) , ∀f ∈ F .

The classifier that we propose is F̃ adpn =sign(f̃adpn ), where: f̃adpn =
∑

f∈F w
[l](f)f.

Theorem 7. Let K be a compact subset of (1,+∞) × (0,+∞). There exists a
constant C5 > 0 depending only on K and d such that for any integer n ≥ 1,
any (κ, β) ∈ K, such that β < d(κ− 1), and any π ∈ P ′

κ,β, we have,

Eπ

[
R(F̃ adpn )−R∗

]
≤ C5n

− βκ
(κ−1)(2β+d) .

Adaptive classifiers are obtained in Theorem (5) and (7) by aggregation of only
logn classifiers. Other construction of adaptive classifiers can be found in [17].
In particular, adaptive SVM classifiers.

4 Proofs

Proof of Proposition 1. Using the convexity of the hinge loss, we haveAn(f̃n) ≤∑M
j=1 wjAn(fj). Denote by î = arg mini=1,...,M An(fi), we haveAn(fi)=An(fî)+

1
n (log(wî)− log(wi)) for all i = 1, . . . ,M and by averaging over the wi we get :

An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)
n

, (12)
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where we used that
∑M

j=1 wj log
(

wj

1/M

)
= K(w|u) ≥ 0 whereK(w|u) denotes the

Kullback-Leiber divergence between the weights w = (wj)j=1,...,M and uniform
weights u = (1/M)j=1,...,M .

Proof of Theorem 2. Let a > 0. Using Proposition 1, we have for any f ∈ F
and for the Bayes rule f∗:

A(f̃n)−A∗ = (1+a)(An(f̃n)−An(f∗))+A(f̃n)−A∗− (1+a)(An(f̃n)−An(f∗))

≤ (1+a)(An(f)−An(f∗))+(1+a)
logM
n

+A(f̃n)−A∗−(1+a)(An(f̃n)−An(f∗)).

Taking the expectations, we get

E
[
A(f̃n)−A∗

]
≤ (1 + a)min

f∈F
(A(f)−A∗) + (1 + a)(logM)/n

+E
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗))

]
.

The following inequality follows from the linearity of the hinge loss on [−1, 1]:

A(f̃n)−A∗ −(1+a)(An(f̃n)−An(f∗)) ≤ max
f∈F

[A(f) − A∗ − (1 + a)(An(f) − An(f∗))] .

Thus, using Bernstein’s inequality, we have for all 0 < δ < 4 + 2a :

P
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗)) ≥ δ

]
≤

∑
f∈F

P

[
A(f)−A∗ − (An(f)−An(f∗)) ≥ δ + a(A(f)−A∗)

1 + a

]

≤
∑
f∈F

exp
(
− n(δ + a(A(f)−A∗))2

2(1 + a)2(A(f) −A∗)1/κ + 2/3(1 + a)(δ + a(A(f)−A∗))

)
.

There exists a constant c1 > 0 depending only on a such that for all 0 < δ < 4+2a
and all f ∈ F , we have

(δ + a(A(f)−A∗))2

2(1 + a)2(A(f)−A∗)1/κ + 2/3(1 + a)(δ + a(A(f) −A∗))
≥ c1δ2−1/κ.

Thus, P
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗)) ≥ δ

]
≤M exp(−nc1δ2−1/κ).

Observe that an integration by parts leads to
∫ +∞
a exp (−btα) dt ≤ exp(−baα)

αbaα−1 ,
for any α ≥ 1 and a, b > 0, so for all u > 0, we get

E
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗))

]
≤ 2u+M

exp(−nc1u2−1/κ)
nc1u1−1/κ .

If we denote by μ(M) the unique solution of X = M exp(−X), we have logM/2
≤ μ(M) ≤ logM . For u such that nc1u2−1/κ = μ(M), we obtain the result.
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Proof of Corollary 1. We deduce Corollary 1 from Theorem 2, using that for
any prediction rule f we have A(f)−A∗ = 2(R(f)−R∗) and applying Zhang’s
inequality A(g)−A∗ ≥ (R(g)−R∗) fulfilled by all g from X to R.

Proof of Theorem 3. For all prediction rules f1, . . . , fM , we have

sup
f1,...,fM

inf
f̂n

sup
π∈Pκ

(
E
[
R(f̂n)−R∗

]
− 2(1 + a) min

j=1,...,M
(R(fj)−R∗)

)
≥ inf

f̂n

sup
π∈Pκ:f∗∈{f1,...,fM}

(
E
[
R(f̂n)−R∗

])
.

Thus, we look for a set of cardinality not greater than M , of the worst proba-
bility measures π ∈ Pκ from our classification problem point of view and choose
f1, . . . , fM as the corresponding Bayes rules.

Let N be an integer such that 2N−1 ≤M . Let x1, . . . , xN be N distinct points
of X . Let 0 < w < 1/N . Denote by PX the probability measure on X such that
PX({xj}) = w for j = 1, . . . , N −1 and PX({xN}) = 1− (N−1)w. We consider
the set of binary sequences Ω = {−1, 1}N−1. Let 0 < h < 1. For all σ ∈ Ω we
consider

ησ(x) =
{

(1 + σjh)/2 if x = x1, . . . , xN−1,
1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X ×{−1, 1} with the
marginal PX on X and with the conditional probability function ησ of Y = 1
knowing X .

Assume that κ > 1. We have P (|2ησ(X)− 1| ≤ t) = (N − 1)w1I{h≤t}, ∀0 ≤
t < 1. Thus, if we assume that (N − 1)w ≤ h1/(κ−1) then P (|2ησ(X)− 1| ≤ t) ≤
t1/(κ−1), for all t ≥ 0, and according to [25], πσ belongs to MA(κ).

We denote by ρ the Hamming distance on Ω (cf. [26] p.88). Let σ, σ′ be such
that ρ(σ, σ′) = 1. We have

H2 (π⊗nσ , π⊗nσ′
)

= 2
(
1− (1− w(1 −

√
1− h2))n

)
.

We take w and h such that w(1 −
√

1− h2) ≤ 1/n, thus, H2
(
π⊗nσ , π⊗nσ′

)
≤ β =

2(1− e−1) < 2 for any integer n.
Let f̂n be a classifier and σ ∈ Ω. Using MA(κ), we have

Eπσ

[
R(f̂n)−R∗

]
≥ (c0w)κEπσ

[(
N−1∑
i=1

|f̂n(xi)− σi|
)κ]

.

By Jensen’s Lemma and Assouad’s Lemma (cf. [26]) we obtain:

inf
f̂n

sup
π∈Pκ:f∗∈{fσ :σ∈Ω}

(
Eπσ

[
R(f̂n)−R∗

])
≥ (c0w)κ

(
N − 1

4
(1− β/2)2

)κ
.

We obtain the result by taking w = (nh2)−1, N = �logM/ log 2� and h =(
n−1�logM/ log 2�

)(κ−1)/(2κ−1)
.
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For κ = 1, we take h = 1/2, thus |2ησ(X) − 1| ≥ 1/2 a.s. so πσ ∈MA(1)
(cf.[25]). Putting w = 4/n and N = �logM/ log 2� we obtain the result.

Proof of Theorem 4. According to Theorem 1, where we set a = 1, we have,
for any ε > 0:

Eπ

[
R(f̃ εn)−R∗

]
≤ 4 min

η̄∈Σε(β)
(R(fη̄)−R∗) + C

(
log CardΣε(β)

n

) κ
2κ−1

.

Let η̄ be a function with values in [0, 1] and denote by f̄ = 1Iη̄≥1/2 the plug-in
classifier associated. We have |2η − 1|1If̄ �=f∗ ≤ 2|η̄ − η|, thus:

R(f̄)−R∗ = E
[
|2η(X)− 1|1If̄ �=f∗

]
= E

[
|2η(X)− 1|1If̄ �=f∗1If̄ �=f∗

]
≤
∣∣∣∣|2η − 1|1If̄ �=f∗

∣∣∣∣
L∞(PX) E

[
1If̄ �=f∗

]
≤
∣∣∣∣|2η − 1|1If̄ �=f∗

∣∣∣∣
L∞(PX) c0

(
R(f̄)−R∗) 1

κ ,

and assumption (A1) lead to

R(fη̄)−R∗ ≤ (2c0μmax)
κ

κ−1 ||η̄ − η||
κ

κ−1

L∞([0,1]d).

Hence, for any ε > 0, we have

Eπ

[
R(f̃ εn)−R∗

]
≤ D

(
ε

κ
κ−1 +

(
ε−d/β

n

) κ
2κ−1

)
,

where D = max
(
4(2c0μmax)κ/(κ−1), CA(β, d)

κ
2κ−1

)
. For the value

εn = a1n
− β(κ−1)

β(2κ−1)+d(κ−1) ,

we have
Eπ

[
R(f̃ εn

n )−R∗
]
≤ C1n

− βκ
β(2κ−1)+d(κ−1) ,

where C1 = 2D(a1)
κ

κ−1 ∨ (a1)
− dκ

β(κ−1)

Proof of Theorem 5. We consider the following function on (1,+∞)×(0,+∞)
with values in (0, 1/2):

φ(κ, β) =
β(κ− 1)

β(2κ− 1) + d(κ− 1)
.

For any n greater than n1 = n1(K), we have Δ−1 ≤ φ(κ, β) ≤ +Δ/2,Δ−1 for
all (κ, β) ∈ K.

Let (κ0, β0) ∈ K. For any n ≥ n1, there exists k0 ∈ {1, . . . , +Δ/2, − 1} such
that

φk0 = k0Δ
−1 ≤ φ(κ0, β0) < (k0 + 1)Δ−1.

We denote by fκ0(·) the increasing function φ(κ0, ·) from (0,+∞) to (0, 1/2).
We set

β0,n = (fκ0)
−1 (φk0 ).
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There exists m = m(K) such that m|β0 − β0,n| ≤ |fκ0(β0)− fκ0(β0,n)| ≤ Δ−1.
Let π ∈ Pκ0,β0 . According to the oracle inequality of Corollary 1, we have,

conditionally to the first subsample D1
m:

Eπ

[
R(f̃adpn )−R∗|D1

m

]
≤4 min

φ∈G(n)

(
R(f̃ ε

(φ)
m
m )−R∗

)
+C

(
log Card(G(n))

l

) κ0
2κ0−1

.

Using the definition of l and the fact that Card(G(n)) ≤ log n we get that there
exists C̃ > 0 independent of n such that

Eπ

[
R(f̃adpn )−R∗

]
≤ C̃

⎛⎝Eπ

[
R(f̃ ε

(φk0
)

m
m )−R∗

]
+
(

log2 n

n

) κ0
2κ0−1

⎞⎠
Moreover β0,n ≤ β0, hence, Pκ0,β0 ⊆ Pκ0,β0,n . Thus, according to Theorem 4,

we have

Eπ

[
R(f̃ ε

(φk0
)

m
m )−R∗

]
≤ C1(K, d)m−ψ(κ0,β0,n),

where C1(K, d) = max (C1(κ, β, d) : (κ, β) ∈ K) and ψ(κ, β) = βκ
β(2κ−1)+d(κ−1) .

By construction, there exists A2 = A2(K, d) > 0 such that |ψ(κ0, β0,n) −
ψ(κ0, β0)| ≤ A2Δ

−1. Moreover for any integer n we have nA2/ logn = exp(A2),
which is a constant. We conclude that

Eπ

[
R(f̃adpn )−R∗

]
≤ C2(K, d)

⎛⎝n−ψ(κ0,β0) +
(

log2 n

n

) κ0
2κ0−1

⎞⎠ ,

where C2(K, d) > 0 is independent of n. We achieve the proof by observing that
ψ(κ0, β0) < κ0

2κ0−1 .

Proof of Theorem 7. We consider the following function on (1,+∞)×(0,+∞)
with values in (0, 1/2):

Θ(κ, β) =
βκ

(κ− 1)(2β + d)
.

For any n greater than n1 = n1(K), we have Δ−1 ≤ Θ(κ, β) ≤ +Δ/2,Δ−1, for
all (κ, β) ∈ K.

Let (κ0, β0) ∈ K be such that β0 < (κ0 − 1)d. For any n ≥ n1, there exists
k0 ∈ {1, . . . , +Δ/2, − 1} such that k0Δ

−1 ≤ Θ(κ0, β0) < (k0 + 1)Δ−1.
Let π ∈ Pκ0,β0 . According to the oracle inequality of Corollary 1, we have,

conditionally to the first subsample D1
m:

Eπ

[
R(F̃ adpn )−R∗|D1

m

]
≤ 4 min

f∈F
(R(f)−R∗) + C

(
log Card(F)

l

) κ0
2κ0−1

.

Using the proof of Theorem 5 we get that there exists C̃ > 0 independent of n
such that

Eπ

[
R(f̃adpn )−R∗

]
≤ C̃

⎛⎝Eπ

[
R(f̂ (βk0)

m )−R∗
]

+
(

log2 n

n

) κ0
2κ0−1

⎞⎠



Optimal Oracle Inequality for Aggregation of Classifiers 377

Moreover βk0 ≤ β0, hence, Pκ0,β0 ⊆ Pκ0,βk0
. Thus, according to Theorem 6,

we have
Eπ

[
R(f̂ (βk0)

m )−R∗
]
≤ C4(K, d)m−Θ(κ0,βk0 ),

where C4(K, d) = max (C4(κ, β, d) : (κ, β) ∈ K). We have |Θ(κ0, βk0)−Θ(κ0, β0)|
≤ Δ−1 by construction. Moreover n1/ logn = e for any integer n. We conclude
that

Eπ

[
R(F̃ adpn )−R∗

]
≤ C̃4(K, d)

⎛⎝n−Θ(κ0,β0) +
(

log2 n

n

) κ0
2κ0−1

⎞⎠ ,

where C̃4(K, d) > 0 is independent of n. We achieve the proof by observing that
Θ(κ0, β0) < κ0

2κ0−1 , if β0 < (κ0 − 1)d.
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Abstract. This paper shows that near optimal rates of aggregation and
adaptation to unknown sparsity can be simultaneously achieved via 1
penalized least squares in a nonparametric regression setting. The main
tool is a novel oracle inequality on the sum between the empirical squared
loss of the penalized least squares estimate and a term reflecting the
sparsity of the unknown regression function.

1 Introduction

In this paper we study aggregation in regression models via penalized least
squares with data dependent �1 penalties. Let {(X1, Y1), . . . , (Xn, Yn)} be a sam-
ple of independent random pairs (Xi, Yi) with

Yi = f(Xi) +Wi, i = 1, . . . , n, (1)

where f : X → R is an unknown regression function to be estimated, X is a Borel
subset of Rd, the Xi’s are random elements in X with probability measure μ,
and the regression errorsWi have mean zero conditionally givenX1, . . . , Xn. Let
FM = {f1, . . . , fM} be a collection of functions. The functions fj can be viewed
either as “weak learners” or as estimators of f constructed from a training sam-
ple. Here we consider the ideal situation in which they are fixed; we concentrate
on learning only. Assumptions (A1) and (A2) on the regression model (1) are
supposed to be satisfied throughout the paper.

Assumption (A1). The random variables W1, . . . ,Wn are independent with
E {Wi |X1, . . . , Xn} = 0 and E {exp(|Wi|) |X1, . . . , Xn} ≤ b, for some b > 0 and
all i = 1, . . . , n. The random variables X1, . . . , Xn are independent, identically
distributed with measure μ.
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Assumption (A2). The functions f : X → R and fj : X → R, j = 1, . . . ,M ,
with M ≥ 2, belong to the class F0 of uniformly bounded functions defined by

F0
def=

{
g : X → R

∣∣∣ ‖g‖∞ ≤ L}
where L <∞ is a constant that is not necessarily known to the statistician and
‖g‖∞ = supx∈X |g(x)|.
Some references to aggregation of arbitrary estimators in regression models are
[13], [10], [17], [18], [9], [2], [15], [16] and [7]. This paper extends the results of the
paper [4], which considers regression with fixed design and Gaussian errors Wi.

We introduce first our aggregation scheme. For any λ = (λ1, . . . , λM ) ∈ RM ,
define fλ(x) =

∑M
j=1 λjfj(x) and let

M(λ) =
M∑
j=1

I{λj �=0} = Card J(λ)

denote the number of non-zero coordinates of λ, where I{·} denotes the indicator
function, and J(λ) = {j ∈ {1, . . . ,M} : λj �= 0}. The value M(λ) characterizes
the sparsity of the vector λ: the smaller M(λ), the “sparser” λ. Furthermore we
introduce the residual sum of squares

Ŝ(λ) =
1
n

n∑
i=1

{Yi − fλ(Xi)}2,

for all λ ∈ RM . We aggregate the fj ’s via penalized least squares. Given a penalty
term pen(λ), the penalized least squares estimator λ̂ = (λ̂1, . . . , λ̂M ) is defined
by

λ̂ = arg min
λ∈RM

{
Ŝ(λ) + pen(λ)

}
, (2)

which renders the aggregated estimator

f̃(x) = fλ(x) =
M∑
j=1

λ̂jfj(x). (3)

Since the vector λ̂ can take any values in RM , the aggregate f̃ is not a model
selector in the traditional sense, nor is it necessarily a convex combination of the
functions fj. We consider the penalty

pen(λ) = 2
M∑
j=1

rn,j |λj | (4)

with data-dependent weights rn,j = rn(M)‖fj‖n, and one can choose rn(M) of
the form

rn(M) = A

√
log(Mn)

n
(5)
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where A > 0 is a suitably large constant. We write ‖g‖2n = 1
n

∑n
i=1 g

2(Xi) for any
g : X → R. Note that our procedure is closely related to Lasso-type methods,
see e.g. [14]. These methods can be reduced to (2) if pen(λ) =

∑M
j=1 r|λj | with

a tuning constant r > 0 that is independent of j and of the data. Note that our
main results are stated for any positive rn(M) > 0.

The goal of this paper is to show that the aggregate f̃ satisfies the following
two properties.

P1. Optimality of aggregation. The loss ‖f̃ − f‖2n is simultaneously smaller,
with probability close to 1, than the model selection, convex and linear oracle
bounds of the form C0 infλ∈HM ‖fλ − f‖2n +Δn,M , where C0 ≥ 1 and Δn,M ≥ 0
is a remainder term independent of f . The set HM is either the whole RM

(for linear aggregation), or the simplex ΛM in RM (for convex aggregation),
or the set of vertices of ΛM , except the vertex (0, . . . , 0) ∈ RM (for model
selection aggregation). Optimal (minimax) values of Δn,M , called optimal rates
of aggregation, are given in [15], and they have the form

ψn,M 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M/n for (L) aggregation,

M/n for (C) aggregation, if M ≤
√
n,√

{log(1 +M/
√
n)} /n for (C) aggregation, if M >

√
n,

(logM)/n for (MS) aggregation.

(6)

Corollary 2 in Section 3 below shows that these optimal rates are attained by
our procedure within a log(M ∨ n) factor.

P2. Taking advantage of the sparsity. If λ∗ ∈ RM is such that f = fλ∗

(classical linear regression) or f can be sufficiently well approximated by fλ∗

then, with probability close to 1, the �1 norm of λ̂−λ∗ is bounded, up to known
constants and logarithms, by M(λ∗)/

√
n. This means that the estimator λ̂ of

the parameter λ∗ adapts to the sparsity of the problem: its rate of convergence
is faster when the “oracle” vector λ∗ is sparser. Note, in contrast, that for the
ordinary least squares estimator the corresponding rate is M/

√
n, with the over-

all dimension M , regardless on the sparsity of λ∗.

To show P1 and P2 we first establish a new type of oracle inequality in Section 2.
Instead of deriving oracle bounds for the deviation of f̃ from f , which is usually
the main object of interest in the literature, we obtain a stronger result. Namely,
we prove a simultaneous oracle inequality for the sum of two deviations: that of
f̃ from f and that of λ̂ from the “oracle” value of λ. Similar developments in a
different context are given by [5] and [12]. The two properties P1 and P2 can
be then shown as consequences of this result.
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2 Main Oracle Inequality

In this section we state our main oracle bounds. We define the matrices Ψn,M =( 1
n

∑n
i=1 fj(Xi)fj′ (Xi)

)
1≤j,j′≤M and the diagonal matrices diag(Ψn,M ) =

diag(‖f1‖2n, . . . , ‖fM‖2n). We consider the following assumption on the class FM .

Assumption (A3). For any n ≥ 1, M ≥ 2 there exist constants κn,M > 0 and
0 ≤ πn,M < 1 such that

P {Ψn,M − κn,M diag(Ψn,M ) ≥ 0} ≥ 1− πn,M ,

where B ≥ 0 for a square matrix B, means that B is positive semi-definite.

Assumption (A3) is trivially fulfilled with κn,M ≡ 1 if Ψn,M is a diagonal matrix,
with some eigenvalues possibly equal to zero. In particular, there exist degenerate
matrices Ψn,M satisfying Assumption (A3). Assumption (A4) below implies (A3)
for appropriate choices of κn,M and πn,M , see the proof of Theorem 2.

Denote the inner product and the norm in L2(μ) by < ·, · > and ‖ · ‖ respec-
tively. Define c0 = min{‖fj‖ : j ∈ {1, . . . ,M} and ‖fj‖ > 0}.

Theorem 1. Assume (A1), (A2) and (A3). Let f̃ be the penalized least squares
aggregate defined by (3) with penalty (4), where rn(M) > 0 is an arbitrary
positive number. Then, for any n ≥ 1, M ≥ 2 and a > 1, the inequality

‖f̃ − f‖2n +
a

a− 1

M∑
j=1

rn,j |λ̂j − λj | (7)

≤ a+ 1
a− 1

‖fλ − f‖2n +
4a2

κn,M (a− 1)
r2n(M)M(λ), ∀λ ∈ RM ,

is satisfied with probability ≥ 1− pn,M where

pn,M = πn,M + 2M exp
(
−nrn(M)c0

8
√

2L

)
+ 2M exp

(
−nr

2
n(M)
32b

)
+ 2M exp

(
− nc

2
0

2L2

)
.

Proof of Theorem 1 is given in Section 5. This theorem is general but not
ready to use because the probabilities πn,M and the constants κn,M in As-
sumption (A3) need to be evaluated. A natural way to do this is to deal with
the expected matrices ΨM = E(Ψn,M ) = (〈fj , fj′〉)1≤j,j′≤M and diag(ΨM ) =
diag(‖f1‖2, . . . , ‖fM‖2). Consider the following analogue of Assumption (A3)
stated in terms of these matrices.

Assumption (A4). There exists κM > 0 such that the matrix ΨM−κMdiag(ΨM )
is positive semi-definite for any given M ≥ 2.

For discussion of this assumption, see [4] and Remark 1 below.
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Theorem 2. Assume (A1), (A2) and (A4). Let f̃ be the penalized least squares
aggregate defined by (3) with penalty (4), where rn(M) > 0 is an arbitrary
positive number. Then, for any n ≥ 1, M ≥ 2 and a > 1, the inequality

‖f̃ − f‖2n +
a

a− 1

M∑
j=1

rn,j |λ̂j − λj | (8)

≤ a+ 1
a− 1

‖fλ − f‖2n +
16a2

κM (a− 1)
r2n(M)M(λ), ∀λ ∈ RM ,

is satisfied with probability ≥ 1− pn,M where

pn,M = 2M exp
(
−nrn(M)c0

8
√

2L

)
+ 2M exp

(
−nr

2
n(M)
32b

)
+ M2 exp

(
− n

16L4M2

)
+ 2M exp

(
− nc

2
0

2L2

)
. (9)

Remark 1. The simplest case of Theorem 2 corresponds to a positive definite
matrix ΨM . Then Assumption (A4) is satisfied with κM = ξmin(M)/L2, where
ξmin(M) > 0 is the smallest eigenvalue of ΨM . Furthermore, c0 ≥ ξmin(M). We
can therefore replace κM and c0 by ξmin(M)/L2 and ξmin(M), respectively, in
the statement of Theorem 2.

Remark 2. Theorem 2 allows us to treat asymptotics for n→∞ and fixed, but
possibly large M , and for both n → ∞ and M = Mn → ∞. The asymptotic
considerations can suggest a choice of the tuning parameter rn(M). In fact, it is
determined by two antagonistic requirements. The first one is to keep rn(M) as
small as possible, in order to improve the bound (8). The second one is to take
rn(M) large enough to obtain the convergence of the probability pn,M to 0. It
is easy to see that, asymptotically, as n → ∞, the choice that meets the two
requirements is given by (5). Note, however, that pn,M in (9) contains the terms
independent of rn(M), and a necessary condition for their convergence to 0 is

n/(M2 logM)→∞. (10)

This condition means that Theorem 2 is only meaningful for moderately large
dimensions M .

3 Optimal Aggregation Property

Here we state corollaries of the results of Section 2 which imply property P1.

Corollary 1. Assume (A1), (A2) and (A4). Let f̃ be the penalized least squares
aggregate defined by (3) with penalty (4), where rn(M) > 0 is an arbitrary
positive number. Then, for any n ≥ 1, M ≥ 2 and a > 1, the inequality

‖f̃ − f‖2n ≤ inf
λ∈RM

{
a+ 1
a− 1

‖fλ − f‖2n +
16a2

κM (a− 1)
r2n(M)M(λ)

}
. (11)

is satisfied with probability ≥ 1− pn,M where pn,M is given by (9).
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This corollary is similar to a result in [4], but there the predictorsXi are assumed
to be non-random and the oracle inequality is obtained for the expected risk.
Applying the argument identical to the proof of Corollary 3.2 in [4], we deduce
from Corollary 1 the following result.

Corollary 2. Let assumptions of Corollary 1 be satisfied and let rn(M) be as in
(5). Then, for any ε > 0, there exists a constant C > 0 such that the inequalities

‖f̃ − f‖2n ≤ (1 + ε) inf
1≤j≤M

‖fj − f‖2n + C(1 + ε+
1
ε
)
log(M ∨ n)

n
(12)

‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈RM

‖fλ − f‖2n + C(1 + ε+
1
ε
)
M log(M ∨ n)

n
(13)

‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈ΛM

‖fλ − f‖2n + C(1 + ε+
1
ε
)ψ

C

n (M) (14)

are satisfied with probability ≥ 1− pn,M , where pn,M is given by (9) and

ψ
C

n (M) =

{
(M logn)/n if M ≤ √n,√

(logM)/n if M >
√
n.

This result shows that the optimal (M), (C) and (L) bounds given in (6) are
nearly attained, up to logarithmic factors, if we choose the tuning parameter
rn(M) as in (5).

4 Taking Advantage of the Sparsity

In this section we show that our procedure automatically adapts to the unknown
sparsity of f(x). We consider the following assumption to formulate our notion
of sparsity.

Assumption (A5). There exist λ∗ = λ∗(f) and a constant C∗ <∞ such that

‖fλ∗ − f‖2∞ ≤ C∗r
2
n(M)M(λ∗). (15)

Assumption (A5) is obviously satisfied in the parametric framework f ∈ {fλ, λ ∈
RM}. It is also valid in many nonparametric settings. For example, if the func-
tions fj form a basis, and f is a smooth function that can be well approximated
by the linear span of M(λ∗) basis functions (cf., e.g., [1], [11]). The vector λ∗

satisfying (15) will be called oracle. In fact, Assumption (A5) can be viewed as
a definition of the oracle.

We establish inequalities in terms of M(λ∗) not only for the pseudo-distance
‖f̃−f‖2n, but also for the �1 distance

∑M
j=1 |λ̂j−λ∗j |, as a consequence of Theorem

2. In fact, with probability close to one (see Lemma 1 below), if ‖fj‖ ≥ c0 > 0,
∀j = 1, . . . ,M , we have

M∑
j=1

rn,j |λ̂j − λj | ≥
rn(M)c0

2

M∑
j=1

|λ̂j − λj |. (16)

Together with (15) and Theorem 2 this yields that, with probability close to one,
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M∑
j=1

|λ̂j − λ∗j | ≤ Crn(M)M(λ∗), (17)

where C > 0 is a constant. If we choose rn(M) as in (5), this achieves the aim
described in P2.

Corollary 3. Assume (A1), (A2), (A4), (A5) and min1≤j≤M ‖fj‖ ≥ c0 > 0.
Let f̃ be the penalized least squares aggregate defined by (3) with penalty (4),
where rn(M) > 0 is an arbitrary positive number. Then, for any n ≥ 1, M ≥ 2
we have

P
(
‖f̃ − f‖2n ≤ C1r

2
n(M)M(λ∗)

)
≥ 1− p∗n,M , (18)

P
( M∑
j=1

|λ̂j − λ∗j | ≤ C2rn(M)M(λ∗)
)
≥ 1− p∗n,M , (19)

where C1, C2 > 0 are constants depending only on κM and c0, p∗n,M = pn,M +
M exp{−nc20/(2L2)} and the pn,M are given in Theorem 2.

Remark 3. Part (18) of Corollary 3 can be compared to [11] that deals with
the same regression model with random design and obtain inequalities similar
to (18) for a more specific setting where the fj ’s are the basis functions of a
reproducing kernel Hilbert space, the matrix ΨM is close to the identity matrix
and the random errors of the model are uniformly bounded. Part (19) (the spar-
sity property) of Corollary 3 can be compared to [6] which treats the regression
model with non-random design points X1, . . . , Xn and Gaussian errors Wi and
gives a control of the �2 (not �1) deviation between λ̂ and λ∗.

Remark 4. Consider the particular case of linear parametric regression models
where f = fλ∗ . Assume for simplicity that the matrix ΨM is non-degenerate.
Then all the components of the ordinary least squares estimate λOLS converge
to the corresponding components of λ∗ in probability with the rate 1/

√
n. Thus

we have

M∑
j=1

|λOLSj − λ∗j | = Op(M/
√
n), (20)

as n → ∞. Assume that M(λ∗) � M . If we knew exactly the set of non-zero
coordinates J(λ∗) of the oracle λ∗, we would perform the ordinary least squares
on that set to obtain (20) with the rate Op(M(λ∗)/

√
n). However, neither J(λ∗),

nor M(λ∗) are known. If rn(M) is chosen as in (5) our estimator λ̂ achieves the
same rate, up to logarithms without prior knowledge of J(λ∗).
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5 Proofs of the Theorems

Proof of Theorem 1. By definition, f̃ = fλ satisfies

Ŝ(λ̂) +
M∑
j=1

2rn,j |λ̂j | ≤ Ŝ(λ) +
M∑
j=1

2rn,j |λj |

for all λ ∈ RM , which we may rewrite as

‖f̃ − f‖2n +
M∑
j=1

2rn,j|λ̂j | ≤ ‖fλ − f‖2n +
M∑
j=1

2rn,j |λj |+
2
n

n∑
i=1

Wi(f̃ − fλ)(Xi).

We define the random variables Vj = 1
n

∑n
i=1 fj(Xi)Wi, 1 ≤ j ≤ M and the

event E1 =
⋂M
j=1 {2|Vj | ≤ rn,j} . If E1 holds we have

2
n

n∑
i=1

Wi(f̃ − fλ)(Xi) = 2
M∑
j=1

Vj(λ̂j − λj) ≤
M∑
j=1

rn,j |λ̂j − λj |

and therefore, still on E1,

‖f̃ − f‖2n ≤ ‖fλ − f‖2n +
M∑
j=1

rn,j |λ̂j − λj |+
M∑
j=1

2rn,j |λj | −
M∑
j=1

2rn,j |λ̂j |.

Adding the term
∑M

j=1 rn,j |λ̂j−λj | to both sides of this inequality yields further,
on E1,

‖f̃ − f‖2n +
M∑
j=1

rn,j |λ̂j − λj |

≤ ‖fλ − f‖2n + 2
M∑
j=1

rn,j |λ̂j − λj |+
M∑
j=1

2rn,j |λj | −
M∑
j=1

2rn,j|λ̂j |

= ‖fλ − f‖2n +

⎛⎝ M∑
j=1

2rn,j|λ̂j − λj | −
∑

j �∈J(λ)

2rn,j |λ̂j |

⎞⎠
+

⎛⎝− ∑
j∈J(λ)

2rn,j |λ̂j |+
∑

j∈J(λ)

2rn,j|λj |

⎞⎠ .

Recall that J(λ) denotes the set of indices of the non-zero elements of λ, and
M(λ) = Card J(λ). Rewriting the right-hand side of the previous display, we
find that, on E1,

‖f̃ − f‖2n +
M∑
j=1

rn,j |λ̂j − λj | ≤ ‖fλ − f‖2n + 4
∑

j∈J(λ)

rn,j |λ̂j − λj | (21)

by the triangle inequality and the fact that λj = 0 for j �∈ J(λ). Define the
random event E0 = {Ψn,M − κn,M diag(Ψn,M ) ≥ 0}. On E0 ∩ E1 we have
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∑
j∈J(λ)

r2n,j |λ̂j − λj |2 ≤ r2n
M∑
j=1

‖fj‖2n|λ̂j − λj |2 (22)

= r2n(λ̂− λ)′diag(Ψn,M )(λ̂ − λ)
≤ r2nκ−1(λ̂− λ)′Ψn,M (λ̂− λ)
= r2nκ

−1‖f̃ − fλ‖2n.

Here and later we set for brevity rn = rn(M), κ = κn,M . Combining (21) and
(22) with the Cauchy-Schwarz and triangle inequalities, respectively, we find
further that, on E0 ∩E1,

‖f̃ − f‖2n +
M∑
j=1

rn,j |λ̂j − λj |

≤ ‖fλ − f‖2n + 4
∑

j∈J(λ)

rn,j |λ̂j − λj |

≤ ‖fλ − f‖2n + 4
√
M(λ)

√ ∑
j∈J(λ)

r2n,j |λ̂j − λj |2

≤ ‖fλ − f‖2n + 4rn
√
M(λ)/κ

(
‖f̃ − f‖n + ‖fλ − f‖n

)
.

The preceding inequality is of the simple form v2 + d ≤ c2 + vb + cb with
v = ‖f̃ − f‖n, b = 4rn

√
M(λ)/κ, c = ‖fλ − f‖n and d =

∑M
j=1 rn,j |λ̂j − λj |.

After applying the inequality 2xy ≤ x2/α+ αy2 (x, y ∈ R, α > 0) twice, to 2bc
and 2bv, respectively, we easily find v2 + d ≤ v2/(2α) + α b2 + (2α+ 1)/(2α) c2,
whence v2 + d{a/(a− 1)} ≤ a/(a − 1){b2(a/2) + c2(a + 1)/a} for a = 2α > 1.
On the random event E0 ∩ E1, we now get that

‖f̃ − f‖2n +
a

a− 1

M∑
j=1

rn,j |λ̂j − λj | ≤
a+ 1
a− 1

‖fλ − f‖2n +
4a2

κ(a− 1)
r2nM(λ),

for all a > 1. Using Lemma 2 proved below and the fact that P{E0} ≥ 1− πn,M
we get Theorem 1. �

Proof of Theorem 2. Let F = span(f1, . . . , fM ) be the linear space spanned by
f1, . . . , fM . Define the events E0,∗ = {Ψn,M − (κM/4) diag(Ψn,M ) ≥ 0} and

E2 =
M⋂
j=1

{
‖fj‖2n ≤ 2‖fj‖2

}
, E3 =

{
sup

f∈F\{0}

‖f‖2
‖f‖2n

≤ 2

}
.

Clearly, on E2 we have diag(Ψn,M ) ≤ 2 diag(ΨM ) and on E3 we have the matrix
inequality Ψn,M ≥ ΨM/2. Therefore, using Assumption (A4), we get that the
complement EC0,∗ of E0,∗ satisfies EC0,∗ ∩ E2 ∩ E3 = ∅, which yields

P{EC0,∗} ≤ P{EC2 }+ P{EC3 }.
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Thus, Assumption (A3) holds with κn,M ≡ κM/4 any πn,M ≥ P{EC2 }+ P{EC3 }.
Taking the particular value of πn,M as a sum of the upper bounds on P{EC2 }
and P{EC3 } from Lemma 1 and from Lemma 3 (where we set q = M , gi = fi)
and applying Theorem 1 we get the result. �

Proof of Corollary 3. Let λ∗ be a vector satisfying Assumption (A5). As in the
proof of Theorem 2, we obtain that, on E1 ∩ E2 ∩ E3,

‖f̃ − f‖2n +
a

a− 1

M∑
j=1

rn,j |λ̂j − λ∗j | ≤
{
a+ 1
a− 1

‖fλ∗ − f‖2n +
32a2

κ(a− 1)
r2nM(λ∗)

}

for all a > 1. We now note that, in view of Assumption (A5),

‖fλ∗ − f‖2n ≤ ‖fλ∗ − f‖2∞ ≤ C∗r
2
nM(λ∗).

This yields (18). To obtain (19) we apply the bound (16), valid on the event
E4 defined in Lemma 1 below, and therefore we include into p∗n,M the term
M exp

(
−nc20/(2L2)

)
to account for P{EC4 }. �

6 Technical Lemmas

Lemma 1. Let Assumptions (A1) and (A2) hold. Then for the events

E2 = {‖fj‖2n ≤ 2‖fj‖2, ∀ 1 ≤ j ≤M}
E4 = {‖fj‖ ≤ 2‖fj‖n, ∀ 1 ≤ j ≤M}

we have
max(P{EC2 },P{EC4 }) ≤M exp

(
−nc20/(2L2)

)
. (23)

Proof. Since ‖fj‖ = 0 =⇒ ‖fj‖n = 0 μ − a.s., it suffices to consider only the
cases with ‖fj‖ > 0. Inequality (23) then easily follows from the union bound
and Hoeffding’s inequality. �

Lemma 2. Let Assumptions (A1) and (A2) hold. Then

P{EC1 } ≤ 2M exp
(
−nr

2
n(M)
32b

)
+ 2M exp

(
−nrnc0

8
√

2L

)
+2M exp

(
− nc

2
0

2L2

)
. (24)

Proof. We use the following version of Bernstein’s inequality (see, e.g., [3]): Let
Z1, . . . , Zn be independent random variables such that

1
n

n∑
i=1

E|Zi|m ≤
m!
2
w2dm−2,
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for some positive constants w and d and for all m ≥ 2. Then, for any ε > 0 we
have

P

{
n∑
i=1

(Zi − EZi) ≥ nε
}
≤ exp

(
− nε2

2(w2 + dε)

)
. (25)

Here we apply this inequality to the variables Zi,j = fj(Xi)Wi, for each j ∈
{1, . . . ,M}, conditional on X1, . . . , Xn. By assumptions (A1) and (A2), we find

1
n

n∑
i=1

E {|Zi,j |m |X1, . . . , Xn} ≤ Lm−2 1
n

n∑
i=1

|fj(Xi)|2E {|Wi|m |X1, . . . , Xn}

≤ bm!Lm−2‖fj‖2n

=
m!
2
Lm−2 (‖fj‖2n2b

)
.

Since ‖fj‖ = 0 =⇒ Vj = 0 μ − a.s., it suffices to consider only the cases with
‖fj‖ > 0. Using (25) and the union bound we find that

P{EC1 |X1, . . . , Xn} ≤ 2
∑

j: ‖fj‖≥c0

exp
(
− nr2n‖fj‖2n/4

2 (2b‖fj‖2n + Lrn‖fj‖n/2)

)

≤ 2M exp
(
−nr

2
n

32b

)
+ 2

∑
j: ‖fj‖≥c0

exp
(
−nrn‖fj‖n

8L

)
,

where the last inequality holds since

exp(−x/(2α)) + exp(−x/(2β)) ≥ exp(−x/(α+ β))

for x, α, β > 0. Combining the preceding display and the bound on P{EC4 } in
Lemma 1, we obtain the result. �

Lemma 3. Let F = span(g1, . . . , gq) be the linear space spanned by some func-
tions g1, . . . , gq such that gi ∈ F0. Then

P

{
sup

f∈F\{0}

‖f‖2
‖f‖2n

> 2

}
≤ q2 exp

(
− n

16L4q2

)
.

Proof. Let φ1, . . . , φN be an orthonormal basis of F in L2(μ) with N ≤ q. For
any symmetric N ×N matrix A, we define

ρ̄(A) = sup
N∑
j=1

N∑
j′=1

|λj ||λj′ ||Aj,j′ |,

where the supremum is taken over sequences {λj}Nj=1 with
∑

j λ
2
j = 1. Applying

Lemma 5.2 in [1] where we take μ = ν in that paper’s notation, we find that

P

{
sup

f∈F\{0}

‖f‖2
‖f‖2n

> 2

}
≤ q2 exp(−n/16C)
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where C = max
(
ρ̄2(A), ρ̄(A′)

)
), and A, A′ are N × N matrices with entries√

< φ2
j , φ

2
j′ > and ‖φjφj′‖∞, respectively. Clearly,

ρ̄(A) ≤ L2 sup
j,j′

N∑
j=1

N∑
j′=1

|λj ||λj′ | = L2 sup
j

⎛⎝ N∑
j=1

|λj |

⎞⎠2

≤ L2q

where we used the Cauchy-Schwarz inequality. Similarly, ρ̄(A′) ≤ L2q. �
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Abstract. We propose a sequential randomized algorithm, which at
each step concentrates on functions having both low risk and low vari-
ance with respect to the previous step prediction function. It satisfies a
simple risk bound, which is sharp to the extent that the standard statis-
tical learning approach, based on supremum of empirical processes, does
not lead to algorithms with such a tight guarantee on its efficiency. Our
generalization error bounds complement the pioneering work of Cesa-
Bianchi et al. [12] in which standard-style statistical results were recov-
ered with tight constants using worst-case analysis.

A nice feature of our analysis of the randomized estimator is to put
forward the links between the probabilistic and worst-case viewpoint. It
also allows to recover recent model selection results due to Juditsky et
al. [16] and to improve them in least square regression with heavy noise,
i.e. when no exponential moment condition is assumed on the output.

1 Introduction

We are given a family G of functions and we want to learn from data a function
that predicts as well as the best function in G up to some additive term called the
rate of convergence. When the set G is finite, this learning task is often referred
to as model selection aggregation.

This learning task has rare properties. First, in general an algorithm picking
functions in the set G is not optimal (see e.g. [10, p.14]). This means that the es-
timator has to looked at an enlarged set of prediction functions. Secondly, in the
statistical community, the only known optimal algorithms are all based on a Ce-
saro mean of Bayesian estimators (also referred to as progressive mixture rule).
And thirdly, the proof of their optimality is not achieved by the most promi-
nent tool in statistical learning theory: bounds on the supremum of empirical
processes.

The idea of the proof, which comes back to Barron [5], is based on a chain rule
and appeared to be successful for least square and entropy losses [9, 10, 6, 22, 7]
and for general loss in [16].

In the online prediction with expert advice setting, without any probabilistic
assumption on the generation of the data, appropriate weighting methods have
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been showed to behave as well as the best expert up to a minimax-optimal addi-
tive remainder term (see [18] and references within). In this worst-case context,
amazingly sharp constants have been found (see in particular [15, 12, 13, 23]).
These results are expressed in cumulative loss and can be transposed to model
selection aggregation to the extent that the expected risk of the randomized pro-
cedure based on sequential predictions is proportional to the expectation of the
cumulative loss of the sequential procedure (see Lemma 3 for precise statement).

This work presents a sequential algorithm, which iteratively updates a prior
distribution put on the set of prediction functions. Contrarily to previously men-
tioned works, these updates take into account the variance of the task. As a con-
sequence, posterior distributions concentrate on simultaneously low risk func-
tions and functions close to the previous prediction. This conservative law is not
surprising in view of previous works on high dimensional statistical tasks, such as
wavelet thresholding, shrinkage procedures, iterative compression schemes ([3]),
iterative feature selection ([1]).

The paper is organized as follows. Section 2 introduces the notation and the
existing algorithms. Section 3 proposes a unifying setting to combine worst-case
analysis tight results and probabilistic tools. It details our randomized estima-
tor and gives a sharp expectation bound. In Sections 4 and 5, we show how
to apply our main result under assumptions coming respectively from sequen-
tial prediction and model selection aggregation. Section 6 contains an algorithm
that satisfies a sharp standard-style generalization error bound. To the author’s
knowledge, this bound is not achievable with classical statistical learning ap-
proach based on supremum of empirical processes. Section 7 presents an im-
proved bound for least square regression regression when the noise has just a
bounded moment of order s ≥ 2.

2 Notation and Existing Algorithms

We assume that we observe n pairs Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) of input-
output and that each pair has been independently drawn from the same unknown
distribution denoted P. The input and output space are denoted respectively X
and Y, so that P is a probability distribution on the product space Z � X ×Y.
The target of a learning algorithm is to predict the output Y associated to
an input X for pairs (X,Y ) drawn from the distribution P. The quality of a
prediction function g : X → Y is measured by the risk

R(g) � EP(dZ)L(Z, g),

where L(Z, g) assesses the loss of considering the prediction function g on the
data Z ∈ Z. We use L(Z, g) rather than L[Y, g(X)] to underline that our results
are not restricted to non-regularized losses, where we call non-regularized loss a
loss that can be written as l[Y, g(X)] for some function l : Y × Y → R.

We will say that the loss function is convex when the function g �→ L(z, g) is
convex for any z ∈ Z. In this work, we do not assume the loss function to be
convex except when it is explicitly mentioned.
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For any i ∈ {0, . . . , n}, the cumulative loss suffered by the prediction function
g on the first i pairs of input-output, denoted Zi1 for short, is

Σi(g) �
i∑

j=1

L(Zj , g),

where by convention we take Σ0 identically equal to zero (Σ0 ≡ 0). Throughout
this work, without loss of generality, we assume that Y is convex so that convex
combination of prediction functions are prediction functions. The symbol C will
denote some positive constant whose value may differ from line to line.

To handle possibly continuous set G, we consider that G is a measurable
space and that we have some prior distribution π on it. The set of probability
distributions on G will be denotedM. The Kullback-Leibler divergence between
a distribution ρ ∈M and the prior distribution π is

K(ρ, π) �
{

Eρ(dg) log
(
ρ
π (g)

)
if ρ� π,

+∞ otherwise

where ρ
π denotes the density of ρ w.r.t. π when it exists (i.e. ρ � π). For any

ρ ∈ M, we have K(ρ, π) ≥ 0 and when π is the uniform distribution on a finite
set G, we also have K(ρ, π) ≤ log |G|. The Kullback-Leibler divergence satisfies
the duality formula (see e.g. [11, p.10]): for any real-valued measurable function
h defined on G,

inf
ρ∈M

{
Eρ(dg)h(g) +K(ρ, π)

}
= − log Eπ(dg)e

−h(g). (1)

and that the infimum is reached for the Gibbs distribution

π−h � e−h(g)

Eπ(dg′)e−h(g′) · π(dg). (2)

The algorithm used to prove optimal convergence rates for several different
losses (see e.g. [9, 10, 6, 22, 7, 16]) is the following:

Algorithm A: Let λ > 0. Predict according to 1
n+1

∑n
i=0 Eπ−λΣi

(dg)g, where we
recall that Σi maps a function g ∈ G to its cumulative loss up to time i.

In other words, for a new input x, the prediction of the output given by
Algorithm A is 1

n+1

∑n
i=0

g(x)e−λΣi(g)π(dg)
e−λΣi(g)π(dg) .

From Vovk, Haussler, Kivinen and Warmuth works ([20, 15, 21]) and the link
between cumulative loss in online setting and expected risk in the batch setting
(see later Lemma 3), an “optimal” algorithm is:

Algorithm B: Let λ > 0. For any i ∈ {0, . . . , n}, let ĥi be a prediction function
such that

∀ z ∈ Z L(z, ĥi) ≤ − 1
λ log Eπ−λΣi

(dg)e
−λL(z,g).

If one of the ĥi does not exist, the algorithm is said to fail. Otherwise it predicts
according to 1

n+1

∑n
i=0 ĥi.
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In particular, for appropriate λ > 0, this algorithm does not fail when the loss
function is the square loss (i.e. L(z, g) = [y− g(x)]2) and when the output space
is bounded. Algorithm B is based on the same Gibbs distribution π−λΣi as
Algorithm A. Besides, in [15, Example 3.13], it is shown that Algorithm A is
not in general a particular case of Algorithm B, and that Algorithm B will not
generally produce a prediction function in the convex hull of G unlike Algorithm
A. In Sections 4 and 5, we will see how both algorithms are connected to our
generic algorithm.

We assume that the set, denoted Ḡ, of all measurable prediction functions has
been equipped with a σ-algebra. Let D be the set of all probability distributions
on Ḡ. By definition, a randomized algorithm produces a prediction function drawn
according to a probability in D. Let P be a set of probability distributions on Z
in which we assume that the true unknown distribution generating the data is.

3 The Algorithm and Its Generalization Error Bound

The aim of this section is to build an algorithm with the best possible convergence
rate regardless of computational issues. For any λ > 0, let δλ be a real-valued
function defined on Z × G × Ḡ that satisfies

∀ ρ ∈M ∃ π̂(ρ) ∈ D
sup
P∈P

{
Eπ̂(ρ)(dg′)EP(dZ) log Eρ(dg)e

λ
[
L(Z,g′)−L(Z,g)−δλ(Z,g,g′)

]}
≤ 0. (3)

Condition (3) is our probabilistic version of the generic algorithm condition in
the online prediction setting (see [20, proof of Theorem 1] or more explicitly in
[15, p.11]), in which we added the variance function δλ. Our results will be all
the sharper as this variance function is small. To make (3) more readable, let us
say for the moment that

– without any assumption on P , for several usual strongly convex loss func-
tions, we may take δλ ≡ 0 provided that λ is a small enough constant (see
Section 4).

– Inequality (3) can be seen as a “small expectation” inequality. The usual
viewpoint is to control the quantity L(Z, g) by its expectation with respect
to (w.r.t.) Z and a variance term. Here, roughly, L(Z, g) is mainly controlled
by L(Z, g′) where g′ is appropriately chosen through the choice of π̂(ρ), plus
the additive term δλ. By definition this additive term does not depend on the
particular probability distribution generating the data and leads to empirical
compensation.

– in the examples we will be interested in throughout this work, π̂(ρ) will be
either equal to ρ or to a Dirac distribution on some function, which is not
necessarily in G.

– for any loss functionL, any setP and any λ > 0, one may choose δλ(Z, g, g′) =
λ
2

[
L(Z, g)− L(Z, g′)

]2 (see Section 6).
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Our results concern the following algorithm, in which we recall that π is a
prior distribution put on the set G.

Generic Algorithm

1. Let λ > 0. Define ρ̂0 � π̂(π) in the sense of (3) and draw a function ĝ0
according to this distribution. Let S0(g) = 0 for any g ∈ G.

2. For any i ∈ {1, . . . , n}, iteratively define

Si(g) � Si−1(g) + L(Zi, g) + δλ(Zi, g, ĝi−1) for any g ∈ G.

and
ρ̂i � π̂(π−λSi) (in the sense of (3))

and draw a function ĝi according to the distribution ρ̂i.
3. Predict with a function drawn according to the uniform distribution on
{ĝ0, . . . , ĝn}.

Remark 1. When δλ(Z, g, g′) does not depend on g, we recover a more standard-
style algorithm to the extent that we then have π−λSi = π−λΣi . Precisely our
algorithm becomes the randomized version of Algorithm A. When δλ(Z, g, g′)
depends on g, the posterior distributions tend to concentrate on functions having
small risk and small variance term.

For any i ∈ {0, . . . , n}, the quantities Si, ρ̂i and ĝi depend on the training data
only through Z1, . . . , Zi. Let Ωi denote the joint distribution of ĝi0 � (ĝ0, . . . , ĝi)
conditional to Zi1, where we recall that Zi1 denotes (Z1, . . . , Zi). Our randomized
algorithm produces a prediction function which has three causes of randomness:
the training data, the way ĝi is obtained (step 2) and the uniform draw (step
3). So the expected risk of our iteratively randomized generic procedure is

E � EP(dZn
1 )EΩn(dĝn

0 )
1

n+1

∑n
i=0 R(ĝi) = 1

n+1

∑n
i=0 EP(dZi

1)
EΩi(dĝi

0)
R(ĝi)

Our main result is

Theorem 1. Let Δλ(g, g′) � EP(dZ)δλ(Z, g, g′) for g ∈ G and g′ ∈ Ḡ. The
expected risk of the generic algorithm satisfies

E ≤ min
ρ∈M

{
Eρ(dg)R(g) + Eρ(dg)EP(dZn

1 )EΩn(dĝn
0 )

n
i=0 Δλ(g,ĝi)

n+1 + K(ρ,π)
λ(n+1)

}
(4)

In particular, when G is finite and when the loss function L and the set P are
such that δλ ≡ 0, by taking π uniform on G, we get

E ≤ min
G
R+ log |G|

λ(n+1) (5)

Proof. Let Zn+1 ∈ Z be drawn according to P and independent from Z1, . . . , Zn.
To shorten formulae, let π̂i � π−λSi so that by definition we have ρ̂i = π̂(π̂i) in
the sense of (3). Inequality (3) implies that

Eπ̂(ρ)(dg′)R(g′) ≤ − 1
λEπ̂(ρ)(dg′)EP(dZ) log Eρ(dg)e

−λ[L(Z,g)+δλ(Z,g,g′)],
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so by Fubini’s theorem for any i ∈ {0, . . . , n},

EP(dZi
1)

EΩi(dĝi
0)R(ĝi)
≤ − 1

λE
P(dZi+1

1 )EΩi(dĝi
0)

log Eπ̂i(dg)e
−λ[L(Zi+1,g)+δλ(Zi+1,g,ĝi)].

Consequently, by the chain rule (i.e. cancellation in the sum of logarithmic terms;
[5]) and by intensive use of Fubini’s theorem, we get

E = 1
n+1

∑n
i=0 EP(dZi

1)EΩi(dĝi
0)
R(ĝi)

≤ − 1
λ(n+1)

∑n
i=0 E

P(dZi+1
1 )EΩi(dĝi

0)
log Eπ̂i(dg)e

−λ[L(Zi+1,g)+δλ(Zi+1,g,ĝi)]

= − 1
λ(n+1)E

P(dZn+1
1 )EΩn(dĝn

0 )
∑n

i=0 log Eπ̂i(dg)e
−λ[L(Zi+1,g)+δλ(Zi+1,g,ĝi)]

= − 1
λ(n+1)E

P(dZn+1
1 )EΩn(dĝn

0 )
∑n

i=0 log
(

Eπ(dg)e
−λSi+1(g)

Eπ(dg)e
−λSi(g)

)
= − 1

λ(n+1)E
P(dZn+1

1 )EΩn(dĝn
0 ) log

(
Eπ(dg)e

−λSn+1(g)

Eπ(dg)e
−λS0(g)

)
= − 1

λ(n+1)E
P(dZn+1

1 )EΩn(dĝn
0 ) log Eπ(dg)e

−λSn+1(g)

Now from the following lemma, we obtain

E ≤ − 1
λ(n+1) log Eπ(dg)e

−λE
P(dZ

n+1
1 )

EΩn(dĝn
0 )Sn+1(g)

= − 1
λ(n+1) log Eπ(dg)e

−λ
[
(n+1)R(g)+EP(dZn

1 )EΩn(dĝn
0 )

n
i=0Δλ(g,ĝi)

]
= min

ρ∈M

{
Eρ(dg)R(g) + Eρ(dg)EP(dZn

1 )EΩn(dĝn
0 )

n
i=0 Δλ(g,ĝi)

n+1 + K(ρ,π)
λ(n+1)

}
.

Lemma 1. Let W be a real-valued measurable function defined on a product
space A1 ×A2 and let μ1 and μ2 be probability distribtutions on respectively A1
and A2 such that Eμ1(da1) log Eμ2(da2)e

−W(a1,a2) < +∞. We have

−Eμ1(da1) log Eμ2(da2)e
−W(a1,a2) ≤ − log Eμ2(da2)e

−Eμ1(da1)W(a1,a2).

Proof. It mainly comes from (1) (used twice) and Fubini’s theorem.

Inequality (5) is a direct consequence of (4).

Theorem 1 bounds the expected risk of a randomized procedure, where the
expectation is taken w.r.t. both the training set distribution and the randomizing
distribution. From the following lemma, for convex loss functions, (5) implies

EP(dZn
1 )R

(
EΩn(dĝn

0 )
1

n+1

∑n
i=0 ĝi

)
≤ min

G
R+ log |G|

λ(n+1) , (6)

where we recall that Ωn is the distribution of ĝn0 = (ĝ0, . . . , ĝn) and λ is a
parameter whose typical value is the largest λ > 0 such that δλ ≡ 0.

Lemma 2. For convex loss functions, the doubly expected risk of a randomized
algorithm is greater than the expected risk of the deterministic version of the
randomized algorithm, i.e. if ρ̂ denotes the randomizing distribution,

EP(Zn
1 )R(Eρ̂(dg)g) ≤ EP(Zn

1 )Eρ̂(dg)R(g).
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Proof. The result is a direct consequence of Jensen’s inequality.

In [12], the authors rely on worst-case analysis to recover standard-style statisti-
cal results such as Vapnik’s bounds [19]. Theorem 1 can be seen as a complement
to this pioneering work. Inequality (6) is the model selection bound that is well-
known for least square regression and entropy loss, and that has been recently
proved for general losses in [16].

Let us discuss the generalized form of the result. The r.h.s. of (4) is a classical
regularized risk, which appears naturally in the PAC-Bayesian approach (see
e.g. [8, 11, 4, 24]). An advantage of stating the result this way is to be able to
deal with uncountable infinite G. Even when G is countable, this formulation
has some benefit to the extent that for any measurable function h : G → R,
minρ∈M{Eρ(dg)h(g) +K(ρ, π)} ≤ min

g∈G
{h(g) + log π−1(g)}.

Our generalization error bounds depend on two quantities λ and π which are
the parameters of our algorithm. Their choice depends on the precise setting.
Nevertheless, when G is finite and with no special structure a priori, a natural
choice for π is the uniform distribution on G.

Once the distribution π is fixed, an appropriate choice for the parameter λ is
the minimizer of the r.h.s. of (4). This minimizer is unknown by the statistician,
and it is an open problem to adaptively choose λ close to it.

4 Link with Sequential Prediction

This section aims at illustrating condition (3) and at clearly stating in our batch
setting results coming from the online learning community. In [20, 15, 21], the
loss function is assumed to satisfy: there are positive numbers η and c such that

∀ ρ ∈ M ∃ gρ : X → Y ∀x ∈ X ∀ y ∈ Y
L[(x, y), gρ] ≤ − c

η log Eρ(dg)e
−ηL[(x,y),g] (7)

Then (3) holds both for λ = η and δλ(Z, g, g′) = −(1 − 1/c)L(Z, g′) and for
λ = η/c and δλ(Z, g, g′) = (c− 1)L(Z, g), and we may take in both cases π̂(ρ) as
the Dirac distribution at gρ. This leads to the same procedure which is described
in the following straightforward corollary of Theorem 1.

Corollary 1. Let gπ−ηΣi
be defined in the sense of (7). Consider the algorithm

which predicts by drawing a function in {gπ−ηΣ0
, . . . , gπ−ηΣn

} according to the
uniform distribution. Under assumption (7), the expected risk of this procedure
satisfies

E ≤ c min
ρ∈M

{
Eρ(dg)R(g) + K(ρ,π)

η(n+1)

}
. (8)

This result is not surprising in view of the following two results. The first one
comes from worst case analysis in sequential prediction.

Theorem 2 (Haussler et al. [15], Theorem 3.8). Let G be countable. For
any g ∈ G, let Σi(g) =

∑i
j=1 L(Zj , g) (still) denote the cumulative loss up to
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time i of the expert which always predict according to function g. The cumulative
loss on Zn1 of the strategy in which the prediction at time i is done according to
gπ−ηΣi−1

in the sense of (7) is bounded by

infg∈G{cΣn(g) + c
η log π−1(g)}. (9)

The second result shows how the previous bound can be transposed into our
model selection context by the following lemma.

Lemma 3. Let Zn+1 be a random variable independent from Zn1 and with the
same distribution P. Let A be a learning algorithm which produces the prediction
function A(Zi1) at time i + 1, i.e. from the data Zi1 = (Z1, . . . , Zi). Let L be
the randomized algorithm which produces a prediction function L(Zn1 ) drawn
according to the uniform distribution on {A(∅),A(Z1), . . . ,A(Zn1 )}. The (doubly)
expected risk of L is equal to 1

n+1 times the expectation of the cumulative loss of
A on the sequence Zn+1

1 .

Proof. By Fubini’s theorem, we have

ER[L(Zn1 )] = 1
n+1

∑n
i=0 EP(dZn

1 )R[A(Zi1)]
= 1

n+1

∑n
i=0 E

P(dZi+1
1 )L[Zi+1,A(Zi1)]

= 1
n+1E

P(dZn+1
1 )

∑n
i=0 L[Zi+1,A(Zi1)].

For any η > 0, let c(η) denote the infimum of the c for which (7) holds. Under
weak assumptions, Vovk ([21]) proved that the infimum exists and studied the
behaviour of c(η) and a(η) = c(η)/η, which are key quantities of (8) and (9).
Under weak assumptions, and in particular in the examples given in the table,
the optimal constants in (9) are c(η) and a(η) ([21, Theorem 1]) and we have
c(η) ≥ 1, η �→ c(η) nondecreasing and η �→ a(η) nonincreasing. From these
last properties, we understand the trade-off which occurs to choose the optimal
η. Table 1 specifies (8) in different well-known learning tasks. For instance, for
bounded least square regression (i.e. when |Y | ≤ B for some B > 0), the gen-
eralization error of the algorithm described in Corollary 1 when η = 1/(2B2) is
bounded with minρ∈M

{
Eρ(dg)R(g) + 2B2K(ρ,π)

n+1

}
.

Table 1. Value of c(η) for different loss functions. Here B denotes a positive real.

Output space Loss L(Z,g) c(η)
Entropy loss Y = [0; 1] Y log Y

g(X) c(η) = 1 if η ≤ 1
[15, Example 4.3] +(1 − Y ) log 1−Y

1−g(X) c(η) = ∞ if η > 1
Absolute loss game Y = [0; 1] |Y − g(X)| η

2 log[2/(1+e−η)]
[15, Section 4.2] = 1 + η/4 + o(η)

Square loss Y = [−B,B] [Y − g(X)]2 c(η) = 1 if η ≤ 1/(2B2)
[15, Example 4.4] c(η) = +∞ if η > 1/(2B2)
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5 Model Selection Aggregation Under Juditsky, Rigollet
and Tsybakov Assumptions ([16])

The main result of [16] relies on the following assumption on the loss function
L and the set P of probability distributions on Z in which we assume that the
true distribution is. There exist λ > 0 and a real-valued function ψ defined on
G × G such that for any P ∈ P⎧⎨⎩EP(dZ)e

λ[L(Z,g′)−L(Z,g)] ≤ ψ(g′, g) for any g, g′ ∈ G
ψ(g, g) = 1 for any g ∈ G
the function

[
g �→ ψ(g′, g)

]
is concave for any g′ ∈ G

(10)

Theorem 1 gives the following result.

Corollary 2. Under assumption (10), the algorithm which draws uniformly its
prediction function in the set {Eπ−λΣ0(dg)g, . . . ,Eπ−λΣn (dg)g} satisfies

E ≤ min
ρ∈M

{
Eρ(dg)R(g) + K(ρ,π)

λ(n+1)

}
. (11)

Besides for convex losses,

R
(

1
n+1

∑n
i=0 Eπ−λΣi

(dg)g
)
≤ min

ρ∈M

{
Eρ(dg)R(g) + K(ρ,π)

λ(n+1)

}
. (12)

Proof. We start by proving that condition (3) holds with δλ ≡ 0, and that we
may take π(ρ) as the Dirac distribution at the function Eρ(dg)g. By using Jensen’s
inequality and Fubini’s theorem, assumption (10) implies that

Eπ(ρ)(dg′)EP(dZ) log Eρ(dg)e
λ[L(Z,g′)−L(Z,g)]

= EP(dZ) log Eρ(dg)e
λ[L(Z,Eρ(dg′)g

′)−L(Z,g)]

≤ log Eρ(dg)EP(dZ)e
λ[L(Z,Eρ(dg′)g

′)−L(Z,g)]

≤ log Eρ(dg)ψ(Eρ(dg′)g
′, g)

≤ logψ(Eρ(dg′)g
′,Eρ(dg)g)

= 0,

so that we can apply Theorem 1. It remains to note that in this context our
generic algorithm is the one described in the corollary.

In this context, our generic algorithm reduces to the randomized version of Al-
gorithm A. From Lemma 2, for convex loss functions, (11) also holds for the
risk of Algorithm A. Corollary 2 also shows that the risk bounds of [16, The-
orem 3.2 and the examples of Section 4.2] hold with the same constants for
our randomized algorithm (provided that the expected risk w.r.t. the training
set distribution is replaced by the expected risk w.r.t. both training set and
randomizing distributions).

On assumption (10) we should say that it does not a priori require the function
L to be convex. Nevertheless, any known relevant examples deal with strongly
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convex loss functions and we know that in general the assumption will not hold
for SVM loss function and for absolute loss function (since 1/n model selection
rate are in general not achievable for these loss functions).

One can also recover the results in [16, Theorem 3.1 and Section 4.1] by taking
δλ(Z, g, g′) = 1Z∈S [supg∈G L(Z, g)− infg∈G L(Z, g)] with appropriate set S ⊂ Z.
Once more the aggregation procedure is different because of the randomization
step but the generalization error bounds are identical.

6 A Standard-Style Statistical Bound

This section proposes new results of a different kind. In the previous sections,
under convexity assumptions, we were able to achieve fast rates. Here we have
assumption neither on the loss function nor on the probability generating the
data. Nevertheless we show that our generic algorithm applied for δλ(Z, g, g′) =
λ[L(Z, g)− L(Z, g′)]2/2 satisfies a sharp standard-style statistical bound.

Theorem 3. Let V (g, g′) = EP(dZ)
{
[L(Z, g) − L(Z, g′)]2

}
. Our generic algo-

rithm applied with δλ(Z, g, g′) = λ[L(Z, g) − L(Z, g′)]2/2 and π̂(ρ) = ρ satisfies

E ≤ min
ρ∈M

{
Eρ(dg)R(g) + λ

2 Eρ(dg)EP(dZn
1 )EΩn(dĝn

0 )
n
i=0 V (g,ĝi)
n+1 + K(ρ,π)

λ(n+1)

}
(13)

Proof. To check that (3) holds, it suffices to prove that for any z ∈ Z,
Eρ(dg′) log Eρ(dg)e

λ[L(z,g′)−L(z,g)]−λ2
2 [L(z,g′)−L(z,g)]2 ≤ 0.

To shorten formulae, let α(g′, g) � λ[L(z, g′)−L(z, g)] By Jensen’s inequality
and the following symmetrization trick, the previous expectation is bounded
with

Eρ(dg′)Eρ(dg)e
α(g′,g)−α2(g′,g)

2

≤ 1
2Eρ(dg′)Eρ(dg)e

α(g′,g)−α2(g′,g)
2 + 1

2Eρ(dg′)Eρ(dg)e
−α(g′,g)−α2(g′,g)

2

≤ Eρ(dg′)Eρ(dg) cosh
(
α(g, g′)

)
e−

α2(g′,g)
2

≤ 1

(14)

where in the last inequality we used the inequality cosh(t) ≤ et2/2 for any t ∈ R.
The first result then follows from Theorem 1.

To make (13) more explicit and to obtain a generalization error bound in which
the randomizing distribution does not appear in the r.h.s. of the bound, the
following corollary considers a widely used assumption that relates the variance
term to the excess risk. Precisely, from Theorem 3, we obtain (proof omitted of
this extended abstract)

Corollary 3. Under the generalized Mammen and Tsybakov’s assumption which
states that there exist 0 ≤ γ ≤ 1 and a prediction function g̃ (not necessarily in
G) such that V (g, g̃) ≤ c[R(g) − R(g̃)]γ for any g ∈ G, the expected risk of the
generic algorithm used in Theorem 3 satisfies
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– When γ = 1,

E −R(g̃) ≤ min
ρ∈M

{
1+cλ
1−cλ

[
Eρ(dg)R(g)−R(g̃)

]
+ K(ρ,π)

(1−cλ)λ(n+1)

}
In particular, for G finite, π the uniform distribution, λ = 1/2c, when g̃

belongs to G, we get E ≤ min
g∈G

R(g) + 4c log |G|
n+1 .

– When γ < 1, for any 0 < β < 1 and for R̃(g) � R(g)−R(g̃),

E −R(g̃) ≤
{

1
β

(
Eρ(dg)[R̃(g) + cλR̃γ(g)] + K(ρ,π)

λ(n+1)

)}
∨
(
cλ

1−β
) 1

1−γ .

To understand the sharpness of Theorem 3, we have to compare this result to the
one coming from the traditional (PAC-Bayesian) statistical learning approach
which relies on supremum of empirical processes.

Theorem 4. We still use V (g, g′) = EP(dZ)
{
[L(Z, g)− L(Z, g′)]2

}
. The gener-

alization error of the algorithm which draws its prediction function according to
the Gibbs distribution π−λΣn satisfies

EP(dZn
1 )Eπ−λΣn (dg′)R(g′)

≤ min
ρ∈M

{
Eρ(dg)R(g) + K(ρ,π)+1

λn + λEρ(dg)EP(dZn
1 )Eπ−λΣn (dg′)V (g, g′)

+λ 1
n

∑n
i=1 Eρ(dg)EP(dZn

1 )Eπ−λΣn (dg′)[L(Zi, g)− L(Zi, g′)]2
}
.

(15)

Let ϕ be the positive convex increasing function defined as ϕ(t) � et−1−t
t2 and

ϕ(0) = 1
2 by continuity. When supg∈G,g′∈G |L(Z, g′)−L(Z, g)| ≤ B, we also have

EP(dZn
1 )Eπ−λΣn (dg′)R(g′) ≤ min

ρ∈M

{
Eρ(dg)R(g)

+λϕ(λB)Eρ(dg)EP(dZn
1 )Eπ−λΣn (dg′)V (g, g′) + K(ρ,π)+1

λn

}
.

(16)

Proof. Let us prove (16). Let r(g) denote the empirical risk of g ∈ G, that is
r(g) = Σn(g)

n . Let ρ ∈M be some fixed distribution on G. From [3, Section 8.1],
with probability at least 1− ε, for any μ ∈M, we have

Eμ(dg′)R(g′)− Eρ(dg)R(g)
≤ Eμ(dg′)r(g′)− Eρ(dg)r(g)

+λϕ(λB)Eμ(dg′)Eρ(dg)V (g, g′) + K(μ,π)+log(ε−1)
λn .

Since π−λΣn minimizes μ �→ Eμ(dg′)r(g′) + K(μ,π)
λn , we have

Eπ−λΣn (dg′)R(g′)
≤ Eρ(dg)R(g) + λϕ(λB)Eπ−λΣn (dg′)Eρ(dg)V (g, g′) + K(ρ,π)+log(ε−1)

λn .

Then we apply the following inequality: for any random variable W , EW ≤
E(W ∨ 0) =

∫ +∞
0 P(W ≥ u)du =

∫ 1
0 ε−1P(W ≥ log(ε−1))dε. At last we may

choose the distribution ρ minimizing the upper bound to obtain (16). Similarly
using [3, Section 8.3], we may prove (15).
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Remark 2. By comparing (16) and (13), we see that the classical approach re-
quires the quantity supg∈G,g′∈G |L(Z, g′) − L(Z, g)| to be bounded and the un-
pleasing function ϕ appears. In fact, using technical small expectations theorems
(see [2, Lemma 7.1]), exponential moments conditions on the above quantity
would be sufficient.

The symmetrization trick used to prove Theorem 3 is performed in the predic-
tion functions space. We do not call on the second virtual training set currently
used in statistical learning theory (see [19]). Nevertheless both symmetrization
tricks end up to the same nice property: we need no boundedness assumption on
the loss functions. In our setting, symmetrization on training data leads to an
unwanted expectation and to a constant four times larger (see the two variance
terms of (15) and the discussion in [3, Section 8.3.3]). In particular, deducing
from Theorem 4 a corollary similar to Corollary 3 is only possible through (16),
because of the last variance term in (15) (since Σn depends on Zi).

7 Application to Least Square Regression

This section shows that Theorem 1 used jointly with the symmetrization idea
developed in the previous section allows to obtain improved convergence rates
in heavy noise situation. We start with the following theorem concerning twice
differentiable convex loss functions.

Theorem 5. Let B ≥ b > 0. Consider a loss function L which can be written
as L[(x, y), g] = l[y, g(x)], where the function l : Y × Y → R is twice differ-
entiable and convex w.r.t. the second variable. Let l′ and l′′ denote respectively
the first and second derivative of the function l w.r.t. the second variable. Let
Δ(y) = sup

|α|≤b,|β|≤b

[
l(y, α)− l(y, β)

]
. Assume that λ0 � inf

|y|≤B,|y′|≤b
l′′(y,y′)

[l′(y,y′)]2 > 0

and that supg∈G,x∈X |g(x)| ≤ b.
For any 0 < λ ≤ λ0, the algorithm which draws uniformly its prediction

function among Eπ−λΣ0 (dg)g,. . . ,Eπ−λΣn (dg)g satisfies

E ≤ min
ρ∈M

{
Eρ(dg)R(g) + K(ρ,π)

λ(n+1)

}
+E

{
λΔ2(Y )

2 1λΔ(Y )<1;|Y |>B +
[
Δ(Y )− 1

2λ

]
1λΔ(Y )≥1;|Y |>B

}
.

Proof. According to Theorem 1, it suffices to check that condition (3) holds for
0 < λ ≤ λ0, π̂(ρ) the Dirac distribution at Eρ(dg)g and

δλ[(x, y), g, g′] = δλ(y) � min
0≤ζ≤1

[
ζΔ(y) + (1−ζ)2λΔ2(y)

2

]
1|y|>B

= λΔ2(y)
2 1λΔ(y)<1;|y|>B +

[
Δ(y)− 1

2λ

]
1λΔ(y)≥1;|y|>B.

– For any z = (x, y) ∈ Z such that |y| ≤ B, for any probability distribution ρ
and for the above values of λ and δλ, we have

Eρ(dg)e
λ[L(z,Eρ(dg′)g

′)−L(z,g)−δλ(z,g,g′)]

= eλL(z,Eρ(dg′)g
′)Eρ(dg)e

−λl[y,g(x)]

≤ eλl[y,Eρ(dg′)g
′(x)]−λl[y,Eρ(dg)g(x)] = 1,
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where the inequality comes from the concavity of y′ �→ e−λl(y,y
′) for λ ≤ λ0.

This concavity argument goes back to [17, Section 4], and was also used in
[7] and in some of the examples given in [16].

– For any z = (x, y) ∈ Z such that |y| > B, for any 0 ≤ ζ ≤ 1, by using twice
Jensen’s inequality and then by using the symmetrization trick presented in
Section 6, we have

Eρ(dg)e
λ[L(z,Eρ(dg′)g

′)−L(z,g)−δλ(z,g,g′)]

= e−δλ(y)Eρ(dg)e
λ[L(z,Eρ(dg′)g

′)−L(z,g)]

≤ e−δλ(y)Eρ(dg)e
λ[Eρ(dg′)L(z,g′)−L(z,g)]

≤ e−δλ(y)Eρ(dg)Eρ(dg′)e
λ[L(z,g′)−L(z,g)]

= e−δλ(y)Eρ(dg)Eρ(dg′) exp
{
λ(1 − ζ)[L(z, g′)− L(z, g)]

− 1
2λ

2(1 − ζ)2[L(z, g′)− L(z, g)]2

+λζ[L(z, g′)− L(z, g)] + 1
2λ

2(1 − ζ)2[L(z, g′)− L(z, g)]2
}

≤ e−δλ(y)Eρ(dg)Eρ(dg′) exp
{
λ(1 − ζ)[L(z, g′)− L(z, g)]

− 1
2λ

2(1 − ζ)2[L(z, g′)− L(z, g)]2 + λζΔ(y) + 1
2λ

2(1 − ζ)2Δ2(y)
}

≤ e−δλ(y)eλζΔ(y)+ 1
2λ

2(1−ζ)2Δ2(y)

Taking ζ ∈ [0; 1] minimizing the last r.h.s., we obtain that

Eρ(dg)e
λ[L(z,Eρ(dg′)g

′)−L(z,g)−δλ(z,g,g′)] ≤ 1

From the two previous computations, we obtain that for any z ∈ Z,

log Eρ(dg)e
λ[L(z,Eρ(dg′)g

′)−L(z,g)−δλ(z,g,g′)] ≤ 0,

so that condition (3) holds for the above values of λ, π̂(ρ) and δλ, and the result
follows from Theorem 1.

In particular, for least square regression, Theorem 5 can be stated as:

Theorem 6. Assume that supg∈G,x∈X |g(x)| ≤ b for some b > 0. For any 0 <
λ ≤ 1/(8b2), the algorithm which draws uniformly its prediction function among
Eπ−λΣ0 (dg)g,. . . ,Eπ−λΣn (dg)g satisfies:

E ≤ min
ρ∈M

{
Eρ(dg)R(g) + K(ρ,π)

λ(n+1)

}
+ E

{(
4b|Y | − 1

2λ

)
1|Y |≥(4bλ)−1

}
+E

{
8λb2|Y |21(2λ)−1/2−b<|Y |<(4bλ)−1

}
.

(17)

Proof. The result follows from Theorem 5, computations of λ0 = 1
2(B+b)2 and

Δ(y) = 4b|y|, and from the optimization of the parameter B.

Theorem 6 improves [16, Corollary 4.1] and [7, Theorem 1]. From it, we can
deduce the following improvement of [16, Corollary 4.2].
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Corollary 4. Under the assumptions⎧⎨⎩
supg∈G,x∈X |g(x)| ≤ b for some b > 0
E|Y |s ≤ A for some s ≥ 2 and A > 0
G finite

for λ = C1
( log |G|

n

)2/(s+2) where C1 > 0, the algorithm which draws uniformly its
prediction function among Eπ−λΣ0 (dg)g,. . . ,Eπ−λΣn (dg)g satisfies

E ≤ min
g∈G

R(g) + C
( log |G|

n

)s/(s+2)
(18)

for a quantity C which depends only on C1, b, A and s.

Proof. The moment assumption on Y implies αs−qE|Y |q1|Y |≥α ≤ A for any
0 ≤ q ≤ s and α ≥ 0. As a consequence, the second and third term of the
r.h.s. of (17) are respectively bounded with 4bA(4bλ)s−1 and 8λb2A(2λ)(s−2)/2,
so that (17) can be weakened into E ≤ ming∈GR(g) + log |G|

λn + C′λs−1 + C′′λs/2

for C′ = A(4b)s and C′′ = A22+s/2b2. This gives the desired result.

In particular, with the minimal assumption E|Y |2 ≤ A (i.e. s = 2), the con-
vergence rate is of order n−1/2, and at the opposite, when s goes to infinity,
we recover the n−1 rate we have under exponential moment condition on the
output.

8 Conclusion and Open Problems

A learning task can be defined by a set of reference prediction functions and a set
of probability distributions in which we assume that the distribution generating
the data is. In this work, we propose to summarize this learning problem by
the variance function of the key condition (3). We have proved that our generic
algorithm based on this variance function leads to optimal rates of convergence
on the model selection aggregation problem, and that it gives a nice unified view
to results coming from different communities. Our results concern expected risks
and it is an open problem to provide corresponding tight exponential inequalities.

Besides without any assumption on the learning task, we proved a Bernstein’s
type bound which has no known equivalent form when the loss function is not
assumed to be bounded. Nevertheless much work still has to be done to propose
algorithms having better generalization error bounds that the ones based on
supremum of empirical processes. For instance, in several learning tasks, Dudley’s
chaining trick [14] is the only way to prove risk convergence with the optimal
rate. So a natural question and another open problem is whether it is possible to
combine the better variance control presented here with the chaining argument
(or other localization argument used while exponential inequalities are available).

Acknowledgement. I would like to thank Nicolas Vayatis, Alexandre Tsy-
bakov, Gilles Stoltz and the referees for their very helpful comments.
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Abstract. We consider online learning in repeated decision problems,
within the framework of a repeated game against an arbitrary opponent.
For repeated matrix games, well known results establish the existence
of no-regret strategies; such strategies secure a long-term average payoff
that comes close to the maximal payoff that could be obtained, in hind-
sight, by playing any fixed action against the observed actions of the
opponent. In the present paper we consider the extended model where
the duration of each stage of the game may depend on the actions of
both players, while the performance measure of interest is the average
payoff per unit time. We start the analysis of online learning in repeated
games with variable stage duration by showing that no-regret strategies,
in the above sense, do not exist in general. Consequently, we consider two
classes of adaptive strategies, one based on Blackwell’s approachability
theorem and the other on calibrated forecasts, and examine their per-
formance guarantees. In either case we show that the long-term average
payoff is higher than a certain function of the empirical distribution of
the opponent’s actions, and in particular is strictly higher than the min-
imax value of the repeated game whenever that empirical distribution
deviates from a minimax strategy in the stage game.

