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Preface

This volume is the first in a planned series focussing on issues in Coordination, Organi-
zations, Institutions and Norms (COIN) in multi-agent systems. Forthcoming events are
COIN @ AAMAS 2006 and COIN @ ECIA 2006. The papers in this volume are drawn
from two complementary events, ANIREM (Agents, Norms and Institutions for Reg-
ulated Multiagent Systems) and OOOP (From Organizations to Organization-Oriented
Programming in MAS), that were part of the workshop program at AAMAS 2005 in
Utrecht.
ANIREM: Multi-agent systems are often understood as complex entities where a mul-

titude of agents interact, usually with some intended individual or collective pur-
pose. Such a view usually assumes some form of structure, or set of norms or
conventions that articulate or restrain interactions in order to make them more ef-
fective in attaining those goals, more certain for participants or more predictable.
The engineering of effective regulatory mechanisms is a key problem for the design
of open complex multi-agent systems, so that in recent years it has become a rich
and challenging topic for research and development. There are many possible ways
of looking at the problem of regulating multi-agent systems, and one perspective is
the normative approach, based on the use of norms in artificial institutions. Lately
there has been an explosion of new approaches, both theoretical and practical, ex-
ploring the use of norms as a flexible way to constrain and/or impose behavior, and
these are reflected in specifications of norm languages, agent-mediated electronic
institutions, contracts, protocols and policies.

OOOP: Agent organizations are an emergent area of application within multi-agent
systems that pose new demands on traditional MAS models, such as the integration
of organizational and individual perspectives and the dynamic adaptation of mod-
els to organizational and environmental changes, both of which are impacted by
the notion of openness and heterogeneity. As systems grow to include an increas-
ing number of agents, the view of coordination and control has to be expanded to
consider both the agent-centric as well as the organization-centric views. Practi-
cal applications of agents in organizational modelling are being widely developed.
All this contributes to an emerging field of research and work that could be called
organization-oriented programming. However, formal theories, tools and method-
ologies are still very much in short supply. Even if an externally designed organi-
zational structure is a necessary coordination device to achieve global social order
there is a special tension between such imposed constraints and the agents’ au-
tonomous behavior. This leads to a focus on the trade-off between social order and
agent autonomy, and on other means to achieve social order in MAS other than
organizations.

ANIREM: Gabriela Lindemann, Sascha Ossowski,
Julian Padget, Javier Vázquez-Salceda

OOOP: Olivier Boissier, Virginia Dignum,
Eric Matson, Jaime Sichman
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The Papers

The papers in this volume are extended, revised versions of the best papers presented
at the ANIREM and the OOOP workshops at AAMAS 2005, with additionally a paper
originating from an invited talk given at ANIREM. The result is a well-balanced col-
lection of high-quality papers that really can be called representative of the field at this
moment. For this volume, the papers from the two workshops have been re-grouped
around the following themes:

Modelling, Analyzing and Programming Organizations: The first section contains
five papers on the modelling, analysis and programming of organizations. The first
paper in this section, by Sibertin-Blanc et al., proposes a basis for the design of
coordination models in multi-agent systems that exploits a widely recognized so-
ciological theory, the sociology of organized action. The paper by van den Broek
et al. describes a new, formal, role-based framework for modelling and analyzing
both real world and artificial organizations that considers both the dynamic proper-
ties of the organizational model and the environment. Wijngaards et al. introduce a
conceptual view of realizing sustained team effectiveness, in which both the mea-
surement of effectiveness and team management play an important role. The paper
by McCallum et al. proposes a means for the formal specification, verification and
analysis of agent organizations, capturing notions of role, obligation and delegation
(of obligations) that furthermore allows change in the organizational structure to be
modelled. The section ends with a paper by Hübner et al. describing a software
implementation that aims to bridge the gap between organizational constraints and
agent autonomy.

Modelling and Analyzing Institutions: The focus of the five papers in the second sec-
tion is the modelling and analysis of institutions. It starts with an invited contribu-
tion from one of the pioneers of electronic institutions, Pablo Noriega, in which he
surveys some of the current issues he sees in institutions research, from the per-
spective of three complementary case studies. The paper by Cliffe et al. describes
a new approach to constructing specifications of institutional norms using answer
set programming that can subsequently be used to verify properties of the insti-
tutions. Boella et al. explore the modelling of a normative system governing the
production of renewable energy in the UK in which their agents map the norms
into obligations represented as beliefs and goals. Rubino et al. by contrast address
generic issues surrounding the engineering of normative systems and demonstrate
how elements of their coordination artifacts infrastructure can capture and imple-
ment norms. The section ends with the paper by Viganò et al. in which they make
the case for an event-based approach to norm specification and discuss how one
institution may regulate another one.

Modelling Normative Designs: The third section is devoted to normative issues in or-
ganizations and institutions. Aldewereld et al. discuss a formal framework for the
design of a protocol from a normative specification in highly regulated environ-
ments. By the use of landmarks they introduce an intermediate level in order to be
able to connect descriptive norms with operational protocols. The paper by Garion
and van der Torre proposes a software design language based on temporal deontic
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logic as a means to bridge the gap between the theory of design by contract and
software engineering concepts. Additionally, they discuss the relation between the
normative stance toward systems implicit in the design by contract approach and the
intentional or BDI stance popular in agent theory. Kollingbaum and Norman look at
norms from the perspective of the agent and how a practical reasoning agent might
internalize norms, have them influence its behavior and resolve conflicts between
new and existing norms. This section closes with the paper by Boella and van der
Torre addressing the introduction of organizations and roles in artificial social sys-
tems using a normative system. They consider the relationship between how the
behavior of an organization is determined by agents playing a roles within it and,
vice versa, how an organization affects the behavior of agents. These considerations
are used to explore the evolution of (artificial) organizations.

Evaluation and Regulation: The fourth and last section, on evaluation and regulation,
starts with a paper by Dignum et al. who present a simulation scenario that can be
used to evaluate the congruence between organizational structure and task perfor-
mance. The background for their purpose is the need for reorganization that can
arise when environmental conditions change. The same holds for artificial organi-
zations in the form of open multi-agent systems that operate in dynamic environ-
ments. The second paper in this chapter by Aldewereld et al. gives a formal method,
based on program verification, for checking the norm compliance of knowledge-
based protocols. In achieving a goal, agents can make use of predefined protocols,
which should help them avoid violating any of the norms. But it should also be
guaranteed that these protocols are actually norm-compliant. The section ends with
a paper by Cranefield about a rule language for defining social expectations. It
is based on a metric interval temporal logic with past and future modalities and
a current-time binding operator. Moreover, he presents an algorithm for run-time
monitoring compliance of rules in this language based on formula progression.

