
S-Moise+: A Middleware for Developing
Organised Multi-agent Systems

Jomi Fred Hübner1, Jaime Simão Sichman2, and Olivier Boissier3

1 GIA / DSC / FURB
Braz Wanka, 238

89035-160, Blumenau, Brazil
jomi@inf.furb.br
2 LTI / EP / USP

Av. Prof. Luciano Gualberto, 158, trav. 3
05508-900 São Paulo, SP, Brazil
jaime.sichman@poli.usp.br

3 SMA / G2I / ENSM.SE
158 Cours Fauriel

42023 Saint-Etienne Cedex, France
Olivier.Boissier@emse.fr

Abstract. The Multi-agent Systems (MAS) area, while concerning
heterogeneous and open systems, has evolved towards the specification
of global constraints that agents are supposed to follow. A subset of
these constraints are known as organisation of the MAS. This paper
describes a software implementation, called S-Moise

+, that tries to fill
the gap between the organisational constraints and the agents autonomy.
This software ensures that all agents will follow the organisation without
requiring that they are developed in a specific language or architecture.

Keywords: Multi-agent Systems, MAS organisations, Engineering
organisations for MAS.

1 Introduction

The assignment of an organisation to a Multi-Agent System (MAS) is useful to
deal with the problems that could arise from the agents’ autonomy, specially in
open MAS [12] where we do not know what kind of agent will enter into the
system (this motivation for organised MAS is well described in [21, 4]). In this
context, the organisation is a set of behavioural constraints that a group of agents
adopts in order to control the agent’s autonomy and easily achieve their global
purposes [5]. This approach is based on human societies that are successfully
using organisation (e.g. social roles) to have a global coherent behaviour. The
definition of a proper organisation for a MAS is not an easy task, once the
organisation could be too flexible (the organisation does not help the achievement

O. Boissier et al. (Eds.): ANIREM and OOOP 2005, 3913, pp. 64–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

LNAI

S-Moise
+: A Middleware for Developing Organised Multi-agent Systems 65

of the global purpose) or too stiff (the organisation extinguishes the agent’s
autonomy). A initial good organisation is normally set up by the MAS designer,
however it may become not suitable in dynamic environments. In these cases the
system must support dynamic changes on its organisation [17].

The precise concept of constraint that will be used to describe an organisation
is defined by the underlying organisational model. These models may be divided
in two points of view: agent centered or organisation centered [18]. While the for-
mer takes the agents as the engine for the organisation formation, the latter sees
the opposite direction: the organisation exists a priori (defined by the designer
or by the agents themselves) and the agents ought to follow it. In addition to this
classification, we propose to group these organisational models in (i) those that
stress the society’s global plans and their execution coordination (e.g. tæms [19],
steam [22]); (ii) those that have their focus on the society’s roles and groups
(e.g. agr [8], Tove [9]); and (iii) the models based on a deontic approach where
norm, among others, is the main concept (e.g. Islander [6], Opera [4]). Thus
we should state that organisation models usually take into account the func-
tional (the first group), the structural (second group), and/or the deontic (the
third group) dimension of the organisation. The Moise

+ organisational model
is an attempt to join these three dimensions into an unified model suitable for
the reorganisation process [15, 16]. The Moise

+ main property concerning the
reorganisation problem is to be an organizational centered (OC) model where
the first two dimensions can be specified almost independently of each other and
after properly linked by the deontic dimension. This linkage allows the MAS
to change the structure without changing the functioning, and vice versa, the
system only needs to adjust its deontic relation.