1 Introduction

Consider a repeated game from the viewpoint of a specific player, say player
1, who faces an arbitrary opponent, say player 2. The opponent is arbitrary in
the sense that player 1 has no prediction, statistical or strategic, regarding the
opponent’s choice of actions. Such an opponent can represent the combined effect
of several other players, as well as arbitrary-varying elements of Nature’s state.
The questions that arise naturally are how should player 1 act in this situation,
and what performance guarantees can he secure against an arbitrary opponent.

This problem was considered by [12], in the context of repeated matrix games.
Hannan introduced the Bayes envelope against the current (n-stage) empiri-
cal distribution of the opponent’s actions as a performance goal for adaptive
play. This quantity coincides with the highest average payoff that player 1 could

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 408–422, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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achieve, in hindsight, by playing some fixed action against the observed action
sequence of player 2. Player 1’s regret can now be defined as the difference be-
tween the above Bayes utility and the actual n-stage average payoff obtained by
player 1. Hannan established the existence of no-regret strategies for player 1,
that guarantee non-positive regret in the long run. More precisely, an explicit
strategy was presented for which the n-stage regret is (almost surely) bounded by
an O(n−1/2) term, without requiring any prior knowledge on player 2’s strategy
or the number of stages n.

Hannan’s seminal work was continued in various directions. No-regret strate-
gies in the above sense have been termed regret minimizing, Hannan consistent,
and universally consistent. The original strategy proposed in [12] is essentially
perturbed fictitious play, namely playing best-response to the current empirical
distribution of player 2, to which a random perturbation is added. Subsequent
works developed no-regret strategies that rely on Blackwell’s approachability
theory ([3]), smooth fictitious play ([10]), calibrated forecasts ([6]), and multi-
plicative weights ([9]) among others. We refer the reader to [5] for a discussion
and an extensive literature review.

The model we consider in this paper extends the standard repeated matrix
game model by associating with each stage of the game a temporal duration,
which may depend on the actions chosen by both players at the beginning of that
stage. Moreover, the performance measure of interest to player 1 is the average
reward per unit time (rather than the per-stage average). We refer to this model
as a repeated variable-duration game. The interest in this model is quite natural,
as many basic games and related decision problems do have variable length: One
can start, for example, with board games like Chess (where the game duration
can be taken as the number of moves or the actual time played), and continue
with gambling (where different options can take a different time per round),
investment options, and choosing between projects or treatments with different
durations. The proposed model is then the relevant one provided that the player’s
interest is indeed in the average reward per unit time, rather than the average
reward per stage.

Our purpose then is to examine decision strategies and performance goals that
are suitable for adaptive play against a arbitrary opponent in repeated variable-
duration games. While this model may be viewed as the simplest non-trivial
extension of standard repeated games, it turns out that a direct extension of
Hannan’s no-regret framework is impossible in general. We start by formulating
a natural extension of Hannan’s empirical Bayes utility to the present model,
to which we refer as the empirical best-response envelope. This average payoff
level is attainable when the stage duration depends only on player 2’s action.
However, a simple counter-example shows that it cannot be attained in general.
Hence, in the rest of the paper we turn our attention to weaker performance
goals that are attainable. This will be done using two of the basic tools that
have previously been used for regret minimization in repeated matrix games,
namely Blackwell’s approachability theorem and calibrated play.
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The paper is organized as follows. Our repeated game model is presented
in Section 2, together with some preliminary properties. Section 3 defines the
empirical Bayes envelope for this model, gives an example for a game in which
this envelope is not attainable, and presents some more general conditions under
which the same conclusion holds. Given this negative result, we look for strate-
gies that offer some reasonable performance guarantees. In Section 4 we consider
a strategy based on approachability. By applying a convexification procedure to
the Bayes envelope, we exhibit a weaker performance goal, the convex Bayes
envelope, which is indeed attainable. This strategy is reminiscent to our pre-
viously developed strategy in [15] for stochastic game and is provided here for
reference; Section 4 can therefore be skipped by readers who are familiar with
[15]. In Section 5 we introduce our main solution concept, calibrated play and its
associated performance guarantees. Section 6 briefly offers directions for further
study. Some of the proofs are omitted and appear in [16].

2 Model Formulation

We consider two players, player 1 (P1) and player 2 (P2), who repeatedly play a
variable-duration matrix game. Let I and J denote the finite action sets of P1 and
P2, respectively. The stage game is specified by a reward function r : I×J → IR
and a strictly positive duration function τ : I×J → (0,∞). Thus, r(i, j) denotes
the reward corresponding to the action pair (i, j), and τ(i, j) > 0 is the duration
of the stage game. Let Γ (r, τ) denote this single-stage game model. We note
that the reward function r is associated with P1 alone, while P2 is considered
an arbitrary player whose utility and goals need not be specified.

The repeated game proceeds as follows. At the beginning of each stage k,
where k = 1, 2, . . . , P1 chooses an action ik and P2 simultaneously chooses an
action jk. Consequently P1 obtains a reward rk = r(ik, jk), and the current stage
proceeds for τk = τ(ik, jk) time units, after which the next stage begins. The
average reward per unit time over the first n stages of play is thus given by

ρn =
∑n

k=1 rk∑n
k=1 τk

. (1)

We shall refer to ρn as the (n-stage) reward-rate. It will also be convenient to
define the following per-stage averages:

r̂n =
1
n

n∑
k=1

rk , τ̂n =
1
n

n∑
k=1

τk

so that ρn = r̂n/τ̂n. The beginning of stage k will be called the k-th decision
epoch or k-th decision point.

We will consider the game from the viewpoint of P1, who seeks to maximize
his long-term reward rate. P2 is an arbitrary player whose goals are not specified,
and whose strategy is not a-priori known to P1. We assume that both players can
observe and recall all past actions, and that the game parameters (r and τ) are
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known to P1. Thus, a strategy σ1 of P1 is a mapping σ1 : H → Δ(I), where H is
the set of all possible history sequences of the form hk = (i1, j1, . . . , ik, jk), k ≥ 0
(with h0 the empty sequence), and Δ(I) denotes the set of probability measures
over I. P1’s action ik is thus chosen randomly according to the probability
measure xk = σ(hk−1). A strategy of P1 is stationary if σ1 ≡ x ∈ Δ(I), and is
then denoted by (x)∞. A strategy σ2 of P2 is similarly defined as a mapping
from H to Δ(J). We denote this repeated game model by Γ∞ ≡ Γ∞(r, τ).

We next establish some additional notations and terminology. It will be con-
venient to denote Δ(I) by X and Δ(J) by Y . An element x ∈ X is a mixed
action of P1, and similarly y ∈ Y is a mixed action of P2. We shall use the
bilinear extension of r and τ to mixed actions, namely r(i, y) =

∑
j r(i, j)yj ,

and r(x, y) =
∑

i,j xir(i, j)yj , and similarly for τ .
The reward-rate function ρ : X × Y → IR is defined as

ρ(x, y)
�
=
r(x, y)
τ(x, y)

=

∑
i,j xir(i, j)yj∑
i,j xiτ(i, j)yj

. (2)

This function plays a central role in the following. It is easily seen (using the
strong law of large numbers and the renewal theorem) that for any pair of sta-
tionary strategies σ1 = (x)∞ and σ2 = (y)∞ we have

lim
n→∞

ρn = ρ(x, y) (a.s.) (3)

lim
n→∞

IE(ρn) = ρ(x, y) . (4)

The a.s. qualifier indicates that the respective event holds with probability one
under the probability measure induced by the players’ respective strategies.

We further define an auxiliary (single-stage) game Γ0(r, τ) as the zero-sum
game with actions sets X for P1 and Y for P2, and payoff function ρ(x, y) for
P1. Note that ρ as defined by (2) is not bilinear in its arguments. We next
establish that this game has a value, which we denote by v(r, τ), as well as some
additional properties of the reward-rate function ρ.

Lemma 1 (Basic properties of ρ).

(i) v(r, τ)
�
= max

x∈X
min
y∈Y

ρ(x, y) = min
y∈Y

max
x∈X

ρ(x, y) .

(ii) Let X∗ denote the set of optimal mixed actions for P1 in Γ0(r, τ), namely
the maximizing set in the max-min expression above, and similarly let Y ∗ be
the minimizing set in the min-max expression. Then X∗ and Y ∗ are closed
convex sets.

(iii) For every fixed y, ρ(·, y) is maximized in pure actions, namely

max
x∈X

ρ(x, y) = max
i∈I

ρ(i, y) .

(iv) The best-response payoff function ρ∗(y)
�
= maxx∈X ρ(x, y) is Lipschitz con-

tinuous in y.

Proof. The stated results may be deduced from known ones for semi-Markov
games; see [14]. For completeness, a proof can be found in [16]. 
�
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3 No-Regret Strategies and the Best-Response Envelope

In this section we define the empirical best-response envelope as a natural ex-
tension of the corresponding concept for fixed duration games. P1’s regret is
defined as the difference between this envelope and the actual reward-rate, and
no-regret strategies must ensure that this difference becomes small (or negative)
in the long run. We first observe that no-regret strategies indeed exist when the
duration of the stage game depends only on P2’s action (but not on P1’s). How-
ever, the main result of this section is a negative one – namely that no-regret
strategies need not exist in general. This is first shown in a specific example,
and then shown to hold more generally under certain conditions on the game
parameters.

Let ŷn ∈ Y denote the empirical distribution of P2’s actions up to stage n.
That is, ŷn(j) = 1

n

∑n
k=1 1{jk = j}, where 1{C} denotes the indicator function

for a conditionC. Clearly ŷn ∈ Y . The best-response envelope (or Bayes envelope)
of P1, ρ∗ : Y → IR, is defined by

ρ∗(y)
�
= max

i∈I

r(i, y)
τ(i, y)

= max
i∈I

ρ(i, y) . (5)

Observe that ρ∗(y) maximizes ρ(x, y) over mixed actions as well, namely

ρ∗(y) = max
x∈X

r(x, y)
τ(x, y)

= max
x∈X

ρ(x, y) , (6)

as per Lemma 1(iii).
We consider the difference ρ∗(ŷn) − ρn as P1’s n-stage regret. This may be

interpreted as P1’s payoff loss for not playing his best action against ŷn over the
first n stages. This leads us to the following definition.

Definition 1 (No-regret strategies). A strategy σ1 of P1 is a no-regret strat-
egy if, for every strategy of P2,

lim inf
n→∞

(ρn − ρ∗(ŷn)) ≥ 0 (a.s.) . (7)

A no-regret strategy of P1 is said to attain the best-response envelope. If such a
strategy exists we say that the best-response envelope ρ∗ is attainable by P1.

The following observations provide the motivation for our regret definitions.

Lemma 2. Suppose that P2 uses a fixed sequence of actions (j1, . . . , jn), with
corresponding empirical distribution ŷn. Then ρ∗(ŷn) is the maximal reward-rate
ρn that P1 could obtain by playing any fixed action i ∈ I over the first n stages.

Proof. With ik ≡ i we obtain, by (1), ρn =
n
k=1 r(i,jk)
n
k=1 τ(i,jk) = r(i,ŷn)

τ(i,ŷn) = ρ(i, ŷn). The
required conclusion follows by definition of ρ∗. 
�

The last lemma indicates that ρ∗ is indeed the natural extension of Hannan’s
best-response envelope. The Lemma implies that ρ∗(ŷn) is the best reward-rate
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that P1 could achieve by using any fixed action given the empirical distribution
ŷn of P2’s actions. Thus, the difference ρ∗(ŷn) − ρn can be interpreted as P1’s
regret for not using that action throughout.

A particular case where the best-response envelope is attainable is when P1’s
actions do not affect the duration of the stage game. This includes the standard
model with fixed stage durations.

Proposition 1. Suppose that the stage duration depends on P2’s actions only,
namely τ(i, j) = τ(j) for every action pair. Then the best-response envelope is
attainable by P1.

Proof. Since τ(ik, jk) = τ(jk), we obtain ρn =
n
k=1 r(ik,jk)

n
k=1 τ(jk) = r̂n

τ(ŷn) , where
τ(ŷn) = 1

n

∑n
k=1 τ(jk). Similarly, ρ∗(ŷn) = maxi(r(i, ŷn)/τ(ŷn)). By cancelling

out the corresponding denominators it follows that the required inequality in
the definition of a no-regret strategy reduces in this case to
lim infn→∞ (r̂n −maxi r(i, ŷn)) ≥ 0. This is just the standard definition for a
repeated matrix game with fixed stage duration and reward function r, for which
no-regret strategies are known to exist. 
�

The situation becomes more intricate when the stage durations do depend on
P1’s actions, as demonstrated in the following example.

Example 1. (A game with unattainable best-response envelope). Con-
sider the variable duration matrix game Γ (r, τ) defined by the following matrix:(

(0, 1) (5, 1)
(1, 3) (0, 3)

)
,

where P1 is the row player, P2 the column player, and the ij-th entry is
(r(i, j), τ(i, j)).

Proposition 2. The best-response envelope is not attainable by P1 in the game
Γ∞(r, τ) defined by Example 1.

Proof. We will specify a strategy of P2 against which ρ∗(y) cannot be attained
by P1. Let N be some pre-specified integer. Consider first the following strategy
for P2 over the first 2N stages:

jn =

{
1 for 1 ≤ n ≤ N,
2 for N + 1 ≤ n ≤ 2N.

(8)

We claim that for some ε0 > 0 and any strategy of P1, ρk < ρ∗(ŷk)−ε0 must hold
either at k = N or at k = 2N . To see that, let ζ1 =

∑N
1 1{ik = 1}/N denote the

empirical distribution of P1’s action 1 over the firstN stages. It is easily seen that
ρN = (1−ζ1)/(3−2ζ1), and ρ∗(ŷN ) = 1/3 (which is obtained by action 2 of P1).
Thus, to obtain ρN ≥ ρ∗(ŷN ) − ε0 we need ζ1 ≤ (9ε0)/(2 + 3ε0) = O(ε0). Next,
at k = 2N we have y2N = (0.5, 0.5) and ρ∗(ŷ2N ) = max {5/2, 1/6} = 5/2, which
is now obtained by action 1 of P1. To compute ρ2N , let ζ2 =

∑2N
N+1 1{ik = 1}/N
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denote the empirical distribution of P1’s action 1 over the secondN -stage period.
Then maximizing ρ2N over ζ2 ∈ [0, 1] by ζ2 = 1 we get that ρ2N = (6− ζ1)/(4−
2ζ1). A simple calculation now shows that to obtain ρ2N ≥ ρ∗(ŷ2N )− ε0 we need
ζ1 ≥ (2 − 2ε0)/(3 − 2ε0). It is evident that the requirements are contradictory
for ε0 small enough.

To recapitulate, the essence of the above argument is: to obtain ρN close to
ρ∗(ŷN ) P1 must use action 1 during most of the first N stages. But then the
most he can get for ρ2N is about 3/2, which falls short of ρ∗(ŷ2N ) = 5/2.

We conclude that P2’s stated strategy forces P1 to have positive regret at the
end of stage N or at the end of stage 2N . P2 can repeat the same strategy with
a new N ′ much larger than N , so that the first N stages have a negligible effect.
This can be done repeatedly, so that P1 has non-zero regret (larger than, say,
ε0/2) infinitely often. 
�

We close this section with a sufficient condition for non-existence of no-regret
strategies. This condition essentially follows by similar reasoning to that of the
last counterexample. We use X∗(y) to denote the set of best response strategies
against y. That is:

X∗(y) = arg max
x∈X

ρ(x, y).

Proposition 3. Suppose there exist y1, y2 ∈ Y and α ∈ (0, 1) such that:

ρ∗ (αy1 + (1− α)y2) > max
x1∈X∗(y1), x2∈X

αr(x1, y1) + (1− α)r(x2, y2)
ατ(x1, y1) + (1− α)τ(x2, y2)

. (9)

Then the best-response envelope is not attainable by P1.

Proof. The proof of is similar to that of Proposition 2, and we only provide a
brief outline. The strategy used by P2 over the firstN stages (with N a large pre-
specified number) is to play y1 for αN stages (taking the integer part thereof)
and play y2 for the remaining (1−α)N stages. We take N to be large enough so
that stochastic fluctuations (due to possibly mixed actions) from the expected
averages become insignificant. The empirical distribution of P1’s actions at the
end of the first period must then be close to some x1 ∈ X∗(y1) to guarantee that
ρn is close to ρ∗(ŷn) ≈ ρ∗(y1) at n = αN . However, Equation (9) implies then
that at the end of stage N the reward rate ρN falls short of the best response
ρ∗(ŷN ), no matter what actions P1 uses against y2. 
�

4 Approachability and Regret Minimization

The theory of approachability, introduced in [2], is one of the fundamental tools
that have been used for obtaining no-regret strategies in repeated matrix games.
The analysis in this section will allow us to specify a relaxed goal for adaptive
play, the convex best-response envelope, which is always attainable, and provides
some useful performance guarantees. This strategy can be thought of as a first
attempt at deriving an adaptive strategy which will be shown to be dominated
by the strategy considered in Section 5. Much of the analysis here is similar to
our paper [15] and most proofs are therefore deferred to [16].
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4.1 The Temporal Best-Response Envelope

Following [3, 15], we attempt to construct a vector-valued payoff vector ρn =
(ρn, ŷn), so that attaining the best-response ρ∗(y) is equivalent to approaching1

the set
B0 = {(ρ, y) ∈ IR× Y : ρ ≥ ρ∗(y)} .

However, two obstacles stand in the way of applying the approachability results.
First, and foremost, ρn and ŷn are normalized by different temporal factors.
Second, B0 need not be a convex set as the best-response envelope ρ∗(y) is not
convex in general, so that the simple condition for convex sets in Blackwell’s
original result which is exploited in [3, 15] cannot be used.

To address the first difficulty, we reformulate the approachability problem.
Let πn denote the vector of P2’s action rates, namely

πn =
1
τ̂n
ŷn .

Note that πn(j) gives the temporal rate, in actions per unit time, in which action
j was chosen over the first n stages. Obviously πn is not a probability vector, as
the sum of its elements is 1/τ̂n. The set of feasible action rates is given by

Π =
{y
τ

: y ∈ Y, τ ∈ T (y)
}
, (10)

where T (y) is the set of average stage durations τ which are feasible jointly with
the empirical distribution y, that is, T (y)=

{∑
j y(j)τ(x

j , j) : xj∈X for all j
}

.
Note that Π is a convex set; indeed, it is the image of the convex set {y, τ : y ∈
Y, τ ∈ T (y)} under a linear-fractional function ([4]).

We proceed to formulate the set to be approached in terms of π instead of
ŷ. Note first that the action rate vector πn uniquely determines the empirical
distribution vector ŷn via ŷn = πn/|πn|, where |π| is the sum of elements of π.
Given P2’s action-rate vector π ∈ Π , we define the best-response payoff for P1
as its best-response payoff against the empirical distribution ŷ = π/|π| induced
by π. That is, for π ∈ Π ,

ρ̃∗(π)
�
= ρ∗

(
π

|π|

)
= max

i∈I

∑
j r(i, j)π(j)∑
j τ(i, j)π(j)

, (11)

where |π| was cancelled out from the last expression. Thus, although defined on
a different set, ρ̃∗ turns out to be identical in its functional form to ρ∗. We refer
to ρ̃∗ : Π → IR as the temporal best-response envelope.

Convexity of ρ̃∗ turns out to be a sufficient condition for existence of no-regret
strategies. The proof is similar to [15] and is therefore omitted.

Theorem 1. Suppose the temporal best-response envelope ρ̃∗(π) is convex over
its domain Π. Then P1 has a no-regret strategy (in the sense of Definition 1),
namely, a strategy that attains the best-response envelope ρ∗(ŷ).
1 Formally, in approachability one has to define a vector-valued game and prove that

the point-to-set distance between the average vector-valued reward and the target
set goes to 0 almost surely. See [15] for an example of such analysis.
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4.2 The Convex Best-Response Envelope

When ρ̃∗ is not convex, the preceding analysis provides no performance guar-
antees for P1. To proceed, we will need to relax the goal of attaining the best-
response.

Definition 2 (Convex best-response envelope). The convex best-response
envelope ρ̃co : Π → IR is defined as the lower convex hull of ρ̃∗ over its domain Π.

We now have the following result. See [16] for a proof.

Theorem 2 (ρ̃co(π) is attainable). The convex best-response envelope ρ̃co(π)
is attainable by P1. Namely, there exists a strategy of P1 so that

lim inf
n→∞

(ρn − ρ̃co(πn)) ≥ 0 (a.s.) (12)

for any strategy of P2.

It will be useful to formulate the performance guarantee of the last proposition
in terms of the empirical distribution ŷn rather than the action rates πn. This is
easily done by projecting ρ̃co from Π back to Y . For ŷ ∈ Y , define

ρco(ŷ) = min{ρ̃co(π) : π ∈ Π, π|π| = ŷ} . (13)

For simplicity we also refer to ρco as the convex best-response envelope (over
Y ). The following corollary to Theorem 2 is immediate.

Corollary 1 (ρco(ŷ) is attainable). The convex best-response envelope ρco(ŷ)
is attainable by P1. Namely, there exists a strategy of P1 so that

lim inf
n→∞

(ρn − ρco(ŷn)) ≥ 0 (a.s.). (14)

In fact, any strategy of P1 that attains ρ̃co(π) also attains ρco(ŷ).

Figure 1 illustrates the resulting convex best-response envelope for the game of
Example 1. As ρ∗ is not attainable in this example, it is clear that ρco must be
strictly smaller than ρ∗ for some values of y, as is indeed the case.

The next lemma presents some general properties of ρco that will be related
to its performance guarantees.

Lemma 3 (Properties of ρco). The convex best-response envelope ρco(y) sat-
isfies the following properties. For each y ∈ Y ,

(i) v(r, τ) ≤ ρco(y) ≤ ρ∗(y) .
(ii) If ρ∗(y) > v(r, τ), then ρco(y) > v(r, τ).

Proof. (i) Fix y, and take any π ∈ Π with π/|π| = y. Then ρco(y) ≤ ρ̃co(π) ≤
ρ̃∗(π) = ρ∗(y), where all inequalities follow directly from the definitions of the
respective envelopes. Also, since ρ∗ ≥ v(r, τ), the same property is inherited by
ρ̃∗, ρ̃co and ρco, again by their respective definitions.
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Fig. 1. ρ∗(y) (dotted) and ρco(y) (thick line) for the game of Example 1. The right
figure zooms on the segment [0, 0.08]. Note that v(r, τ ) = 5/16 for that game.

(ii) We will show that ρco(y) = v(r, τ) implies that ρco(y) = v(r, τ). Suppose
ρco(y) = v(r, τ). Then there exists some π ∈ Π such that π/|π| = y and ρ̃co(π) =
v(r, τ). By Caratheodory’s Theorem there exist � points π1, . . . , π� in Π (where
� ≤ 2 + |J |) and coefficients α1, . . . , α� > 0 with

∑�
m=1 αm = 1 such that π =∑�

m=1 αmπm and v(r, τ) = ρ̃co(π) =
∑�

m=1 αmρ
∗(πm). Since ρ∗(π) ≥ v(r, τ),

this implies that ρ∗(πm) = v(r, τ) for all m. Recall now from Lemma 1(ii) that
the set Y ∗ of mixed actions y ∈ Y for which ρ∗(y) = v(r, τ) is convex. The set
Π∗ = {π′ ∈ Π : π′/|π′| ∈ Y ∗} is thus an image of a convex set under a linear-
fractional transformation, and is therefore convex ([4]). Noting that πm ∈ Π∗ for
all m (which follows from ρ∗(πm) = v(r, τ)) and π is their convex combination,
it follows that π ∈ Π∗ and in particular that y = π/|π| ∈ Y ∗, which is equivalent
to ρco(y) = v(r, τ). 
�

Both properties that were stated in the last lemma can be observed in Fig. 1.

5 Calibrated Play

In calibrated play, P1 uses at each stage a best-response to his forecasts of the
other player’s action at that stage. The quality of the resulting strategy depends
of course on the quality of the forecast; it is well known that using calibrated
forecasts leads to no-regret strategies in repeated matrix games. See, for example,
[6] for an overview of the relation between regret minimization and calibration. In
this section we consider the consequences of calibrated play for repeated games
with variable stage duration.

We start with a formal definition of calibrated forecasts and calibrated play
in the next subsection. We then introduce in Subsection 5.2 the calibration en-
velope ρcal(ŷ), and show that it is attained by calibrated play in the sense that
ρn ≥ ρcal(ŷn) holds asymptotically. We then proceed to compare the calibration
envelope with the convex best-response envelope of the previous section, and
show that ρcal ≥ ρco.
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5.1 Calibrated Forecasts and Calibrated Play

A forecasting scheme specifies at each decision point k a probabilistic forecast
qk ∈ Y of P2’s action jk. More specifically, a (randomized) forecasting scheme
is a sequence of maps μk : Hk−1 → Δ(Y ), k ≥ 1, which associates with each
possible history hk−1 a probability measure μk over Y . The forecast qk ∈ Y is
selected at random according to the distribution μk.

We shall use the following definition of calibrated forecasts.

Definition 3 (Calibrated forecasts). A forecasting scheme is calibrated if
for every (Borel measurable) set Q ⊂ Y and every strategy of P2,

lim
n→∞

1
n

n∑
k=1

1{qk ∈ Q}(ejk − qk) = 0 a.s., (15)

where ej is a vector of zeros with 1 in the jth location.

This form of calibration property has been introduced into game theory by [7],
and several algorithms have been devised to achieve it ([8, 11, 13]). These al-
gorithms typically start with predictions that are restricted to a finite grid,
gradually increasing the number of grid points (see [5] for such a construction).

In calibrated play, the active player (P1) essentially chooses a best-response
action to his forecast of the other player’s actions. That is: ik ∈ I∗(qk), where

I∗(y) = argmax
i∈I

r(i, y)
τ(i, y)

, y ∈ Y . (16)

To be more specific, we shall assume some fixed tie-breaking rule when I∗(y) is
not a singleton. Thus, we have the following definition.

Definition 4 (Calibrated Play). A calibrated strategy for P1 in the variable-
duration repeated game Γ∞(r, τ) is given by

ik = io(qk) (17)

where (qk) is a calibrated forecast of P2’s actions, and i0(y) ∈ I∗(y) for each
y ∈ Y .

The choice of ik as a best response to qk in the game Γ0(r, τ) with payoff ρ(x, y)
is motivated by the definition of the best-response envelope in (5). Note that
the chosen action does not maximize expected one-stage reward rate, namely∑
qk(j)

r(i,j)
τ(i,j) , which cannot be easily related to the repeated game payoff.

5.2 The Calibration Envelope

Let Y ∗
i = {y ∈ Y : i ∈ I∗(y)} denote the (closed) set of mixed actions to which

i ∈ I is a best response in Γ0(r, τ). We shall assume that each Y ∗
i is non-empty;

actions i for which Y ∗
i is empty will never be used and can be deleted from the

game model.
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Let Δd(Y ) denote the set of discrete probability measures on Y , and let
mμ =

∫
yμ(dy) denote the barycenter of μ ∈ Δd(Y ). The calibration envelope

ρcal is defined as follows, for ŷ ∈ Y :

ρcal(ŷ) = inf
{∫

r(i(y), y)μ(dy)∫
τ(i(y), y)μ(dy)

: μ ∈ Δd(Y ), mμ = ŷ, i(y) ∈ I∗(y)
}
. (18)

The restriction to discrete measures is for technical convenience only and is of no
consequence, as the infimum is already attained by a measure of finite support.
This follows from the next lemma which also provides an alternative expression
for ρcal, alongside a useful continuity property.

Lemma 4.

(i) Let co(Y ∗
i ) denote the convex hull of Y ∗

i . Then

ρcal(ŷ) = min

{∑
i∈I αir(i, yi)∑
i∈I αiτ(i, yi)

: α ∈ Δ(I), yi ∈ co(Y ∗
i ),

∑
i∈I

αiyi = ŷ

}
.

(19)
(ii) The infimum in (18) is attained by a measure μ of finite support.
(iii) ρcal(ŷ) is continuous in ŷ ∈ Y .

Proof. (i) Note first that the minimum in (19) is indeed attained, as we minimize
a continuous function over a compact set (co(Y ∗

i ) is closed since Y ∗
i is closed).

Let ρ1(ŷ) denote the right-hand side of (19). To show that ρ1 ≤ ρcal, note that by
Caratheodory’s Theorem each yi ∈ co(Y ∗

i ) can be written as yi =
∑

j∈J βijyij ,
with yij ∈ Y ∗

i and βi ∈ Δ(J). It follows that for each ŷ the argument of (19) can
be written as the special case of the argument of (18), from which ρ1(ŷ) ≤ ρcal(ŷ)
follows. Conversely, given μ ∈ Δd(ŷ) and the selection function i(y) ∈ I∗(y),
define αi =

∫
y:i(y)=i μ(dy), and yi =

∫
y:i(y)=i yμ(dy)/αi (with yi arbitrary if

αi = 0). Note that yi ∈ co(Y ∗
i ), since i(y) ∈ I∗(y) implies y ∈ Y ∗

i , and yi
is defined as a convex combination of such y’s. The argument of (18) is thus
reduced to the form of (19), which implies that ρ1(ŷ) ≤ ρcal(ŷ).
(ii) Follows immediately from the indicated reduction of the argument of (19)
to that of (18).
(iii) Continuity follows since the minimized function in (19) is continuous in its
arguments α and (yi), while the minimizing set is upper semi-continuous in y.


�
We next establish that calibrated play attains the calibration envelope.

Theorem 3 (ρcal is attainable). Suppose P1 uses a calibrated strategy. Then,
for any strategy of P2,

lim inf
n→∞

(ρn − ρcal(ŷn)) ≥ 0 (a.s.) .

Proof. It will be convenient to use for this proof the shorthand notations an
o(n)
=

bn for limn→∞(an − bn) = 0, and an
o(n)
≥ bn for lim infn→∞(an − bn) ≥ 0.
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All relations between random variables are assumed by default to hold with
probability 1. Let Yi = {y ∈ Y : io(y) = i}, so that qk ∈ Yi implies ik = i; note
that Yi ⊂ Y ∗

i . We thus have

1
n

n∑
k=1

r(ik, jk) =
1
n

∑
i∈I

n∑
k=1

1{qk ∈ Yi}r(i, jk)

o(n)
=

1
n

∑
i∈I

n∑
k=1

1{qk ∈ Yi}r(i, qk)

=
1
n

∑
i∈I

n∑
k=1

1{qk ∈ Yi}r(io(qk), qk)

=
1
n

n∑
k=1

r(io(qk), qk) .

The second (o(n)) equality follows from (15). Repeating the argument for τ we
obtain

1
n

n∑
k=1

τ(ik, jk)
o(n)
=

1
n

n∑
k=1

τ(io(qk), qk) .

Since τ(i, j) is bounded away from zero, it follows that

ρn
o(n)
=

∑n
k=1 r(i

o(qk), qk)∑n
k=1 τ(io(qk), qk)

, (20)

while the latter expression satisfies the following inequality by definition of ρcal:∑n
k=1 r(i

o(qk), qk)∑n
k=1 τ(io(qk), qk)

≥ ρcal(q̂n) , where q̂n =
1
n

n∑
k=1

qk .

Thus,ρn
o(n)
≥ ρcal(q̂n). Note also that from (15), with Q = Y , we have ŷn

o(n)
= q̂n.

The required equality now follows by continuity for ρcal(y) in y, as noted in
Lemma 4. 
�

The following immediate consequence provides a sufficient condition for the
best-response envelope ρ∗ to be attainable, namely for the existence of no-regret
strategies.

Corollary 2. Suppose that ρcal(y) = ρ∗(y) for all y ∈ Y . Then ρ∗ is attainable
by P1.

The condition of the last corollary is satisfied in standard (fixed-duration) re-
peated matrix games. In general, however, ρcal can be strictly smaller than ρ∗.
In particular, this must be the case when ρ∗ is not attainable.

We proceed to establish some basic bounds on ρcal, that highlight the perfor-
mance guarantees of calibrated play.
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Proposition 4 (Properties of ρcal).

(a) v(r, τ) ≤ ρcal(ŷ) ≤ ρ∗(ŷ) for all ŷ ∈ Y .
(b) ρcal(ŷ) = ρ∗(ŷ) at the extreme points of Y , which correspond to the pure

action set I.
(c) For each ŷ ∈ Y , ρ∗(ŷ) > v(r, τ) implies ρcal(ŷ) > v(r, τ).

Proof. The proof is technical and appears in [16].

5.3 Comparison with the Convex Best-Response Envelope

The results obtained so far establish that both the convex best-response envelope
ρco (defined in Section 4.2) and the calibration envelope ρcal are attainable, using
different strategies. Here we compare these two performance envelopes, and show
that the calibration envelope dominates ρco. We first show that ρcal is at least
as large as ρco, and identify certain class of variable-duration games for which
equality holds. We then provide an example where ρcal is strictly larger than ρco.

Proposition 5 (ρcal dominates ρco).

(i) ρcal(ŷ) ≥ ρco(ŷ) for all ŷ ∈ Y .
(ii) If the stage durations depend on P2’s actions only, namely τ(i, j) = τ0(j),

then ρcal = ρco.

The proof is omitted; see [16].

Example 2. (ρcal strictly dominates ρco). Consider the variable duration ma-
trix game Γ (r, τ) defined by the following matrix:(

(0, 1) (2, 3)
(2, 3) (0, 1)

)
.

As before, P1 is the row player, P2 the column player, and the ij-th entry is
(r(i, j), τ(i, j)). A plot of ρcal = ρ∗ and ρco for the last example is shown in
Figure 2. A detailed account of the computation can be found in [16].
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Fig. 2. ρcal(y) (dotted line) and ρco(y) (thick line) for the game of Example 2



422 S. Mannor and N. Shimkin

6 Directions for Future Work

Several directions and issues remain for future work. First, the calibration-based
scheme is quite demanding, and it should be of interest to obtain similar perfor-
mance using simpler strategies. Second, a challenging question is to determine
whether the performance guarantees of the calibration envelope can be improved
upon, and indeed whether a sense of an optimal performance envelope exists in
general. Finally, it would be of interest to study adaptive strategies for the
variable-duration model under incomplete observation of the opponent’s action,
similar to the bandit problem setup in repeated matrix games ([1]).
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Abstract. We describe a novel framework for the design and analysis of online
learning algorithms based on the notion of duality in constrained optimization.
We cast a sub-family of universal online bounds as an optimization problem. Us-
ing the weak duality theorem we reduce the process of online learning to the task
of incrementally increasing the dual objective function. The amount by which the
dual increases serves as a new and natural notion of progress. We are thus able
to tie the primal objective value and the number of prediction mistakes using and
the increase in the dual. The end result is a general framework for designing and
analyzing old and new online learning algorithms in the mistake bound model.

1 Introduction

Online learning of linear classifiers is an important and well-studied domain in
machine learning with interesting theoretical properties and practical applications
[3, 4, 7, 8, 9, 10, 12]. An online learning algorithm observes instances in a sequence of
trials. After each observation, the algorithm predicts a yes/no (+/−) outcome. The pre-
diction of the algorithm is formed by a hypothesis, which is a mapping from the instance
space into {+1,−1}. This hypothesis is chosen by the online algorithm from a prede-
fined class of hypotheses. Once the algorithm has made a prediction, it receives the
correct outcome. Then, the online algorithm may choose another hypothesis from the
class of hypotheses, presumably improving the chance of making an accurate prediction
on subsequent trials. The quality of an online algorithm is measured by the number of
prediction mistakes it makes along its run.

In this paper we introduce a general framework for the design and analysis of on-
line learning algorithms. Our framework emerges from a new view on relative mistake
bounds [10, 14], which are the common thread in the analysis of online learning al-
gorithms. A relative mistake bound measures the performance of an online algorithm
relatively to the performance of a competing hypothesis. The competing hypothesis can
be chosen in hindsight from a class of hypotheses, after observing the entire sequence
of examples. For example, the original mistake bound of the Perceptron algorithm [15],
which was first suggested over 50 years ago, was derived by using a competitive analy-
sis, comparing the algorithm to a linear hypothesis which achieves a large margin on
the sequence of examples. Over the years, the competitive analysis technique was re-
fined and extended to numerous prediction problems by employing complex and varied
notions of progress toward a good competing hypothesis. The flurry of online learning
algorithms sparked unified analyses of seemingly different online algorithms by Little-
stone, Warmuth, Kivinen and colleagues [10, 13]. Most notably is the work of Grove,

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 423–437, 2006.
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Littlestone, and Schuurmans [8] on a quasi-additive family of algorithms, which in-
cludes both the Perceptron [15] and the Winnow [13] algorithms as special cases. A
similar unified view for regression was derived by Kivinen and Warmuth [10, 11]. On-
line algorithms for linear hypotheses and their analyses became more general and pow-
erful by employing Bregman divergences for measuring the progress toward a good
hypothesis [7, 8, 9]. In the aftermath of this paper we refer to these analyses as primal
views.

We propose an alternative view of relative mistake bounds which is based on the no-
tion of duality in constrained optimization. Online mistake bounds are universal in the
sense that they hold for any possible predictor in a given hypothesis class. We therefore
cast the universal bound as an optimization problem. Specifically, the objective func-
tion we cast is the sum of an empirical loss of a predictor and a complexity term for
that predictor. The best predictor in a given class of hypotheses, which can only be de-
termined in hindsight, is the minimizer of the optimization problem. In order to derive
explicit quantitative mistake bounds we make an immediate use of the fact that dual
objective lower bounds the primal objective. We therefore switch to the dual represen-
tation of the optimization problem. We then reduce the process of online learning to the
task of incrementally increasing the dual objective function. The amount by which the
dual increases serves as a new and natural notion of progress. By doing so we are able
to tie the primal objective value, the number of prediction mistakes, and the increase
in the dual. The end result is a general framework for designing online algorithms and
analyzing them in the mistake bound model.

We illustrate the power of our framework by studying two schemes for increasing
the dual objective. The first performs a fixed size update based solely on the last ob-
served example. We show that this dual update is equivalent to the primal update of the
quasi-additive family of algorithms [8]. In particular, our framework yields the tightest
known bounds for several known quasi-additive algorithms such as the Perceptron and
Balanced Winnow. The second update scheme we study moves further in the direction
of optimization techniques in several accounts. In this scheme the online learning al-
gorithm may modify its hypotheses based on multiple past examples. Furthermore, the
update itself is constructed by maximizing or approximately maximizing the increase
in the dual. While this second approach still entertains the same mistake bound of the
first scheme it also serves as a vehicle for deriving new online algorithms.

2 Problem Setting

In this section we introduce the notation used throughout the paper and formally de-
scribe our problem setting. We denote scalars with lower case letters (e.g. x and ω), and
vectors with bold face letters (e.g. x and ω). The set of non-negative real numbers is
denoted by R+. For any k ≥ 1, the set of integers {1, . . . , k} is denoted by [k].

Online learning of binary classifiers is performed in a sequence of trials. At trial t
the algorithm first receives an instance xt ∈ Rn and is required to predict the label
associated with that instance. We denote the prediction of the algorithm on the t’th trial
by ŷt. For simplicity and concreteness we focus on online learning of binary classifiers,
namely, we assume that the labels are in {+1,−1}. After the online learning algorithm
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has predicted the label ŷt, the true label yt ∈ {+1,−1} is revealed and the algorithm
pays a unit cost if its prediction is wrong, that is, if yt �= ŷt. The ultimate goal of the
algorithm is to minimize the total number of prediction mistakes it makes along its run.
To achieve this goal, the algorithm may update its prediction mechanism after each trial
so as to be more accurate in later trials.

In this paper, we assume that the prediction of the algorithm at each trial is de-
termined by a margin-based linear hypothesis. Namely, there exists a weight vector
ωt ∈ Ω ⊂ Rn where ŷt = sign(〈ωt,xt〉) is the actual binary prediction and |〈ωt,xt〉|
is the confidence in this prediction. The term yt 〈ωt,xt〉 is called the margin of the
prediction and is positive whenever yt and sign(〈ωt,xt〉) agree. We can evaluate the
performance of a weight vector ω on a given example (x, y) in one of two ways. First,
we can check whether ω results in a prediction mistake which amounts to checking
whether y = sign(〈ω,x〉) or not. Throughout this paper, we use M to denote the num-
ber of prediction mistakes made by an online algorithm on a sequence of examples
(x1, y1), . . . , (xm, ym). The second way we evaluate the predictions of an hypothesis
is by using the hinge-loss function, defined as,

�γ
(
ω; (x, y)

)
=

{
0 if y 〈ω,x〉 ≥ γ
γ − y 〈ω,x〉 otherwise

. (1)

The hinge-loss penalizes an hypothesis for any margin less than γ. Additionally, if
y �= sign(〈ω,x〉) then �γ(ω; (x, y)) ≥ γ. Therefore, the cumulative hinge-loss suffered
over a sequence of examples upper bounds γM . Throughout the paper, when γ = 1 we
use the shorthand �(ω; (x, y)).

As mentioned before, the performance of an online learning algorithm is measured
by the cumulative number of prediction mistakes it makes along its run on a sequence of
examples (x1, y1), . . . , (xm, ym). Ideally, we would like to think of the labels as if they
are generated by an unknown yet fixed weight vector ω� such that yi = sign(〈ω�,xi〉)
for all i ∈ [m]. Moreover, in an utopian case, the cumulative hinge-loss of ω� on the
entire sequence is zero, which means that ω� produces the correct label with a confi-
dence of at least γ. In this case, we would likeM , the number of prediction mistakes of
our online algorithm, to be independent ofm, the number of examples. Usually, in such
cases, M is upper bounded by F (ω�) where F : Ω → R is a function which measures
the complexity of ω�. In the more realistic case, there does not exist ω� which perfectly
predicts the data. In this case, we would like the online algorithm to be competitive with
any fixed hypothesis ω. Formally, let λ and C be two positive scalars. We say that our
online algorithm is (λ,C)-competitive with the set of vectors in Ω, with respect to a
complexity function F and the hinge-loss �γ , if the following bound holds,

∀ ω ∈ Ω, λM ≤ F (ω) + C

m∑
i=1

�γ(ω; (xi, yi)) . (2)

The parameter C controls the trade-off between the complexity of ω (through F ) and
the cumulative hinge-loss of ω. The parameter λ is introduced for technical reasons
that are provided in the next section. The main goal of this paper is to develop a general
paradigm for designing online learning algorithms and analyze them in the mistake
bound framework given in Eq. (2).
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3 A Primal-Dual Apparatus for Online Learning

In this section we describe a methodology for designing online learning algorithms for
binary classification. To motivate our construction let us first consider the special case
where γ = 1, F (ω) = 1

2‖ω‖22, and Ω = Rn. Denote by P(ω) the right hand side of
Eq. (2) which in this special case amounts to,

P(ω) =
1
2
‖ω‖2 + C

m∑
i=1

�(ω; (xi, yi)) .

The bound in Eq. (2) can be rewritten as,

λM ≤ min
ω∈Rn

P(ω) def= P� . (3)

Note that P(ω) is the well-known primal objective function of the optimization prob-
lem employed by the SVM algorithm [5]. Intuitively, we view the online learning task
as incrementally solving the optimization problem minω P(ω). However, while P(ω)
depends on the entire sequence of examples {(x1, y1), . . . , (xm, ym)}, the online al-
gorithm is confined to use on trial t only the first t − 1 examples of the sequence. To
overcome this disparity, we follow the approach that ostriches take in solving prob-
lems: we simply ignore the examples {(xt, yt), . . . , (xm, ym)} as they are not provided
to the algorithm on trial t. Therefore, on trial t we use the following weight vector for
predicting the label,

ωt = argmin
ω

Pt(ω) where Pt(ω) =
1
2
‖ω‖2 + C

t−1∑
i=1

�(ω; (xi, yi)) .

This online algorithm is a simple (and non-efficient) adaptation of the SVM algorithm
for the online setting and we therefore call it the Online-SVM algorithm (see also [12]).
Since the hinge-loss �(ω; (xt, yt)) is non-negative we get that Pt(ω) ≤ Pt+1(ω) for
any ω and therefore Pt(ωt) ≤ Pt(ωt+1) ≤ Pt+1(ωt+1). Note that P1(ω1) = 0 and
that Pm+1(ω) = P�. Thus,

0 = P1(ω1) ≤ P2(ω2) ≤ . . . ≤ Pm+1(ωm+1) = P� .

Recall that our goal is to find an online algorithm which entertains the mistake bound
given in Eq. (3). Suppose that we can show that for each trial t on which the online
algorithm makes a prediction mistake we have that Pt+1(ωt+1) − Pt(ωt) ≥ λ >
0. Equipped with this assumption, it follows immediately that if the online algorithm
made M prediction mistakes on the entire sequence of examples then Pm+1(ωm+1)
should be at least λM . Since Pm+1(ωm+1) = P� we conclude that λM ≤ P� which
gives the desired mistake bound from Eq. (3). In summary, to prove a mistake bound
one needs to show that the online algorithm constructs a sequence of lower bounds
P1(ω1), . . . ,Pm+1(ωm+1) for P�. These lower bounds should become tighter and
tighter with the progress of the online algorithm. Moreover, whenever the algorithm
makes a prediction mistake the lower bound must increase by at least λ.
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The notion of duality, commonly used in optimization theory, plays an important
role in obtaining lower bounds for the minimal value of the primal objective (see for
example [2]). We now take an alternative view of the Online-SVM algorithm based on
the notion of duality. As we formally show later, the dual of the problem minω P(ω) is

max
α∈[0,C]m

D(α) where D(α) =
m∑
i=1

αi −
1
2

∥∥∥∥∥
m∑
i=1

αi yi xi

∥∥∥∥∥
2

. (4)

The weak duality theorem states that any value of the dual objective is upper bounded
by the optimal primal objective. That is, for any α ∈ [0, C]m we have thatD(α) ≤ P�.
If in addition strong duality holds then maxα∈[0,C]m D(α) = P�. As we show in the
sequel, the values P1(ω1), . . . ,Pm+1(ωm+1) translate to a sequence of dual objective
values. Put another way, there exists a sequence of dual solutions α1, . . . ,αm+1 such
that for all t ∈ [m+1] we have thatD(αt) = Pt(ωt). This fact follows from a property
of the dual function in Eq. (4) as we now show.

Denote by Dt the dual objective function of Pt,

Dt(α) =
t−1∑
i=1

αi −
1
2

∥∥∥∥∥
t−1∑
i=1

αi yi xi

∥∥∥∥∥
2

. (5)

Note that Dt is a mapping from [0, C]t−1 into the reals. From strong duality we know
that the minimum of Pt equals to the maximum ofDt. From the definition ofDt we get
that for (α1, . . . , αt−1) ∈ [0, C]t−1 the following equality holds,

Dt((α1, . . . , αt−1)) = D((α1, . . . , αt−1, 0, . . . , 0)) .

Therefore, the Online-SVM algorithm can be viewed as an incremental solver of the
dual problem, maxα∈[0,C]m D(α), where at the end of trial t the algorithm maximizes
the dual function confined to the first t variables,

max
α∈[0,C]m

D(α) s.t. ∀i>t, αi = 0 .

The property of the dual objective that we utilize is that it can be optimized in a sequen-
tial manner. Specifically, if on trial t we ground αi to zero for i ≥ t thenD(α) does not
depend on examples which have not been observed yet.

We presented two views of the Online-SVM algorithm. In the first view the algo-
rithm constructs a sequence of primal solutions ω1, . . . ,ωm+1 while in the second
the algorithm constructs a sequence of dual solutions which we analogously denote by
α1, . . . ,αm+1. As we show later, the connection between ωt and αt is given through
the equality,

ωt =
m∑
i=1

αti yi xi . (6)

In general, any sequence of feasible dual solutions α1, . . . ,αm+1 can define an on-
line learning algorithm by setting ωt according to Eq. (6). Naturally, we require that
αti = 0 for all i ≥ t since otherwise ωt would depend on examples which have not
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been observed yet. To prove that the resulting online algorithm entertains the mistake
bound given in Eq. (3) we impose two additional conditions. First, we require that
D(αt+1) ≥ D(αt) which means that the dual objective never decreases. In addition,
on trials in which the algorithm makes a prediction mistake we require that the increase
of the dual objective will be strictly positive, D(αt+1) − D(αt) ≥ λ > 0. To recap,
any incremental solver for the dual optimization problem which satisfies the above re-
quirements can serve as an online algorithm which meets the mistake bound given in
Eq. (3).

Let us now formally generalize the above motivating discussion. Our starting point
is the desired mistake bound of the form given in Eq. (2), which can be rewritten as,

λM ≤ inf
ω∈Ω

(
F (ω) + C

m∑
i=1

�γ(ω; (xi, yi))

)
. (7)

As in our motivating example we denote by P(ω) the primal objective of the optimiza-
tion problem on the right-hand side of Eq. (7). Our goal is to develop an online learning
algorithm that achieves this mistake bound. First, let us derive the dual optimization
problem. Using the definition of �γ we can rewrite the optimization problem as,

inf
ω∈Ω,ξ∈Rm

+

F (ω) + C
m∑
i=1

ξi

s.t. ∀i ∈ [m], yi〈ω,xi〉 ≥ γ − ξi .
(8)

We further rewrite this optimization problem using the Lagrange dual function,

inf
ω∈Ω,ξ∈Rm

+

sup
α∈Rm

+

F (ω) + C

m∑
i=1

ξi +
m∑
i=1

αi (γ − yi〈ω,xi〉 − ξi)︸ ︷︷ ︸
def= L(ω,ξ,α)

. (9)

Eq. (9) is equivalent to Eq. (8) due to the following fact. If the constraint yi〈ω,xi〉 ≥
γ − ξi holds then the optimal value of αi in Eq. (9) is zero. If on the other hand the
constraint does not hold then αi equals∞, which implies that ω cannot constitute the
optimal primal solution. The weak duality theorem (see for example [2]) states that,

sup
α∈Rm

+

inf
ω∈Ω,ξ∈Rm

+

L(ω, ξ,α) ≤ inf
ω∈Ω,ξ∈Rm

+

sup
α∈Rm

+

L(ω, ξ,α) . (10)

The dual objective function is defined to be,

D(α) = inf
ω∈Ω,ξ∈Rm

+

L(ω, ξ,α) . (11)

Using the definition of L, we can rewrite the dual objective as a sum of three terms,

D(α) = γ

m∑
i=1

αi − sup
ω∈Ω

(
〈ω,

m∑
i=1

αiyixi〉 − F (ω)

)
+ inf

ξ∈Rm
+

m∑
i=1

ξi (C − αi) .
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The last term equals to zero for αi ∈ [0, C] and to −∞ for αi > C. Since our goal is to
maximizeD(α) we can confine ourselves to the case α ∈ [0, C]m and simply write,

D(α) = γ

m∑
i=1

αi − sup
ω∈Ω

(
〈ω,

m∑
i=1

αiyixi〉 − F (ω)

)
.

The second term in the above presentation of D(α) can be rewritten using the notion of
conjugate functions (see for example [2]). Formally, the conjugate1 of the function F is
the function,

G(θ) = sup
ω∈Ω

〈ω,θ〉 − F (ω) . (12)

Using the definition of G we conclude that for α ∈ [0, C]m the dual objective function
can be rewritten as,

D(α) = γ

m∑
i=1

αi − G

(
m∑
i=1

αiyixi

)
. (13)

For instance, it is easy to verify that the conjugate of F (ω) = 1
2‖ω‖22 (with Ω = Rn) is

G(θ) = 1
2‖θ‖2. Indeed, the above definition ofD for this case coincides with the value

of D given in Eq. (4).
We now describe a template algorithm for online classification by incrementally in-

creasing the dual objective function. Our algorithm starts with the trivial dual solution
α1 = 0. On trial t, we use αt for defining the weight vector ωt which is used for pre-
dicting the label as follows. First, we define θt =

∑t−1
i=1 α

t
i yi xi. Throughout the paper

we assume that the supremum in the definition of G(θ) is attainable and set,

ωt = argmax
ω∈Ω

(〈ω,θt〉 − F (ω)) . (14)

Next, we use ωt for predicting the label ŷt = sign(〈ωt,xt〉). Finally, we find a new
dual solution αt+1 with the last m− t elements of αt+1 are still grounded to zero. The
two requirements we imposed imply that the new value of the dual objective,D(αt+1),
should be at leastD(αt). Moreover, if we make a prediction mistake the increase in the
dual objective should be strictly positive. In general, we might not be able to guarantee a
minimal increase of the dual objective. In the next section we propose sufficient condi-
tions which guarantee a minimal increase of the dual objective whenever the algorithm
makes a prediction mistake. Our template algorithm is summarized in Fig. 1.

We conclude this section with a general mistake bound for online algorithms be-
longing to our framework. We need first to introduce some additional notation. Let
(x1, y1), . . . , (xm, ym) be a sequence of examples and assume that an online algorithm
which is derived from the template algorithm is run on this sequence. We denote by E
the set of trials on which the algorithm made a prediction mistake, E = {t ∈ [m] : ŷt �=
yt}. To remind the reader, the number of prediction mistakes of the algorithm isM and

1 The function G is also called the Fenchel conjugate of F . In cases where F is differentiable
with an invertible gradient, G is also called the Legendre transform of F .
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INPUT: Regularization function F (ω) with domain Ω ;

Trade-off Parameter C ; hinge-loss parameter γ

INITIALIZE: α1 = 0

For t = 1, 2, . . . , m

define ωt = argmax
ω∈Ω

〈ω, θt〉 − F (ω) where θt = t−1
i=1 αt

i yi xi

receive an instance xt and predict its label: ŷt = sign(ωt · xt)

receive correct label yt

If ŷt �= yt

find αt+1 ∈ [0, C]t × {0}m−t such that D(αt+1) − D(αt) > 0

Else

find αt+1 ∈ [0, C]t × {0}m−t such that D(αt+1) − D(αt) ≥ 0

Fig. 1. The template algorithm for online classification

thus M = |E|. Last, we denote by λ the average increase of the dual objective over the
trials in E ,

λ =
1
|E|

∑
t∈E

(
D(αt+1)−D(αt)

)
. (15)

Recall that F (ω) is our complexity measure for the vector ω. A natural assumption
on F is that minω∈Ω F (ω) = 0. The intuitive meaning of this assumption is that the
complexity of the “simplest” hypothesis in Ω is zero. The following theorem provides
a mistake bound for any algorithm which belongs to our framework.

Theorem 1. Let (x1, y1), . . . , (xm, ym) be a sequence of examples. Assume that an
online algorithm of the form given in Fig. 1 is run on this sequence with a function
F : Ω → R which satisfies minω∈Ω F (ω) = 0. Then,

λM ≤ inf
ω∈Ω

(
F (ω) + C

m∑
t=1

�γ(ω; (xt, yt))

)
,

where λ is as defined in Eq. (15).

Proof. We prove the claim by bounding D(αm+1) from above and below. First, let us
rewrite D(αm+1) as D(α1) +

∑m
t=1

(
D(αt+1)−D(αt)

)
. Recall that α1 is the zero

vector and therefore θ1 = 0 which gives,

D(α1) = 0−max
ω∈Ω

(〈ω,0〉 − F (ω)) = min
ω∈Ω

F (ω) .

Thus, the assumption minω∈Ω F (ω) = 0 implies thatD(α1) = 0. Since on each round
D(αt+1)−D(αt) ≥ 0 we conclude that,

D(αm+1) ≥
∑
t∈E

(
D(αt+1)−D(αt)

)
= |E|λ .
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This provides a lower bound on D(αm+1). The upper bound D(αm+1) ≤ P� follows
directly from the weak duality theorem. Comparing the upper and lower bounds con-
cludes our proof. 
�

The bound in Thm. 1 becomes meaningless when λ is excessively small. In the next
section we analyze a few known online algorithms. We show that these algorithms
tacitly impose sufficient conditions on F and on the sequence of input examples. These
conditions guarantee a minimal increase of the dual objective which result in mistake
bounds for each algorithm.

4 Analysis of Known Online Algorithms

In the previous section we introduced a template algorithm for online learning. In
this section we analyze the family of quasi-additive online algorithms described
in [8, 10, 11] using the newly introduced dual view. This family includes several known
algorithms such as the Perceptron algorithm [15], Balanced-Winnow [8], and the fam-
ily of p-norm algorithms [7]. Recall that we cast online learning as the problem of
incrementally increasing the dual objective function given by Eq. (13). We show in this
section that all quasi-additive online learning algorithms can be viewed as employing
the same procedure for incrementing Eq. (13). The sole difference between the algo-
rithms is the complexity function F which leads to different forms of the function G.
We exploit this fact by providing a unified analysis and mistake bounds to all the above
algorithms. The bounds we obtain are as tight as the bounds that were derived for each
algorithm individually yet our proofs are simpler.

To guarantee an increase in the dual as given by Eq. (13) on erroneous trials we
devise the following procedure. First, if on trial t the algorithm did not make a prediction
mistake we do not change α and thus set αt+1 = αt. If on trial t there was a prediction
mistake, we change only the t’th component of α and set it to C. Formally, for t ∈ E
the new vector αt+1 is defined as,

αt+1
i =

{
αti if i �= t
C if i = t

(16)

This form of update implies that the components of α are either zero or C.
Before we continue with the derivation and analysis of online algorithms, let us first

provide sufficient conditions for the update given by Eq. (16) which guarantee a min-
imal increase of the dual objective for all t ∈ E . Let t ∈ E be a trial on which α was
updated. From the definition of D(α) we get that the change in the dual objective due
to the update is,

D(αt+1)−D(αt) = γ C −G(θt + C ytxt) +G(θt) . (17)

Throughout this section we assume that G is twice differentiable. (This assumption
indeed holds for the algorithms we analyze.) We denote by g(θ) the gradient of G at
θ and by H(θ) the Hessian of G, that is, the matrix of second order derivatives of G
with respect to θ. We would like to note in passing that the vector function g(·) is often
referred to as the link function (see for instance [1, 7, 10, 11]).
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Using Taylor expansion of G around θt, we get that there exists θ for which,

G(θt + C ytxt) = G(θt) + C yt 〈xt, g(θt)〉+
1
2
C2 〈xt, H(θ)xt〉 . (18)

Plugging the above equation into Eq. (17) gives that,

D(αt+1)−D(αt) = C (γ − yt〈xt, g(θt)〉)−
1
2
C2 〈xt, H(θ)xt〉 . (19)

We next show that ωt = g(θt) and therefore the second term in the right-hand of
Eq. (18) is negative. Put another way, moving θt infinitesimally in the direction of ytxt
decreasesG. We then cap the amount by which the second order term can influence the
dual value. To show that ωt = g(θt) note that from the definition of G and ωt, we get
that for all θ the following holds,

G(θt)+〈ωt,θ−θt〉 = 〈ωt,θt〉−F (ωt)+〈ωt,θ−θt〉 = 〈ωt,θ〉−F (ωt) . (20)

In addition, G(θ) = maxω∈Ω〈ω,θ〉 − F (ω) ≥ 〈ωt,θ〉 − F (ωt). Combining
Eq. (20) with the last inequality gives the following,

G(θ) ≥ G(θt) + 〈ωt,θ − θt〉 . (21)

Since Eq. (21) holds for all θ it implies that ωt is a sub-gradient ofG. In addition, since
G is differentiable its only possible sub-gradient at θt is its gradient, g(θt), and thus
ωt = g(θt). The simple form of the update and the link between ωt and θt through g
can be summarized as the following simple yet general quasi-additive update:

If ŷt = yt Set θt+1 = θt and ωt+1 = ωt

If ŷt �= yt Set θt+1 = θt + Cytxt and ωt+1 = g(θt+1)

Getting back to Eq. (19) we get that,

D(αt+1)−D(αt) = C (γ − yt〈ωt,xt〉)−
1
2
C2 〈xt, H(θ)xt〉 . (22)

Recall that we assume that t ∈ E and thus yt〈xt,ωt〉 ≤ 0. In addition, we later on show
that 〈x, H(θ)x〉 ≤ 1 for all x ∈ Ω with the particular choices of G and under certain
assumptions on the norm of x. We therefore can state the following corollary.

Corollary 1. Let G be a twice differentiable function whose domain is Rn. Denote by
H the Hessian of G and assume that for all θ ∈ Rn and for all xt (t ∈ E) we have that
〈xt, H(θ)xt〉 ≤ 1. Then, under the conditions of Thm. 1 the update given by Eq. (16)
ensures that, λ ≥ γ C − 1

2C
2.

Example 1 (Perceptron). The Perceptron algorithm [15] is derived from Eq. (16) by
setting F (ω) = 1

2‖ω‖2, Ω = Rn, and γ = 1. To see this, note that the conjugate
function of F for this choice is, G(θ) = 1

2‖θ‖2. Therefore, the gradient of G at θt is
g(θt) = θt, which implies that ωt = θt. We thus obtain a scaled version of the well
known Perceptron update, ωt+1 = ωt+C yt xt. Assume that ‖xt‖2 ≤ 1 for all t ∈ [m].



Online Learning Meets Optimization in the Dual 433

Since the Hessian ofG is the identity matrix we get that, 〈xt, H(θ)xt〉 = 〈xt,xt〉 ≤ 1.
Therefore, we obtain the following mistake bound,

(C − 1
2
C2)M ≤ min

ω∈Rn

1
2
‖ω‖2 + C

m∑
i=1

�(ω; (xi, yi)) . (23)

Note the sequence of predictions of the Perceptron algorithm does not depend on the
actual value of C so long as C > 0. Therefore, we can choose C so as to minimize the
right hand side of Eq. (23) and rewrite,

∀ω ∈ Rn, M ≤ min
C∈(0,2)

(
1

C(1− 1
2C)

)(
1
2
‖ω‖2 + C

m∑
i=1

�(ω; (xi, yi))

)
,

where the domain (0, 2) forC ensures that the bound will not become vacuous. Solving
the right-hand side of the above equation for C yields the following mistake bound,

M ≤ L +
1
2
‖ω‖2

(
1 +

√
1 + 4L/‖ω‖2

)
,

where L =
∑m

i=1 �(ω; (xi, yi)). The proof is omitted due to the lack of space and
will be presented in a long version of the paper. We would like to note that this bound is
identical to the best known mistake bound for the Perceptron algorithm (see for example
[7]). However, our proof technique is vastly different and enables us to derive mistake
bounds for new algorithms, as we show later on in Sec. 5.

Example 2 (Balanced Winnow). We now analyze a version of the Winnow algo-
rithm called Balanced-Winnow [8] which is also closely related to the Exponentiated-
Gradient algorithm [10]. For brevity we refer to the algorithm we analyze simply as

Winnow. To derive the Winnow algorithm we choose, F (ω) =
∑n

i=1 ωi log
(
ωi

1/n

)
,

and Ω =
{
ω ∈ Rn

+ :
∑n

i=1 ωi = 1
}

. The function F is the relative entropy between
the probability vector ω and the uniform vector ( 1

n , . . . ,
1
n ). The relative entropy is

non-negative and measures the entropic divergence between two distributions. It attains
a value of zero whenever the two vectors are equal. Therefore, the minimum value of
F (ω) is zero and is attained for ω = ( 1

n , . . . ,
1
n ). The conjugate of F is the logarithm

of the sum of exponentials (see for example [2][pp. 93]), G(θ) = log
(∑n

i=1 e
θi
)
. The

k’th element of the gradient of G is, gk(θ) = eθk/
(∑n

i=1 e
θi
)
. Note that g(θ) is a

vector in the n-dimensional simplex and therefore ωt = g(θt) ∈ Ω. The k’th element
of ωt+1 can be rewritten using a multiplicative update rule,

ωt+1,k =
1
Zt
eθt,k+C yt xt,k =

1
Zt
eC yt xt,k ωt,k ,

where Zt is a normalization constant which ensures that ωt+1 is in the simplex.
To analyze the algorithm we need to show that 〈xt, H(θ)xt〉 ≤ 1, which indeed

holds for ‖xt‖∞ ≤ 1. The proof is omitted due to the lack of space. As a result, we
obtain the following mistake bound,(
γ C − 1

2
C2

)
M ≤ min

ω∈Ω

(
n∑
i=1

ωi log(ωi) + log(n) + C

m∑
i=1

�γ(ω; (xi, yi))

)
.
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Since
∑n

i=1 ωi log(ωi) ≤ 0, if we set C = γ, the above bound reduces to,

M ≤ 2

(
log(n)
γ2 + min

ω∈Ω

1
γ

m∑
i=1

�γ(ω; (xi, yi))

)
.

Example 3 (p-norm algorithms). We conclude this section with the analysis of the fam-
ily of p-norm algorithms [7, 8]. Let p, q ≥ 1 be two scalars such that 1

p + 1
q = 1. Define,

F (ω) = 1
2‖ω‖2q = 1

2 (
∑n

i=1 |ωi|q)
2/q , and let Ω = Rn. The conjugate function of

F in this case is, G(θ) = 1
2‖θ‖2p (For a proof see [2], page 93.) and the i’th element

of the gradient of G is,

gi(θ) =
sign(θi) |θi|p−1

‖θ‖p−2
p

.

To analyze any p-norm algorithm we need again to bound for all t the quadratic form
〈xt, H(θ)xt〉. It is possible to show (see [7, 8]) that

〈x , H(θ)x〉 ≤ 1
p

(
‖θ‖pp

) 2
p−1

p (p− 1)
n∑
i=1

sign(θi)|θi|p−2x2
i . (24)

Using Holder inequality with the dual norms p
p−2 and p

2 we get that,

n∑
i=1

sign(θi)|θi|p−2x2
i ≤

(
n∑
i=1

|θi|(p−2) p
p−2

) p−2
p

(
n∑
i=1

x
2 p

2
i

) 2
p

= ‖θ‖p−2
p ‖x‖2p .

Combining the above with Eq. (24) gives, 〈x , H(θ)x〉 ≤ (p− 1)‖x‖2p. If we further

assume that ‖x‖p ≤
√

1/(p− 1) then we can apply corollary 1 and obtain that,(
γ C − 1

2
C2

)
M ≤ min

ω∈Rn

(
1
2
‖ω‖2q + C

m∑
i=1

�γ(ω; (xi, yi))

)
.

5 Deriving New Online Learning Algorithms

In the previous section we described a family of online learning algorithms. The algo-
rithms are based on the simple procedure defined via Eq. (16) which increments the
dual using a fixed-size update to a single dual variable. Intuitively, an update scheme
which results in a larger increase in the dual objective on each trial is likely to yield
online algorithms with refined loss bounds. In this section we outline a few new online
update schemes which set α more aggressively.

The update scheme of the previous section for increasing the dual modifies α only
on trials on which there was a prediction mistake (t ∈ E). The update is performed
by setting the t’th element of α to C and keeping the rest of the variables intact. This
simple update can be enhanced in several ways. First, note that while setting αt+1

t to
C guarantees a sufficient increase in the dual, there might be other values αt+1

t which
would lead to larger increases of the dual. Furthermore, we can also update α on trials



Online Learning Meets Optimization in the Dual 435

on which the prediction was correct so long as the loss is non-zero. Last, we need not
restrict our update to the t’th element of α. We can instead update several dual variables
as long as their indices are in [t].

We now describe and briefly analyze a few new updates which increase the dual
more aggressively. The goal here is to illustrate the power of the approach and the list
of new updates we outline is by no means exhaustive. We start by describing an update
which sets αt+1

t adaptively, depending on the loss suffered on round t. This improved
update constructs αt+1 as follows,

αt+1
i =

{
αti if i �= t
min {�(ωt; (xt, yt)) , C} if i = t

. (25)

As before, the above update can be used with various complexity functions for
F , yielding different quasi-additive algorithms. We now provide a unified analysis
for all algorithms which are based on the update given by Eq. (25). In contrast
to the previous update which modified α only when there was a prediction mis-
take, the new update modifies α whenever �(ωt; (xt, yt)) > 0. This more aggres-
sive approach leads to a more general loss bound while still attaining the same mis-
take bound of the previous section. The mistake bound still holds since whenever

0 1 2 3 4
0

1

2

3

4

C=0.1
C=1
C=2

Fig. 2. The mitigating function
μ(x) for different values of C

the algorithm makes a prediction mistake its loss is at
least γ. Formally, let us define the following mitigating
function,

μ(x) =
1
C

(
min{x,C}

(
x− 1

2
min{x,C}

))
.

The function μ is illustrated in Fig. 2. Note that μ(·)
becomes very similar to the identity function for small
values of C. The following theorem provides a bound
on the cumulative sum of μ(�(ωt, (xt, yt))).

Theorem 2. Let (x1, y1), . . . , (xm, ym) be a sequence of examples and let F : Ω → R

be a complexity function for which minω∈Ω F (ω) = 0. Assume that an online algo-
rithm is derived from Eq. (25) using G as the conjugate function of F . If G is twice
differentiable and its Hessian satisfies, 〈xt, H(θ)xt〉 ≤ 1 for all θ ∈ Rn and t ∈ [m],
then the following bound holds,

m∑
t=1

μ (�(ωt; (xt, yt))) ≤ min
ω∈Ω

(
1
C
F (ω) +

m∑
t=1

�(ω; (xt, yt))

)
.

Proof. Analogously to the proof of Thm. 1, we prove this theorem by bounding
D(αm+1) from above and below. The upper bound D(αm+1) ≤ P� follows again
from weak duality theorem. To derive a lower bound, note that the conditions stated in
the theorem imply that D(α1) = 0 and thus D(αm+1) =

∑m
t=1

(
D(αt+1)−D(αt)

)
.

Define τt = min{�(ωt; (xt, yt)), C} and note that the sole difference between the up-
dates given by Eq. (25) and Eq. (16) is that τt replaces C. Thus, the derivation of
Eq. (22) in Sec. 4 can be repeated almost verbatim with τt replacing C to get,

D(αt+1)−D(αt) ≥ τt (γ − yt〈ωt,xt〉)−
1
2
τ2
t . (26)
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Summing over t ∈ [m] and using the definitions of �(ωt; (xt, yt)), τt, and μ gives that,

D(αm+1) =
m∑
t=1

(
D(αt+1)−D(αt)

)
≥ C

m∑
t=1

μ (�(ωt; (xt, yt))) .

Finally, we compare the lower and upper bounds onD(αm+1) and rearrange terms. 
�

Note that �(ωt; (xt, yt)) ≥ γ whenever the algorithm makes a prediction mistake. Since
μ is a monotonically increasing function we get that the increase in the dual for t ∈ E
is at least μ(γ). Thus, we obtain the mistake bound,

λM ≤ P� where λ ≥ C μ(γ) =
{
γ C − 1

2 C
2 if C ≤ γ

1
2 γ

2 if C > γ
. (27)

The new update is advantageous over the previous update since in addition to the same
increase in the dual on trials with a prediction mistake it is also guaranteed to increase
the dual by μ(�(·)) on the rest of the trials. Yet, both updates are confined to modifying
a single dual variable on each trial. We nonetheless can increase the dual more dramat-
ically by modifying multiple dual variables on each round. Formally, for t ∈ [m], let It
be a subset of [t] which includes t. Given It, we can set αt+1 to be,

αt+1 = argmax
α∈[0,C]m

D(α) s.t. ∀i /∈ It, αi = αti . (28)

This more general update also achieves the bound of Thm. 2 and the minimal increase in
the dual as given by Eq. (27). To see this, note that the requirement that t ∈ It implies,

D(αt+1) ≥ max
{
D(α) : α ∈ [0, C]m and ∀i �= t, αi = αti

}
. (29)

Thus the increase in the dual D(αt+1)−D(αt) is guaranteed to be at least as large as
the increase due to the previous updates. The rest of the proof of the bound is literally
the same.

Let us now examine a few choices for It. Setting It = [t] for all t gives the Online-
SVM algorithm we mentioned in Sec. 3 by choosing F (ω) = 1

2‖ω‖2 and Ω = Rn.
This algorithm makes use of all the examples that have been observed and thus is likely
to make the largest increase in the dual objective on each trial. It does require however
a full-blown quadratic programming solver. In contrast, Eq. (29) can be solved analyti-
cally when we employ the smallest possible set, It = {t}, with F (ω) = 1

2‖ω‖2. In this
case αt+1

t turns out to be the minimum between C and �(ωt; (xt, yt))/‖xt‖2. This al-
gorithm was described in [4] and belongs to a family of Passive Aggressive algorithms.
The mistake bound that we obtain as a by product in this paper is however superior to
the one in [4]. Naturally, we can interpolate between the minimal and maximal choices
for It by setting the size of It to a predefined value k and choosing, say, the last k
observed examples as the elements of It. For k = 1 and k = 2 we can solve Eq. (28)
analytically while gaining modest increases in the dual. The full power of the update
is unleashed for large values of k, however, Eq. (28) cannot be solved analytically and
requires the usage of iterative procedures such as interior point methods.
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6 Discussion

We presented a new framework for the design and analysis of online learning algo-
rithms. Our framework yields the best known bounds for quasi-additive online classifi-
cation algorithms. It also paves the way to new algorithms. There are various possible
extensions of the work that we did not discuss due to the lack of space. Our frame-
work can naturally be extended to other prediction problems such as regression, mul-
ticlass categorization, and ranking problems. Our framework is also applicable to set-
tings where the target hypothesis is not fixed but rather drifting with the sequence of
examples. In addition, the hinge-loss was used in our derivation in order to make a
clear connection to the quasi-additive algorithms. The choice of the hinge-loss is rather
arbitrary and it can be replaced with others such as the logistic loss. There are also
numerous possible algorithmic extensions and new update schemes which manipulate
multiple dual variables on each online update. Finally, our framework can be used with
non-differentiable conjugate functions which might become useful in settings where
there are combinatorial constraints on the number of non-zero dual variables (see [6]).
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Abstract. We address the problem of online de-noising a stream of input points.
We assume that the clean data is embedded in a linear subspace. We present two
online algorithms for tracking subspaces and, as a consequence, de-noising. We
also describe two regularization schemas which improve the resistance to noise.
We analyze the algorithms in the loss bound model, and specify some of their
properties. Preliminary simulations illustrate the usefulness of our algorithms.

1 Introduction and Problem Setting

Subspace analysis and subspace tracking (e.g. [1]) are important tools in various adap-
tive signal processing tasks, such as bearing estimation [2] and beamforming [3]. Math-
ematically, the algorithm receives a sequence of input vectors and returns a linear sub-
space that describes the data well. Assuming that the data consist of points from a low-
dimensional subspace corrupted with isotropic noise which pulled it out of the original
subspace [4, 5], the reconstructed subspace can be used to clear or filter the noisy data.

We present online algorithms for subspace tracking and analyze them in the loss
bound model. Unlike previous analysis for these types of algorithms (e.g. [1]), we do
not use any statistical assumptions over the source of the input points. The goal of the
learning algorithm is to de-noise new data points by identifying this subspace. Given a
data point, the algorithm is required to output the underling uncorrupted point. Specifi-
cally, we measure the performance of the algorithm relative to the uncorrupted version
of each point, rather than the corrupted observed version. The algorithms we present
can also track drifting or switching subspaces.

The tracking subspace problem shares common properties with both multivariate
regression and one-class classification [6]. As in regression, the learner maintains a
function (linear transformation) and outputs a vector for a given input vector. In this
view, our problem is a regression from a vector space to itself that uses the class of
positive semidefinite (PSD) matrices as regressors. This approach to subspace analysis
[7] was used to devise sparse principal component analysis (PCA).

Similarly to one-class learning, the learner is not exposed to a feedback signal or
to a “right” answer. The only information at hand are the input points. The goal of a
one-class learner is to identify a meaningful subset in space, in the sense that it captures
most, if not all of the points. Similarly, our primary goal is to find a meaningful vector
subspace which contains most of the weight of the points. An additional similarity
between one-class learning and subspace tracking is that in both cases there is a trivial
solution. Given any set of points, one can always find a convex body that encloses all of

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 438–452, 2006.
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them, and we can always find a vector subspace that contains all of their weight (using
the identity matrix). In this aspect both problems are ill-defined.

We now describe the subspace tracking problem formally. Let x1 . . .xm ∈ Rd be a
set of column vectors. We view the problem as a filtering problem [4, 5], xi = yi+νi ,
where yi lies in a low dimensional linear subspace and νi is the unknown noise for
this point. Since the goal it to track the linear subspace we assume that there exists
an unknown target idempotent projection matrix Q such that yi = Qxi and νi =
(I − Q)xi. That is, the noise is taken to be orthogonal to the clean data, because we
cannot separate noise components projected by Q onto the subspace and input points.

PCA computes an orthogonal setA ∈ Rd×n of n vectors, which is the n eigenvectors
corresponding to the top n eigenvalues of the covariance matrix,

∑
i xix

�
i . This basis

is often used for compression since each point x ∈ Rd is represented using n values
ATx. In addition, PCA can be used for de-noising with the matrix Q = AAT . Since A
is composed of orthonormal vectors, Q is a projection, that is, it is symmetric, positive
semidefinite (PSD) and idempotent (its eigenvalues are either zero or one). In this paper
we adopt this view of PCA, and focus on learning matrices P of this form. Unlike PCA,
we do not reduce explicitly the number of components of a vector (by using the matrix
A). In other words, we seek a low-dimensional subspace, but represent data in the origi-
nal vector space of dimension d. Since the restriction that the eigenvalues will be either
zero or one is algorithmically challenging because it involves integer programming, we
relax the idempotency assumption. Our learning algorithms seek linear transformations
which are symmetric and positive semidefinite. We refer to these transformations (P
or Pi) as projections. When the projections are also idempotent (i.e. all eigenvalues are
either zero or one), we will refer to them as idempotent projections (Q). One of the
algorithms described below always maintains a linear transformation with eigenvalues
between zero and one. This is often considered the natural relaxation of idempotency.

We present and analyze two online learning algorithms for filtering through subspace
tracking. Both algorithms can also be used to track non-stationary sequences. The first
algorithm is motivated by a gradient descent approach and the second by an Euclidean
projection1 . We use the loss-bound model of online learning to analyze the algorithms.
The algorithms we consider work in rounds. On round i an online learning algorithm
chooses a linear subspace represented by a PSD matrix Pi. It then receives a point
xi, outputs the projection of xi onto the chosen subspace and suffers loss which is
a function of the discrepancy between the projection Pixi and the clean point Qxi,
i.e. �(Pixi, Qxi). Finally, the subspace representation is updated and the next round
follows. Note that Q or Qxi are unrevealed to the learner algorithm, which makes the
learning task more involved. We use the matrix Q only for analysis.

Previous work on learning PSD matrices falls into two kinds. The first kind of algo-
rithm builds a general symmetric matrix which is either restricted to be PSD (e.g. [8])
or in a second step projected back on the PSD cone [9]. The second kind of algorithm
[10], employ the costly operation of matrix exponentiation which automatically yields
PSD matrices. The former approaches employ loss functions which are often linear in

1 We use the term projection in two ways. First, throughout the paper it refers to a symmetric
PSD linear transformation. Second, we use the projection operation to derive the second of the
two online algorithms.
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the matrix, while the latter uses a loss which is quadratic in the matrix. In this work,
we have the benefit of both approaches. Our algorithms are both very simple, involve
only addition operations and maintain matrices which are guaranteed to be PSD with
no additional operations, even though the quadratic loss is used.

Notation: For a matrix P , the property of being a positive semi-definite matrix is
denoted by P 4 0. Given a vector x, we denote by X = xx� the outer-product of
x with itself. A unit vector is denoted by x̂ = x/‖x‖ , and X̂ = x̂x̂� is a rank-one
symmetric matrix with eigenvalue 1. Finally, ‖P‖p is �p norm of the vector generated
by concatenating the columns of matrix P .

2 Gradient Algorithm

We start with the description of an online algorithm based on gradient descent. After an
input point xi has been observed we wish to update our current subspace (represented
by Pi) based on this point. Since there is no corresponding feedback signal, we have no
choice but to use the point itself as a guide, so we seek to decrease the loss �(xi, Pxi).
This only approximates our true loss, but as we shall see in the sequel, it is enough.
However, we do not want to make big changes from our current subspace, as it captures
our knowledge of previous examples. Therefore, we define the following update,

Pi+1 = arg min
P

1
2
‖P − Pi‖2 + α�(xi, Pxi) s.t. P = PT , P 4 0 . (1)

where α > 0 is a trade-off parameter. In this section we focus in the squared loss,

�(xi, Pixi) =
1
2
‖xi − Pixi‖2 . (2)

The two constraints ensure that the eigenvalues of Pi+1 are positive real numbers.
Thus, similarly to PCA we will be able to reduce the dimension by performing eigen-
decomposition. We derive the update rule for the algorithm by solving the optimization
problem. For now we omit the PSD constraint in Eq. (1). We show below that the solu-
tion of the optimization problem is in fact PSD with bounded eigenvalues.