The workshop organizers would like to thank the AAMAS 2005 conference and Utrecht
University for hosting the workshop. We are also very grateful to all the Program Com-
mittee members, the additional reviewers, the authors and the participants for their
respective contributions to the process of creating two high-quality, stimulating work-
shops. Finally, we are pleased to acknowledge the encouragement and support from
Springer, in the person of Alfred Hofmann, for helping to bring the workshop to this
concrete conclusion.
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A Coordination Framework Based on the Sociology of 
Organized Action 

C. Sibertin-Blanc, F. Amblard, and M. Mailliard 

IRIT – Université de Toulouse 1 
21, allées de Brienne, 31042 Toulouse Cedex – France 

{sibertin, famblard, mmaillia}@univ-tlse1.fr 

Abstract. This paper proposes a basis to design coordination models in multi-
agent systems. This proposal is based on the exploitation of an in-depth 
exploration of a well-experienced sociological theory, the Sociology of 
Organized Action, also called Strategic Analysis. This theory intends to 
discover the functioning of any organization beyond its formal rules, especially 
how social actors build the organization that in return rules their behaviors, and 
which are the mechanisms they use to regulate their interactions. We first 
present the concepts developed by this theory to reveal the strategic aspects of 
the actors’ behaviors in an organized actions framework. Then we introduce a 
meta-model that allows us to describe the structure of Concrete Action Systems 
and how social actors handle its elements. A classical case study is used to 
illustrate the approach. 

1   Introduction 

Agents’ coordination mechanisms in models of organizations pose new demands 
compared to traditional Multi-Agent Systems models, such as the integration of 
organizational and individual objectives with possible problems of compatibility, the 
dynamic adaptation of agents’ behaviors to organizational changes, or conversely the 
way agents’ behavior lead to organizational changes. As systems grow to include 
increasing number and heterogeneity of agents, the coordination has to be improved in 
order to consider both the agent-centric, as well as the organization-centric views. 
However, formal theories, tools and methodologies are still very much in short supply. 
Even if an externally designed organizational structure is necessary as a coordination 
device to achieve global social order, there is a possibly inefficient and ineffective 
tension between such imposed constraints and the agents' autonomous behavior. 

In order to enrich this field, we think that a controlled metaphor based upon well 
founded sociological theories could enable to devise and design high-quality models 
for coordination in agents’ organizations. Some works similar to the Agent-Group-
Role paradigm [1] showed the limits of approaches, which, inspired from metaphors 
with the fields of psychology or cognitive sciences, are exclusively centered on the 
structure and the abilities of the agents (e.g. architectures like Belief-Desire-Intention 
[2]). The focus on the organizational level is actually at play in many works in Multi-
Agent or Component-based Systems. Our work follows the line of works like the ones 
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of Malone and Crowston [3], of Castelfranchi [4] or Hermann [5], who research in the 
sociology a pertinent and well-grounded metaphor for a coordination model allowing 
to root the definition of the organizational level in MAS. The Sociology of the 
Organized Action [6], also known as the Strategic Analysis, has defined emergent 
coordination mechanisms. Based upon very abstract concepts, they are susceptible to 
serve as a suggestive source of inspiration and to be used in several application 
domains. Despite its notoriety, its wide use by enterprise sociologists and organization 
consultants, and its generalized teaching, the Strategic Analysis had never been taken 
as a subject for modeling. 

We then first present the sociological theory that is the basis for our proposal, 
namely the Sociology of the Organized Action (SOA), insisting on the major concepts 
we retained to build up a meta-model of this theory. We therefore present in the third 
section our framework based on the concepts of Actors and Resources-Relations, the 
things in the Actors’ organizational environment they use to establish control and 
dependency links between them – in fact power relationships. This is the static 
aspects of the meta-model, e.g. the objects present in the model as well as the objects 
manipulated by the actors, allowing to describe the structure of a social system. The 
fourth section presents the dynamics aspect of the model. We focus explicitly on the 
distinction between functional dimension and structural dimension of the actors’ 
actions, and how we do manage this distinction in the current version of the SocLab 
simulation environment. Finally in a last part, we exemplify the approach on a 
concrete system that is a classical example taken from the literature in the Sociology 
of the Organized Action. It enables us to illustrate our model of coordination as well 
as pointing certain limits of our approach that are currently under investigation. 

2   Sociology of the Organized Action 

The Sociology of the Organized Action (SOA) aims at discovering the real 
functioning of an organization beyond its formal rules. The Concrete Action Systems 
(CAS) that it allow to study, for instance a firm, a university or a local political 
system, are composed of « numerous differentiated actors interacting in a non-trivial 
way among each others » [6]. Moreover, these actors are engaged durably in the 
achievement of some organization’s objectives. A CAS is an interaction context 
precisely delimitated which supplies the means and motivates the cooperation among 
a group of social actors. This structure is admittedly constraining but it always leaves 
some freedom in the way of acting. The SOA deals with structured relational contexts 
and it does not aim to address spontaneous effects like crowd behaviors or riots [7]. If 
the sociology of the organized action inherits the sociology of organizations [8, 18], 
its application scope spreads to all kind of « organized » action systems, whatever 
their level of codification or formalization. The SOA focuses on regulation 
phenomena which ensure both the evolution of such systems and their relative 
stability. 

The SOA is built upon the idea that an organization is a social construct actualized 
by and within the relationships among its member actors. Moreover, this theory 
assumes that each actor behaves strategically although it has only bounded rationality
capabilities [9]. 
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Each actor’s behavior is then neither totally conditioned by the organizational rules 
that constrain him, nor it is by pure individual or emotional factors. This behavior is 
strategic, that is in includes actions that aim at realizing some objectives, would it be 
conscious or not. Beyond the achievement of both his own objectives and those given 
by the organization’s formal rules, each actor aims, as a meta-objective, at having 
enough power to be able to preserve or increase his autonomy and acting capacity 
within the organization. 