In order to implement a system that follows organisational constraints we can
also take either an agent centered or an organisational centered point of view
(in [23] these points of view are called agent and institutional perspectives). In
the former point of view, the focus is on how to develop an agent reasoning
mechanism that follows the organisation. The implementation approach is en-
dogenous to the agent. In the latter, the main concern is how to develop a MAS
framework that ensures the satisfaction of the organisational constraints. This
point of view is more suitable for heterogeneous and open systems, since, as an
exogenous approach, the agent implementation, architecture, and programming
language do not matter. Of course the agents probably need to have access to
an organisational specification that enable them to eventually reason about it.
However, the agents will follow the organisation despite their organisational rea-
soning abilities. As far as we know, the following implementations of such a kind
of framework are available: Ameli [7] (based on Islander), MadKit [11] (based
on agr), and karma [20] (based on steam). Hence we are concerned with dy-
namic organisation, the Moise

+ should be used as the underlying organisational
model. In this paper we describe an MAS framework called S-Moise

+ (Sec. 3)
which ensures that agents running on it will follow the constraints specified using
the Moise

+ model (Sec. 2).

66 J.F. Hübner, J.S. Sichman, and O. Boissier

2 The Moise+ Organisational Model

The Moise
+ (Model of Organisation for multI-agent SystEms) considers the

organisational structure and functioning. However, this model adds an explicit
deontic relation among these first two dimensions to better explain how an MAS’s
organisation collaborates for the global purpose and makes the agents able to
reason on the fulfillment of their obligations or not [16]. These three dimensions
form the Organisational Specification (OS). When a set of agents adopts an OS
they form an Organisational Entity (OE) and, once created, its history starts and
runs by events like other agents entering and/or leaving the OE, group creation,
role adoption, mission commitment, etc.

The Moise
+ Structural Specification (SS) is built in three levels: (i) the

behaviours that an agent is responsible for when it adopts a role (individual
level), (ii) the acquaintance, communication, and authority links between roles
(social level), and (iii) the aggregation of roles in groups (collective level). The
Moise

+’s SS also allows us to ascribe the well formed attribute to a group
in case the roles of the agents are compatible among them, the minimum and
maximum number of role players are satisfied inside a group, etc.

Throughout the text, a soccer team is used as an example to describe the
model (a formal definition is found in [15]). A soccer team that we will specify
is formed by players with roles like goalkeeper, back player, leader, attacker,
coach, etc. These role players are distributed in two groups (defense and attack)
which form the main group (the team group). This team structure is specified,
using the Moise

+ notation, in the Fig. 1. For instance, in the defense group
specification, three roles are allowed and any defense group will be well formed
if there is one, and only one, agent playing the role goalkeeper, exactly three
agents playing backs, and, optionally, one agent playing the leader role (see the
composition relation in Fig. 1). The goalkeeper has authority on the backs. The
leader player is also allowed to be a back since these roles are compatible. Due
to the role specialization (see the inheritance relation in Fig. 1), the leader also
can play the goalkeeper role. In the same example, a team is well formed if
it has one defense sub-group, one attack sub-group, one or two agents playing
the coach role, one agent playing the leader role, and the two sub-groups are
also well formed. In this structure, the coach has authority on all players by an
authority link. The players, in any group, can communicate with each other and
are allowed to represent the coach (since they have an acquaintance link). There
must be a leader either in the defense or attack group. The leader has authority
on all players on all groups, since s/he has an authority link on the player role.
For every authority link there is an implicit communication link and for every
communication link there is an implicit acquaintance link.

A Moise
+ group can have intra-group and inter-group links. The intra-group

links state that an agent playing the link source role in a group gr is linked to all
agents playing the destination role in the same group gr or in a gr sub-group.
The inter-group links state that an agent playing the source role is linked to all
agents playing the destination role despite the groups these agents belong to.
For example, the coach authority on player is an inter-group link (the coach and

S-Moise
+: A Middleware for Developing Organised Multi-agent Systems 67

back

leader
goalkeeper

player

middle

attacker

coach

soc

1..1

3..3

0..1
0..1

5..5

2..2

1..1

1..1

1..2

1..1

acq

aut

com

compat

intra-group
key

min..max
composition:

inheritance:

role

Abs Role

inter-grouplinks

1..1

sub-groups scope:

group

defense

attack

team

Fig. 1. The structure of the soccer team

the player agents do not need to belong to the same group), while the goalkeeper
authority on backs is an intra-group link (both agents must belong to the same
group to “use” this link).