The Lagrangian of the optimization problem defined by Eq. (1) is,

L(P ;Z) =
1
2
‖P − Pi‖2 + α

1
2
‖xi − Pxi‖2 − Tr

[
Z(P − PT )

]
. (3)

To solve the problem we first differentiateL with respect to P and set the result to zero,

Pi+1 − Pi − αXi + αPi+1Xi − ZT + Z = 0 . (4)

As we shall see in Sec. 3 we can solve Eq. (4) analytically, but it involves non-linear
terms arising from matrix inversion. Instead, we use the fact that, for reasonable small
values ofα, the matricesPi+1Xi and PiXi are close to each other. We thus approximate
Eq. (4) by,

Pi+1 = Pi + α (Xi − PiXi) + Z̃ , (5)
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where we define the anti-symmetric matrix Z̃ = ZT − Z . We eliminate Z̃ from the
solution by enforcing the symmetry constraint Pi+1 = PTi+1. Using the facts that
both Pi and Xi are symmetric and that Z̃ is anti-symmetric we get, PTi+1 = Pi +
α (Xi −XiPi) − Z̃ . By solving the equation Pi+1 = PTi+1 we extract the value of
Z̃ = 1

2α (PiXi −XiPi) . We finally get the update rule of the algorithm,

Pi+1 = Pi + α

[
Xi −

1
2

(PiXi +XiPi)
]
. (6)

For the analysis of the algorithm we find it convenient to change variables,

Pi+1 = Pi + γi

[
X̂i −

1
2

(
PiX̂i + X̂iPi

)]
, γi = α ‖xi‖2 . (7)

The algorithm can be viewed as performing a (stochastic) gradient descent, since the
right term of Eq. (7) equal to the symmetric part of the gradient∇P �(x,Pxi)|P=Pi . The
algorithm is summarized in Fig. 1. The description of the Regularize procedure is
deferred to Sec. 4 and for now we ignore it. We refer to this algorithm as the GST
algorithm, for Gradient-decent-based Subspace Tracker.

To conclude this section we show that our algorithm can be combined with Mercer
kernels. We show that Pi can be written as a linear combination of outer product of
the input points with coefficients Γp,q , that is, Pi =

∑i−1
p,q=1 Γp,qx̂px̂

�
q . The proof

proceeds by induction. The initial matrix P1 = 0 clearly can be written in the required
form. For the induction step we substitute X̂ = x̂x̂� in Eq. (7) and use the induction
assumption,

Pi+1 =

Pi+γi

[
x̂ix̂

�
i −

1
2

i−1∑
p=1

x̂p

(
i−1∑
q=1

Γp,qx̂
�
q x̂i

)
x̂�
i −

1
2

i−1∑
q=1

x̂i

(
i−1∑
p=1

Γp,qx̂
�
i x̂p

)
x̂�
q

]
.

The terms in the brackets are of the desired form and furthermore the matrix Pi is of the
desired form due to the induction assumption. From the last equation we can recursively
set the values of the matrix Γ : Γi,i = γi , Γq,i = Γi,q =

∑i−1
p=1 Γp,qx̂

�
i x̂p for q =

1 . . . i−1 .We have shown that all the steps of the online algorithm depends in the input
data through inner product operations and thus can replace the standard inner product
with any Mercer kernel.

2.1 Analysis

Before we prove a loss bound on the performance of the algorithm, we first fulfill
our promise and show that indeed the algorithm maintains a positive semidefinite lin-
ear transformation Pi. This property is somewhat surprising in light of the following
observation. Standard linear algebra computation shows that the rank of the matrix
X̂i − 1

2 (PiX̂i + X̂iPi) is either one or two. In the latter case, the eigenvalues of this

matrix are, λ± = 1
2

(
1±

√
1 + x̂�

i PiPix̂i − (x̂�
i Pix̂i)2

)
. The smaller eigenvalue
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λ− is negative since x̂�
i PiPix̂i − (x̂�

i Pix̂i)
2 ≥ 0. Thus on each iteration some of the

eigenvalues of Pi+1 are potentially smaller than those of Pi. If some of the eigenvalues
of Pi are zero then some of the eigenvalues of Pi+1 can be negative [11].

Specifically, we show by induction that for any linear transformation that can be
derived along the run of the algorithm P1 . . . Pm+1 we have that 0 . Pi+1 . bI
assuming γi ∈ [0, a], where b = 4/(4−a). This requirement is easily fulfilled by setting
the tradeoff parameter to be in the range α ∈ [0, a/R2] whereR2 = maxi ‖xi‖2. Since
the initialization of the linear transformation is such that 0 . P1 . bI , then it suffices
to show that the claim holds inductively. Finally, although the lemma is general we
assume below that the learning rate is set to α = 1 = a and thus the upper bound on
the eigenvalues is b = 4/3.

Lemma 1. Let 0 < a ≤ 2 and b = 4/(4− a) > 1. If γi ∈ [0, a] and 0 . Pi . bI then
0 . Pi+1 . bI .

Proof. Since Pi+1 is symmetric by construction it is remained to show that its eigen-
values are between zero and b. Rewriting Eq. (7) we get,

Pi+1 = Pi + γi

[
X̂i −

1
2

(
PiX̂i + X̂iPi

)]
=
(
I − 1

2
γiX̂i

)
Pi

(
I − 1

2
γiX̂i

)
+ X̂i

(
γiI −

1
4
γ2
i Pi

)
X̂i , (8)

where we used the equality X̂ = X̂X̂ . Eq. (8) is a sum of two terms, the first term is
PSD by definition and the second term is PSD as since (1/4)γ2

i Pi . (1/4) b a γi I .
a/(4 − a)γiI . γiI . The last inequality holds since a ≤ 2. Since PSD matrices are
closed under addition we get that 0 . P . We show next that the eigenvalues of this
matrix are always not greater than b and we do so by showing that for all vectors v we
have that v�Pi+1v ≤ b ‖v‖2. Using Eq. (8) we get,

v�Pi+1v=
[
v�

(
I − 1

2
γiX̂i

)]
Pi

[(
I − 1

2
γiX̂i

)
v

]
+v�X̂i

(
γiI −

1
4
γ2
i Pi

)
X̂iv .

We first develop the left term by computing the norm of the vector multiplying Pi,∥∥∥∥(I − 1
2
γiX̂i

)
v

∥∥∥∥2

=v�
[
I − 1

2
γiX̂i

][
I − 1

2
γiX̂i

]
v=‖v‖2+

(
1
4
γ2
i − γi

)
〈v, x̂〉2 .

Plugging into the last equation and using the assumption that the eigenvalues of Pi are
not greater than b we get,

v�Pi+1v ≤ b ‖v‖2 + b

(
1
4
γ2
i − γi

)
〈v, x̂〉2 + 〈v, x̂〉2

(
γi −

1
4
γ2
i x̂

�
i Pix̂i

)
≤ b ‖v‖2 +

(
b

4
γ2
i − (b− 1)γi

)
〈v, x̂〉2 ≤ b ‖v‖2 ,

where the last inequality holds because γi ≤ a.
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We now turn and analyze the algorithm in the loss bound model. Concretely, we com-
pare the performance of the algorithm to that of a fixed idempotent projection Q. The
following lemma bounds the relative loss for an individual example. The proof gener-
alizes similar bounds for vector adaptive filtering [4].

Lemma 2. Let xi be any vector with bounded norm ‖xi‖2 ≤ R2. Let Q be any idem-
potent projection (symmetric matrix with eigenvalues either zero or one) and let the
trade-off parameter be α = 1/R2 then,

1
2
‖Pi −Q‖2 −

1
2
‖Pi+1 −Q‖2 ≥

1
2
α ‖Pixi −Qxi‖2 −

1
2
α ‖xi −Qxi‖2 .

Before proving the lemma we like to comment that unlike relative-performance online
bounds [12] for more standard problems such as classification and regression, the algo-
rithm and the fixed projection are measured differently. The loss the algorithm suffers
is measured compared to the uncorrupted pointQxi and not to the input vector xi. This
is because we assume that the input data were generated usingQ. Therefore, the loss of
the idempotent projectionQ is in fact the squared norm of the noise vector.

Proof. Tediously long algebraic manipulations give,

1
2
‖Pi −Q‖2 −

1
2
‖Pi+1 −Q‖2=−γi ‖x̂i −Qx̂i‖2 + γix̂

�
i

[
Pi −

1
2

(QPi + PiQ)
]

x̂i

−1
4
γ2
i

[
‖Pix̂i − x̂i‖2 + (1 − x̂�

i Pix̂i)
2
]

+ γi ‖x̂i − Pix̂i‖2 (9)

Applying Cauchy-Schwartz inequality with the vectors (I − Pi)x̂i and x̂i we get

(1− x̂�
i Pix̂i)

2 ≤
∥∥∥x̂�

i − Pix̂i
∥∥∥2

. (10)

Observing that the assumption α = 1/R2 implies γi ≤ 1, which in turn yields γi −
γ2
i /2 ≥ γi/2. We get,

1
2
‖Pi −Q‖2 −

1
2
‖Pi+1 −Q‖2 ≥

1
2
α ‖Pixi − xi‖2 − α ‖xi −Qxi‖2

+αx�
i

[
Pi −

1
2

(QPi + PiQ)
]

xi , (11)

We further derive the first term and use the fact that x�Qx = x�QQx and get,

‖Pixi − xi‖2 = ‖Pixi −Qxi +Qxi − xi‖2 (12)

= ‖Pixi −Qxi‖2 + ‖Qxi − xi‖2 − 2x�
i

[
Pi −

1
2

(QPi + PiQ)
]

xi ,

Plugging Eq. (12) into Eq. (11) and rearranging the terms conclude the proof.

We use the Lemma 2 to prove the main result of this section.
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Parameters: α > 0 ; B > 0
Initialize: Set P1 = 0
Loop: For i = 1, 2, . . . ,m

– Get a new point xi ∈ Rn

– Set γi = α ‖xi‖2
– Update,

P ′
i+1 = Pi

+γi

[
X̂i−

1
2

(
PiX̂i+X̂iPi

)]
– Set Pi+1 ← Regularize(P ′

i+1, B)
Output: PSD matrix – Pm+1

Fig. 1. The GST online algorithm

Parameters: ε > 0 ; B > 0
Initialize: Set P1 = 0
Loop: For i = 1, 2, . . . ,m

– Get a new point xi ∈ Rn

– Find γi such that Eq. (16) holds.
– Update,

P ′
i+1 = Pi −

γi
2− γi

(PiX̂i + X̂iPi)

+γiX̂i +
γ2
i

2− γi
X̂iPiX̂i

– Set Pi+1 ← Regularize(P ′
i+1, B).

Output: PSD matrix – Pm+1

Fig. 2. The PSTε online algorithm

Theorem 1. Let x1 . . .xm· · · be any input sequence for the PST algorithm (without
the regularization). Denote by R = maxi ‖xi‖2. Let Q be any idempotent projection
and assume the tradeoff parameter is set to α = 1/R2. Then the loss the algorithm
suffers is bounded as follows,∑

i

‖Pixi −Qxi‖2 ≤ rank (Q)R2 +
∑
i

‖xi −Qxi‖2 .

The theorem is proved by bounding
∑

i ‖Pi −Q‖
2−‖Pi+1 −Q‖2 from above and be-

low. For the upper bound we note that it is a telescopic sum which is less than rank(Q).
For the lower bound we bound each summand separately using Lemma 2. An impor-
tant comment is in place. The form of the bound is identical to similar bounds for online
algorithms for classification or regression [13], where the cumulative performance of
the algorithm (Pi) compared to the target function (Q) is bounded by a property of the
target (rank here; squared norm of a vector in classification or regression) plus the cu-
mulative performance of a competitor compared to the target function (Q). Note that
the second term in the bound is ‖Ixi −Qxi‖2 and thus the competitor is the identity
matrix I . However, there is one crucial difference. In classification and regression the
target function is fixed (through the supervision) and we are free to choose any com-
petitor. Here, the competitor is fixed (I) and we are free to choose any target (Q), which
represents an arbitrary subspace underling the data.

Intuitively, the fixed term (rank) of the bound is related to a transient period of the
algorithm when it shifts from its initial subspace toward the target subspace, and the
cumulative performance of the competitor bounds the performance when eventually
any new vector falls approximately in the span of the vectors already processed.

To exemplify the bound let us consider two extreme cases. First, assume that indeed
all the points xi lies exactly in a linear subspace of dimension n � d. So, there exists
a projection Q such that Qxi = xi and the second term of the bound thus vanishes.
The algorithm suffers loss which is scaled linearly with the internal dimension n and is
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independent of d or the number of points m. Second, consider the case that there is no
underlying linear subspace. We consider two options Q = I or Q = 0. In the former
case all the points are treated as data, again with no noise. The bound however scales
like the true dimension d. In the latter case all the points are considered as noise around
the origin, and the loss the algorithm suffers is bounded by the total variance.

3 Projection Based Algorithm

We now turn our attention to an alternative method for deriving online algorithms. We
modify the squared loss function to ignore very small distances specified by a fixed
insensitivity parameter ε,

�ε(x, Px) =

{
0 ‖x− Px‖ ≤

√
2ε(

‖x− Px‖ −
√

2ε
)2

Otherwise
.

That is, if the squared loss is below some predefined tolerance level, then the value of
the ε-insensitive loss is zero. Otherwise it is equal to a shift of the squared loss. The
update rule for the new algorithm sets the new matrix Pi+1 to be the solution to the
following projection problem [13],

min
P

1
2
‖P − Pi‖2 s.t. �ε(xi, Pxi) = 0 , P = PT , P 4 0 .

The solution of the optimization problem is the projection of P onto the intersection
of the positive semidefinite cone and the second order body of matrices P that satisfy
‖xi−Pxi‖ ≤ ε and are centered at the identity matrix I . Clearly the subset of matrices
defined by the intersection is not empty as it contains the identity matrix. We refer to this
algorithm as the PSTε algorithm, for Projection based algorithm for Subspace Tracking
with insensitivity level ε.

As with the GST algorithm, we derive an update rule by computing the correspond-
ing Lagrangian. As before we omit for now the constraint of being positive semidefinite.
We show below that the PSD constraint is indeed satisfied by the optimal solution.

L(P ;αi) =
1
2
‖P − Pi‖2 + αi

[
1
2
‖xi − Pxi‖2 − ε

]
− Tr

[
Z(P − PT )

]
, (13)

where αi ≥ 0 is the Lagrange multiplier. To solve the problem we first differentiate L
with respect to P and set the result to zero, Pi+1(I + αiXi) = Pi + αiXi + Z̃ , where
Z̃ = ZT −Z is an anti-symmetric matrix. We solve the last equation by first computing
the inverse of the matrix I + αiXi and then solving for Z̃. The details are omitted for
lack of space. As before we define additional notation γi,

γi =
αi ‖xi‖2

1 + αi ‖xi‖2
, αi =

1
‖xi‖2

γi
1− γi

(14)

which we use to write the update rule of this algorithm,

Pi+1 = Pi + γiX̂i −
γi

2− γi
(PiX̂i + X̂iPi) +

γ2
i

2− γi
X̂iPiX̂i . (15)
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Note that by definition γi ∈ [0, 1]. The update rule still depends on the unknown αi
(or γi). To find the value of γi we use the KKT conditions. Whenever γi is positive
the inequality constraint 1

2‖xi − Pixi‖2 ≤ ε is satisfied as equality. Long algebraic
manipulations yield that the left side of this equality constraint is given by the function,

f(γ) =
(1− γ)2
2(2− γ)2 ‖xi‖

2
[
4 ‖x̂i − Pix̂i‖2 + (−4γ + γ2)

(
1− x̂�

i Pix̂i

)2
]
. (16)

Theoretically, we can solve analytically the equation f(γi) = ε since it is a degree four
polynomial. In practice, we use the following lemma, which states that the function
f(γ) is monotone. By definition γi ∈ [0, 1] and thus we can find a value of γ which is
far of the exact solution by at most δ in time complexity of − log2(δ).

Lemma 3. The function f(γ) defined in Eq. (16) is monotone decreasing in γ.

The proof is omitted due to lack of space. To summarize the description of the algo-
rithm: after receiving xi the algorithm checks whether the Euclidean distance between
xi and Pixi is below the predefined threshold, 1

2 ‖xi − Pixi‖
2 ≤ ε. If so, it does noth-

ing. Otherwise, it performs binary search in the range [0, 1] and finds a value γi that
solve the function f(γi) = ε. We initialize P1 = 0. A sketch of the algorithm is shown
in Fig. 2. To conclude, we note that the PST algorithm may be extended with Mercer
kernels. The proof and construction are similar to the those of the GST algorithm.

3.1 Analysis

As in the GST algorithm, in each iteration we set Pi+1 to be a sum of the previous
matrix Pi and another matrix, as given in Eq. (15). As before, this matrix is either of
degree one or two, and in the latter case one of its eigenvalues is negative.

In the following we derive the analogous of Lemma. 1, which state that the eigenval-
ues of each of the transformations derived along the run of the algorithm P1 . . . Pm+1
falls in the interval [0, 1], so Pi are close to be idempotent projections. This situation is
simpler than for the GST algorithm, in which for all allowed learning rates the upper
bound on the eigenvalues b was strictly greater than one. The proof is similar to the
proof of Lemma. 1.

Lemma 4. Throughout the running of the algorithm 0 . Pi . I .

We turn to analyze the algorithm in the loss bound model. For this algorithm we change
slightly both the assumptions and the bound. Here we compare the performance of
the algorithm to an idempotent projection Q with point-wise bounded noise, that is
(1/2) ‖xi −Qxi‖2 ≤ ε. The corresponding loss which we bound is the epsilon insen-
sitive version of the Euclidean loss function. Before proving the theorem we prove the
following auxiliary lemma, which provides a lower bound and an upper on the optimal
value of γi.

Lemma 5. Let γi be the solution of the equality f(γi) = ε. If �ε(xi, Pixi) > 0 then,

1−
√

2ε

‖xi − Pixi‖
≤ γi ≤ 1− 1

2

√
2ε

‖xi − Pixi‖
.
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Proof. If �ε(xi, Pixi) > 0 we know that γi is defined to be the solution of the equation
f(γi) = ε. We start with the left hand-side of the desired inequality and lower bound
the second term in Eq. (16). Since γi ∈ [0, 1] we have that−4γi+ γ2

i ≤ 0. Substituting
Eq. (10) we get,

ε ≥ (1− γi)2
2(2− γi)2

‖xi‖2
[
4 ‖x̂i − Pix̂i‖2 + (−4γi + γ2

i ) ‖x̂i − Pix̂i‖
2
]

= (1− γi)2
1
2
‖xi − Pixi‖2 .

Solving for γi leads to the desired bound. For the right hand-side of the inequality we
return to Eq. (16) and upper bound the right term by zero. We get,

ε ≤ (1− γi)2
2(2− γi)2

‖xi‖2
[
4 ‖x̂i − Pix̂i‖2

]
≤ (1− γi)24

1
2
‖xi − Pixi‖2 .

Solving for γi leads to the desired bound.

We are now ready to prove the main theorem of the section,

Theorem 2. Let x1 . . .xi . . . be a sequence of points. Assume that there exists an
idempotent projection Q that suffers zero loss �ε(xi, Qxi) = 0 for all i. Denote by
R = maxi ‖xi‖. Then the following bound holds for the PST algorithm (without the
regularization), ∑

i

�4ε(Qxi, Pixi) ≤ 2 rank (Q)R2 .

Proof. Let Pi be the projection matrix before receiving the ith vector xi. Define Δi =
‖Pi −Q‖2 − ‖Pi+1 −Q‖2. We prove the theorem by bounding

∑m
i=1Δi from above

and below. First note that
∑m

i=1Δi is a telescopic sum and therefore,

m∑
i=1

Δi =
∑
i

‖Pi −Q‖2 − ‖Pi+1 −Q‖2 ≤ ‖Q‖2 = rank (Q) . (17)

This provides an upper bound on
∑

iΔi. To provide a lower bound on Δi we apply
Thm. 2.4.1 in [14] and get thatΔi = ‖Pi −Q‖2−‖Pi+1 −Q‖2 ≥ ‖Pi − Pi+1‖2 .We
consider two cases. If ‖Qxi−Pixi‖ ≤ 2

√
2ε we use the trivial bound ‖Pi − Pi+1‖2 ≥

0 = �2ε(Qxi, Pixi). Otherwise, we assume that ‖Qxi − Pixi‖ ≥ 2
√

2ε. Algebraic
manipulations show that,

Δi ≥ ‖Pi − Pi+1‖2 ≥
1
2
γ2
i ‖x̂i − Pix̂i‖

2
. (18)

Substituting the lower bound of Lemma 5 we get,Δi≥ 1
2

(
‖xi−Pixi‖ −

√
2ε
)2 1

‖xi‖2 .

Using the triangle inequality we get, ‖xi − Pixi‖ ≥ ‖Qxi − Pixi‖ − ‖Qxi − xi‖ ≥
‖Qxi − Pixi‖ −

√
2ε, where the last inequality holds since ‖Qxi − xi‖ ≤

√
2ε. Sub-

stituting back in the last equation we get, Δi ≥ 1
2

(
‖Qxi − Pixi‖ − 2

√
2ε
)2 1

‖xi‖2 ≥
1
2�4ε(Qxi, Pixi)/R2 . Combining Eq. (17) together with the last equation concludes
the proof.
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The theorem tells us that if the squared norm of the noise (1/2) ‖xi −Qxi‖2 is bounded
by ε, then the cumulative 4ε-insensitive loss the algorithm suffer is bounded. To con-
clude, we derived two online algorithms which reconstruct corrupted input points xi by
tracking linear subspaces. The performance of both algorithms is compared to the per-
formance of arbitrary idempotent projections Q. The learning algorithms do not know
the identity of Q nor they have any feedback from Q. In this aspect the learning task is
harder than typical regression or classification learning problems, as there is no super-
vision during the learning process.

4 Regularization

In our two algorithms, overfitting arises when the eigenvalues of the linear operator Pi
have large components orthogonal to the target subspace. As a consequence, the filtered
output Pixi will include noise components as well as the true signal. Both algorithms
may suffer from this problem since in our setting there is no feedback. Therefore, our
algorithms approximate the true feedback Qxi using xi, which contains also noise
components. Furthermore, the only goal of the update rule of both algorithms is to
reduce the loss related to xi, ignoring any other issue such as the rank or trace of the
transformation Pi. Therefore, as we shall see next, both algorithms favor an increase in
the trace of the transformations since, in general, that reduces the loss suffered.

We exemplify our claim for the GST algorithm, similar results hold for the PST
algorithm. We compute the change in the trace by using Eq. (7) and get,

Tr [Pi+1] = Tr
[
Pi + γi

[
X̂i −

1
2

(
PiX̂i + X̂iPi

)]]
= Tr [Pi] + γix̂

�
i (I − Pi) x̂i .

Examining the change in trace we observe that the single fixed point of the update
is Pi = I , the identity matrix. Otherwise, if some of the eigenvalues of Pi are below
one, the trace will increase. (Using our analogy, one-class algorithms are designed to
capture the input data in a ball, a goal which favors increasing the radius of the ball.)
We remind the reader that according to Lemma 1 the eigenvalues are not bounded from
above by one, only by 4/3. In this case, according to Eq. (19), the trace may slightly
decrease to compensate this high value of the eigenvalues. The phenomenon is indeed
observed in the simulations we performed and are shown in Sec. 5. Nevertheless, this
will not stop the algorithm from overfitting, since when some of the eigenvalues are
small, the update operation will increase the trace.

Following [4] we add a second step to the update rule, after the primary update of
Eq. (7) (for the GST algorithm) or Eq. (15) (for the PST algorithm). Due to lack of space
we focus in the GST algorithm. The algorithm employs an additional parameterB > 0,
which is used to bound the norm of the eigenvalues after the update. We consider two
versions for this update, which correspond to �1-norm regularization and �2-norm regu-
larization. Intuitively, the parameterB specifies a continuous requirement that replaces a
standard rank requirement. Specifically the update rule is defined as follows : we first per-

form the gradient step of Eq. (7) and define, P ′
i+1 = Pi+γi

[
X̂i − 1

2

(
PiX̂i + X̂iPi

)]
.

Then we set Pi+1 to be the solution of the following optimization problem,
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Pi+1 = arg min
P

1
2

∥∥P − P ′
i+1

∥∥2
s.t. P = PT , P 4 0 (19)

L = 1 (version 1) ; L = 2 (version 2) Tr
(
PL

)
≤ B (20)

For the first version we set L = 1 and bound the �1 norm of the eigenvalues of P . For
the second version we set L = 2 and bound the �2 norm of the eigenvalues of P . We
now describe in detail how to solve in practice these optimization problems. Note that
in both cases if the norm condition (Eq. (20)) is satisfied for P ′

i+1 then Pi+1 = P ′
i+1.

We thus assume this is not the case.

Version 1 – �1 norm: We omit the derivation of the solution due to lack of space and
proceed with a formal description of it. To solve the optimization problem one needs to

Input: PSD matrix P ′ ; Bound B > 0
Version 1:
If Tr [P ′] > B then

– Compute the eigen-decomposition of P ′,
P ′ =

∑d
j=1 λ

′
jvjv

�
j

– Find η such that
∑

j max{λ′j − η, 0} = B.

– Set P =
d∑
j=1

max{λ′j − η, 0}vjv�
j

Else : P = P ′.

Version 2:

– If Tr
[
P ′2] > B then set P = P ′

√
B

‖P ′‖
Else : P = P ′.

Return: PSD matrix – P

Fig. 3. The Regularize Procedure

compute the eigenvectors vj of P ′
i+1

and the corresponding eigenvalues
λ′j ≥ 0. To be more concrete

we write P ′
i+1 =

∑d
j=1 λ

′
jvjv

�
j .

Then the optimal solution is given
by Pi+1 =

∑d
j=1 λjvjv

�
j , where

λj = max{λ′j − η, 0} and η is cho-
sen such that Tr (Pi+1) =

∑
j λj =

B. Finding the value of η given the
set of eigenvalues λ′j can be com-
puted using [15, Fig. 3] in O(d log d)
time. To conclude, since it takesO(d)
time to compute the trace of a ma-
trix and another O(d3) time to per-
form eigenvector decomposition, the
time required to verify if an update
is needed in O(d) time and the total
runtime of the update step is O(d3).

Version 2 – �2 norm: By writing
the Lagrangian of the corresponding
optimization problem, and taking the
derivative with respect to P we get that the solution Pi+1 is proportional to P ′

i+1. Using
KKT conditions we can compute the constants and get the update rule for this version:
if
∥∥P ′

i+1

∥∥2
> B then set Pi+1 = P ′

i+1

√
B/‖P ′

i+1‖. Otherwise, Pi+1 = P ′
i+1. To

conclude, since it takes O(d3) time to multiply matrices, then it takes O(d3) time to

compute
∥∥P ′

i+1

∥∥2
= Tr

(
P ′
i+1P

′
i+1

)
and verify if an update should be performed. If so,

the update step takes O(d2) time since it involves a scaling of each element of P ′
i+1.

The following theorem bounds the loss the modified GST algorithm suffers. As we
shall see, although we consider a restricted set of projectionsPi with a bounded trace or
bounded trace squared, the performance of the algorithm does not deteriorate assuming
it is compared to an idempotent projectionQ under the same restriction. In other words,
the loss bound for both versions has the same form. The only difference is the touchstone
idempotent projection we use. Originally there were no restrictions over both the pro-
jection Pi and the reference projectionQ. However, the modified algorithm restricts the
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projection Pi the algorithm maintains, and the corresponding analysis assumes similar
restriction over the reference idempotent projection Q.

Restricting the set of possible projections to have eigenvalues with bounded norm has
an additional benefit. It allows the algorithm (and the analysis) to perform well even if the
sequence of input vectors is not stationary. Specifically, we no longer compare the algo-
rithm to the performanceof a single fixed idempotent projectionQ, which corresponds to
a fixed subspace. We allow more complicated comparisons in which different segments
of the input points may be best filtered with a unique own idempotent projection.

Theorem 3. Let x1. . .xm· · ·be any input for the algorithm. Denote byR=maxi ‖xi‖2.
Let Qi (for i = 1 . . .m) be any sequence of idempotent projections Q2

i = Qi with
bounded trace Tr [Qi] ≤ B. Assume the tradeoff parameter is set to α = 1/R2. Then,∑

i

‖Pixi −Qixi‖2 ≤ R2B +
∑
i

‖xi −Qixi‖2 +A , where ,

A =
∑
i

B ‖Qi −Qi+1‖∞ (ver 1 ) A =
∑
i

√
B ‖Qi −Qi+1‖2 (ver 2 )

As Theorem 1, the bound includes a fixed penalty term and the cumulative loss suffered
by a series of projection functions. For the case of non-stationary data it contains an
additional penalty term for deviation of these projections. The skeleton of the proof is
similar to the proof of analogous theorem in [4], but it is more involved since we are
dealing with PSD matrices and not vectors.

5 Simulations

The theory developed so far can be nicely illustrated via some simple simulations. We
briefly describe two such experiments. In the first experiment we generated 3, 000 points
in R2. All the points lie in a linear subspace of degree 1 and in the unit ball around the
origin. We added random uniform noise with maximal value of 0.1. We ran the GST
algorithm with no regularization, using �1 regularization and using �2 regularization. In
the latter cases we set B = 1 - the true dimension. The plot in the top-leftmost panel of
Fig. 4 shows the cumulative squared error relative to the clean data. That is, the value at
location j is

∑j
i ‖Pixi −Qxi‖2. Empirically, without regularization the performance

is about four time worse than using regularization. Furthermore, the �1 regularization
performs better than the �2 regularization. An explanation of these results appear in the
top second-left panel. For each of the three algorithms we applied the projection ob-
tained in the end of the training process P3001 on the unit circle and generating an ellip-
soid. The axes of the ellipsoid correspond to the directions of the eigenvectors, and their
relative length correspond to the eigenvalues. The plot also shows the same transforma-
tion of the unit circle using the competitorQ, which is represented as a black-solid line.
(This is because it is of rank 1.) From the plot we observe that without regularization,
the matrix P3001 is essentially the identity matrix, and no filtering is performed. The
second eigenvalue of the matrix P3001 when using the �1 regularization is much smaller
than the second eigenvalue when using the �2 regularization. This is reflected in the
fact that one ellipsoid is more skewed than the other. Note that although the rank of the
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Fig. 4. Top, left to right: cumulative sum of 2 discrepancy evaluated with clean data for the first
simulation and illustration of projection matrices obtained after training. Top-right : cumulative
sum of 2 discrepancy for the second simulation. Bottom, left to right: top 20 eigenvalues of the
projection matrix P for GST , PST0 and PST1e−3 .

�1 matrix P3001 is closer to be one, the major subspace (which corresponds to the larger
eigenvalue) is similar, but not identical, to the true subspace. This relationship between
�1 and �2 regularization (where the former generates sparser solutions) appears in other
contexts in machine learning. Our case is unique since the here the �1 regularization
generates a matrix with sparse eigen-spectrum and not a sparse matrix.

In the second experiment we repeated the following process four times. We picked
at random 400 points in R80. All the points lie in a linear subspace of degree 4 and in
the unit ball around the origin. We added random uniform noise with maximal value
of 0.1. Finally, we concatenated the four sequences into a single sequence of length
1, 600. We run three algorithms: GST , PST0 and PST1e−3 . We ran all algorithms with
�2 regularization and set B = 5, the actual dimension. The top-right panel of Fig. 4
shows the cumulative squared error relative to the clean data. The PST0 algorithm
performs worst, the GST algorithm second, and the PST1e−3 algorithm is the best.
One possible explanation is that for ε = 0 the PST tracks the noise since by definition
Pi+1xi = xi. The two other algorithms cope with noise in different way, either by using
a sensible learning rate or using the predefined tolerance ε. Interestingly, as indicated
by the “stair-shaped” graph, the GST algorithm is more sensitive to the shift between
chunks compared to being inside chunks, and vice versa for the PST algorithm. In other
words, if we know that the subspaces will not be shifted or switched frequently, then
GST is better, while PST is better to track non-stationary subspaces.

The three plots in the bottom of Fig. 4 show the top 20 eigenvalues of Pi for GST ,
PST0 and PST1e−3 (left to right) at each time step. The eigenvalues of GST are smooth
as a function of time. Note, as suggested by Lemma. 1, some eigenvalues of Pi are
indeed larger than unit. For PST0 , although the level of eigenvalues corresponding
to the true subspace is constantly higher than the eigenvalues level for the noise, the
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gap is small. Again, it seems because this algorithm is fitting the noise and is adopting
non-relevant directions. Finally, PST1e−3 shows noisier behavior compared with GST .

To conclude the paper we presented and analyzed two algorithm for online subspace
tracking and two regularization schemas. The simulations performed demonstrate the
merits of our approach. There are many possible extensions for this work. An interest-
ing question is extending this algorithmic framework to track affine subspaces and not
only the special case of linear subspaces. The relation between linear subspaces and
affine subspaces is similar to the relation between linear classifiers through the origin
and general linear classifiers. Another interesting direction is to design batch algorithms
for PCA which optimize loss functions other than the traditional Euclidean distance. A
possible approach is to write a global SDP similar to the one solved in the PST al-
gorithm. A viable research direction is to use low-rank regularization instead of the
low-norm regularization used in this paper. This may lead to more efficient represen-
tation and faster algorithms. Finally, it seems that there are many similarities between
adaptive signal processing and online learning. This paper explore one such relation.

Acknowledgements. The author thanks John Blitzer, Dean Foster, Dan Lee, Fernando
Pereira, Lawrence Saul and Abraham Weiner for many fruitful discussions.
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Abstract. We study the problem of online learning of multiple tasks
in parallel. On each online round, the algorithm receives an instance
and makes a prediction for each one of the parallel tasks. We consider
the case where these tasks all contribute toward a common goal. We
capture the relationship between the tasks by using a single global loss
function to evaluate the quality of the multiple predictions made on each
round. Specifically, each individual prediction is associated with its own
individual loss, and then these loss values are combined using a global
loss function. We present several families of online algorithms which can
use any absolute norm as a global loss function. We prove worst-case
relative loss bounds for all of our algorithms.

1 Introduction

Multitask learning is the problem of learning several related problems in parallel.
In this paper, we discuss the multitask learning problem in the online learning
context. We focus on the possibility that the learning tasks contribute toward a
common goal. Our hope is that we can benefit by taking account of this to learn
the tasks jointly, as opposed to learning each task independently.

For concreteness, we focus on the task of binary classification, and note that
our algorithms and analysis can be adapted to regression problems using ideas in
[1]. In the online multitask classification setting, we are faced with k separate on-
line binary classification problems, in parallel. The online learning process takes
place in a sequence of rounds. At the beginning of round t, the algorithm observes
a set of k instances, one for each of the binary classification problems. The algo-
rithm predicts the binary label of each of the instances it has observed, and then
receives the correct label of each instance. At this point, each of the algorithm’s
predictions is associated with a non-negative loss, and we use �t = (�t,1, . . . , �t,k)
to denote the k-coordinate vector whose elements are the individual loss values
of the respective tasks. Assume that we selected, ahead of time, a global loss
function L : Rk → R+, which is used to combine these individual loss values into
a single number, and define the global loss attained on round t to be L(�t). At
the end of the online round, the algorithm may use the k new labeled examples
it has obtained to improve its prediction mechanism for the rounds to come. The
goal of the learning algorithm is to suffer the smallest possible cumulative loss
over the course of T rounds,

∑T
t=1 L(�t).

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 453–467, 2006.
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The choice of the global loss function captures the overall consequences of
the individual prediction errors, and therefore how the algorithm prioritizes cor-
recting errors. For example, if L(�t) is defined to be

∑k
j=1 �t,j then the online

algorithm is penalized equally for errors on any of the tasks; this results in effec-
tively treating the tasks independently. On the other hand, if L(�t) = maxj �t,j
then the algorithm is only interested in the worst mistake made on every round.
We do not assume that the datasets of the various tasks are similar or otherwise
related. Moreover, the examples presented to the algorithm for each task may
come from different domains and may possess different characteristics. The mul-
tiple tasks are tied together by the way we define the objective of our algorithm.

In this paper, we focus on the case where the global loss function is an absolute
norm. A norm ‖ · ‖ is a function such that ‖v‖ > 0 for all v �= 0, ‖0‖ = 0,
‖λv‖ = |λ|‖v‖ for all v and all λ ∈ R, and which satisfies the triangle inequality.
A norm is said to be absolute if ‖v‖ = ‖|v|‖ for all v, where |v| is obtained
by replacing each component of v with its absolute value. The most well-known
family of absolute norms is the family of p-norms (also called Lp norms), defined
for all p ≥ 1 by ‖v‖p = (

∑n
j=1 |vj |p)1/p. A special member of this family is the

L∞ norm, which is defined to be the limit of the above when p tends to infinity,
and can be shown to equal maxj |vj |. A less popular family of absolute norms
is the family of r-max norms. For any integer r between 1 and k, the r-max
norm of v ∈ Rk is the sum of the absolute values of the r absolutely largest
components of v. Formally,

‖v‖r-max =
r∑
j=1

|vπ(j)| where |vπ(1)| ≥ |vπ(2)| ≥ . . . ≥ |vπ(k)| .

Note that both the L1 norm and L∞ norm are special cases of the r-max norm,
as well as being p-norms.

On each online round, we balance a trade-off between retaining the informa-
tion acquired on previous rounds and modifying our hypotheses based on the
new examples obtained on this round. Instead of balancing this trade-off indi-
vidually for each of the learning tasks, as would be done naively, we balance it
for all of the tasks jointly. By doing so, we allow ourselves to make bigger mod-
ifications to some of the hypotheses at the expense of the others. To motivate
our approach, we present a handful of concrete examples.

Multiclass Classification using the L∞ Norm. Assume that we are faced with a
multiclass classification problem, where the size of the label set is k. One way
of solving this problem is by learning k binary classifiers, where each classifier is
trained to distinguish between one of the classes and the rest of the classes, the
one-vs-rest method. If all of the binary classifiers make correct predictions, we
can correctly predict the multiclass label. Otherwise, a single binary mistake is
as bad as many binary mistakes. Therefore, we only care about the worst binary
prediction on round t, and we do so by setting the global loss to be ‖�t‖∞.

Vector-Valued Regression using the L2 Norm. Let us deviate momentarily from
the binary classification setting, and assume that we are faced with multiple
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regression problems. Specifically, assume that our task is to predict the three-
dimensional position of an object. Each of the three coordinates is predicted
using an individual regressor, and the regression loss for each task is simply the
absolute difference between the true and the predicted value on the respective
axis. In this case, the most appropriate global loss function is the L2 norm, which
maps the vector of individual losses to the Euclidean distance between the true
and predicted 3-D targets. (Note that we take the actual Euclidean distance and
not the squared Euclidean distance often minimized in regression settings).

Error Correcting Output Codes and the r-max Norm. Error Correcting Output
Codes is a technique for reducing a multiclass classification problem to multiple
binary classification problems [2]. The power of this technique lies in the fact
that a correct multiclass prediction can be made even when a few of the binary
predictions are wrong. The reduction is represented by a code matrix M ∈
{−1,+1}s,k, where s is the number of multiclass labels and k is the number of
binary problems used to encode the original multiclass problem. Each row in M
represents one of the s multiclass labels, and each column induces one of the k
binary classification problems. Given a multiclass training set {(xi, yi)}mi=1, with
labels yi ∈ {1, . . . , s}, the binary problem induced by column j is to distinguish
between the positive examples {(xi, yi : Myi,j = +1} and negative examples
{(xi, yi : Myi,j = −1}. When a new instance is observed, applying the k binary
classifiers to it gives a vector of binary predictions, ŷ = (ŷ1, . . . , ŷk) ∈ {−1,+1}k.
We then predict the multiclass label of this instance to be the index of the row
in M which is closest to ŷ in Hamming distance. Define the code distance of
M , denoted by d(M), to be the minimal Hamming distance between any two
rows in M . It is straightforward to show that a correct multiclass prediction can
be guaranteed as long as the number of binary mistakes made on this instance
is less than d(M)/2. In other words, making d(M)/2 binary mistakes is as bad
as making more binary mistakes. Let r = d(M)/2. If the binary classifiers are
trained in the online multitask setting, we should only be interested in whether
the r’th largest loss is less than 1, which would imply that a correct multiclass
prediction can be guaranteed. Regretfully, taking the r’th largest element of a
vector (in absolute value) does not constitute a norm and thus does not fit in
our setting. However, the r-max norm defined above can serve as a proxy.

In this paper, we present three families of online multitask algorithms. Each
family includes algorithms for all the absolute norms. All of the algorithms pre-
sented in this paper follow the general skeleton outlined in Fig. 1. Specifically,
all of our algorithms use an additive update rule, which enables us to transform
them into kernel methods. For each algorithm we prove a relative loss bound,
namely, we show that the cumulative global loss attained by the algorithm is
not much greater than the cumulative loss attained by any fixed set of k linear
hypotheses, even one defined in hindsight.

Much previous work on theoretical and applied multitask learning has con-
cerned how to take advantage of cases in which a number of learning problems
are related [3, 4, 5, 6, 7, 8]; in contrast, we do not assume that the tasks are re-
lated and instead we consider how to take account of common consequences of
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input: norm ‖ · ‖
initialize: w1,1 = . . . = w1,k = (0, . . . , 0)

for t = 1, 2, . . .

• receive xt,1, . . . ,xt,k

• predict sign(wt,j · xt,j) [1 ≤ j ≤ k]

• receive yt,1, . . . , yt,k

• calculate t,j = 1 − yt,jwt,j · xt,j +
[1 ≤ j ≤ k]

• suffer loss t = ‖(t,1, . . . , t,n)‖
• update wt+1,j = wt,j + τt,jyt,jxt,j [1 ≤ j ≤ k]

Fig. 1. A general skeleton for an online multitask classification algorithm. A concrete
algorithm is obtained by specifying the values of τt,j .

errors. Kivinen and Warmuth [9] generalized the notion of matching loss [10] to
multi-dimensional outputs; this enables analysis of algorithms that perform multi-
dimensional regression by composing linear functions with a variety of transfer
functions. It is not obvious how to directly use their work to address the problem
of linear classification with dependent losses addressed in this paper. An analysis
of the L∞ norm of prediction errors is implicit in some past work of Crammer and
Singer [11, 12]; the present paper extends this work to a broader framework, and
tightens the analysis. When k, the number of multiple tasks, is set to 1, two of the
algorithms presented in this paper reduce to the PA-I algorithm [1].

This paper is organized as follows. In Sec. 2 we present our problem more
formally and prove a key lemma which facilitates the analysis of our algorithms.
In Sec. 3 we present our first family of algorithms, which works in the finite
horizon online setting. In Sec. 4 we extend the first family of algorithms to
the infinite horizon setting. Finally, in Sec. 5, we present our third family of
algorithms for the multitask setting, and show that it shares the analyses of
both previous algorithms. The third family of algorithms requires solving a small
optimization problem on each online round. Finally, in Sec. 6, we discuss some
efficient techniques for solving this optimization problem.

2 Online Multitask Learning with Additive Updates

We begin by presenting the online multitask setting more formally. We are faced
with k online binary classification problems in parallel. The instances of each
problem are drawn from separate instance domains, and for concreteness, we
assume that the instances of problem j are all vectors in Rnj . As stated in
the previous section, online learning is performed in a sequence of rounds. On
round t, the algorithm observes k instances, (xt,1, . . . ,xt,k) ∈ Rn1 × . . . × Rnk .
The algorithm maintains k separate classifiers in its internal memory, one for
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each of the multiple tasks, and updates them from round to round. Each of
these classifiers is a margin-based linear predictor, defined by a weight vector.
Let wt,j ∈ Rnj denote the weight vector used to define the j’th linear classi-
fier on round t. The algorithm uses its classifiers to predict the binary labels
ŷt,1, . . . , ŷt,k, where ŷt,j = sign(wt,j · xt,j). Then, the correct labels of the re-
spective problems, yt,1, . . . , yt,k, are revealed and each one of the predictions
is evaluated. We use the hinge-loss function to penalize incorrect predictions,
namely, the loss associated with the j’th problem is defined to be

�t,j =
[
1− yt,jwt,j · xt,j

]
+ ,

where [a]+ = max{0, a}. As previously stated, the global loss is then defined
to be ‖�t‖, where ‖ · ‖ is a predefined absolute norm. Finally, the algorithm
applies an update to each of the online hypotheses, and defines the vectors
wt+1,1, . . . ,wt+1,k. All of the algorithms presented in this paper use an additive
update rule, and define wt+1,j to be wt,j+τt,jyt,jxt,j , where τt,j is a non-negative
scalar. The algorithms only differ from one another in the way they set τt,j . The
general skeleton followed by all of our online algorithms is given in Fig. 1.

A concept of key importance in this paper is the notion of the dual norm [13].
Any norm ‖ · ‖ defined on Rn has a dual norm, also defined on Rn, denoted by
‖ · ‖� and given by

‖u‖� = max
v∈Rn

u · v
‖v‖ = max

v∈Rn : ‖v‖=1
u · v . (1)

The dual of a p-norm is itself a p-norm, and specifically, the dual of ‖ ·‖p is ‖ ·‖q,
where 1

q + 1
p = 1. The dual of ‖ · ‖∞ is ‖ · ‖1 and vice versa. It can also be shown

that the dual of ‖v‖r-max is

‖u‖�r-max = max
{
‖u‖∞,

‖u‖1
r

}
. (2)

An important property of dual norms, which is an immediate consequence of
Eq. (1), is that for any u,v ∈ Rn it holds that

u · v ≤ ‖u‖� ‖v‖ . (3)

If ‖ · ‖ is a p-norm then the above is known as Hölder’s inequality, and specifi-
cally if p = 2 then it is called the Cauchy-Schwartz inequality. Two additional
properties which we rely on are that the dual of the dual norm is the original
norm (see for instance [13]), and that the dual of an absolute norm is also an
absolute norm. As previously mentioned, to obtain concrete online algorithms,
all that remains is to define the update weights τt,j . The different ways of setting
τt,j discussed in this paper all share the following properties:

– boundedness: ∀ 1 ≤ t ≤ T ‖τt‖� ≤ C for some predefined parameter C
– non-negativity: ∀ 1 ≤ t ≤ T, 1 ≤ j ≤ k τt,j ≥ 0
– conservativeness: ∀ 1 ≤ t ≤ T, 1 ≤ j ≤ k (�t,j = 0) ⇒ (τt,j = 0)
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Even before specifying the exact value of τt,j , we can state and prove a powerful
lemma which is the crux of our analysis. This lemma will motivate and justify
our specific choices of τt,j throughout this paper.

Lemma 1. Let {(xt,j , yt,j)}1≤j≤k1≤t≤T be a sequence of T k-tuples of examples, where
each xt,j ∈ Rnj , ‖xt,j‖2 ≤ R and each yt,j ∈ {−1,+1}. Let w�

1 , . . . ,w
�
k be arbi-

trary vectors where w�
j ∈ Rnj , and define the hinge loss attained by w�

j on example
(xt,j , yt,j) to be ��t,j =

[
1 − yt,jw�

j · xt,j
]
+. Let ‖ · ‖ be a norm and let ‖ · ‖� de-

note its dual. Assume we apply an algorithm of the form outlined in Fig. 1 to this
sequence, where the update satisfies the boundedness property with C > 0, as well
as the non-negativity and conservativeness properties. Then

T∑
t=1

k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
≤

k∑
j=1

‖w�
j‖22 + 2C

T∑
t=1

‖��
t‖ .

Proof. Define Δt,j = ‖wt,j −w�
j‖22 − ‖wt+1,j − w�

j‖22. We prove the lemma by
bounding

∑T
t=1

∑k
j=1Δt,j from above and from below. Beginning with the upper

bound, we note that for each 1 ≤ j ≤ k,
∑T

t=1Δt,j is a telescopic sum which
collapses to

T∑
t=1

Δt,j = ‖w1,j −w�‖22 − ‖wT+1,j −w�‖22 .

Using the facts that w1,j = (0, . . . , 0) and ‖wT+1,j −w�‖22 ≥ 0 for all 1 ≤ j ≤ k,
we conclude that

T∑
t=1

k∑
j=1

Δt,j ≤
k∑
j=1

‖w�
j‖22 . (4)

Turning to the lower bound, we note that we can consider only non-zero sum-
mands which actually contribute to the sum, namely Δt,j �= 0. Plugging the
definition of wt+1,j into Δt,j , we get

Δt,j = ‖wt,j −w�
j ‖22 − ‖wt,j + τt,jyt,jxt,j −w�

j‖22
= τt,j

(
−2yt,jwt,j · xt,j − τt,j‖xt,j‖22 + 2yt,jw�

j · xt,j
)

= τt,j
(
2(1− yt,jwt,j · xt,j)− τt,j‖xt,j‖22 − 2(1− yt,jw�

j · xt,j)
)
. (5)

Since our update is conservative, Δt,j �= 0 implies that �t,j = 1 − yt,jwt,j · xt,j .
By definition, it also holds that ��t,j ≥ 1− yt,jw�

j · xt,j . Using these two facts in
Eq. (5) and using the fact that τt,j ≥ 0 givesΔt,j ≥ τt,j(2�t,j−τt,j‖xt,j‖22−2��t,j).
Summing this inequality over 1 ≤ j ≤ k gives

k∑
j=1

Δt,j ≥
k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
− 2

k∑
j=1

τt,j�
�
t,j . (6)

Using Eq. (3) we know that
∑k

j=1 τt,j�
�
t,j ≤ ‖τt‖�‖��

t‖. Using our assumption

that ‖τt‖� ≤ C, we have that
∑k

j=1 τt,j�
�
t,j ≤ C‖��

t‖. Plugging this inequality
into Eq. (6) gives
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k∑
j=1

Δt,j ≥
k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
− 2C‖��

t‖ .

We conclude the proof by summing the above over 1 ≤ t ≤ T and comparing
the result to the upper bound in Eq. (4). 
�
Under the assumptions of this lemma, our algorithm competes with a set of
fixed margin classifiers, w�

1 , . . . ,w
�
k, which may even be defined in hindsight,

after observing all of the inputs and their labels. The right-hand side of the
bound is the sum of two terms, a complexity term

∑k
j=1 ‖w�

j‖22 and a term
which is proportional to the cumulative loss of our competitor,

∑T
t=1 ‖��

t‖. The
left hand side of the bound is the term

T∑
t=1

k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
. (7)

This term plays a key role in the derivation of all three families of algorithms. As
Lemma 1 provides an upper bound on Eq. (7), we prove matching lower bounds
for each of our algorithms. Comparing each of these lower bounds to Lemma 1
yields a loss bound for the respective algorithm.

3 The Finite-Horizon Multitask Perceptron

Our first family of online multitask classification algorithms is called the finite-
horizon multitask Perceptron family. This family includes algorithms for any
global loss function defined by an absolute norm. These algorithms are finite-
horizon online algorithms, meaning that the number of online rounds, T , is
known in advance and is given as a parameter to the algorithm. An analogous
family of infinite-horizon algorithms is the topic of the next section. Given an
absolute norm ‖ · ‖ and its dual ‖ · ‖�, the multitask Perceptron sets τt,j to be

τt = argmax
τ : ‖τ‖�≤C

τ · �t , (8)

where C > 0 is specified later on. Using Eq. (1), we obtain the dual of ‖ · ‖�:

‖�‖�� = max
τ : ‖τ‖�≤1

τ · � .

Since ‖·‖�� and ‖·‖ are equivalent [13] and since ‖τ/C‖� = ‖τ‖�/C, we conclude
that τt from Eq. (8) satisfies

τt · �t = C‖�t‖ . (9)

If the global loss is a p-norm, then Eq. (8) reduces to τt,j = C� p−1
t,j /‖�t‖p−1

p . If
the global loss is an r-max norm and π is a permutation such that �t,π(1) ≥ . . . ≥
�t,π(k), then Eq. (8) reduces to

τt,j =
{
C if j ∈ {π(1), . . . , π(r)}
0 otherwise .
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The correctness of both definitions of τt,j given above can be easily verified by
observing that ‖τt‖� = C and that τt · �t = C‖�t‖ in both cases.

An important component in our analysis is the remoteness of a norm ‖ · ‖,
defined to be

ρ(‖ · ‖, k) = max
u∈Rk

‖u‖2
‖u‖ .

Geometrically, the remoteness of ‖ · ‖ is simply the Euclidean length of the
longest vector (again, in the Euclidean sense) which is contained in the unit ball
of ‖ · ‖. For example, for any p-norm with p ≥ 2, ρ(‖ · ‖p, k) = k1/2−1/p. In this
paper, we take a specific interest in the remoteness of the dual norm ‖ · ‖�, and
we abbreviate ρ(‖ · ‖�, k) by ρ when ‖ · ‖� and k are obvious from the context.
With this definition handy, we are ready to prove a loss bound for the multitask
Perceptron.

Theorem 1. Let {(xt,j , yt,j)}1≤j≤k1≤t≤T be a sequence of T k-tuples of examples,
where each xt,j ∈ Rnj , ‖xt,j‖2 ≤ R and each yt,j ∈ {−1,+1}. Let ‖ · ‖ be an
absolute norm and let ρ denote the remoteness of its dual. Let w�

1, . . . ,w
�
k be

arbitrary vectors where w�
j ∈ Rnj , and define the hinge loss attained by w�

j on
example (xt,j , yt,j) to be ��t,j =

[
1 − yt,jw�

j · xt,j
]
+. If we present this sequence

to the finite-horizon multitask Perceptron with the norm ‖ · ‖ and the parameter
C, then

T∑
t=1

‖�t‖ ≤
1

2C

k∑
j=1

‖w�
j‖22 +

T∑
t=1

‖��
t‖ +

TR2C ρ2(‖ · ‖�, k)
2

.

Proof. The starting point of our analysis is Lemma 1. The choice of τt,j in Eq. (8)
is clearly bounded by ‖τt‖� ≤ C and conservative. It is also non-negative, due to
the fact that ‖·‖� is an absolute norm and that �t,j ≥ 0. Therefore, the definition
of τt,j in Eq. (8) meets the requirements of the lemma, and we have

T∑
t=1

k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
≤

k∑
j=1

‖w�
j‖22 + 2C

T∑
t=1

‖��
t‖ .

Using Eq. (9), we rewrite the left-hand side of the above as

2C
T∑
t=1

‖�t‖ −
T∑
t=1

k∑
j=1

τ2
t,j‖xt,j‖22 . (10)

Using our assumption that ‖xt,j‖22 ≤ R2, we know that
∑k

j=1 τ
2
t,j‖xt,j‖22 ≤

R2‖τt‖22. Using the definition of remoteness, we can upper bound this term by
R2(‖τt‖�)2ρ2. Finally, using our upper bound on ‖τt‖� we can further bound
this term by R2C2ρ2. Plugging this bound back into Eq. (10) gives

2C
T∑
t=1

‖�t‖ − TR2C2ρ2 .
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Overall, we have shown that

2C
T∑
t=1

‖�t‖ − TR2C2ρ2 ≤
k∑
j=1

‖w�
j‖22 + 2C

T∑
t=1

‖��
t‖ .

Dividing both sides of the above by 2C and rearranging terms gives the desired
bound. 
�

Corollary 1. Under the assumptions of Thm. 1, if C = 1/(
√
TRρ), then

T∑
t=1

‖�t‖ ≤
T∑
t=1

‖��
t‖ +

√
TR ρ

2

⎛⎝ k∑
j=1

‖w�
j‖22 + 1

⎞⎠ .

Since our algorithm uses C in its update procedure, and C is a function of
√
T ,

then this algorithm is a finite horizon algorithm.

4 An Extension to the Infinite Horizon Setting

We would like to devise an algorithm which does not require prior knowledge
of the sequence length T . Moreover, we would like a bound which holds simul-
taneously for every prefix of the input sequence. In this section, we adapt the
multitask Perceptron to the infinite horizon setting. This generalization comes
at a price; our analysis only bounds a function similar to the cumulative global
loss, but not the global loss per se (see Corollary 2 below).

To motivate the infinite-horizon multitask Perceptron, we take a closer look
at the analysis of the finite-horizon Perceptron, from the previous section. In
the proof of Thm. 1, we lower-bounded the term

∑k
j=1 2τt,j�t,j − τ2

t,j‖xt,j‖22 by
2C‖�t‖ − R2C2ρ2. The first term in this lower bound is proportional to the
global loss, and the second term is a constant. When ‖�t‖ is small, the difference
between these two terms may be negative, which implies that our update step-
size may have been too large on that round, and that our update may have
even increased our distance to the target. Here, we derive an update for which∑k

j=1 2τt,j�t,j − τ2
t,j‖xt,j‖22 is always positive. The vector τt remains in the same

direction as before, but by limiting its dual norm we enforce an update step-size
which is never excessively large. We replace the definition of τt in Eq. (8) by

τt = argmax
τ : ‖τ‖�≤min C,

‖�t‖
R2ρ2

τ · �t , (11)

where C > 0 is a user defined parameter, R > 0 is an upper bound on ‖xt,j‖2
for all 1 ≤ t ≤ T and 1 ≤ j ≤ k, and ρ = ρ(‖ · ‖�, k). If the global loss function
is a p-norm, then the above reduces to

τt,j =

⎧⎪⎨⎪⎩
� p−1

t,j

R2ρ2‖	t‖p−2
p

if ‖�t‖p ≤ R2Cρ2

C� p−1
t,j

‖	t‖p−1
p

otherwise
.
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If the global loss function is an r-max norm and π is a permutation such that
�t,π(1) ≥ . . . ≥ �t,π(k), then Eq. (11) becomes

τt,j =

⎧⎪⎨⎪⎩
‖	t‖r-max

rR2 if ‖�t‖r-max ≤ R2Cρ2 and j ∈ {π(1), . . . , π(r)}
C if ‖�t‖r-max > R2Cρ2 and j ∈ {π(1), . . . , π(r)}
0 otherwise

.

We now turn to proving a cumulative loss bound.

Theorem 2. Let {(xt,j , yt,j)}1≤j≤kt=1,2,... be a sequence of k-tuples of examples, where
each xt,j ∈ Rnj , ‖xt,j‖2 ≤ R and each yt,j ∈ {−1,+1}. Let ‖·‖ be an absolute norm
and let ρ denote the remoteness of its dual. Let w�

1, . . . ,w
�
k be arbitrary vectors

where w�
j ∈ Rnj , and define the hinge loss attained by w�

j on example (xt,j , yt,j)
to be ��t,j =

[
1− yt,jw�

j · xt,j
]
+. If we present this sequence to the infinite-horizon

multitask Perceptron with the norm ‖ · ‖ and the parameter C, then, for every T ,

1/(R2ρ2)
∑

t≤T :‖	t‖≤R2Cρ2

‖�t‖2 + C
∑

t≤T :‖	t‖>R2Cρ2

‖�t‖ ≤ 2C
T∑
t=1

‖��
t‖ +

k∑
j=1

‖w�
j‖22 .

Proof. The starting point of our analysis is again Lemma 1. The choice of τt,j
in Eq. (11) is clearly bounded by ‖τt‖� ≤ C and conservative. It is also non-
negative, due to the fact that ‖ · ‖� is absolute and that �t,j ≥ 0. Therefore, τt,j
meets the requirements of Lemma 1, and we have

T∑
t=1

k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
≤

k∑
j=1

‖w�
j‖22 + 2C

T∑
t=1

‖��
t‖ . (12)

We now prove our theorem by lower-bounding the left hand side of the above.
We analyze two different cases: if ‖�t‖ ≤ R2Cρ2 then min{C, ‖�t‖/(R2ρ2)} =
‖�t‖/(R2ρ2). Again using the fact that the dual of the dual norm is the original
norm, together with the definition of τt in Eq. (11), we get that

2
k∑
j=1

τt,j�t,j = 2‖τt‖� ‖�t‖ = 2
‖�t‖2
R2ρ2 . (13)

On the other hand,
∑k

j=1 τ
2
t,j‖xt,j‖22 can be bounded by R2‖τt‖22. Using the def-

inition of remoteness, we bound this term by R2(‖τt‖�)2ρ2. Using the fact that,
‖τt‖� ≤ ‖�t‖/(R2ρ2), we bound this term by ‖�t‖2/(R2ρ2). Overall, we have
shown that

∑k
j=1 τ

2
t,j‖xt,j‖22 ≤

‖	t‖2

R2ρ2 . Subtracting both sides of this inequality
from the respective sides of Eq. (13) gives

‖�t‖2
R2ρ2 ≤

k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
. (14)
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input: aggressiveness parameter C > 0, norm ‖ · ‖
initialize w1,1 = . . . = w1,k = (0, . . . , 0)

for t = 1, 2, . . .

• receive xt,1, . . . ,xt,k

• predict sign(wt,j · xt,j) [1 ≤ j ≤ k]

• receive yt,1, . . . , yt,k

• suffer loss t,j = 1 − yt,jwt,j · xt,j +
[1 ≤ j ≤ k]

• update:

{wt+1,1, . . . ,wt+1,k} = argmin
w1,...,wk,ξ

1
2

k
j=1 ‖wj − wt,j‖2

2 + C‖ξ‖

s.t. ∀j wj ·xt,j ≥ 1 − ξj and ξj ≥ 0

Fig. 2. The implicit update algorithm

Moving on to the second case, if ‖�t‖ > R2Cρ2 then min{C, ‖�t‖/(R2ρ2)} = C.
As in Eq. (9), we have that

2
k∑
j=1

τt,j�t,j = 2‖τt‖� ‖�t‖ = 2C‖�t‖ . (15)

As before, we can upper bound
∑k

j=1 τ
2
t,j‖xt,j‖22 by R2(‖τt‖�)2ρ2. Using the fact

that ‖τt‖� ≤ C, we bound this term by R2C2ρ2. Finally, using our assumption
that ‖�t‖ > R2Cρ2, we conclude that

∑k
j=1 τ

2
t,j‖xt,j‖22 < C‖�t‖. Subtracting

both sides of this inequality from the respective sides of Eq. (15) gives

C‖�t‖ ≤
k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
. (16)

Comparing the upper bound in Eq. (12) with the lower bounds in Eq. (14) and
Eq. (16) proves the theorem. 
�
Corollary 2. Under the assumptions of Thm. 2, if C is set to be 1/(R2ρ2) then,
for every T , it holds that

T∑
t=1

min
{
‖�t‖2, ‖�t‖

}
≤ 2

T∑
t=1

‖��
t‖ + R2ρ2

k∑
j=1

‖w�
j‖22 .

5 The Implicit Online Multitask Update

We now discuss a third family of online multitask algorithms, which leads to
the strongest loss bounds of the three families of algorithms presented in this
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paper. In contrast to the closed form updates of the previous algorithms, the
algorithms in this family require solving an optimization problem on every round,
and are therefore called implicit update algorithms. This optimization problem
captures the fundamental tradeoff inherent to online learning. On one hand, the
algorithm wants its next set of hypotheses to remain close to the current set
of hypotheses, so as to maintain the information learned so far. On the other
hand, the algorithm wants to make progress using the new examples obtained
on this round, where progress is measured using the global loss function. The
pseudo-code of the implicit update algorithm is presented in Fig. 2.

Next, we find the dual of the optimization problem given in Fig. 2. By doing
so, we show that the family of implicit update algorithms follows the skeleton
outlined in Fig. 1 and satisfies the requirements of Lemma 1.

Lemma 2. Let ‖·‖ be a norm and let ‖·‖� be its dual. Then the online update de-
fined in Fig. 2 is conservative and equivalent to setting wt+1,j = wt,j+τt,jyt,jxt,j
for all 1 ≤ j ≤ k, where

τt = argmax
τ

k∑
j=1

(
2τj�t,j − τ2

j ‖xt,j‖22
)

s.t. ‖τ‖� ≤ C and ∀j τj ≥ 0 .

Proof Sketch. The update step in Fig. 2 sets the vectors wt+1,1, . . . ,wt+1,k to
be the solution to the following constrained minimization problem:

min
w1,...,wk,ξ≥0

1
2

k∑
j=1

‖wj −wt,j‖22 + C‖ξ‖ s.t. ∀j yt,jwj ·xt,j ≥ 1− ξj .

We use the notion of strong duality to restate this optimization problem in an
equivalent form. The objective function above is convex and the constraints are
both linear and feasible, therefore Slater’s condition [14] holds, and the above
problem is equivalent to

max
τ≥0

min
w1,...,wk,ξ≥0

1
2

k∑
j=1

‖wj −wt,j‖22 + C‖ξ‖+
k∑
j=1

τj (1− yt,jwj ·xt,j − ξj) .

We can write the objective function above as the sum of two separate terms,

1
2

k∑
j=1

‖wj −wt,j‖22 +
k∑
j=1

τj(1− yt,jwj ·xt,j)︸ ︷︷ ︸
L1(τ,w1,...,wk)

+ C‖ξ‖ −
k∑
j=1

τjξj︸ ︷︷ ︸
L2(τ,ξ)

.

Using the notation defined above, our optimization problem becomes,

max
τ≥0

(
min

w1,...,wk

L1(τ,w1, . . . ,wk) + min
ξ≥0
L2(τ, ξ)

)
.

For any choice of τ, L1 is a convex function and we can find w1, . . . ,wk which
minimize it by setting all of its partial derivatives with respect to the elements
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of w1, . . . ,wk to zero. By doing so, we conclude that, wj = wt,j + τjyt,jxt,j for
all 1 ≤ j ≤ k.

The update is conservative since if �t,j = 0 then setting wj = wt,j satisfies
the constraints and minimizes ‖wt − wt,j‖22, without restricting our choice of
any other variable. Plugging our expression for wj into L1, we have that

min
w1,...,wk

L1(τ,w1, . . . ,wk) =
k∑
j=1

τj(1− yt,jwt,j · xt,j) −
1
2

k∑
j=1

τ2
j ‖xt,j‖ .

Since the update is conservative, it holds that τj(1 − yt,jwt,j · xt,j) = τt�t,j .
Overall, we have reduced our optimization problem to

τt = argmax
τ≥0

⎛⎝ k∑
j=1

(
τj�t,j −

1
2
τ2
j ‖xt,j‖

)
+ min

ξ≥0
L2(τ, ξ)

⎞⎠ . (17)

We turn our attention to L2 and abbreviate B(τ) = minξ≥0 L2(τ, ξ). It can
now be shown that B is a barrier function for the constraint ‖τ‖� ≤ C, namely
B(τ) = 0 if ‖τ‖� ≤ C and B(τ) = −∞ if ‖τ‖� > C. Therefore, we replace B(τ)
in Eq. (17) with the explicit constraint ‖τ‖� ≤ C, and conclude the proof. 
�

Turning to the analysis, we now show that all of the loss bounds proven in
this paper also apply to the implicit update family of algorithms. We formally
prove that the bound in Thm. 1 (and specifically in Corollary 1) holds for this
family. The proof that the bound in Thm. 2 (and specifically in Corollary 2) also
holds for this family is identical and is therefore omitted.

Theorem 3. The bound in Thm. 1 also holds for the algorithm in Fig. 2.

Proof. Let τ ′t,j denote the weights defined by the multitask Perceptron in Eq. (8)
and let τt,j denote the weights assigned by the implicit update in Fig. 2. In the
proof of Thm. 1, we showed that,

2C‖�t‖ −R2C2ρ2 ≤
k∑
j=1

(
2τ ′t,j�t,j − τ ′t,j2‖xt,j‖22

)
. (18)

According to Lemma 2, the weights τt,j maximize
∑k

j=1(2τt,j�t,j − τ2
t,j‖xt,j‖22),

subject to the constraints ‖τt‖� ≤ C and τt,j ≥ 0. Since the weights τ ′t,j also
satisfy these constraints, it holds that

∑k
j=1(2τ

′
t,j�t,j − τ ′2t,j‖xt,j‖22) is necessar-

ily upper-bounded by
∑k

j=1(2τt,j�t,j − τ2
t,j‖xt,j‖22). Combining this fact with

Eq. (18), we conclude that

2C‖�t‖ −R2C2ρ2 ≤
k∑
j=1

(
2τt,j�t,j − τ2

t,j‖xt,j‖22
)
. (19)

Since τt,j is bounded, non-negative, and conservative (due to Lemma 2), the
right-hand side of the above inequality is upper-bounded by Lemma 1. Compar-
ing the bound in Eq. (19) to the bound in Lemma 1 proves the theorem. 
�
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6 Algorithms for the Implicit Online Multitask Update

In this section, we briefly describe efficient algorithms for calculating the update
in Fig. 2. Due to space constraints we omit all proofs. If the global loss function
is the L2 norm, it can be shown that the solution to the optimization problem
in Fig. 2 takes the form τt,j = �t,j/(‖xt,j‖22 + θt), where θt is the solution to
the equation

∑k
j=1(

�t,j

‖xt,j‖2
2+θt

)2 = C2. The exact value of θt can be found using
binary search.

Similarly, in the case where the global loss function is the r-max norm, it can
be shown that there exists some θt ≥ 0 such that

τt,j =

⎧⎨⎩
0 if �t,j − θt < 0

�t,j−θt

‖xt,j‖2
2

if 0 ≤ �t,j − θt ≤ C‖xt,j‖22
C if C‖xt,j‖22 < �t,j − θt

. (20)

That is, if the loss of task j is very small then the j’th predictor is left intact.
If this loss is moderate then the size of the update step for the j’th predictor
is proportional to the loss suffered by the j’th task, and inversely proportional
to the squared norm of xt,j . In any case, the size of the update step does not
exceed the fixed upper limit C. By plugging Eq. (20) back into the objective
function of our optimization problem, we can see that the objective function is
monotonically decreasing in θt. We conclude that θt should be the smallest non-
negative value for which the resulting update vector τt satisfies the constraint
‖τt‖�r-max ≤ C.

First, we check whether the constraint ‖τt‖�r-max ≤ C holds when θt = 0. If
the answer is positive, we are done. If the answer is negative, the definition of
‖·‖�r-max in Eq. (2) and the KKT conditions of optimality yield that ‖τt‖1 = rC.
This equality enables us to narrow the search for θt to a handful of candidate
values. To see this, assume for a moment that we have some way of obtaining the
sets Ψ = {1 ≤ j ≤ k : 0 < �t,j − θt} and Φ = {1 ≤ j ≤ k : C‖xt,j‖22 < �t,j − θt}.
The semantics of Ψ and Φ are readily available from Eq. (20): the set Ψ consists
of all indices j for which τt,j > 0, while Φ consists of all indices j for which τt,j
is capped at C. Given these two sets and the fact that

∑k
j=1 τj = rC yields that∑

j∈Ψ\Φ
�t,j−θt

‖xt,j‖2
2

+
∑

j∈Φ C = rC .

Solving the above equation for θt gives

θt =

∑
j∈Ψ\Φ

�t,j

‖xt,j‖2
2
− rC +

∑
j∈Φ C∑

j∈Ψ\Φ
1

‖xt,j‖2
2

. (21)

Therefore, our problem has reduced to the problem of finding the sets Ψ and Φ.
Let q1, . . . , q2k denote the sequence of numbers obtained by sorting the union

of the sets {�t,j}kj=1 and {(�t,j − C‖xt,j‖22)}kj=1 in ascending order. For every
1 ≤ s ≤ 2k, we define the sets Ψs = {1 ≤ j ≤ k : 0 < �t,j − qs} and Φs =
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{1 ≤ j ≤ k : C‖xt,j‖22 < �t,j − qs}. It is not difficult to see that if θt ∈ [qs, qs+1)
then Ψ = Ψs and Φ = Φs. Essentially, we have narrowed the search for θt to
2k candidates defined by the sets Ψs and Φs for 1 ≤ s ≤ 2k, and by Eq. (21).
Of these candidates we choose the smallest one which results in an update that
satisfies our constraints. When performing this process with careful bookkeeping,
calculating the update takes only O(k log(k)) operations.
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Abstract. The on-line shortest path problem is considered under par-
tial monitoring scenarios. At each round, a decision maker has to choose
a path between two distinguished vertices of a weighted directed acyclic
graph whose edge weights can change in an arbitrary (adversarial) way
such that the loss of the chosen path (defined as the sum of the weights
of its composing edges) be small. In the multi-armed bandit setting, af-
ter choosing a path, the decision maker learns only the weights of those
edges that belong to the chosen path. For this scenario, an algorithm is
given whose average cumulative loss in n rounds exceeds that of the best
path, matched off-line to the entire sequence of the edge weights, by a
quantity that is proportional to 1/

√
n and depends only polynomially on

the number of edges of the graph. The algorithm can be implemented
with linear complexity in the number of rounds n and in the number of
edges. This result improves earlier bandit-algorithms which have perfor-
mance bounds that either depend exponentially on the number of edges
or converge to zero at a slower rate than O(1/

√
n). An extension to the

so-called label efficient setting is also given, where the decision maker
is informed about the weight of the chosen path only with probability
ε < 1. Applications to routing in packet switched networks along with
simulation results are also presented.

1 Introduction

In a typical sequential decision problem, a decision maker has to perform a
sequence of actions. After each action the decision maker suffers some loss,
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depending on the response (or state) of the environment, and its goal is to mini-
mize its cumulative loss over a sufficiently long period of time. In the adversarial
setting no probabilistic assumption is made on how the losses corresponding to
different actions are generated. In particular, the losses may depend on the pre-
vious actions of the decision maker, whose goal is to perform well relative to a
set of experts for any possible behavior of the environment. More precisely, the
aim of the decision maker is to achieve asymptotically the same average loss (per
round) as the best expert.

The basic theoretical results in this topic were pioneered by Blackwell [4] and
Hannan [17], and brought to the attention of the machine learning community in
the 1990’s by Vovk [25], Littlestone and Warmuth [21], and Cesa-Bianchi et al.
[6]. These results show that for any bounded loss function, if the decision maker
has access to the past losses of all experts, then it is possible to construct on-line
algorithms that perform, for any possible behavior of the environment, almost
as well as the best of N experts. Namely, for these algorithms the per round cu-
mulative loss of the decision maker is at most as large as that of the best expert
plus a quantity proportional to

√
lnN/n for any bounded loss function, where

n is the number of rounds in the decision game. The logarithmic dependence
on the number of experts makes it possible to obtain meaningful bounds even if
the pool of experts is very large. However, the basic prediction algorithms, such
as weighted average forecasters, have a computational complexity that is pro-
portional to the number of experts, and they are therefore practically infeasible
when the number of experts is very large.

In certain situations the decision maker has only limited knowledge about the
losses of all possible actions. For example, it is often natural to assume that
the decision maker gets to know only the loss corresponding to the action it
has made, and has no information about the loss it would have suffered had it
made a different decision. This setup is referred to as the multi-armed bandit
problem, and was solved by Auer et al. [1] and Cesa-Bianchi and Lugosi [7],
who gave an algorithm whose average loss exceeds that of the best expert at
most by an amount proportional to

√
N lnN/n. Note that, compared to the

full information case described above where the losses of all possible actions are
revealed to the decision maker, there is an extra

√
N term in the performance

bound, which seriously limits the usefulness of the algorithm if the number of
experts is large.

Another interesting example for the limited information case is the so-called
label efficient decision problem, in which it is too costly to observe the state of
the environment, and so the decision maker can query the losses of all possible
actions for only a limited number of times. A recent result of Cesa-Bianchi,
Lugosi, and Stoltz [8] shows that in this case, if the decision maker can query
the losses m times during a period of length n, then it can achieve O(

√
lnN/m)

average excess loss relative to the best expert.
In many applications the set of experts has a certain structure that may be

exploited to construct efficient on-line decision algorithms. The construction of
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such algorithms has been of great interest in computational learning theory.
A partial list of works dealing with this problem includes Herbster and War-
muth [19], Vovk [26], Bousquet and Warmuth [5], Helmbold and Schapire [18],
Takimoto and Warmuth [24], Kalai and Vempala [20], György, Linder, and Lu-
gosi [12, 13, 14]. For a more complete survey, see Cesa-Bianchi and Lugosi [7,
Chapter 5].

In this paper we discuss the on-line shortest path problem, a representative
example of structured expert classes that has received attention in the literature
for its many applications, including, among others, routing in communication
networks, see, e.g., Takimoto and Warmuth [24], Awerbuch et al. [2], or György
and Ottucsák [16], and adaptive quantizer design in zero-delay lossy source cod-
ing, see, György, Linder, and Lugosi [12, 13, 15]. In this problem, given is a
weighted directed (acyclic) graph whose edge weights can change in an arbitrary
manner, and the decision maker has to pick in each round a path between two
given vertices, such that the weight of this path (the sum of the weights of its
composing edges) be as small as possible.

Efficient solutions, with time and space complexity proportional to the number
of edges rather than to the number of paths (the latter typically being exponen-
tial in the number of edges), have been given in the full information case, where
in each round the weights of all the edges are revealed after a path has been
chosen, see, e.g., Mohri [23], Takimoto and Warmuth [24], Kalai and Vempala
[20], and György, Linder, and Lugosi [14].

In the bandit setting, where only the weights of the edges composing the
chosen path are revealed to the decision maker, if one applies the general bandit
algorithm of Auer et al. [1], then the resulting bound will be too large to be of
practical use because of its square-root-type dependence on the number of paths
N . On the other hand, utilizing the special graph structure in the problem,
Awerbuch and Kleinberg [3] and McMahan and Blum [22] managed to get rid of
the exponential dependence on the number of edges in the performance bound by
extending black box predictors, and specifically the follow-the-perturbed-leader
algorithm of Hannan [17] and the exponentially weighted average predictor [21],
to the multi-armed bandit setting. However, their bounds do not have the right
O(1/

√
n) dependence on the number of rounds.

In this paper we provide an extension of the bandit algorithm of Auer et al.
[1] unifying the advantages of the above approaches, with performance bound
that is only polynomial in the number of edges, and converges to zero at the
right O(1/

√
n) rate as the number of rounds increases.

In the following, first we define formally the on-line shortest path problem in
Section 2, then extend it to the multi-armed bandit setting in Section 3. Our new
algorithm for the shortest path problem in the bandit setting is given in Section 4
together with its performance analysis. The algorithm is extended to solve the
shortest path problem in a combined label efficient multi-armed bandit setting
in Section 5. Simulation results are presented in Section 6. Finally, conclusions
are drawn in Section 7.



The Shortest Path Problem Under Partial Monitoring 471

2 The Shortest Path Problem

Consider a network represented by a set of nodes connected by edges, and assume
that we have to send a stream of packets from a source node to a destination node.
At each time slot a packet is sent along a chosen route connecting source and des-
tination. Depending on the traffic, each edge in the network may have a different
delay, and the total delay the packet suffers on the chosen route is the sum of de-
lays of the edges composing the route. The delays may change from one time slot
to the next one in an arbitrary way, and our goal is to find a way of choosing the
route in each time slot such that the sum of the total delays over time is not sig-
nificantly more than that of the best fixed route in the network. This adversarial
version of the routing problem is most useful when the delays on the edges can
change very dynamically, even depending on our previous routing decisions. This
is the situation in the case of mobile ad-hoc networks, where the network topol-
ogy can change rapidly, or in certain secure networks, where the algorithm has to
be prepared to handle denial of service attacks, that is, situations where willingly
malfunctioning nodes and links increase the delay, see, e.g., Awerbuch et al. [2].

This problem can be naturally cast as a sequential decision problem in which
each possible route is represented by an action. However, the number of routes is
typically exponentially large in the number of edges, and therefore computation-
ally efficient algorithms are called for. Two solutions of very different flavors have
been proposed. One of them is based on a follow-the-perturbed-leader forecaster,
see Kalai and Vempala [20], while the other is based on an efficient computation
of the exponentially weighted average forecaster, see, for example, Takimoto and
Warmuth [24]. Both solutions have different advantages and may be generalized
in different directions.

To formalize the problem, consider a (finite) directed acyclic graph with a set
of edges E = {e1, . . . , e|E|} and a set of vertices V . Thus, each edge e ∈ E is an
ordered pair of vertices (v1, v2). Let u and v be two distinguished vertices in V . A
path from u to v is a sequence of edges e(1), . . . , e(k) such that e(1) = (u, v1), e(j) =
(vj−1, vj) for all j = 2, . . . , k − 1, and e(k) = (vk−1, v), and let R = {i1, . . . , iN}
denote the set of all such paths. For simplicity, we assume that every edge in E is
on some path from u to v and every vertex in V is an endpoint of an edge.

In each round t = 1, . . . , n of the decision game, the decision maker chooses a
path It among all paths from u to v. Then a loss �e,t ∈ [0, 1] is assigned to each
edge e ∈ E. We write e ∈ i if the edge e ∈ E belongs to the path i ∈ R, and with
a slight abuse of notation the loss of a path i at time slot t is also represented
by �i,t (however, the meaning of the subscript of � will always be clear from the
context). Then �i,t is given as

�i,t =
∑
e∈i

�e,t

and therefore the cumulative loss of each path i takes the additive form
t∑

s=1

�i,s =
∑
e∈i

t∑
s=1

�e,s
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where the inner sum on the right hand side is the loss accumulated by edge e
during the first t rounds of the game.