This power results from the mastering of one or several uncertainty zones (UZ) 
that enable him to behave in a way that is unpredictable for other actors and 
consequently to set, to some extent, the exchange rules in the course of his relations 
with others. Each uncertainty zone is a resource for the action, and thus both a 
constraint and an opportunity. Each social actor both controls some UZs and depends 
on some others, so that UZs are the media of the power relationships between actors. 
The interactions among actors regulate those power relationships and as a 
consequence transform the related uncertainty zones, their control as well as their 
relevance, and then the rules of the social game. The four main uncertainty zones that 
support power relationships within a CAS are based upon: competence or expertise; 
the control of interactions with the environment of the organization; the control of the 
internal communication; and the knowledge and proper use of the organization’s 
norms and rules. 

To summarize, the Sociology of Organized Action is a theory of the action that 
explains the effective running of organizational processes while taking into account 
the double dependency between the actor and the system, by using the concepts of 
bounded rationality, power relationships, uncertainty zones and concrete action 
system. This theory and the related concepts serve as a theoretical basis as well as 
an analysis grid to study many cases: the introduction of the automation in a 
traditional firm or the decision-making process during the crisis of the Cuba’s 
missiles [10, 6]. Interested readers can refer to [8] for a detailed analysis of ten case 
studies. 

3   The Proposed Meta-model 

A formalization of the SOA leads to consider that constitutive elements of a concrete 
action system are of the three different types shown in Fig. 1: Actor, Relation and 
Resource. We indeed adopt the term Resource rather than Uncertainty Zone from the 
SOA terminology because every uncertainty zone is a resource required for the 
system’s activity, and its constitutive property is less the uncertainty on the behavior 
of its controller actor than the existence of other actors who need this resource for 
whatever reason while they don’t control the conditions of its use. 

To describe briefly the figure 1, a Resource is the support of one or more Relations
associated to Actors who either control the Relation or depend on it. Each actor puts 
stakes for each one of the Relations he is implied in and receives in return a pay-off.
The actor who masters a Resource (by the mean of a Relation he controls) decides of 
the distribution of the pay-offs to the actors who depend on this Relation. 
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Fig. 1. Model of the structure of a CAS (using the Entity/Association formalism) 

3.1   Actor, Resource and Relation 

The Resources of a CAS are the things necessary for the organized action, their 
availability being required in order to make some action.   

Every Resource is mastered by one or more Actors who decide about its 
availability and therefore influence the action capability of the Actors who need it. 
Each Resource leads to the introduction of one or several Relations. A Relation 
corresponds to a certain type of transaction, or bargaining concerning the use of this 
Resource. A Relation is unbalanced as a unique Actor (among the ones who master 
the Resource) controls this Relation while other Actors depend on this Relation 
because they need this Resource to achieve their goals. The controller of the Relation 
determines the conditions of the access to the Resource and so controls the possibility 
for the depending Actors to achieve their objectives. 

Every Actor masters one or more Resources and then possesses some freedom to 
act that he exerts by means of the Resources he controls. As a result, the SOA denies 
the status of social actor to a person who would not master any Resource. The 
concepts of Resource and Actor are then defined one from the other: a Resource is 
such only if some Actors depend on it while it is controlled by another Actor; 
conversely, a social Actor is somebody who controls at least one Resource. 

3.2   Stakes and Pay-Offs 

Each Actor distributes his stakes on the Relations he participates to, either by 
controlling them or depending on them. He makes this repartition depending on the 
importance of the Resource in regard to his objectives. The more necessary this use of 
the Resource to achieve an important objective, the higher the stake he places on this 
Relation. Figure 2 shows how to introduce explicitly the concept of Objective in the 
model of a CAS: for a given Actor and a given Relation, the value of the stake
property in the associations control and depend is determined by the value of the 
properties importance and necessity. This repartition of an Actor’s stakes is in 
proportion with the impact of these objectives on his behavior. For the understanding 
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of the functioning of a CAS, the very identification of the objectives of an Actor does 
not matter, much more important is what they lead the Actor to do. The stakes enable 
to link causally the Actor’s behavior with his objectives. The stakes take their value 
on a qualitative scale such as null, negligible, ..., important, ..., vital that can be 
therefore translated on a numerical scale; we take for the example below from 0 to 10. 
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constraints

1,n 1,n
Objectivereach
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choose
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Fig. 2. Place of the Objective concept in the formalization of a CAS 

The Actor controlling a Relation is the one who determines the exchange rules,
that is the conditions governing transactions concerning the access to the Resource. 
We also use the term pay-off, which evocates the result of the transaction, while 
“exchange rules” refers to the modalities of its processing. The pay-off corresponds to 
the quality of the Resource availability; more or better the usability of the Resource 
by an Actor, higher his pay-off for this Relation. The distribution criterion of the pay-
offs between the different participants of a Relation is specific to each Relation. We 
are expecting Relations where the pay-offs are a « zero sum game »: if the usability of 
the Resource is good for some actors, it will be as bad for the others. Other Relations 
for which the pay-offs of the controller and depending Actors vary in the same 
direction could be qualified of win-win, or loose-loose whether the pay-offs tend to be 
favorable or not. Pay-offs take their value on a scale like: awful, ..., bad, ..., neutral, 
..., good, ..., optimal and therefore can be translated on a numerical scale, e.g. from    
–10 to +10. 

3.3   The Constraints on a Relation 

We now have to give the meaning of the constraints property of Relations. The Actor 
who controls a Relation has not the possibility to give any value to the pay-off 
property of the participating Actors. He has to respect organizational constraints, the 
« rules of the social game », that regulate the interactions among the actors within the 
organization and determine the range of value he may give to the pay-offs. These 
constraints originate either from formal rules of the organization or rules imposed by 
the environment, either from technical or feasibility restrictions that result from the 
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very nature of the Resource, or from social norms that determine the socially 
acceptable behaviors. (The sociology of organized action does not include such a 
classification of constraints, but a deeper analysis of the various types of Resources 
and associated constraints could ease the modeling of the structure of CASs). In 
addition, we have to deal with the fact mentioned in the previous section that the 
values of pay-offs attributed to the different Actors are in relation. So we propose to 
formalize the constraints associated to a Relation as the following items: 

- two boundary values b_min and b_max, such that  -1 ≤ b_min < b_max  ≤ 1;
- for each actor A participant in the relation, a function  

   EffectA : [-1, 1] ––––>  [-10, 10]. 