The Functional Specification (FS) describes how an MAS usually achieves its
global (collective) goals [2] stating how these goals are decomposed (by plans)
and distributed to the agents (by missions). The scheme can be seen as a goal
decomposition tree where the root is a global goal and the leaves are goals that
can be achieved by one agent. Such decompositions may be set either by the
MAS designer who specifies its expertise in the scheme or by the agents that
store their past (best) solutions. In the soccer example, suppose the team has a
rehearsed play as the one specified in the Fig. 2. This scheme has three missions
(m1, m2, and m3) — a mission is a set of coherent goal that an agent can
commit to. When an agent commits to a mission, it is responsible for all this
missions’ goals. For example, an agent committed to the mission m3 has the
goals “be placed in the opponent goal area”, “shot at the opponent’s goal”, and,
a common goal, “score a goal”.

In a scheme, each goal gi ∈ G (where G is the set of global goals) may be
decomposed in sub-goals through plans using three operators:

– sequence “,”: the plan “g1 = g2, g3” means that the goal g1 will be achieved
if the goal g2 is achieved and after that also the goal g3 is achieved;

– choice “|”: the plan “g1 = g2 | g3” means that the goal g1 will be achieved if
one, and only one, of the goals g2 or g3 is achieved; and

68 J.F. Hübner, J.S. Sichman, and O. Boissier

score a goal

m1

go towards the opponent field

m1, m2, m3

get the ball

be placed in the middle field

be placed in the opponent goal area
kick the ball to (agent committed to m2)

go to the opponent back line

kick the ball to the goal area

shot at the opponent’s goal

m1

m1

m2 m2

m2

m3

m3

Key
goal

missions

success rate parallelismchoicesequence

Scheme

Fig. 2. A “side attack” scheme of the soccer team

– parallelism “‖”: the plan “g1 = g2 ‖ g3” means that the goal g1 will be
achieved if both g2 and g3 are achieved, but they can be achieved in parallel.

The Deontic Specification (DS) describes the roles’ permissions and obliga-
tions for missions. A permission permission(ρ,m) states that an agent playing
the role ρ is allowed to commit to the mission m. Furthermore, an obligation
obligation(ρ,m) states that an agent playing ρ ought to commit to m. For ex-
ample, in the soccer team DS (Tab. 1), three roles have the right to start the
scheme of the Fig. 2 because they have the permission for this scheme’s root
missions. Once the scheme is created, the other agents (playing back, middle,
. . .) are obligated by their roles’ deontic relations to participate in this scheme.
These other agents ought to pursue their mission’s goals just in the order allowed
by this scheme. For instance, when a middle agent accepts the mission m2, it
will try to achieve its goal “be placed in the middle field” only after the goal
“get the ball” is already satisfied by a back agent committed to the mission m1.

Table 1. Partial view of the soccer team deontic relations

role deontic relation mission

back permission m1

middle obligation m2

attacker obligation m3

3 S-Moise+ Organisational Middleware

S-Moise
+ is an open source implementation of an organisational middleware

that follows the Moise
+ model. This middleware is the interface between the

agents and the overall system, providing access to the communication layer (see

S-Moise
+: A Middleware for Developing Organised Multi-agent Systems 69

Fig. 3), information about the current state of the organisation (created groups,
schemes, roles assignments, etc.), and allowing the agents to change the organi-
sation entity and specification. Of course these changes are constrained to ensure
that the agents respect the organisational specification.