It is well known that for a general loss sequence, the decision maker must
be allowed to use randomization to be able to achieve the performance of the
best expert, see, e.g., Cesa-Bianchi and Lugosi [7]. Therefore, the path It is
chosen according to some distribution pt over all paths from u to v. We study
the normalized regret

1
n

(
n∑
t=1

�It,t −min
i∈R

n∑
t=1

�i,t

)
where the minimum is taken over all paths i from u to v.

For example, the exponentially weighted average forecaster [21], calculated
over all possible paths, yields regret bound of the form

1
n

(
n∑
t=1

�It,t −min
i∈R

n∑
t=1

�i,t

)
≤ K

(√
lnN
2n

+

√
ln(1/δ)

2n

)
with probability at least 1− δ, where N is the total number of paths from u to
v in the graph and K is the length of the longest path.

3 The Multi-armed Bandit Setting

In this section we discuss the “bandit” version of the shortest path problem. In
this, in many applications more realistic problem, the decision maker has only
access to the losses of those edges that are on the path it has chosen. That is,
after choosing a path It at time t, the value of the loss �e,t is revealed to the
forecaster if and only if e ∈ It. For example, in the routing problem it means
that information is available on the delay of the route the packet is sent on, and
not on other routes in the network.

Formally, the on-line shortest path problem in the multi-armed bandit setting
is given as follows: at each time slot t = 1, . . . , n, the decision maker picks a
path It ∈ R form u to v. Then the environment assigns loss �e,t ∈ [0, 1] to each
edge e ∈ E, and the decision maker suffers loss �It,t =

∑
e∈It

�e,t, and the losses
�e,t are revealed for all e ∈ It. Note that �e,t may depend on I1, . . . , It−1, the
earlier choices of the decision maker.

For the general multi-armed bandit problem, Auer et al. [1] gave an algorithm,
based on exponential weighting with a biased estimate of the gains defined, in
our case, as gi,t = K − �i,t, combined with uniform exploration. Applying an
improved version of this algorithm due to Cesa-Bianchi and Lugosi [7] to the
on-line shortest path problem in the bandit setting results in a performance that
can be bounded with probability at least 1− δ for any 0 < δ < 1 and fixed time
horizon n as

1
n

(
n∑
t=1

�It,t −min
i∈R

n∑
t=1

�i,t

)
≤ 11K

2

√
N ln(N/δ)

n
+
K lnN

2n
.
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However, this bound is unacceptable in our scenario because, unlike in the
full information case when a simple usage of the exponentially weighted aver-
age forecaster yielded a good performance bound, here the dependence on the
number of all paths N is not merely logarithmic. In order to achieve a bound
that does not grow exponentially with the number of edges of the graph, it is
imperative to make use of the dependence structure of the losses of the different
actions (i.e., paths). Awerbuch and Kleinberg [3] and McMahan and Blum [22]
attempted to do this by extending low complexity predictors, such as the follow-
the-perturbed-leader forecaster [17], [20] to the bandit setting. However, the
obtained bounds do not have the right O(1/

√
n) decay in terms of the number

of rounds.

4 A Bandit Algorithm for Shortest Paths

In the following we describe a carefully defined variant of the bandit algorithm
of [1] that achieves the desired performance for the shortest path problem in the
bandit setting. The new algorithm utilizes the fact that when the losses of the
edges of the chosen path are revealed, then this also provides some information
about the loss of each path sharing common edges with the chosen path.

For each edge e ∈ E, introduce gains ge,t = 1− �e,t, and for each path i ∈ R,
similarly to the losses, let the gain be the sum of the gains of the edges of the
path, that is, let gi,t =

∑
e∈i ge,t. The conversion from losses to gains is done in

order to facilitate the subsequent performance analysis, see, e.g. [7]. To simplify
the conversion, we assume that each path i ∈ R is of the same length K for
some K > 0. Note that although this assumption may seem to be restrictive at
the first glance, from each acyclic directed graph (V,E) one can construct a new
graph with adding at most (K−2)(|V |−2)+1 vertices and edges (with constant
weight zero) to the graph without modifying the weights of the paths such that
each path from u to v will be of length K, where K denotes the length of the
longest path of the original graph. As typically |E| = O(|V |2), the size of the
graph is usually not increased substantially.

A main feature of the algorithm below is that the gains are estimated for
each edge and not for each path. This modification results in an improved upper
bound on the performance with the number of edges in place of the number of
paths. Moreover, using dynamic programming as in Takimoto and Warmuth [24],
the algorithm can be computed efficiently. Another important ingredient of the
algorithm is that one needs to make sure that every edge is sampled sufficiently
often. To this end, we introduce a set C of covering paths with the property that
for each edge e ∈ E there is a path i ∈ C such that e ∈ C. Observe that one can
always find such a covering set of cardinality |C| ≤ |E|.

Note that the algorithm of [1] is a special case of the algorithm below: For any
multi-armed bandit problem with N experts, one can define a graph with two
vertices u and v, and N directed edges from u to v with weights corresponding
to the losses of the experts. The solution of the shortest path problem in this
case is equivalent to that of the original bandit problem, with choosing expert
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i if the corresponding edge is chosen. For this graph, our algorithm reduces to
the original algorithm of [1].

A BANDIT ALGORITHM FOR SHORTEST PATHS

Parameters: real numbers β > 0, η > 0, 0 < γ < 1.
Initialization: Set we,0 = 1 for each e ∈ E, wi,0 = 1 for each i ∈ R,
and W 0 = |R|. For each round t = 1, 2, . . .

(a) Choose a path It according to the distribution pt on R, defined
by

pi,t =

{
(1 − γ)wi,t−1

W t−1
+ γ

|C| if i ∈ C
(1 − γ)wi,t−1

W t−1
if i �∈ C.

(b) Compute the probability of choosing each edge e as

qe,t =
∑
i:e∈i

pi,t = (1− γ)
∑

i:e∈i wi,t−1

W t−1
+ γ
|{i ∈ C : e ∈ i}|

|C| .

(c) Calculate the estimated gains

g′e,t =

{
ge,t+β
qe,t

if e ∈ It
β
qe,t

otherwise.

(d) Compute the updated weights

we,t = we,t−1e
ηg′

e,t

wi,t =
∏
e∈i

we,t = wi,t−1e
ηg′

i,t

where g′i,t =
∑

e∈i g
′
e,t, and the sum of the total weights of the

paths
W t =

∑
i∈R

wi,t.

The analysis of the algorithm is based on that of the original algorithm of
[1] with necessary modifications required to transform parts of the argument
for edges from paths, and to utilize the connection between the gains of paths
sharing common edges.

Theorem 1. For any δ ∈ (0, 1) and parameters 0 < γ < 1/2, 0 < β ≤ 1, and
η > 0 satisfying 2ηK|C| ≤ γ, the performance of the algorithm defined above can
be bounded with probability at least 1− δ as
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1
n

(
n∑
t=1

�It,t −min
i∈R

n∑
t=1

�i,t

)
≤ Kγ + 2ηK2|C|+ K

nβ
ln
|E|
δ

+
lnN
nη

+ |E|β.

In particular, choosing β =
√

K
n|E| ln |E|

δ , γ = 2ηK|C|, and η =
√

lnN
4nK2|C| yields

for all n ≥ max
{
K
|E| ln |E|

δ , 4|C| lnN
}
,

1
n

(
n∑
t=1

�It,t −min
i∈R

n∑
t=1

�i,t

)
≤ 2

√
K

n

(√
4K|C| lnN +

√
|E| ln |E|

δ

)
.

Sketch of the proof. The proof of the theorem follows the main ideas of [1]. As
usual, we start with bounding the quantity ln Wn

W 0
. The lower bound is obtained

as

ln
Wn

W 0
= ln

∑
i∈R

eη
n
t=1 g

′
i,t − lnN ≥ ηmax

i∈R

n∑
t=1

g′i,t − lnN (1)

where we used the fact that wi,n = eη
n
t=1 g

′
i,t .

On the other hand, from the conditions of the theorem it follows that ηg′i,t ≤ 1
for all i and t, and so using the inequalities ln(x + 1) ≤ x for all x > −1 and
ex < 1 + x+ x2 for all x ≤ 1, one can show for all t ≥ 1 that

ln
W t

W t−1
≤ η

1− γ
∑
i∈R

pi,tg
′
i,t +

η2

1− γ
∑
i∈R

pi,tg
′2
i,t. (2)

The sums on the right hand side can be bounded as∑
i∈R

pi,tg
′
i,t = gIt,t + |E|β and

∑
i∈R

pi,tg
′2
i,t ≤ K(1 + β)

∑
e∈E

g′e,t. (3)

Summing (2) for t = 1, . . . , n, and combining it with (1) and (3), it follows that

n∑
t=1

gIt,t ≥ (1− γ − ηK(1 + β)|C|) max
i∈R

n∑
t=1

g′i,t −
1− γ
η

lnN − n|E|β. (4)

Now one can show based on [7, Lemma 6.7] that for any δ ∈ (0, 1), 0 < β ≤ 1,
and for all e ∈ E we have

P

(
n∑
t=1

ge,t >
n∑
t=1

g′e,t +
1
β

ln
|E|
δ

)
≤ δ

|E| . (5)

Then, applying the union bound, one can replace
∑n

t=1 g
′
i,t in (4) with

∑n
t=1 gi,t

as
n∑
t=1

gIt,t ≥ (1−γ−ηK(1+β)|C|)
(

max
i∈R

n∑
t=1

gi,t−
K

β
ln
|E|
δ

)
− 1−γ

η
lnN− n|E|β

which holds with probability at least 1− δ. Then, applying the conversions
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n∑
t=1

�It,t = Kn−
n∑
t=1

gIt,t and
n∑
t=1

�i,t = Kn−
n∑
t=1

gi,t,

after some algebra one obtains the first statement of the theorem. The second sta-
tement follows by substituting the optimized parameters given in the theorem. 
�

The algorithm can be implemented efficiently with time complexity O(n|E|) and
space complexity O(|E|). The two complex steps of the algorithm are steps (a)
and (b), both of which can be computed, similarly to Takimoto and Warmuth
[24], using dynamic programming. To be able to perform these steps efficiently,
first we have to order the vertices of the graph. Since we have an acyclic directed
graph, its nodes can be labeled (in O(|E|) time) from 1 to |V | such that if
(v1, v2) ∈ E then v1 < v2, and u = 1 and v = |V |. For any pair of vertices
u1 < v1 let Ru1,v1 denote the set of paths from u1 to v1, and for any vertex
s ∈ V , let

Ht(s) =
∑

i∈Rs,v

∏
e∈i

we,t

and
Ĥt(s) =

∑
i∈Ru,s

∏
e∈i

we,t.

Given the edge weights {we,t}, Ht(s) can be computed recursively for s = |V | −
1, . . . , 1, and Ĥt(s) can be computed recursively for s = 2, . . . , |V | in O(|E|)
time (letting Ht(v) = Ĥt(u) = 1 by definition). In step (a), first one has to
decide with probability γ whether It is generated according to the graph weights,
or it is chosen uniformly from C. If It is to be drawn according to the graph
weights, it can be shown that its vertices can be chosen one by one such that
if the first k vertices of It are v0 = u, v1, . . . , vk−1, then the next vertex of It
can be chosen to be any vk > vk−1, satisfying (vk−1, vk) ∈ E, with probability
w(vk−1,vk),t−1Ht−1(vk)/Ht−1(vk−1). The other computationally demanding step,
namely step (b), can be performed easily by noting that for any edge (v1, v2),

q(v1,v2),t = (1− γ)
Ĥt−1(v1)w(v1,v2),t−1Ht−1(v2)

Ht−1(u)
+ γ
|{i ∈ C : (v1, v2) ∈ i}|

|C| .

5 The Shortest Path Problem for a Combination of the
Label Efficient and the Bandit Settings

In this section we investigate a combination of the multi-armed bandit and the
label efficient setting problems, where the gain of the chosen path is available
only on request. Just as in the previous section, it is assumed that each path of
the graph is of the same length K.

In the general label efficient decision problem, after taking the action, the
decision maker has the option to query the losses of all possible actions (in
the original problem formulation, the decision maker can query the response of
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the environment, referred to as “label”, and can compute all losses from this
information). To query the losses, the decision maker uses an i.i.d. sequence
S1, S2, . . . , Sn of Bernoulli random variables with P(St = 1) = ε and asks for
the losses if St = 1. For this problem, Cesa-Bianchi et al. [8] proved an upper
bound on the normalized regret of order O(K

√
ln(4N/δ)/(nε)) with probability

at least 1− δ.
We study a combined algorithm which, at each time slot t, queries the loss of

the chosen path with probability ε (as in the label efficient case), and similarly
to the multi-armed bandit case, computes biased estimates g′i,t of the true gains
gi,t. This combination is motivated by some realistic applications, where the
information is costly in some sense, i.e., the request is allowed only for a limited
number of times.

The model of label-efficient decisions is well suited to a particular packet
switched network model, called the cognitive packet network, which was intro-
duced by Gelenbe et al. [10, 11]. In these networks, capabilities for routing and
flow control are concentrated in packets. In particular, one type of packets, called
smart packets, do not transport any useful data, but are used to explore the net-
work (e.g. the delay of the chosen path). The other type of packets are data
packets, which do not collect information about their paths, but transport use-
ful data. In this model the task of the decision maker is to send packets from the
source to the destination over routes with minimum average transmission delay
(or packet loss). In this scenario, smart packets are used to query the delay of the
chosen path. However, as these packets do not transport information, there is a
tradeoff between the number of queries and the utilization of the network. If data
packets are α times larger than smart packets on the average (note that typically
α 5 1), then ε/(ε + α(1 − ε)) is the proportion of the bandwidth sacrificed for
well informed routing decisions.

The algorithm differs from our bandit algorithm of the previous section only in
step (c), which is modified in the spirit of [8]. The modified step is given below:

MODIFIED STEP FOR THE LABEL EFFICIENT BANDIT
ALGORITHM FOR SHORTEST PATHS

(c’) Draw a Bernoulli random variable St with P(St = 1) = ε, and
compute the estimated gains

g′e,t =

⎧⎪⎨⎪⎩
ge,t+β
qe,tε

if e ∈ It and St = 1
β

qe,tε
if e /∈ It and St = 1

0 otherwise.

The performance of the algorithm is analyzed in the next theorem, which can
be viewed as a combination of Theorem 1 in the preceding section and Theorem 2
of [8].
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Theorem 2. For any δ ∈ (0, 1), ε ∈ (0, 1] and parameters η =
√

ε lnN
4nK2|C| ,

γ = 2ηK|C|
ε ≤ 1/2 and β =

√
K

n|E|ε ln 2|E|
δ ≤ 1 and for all

n ≥ 1
ε

max
{
K2 ln2(2|E|/δ)
|E| lnN ,

|E| ln(2|E|/δ)
K

, 4|C| lnN
}

the performance of the algorithm defined above can be bounded, with probability
at least 1− δ as

1
n

(
n∑
t=1

�It,t −min
i∈R

n∑
t=1

�i,t

)

≤
√
K

nε

(
4
√
K|C| lnN + 5

√
|E| ln 2|E|

δ
+

√
8K ln

2
δ

)
+

4K
3nε

ln
2
δ

≤ 27K
2

√
|E| ln 2N

δ

nε
.

Sketch of the proof. The proof of the theorem is a generalization of the proof
of Theorem 1, and follows the same lines with some extra technicalities to handle
the effects of the modified step (c’). Therefore, in the following we emphasize
only the differences. First note that (1) and (2) also hold in this case. Now,
instead of (3), one obtains∑

i∈R
pi,tg

′
i,t =

St
ε

(gIt,t + |E|β) and
∑
i∈R

pi,tg
′2
i,t ≤

1
ε
K(1 + β)

∑
e∈E

g′e,t

which imply, together with (1) and (2),

n∑
t=1

St
ε

(gIt,t + |E|β ) ≥
(

1−γ− ηK(1 + β)|C|
ε

)
max
i∈R

n∑
t=1

g′i,t−
1−γ
η

lnN. (6)

To relate the left hand side of the above inequality to the real gain
∑n

t=1 gIt,t,
notice that

Xt =
St
ε

(gIt,t + |E|β)− (gIt,t + |E|β)

is a martingale difference sequence. Then, it can be shown by applying Bern-
stein’s inequality (see, e.g., [9]) that

P

(
n∑
t=1

Xt >

√
8K2n

ε
ln

2
δ

+
4K
3ε

ln
2
δ

)
≤ δ

2
. (7)

Furthermore, similarly to (5) it can be proved that

P

(
n∑
t=1

ge,t >

n∑
t=1

g′e,t +
4βn|E|
K

)
≤ δ

2|E| . (8)
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An application of the union bound for (7) and (8) combined with (6) yields, with
probability at least 1− δ,

n∑
t=1

gIt,t ≥
(

1− γ − ηK(1 + β)|C|
ε

)(
max
i∈R

n∑
t=1

gi,t − 4βn|E|
)

−1− γ
η

lnN − βn|E| −
√

8K2n

ε
ln

2
δ
− 4K

3ε
ln

2
δ
.

Using
∑n

t=1 gIt,t = Kn−
∑n

t=1 �It,t and
∑n

t=1 gi,t = Kn −
∑n

t=1 �i,t, and sub-
stituting the values of η, β, and γ yield, after some algebra, the statement of the
theorem. 
�

6 Simulations

To further investigate our new algorithms, simulations were conducted. We
tested our bandit algorithm for shortest paths in a simple communication net-
work shown in Figure 1. The simulation consisted of sending 10000 packets, from
source node u = 1 to destination node v = 6, and our goal was to pick a route for
each packet with small delay. We assumed the infinitesimal user scenario, that
is, our choice for a path does not affect the delay on the links of the network.

Each link has a fixed propagation delay which is 0.1ms. To generate additional
delays (so called traffic delays), three major flows were considered, with period-
ically changing dynamics with period length 1000 time slots. The flow is a path
between two determined nodes (not necessarily u and v), which is loaded by
traffic for a limited time period. The first flow, shown by a thick line in Figure 1,
has a constant load, resulting in a constant 20ms traffic delay on all of its edges.
The second flow, denoted by a dashed line, starts sending packets at time slot
200 of each period, and the traffic delays on its edges increase to 20ms by time
slot 400, and stay there until time slot 700, when the flow is stopped, and the
corresponding traffic delays drop back to 0. The third flow, denoted by a dotted
line, has similar characteristics as the second flow, but it starts at time slot 500,
the corresponding delay reaches 20ms at time slot 700, and remains there until
the end of the period. Finally, the two thin lines in the graph denote links which
are not used by the major flows.

1

2

3

5

4

6

Fig. 1. Topology of the network
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The difficulty in this configuration is that the best fixed path switches 3 times
during a period. From time 0 to time slot 200 there are three paths with the
same performance: path (1, 3, 5, 6), path (1, 3, 4, 6), and path (1, 2, 4, 6). From
time slot 201 to time slot 700, path (1,2,4,6) has the smallest delay, and in the
remainder of the period, path (1, 3, 5, 6) is the best. In the long run these are
the three best fixed paths, with (1, 2, 4, 6) being the best, (1, 3, 4, 6) the second
best, and (1, 3, 5, 6) the third.

In the simulations we ran the bandit algorithm for shortest paths with para-
meters optimized for n = 10000. We also ran an infinite horizon version of the
algorithm, in which at each time instant t, the parameters η, β, and γ are set
so that they are optimized for the finite horizon n = t. In this version we,t =
we,t−1 exp(ηtg′e,t), where ηt is decreasing in t and therefore this algorithm uses
”reverse-discountedgains”.Although we have not investigated the theoretical per-
formance of this discounted style version, it can be observed that the modifica-
tion substantially improves the performance of the algorithm in this example, and
the modified version outperformed the second best route in the network. The rea-
son for the good performance is that in the simulation the best fixed path in the
long run does not change because of the periodicity of the flows and therefore a
discounted algorithm can learn faster the best path than a non-discounted algo-
rithm. We also compared our methods to that of Awerbuch and Kleinberg [3], and
achieved better performance in all situations. The simulation results are summa-
rized in Figure 2 that shows the normalized regret of the above algorithms (aver-
aged over 30 runs), as well as the regrets of all fixed paths from node 1 to node 6
(the periodical small jumps on the curves correspond to the starting and ending
times of the other flows). Note that in Figure 2, there are only 8 paths instead of 9,
because of path (1,2,3,5,6) and path (1,3,4,5,6) have the same performance, and
the curve for the best path (1, 2, 4, 6) coincides with the x-axis.

7 Conclusions

Efficient algorithms have been provided for the on-line shortest path problem
in the multi-armed bandit setting and in a combined label efficient multi-armed
bandit setting. The regrets of the algorithms, compared to the performance of the
best fixed path, converge to zero at an O(1/

√
n) rate as the time horizon n grows

to infinity, and increases only polynomially in the number of edges (and vertices)
of the graph. Earlier methods for the multi-armed bandit problem either do not
have the right O(1/

√
n) convergence rate, or their regret increase exponentially

in the number of edges for typical graphs. Simulation results showed the expected
performance of the algorithms under realistic traffic scenarios.

Both problems are motivated by realistic problems, such as routing in commu-
nication networks, where the nodes do not have all the information about the state
of the network. We have addressed the problem in the adversarial setting where
the edge weights may vary in an arbitrary way, in particular, they may depend on
previous routing decisions of the algorithm. Although this assumption may seem
to be very strong in many network scenarios, it has applications in mobile ad-hoc
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Fig. 2. Normalized regret of our bandit algorithm for shortest paths and that of the
shortest path algorithm of [3]

networks, where the network topology changes dynamically in time, and also in
certain secure networks that has to be able to handle denial of service attacks.
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Abstract. Shifting bounds for on-line classification algorithms ensure
good performance on any sequence of examples that is well predicted by a
sequence of smoothly changing classifiers. When proving shifting bounds
for kernel-based classifiers, one also faces the problem of storing a number
of support vectors that can grow unboundedly, unless an eviction policy
is used to keep this number under control. In this paper, we show that
shifting and on-line learning on a budget can be combined surprisingly
well. First, we introduce and analyze a shifting Perceptron algorithm
achieving the best known shifting bounds while using an unlimited bud-
get. Second, we show that by applying to the Perceptron algorithm the
simplest possible eviction policy, which discards a random support vector
each time a new one comes in, we achieve a shifting bound close to the
one we obtained with no budget restrictions. More importantly, we show
that our randomized algorithm strikes the optimal trade-off U = Θ

√
B

between budget B and norm U of the largest classifier in the comparison
sequence.

1 Introduction

On-line or incremental learning is a powerful technique for building kernel-based
classifiers. On-line algorithms, like the kernel Perceptron algorithm and its many
variants, are typically easy to implement, efficient to run, and have strong per-
formance guarantees. In this paper, we study two important aspects related to
incremental learning: tracking ability and memory boundedness. The need for
tracking abilities arises from the fact that on-line algorithms are often designed
to perform well with respect to the best fixed classifier in hindsight within a given
comparison class. However, this is a weak guarantee: in many real-world tasks,
such as categorization of text generated by a newsfeed, it is not plausible to
assume that a fixed classifier could perform consistently well on a long sequence
of newsitems generated by the feed. For this reason, a “shifting” performance
model has been introduced (e.g., [19, 13, 2, 14, 15], and references therein) where
the on-line algorithm is evaluated against an arbitrary sequence of comparison
classifiers. In this shifting model, which is strictly harder than the traditional
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nonshifting performance model, the tracking ability refers to the fact that the
performance of the algorithm is good to the extent that the data sequence is
well predicted by a sequence of classifiers whose coefficients change gradually
with time. If the algorithm is kernel-based, then we face the additional issue
of the time and space needed to compute the classifier. In fact, kernel-based
learners typically use a subset of previously observed data to encode a classifier
(borrowing the Support Vector Machine [22, 21] terminology, we call these data
“support vectors”). The problem is that nearly all on-line algorithms need to
store a new support vector after each prediction mistake. Thus, the number of
supports grows unboundedly unless the data sequence is linearly separable in the
RKHS induced by the kernel under consideration. To address this specific issue,
variants of the Perceptron algorithm have been proposed [6, 23] and analyzed [7]
that work using a fixed budget of support vectors. These algorithms use a rule
that, once the number of stored supports has reached the budget, evicts a sup-
port from the storage each time a new vector comes in. Our eviction rule, at the
basis of the Randomized Budget Perceptron algorithm, is surprisingly simple:
On a mistaken trial, the algorithm adds in the new support vector after an old
one has been chosen at random from the storage and discarded.

Since the tracking ability is naturally connected to a weakened dependence on
the past, memory boundedness could be viewed as a way to obtain a good shifting
performance. In fact, we will show that our Randomized Budget Perceptron
algorithm has a strong performance guarantee in the shifting model. In addition,
and more importantly, this algorithm strikes the optimal trade-off U = Θ

(√
B
)

between the largest norm U of a classifier in the comparison sequence and the
required budget B. This improves on U = O

(√
B/(lnB)

)
obtained in [7], via a

more complicated algorithm.
The paper is organized as follows. In the rest of this section we introduce our

main notation, along with preliminary definitions. Section 2 introduces the Shift-
ing Perceptron algorithm, a simple variant of the Perceptron algorithm achieving
the best known shifting bound without budget restriction. This result will be
used as a yardstick for the results of Section 3, where our simple Randomized
Budget Perceptron algorithm is described and analyzed. Finally, Section 4 is
devoted to conclusions and open problems.

All of our algorithms are kernel-based. For notational simplicity, we define
and analyze them without using kernels.

Basic definitions, preliminaries and notation
An example is a pair (x, y), where x ∈ Rd is an instance vector and y ∈
{−1,+1} is the associated binary label. We consider the standard on-line learn-
ing model [1, 17] in which learning proceeds in a sequence of trials. In the generic
trial t the algorithm observes instance xt and outputs a prediction ŷt ∈ {−1,+1}
for the label yt associated with xt. We say that the algorithm has made a pre-
diction mistake if ŷt �= yt.

In this paper we consider variants of the standard Perceptron algorithm [3, 20].
At each trial t = 1, 2, . . . this algorithm predicts yt through the linear-threshold
function ŷt = sgn

(
w�xt

)
, where w ∈ Rd is a weight vector that is initially set
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to the zero vector 0. If a mistake is made at trial t, the algorithm updates w by
performing the assignment w ← w + ytxt.

When the Perceptron algorithm is run in a RKHS the current hypothesis is
represented as a linear combination of (kernel) dot-products with all past mis-
taken (”support”) vectors xt. Since in any given trial the running time required
to make a prediction scales linearly with the number of mistakes made so far, the
overall running time needed by the kernel Perceptron algorithm is quadratic in
the total number m of mistakes made. A memory bounded Perceptron algorithm
tries to overcome this drawback by maintaining only a prearranged number of
past support vectors, thereby turning the quadratic dependence on m into a
linear one.

We measure the performance of our linear-threshold algorithms by the total
number of mistakes they make on an arbitrary sequence of examples. In the
standard performance model, the goal is to bound this total number of mistakes
in terms of the performance of the best fixed linear classifier u ∈ Rd in hindsight
(note that we identify an arbitrary linear-threshold classifier with its coefficient
vector u). Since the general problem of finding u ∈ Rd that minimizes the
number of mistakes on a known sequence is a computationally hard problem,
the performance of the best predictor in hindsight is often measured using the
cumulative hinge loss [8, 11]. The hinge loss of a linear classifier u on example
(x, y) is defined by d(u; (x, y)) = max{0, 1 − yu�x}. Note that d is a convex
function of the margin yu�x, and is also an upper bound on the indicator
function of sgn

(
u�x

)
�= y.

In the shifting or tracking performance model the learning algorithm faces the
harder goal of bounding its total number of mistakes in terms of the cumulative
hinge loss achieved by an arbitrary sequence u0,u1 . . . ,un−1 ∈ Rd of linear
classifiers (also called comparison vectors). To make this goal feasible, the bound
is allowed to scale also with the maximum norm U = maxt ‖ut‖ of the classifiers
in the sequence and with the total shift

Stot =
n−1∑
t=1

‖ut−1 − ut‖ (1)

of the classifier sequence. We assume for simplicity that all instances xt are
normalized, that is, ‖xt‖ = 1 for all t ≥ 1. Finally, throughout this paper, we
will use {φ} to denote the indicator function of the event defined by a predicate φ.

2 The Shifting Perceptron Algorithm

Our learning algorithm for shifting hyperplanes (Shifting Perceptron Algorithm,
spa) is described in Figure 1. spa has a positive input parameter λ which de-
termines the rate of weight decay. The algorithm maintains a weight vector w
(initially set to zero) and two more variables: a mistake counter k (initialized to
zero) and a time-changing decaying factor λk (initialized to 1). When a mistake
is made on some example (xt, yt) the signed instance vector ytxt is added to
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the old weight vector, just like in the Perceptron update rule. However, unlike
the Perceptron rule, before adding ytxt spa scales down the old weight, so as to
diminish the importance of early update stages. The important thing to observe
here is that the scaling factor (1− λk) changes with time, since λk → 0 as more
mistakes are made. Note that subscript t runs over all trials, while subscript k
runs over mistaken trials only, thus k serves as an index for quantities (wk and
λk) which get updated only in those trials. In particular, at the end of each trial,
k is equal to the number of mistakes made so far.

Algorithm: Shifting Perceptron.
Parameters: λ > 0;
Initialization: w0 = 0, λ0 = 1, k = 0.

For t = 1, 2, . . .

1. Get instance vector xt ∈ Rd, ‖xt‖ = 1;
2. Predict with yt = sgn(w�

k xt) ∈ {−1, +1};
3. Get label yt ∈ {−1, +1};
4. If yt �= yt then

wk+1 = (1 − λk)wk + ytxt , k ← k + 1 , λk =
λ

λ + k
.

Fig. 1. The shifting Perceptron algorithm

It is worth observing what the algorithm really does by unwrapping the re-
currence wk+1 = (1− λk)wk + ytxt. Assume at the end of trial t the algorithm
has made k + 1 mistakes, and denote the mistaken trials by t0, t1, . . . , tk. We
have wk+1 = α0 yt0xt0 + α1 yt1xt1 + · · ·+ αk ytkxtk with1

αi =
k∏

j=i+1

(1− λj) = exp
( k∑
j=i+1

log(1− λj)
)
≈ exp

(
−

k∑
j=i+1

λj

)

= exp
(
−

k∑
j=i+1

λ

λ+ j

)
≈
(
λ+ i+ 1
λ+ k + 1

)λ
≈ ck (i+ 1)λ,

ck being a positive constant independent of i. Thus spa is basically following a
(degree-λ) polynomial vector decaying scheme, where the most recent “support
vector” xtk is roughly worth (k+1)λ times the least recent one (i.e., xt0). Clearly
enough, if λ = 0 all support vectors are equally important and we recover the
classical Perceptron algorithm.

Now, since we are facing a shifting target problem, it is reasonable to expect
that the optimal degree λ depends on how fast the underlying target is drifting
with time. As we will see in a moment, the above polynomial weighting scheme
gives spa a desirable robustness to parameter tuning, beyond making the analysis
fairly simple.

1 See the appendix for more precise approximations.
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2.1 Analysis

The analysis is a standard potential-based analysis for mistake-driven on-line
algorithms [3, 17, 20].

The following simple lemma is central to our analysis. The lemma bounds
the growth rate of the norm of the algorithm’s weight vector. The key point to
remark is that, unlike previous algorithms and analyses (e.g., [7, 14, 15]), we do
not force the weight vector wk to live in a ball of bounded radius. Instead, we
allow the weight vector to grow unboundedly, at a pace controlled in a rather
precise way by the input parameter λ. The proof is given in the appendix.

Lemma 1. With the notation introduced in Figure 1, we have

‖wk+1‖ ≤ e
√
λ+ k + 2
2λ+ 1

for any k = 0, 1, 2 . . ., where e is the base of natural logarithms.

The following theorem contains our mistake bounds for spa. The theorem deliv-
ers shifting bounds for any constant value of parameter λ. For instance, λ = 0
gives a shifting bound for the classical (non-shifting) Perceptron algorithm.2 For
any sequence (u0,u1, . . .) of comparison vectors, the bound is expressed in terms
of the cumulative hinge loss D, the shift S, and the maximum norm U of the
sequence. These quantities are defined as follows:

D =
m−1∑
k=0

d(uk; (xtk , ytk)), S =
m−1∑
k=1

‖uk − uk−1‖ , U = max
t=0,...,n−1

‖ut‖ . (2)

We recall that tk is the trial at the end of which wk gets updated and uk is the
comparison vector in trial tk. Note that D and S are only summed over mistaken
trials. Larger, but more interpretable bounds, can be obtained if these sums are
replaced by sums running over all trials t. In particular, S may be replaced by
Stot defined in (1).

As expected, the optimal tuning of λ grows with S and, in turn, yields a
mistake bound which scales linearly with S. We emphasize that, unlike previous
investigations (such as [15]) our shifting algorithm is independent of scaling para-
meters (like the margin of the comparison classifiers 〈ut〉). In fact, our “optimal”
tuning of λ turns out to be scale-free.

Theorem 1. For any n ∈ N, any sequence of examples (x1, y1), . . . , (xn, yn) ∈
Rd × {−1,+1} such that ‖xt‖ = 1 for each t, and any sequence of comparison
vectors u0, . . . ,un−1 ∈ Rd, the algorithm in Figure 1 makes a number m of
mistakes bounded by

m ≤ D +K2 +K
√
D + λ+ 1 , (3)

2 Thus, even in a shifting framework the Perceptron algorithm, with no modifications,
achieves a (suboptimal) shifting bound.
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where K =
e√

2λ+ 1
(S + (4λ+ 1)U) . Moreover, if we set λ =

S

4U
, then we

have K ≤ e
√

8SU + U2 and

m ≤ D + e
√

(8SU + U2)D + e2 (8SU + U2) + e (2S + 3U) . (4)

Proof. Consider how the potential u�
k wk+1 evolves over mistaken trials. We can

write

u�
k wk+1 = u�

k ((1 − λk)wk + ytkxtk)
= (1 − λk)

(
u�
k wk − u�

k−1wk + u�
k−1wk

)
+ ytku�

k xtk

= (1 − λk)(uk − uk−1)�wk + (1− λk)u�
k−1wk + ytku�

k xtk

≥ −(1− λk) ‖uk − uk−1‖ ‖wk‖ − λk ‖uk−1‖ ‖wk‖+ u�
k−1wk + ytku�

k xtk

≥ −(1− λk) ‖uk − uk−1‖ ‖wk‖ − λk ‖uk−1‖ ‖wk‖+ u�
k−1wk

+ 1− d(uk; (xtk , ytk))

the last inequality following from the very definition of d(uk; (xtk , ytk)). Rear-
ranging yields

u�
k wk+1 − u�

k−1wk

≥ −(1− λk) ‖uk − uk−1‖ ‖wk‖ − λk ‖uk−1‖ ‖wk‖+ 1− d(uk; (xtk , ytk)) .

Recalling that w0 = 0, we sum the above inequality over3 k = 0, 1, . . . ,m − 1,
then we rearrange and overapproximate. This results in

m ≤ D

+
m−1∑
k=1

(1− λk)||uk − uk−1|| ||wk||︸ ︷︷ ︸
(I)

+
m−1∑
k=1

λk||uk−1|| ||wk||︸ ︷︷ ︸
(II)

+ ||um−1|| ||wm||︸ ︷︷ ︸
(III)

.

We now use Lemma 1 to bound from above the three terms (I), (II), and (III):

(I) ≤ S max
k=1,...,m−1

(
(1 − λk) ‖wk‖

)
≤ S e (m− 1)

λ+m− 1

√
λ+m

2λ+ 1
(from Lemma 1 and the definition of λk)

≤ e S
√
λ+m

2λ+ 1
. (5)

Moreover, from Lemma 1 and the inequality
√
x+1
x ≤ 4(

√
x+ 1 −

√
x), ∀x ≥ 1,

applied with x = λ+ k, we have

3 For definiteness, we set u−1 = 0, though w0 = 0 makes this setting immaterial.
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(II) ≤ U
m−1∑
k=1

λk ‖wk‖

≤ U
m−1∑
k=1

eλ

λ+ k

√
λ+ k + 1
2λ+ 1

≤ U 4eλ√
2λ+ 1

m−1∑
k=1

(√
λ+ k + 1−

√
λ+ k

)
= U

4eλ√
2λ+ 1

(√
λ+m−

√
λ+ 1

)
. (6)

Finally, again from Lemma 1, we derive

(III) ≤ e ‖um−1‖
√
λ+m+ 1

2λ+ 1
. (7)

At this point, in order to ease the subsequent calculations, we compute upper
bounds on (5), (6) and (7) so as to obtain expressions having a similar depen-
dence4 on the relevant quantities around. We can write

(5) ≤ e S
√
λ+m+ 1

2λ+ 1
, (6) ≤ 4 e λU

√
λ+m+ 1

2λ+ 1
, (7) ≤ e U

√
λ+m+ 1

2λ+ 1
.

Putting together gives

m ≤ D + e (S + (4λ+ 1)U)

√
λ+m+ 1

2λ+ 1
.

Solving for m and overapproximating once again gets

m ≤ D +K2 +K
√
D + λ+ 1 ,

where K = K(λ) =
e√

2λ+ 1
(S + (4λ+ 1)U) . This is the claimed bound (3).

We now turn to the choice of λ. Choosing λminimizing the above bound would
require, among other things, prior knowledge of D. In order to strike a good
balance between optimality and simplicity (and to rely on as little information
as possible) we come to minimizing (an upper bound on) K(λ). Set λ = cS/U ,
where c is some positive constant to be determined. This yields

K(λ) = e U
(4c+ 1)S/U + 1√

2cS/U + 1
≤ e

√
(4c+ 1)2

2c
SU + U2, (8)

where we used
α r + 1√
β r + 1

≤

√
α2

β
r + 1, α, r ≥ 0, β > 0, with α = 4c+1, β = 2c,

and r = S/U . We minimize (8) w.r.t. c by selecting c = 1/4. Plugging back
into (3) and overapproximating once more gives (4). �
4 This seems to be a reasonable trade-off between simplicity and tightness.
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3 A Randomized Perceptron with Budget

Consider the update wk+1 = (1−λk)wk+ytxt used by the algorithm in Figure 1.
In the special case λk = λ for all k ≥ 1, this corresponds to associating with
each support vector xt a coefficient decreasing exponentially with the number
of additional mistakes made. This exponential decay is at the core of many
algorithms in the on-line learning literature, and has the immediate consequence
of keeping bounded the norm of weight vectors. This same idea is used by the
Forgetron [7], a recently proposed variant of the Perceptron algorithm that learns
using a fixed budget of support vectors. In fact, it is not hard to show that the
Forgetron analysis can be extended to the shifting model. In this section, we
turn our attention to a way of combining shifting and budgeted algorithms by
means of randomization, with no explicit weighting on the support vectors. As
we show, this alternative approach yields a simple algorithm and a crisp analysis.

Consider a generic Perceptron algorithm with bounded memory. The algo-
rithm has at its disposal a fixed number B of “support vectors”, in the sense
that, at any given trial, the weight vector w maintained by the algorithm is a
linear combination of yi1xi1 , yi2xi2 , . . . , yiBxiB where i1, . . . , iB is a subset of
past trials where a mistake was made. Following [6, 7, 23], we call B the algo-
rithm’s budget. As in the standard Perceptron algorithm, each example on which
the algorithm makes a mistake becomes a support vector. However, in order not
to exceed the budget, before adding a new support the algorithm has to discard
an old one.

The analysis of the Forgetron is based on discarding the oldest support. The
exponential coefficients (1 − λ)k assigned to supports guarantee that, when λ
is properly chosen as a function of B, the norm of the discarded vector is at
most 1/

√
B. In addition, it can be proven that the norm of wk is at most√

B/(lnB) for all k ≥ B. These facts can be used to prove a mistake bound
in terms of the hinge loss of the best linear classifier u in hindsight, as long as
‖u‖ = O

(√
B/(lnB)

)
. In this section we show that a completely random policy

of discarding support vectors achieves a mistake bound without imposing on ‖u‖
any constraint stronger than ‖u‖ = O

(√
B
)
, which must be provably obeyed by

any algorithm using budget B.
More precisely, suppose wk makes a mistake on example (xt, yt). If the current

number of support vectors is less than B, then our algorithm performs the usual
additive update wk+1 = wk + ytxt (with no exponential scaling). Otherwise the
algorithm chooses a random support vector Qk, where P

(
Qk = yij xij

)
= 1/B

for j = 1, . . . , B, and performs the update wk+1 = wk+ytxt−Qk. Note that Qk
satisfies EkQk = wk/B where Ek[ · ] denotes the conditional expectation E[ · |
w0, . . . ,wk]. The resulting algorithm, called Randomized Budget Perceptron
(rbp), is summarized in Figure 2.

The main idea behind this algorithm is the following: by removing a random
support we guarantee that, in expectation, the squared norm of the weight wk+1
increases by at most 2− (2/B) ‖wk‖2 each time we make an update (Lemma 2).
This in turn implies that, at any fixed point in time, the expected norm of the
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Algorithm: Randomized Budget Perceptron.
Parameters: Budget B ∈ N, B ≥ 2;
Initialization: w0 = 0, s = 0, k = 0.

For t = 1, 2, . . .

1. Get instance vector xt ∈ Rd, ||xt|| = 1;
2. Predict with yt = sgn(w�

k xt) ∈ {−1, +1};
3. Get label yt ∈ {−1, +1};
4. If yt �= yt then

(a) If s < B then

wk+1 = wk + ytxt, k ← k + 1, s ← s + 1

(b) else let Qk be a random support vector of wk and perform the assignment

wk+1 = wk + ytxt − Qk, k ← k + 1 .

Fig. 2. The randomized Budget Perceptron algorithm

current weight is O(
√
B). The hard part of the proof (Lemma 3) is showing that

the sum of the norms of all distinct weights generated during a run has expected
value O(

√
B) EM +O

(
B3/2 lnB

)
, where M is the random number of mistakes.

3.1 Analysis

Similarly to Section 2.1, we state a simple lemma (whose proof is deferred to
the appendix) that bounds in a suitable way the norm of the algorithm’s weight
vector. Unlike Lemma 1, here we do not solve the recurrence involved. We rather
stop earlier at a bound expressed in terms of conditional expectations, to be
exploited in the proof of Lemma 3 below.

Lemma 2. With the notation introduced in this section, we have

Ek ‖wk+1‖2 ≤
{

k + 1 for k = 0, . . . , B − 1(
1− 2

B

)
‖wk‖2 + 2 for k ≥ B.

Moreover, using Jensen’s inequality,

Ek ‖wk+1‖ ≤

⎧⎨⎩
√
k + 1 for k = 0, . . . , B − 1√(

1− 2
B

)
‖wk‖2 + 2 for k ≥ B.

The main result of this section bounds the expected number of mistakes, EM ,
made by rbp in the shifting case. For any sequence (u0,u1, . . . ,un−1) of com-
parison vectors, this bound is expressed in terms of the expectations of the
cumulative hinge loss D, the shift S, and the maximal norm U of the se-
quence, defined in (2). (All expectations are understood with respect to the
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algorithm’s randomization.) Following the notation of previous sections, tk de-
notes the (random) trial where wk is updated and uk is the comparison vector
in trial tk. Moreover, in what follows, we assume the underlying sequence of
examples and the sequence u0,u1, . . . of linear classifiers are fixed and arbitrary.
This implies that the value of the random variable {M = k} is determined
given w0, . . . ,wk−1 (i.e., the event {M = k} is measurable w.r.t. the σ-algebra
generated by w0, . . . ,wk−1).

The next lemma is our key tool for proving expectation bounds. It may be
viewed as a simple extension of Wald’s equation to certain dependent processes.

Lemma 3. With the notation and the assumptions introduced so far, we have,
for any constant ε > 0,

E

[
M∑
k=B

‖wk‖
]
≤ B3/2

2
ln
B2

2ε
+ (1 + ε)

√
B E

[
max{0,M −B}

]
.

Proof. Set for brevity ρ = 1−B/2. We can write

E

[
M∑
k=B

‖wk‖
]

= E

[ ∞∑
k=B

{M ≥ k} ‖wk‖
]

= E

[ ∞∑
k=B

Ek−1

[
{M ≥ k} ‖wk‖

]]

= E

[ ∞∑
k=B

{M ≥ k}Ek−1 ‖wk‖
]

(since {M ≥ k} is determined by w0, . . . ,wk−1)

≤ E

[ ∞∑
k=B

{M ≥ k}
√
ρ ‖wk−1‖2 + 2

]
(from Lemma 2)

≤ E

[ ∞∑
k=B

{M ≥ k − 1}
√
ρ ‖wk−1‖2 + 2

]

= E

[ ∞∑
k=B−1

{M ≥ k}
√
ρ ‖wk‖2 + 2

]

≤
√
ρB + 2 + E

[ ∞∑
k=B

{M ≥ k}
√
ρ ‖wk‖2 + 2

]
(9)

the last inequality following from Lemma 2, which implies ‖wB−1‖2 ≤ B.
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Now, (9) can be treated in a similar fashion. We have

(9) =
√
ρB + 2 + E

[ ∞∑
k=B

{M ≥ k}Ek−1

[√
ρ ‖wk‖2 + 2

]]
(since, as before, {M ≥ k} is determined by w0, . . . ,wk−1)

≤
√
ρB + 2 + E

[ ∞∑
k=B

{M ≥ k}
√
ρ
(
ρ ‖wk−1‖2 + 2

)
+ 2

]
(from Jensen’s inequality and Lemma 2)

≤
√
ρB + 2 + E

[ ∞∑
k=B

{M ≥ k − 1}
√
ρ
(
ρ ‖wk−1‖2 + 2

)
+ 2

]

=
√
ρB + 2 + E

[ ∞∑
k=B−1

{M ≥ k}
√
ρ
(
ρ ‖wk‖2 + 2

)
+ 2

]

≤
√
ρB + 2 +

√
ρ(ρB + 2) + 2 + E

[ ∞∑
k=B

{M ≥ k}
√
ρ
(
ρ ‖wk‖2 + 2

)
+ 2

]

the last inequality following again from ‖wB−1‖2 ≤ B. Iterating for a total of i
times we obtain that (9) is at most

i−1∑
j=0

√√√√ρj+1B + 2
j∑
�=0

ρ� + E

⎡⎣ ∞∑
k=B

{M ≥ k}

√√√√ρi ‖wk‖2 + 2
i−1∑
j=0

ρj

⎤⎦
≤

i−1∑
j=0

√
ρj+1B +B − ρj+1B +

√
ρiB2 +B E

[ ∞∑
k=B

{M ≥ k}
]
,

where for the first term we used
∑j

�=0 ρ
� = 1−ρj+1

1−ρ = B(1 − ρj+1)/2, and for

the second term we used the trivial upper bound ‖wk‖2 ≤ B2 for all k ≥ 1 and∑j
�=0 ρ

� ≤ 1
1−ρ = B/2. We thus obtain

E

[ ∞∑
k=B

{M ≥ k} ‖wk‖
]
≤ i
√
B +

√
ρiB2 +B E

[ ∞∑
k=B

{M ≥ k}
]
.

We are free to choose the number i of iterations. We set i in a way that the factor√
ρiB2 +B gets as small as (1+ε)

√
B. Since ρi ≤ e−2i/B and

√
1 + x ≤ 1+x/2

for any x ≥ 0, it suffices to pick i ≥ B
2 ln B2

2ε , yielding the claimed inequality. �

Theorem 2. Given any ε ∈ (0, 1), any n ∈ N, any sequence of examples
(x1, y1), . . . , (xn, yn) ∈ Rd × {−1,+1} such that ‖xt‖ = 1 for each t, the algo-
rithm in Figure 2 makes a number M of mistakes whose expectation is bounded
as

EM ≤ 1
ε

ED +
Stot
√
B

ε
+
U B

ε
+
U
√
B

2ε
ln
B2

2ε
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for any sequence of comparison vectors u0, . . . ,un−1 ∈ Rd, with expected hinge
loss ED, total shift Stot, and such that maxt ‖ut‖ = U ≤ 1−ε

1+ε

√
B.

Remark 1. Note the role played by the free parameter ε ∈ (0, 1). If ε is close to
0, then the comparison vectors u0, . . . ,un−1 are chosen from a large class, but
the bound is loose. On the other hand, if ε is close to 1, our bound gets sharper
but applies to a smaller comparison class. We can rewrite the above bound in
terms of U = 1−ε

1+ε

√
B. For instance, setting ε = 1/2 results in

EM ≤ 2 ED + 18U
(
Stot + U2) + 12U2 ln(3U) .

The dependence on Stot is linear as in (4), which is the best bound we could
prove on Perceptron-like algorithms without imposing a budget.

Remark 2. In the nonshifting case our bound reduces to

EM ≤ 1
ε

ED +
U B

ε
+
U
√
B

2ε
ln
B2

2ε
.

This is similar to the (deterministic) Forgetron bound shown in [7], though we
have a better dependence on D and a worse dependence on U and B. However,
and more importantly, whereas the Forgetron bound can be proven only for
‖u‖ = O

(√
B/(lnB)

)
, our result just requires ‖u‖ = O

(√
B
)
. This is basically

optimal, since it was shown in [7] that the condition ‖u‖ <
√
B + 1 is necessary

for any on-line algorithm working on a budget B.

Remark 3. From a computational standpoint, our simple randomized policy
compares favourably with other eviction strategies that need to check the prop-
erties of all support vectors in the currect storage, such as those in [6, 23]. Thus,
in this context, randomization exhibits a clear computational advantage.

Proof (of Theorem 2). We proceed as in the proof of Theorem 1 and adopt the
same notation used there. Note, however, that the weights w0,w1, . . . are now
the realization of a random process on Rd and that the number M of mistakes
on a given sequence of example is a random variable. Without loss of generality,
in what follows we assume wk = wM for all k > M . We can write

u�
k wk+1 = u�

k

(
wk + ytkxtk − {k ≥ B}Qk

)
= (uk − uk−1)�wk + u�

k−1wk + ytku�
k xtk − {k ≥ B} u�

k Qk

≥ (uk − uk−1)�wk + u�
k−1wk + 1− d(uk; (xtk , ytk))− {k ≥ B} u�

k Qk .

We rearrange, sum over k = 0, . . . ,M − 1, recall that w0 = 0, and take expec-
tations on both sides of the resulting inequality,

EM ≤ E

[
M−1∑
k=0

d(uk; (xtk , ytk))

]

+ E
[
u�
M−1wM

]︸ ︷︷ ︸
(I)

+ E

[
M−1∑
k=B

u�
k Qk

]
︸ ︷︷ ︸

(II)

+ E

[
M−1∑
k=1

(uk−1 − uk)�wk

]
︸ ︷︷ ︸

(III)

.
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The first term in the right-hand side equals ED. Thus we need to find suitable
upper bounds on (I), (II), and (III). Recalling that U = maxt ‖ut‖, and noting
that ‖wk‖ ≤ B for all k, we have (I) ≤ U B. To bound (II), we write

(II) = E

[ ∞∑
k=B

{M ≥ k + 1}u�
k Qk

]

= E

[ ∞∑
k=B

Ek

[
{M ≥ k + 1}u�

k Qk

]]

= E

[ ∞∑
k=B

{M ≥ k + 1}u�
k Ek Qk

]
(since {M ≥ k + 1} and uk are determined given w0, . . . ,wk)

= E

[ ∞∑
k=B

{M ≥ k + 1}u
�
k wk

B

]
(since Ek Qk = wk/B) .

Hence

(II) ≤ U

B
E

[ ∞∑
k=B

{M ≥ k + 1} ‖wk‖
]
≤ U

B
E

[
M∑
k=B

‖wk‖
]

≤ U
√
B

2
ln
B2

2ε
+ (1 + ε)

U√
B

EM (from Lemma 3).

Next, we bound (III) as follows

E

[
M−1∑
k=1

(uk−1 − uk)�wk

]
= E

⎡⎣M−1∑
k=1

tk∑
t=tk−1+1

(ut−1 − ut)�wk

⎤⎦
≤ E

⎡⎣M−1∑
k=1

tk∑
t=tk−1+1

‖ut−1 − ut‖ ‖wk‖

⎤⎦
≤ E

[
n−1∑
t=1

‖ut−1 − ut‖ ‖wt‖
]

where wt is the random weight used by the algorithm at time t. A simple
adaptation of Lemma 2 and an easy induction argument together imply that
E ‖wt‖ ≤

√
B for all t. Thus we have

E

[
n−1∑
t=1

‖ut−1 − ut‖ ‖wt‖
]

=
n−1∑
t=1

‖ut−1 − ut‖E ‖wt‖ ≤ Stot
√
B .

Piecing together gives

EM ≤ ED + (1 + ε)
U√
B

EM + Stot
√
B + U B +

U
√
B

2
ln
B2

2ε
.

The condition U ≤ 1−ε
1+ε

√
B implies the desired result. �
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4 Conclusions and Ongoing Research

In this paper we have shown that simple changes to the standard (kernel) Per-
ceptron algorithm suffice to obtain efficient shifting and memory bounded algo-
rithms. Our elaborations deliver robust on-line procedures which we expect to
be of practical relevance in many real-world data-intensive learning settings.

From the theoretical point of view, we have shown that these simple algorithms
compare favourably with the existing kernel-based algorithms working in the on-
line shifting framework. Many of the results we have proven here can easily be
extended to the family of p-norm algorithms [12, 10], to large margin on-line
algorithms (e.g., [16, 9]) and to other Perceptron-like algorithms, such as the
second-order Perceptron algorithm [5].

A few issues we are currently working on are the following. The bound ex-
hibited in Theorem 2 shows an unsatisfactory dependence on U . This is due to
the technical difficulty of finding a more sophisticated argument than the crude
upper bound we use to handle expression (I) occurring in the proof. In fact, we
believe this argument is within reach. Finally, we are trying to see whether our
statement also holds with high probability, rather than just in expectation.

This paper introduces new on-line learning technologies which, as we said,
can be combined with several existing techniques. We are planning to make
experiments to give evidence of the theoretical behavior of algorithms resulting
from such combinations.
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A Proof of Lemma 1

Let t = tk be the trial at the end of which wk is updated. The update rule of
Figure 1 along with the condition ytw�

k xt ≤ 0 allow us to write for each k ≥ 0

‖wk+1‖2 = (1− λk)2 ‖wk‖2 + 2(1− λk)ytw�
k xt + ‖xt‖2

≤ (1− λk)2 ‖wk‖2 + 1 .

Unwrapping the recurrence yields ‖wk+1‖2 ≤
∑k

i=0
∏k
j=i+1(1 − λj)2 , where

the product is meant to be 1 if i+ 1 > k. The above, in turn, can be bounded
as follows.

k∑
i=0

k∏
j=i+1

(1− λj)2 ≤
k∑
i=0

exp

(
−2

k∑
j=i+1

λj

)

=
k∑
i=0

exp

(
−2λ

k∑
j=i+1

1
λ+ j

)

≤
k∑
i=0

exp

(
−2λ

∫ k+1

i+1

dx

λ+ x

)

=
k∑
i=0

(
λ+ i+ 1
λ+ k + 1

)2λ
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≤ 1
(λ+ k + 1)2λ

∫ λ+k+2

λ+1
x2λdx

≤ 1
2λ+ 1

(λ+ k + 2)2λ+1

(λ+ k + 1)2λ

=
(
λ+ k + 2
2λ+ 1

)[(
1 +

1
λ+ k + 1

)λ+k+1
] 2λ

λ+k+1

≤
(
λ+ k + 2
2λ+ 1

)
e2 ,

where the last inequality uses (1 + 1/x)x ≤ e for all x > 0, and 2λ
λ+k+1 ≤ 2.

Taking the square root completes the proof. �

B Proof of Lemma 2

Let t = tk be the trial where wk gets updated. We distinguish the two cases
k < B and k ≥ B. In the first case no randomization is involved, and we have
the standard (e.g., [3, 20]) Perceptron weight bound ‖wk‖ ≤

√
k, k = 1, . . . , B.

In the case k ≥ B the update rule in Figure 2 allows us to write
‖wk+1‖2 = ‖wk + ytxt −Qk‖2

= ‖wk‖2 + ‖xt‖2 + ‖Qk‖2 − 2w�
k Qk + 2yt(wk −Qk)�xt

≤ ‖wk‖2 + 2− 2w�
k Qk + 2yt(wk −Qk)�xt .

Recalling Ek Qk = wk/B, we take conditional expectation Ek on both sides:

Ek ‖wk+1‖2 ≤ ‖wk‖2 + 2− 2
w�
k wk

B
+ 2

(
1− 1

B

)
yt w

�
k xt

≤
(
1− 2

B

)
‖wk‖2 + 2

the last step following from yt w
�
k xt ≤ 0. This gives the desired bound on

Ek ‖wk+1‖2. The bound on Ek ‖wk+1‖ is a direct consequence of Jensen’s in-
equality. �
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Abstract. In an online convex optimization problem a decision-maker
makes a sequence of decisions, i.e., chooses a sequence of points in Euclid-
ean space, from a fixed feasible set. After each point is chosen, it
encounters a sequence of (possibly unrelated) convex cost functions.
Zinkevich [Zin03] introduced this framework, which models many nat-
ural repeated decision-making problems and generalizes many existing
problems such as Prediction from Expert Advice and Cover’s Universal
Portfolios. Zinkevich showed that a simple online gradient descent al-
gorithm achieves additive regret O(

√
T ), for an arbitrary sequence of T

convex cost functions (of bounded gradients), with respect to the best
single decision in hindsight.

In this paper, we give algorithms that achieve regret O(log(T )) for an
arbitrary sequence of strictly convex functions (with bounded first and
second derivatives). This mirrors what has been done for the special cases
of prediction from expert advice by Kivinen and Warmuth [KW99], and
Universal Portfolios by Cover [Cov91]. We propose several algorithms
achieving logarithmic regret, which besides being more general are also
much more efficient to implement.

The main new ideas give rise to an efficient algorithm based on the
Newton method for optimization, a new tool in the field. Our analysis
shows a surprising connection to follow-the-leader method, and builds
on the recent work of Agarwal and Hazan [AH05]. We also analyze other
algorithms, which tie together several different previous approaches in-
cluding follow-the-leader, exponential weighting, Cover’s algorithm and
gradient descent.

1 Introduction

In the problem of online convex optimization [Zin03], there is a fixed convex
compact feasible set K ⊂ Rn and an arbitrary, unknown sequence of convex
cost functions f1, f2, . . . : K → R. The decision maker must make a sequence of
decisions, where the tth decision is a selection of a point xt ∈ K and there is
a cost of ft(xt) on period t. However, xt is chosen with only the knowledge of

� Supported by Sanjeev Arora’s NSF grants MSPA-MCS 0528414, CCF 0514993, ITR
0205594.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 499–513, 2006.
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the set K, previous points x1, . . . , xt−1, and the previous functions f1, . . . , ft−1.
Examples include many repeated decision-problems:

Example 1: Production. Consider a company deciding how much of n different
products to produce. In this case, their profit may be assumed to be a concave
function of their production (the goal is maximize profit rather than minimize
cost). This decision is made repeatedly, and the model allows the profit functions
to be changing arbitrary concave functions, which may depend on various factors
such as the economy.
Example 2: Linear prediction with a convex loss function. In this set-
ting, there is a sequence of examples (p1, q1), . . . , (pT , qT ) ∈ Rn× [0, 1]. For each
t = 1, 2, . . . , T , the decision-maker makes a linear prediction of qt ∈ [0, 1] which
is x�t pt, for some xt ∈ Rn, and suffers some loss L(qt, x�t pt), where L : R×R→ R

is some fixed, known convex loss function, such as quadratic L(q, q′) = (q− q′)2.
The online convex optimization framework permits this example, because the
function ft(x) = L(qt, x�pt) is a convex function of x ∈ Rn. This problem of lin-
ear prediction with a convex loss function has been well studied (e.g., [CBL06]),
and hence one would prefer to use the near-optimal algorithms that have been
developed especially for that problem. We mention this application only to point
out the generality of the online convex optimization framework.
Example 3: Portfolio management. In this setting, for each t = 1, ..., T an
online investor chooses a distribution xt over n stocks in the market. The market
outcome at iteration t is captured by a price relatives vector ct, such that the loss
to the investor is − log(x�t ct) (see Cover [Cov91] for motivation and more detail
regarding the model). Again, the online convex optimization framework per-
mits this example, because the function ft(x) = − log(x�c) is a convex function
of x ∈ Rn.

This paper shows how three seemingly different approaches can be used to
achieve logarithmic regret in the case of some higher-order derivative assump-
tions on the functions. The algorithms are relatively easy to state. In some cases,
the analysis is simple, and in others it relies on a carefully constructed poten-
tial function due to Agarwal and Hazan [AH05]. Lastly, our gradient descent
results relate to previous analyses of stochastic gradient descent [Spa03], which
is known to converge at a rate of 1/T for T steps of gradient descent under vari-
ous assumptions on the distribution over functions. Our results imply a log(T )/T
convergence rate for the same problems, though as common in the online setting,
the assumptions and guarantees are simpler and stronger than their stochastic
counterparts.

1.1 Our Results

The regret of the decision maker at time T is defined to be its total cost minus
the cost of the best single decision, where the best is chosen with the benefit of
hindsight.

regretT = regret =
∑T

t=1ft(xt)−minx∈K
∑T

t=1ft(x).
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A standard goal in machine learning and game theory is to achieve algorithms
with guaranteed low regret (this goal is also motivated by psychology). Zinkevich
showed that one can guarantee O(

√
T ) regret for an arbitrary sequence of dif-

ferentiable convex functions of bounded gradient, which is tight up to constant
factors. In fact, Ω(

√
T ) regret is unavoidable even when the functions come from

a fixed distribution rather than being chosen adversarially. 1

Variable Meaning
K ⊆ Rn the convex compact feasible set

D ≥ 0 the diameter of K, D = supx,y∈K ‖x − y‖
f1, . . . , fT Sequence of T twice-differentiable convex functions ft : Rn → R.

G ≥ 0 ‖∇ft(x)‖ ≤ G for all x ∈ K, t ≤ T (in one dimension, |f ′
t(x)| ≤ G.)

H ≥ 0 ∇2ft(x) � HIn for all x ∈ K, t ≤ T (in one dimension, f ′′
t (x) ≥ H).

α ≥ 0 Such that exp(−αft(x)) is a concave function of x ∈ K, for t ≤ T .

Fig. 1. Notation in the paper. Arbitrary convex functions are allowed for G = ∞, H =
0, α = 0. ‖ · ‖ is the 2 (Euclidean) norm.

Algorithm Regret bound
Online gradient descent G2

2H
(1 + log T )

Online Newton step 3( 1
α

+ 4GD)n log T
Exponentially weighted online opt. n

α
(1 + log(1 + T ))

Fig. 2. Results from this paper. Zinkevich achieves GD
√

T , even for H = α = 0.

Our notation and results are summarized in Figures 1 and 2. Throughout the
paper we denote by ‖·‖ the �2 (Euclidean) norm. We show O(log T ) regret under
relatively weak assumptions on the functions f1, f2, . . .. Natural assumptions to
consider might be that the gradients of each function are of bounded magnitude
G, i.e., ‖∇ft(x)‖ ≤ G for all x ∈ K, and that each function in the sequence
is strongly-concave, meaning that the second derivative is bounded away from
0. In one dimension, these assumptions correspond simply to |f ′t(x)| ≤ G and
f ′′t (x) ≥ H for some G,H > 0. In higher dimensions, one may require these
properties to hold on the functions in every direction (i.e., for the 1-dimensional
function of θ, ft(θu), for any unit vector u ∈ Rn), which can be equivalently
written in the following similar form: ‖∇ft(x)‖ ≤ G and ∇2ft(x) 4 HIn, where
In is the n × n identity matrix and we write A 4 B if the matrix A − B is
positive semi-definite (symmetric with non-negative eigenvalues).

Intuitively, it is easier to minimize functions that are “very concave,” and
the above assumptions may seem innocuous enough. However, they rule out
several interesting types of functions. For example, consider the function f(x) =

1 This can be seen by a simple randomized example. Consider K = [−1, 1] and linear
functions ft(x) = rtx, where rt = ±1 are chosen in advance, independently with
equal probability. Ert [ft(xt)] = 0 for any t and xt chosen online, by independence
of xt and rt. However, Er1,...,rT [minx∈K

T
1 ft(x)] = E[−| T

1 rt|] = −Ω(
√

T ).
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(x�w)2, for some vector w ∈ Rn. This is strongly convex in the direction w,
but is constant in directions orthogonal to w. A simpler example is the constant
function f(x) = c which is not strongly convex, yet is easily (and unavoidably)
minimized.

Some of our algorithms also work without explicitly requiring H > 0, i.e.,
when G = ∞, H = 0. In these cases we require that there exists some α > 0
such that ht(x) = exp(−αft(x)) is a concave function of x ∈ K, for all t. A
similar exp-concave assumption has been utilized for the prediction for expert-
advice problem [CBL06]. It turns out that given the bounds G and H , the
exp-concavity assumption holds with α = G2/H . To see this in one dimension,
one can easily verify the assumption on one-dimensional functions ft : R → R

by taking two derivatives,

h′′t (x) = ((αf ′t(x))
2 − αf ′′t (x)) exp(−αft(x)) ≤ 0 ⇐⇒ α ≤ f ′′t (x)

(f ′t(x))2
.

All of our conditions hold in n-dimensions if they hold in every direction. Hence
we have that the exp-concave assumption is a weaker assumption than those of
G,H , for α = G2/H . This enables us to compare the three regret bounds of
Figure 2. In these terms, Online Gradient Descent requires the strongest
assumptions, whereas Exponentially Weighted Online Optimization re-
quires only exp-concavity (and not even a bound on the gradient). Perhaps most
interesting is Online Newton Step which requires relatively weak assump-
tions and yet, as we shall see, is very efficient to implement (and whose analysis
is the most technical).

2 The Algorithms

The algorithms are presented in Figure 3. The intuition behind most of our
algorithms stem from new observations regarding the well studied follow-the-
leader method (see [Han57, KV05, AH05]).

The basic method, which by itself fails to provide sub-linear regret let alone
logarithmic regret, simply chooses on period t the single fixed decision that
would have been the best to use on the previous t− 1 periods. This corresponds
to choosing xt = argminx∈K

∑t−1
τ=1 fτ (x). The standard approach to analyze

such algorithms proceeds by inductively showing,

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xt)− ft(xt+1) (1)

The standard analysis proceeds by showing that the leader doesn’t change too
much, i.e. xt ≈ xt+1, which in turn implies low regret.

One of the significant deviations from this standard analysis is in the variant
of follow-the-leader called Online Newton Step. The analysis does not follow
this paradigm directly, but rather shows average stability (i.e. that xt ≈ xt+1
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Online Gradient Descent. (Zinkevich’s online version of Stochastic Gradient De-
scent)
Inputs: convex set K ⊂ Rn, step sizes η1, η2, . . . ≥ 0.

– On period 1, play an arbitrary x1 ∈ K.
– On period t > 1: play

xt = ΠK(xt−1 − ηt∇ft−1(xt−1))

Here, ΠK denotes the projection onto nearest point in K, ΠK(y) = arg minx∈K ‖x−
y‖.

Online Newton Step.
Inputs: convex set K ⊂ Rn, and the parameter β.

– On period 1, play an arbitrary x1 ∈ K.
– On period t > 1: play the point xt given by the following equations:

∇t−1 = ∇ft−1(xt−1)

At−1 =
t−1

τ=1

∇τ∇�
τ

bt−1 =
t−1

τ=1

∇τ∇�
τ xτ − 1

β
∇τ

xt = Π
At−1
K A−1

t−1bt−1

Here, Π
At−1
K is the projection in the norm induced by At−1:

Π
At−1
K (y) = arg min

x∈K
(x − y)�At−1(x − y)

A−1
t−1 denotes the Moore-Penrose pseudoinverse of At−1.

Exponentially Weighted Online Optimization.
Inputs: convex set K ⊂ Rn, and the parameter α.

– Define weights wt(x) = exp(−α t−1
τ=1fτ (x)).

– On period t play xt = K xwt(x)dx

K wt(x)dx
.

(Remark: choosing xt at random with density proportional to wt(x) also gives our
bounds.)

Fig. 3. Online optimization algorithms

on the “average”, rather than always) using an extension of the Agarwal-Hazan
potential function.

Another building block, due to Zinkevich [Zin03], is that if we have another
set of functions f̃t for which f̃t(xt) = ft(xt) and f̃t is a lower-bound on ft, so
f̃t(x) ≤ ft(x) for all x ∈ K, then it suffices to bound the regret with respect to
f̃t, because,



504 E. Hazan et al.

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑
t=1

f̃t(xt)−min
x∈K

T∑
t=1

f̃t(x) (2)

He uses this observation in conjunction with the fact that a convex function is
lower-bounded by its tangent hyperplanes, to argue that it suffices to analyze
online gradient descent for the case of linear functions.

We observe2 that online gradient descent can be viewed as running follow-the-
leader on the sequence of functions f̃0(x) = (x − x1)2/η and f̃t(x) = ft(xt) +
∇ft(xt)�(x−xt). To do this, one need only calculate the minimum of

∑t−1
τ=0 f̃τ (x).

As explained before, any algorithm for the online convex optimization prob-
lem with linear functions has Ω(

√
T ) regret, and thus to achieve logarithmic

regret one necessarily needs to use the curvature of functions. When we consider
strongly concave functions where H > 0, we can lower-bound the function ft by
a paraboloid,

ft(x) ≥ ft(xt) +∇ft(xt)�(x− xt) +
H

2
(x− xt)2,

rather than a linear function. The follow-the-leader calculation, however, remains
similar. The only difference is that the step-size ηt = 1/(Ht) decreases linearly
rather than as O(1/

√
t).

For functions which permit α > 0 such that exp(−αft(x)) is concave, it turns
out that they can be lower-bounded by a paraboloid f̃t(x) = a + (w�x − b)2
where w ∈ Rn is proportional to ∇ft(xt) and a, b ∈ R. Hence, one can do a
similar follow-the-leader calculation, and this gives the Follow The Approx-
imate Leader algorithm in Figure 4. Formally, the Online Newton Step
algorithm is an efficient implementation to the follow-the-leader variant Fol-
low The Approximate Leader (see Lemma 3), and clearly demonstrates its
close connection to the Newton method from classical optimization theory. In-
terestingly, the derived Online Newton Step algorithm does not directly use
the Hessians of the observed functions, but only a lower-bound on the Hessians,
which can be calculated from the α > 0 bound.

Finally, our Exponentially Weighted Online Optimization algorithm
does not seem to be directly related to follow-the-leader. It is more related to
similar algorithms which are used in the problem of prediction from expert ad-
vice3 and to Cover’s algorithm for universal portfolio management.

2.1 Implementation and Running Time

Perhaps the main contribution of this paper is the introduction of a general loga-
rithmic regret algorithms that are efficient and relatively easy to implement. The
algorithms in Figure 3 are described in their mathematically simplest forms, but

2 Kakade has made a similar observation [Kak05].
3 The standard weighted majority algorithm can be viewed as picking an expert of

minimal cost when an additional random cost of − 1
η

ln ln ri is added to each expert,
where ri is chosen independently from [0, 1].



Logarithmic Regret Algorithms for Online Convex Optimization 505

Follow The Approximate Leader.
Inputs: convex set K ⊂ Rn, and the parameter β.

– On period 1, play an arbitrary x1 ∈ K.
– On period t, play the leader xt defined as

xt � arg min
x∈K

t−1

τ=1

f̃τ (x)

Where for τ = 1, . . . , t − 1, define ∇τ = ∇fτ (xτ ) and

f̃τ (x) � fτ (xτ ) + ∇�
τ (x − xτ ) +

β

2
(x − xτ )�∇τ∇�

τ (x − xτ )

Fig. 4. The Follow The Approximate Leader algorithm, which is equivalent to
Online Newton Step

implementation has been disregarded. In this section, we discuss implementation
issues and compare the running time of the different algorithms.

The Online Gradient Descent algorithm is straightforward to implement,
and updates take time O(n) given the gradient. However, there is a projection
step which may take longer. For many convex sets such as a ball, cube, or simplex,
computing ΠK is fast and straightforward. For convex polytopes, the projection
oracle can be implemented efficiently using interior point methods. In general,
K can be specified by a membership oracle (χK(x) = 1 if x ∈ K and 0 if x /∈ K),
along with a point x0 ∈ K as well as radii R ≥ r > 0 such that the balls of radii
R and r around x0 contain and are contained in K, respectively. In this case
ΠK can be computed (to ε accuracy) in time Õ(n4 log(Rr )) 4 using the Vaidya’s
algorithm [Vai96].

The Online Newton Step algorithm requires O(n2) space to store the
matrix At. Every iteration requires the computation of the matrix A−1

t , the
current gradient, a matrix-vector product and possibly a projection onto K.

A näıve implementation would require computing the Moore-Penrosepseudoin-
verse of the matrixAt every iteration. However, in caseAt is invertible, the matrix
inversion lemma [Bro05] states that for invertible matrix A and vector x

(A+ xx�)−1 = A−1 − A−1xx�A−1

1 + x�A−1x

Thus, given A−1
t−1 and∇t one can compute A−1

t in time O(n2). A generalized ma-
trix inversion lemma [Rie91] allows for iterative update of the pseudoinverse also
in time O(n2), details will appear in the full version.

The Online Newton Step algorithm also needs to make projections onto
K, but of a slightly different nature than Online Gradient Descent. The
required projection, denoted byΠAt

K , is in the vector norm induced by the matrix
At, viz. ‖x‖At =

√
x�Atx. It is equivalent to finding the point x ∈ K which

4 The Õ notation hides poly-logarithmic factors, in this case log(nT/ε).
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minimizes (x− y)�At(x− y) where y is the point we are projecting. We assume
the existence of an oracle which implements such a projection given y and At.
The runtime is similar to that of the projection step of Online Gradient
Descent.

Modulo calls to the projections oracle, the Online Newton Step algorithm
can be implemented in time and space O(n2), requiring only the gradient at each
step.

The Exponentially Weighted Online Optimization algorithm can be
approximated by sampling points according to the distribution with density
proportional to wt and then taking their mean. In fact, as far as an expected
guarantee is concerned, our analysis actually shows that the algorithm which
chooses a single random point xt with density proportional to wt(x) achieves
the stated regret bound, in expectation. Using recent random walk analyses of
Lovász and Vempala [LV03a, LV03b], m samples from such a distribution can be
computed in time Õ((n4 +mn3) log R

r ). A similar application of random walks
was used previously for an efficient implementation of Cover’s Universal Portfolio
algorithm [KV03].

3 Analysis

3.1 Online Gradient Descent

Theorem 1. Assume that the functions ft have bounded gradient, ‖∇ft(x)‖ ≤
G, and Hessian, ∇2ft(x) 4 HIn, for all x ∈ K.

The Online Gradient Descent algorithm of Figure 3, with ηt = (Ht)−1

achieves the following guarantee, for all T ≥ 1.

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
G2

2H
(1 + log T )

Proof. Let x∗ ∈ arg minx∈K
∑T

t=1 ft(x). Define ∇t � ∇ft(xt). By H-strong
convexity, we have,

ft(x∗) ≥ ft(xt) +∇�
t (x∗ − xt) +

H

2
‖x∗ − xt‖2

2(ft(xt)− ft(x∗)) ≤ 2∇�
t (xt − x∗)−H‖x∗ − xt‖2 (3)

Following Zinkevich’s analysis, we upper-bound ∇�
t (xt − x∗). Using the update

rule for xt+1, we get

‖xt+1 − x∗‖2 = ‖Π(xt − ηt+1∇t)− x∗‖2 ≤ ‖xt − ηt+1∇t − x∗‖2.

The inequality above follows from the properties of projection onto convex sets.
Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t+1‖∇t‖2 − 2ηt+1∇�

t (xt − x∗)

2∇�
t (xt − x∗) ≤

‖xt − x∗‖2 − ‖xt+1 − x∗‖2
ηt+1

+ ηt+1G
2 (4)
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Sum up (4) from t = 1 to T . Set ηt+1 = 1/(Ht), and using (3), we have:

2
T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

‖xt − x∗‖2
(

1
ηt+1

− 1
ηt
−H

)
+G2

T∑
t=1

ηt+1

= 0 +G2
T∑
t=1

1
Ht

≤ G2

H
(1 + logT )

�
3.2 Online Newton Step

Before analyzing the algorithm, we need a couple of lemmas.

Lemma 2. If a function f : K → R is such that exp(−αf(x)) is concave, and
has gradient bounded by ‖∇f‖ ≤ G, then for β = 1

2 min{ 1
4GD , α} the following

holds:

∀x, y ∈ K : f(x) ≥ f(y) +∇f(y)�(x − y) +
β

2
(x − y)∇f(y)∇f(y)�(x− y)

Proof. First, by computing derivatives, one can check that since exp(−αf(x)) is
concave and 2β ≤ α, the function h(x) = exp(−2βf(x)) is also concave. Then
by the concavity of h(x), we have

h(x) ≤ h(y) +∇h(y)�(x− y).

Plugging in ∇h(y) = −2β exp(−2βf(y))∇f(y) gives,

exp(−2βf(x)) ≤ exp(−2βf(y))[1− 2β∇f(y)�(x− y)].

Simplifying

f(x) ≥ f(y)− 1
2β

log[1− 2β∇f(y)�(x− y)].

Next, note that |2β∇f(y)�(x − y)| ≤ 2βGD ≤ 1
4 and that for |z| ≤ 1

4 ,
− log(1 − z) ≥ z + 1

4z
2. Applying the inequality for z = 2β∇f(y)�(x − y)

implies the lemma. �

Lemma 3. The Online Newton Step algorithm is equivalent to the Follow
The Approximate Leader algorithm.

Proof. In the Follow The Approximate Leader algorithm, one needs to
perform the following optimization at period t:

xt � arg min
x∈K

t−1∑
τ=1

f̃τ (x)

By expanding out the expressions for f̃τ (x), multiplying by 2
β and getting rid of

constants, the problem reduces to minimizing the following function over x ∈ K:
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t−1∑
τ=1

x�∇τ∇�
τ x− 2(x�τ ∇τ∇�

τ −
1
β
∇�
τ )x

= x�At−1x− 2b�t−1x = (x −A−1
t−1bt−1)�At−1(x−A−1

t−1bt−1)− b�t−1A
−1
t−1bt−1

The solution of this minimization is exactly the projection ΠAt−1
K (A−1

t−1bt−1) as
specified by Online Newton Step. �

Theorem 4. Assume that the functions ft are such that exp(−αft(x)) is con-
cave and have gradients bounded by ‖∇ft(x)‖ ≤ G. Then the Online Newton
Step algorithm with parameter β = 1

2 min{ 1
4GD , α} achieves the following guar-

antee, for all T ≥ 1.

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤ 3
[

1
α

+ 4GD
]
n logT

Proof. The theorem relies on the observation that by Lemma 2, the function
f̃t(x) defined by the Follow The Approximate Leader algorithm satisfies
f̃t(xt) = ft(xt) and f̃t(x) ≤ ft(x) for all x ∈ K. Then the inequality (2) im-
plies that it suffices to show a regret bound for the follow-the-leader algorithm
run on the f̃t functions. The inequality (1) implies that it suffices to bound∑T

t=1

[
f̃t(xt)− f̃t(xt+1)

]
, which is done in Lemma 5 below. �

Lemma 5.

T∑
t=1

[
f̃t(xt)− f̃t(xt+1)

]
≤ 3

[
1
α

+ 4GD
]
n logT

Proof (Lemma 5). For the sake of readability, we introduce some notation. Define
the function Ft �

∑t−1
τ=1 f̃τ . Note that ∇ft(xt) = ∇f̃t(xt) by the definition of

f̃t, so we will use the same notation ∇t to refer to both. Finally, let Δ be the
forward difference operator, for example, Δxt = (xt+1 − xt) and Δ∇Ft(xt) =
(∇Ft+1(xt+1)−∇Ft(xt)).