The interval [-1, 1] corresponds to the whole space of choice of the controller 
Actor when he has a full control upon the Relation: choosing a value within this 
interval is to set the exchange rules, it corresponds to choosing a way to manage the 
relation and so what kind of access is given to other Actors concerned by the relation. 
The choice (by the controller Actor) of a value α ∈ [-1, 1] produces the EffectA(α)
value for the pay-off to Actor A. It is clear that any number could be used instead of –
1 and +1 as the boundaries of the space of choice, and only the relationships between 
the different functions EffectX, X being the Actors participant in the Relation, is of 
matter. (In order to chose an interval [a, b] as the space of choice instead of [-1, 1], 
you just have to compose the EffectX function with the function x :–––>  2/(b-a)*x  -
(a+b)/(b-a); The convenience of  the  [-1, 1] interval as spaces of choice relies upon 
its similarity with the range of pay-off values, that is  [-10, 10]).  

As for the b_min and b_max boundaries, they are intended to account the fact that 
the Actor controlling the relation is possibly in a situation where he cannot select 
whatever value in the space of choice. For any reason, his effective space of choice is 
more limited and then he can only chose a value within the [b_min, b_max] interval. 
So the range of this interval (that is the number b_max – b_min) measures the extent 
of the control on the Relation by the controller Actor. 

Such a formalization describes the specificities of each Relation as a tool to 
exercise some power on actors dependent on it. It enables to give a quantitative value 
to social features of a CAS and thus to compare the respective position of Actors and 
Relations. We just propose some illustrative examples that would require a deep 
discussion to get a well-founded semantics [17]. Let us consider the influence that the 
Actor controlling a Relation R is able to exert on another Actor A participating in the 
Relation. If you consider: 

influenceR(A) = max {EffectA(α) – EffectA(β) ; α, β ∈ [b_min, b_max]}, 

you have the maximum difference between the pay-offs that he can attribute to Actor 
A, that is the greatest amplitude of the effect of his choice in the management of the 
Relation.  

The global influence of the Actor controlling the Relation R can then be defined 
as the greatest influence subjected by one of the Actors: 

influenceR  = max {influenceR(A) ; A Actor concerned by the relation R}. 
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Indeed, the Actor subject to the greatest influence will behave accordingly and thus 
pass the effect of this influence to other Actors. So, one can consider that this highest 
level of influence is the one that will spread over the whole organization. 

The following quantity  

max{EffectA(α) – EffectA(β); A Actor concerned by the relation R, α and β ∈ [-1, 1]} 

may be considered as the strength of the Relation R as a tool for exercising the power. 
Then the influenceR of the controller of Relation R is a weighting of this strength by 
his level of mastering of R (that is b_max – b_min, the range of his effective space 
of choice), and thus corresponds to the actual usability of this relation as a support for 
his power. 

4   Actors’ Behaviors and Organization’s Dynamics 

The modeling formalism we exposed enables to distinguish, within a CAS, what 
corresponds to its structure – its constitutive elements and their relations –, and what 
corresponds to its state which changes to pursue the achievement of the system goals. 
The CAS’s structure can be described in terms of Actors, constrained Relations based 
on Resources, and stakes placed by Actors on Relations; as for the CAS’s state, it can 
be described in terms of  the pay-offs put by Actors on the Relations they participate 
to, that is their available means for action. 

4.1   Structural and Functional Dimensions of the Actors’ Behavior 

This allows to distinguish two dimensions in the actions of an Actor who searches to 
comfort his power: a structural dimension which acts on the system structure, and a 
functional dimension which acts on the system state (Cf. Figure 3). The action’s 
structural dimension contributes to the building of the CAS organization, to the 
establishment of the social game rules and then consists in, following our 
formalization, acting on the elements which constitute its structure: the Resources, the 
Relations, the constraints and the stakes. Concerning the action’s functional 
dimension of an Actor, it is the one which insures the regular operating of the system 
and makes its state to evolve in a synchronic way. It participates in the achievement 
of the Actors’ immediate objectives. This functional dimension of Actors’ activity 
complies with the current rules of the game, without regard for possible changes 
concerning the mission and objectives (i.e. the stakes) or the means for action (i.e. the 
Relations and the associated constraints). In the behavior of a human being social 
actor, each concrete action comprises a structural and a functional component in a 
proportion specific to the circumstances of the action achievement. When modeling a 
CAS, we are not trying to account for the practical modalities of the actions, instead 
we only focus on their effects. These effects on the structure and on the state of a 
CAS being disjoint, we have the possibility, concerning simulation issues, to model 
the actors’ behavior by mean of mechanisms specific for each one of these two 
dimensions. 

Within the structural dimension of actors’ behavior, actions deal with the 
Resources, the Relations, the constraints and the stakes. Concerning Resources, an 
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Actor may introduce a new Resource supporting a Relation that he will master by 
using his proper capacities, or rather introduce a new Relation based on a Resource 
that he is yet mastering. An Actor may also neutralize the possibility of another Actor 
to control a relation, for instance by giving a free open access to the Resource or 
conversely to make it definitely inaccessible whatever the circumstances. Another 
possible structural action is to transform a Resource in such a way that some EffectX()
functions become modified. Concerning the constraints which apply on the pay-offs 
of Relations, an Actor may decrease their severity for a Relation he controls by 
enlarging the effective space of choice (decreasing b_min or increasing b_max), or 
conversely reinforce the severity of constraints applied to a Relation controlled by 
another Actor. Finally, concerning the stakes, Actors may move their own stakes to 
reinforce their autonomy, but also and above all they may influence other Actors in 
the distribution of their stakes. 

Within the functional dimension of the actor’s behavior, every action consists in 
exerting control on a mastered Relation, e.g. manipulating the pay-offs value 
attributed to the participating Actors, while staying inside the limits imposed by the 
constraints on this Relation. This manipulation can be absolute, then it modifies the 
pay-offs value without care to their current value, or relative if it increases or 
decreases regularly this value. This latter case corresponds to a management of the 
control, without sudden shift, which seems to be the norm in most social structures. 

Fig. 3.  The structural behavior of Actors builds the organization that in return constraints their 
functional behavior 

4.2   Actor’s Satisfaction and Strategic Behavior 

The distribution of pay-offs and stakes on numerical scales enables, applying simple 
operations, to aggregate those values in synthetic and significant values. One can 
graduate the stakes on a scale null = 0, negligible = 1, important = 5, vital = 10, and 
the pay-offs with the correspondence awful = -10, bad = -5, neutral = 0, good = 5, 

Organization

individual 
actor

individual 
actor

interact

build

determine

build

individual 
actor



 A Coordination Framework Based on the Sociology of Organized Action 11 

optimal = 10. As evidence, these numerical values do not correspond to something; 
they just enable to perform comparison among them. To do so, we have to normalize 
the sum of the Actors’ stakes and then to attribute to each one the same amount of 
stake points to be distributed on the relations he participates to. This normalization 
comes down to grant the same investment to each actor, the same possibility of 
personal implication in the social interactions game.  