S-Moise
+ has two main components: an OrgBox API that agents use to

access the organisational layer (this component is detailed in Sec. 3.2) and a
special agent called OrgManager. This agent has the current state of the OE
and maintains it consistent. The OrgManager receives messages from the agents’
OrgBox asking for changes in the OE state (e.g. role adoption, group creation,
mission commitment). This OrgManager changes the OE only if it does not
violate an organisational constraint. For example, if an agent wants to adopt a
role ρ1 but it already has a role ρ2 and these two roles are not compatible, the
adoption of ρ1 must be denied.

The state of an OE is represented by the following tuple:

〈os , A, GI , grType, subGr , agRole, SI , scType, agMis , gState〉 (1)

where:

– os is the initial organisational specification (in S-Moise
+, OrgManager

reads this OS from an XML file);
– A is the set of agents in the MAS;
– GI is the set of created groups;
– grType : GI → GT maps the group specification for each group in GI (GT

is the set of group specifications defined in os);
– subGr : GI → P(GI) maps the sub-groups of each group;
– agRole : A �→ P(R × GI) maps the roles of the agents (R is the set of roles

defined in os);
– SI is the set of scheme instances;
– scType : SI → ST ×P(GI) maps the specification and the responsible groups

for each scheme instance (ST is the set of scheme specifications defined in
os)1;

– agMis : A �→ P(M × SI) maps the missions of the agents (M is the set of
missions defined in os);

– gState : SI × G �→ {unsatisfied , satisfied , impossible} maps the state of each
goal (G is the set of global goals defined in os).

3.1 Organisational Entity Dynamics

The OE is changed by organisational events created by messages that OrgMan-
ager receives from the agents. Each event has arguments, preconditions and
effects (Tab. 2 summarises these events). In this paper we describe only some
of the events using our soccer example, a full formalization can be found in [13]
and http://www.lti.usp.br/moise.

1 The current version of Moise
+ does not constrain the type of the groups that are

allowed to be responsible for a scheme instance.

70 J.F. Hübner, J.S. Sichman, and O. Boissier

Fig. 3. S-Moise
+ Components

As an example, suppose we have an OE where the following events happened:

– createGroup(‘team’): a group, identified hereafter by grt , was created from
the team group specification defined in Fig. 1;

– createSubGroup(‘defense’, grt): a group, identified hereafter by grd , was
created from the defense group specification as grt sub-group;

– createSubGroup(‘attack’, grt): a group, identified hereafter by gra , was
created from the attack group specification as a grt sub-group;

– createScheme(‘side attack’, {grt}): an instance of the side attack
scheme specification (Fig. 2), identified by schsa , was created, the agents
of the group grt are responsible for these scheme missions.

After these events, the groups are not well formed, since there is no agents
engaged with their roles (see Fig. 4). The defense group, for instance, needs one
agent playing goalkeeper. If an agent α wants to adopt the role ρ in the group
gr , it must create the event roleAdoption(α, ρ, gr). Notice that a role is
always adopted inside a group of agents, since role is a relational concept [1].
The reasons for an agent to adopt a role is not covered by the Moise

+ model,
for more details regarding motivations for role adoption, the reader is referred to
[10, 8, 3]. The role adoption event in S-Moise

+ has the following preconditions:

1. the role ρ must belong to gr ’s group specification;
2. the number of ρ players in gr must be lesser or equals to the maximum

number of ρ players defined in the gr ’s compositional specification;
3. for all roles ρi that α already plays, the roles ρ and ρi must be intra-group

compatible in the gr ’s group specification;
4. for all roles ρi that α already plays in groups other than gr , the roles ρ and

ρi must be inter-group compatible.