We use the gradient bound, which follows from the convexity of f̃t:

f̃t(xt)− f̃t(xt+1) ≤ −∇f̃t(xt)�(xt+1 − xt) = −∇�
t Δxt (5)

The gradient of Ft+1 can be written as:

∇Ft+1(x) =
t∑

τ=1

∇fτ (xτ ) + β∇fτ (xτ )∇fτ (xτ )�(x− xτ ) (6)

Therefore,

∇Ft+1(xt+1)−∇Ft+1(xt) = β

t∑
τ=1

∇fτ (xτ )∇fτ (xτ )�Δxt = βAtΔxt (7)
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The LHS of (7) is

∇Ft+1(xt+1)−∇Ft+1(xt) = Δ∇Ft(xt)−∇t (8)

Putting (7) and (8) together, and adding εβΔxt we get

β(At + εIn)Δxt = Δ∇Ft(xt)−∇t + εβΔxt (9)

Pre-multiplying by − 1
β∇�

t (At + εIn)−1, we get an expression for the gradient
bound (5):

−∇�
t Δxt = − 1

β
∇�
t (At + εIn)−1[Δ∇Ft(xt)−∇t + εβΔxt]

= − 1
β
∇�
t (At + εIn)−1[Δ∇Ft(xt) + εβΔxt] +

1
β
∇�
t (At + εIn)−1∇t

(10)

Claim. The first term of (10) can be bounded as follows:

− 1
β
∇�
t (At + εIn)−1[Δ∇Ft(xt) + εβΔxt] ≤ εβD2

Proof. Since xτ minimizes Fτ over K, we have

∇Fτ (xτ )�(x− xτ ) ≥ 0 (11)

for any point x ∈ K. Using (11) for τ = t and τ = t+ 1, we get

0 ≤ ∇Ft+1(xt+1)�(xt − xt+1) +∇Ft(xt)�(xt+1 − xt) = −[Δ∇Ft(xt)]�Δxt

Reversing the inequality and adding εβ‖Δxt‖2 = εβΔx�t Δxt, we get

εβ‖Δxt‖2 ≥ [Δ∇Ft(xt) + εβΔxt]�Δxt

=
1
β

[Δ∇Ft(xt) + εβΔxt]�(At + εIn)−1[Δ∇Ft(xt) + εβΔxt −∇t]

(by solving for Δxt in (9))

=
1
β

[Δ∇Ft(xt) + εβΔxt]�(At + εIn)−1(Δ∇Ft(xt) + εβΔxt)

− 1
β

[Δ∇Ft(xt) + εΔxt]�(At + εIn)−1∇t

≥ − 1
β

[Δ∇Ft(xt) + εβΔxt]�(At + εIn)−1∇t

(since (At + εIn)−1 4 0⇒ ∀x : x�(At + εIn)−1x ≥ 0)

Finally, since the diameter of K is D, we have εβ‖Δxt‖2 ≤ εβD2. �

Now we bound the second term of (10). Sum up from t = 1 to T , and apply
Lemma 6 below with A0 = εIn and vt = ∇t. Set ε = 1

β2D2T .
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1
β

T∑
t=1

∇�
t (At + εIn)−1∇t ≤

1
β

log
[
|AT + εIn|
|εIn|

]
≤ 1

β
n log(β2G2D2T 2 + 1) ≤ 2

β
n logT

The second inequality follows since AT =
∑T

t=1∇t∇�
t and ‖∇t‖ ≤ G, we

have |AT + εIn| ≤ (G2T + ε)n.
Combining this inequality with the bound of the claim above, we get

T∑
t=1

[
f̃t(xt)− ft(xt+1)

]
≤ 2

β
n logT + εβD2T ≤ 3

[
1
α

+ 4GD
]
n logT

as required. �

Lemma 6. Let A0 be a positive definite matrix, and for t≥1, let At=
∑t

τ=1 vtv
�
t

for some vectors v1, v2, . . . , vt. Then the following inequality holds:

T∑
t=1

v�t (At +A0)−1vt ≤ log
[
|AT +A0|
|A0|

]
To prove this Lemma, we first require the following claim.

Claim. Let A be a positive definite matrix and x a vector such that A−xx� 6 0.
Then

x�A−1x ≤ log
[

|A|
|A− xx�|

]
Proof. Let B = A − xx�. For any positive definite matrix C, let λ1(C), λ2(C),
. . . , λn(C) be its (positive) eigenvalues.

x�A−1x = Tr(A−1xx�)

= Tr(A−1(A−B))

= Tr(A−1/2(A−B)A−1/2)

= Tr(I −A−1/2BA−1/2)

=
n∑
i=1

[
1− λi(A−1/2BA−1/2)

]
∵ Tr(C) =

n∑
i=1

λi(C)

≤
n∑
i=1

log
[
λi(A−1/2BA−1/2)

]
∵ 1− x ≤ − log(x)

= − log

[
n∏
i=1

λi(A−1/2BA−1/2)

]

= − log |A−1/2BA−1/2| = log
[
|A|
|B|

]
∵

n∏
i=1

λi(C) = |C|

�
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Lemma 6 now follows as a corollary:

Proof (Lemma 6). By the previous claim, we have

T∑
t=1

v�t (At +A0)−1vt ≤
T∑
t=1

log
[

|At +A0|
|At +A0 − vtv�t |

]

=
T∑
t=2

log
[
|At +A0|
|At−1 +A0|

]
+ log

[
|A1 +A0|
|A0|

]
= log

[
|At +A0|
|A0|

]
�

3.3 Exponentially Weighted Online Optimization

Theorem 7. Assume that the functions ft are such that exp(−αft(x)) is con-
cave. Then the Exponentially Weighted Online Optimization algorithm
achieves the following guarantee, for all T ≥ 1.

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
1
α
n(1 + log(1 + T )).

Proof. Let ht(x) = e−αft(x). The algorithm can be viewed as taking a weighted
average over points x ∈ K. Hence, by concavity of ht,

ht(xt) ≥
∫
K
ht(x)

∏t−1
τ=1 hτ (x) dx∫

K

∏t−1
τ=1 hτ (x) dx

.

Hence, we have by telescoping product,

t∏
τ=1

hτ (xτ ) ≥
∫
K

∏t
τ=1 hτ (x) dx∫
K

1 dx
=

∫
K

∏t
τ=1 hτ (x) dx
vol(K)

(12)

Let x∗ = arg minx∈K
∑T

t=1 ft(x) = argmaxx∈K
∏T
t=1 ht(x). Following [BK97],

define nearby points S ⊂ K by,

S = {x ∈ S|x =
T

T + 1
x∗ +

1
T + 1

y, y ∈ K}.

By concavity of ht and the fact that ht is non-negative, we have that,

∀x ∈ S ht(x) ≥
T

T + 1
ht(x∗).

Hence,

∀x ∈ S
T∏
τ=1

hτ (x) ≥
(

T

T + 1

)T T∏
τ=1

hτ (x∗) ≥
1
e

T∏
τ=1

hτ (x∗)
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Finally, since S = x∗ + 1
T+1K is simply a rescaling of K by a factor of 1/(T +1)

(followed by a translation), and we are in n dimensions, vol(S) = vol(K)/(T +
1)n. Putting this together with equation (12), we have

T∏
τ=1

hτ (xτ ) ≥
vol(S)
vol(K)

1
e

T∏
τ=1

hτ (x∗) ≥
1

e(T + 1)n

T∏
τ=1

hτ (x∗).

This implies the theorem. �

4 Conclusions and Future Work

In this work, we presented efficient algorithms which guarantee logarithmic regret
when the loss functions satisfy a mildly restrictive convexity condition. Our
algorithms use the very natural follow-the-leader methodology which has been
quite useful in other settings, and the efficient implementation of the algorithm
shows the connection with the Newton method from offline optimization theory.

Future work involves adapting these algorithms to work in the bandit setting,
where only the cost of the chosen point is revealed at every point (and no other
information). The techniques of Flaxman, Kalai and McMahan [FKM05] seem
to be promising for this.

Another direction for future work relies on the observation that the original
algorithm of Agarwal and Hazan worked for functions which could be written
as a one-dimensional convex function applied to an inner product. However, the
analysis requires a stronger condition than the exp-concavity condition we have
here. It seems that the original analysis can be made to work just with exp-
concavity assumptions, more detail to appear in the full version of this paper.
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Abstract. We design algorithms for two online variance minimization
problems. Specifically, in every trial t our algorithms get a covariance
matrix Ct and try to select a parameter vector wt such that the total
variance over a sequence of trials t w�

t Ctwt is not much larger than the
total variance of the best parameter vector u chosen in hindsight. Two
parameter spaces are considered - the probability simplex and the unit
sphere. The first space is associated with the problem of minimizing risk
in stock portfolios and the second space leads to an online calculation
of the eigenvector with minimum eigenvalue. For the first parameter
space we apply the Exponentiated Gradient algorithm which is motivated
with a relative entropy. In the second case the algorithm maintains a
mixture of unit vectors which is represented as a density matrix. The
motivating divergence for density matrices is the quantum version of the
relative entropy and the resulting algorithm is a special case of the Matrix
Exponentiated Gradient algorithm. In each case we prove bounds on the
additional total variance incurred by the online algorithm over the best
offline parameter.

1 Introduction

In one of the simplest settings of learning with expert advice [FS97], the learner
has to commit to a probability vector w over the experts at the beginning of
each trial. It then receives a loss vector l and incurs loss w ·l =

∑
iwili. The goal

is to design online algorithms whose total loss over a sequence of trials is close
to loss of the best expert in all trials, i.e. the total loss of the online algorithm∑

t wt · lt should be close to the total loss of the best expert chosen in hindsight,
which is infi

∑
t lt,i, where t is the trial index.

In this paper we investigate online algorithms for minimizing the total vari-
ance over a sequence of trials. Instead of receiving a loss vector l in each trial, we
now receive a covariance matrix C of a random loss vector l, where C(i, j) is the
covariance between li and lj at the current trial. Intuitively the loss vector pro-
vides first-order information (means), whereas covariance matrices give second
order information. The variance/risk of the loss for probability vector w when
the covariance matrix is C can be expressed as w�Cw = Var(w · l). Our goal

� Supported by NSF grant CCR 9821087. Some of this work was done while visiting
National ICT Australia in Canberra.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 514–528, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is to minimize the total variance over a sequence of trials:
∑

t w
�
t Ctwt. More

precisely, we want algorithms whose total variance is close to the total variance
of the best probability vector u chosen in hindsight, i.e. the total variance of the
algorithm should be close to infu u�(

∑
t Ct)u (where the minimization is over

the probability simplex).
In a more general setting one actually might want to optimize trade-offs be-

tween first-order and second order terms: w · l + γw�Cw, where γ ≥ 0 is a
risk-aversion parameter. Such problems arise in Markowitz portfolio optimiza-
tion (See e.g. discussion in [BV04], Section 4.4). For the sake of simplicity, in
this paper we focus on minimizing the variance by itself.

We develop an algorithm for the above online variance minimization problem.
The parameter space is the probability simplex. We use the Exponentiated Gra-
dient algorithm for solving this problem since it maintains a probability vector.
The latter algorithm is motivated and analyzed using the relative entropy between
probability vectors [KW97]. The bounds we obtain are similar to the bounds of
the Exponentiated Gradient algorithm when applied to linear regression.

In the second part of the paper we focus on the same online variance mini-
mization problem, but now the parameter space that we compare against is the
unit sphere of direction vectors instead of the probability simplex and the total
loss of the algorithm is to be close to infu u�(

∑
t Ct)u, where the minimization

is over unit vectors. The solution of the offline problem is an eigenvector that
corresponds to a minimum eigenvalue of the total covariance

∑
t Ct.

Note that the variance u�Cu can be rewritten using the trace operator:
u�Cu = tr(u�Cu) = tr(uu�C). The outer product uu� for unit u is called
a dyad and the offline problem can be reformulated as minimizing trace of a
product of a dyad with the total covariance matrix: infu tr(uu�(

∑
t Ct)) (where

u is unit length).1

In the original experts setting, the offline problem involved a minimum over
experts. Now its a minimum over dyads and the best dyad corresponds to an
eigenvector with minimum eigenvalue. The algorithm for the original expert set-
ting maintains its uncertainty over which expert is best as a probability vector
w, i.e. wi is the current belief that expert i is best. This algorithm is the Contin-
uous Weighted Majority (WMC) [LW94] (which was reformulated as the Hedge

algorithm in [FS97]). It uses exponentially decaying weights wt,i =
e−η

t−1
q=1 lq,i

Zt
,

where Zt is a normalization factor.
In the generalized setting we need to maintain uncertainty over dyads. The

natural parameter space is therefore mixtures of dyads which are called density
matrices in statistical physics (symmetric positive definite matrices of trace one).
Note that the vector of eigenvalues of such matrices is a probability vector. Using
the methodology of [TRW05, War05] we develop a matrix version of the Weighted
Majority algorithm for solving our second online variance minimization problem.

1 In this paper we upper bound the total variance of our algorithm, whereas the
generalized Bayes rule of [War05, WK06] is an algorithm for which the sum of the
negative logs of the variances is upper bounded.
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Now the density matrix parameter has the form Wt =
exp(−η

∑t−1
q=1 Cq)

Zt
, where

exp is the matrix exponential and Zt normalizes the trace of the parameter ma-
trix to one. When the covariance matrices Cq are the diagonal matrices diag(lq)
then the matrix update becomes the original expert update. In other words the
original update may be seen as a special case of the new matrix update when
the eigenvectors are fixed to the standard basis vectors and are not updated.

The original weighted majority type update may be seen as a softmin calcu-
lation, because as η → ∞, the parameter vector wt puts all of its weight on
argmini

∑t−1
q=1 lq,i. Similarly, the generalized update is a soft eigenvector calcu-

lation for the eigenvectors with the minimum eigenvalue.
What replaces the loss w · l of the algorithm in the more general context? The

dot product for matrices is a trace and we use the generalized loss tr(W C). If
the eigendecomposition of the parameter matrix W consists of the eigenvectors
wi and associated eigenvalues ωi then this loss can be rewritten as

tr(W C) = tr((
∑

ωiwiw
�
i )C) =

∑
i

ωi w�
i Cwi

In other words it may be seen as an expected variance along the eigenvectors
wi that is weighted by the eigenvalues ωi. Curiously enough, this trace is also
a quantum measurement, where W represents a mixture state of a particle and
C the instrument (See [War05, WK06] for additional discussion). Again the dot
product w · l is the special case when the eigenvectors are the standard basis
vectors, i.e.

tr(diag(w) diag(l)) = tr((
∑

wieie
�
i ) diag(l)) =

∑
i

wi e�
i diag(l)ei =

∑
i

wili.

The new update is motivated and analyzed using the quantum relative en-
tropy (due to Umegaki, see e.g. [NC00]) instead of the standard relative entropy
(also called Kullback-Leibler divergence). The analysis is a fancier version of the
original online loss bound for WMC that uses the Golden-Thompson inequality
and some lemmas developed in [TRW05].

2 Variance Minimization over the Probability Simplex

2.1 Definitions

In this paper we only consider symmetric matrices. Such matrices always have
an eigendecomposition of the form W = WωW�, where W is an orthogonal
matrix of eigenvectors and ω is a diagonal matrix of the corresponding eigenval-
ues. Alternatively, the decomposition can be written as W =

∑
i ωiwiw

�
i , with

the ωi being the eigenvalues and the wi the eigenvectors. Note that the dyads
wiw

�
i are square matrices of rank one.

Matrix M is called positive semidefinite if for all vectors w we have w�Mw ≥
0. This is also written as a generalized inequality M 4 0. In eigenvalue terms this
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Fig. 1. An ellipse C in R2: The eigenvectors are the directions of the axes and the
eigenvalues their lengths from the origin. Ellipses are weighted combinations of the
one-dimensional degenerate ellipses (dyads) corresponding to the axes. (For unit w,
the dyad ww� is a degenerate one-dimensional ellipse which is a line between −w and
w). The solid curve of the ellipse is a plot of direction vector Cw and the outer dashed
figure eight is direction w times the variance w�Cw. At the eigenvectors, this variance
equals the eigenvalues and the figure eight touches the ellipse.

means that all eigenvalues of matrix are ≥ 0. A matrix is strictly positive definite
if all eigenvalues are > 0. In what follows we will drop the semi- prefix and call
any matrix M 4 0 simply positive definite.

Let l be a random vector, then C = E
(
(l −E(l))(l−E(l))�

)
is its covariance

matrix. It is symmetric and positive definite. For any other vector w we can
compute the variance of the dot product l�w as follows:

Var(l�w) =E
(
(l�w −E(l�w))2

)
=E

(
((l� −E(l�))w)�((l� −E(l�))w)

)
=E

(
w�(l −E(l))(l −E(l))�)w

)
=w�Cw.

A covariance matrix can be depicted as an ellipse {Cw : ‖w‖2 = 1} centered
at the origin. The eigenvectors of C form the axes of the ellipse and eigenvalues
are the lengths of the axes from the origin (See Figure 1 taken from [War05]).

For two probability vectors u and w (e.g. vectors whose entries are nonneg-
ative and sum to one) their relative entropy (or Kullback-Leibler divergence) is
given by:

d(u,w) =
n∑
i=1

ui log
ui
wi
.

We call this a divergence (and not a distance) since its not symmetric and does
not satisfy the triangle inequality. It is however nonnegative and convex in both
arguments.

2.2 Risk Minimization

The problem of minimizing the variance when the direction w lies in the proba-
bility simplex is connected to risk minimization in stock portfolios. In Markowitz
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portfolio theory, vector p denotes the relative price change of all assets in a given
trading period. Let w be a probability vector that specifies the proportion of
our capital invested into each asset (assuming short positions are not allowed).
Then the relative capital change after a trading period is the dot product w · p.
If p is a random vector with known or estimated covariance matrix C, then the
variance of the capital change for our portfolio is w�Cw. This variance is clearly
associated with the risk of our investment. Our problem is then to “track” the
performance of minimum risk portfolio over a sequence of trading periods.

2.3 Algorithm and Motivation

Let us reiterate the setup and the goal for our algorithm. On every trial t it
must produce a probability vector wt. It then gets a covariance matrix Ct and
incurs a loss equal to the variance w�

t Ctwt. Thus for a sequence of T trials
the total loss of the algorithm will be Lalg =

∑T
t=1 w�

t Ctwt. We want this loss
to be comparable to the total variance of the best probability vector u chosen
in hindsight, i.e. Lu = minu u�

(∑T
t=1 Ct

)
u, where u lies in the probability

simplex. This offline problem is a quadratic optimization problem with non-
negativity constraints which does not have a closed form solution. However we
can still prove bounds for the online algorithm.

The natural choice for an online algorithm for this problem is the Exponenti-
ated Gradient algorithm of [KW97] since it maintains a probability vector as its
parameter. Recall that for a general loss function Lt(wt), the probability vector
of Exponentiated Gradient algorithm is updated as

wt+1,i =
wt,ie

−η(∇Lt(wt))i∑
iwt,ie

−η(∇Lt(wt))i
.

This update is motivated by considering the tradeoff between the relative entropy
divergence to the old probability vector and the current loss, where η > 0 is the
tradeoff parameter:

wt+1 ≈ arg min
w prob.vec.

d(w,wt) + ηLt(w),

where ≈ comes from the fact that the gradient at wt+1 that should appear in
the exponent is approximated by the gradient at wt (See [KW97] for more dis-
cussion). In our application, Lt(wt) = 1

2w�
t Ctwt and ∇Lt(wt) = Ctwt, leading

to the following update:

wt+1,i =
wt,ie

−η(Ctwt)i∑n
i=1 wt,ie

−η(Ctwt)i
.

2.4 Proof of Relative Loss Bounds

We now use the divergence d(u,w) that motivated the update as a measure of
progress in the analysis.
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Lemma 1. Let wt be the weight vector of the algorithm before trial t and let
u be an arbitrary comparison probability vector. Also, let r be the bound on the
range of elements in covariance matrix Ct, specifically let maxi,j |Ct(i, j)| ≤ r

2 .
For any constants a and b such that 0 < a ≤ b

1+rb and a learning rate η = 2b
1+rb

we have:
aw�

t Ctwt − b u�Ctu ≤ d(u,wt)− d(u,wt+1).

Proof. The proof given in Appendix A follows the same outline as Lemma 5.8
of [KW97] which gives an inequality for the Exponentiated Gradient algorithm
when applied to linear regression. 
�

Lemma 2. Let maxi,j |Ct(i, j)| ≤ r
2 as before. Then for arbitrary positive c and

learning rate η = 2c
r(c+1) , the following bound holds:

Lalg ≤ (1 + c)Lu +
(

1 +
1
c

)
r d(u,w1).

Proof. Let b = c
r , then for a = b

rb+1 = c
r(c+1) and η = 2a = 2c

r(c+1) , we can use
the inequality of Lemma 1 and obtain:

c

c+ 1
w�
t Ctwt − cu�Ctu ≤ r(d(u,wt)− d(u,wt+1)).

Summing over the trials t results in:

c

c+ 1
Lalg − cLu ≤ r(d(u,w1)− d(u,wt+1)) ≤ r d(u,w1).

Now the statement of the lemma immediately follows. 
�

The following theorem describes how to choose the learning rate for the purpose
of minimizing the upper bound:

Theorem 1. Let C1, . . . ,CT be an arbitrary sequence of covariance matrices
such that maxi,j |Ct(i, j)| ≤ r

2 and assume that u�∑T
t=1 Ctu ≤ L. Then running

our algorithm with uniform start vector w1 = ( 1
n , . . . ,

1
n ) and learning rate η =

2
√
L log n

r
√

logn+
√
rL

leads to the following bound:

Lalg ≤ Lu + 2
√
rL logn+ r logn.

Proof. By Lemma 2 and since d(u,w1) ≤ logn:

Lalg ≤ Lu + cL+
r logn
c

+ r logn.

By differentiating we see that c =
√

r logn
L minimizes the r.h.s. and substituting

this choice of c gives the bound of the theorem. 
�
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3 Variance Minimization over the Unit Sphere

3.1 Definitions

The trace tr(A) of a square matrix A is the sum of its diagonal elements. It
is invariant under a change of basis transformation and thus it is also equal
to the sum of eigenvalues of the matrix. The trace generalizes the normal dot
product between vectors to the space of matrices, i.e. tr(AB) = tr(BA) =∑

i,j A(i, j)B(i, j). The trace is also a linear operator, that is tr(aA + bB) =
a tr(A)+b tr(B). Another useful property of the trace is its cycling invariance, i.e.
tr(ABC) = tr(BCA) = tr(CAB). A particular instance of this is the following
manipulation: u�Au = tr(u�Au) = tr(Auu�).

Dyads have trace one because tr(uu�) = u�u = 1. We generalize mixtures or
probability vectors to density matrices. Such matrices are mixtures of any num-
ber of dyads, i.e. W =

∑
i αiuiu

�
i where αj ≥ 0 and

∑
i αi = 1. Equivalently,

density matrices are arbitrary symmetric positive definite matrices of trace one.
Any density matrix W can be decomposed into a sum of exactly n dyads cor-
responding to the orthogonal set of its eigenvectors wi, i.e. W =

∑n
i=1 ωiwiw

�
i

where the vector ω of the n eigenvalues must be a probability vector. In quantum
physics density matrices over the field of complex numbers represent the mixed
state of a physical system.

We also need the matrix generalizations of the exponential and logarithm
operations. Given the decomposition of a symmetric matrix A =

∑
i αi aia

�
i ,

the matrix exponential and logarithm denoted as exp and log are computed as
follows:

exp(A) =
∑
i

eαi aia
�
i , log(A) =

∑
i

logαi aia
�
i

In other words, the exponential and the logarithm are applied to the eigenval-
ues and the eigenvectors remain unchanged. Obviously, the matrix logarithm
is only defined when the matrix is strictly positive definite. In analogy with
the exponential for numbers, one would expect the following equality to hold:
exp(A + B) = exp(A) exp(B). However this is only true when the symmetric
matrices A and B commute, i.e. AB = BA, which occurs iff both matrices share
the same eigensystem. On the other hand, the following trace inequality, called
the Golden-Thompson inequality, holds for arbitrary symmetric matrices:

tr(exp(A + B)) ≤ tr(exp(A) exp(B)).

The following quantum relative entropy is a generalization of the classical relative
entropy to density matrices due to Umegaki (see e.g. [NC00]):

Δ(U ,W) = tr(U(log U − log W)).

We will also use generalized inequalities for the cone of positive definite matrices:
A . B if B −A positive definite.
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Fig. 2. The figure depicts a sequence of updates for the density matrix algorithm when
the dimension is 2. All 2-by-2 matrices are represented as ellipses. The top row shows
the density matrices W t chosen by the algorithm. The middle row shows the covariance

matrix Ct received in that trial. Finally, the bottom row is the average C≤t =
t
q=1 Ct

t

of all covariance matrices so far. By the update (1), W t+1 =
exp(−ηtC≤t)

Zt
, where Zt

is a normalization. Therefore, C≤t in the third row has the same eigensystem as the
density matrix W t+1 in the next column of the first row. Note the tendency of the
algorithm to try to place more weight on the minimal eigenvalue of the covariance
average. Since the algorithm is not sure about the future, it does not place the full
weight onto that eigenvalue but hedges its bets instead and places some weight onto
the other eigenvalues as well.

3.2 Applications

We develop online algorithms that perform as well as the eigenvector associated
with a minimum (or maximum) eigenvalue. It seems that online versions of
principal component analysis and other spectral methods can also be developed
using the methodology of this paper. For instance, spectral clustering methods
of [CSTK01] use a similar form of loss.

3.3 Algorithm and Motivation

As before we briefly review our setup. On each trial t our algorithm chooses
a density matrix Wt described as a mixture

∑
i ωt,i wt,iw

�
t,i. It then receives

a covariance matrix Ct and incurs a loss equal to the expected variance of its
mixture:

tr(WtCt) = tr((
∑
i

ωt,i wt,iw
�
t,i)Ct) =

∑
i

ωt,i w
�
t,iCtwt,i.

On a sequence of T trials the total loss of the algorithm will be
Lalg =

∑T
t=1 tr(WtCt). We want this loss to be not too much larger than the
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total variance of best unit vector u chosen in hindsight, i.e. Lu = tr(uu�∑
t Ct)

= u�(
∑

t Ct)u. The set of dyads is not a convex set. We therefore close it by
using convex combinations of dyads (i.e. density matrices) as our parameter
space. The best offline parameter is still a single dyad:

min
U dens.mat.

tr(UC) = min
u : ‖u‖2=1

u�Cu

Curiously enough our, loss tr(WC) has interpretation in quantum mechanics
as the expected outcome of measuring a physical system in mixture state W
with instrument C. Let C be decomposed as

∑
i γicic

�
i . The eigenvalues γi are

the possible numerical outcomes of measurement. When measuring a pure state
specified by unit vector u, the probability of obtaining outcome γi is given as
(u · ci)2 and the expected outcome is tr(uu�C) =

∑
i(u · ci)2γi. For a mixed

state W we have the following double expectation:

tr(WC) = tr

⎛⎝(
∑
i

ωi wiw
�
i )(

∑
j

γj cjc
�
j )

⎞⎠ =
∑
i,j

(wi · cj)2 γiωj ,

where the matrix of measurement probabilities (wi · cj)2 is a doubly stochastic
matrix. Note also, that for the measurement interpretation the matrix C does
not have to be positive definite, but only symmetric. The algorithm and the
proof of bounds in fact work fine for this case, but the meaning of the algorithm
when C is not a covariance matrix is less clear, since despite all these connections
our algorithm does not seem to have the obvious quantum-mechanical interpre-
tation. Our update clearly is not a unitary evolution of the mixture state and
a measurement does not cause a collapse of the state as is the case in quantum
physics. The question of whether this type of algorithm is still doing something
quantum-mechanically meaningful remains intriguing. See also [War05, WK06]
for additional discussion.

To derive our algorithm we use the trace expression for expected variance
as our loss and replace the relative entropy with its matrix generalization. The
following optimization problem produces the update:

Wt+1 = argmin
W dens.mat.

Δ(W ,Wt) + η tr(WCt)

Using a Lagrangian that enforces the trace constraint [TRW05], it is easy to
solve this constrained minimization problem:

Wt+1 =
exp(logWt − ηCt)

tr(exp(logWt − ηCt)) =
exp(−η

∑t
q=1 Cq)

tr(exp(−η
∑t

q=1 Cq))
. (1)

Note that for the second equation we assumed that W1 = 1
nI. The update is a

special case of the Matrix Exponentiated Gradient update with the linear loss
tr(WCt).
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3.4 Proof Methodology

For the sake of clarity, we begin by recalling the proof of the worst-case loss bound
for the Continuous Weighted Majority (WMC)/Hedge algorithm in the expert
advice setting [LW94]. In doing so we clarify the dependence of the algorithm
on the range of the losses. The update of that algorithm is given by:

wt+1,i =
wt,ie

−ηlt,i∑
iwt,ie

−ηlt,i
(2)

The proof always starts by considering the progress made during the update to-
wards any comparison vector/parameter u in terms of the motivating divergence
for the algorithm, which in this case is the relative entropy:

d(u,wt)− d(u,wt+1) =
∑
i

ui log
wt+1,i

wt,i
= −ηu · lt − log

∑
i

wt,ie
−ηlt,i .

We assume that lt,i ∈ [0, r], for r > 0, and use the inequality βx ≤ 1− (1−βr)xr ,
for x ∈ [0, r], with β = e−η:

d(u,wt)− d(u,wt+1) ≥ −ηu · lt − log(1 − wt · lt
r

(1− e−ηr)),

We now apply log(1− x) ≤ −x:

d(u,wt)− d(u,wt+1) ≥ −ηu · lt +
wt · l
r

(1 − e−ηr),

and rewrite the above to

wt · lt ≤
r(d(u,wt)− d(u,wt+1)) + ηru · lt

1− e−ηr

Here wt · lt is the loss of the algorithm at trial t and u · lt is the loss of the
probability vector u which serves as a comparator.

So far we assumed that lt,i ∈ [0, r]. However, it suffices to assume that
maxi lt,i − mini lt,i ≤ r. In other words, the individual losses can be positive
or negative, as long as their range is bounded by r. For further discussion per-
taining to the issues with losses having different signs see [CBMS05]. As we shall
observe below, the requirement on the range of losses will become a requirement
on the range of eigenvalues of the covariance matrices.

Define l̃t,i := lt,i −mini lt,i. The update remains unchanged when the shifted
losses l̃t,i are used in place of the original losses lt,i and we immediately get the
inequality

wt · l̃t ≤
r(d(u,wt)− d(u,wt+1)) + ηru · l̃t

1− e−ηr .

Summing over t and dropping the d(u,wt+1) ≥ 0 term results in a bound
that holds for any u and thus for the best u as well:∑

t

wt · l̃t ≤
rd(u,wt) + ηr

∑
t u · l̃t

1− e−ηr .
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We can now tune the learning rate following [FS97]: if
∑

t u · l̃t ≤ L̃ and

d(u,w1) ≤ D ≤ lnn, then with η = log(1+
√

2D/L̃)
r we get the bound∑

t

wt · l̃t ≤
∑
t

u · l̃t +
√

2rL̃D + rd(u,w1),

which is equivalent to∑
t

wt · lt︸ ︷︷ ︸
Lalg

≤
∑
t

u · lt︸ ︷︷ ︸
Lu

+
√

2rL̃D + rd(u,w1).

Note that L̃ is defined wrt the tilde versions of the losses and the update as well
as the above bound is invariant under shifting the loss vectors lt by arbitrary
constants. If the loss vectors lt are replaced by gain vectors, then the minus sign
in the exponent of the update becomes a plus sign. In this case the inequality
above is reversed and the last two terms are subtracted instead of added.

3.5 Proof of Relative Loss Bounds

In addition to the Golden-Thompson inequality we will need lemmas 2.1 and 2.2
from [TRW05]:

Lemma 3. For any symmetric A, such that 0 . A . I and any ρ1, ρ2 ∈ R the
following holds:

exp(Aρ1 + (I −A)ρ2) . Aeρ1 + (I −A)eρ2 .

Lemma 4. For any positive semidefinite A and any symmetric B,C, B . C
implies tr(AB) ≤ tr(AC).

We are now ready to generalize the WMC bound to matrices:

Theorem 2. For any sequence of covariance matrices C1, . . . ,CT such that 0 .
Ct . rI and for any learning rate η, the following bound holds for arbitrary
density matrix U :

tr(WtCt) ≤ r(Δ(U ,Wt)−Δ(U ,Wt+1)) + ηr tr(UCt)
1− e−rη .

Proof. We start by analyzing the progress made towards the comparison matrix
U in terms of quantum relative entropy:

Δ(U ,Wt)−Δ(U ,Wt+1) = tr(U(log U − logWt))− tr(U(log U − logWt+1))

=− tr
(

U
(
log Wt + log

exp(log Wt − ηCt)
tr(exp(logWt − ηCt))

))
=− η tr(UCt)− log(tr(exp(log Wt − ηCt))).

(3)
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We will now bound the log of trace term. First, the following holds via the
Golden-Thompson inequality:

tr(exp(logW t − ηCt)) ≤ tr(Wt exp(−ηCt)). (4)

Since 0 . Ct

r . I, we can use Lemma 3 with ρ1 = −ηr, ρ2 = 0:

exp(−ηCt) . I − Ct
r

(1 − e−ηr).

Now multiply both sides on the left with Wt and take a trace. The inequality
is preserved according to Lemma 4:

tr(Wt exp(−ηCt)) ≤
(

1− tr(WtCt)
r

(1 − e−rη)
)
.

Taking logs of both sides we have:

log(tr(Wt exp(−ηCt))) ≤ log
(

1− tr(WtCt)
r

(1− e−ηr)
)
. (5)

To bound the log expression on the right we use inequality log(1− x) ≤ −x:

log
(

1− tr(WtCt)
r

(1− e−rη)
)
≤ − tr(WtCt)

r
(1− e−rη). (6)

By combining inequalities (4-6), we obtain the following bound on the log trace
term:

− log(tr(exp(log Wt − ηCt))) ≥ tr(W tCt)
r

(1− e−rη).

Plugging this into equation (3) we obtain

r(Δ(U ,Wt)−Δ(U ,Wt+1)) + ηr tr(UCt) ≥ tr(W tCt)(1 − e−rη),
which is the inequality of the theorem. 
�

Note the our density matrix update (1) is invariant wrt the variable change
C̃t = Ct − λmin(Ct)I. Therefore by the above theorem, the following inequality
holds whenever λmax(Ct)− λmin(Ct) ≤ r:

tr(WtC̃t) ≤ r(Δ(U ,Wt)−Δ(U ,Wt+1)) + ηr tr(UC̃t)
1− e−rη .

We can now sum over trials and tune the learning rate as done at the end of

Section 3.4. If
∑

t tr(UC̃t) ≤ L̃ and Δ(U ,W 1) ≤ D, with η =
log(1+ 2D

L̃
)

r we
get the bound:∑

t

tr(W tCt)︸ ︷︷ ︸
Lalg

≤
∑
t

tr(UCt)︸ ︷︷ ︸
LU

+
√

2rL̃D + rΔ(U ,W 1).
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4 Conclusions

We presented two algorithms for online variance minimization problems. For the
first problem, the variance was measured along a probability vector. It would
be interesting to combine this work with the online algorithms considered in
[HSSW98, Cov91] that maximize the return of the portfolio. It should be possible
to design online algorithms that minimize a trade off between the return of the
portfolio (first order information) and the variance/risk. Note that it is easy to
extend the portfolio vector to maintain short positions: Simply keep two weights
w+
i and w−

i per component as is done in the EG± algorithm of [KW97].
In our second problem the variance was measured along an arbitrary direction.

We gave a natural generalization of the WMC/Hedge algorithm to the case when
the parameters are density matrices. Note that in this paper we upper bounded
the sum of the expected variances over trials, whereas in [War05, WK06] a Bayes
rule for density matrices was given for which a lower bound was provided on the
product of the expected variances over trials.2

Much work has been done on exponential weight updates for the experts. In
particular, algorithms have been developed for shifting experts by combining the
exponential updates with an additive “sharing update”[HW98]. In preliminary
work we showed that these techniques easily carry over to the density matrix
setting. This includes the more recent work on the “sharing to the past average”
update, which introduces a long-term memory [BW02].

Appendix A

Proof of Lemma 1

Begin by analyzing the progress towards the comparison vector u:

d(u,wt)− d(u,wt+1) =
∑

ui log
ui
wt,i
−
∑

ui log
ui

wt+1,i

=
∑

ui logwt+1,i −
∑

ui logwt,i

=
∑

ui log
wt,ie

−η(Ctwt)i∑
wt,ie−η(Ctwt)i

−
∑

ui logwt,i

=
∑

ui logwt,i − η
∑

ui(Ctwt)i −

− log
(∑

wt,ie
−η(Ctwt)i

)
−
∑

ui logwt,i

=− η
∑

ui(Ctwt)i − log
(∑

wt,ie
−η(Ctwt)i

)
Thus, our bound is equivalent to showing F ≤ 0 with F given as:

F = aw�
t Ctwt − bu�Cu + ηu�Cwt + log

(∑
wt,ie

−η(Ctwt)i

)
2 This amounts to an upper bound on the sum of the negative logarithms of the

expected variances.
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We proceed by bounding the log term. The assumption on the range of elements
of Ct and the fact that wt is a probability vector allows us to conclude that
maxi(Ctwt)i−mini(Ctwt)i ≤ r, since (Ctwt)i =

∑
j Ct(i, j)wt(j). Now, assume

that l is a lower bound for (Ctwt)i, then we have that l ≤ (Ctwt)i ≤ l + r, or
0 ≤ (Ctwt)i−l

r ≤ 1. This allows us to use the inequality ax ≤ 1 − x(1 − a) for
a ≥ 0 and 0 ≤ x ≤ 1. Let a = e−ηr:

e−η(Ctwt)i = e−ηl(e−ηr)
(Ctwt)i−l

r ≤ e−ηb
(

1− (Ctwt)i − l
r

(1− e−ηr)
)

Using this inequality we obtain:

log
(∑

wt,ie
−η(Ctwt)i

)
≤ −ηl + log

(
1− w�

t Ctwt − l
r

(1− e−ηr)
)

This gives us F ≤ G, with G given as:

G = aw�
t Ctwt − bu�Ctu + ηu�Cwt − ηl + log

(
1− w�

t Ctwt − l
r

(1− e−ηr)
)

It is sufficient to show that G ≤ 0. Let z =
√Ctu. Then G(z) becomes:

G(z) = −bz�z + ηz�
√

Ctwt + constant.

The function G(z) is concave quadratic and is maximized at:

∂G

∂z
= −2bz + η

√
Ctwt = 0, z =

η

2b

√
Ctwt

We substitute this value of z into G and get G ≤ H , where H is given by:

H = aw�
t Ctwt +

η2

4b
w�
t Ctwt − ηl + log

(
1− w�

t Ctwt − l
r

(1− e−ηr)
)
.

Since l ≤ (Ctwt)i ≤ l + r, then obviously so is w�
t Ctwt, since weighted average

stays within the bounds. Now we can use the inequality log(1 − p(1 − eq)) ≤
pq + q2

8 , for 0 ≤ p ≤ 1 and q ∈ R:

log
(

1− w�
t Ctwt − l

r
(1− e−ηr)

)
≤ −ηw�

t Ctwt + ηl +
η2r2

8
.

We get H ≤ S, where S is given as:

S = aw�
t Ctwt +

η2

4b
w�
t Ctwt − ηw�

t Ctwt +
η2r2

8

=
w�
t Ctwt

4b
(4ab+ η2 − 4bη) +

η2r2

8
.

By our assumptions w�
t Ctwt ≤ r

2 , and therefore:

S ≤ Q = η2(
r2

8
+
r

8b
)− ηr

2
+
ar

2
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We want to make this expression as small as possible, so that it stays below zero.
To do so we minimize it over η:

2η(
r2

8
+
r

8b
)− r

2
= 0, η =

2b
rb + 1

Finally we substitute this value of η into Q and obtain conditions on a, so that
Q ≤ 0 holds:

a ≤ b

rb + 1
This concludes the proof. 
�
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Abstract. We study online learning where the objective of the de-
cision maker is to maximize her average long-term reward given that
some average constraints are satisfied along the sample path. We define
the reward-in-hindsight as the highest reward the decision maker could
have achieved, while satisfying the constraints, had she known Nature’s
choices in advance. We show that in general the reward-in-hindsight is
not attainable. The convex hull of the reward-in-hindsight function is,
however, attainable. For the important case of a single constraint the
convex hull turns out to be the highest attainable function. We further
provide an explicit strategy that attains this convex hull using a cali-
brated forecasting rule.

1 Introduction

We consider a repeated game from the viewpoint of a specific decision maker
(player P1), who plays against Nature (player P2). The opponent (Nature) is
“arbitrary” in the sense that player P1 has no prediction, statistical or strategic,
regarding the opponent’s choice of actions. This setting was considered by Han-
nan [1], in the context of repeated matrix games. Hannan introduced the Bayes
utility against the current empirical distribution of the opponent’s actions, as
a performance goal for adaptive play. This quantity is the highest average re-
ward that player P1 could achieve, in hindsight, by playing some fixed action
against the observed action sequence of player P2. Player P1’s regret is defined
as the difference between the highest average reward-in-hindsight that player
P1 could have hypothetically achieved, and the actual average reward obtained
by player P1. It was established in [1] that there exist strategies whose regret
converges to zero as the number of stages increases, even in the absence of any
prior knowledge on the strategy of player P2.

In this paper we consider regret minimization under sample-path constraints.
That is, in addition to maximizing the reward, or more precisely, minimizing
the regret, the decision maker has some side constraints that need to be sat-
isfied on the average. In particular, for every joint action of the players, there
is an additional penalty vector that is accumulated by the decision maker. The
decision maker has a predefined set in the space of penalty vectors, which repre-
sents the acceptable tradeoffs between the different components of the penalty

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 529–543, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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vector. An important special case arises when the decision maker wishes to keep
some constrained resource below a certain threshold. Consider, for example, a
wireless communication system where the decision maker can adjust the trans-
mission power to improve the probability that a message is received successfully.
Of course, the decision maker does not know a priori how much power will be
needed (this depends on the behavior of other users, the weather, etc.). The
decision maker may be interested in the rate of successful transmissions, while
minimizing the average power consumption. In an often considered variation of
this problem, the decision maker wishes to maximize the transmission rate, while
keeping the average power consumption below some predefined threshold. We re-
fer the reader to [2] and references therein for a discussion on constrained average
cost stochastic games and to [3] for constrained Markov decision problems.

The paper is organized as follows. In Section 2, we present formally the basic
model, and provide a result that relates attainability and the value of the game.
In Section 3, we provide an example where the reward-in-hindsight cannot be
attained. In light of this negative result, in Section 4 we define the closed convex
hull of the reward-in-hindsight, and show that it is attainable. Furthermore, in
Section 5, we show that when there is a single constraint, this is the maximal
attainable objective. Finally, in Section 6, we provide a simple strategy, based
on calibrated forecasting, that attains the convex hull.

2 Problem Definition

We consider a repeated game against Nature, in which a decision maker tries to
maximize her reward, while satisfying some constraints on certain time-averages.
The stage game is a game with two players: P1 (the decision maker of interest)
and P2 (who represents Nature and is assumed arbitrary). In this context, we
only need to define rewards and constraints for P1.

A constrained game with respect to a set T is defined by a tuple (A,B,R,C, T )
where:

1. A is the set of actions of P1; we will assume A = {1, 2, . . . , |A|}.
2. B is the set of actions of P2; we will assume B = {1, 2, . . . , |B|}.
3. R is an |A|×|B| matrix where the entry R(a, b) denotes the expected reward

obtained by P1, when P1 plays action a ∈ A and P2 action b ∈ B. The
actual rewards obtained at each play of actions a and b are assumed to be
IID random variables, with finite second moments, distributed according to
a probability law PrR(· | a, b). Furthermore, the reward streams for different
pairs (a, b) are statistically independent.

4. C is an |A| × |B| matrix, where the entry C(a, b) denotes the expected d-
dimensional penalty vector accumulated by P1, when P1 plays action a ∈ A
and P2 action b ∈ B. The actual penalty vectors obtained at each play of
actions a and b are assumed to be IID random variables, with finite second
moments, distributed according to a probability law PrC(· | a, b). Further-
more, the penalty vector streams for different pairs (a, b) are statistically
independent.
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5. T is a set in Rd within which we wish the average of the penalty vectors to
lie. We shall assume that T is convex and closed. Since C is bounded, we
will also assume, without loss of generality that T is bounded.

The game is played in stages. At each stage t, P1 and P2 simultaneously
choose actions at ∈ A and bt ∈ B, respectively. Player P1 obtains a reward rt,
distributed according to PrR(· | at, bt), and a penalty ct, distributed according to
PrC(· | at, bt). We define P1’s average reward by time t to be

r̂t =
1
t

t∑
τ=1

rτ , (2.1)

and P1’s average penalty vector by time t to be

ĉt =
1
t

t∑
τ=1

cτ . (2.2)

A strategy for P1 (resp. P2) is a mapping from the set of all possible past
histories to the set of mixed actions on A (resp. B), which prescribes the (mixed)
action of that player at each time t, as a function of the history in the first t− 1
stages. Loosely, P1’s goal is to maximize the average reward while keeping the
average penalty vector in T , pathwise:

for every ε > 0, Pr(dist(ĉt, T ) > ε infinitely often) = 0, (2.3)

where dist(·) is the point-to-set Euclidean distance, i.e., dist(x, T ) = infy∈T ‖y−
x‖2, and the probability measure is the one induced by the policy of P1, the
policy of P2, and the randomness in the rewards and penalties.

We will often consider the important special case of T = {c ∈ Rd : c ≤ c0}.
We simply call such a game a constrained game with respect to (a vector) c0.
For that special case, the requirement (2.3) is equivalent to:

lim sup
t→∞

ĉt ≤ c0, a.s.,

where the inequality is interpreted componentwise.
For a set D, we will use the notation Δ(D) to denote the set of all probability

measures on D. If D is finite, we will identify Δ(D) with the set of probability
vectors of the same size as D. (If D is a subset of Euclidean space, we will assume
that it is endowed with the Borel σ-field.)

2.1 Reward-in-Hindsight

We define q̂t ∈ Δ(B) as the empirical distribution of P2’s actions by time t, that
is,

q̂t(b) =
1
t

t∑
τ=1

1{bt=b}, b ∈ B. (2.4)



532 S. Mannor and J.N. Tsitsiklis

If P1 knew in advance that q̂t will equal q, and if P1 were restricted to using a
fixed action, then P1 would pick an optimal response (generally a mixed action)
to the mixed action q, subject to the constraints specified by T . In particular,
P1 would solve the convex program1

max
p∈Δ(A)

∑
a,b

p(a)q(b)R(a, b), (2.5)

s.t.
∑
a,b

p(a)q(b)C(a, b) ∈ T.

By playing a p that solves this convex program, P1 would meet the constraints
(up to small fluctuations that are a result of the randomness and the finiteness
of t), and would obtain the maximal average reward. We are thus led to define
P1’s reward-in-hindsight, which we denote by r∗ : Δ(B) �→ R, as the optimal
objective value in the program (2.5).

In case of a constrained game with respect to a vector c0, the convex constraint∑
a,b p(a)q(b)C(a, b) ∈ T is replaced by

∑
a,b p(a)q(b)C(a, b) ≤ c0 (the inequality

is to be interpreted componentwise).

2.2 The Objective

Formally, our goal is to attain a function r in the sense of the following definition.
Naturally, the higher the function r, the better.

Definition 1. A function r : Δ(B) �→ R is attainable by P1 in a constrained
game with respect to a set T if there exists a strategy σ of P1 such that for every
strategy ρ of P2:

(i) lim inft→∞(r̂t − r(q̂t)) ≥ 0, a.s., and
(ii) lim supt→∞ dist(ĉt, T )→ 0, a.s.,

where the almost sure convergence is with respect to the probability measure in-
duced by σ and ρ.

In constrained games with respect to a vector c0 we can replace (ii) in the
definition with

lim sup
t→∞

ĉt ≤ c0, a.s.

2.3 The Value of the Game

In this section, we consider the attainability of a function r : Δ(B) �→ R, which
is constant, r(q) = α, for all q. We will establish that attainability is equivalent
to having α ≤ v, where v is a naturally defined “value of the constrained game.”

We first introduce that assumption that P1 is always able to satisfy the con-
straint.
1 If T is a polyhedron (specified by finitely many linear inequalities), then the opti-

mization problem is a linear program.
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Assumption 1. For every mixed action q ∈ Δ(B) of P2, there exists a mixed
action p ∈ Δ(A) of P1, such that:∑

a,b

p(a)q(b)C(a, b) ∈ T. (2.6)

For constrained games with respect to a vector c0, the condition (2.6) reduces
to the inequality

∑
a,b p(a)q(b)C(a, b) ≤ c0.

If Assumption 1 is not satisfied, then P2 can choose a q such that for every
(mixed) action of P1, the constraint is violated in expectation. By repeatedly
playing this q, P1’s average penalty vector is outside T .

The following result deals with the attainability of the value, v, of an average
reward repeated constrained game, defined by

v = inf
q∈Δ(B)

sup
p∈Δ(A), a,b p(a)q(b)C(a,b)∈T

∑
a,b

p(a)q(b)R(a, b). (2.7)

The existence of a strategy for P1 that attains the value was proven in [4] in the
broader context of stochastic games.

Proposition 1. Suppose that Assumption 1 holds. Then,

(i) P1 has a strategy that guarantees that the constant function r(q) ≡ v is
attained with respect to T .

(ii) For every number v′ > v there exists δ > 0 such that P2 has a strategy
that guarantees that either lim inft→∞ r̂t < v′ or lim supt→∞ dist(ĉt, T ) > δ,
almost surely. (In particular, the constant function v′ is not attainable.)

Proof. The proof relies on Blackwell’s approachability theory (see [5]). We con-
struct a nested sequence of convex sets in Rd+1 denoted by Sα = {(r, c) ∈
R × Rd : r ≥ α, c ∈ T }. Obviously, Sα ⊂ Sβ for α > β. Consider the vector-
valued game in Rd+1 associated with the constrained game. In this game P1’s
payoff at time t is the d + 1 dimensional vector mt = (rt, ct) and P1’s aver-
age vector-valued payoff is m̂t = (r̂t, ĉt). Since Sα is convex, it follows from
approachability theory for convex sets [5] that every Sα is either approachable
or excludable. If Sα is approachable, then Sβ is approachable for every β < α.
We define v0 = sup{β | Sβ is approachable}. It follows that Sv0 is approachable
(as the limit of approachable sets; see [6]). By Blackwell’s theorem, for every
q ∈ Δ(B), an approachable convex set must intersect the set of feasible payoff
vectors when P2 plays q. Using this fact, it is easily shown that v0 equals v, as
defined by Eq. (2.7), and part (i) follows. Part (ii) follows because a convex set
which is not approachable is excludable. 
�
Note that part (ii) of the proposition implies that, essentially, v is the highest
average reward P1 can attain while satisfying the constraints, if P2 plays an
adversarial strategy. By comparing Eq. (2.7) with Eq. (2.5), we see that v =
infq r∗(q).
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Remark 1. We note in order to attain the value of the game, P1 may have to
use a non-stationary strategy. This is in contrast to standard (non-constrained)
games, in which P1 always has an optimal stationary strategy that attains the
value of the game.

Remark 2. In general, the infimum and supremum in (2.7) cannot be inter-
changed. This is because the set of feasible p in the inner maximization depends
on the value of q. Moreover, it can be shown that the set of (p, q) pairs that
satisfy the constraint

∑
a,b p(a)q(b)C(a, b) ∈ T is not necessarily convex.

3 Reward-in-Hindsight Is Not Attainable

As it turns out the reward-in-hindsight cannot be attained in general. This is
demonstrated by the following simple 2 × 2 matrix game, with just a single
constraint.

Consider a 2× 2 constrained game specified by:

(
(1,−1) (1, 1)
(0,−1) (−1,−1)

)
,

where each entry (pair) corresponds to (R(a, b), C(a, b)) for a pair of actions a
and b. At a typical stage, P1 chooses a row, and P2 chooses a column. We set
c0 = 0. Let q denote the frequency with which P2 chooses the second column.
The reward of the first row dominates the reward of the second one, so if the
constraint can be satisfied, P1 would prefer to choose the first row. This can be
done as long as 0 ≤ q ≤ 1/2, in which case r∗(q) = 1. For 1/2 ≤ q ≤ 1, player P1
needs to optimize the reward subject to the constraint. Given a specific q, P1
will try to choose a mixed action that satisfies the constraint while maximizing
the reward. If we let α denote the frequency of choosing the first row, we see
that the reward and penalty are:

r(α) = α− (1− α)q ; c(α) = 2αq − 1.

We observe that for every q, r(α) and c(α) are monotonically increasing functions
of α. As a result, P1 will choose the maximal α that satisfies c(α) ≤ 0, which is
α(q) = 1/2q, and the optimal reward is 1/2 + 1/2q − q. We conclude that the
reward-in-hindsight is:

r∗(q) =

⎧⎨⎩
1, if 0 ≤ q ≤ 1/2,
1
2

+
1
2q
− q, if 1/2 ≤ q ≤ 1.

The graph of r∗(q) is the thick line in Figure 1.
We now claim that P2 can make sure that P1 does not attain r∗(q).

Proposition 2. If c0 = 0, then there exists a strategy for P2 such that r∗(q)
cannot be attained.
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Fig. 1. The reward-in-hindsight of the constrained game. Here, r∗(q) is the bold thick
line, and the dotted line connects the two extreme values, for q = 0 and q = 1.

Proof. (Outline) Suppose that P2 starts by playing the second column for some
long time τ . At time τ , P2’s empirical frequency of choosing the second column
is q̂τ = 1. As computed before, r∗(q̂τ ) = 0. Since P1 tries to satisfy ĉτ ≤ 0, and
also have the average reward by time τ as high as r∗(q̂τ ), P1 must choose both
rows with equal probability and obtain a reward of r̂τ = 0, which equals r∗(q̂τ ).
This is essentially the best that can be achieved (neglecting negligible effects of
order 1/τ). In the next τ time stages, P2 plays the first column. The empirical
frequency of P2 at time 2τ is q̂2τ = 1/2. During these last τ periods, P1 can
choose the first row and achieve a reward of 1 (which is the best possible), and
also satisfy the constraint. In that case, r̂2τ ≤ 1/2, while r∗(q̂2τ ) = 1. Player P2
can then repeat the same strategy, but replacing τ with some τ ′ which is much
bigger than τ (so that the first 2τ stages are negligible). 
�
Using the strategy that was described above, P2 essentially forces P1 to traverse
the dotted line in Fig. 1. It so happens that r∗(q) is not convex, and the dotted
line is below r∗(q) which precludes P1 from attaining r∗(q). We note that the
choice of c0 is critical in this example. With other choices of c0 (for example,
c0 = −1), the reward-in-hindsight may be attainable.

4 Attainability of the Convex Hull

Since the reward-in-hindsight is not attainable in general, we have to look for a
more modest objective. More specifically, we look for functions f : Δ(B) → R

that are attainable with respect to a given constraint set T . As a target we
suggest the closed convex hull of the reward-in-hindsight, r∗. After defining it,
we prove that it is indeed attainable with respect to the constraint set. In the
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next section, we will also show that it is the highest possible attainable function,
when there is a single constraint.

Given a function f : X �→ R, its closed convex hull is the function whose
epigraph is

conv({(x, r) : r ≥ f(x)}),
where conv(D) is the convex hull, and D is the closure of a set D. We denote
the closed convex hull of r∗ by rc.

We will make use of the following facts. The closed convex hull is guaranteed
to be continuous on Δ(B). (This would not be true if we had considered the
convex hull, without forming its closure.) Furthermore, for every q in the interior
of Δ(B), we have

rc(q) = inf
q1,q2,...,qk∈Δ(B),α1,...,αk

k∑
i=1

αir
∗(qi) (4.8)

s.t.
k∑
i=1

αiqi(b) = q(b), b ∈ B,

αi ≥ 0, i = 1, 2, . . . , k,
k∑
i=1

αi = 1,

where k can be taken equal to |B|+ 2 by Caratheodory’s Theorem.
The following result is proved using Blackwell’s approachability theory. The

technique is similar to that used in other no-regret proofs (e.g., [7, 8]), and is
based on the convexity of a target set that resides in an appropriately defined
space.

Theorem 1. Let Assumption 1 hold with respect to some convex set T ⊂ Rd.
Then rc is attainable with respect to T .

Proof. Define the following game with vector-valued payoffs, where the payoffs
belong to R× Rd ×Δ(B) (a |B|+ d+ 1 dimensional space which we denote by
M). Suppose that P1 plays at, P2 plays bt, P1 obtains an immediate reward of rt
and an immediate penalty vector of ct. Then, the vector-valued payoff obtained
by P1 is

mt = (rt, ct, e(bt)) ,

where e(b) is a vector of zeroes, except for a 1 in the bth location. It fol-
lows that the average vector-valued reward at time t, which we denote by
m̂t = 1

t

∑t
τ=1mτ , satisfies: m̂t = (r̂t, ĉt, q̂t) (where r̂t, ĉt, and q̂t were defined in

Eqs. (2.1), (2.2), and (2.4), respectively). Consider the sets:

B1 = {(r, c, q) ∈ M : r ≥ rc(q)}, B2 = {(r, c, q) ∈M : c ∈ T },

and let B = B1∩B2. Note that B is a convex set. We claim that B is approachable.
Let m : Δ(A) ×Δ(B) → M describe the expected payoff in a one shot game,
when P1 and P2 choose actions p and q, respectively. That is,
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m(p, q) =
(∑
a,b

p(a)q(b)R(a, b),
∑
a,b

p(a)q(b)C(a, b), q
)
.

Using the sufficient condition for approachability of convex sets ([5]), it suffices
to show that for every q there exists a p such that m(p, q) ∈ B. Fix q ∈ Δ(B). By
Assumption 1, the constraint

∑
a,b p(a)q(b)C(a, b) ∈ T is feasible, which implies

that the program (2.5) has an optimal solution p∗. It follows that m(p∗, q) ∈ B.
We now claim that a strategy that approaches B also attains rc in the sense of De-
finition 1. Indeed, since B ⊆ B2 we have that Pr(d(ct, T ) > ε infinitely often) = 0
for every ε > 0. Since B ⊆ B1 and using the continuity of rc, we obtain
lim inf (r̂t − rc(q̂t)) ≥ 0. 
�

Remark 3. Convergence rate results also follow from general approachability the-
ory, and are generally of the order of t−1/3; see [9]. It may be possible, perhaps,
to improve upon this rate (and obtain t−1/2 as in the non-constrained case), but
this is beyond the scope of this paper.

Remark 4. For every q ∈ Δ(B), we have r∗(q) ≥ v, which implies that rc(q) ≥ v.
Thus, attaining rc guarantees an average reward at least as high as the value of
the game.

4.1 Degenerate Cases

In this section we consider the degenerate cases where the penalty vector is
affected by only one of the players. We start with the case where P1 alone
affects the penalty vector, and then discuss the case where P2 alone affects the
penalty vector.

If P1 alone affects the penalty vector, that is, if C(a, b) = C(a, b′) for all
a ∈ A and b, b′ ∈ B, then r∗(q) is convex. Indeed, in this case Eq. (2.5) becomes
(writing C(a) for C(a, b))

r∗(q) = max
p∈Δ(A): a p(a)C(a)∈T

∑
a,b

p(a)q(b)R(a, b),

which is the maximum of a collection of linear functions of q (one function for
each feasible p), and is therefore convex.

If P2 alone affects the penalty vector, then Assumption 1 implies that the
constraint is always satisfied. Therefore,

r∗(q) = max
p∈Δ(A)

∑
a,b

p(a)q(b)R(a, b),

which is again a maximum of linear functions, hence convex.
We observe that in both degenerate cases, if Assumption 1 holds, then the

reward-in-hindsight is attainable.
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5 Tightness of the Convex Hull

We now show that rc is the maximal attainable function, for the case of a single
constraint.

Theorem 2. Suppose that d = 1, T is of the form T = {c | c ≤ c0}, where c0
is a given scalar, and that Assumption 1 is satisfied. Let r̃(q) : Δ(B) �→ R be an
attainable continuous function with respect to the scalar c0. Then, rc(q) ≥ r̃(q)
for all q ∈ Δ(B).

Proof. The proof is constructive, as it provides a concrete strategy for P2, which
prevents P1 from attaining r̃, unless rc(q) ≥ r̃(q) for every q. Assume, in order
to derive a contradiction, that there exists some r̃ that violates the theorem.
Since r̃ and rc are continuous, there exists some q0 ∈ Δ(B) and some ε > 0 such
that r̃(q) > rc(q) + ε for all q in an open neighborhood of q0. In particular, q0

can be taken to lie in the interior of Δ(B). Using Eq. (4.8), it follows that there
exist q1, . . . , qk ∈ Δ(B) and α1, . . . , αk (with k ≤ |B|+ 2) such that

k∑
i=1

αir
∗(qi) ≤ rc(q0) +

ε

2
< r̃(q0)− ε

2
;

k∑
i=1

αiq
i(b) = q0(b), ∀ b ∈ B;

k∑
i=1

αi = 1; αi ≥ 0, ∀ i.

Let τ be a large number (τ is to be chosen large enough to ensure that the
events of interest occur with high probability, etc.). We will show that if P2
plays each qi for αiτ time steps, in an appropriate order, then either P1 does
not satisfy the constraint along the way or r̂τ ≤ r̃(q̂τ )− ε/2.

For i = 1, . . . , k, we define a function fi : Rd → R ∪ {−∞}, by letting fi(c)
be the maximum of ∑

a,b

p(a)qi(b)R(a, b),

subject to
p ∈ Δ(A), and

∑
a,b

p(a)qi(b)C(a, b) ≤ c,

where the maximum over an empty set is defined to equal−∞. We note that fi(c)
is piecewise linear, concave, and nondecreasing in c. Furthermore, fi(c0) = r∗(qi).
Let f+

i be the right directional derivative of fi at c = c0. From now on, we assume
that the qi have been ordered so that the sequence f+

i is non-increasing.
Suppose that P1 knows the sequence q1, . . . , qk (ordered as above) in advance,

and that P2 will be following the strategy described earlier. We assume that τ is
large enough so that we can ignore the effects of dealing with a finite sample, or
of αiτ not being an integer. We allow P1 to choose any sequence of p1, . . . , pk,
and introduce the constraints

�∑
i=1

αi
∑
a,b

pi(a)qi(b)C(a, b) ≤ c0
�∑
i=1

αi, � = 1, 2, . . . , k.
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These constraints are required in order to guarantee that ĉt has negligible prob-
ability of substantially exceeding c0, at the “switching” times from one mixed
action to another. If P1 exploits the knowledge of P2’s strategy to maximize her
average reward at time τ , the resulting expected average reward at time τ will be
the optimal value of the objective function in the following linear programming
problem:

max
p1,p2,...,pk

k∑
i=1

αi
∑
a,b

pi(a)qi(b)R(a, b)

s.t.
�∑
i=1

αi
∑
a,b

pi(a)qi(b)C(a, b) ≤ c0
�∑
i=1

αi, � = 1, 2, . . . , k, (5.9)

p� ∈ Δ(A), � = 1, 2, . . . , k.

Of course, given the value of
∑

a,b p
i(a)qi(b)C(a, b), to be denoted by ci, player P1

should choose a pi that maximizes rewards, resulting in
∑

a,b p
i(a)qi(b)R(a, b) =

fi(ci). Thus, the above problem can be rewritten as

max
c1,...,ck

∑
αifi(ci)

s.t.
�∑
i=1

αici ≤ c0
�∑
i=1

αi, � = 1, 2, . . . , k. (5.10)

We claim that letting ci = c0, for all i, is an optimal solution to the problem
(5.10). This will then imply that the optimal value of the objective function for
the problem (5.9) is

∑k
i=1 αifi(c0), which equals

∑k
i=1 αir

∗(qi), which in turn, is
bounded above by r̃(q0)−ε/2. Thus, r̂τ < r̃(q0)−ε/2+δ(τ), where the term δ(τ)
incorporates the effects due to the randomness in the process. By repeating this
argument with ever increasing values of τ (so that the stochastic term δ(τ) is
averaged out and becomes negligible), we obtain that the event r̂t < r̃(q0)− ε/2
will occur infinitely often, and therefore r̃ is not attainable.

It remains to establish the claimed optimality of (c0, . . . , c0). Suppose that
(c1, . . . , ck) �= (c0, . . . , c0) is an optimal solution of the problem (5.10). If ci ≤ c0
for all i, the monotonicity of the fi implies that (c0, . . . , c0) is also an optimal
solution. Let us therefore assume that there exists some j for which cj > c0.
In order for the constraint (5.10) to be satisfied, there must exist some index
s < j such that cs < c0. Let us perturb this solution by setting δ = min{αs(c0−
cs), αj(cj − c0)}, increasing cs to c̃s = cs + δ/αs, and decreasing cj to c̃j =
cj−δ/αj . This new solution is clearly feasible. Let f−s = limε↓0(fs(c0)−fs(c0−ε)),
which is the left derivative of fs at c0. Using concavity, and the earlier introduced
ordering, we have f−s ≥ f+

s ≥ f+
j , from which it follows easily (the detailed

argument is omitted) that fs(c̃s) + fj(c̃j) ≥ fs(cs) + fj(cj). Therefore, the new
solution must also be optimal, but has fewer components that differ from c0. By
repeating this process, we eventually conclude that (c0, . . . , c0) is optimal. 
�
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To the best of our knowledge, this is the first tightness result for a perfor-
mance envelope (the reward-in-hindsight) different than the Bayes envelope, for
standard repeated decision problems.

6 Attaining the Convex Hull Using Calibrated Forecasts

In this section we consider a specific strategy that attains the convex hull, thus
strengthening Theorem 1. The strategy is based on forecasting P2’s action, and
playing a best response (in the sense of Eq. (2.5)) against the forecast. The
quality of the resulting strategy depends, of course, on the quality of the forecast;
it is well known that using calibrated forecasts leads to no-regret strategies in
standard repeated matrix games. See [10, 11] for a discussion of calibration and
its implications in learning in games. In this section we consider the consequences
of calibrated play for repeated games with constraints.

We start with a formal definition of calibrated forecasts and calibrated play,
and then show that calibrated play attains rc in the sense of Definition 1.

A forecasting scheme specifies at each stage k a probabilistic forecast qk ∈ Δ(B)
of P2’s action bk. More precisely a (randomized) forecasting scheme is a sequence
of maps that associate with each possible history hk−1 during the first k−1 stages
a probability measure μk over Δ(B). The forecast qk ∈ Δ(B) is then selected at
random according to the distribution μk. Let us clarify that for the purposes of
this section, the history is defined to include the realized past forecasts.

We shall use the following definition of calibrated forecasts.

Definition 2 (Calibrated forecasts). A forecasting scheme is calibrated if
for every (Borel measurable) set Q ⊂ Δ(B) and every strategy of P2,

lim
t→∞

1
t

t∑
τ=1

1{qτ ∈ Q}(e(bτ )− qτ ) = 0 a.s., (6.11)

where e(b) is a vector of zeroes, except for a 1 in the bth location.

Calibrated forecasts, as defined above, have been introduced into game theory
in [10], and several algorithms have been devised to achieve them (see [11] and
references therein). These algorithms typically start with predictions that are
restricted to a finite grid, and gradually increase the number of grid points.

The proposed strategy is to let P1 play a best response against P2’s forecasted
play while still satisfying the constraints (in expectation for the one-shot game).
Formally, we let:

p∗(q) = arg max
p∈Δ(A)

∑
a,b

p(a)q(b)R(a, b) (6.12)

s.t.
∑
a,b

p(a)q(b)C(a, b) ∈ T,

where in the case of a non-unique maximum we assume that p∗(q) is uniquely
determined by some tie-breaking rule; this is easily done, while keeping p∗(·) a
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measurable function. The strategy is to play pt = p∗(qt), where qt is a calibrated
forecast of P2’s actions2. We call such a strategy a calibrated strategy.

The following theorem states that a calibrated strategy attains the convex hull.

Theorem 3. Let Assumption 1 hold, and suppose that P1 uses a calibrated strat-
egy. Then rc is attainable with respect to T .

Proof. (Outline) Fix ε > 0. We need to show that by playing the calibrated
strategy, P1 obtains lim inf r̂t − rc(q̂t) ≥ −ε and lim sup dist(ĉt, T ) ≤ ε almost
surely. Due to lack of space, we only provide an outline of the proof.

Consider a partition of the simplex Δ(B) to finitely many measurable sets
Q1, Q2, . . . , Q� such that q, q′ ∈ Qi implies that ‖q − q′‖ ≤ ε/K and ‖p∗(q) −
p∗(q′)‖ ≤ ε/K, where K is a large constant. (Such a partition exists by the com-
pactness of Δ(B) and Δ(A). The measurability of the sets Qi can be guaranteed
because the mapping p∗(·) is measurable.) For each i, let us fix a representative
element qi ∈ Qi, and let pi = p∗(qi).

Since we have a calibrated forecast, Eq. (6.11) holds for every Qi, 1 ≤ i ≤ �.
Define Γt(i) =

∑t
τ=1 1{qτ ∈ Qi} and assume without loss of generality that

Γt(i) > 0 for large t (otherwise, eliminate those i for which Γt(i) = 0 for all t
and renumber the Qi). To simplify the presentation, we assume that for every
i, and for large enough t, we will have Γt(i) ≥ εt/K. (If for some i, and t this
condition is violated, the contribution of such an i in the expressions that follow
will be O(ε).) In the sequel the approximate equality sign “≈” will indicate the
presence of an approximation error term, et, that satisfies lim supt→∞ et ≤ Lε,
almost surely, where L is a constant.

We have

ĉt ≈
1
t

t∑
τ=1

C(aτ , bτ )

=
∑
i

Γt(i)
t

∑
a,b

C(a, b)
1

Γt(i)

t∑
τ=1

1{qτ ∈ Qi}1{aτ = a}1{bτ = b}

≈
∑
i

Γt(i)
t

∑
a,b

C(a, b)pi(a)
1

Γt(i)

t∑
τ=1

1{qτ ∈ Qi}1{bτ = b}

≈
∑
i

Γt(i)
t

∑
a,b

C(a, b)pi(a)qi(b). (6.13)

The first approximate equality follows from laws of large numbers. The second
approximate equality holds because whenever qτ ∈ Qi, pτ is approximately equal
to p∗(qi) = pi, and by laws of large numbers, the frequency with which a will
be selected will be approximately pi(a). The last approximate equality holds by
virtue of the calibration property (6.11) with Q = Qi, and the fact that whenever
qτ ∈ Qi, we have qτ ≈ qi.
2 When the forecast μt is mixed, qt is the realization of the mixed rule.
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Note that the right-hand side expression (6.13) is a convex combination (be-
cause the Γt(i)/t sum to 1) of elements of T (because of the definition of pi),
and is therefore an element of T (because T is convex). This establishes that
the constraint is asymptotically satisfied within ε. Note that in this argument,
whenever Γt(i)/t < ε/K, the summand corresponding to i is indeed of order
O(ε) and can be safely ignored, as stated earlier.

Regarding the average reward, a similar argument yields

r̂t ≈
∑
i

Γt(i)
t

∑
a,b

R(a, b)pi(a)qi(b)

=
∑
i

Γt(i)
t
r∗(qi)

≥ rc
(∑

i

Γt(i)
t
qi
)

≈ rc(q̂t).

The first approximate equality is obtained similar to (6.13), with C(a, b) replaced
by R(a, b). The equality that follows is a consequence of the definition of pi. The
inequality that follows is obtained because of the definition of rc as the closed
convex hull of r∗. The last approximate equality relies on the continuity of rc,
and the fact

q̂t ≈
1
t

t∑
τ=1

qτ ≈
∑
i

Γt(i)
t
qi.

To justify the latter fact, the first approximate equality follows from the calibra-
tion property (6.11), withQ = Δ(B), and the second because qt is approximately
equal to qi for a fraction Γt(i)/t of the time.

The above outlined argument involves a fixed ε, and a fixed number � of sets
Qi, and lets t increase to infinity. As such, it establishes that for any ε > 0
the function rc − ε is attainable with respect to the set T ε defined by T ε = {x |
dist(x, T ) ≤ ε}. Since this is true for every ε > 0, we conclude that the calibrated
strategy attains rc as claimed. 
�
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Abstract. We consider the design of online master algorithms for com-
bining the predictions from a set of experts where the absolute loss of the
master is to be close to the absolute loss of the best expert. For the case
when the master must produce binary predictions, the Binomial Weight-
ing algorithm is known to be optimal when the number of experts is
large. It has remained an open problem how to design master algorithms
based on binomial weights when the predictions of the master are allowed
to be real valued. In this paper we provide such an algorithm and call it
the Binning algorithm because it maintains experts in an array of bins.
We show that this algorithm is optimal in a relaxed setting in which we
consider experts as continuous quantities. The algorithm is efficient and
near-optimal in the standard experts setting.

1 Introduction

A large number of on-line learning algorithms have been developed for the so-
called expert setting [LW94, Vov90, CBFH+97, CBFHW96, HKW98]: learning
proceeds in trials; at each trial the master algorithm combines the predictions
from the experts to form its own prediction; finally a label is received and both
the experts and master incur a loss that quantifies the discrepancy between the
predictions and the label. The goal of the master is to predict as well as the best
expert. In this paper we focus on the absolute loss when the predictions of the
experts and the labels are binary in {0, 1}, but the prediction of the master can
be continuous in the range [0, 1].1

Perhaps the simplest expert algorithm is the Halving algorithm: the master pre-
dicts with the majority of experts and, whenever the majority is wrong, the incor-
rect experts are eliminated. If there is at least one expert that never errs then this
algorithm makes at most log2 n mistakes, where n is the number of experts.

Master algorithms often maintain a weight for each expert that represent the
“belief” that the expert is best. In the Halving algorithm the weights of all con-
sistent experts are uniform and the weights of inconsistent experts immediately
drop to zero. When there is no consistent expert for the sequence of trials, then a
more gradual decay of the weights is needed. Most expert algorithms (such as the

1 The loss |ŷ − y| (for prediction ŷ ∈ [0, 1] and label y ∈ {0, 1}) equals E(|Z − y|) for
a binary valued prediction random variable Z for which E(Z) = ŷ.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 544–558, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Weighted Majority (WM) algorithm [LW94] and Vovk’s Aggregate algorithms
[Vov90]) use exponentially decaying weights, i.e. the weights are proportional to
exp(−ηLi), where Li is the total loss of expert i and η a non-negative learn-
ing rate. If we assume that there is an expert that makes at most k mistakes,
then large k (high noise) requires small η and small k (low noise) high η. In the
Halving algorithm k = 0 and η =∞.

A superior algorithm, Binomial Weighting (BW), uses binomial weights for the
experts [CBFHW96]. These weights are motivated by a version space argument:
if an expert has k′ ≤ k mistakes left, then it is expanded into

(
q∗+1
≤k′

)
experts2,

where q∗ is a bound on the number of remaining mistakes of the master. In each
of the expansions, at most k′ of the q∗ trials are chosen in which the expanded
expert negates its prediction. We now can run the Halving algorithm on the
set of all expanded experts. However this argument requires that the number of
mistakes q∗ of the master is bounded. This is easily achieved when the master
makes binary predictions and incurs units of loss. In that case, all trials in which
the master predicts correctly can be ignored and in trials when the master makes
a mistake, at least half of the expanded experts are eliminated and there can’t
be too many such trials.

Restricting the master to use binary predictions is a significant handicap as it
does not allow the algorithm to hedge effectively when the experts produce a rela-
tively even vote. In this case, the master prefers to predict .5 instead of predicting3

0 or 1. The main open problem posed in [CBFHW96] is the question of how the
fancier binomial weights can be used in the case when the master’s predictions lie
in [0, 1]. In that case there are no good bounds on the number of trials because
now all trials in which the master incurs any loss need to be counted.

In this paper we provide such a prediction strategy, called Binning, and we
show that this strategy is essentially optimal. We generalize the standard experts
setting to consider experts as continuous quantities: we allow each expert to split
itself into parts r and 1−r, where part r of the expert predicts 1 and part 1−r pre-
dicts 0. Intuitively, the relaxation to continuous quantities of experts removes the
discretization effects that make the computation of the optimal strategy difficult.

In our approach we consider an associated game where the master plays
against an adversary who controls the predictions of the experts and the out-
comes of every round to maximize the master’s total loss. We show that for this
relaxed setting the adversary can always play optimally by splitting all remaining
experts in half.

Binning is very similar to the Binomial Weighting algorithm (BW) in that it
implicitly uses binomial weights. In the case of exponential weights, the bound
for the algorithm with predictions in [0, 1] (i.e. Vovks aggregating algorithm for
the absolute loss) is half of the bound for the algorithm with binary predictions

2 This number of expansions is the current binomial weight of the expert. Exponential
weights always change by a fixed factor exp(−η) in case of a mistake. However the
update factors to the binomial weights “cool down” in subtle ways as k′ gets close
to k and q∗ decreases.

3 As discussed before predicting .5 is equivalent to predicting randomly.
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(i.e. the WM algorithm). Essentially the same happens for binomial weights.
The bound we prove for the new Binning algorithm (predictions in [0, 1]) is a
constant plus half of the bound of the BW algorithm (predictions in {0, 1}) and
the additive constant is well behaved. It is already known that for large n, BW
is optimal when the prediction of the master must be binary. Since no algorithm
with predictions in [0, 1] can be better that half of the best binary prediction
algorithm, our new Binning algorithm is essentially optimal.

Summary of paper: We begin in Section 2 by introducing our notation and
formulating the optimal prediction strategy of the expert’s game when the master
uses predictions in [0, 1]. In Section 3 we define the continuous game in which
we allow continuous quantities of experts. We show the following is always an
optimal split in each trial of the continuous game: all experts split themselves
in half (resulting in experts of size 1

2i ). We also relate the optimal algorithm
for this game (i.e. the new Binning algorithm) to the BW algorithm. In Section
4 we give some experimental results showing Binning’s performance and its
worst case bound on real world datasets. Finally, in Section 5 we discuss various
open problems as well as high level goals that might be attainable with our new
continuous-experts technique.

2 The Optimal Prediction Strategy

We have n experts that make binary predictions and we are to design a master
algorithm that combines the predictions of the experts with the goal of perform-
ing well compared to the best expert. Our on-line learning model can be viewed
as a game that proceeds in trials. At each trial the following occurs: first, each
expert i produces a prediction xi ∈ {0, 1}; then the master produces a prediction
ŷ ∈ [0, 1] and finally, the true label y ∈ {0, 1} is received and both the experts
and the master incur a loss: expert i incurs loss |xi−y| and the master loss |ŷ−y|.
Recall that the experts’ predictions and the labels are binary, but the prediction
of the master lies in [0, 1]. (Generalizations are discussed in the conclusion).

The two parties of the game are nature and the master: nature provides the
predictions of the experts, the master gives a prediction in each trial, and fi-
nally nature provides the true label. We must restrict the adversary, since an
unrestricted adversary can continue to inflict loss at least 1

2 in each round. A
common restriction is the following: the true labels and the choices of the ex-
perts’ predictions have to be such that at least one expert has total loss at most
k. We call this restriction the k-mistake rule. It is assumed that k is known to
both the master and the adversary before the game starts.

Notice that, with the addition of the k-mistake rule, the game is essentially
finite. If, after many rounds, all but one expert has made more than k mistakes,
and the last expert has made exactly k, then this expert is required to predict
correctly from this point on. In this case, the master can simply mimic the
prediction of this expert, and the adversary cannot allow this expert to err.
Since this simple strategy of the master assures that the master incurs no future
loss, the game has ended.
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Observe that, after a number of trials, the only relevant information about the
past is the number of experts that made 0, 1, . . . , k mistakes. The experts can
then be partitioned into k+1 bins and the past can therefore be summarized by
the state vector s = (s0, . . . , sk), where si is the number of experts that has made
i mistakes. We also use the notation |s| := |s|1 =

∑k
i=0 si for the total number of

experts. It is possible that |s| ≤ n, as some experts might have incurred already
more than k mistakes and therefore will be ignored. Our state space is therefore
the set S = {s ∈ {0, 1, . . . , n}k : |s| ≤ n}.

By choosing binary predictions for the experts, the adversary splits the state
vector s into r and s − r such that r ≤ s and r ∈ S. The vector r represents
the experts that predict one and the vector s− r the experts that predict zero.
After the adversary provides the binary label y, the experts that predict wrongly
advance by one bin. For any state vector z ∈ S, we use z+ to denote the shifted
vector (0, z0, z1, . . . , zk−1). When y = 0, then r advances, and when y = 1, then
s− r does, and the successor state is

sr,y =
{

r+ + (s− r) if y = 0
r + (s− r)+ if y = 1.

Let’s give an example of one round of our game. Assume the mistake bound
k is 2 and the number of experts n is 6. Initially, our state vector is (6, 0, 0).
However, after several rounds, 2 experts have made no mistakes, 1 expert has
made 2 mistakes, and 3 experts have made more than 2 mistakes. Our state
vector is now (2, 0, 1). On the next round we receive predictions from the experts,
and we find that the only expert to predict 1 was one of the experts with no
mistakes. In this case, the split of the state vector is

s + (2, 0, 1) =

r︷ ︸︸ ︷
(1, 0, 0)+

s−r︷ ︸︸ ︷
(1, 0, 1),

and the two resulting possible states would be

sr,0 =

r+︷ ︸︸ ︷
(0, 1, 0)+

s−r︷ ︸︸ ︷
(1, 0, 1) = (1, 1, 1)

sr,1 = (1, 0, 0)︸ ︷︷ ︸
r

+ (0, 1, 0)︸ ︷︷ ︸
(s−r)+

= (1, 1, 0).