It becomes therefore possible to quantify several concepts of the SOA by 
numerical values belonging to the same scale of values, and thus to compare them. 
For instance, the relevance of a Resource could be estimated as the sum of the stakes 
placed by the whole population of Actors on the Relation supported by this Resource, 
as those stakes reflect the importance of these Relations for the Actors. The power of 
an Actor  can be also estimated as the sum, over all the relations he controls, of a 
combination between the relevance of this Relation and the influence of this Relation. 
The autonomy of an Actor can be evaluated as the sum of the stakes he places on the 
Relations he controls. It corresponds to the possibility to achieve his objectives 
independently from other Actors, the actor’s dependency being evaluated conversely 
as the sum of the stakes he places on the Relations he depends on. Other notions like 
the power of an Actor on another one or the dependency network among Actors could 
be defined also. 

A particularly significant value for an actor is the sum, on the whole set of Relation 
he is involved in, of a combination between his stake and the pay-off he receives. We 
name this value the actor’s satisfaction (rather than utility because it is more linked to 
a bounded rationality context). It expresses the possibility for an actor to access the 
resources he needs in order to achieve his objectives, and then the means available for 
him to achieve these objectives. A linear version consists in considering the sum, on 
every relation he is involved in, of the stake by the pay-off: 

Satis(a) = r/ a participates to r stake(a, r) * pay-off(a, r) (1)

As far as the satisfaction of an Actor is a measure of his possibility to achieve his 
concrete objectives, to obtain or preserve a high level for this satisfaction is a meta- 
objective for every actor. Abstracting the objectives of each particular Actor at the 
level of the stakes he puts on the common Resources allow to consider that each 
Actor has his own version of the same meta-objective. 

The strategic characteristic of an actor’s behavior leads him, by definition, to aim 
to achieve his objectives and then to obtain an acceptable level (if not the optimum) 
for his satisfaction. The rationality hypothesis implies to ground this behavior on the 
standard three steps cycle:  

1. perception of his own state and of the environment;  
2. selection of an action to perform, according to its expected effect on the gap 

between the current state and the goal state;  
3. execution of this action. 

We have implemented a simulation environment, SocLab [11], that allows to 
describe the structure of a CAS according to the meta-model introduced in section 3 
and to simulate the functional dimension of Actors’ behaviors, that is the mutual 
adjustment of the payoffs they give the ones to the others. This “social behavior 
engine” uses the classifiers mechanism [12] for the selection of the action; a classifier 
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system is based upon the learning of behavioral rules by test-errors and reinforcement 
of the rules depending on the results they produce. This approach presents two 
advantages compared to a cognitive approach [13]: we only need a global model of the 
CAS, while the cognitive approach requires to make explicit the own representation of 
the CAS by each one of the Actors; it brings little hypothesis on the required abilities 
to act as a social actor within a CAS, and it not need to explicit the rules governing the 
social behavior of the actors. 

5   The Trouville Case 

To illustrate how the SOA analyses a concrete action system and how we formalize 
this analysis, we consider a classical example from the strategic analysis (the other 
name for the SOA) [14]. The Travel-tours firm is a tour operator having two agencies, 
TRO1 and TRO2, situated in the Trouville city. These last months, the results of the 
TRO1 agency increase, as the ones of TRO2 agency stay stable, or even decrease. The 
regional director decides to reward the TRO1 agency for its merits. He proposes then 
to regularize the position of Agnès, the secretary of the agency and to allocate her 
exclusively to TRO1. As she is temporary employed for several months, and even if 
she is attached to TRO1, she works half time in each one of the TRO1 and TRO2 
agencies and this obliges her to move between two jobs. 

Both Agnès and the TRO1 agency’s director, Paul, should be glad with this 
proposal. Agnès will have a permanent job contract and will be relieved to split her 
work in two parts, while Paul will have a full-time secretary at his disposal in the 
agency. But each one of them refuses vigorously the proposal. How to understand this 
matter of fact? The strategic analysis by identifying the uncertainty zones shows that 
both of them are rationally right to be opposed to this organizational change, because 
it would decrease their respective power. Indeed, a more attentive analysis of the case 
reveals that: 

• The TRO2 agency is more inventive than TRO1 in designing travel packages, 
while the TRO1 agency includes a very efficient commercial staff; being aware 
of the TRO2 agency’s activity, the secretary provides information to the director 
so that the TRO1 agency takes full advantage of finalizing the TRO2’s ideas. 

• For personal reasons, to get a steady job is not a short-time objective of the 
secretary. On the other hand, she is very cool in her working relations with the 
other employees of TRO1, and she greatly appreciates that none of the TRO1 and 
TRO2 directors has the possibility to exert a precise control on her work. 

Thus the situation shift would increase the control of the director on the secretary’s 
activities (that is what she does not want), and the director would loose the 
information given by the secretary on TRO2 (that is what he does not want). 

5.1   Model of the Concrete Action System 

The purpose of the analysis is to understand the behavior of the director and the 
secretary, so both of them are Actors to be considered, and it appears that other 
employees of the TRO1 or TRO2 agencies do not play a significant role is this affair. 
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Concerning the uncertainty zones or Resources, Information about TRO2 is the one 
mastered by the secretary while the director masters the secretary’s job. This latter 
Resource gives raise to two different Relations between the director and the secretary: 
the stability of the job and the content of the work she has to achieve. Table 1 shows 
the values given to the different parameters of the model. The value of stakes results 
straight from the observations below about the wishes of the director and the 
secretary. Both of them have ten points to distribute over the three Relations, and the 
relevance of each Relation is just the sum of the stakes.  

The value of the b_min and b_max bounds and the definition of the Effect functions 
require more explanations. Concerning the stability of the job, the director has only a 
partial mastering of this Relation; on one side he may renew the contract of the 
secretary each week without discussion, although he may not set a firm contract to on 
his own, only the regional director can do this, so b_max ≈ 0.4; on the other side, he 
has to respect the job legislation, to justify his decision to the regional director, and to 
account for the reaction of other employees in case of unfairness, so b_min ≈ - 0.4. 
Having a steady job produces a full effect for the secretary and thus Effectsecretary(1) = 
10, Effectsecretary(-1) = -10, -10 and 10 being the extreme values of a pay-off. As for the 
director, his worry about this job is in proportion with its stability, but this worry is 
quite low, that is Effectdirector(x) = 3 * x. 