In our example, suppose that eleven agents have adopted roles such as the
three groups are well formed and the goal “get the ball” of the scheme schsa
is already satisfied. Among these agents, ‘Lucio’ has adopted the role middle in
the grd group (once grd is a sub-group of grt , Lucio also belongs to grt). Is this
agent following its organisational obligations? No, because he plays a middle role,
there is a side attack scheme created by his group, and his role is obligated to
commit to mission m2 (the Alg. 1 describes the algorithm that gets all missions
an agent is obligated to). To be organisationally well behaved, Lucio commits to

S-Moise
+: A Middleware for Developing Organised Multi-agent Systems 71

Table 2. S-Moise
+ main Organisational Events

Event Description (some preconditions)

createGroup(gt) Creates a new group from specification gt (gt ∈ GT).
createSubGroup(gt, gi) Creates a new gi sub-group based on specification gt (gi

identifies an instance group).
removeGroup(gi) Removes the group identified by gi (the group must be

empty — no player, no sub-groups, and no schemes).

createScheme(st, gis) Creates a new scheme instance from specification st (st ∈
ST), gis (gis � GI) is a set of groups that are responsible
for the new scheme execution.

finishScheme(si) The scheme si is finished.
setSatified(α, si, g) The goal g of the scheme si is satisfied by the agent α (α

must be committed to a mission that includes g).
setImpossible(α, si, g) The goal g of the scheme si is impossible (α must be

committed to a mission that includes g).

enterOrg(α) The agent α enters in the system.
leaveOrg(α) the agent α leaves the system (it must have neither roles

nor missions).
roleAdoption(α, ρ, gr) The agent α adopts the role ρ in the group gr .
giveRoleUp(α, ρ, gr) The agent α gives up the role ρ in the group gr (this role

missions must be finished).
commitMission(α, m, si) The agent α commits to the mission m in the scheme si .
finishMission(α, m, si) The agent α finishes its mission m in the scheme si (all the

mission’s goal must be satisfied or declared impossible).

the m2 mission through the event commitMission(‘Lucio’, m2, schsa). From
the OrgManager point of view, this event also has some preconditions:

1. the scheme must not be finished yet;
2. the agent must play a role in the scheme’s responsible groups;
3. this role must be permitted or obligated to the mission, as defined in the

DS.

After his commitment, Lucio will likely pose the question: what are the global
goal I have to achieve? In the case of his m2 goals, only the goal “be placed in
the middle field” is permitted (see Fig. 2). His second goal “go to the opponent
back line” is not permitted by the current state of schsa . This second goal should
be pursued only after another global goal is satisfied, since it depends on “kick
the ball to” achievement. The Alg. 2 is used in the OrgManager implementa-
tion to identify permitted global goals. Thus, while some goals are becoming
satisfied (event setSatified), others become permitted. When a goal becomes
permitted, the agents committed to it are informed by the OrgManager. This
mechanism is very useful to coordinate the agents in the scheme execution. The
agent developer does not need to program messages that synchronize the agents
in the schema execution.

72 J.F. Hübner, J.S. Sichman, and O. Boissier

Fig. 4. Example of organisational entity not well formed

The OrgManager ensures that every organisational events generated by the
agents will not violate the following organisational constraints specified in
Moise

+:

– the maximum number of role players in a group;
– the roles compatibility;
– an agent will commit only to missions it is permitted or obligated by its

roles;
– only specified groups, schemes, and roles can be created.

Moreover, OrgManager provides useful information for the agents’ organisational
reasoning and coordination, for example: missions they are forced to commit
to and goals it can pursue. The agents can get this information through their
OrgBox API.

Among the Moise
+ specification elements, only the authority link is not

ensured in the current implementation. We probably need to change the agent
reasoning mechanism to ensure authority, and it is out of the focus of this paper.

S-Moise
+: A Middleware for Developing Organised Multi-agent Systems 73

function getObligatedMissions(agent α)1

2

all ← empty list // list of obligated missions3

forall role ρ the agent α plays do4

gr ← the group where ρ is being played;5

forall scheme si that gr is responsible to do6

if si is not finished then7

forall mission m in the scheme si do8

if obligated(ρ,m) is in the deontic specification then9

all ← append(all ,m);10

return all ;11

Al i h Al h h bl d
Algorithm 1. Algorithm to compute the missions an agent is obligated to