2.1 The Value of the Game

We define the value of our game at a state s as the total loss the adversary can
force the master to incur if its choices satisfy the k-mistake rule. With the above
notation we can express the value of the game as:

�(s) :=

⎧⎪⎨⎪⎩
−∞ if s = 0
0 if s = (0, . . . , 0, 1)
max

r≤s,r∈S
min
ŷ∈[0,1]

max
y∈{0,1}

(|ŷ − y|+ �(sr,y)) s ∈ rest of S.
(1)
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At various points in the paper we induct on the mistake budget B(s) of a
state, which we define as the total number of mistakes that can be made by
all of the experts before arriving in the final state bk = (0, ..., 0, 1). Explicitly,
B(s) := −1+

∑k
i=0(k− i+1)si. Notice, B(0) = −1 and if B(s) = 0 then s must

be the final state bk.
Some care needs to be taken to assure that the above game is well defined

because of the possibility that all of the experts make the same prediction. If a
split is unanimous, i.e. all experts predict u = 1 and r = s, or all experts predict
u = 0 and r = 0, then the master must choose ŷ as the unanimous label u. If
the master chose ŷ �= u, the adversary would simply choose y = u, inflicting
positive loss |ŷ−u| on the master while the experts incur no mistakes. Therefore
whenever all experts predict with some unanimous label u, the optimal choice
of the master is ŷ = u also.

How should the adversary choose its label y when all experts predict with
some unanimous label u and ŷ = u? If y = u then the current trial is vacuous
because sr,y = s and none of the parties incur any loss. We need to make the
mild assumption that such vacuous trials are disallowed. Therefore y �= u in
unanimous trials and in this case the successor state is sr,y = s+. In summary,

r ∈ {0, s} =⇒ min
ŷ∈[0,1]

max
y∈{0,1}

(|ŷ − y|+ �(sr,y)) = 1 + �(s+).

We now expand the recurrence slightly by rewriting (1) as follows. As before,
�(0) = −∞ and �(bk) = 0, and for every other state s ∈ S,

�(s) = max
r ≤ s
r ∈ S

⎧⎪⎨⎪⎩
1 + �(s+) if r ∈ {0, s}
max{�(sr,0), �(sr,1)} if r /∈ {0, s}, |�(sr,1)− �(sr,0)| > 1
�(sr,1)+�(sr,0)+1

2 if r /∈ {0, s}, |�(sr,1)− �(sr,0)| ≤ 1

(2)

The unanimous case (i.e. when r = 0, s) follows from the above discussion.
The remaining two cases arise when we consider how the game is played once r
has been chosen. The master algorithm wants to choose ŷ, while knowing that
the adversary can simply choose the larger of |ŷ − y| + �(sr,y) for y ∈ {0, 1}.
Thus it would like to minimize L(r, ŷ) := max{ŷ + �(sr,0), 1 − ŷ + �(sr,1)}.
It can accomplish this by making these two quantities as close as possible.
When |�(sr,0) − �(sr,1)| ≤ 1, it can make them exactly equal by setting ŷ =
�(sr,1)−�(sr,0)+1

2 . However, when �(sr,1) > �(sr,0) + 1, the master should choose
ŷ = 1 and L(r, ŷ) = �(sr,1). Similarly when �(sr,0) > �(sr,1) + 1 then ŷ = 0
and L(r, ŷ) = �(sr,0). The latter two cases are summarized in line 2 of above
recursion, completing the argument that the above recursion is equivalent to (1).

A further and more subtle simplification of the above recurrence is provided
by the following lemma which rules out the first two lines of (2). In particular,
it implies two useful facts: (a) unanimous splits only occur when there is a
single expert and (b) when |s| > 1, the adversary will never choose r so that
|�(sr,1)− �(sr,0)| > 1.
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Algorithm 1. OptPredictk
At round t, the number of past mistakes of the experts are tallied in the state vec-
tor s and the experts that predict 1 (respectively 0) are tallied in the split vector r
(respectively s − r). The master algorithm OptPredictk outputs prediction:

ŷ = clip
(sr,1) − (sr,0) + 1

2
, (4)

where clip(x) is the point in [0, 1] closest to x.

Note that when there is exactly one expert left which has made i ≤ k mistakes,
i.e. s is the standard basis vector bi, then all splits must be unanimous and
�(bi) = k − i.

Lemma 1. For any state s ∈ S s.t. |s| > 1,

�(s) = max
0<r<s

{
�(sr,0) + �(sr,1) + 1

2

}
. (3)

The proof requires a rather technical induction and is given in the appendix.
We now have a very simple recursion for computing �, and we can easily

define the optimal prediction strategy OptPredictk, as in (4), with oracle access
to this function. Unfortunately, � is still too expensive to compute: it requires the
solution of a dynamic programming problem over O(|S|) = O((n+ 1)k) states.

3 The Continuous Game

Computing the value function � using (3) is too difficult: at every round we must
consider all possible splits r. However, empirical observations have suggested that
splits r close to s

2 are optimal for the adversary. In particular, we have observed
that, whenever s has only even entries, the split r = s

2 is always optimal. This
evidence leads one to believe that an optimal adversarial strategy is to evenly
divide the experts, thus balancing the loss value of the two successor states as
much as possible. Unfortunately, this is not always possible when the experts
come in discrete units.

We therefore develop a continuous game that always allows for such “even
splits” and show that the value of this continuous game is easy to compute and
tightly upper bounds the value function of the original game. The continuous
game follows the same on-line protocol given in the first paragraph of Section
2, however now each expert has a mass in [0, 1] and at each trial each expert
is allowed to split itself into two parts which predict with opposite labels. The
total mass of the two parts must equal the original mass.

3.1 The Continuous Experts Setting

As in the discrete game, the state of the new game is again summarized by a
vector, i.e. it is not necessary to keep track of the identities of the individual
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experts of mass in [0, 1]. The state space of the new game is S̃ = {s ∈ [0, n]k+1 :
|s| ≤ n}. The initial state vector is again (n, 0, . . . , 0), but the split r may have
non-negative real valued components.

We now define a new value function �̃ on S̃. We would like the definition of �̃
to mimic the recursive definition of � in (3), yet we must be careful to define the
“base case” of this recursion. In particular, how do we redefine the k-mistake rule
within this “continuous experts” setting? We require the following constraints
on �̃: when |s| < 1, which we call an infeasible state, we define �̃(s) := −∞;
when |s| ≥ 1, i.e. a total of one unit of experts remains, then �̃(s) should be
non-negative.

These two requirements are not sufficient: we must consider the case when we
are at a feasible state s in which, given any split r that the adversary chooses,
at least one of the successor states is infeasible. This would be a state where the
game has effectively ended, and we will therefore consider it a base case of our
recursion. That is, the recursive definition in (3) would not be appropriate on
such a state, for �̃(sr,0) or �̃(sr,1) is −∞ (for any r), and we must therefore fix
the value �̃(s). We let S0 denote the set of such base-case states:

S0 =
{
s : |s| ≥ 1 and ∀0 < r < s : |sr,0| < 1 or |sr,1| < 1

}
= {s : |s| ≥ 1 and ∀0 < r < s : |s| − rk < 1 or |s| − sk + rk < 1}
=
{
s : |s| ≥ 1 and |s| − sk

2
< 1

}
= convex-hull{b0, . . . ,bk, 2bk} \

{
s : |s| − sk

2
= 1

}
We obtain the convex hull representation because S0 is described by k+3 linear
constraints: s0 ≥ 0, . . . , sk ≥ 0,

∑
si ≥ 1 and sk

2 +
∑

i<k si < 1. The subsequent
polytop has corners b0, . . . ,bk and 2bk. The region is not exactly the convex
hull since the last constraint is a strict inequality, and thus we must subtract
one face. Notice that, while bk lies within S0, the remaining states b0, . . . ,bk−1,
and 2bk all lie on the subtracted face.

3.2 The Value of the Continuous Game

We are now in position to define our recursion for �̃. For any state s ∈ S̃,

�̃(s) :=

⎧⎪⎪⎨⎪⎪⎩
�̃0(s) if s ∈ S0

max
r ≤ s, r ∈ S

1
2 ≤ |r| ≤ |s| − 1

2

�̃(sr,0) + �̃(sr,1) + 1
2

s ∈ rest of S̃. (5)

Note that it is crucial that in the above recurrence for �̃ we bound4 the split
r away from 0 and s. Thus whenever we recurse, at least a total of half a unit
of experts is advanced and the depth of the recurrence is bounded by 2n(k+ 1).

4  does not change if we use instead the constraint ε ≤ |r| ≤ |s| − ε for any ε with
0 < ε ≤ 1

2 .
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We still need a natural definition of �̃0(s) for states s ∈ S0. The simplest
definition would be to define �̃0 as zero. However, this would cause the value
function �̃ to be discontinuous at the corners of the base region S0. Intuitively, we
want �̃ to mimic � as much as possible. Thus, the two properties that we require
of �̃0 is (a) that it agrees with � on the discrete corners of S0, and (b) that it
is continuous on the “in between” states. We therefore define �̃0 on the interior
of S0 as the linear interpolation of � on the corner states {b0, . . . ,bk, 2bk}. We
can explicitly define �̃0(s) as follows: write s = α0b0 + . . .+ αkbk + αk+1(2bk),
where αi ∈ [0, 1] and

∑
αi = 1. Let

�̃0(s) :=

(
k∑
i=0

αi�(bi)

)
+ αk+1�(2bk) =

(
k∑
i=0

αi(k − i)
)

+
αk+1

2

=
k−1∑
i=0

si (k − i) +
|s| − 1

2
.

We chose S0 and �̃0(s) so that the following lemma holds:

Lemma 2. For all s ∈ S, �̃(s) ≥ �(s).

Proof. The continuous game is identical to the discrete game, except that we have
given the adversary a larger space to choose a split r. Essentially, increasing the
number of strategies for the adversary can only increase the loss of the game. 
�

3.3 An Optimal Adversarial Strategy

We now show that for the value function �̃ of the continuous game, r = s−r = s/2
is always an optimal split for the adversary. In this case the successor state is
h(s) := s+s+

2 no matter how y ∈ {0, 1} is chosen.
Define a function L as follows:

L(s) :=

⎧⎨⎩
−∞ if |s| < 1
�̃0(s) if s ∈ S0
1
2 + L(h(s)) if s rest of S̃.

(6)

We prove �̃ = L in two steps. The first is the following crucial lemma.

Lemma 3. L is concave.

Proof. We have defined our base region S0 above. Notice that we can rewrite
S0 as {s ∈ S̃ : |s| ≥ 1, |h(s)| < 1}. Now define Sn for n ≥ 2 as {s : s /∈
Sn−1 and h(s) ∈ Sn−1} = {s : |hn(s)| > 1, |hn+1(s)| < 1}. We will show that
we can effectively reduce the concavity of L to the concavity of L on the region
S0 ∪ S1.

It suffices to show that L is concave on a set of convex open neighbors which
cover S̃ since the concavity property always fails locally. Let R0 := S0, and
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for n > 0, define Rn as the interior of Sn−1 ∪ Sn, i.e. {s ∈ S̃ : |hn−1(s)| >
1, |hn+1(s)| < 1}. Let h0(s) := s by convention. Notice that ∪Rn = S̃ and each
Rn is open and convex.

Let L restricted to Rn be denoted L|Rn . We show that L|Rn is concave for
every n. L|R0 is certainly concave, for L is defined linearly on R0 = S0.

We show that L|R1 is concave by first noting that

L|R1 =

{
�̃0(s) =

∑
si (k − i) + |s|−1

2 if s ∈ S0

�̃1(s) = �̃0(h(s)) + 1
2 =

∑
si (k − i) + sk

4 if s ∈ S1.
(7)

These two linear functions are equal when |s|−1
2 = sk

4 =⇒ |s| − sk

2 = 1, which
is exactly the border between S0 and S1. Since S0 is defined by the constraint
|s| − sk/2 < 1, we see that �̃0(s) < �̃1(s) when s ∈ S0. These last two statements
imply that L|R1(s) = min{�̃0(s), �̃1(s)} and the minimum of two linear functions
is always concave.

Assume n > 1. Notice, s ∈ Rn implies that h(s) ∈ Rn−1. Thus L|Rn =
L|Rn−1 ◦ h + 1

2 . Note that: (a) h is an orientation-preserving linear function
(det(h) > 0), (b) addition by a constant preserves concavity, and (c) L|Rn−1 is
concave by induction. Therefore, L|Rn is concave as well. 
�
We are now in position to prove the following theorem.

Theorem 1. For all s ∈ S̃,

�̃(s) :=

⎧⎨⎩
−∞ if |s| < 1
�̃0(s) if s ∈ S0
1
2 + �̃(h(s)) if s rest of S̃.

(8)

Proof. We show that, for all s ∈ S̃, �̃(s) = L(s). We induct on the mistake budget
B(s). When B(s) < 1

2 , then s ∈ S0, and �̃ and L are defined identically on S0.
Now assume that p

2 ≤ B(s) < p+1
2 for some positive integer p. It is possible that

s ∈ S0, in which case certainly �̃(s) = L(s). Otherwise,

�̃(s) = max
r ≤ s, r ∈ S

1
2 ≤ |r| ≤ |s| − 1

2

�̃(sr,0) + �̃(sr,1) + 1
2

. (9)

However, since we may only choose r such that 1
2 ≤ |r| ≤ |s| −

1
2 , it must

be that B(sr,1) < p
2 and B(sr,0) < p

2 . By induction, �̃(sr,0) = L(sr,0) and
�̃(sr,1) = L(sr,1). However, by the concavity of L, we see that for any r,

�̃(sr,0) + �̃(sr,1) + 1
2

=
L(sr,0) + L(sr,1) + 1

2
≤ L

(
sr,0 + sr,1

2

)
+

1
2

= L
(

(s− r) + (r)+ + r + (s− r)+

2

)
+

1
2

= L
(

s + s+

2

)
+

1
2

= L(h(s)) +
1
2

= L(s)
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and thus L is an upper bound on �̃. On the other hand, notice also thatB(h(s)) <
p
2 so �̃(h(s)) = L(h(s)). Thus, for the choice r = s

2 , we see that

�̃(s) ≥ �̃(sr,0) + �̃(sr,1) + 1
2

=
�̃(h(s)) + �̃(h(s)) + 1

2
= L(h(s)) +

1
2

= L(s),

and thus L is also a lower bound on �̃. Therefore, �̃(s) = L(s) and we are done. 
�

Corollary 1. The split r = s
2 is always an5 optimal choice for the adversary in

the continuous game.

3.4 The Binning Algorithm

We can now define our new algorithm Binningk by simply replacing � in equation
(4) with the new function �̃. We will reason below that �̃ can be computed
efficiently.

Theorem 1 tells us that, to get the value of �̃(s), we apply the function h to
s several times until we are in the base region S0. Let

qs := min{q : hq(s) ∈ S0} = max{q : |hq(s)| ≥ 1}. (10)

This allows us to write �̃(s) = qs

2 + �̃0(hq
s
(s)). The function h is linear on the

state space S̃ and can be represented as a square matrix of dimension k+1 (The
matrix for k = 3 is given below). Thus hn corresponds to an n-fold power of this
matrix and leads to binomial coefficients:

h =

[ 1/2 0 0 0
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

]
hn = 1

2n

[(
n
i−j

)]
i,j
.

From this observation, we see that, for any state s,

|hn(s)| = 1
2n

k∑
i=0

(
n

≤ (k − i)

)
si,

where we define
(
a
≤b
)

:=
∑

0≤b′≤b
(
a
b′
)
. This notation allows us to rewrite (10) as

(11) and concisely define Binningk.
The naive complexity of solving (11) at every round is O(kqs) = O(k2 +

k log |s|), and for computing �̃0 ◦ hq in (12) is O(kqs). The overall computation
for one round requires therefore O(k2 + k log |s| + n), where n is the initial
number of experts. Using bookkeeping one can reduce the per-round complexity
to O(n) by maintaining binomials

(
q
k−i

)
, binomial tails

(
q

≤k−i
)
, and the function

�̃0◦hq(bi) for an expert with imistakes. These values can be updated in constant
time using recurrences.

5 In general, there are multiple optimal splits.
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Algorithm 2. Binningk
Summarize the expert performance with s, and current predictions with r. For both
y ∈ {0, 1}, compute

qy = qsr,y

= max q :
1
2q

k

i=0

q

≤ (k − i)
(sr,y)i ≥ 1 . (11)

Using the functions clip(·) defined in equation (4) and 0(·) defined in (6), output
prediction

ŷ = clip
q1 − q0

4
+

0(hq1(sr,1)) − 0(hq0(sr,0)) + 1
2

(12)

3.5 Binning and Binomial Weighting

In the introduction we discussed the algorithm Binomial Weighting which makes
deterministic predictions (ŷ ∈ {0, 1}) when a mistake bound k is given. BW finds
a bound, q∗, on the number of times the master errs, and considers a set of virtual
experts of size

∑
j

(
q∗+1

≤k−mj

)
where the sum is taken over all experts j, and mj

denotes the number of mistakes of expert j. In some sense, q∗ is computed in
hindsight: we make q∗ big enough so that we produce “enough” virtual experts,
i.e. so that we don’t halve the set of virtual experts too many times. It is chosen
as

q∗ = max

⎧⎨⎩q : q ≤ log2

∑
j

(
q

≤ k −mj

)⎫⎬⎭ . (13)

Recall that, if we summarize the past performance of our experts with a state
vector s, then si is the number of experts e that have made i mistakes and
therefore

∑
j

(
q∗

k−mj

)
=
∑k

i=0

(
q∗

k−i
)
si. Interestingly, if we exponentiate the above

equation and divide by 2q
∗

we arrive at equation (11) and thus qs = q∗.
The loss bound on Binningk is qs

2 + �̃0(hq
s
(s)). Notice, the binomial nature

of hq
s

forces the majority of the weight in s to be collected in sk, yet this term
has coefficient 1

2 in the function �̃0. However, the term �̃0(hq
s
(s)) quickly drops

to a constant c independent of k as the number of experts goes to ∞. Thus, the
loss �̃(s) ≤ q∗

2 + c for large enough n. (The exact bound on �̃0(hq
s
(s)) requires

some computation and is discussed in the full version of this paper.)
The factor of 1

2 is to be expected: the deterministic algorithm BW suffers loss
1 at every round in the worst case, while Binningk will be forced to predict
ŷ = 1

2 against an optimal adversary, thus suffering loss 1
2 .

4 Experiments

We ran experiments with several real-world datasets (see table 1) obtained from
the UCI Machine Learning Repository. We chose rather simple experts: real val-
ued features were replaced with an “above or below median” expert. Categorical
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features were replaced with a set of experts, one for each category value. When
category value v was encountered, expert v would be set to 1 and all others
would be set to 0. We also included the constant expert and for every expert,
the complement expert. The original ordering of the datasets was preserved.

data echo bupa hep wpbc dia bcw Aust ion beast wdbc kr-kp cat a-l
rounds 131 345 155 198 768 699 690 351 286 569 3196 873 8124
experts 28 14 70 72 18 20 30 70 100 64 220 1234 280
mistakes 39 145 32 47 237 65 184 122 79 83 1012 3 920
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Fig. 1. In the table above we give the number of rounds, the number of experts, and
the number of mistakes of the best expert. The datasets are ordered above by byte
size. In the graph on the lower left we show how the performance of Binning compares
to the upper Bound on Binning performance, the Best single expert, and the bound on
Vovk’s algorithm. The right graph shows how the performance of Binning compares to
Binomial Weighting (BW) (2 entries missing), Weighted Majority (WM), and Vovk’s
algorithm.

All of the algorithms require the value k (the mistake bound) for tuning. Since
we want to compare the algorithms when they are optimally tuned we precom-
puted this value and provided it to each algorithm. The results are graphed in
Figure 1. The left graph shows that the Binning bound is tighter than the bound
for Vovk’s algorithm and often quite close to the actual Binning performance.
The right graph is surprising: the performance appears to worsen with the tighter
bound. In fact, BW and WM, both deterministic algorithms, performed better
than the best expert on 2 datasets. Perhaps a tighter bound has an associated
cost when, in actuality, we are not in an adversarial setting.

5 Conclusion

We discovered a new technique that replaces exponential weights by an optimal
algorithm for a continuous game. The key idea is to allow partial experts. Our
method uses binomial weights which are more refined then exponentially decay-
ing weights. Note that the latter weights can be derived using a relative entropy
as a divergence [KW97, KW99]. This reminds us of the application of entropies
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in statistical mechanics where the entropy is used to approximate exact counts
that are based on binomial tails. In on-line learning we first discovered the en-
tropy based algorithms which use approximate counting by approximating the
binomial tails with exponentials. More recently refined algorithms are emerging
that are based on binomial counting (See also [Fre95, FO02] for related work on
Boosting).

The algorithms based on exponential weights are clearly simpler, but they also
require knowledge of k for tuning the learning rate η well. The algorithms that
use binomial weights always make use of k. If no tight upper bound of the true
k is not known, then simple doubling tricks can be employed (see e.g. Section
4.6 of [CBFH+97]).

Much work has been done in the realm of exponentially decaying weights:
shifting experts [HW98], multi-arm bandit problems [ACBFS95] and so forth.
In general, the question is whether other cases in which exponential weights
have been used are amenable to our new technique of splitting experts. Also,
in some settings [FS97] the algorithm needs to commit to a probability vector
(wi) over the experts at the beginning of each trial. It then receives a loss vector
(Li) ∈ [0, 1]n and incurs a loss

∑
iwiLi. The question is whether weights can be

extracted from our Binning algorithm and the optimal algorithm can be found
for the modified setting when the experts are allowed to be continuous quantities.

For a more immediate goal note the following. We assumed that the pre-
dictions of the experts and the labels were binary. However in the realm of
exponentially decaying weights, Vovk’s aggregating algorithm for the absolute
loss [Vov90, CBFH+97] can handle expert’s predictions in [0, 1] and the Vee al-
gorithm of [HKW98] can in addition handle labels in [0, 1]. We believe that with
some additional effort our methods will generalize to handle these cases as well.
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A Proof of Lemma 1

To prove the lemma it suffices to prove the following statements:

(a) For all splits 0 < r < s and y ∈ {0, 1}, �(s) > �(sr,y).
(b) For all |s| > 1, �(s) > 1 + �(s+) and unanimous splits are not optimal.

Notice that (a) implies that �(s) > max{�(sr,0), �(sr,1)}, which rules out line
2 of the recursion (2). Also, statement (b) rules out line 1 and together, they
imply the lemma.

We prove the above two statements by induction on the mistake budget B(s).
Statements (a) and (b) trivially hold for the base case s = 0, i.e. whenB(s) = −1.
Assume that (a) and (b) holds for all states s′ where B(s′) < B(s). We now show
that the statements holds for state s.

For (a), let r be any non-unanimous split of s and let z := sr,0. Consider two
cases depending on the value of |z|.

Assume |z| = 1, then z = bi. This implies that s = bi +mbk and r = mbk
for some m > 0. Then sr,0 = bi and sr,1 = bi+1 +mbk, and by (2), we see that

�(s) ≥ �(bi) + �(bi+1 +mbk) + 1
2

=
k − i+ �(bi+1 +mbk) + 1

2
.

We now show that �(bi+1+mbk) > k−i−1 which implies that �(s) > k−i = �(z).
If i = k then bi+1 = 0 and bi+1 + mbk = mbk. Therefore, we can see by
induction that �(mbk) ≥ �(bk) = 0 > −1. Also if i < k then by a similar
induction, �(bi+1 +mbk) > �(bi+1) = k − i− 1. This implies that �(s) > k − i
as desired.

Assume |z| ≥ 2. Since B(z) < B(s), it follows by induction that there is some
non-unanimous split q of z s.t.

�(z) =
�(zq,1) + �(zq,0) + 1

2
=
�((sr,0)q,1) + �((sr,0)q,0) + 1

2
.
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Since r is non-unanimous it follows by induction that the above is less than
�(sq,1)+�(sq,0)+1

2 ≤ �(s).
For the proof of (b), let z := s+. We consider two cases depending on the

value of |z|.
Assume |z| = 1. Then z = bi+1 for some i, and thus s = bi + mbk for

some m ≥ 1. Notice, we already proved above that, when s is of this form, that
�(s) > k − i = �(s+) + 1 as desired.

Assume |z| ≥ 2. We prove the statement by induction on the mistake budget
B(s). For the base case B(s) = 1, we must be in state (0, . . . , 0, 2) = 2bk and
therefore z = 0, so the statement is true. We now proceed to the induction step.
Notice that B(z) < B(s) and |z| ≥ 2. By induction, we can therefore find a

non-unanimous split q′ of z where �(z) = �(zq
′,1)+�(zq

′,0)+1
2 . We now choose q so

that q+ = q′. Observe that (sq,y)+ = zq′,y for y = 0, 1. Also, B(sq,y) < B(s),
and thus by induction we can apply (b), giving us that �(sq,y) > �((sq,y)+)+1 =
�(zq′,y) + 1. Combining these statements, we see that

�(s) ≥ �(sq,0) + �(sq,1) + 1
2

>
�(zq′,0) + �(zq′,1) + 3

2
= �(z) + 1 = �(s+) + 1,

as desired. This completes the proof of the lemma.
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Abstract. We consider the problem of on-line prediction competitive
with a benchmark class of continuous but highly irregular prediction
rules. It is known that if the benchmark class is a reproducing kernel
Hilbert space, there exists a prediction algorithm whose average loss over
the first N examples does not exceed the average loss of any prediction
rule in the class plus a “regret term” of O(N−1/2). The elements of some
natural benchmark classes, however, are so irregular that these classes
are not Hilbert spaces. In this paper we develop Banach-space methods
to construct a prediction algorithm with a regret term of O(N−1/p),
where p ∈ [2, ∞) and p − 2 reflects the degree to which the benchmark
class fails to be a Hilbert space.

1 Introduction

For simplicity, in this introductory section we only discuss the problem of pre-
dicting real-valued labels yn of objects xn ∈ [0, 1] (this will remain our main
example throughout the paper). In this paper we are mainly interested in ex-
tending the class of the prediction rules our algorithms are competitive with; in
other respects, our assumptions are rather restrictive. For example, we always
assume that the labels yn are bounded in absolute value by a known positive
constant Y and only consider the problem of square-loss regression.

Standard methods allow one to construct a “universally consistent” on-line
prediction algorithm, i.e., an on-line prediction algorithm whose average loss
over the first N examples does not exceed the average loss of any continuous
prediction rule plus o(1). (Such methods were developed in, e.g., [5], [10], and,
especially, [3], §3.2; for an explicit statement see [21].) More specifically, for any
reproducing kernel Hilbert space (RKHS) on [0, 1] one can construct an on-line
prediction algorithm whose average loss does not exceed that of any prediction
rule in the RKHS plus O(N−1/2); choosing a universal RKHS ([19], Definition
4) gives universal consistency. In this paper we are interested in extending the
latter result, which is much more specific than the o(1) provided by universal
consistency, to wider benchmark classes of prediction rules. First we discuss
limitations of RKHS as benchmark classes.

The regularity of a prediction rule D can be measured by its “Hölder expo-
nent” h, which is informally defined by the condition that |D(x+ dx) −D(x)|
scale as |dx|h for small |dx|. The most regular continuous functions are those
of classical analysis: say, piecewise differentiable with bounded derivatives. For

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 559–573, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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such functions the Hölder exponent is 1. Functions much less regular than those
of classical analysis are ubiquitous in probability theory: for example, typical
trajectories of the Brownian motion (more generally, of non-degenerate diffusion
processes) have Hölder exponent 1/2. Functions with other Hölder exponents
h ∈ (0, 1) can be obtained as typical trajectories of the fractional Brownian
motion. Three examples with different values of h are shown in Figure 1.

The intuition behind the informal notion of a function with Hölder exponent
h will be captured using function spaces known as Sobolev spaces. Roughly, the
Sobolev spaces W s,p([0, 1]) (defined formally in the next section), where p ∈
(1,∞], s ∈ (0, 1), and s > 1/p, can be regarded as different ways of formalizing
the notion of a function on [0, 1] with Hölder exponent h above the threshold s.

The most familiar Sobolev spaces are the Hölder spaces W s,∞([0, 1]), con-
sisting of the functions f satisfying |f(x) − f(y)| = O (|x− y|s). The Hölder
spaces are nested, W s,∞([0, 1]) ⊂ W s′,∞([0, 1]) when s′ < s. As we will see in
a moment, the standard Hilbert-space methods only work for W s,∞([0, 1]) with
s > 1/2 as benchmark classes; our goal is to develop methods that would work
for smaller s as well.

The spaces W s,∞([0, 1]) are rather awkward analytically and even poorly
reflect the intuitive notion of Hölder exponent: they are defined in terms of
supx,y|f(x) − f(y)|/|x − y|s, and f ’s behavior in the neighborhood of a single
point can too easily disqualify it from being a member of W s,∞([0, 1]). Replacing
sup with the mean (in the sense of Lp) w.r. to a natural “almost finite” measure
gives the Sobolev spaces W s,p([0, 1]) for p < ∞. Results for the case p < ∞
immediately carry over to p = ∞ since, as we will see in the next section,
W s,∞([0, 1]) ⊆W s′,p([0, 1]) whenever s′ < s; s′ can be arbitrarily close to s.

All Sobolev spaces (including the Hölder spaces) are Banach spaces, but
W s,2([0, 1]) are also Hilbert spaces and, for s > 1/2, even RKHS. Therefore,
they are amenable to the standard methods (see the papers mentioned above;
the exposition of [21] is especially close to that of this paper, although we wrote
Hs instead of W s,2 in [21]).

The condition s > 1/p appears indispensable in the development of the theory
(cf. the reference to the Sobolev imbedding theorem in the next section). Since
this paper concentrates on the irregular end of the Sobolev spectrum, s < 1/2,
instead of the Hilbert spaces W s,2([0, 1]) we now have to deal with the Banach

h = 0.2 h = 0.5 h = 0.8

Fig. 1. Functions with Hölder exponent h for three different values of h
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spaces W s,p([0, 1]) with p ∈ (2,∞), which are not Hilbert spaces. The necessary
tools are developed in §§4–5.

The methods of [21] relied on the perfect shape of the unit ball in a Hilbert
space. If p is not very far from 2, the unit ball inW s,p is not longer perfectly round
but still convex enough to allow us to obtain similar results by similar methods.
In principle, the condition s > 1/p is not longer an obstacle to coping with any
s > 0: by taking a large enough p we can reach arbitrarily small s. However, the
quality of prediction (at least as judged by our bound) will deteriorate: as we will
see (Theorem 1 in the next section), the average loss of our prediction algorithm
does not exceed that of any prediction rule in W s,p([0, 1]) plus O(N−1/p). (This
gives a regret term of O(N−s+ε) for the prediction rules in W s,∞([0, 1]), where
s < 1/2 and ε > 0.)

In this conference version of the paper some proofs are omitted; for complete
proofs, see [20].

2 Main Result

We consider the following perfect-information prediction protocol:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Predictor announces μn ∈ IR.
Reality announces yn ∈ [−Y, Y ].

END FOR.

At the beginning of each round n Predictor is given an object xn whose label is
to be predicted. The set of a priori possible objects, the object space, is denoted
X; we always assume X �= ∅. After Predictor announces his prediction μn for
the object’s label he is shown the actual label yn ∈ [−Y, Y ]. We consider the
problem of regression, yn ∈ IR, assuming an upper bound Y on |yn|. The pairs
(xn, yn) are called examples.

Predictor’s loss on round n is measured by (yn − μn)2, and so his average loss
after N rounds of the game is 1

N

∑N
n=1 (yn − μn)2. His goal is to have

1
N

N∑
n=1

(yn − μn)2 � 1
N

N∑
n=1

(yn −D(xn))2

(� meaning “is less than or approximately equal to”) for each prediction rule
D : X→ IR that is not “too wild”.

Main theorem
Our main theorem will be fairly general and applicable to a wide range of Banach
function spaces. Its implications for Sobolev spaces will be explained after its
statement.
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Let U be a Banach space and SU := {u ∈ U | ‖u‖U = 1} be the unit sphere
in U . Our methods are applicable only to Banach spaces whose unit spheres do
not have very flat areas; a convenient measure of rotundity of SU is Clarkson’s
[6] modulus of convexity

δU (ε) := inf
u,v∈SU

‖u−v‖U=ε

(
1−

∥∥∥∥u+ v

2

∥∥∥∥
U

)
, ε ∈ (0, 2] (1)

(we will be mostly interested in the small values of ε).
Let us say that a Banach space F of real-valued functions f on X (with the

standard pointwise operations of addition and of multiplication by scalar) is a
proper Banach functional space (PBFS) on X if, for each x ∈ X, the evaluation
functional kx : f ∈ F �→ f(x) is continuous. We will assume that

cF := sup
x∈X
‖kx‖F∗ <∞, (2)

where F∗ is the dual Banach space (see, e.g., [16], Chapter 4).
The proof of the following theorem will be sketched in §§4–5.

Theorem 1. Let F be a proper Banach functional space such that

∀ε ∈ (0, 2] : δF (ε) ≥ (ε/2)p/p (3)

for some p ∈ [2,∞). There exists a prediction algorithm producing μn ∈ [−Y, Y ]
that are guaranteed to satisfy

1
N

N∑
n=1

(yn − μn)2 ≤ 1
N

N∑
n=1

(yn −D(xn))2 + 40Y
√

c2
F + 1 (‖D‖F + Y )N−1/p

(4)
for all N = 1, 2, . . . and all D ∈ F .

Conditions (2) and (3) are satisfied for the Sobolev spaces W s,p(X), which we
will now define.

Sobolev spaces
Suppose X is an open or closed set in IRm. (The standard theory assumes that
X is open, but the results we need easily extend to many closed X.) We only
define the Sobolev spaces W s,p(X) for the cases s ∈ (0, 1) and p > m/s; for a
more general definition see, e.g., [14] (pp. 57, 61).

Let s ∈ (0, 1) and p > m/s. For a function f ∈ Lp(X) define

‖f‖s,p :=
(∫

X
|f(x)|p dx+

∫
X

∫
X

∣∣∣∣f(x)− f(y)
|x− y|s

∣∣∣∣p dxdy
|x− y|m

)1/p

(5)

(we use |·| to denote the Euclidean norm). The Sobolev space W s,p(X) is de-
fined to be the set of all f such that ‖f‖s,p < ∞. The Sobolev imbedding the-
orem says that, for a wide range of X (definitely including our main example
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X = [0, 1] ⊆ IR), the functions in W s,p(X) can be made continuous by a change
on a set of measure zero; we will always assume that this is true for our object
space X and consider the elements of W s,p(X) to be continuous functions. Let
C(X) be the Banach space of continuous functions f : X → IR with finite norm
‖f‖C(X) := supx∈X |f(x)|. The Sobolev imbedding theorem also says that the
imbedding W s,p(X) ↪→ C(X) (i.e., the function that maps each f ∈ W s,p(X) to
the same function but considered as an element of C(X)) is continuous, i.e., that

cs,p := cW s,p(X) <∞ :

notice that cs,p is just the norm of the imbedding W s,p(X) ↪→ C(X). These
conclusions depend on the condition p > m/s (there are other parts of the
Sobolev imbedding theorem, dealing with the case where this condition is not
satisfied). For a proof in the case X = IRm, see, e.g., [1], Theorems 7.34(c) and
7.47(a,c); this implies the analogous statement for X with smooth boundary
since for such X every f ∈ W s,p(X) can be extended to an element of W s,p(IRm)
without increasing the norm more than a constant times (see, e.g., [14], p. 81).
We will say “domain” to mean a subset of IRn which satisfies the conditions of
regularity mentioned in this paragraph.

The norm (5) (sometimes called the Sobolev–Slobodetsky norm) is only one
of the standard norms giving rise to the same topological vector space, and
the term “Sobolev space” is usually used to refer to the topology rather than a
specific norm; in this paper we will not consider any other norms. The restriction
s ∈ (0, 1) is not essential for the results in this paper, but the definition of ‖·‖s,p
becomes slightly more complicated when s ≥ 1 (cf. [14]); [1] gives a different but
equivalent norm.

We can now deduce the following corollary from Theorem 1. It is known
that (3) is satisfied for the Sobolev spaces W s,p(X) (see (24)). Let p ∈ [2,∞)
and s ∈ (m/p, 1). There exists a constant Cs,p > 0 and a prediction algorithm
producing μn ∈ [−Y, Y ] that are guaranteed to satisfy

1
N

N∑
n=1

(yn − μn)2 ≤ 1
N

N∑
n=1

(yn −D(xn))2 + Y Cs,p

(
‖D‖s,p + Y

)
N−1/p (6)

for all N = 1, 2, . . . and all D ∈W s,p(X).
According to (4), we can take

Cs,p = 40
√

c2
s,p + 1,

but in fact
Cs,p = 4× 8.681−1/p

√
c2
s,p + 1 (7)

will suffice (see (30) below). In the special case p = 2 one can use Hilbert-space
methods to improve (7), which now becomes, approximately,

11.78
√

c2
s,2 + 1, (8)
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to
2
√

c2
s,2 + 1 (9)

([21], Theorem 1); using Banach-space methods we have lost a factor of 5.89.

Application to the Hölder continuous functions
An important limiting case of the norm (5) is

‖f‖s,∞ := max

(
sup
x∈X
|f(x)| , sup

x,y∈X:x �=y

∣∣∣∣f(x)− f(y)
|x− y|s

∣∣∣∣
)
,

where f : X → IR is, as usual, assumed continuous. The space W s,∞(X) con-
sists of the functions f with ‖f‖s,∞ < ∞, and its elements are called Hölder
continuous of order s.

The Hölder continuous functions of order s are perhaps the simplest formal-
ization of the functions with Hölder exponent h ≥ s. Let us see what Theorem 1
gives for them.

Suppose that X is a bounded domain in IRm, p ∈ (1,∞), and s, s′ ∈ (0, 1) are
such that s′ < s. If f ∈ W s,∞(X), a routine calculation shows that

‖f‖s′,p ≤ ‖f‖s,∞

(
1 +m

πm/2

Γ (m/2 + 1)
|X| (diamX)(s−s

′)p

(s− s′)p

)1/p

, (10)

where |X| stands for the volume (Lebesgue measure) of X and diamX stands
for the diameter of X. Inequality (10) gives an explicit bound for the norm of
the continuous imbedding W s,∞(X) ↪→ W s′,p(X).

Fix an arbitrarily small ε > 0. Applying (6) to W s′,p(X) with p > m/s
sufficiently close to m/s and to s′ ∈ (m/p, s), we can see from (10) that there
exists a constant Cs,ε > 0 such that

1
N

N∑
n=1

(yn − μn)2 ≤ 1
N

N∑
n=1

(yn −D(xn))2 + Y Cs,ε

(
‖D‖s,∞ + Y

)
N−s/m+ε

(11)
holds for all N = 1, 2, . . . and all D ∈ W s,∞(X).

3 Implications for a Stochastic Reality

In this section we discuss implications of Theorem 1 for statistical learning the-
ory and filtering of random processes. Surprisingly, even when Reality follows
a specific stochastic strategy, competitive on-line results do not trivialize but
provide new meaningful information.

Statistical learning theory
In this subsection we apply the method of [4] to derive a corollary of Theorem 1
for the statistical learning framework, where (xn, yn) are assumed to be drawn
independently from the same probability distribution on X× [−Y, Y ].
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The risk of a prediction rule (formally, a measurable function) D : X → IR
with respect to a probability distribution P on X× [−Y, Y ] is defined as

riskP (D) :=
∫
X×[−Y,Y ]

(y −D(x))2P (dx,dy).

Our current goal is to construct, from a given sample, a prediction rule whose
risk is competitive with the risk of small-norm prediction rules in W s,p(X).

Fix an on-line prediction algorithm and a sequence (x1, y1), (x2, y2), . . . of ex-
amples. For each n = 1, 2, . . . and each x ∈ X, define Hn(x) to be the prediction
μn ∈ IR output by the algorithm when fed with (x1, y1), . . . , (xn−1, yn−1), x.
We will assume that the functions Hn are always measurable (they are for our
algorithm). The prediction rule

HN (x) :=
1
N

N∑
n=1

Hn(x)

will be said to be obtained by averaging from the prediction algorithm.
The following result is an easy application of the method of [4] to (6); we

refrain from stating the analogous result based on (11).

Corollary 1. Let X be a domain in IRm, p ≥ 2, s ∈ (m/p, 1), and let HN ,
N = 1, 2, . . ., be the prediction rule obtained by averaging from some prediction
algorithm guaranteeing (6). For any D ∈ W s,p(X), any probability distribution
P on X× [−Y, Y ], any N = 1, 2, . . ., and any δ > 0,

riskP (HN ) ≤ riskP (D)+Y Cs,p
(
‖D‖s,p + Y

)
N−1/p+ 4Y 2

√
2 ln

2
δ
N−1/2 (12)

with probability at least 1− δ.

Filtering of random processes
Suppose we are interested in the value of a “signal” Θ : [0, 1]→ IR sequentially
observed at moments tn := n/N , n = 1, . . . , N , where N is a large positive
integer; let θn := Θ(tn). The problem is that our observations of θn are imperfect,
and in fact we see yn = θn + ξn, where each noise random variable ξn has zero
expectation given the past. We assume that Θ belongs to W s,p([0, 1]) (but do
not make any assumptions about the mechanism, deterministic, stochastic, or
other, that generated it) and that θn, yn ∈ [−Y, Y ] for a known positive constant
Y . Let us use the μn from Theorem 1 as estimates of the true values θn. The
elementary equality

a2 = (a− b)2 − b2 + 2ab (13)

implies

N∑
n=1

(μn− θn)2 =
N∑
n=1

(yn−μn)2−
N∑
n=1

(yn− θn)2 + 2
N∑
n=1

(yn− θn)(μn− θn). (14)

Hoeffding’s inequality in the martingale form shows that, for any C > 0,
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P

{
2

N∑
n=1

(yn − θn)(μn − θn) ≥ C
}
≤ exp

(
− C2

128Y 4N

)
.

Substituting this (with C expressed via the right-hand side, denoted δ) and (6)
into (14), we obtain the following corollary, which we state somewhat informally.

Corollary 2. Let p ≥ 2, s ∈ (1/p, 1), and δ > 0. Suppose that Θ ∈ W s,p([0, 1])
and yn = θn + ξn ∈ [−Y, Y ], where θn := Θ(n/N) ∈ [−Y, Y ] and ξn are random
variables whose expectation given the past (including θn) is zero. With probability
at least 1− δ the μn of (6) satisfy

1
N

N∑
n=1

(μn − θn)2 ≤ Y Cs,p
(
‖Θ‖s,p + Y

)
N−1/p + 8Y 2

√
2 ln

1
δ
N−1/2. (15)

The constant Cs,p in (15) is the one in (7). From (11), we can also see that, if
we assume Θ ∈W s,∞([0, 1]),

1
N

N∑
n=1

(μn − θn)2 ≤ Y Cs,ε
(
‖Θ‖s,∞ + Y

)
N−s+ε + 8Y 2

√
2 ln

1
δ
N−1/2 (16)

will hold with probability at least 1− δ.
It is important that the function Θ in (15) and (16) does not have to be chosen

in advance: it can be constructed “step-wise”, with Θ(t) for t ∈ (n/N, (n+1)/N ]
chosen at will after observing ξn and taking into account all other information
that becomes available before and including time n/N . A clean formalization
of this intuitive picture seems to require the game-theoretic probability of [17]
(although we can get the picture “almost right” using the standard measure-
theoretic probability).

In the case where Θ is generated from a diffusion process, it will almost
surely belong to W (1−ε)/2,∞([0, 1]) (this follows from standard results about the
Brownian motion, such as Lévy’s modulus theorem: see, e.g., [9], Theorem 9.25),
and so, by (15) or (16), 1

N

∑N
n=1 (μn − θn)2 can be made O(N−1/2+ε), for an

arbitrarily small ε > 0. The Kalman filter, which is stochastically optimal, gives
a somewhat better bound, O(N−1/2). Corollary 2, however, does not depend on
the very specific assumptions of the Kalman filter: we do not require the linearity,
Gaussianity, or even stochasticity of the model; the assumption about the noise
ξn is minimal (zero expectation given the past). Instead, we have the assumption
that all θn and yn are chosen from [−Y, Y ]. It appears that in practice the interval
to which the θn and yn are assumed to belong should change slowly as new data
are processed. This is analogous to the situation with the Kalman filter, which,
despite assuming linear systems, has found its greatest application to non-linear
systems [18]; what is usually used in practice is the “extended Kalman filter”,
which relies on a slowly changing linearization of the non-linear system.
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4 More Geometry of Banach Spaces

The standard modulus of smoothness of a Banach space U was proposed by
Lindenstrauss [12]:

ρU (τ) := sup
u,v∈SU

(
‖u+ τv‖U + ‖u− τv‖U

2
− 1

)
, τ > 0. (17)

Lindenstrauss also established a simple but very useful relation of conjugacy (cf.
[15], §12, although δ is not always convex [13]) between δ and ρ:

ρU∗(τ) = sup
ε∈(0,2]

(ετ

2
− δU (ε)

)
; (18)

we can see that 2ρU∗ is the Fenchel transform of 2δU .
The following inequality will be the basis of the proof of Theorem 1 sketched

in the next section. Suppose a PBFS F satisfies the condition (3) of Theorem 1.
By (18) we obtain for the dual space F∗ to F , assuming τ ∈ (0, 1]:

ρF∗(τ) ≤ sup
ε∈(0,2]

( ετ

2
− (ε/2)p/p

)
= τq/q, (19)

where q := p/(p− 1) (the supremum in (19) is attained at ε = 2τ1/(p−1)).
If V is a Hilbert space, the “parallelogram identity”

‖u+ v‖2V + ‖u− v‖2V = 2 ‖u‖2V + 2 ‖v‖2V (20)

immediately gives
δV (ε) = 1−

√
1− (ε/2)2 ≥ ε2/8

and
ρV (τ) =

√
1 + τ2 − 1 ≤ τ2/2. (21)

If U1 and U2 are two Banach spaces, their weighted direct sum U1 ⊕ U2 is
defined to be the Cartesian product U1×U2 with the operations of addition and
multiplication by scalar defined by

(u1, u2) + (u′1, u
′
2) := (u1 + u′1, u2 + u′2), c(u1, u2) := (cu1, cu2);

we will equip it with the norm

‖(u1, u2)‖U1⊕U2
:=

√
a1 ‖u1‖2U1

+ a2 ‖u2‖2U2
, (22)

where a1 and a2 are positive constants (to simplify formulas, we do not mention
them explicitly in our notation for U1⊕U2). The operation of weighted direct sum
provides a means of merging different Banach spaces, which plays an important
role in our proof technique (cf. [21], Corollary 4). The “Euclidean” definition
(22) of the norm in the direct sum suggests that the sum will be as smooth as
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the components; this intuition is formalized in the following lemma (essentially
a special case of Proposition 17 in [7], p. 132).

Lemma 1. If U1 and U2 are Banach spaces and f : (0, 1]→ IR,

(∀τ ∈ (0, 1] : ρU1(τ) ≤ f(τ) & ρU2(τ) ≤ f(τ))
=⇒ (∀τ ∈ (0, 1] : ρU1⊕U2(τ) ≤ 4.34f(τ)) .

It was shown by Clarkson ([6], §3) that, for p ∈ [2,∞),

δLp(ε) ≥ 1− (1− (ε/2)p)1/p .

(And this bound was shown to be optimal in [8].) A quick inspection of the
standard proofs (see, e.g., [1], 2.34–2.40) shows that the underlying measurable
space Ω and measure μ of Lp = Lp(Ω,μ) can be essentially arbitrary (only the
degenerate case where dimLp < 2 should be excluded), although this generality
is usually not emphasized.

It is easy to see (cf. [1], 3.5–3.6) that the modulus of convexity of each Sobolev
space W s,p(X), s ∈ (0, 1) and p ∈ [2,∞), also satisfies

δW s,p(X)(ε) ≥ 1− (1− (ε/2)p)1/p . (23)

Since, for t ∈ [0, 1] and p ≥ 1, (1− t)1/p ≤ 1− t/p (the left-hand side is a concave
function of t, and the values and derivatives of the two sides match when t = 0),
we have

δW s,p(X)(ε) ≥ (ε/2)p/p. (24)

Therefore, as we said in §2, the Sobolev spaces indeed satisfy the condition (3)
of Theorem 1.

5 Proof Sketch of Theorem 1

In this section we partly follow the proof of Theorem 1 in [21] (§6).

The BBK29 algorithm
Let U be a Banach space. We say that a function Φ : [−Y, Y ] × X → U is
forecast-continuous if Φ(μ, x) is continuous in μ ∈ [−Y, Y ] for every fixed x ∈ X.
For such a Φ the function

fn(y, μ) :=

∥∥∥∥∥
n−1∑
i=1

(yi − μi)Φ
(
μi, xi

)
+ (y − μ)Φ

(
μ, xn

)∥∥∥∥∥
U

−
∥∥∥∥∥
n−1∑
i=1

(yi − μi)Φ
(
μi, xi

)∥∥∥∥∥
U

(25)

is continuous in μ ∈ [−Y, Y ].
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Banach-space Balanced K29 algorithm (BBK29)
Parameter: forecast-continuous Φ : [−Y, Y ]×X→ U , with U a Banach space

FOR n = 1, 2, . . . :
Read xn ∈ X.
Define fn : [−Y, Y ]2 → IR by (25).
Output any root μ ∈ [−Y, Y ] of fn(−Y, μ) = fn(Y, μ) as μn;

if there are no such roots, output μn ∈ {−Y, Y }
such that supy∈[−Y,Y ] fn(y, μn) ≤ 0.

Read yn ∈ [−Y, Y ].
END FOR.

The validity of this description depends on the existence of μ ∈ {−Y, Y } satis-
fying supy∈[−Y,Y ] fn(y, μ) ≤ 0 when the equation fn(−Y, μ) = fn(Y, μ) does
not have roots μ ∈ [−Y, Y ]. The existence of such a μ is easy to check: if
fn(−Y, μ) < fn(Y, μ) for all μ ∈ [−Y, Y ], take μ := Y to obtain

fn(−Y, μ) < fn(Y, μ) = 0

and, hence, supy∈[−Y,Y ] fn(y, μ) ≤ 0 by the convexity of (25) in y; if fn(−Y, μ) >
fn(Y, μ) for all μ ∈ [−Y, Y ], setting μ := −Y leads to

fn(Y, μ) < fn(−Y, μ) = 0

and, hence, supy∈[−Y,Y ] fn(y, μ) ≤ 0. The parameter Φ of the BBK29 algorithm
will sometimes be called the feature mapping. The proof of the following result
can be found in [20].

Theorem 2. Let Φ be a forecast-continuous mapping from [−Y, Y ] × X to a
Banach space U and set cΦ := supμ∈[−Y,Y ],x∈X ‖Φ(μ, x)‖U . Suppose ρU (τ) ≤
aτq, ∀τ ∈ (0, 1], for some constants q ≥ 1 and a ≥ 1/q. The BBK29 algorithm
with parameter Φ outputs μn ∈ [−Y, Y ] such that∥∥∥∥∥

N∑
n=1

(yn − μn)Φ(μn, xn)

∥∥∥∥∥
U

≤ 2Y cΦ (2aqN)1/q (26)

always holds for all N = 1, 2, . . . .

The feature mapping for the proof of Theorem 1
In the proof of Theorem 1 we need two feature mappings from [−Y, Y ] × X
to different Banach spaces: first, Φ1(μ, x) := μ (mapping to the Banach space
IR), and second, Φ2 : [−Y, Y ] × X → F∗ such that Φ2(μ, x) is the evaluation
functional kx : f �→ f(x), f ∈ F . We combine them into one feature mapping

Φ(μ, x) :=
(
Φ1(μ, x), Φ2(μ, x)

)
(27)

to the weighted direct sum U := IR⊕F∗, with the weights a1 and a2 to be chosen
later. By Lemma 1, (19), and (21), ρU (τ) ≤ aτq, where a := 4.34/q. With the
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help of Theorem 2, we obtain for the BBK29 algorithm with parameter Φ:∣∣∣∣∣
N∑
n=1

(yn − μn)μn

∣∣∣∣∣ =

∥∥∥∥∥
N∑
n=1

(yn − μn)Φ1(μn, xn)

∥∥∥∥∥
IR

≤ 1√
a1

∥∥∥∥∥
N∑
n=1

(yn − μn)Φ(μn, xn)

∥∥∥∥∥
U

≤ 1√
a1

2Y cΦ (2aqN)1/q (28)

and∣∣∣∣∣
N∑
n=1

(yn − μn)D(xn)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=1

(yn − μn)kxn(D)

∣∣∣∣∣ =

∣∣∣∣∣
(

N∑
n=1

(yn − μn)kxn

)
(D)

∣∣∣∣∣
≤
∥∥∥∥∥
N∑
n=1

(yn − μn)kxn

∥∥∥∥∥
F∗

‖D‖F =

∥∥∥∥∥
N∑
n=1

(yn − μn)Φ2(μn, xn)

∥∥∥∥∥
F∗

‖D‖F

≤ 1
√
a2

∥∥∥∥∥
N∑
n=1

(yn − μn)Φ(μn, xn)

∥∥∥∥∥
U

‖D‖F ≤
1
√
a2

2Y cΦ (2aqN)1/q ‖D‖F (29)

for each function D ∈ F .

Proof proper
The proof is based on the inequality

N∑
n=1

(yn − μn)2

=
N∑
n=1

(yn −D(xn))2 + 2
N∑
n=1

(D(xn)− μn)(yn − μn)−
N∑
n=1

(D(xn)− μn)2

≤
N∑
n=1

(yn −D(xn))2 + 2
N∑
n=1

(D(xn)− μn)(yn − μn)

(immediately following from (13)). Using this inequality and (28)–(29) with a1 :=
Y −2 and a2 := 1, we obtain for the μn ∈ [−Y, Y ] output by the BBK29 algorithm
with Φ as parameter:

N∑
n=1

(yn − μn)2

≤
N∑
n=1

(yn −D(xn))2 + 2

∣∣∣∣∣
N∑
n=1

μn(yn − μn)

∣∣∣∣∣+ 2

∣∣∣∣∣
N∑
n=1

D(xn)(yn − μn)

∣∣∣∣∣
≤

N∑
n=1

(yn −D(xn))2 + 4Y cΦ (2aqN)1/q (‖D‖F + Y ) .



Competing with Wild Prediction Rules 571

Since

cΦ ≤
√
a1Y 2 + a2c2

F =
√

c2
F + 1,

we can see that (4) holds with

4(2aq)1/q = 4× 8.681/q (30)

in place of 40.

6 Banach Kernels

An RKHS can be defined as a PBFS in which the norm is expressed via an
inner product as ‖f‖ =

√〈f, f〉. It is well known that all information about an
RKHS F on a set Z is contained in its “reproducing kernel”, which is a sym-
metric positive definite function on Z2 ([2], §§I.1–I.2). The reproducing kernel
can be regarded as the constructive representation of its RKHS, and it is the
reproducing kernel rather than the RKHS itself that serves as a parameter of
various machine-learning algorithms. In this section we will introduce a similar
constructive representation for PBFS.

A Banach kernel B on a set Z is a function that maps each finite non-empty
sequence z1, . . . , zn of distinct elements of Z to a seminorm ‖·‖B(z1,...,zn) on
IRn and satisfies the following conditions (familiar from Kolmogorov’s existence
theorem [11], §III.4):

– for each n = 1, 2, . . ., each sequence z1, . . . , zn of distinct elements of Z, each
sequence (t1, . . . , tn) ∈ IRn, and each permutation

(
1 2 ... n
i1 i2 ... in

)
,

‖(ti1 , . . . , tin)‖B(zi1 ,...,zin ) = ‖(t1, . . . , tn)‖B(z1,...,zn) ;

– for each n = 1, 2, . . ., each k = 1, . . . , n, each sequence z1, . . . , zn of distinct
elements of Z, and each sequence (t1, . . . , tk) ∈ IRk,

‖(t1, . . . , tk)‖B(z1,...,zk) = ‖(t1, . . . , tk, 0, . . . , 0)‖B(z1,...,zn) .

The Banach kernel of a PBFS F on Z is the Banach kernel B defined by

‖(t1, . . . , tn)‖B(z1,...,zn) := ‖t1kz1 + · · ·+ tnkzn‖F∗ ,

where kz : F → IR, z ∈ Z, is the evaluation functional f ∈ F �→ f(z).

Proposition 1. For each Banach kernel B on Z there exists a proper Banach
functional space F on Z such that B is the Banach kernel of F .

Now we can state more explicitly the prediction algorithm described above and
guaranteeing (4). Let B be the Banach kernel of the benchmark class F in (4).
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Following (25) (with Φ defined by (27)), define

fn(y, μ) :=

(
1
Y 2

(
n−1∑
i=1

(yi − μi)μi + (y − μ)μ

)2

+ ‖(y1 − μ1, . . . , yn−1 − μn−1, y − μ)‖2B(x1,...,xn−1,xn)

)1/2

−
(

1
Y 2

(
n−1∑
i=1

(yi − μi)μi

)2

+ ‖(y1 − μ1, . . . , yn−1 − μn−1)‖2B(x1,...,xn−1)

)1/2

. (31)

This allows us to give the kernel representation of BBK29 with Φ defined by
(27); its parameter is a Banach kernel on the object space X.

Algorithm guaranteeing (4)
Parameter: Banach kernel B of F

FOR n = 1, 2, . . . :
Read xn ∈ X.
Define fn : [−Y, Y ]2 → IR by (31).
Output any root μ ∈ [−Y, Y ] of fn(−Y, μ) = fn(Y, μ) as μn;

if there are no such roots, output μn ∈ {−Y, Y }
such that supy∈[−Y,Y ] fn(y, μn) ≤ 0.

Read yn ∈ [−Y, Y ].
END FOR.
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Abstract. We consider batch reinforcement learning problems in contin-
uous space, expected total discounted-reward Markovian Decision Prob-
lems. As opposed to previous theoretical work, we consider the case when
the training data consists of a single sample path (trajectory) of some
behaviour policy. In particular, we do not assume access to a generative
model of the environment. The algorithm studied is policy iteration where
in successive iterations the Q-functions of the intermediate policies are ob-
tained by means of minimizing a novel Bellman-residual type error. PAC-
style polynomial bounds are derived on the number of samples needed
to guarantee near-optimal performance where the bound depends on the
mixing rate of the trajectory, the smoothness properties of the underlying
Markovian Decision Problem, the approximation power and capacity of
the function set used.

1 Introduction

Consider the problem of optimizing a controller for an industrial environment. In
many cases the data is collected on the field by running a fixed controller and then
taken to the laboratory for optimization. The goal is to derive an optimized con-
troller that improves upon the performance of the controller generating the data.

In this paper we are interested in the performance improvement that can
be guaranteed given a finite amount of data. In particular, we are interested
in how performance scales as a function of the amount of data available. We
study Bellman-residual minimization based policy iteration assuming that the
environment is stochastic and the state is observable and continuous valued.
The algorithm considered is an iterative procedure where each iteration involves
solving a least-squares problem, similar to the Least-Squares Policy Iteration
algorithm of Lagoudakis and Parr [1]. However, whilst Lagoudakis and Parr
considered the so-called least-squares fixed-point approximation to avoid prob-
lems with Bellman-residual minimization in the case of correlated samples, we
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modify the original Bellman-residual objective. In a forthcoming paper we study
policy iteration with approximate iterative policy evaluation [2].

The main conditions of our results can be grouped into three parts: Condi-
tions on the system, conditions on the trajectory (and the behaviour policy used
to generate the trajectory) and conditions on the algorithm. The most impor-
tant conditions on the system are that the state space should be compact, the
action space should be finite and the dynamics should be smooth in a sense to be
defined later. The major condition on the trajectory is that it should be rapidly
mixing. This mixing property plays a crucial role in deriving a PAC-bound on the
probability of obtaining suboptimal solutions in the proposed Bellman-residual
minimization subroutine. The major conditions on the algorithm are that an
appropriate number of iterations should be used and the function space used
should have a finite capacity and be sufficiently rich at the same time. It follows
that these conditions, as usual, require a good balance between the power of
the approximation architecture (we want large power to get good approximation
of the action-value functions of the policies encountered during the algorithm)
and the number of samples: If the power of the approximation architecture is in-
creased the algorithm will suffer from overfitting, as it also happens in supervised
learning. Although the presence of the tradeoff between generalization error and
model complexity should be of no surprise, this tradeoff is somewhat underrep-
resented in the reinforcement literature, presumably because most results where
function approximators are involved are asymptotic.

The organization of the paper is as follows: In the next section (Section 2)
we introduce the necessary symbols and notation. The algorithm is given in
Section 3. The main results are presented in Section 4. This section, just like the
proof, is broken into three parts: In Section 4.1 we prove our basic PAC-style
lemma that relates the complexity of the function space, the mixing rate of the
trajectory and the number of samples. In Section 4.2 we prove a bound on the
propagation of errors during the course of the procedure. Here the smoothness
properties of the MDP are used to bound the ‘final’ approximation error as
a function of the individual errors. The proof of the main result is finished
Section 4.3. In Section 5 some related work is discussed. Our conclusions are
drawn in Section 6.

2 Notation

For a measurable space with domain S we let M(S) denote the set of all prob-
ability measures over S. For ν ∈ M(S) and f : S → R measurable we let
‖f‖ν denote the L2(ν)-norm of f : ‖f‖2ν =

∫
f2(s)ν(ds). We denote the space of

bounded measurable functions with domain X by B(X ), the space of measurable
functions bounded by 0 < K <∞ by B(X ;K). We let ‖f‖∞ denote the supre-
mum norm: ‖f‖∞ = supx∈X |f(x)|. IE denotes the indicator function of event
E, whilst 1 denotes the function that takes on the constant value 1 everywhere
over the domain of interest.



576 A. Antos, C. Szepesvári, and R. Munos

A discounted Markovian Decision Problem (MDP) is defined by a quintuple
(X ,A, P, S, γ), where X is the (possible infinite) state space, A = {a1, a2, . . . , aL}
is the set of actions, P : X × A → M(X ) is the transition probability kernel,
P (·|x, a) defining the next-state distribution upon taking action a from state
x, S(·|x, a) gives the corresponding distribution of immediate rewards, and γ ∈
(0, 1) is the discount factor.

We make the following assumptions on the MDP:

Assumption 1 (MDP Regularity). X is a compact subspace of the s-dimen-
sional Euclidean space. We assume that the random immediate rewards are
bounded by R̂max, the conditional expectations r(x, a) =

∫
rS(dr|x, a) and con-

ditional variances v(x, a) =
∫

(r − r(x, a))2S(dr|x, a) of the immediate rewards
are both uniformly bounded as functions of (x, a) ∈ X ×A. We let Rmax denote
the bound on the expected immediate rewards: ‖r‖∞ ≤ Rmax.

A policy is defined as a mapping from past observations to a distribution over
the set of actions. A policy is deterministic if the probability distribution con-
centrates on a single action for all histories. A policy is called stationary if the
distribution depends only on the last state of the observation sequence.

The value of a policy π when it is started from a state x is defined as the total
expected discounted reward that is encountered while the policy is executed:
V π(x) = Eπ [

∑∞
t=0 γ

tRt|X0 = x] . Here Rt is the reward received at time step t,
Rt ∼ S(·|Xt, At), Xt evolves according to Xt+1 ∼ P (·|Xt, At) where At is sam-
pled from the distribution assigned to the past observations by π. We introduce
Qπ : X × A → R, the action-value function, or simply the Q-function of policy
π: Qπ(x, a) = Eπ [

∑∞
t=0 γ

tRt|X0 = x,A0 = a].
The goal is to find a policy that attains the best possible values, V ∗(x) =

supπ V
π(x) for all states x ∈ X . V ∗ is called the optimal value function. A policy

is called optimal if it attains the optimal values V ∗(x) for any state x ∈ X , i.e.,
if Vπ(x) = V ∗(x) for all x ∈ X . The function Q∗(x, a) is defined analogously:
Q∗(x, a) = supπ Q

π(x, a). It is known that for any policy π, V π, Qπ are bounded
by Rmax/(1− γ), just like Q∗ and V ∗. We say that a (deterministic stationary)
policy π is greedy w.r.t. an action-value function Q ∈ B(X × A) if, for all x ∈
X ,a ∈ A, π(x) ∈ argmaxa∈AQ(x, a). Since A is finite, such a greedy policy
always exist. It is known that under mild conditions the greedy policy w.r.t.
Q∗ is optimal [3]. For a deterministic stationary policy π define the operator
T π : B(X ×A)→ B(X ×A) by (T πQ)(x, a) = r(x, a)+γ

∫
Q(y, π(y))P (dy|x, a).

For any deterministic stationary policy π : X → A let the operator Eπ :
B(X × A) → B(X ) be defined by (EπQ)(x) = Q(x, π(x)); Q ∈ B(X × A).
We define two operators corresponding to the transition probability kernel P
as follows: A right-linear operator is defined by P · : B(X ) → B(X × A) and
(PV )(x, a) =

∫
V (y)P (dy|x, a), whilst a left-linear operator is defined by ·P :

M(X×A)→M(X ) with (ρP )(dy) =
∫
P (dy|x, a)ρ(dx, da). This operator is also

extended to act on measures over X via (ρP )(dy) = 1
L

∑
a∈A

∫
P (dy|x, a)ρ(dx).
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FittedPolicyQ(D,K,Q0,PEval)
// D: samples (e.g. trajectory)
// K: number of iterations
// Q0: Initial Q-function
// PEval: Policy evaluation routine
Q ← Q0 // Initialization
for k = 0 to K − 1 do

Q′ ← Q
Q ←PEval(π̂(·; Q′), D)

end for
return Q // or π̂(·; Q), the greedy policy w.r.t. Q

Fig. 1. Model-free Policy Iteration

By composing P and Eπ, we define P π = PEπ. Note that this equation defines
two operators: a right- and a left-linear one.

Throughout the paper F ⊂ {f : X → R} will denote some subset of real-
valued functions. For convenience, we will treat elements of FL as real-valued
functions f defined over X ×A with the obvious identification f ≡ (f1, . . . , fL),
f(x, aj) = fj(x), j = 1, . . . , L. For ν ∈M(X ), we extend ‖·‖ν to FL by ‖f‖ν =(

1
L

∑L
j=1 ‖fj‖

2
ν

)1/2
.

3 Algorithm

Assume that we are given a finite but long trajectory {(Xt, At, Rt)}1≤t≤N gener-
ated by some stochastic stationary policy π: At ∼ π(·|Xt), Xt+1 ∼ P (·|Xt, At),
Rt ∼ S(·|Xt, At). We shall assume that π is ‘persistently exciting’ in the sense
that {(Xt, At, Rt)} mixes fast (this will be made precise in the next section).

The algorithm studied in this paper is shown in Figure 1. It is an instance of pol-
icy iteration, where policies are only implicitly represented via action-value func-
tions. In the figureD denotes the sample {(Xt, At, Rt)}1≤t≤N ,K is the number of
iterations, Q0 is the initial action-value function. PEval is a procedure that takes
data in the form of a long trajectory and a policy π̂ = π̂(·;Q′), the greedy policy
with respect toQ′. Based on π̂, PEval should return an estimate of the action-value
function Qπ̂. There are many possibilities to approximate Qπ̂. In this paper we
consider Bellman-residualminimization (BRM). The basic idea of BRM is thatQπ̂

is the fixed point of the operator T π̂:Qπ̂−T π̂Qπ̂ = 0. Hence, given some function
class FL, functions Q ∈ FL with small Bellman-residual L(Q; π̂) =

∥∥Q− T π̂Q∥∥2

(with some norm ‖·‖) should be close to Qπ̂, provided that F is sufficiently rich
(more precisely, the hope is that the performance of the greedy policy w.r.t. the
obtained function will be close to the performance of the policy greedy w.r.t.Qπ̂).
The most widely used norm is the L2-norm, so let L(Q; π̂) =

∥∥Q− T π̂Q∥∥2
ν
. We

chase Q = argminf∈FL L(f ; π̂). In the sample based version the minimization of
the norm L(f ; π̂) is replaced by minimizing a sample based approximation to it:
If we let
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L̂N(f ; π̂) =
1
NL

N∑
t=1

L∑
j=1

I{At=aj}

π(aj |Xt)
(f(Xt, aj)−Rt − γf(Xt+1, π̂(Xt+1)))

2

then the most straightforward way to compute an approximation to Qπ̂ seems to
use Q = argminf∈FL L̂N(f ; π̂). At a first sight, the choice of L̂N seems to be logi-
cal as for any givenXt, At and f ,Rt+γf(Xt+1, π̂(Xt+1) is an unbiased estimate of
(T π̂f)(Xt, At). However, as it is well known (see e.g. [4][pp. 220], [5, 1]), L̂N is not
a “proper” approximation to the correspondingL2 Bellman-error:E

[
L̂N (f ; π̂)

]
�=

L(f ; π̂). In fact, an elementary calculus shows that forY ∼ P (·|x, a),R ∼ S(·|x, a),

E
[
(f(x, a)−R− γf(Y, π̂(Y )))2

]
= (f(x, a) − (T π̂f)(x, a))2

+Var [R+ γf(Y, π̂(Y ))] .

It follows that minimizing L̂N(f ; π̂) involves minimizing the term Var [f(Y, π̂(Y ))]
in addition to minimizing the ‘desired term’L(f ; π̂). The unwanted term acts like a
penalty factor, favouring smooth solutions (if f is constant then Var [f(Y, π̂(Y ))] =
0). Although in some cases smooth functions are preferable, in general it is better
to control smoothness penalties in a direct way.

The common suggestion to overcome this problem is to use “double” (uncor-
related) samples. In our setup, however, this is not an option. Another possibil-
ity is to reuse samples that are close in space (e.g., use nearest neighbours). The
difficulty with that approach is that it requires a definition of what it means for
samples being close. Here, we pursue an alternative approach based on the intro-
duction of an auxiliary function that is used to cancel the variance penalty. The
idea is to select h to ‘match’ (T π̂f)(x, a) = E [R+ γf(Y, π̂(Y ))] and use it to can-
cel the unwanted term. Define L(f, h; π̂) = L(f ; π̂)−

∥∥h− T π̂f∥∥2
ν

and

L̂N(f, h; π̂) =
1
NL

N∑
t=1

L∑
j=1

I{At=aj}

π(aj |Xt)

(
(f(Xt, aj)−Rt − γf(Xt+1, π̂(Xt+1)))2

−(h(Xt, aj)−Rt − γf(Xt+1, π̂(Xt+1)))2
)
. (1)

Then, E
[
L̂N (f, h; π̂)

]
=L(f, h; π̂) and L(f, T π̂f ; π̂)=L(f ; π̂). Hence we let PEval

solve forQ = argminf∈FL suph∈FL L̂N (f, h; π̂). Note that for linearly parameter-
ized function classes the solution can be obtained in a closed form. In general, one
may expect that the number of parameters doubles as a result of the introduction
of the auxiliary function. Although this may represent a considerable additional
computational burden on the algorithm, given the merits of the Bellman-residual
minimization approach over the least-squares fixed point approach [5] we think
that the potential gain in the performance of the final policy might well worth the
extra effort. However, the verification of this claim is left for future work.

Our main result can be formulated as follows: Let ε, δ > 0 be given and choose
some target distribution ρ that will be used to measure performance. Regarding
the function setF weneed the following essential assumptions:F has finite pseudo-
dimension (similarly to the VC-dimension, the pseudo-dimension of a function
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class also describes the ‘complexity’ of the class) and the set of 0 level-sets of the dif-
ferences of pairs of functions fromF should be a VC-class.Further, we assume that
the set FL is ε/2-invariant under operators from T = {T π̂(·;Q) : Q ∈ FL} with
respect to the ‖·‖ν norm (cf. Definition 3) and that FL approximates the fixed-
points of the operators of T well (cf. Definition 4). The MDP has to be regular
(satisfying Assumption 1), the dynamics has to satisfy some smoothness proper-
ties and the sample path has to be fast mixing. Then for large enough values ofN ,
K the value-function V πK of the policy πK returned by fitted policy iteration with
the modified BRM criterion will satisfy

‖V πK − V ∗‖ρ ≤ ε

with probability larger than 1 − δ. In particular, if the rate of mixing of the tra-
jectory is exponential with parameters (b, κ), then N,K ∼ poly(L, R̂max/(1 −
γ), 1/b, V, 1/ε, log(1/δ)), where V is a VC-dimension like quantity characterizing
the complexity of the function classF and the degree of the polynomial is 1+1/κ.

The main steps of the proof are the followings:

1. PAC-Bounds for BRM: Starting from a (random) policy that is derived from
a random action-value function, we show that BRM is “PAC-consistent”, i.e.,
one can guarantee small Bellman-error with high confidence provided that the
number of samples N is large enough.

2. Error propagation: If for approximate policy iteration the Bellman-error is
small for K steps, then the final error will be small, too (this requires the
smoothness conditions).

3. Final steps: The error of the whole procedure is small with high probability
provided that the Bellman-error is small throughout all the steps with high
probability.

4 Main Result

Before describing the main result we need some definitions.
We start with a mixing-property of stochastic processes. Informally, a process

is mixing if future depends only weakly on the past, in a sense that we now make
precise:

Definition 1. Let {Zt}t=1,2,... be a stochastic process. Denote by Z1:n the collec-
tion (Z1, . . . , Zn), where we allow n = ∞. Let σ(Zi:j) denote the sigma-algebra
generated by Zi:j (i ≤ j). Them-th β-mixing coefficient of {Zt}, βm, is defined by

βm = sup
t≥1

E

[
sup

B∈σ(Zt+m:∞)
|P (B|Z1:t)− P (B)|

]
.

A stochastic process is said to be β-mixing if βm → 0 as m→∞.

Note that there exist many other definitions of mixing. The weakest among those
most commonly used is called α-mixing. Another commonly used one is φ-mixing
which is stronger than β-mixing (see [6]). A β-mixing process is said to mix at an
exponential rate with parameters b, κ > 0 if βm = O(exp(−bmκ)).



580 A. Antos, C. Szepesvári, and R. Munos

Assumption 2 (SamplePath Properties).Assume that {(Xt, At, Rt)}t=1,...,N
is the sample path of π,Xt is strictly stationary, andXt ∼ ν ∈M(X ). Further, we
assume that {(Xt, At, Rt, Xt+1)} is β-mixing with exponential-rate (b, κ). We fur-
ther assume that the sampling policy π satisfies π0

def= mina∈A infx∈X π(a|x) > 0.

The β-mixing property will be used to establish tail inequalities for certain em-
pirical processes.

Let us now define some smoothness constants C(ν) and C(ρ, ν), that depend
on the MDP. Remember that ν is the stationary distribution of the samples Xt

and ρ is the distribution that is used to evaluate the performance of the algorithm.

Definition 2. WecallC(ν)∈R+∪{+∞} the transition probabilities smooth-
ness constant, defined as the smallest constant such that for x ∈ X , B ⊂ X
measurable, a ∈ A,

P (B|x, a) ≤ C(ν)ν(B),

(if no such constant exists, we setC(ν) =∞). Now, for all integerm ≥ 1, we define
c(m) ∈ R+ ∪ {+∞} to be the smallest constant such that, for any m stationary
policies π1, π2, . . . , πm,

ρP π1P π2 . . . Pπm ≤ c(m)ν, (2)

and write c(0) = 1.1 Note that these constants depend on ρ and ν.
We let C(ρ, ν), the second order discounted future state distribution

smoothness constant, be defined by the equation

C(ρ, ν) = (1− γ)2
∑
m≥1

mγm−1c(m). (3)

One of the major restriction on the MDP’s dynamics will be that C(ρ, ν) <∞ is
finite. In fact, one can show that if C(ν) <∞ then C(ρ, ν) <∞ holds for any dis-
tribution ρ. Hence, the condition C(ρ, ν) < ∞ is less restrictive than C(ν) < ∞.
C(ν) <∞ is satisfied whenever the transition density kernel is absolute continu-
ous w.r.t. ν.2

During the course of the proof, we will need several capacity concepts of func-
tion sets. Here we assume that the reader is familiar with the concept of VC-
dimension (see, e.g. [7]), but we introduce covering numbers because slightly dif-
ferent definitions of it exist in the literature:

For a semi-metric space (M, d) and for each ε > 0, define the covering number
N (ε,M, d) as the smallest value of m for which there exist g1,g2,. . . ,gm ∈ M
1 Again, if there exists no such constants, we simply set c(m) = ∞. Note that in (2)

≤ is used to compare two operators. The meaning of ≤ in comparing operators H, G
is the usual: H ≤ G iff Hf ≤ Gf holds for all f ∈ Dom(H). Here ν is viewed as an
operator acting on B(X × A).

2 Further discussion of this condition can be found in the forthcoming paper [2] where
these smoothness constants are related to the top-Lyapunov exponent of the system’s
dynamics.
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such that for every f ∈ M, minj d(f, gj) < ε. If no such finite m exists then
N (ε,M, d) = ∞. In particular, for a class F of X → R functions and points
x1:N = (x1, x2, . . . , xN ) in X , we use the empirical covering numbers, i.e., the
covering number of F with respect to the empirical L1 distance

lx1:N (f, g) =
1
N

N∑
t=1

|f(xt)− g(xt)|.

In this case N (ε,F , lx1:N ) shall be denoted by N1(ε,F , x1:N ).

Assumption 3 (Capacity Assumptions on the Function Set). Assume that
F ⊂ B(X ;Qmax) and that the pseudo-dimension (VC-subgraph dimension) VF+

of F is finite.3 Let C2 = {{x ∈ X : f1(x) ≥ f2(x)} : f1, f2 ∈ F}. Assume also that
the VC-dimension, VC2 , of C2 is finite.

We shall also need that FL is almost-invariant with respect to (certain) policy-
evaluation operators:

Definition 3. F , a subset of a normed function-space is said to be ε-invariant with
respect to the set of operators T acting on the function-space if
infg∈F ‖g − Tf‖ ≤ ε holds for any T ∈ T and f ∈ F .

Similarly, we need that FL contains ε-fixed points of (certain) policy-evaluation
operators:

Definition 4. f is an ε-fixed point of T w.r.t. the norm ‖·‖ if ‖Tf − f‖ ≤ ε.

Our main result is the following:

Theorem 1. Choose ρ ∈ M(X ) and let ε, δ > 0 be fixed. Let Assumption 1 and
2 hold and let Qmax ≥ Rmax/(1 − γ). Fix F ⊂ B(X ;Qmax). Let T be the set of
policy evaluation operators {T π̂(·;Q) : Q ∈ FL}. Assume that FL is ε/2-invariant
with respect to ‖·‖ν and T and contains the ε/2-fixed points of T . Further, assume
that F satisfies Assumption 3. Then there exists integers N,K that are polynomi-
als in L, Qmax, 1/b, 1/π0, VF+ , VC2 , 1/ε, log(1/δ), 1/(1− γ) and C(ν) such that
P (‖V ∗ − V πK‖∞ > ε) ≤ δ.

Similarly, there exists integersN,K that are polynomials of the same quantities
except that C(ν) is replaced by C(ρ, ν) such that P

(
‖V ∗ − V πK‖ρ > ε

)
≤ δ.

4.1 Bounds on the Error of the Fitting Procedure

We first introduce some auxiliary results required for the proof of the main result
of this section. For simplicity assume that N = 2mNkN for appropriate positive
integers mN , kN . We start with the following lemmata:

3 The VC-subgraph dimension of F is defined as the VC-dimension of the subgraphs
of functions in F .
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Lemma 2. Suppose that Z0, . . . , ZN ∈ Z is a stationary β-mixing process with
mixing coefficients {βm}, Z ′

t ∈ Z (t ∈ H) are the block-independent “ghost” sam-
ples as in [8], and H = {2ikN + j : 0 ≤ i < mN , 0 ≤ j < kN }, and that F is a
permissible class of Z → [−K,K] functions. Then

P

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
t=1

f(Zt)− E [f(Z0)]

∣∣∣∣∣ > ε

)
≤ 16E [N1(ε/8,F , (Z ′

t; t ∈ H))] e−
mN ε2

128K2

+2mNβkN .

Note that this lemma is based on the following form of a lemma due to Yu [8]:

Lemma 3 (Yu [8] 4.2 Lemma). Suppose that {Zt}, {Z ′
t}, and H are as in

Lemma 2 and that F is a permissible class of bounded Z → R functions. Then

P

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
t=1

f(Zt)

∣∣∣∣∣ > ε

)
≤ 2P

(
sup
f∈F

∣∣∣∣∣ 1
N

mN∑
i=1

∑
t∈Hi

f(Z ′
t)

∣∣∣∣∣ > ε

2

)
+ 2mNβkN .