Concerning the content of the job, the agency director has a larger room of 
manoeuvre. We consider positive values in the space of choice as a strict control on 
the quantity and the quality of the secretary’s work and on the organization of this 
work, and negative values as the lack of such a control. The b_min ≈ -0.3 value results 
from a high concern of the director for having friendly relationships with the 
employees; nevertheless, he has to ensure the production of the agency and thus to 
have a look at the work achieved by each employee, so the b_max ≈ 0.7 value. The 
effect on the secretary is in proportion with the level of control, because the 
convenience of any employee is to suffer a low level of control on his/her work. As 
for the director, the proposed effect function is based upon the ideas that any excess 
or lack of control could rapidly bring difficulties and that his interest is to exercise a 
moderate control.  

Table 1. Parameters of a formal model for the Travel-tours case study 

  Stability of 
the job 

Content 
of the job 

Information 
about TRO2 

Controller Actor Director Director Secretary

Director 1 2 7 
Stake Secretary 2 7 1 

Relevance 3 9 8 

Director 3 * x - 3 * x2 10 * x 
Effect Secretary 10 * x 7 * x -2 * x

b_min ,   b_max - 0.4 ,  0.4 - 0.3 ,  0.7 -0.3 ,  0.8 

Influence 0.8 * 10 = 8  1 * 7 = 7 1.1 * 10 = 11 
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For the information about the TRO2 agency Relation, positive values in the space 
of choice correspond to give information about the projects of TRO2, negative values 
to give false information, and the zero to give no information. The b_min and b_max
proposed values correspond to the amount of information on TRO2 that the secretary 
can obtain and make to be credible by the TRO1’s director. The effect function for the 
director models his full use of this information; as for the secretary, her own 
tranquility would be to give no information, neither real nor false.  

Table 2. Satisfaction of Actors in notable cases, and their respective power 

Secretary's
satisfaction 

Director's
satisfaction 

global
satisfaction 

Auton
omy 

Pow
er

 min max min max min max   

Stability 
 of the job -0.4 0.4 -0.4 0.4 -0.4 0.4 
Content 
 of the job -0.3 0.7 -0.3 0 -0.3 0.7 

Value in 
the space 
of choice 

Info on 
TRO2 0.8 0 -0.3 0.8 -0.3 0.8 

Director 54.3 -1.7 -22.7 57.2 -22.7 54.3 3 87 

Secretary -24.3 42.3 -23.3 6.4 -23.3 40.7 1 88 
Satisfact 
ion 

Global  30 40.5 -46 63.5 -46 95 

5.2   Behavior of Actors 

The columns of table 2 correspond to typical states of the system resulting from an 
analysis providing the values given in table 1. The three last rows show the 
satisfaction of the director, the secretary and the whole system, while the three first 
ones show the values in the spaces of choice of the relations that lead to these 
satisfactions. The cases where the secretary or the director get their extremum 
satisfaction are not socially feasible; considering the Secretary's maximum 
satisfaction as an example, the director has no reason to be especially indulgent with 
her if she does not bring any specific advantage to the agency. More generally, no 
Actor will accept to relinquish the power given by the control of a Resource if this 
renouncement leads to a situation that is too far from an acceptable satisfaction. We 
observe that the maximal global satisfaction, that is the Pareto optimum, is reached 
with each Actor having the most cooperative behavior; but this fact is specific to the 
Travel-tour case study and can not considered as a general property of CAS. Figures 4 
shows one simulation of this case study with the SocLab environment. In almost 
simulations of this case, the satisfactions of both Actors stabilize at a level that is near 
the Pareto optimum. The gap between the satisfactions of the secretary and the 
director is about 20%; it allows to conclude some thing like “the director has at least 
as much means to act as the secretary has”, that is: the informal (and effective) power 
relationships among the secretary and the director are not inconsistent with the formal 
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rules of the organization (organizations where the authority granted by formal rules is 
in opposition with the power resulting from informal behaviors are not safe). 
Considering the two last columns, it appears that the secretary and the director are 
highly dependent since they have a low level of autonomy, and this can be related to 
the fact that their worst (minimum) satisfaction is very low. They have the same 
power one on the other, and since they can get a acceptable satisfaction, they have 
rational reasons for refusing the proposition of the regional director of Travel-Tour. 
     All these numerical results must be considered very carefully when they are used  
to provide a social interpretation that is meaningful. First, the scales of values are 
arbitrary, so that each value considered in isolation has no meaning; only the relative 
values of parameters make sense, and the results are given for comparison only. 
Second, the gap between two values must be important – e.g. 20 or 30 per cent – to be 
considered as significant. Indeed, the values of the stakes and other parameters 
provided by the empirical sociological analysis are rough in nature. Moreover, the 
formulas proposed to evaluate the power or satisfaction of Actors are not the result of 
a formal argument; they are grounded in a firm sociological theory but intend only to 
be an approximation of these concepts. Finally, we agree with the bounded rationality 
paradigm that considers errors as a constitutive properties of affairs.  

Concerning the Travel-tour case, a sensitivity analysis shows that the model summed 
up in table 1 is quite robust. But a better use of the numeric values introduced by our 
meta-model would be to process and interpret them within a fuzzy calculus [15]. 

 

Fig. 4. Evolution of the satisfaction (sum of the pay-offs weighted by the stakes) of the secretary 
during one 10000 steps simulation 
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6   Conclusion 

From the viewpoint of the Sociology, this project could appreciably transform both the 
practice and the teaching of the SOA thanks to possibilities offered by a tool which 
objectifies the hypothesizes and results of a sociological analysis. Such an attempt to 
formalize an inherently discursive theory goes with questions about this theory; and 
this project has already proved to impact the theoretical corpus of the SOA [17], by the 
mean of investigations that can be done in using a virtual experimental framework, a 
radically new approach in sociology [16]. In this respect, the work presented in this 
paper differs of the very interesting socionik German project (see [19, 20] as 
representative papers) that mainly proposes straight translations of sociologic theories 
into computer science formalisms. Concepts and models in social and human sciences 
are often not well defined, not formalized and thus can support inconsistent and 
ambiguous discourses. AI and MAS are sciences that produces new concepts, new 
models, new experimental evidences by simulation, and also new theories of mental 
and social phenomena that can benefit to sociology. In accordance with an 
(anonymous) referee of this paper, “Artificial modeling and computer simulation will 
change the social sciences at least as much as cybernetics, information theory, logic, 
IA, … has changed the behavioral sciences, giving origin to ‘cognitive sciences’”.  