function isPermitted(scheme sch, goal g)1

2

if g is the sch root then3

return true;4

else5

g is in a plan that match “g0 = · · · g · · ·”;6

if g is in a plan that match “g0 = · · · gi , g · · ·” then7

if gi is already satisfied then8

return true;9

else10

return false;11

else12

return isPermitted(sch, g0);13

Algorithm 2. Algorithm to verify permitted goals

3.2 Agents’ OrgBox

The OrgBox is the interface the agents use to access the organisational layer and
thus the communication layer. When an agent desires to (i) change the organisa-
tional entity (adopt a role, for instance), (ii) send a message to another agent, or
(iii) get the organisational entity state it has to ask this service for its OrgBox.
The OrgBox will therefore interact with the OrgManager or another agent using
the communication layer. In the S-Moise

+ current implementation, the commu-
nication layer is implemented by Saci (http://www.lti.pcs.usp.br/saci) —
a KQML compliant multi-agent communication infrastructure. We have devel-
oped a protocol in the communication layer that OrgManager and OrgBox follow
to exchange information and organisational events. We can see the OrgBox as a
component that encapsulates this protocol.

When an agent asks OrgManager for a “copy” of the current state of the OE,
it will not receive exactly what is in the OrgManager’s memory. In the Moise

+,

74 J.F. Hübner, J.S. Sichman, and O. Boissier

an agent is allowed to know another agent α only in case it plays a role ρ1, α
plays ρ2 and these roles are linked by an acquaintance relation. For example
the player role of the Fig. 1 has an acquaintance link to the coach role, thus an
agent playing this role is allowed to know the agents playing coach. Indeed, since
player is an abstract role, no agent will adopt it, however other roles (like back,
leader, etc.) will inherit this acquaintance link from the player role. OrgBox also
ensures that an agent will send messages only to agents it has a communication
link with.

While the OrgBox is invoked by the agent (to send messages, ask for infor-
mation, change the organisation), it is also invoked by the OrgManager. When
the state of a scheme that some agent is committed to changes, OrgManager
informs this agent’s OrgBox about its new obligations and goals it can pursue.
The OrgBox then notifies the agent about this event. Of course the OrgBox
only informs the agent about its permitted goals, it is a matter of the agent to
achieve them (by plans, behaviours, etc.). What is stated in the organisational
model is that the agent is responsible for such a goal. However, in case the agent
does not achieve its organisational responsibilities, the current implementation
of the middleware does nothing. It is a future work to propose a solution for this
drawback.

An important feature of our proposal is that it does not require any specific
type of agent architecture, since we are concerned with open system. The only
requirement is that agents use the OrgBox API to interact with the system.
An agent could even interact with the OrgManager directly using KQML or
FIPA-ACL. However, in this case the communication link constraint will not be
guaranteed, since in this case agents are getting direct access to the communi-
cation layer.

4 Contributions and Future Work

In this paper we described a proposal towards declarative organisation program-
ming. In our proposal, a middleware called S-Moise

+ ensures that the agents
will follow the organisational constraints. These constraints are declared by the
developer (or even by the agents themselves) according to an organisational
model. The organisational model used in our proposal enables the declaration
of MAS organisational structure (role, groups, links), functioning (global goals,
global plans, missions), obligations, and permission. The main features of S-
Moise

+ are:

– S-Moise
+ follows an organisational centred point of view where the organ-

isational specification is interpreted at runtime, it is not hardwired in the
agents’ code.

– It provides a synchronization mechanism for scheme execution.
– It is suitable for heterogeneous and open system, since S-Moise

+ is an ex-
ogenous approach and therefore does not require a special agent architecture
or programming language.

S-Moise
+: A Middleware for Developing Organised Multi-agent Systems 75

– It is suitable for reorganisation where the declaration of the organisation can
dynamically change. We have successfully used this framework in a soccer
team that change its Moise

+ organisational at runtime [17] and to specify
contract dynamics in an electronic business alliance [14]. Like the organisa-
tional events described in Sec. 3.1, the S-Moise

+ also has reorganisational
events that changes the current specification. However, these events are con-
trolled by a special group of agents responsible for the reorganisation process.