Let Π be a family of partitions of X . Define the cell count m(Π) = maxπ∈Π
|{A ∈ π : A �= ∅}|. For x1:N ∈ XN , let Δ(x1:N , Π) be the number of distinct
partitions (regardless the order) of x1:N that are induced by the elements of Π .
The partitioning number (generalization of shatter-coefficient) Δ∗

N (Π) equals to
max{Δ(x1:N , Π) : x1:N ∈ XN}.

Given a class G of functions on X and a partition family Π , define

G ◦Π =

⎧⎨⎩f =
∑
Aj∈π

gjI{Aj} : π = {Aj} ∈ Π, gj ∈ G

⎫⎬⎭ .

We quote here a result of Nobel (with any domain X instead of Rs and with min-
imised premise):

Proposition 4 (Nobel [9] Proposition 1). Let Π be any partition family with
m(Π) < ∞, G be a class of functions on X , x1:N ∈ XN . Let φN (·) be such that
for any ε > 0, the empirical ε-covering numbers of G on all subsets of the multiset
[x1, . . . , XN ] are majorized by φN (ε). Then, for any ε > 0,

N1(ε,G ◦Π,x1:N ) ≤ Δ(x1:N , Π)φN (ε)m(Π) ≤ Δ∗
N (Π)φN (ε)m(Π).

We extend this result to a refined bound in terms of the covering number of the
partition family instead of its partitioning number:

Lemma 5. LetΠ,G, x1:N , φN be as in Lemma 4. For π = {Aj}, π′ = {A′
j} ∈ Π,

introduce the metric d(π, π′) = dx1:N (π, π′) = μN (π� π′), where

π� π′ = {x ∈ X : ∃j �= j′;x ∈ Aj ∩A′
j′} =

m(Π)⋃
j=1

Aj �A′
j ,
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and μN is the empirical measure corresponding to x1:N defined by μN(A) =
1
N

∑N
i=1 I{xi∈A} (hereA is any measurable subset ofX ). For every ε > 0,α ∈ (0, 1)

N1(ε,G ◦Π,x1:N ) ≤ N
( αε

2K
,Π, dx1:N

)
φN ((1− α)ε)m(Π).

Lemma 5 is used by the following lemma:

Lemma 6. Let F be a class of uniformly bounded functions on X (∀f ∈ F : |f | ≤
K), x1:N ∈ XN , φN be such that the ε-empirical covering numbers of F on all
subsets of the multiset [x1, . . . , xN ] are majorized by φN (ε). Let G1

2 denote the class
of indicator functions I{f1(x)≥f2(x)} : X → {0, 1} for any f1, f2 ∈ F .Then for every
ε > 0,

N (ε,FL ×FL, x1:N ) ≤ N1

(
ε

2L(L− 1)K
,G1

2 , x
1:N

)L(L−1)

φN (ε/2)L,

where the distance of (f,Q′) and (g, Q̃′) ∈ FL×FL in the left-hand-side covering
number is defined in the unusual way

lx1:N ((f,Q′), (g, Q̃′)) =
1
N

N∑
t=1

|f(xt, π̂(xt;Q′))− g(xt, π̂(xt; Q̃′))|.

Finally, see Haussler [10] (and Anthony and Bartlett [7, Theorem 18.4]) for

Proposition 7 (Haussler [10] Corollary 3). For any set X , any points x1:N ∈
XN , any class F of functions on X taking values in [0,K] with pseudo-dimension
VF+ <∞, and any ε > 0, N1(ε,F , x1:N ) ≤ e(VF+ + 1)

(2eK
ε

)VF+ .

The following is the main result of this section:

Lemma 8. Let Assumption 1,2, and 3 hold and let Qmax ≥ R̂max/(1− γ). Let Q′

be a real-valued random function overX×A,Q′(ω) ∈ FL (possibly not independent
from the sample path). Let π̂ = π̂(·;Q′) be a policy that is greedy w.r.t. to Q′. Let
f ′ be defined by f ′ = argminf∈FL suph∈FL L̂N (f, h; π̂). Fix ε, δ > 0 and assume
that FL ε/2-approximates the fixed point of T π̂(·;Q′):

Ẽ(F) def= sup
Q′∈FL

inf
f∈FL

∥∥∥f − T π̂(·;Q′)f
∥∥∥
ν
≤ ε/2 (4)

and that FL is ε/2-invariant w.r.t. T :

E(F) def= sup
f,Q′∈FL

inf
h∈FL

∥∥∥h− T π̂(·;Q′)f
∥∥∥
ν
≤ ε/2. (5)

If N = poly(L,Qmax, 1/b, 1/π0, VF+ , VC2 , 1/ε, log(1/δ)), where the degree of the
polynomial is O(1 + 1/κ), then P

(∥∥f ′ − T π̂f ′∥∥
ν
> ε

)
≤ δ.
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Proof. (Sketch) We have to show that f ′ is close to the corresponding T π̂(·;Q′)f ′

with high probability, noting that Q′ may not be independent from the sample

path. By (4), it suffices to show that L(f ′;Q′) def=
∥∥∥f ′ − T π̂(·;Q′)f ′

∥∥∥2

ν
is close to

inff∈FL L(f ;Q′). Denote the difference of these two quantities byΔ(f ′, Q′). Note
that Δ(f ′, Q′) is increased by taking its supremum over Q′. By (5), L(f ;Q′) and
L̄(f ;Q′) def= suph∈FL L(f, h; π̂(·;Q′)), as functions of f andQ′, are uniformly close
to each other. This reduces the problem to bounding supQ′(L̄(f ′;Q′) −
inff∈FL L̄(f ;Q′)). Since E

[
L̂N(f, h; π̂)

]
= L(f, h; π̂) holds for any f, h ∈ FL

and policy π̂, by defining a suitable error criterion lf,h,Q′(x, a, r, y) in accordance
with (1), the problem can be reduced to a usual uniform deviation problem over
LF = {lf,h,Q′ : f, h,Q′ ∈ FL}. Since the samples are correlated, Pollard’s tail
inequality cannot be used directly. Instead, we use the method of Yu [8]: We split
the samples into mN pairs of blocks {(Hi, Ti)|i = 1, . . . ,mN}, each block com-
promised of kN samples (for simplicity we assume N = 2mNkN ) and then use
Lemma 2 with Z = X ×A×R×X , F = LF . The covering numbers of LF can be
bounded by those of FL and FL ×FL, where in the latter the distance is defined
as in Lemma 6. Next we apply Lemma 6 and then Proposition 7 to bound the
resulting three covering numbers in terms of VF+ and VC2 (note that the pseudo-
dimension ofFL cannot exceed LVF+). Defining kN = N

1
1+κ +1,mN = N/(2kN)

and substituting βm ≤ e−bm
κ

, we get the desired polynomial bound on the num-
ber of samples after some tedious calculations. 
�

4.2 Propagation of Errors

Let Qk denote the kth iterate of (some) approximate policy iteration algorithm
where the next iterates are computed by means of some Bellman-residual mini-
mization procedure. Let πk be the kth policy. Our aim here is to relate the per-
formance of the policy πK to the magnitude of the Bellman-residuals εk

def= Qk −
T πkQk, 0 ≤ k < K.

Lemma 9. Let p ≥ 1. For any η > 0, there existsK that is linear in log(1/η) and
logRmax such that, if the Lp,ν norm of the Bellman-residuals are bounded by some
constant ε, i.e. ‖εk‖p,ν ≤ ε for all 0 ≤ k < K, then

‖Q∗ −QπK‖∞ ≤
2γ

(1− γ)2 [C(ν)]1/pε + η (6)

and
‖Q∗ −QπK‖p,ρ ≤

2γ
(1− γ)2 [C(ρ, ν)]1/pε + η. (7)

Proof. We have C(ν) ≥ C(ρ, ν) for any ρ. Thus, if the bound (7) holds for any ρ,
choosing ρ to be a Dirac at each state implies that (6) also holds. Therefore, we
only need to prove (7).

Let Ek = P πk+1(I − γP πk+1)−1 − P π∗
(I − γP πk)−1. Closely following the

proof of [5][Lemma 4], we get Q∗ −Qπk+1 ≤ γP π∗
(Q∗ −Qπk) + γEkεk. Thus, by
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induction,Q∗−QπK ≤ γ
∑K−1

k=0 (γP π
∗
)K−k−1Ekεk+ηKwith ηK = (γP π

∗
)K(Q∗−

Qπ0). Hence, ‖ηK‖∞ ≤ 2Qmaxγ
K .

Now, let Fk = P πk+1(I − γP πk+1)−1 + P π
∗
(I − γP πk)−1. By taking the ab-

solute value pointwise in the above bound on Q∗ − QπK we get Q∗ − QπK ≤
γ
∑K−1

k=0 (γP π
∗
)K−k−1Fk|εk|+(γP π

∗
)K |Q∗−Qπ0 |. From this, using the fact that

Q∗ −Qπ0 ≤ 2
1−γRmax1, we arrive at

|Q∗ −QπK | ≤ 2γ(1− γK+1)
(1 − γ)2

[
K−1∑
k=0

αkAk|εk|+ αKAKRmax1

]
.

Here we introduced the positive coefficients αk = (1−γ)γK−k−1

1−γK+1 , for 0 ≤ k <

K, and αK = (1−γ)γK

1−γK+1 , and the operators Ak = 1−γ
2 (P π

∗
)K−k−1Fk, for 0 ≤ k <

K, AK = (P π
∗
)K . Note that

∑K
k=0 αk = 1 and the operators Ak are stochastic

when considered as a right-linear operators: for any (x, a) ∈ X × A, λ(k)
(x,a)(B) =

(AkχB)(x, a) is a probability measure and (AkQ)(x, a) =
∫
λ

(k)
(x,a)(dy)Q(y, π(y)).

Here χB : B(X ×A)→ [0, 1] is defined by χB(x, a) = I{x∈B}.

Let λK =
[

2γ(1−γK+1)
(1−γ)2

]p
. Now, by using two times Jensen’s inequality we get

‖Q∗ −QπK‖pp,ρ =
1
L

∑
a∈A

∫
ρ(dx)|Q∗(x, a)−QπK (x, a)|p

≤ λKρ
[
K−1∑
k=0

αkAk|εk|p + αKAK(Rmax)p1

]
.

From the definition of the coefficients c(m), ρAk ≤ (1−γ)
∑

m≥0 γ
mc(m+K−k)ν

and we deduce

‖Q∗−QπK‖pp,ρ≤λK

⎡⎣(1−γ)K−1∑
k=0

αk
∑
m≥0

γmc(m+K − k) ‖εk‖pp,ν + αK(Rmax)p

⎤⎦.
Replace αk by their values, and from the definition ofC(ρ, ν), and since ‖εk‖p,ν

≤ ε, we have

‖Q∗ −QπK‖pp,ρ ≤ λK
[

1
1− γK+1C(ρ, ν)εp +

(1− γ)γK
1− γK+1 (Rmax)p

]
.

Thus there isK linear in log(1/η) and logRmax, e.g. such that γK <
[

(1−γ)2

2γRmax
η
]p

so that the second term is bounded by ηp. Thus, ‖Q∗ −QπK‖pp,ρ ≤[
2γ

(1−γ)2

]p
C(ρ, ν)εp + ηp and hence ‖Q∗ −QπK‖p,ρ ≤

2γ
(1−γ)2 [C(ρ, ν)]1/pε+ η, fin-

ishing the proof. 
�
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4.3 Proof of the Main Result

Proof. Consider the kth iteration of the algorithm. Let εk = Qk − T πkQk. By
the reasoning used in the proof of Lemma 9, we only need to prove the second
part of the result. Since 0 < γ < 1, there exists K that is linear in log(1/ε) and

logRmax such that γK <
[

(1−γ)2

2γRmax

ε
2

]p
. Now, from Lemma 8, there existsN that is

poly(L,Qmax, 1/b, 1/π0, VF+ , VC2 , 1/ε, log(1/δ)), such that, for each 0 ≤ k < K,
P
(
‖εk‖p,ν >

(1−γ)2

2C1/p
ε
2

)
< δ/K. Thus, P

(
‖εk‖p,ν >

(1−γ)2

2C1/p
ε
2 , for all 0 ≤ k < K

)
< δ. Applying Lemma 9 with η = ε/2 ends the proof. 
�

5 Discussion and Related Work

The idea of using value function approximation goes back to the early days of
dynamic programming [11, 12]. With the recent growth of interest in reinforce-
ment learning, work on value function approximation methods flourished [13, 14].
Recent theoretical results mostly concern supremum-norm approximation errors
[15, 16], where the main condition on the way intermediate iterates are mapped
(projected) to the function space is that the corresponding operator,Π , must be a
non-expansion. Practical examples whenΠ satisfies the said property include cer-
tain kernel-based methods, see e.g. [15, 16, 17, 18]. However, the growth-restriction
imposed on Π rules out many popular algorithms, such as regression-based ap-
proaches that were found, however, to behave well in practice (e.g. [19, 20, 1]). The
need for analysing the behaviour of such algorithms provided the basic motivation
for this work.

One of the main novelties of our paper is that we introduced a modified Bellman-
residual that guarantees asymptotic consistency even with a single sample path.

The closest to the present work is the paper of Szepesvári and Munos [21]. How-
ever, as opposed to paper [21], here we dealt with a fitted policy iteration algorithm
and unlike previously, we worked with dependent samples. The technique used to
deal with dependent samples was to introduce (strong) mixing conditions on the
trajectory and extending Pollard’s inequality along the lines of Meir [22].

Also, the bounds developed in Section 4.2 are closely related to those developed
in [5]. However, there only the caseC(ν) <∞ was considered, whilst in this paper
the analysis was extended to the significantly weaker condition C(ν, ρ) <∞. Al-
though in [21] the authors considered a similar condition, there the propagation
of the approximation errors was considered only in a value iteration context. Note
that approximate value iteration per se is not suitable for learning from a single
trajectory since approximate value iteration requires at least one successor state
sample per action per sampled state.

That we had to work with fitted policy iteration significantly added to the com-
plexity of the analysis, as the policy to be evaluated at stage k became dependent
on the whole set of samples, introducing non-trivial correlations between succes-
sive approximants. In order to show that these correlations do not spoil conver-
gence, we had to introduce problem-specific capacity conditions on the function
class involved. Although these constraints are satisfied by many popular function
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classes (e.g., regression trees, neural networks, etc.), when violated unstable be-
haviour may arise (i.e., increasing the sample size does not improves the perfor-
mance).

Note that the conditions that dictate that F should be rich (namely, that F
should be “almost invariant” under the family of operators T = {T π̂(·;Q) : Q ∈ F}
and that F should be close to the set of fixed points of T ) are non-trivial to guar-
antee. One possibility is to put smoothness constraints on the transition dynamics
and the immediate rewards. It is important to note, however, that both conditions
are defined with respect to weighted L2-norm. This is much less restrictive than if
supremum-norm were used here. This observation suggests that one should prob-
ably look at frequency domain representations of systems in order to guarantee
these properties. However, this is well out of the scope of the present work.

6 Conclusions

We have considered fitted policy iteration with Bellman-residual minimization.
We modified the objective function to allow the procedure to work with a
single (but long) trajectory. Our results show that the number of samples needed
to achieve a small approximation error depend polynomially on the pseudo-
dimension of the function class used in the empirical loss minimization step and
the smoothness of the dynamics of the system. Future work should concern the
evaluation of the proposed procedure in practice. The theoretical results can be
extended in many directions: Continuous actions spaces will require substantial
additional work as the present analysis relies crucially on the finiteness of the ac-
tion set. The exploration of interplay between the MDPs dynamics and the ap-
proximability of the fixed points and the invariance of function sets with respect
to policy evaluation operators also requires substantial further work.
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Abstract. We are interested in supervised ranking with the following
twist: our goal is to design algorithms that perform especially well near
the top of the ranked list, and are only required to perform sufficiently
well on the rest of the list. Towards this goal, we provide a general form
of convex objective that gives high-scoring examples more importance.
This “push” near the top of the list can be chosen to be arbitrarily large
or small. We choose p-norms to provide a specific type of push; as p
becomes large, the algorithm concentrates harder near the top of the
list. We derive a generalization bound based on the p-norm objective.
We then derive a corresponding boosting-style algorithm, and illustrate
the usefulness of the algorithm through experiments on UCI data. We
prove that the minimizer of the objective is unique in a specific sense.

1 Introduction

The problem of supervised ranking is useful in many application domains, e.g.,
document processing, customer service routing, and drug discovery. Many of
these domains require the construction of a ranked list, yet often, only the top
portion of the list is used in practice. For instance, in the setting of supervised
movie ranking, the learning algorithm provides the user (an avid movie-goer)
with a ranked list of movies based on preference data. We expect the user to
examine the top portion of the list as a recommendation. It is possible that she
never looks at the rest of the list, or examines it only briefly. Thus, we wish to
make sure that the top portion of the list is correctly constructed. This is the
problem on which we concentrate.

Naturally, the design of these rankings requires a tradeoff. Given the option,
we would correct a misrank towards the top of the list at the expense of possibly
making a new misrank towards the bottom. This type of sacrifice will have to be
made; assuming a learning machine with finite capacity, the best total ranking
will not often correspond to the best ranking near the top of the list. The trick is
to design an algorithm that knows when a misrank occurs at the top and forces
us to pay a high price for it, relative to other misranks.

We have developed a somewhat general and fairly flexible technique for solving
these types of problems. In our framework, a specific price is assigned for each
misrank; the misranks at the top are given higher prices, and the ones towards
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the bottom are less expensive. Thus, the choice of these prices determines how
much emphasis (or “push”) is placed closer to the top. We may only desire to
incorporate a small push; it is possible, for example, that our movie-goer has
seen all of the movies near the top of the list and needs to look farther down in
order to find a movie she has not seen. It is important that the rest of the list be
sufficiently well-constructed in this case. The desired size of the push might be
anywhere between very large and very small depending on the application. There
is simply a tradeoff between the size of the push and the sacrifice made farther
down the list. As mentioned, some sacrifice must always be made since, as usual,
we take our algorithm to have limited capacity in order to enable generalization
ability. Using the form of ranking objective introduced in Section 2, one can
make the prices very high for misranking near the top (a big push), moderately
high (a little push), or somewhere in between.

The algorithms we develop are motivated in the usual setting of supervised
bipartite ranking. In this setting, each training instance has a label of +1 or -1,
i.e., each movie is either a good movie or a bad movie. Here, we want to push the
bad movies away from the top of the list where the good movies are desired. The
quality of the ranking can be determined by examining the Receiver Operator
Characteristic (ROC) curve. In the setting where all misranks are equally priced
(no push), the AUC (Area Under the ROC Curve) is precisely a constant times
one minus the total standard misranking error (see [4]). However, the quantity we
measure in our problem is different. We care mostly about the leftmost portion
of the ROC curve for this problem, corresponding to the top of the ranked list.
This is precisely the sacrifice we must make; in order make the leftmost portion
of the curve higher, we must sacrifice on the total area underneath the curve.

This problem is highly asymmetric with respect to the positive and negative
classes. It is interesting to consider generalization bounds for such an asymmet-
ric problem; we should not rely on a symmetrization step which requires natural
symmetry. The generalization bound presented here holds even under such asym-
metric conditions. The measure of complexity is the L∞ covering number.

Recently, there has been a large amount of interest in the supervised ranking
problem, and especially in the bipartite problem. Freund et al. have developed
the RankBoost algorithm for the general setting [8]. We inherit the setup of
RankBoost, since our algorithms will also be boosting-style algorithms. Oddly,
there is a recent theoretical proof that Freund and Schapire’s classification algo-
rithm called AdaBoost [9] performs just as well for bipartite ranking as Rank-
Boost; i.e., both algorithms achieve equally good values of the AUC [13, 14].
There are a number of algorithms designed to maximize variations of the AUC,
for instance Mozer et al. [11] aim to manipulate specific points of the ROC
curve in order to study “churn” in the telecommunications industry. Perhaps
the closest algorithm to ours is the one proposed by Dekel et al. [6], who have
used a similar form of objective with different specifics for the score to achieve
a different goal, namely to rank labels. The work of Yan et al. [17] contains a
brief mention of a method that optimizes the lower left corner of the ROC curve
with a multi-layer perceptron approach that is highly non-convex. There is much
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recent work on generalization bounds for supervised ranking [8, 2, 1, 16, 13], tho-
ugh only the covering number bounds [13] can be naturally adapted to this
setting due to the asymmetry of the problem.

In Section 2, we present a general form of objective function, allowing us
to incorporate a push near the top of the ranked list. One must choose a loss
function � and a convex price function g to specify the objective function. If the
price function is steep (e.g., the power law g(r) = rp), then the push near the top
is very strong. In Section 3, we provide a generalization bound for the objective
function, for the “0-1” loss and the power law price function. In Section 4, we
derive the “P-Norm Push” Algorithm, which is a coordinate descent algorithm
based on the objective function. In Section 5, we prove that the minimizer of the
algorithm’s objective function is unique in a specific sense. This result is based
on conjugate duality and the theory of Bregman distances [7], and is analogous
to the result of Collins et al. [3] for AdaBoost. In Section 6, we demonstrate the
P-Norm Push algorithm on UCI data. In Section 7, we use the generalization
bound of Section 3 to indicate the limit of the algorithm’s problem domain; we
aim to find when the algorithm should (and should not) be used.

2 A General Objective for Ranking with a Push

The set of instances with positive labels is {xi}i=1,...,I , where xi ∈ X . The
negative instances are {x̃k}k=1,...,K , where x̃k ∈ X . We always use i for the index
over positive instances and k over negative instances. Our goal is to construct
a ranking function f : X → R, f ∈ F that gives a score to each instance
in X . Unlike in classification, we do not care about the exact values of each
instance, only the relative values; for positive-negative pair xi, x̃k, we do not
care if f(xi) = .4 and f(x̃k) = .1, but we do care that f(xi) > f(x̃k), or that
f(xi)− f(x̃k) = .3.

Let us now derive the general form of objective function as promised in the
introduction. For a particular negative example, we wish to reduce its Height,
i.e., the number of positive examples that are ranked beneath it. That is, for
each k, we wish to make Height(k) small, where:

Height(k) :=
I∑
i=1

1[f(xi)≤f(x̃k)].

Let us now add the push. We want to concentrate harder on negative examples
with large Height’s; we want to push these examples down from the top. Thus,
for convex, non-negative, monotonically increasing function g : R+ → R+, we
place the price g(Height(k)) on negative example k. If g is very steep, we pay
an extremely large price for a high-ranked negative example. Examples of steep
functions include g(r) = exp(r) and g(r) = rp for p large; the latter price
function will be used for the P-Norm Push. Thus we have derived an objective
to minimize:

Rg,1(f) :=
K∑
k=1

g

(
I∑
i=1

1[f(xi)≤f(x̃k)]

)
.
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If Rg,1(f) is small, then no negative example is ranked very highly; this is exactly
our design. It is hard to minimize Rg,1 directly due to the 0-1 loss in the inner
sum. Instead, we minimize an upper bound, Rg,�, which incorporates � : R →
R+, a convex, non-negative, monotonically decreasing upper bound on the 0-1
loss. Popular loss functions include the exponential, logistic, and hinge losses.
We can now define the general form of objective:

Rg,�(f) :=
K∑
k=1

g

(
I∑
i=1

�(f(xi)− f(x̃k))

)
.

To construct a specific version of this objective, one chooses the loss �, the price
function g, and an appropriate hypothesis space F over which to minimize Rg,�.

For the moment, assume we care only about the very top of the list, that is,
we wish to push the most offending negative example as far down the list as
possible. Equivalently, we wish to minimize Rmax, the number of positives below
the highest ranked negative example: Rmax(f) := maxk Height(k). It is hard to
minimize Rmax(f) directly, but Rg,� can give us some control over this quantity.
Namely, the following relationships exist between Rg,�, Rg,1 and Rmax.

Theorem 1

Kg

(
1
K
Rmax(f)

)
≤ Rg,1(f) ≤ Rg,�(f) and Rg,1(f) ≤ Kg(Rmax(f)).

The proof uses Jensen’s inequality for convex function g, monotonicity of g, and
the fact that � is an upper bound on the 0-1 loss. Theorem 1 suggests that Rg,�
is a reasonable quantity to minimize in order to incorporate a push at the top,
e.g., in order to diminish Rmax. If g is especially steep, e.g., g(r) = rp for p
large, then g−1(

∑K
k=1 g(rk)) ≈ maxk rk, i.e., g−1(Rg,1) ≈ Rmax. From now on,

we specifically consider the power law (or “p-norm”) objectives. Since the user
controls p, the amount of push can be specified to match the application.

3 A Generalization Bound for the p-Norm Objective

This bound is an adaptation of previous work [14, 13] inspired by works of
Koltchinskii and Panchenko [10] and Cucker and Smale [5]. Assume that the
positive instances {xi ∈ X}i=1,...,I are chosen independently and at random
(iid) from a fixed but unknown probability distribution D+ on X . The negative
instances {x̃k ∈ X}k=1,...,K are chosen iid from D−. The notation x ∼ D means
x is chosen randomly according to D. The notation S+ ∼ DI+ means each of the
I elements of the training set S+ are chosen iid according to D+. Similarly for
S− ∼ DK− . We now define the “true” objective function for which our algorithm
has been designed. Our goal is to make this quantity small:

RpD+D−1f :=
(
Ex−∼D−(Ex+∼D+1[f(x+)−f(x−)≤0])p

)1/p
= ‖Px+∼D+(f(x+)− f(x−) ≤ 0|x−)‖Lp(X ,D−) .
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The empirical loss associated with RpD+D−1f is:

RpS+,S−1f :=

(
1
K

K∑
k=1

(
1
I

I∑
i=1

1[f(xi)−f(x̃k)≤0]

)p)1/p

.

Here, for a particular x̃k, R
p
S+,S−1f takes into account the average number of

positive examples that have scores below x̃k. It is a monotonic function of Rg,1.
To make this notion more general, consider the average number of positive ex-
amples that have scores close to or below x̃k, namely:

RpS+,S−1θf :=

(
1
K

K∑
k=1

(
1
I

I∑
i=1

1[f(xi)−f(x̃k)≤θ]

)p)1/p

.

This terminology incorporates the “margin” value θ. Now we can state our gen-
eralization bound:

Theorem 2. For all ε > 0, θ > 0, and f ∈ F :

PS+∼DI
+,S−∼DK

−

[
RpD+D−1f ≤ RpS+,S−1θf + ε

]
≥ 1− 2N

(
F , εθ

8

)[
exp

[
−2

( ε

4

)2p
K

]
+ exp

[
− ε2

8
I

]]
.

Here N (F , ε) is the L∞ covering number for F . The theorem says that if I and
K are large, then with high probability, the true error RpD+D−1f is not too much
more than the empirical error RpS+,S−1θf . The proof is in Appendix A.

As noted, this is a generalization bound for a compulsorily asymmetric prob-
lem. It is important to note the implications of this bound for scalability. Since
we are concentrating on the negative examples near the top of the ranked list
(corresponding to a small chunk of negative input space), we must require more
negative examples to achieve high accuracy, as we discuss in Section 7.

Theorem 2 provides a theoretical justification for our choice of objective. Let
us now write an algorithm for minimizing that objective.

4 A Boosting-Style Algorithm

We choose a specific form for Rg,� by specifying � as the exponential loss, �(r) =
exp(−r). One could easily choose another loss; we chose the exponential loss in
order to compare with RankBoost, which corresponds to the p = 1 case for our
price function g(r) = rp. Our family of objective functions is thus:

Fp(f) :=
K∑
k=1

(
I∑
i=1

exp[−f(xi) + f(x̃k)]

)p

.
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Note that Fp is not normalized to approximate RpD+D−1f , but this can easily be
accomplished via 1

I(K)1/p (Fp(f))1/p, which is monotonically related to Fp(f).
Now we describe our boosting-style approach. The hypothesis space F is the

class of linear combinations of “weak” rankers {hj}j=1,...,n, where hj : X → [0, 1].
The function f is constructed as: f =

∑
j λjhj , where λ ∈ Rn. At iteration t, the

coefficient vector (denoted by λt) is updated. To describe how each individual
weak ranker j ranks each positive-negative pair i, k, we use a structure M defined
element-wise by: Mikj := hj(xi)− hj(x̃k). Thus, Mikj ∈ [−1, 1]. To define right
multiplication, we write the product element-wise as: (Mλ)ik :=

∑n
j=1Mikjλj =∑n

j=1 λjhj(xi)−λjhj(x̃k) for λ ∈ Rn. Thus, �(f(xi)−f(x̃k)) can now be written
as exp(−Mλ)ik. By construction, Fp is convex in λ (but not strictly convex).

We now derive a boosting-style coordinate descent algorithm for minimiz-
ing Fp as a function of λ, notating Fp now as Fp(λ). We start with the ob-

jective at iteration t: Fp(λt) :=
∑K

k=1

(∑I
i=1 exp[(−Mλt)ik]

)p
. We then com-

pute the variational derivative along each “direction”, and choose weak ranker
jt to have largest variational derivative. Define the vector qt on pairs i, k as:
qt,ik := exp[(−Mλt)ik], and dt as: dt,ik := qt,ik/

∑
ik qt,ik. Let the vector ej be

1 in position j and 0 elsewhere. Then jt becomes:

jt∈ argmax
j

[
−dFp(λt + αej)

dα

∣∣∣
α=0

]
=argmax

j

⎡⎣ K∑
k=1

⎡⎣( I∑
i=1

dt,ik

)p−1 I∑
i=1

dt,ikMikj

⎤⎦⎤⎦.
To update the coefficient of weak ranker jt, we now perform a linesearch for the
minimum of Fp along the jtht direction. The distance to travel in the jtht direction,

denoted αt, solves 0 = dFp(λt+αejt )
dα

∣∣∣
αt

, or incorporating normalization,

0 =
K∑
k=1

⎡⎣( I∑
i=1

dt,ik exp[−αtMikjt ]

)p−1 ( I∑
i=1

Mikjtdt,ik exp[−αtMikjt ]

)⎤⎦ . (1)

The value of αt can be computed analytically in special cases, but more generally,
we use a linesearch to solve for αt. The full algorithm is shown in Figure 1.

5 Uniqueness of the Minimizer

One might hope that a function f =
∑

j λjhj (or limit of functions) minimizing
our objective is unique in some sense. Since M is not required to be invertible
(and often is not), a minimizing λ may not be unique. Furthermore, elements
of λt and Mλt may approach ±∞ or ∞ respectively, so it would seem difficult
to prove (or even define) uniqueness. It is useful to consider the set Q′ := {q′ ∈
RIK+ |q′ik = e−(Mλ)ik for some λ ∈ Rn}; with the help of convex analysis, we
show that our objective function yields a unique minimizer in the closure of Q′.
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1. Input: {xi}i=1,...,I positive examples, {x̃k}k=1,...,K negative examples,
{hj}j=1,...,n weak classifiers, tmax number of iterations, p power.

2. Initialize: λ1,j = 0 for j = 1, ..., n, d1,ik = 1/IK for i = 1, ..., I , k = 1, ..., K
Mikj = hj(xi) − hj(x̃k) for all i, k, j

3. Loop for t = 1, ..., tmax

(a) jt ∈ argmaxj
K
k=1

I
i=1 dt,ik

p−1
I
i=1 dt,ikMikj .

(b) Find a value αt that solves (1). That is, perform a linesearch for αt.
(c) λt+1 = λt + αtejt , where ejt is 1 in position jt and 0 elsewhere.
(d) zt = ik dt,ik exp[−αtMikjt ]
(e) dt+1,ik = dt,ik exp[−αtMikjt ]/zt for i = 1, ..., I , k = 1, ..., K

4. Output: λtmax

Fig. 1. Pseudocode for the “P-Norm Push Algorithm”

Theorem 3. Define Q′ := {q′ ∈ RIK+ |q′ik = e−(Mλ)ik for some λ ∈ Rn} and
define closure(Q′) as the closure of Q′ in RIK . Then, q′∗ ∈ closure(Q′) is
uniquely determined by:

q′∗ = argminq′∈closure(Q′)

∑
k

(∑
i

q′ik

)p

.

Our uniqueness proof (in Appendix B) depends mainly on the theory of convex
duality for a class of Bregman distances, as defined by Della Pietra et al. [7].
This proof is inspired by Collins et al. [3] who have proved uniqueness of this
type for AdaBoost. In the case of AdaBoost, the primal optimization problem
corresponds to a minimization over relative entropy. In our case, the primal is
not a common function.

6 Experiments

We will now show the effect of adding a push by examining the leftmost portion
of the ROC curve. Our goal is to illustrate the effect of the price g on the quality
of the solution; the choice of g as a power law allows us to explore this effect.
We hope that Rmax, or more generally, the leftmost portion of the ROC curve,
increases steadily with p. Our demonstration shows this firmly; Rmax does often
increase (fairly dramatically) with p, for both training and testing.

Data for these experiments were obtained from the UCI machine learning
repository [15]. Settings chosen were: pima-indians-diabetes with threshold
features (Figure 2), wdbc - Wisconsin Breast Cancer (Figure 3) and hous-
ing (Figure 4). The (normalized) features themselves were used as the weak
rankers. Results from other datasets can be found in the longer version of this
paper [12]. The linesearch for αt was performed using matlab’s ‘fminunc’ sub-
routine. The total number of iterations, tmax, was fixed at 200. In agreement
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Fig. 2. pima-indians-diabetes with threshold features: 4 threshold features were
obtained from each real valued feature, via hthresh(x) = 1 iff h(x) > thresh, and
hthresh(x) = 0 otherwise. Thresholds used were chosen so that no two threshold features
would be equivalent with respect to the training data. Of 768 examples, 300 randomly
chosen examples were used for training, and the rest for testing. (a) Leftmost portion
of scaled ROC curve for training, up to and including the crossover point where the
sacrifice begins. (b) Full scaled ROC training curve. (c) Leftmost portion of scaled
ROC curve for testing. (d) Full scaled ROC testing curve.

with our algorithm’s derivation, a larger push (p large) causes the algorithm
to perform better near the top of the ranked list. As discussed, this ability to
correct the top of the list is not without sacrifice; we do sacrifice the ranks of
items farther down on the list, but we have made this choice on purpose. We
believe it is important to show this sacrifice explicitly, thus full ROC curves
have been included for all experiments. The housing setting yields the clearest
view of the effect of the algorithm. The trend in Rmax from p = 1 to p = 64
is clearly present and close to monotonic. There is a distinct crossover region,
showing exactly what parts of the ROC curve are gained and what parts are
sacrificed.

7 Limitations

We have included this section in order to more explicitly describe the prob-
lem domain for which the algorithm is useful. As no one algorithm is the best
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Fig. 3. wdbc (Wisconsin Breast Cancer): 569 total examples, 200 used for train-
ing. To ensure the algorithm would not achieve a separable solution, only the first
six features (columns 3-8) were used. All features were normalized to [0, 1]. (a) Left-
most portion of scaled ROC curve for training (b) Full scaled ROC training curve. (c)
Leftmost portion of scaled ROC curve for testing. (d) Full scaled ROC testing curve.

for every problem setting, we wish to make as clear as possible the settings
in which our algorithm is meant to succeed, and in which domains it is not
meant to be used. The most definitive boundary of the problem domain in-
volves the sample size. The generalization bound of Theorem 2 indicates that
for larger values of p, many more examples are needed in order to allow gen-
eralization ability; we are concentrating on a smaller region of the probability
distribution, so this is natural. When the sample size is too small, the algorithm
may still be able to generalize for smaller values of p, but for larger values,
we cannot expect the training curve to represent the testing curve. For the
settings shown in Section 6, we have used a few hundred examples per exper-
iment, which is enough to allow the algorithm to generalize. In contrast, we
now present a setting that compliments our theoretical prediction; the setting is
the pima-indian-diabetes dataset with normalized real-valued features, but only
50 training examples. Above a certain p value, the performance degrades as p
increases as shown in Figure 5. This shows (what we believe is) the main cau-
tionary note to experimentalists when using this algorithm, and for that matter,
when using any other algorithm that concentrates on a small part of the input
space.
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Fig. 4. housing (Boston Housing): 506 total examples, 300 used for training, 13
(normalized) features. The fourth column (which is binary) was used as the label y. The
label specifies whether a tract bounds the Charles River. Since there is some correlation
between the label and the features, it is reasonable for our learning algorithm to predict
whether a tract bounds the river. This data set is skewed; there are significantly fewer
positive examples than negative examples. (a) Full scaled ROC training curve. (b)
Leftmost portion of scaled ROC curve for testing. (c) Full scaled ROC testing curve.

8 Discussion and Open Problems

In Section 6, we have shown that an increase in p tends to increase Rmax, but
how severe is the sacrifice that we make farther down the ranked list? All of the
full ROC training curves in Section 6 (with perhaps the exception of housing)
do not show any significant sacrifice, even between the p = 1 and p = 64 curves.
To explain this observation, recall that we are working with learning machines
of very limited capacity. The number of real valued features has not exceeded
13, i.e., there is not too much flexibility in the set of solutions that yield good
rankings; the algorithm chooses the best solution from this limited choice. A high
capacity learning machine generally is able to produce a consistent (or nearly
consistent) ranking, so it is a delicate matter to find a dataset and hypothesis
space such that an increase in p causes a dramatic change in the full ROC curve.
It is an open problem to find such a dataset and function space.

Another important direction for future research is the choice of loss function
� and price function g. The choice of loss function is a thoroughly-studied topic,
however, the choice of price function adds a new dimension to this problem.
One appealing possibility is to choose a non-monotonic function for g. The only
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Fig. 5. The pima-indians-diabetes dataset with only 50 training examples. The algo-
rithm is able to generalize for early values of p, but it does not generalize for large
values of p. This underscores the need for a sufficiently large training set for large p
values. (a) Full training ROC curve. (b) Leftmost portion of ROC testing curve. (c)
Full ROC testing curve.

algorithmic requirement is that g be convex. Also, it is possible to use varia-
tions of our basic derivation in Section 2 to derive other specialized objectives.
Of our experiments, the algorithm’s most dramatic effect was arguably seen
on the housing dataset, which is a very uneven dataset. It would be interest-
ing to understand the algorithm’s effect as a function of the unevenness of the
data.

9 Conclusions

We have provided a method for constructing a ranked list where correctness
at the top of the list is most important. Our main contribution is a general
set of convex objective functions determined by a loss � and price function g.
A boosting-style algorithm based on a specific family of these objectives is de-
rived. We have demonstrated the effect of a number of different price functions,
and it is clear, both theoretically and empirically, that a steeper price function
concentrates harder at the top of the list.

Acknowledgements. Thanks to Rob Schapire, Sinan Güntürk, and Eero Si-
moncelli. Funding for this research is provided by an NSF postdoctoral fellowship.
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A Proof of Theorem 2

We follow the outline of Rudin et al. [13]. Define a Lipschitz function φ :
R → R (with Lipschitz constant Lip(φ)). Later we use a piecewise linear φ
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(see [10]), but for now, take 0 ≤ φ(z) ≤ 1 ∀z and φ(z) = 1 for z < 0. Since
φ(z) ≥ 1[z≤0], we have an upper bound on RpD+D−1f , namely, RpD+D−φf :=(
Ex−∼D−(Ex+∼D+φ(f(x+)− f(x−)))p

)1/p
. The empirical error is thus:

RpS+,S−φf :=

(
1
K

K∑
k=1

(
1
I

I∑
i=1

φ(f(xi)− f(x̃k))

)p)1/p

.

First, we upper bound RpD+D−φf by two terms: the empirical error term
RpS+,S−φf , and a term characterizing the deviation of RpS+,S−φf from RpD+D−φf
uniformly:

RpD+D−1f ≤ RpD+D−φf ≤ sup
f̄∈F

(RpD+D−φf̄ −R
p
S+,S−φf̄ ) +RpS+,S−φf .

The proof involves an upper bound on the first term. Let L(f) := RpD+D−φf −
RpS+,S−φf . The following lemma is true for every training set S:

Lemma 1. For any two functions f1, f2∈ L∞(X ), L(f1)−L(f2) ≤ 4Lip(φ)||f1−
f2||∞.

The proof uses Minkowski’s inequality twice and some algebraic manipulation.
The following step is due to Cucker and Smale [5]. Let �ε := N

(
F , ε

8Lip(φ)

)
,

the covering number of F by L∞ disks of radius ε
8Lip(φ) . Define f1, f2, ..., f�ε to

be the centers of such a cover, i.e., the collection of L∞ disks Br centered at fr
and with radius ε

8Lip(φ) is a cover for F . The center of each disk will act as a
representative for the whole disk. Now, the following lemma is not difficult to
prove (see [5] or [13]).

Lemma 2. For all ε > 0,

PS+∼DI
+,S−∼DK

−
{ sup
f∈Br

L(f) ≥ ε} ≤ PS+∼DI
+,S−∼DK

−
{L(fr) ≥

ε

2
}.

Here is a small lemma from calculus that will be useful in the next proof.

Lemma 3. For a, b ∈ R+, it is true that |a1/p − b1/p| ≤ |a− b|1/p.
We now incorporate the fact that the training set is chosen randomly.

Lemma 4. For all ε1 > 0,

PS+∼DI
+,S−∼DK

−
(L(f) ≥ ε1) ≤ 2 exp

[
−2

(ε1
2

)2p
K

]
+ 2 exp

[
− ε21

2
I

]
.

Proof. Define RpS+,D−φf :=
(
Ex−∼D−

(
1
I

∑I
i=1 φ(f(xi)− f(x−))

)p)1/p
. Now,

PS+∼DI
+,S−∼DK

−
(L(f) ≥ ε1) ≤ PS+∼DI

+

(
RpD+D−φf −R

p
S+,D−φf ≥

ε1
2

)
+ PS+∼DI

+,S−∼DK
−

(
RpS+,D−φf −R

p
S+,S−φf ≥

ε1
2

)
=: term1 + term2. (2)
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Let us bound term2. Since φf is bounded between 0 and 1, the largest possi-
ble change in (RpS+,S−φf )

p that one negative example can cause is 1/K. Thus,
McDiarmid’s Inequality applied to the negative examples implies that for all
ε2 > 0:

PS−∼DK
−

[∣∣∣∣∣Ex−∼D−

(
1
I

I∑
i=1

φ(f(xi)−f(x−))

)p
− 1
K

K∑
k=1

(
1
I

I∑
i=1

φ(f(xi)−f(x̃k))

)p∣∣∣∣∣≥ε2

]

≤ 2 exp
[
−2ε22
K 1

K2

]
= 2 exp

[
−2ε22K

]
. (3)

The following is true for any S+, due to Lemma 3 above:

RpS+,D−φf−R
p
S+,S−φf

≤
∣∣∣∣∣Ex−∼D−

(
1
I

I∑
i=1

φ(f(xi)−f(x−))

)p
− 1
K

K∑
k=1

(
1
I

I∑
i=1

φ(f(xi)−f(x̃k))

)p∣∣∣∣∣
1/p

. (4)

Combining (3) and (4) yields a bound on term2. Namely, for all ε3 > 0:

PS−∼DK
−

(
RpS+,D−φf −R

p
S+,S−φf ≥ ε3

)
≤ 2 exp

[
−2ε2p3 K

]
. (5)

Letting ε3 := ε1/2 finishes our work on term2. Now we consider term1 of (2).

PS+∼DI
+

Rp
D+D−φf − Rp

S+,D−φf ≥ ε1
2

=PS+∼DI
+

Ex+∼D+φ(f(x+)−f(·))
Lp(X ,D−)

− 1
I

I

i=1

φ(f(xi)−f(·))
Lp(X ,D−)

≥ ε1
2

≤ PS+∼DI
+

Ex+∼D+φ(f(x+) − f(·)) − 1
I

I

i=1

φ(f(xi) − f(·))
L∞(X ,D−)

≥ ε1
2

.

We use McDiarmid’s Inequality again to complete the proof. The largest possi-
ble change in 1

I

∑I
i=1 φ(f(xi) − f(x−)) due to the replacement of one positive

example is 1/I. Thus, for all x−,

PS+∼DI
+

Ex+∼D+φ(f(x+)−f(x−))−1
I

I

i=1

φ(f(xi)−f(x−)) ≥ ε1
2

≤ 2 exp − ε21I

2
.

Combining this result with (2) and (5) yields the statement of Lemma 4. 
�

Proof. (Of Theorem 2) First applying the union bound over balls, then applying
Lemma 2, and then Lemma 4 (as in [13]), we find:

P
S+∼DI ,S−∼DK sup

f∈F
L(f) ≥ ε ≤ N F ,

ε

8Lip(φ)
2 exp −2

ε

4

2p

K + 2 exp −
ε2

8
I .
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Now we put everything together. With probability at least:

1−N
(
F , ε

8Lip(φ)

)[
2 exp

[
−2

( ε

4

)2p
K

]
+ 2 exp

[
− ε2

8
I

]]
, we have:

RpD+D−1f ≤ RpS+,S−φf + ε. (6)

Let us choose φ(z) = 1 for z ≤ 0, φ(z) = 0 for z ≥ θ, and linear in between,
with slope −1/θ. Thus, Lip(φ) = 1/θ. Since φ(z) ≤ 1 for z ≤ θ, we have
RpS+,S−φf ≤ RpS+,S−1θf . Incorporating this into equation (6) finishes the proof
of the theorem. 
�

B Proof of Theorem 3

We will use a theorem of Della Pietra et al. [7], and follow their definitions leading
to this theorem. Consider function φ : S ⊂ RIK → [−∞,∞] which is Legendre
(see [7]). The effective domain of φ, denoted Δφ, is the set of points where φ is
finite. The Bregman Distance associated with φ is Bφ : Δφ × int(Δφ) → [0,∞]
defined as:

Bφ(p,q) := φ(p)− φ(q)− < ∇φ(q),p − q > .

(Do not confuse the vector p ∈ Rik with the scalar power p.) The Legendre-
Bregman Conjugate associated with φ is �φ defined as: �φ(q,v) := supp∈Δφ

(<
v,p > −Bφ(p,q)). For fixed q, the Legendre-Bregman conjugate is the con-
vex conjugate of Bφ(·,q). The Legendre-Bregman Projection is the argument of
the sup whenever it is well-defined, Lφ : int(Δφ) × RIK → Δφ, Lφ(q,v) :=
argmaxp∈Δφ

(< v,p > −Bφ(p,q)). Della Pietra et al. [7] showed that equiva-
lently, Lφ(q,v) = (∇φ)−1(∇φ(q) + v).

The domains of the primal and dual problems will be defined with respect
to a matrix M ∈ RIK×n, and vectors q0,p0 ∈ Δφ. The domain of the primal
problem is: P = {p ∈ RIK |pTM = pT0 M}. The domain of the dual problem is:

Q(q0,M) := {q ∈ Δφ|q = Lφ(q0,−Mλ) for some λ ∈ Rn}.

The following theorem will give us uniqueness within the closure of Q.

Theorem 4. (from Proposition 3.2 of [7]) Let φ satisfy the technical conditions
A1.-A5. of [7] and suppose there is p0 and q0 ∈ Δφ with Bφ(p0,q0) <∞. Then
there exists a unique q∗ ∈ Δφ satisfying:

1. q∗ = argminp∈PBφ(p,q0) (primal problem)
2. q∗ = argminq∈closure(Q)Bφ(p0,q) (dual problem)

If we can prove that our objective function fits into this framework, this theorem
will provide uniqueness in the closure of Q, which is related to Q′. Let us now
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do this. Consider function φ : RIK>0 → [−∞,∞], which is Legendre (see [12] for
details):

φ(q) :=
∑
ik

qikg(qik,q), where g(qik,q) := ln
(

qik
p1/p(

∑
i′ qi′k)(p−1)/p

)
.

Reducing carefully, one can show: Lφ(q,v)ik = evikqik (
∑

i′ e
vi′kqi′k)

(p−1)

1
( i′ qi′k)(p−1) . Choosing q0 to be constant, q0ik = q0 for all i, k, we can now
obtain Q:

Q(q0,M)=

⎧⎨⎩q∈Δφ

∣∣∣q=e−(Mλ)ik

(∑
i′
e−(Mλ)i′k

)(p−1)
q0

I(p−1) for someλ∈Rn
⎫⎬⎭.

In order to make the last fraction 1, let q0 = I(p−1). The domain for the primal
problem is fixed by choosing p0 = 0, namely P = {p ∈ RIK |pTM = 0}. The
dual objective is Bφ(0,q). If q ∈ Q, i.e., qik = e−(Mλ)ik

(∑
i′ e

−(Mλ)i′k

)(p−1)
,

then simplifying yields:

Bφ(0,q) = (1/p)Fp(λ).

Thus, we have arrived at exactly the objective function for our algorithm. That
is, φ was carefully chosen so the dual objective would be exactly as we wished,
modulo the constant 1/p which does not affect minimization. The technical con-
ditions A1.-A5. are verified in [12]. Part (2) of Theorem 4 states that the ob-
jective function has a unique minimizer in closure(Q). It is not difficult to show
that a vector in closure(Q) corresponds uniquely to a vector in closure(Q′). This
finishes the proof. 
�

It was unnecessary to state the primary objective Bφ(p,q0) explicitly to prove
the theorem, however, we state it (details omitted) in order to compare with the
relative entropy case where p = 1.

Bφ(p,q0) =
∑
ik

pik ln
[

pik
p1/p(

∑
i′ pi′k)(p−1)/p

]
− 1
p
(1− ln p)

∑
ik

pik +
1
p
IpK

By inspection, one can see that for p = 1 this reduces to the relative entropy
case.

One interesting note is how to find a function φ to suit such a problem. We
discovered the function φ again via convex duality. We knew the desired dual
problem was precisely our objective Fp, thus, we were able to recover the primal
problem and thus φ by convex conjugation.
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Abstract. We study the subset ranking problem, motivated by its im-
portant application in web-search. In this context, we consider the stan-
dard DCG criterion (discounted cumulated gain) that measures the qual-
ity of items near the top of the rank-list. Similar to error minimization
for binary classification, the DCG criterion leads to a non-convex op-
timization problem that can be NP-hard. Therefore a computationally
more tractable approach is needed. We present bounds that relate the
approximate optimization of DCG to the approximate minimization of
certain regression errors. These bounds justify the use of convex learn-
ing formulations for solving the subset ranking problem. The resulting
estimation methods are not conventional, in that we focus on the esti-
mation quality in the top-portion of the rank-list. We further investigate
the generalization ability of these formulations. Under appropriate con-
ditions, the consistency of the estimation schemes with respect to the
DCG metric can be derived.

1 Introduction

We consider the general ranking problem, where a computer system is required
to rank a set of items based on a given input. In such applications, the system
often needs to present only a few top ranked items to the user. Therefore the
quality of the system output is determined by the performance near the top of
its rank-list.

Ranking is especially important in electronic commerce and internet, where
personalization and information based decision making is critical to the success
of such business. The decision making process can often be posed as a problem
of selecting top candidates from a set of potential alternatives, leading to a con-
ditional ranking problem. For example, in a recommender system, the computer
is asked to choose a few items a user is most likely to buy based on the user’s
profile and buying history. The selected items will then be presented to the user
as recommendations. Another important example that affects millions of peo-
ple everyday is the internet search problem, where the user presents a query to
the search engine, and the search engine then selects a few web-pages that are
most relevant to the query from the whole web. The quality of a search engine
is largely determined by the top-ranked results the search engine can display on
the first page. Internet search is the main motivation of this theoretical study,
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although the model presented here can be useful for many other applications.
For example, another ranking problem is ad placement in a web-page (either
search result, or some content page) according to revenue-generating potential.

Since for search and many other ranking problems, we are only interested
in the quality of the top choices, the evaluation of the system output is dif-
ferent from many traditional error metrics such as classification error. In this
setting, a useful figure of merit should focus on the top portion of the rank-
list. To our knowledge, this particular characteristic of ranking problems has
not been carefully explored in earlier studies. The purpose of this paper is to
develop some theoretical results for converting a ranking problem into convex
optimization problems that can be efficiently solved. The resulting formulation
focuses on the quality of the top ranked results. The theory can be regarded
as an extension of related theory for convex risk minimization formulations for
classification, which has drawn much attention recently in the statistical learning
literature[1, 2, 3, 4, 5, 6].

We organize the paper as follows. Section 2 introduces the subset ranking
problem. We define two ranking metrics: one is the DCG measure which we
focus on in this paper, and the other is a measure that counts the number of
correctly ranked pairs. The latter has been studied recently by several authors.
Section 3 contains the main theoretical results in this paper, where we show
that the approximate minimization of certain regression errors lead to the ap-
proximate optimization of the ranking metrics defined earlier. This implies that
asymptotically the non-convex ranking problem can be solved using regression
methods that are convex. Section 4 presents the regression learning formulation
derived from the theoretical results in Section 3. Similar methods are currently
used to optimize Yahoo’s production search engine. Section 5 studies the gen-
eralization ability of regression learning, where we focus on an L1-boosting ap-
proach. Together with earlier theoretical results, we can establish the consistency
of regression based ranking under appropriate conditions.

2 The Subset Ranking Problem

We first describe the abstract version of our subset ranking model, and then use
web-search as a concrete example for this model.

2.1 Problem Definition

Let X be the space of observable features, and Z be the space of variables that
are not necessarily directly used in the deployed system. Denote by S the set of
all finite subsets of X that may possibly contain elements that are redundant.
Let y be a non-negative real-valued variable that corresponds to the quality
of x ∈ X . Assume also that we are given a (measurable) feature-map F that
takes each z ∈ Z, and produces a finite subset F (z) = S = {x1, . . . , xm} ∈ S.
Note that the order of the items in the set is of no importance; the numerical
subscripts are for notational purpose only, so that permutations can be more
conveniently defined.
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In subset ranking, we randomly draw a variable z ∈ Z according to some
underlying distribution on Z. We then create a finite subset F (z) = S =
{x1, . . . , xm} ∈ S consisting of feature vectors xj in X , and at the same time,
a set of grades {yj} = {y1, . . . , ym} such that for each j, yj corresponds to xj .
Whether the size of the set m should be a random variable has no importance
in our analysis. In this paper we assume that it is fixed for simplicity.

Based on the observed subset S = {x1, . . . , xm}, the system is required to
output an ordering (ranking) of the items in the set. Using our notation, this
ordering can be represented as a permutation J = [j1, . . . , jm] of [1, . . . ,m].
Our goal is to produce a permutation such that yji is in decreasing order for
i = 1, . . . ,m. Given the grades yj(j = 1, . . . ,m), the quality of the rank-list
J = [j1, . . . , jm] is measured by the following weighted sum:

DCG(J, [yj]) =
m∑
i=1

ciyji ,

where {ci} is a pre-defined sequence of non-increasing non-negative discount fac-
tors that are independent of S. This metric, described in [7] as DCG (discounted
cumulated gain), is one of the main metrics widely used in the evaluation of in-
ternet search systems, including the production system of Yahoo and that of
Microsoft [8]. A typical choice of ci is to set ci = 1/ log(1 + i) when i ≤ k and
ci = 0 when i > k for some k. By choosing a decaying sequence of ci, this
measure focuses on the quality of the top portion of the rank-list.

Our goal is to train a ranking function r that can take a subset S ∈ S as
input, and produce an output permutation J = r(S) such that the expected
DCG is as large as possible:

DCG(r) = ES DCG(r, S), (1)

where

DCG(r, S) =
m∑
i=1

ciEyji
|(xji

,S) yji . (2)

An alternative ranking metric is the weighted total of correctly ranked pairs
minus incorrectly ranked pairs:

T(J, [yj ]) =
2

m(m− 1)

m−1∑
i=1

m∑
i′=i+1

(yji − yji′ ).

If the output label yi takes binary-values, and the subset S = X is global (we
may assume that it is finite), then this metric is known to be equivalent to AUC
(area under ROC) up to a scaling, and related to the Mann-Whitney-Wilcoxon
statistics [9]. In the literature, theoretical analysis has focused mainly on global
ranking (that is, the set S we observe is X ) and the T-criterion (for example, see
[10, 11, 12, 13]). However, such a model is inadequate for many practical ranking
problems including web-search. Although we pay special attention to the DCG
metric, we shall also include some analysis of the T criterion for completeness.
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Similar to (1) and (2), we can define the following quantities:

T(r) = ES T(r, S), (3)

where

T(r, S) =
2

m(m− 1)

m−1∑
i=1

m∑
i′=i+1

(Eyji
|(xji

,S) yji −Eyj
i′ |(xj

i′ ,S) yji′ ). (4)

Similar to the concept of Bayes classifier in classification, we can define the
Bayes ranking function that optimizes the DCG and T measures. Based on the
conditional formulations in (2) and (4), we have the following result:

Theorem 1. Given a set S ∈ S, for each xj ∈ S, we define the Bayes-scoring
function as

fB(xj , S) = Eyj|(xj,S) yj

An optimal Bayes ranking function rB(S) that maximizes (4) returns a rank
list J = [j1, . . . , jm] such that fB(xji , S) is in descending order: fB(xj1 , S) ≥
fB(xj2 , S) ≥ · · · ≥ fB(xjm , S). An optimal Bayes ranking function rB(S) that
maximizes (2) returns a rank list J = [j1, . . . , jm] such that ck > ck′ implies that
fB(xjk , S) > fB(xjk′ , S).

Proof. Consider any k, k′ ∈ {1, . . . ,m}. Define J ′ = [j′1, . . . , j
′
m], where j′i = ji

when i �= k, k′, and j′k = jk′ , and j′k′ = jk.
We consider the T-criterion first, and let k′ = k + 1. It is easy to check

that T(J ′, S) − T(J, S) = 4(fB(xjk+1 , S) − fB(xjk , S))/m(m − 1). Therefore
T(J ′, S) ≤ T(J, S) implies that fB(xjk+1 , S) ≤ fB(xjk , S).

Now consider the DCG-criterion. We have DCG(J ′, S)−DCG(J, S) = (ck−
ck′)(fB(xjk′ , S) − fB(xjk , S)). Now ck > ck′ and DCG(J ′, S) ≤ DCG(J, S)
implies fB(xjk , S) ≥ fB(xjk′ , S). �

2.2 Web-Search Example

The subset ranking model can be applied to the web-search problem, where the
user submits a query q, and expects the search engine to return a rank-list of
web-pages {pj} such that a more relevant page is placed before a less relevant
page. In a typical internet search engine, the system takes a query and uses a
simple ranking formula for the initial filtering, which limits the set of web-pages
to an initial pool {pj} of size m (e.g., m = 100000).

After this initial ranking, the system go through a more complicated second
stage ranking process, which reorders the pool. This critical stage is the focus of
this paper. At this step, the system takes the query q, and possible information
from additional resources, to generate a feature vector xj for each page pj in the
initial pool. The feature vector can encode various types of information such as
the length of query q, the position of pj in the initial pool, the number of query
terms that match the title of pj , the number of query terms that match the body
of pj , etc. The set of all possible feature vectors xj is X . The ranking algorithm
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only observes a list of feature vectors {x1, . . . , xm} with each xj ∈ X . A human
editor is presented with a pair (q, pj) and assigns a score sj on a scale, e.g., 1−5
(least relevant to highly relevant). The corresponding target value yj is defined
as a transformation of yj ,1 which maps the grade into the interval [0, 1]. Another
possible choice of yj is to normalize it by multiplying each yj by a factor such
that the optimal DCG is no more than one.

2.3 Set Dependent Features

Due to the dependency of conditional probability of y on S, and thus the optimal
ranking function on S, subset ranking becomes a very difficult problem when
m is large. In general, without further assumptions, the optimal Bayes ranking
function rank the items using the Bayes scoring function fB(x, S) for each x ∈ S.

If the size m of S is small, then we may simply represent S as a feature vector
[x1, . . . , xm] (although this may not be the best representation), so that we can
learn a function of the form fB(xj , S) = f([xj , x1, . . . , xm]). In the general case
when m is large, this approach is not practical. Instead of using the whole set
S as a feature, we have to project S into a lower dimensional space using a
feature map g(·), so that fB(x, g(S)) ≈ f(x, g(S)). Note that the information of
g(S) can be incorporated into x (this can be achieved by simply redefining x as
[x, g(S)]), so that fB(x, S) can be approximated by a function of the form f(x).

Definition 1. If for every S ∈ S and x, x′ ∈ S, we have

fB(x, S) > fB(x′, S) if and only if f(x) > f(x′),

then we say that f is an optimal rank preserving function.

An optimal rank preserving function may not exist for casual feature representa-
tions. As a simple example, we assume that X = {a, b, c} has three elements, with
m = 2, c1 = 1 and c2 = 0 in the DCG definition. We observe {y1 = 1, y2 = 0}
for the set {x1 = a, x2 = b}, {y1 = 1, y2 = 0} for the set {x1 = b, x2 = c},
{y1 = 1, y2 = 0} for the set {x1 = c, x2 = a}. If an optimal rank preserving
function f exists, then by definition we have: f(a) > f(b), f(b) > f(c), and
f(c) > f(a). This is impossible. The following result gives a sufficient condition
for the existence of optimal rank preserving function.

Proposition 1. Assume that for each xj , we observe yj = n(S)y′j where n(S)
is a normalization factor that may depend on S, and {y′j} is a set of random
variables that satisfy:

P ({y′j}|S) = Eξ

m∏
j=1

P (y′j|xj , ξ),

where ξ is a hidden random variable independent of S. Then Ey′
j|(xj,S) y

′
j =

Ey′
j|xj

y′j. That is, the conditional expectation f(x) = Ey′|x y
′ is an optimal rank

preserving function.
1 For example, the formula (2sj − 1)/(25 − 1) is used in [8]. Yahoo uses a different

transformation based on empirical user surveys.
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This result justifies using an appropriately defined feature function to remove set-
dependency. If y′j is a deterministic function of xj and ξ, then the result always
holds, which implies set-independent conditional expectation is optimal. We also
note that the optimality of conditional expectation as the scoring function does
not require that the grade y′ to be independent of S.

In web-search, the model in Proposition 1 has a natural interpretation. Con-
sider a pool of human editors indexed by ξ. For each query q, we randomly pick
an editor ξ to grade the set of pages pj to be ranked, and assume that the grade
the editor gives to each page pj depends only on the pair xj = (q, pj).

In the literature, various methods for solving ranking problems have been
proposed. The most relevant model in the statistics literature is ordinal regres-
sion, which was adapted to large margin methods in [14]. In machine learning,
the focus was on pair-wise preference learning, where one learns a scoring func-
tion f(x) so that pair-wise rank-orders are preserved. For example, this idea
was adopted in the Microsoft system [8]. Proposition 1 (and discussion there-
after) suggests that regression based learning of the conditional expectation
Ey|x y is asymptotically optimal under some assumptions that are reasonable.
Moreover, as discussed earlier in this section, in the regression based approach,
one may always introduce set-dependent features through a feature map g(S).
Due to these advantages, we shall focus on regression based methods in this
paper.

2.4 Relationship to Multi-category Classification

The subset ranking problem is a generalization of multi-category classification.
In this case, we observe an input x0, and are interested in classifying it into
one of the m classes. Let the output value be k ∈ {1, . . . ,m}. We encode the
input x0 into m feature vectors {x1, . . . , xm}, where xi = [0, . . . , 0, x0, 0, . . . , 0]
with the i-th component being x0, and the other components are zeros. We then
encode the output k into m values {yj} such that yk = 1 and yj = 0 for j �= k.
In this setting, we try to find a scoring function f such that f(xk) > f(xj) for
j �= k. Consider the DCG criterion with c1 = 1 and cj = 0 when j > 1. Then
the classification error is given by the corresponding DCG.

Given any multi-category classification algorithm, one may use it to solve
subset ranking as follows. Consider a sample S as input, and a set of outputs
{yj}. We randomly draw k from 1 to m according to the distribution yk/

∑
j yj .

We form another sample with S as input, and {y′j} as output (where y′k = 1,
and y′j = 0 when j �= k). This changes the problem formulation into multi-
category classification. Since this transformation does not change the order of
conditional expectation Eyj |(xj,S)yj, it does not change the optimal Bayes rank-
ing function. Therefore a multi-category classification solver that estimates con-
ditional probability can be used to solve the subset ranking problem. The re-
gression method we investigate in this paper is related to the one-versus-all
approach.
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3 Convex Surrogate Bounds

The subset ranking problem defined in Section 2 is combinatorial in nature,
which is very difficult to solve. This section provides some theoretical results
that relate the optimization of the ranking metrics defined in Section 2 to the
minimization of some regression errors, which allow us to design appropriate
convex learning formulations to solve the ranking problem efficiently.

A scoring function f(x, S) maps each x ∈ S to a real valued score. It induces
a ranking function rf , which ranks elements {xj} of S in descending order of
f(xj). We are interested in bounding the DCG performance of rf compared
with that of fB. This can be regarded as extensions of Theorem 1 that motivate
regression based learning.

Theorem 2. Let f(x, S) be a real-valued scoring function, which induces a rank-
ing function rf . We have the following relationship for each S = {x1, . . . , xm}:

DCG(rB , S)−DCG(rf , S) ≤
(

2
m∑
i=1

c2i

)1/2
⎛⎝ m∑
j=1

(f(xj , S)− fB(xj , S))2

⎞⎠1/2

.

Proof. Let S = {x1, . . . , xm}. Let rf (S) = J = [j1, . . . , jm], and let J−1 =
[�1, . . . , �m] be its inverse permutation. Similarly, let rB(S) = JB = [j∗1 , . . . , j∗m],
and let J−1

B = [�∗1, . . . , �
∗
m] be its inverse permutation. We have

DCG(rf , S) =
m∑
i=1

cifB(xji , S) =
m∑
i=1

c�ifB(xi, S)

=
m∑
i=1

c�if(xi, S) +
m∑
i=1

c�i(fB(xi, S)− f(xi, S))

≥
m∑
i=1

c�∗
i
f(xi, S) +

m∑
i=1

c�i(fB(xi, S)− f(xi, S))

=
m∑
i=1

c�∗
i
fB(xi, S) +

m∑
i=1

c�∗
i
(f(xi, S)− fB(xi, S))

+
m∑
i=1

c�i(fB(xi, S)− f(xi, S))

≥DCG(rB , S)−
m∑
i=1

c�i(f(xi, S)− fB(xi, S))+

−
m∑
i=1

c�∗
i
(fB(xi, S)− f(xi, S))+

≥DCG(rB , S)−
(

2
m∑
i=1

c2i

)1/2
⎛⎝ m∑
j=1

(f(xj , S)− fB(xj , S))2

⎞⎠1/2

.

where we used the notation (z)+ = max(0, z). �
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The above theorem shows that the DCG criterion can be bounded through
regression error. If regression error goes to zero, then the resulting ranking con-
verges to the optimal DCG. Similarly, we can show the following result for the
T criterion.

Theorem 3. Let f(x, S) be a real-valued scoring function, which induces a rank-
ing function rf . We have the following relationship for each S = {x1, . . . , xm}:

T(rB , S)−T(rf , S) ≤ 4√
m

⎛⎝ m∑
j=1

(f(xj , S)− fB(xj , S))2

⎞⎠1/2

.

Proof. Let S = {x1, . . . , xm}. Let rf (S) = J = [j1, . . . , jm], and let rB(S) =
JB = [j∗1 , . . . , j∗m]. We have

T(rf , S)

=
2

m(m− 1)

m−1∑
i=1

m∑
i′=i+1

(fB(xji , S)− fB(xji′ , S))

≥ 2
m(m− 1)

m−1∑
i=1

m∑
i′=i+1

(f(xji , S)− f(xji′ , S))− 2
m

m∑
i=1

|f(xji , S)− fB(xji , S)|

≥ 2
m(m− 1)

m−1∑
i=1

m∑
i′=i+1

(f(xj∗
i
, S)− f(xj∗

i′ , S))− 2
m

m∑
i=1

|f(xji , S)− fB(xji , S)|

≥ 2
m(m− 1)

m−1∑
i=1

m∑
i′=i+1

(fB(xj∗
i
, S)− fB(xj∗

i′ , S))− 4
m

m∑
i=1

|f(xji , S)− fB(xji , S)|

=T(rB , S)− 4
m

m∑
i=1

|f(xji , S)− fB(xji′ , S)|

≥T(rB , S)− 4√
m

(
m∑
i=1

(f(xji , S)− fB(xji′ , S))2
)1/2

. �

The above approximation bounds imply that least square regression can be used
to learn the optimal ranking functions. The approximation error converges to
zero when f converges to fB in L2. However, in general, requiring f to converge
to fB in L2 is not necessary. More importantly, in real applications, we are often
only interested in the top portion of the rank-list. Our bounds should reflect this
practical consideration. In the following, we develop a more refined bound for
the DCG metric, which will be used to motivate practical learning methods in
the next section.

Theorem 4. Let f(x, S) be a real-valued scoring function, which induces a
ranking function rf . Given S = {x1, . . . , xm}, let the optimal ranking order
be JB = [j∗1 , . . . , j

∗
m], where fB(xj∗

i
) is arranged in non-increasing order. As-

sume that ci = 0 for all i > k. Then we have the following relationship for all
γ ∈ (0, 1), u > 0 and subset K ⊂ {1, . . . ,m} that contains j∗1 , . . . , j

∗
k :
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DCG(rB, S)−DCG(rf , S)

≤C(γ, u)

⎛⎝∑
j∈K

(f(xj , S)− fB(xj , S))2 + u sup
j /∈K

(f(xj , S)− f ′B(xj , S))2+

⎞⎠1/2

,

where (z)+ = max(z, 0), and

C(γ, u)=
1

1− γ

√√√√√2
k∑
i=1

c2i +

(∑k
i=1 ci

)2

u
, f ′B(xj)=fB(xj)+γ(fB(xj∗

k
)−fB(xj))+.

Proof. Let S = {x1, . . . , xm}. Let rf (S) = J = [j1, . . . , jm], and let J−1 =
[�1, . . . , �m] be its inverse permutation. Similarly, let J−1

B = [�∗1, . . . , �
∗
m] be the

inverse permutation of rB(S) = JB = [j∗1 , . . . , j
∗
m]. Let M = fB(xj∗

k
), we have

DCG(rB, S) − DCG(rf , S)

=
m

i=1

ci((fB(xj∗
i
, S) − M) − (fB(xji , S) − M))

=
m

i=1

ci((fB(xj∗
i
, S) − M) − (fB(xji , S) − M)+) +

m

i=1

ci(M − fB(xji , S))+

≤ 1
1 − γ

m

i=1

ci((fB(xj∗
i
, S) − M) − (f ′

B(xji , S) − M)+) +
m

i=1

ci(M − f ′
B(xji , S))+

=
1

1 − γ

m

i=1

cifB(xj∗
i
, S) −

m

i=1

cif
′
B(xji , S)

≤ 1
1 − γ

m

i=1

ci(fB(xj∗
i
, S) − f(xj∗

i
, S)) −

m

i=1

ci(f ′
B(xji , S) − f(xji , S))

≤ 1
1 − γ

m

i=1

ci(fB(xj∗
i
, S) − f(xj∗

i
, S))+ +

m

i=1

ci(f(xji , S) − f ′
B(xji , S))+

≤ 1
1 − γ

(
k

i=1

c2
i )

1/2 (
j∈K

(fB(xj , S) − f(xj , S))2+)1/2 + (
j∈K

(f(xji , S)

−f ′
B(xji , S))2+)1/2 + (

k

i=1

ci) sup
j /∈K

(f(xj , S) − f ′
B(xj , S))+

≤ 1
1 − γ

2
k

i=1

c2
i

j∈K

(fB(xj , S) − f(xj , S))2 +
k

i=1

ci sup
j /∈K

(f(xj , S) − f ′
B(xj , S))+ .

Note that in the above derivation, Cauchy-Schwartz inequality has been applied
multiple times. From the last inequality, we can apply the Schwartz inequality
(again) to obtain the desired bound. �
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Intuitively, the bound says the following: we should estimate the top ranked
items using least squares. For the other items, we do not have to make very
accurate estimation of their conditional expectations. The DCG score will not
be affect as long as we do not over-estimate their conditional expectations to
such a degree that some of these items are near the top of the rank-list.

4 Regression Based Learning

Motivated by the analysis in Section 3, we consider regression based training
method to solve the DCG optimization problem. We shall not discuss the imple-
mentation details for modeling the function f(x, S), which is beyond the scope
of this paper. One simple model is to assume a form f(x, S) = f(x). Section 2.3
discussed the validity of such models. For example, this model is reasonable if we
assume that for each x ∈ S, and the corresponding y, we have: Ey|(x,S)y = Ey|xy
(see Proposition 1).

Let F be a function space that contains functions X × S → R. We draw n
sets S1, . . . , Sn randomly, where Si = {xi,1, . . . , xi,m}, with the corresponding
grades {yi,j}j = {yi,1, . . . , yi,m}. Based on Theorem 2, a simple regression based
approach can be used to solve the ranking problem:

f̂ = arg min
f∈F

1
n

n∑
i=1

⎡⎣ m∑
j=1

(f(xi,j , Si)− yi,j)2
⎤⎦ .

However, this direct regression method is not appropriate for large scale ranking
problems such as web-search, for which there are many items to rank but only the
top ranked pages are important. This is because the method pays equal attention
to relevant and irrelevant pages. In reality, one should pay more attention to the
top-ranked (relevant) pages. The grades of lower rank pages do not need to be
estimated accurately, as long as we do not over-estimate them so that these
pages appear in the top ranked positions.

The above mentioned intuition can be captured by Theorem 4, which moti-
vates the following alternative training method:

f̂ = argmin
f∈F

1
n

n∑
i=1

L(f, Si, {yi,j}j), (5)

where for S = {x1, . . . , xm}, with the corresponding {yj}j, we have

L(f, S, {yj}j)

=
m∑
j=1

w(xj , S)(f(xj , S)− yj)2 + u sup
j
w′(xj , S)(f(xj , S)− δ(xj , S))2+, (6)

where u is a non-negative parameter. A variation of this method is used to
optimize the production system of Yahoo’s internet search engine. The detailed
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implementation and parameter choices are trade secrets of Yahoo, which we
cannot completely disclose here2. It is also irrelevant for the purpose of this
paper. However, in the following, we shall briefly explain the intuition behind
(6) using Theorem 4, and some practical considerations.

The weight function w(xj , S) is chosen so that it focuses only on the most
important examples (the weight is set to zero for pages that we know are irrel-
evant). This part of the formulation corresponds to the first part of the bound
in Theorem 4 (in that case, we choose w(xj , S) to be one for the top part of
the example with index set K, and zero otherwise). The specific choice of the
weight function is not important for the purpose of this paper. In the second
part of the formulation, we choose w′(xj , S) so that it focuses on the examples
not covered by w(xj , S). In particular, it only covers those data points xj that
are low-ranked with high confidence. We choose δ(xj , S) to be a small threshold
that can be regarded as a lower bound of f ′B(xj) in Theorem 4, such as γfB(x∗k).
An important observation is that although m is often very large, the number of
points so that w(xj , S) is nonzero is often small. Moreover, (f(xj , S)−δ(xj, S))+
is not zero only when f(xj , S) ≥ δ(xj , S). In practice the number of these points
is usually small (that is, most irrelevant pages will be predicted as irrelevant).
Therefore the formulation completely ignores those low-ranked data points such
that f(xj , S) ≤ δ(xj , S). This makes the algorithm computationally efficient
even when m is large. The analogy here is support vector machines, where only
the support vectors are useful in the learning formulation. One can completely
ignore samples corresponding to non support vectors.

In the practical implementation of (6), we can use an iterative refinement
scheme, where we start with a small number of samples to be included in the
first part of (6), and then put the low-ranked points into the second part of
(6) only when their ranking scores exceed δ(xj , S). In fact, one may also put
these points into the first part of (6), so that the second part always has zero
values (which makes the implementation simpler). In this sense, the formulation
in (6) suggests a selective sampling scheme, in which we pay special attention
to important and highly ranked data points, while completely ignoring most of
the low ranked data points. In this regard, with appropriately chosen w(x, S),
the second part of (6) can be completely ignored.

The empirical risk minimization method in (5) approximately minimizes the
following criterion:

Q(f) = ESL(f, S), (7)

where

L(f, S) = E{yj}j |SL(f, S, {yj}j)

=
m∑
j=1

w(xj , S)Eyj |(xj,S) (f(xj , S)− yj)2 + u sup
j
w′(xj , S)(f(xj , S)− δ(xj , S))2+.

The following theorem shows that under appropriate assumptions, approximate
minimization of (7) leads to the approximate optimization of DCG.
2 Some aspects of the implementation were covered in [15].
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Theorem 5. Assume that ci = 0 for all i > k. Assume the following conditions
hold for each S = {x1, . . . , xm}:

– Let the optimal ranking order be JB = [j∗1 , . . . , j∗m], where fB(xj∗
i
) is arranged

in non-increasing order.
– There exists γ ∈ [0, 1) such that δ(xj , S) ≤ γfB(xj∗

k
, S).

– For all fB(xj , S) > δ(xj , S), we have w(xj , S) ≥ 1.
– Let w′(xj , S) = I(w(xj , S) < 1).

Then the following results hold:

– A function f∗ minimizes (7) if f∗(xj , S) = fB(xj , S) when w(xj , S) > 0 and
f∗(xj , S) ≤ δ(xj , S) otherwise.

– For all f , let rf be the induced ranking function. Let rB be the optimal Bayes
ranking function, we have:

DCG(rf )−DCG(rB) ≤ C(γ, u)(Q(f)−Q(f∗))1/2.

Proof. Note that if fB(xj , S) > δ(xj , S), then w(xj , S) ≥ 1 and w′(xj , S). There-
fore the minimizer f∗(xj , S) should minimize Eyj |(xj,S)(f(xj , S)−yj)2, achieved
at f∗(xj , S) = fB(xj , S). If fB(xj , S) ≤ δ(xj , S), then there are two cases:

– w(xj , S) > 0, f∗(xj , S) should minimize Eyj|(xj ,S)(f(xj , S)− yj)2, achieved
at f∗(xj , S) = fB(xj , S).

– w(xj , S) = 0, f∗(xj , S) should minimize Eyj |(xj,S)(f(xj , S) − δ(xj , S))2+,
achieved at f∗(xj , S) ≤ δ(xj , S).

This proves the first claim.
For each S, denote by K the set of xj such that w′(xj , S) = 0. The second

claim follows from the following derivation:

Q(f) − Q(f∗)

=ES(L(f, S) − L(f∗, S))

=ES

k

j=1

w(xj , S)(f(xj , S) − fB(xj , S))2 + u sup
j

w′(xj , S)(f(xj , S) − δ(xj , S))2+

≥ES

j∈K

(fB(xj , S) − f(xj , S))2+ + u sup
j /∈K

(f(xj , S) − δ(xj , S))2+

≥ES(DCG(rB, S) − DCG(rf , S))2C(γ, u)−2

≥(DCG(rB) − DCG(rf ))2C(γ, u)−2.

Note that the second inequality follows from Theorem 4. �

5 Generalization Analysis

In this section, we analyze the generalization performance of an L1-boosting me-
thod, similar to [16, 2, 17]. Yahoo’s machine learning ranking system employs the
closely related gradient boosting method in [18], which can be similarly analyzed.
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Consider a class of so-called weak learners H, consisting of binary functions
X × S → {0, 1}, with a finite VC-dimension vc(H). We define for all β ≥ 0:
coβ(H) = {f : f(x) =

∑t
i=1 αihi(x),

∑t
i=1 |αi| ≤ β, hi ∈ H}. We are inter-

ested in algorithms that select a hypothesis from coβ(H). Similar to Section 4, we
use (Si, {yi,j}j) to indicate a sample point indexed by i. Note that for each sam-
ple i, we shall not assume that yi,j are independently generated for different j.

The following result is a simplified uniform convergence bound for the empir-
ical risk minimization method in (5).

Theorem 6. Assume that grades y ∈ [0, 1]. Consider β > 1, and let f̂ be the
estimator defined in (5), with F = coβ(H). Then we have

E{Si,{yi,j}j}n
i=1
Q(f̂) ≤ inf

f∈coβ(H)
Q(f) + Cβ2

√
W · vc(H)

n
,

where C is a universal constant and

W = ES

⎡⎣ m∑
j=1

w(xj , S) + u sup
j
w′(xj , S)

⎤⎦2

.

Due to the limitation of space, we shall skip the proof, which is an adaptation
of the standard Rademacher complexity analysis to our setting. Here we have
paid special attention to the properties of (5). In particular, the quantity W is
usually much smaller than m, which is large for web-search applications. The
point we’d like to emphasize here is that even though the number m is large,
the estimation complexity is only affected by the top-portion of the rank-list. If
the estimation of the bottom ranked items is relatively easy (as is generally the
case), then the learning complexity does not depend on the majority of items
near the bottom of the rank-list.

We can combine Theorem 5 and Theorem 6, giving the following bound:

Theorem 7. Suppose the conditions in Theorem 5 and Theorem 6 hold with f∗
minimizing (7). We have

E{Si,{yi,j}j}n
i=1

DCG(rf̂ )

≤DCG(rB) + C(γ, u)

[
inf

f∈coβ(H)
Q(f)−Q(f∗) + Cβ2

√
W · vc(H)

n

]1/2

.