From the viewpoint of computer science, it could be the case that the SOA 
provides a coordination model for MASs, and more generally for computer 
applications including a lot of heterogeneous components that collaborate to some 
ends. The specific properties of such a coordination model and its domain of 
application have to be studied in deep and compared with the other main coordination
models such as planning, agent communication languages, protocols and games [21]. 
As it is, the model introduced in this paper is very abstract and it seems to be 
compliant with most organizational models such as the ones presented in this bock or 
[1, 4, 5] among many others. This is due to the fact that the Sociology of Organized 
Action does not account for the formal dimension of organizations: the hierarchical 
positions of actors, their roles, missions and duties, etc. These aspects need to be re-
introduced in the theory in order to lead to an organizational model allowing to define 
the global structure of a system, independent of the micro-level architecture and 
properties of its populating computational components (agents). 

The model presented in this paper raises many questions that must be answered for 
it becomes operational, either for sociologist, or as a powerful coordination model for 
MASs and distributed systems, or for providing virtual creatures with a plausible 
human-like social behavior. Among these questions we can cite the followings. 
Coalition-actors, who have their own stakes related to the objective of the coalition, 
but whose satisfaction relies upon the satisfaction of the coalition member actors; a 
typology of resources and relations to ease their identification and the definition of the 
Effect function in analyzing the structure of CASs; the resources dynamics: how to 
characterize resources and relations which can be removed or conversely introduced 
in a CAS in the course of its regular operating; the circumstances that lead an Actor to 
try to make the structure of a CAS to evolve, the kind of changes he will prefer, and 
the means he could use to achieve this change. This last question, which is nothing 
else than the auto-evolution and adaptation of social systems, is probably one of the 
most difficult, but also one of the most interesting if we focus on the expressive 
power of this coordination model. 
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Abstract. A new, formal, role-based, framework for modeling and analyzing 
both real world and artificial organizations is introduced. It exploits static and 
dynamic properties of the organizational model and includes the (frequently ig-
nored) environment. The transition is described from a generic framework of an 
organization to its deployed model and to the actual agent allocation. For verifi-
cation and validation purposes, a set of dedicated techniques is introduced. 
Moreover, where most models can handle only two or three layered organiza-
tional structures, our framework can handle any arbitrary number of organiza-
tional layers. Henceforth, real-world organizations can be modeled and analyzed, 
as illustrated by a case study, within the DEAL project line.  

1   Introduction 

Organizations have proven to be a useful paradigm for analyzing and designing multi-
agent systems (MAS) [5, 21, 22]. Representation of MAS as an organization consisting 
of roles and groups can tackle major drawbacks concerned with traditional multi-agent 
models; e.g., high complexity and poor predictability of dynamics in a system [5, 21]. 
We adopt a generic representation of organizations, abstracted from instances of real 
agents. As has been shown in [9], organizational structure can be used to limit the 
scope of interactions between agents, reduce or explicitly increase redundancy of a 
system, or formalize high-level system goals, of which a single agent may be not 
aware. Moreover, organizational research has recognized the advantages of agent-
based models; e.g., for analysis of structure and dynamics of real organizations. How-
ever, formal theories, approaches, and tools for designing such models are rare. In this 
paper, we propose a new modeling approach for analyzing and formal modeling of real 
or artificial organizations (e.g., MAS). 

In the next Section, main principles for modeling and analyzing organizations are 
discussed and related with the new modeling approach. In Section 3, the basic con-
cepts used for specifying an organization model are introduced. Section 4 discusses 
how an organization model can be specified in a formal manner. In Section 5, a set of 

 LNAI
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dedicated validation and verification techniques are described. Section 6 presents a 
case study, which explains how the proposed approach can be applied for analyzing 
an organization from the area of logistics. It includes the introduction of a new tech-
nique for the graphical representation of organization models. The paper ends with a 
discussion in Section 7. 

2   Principles for Modeling and Analyzing Organizations 

Modern organizations are characterized by their complex structure, dense informa-
tion flows, and incorporation of information technology. To a large extent, the un-
derlying organization model is responsible for how efficiently and effectively  
organizations carry out their tasks. In literature, a range of theories and guidelines 
concerning the design of organizations are present [15, 17]. However, almost no 
operational theories or formal models exist. Scott [20] even stated that there are no 
general principles applicable to organizational design. In contrast, Minzberg pro-
posed a set of guidelines for modeling any arbitrary organization [15]. These guide-
lines are applicable to mechanistic types of organizations, which represent systems 
of hierarchically linked job positions with clear responsibilities that use standard 
well-understood technology and operate in a relatively stable (possibly complex) 
environment. However, many modern organizations are characterized by a highly 
dynamic, constantly changing, organic structure and show a hardly identified, not 
formalized, non-linear behavior [16].  

2.1   Two Perspectives 

In this subsection, we will briefly discuss two perspectives from which organizations 
are analyzed. The first perspective emerges from social sciences and the second origi-
nates from computational organization theory and artificial intelligence.  

In social science theories, the structure of organizations is frequently specified as 
informal or semi-formal graphical representations [15, 17]. They can provide a de-
tailed organization structure at an abstract level. However, such approaches lack the 
means to represent the more detailed dynamics and to relate them to the structures 
present. 

From computational organization theory and artificial intelligence, approaches 
have been developed that are able to capture both structural and dynamic aspects of 
organizations. However, usually they describe organization models, using only two or 
three levels of abstraction; i.e., the level of an individual role, the level of a group 
composed of roles, and the overall organization level, as in GAIA [22], MOISE [7] 
(extended to S-MOISE+ [11]), MOCA [1], and OperA [3]. In contrast, multiple levels 
and relations need to be described for the representation of complex hierarchical 
structures of modern organizations; e.g., mechanistic type of organizations [17]. 