Regarding related frameworks, S-Moise
+ is quite complementary to

Ameli[7], MadKit [11], and karma[20]. Many implementation solutions pro-
posed by these frameworks were adopted in S-Moise

+ (like the OrgBox which
is very similar to Teamcore proxy from karma and governor from ameli). ameli

has a good support for communication and protocols that S-Moise
+ does not

have. However, it does not stress the structural and deontic dimensions like S-
Moise

+. MadKit is focused on the structural dimension and does not include
functional and deontic dimension. karma is concerned with both the structure
and the functioning and has an excellent support for coordination of global plan
execution, however it lacks an explicit deontic dimension.

As a future development, we intend to extends S-Moise
+ with new features

like communication dimension, detection of violation of an agent obligation, and
a sanction system. We also plan to define an organisational meta level, inde-
pendently of the adopted organisational model, to create a (i) generic ontology
of organisational terms and (ii) to provide translation to and from a particular
organisational model to other.

Although we have adopted an organisational point of view, a complete solu-
tion towards an organisational oriented programming demands answers to some
questions related to an agent point of view. For instance, how organisational
information, obligations, and permissions are used inside the agent reasoning
cycle? How to conciliate the agent autonomy with organisational responsibili-
ties?

References

1. Cristiano Castelfranchi. Commitments: From individual intentions to groups and
organizations. In Toru Ishida, editor, Proceedings of the 2nd International Confer-
ence on Multi-Agent Systems (ICMAS’96), pages 41–48. AAAI Press, 1996.

2. Cristiano Castelfranchi. Modeling social action for AI agents. Artificial Intelligence,
(103):157–182, 1998.

3. Mehdi Dastani, Virginia Dignum, and Frank Dignum. Role-assignment in open
agent societies. In Jeffrey S. Rosenschein, Tuomas Sandholm, Wooldridge Michael,
and Makoto Yokoo, editors, Proceedings of the Second International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS’2003), pages
489–496. ACM Press, 2003.

4. Maria Virǵınia Ferreira de Almeida Júdice Gamito Dignum. A model for orga-
nizational interaction: based on agents, founded in logic. PhD thesis, Universiteit
Utrecht, 2003.

76 J.F. Hübner, J.S. Sichman, and O. Boissier

5. Virginia Dignum and Frank Dignum. Modelling agent societies: Co-ordination
frameworks and institutions. In Pavel Brazdil and Aĺıpio Jorge, editors, Proceedings
of the 10th Portuguese Conference on Artificial Intelligence (EPIA’01), LNAI 2258,
pages 191–204, Berlin, 2001. Springer.

6. Marc Esteva, Juan A. Rodriguez-Aguiar, Carles Sierra, Pere Garcia, and Josep L.
Arcos. On the formal specification of electronic institutions. In Frank Dignum and
Carles Sierra, editors, Proceedings of the Agent-mediated Electronic Commerce,
LNAI 1191, pages 126–147, Berlin, 2001. Springer.

7. Marc Esteva, Juan A. Rodŕıguez-Aguilar, Bruno Rosell, and Josep L. AMELI:
An agent-based middleware for electronic institutions. In Nicholas R. Jennings,
Carles Sierra, Liz Sonenberg, and Milind Tambe, editors, Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’2004), pages 236–243, New York, 2004. ACM.

8. Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design
of organizations in multi-agents systems. In Yves Demazeau, editor, Proceedings
of the 3rd International Conference on Multi-Agent Systems (ICMAS’98), pages
128–135. IEEE Press, 1998.