Proof. From Theorem 5, we obtain

E{Si,{yi,j}j}n
i=1

DCG(rf̂ )−DCG(rB)

≤C(γ, u)E{Si,{yi,j}j}n
i=1

(Q(f̂)−Q(f∗))1/2

≤C(γ, u)(E{Si,{yi,j}j}n
i=1
Q(f̂)−Q(f∗))1/2.

Now by applying Theorem 6, we obtain the desired bound. �
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The theorem implies that if Q(f∗) = limβ→∞ inff∈coβ(H)Q(f), then as n→∞,
we can let β → ∞ and β2/

√
n → 0 so that the second term on the right hand

side vanishes in the large sample limit. Therefore asymptotically, we can achieve
the optimal DCG score. This implies the consistency of regression based learning
methods for the DCG criterion.

6 Conclusion

This paper considers the subset ranking problem, motivated by the web-search
application. We investigated the DCG criterion that emphasizes the quality of
the top-ranked items, and derived bounds that relate the optimization of DCG
scores to the minimization of convex regression errors. These bounds can be
used to motivate regression based methods that focus on the top-portion of
the rank-list. In addition to conceptual advantages, these methods have signifi-
cant computational advantages over standard regression methods because only
a small number of items contribute to the solution. This means that they are
computationally efficient to solve. As we have commented, the implementation
of these methods can be achieved through appropriate selective sampling proce-
dures. Moreover, we showed that the generalization performance of the system
does not depend on m. Instead, it only depends on the estimation quality of the
top ranked items. Again this is important for practical applications.

Results obtained here are closely related to the theoretical analysis for solving
classification methods using convex optimization formulations. Our theoretical
results show that the regression approach provides a solid basis for solving the
subset ranking problem. The practical value of such methods is also significant.
In Yahoo’s case, substantial improvement of DCG has been achieved after the de-
ployment of machine learning based ranking system. At the time of this writing,
the system performance is already on par with the competitions, while further
improvements are expected in the future.

Although the DCG criterion is difficult to optimize directly, it is a natural
metric for ranking. The investigation of convex surrogate formulations provides a
systematic approach to developing efficient machine learning methods for solving
this difficult problem. We shall point out that the convex surrogate bounds
proved in this paper are still quite loose. Therefore by deriving tighter bounds
and developing better understanding of the ranking problem, we may obtain
improved machine learning methods in the future.
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Abstract. We study functions with multiple output values, and use
active sampling to identify an example for each of the possible output
values. Our results for this setting include: (1) Efficient active sampling
algorithms for simple geometric concepts, such as intervals on a line
and axis parallel boxes. (2) A characterization for the case of binary
output value in a transductive setting. (3) An analysis of active sampling
with uniform distribution in the plane. (4) An efficient algorithm for the
Boolean hypercube when each output value is a monomial.

1 Introduction

Active sampling is much about “hitting” low probability events. In active learn-
ing the active sampling is used to guide the learning process to learn a high accu-
racy hypothesis while using a limited number or examples [16, 9, 8, 10, 6, 3, 1, 2].
While in many applications the goal of an accurate hypothesis is the most natural
one, there are other applications which require only examples of those low prob-
ability events. Example of such application areas include hardware and software
verification, fault tolerance, network security, data mining etc. The usage of such
examples in each of the applications can be very different: in fault tolerance one
would like to simulate the performance of the system in extreme conditions (e.g.,
very high load), in network security one would like to have examples of potential
intruders, while in data mining one would like to find new interesting relation-
ships, which are not explained by the existing ones. Our original motivation,
though, stem from dynamic hardware verification and from software testing. In
both domains, the main industrial vehicles are simulation-based methods which
aimed at exciting (and impacting) the occurrence of events and scenarios of de-
sired functional behaviors that need to be verified [19, 4]. Coverage [12] is an
information collection mechanism that is often used to monitor the progress of
the verification process, and point to areas in the design that have not been
properly tested.
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The analysis of coverage reports, and their translation to a set of directives
that guides the implementation of the test plan, result in major manual bot-
tlenecks in the otherwise highly automated verification process. A verification
methodology called coverage directed test generation (CDG) aims to resolve this
problem, either by utilizing a mechanism that can directly translate a verifica-
tion task into a simulation test (CDG by Construction, cf. [17]), or by extracting
useful information from the observed events, and use it to bias future simulation
runs (CDG by Feedback, cf. [7] and ref. therein). However, too often, neither
an accurate translation mechanism nor well structured coverage model can be
provided, and we end up with the following naive, yet difficult, scenario: The
verification team is given a list of events that should be covered, and the goal is
to provide multiple sets of directives (inputs) that will tune the test generator
to produce patterns that hit all items in the list. In these situations the common
practice is “trial & error”.

We abstracted the above motivation in the following learning model. There
is an unknown target function f which maps every input in X to one of m
output values. (For example, in the verification setting the output values would
be desired scenarios for coverage.) The output identification task is to find m
inputs, one for each output value.

The output identification algorithm is given some information about the target
function. First, like much of the computational learning literature, it knows that
the target function f is in a given function class F . Second, it is given the number
of output values, i.e., m (hence it knows when to terminate).

We assume that there is an unknown distribution D over the inputs. The
algorithm has an access to an induced distribution example oracle which allows
it to sample from sub-regions of the domain. (Namely, the algorithm specifies a
subset Y ⊂ X , and the oracle returns an example from Y , distributed according
to the induced distribution of D over Y .) The goal of the output identification
algorithm is to minimize the number of oracle samples it requires until a rep-
resentative for each output value is found. The performance is measured as a
function of the number of output values m and ε, a lower bound on the probabil-
ity of each output value. (We remark that only for simplicity we assume that m
and ε are known to the output identification algorithm, both of the requirements
can be easily relaxed and similar results hold.)

We show efficient algorithms for many classes of functions. We start by show-
ing efficient output identification algorithms for a few simple geometric classes.
For the function class of m intervals on a line we show an expected active sam-
ple bound of O(m log 1/ε). For m axis parallel boxes in Rd we give an expected
active sample bound of O(md log 1/ε). We also derive lower bounds that exhibit
classes with a constant VC dimension, such as a linear separator in the plane,
which require Ω(1/ε) active samples.

Our main result is a characterization for the case of binary outputs, i.e.,m = 2.
We define a separation dimension and show that if the separation dimension is
d then the function class can be output identified in O(d2 log2 s) queries in a
transductive setting (where the output identification algorithm is given a set of
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s unlabeled examples in advance). In addition, we show that for any function
class with separation dimension d, there is an unlabeled sample for which no
algorithm can output identify it in less than Ω(min{d, s}) queries.

The separation dimension is similar in flavor to the VC dimension[18]. It
requires d points such that the function class induced on them has all the d
singleton functions (rather than all 2d possible functions in the VC dimension).
We show that when a class has separation dimension d, then some input in
the unlabeled sample can be queried and guarantee that either we terminate
(finding a representative for each output value) or we reduce the space of con-
sistent functions considerably. Using this property we derive an efficient output
identification algorithm.

We also study the case of specific distributions, namely the uniform distrib-
ution in the plane. Using classical results from computational geometry we can
show that many classes are efficiently learnable under the uniform distribution.
Specifically, we show that the class of linear separators in the plane can be out-
put identified with expected O(m2 log2 1/ε) active samples with respect to the
uniform distribution over the unit square.

We conclude with a concept class defined over the Boolean hypercube {0, 1}n.
We show that the class where each output value is represented by a monomial
can be output identify in mn active samples.

Our model has obvious connections to active learning [16, 9, 8, 10, 6, 3, 1, 2].
In some sense the output identification task is much simpler than the usual
learning task, since we do not need to find an accurate hypothesis, only to
target one example for each output value. Still it seems that the techniques we
present here and the active learning techniques share much in common. In both
cases the goal is to reduce uncertainty, however since the tasks are different
(learning vs. identification), so does the choice which of the samples to query –
while an active learner will choose to query for the label of the sample which
maximizes disagreement between the consistent hypotheses in the version space
(cf. QBC [16, 8]), an output identifier will select to query for the label of the
sample which maximize the probability of an unseen output value (ideally have
the probability be almost one). Another major difference is that active learning
is interested mainly in binary classification while the main motivation for output
identification are cases with a large number of possible output values.

There are simple cases in which active learning fails to achieve a significant
sample improvement, for example linear separator in the plane [1]. In such cases
one should expect the output identification task to suffer from similar drawbacks
(and indeed some of our lower bounds are much in that spirit).

A somewhat related question was discuss in [11] where efficient deterministic
constructions for combinatorial hitting sets are given. A hitting set for a domain
{1, . . . ,m}d guarantees to “hit” any combinatorial rectangle of volume at least ε,
i.e., any combinatorial rectangle that includes at least εmd points would intersect
the hitting set in at least one point. The main contribution of [11] is to construct
such a hitting set deterministically (i.e., without any randomization) and have
its size and computation time be polynomial in m, d and 1/ε.
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2 The Model

A function f is m-valued if f maps inputs from a domain X to an m valued
range {1, . . . ,m}. An m-valued function class F is a set of m valued functions.

The output identification task for an m valued function class F is as follows.
There is an unknown m valued target function f ∈ F and the goal of the output
identification algorithm is to identify an input for each the m output values, i.e.,
find examples, x1, . . . , xm ∈ X such that f(xi) = i.

The output identification algorithm has access to examples of the target func-
tion as follows. There is some unknown distribution D over the domain X . Given
a subset of the domain Y ⊂ X let DY be the distribution D induces over Y .
An induced distribution example oracle receives as an input a subset Y ⊂ X
and returns a pair < x, f(x) >, where x is distributed according to DY and f is
the target function. (We assume that Y has a non-empty intersection with the
support of D, otherwise the oracle would generate an error.)

At each time step t, the output identification algorithm specifies a subset
Yt ⊂ X to the induced distribution example oracle and received an example
< xt, f(xt) >. The process terminates when the algorithm has an example for
each of the m output values. (I.e., x1, . . . , xm ∈ X such that f(xi) = i.)

In order to measure the complexity of an output identification algorithm we
assume that each output value has a probability of at least ε under (the unknown)
distribution D.

The active sample complexity of an output identification algorithm with re-
spect to a distribution D and function f ∈ F is the number of examples it
requests, i.e., the number of times it accesses the induced distribution example
oracle. The active sample complexity of an output identification algorithm for
a function class F is the worse case over all f ∈ F and distributions D of its
active sample complexity. The active sample complexity of a function class F is
the least active sample complexity of any output identification algorithm for F .

3 Simple Geometric Concepts

In this section we consider simple geometric concepts where the domain is
X = Rd. We start with the line (d = 1) and consider the case where each of the
m output values is represented by an interval. For this case we give an expected
O(m log 1/ε) active sample complexity output identification algorithm. We then
extend our result to the case of axis parallel boxes and give an output identifi-
cation algorithm whose expected active sample complexity is O(dm log 1/ε). We
end with a few simple lower bounds, showing examples of concept classes with
a finite VC dimensions which require Ω(1/ε) active sample complexity.

3.1 Generic Consistency Algorithm

We assume that the points mapped to a specific output value belong to some
function class A. (For intervals A ∈ A would be a single interval and for axis
parallel boxes it would be a single axis parallel box.)
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The generic consistency algorithm works as follows. Initially we have C0 = ∅.
At phase t ≥ 1 we sample the induced distribution example oracle with the
subset X −Ct−1 and receive an example < xt, kt >. For each output value k let
Skt be the set of examples sampled with output value k until time t. Let Ckt be
the minimal concept in A which is consistent with the examples in Skt (in our
applications such a concept always exists). Let Ct be the union of all the Ckt and
proceed to phase t+ 1.

The generic consistency algorithm starts at phase t = 1 and terminate at the
first phase where for every output value k we have Skt �= ∅ (note that in such a
case we have for each of the m output values at least one example).

To be more specific about the minimal consistent concept we define it for the
case of intervals and axis parallel boxes. In the case that A is an interval then
Ckt is an interval [λk−, λ

k
+] such that λk− = min{x ∈ Skt } and λk+ = max{x ∈ Skt }.

In the case that A is an axis parallel box then Ckt is ([c1−, c
1
+], . . . , [cd−, c

d
+]) where

ci− = min{xi : x ∈ Skt , x = x1, · · ·xd} and ci+ = max{xi : x ∈ Skt , x = x1, · · ·xd}.
The correctness of the generic consistency algorithm is obvious from its termi-

nation condition, the main interest in the analysis would be on the expected num-
ber of examples until termination, i.e., the expected active sample complexity.

3.2 Intervals on a Line

In this function class the domain is X = [0, 1], the examples corresponding to an
output value k are in an interval Ak (which can be either open or closed interval),
and the intervals are a partition of the domain X = [0, 1], i.e. ∪mk=1A

k = [0, 1]
and Ai ∩Aj = ∅ for i �= j.

For the analysis of the generic consistency algorithm we introduce some ad-
ditional notation. At time t, we have a set KNt of output values which we have
already sampled and UKNt which are output values we have not been sampled.
For each output k ∈ KNt let Bk

− and Bk
+ be the points in Ak below and above

Ck (respectively). I.e., if Ckt = [λk−, λ
k
+] and Ak = [ρ−, ρ+] then Bk

− = [ρ−, λ−)
and Bk

+ = (λ+, ρ+].
Given a distribution D over [0, 1] let D(I) be the probability of the interval

I. At time t let βt =
∑

k∈UKNt
D(Ak) and let γt =

∑
k∈KNt

D(Bk
−) +D(Bk

+).
Let αt = βt + γt, i.e., αt = D(X − Ct). Let Ht include all the history of the
execution of the algorithm until and including time t.

Our analysis uses a potential function Φt = αt + βt = γt + 2βt, and shows
that Φt decreases by a certain factor each time step. Specifically we show that,

E[Φt − Φt+1|Ht]=
βt
αt

∑
k∈UKNt

D(Ak)
βt

D(Ak) +
γt
αt

∑
k∈KNt,b∈{+,−}

D(Bk
b )

γt
· D(Bk

b )
2

The first part follows from the fact that with probability βt

αt
we sample an

example with output value in UKNt. Given that we sample such a point, the
probability that the interval is Ak is D(Ak)

βt
. Given that we sample from Ak we

reduce βt by 2D(Ak) and increase γt by D(Ak), so the net reduction in the
potential is D(Ak).
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The second part follows from the fact that with probability γt

αt
we sample

an example with output value in KNt. Given that we sample such a point, the
probability that it is in the interval Bk

b is D(Bk
b )

γt
, where b ∈ {−,+}. Given that

we sample from Bk
b the expected reduction is D(Bk

b )/2. Therefore,

E[Φt − Φt+1|Ht] =
1
αt

[
∑

k∈UKNt

D(Ak)2 +
∑

k∈KNt,b∈{+,−}

1
2
D(Bk

b )2]

Note that

αt = βt + γt =
∑

k∈UKNt

D(Ak) +
∑

k∈KNt,b∈{+,−}
D(Bk

b ).

Using the general inequality
∑n

i=1X
2
i ≥ (1/n)(

∑n
i=1Xi)2, and since there are

at most 2m elements in the summation (each output value appears only in one
of the two summations), we have that

∑
k∈UKN

D(Ak)2 +
∑

k∈KN,b∈{+,−}

1
2
D(Bk

b )2 ≥ 1
4m

α2
t

Since by definition βt ≤ αt, this implies that

E[Φt − Φt+1|Ht] ≥
1

4m
αt ≥

1
8m

[αt + βt] =
1

8m
Φt

By averaging over Ht we have that

E[Φt+1] ≤ (1− 1
8m

)E[Φt] ≤ (1− 1
8m

)tΦ1

Initially we have γ1 = 0 and β1 = 1, therefore the initial potential is Φ1 =
γ1+2β1 = 2. After t = O(m log(1/ε)) samples, the expected value of the potential
is less than ε/2. This implies that with probability at least 1/2 its value is less
than ε. Once the value of the potential is less than ε we are guarantee to hit each
output value (since each output value has probability at least ε). This establishes
the following theorem.

Theorem 1. The class of m intervals can be output identified in expected active
sample complexity of O(m log 1/ε).

3.3 Axis Parallel Boxes

We extend the results from intervals to axis parallel boxes, where X = [0, 1]d,
each output value k is represented by an axis parallel box Ak, and the collection
of Ak are a partition of X . Again, we use the generic consistent algorithm.

The analysis is similar in spirit to that of the intervals on a line and it appears
in the appendix, where we establish the following theorem:

Theorem 2. The class of m axis parallel boxes can be output identified in ex-
pected active sample complexity of O(dm log 1/ε).
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3.4 Lower Bounds

In this section we derive two simple lower bounds.

Example 1: Let X = [0, 1] and U be the uniform distribution on X . Consider
the following function class Fηseg that includes functions fz(x) = 1 if x ∈ [z, z+η]
and otherwise fz(x) = 0 (where z ∈ [0, 1−η]). Note that Fηseg has a VC dimension
equals to 2, and in addition, the points with output value 0 are not a convex set.
We show the following lower bound.

Claim. Any output identification algorithm for Fηseg with the uniform distribu-
tion U requires an expected active sample complexity of Ω(1/ε), when ε = η.

Example 2: Consider a linear separator in the plane (there are only two output
values). Let X = [−1, 1]2 and let Fls include all linear separators. Namely, for
each fα,β ∈ F we have fα,β(x) = 1 if αx1 + β < x2 and otherwise fα,β(x) = 0
(where α, β ∈ R).

Following Dasgupta [1], we consider a distribution Uo whose support is the
unit circle, e.g., (x1)2 + (x2)2 = 1 and it is uniform over it. Similar to the lower
bound for active learning [1], we show the following lower bound for output
identification.

Claim. Any output identification algorithm for Fls with distribution Uo requires
an expected active sample complexity of at least Ω(1/ε).

4 Transductive Setting: Binary Output Values

In the transductive setting the algorithm is given in advance a set of unlabeled
examples S = {x1, . . . xs}. The goal of the output identification algorithm is
to find a subset S′ ⊂ S of size at most m, such that each output value that
appears in S has an example in S′. I.e., let Sk = {x ∈ S : f(x) = k}, we
require that if Sk �= ∅ then Sk ∩ S′ �= ∅. The active sample complexity in
the transductive setting is the number of queries the algorithm makes (i.e., the
number of unlabeled examples from S for which it asks a label).

We give a characterization for the case of binary output values, i.e., m = 2.
We first define the notion of a separation dimension of a function class F . Then
we show that if a function class F has separation dimension d then there is
an algorithm that queries only O(d2 log2 s) examples. In addition we show that
if a function class has separation dimension d then the expected number of
examples queried is Ω(min{d, s}). This implies that the for the binary case we
have a complete characterization when can a function class be output identified
with a poly-logarithmic number of queries.

4.1 Separation Dimension: Definition

We start by defining the notion of separation dimension. Let the separation
dimension of a function class F be the following. A function class F is said to
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b-separate the set {x1, . . . xd} ⊂ X if there are functions f1, . . . fd ∈ F such that
fi(xi) = b and fi(xj) = 1− b, for j �= i, where b ∈ {0, 1}.

The b-separation dimension ofF is the size of the largest set that F b-separates
(or infinity, if it can b-separate sets of arbitrary size). The separation dimension of
F is the maximum of the 0-separation dimension and the 1-separation dimension.

Separation Dimension - Examples: Let us start with a few examples of
the separation dimension. Consider the function class Fpre over [0, 1] such that
fz(x) = 1 if z ≤ x and fz(x) = 0 otherwise (where z ∈ [0, 1]). The separation
dimension of Fpre is 1 since for any two points x1 < x2 no function fz can have
fz(x1) = 1 and fz(x2) = 0.

A simple extension of Fpre is the function class Fpre+suf where fz,b(x) = b
if z ≤ x and fz(x) = 1 − b otherwise (where z ∈ [0, 1] and b ∈ {0, 1}). The
separation dimension of Fpre+suf is 2. (Given, for example, x1 = 1/3 and x2 =
2/3, the functions f1/2,1 and f1/2,0 achieve a b-separation of {x1, x2} for both
b = 1 and b = 0. However, for any three points x1 < x2 < x3 no function fz,b can
have fz,b(x2) = b and fz,b(x1) = fz,b(x3) = 1− b, neither for b = 1 nor b = 0.)

Recall the function class Fηseg that includes functions fz(x) = 1 if x ∈ [z, z+η]
and otherwise fz(x) = 0 (where z ∈ [0, 1 − η]). The function class Fηseg has
separation dimension of Θ(1/η).

An example of a function class with an infinite separation dimension is Find,
where for every z ∈ X we have an indicator function fz ∈ Find (i.e., fz(x) = 1 for
x = z and otherwise fz(x) = 0), and X is infinite. Since for any set of s distinct
points x1, . . . , xs ∈ X the indicator functions fx1 , . . . , fxs are a 1-separation, this
implies that Find has an infinite separation dimension.

Separation Dimension - Number of Consistent Functions: Given a set
of points S = {x1, . . . xs} let FS be the function class F restricted to the set S.
We would like to bound the number of consistent functions FS as a function of
s = |S| and separation dimension of the function class F .

It is obvious that if a function class F has a separation dimension of d then
it has a VC dimension [18] of at most d. Therefore, using Sauer Lemma [15],
we can bound |FS |. We can also show a function class for which this bound is
almost tight also for separation dimension.

Lemma 1. Let F be a function class with separation dimension d, then |FS | ≤∑d
i=0

(|S|
i

)
. In addition, there is a function class F of separation dimension d

such that |FS | ≥ (|S|/d)d.

4.2 Separation Dimension: Lower Bound

In this section we give a lower bound based on the separation dimension.

Theorem 3. Let F be a function class with separation dimension d, then its ex-
pected active sample complexity is Ω(min{d, s}). In addition, if F has an infinite
separation dimension then its expected active sample complexity is Ω(s).
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Proof. Assume that F has 1-separation dimension of d (the other case is iden-
tical). Then there are k = min{d, s} inputs x1, . . . xk ∈ X such that for any i
there is an fi ∈ F that fi(xi) = 1 and fi(xj) = 0, for j �= i. (When k < s, we
extend the set of k points to s points by duplicating point x1 for s− k times.)

Assume that we select the target function f to be fi with probability 1/k.
Then any output identification algorithm would have to make at least Ω(k)
queries before hitting the input which is labeled 1.

If F has an infinite separation dimension, then for every s, there are s inputs
x1, . . . xs ∈ X and functions f1, . . . fs ∈ F such that fi(xi) = 1 and fi(xj) = 0,
for j �= i. Again, this implies that the expected number of queries is Ω(s). 
�

4.3 Separation Dimension: Upper Bound

In this section we derive an upper bound on the sample complexity based of the
separation dimension. Assume that the first point we sampled has label 0, and
therefore the output identification task reduces to finding an input with label 1.
(For this reason we will also concentrate on the 1-separation dimension.)

We start with a few notations. Let sup(f, S) = {xi ∈ S : f(xi) = 1}, i.e., the
set of points in S on which f is 1. Given a set of functions F , let deg(xi,FS) =
{f ∈ FS : f(xi) = 1}, i.e., the set of functions which classify xi as 1. We
partition FS according to the size of sup(f, S), and define FSk = {f ∈ FS : k ≤
|sup(f, S)| < 2k}. Let � = |F| and �k = |FSk |.

Lemma 2. Let F be a function class with 1-separation dimension d. Given an
unlabeled sample S, for every k ≥ 1, there exists an input xi ∈ S such that
|deg(xi,FSk )| ≥ +�k/8d,.

Proof. For contradiction, assume that for some k ≥ 1 no such xi ∈ S exists. We
will show that the 1-separation dimension is at least d + 1, which would be a
contradiction.

Since we assume that no such xi exists for k, then for every xi ∈ S we
have |deg(xi,FSk )| < �k/8d. By definition of FSk , for every f ∈ FSk we have
|sup(f, S)| ∈ [k, 2k). Consider the set of pairs Z that includes all the pairs (f, x)
such that x ∈ S, f ∈ FSk and f(x) = 1. There are at least k�k such pairs in Z.

We would like to find a subset of pairs (f1, x1) . . . , (fd+1, xd+1) in Z such that
for any i �= j we have fj(xi) = 0. Recall that by the definition of the pairs in
Z we have fi(xi) = 1. Therefore, such a subset would imply that the separation
dimension of F is at least d+ 1.

For the first pair we pick any (f, x) in Z. We would like to delete some of the
pairs in Z such that any remaining pair (h, z) has the property that f(z) = 0
and h(x) = 0. This would guarantee that the subset that we select would have
the required property.

Formally, we delete from Z both the set {(g, y)|g ∈ FSk , y ∈ sup(f, S)} and
the set {(g, y)|g ∈ FSk , g ∈ deg(x,FSk )}. The deletion of the first set guarantees
that any remaining pair (h, z) would have f(z) = 0 while the deletion of the
second set guarantees that for any remaining pair (h, z) we have h(x) = 0. The
size of the first set is at most

∑
y∈sup(f,S) deg(y,FSk ) ≤ k�k/4d while the size of
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the second set is at most
∑

h∈deg(x,FS
k ) sup(h, S) ≤ k�k/4d. This implies that we

delete at most k�k/2d pairs.
By iteratively selecting a pair from Z and deleting from Z the two related

sets, this implies that we can select 2d ≥ d+1 such pairs. This is a contradiction
to the assumption that separation dimension is d. 
�

We can now use Lemma 2 to derive an output identification algorithm in the
transductive setting.

Theorem 4. Let F be a function class of separation dimension d. For any
unlabeled sample S, it can be output identified in active sample complexity of
O(d log |S| log |FS |).

Proof. Initially we query an arbitrary point in S. W.l.o.g., assume that the first
point has a label 0. This implies that we need to search for a point in S with a
label of 1. Note that the 1-separation dimension of F is at most d.

We run the algorithm in rounds, where in each round we select at most
log |S| inputs (one for to each FS2i , where i ∈ [0, log |S|]). In each round for
each FS2i we select the input x which maximizes deg(x,FS2i). By Lemma 2, since
F has 1-separation dimension of at most d, there exists an input xi such that
|deg(x,FS2i)| ≥ �k/8d. Therefore, in each round, the number of possible target
functions in each FS2i shrink by a factor of (1−1/8d). After at most O(d log |FS |)
rounds we will either: (1) find an x ∈ S with label 1, i..e, f(x) = 1, or, (2) the
only remaining consistent function in FS is the all zero function, i.e., there are
no points in S with a label of 1. 
�

Since, by Lemma 1, a d separation dimension implies that |FS | = O(|S|d), we
have

Corollary 1. If F has separation dimension d then any unlabeled sample S can
be output identified with an active sample complexity of O(d2 log2 |S|).

5 Uniform Distribution

In this section we discuss active sample complexity for specific distributions. We
will concentrate on the case that the input distribution is uniform over the unit
square, i.e., X = [0, 1]2. In this case we will be able to show that many natural
geometric concepts, which for a general distribution they require Ω(1/ε), are
efficiently output identified with respect to the uniform distribution.

Generic Convex-Hull Algorithm: Our algorithm would be a generic con-
sistency algorithm (Section 3.1) for the case where the domain of each output
value is convex. Initially we have S0 = C0 = ∅. At time t we sample the induced
distribution example oracle with X −Ct and receive an example < xt, kt >. For
each output value k let Skt be the set of points sampled with output value k. Let
Ckt be the convex hull of the points in Skt , and let Ct be the union of all those
sets. We terminate when for every output value k we have Skt �= ∅.
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Review from Computational Geometry: There are classical results in
computational geometry regarding uniformly sampling from the plane. The re-
sults related the area of the convex-hull to the total area of the convex do-
main from which the points are sampled at uniform. For a set of points Z let
ConvexHull(Z) be their convex hull and for a body Y let area(Y ) be its area.
The following theorem summarizes the related results (see, cf., [13]).

Theorem 5 ([14, 5]). Let G be an r-gon in [0, 1]2, and Sn be a sample of size
n sampled uniformly from G. Then, E[area(G−ConvexHull(Sn))] = Θ( r lnn

n ).

Triangles in the Plane: Let X = [0, 1]2 be the unit square. Consider the case
that there are m output values such that the domain of each output value is a
triangle and their union is the unit square.

It would be more beneficial in this case to consider an alternative way of
sampling. Assume that each time we access the induced distribution example
oracle with X − Ct, the oracle samples from X until it hits a point x �∈ Ct. In
our analysis let us consider also the extra points that oracle samples (but we
will give them zero weight). Assume that in this process the total number of
samples the oracle makes is T . (Recall that the generic convex hull algorithm
terminates when each of the m output values is sampled at least once.) Let Ti
be the number of times the oracle samples output value i (out of the T samples).
Let X i

j be a random variable which is 1 if the j-th point with output value i
is outside the convex hull of the previous j − 1 points, and 0 otherwise. This
implies that the expected number of samples of the generic convex hull algorithm
is ETET1...Tm [

∑m
i=1

∑Ti

j=1X
i
j ].

1

From Theorem 5, applied to triangles (i.e., r = 3), we can deduce that,
E[X i

j ] = O( ln j
j ). Therefore,

∑Ti

j=1 E[X i
j ] =

∑Ti

j=1O( ln j
j ) ≤ α log2 Ti, for some

constant α > 0. Summing over all possible output values we have

ETET1,...TmE[
m∑
i=1

Ti∑
j=1

X i
j ] ≤ ET

[
α

m∑
i=1

ETi [log2 Ti]

]

≤ ET [αm log2 T

m
] ≤ αm log2 1

ε

where the second inequality follows since
∑m

i=1 Ti = T , and the last inequality
uses the fact that E[T ] ≤ m/ε and the concavity of the logarithm function. This
implies the following theorem,

Theorem 6. Let FΔ be a function class such that every f ∈ FΔ partitions
the unit square to m triangles each of area at least ε. Then for the uniform
distribution U , the expected active sample complexity of the generic convex hull
algorithm is O(m log2 1/ε).

1 This follows since an equivalent way of active sampling is to sample points from the
distribution and request a label (and charge) only for points not in Ct.
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Lines in the Plane: Consider the case where there are k lines in the plane
that partition the unit square. Each of the m output values is one of the cells
created by the intersection of the lines. We can perform a triangulation of the
cells and have at most O(k2) triangles. (By performing a triangulation we are
only increasing the running time of the generic convex hull algorithm, since each
output value is de-composed to smaller convex hulls.) Since k lines in the plane
create at least k cells, this implies that m ≥ k. By using Theorem 6, we can
show the following,

Theorem 7. Let Fk−line be a function class such that every f ∈ Fk−line is
represented by at most k lines in the plane. If each of the m cells has area at
least ε then for the uniform distribution U the expected active sample complexity
of the generic convex hull algorithm is O(k2 log2 1/ε) = O(m2 log2 1/ε).

Note that Fls, for which we showed a lower bound of Ω(1/ε) with respect to an
arbitrary distribution, is simply F1−line and m = 2.

6 Monomials in a Hypercube

In this section we will concentrate on the Boolean cube and consider the case
that each output value is a monomial. Formally, the domain X is {0, 1}n. The
function class Fmon includes functions of the following type: For every output
k there is a monomial Mk such that f(x) = k iff Mk(x) = 1, where f ∈ Fmon.
(Note that the monomials Mi are a partition of the hypercube.)

For any i let xi be the input x ∈ {0, 1}n with the i-th bit flipped. Note that
if Mk(x) = 1 then Mk(xi) = 0 iff Mk depends on attribute xi. This would be
the basic property that will allow us to efficiently output identify Fmon.

Monomial Output Identification Algorithm: The algorithm performs an
exact identification using (essentially) membership queries. Let KN be the set
of known output values and CH be a set of inputs we need to “check”. Initially
both KN = ∅ and CH = ∅. In the first phase, we sample any x, get its value
f(x) = k and add k to KN and x to CH . In every phase we take an input x
from CH , and for every i such that f(x) �= f(xi), if f(xi) �∈ KN then we add
the output value f(xi) to KN , add the input xi to CH , and continue to the
next input from CH . We terminate either when we have processed all the values
in CH or have already recovered m output values (i.e., |KN | = m).

Theorem 8. For any distribution which has non-zero probability for every ex-
ample {0, 1}n, the class Fmon can be output identified with active sample com-
plexity of mn.

Note that the monomial output identification algorithm does not receive m as
an input parameter. Also, note that it can output a complete model of the target
function f in addition to the m output values.
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A Axis Parallel Boxes: Analysis

The analysis of the axis parallel boxes would be similar to the analysis of intervals
on a line. At time t, we have a set KNt of output values which we have already
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sampled and UKNt which are output values we have not sampled. For each
output value k ∈ KNt we define 2d boxes which extend the current Ckt to Ak,
in each of the d dimensions both above and below. (Note that the boxes overlap
unlike in the intervals case.)

Formally, let Ckt = ([c1−, c
1
+], . . . , [cd−, c

d
+]) and Ak = ([a1

−, a
1
+], . . . , [ad−, a

d
+]).

Since Ckt ⊂ Ak, then ai− ≤ ci− ≤ ci+ ≤ ai+. The 2d boxes are

Bk,i
− = [a1

−, a
1
+], . . . [ai−1

− , ai−1
+ ], [ai−, c

i
−), [ai+1

− , ai+1
+ ], . . . , [ad−, a

d
+]).

and

Bk,i
+ = [a1

−, a
1
+], . . . [ai−1

− , ai−1
+ ], (ci+, a

i
+], [ai+1

− , ai+1
+ ], . . . , [ad−, a

d
+]).

Let, γt =
∑

k∈KNt

∑d
i=1D(Bk,i

+ )+D(Bk,i
− ), βt =

∑
k∈UKNt

D(Ak), and αt =
D(X −Ct). The potential function would be Φt = γt + 2dβt. For intuition, note
that when we sample an output value k ∈ UNKt for the first time, we decrease
βt by D(Ak) and increase γt by at most dD(Ak), so the net reduction in the
potential is at least dD(Ak). Let Ht include all the history of the execution of
the algorithm until and including time t.

We will show that the potential Φt decreases by a certain factor each time
step. Specifically we show that

E[Φt − Φt+1|Ht] =
βt
αt

∑
k∈UKNt

D(Ak)
βt

dD(Ak) +

αt − βt
αt

∑
k∈KNt,i∈[1,d],b∈{+,−}

D(Bk,i
b )

αt − βt
· D(Bk,i

b )
2

The first part follows from the fact that with probability βt

αt
we sample an

example with output value in UKNt. Given that we sample such an example,
the probability that the output value is k is D(Ak)

βt
. Given that we sample from Ak

we reduce βt by D(Ak) and increase γt by at most dD(Ak), so the net reduction
in the potential is at least dD(Ak).

The second part follows from the fact that with probability αt−βt

αt
we sample

an example with output value in KNt. Given that we sample such an example,

the probability that the example is in box Bk,i
b is D(Bk,i

b )
αt−βt

. (Note that a point can
be in more than one box. We used here the linearity of expectations, to be able
to consider each box separately.) Given that we sample from Bk,i

b the expected
reduction is D(Bk,i

b )/2. Therefore,

E[Φt − Φt+1|Ht] =
1
αt

[
∑

k∈UKNt

dD(Ak)2 +
∑

k∈KNt,i∈[1,d],b∈{+,−}

1
2
D(Bk,i

b )2]

Again, we use the general inequality
∑n

i=1X
2
i ≥ (1/n)(

∑n
i=1Xi)2, for each

summation separately,
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∑
k∈UKNt

dD(Ak)2 +
∑

k∈KNt,i∈[1,d]b∈{+,−}

1
2
D(Bk,i

b )2 ≥ 1
m
dβ2

t +
1

4dm
γ2
t

=
1

4dm
(4d2β2

t + γ2
t )

Therefore,

E[Φt − Φt+1|Ht] ≥
1

4dm
4d2β2

t + γ2
t

αt

Since each point can be counted at most d times in γt, we have that,

βt + γt ≥ αt = D(X − Ct) ≥ βt + γt/d

This implies that

E[Φt − Φt+1|Ht] ≥
1

4dm
4d2β2

t + γ2
t

βt + γt
≥ 1

8dm
[2dβt + γt] =

1
8dm

Φt,

where in the second inequality we use that X2 +Y 2 ≥ 1
2 (X+Y )2. By averaging

over Ht we have that

E[Φt+1] ≤ (1− 1
8dm

)E[Φt] ≤ (1− 1
8dm

)tΦ1

Initially we have γ1 = 0 and β1 = 1, therefore the initial potential is Φ1 =
2d. After t = O(dm log(1/ε)) samples the expected potential is less than ε/2.
Therefore with probability at least 1/2 the potential is less than ε. If the potential
is less than ε, this implies that we hit every output value (since we assume that
each output value has probability of at least ε). Therefore we have establishes
Theorem 2.
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Abstract. We present an improved version of random projections that takes
advantage of marginal norms. Using a maximum likelihood estimator (MLE),
margin-constrained random projections can improve estimation accuracy consid-
erably. Theoretical properties of this estimator are analyzed in detail.

1 Introduction

Random projections[1] have been used in machine learning [2, 3, 4, 5, 6] and many other
applications in data mining and information retrieval, e.g., [7, 8, 9, 10, 11, 12].

One application of random projections is to compute the Gram matrix AAT effi-
ciently, where A ∈ Rn×D is a collection of n data points ∈ RD. In modern applica-
tions, n and D can be very large hence computing AAT is prohibitive. The method of
random projections multiplies A with a projection matrix R ∈ RD×k, which typically
consists of i.i.d. N(0, 1) entries.1 Let B = 1√

k
AR. Suppose uT

i is the ith row of A,

and the corresponding ith row in B is vT
i , then as shown in Lemma 1.3 of [1]

E
(
‖vi − vj‖2

)
= ‖ui − uj‖2, Var

(
‖vi − vj‖2

)
=

2
k
‖ui − uj‖4. (1)

Therefore, one can compute pairwise distances in k dimensions, as opposed to D
dimensions. When k � min(n,D), the savings from O(n2D) to O(n2k + nDk) is
enormous.

Random projections generate a small sketch (i.e., B) of the original data. B may
be small enough to reside in the main memory. Operations such as query optimization
or nearest neighbor searching can then be conducted on the much smaller space in the
main memory, avoiding disk IO, which can be convenient for applications in databases,
information retrieval, etc.

1.1 Our Results

We improve random projections by taking advantage of marginal norms, which we
might as well compute, since they are useful and no harder to compute than the random

1 The only necessary condition for preserving pairwise distance is that R consists of i.i.d. entries
with zero mean[2]. The case of i.i.d. N(0, 1) entries is the easiest to analyze.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 635–649, 2006.
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projections. Given an n×Dmatrix A, it costs justO(nD) time to compute the marginal
norms, considerably less than the O(nDk) time required for k random projections.

We will propose an estimator based on maximum likelihood. Some maximum like-
lihood estimators suffer from severe bias, slow rate of convergence toward normality,
multiple roots, etc. These concerns will be addressed.

Some (approximate) tail bounds will also be presented, which can improve the cur-
rent well-known tail bounds and consequently also improve some Johnson and Linden-
strauss (JL) embedding bounds in a practical sense.2

2 Random Projections Using Marginal Norms

Recall ui ∈ RD denotes data vectors in the original space and vi = 1√
k
RTui ∈ Rk

denotes vectors in the projection space, where the projection matrix R ∈ RD×k consists
of i.i.d N(0, 1) entries. We assume that the marginal norms, ‖ui‖2, are known. As
‖u1−u2‖2 = ‖u1‖2 +‖u2‖2−2uT

1u2, we only need to estimate the dot product uT
1u2.

For convenience, we denote

a = uT
1u2, m1 = ‖u1‖2, m2 = ‖u2‖2, d = ‖u1 − u2‖2 = m1 +m2 − 2a.

The following lemma is proved in Appendix A.

Lemma 1. Given u1, u2 ∈ RD, and a random matrix R ∈ RD×k consisting of i.i.d.
standard normalN(0, 1) entries, if we let v1 = 1√

k
RTu1, and v2 = 1√

k
RTu2, then3

E vT
1v2 = a, Var vT

1v2 =
1
k

m1m2 + a2 , E vT
1v2 − a

3
=

2a

k2 3m1m2 + a2 (2)

with the moment generating function

E
(
exp(vT

1v2t)
)

=
(

1− 2
k
at− 1

k2

(
m1m2 − a2) t2)− k

2

, (3)

where −k√
m1m2−a ≤ t ≤

k√
m1m2+a

.

The moment generating function may be useful for deriving tail bounds, from which
one can hope to derive theorems similar to the JL-embedding bounds for ‖v1 − v2‖2
[13, 14, 15]. However, it is more difficult to derive practically useful tail bounds for vT

1v2
than for ‖v1 − v2‖2. One intuitive way to see this is via the coefficients of variations:√

Var (‖v1 − v2‖2)
‖u1 − u2‖2

=

√
2
k

(constant),

√
Var

(
vT
1v2

)
uT

1u2
≥
√

2
k

(unbounded).

A straightforward unbiased estimator of the dot product a = uT
1u2 would be

âMF = vT
1v2, Var (âMF ) =

1
k

(
m1m2 + a2) , (4)

where the subscript “MF” stands for “margin-free.”
2 The JL-embedding bound[13] was originally defined much more generally than for estimating

the 2-norm distances, which is the only case we consider.
3 A recent proof by [12, Lemma 5.4] verified that Var vT

1v2 ≤ 2
k

‖u1‖2‖u2‖2 = 2
k
m1m2.
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It is expected that if the marginal norms, m1 = ‖u1‖2 and m2 = ‖u2‖2, are given,
one can do better. For example,

âSM =
1
2
(
m1 +m2 − ‖v1 − v2‖2

)
, Var (âSM) =

1
2k

(m1 +m2 − 2a)2 , (5)

where the subscript “SM” stands for “simple margin (method).” Unfortunately âSM is
not always better than âMF . For example, when a = 0, Var (âSM ) = 1

2k (m1 +m2)2 ≥
Var (âMF ) = 1

k (m1m2). It is easy to show that

Var (âSM) ≤ Var (âMF ) only when a ≥ (m1 +m2)−
√

1
2
(m2

1 +m2
2) + 2m1m2.

We propose an estimator based on maximum likelihood in the following lemma,
proved in Appendix B. This estimator has smaller variance than both âMF and âSM .

Lemma 2. Suppose the margins, m1 = ‖u1‖2 and m2 = ‖u2‖2, are known; a maxi-
mum likelihood estimator (MLE), denoted as âMLE , is the solution to a cubic equation:

a3 − a2 (vT
1v2

)
+ a

(
−m1m2 +m1‖v2‖2 +m2‖v1‖2

)
−m1m2v

T
1v2 = 0. (6)

The variance of âMLE (asymptotic, up to O(k−2) terms) is

Var (âMLE) =
1
k

(
m1m2 − a2

)2
m1m2 + a2 ≤ min (Var (âMF ) ,Var (âSM)) . (7)

Figure 1 verifies the inequality in (7) by plotting Var(âMLE)
Var(âMF ) and Var(âMLE)

Var(âSM ) . The im-

provement is quite substantial. For example, Var(âMLE)
Var(âMF ) = 0.2 implies that in order to

achieve the same mean square accuracy, the proposed MLE estimator needs only 20%
of the samples required by the current margin-free (MF) estimator.
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Fig. 1. The variance ratios, Var(âMLE)
Var(âMF ) and Var(âMLE)

Var(âSM ) verify that our proposed MLE has
smaller variance than both the margin-free (MF) estimator and the simple margin (SM) method.
Var (âMLE), Var (âMF ), and Var (âSM ) are given in (7), (4), and (5), respectively. We consider
m2 = 0.2m1, m2 = 0.5m1, and m2 = 0.8m1, in panels (a), (b), and (c), respectively.

Maximum likelihood estimators can be seriously biased in some cases, but usually
the bias is on the order ofO(k−1), which may be corrected by [16] “Bartlett correction.”
In Lemma 3 (proved in Appendix C), we are able to show that the asymptotic bias of
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our âMLE is only O(k−2) and therefore there is no need for bias correction. Lemma 3
also derives the asymptotic third moment of âMLE as well as a more accurate variance
formula up to O(k−3) terms. The third moment is needed if we would like to model
the distribution of âMLE more accurately. The more accurate variance formula may be
useful for small k or in the region where the O(k−2) term in the variance is quite large.

Lemma 3. The bias, third moment, and the variance with O(k−2) correction for the
maximum likelihood estimator, âMLE , derived in Lemma 2, are given by

E (âMLE − a) = O(k−2), (8)

E
(
(âMLE − a)3

)
=
−2a(3m1m2 + a2)(m1m2 − a2)3

k2(m1m2 + a2)3
+O(k−3), (9)

Var (âMLE)c2 =
1
k

(
m1m2 − a2

)2
m1m2 + a2 +

1
k2

4(m1m2 − a2)4

(m1m2 + a2)4
m1m2 +O(k−3). (10)

Eq. (10) indicates that when a = 0, the O(k−2) term of the asymptotic variance is 4
k of

the O(k−1) term. When k ≤ 10 and a is very small, we might want to consider using
(10) instead of (7) for Var(âMLE). However, as we will show next, for very small k,
there is also a multiple root problem in solving the cubic MLE equation (6).

Lemma 4. The cubic MLE equation (6) in Lemma 2 admits multiple real roots with a
small probability, expressed as

Pr (multiple real roots) = Pr
(
P 2(11−Q2/4− 4Q+ P 2) + (Q− 1)3 ≤ 0

)
, (11)

where P = vT
1v2√
m1m2

, Q = ‖v1‖2

m1
+ ‖v2‖2

m2
. This probability is (crudely) bounded by

Pr (multiple real roots) ≤ e−0.0085k + e−0.0966k. (12)
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Fig. 2. Simulations show that Pr (multiple real roots) decreases exponentially fast with respect
to increasing sample size k (notice the log scale in the vertical axis). After k ≥ 8, the probability
that the cubic MLE equation (6) admits multiple roots becomes so small (≤ 1%) that it can be
safely ignored in practice. Here a′ = a√

m1m2
. The curve for the upper bound is given by (13).
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When a = m1 = m2, this probability can be (sharply) bounded by

Pr (multiple real roots | a = m1 = m2) ≤ e−1.5328k + e−0.4672k. (13)

Although the bound (12) is crude, the probability of admitting multiple real roots in
(11) can be easily simulated. Figure 2 shows that this probability drops quickly to< 1%
when k ≥ 8.

To the best of our knowledge, there is no consensus on what is the best solution to
multiple roots[17]. Because the probability of multiple roots is so small when k ≥ 8
while in the large-scale applications we expect k 5 10, we suggest not to worry about
multiple roots. Also, we will only use the O(k−1) term of Var(âMLE), i.e, (7).
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Fig. 3. Estimations of the dot products between two vectors “THIS” and “HAVE.” (a): bias
a

, (b):√
Var(â)
a

, (c):
3
√

E(â−a)3

a
. This experiment verifies that (A): Marginal information can improve

the estimations considerably. (B): As soon as k > 8, âMLE is essentially unbiased and the
asymptotic variance and third moment match simulations remarkably well. (C): The margin-free
estimator (âMF ) is unbiased and the theoretical moments are indistinguishable from simulations.

Figure 3 presents some simulation results, using two words “THIS” and “HAVE,”
from some MSN Web crawl data. Here u1,j (u2,j) is the number of occurrences of word
“THIS” (word “HAVE”) in the jth page, j = 1 toD = 216. As verified in Figure 3, due
to the existence of multiple roots at small k, some small bias is observable, as well as
some small discrepancies between the observed moments and the theoretical asymptotic
moments. When k ≥ 8, the asymptotic formulas for âMLE are very accurate.

3 Some Tail Bounds

Tails bounds are necessary for deriving JL-type bounds for determining the number of
projections (i.e., k) needed in order to achieve a certain specified level of accuracy.

Recall ui ∈ RD denotes data vectors in the original space and vi ∈ Rk denotes
vectors in the projection space. The usual estimator for d = ‖u1 − u2‖2 is

d̂MF = ‖v1 − v2‖2 = d,
d̂MF

d/k
∼ χ2

k, Var
(
d̂MF

)
=

2
k
‖v1 − v2‖4 =

2d2

k
.
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The well-known Chernoff chi-squared tail bound gives (for any 0 < ε < 1)4

Pr
(∣∣∣d̂MF − d

∣∣∣ ≥ εd
)
≤ 2 exp

(
−k

4
ε2 +

k

6
ε3
)
, (15)

from which a JL-embedding bound follows, using the Bonferroni union bound [15]:

n2

2
2 exp

(
−k

4
ε2 +

k

6
ε3
)
≤ n−γ ⇒ k ≥ k0 =

4 + 2γ
ε2/2− ε3/3

logn, (16)

i.e., if k ≥ k0, then with probability at least 1− n−γ , for any two rows ui, uj from the
data matrix with n rows, we have (1− ε)‖ui−uj‖2 ≤ ‖vi−vj‖2 ≤ (1+ ε)‖ui−uj‖2.

As mentioned in [15], the above bounds are tight. We will show that, from a practical
point of view, using the marginal information can actually improve the bounds.

Using âMLE , an MLE for d = ‖u1 − u2‖2, would be

d̂MLE = m1 +m2 − 2âMLE, Var
(
d̂MLE

)
=

4
k

(m1m2 − a2)2

m1m2 + a2 . (17)

Both âMLE and d̂MLE are asymptotically normal. It is well-known that for “small
deviations,” (e.g., small ε) the asymptotic normality of MLE holds with high accuracy.
We often care about the “small deviation” behavior because we would like the estimate
to be close to the truth. However, when we estimate all pairwise distances simultane-
ously (as is considered in the JL-embedding bound), the Bonferroni union bound5 may
push the tail to the “large deviation” range hence assuming asymptotic normality could
be a concern. On the other hand, the Bonferroni bound leads to larger k values; and
larger k improves the accuracy of the asymptotic normality. Based on this (heuristic)
argument, the asymptotic tail bounds of âMLE may be still useful in practice.

3.1 Normal Approximation

Based on the asymptotic normality âMLE ∼ N(a,Var(âMLE)), we can obtain6

Pr (|âMLE − a| ≥ εa)
∼
≤ 2 exp

(
−kε

2

2
a2(m1m2 + a2)
(m1m2 − a2)2

)
, (19)

where
∼
≤ indicates that bound holds only asymptotically.

4 Since we know the exact distribution in this case, we might as well compute k exactly by
iteratively solving a nonlinear equation:

n2

2
Pr χ2

k ≥ (1 + ε)k + Pr χ2
k ≤ (1 − ε)k = α (e.g., α = 0.05), (14)

which always outputs smaller k values than the JL-bound (e.g., by about 40% when ε = 0.5).
5 The Bonferroni bound is well-known for being too conservative, partly because it ignores the

correlations. But the major problem is that the criterion is too stringent for large n (here we
actually have n2

2 tests). A reasonable alternative is to allow a certain fraction of tests to fail
[18, Chapter 9]. For example, if we allow at most 1/p tests to fail, we can solve for k from

Pr χ2
k ≥ (1 + ε)k + Pr χ2

k ≤ (1 − ε)k = α/p (e.g., α = 0.05, p = 100) (18)

6 Of course, we can also use the exact normal tail probabilities instead of the upper bounds.
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Similarly, the asymptotic normality d̂MLE ∼ N(d,Var(d̂MLE)) yields

Pr
(∣∣∣d̂MLE − d

∣∣∣ ≥ εd
) ∼
≤ 2 exp

(
−k

4
ε2
d2

2
m1m2 + a2

(m1m2 − a2)2

)
. (20)

Note that d2

2
m1m2+a2

(m1m2−a2)2 = Var(âSM )
Var(âMLE) ≥ 1 (unbounded), with equality holds when

m1 = m2 = a. Therefore, as expected, we can obtain better bounds using marginal
information. In practice, we have to choose some reasonable values for m1, m2 and a
based on prior knowledge of the data, or for the regions we are most interested in.

It would be interesting to see how normal approximation on d̂MF affects its tail

bound. Assuming normality, i.e., d̂MF ∼ N
(
d, 2d2

k

)
, we obtain

Pr
(∣∣∣d̂MF − d

∣∣∣ ≥ εd
) ∼
≤ 2 exp

(
−k

4
ε2
)
, (21)

which agrees with the exact bound on the dominating ε2 term.
When applying normal approximations, it is important to watch out for the third

moments, which, to an extent, affect the rate of convergence:

E
(
d̂MF − d

)3
=

8d3

k2 , E
(
d̂MLE − d

)3
= 8
−2a(3m1m2 + a2)(m1m2 − a2)3

k2(m1m2 + a2)3
.

Some algebra can verify that∣∣∣∣∣∣∣
E
(
d̂MLE − d

)3

E
(
d̂MF − d

)3

∣∣∣∣∣∣∣ ≤
(

Var(âMLE)
Var(âMF )

) 3
2

≤ 1, (22)

which means the third moment of d̂MLE (and âMLE) is well-behaved.

3.2 Generalized Gamma Approximation

The normal approximation matches the first two (asymptotic) moments. The accuracy
can be further improved by matching the third moment. For example, [19] used a gen-
eralized gamma distribution to accurately approximate the finite-dimensional behavior
of the random matrix eigenvalues arising in some wireless communication channels.

For convenience, we consider a ≥ 0 (true in most applications). Assuming
−âMLE ∼ G(α, β, ξ), a generalized gamma distribution with three parameters
(α, β, ξ), then

E (−âMLE) = αβ, Var (−âMLE) = αβ2, E (−âMLE + a)3 = (ξ + 1)αβ3, (23)

from which we can compute (α, β, ξ):

α =
ka2(m1m2 + a2)
(m1m2 − a2)2

= kα′, β =
−(m1m2 − a2)2

k(m1m2 + a2)a
=
−1
k
β′,

ξ =
2a2(3m1m2 + a2)

(m1m2 + a2)(m1m2 − a2)
− 1 (24)
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The generalized gamma distribution does not have a closed-form density, but it does
have closed-form moment generating functions [19, (69)(70)]:

E (exp (−âMLEt)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
α
ξ−1

(
1− (1− βξt)

ξ−1
ξ

))
when ξ > 1

exp
(

α
1−ξ

((
1

1−βξt

) 1−ξ
ξ − 1

))
when ξ < 1

(1− βt)−α when ξ = 1

ξ > 1 happens when a2

m1m2
>

√
17−3
4 = 0.2808. Using the Chernoff inequality and

assuming ξ > 1 (other cases are similar) , we obtain

Pr d̂MLE ≥ (1 + ε)d
∼
≤ exp −k

2a
2a− εd

ξ−1 α′

ξ − 1
−

a

β′ξ
−

α′

ξ − 1
+

2a− εd

2β′ξ
,

Pr d̂MLE ≤ (1 − ε)d
∼
≤ exp −k

2a
2a + εd

ξ−1 α′

ξ − 1
−

a

β′ξ
−

α′

ξ − 1
+

2a+ εd

2β′ξ
.

4 Sign Random Projections

We give a brief introduction to “sign random projections,” (i.e., only storing the signs
of the projected data), and compare sign random projections with regular random pro-
jections. For each data point, sign random projections store just one bit per projection.
There are efficient algorithms for computing hamming distances [14, 10, 11].

We will show that when the data are roughly uncorrelated, the variance of sign ran-
dom projections is only about π

2

4 ≈ 2.47 of the variance of regular random projections,
which store real numbers. With highly correlated data, however, sign random projec-
tions can be quite inefficient compared to regular random projections.

Recall ui ∈ RD denotes data vectors in the original space and vi = 1√
k
RTui ∈ Rk

for vectors in the projection space. It is easy to show that[10]

Pr (sign(v1,j) = sign(v2,j)) = 1− θ

π
, j = 1, 2, ..., k, (25)

where θ = cos−1
(

uT
1u2

‖u1‖‖u2‖

)
= cos−1

(
a√

m1m2

)
is the angle between u1 and u2.

We can estimate θ as a binomial probability, whose variance would be

Var
(
θ̂
)

=
π2

k

(
1− θ

π

)(
θ

π

)
=
θ(π − θ)

k
. (26)

We can also estimate a = uT
1u2 from θ̂ if knowing the margins:

âSign = cos(θ̂)
√
m1m2. (27)

By the Delta method, âSign is asymptotically unbiased with the asymptotic variance

Var (âSign) = Var(θ̂) sin2(θ)m1m2 =
θ(π − θ)

k
sin2(θ)m1m2, (28)
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provided sin(θ) is nonzero, which is violated when θ = 0 or π. In fact, when θ is close
to 0 or π, due to the high nonlinearity, the asymptotic variance formula is not reliable.

Regular random projections store real numbers (32 or 64 bits). At the same number
of projections (i.e., the same k) , obviously sign random projections will have larger
variances. If the variance is inflated only by a factor of (e.g.,) 4, sign random projections
would be preferable because we could increase k to (e.g.,) 4k, to achieve the same
accuracy while the storage cost will still be lower than regular random projections.

We compare the variance (Var (âSign)) of sign random projections with the variance
of regular random projections considering the margins (i.e., Var (âMLE)) by

VSign =
Var (âSign)
Var (âMLE)

=
θ(π − θ) sin2(θ)m1m2

(m1m2−a2)2
m1m2+a2

=
θ(π − θ)(1 + cos2(θ))

sin2(θ)
, (29)

which is symmetric about θ = π
2 . It is easy to check (also shown in Figure 4) that VSign

is monotonically decreasing in (0, π2 ] with minimum π2

4 ≈ 2.47, attained at θ = π
2 .
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Fig. 4. The ratios of variance VSign =
Var(âSign)
Var(âMLE) decreases monotonically in (0, π

2 ], with mini-

mum = π2

4 ≈ 2.47 attained at θ = π
2 . Note that the horizontal axis is in π.

When the data points are nearly uncorrelated (θ close to π
2 , in fact θ > π

5 could be
good enough), sign random projections should have good performance. However, some
applications such as duplicate detections are interested in data points that are close to
each other hence sign random projections may cause relatively large errors.

5 Some Recent Progress on Random Projections

There is considerable recent interest in sparse random projections, proposed by
Achlioptas [15]. It replaces the N(0, 1) entries in R with entries in

√
s × {−1, 0, 1}

with probabilities { 1
2s , 1 −

1
s ,

1
2s}, 1 ≤ s ≤ 3. With s = 3, one can get a threefold

speedup.
We[20] recently proposed very sparse random projections by using s =

√
D, to

obtain a
√
D-fold speedup. The analysis is based on the asymptotic properties of the

projected data. For example, assuming bounded third moment on the original data, the
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projected data converge to normal at the rate of O
( 1
D1/4

)
, which is sufficiently fast

since D has to be large otherwise there would be no need of seeking approximate an-
swers. The MLE proposed in this study is still useful in very sparse random projections.

The limitation of random projection is that it can not estimate multi-way distances
nor can it estimate 1-norm distances. The authors’ concurrent work[21] has proposed
a new sketch-based sampling algorithm, which is capable of estimating two-way and
multi-way distances in any norms. In particular, this algorithm provably outperforms
random projections in boolean data and nearly independent data.

6 Conclusion

We propose a maximum likelihood estimator (MLE) for random projections, taking
advantage of the marginal information, which can be easily computed at negligible
incremental cost. This estimator has provably smaller variance than the current method;
and therefore it can reduce the required number of projections.
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A Proof of Lemma 1

Recall u1, u2 ∈ RD, v1 = 1√
k
RTu1, and v2 = 1√

k
RTu2, where R ∈ RD×k consists of

i.i.d. N(0, 1) entries. Note that vT
1v2 =

∑k
j=1 v1,jv2,j =

∑k
j=1

1
ku

T
1RjRT

ju2 is a sum
of i.i.d. terms, where Rj is the jth column of R.

It is easy to show that (v1,j , v2,j) are jointly normal with zero mean and covariance
Σ (denotingm1 = ‖u1‖2, m2 = ‖u2‖2, and a = uT

1u2)[
v1,j
v2,j

]
∼ N

([
0
0

]
, Σ =

1
k

[
‖u1‖2 uT

1u2
uT

1u2 ‖u2‖2
]

=
1
k

[
m1 a
a m2

])
. (30)

It is easier to work with the conditional probability:

v1,j |v2,j ∼ N
(
a

m2
v2,j ,

m1m2 − a2

km2

)
, (31)

from which we can get

E (v1,jv2,j)
2 = E

(
E
(
v2
1,jv

2
2,j |v2,j

))
= E

(
v2
2,j

(
m1m2 − a2

km2
+
(
a

m2
v2,j

)2
))

=
m2

k

m1m2 − a2

km2
+

3m2
2

k2

a2

m2
2

=
1
k2

(
m1m2 + 2a2) . (32)
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Therefore,

Var (v1,jv2,j) =
1
k2

(
m1m2 + a2) , Var

(
vT
1v2

)
=

1
k

(
m1m2 + a2) . (33)

The third moment can be proved similarly. In fact, one can compute any moments,
using the moment generating function:

E (exp(v1,jv2,jt)) = E (E (exp(v1,jv2,jt)) |v2,j)

=E

(
exp

((
a

m2
v2,j

)
v2,jt+

(
m1m2 − a2

km2

)
(v2,jt)

2 /2
))

=E

(
exp

(
v2
2,j

k

m2

(
a

k
t+

1
k2

(
m1m2 − a2) t2

2

)))
=
(

1− 2a
k
t− 1

k2

(
m1m2 − a2) t2)− 1

2

. (34)

Here, we use the fact that
v2
2,j

m2/k
∼ χ2

1, a chi-squared random variable with one de-

gree of freedom. Note that E (exp(Y t)) = exp
(
μt+ σ2t2/2

)
if Y ∼ N(μ, σ2); and

E (exp(Y t)) = (1− 2t)−
1
2 if Y ∼ χ2

1. By independence, we have proved that

E
(
exp(vT

1v2t)
)

=
(

1− 2
k
at− 1

k2

(
m1m2 − a2) t2)− k

2

, (35)

where −k√
m1m2−a ≤ t ≤

k√
m1m2+a

. This completes the proof of Lemma 1.

B Proof of Lemma 2

From Appendix A, we can write down the joint likelihood function for {v1,j, v2,j}kj=1:

lik
(
{v1,j , v2,j}kj=1

)
∝ |Σ|−k

2 exp

⎛⎝−1
2

k∑
j=1

[
v1,j v2,j

]
Σ−1

[
v1,j
v2,j

]⎞⎠ . (36)

where (assumingm1m2 �= a to avoid triviality)

|Σ| = 1
k2 (m1m2 − a2), Σ−1 =

k

m1m2 − a2

[
m2 −a
−a m1

]
,

which allows us to express the log likelihood function, l(a), to be

l(a) = −k
2

log
(
m1m2 − a2)− k

2
1

m1m2 − a2

k∑
j=1

(
v2
1,jm2 − 2v1,jv2,ja+ v2

2,jm1
)
.

Setting l′(a) to zero, we obtain âMLE , which is the solution to the cubic equation:

a3 − a2 (vT
1v2

)
+ a

(
−m1m2 +m1‖v2‖2 +m2‖v1‖2

)
−m1m2v

T
1v2 = 0. (37)
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The well-known large sample theory says that âMLE is asymptotically unbiased and

converges weakly to a normal random variableN
(
a,Var (âMLE) = 1

I(a)

)
, where I(a),

the expected Fisher Information, is I(a) = −E (l′′(a)). Recall l(a) is the log likelihood
function obtained in Appendix B. Some algebra will show that

I(a) = k
m1m2 + a2

(m1m2 − a2)2
. Var (âMLE) =

1
k

(
m1m2 − a2

)2
m1m2 + a2 . (38)

Applying the Cauchy-Schwarz inequality a couple of times can prove

Var (âMLE) =
1
k

(
m1m2 − a2

)2
m1m2 + a2 ≤ min (Var (âMF ) ,Var (âSM)) , (39)

where Var (âMF ) = 1
k

(
m1m2 + a2

)
, Var (âSM) = 1

2k (m1 +m2 − 2a)2.

C Proof of Lemma 3

We analyze the higher-order properties of âMLE using stochastic Taylor expansions.
We use some formulations appeared in [16, 22, 23]. The bias

E (âMLE − a) = −E (l′′′(a)) + 2I′(a)
2I(a)

+O(k−2), (40)

which is often called the “Bartlett correction.” Some algebra can show

I′(a) =
2ka(3m1m2 + a2)

(m1m2 − a2)3
, E (l′′′(a)) = −2I′(a), E (âMLE − a) = O(k−2). (41)

The third central moment

E (âMLE − a)3 =
−3I′(a)− E (l′′′(a))

I3(a)
+O(k−3)

= −2a(3m1m2 + a2)(m1m2 − a2)3

k2(m1m2 + a2)3
+O(k−3). (42)

The O(k−2) term of the variance, denoted by V c
2 , can be written as

V c
2 =

1
I3(a)

(
E (l′′(a))2 − I2(a)−

∂
(
E (l′′′(a)) + 2I′(a)

)
∂a

)

+
1

2I4(a)

(
10

(
I′(a)

)2 − E (l′′′(a))
(
E (l′′′(a))− 4I′(a)

))

=
E
(
(l′′(a))2

)
− I2(a)

I3(a)
−

(
I′(a)

)2
I4(a)

, (as E (l′′′(a)) + 2I′(a) = 0). (43)
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Computing E
(
(l′′(a))2

)
requires some work. We can write

l′′(a) = − k

S3

(
T (4a2 + S)− S(m1m2 + a2)− 4aS(vT

1v2)
)
, (44)

where, for simplicity, we let S = m1m2−a2 and T = ‖v1‖2m2 +‖v2‖2m1−2vT
1v2a.

Expanding (l′′(a))2 generates terms involving T , T 2, TvT
1v2. Rewrite

T =
m1m2 − a2

k

⎛⎝ k∑
j=1

km2

m1m2 − a2

(
v1,j −

a

m2
v2,j

)2

+
k∑
j=1

v2
2,j

k

m2

⎞⎠
=
m1m2 − a2

k
(η + ζ) (45)

Recall v1,j |v2,j ∼ N
(

a
m2
v2,j ,

m1m2−a2

km2

)
, and v2,j ∼ N

(
0, m2

k

)
. Then

η
∣∣{v1,j}kj=1 ∼ χ2

k, (independent of {v1,j}kj=1), ζ =
k∑
j=1

v2
2,j

k

m2
∼ χ2

k, (46)

implying that η and ζ are independent; and η + ζ ∼ χ2
2k. Thus,

E(T ) = 2(m1m2 − a2) = 2S, E(T 2) = 4S2(1 +
1
k

). (47)

We also need to compute E
(
TvT

1v2
)
. Rewrite

TvT
1v2 = (vT

1v2)‖v1‖2m2 + (vT
1v2)‖v2‖2m1 − 2

(
vT
1v2

)2
a. (48)

Expand (vT
1v2)‖v1‖2

(vT
1v2)‖v1‖2 =

k∑
j=1

v1,jv2,j

k∑
j=1

v2
1,j =

k∑
j=1

v3
1,jv2,j +

k∑
i=1

⎛⎝v2
1,i

∑
j �=i

v1,jv2,j

⎞⎠ . (49)

Again, applying the conditional probability argument, we obtain E
(
v3
1,jv2,j

)
=

3am1
k2 , from which it follows that

E
(
(vT

1v2)‖v1‖2
)

=
k∑
j=1

E
(
v3
1,jv2,j

)
+

k∑
i=1

⎛⎝E
(
v2
1,i
)∑
j �=i

E (v1,jv2,j)

⎞⎠
=

3am1

k
+ k

m1

k

∑
j �=i

a

k
= am1

(
1 +

2
k

)
. (50)

To this end, we have all the necessary components for computing E
(
(l′′(a))2

)
. After

some algebra, we obtain

E
(
(l′′(a))2

)
=
k2

S4

((
m1m2 + a2)2 +

4
k

(
m2

1m
2
2 + a4 + 6a2m1m2

))
, (51)

V c
2 =

4
k2

(
m1m2 − a2

)4
(m1m2 + a2)4

m1m2. (52)

We complete the proof of Lemma 3.
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D Proof of Lemma 4

The cubic MLE equation derived in Lemma 2 may admit multiple roots. (Recall a cubic
equation always has at least one real root.) By the well-known Cardano condition,

Pr (multiple real roots) = Pr
(
P 2(11−Q2/4− 4Q+ P 2) + (Q− 1)3 ≤ 0

)
, (53)

where P = vT
1v2√
m1m2

, Q = ‖v1‖2

m1
+ ‖v2‖2

m2
. We can obtain a crude upper bound using the

fact that Pr(A+B ≤ 0) ≤ Pr(A ≤ 0) + Pr(B ≤ 0), i.e.,

Pr (multiple real roots) ≤ Pr
(
11−Q2/4− 4Q ≤ 0

)
+ Pr (Q− 1 ≤ 0) . (54)

We will soon prove the following moment generating function

E (exp(Qt)) =
(

1− 4t
k

+
4t2

k2

(
m1m2 − a2

m1m2

))−k
2

, (55)

which enables us to prove the following upper bounds:

Pr (Q− 1 ≤ 0) ≤ e−0.0966k, Pr
(
11−Q2/4− 4Q ≤ 0

)
≤ e−0.0085k, (56)

Pr (multiple real roots) ≤ e−0.0966k + e−0.0085k, (57)

using the standard Chernoff inequality, e.g., Pr (Q > z) = Pr
(
eQt > ezt

)
≤

E
(
eQt

)
e−zt, choosing t that minimizes the upper bound.

The upper bound (57) is very crude but nevertheless reveals that the probability of
admitting multiple real roots decreases exponentially fast.

It turns out there is a simple exact solution for the special case of a = m1 = m2,

i.e., Q = 2P = ‖v1‖2/m1, kP = k‖v1‖2

m2
∼ χ2

k, and a (sharp) upper bound:

Pr (multiple real roots) = Pr
(
(P − 3)2 ≥ 8

)
≤ e−1.5328k + e−0.4672k. (58)

To complete the proof of Lemma 4, we need to outline the proof for the moment
generating function E (exp(Qt)). Using the conditional probability v1,j |v2,j , we know

km2

m1m2 − a2 v
2
1,j |v2,j ∼ χ2

1,λ, where λ =
ka2

m2(m1m2 − a2)
v2
2,j . (59)

χ2
1,λ denotes a non-central chi-squared random variable with one degree of freedom and

non-centrality λ. If Y ∼ χ2
1,λ, then E (exp(Y t)) = exp

(
λt

1−2t

)
(1− 2t)−

1
2 . Because

E (exp(Qt)) =
k∏
j=1

E

(
E

(
exp

(
v2
1,j

m1
+
v2
2,j

m2

)
t

∣∣∣∣∣ v2,j
))

, (60)

we can obtain the moment generating function in (55) after some algebra.
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Selective sampling, a realistic active learning model, has received recent attention
in the learning theory literature. While the analysis of selective sampling is still in
its infancy, we focus here on one of the (seemingly) simplest problems that remain
open. Given a pool of unlabeled examples, drawn i.i.d. from an arbitrary input
distribution known to the learner, and oracle access to their labels, the objective
is to achieve a target error-rate with minimum label-complexity, via an efficient
algorithm. No prior distribution is assumed over the concept class, however the
problem remains open even under the realizability assumption: there exists a
target hypothesis in the concept class that perfectly classifies all examples, and
the labeling oracle is noiseless.1 As a precise variant of the problem, we consider
the case of learning homogeneous half-spaces in the realizable setting: unlabeled
examples, xt, are drawn i.i.d. from a known distribution D over the surface of
the unit ball in Rd and labels yt are either −1 or +1. The target function is a
half-space u · x ≥ 0 represented by a unit vector u ∈ Rd such that yt(u · xt) > 0
for all t. We denote a hypothesis v’s prediction as v(x) = SGN(v · x).

Problem: Provide an algorithm for active learning of half-spaces, such that
(with high probability with respect to D and any internal randomness):

1. After L label queries, algorithm’s hypothesis v obeys Px∼D[v(x) �= u(x)] < ε.
2. L is at most the PAC sample complexity of the supervised problem,
Õ(dε log 1

ε ), and for a general class of input distributions, L is significantly
lower.2

3. Total running time is at most poly(d, 1
ε ).

1 Motivation

In most machine learning applications, access to labeled data is much more lim-
ited or expensive than access to unlabeled samples from the same data-generating
distribution. It is often realistic to model this scenario as active learning. Often
the label-complexity, the number of labeled examples required to learn a con-
cept via active learning, is significantly lower than the PAC sample complexity.
While the query learning model has been well studied (see e.g. [1]), it is often
unrealistic in practice, as it requires oracle access to the entire input space. In
1 In the general setting, the target is the member of the concept class with minimal

error-rate on the full input distribution, with respect to the (possibly noisy) oracle.
2 Tilde notation suppresses terms in the high probability parameter, log d and log log 1

ε
.
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selective sampling (originally introduced by [4]) the learner receives unlabeled
data and may request certain labels to be revealed, at a constant cost per label.

2 State of the Art

Recent work has provided several negative results. Standard perceptron was
shown to require Ω( 1

ε2 ) labels under the uniform, using any active learning rule
[6]. Dasgupta [5] provided a general lower bound for learning half-spaces of Ω(1

ε )
labels, when the size of the unlabeled sample is bounded. Kääriäinen provided
a lower bound of Ω(η

2

ε2 ), where η is the noise rate in the fully agnostic case [9].
Several of the positive results to date have been based on intractable algo-

rithms. Dasgupta [5] gave a general upper bound on labels for selective sam-
pling to learn arbitrary concepts under arbitrary input distributions, which for
half-spaces under distributions λ-similar to uniform is Õ(d log λ log2 1

ε ). The al-
gorithm achieving the bound is intractable: exponential storage and computa-
tion are required, as well as access to an exponential number of functions in
the concept class (not just their predictions). Similarly, recent work by Balcan,
Beygelzimer and Langford [2] provides an upper bound on label-complexity of
Õ(d2 log 1

ε ) for learning half-spaces under the uniform, in a certain agnostic sce-
nario, via an intractable algorithm.

Several selective sampling algorithms have been shown to work in practice,
e.g. [10]. Some lack performance guarantees, or have been analyzed in the regret
framework, e.g. [3]. Under a Bayesian assumption, Freund et al. [7] gave a bound
on label-complexity of Õ(d log 1

ε ) for learning half-spaces under the uniform,
using Query By Committee [13], a computationally complex algorithm that has
recently been simplified to yield encouraging empirical results [8]. This is the
optimal label-complexity for the problem when the input distribution is uniform,
in which case the PAC sample complexity is Θ̃(dε ) [11, 12].

There have also been some positive results for efficient algorithms, however
to date the analyses have only been performed with respect to input distrib-
utions that are uniform or near-uniform. Dasgupta, Kalai and Monteleoni [6]
introduced an efficient and fully online algorithm yielding the optimal label-
complexity for learning half-spaces under the uniform. An algorithm due to [4],
which is tractable in the realizable case, was recently shown to require at most
Õ(d2 log 1

ε ) labels under the uniform [2].

3 Other Open Variants

Along with the simple version stated here, the following variants remain open:

1. D is unknown to the learner.
2. Agnostic setting, under low noise rates:3 an efficient algorithm with a non-

trivial label-complexity bound under the uniform, or arbitrary distributions.

3 The fully agnostic setting faces the lower bound of [9].
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3. Online constraint: storage and time complexity (of the online update) must
not scale with the number of seen labels or mistakes.

4. Analagous goal for other concept classes, or for general concepts.
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Can Entropic Regularization Be Replaced
by Squared Euclidean Distance Plus

Additional Linear Constraints

Manfred K. Warmuth

Univ. of Calif. at Santa Cruz

Abstract. There are two main families of on-line algorithms depending
on whether a relative entropy or a squared Euclidean distance is used as
a regularizer. The difference between the two families can be dramatic.
The question is whether one can always achieve comparable performance
by replacing the relative entropy regularization by the squared Euclidean
distance plus additional linear constraints. We formulate a simple open
problem along these lines for the case of learning disjunctions.

Assume the target concept is a k literal disjunction over n variables. The in-
stances are bit vectors x ∈ {0, 1}n and the disjunction Vi1 ∨ Vi2 ∨ . . . Vik is true
on instance x iff at least one bit in the positions i1, i2, . . . , ik is one. We can
represent the above disjunction as a weight vector w: all relevant weights wij
are set to some threshold θ > 0 and the remaining n − k irrelevant weights are
zero. Now the disjunction is a linear threshold function: the disjunction is true
on x iff w · x ≥ θ.

The following type of on-line algorithm makes at most O(k logn) mistakes on
sequences of examples (x1, y1), (x2, y2), . . ., when the labels yt are consistent1

with a k-literal monotone disjunction: The algorithm predicts true on instance
xt iff wt ·xt ≥ θ. The weight vector wt for predicting at trial t is determined by
minimizing the relative entropy to the initial weight vector w1 subject to some
linear constraints implied by the examples. Here the relative entropy is defined
as Δ(w,w1) =

∑
iwi ln

wi

w1,i
+ w1,i − wi. More precisely, wt := minwΔ(w,w1)

subject to the following example constraints (where θ, α > 0 are fixed):
– w · xq = 0, for all 1 ≤ q < t and yt = false,
– w · xq ≥ αθ, for all 1 ≤ q < t and yt = true.

This algorithm is a variant of the Winnow algorithm [Lit88] which, for w1 =
(1, . . . , 1), α = e and θ = n

e , makes at most e+ ke lnn mistakes on any sequence
of examples that is consistent with a k out of n literal disjunction.2

The crucial fact is that the mistake bound of Winnow and its variants grows
logarithmically in the number of variables, whereas the mistake bound of the
Perceptron algorithm is Ω(kn) [KWA97]. The question is, what is responsible
for this dramatic difference?
1 For the sake of simplicity we only consider the noise-free case.
2 An elegant proof of this bound was first given in [LW04] for the case when the

additional constraint i wi = 1 is enforced: for w1 = ( 1
n
, . . . , 1

n
), α = e and θ = 1

ek
,

this algorithm makes at most ek ln n mistakes.

G. Lugosi and H.U. Simon (Eds.): COLT 2006, LNAI 4005, pp. 653–654, 2006.
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The Perceptron type algorithm is motivated by minimizing a different di-
vergence subject to threshold constraints defined by the positive and negative
examples: the squared Euclidean distance ||w||22. The algorithms in this family
maintain a weight vector that is a linear combination of the past instances and
all algorithms in this family require at least Ω(n+ k) mistakes when learning k
out of n literal disjunctions [KWA97].

The question is whether3 minimizing ||w||22 subject to the example constraints
plus some additional linear constraints can achieve the same feat as the relative
entropy minimization and lead to the improved mistake bound of O(k logn).
In our experiments on artificial data, two additional constraints do the trick: if∑

iwi = 1 and the n non-negativity constraints wi ≥ 0 are enforced in addition
to the example constraints, then choosing θ = 1

2k and α = 2 seems to achieve
the O(k logn) mistake bound. Dropping the

∑
i wi = 1 constraint only slightly

increases the number of mistakes. On the other hand, with only the example
constraints, the mistake bound grows linearly with n. Adding the

∑
i wi = 1

constraint helps only slightly and adding the
∑

i |wi| = 1 constraint gives mod-
erate improvements.

The advantage of the family that uses the squared Euclidean distance is that
the algorithms can be kernelized. However, both the non-negativity constraints
as well as the one-norm constraint destroy this property. See [KW97], Section
9.6, and [KRS01, SM05] for additional discussion in the context of regression.

Acknowledgements. Dima Kuzmin for providing experimental evidence.

References

[KRS01] Roni Khardon, Dan Roth, and Rocco Servedio. Efficiency versus conver-
gence of Boolean kernels for on-line learning algorithms. In Advances in
Neural Information Processing Systems 14, pages 423–430. MIT Press, Cam-
bridge, MA, 2001.

[KW97] J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient
updates for linear prediction. Information and Computation, 132(1):1–64,
January 1997.

[KWA97] J. Kivinen, M. K. Warmuth, and P. Auer. The perceptron algorithm vs.
winnow: linear vs. logarithmic mistake bounds when few input variables are
relevant. Artificial Intelligence, 97:325–343, December 1997.

[Lit88] N. Littlestone. Learning when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

[LW04] P. M. Long and Xinyu Wu. Mistake bounds for maximum entropy discrim-
ination. In Advances in Neural Information Processing Systems 17. MIT
Press, Cambridge, MA, December 2004.

[SM05] Vishwanathan S.V.N. and Warmuth M.K. Leaving the span. In Proceedings
of the 18th Annual Conference on Learning Theory (COLT 05), Bertinoro,
Italy, June 2005. Springer. A longer journal version is in preperation.

3 A slightly more general case is minimizing ||w −w1||22 for some uniform start vector
w1.



Author Index

Abernethy, Jacob 544
Agarwal, Amit 499
Altun, Yasemin 139
Antos, András 574
Audibert, Jean-Yves 392

Balbach, Frank J. 229
Ben-David, Shai 5, 169
Bisht, Laurence 184
Bshouty, Nader H. 184, 199
Bunea, Florentina 379

Carlucci, Lorenzo 244
Case, John 244
Cesa-Bianchi, Nicolò 483
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