9. Mark S. Fox, Mihai Barbuceanu, Michael Gruninger, and Jinxin Lon. An orga-
nizational ontology for enterprise modeling. In Michael J. Prietula, Kathleen M.
Carley, and Les Gasser, editors, Simulating Organizations: Computational Models
of Institutions and Groups, chapter 7, pages 131–152. AAAI Press / MIT Press,
Menlo Park, 1998.

10. Norbert Glaser and Philippe Morignot. The reorganization of societies of au-
tonomous agents. In Magnus Boman and Walter Van de Velde, editors, Multi-Agent
Rationality, LNAI 1237, pages 98–111, Berlin, 1997. Springer.

11. Olivier Gutknecht and Jacques Ferber. The MadKit agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55, 2000.

12. Carl Hewitt. Open information system semantics for distributed artificial intelli-
gence. Artificial Intelligence, (47):79–106, 1991.

13. Jomi Fred Hübner. Um Modelo de Reorganização de Sistemas Multiagentes. PhD
thesis, Universidade de São Paulo, Escola Politécnica, 2003.
http://www.inf.furb.br/~jomi/pubs/2003/Hubner-tese.pdf.

14. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Specifying E-
Alliance contract dynamics through the MOISE+ reorganisation process. In V
Encontro Nacional de Inteligência Artificial (ENIA’2005), 2005.

15. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Moise
+: Towards

a structural, functional, and deontic model for MAS organization. In Cristiano
Castelfranchi and W. Lewis Johnson, editors, Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS’2002), pages 501–502. ACM Press, 2002.
http://www.inf.furb.br/~jomi/pubs/2002/Hubner-aamas2002.pdf.

16. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. A model for the
structural, functional, and deontic specification of organizations in multiagent sys-
tems. In Guilherme Bittencourt and Geber L. Ramalho, editors, Proceedings of the
16th Brazilian Symposium on Artificial Intelligence (SBIA’02), LNAI 2507, pages
118–128, Berlin, 2002. Springer.
http://www.inf.furb.br/~jomi/pubs/2002/Hubner-sbia2002.pdf.

S-Moise
+: A Middleware for Developing Organised Multi-agent Systems 77

17. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Using the Moise
+

for a cooperative framework of MAS reorganisation. In Ana L. C. Bazzan and
Sofiane Labidi, editors, Proceedings of the 17th Brazilian Symposium on Artificial
Intelligence (SBIA’04), LNAI 3171, pages 506–515, Berlin, 2004. Springer.
http://www.inf.furb.br/~jomi/pubs/2004/Hubner-sbia2004.pdf.

18. Christian Lemâıtre and Cora B. Excelente. Multi-agent organization approach. In
Francisco J. Garijo and Christian Lemâıtre, editors, Proceedings of II Iberoamerican
Workshop on DAI and MAS, 1998.

19. M.V. Nagendra Prasad, Keith Decker, Alan Garvey, and Victor Lesser. Exploring
organizational design with TÆMS: A case study of distributed data processing.
In Toru Ishida, editor, Proceedings of the 2nd International Conference on Multi-
Agent Systems (ICMAS’96), pages 283–290. AAAI Press, 1996.

20. David V. Pynadath and Milind Tambe. An automated teamwork infrastructure for
heterogeneous software agents and humans. Autonomous Agents and Multi-Agent
Systems, 7(1–2):71–100, 2003.

21. Carles Sierra, Juan Antonio Rodŕıguez-Aguilar, Pablo Noriega, Marc Esteva, and
Josep Llúıs Arcos. Engineering multi-agent systems as electronic institutions. Eu-
ropean Journal for the Informatics Professional, V(4), August 2004.

22. Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Re-
seearch, 7:83–124, 1997.

23. J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Norms in multiagent systems:
some implementation guidelines. In Proceedings of the Second European Workshop
on Multi-Agent Systems (EUMAS 2004), 2004.

	Introduction
	The $Moise^+$ Organisational Model
	$S-Moise^+$ Organisational Middleware
	Organisational Entity Dynamics
	Agents’ OrgBox

	Contributions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