Some models (e.g., ISLANDER [4], OperA [3]) consider organizations as elec-
tronic institutions; i.e., norms and global rules that govern an organization are explic-
itly defined. However, in many modern organic organizations with much individual 
autonomy, the normative aspects do not play a central role and are of minor impor-
tance for the prosperity of an organization. 
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Independent of the previous distinction in approaches, the importance of explicit 
modeling of interactions between agents and the environment is recognized [3, 18]. 
This is of importance since the environment plays a crucial role in the functioning of 
organizations. Moreover, for modeling in general, verification and validation of the 
models used or generated is of the utmost importance. This is no different for model-
ing organizations. However, this aspect of modeling organizations is frequently ig-
nored; two of the exceptions are TROPOS [2] and ISLANDER [4]. 

2.2   A New Perspective 

In this paper, we propose an approach for formal specification of organizations. To 
this end, it is highly suitable for specifying mechanistic types of organizations; i.e., 
machine and professional bureaucracy and divisionalized forms of organizations. 
Furthermore, this approach can also be applied for modeling organic types of organi-
zations, when extended with organizational change techniques. 

The proposed, formal approach can capture both structural and dynamic aspects of 
the organization and, subsequently, has four advantages: 

(1) Representation of organization structure (including specifications of actors (or 
roles), relations between them, and information flows). 

(2) The means for simulations of different scenarios on the basis of a model and 
observing their results. 

(3) Organization analysis by means of verifying static and dynamic properties 
against (formalized) empirical data, taken from real organizations, or against 
simulated scenarios. 

(4) Diagnosis of inconsistencies, redundancies, and errors in structure and func-
tioning (e.g., with regard to organizational performance indicators) of real or-
ganizations and providing recommendations for their improvement. 

In the proposed model, organizations are specified as composite roles that can be 
refined. The refined structures consist of (interacting) roles, representing as many 
aggregation levels as needed. Moreover, global normative aspects of an organization 
are considered as static and dynamic properties of the role, defined at the highest 
abstraction level, which represents the whole organization, without recognizing them 
as special notions and placing them on top of an organization. In addition, the envi-
ronment is considered as a special component of an organization model.  

The modeling method introduced in this paper incorporates two types of verifica-
tion and validation techniques: role-centered and agent-centered, as will be discussed 
in Section 5. However, the introduction of these techniques is preceded by the intro-
duction of the model itself in the next section and its formal specification in Section 4. 

3   Organization Modeling Concepts 

In this section, the concepts are introduced on which the organization modeling ap-
proach is founded. First, the specification of the organizational structure is described. 
A template model is generated, which encapsulates the structure of the organization. 
On all existing levels of aggregation, the behavior of an organization can be described. 
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Taken together, this provides description of the behavior of an organization. In Section 
3.2, will be explained how such dynamic behavior can be specified. In Section 3.3, the 
transition from template model to deployed model will be discussed.  

3.1   Organization Structure 

An organization structure is described by relationships between roles at the same and 
at adjoining aggregation levels and between parts of the conceptualized environment 
and roles. The specification of an organization structure uses the following elements:  

(1) A role represents a subset of functionalities, performed by an organization, ab-
stracted from specific agents who fulfill them.  

Each role can be composed by several other roles, until the necessary detailed level 
of aggregation is achieved, where a role that is composed of (interacting) subroles, is 
called a composite role. Each role has an input and an output interface, which facili-
tate in the interaction (communication) with other roles. The interfaces are described 
in terms of interaction (input and output) ontologies: a vocabulary or a signature 
specified in order-sorted logic. At the highest aggregation level, the whole organiza-
tion can be represented as one role. Such representation is useful both for specifying 
general organizational properties and further utilizing an organization as a component 
for more complex organizations. Graphically, a role is represented as an ellipse with 
white dots (the input interfaces) and black dots (the output interfaces). Roles and 
relations between them are specified using sorts and predicates from the structure 
ontology (see Table 1). 

(2) An interaction link represents an information channel between two roles at the 
same aggregation level. Graphically, it is depicted as a solid arrow, which denotes the 
direction of possible information transfer.  

(3) The conceptualized environment represents a special component of an organi-
zation model. Similarly to roles, the environment has input and output interfaces, 
which facilitate in the interaction with roles of an organization. The interfaces are 
conceptualized by the environment interaction (input and output) ontologies. These 
ontologies are defined using three types of predicates: to_be_observed, observa-
tion_result, and to_be_performed (see Table 1).  

The internal specification for the environment can be conceptualized using one of 
the existing world ontologies (e.g., CYC, SUMO, TOVE). It can be defined by a set 
of objects with certain properties and states and with causal relations between objects. 
Graphically, the environment is depicted as a rectangle with rounded corners.  

(4) An environment interaction link represents an information channel between a 
role and the conceptualized environment. Graphically, it is depicted as a dotted arrow, 
which denotes the direction of possible information transfer. 

(5) An interlevel link connects a composite role with one of its subroles. It repre-
sents a transition between two adjacent aggregation levels. It may describe an ontol-
ogy mapping for representing mechanisms of information abstraction. Graphically, it 
is depicted as a dashed arrow, which shows the direction of the interlevel transition.  
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Table 1. Ontology for formalizing organizational structure 

Sort Description 

ROLE Sort for a role 

AGENT Sort for an agent  

ENVIRONMENT Sort for the conceptualized environment 

INTERACTION_LINK 
Sort for an interaction link between two roles at the 
same aggregation level 

INTERLEVEL_LINK 
Sort for an interlevel link between two roles at two 
adjacent aggregation levels 

ENVIRONMENT_INTERACTION_LINK 
Sort for an environment interaction link between a 
role and the conceptualized environment 

ONTOLOGY Sort for an ontology 

ONTO_MAPPING Sort for an ontology mapping 

STATE_PROPERTY 
Sort for a state property expressed using some ontol-
ogy 

ACTION Sort for an action performed in the environment 

Predicate Description 

is_role: ROLE Specifies a role in an organization 

has_subrole: ROLE x ROLE For a subrole of a composite role  

source_of_interaction: ROLE x INTERACTION_LINK Specifies a source role of an interaction 

destination_of_interaction: ROLE x 
INTERACTION_LINK 

Specifies a destination role of interaction 

interlevel_connection_from: ROLE x 
INTERLEVEL_LINK 

Identifies a source role of an interlevel link 

interlevel_connection_to: ROLE x INTERLEVEL_LINK Identifies a destination role of an interlevel link 

initiator_env_interaction: ROLE x 
ENVIRONMENT_INTERACTION_LINK 

Specifies a role-initiator in interaction with the envi-
ronment 

recipient_env_information: ROLE x  
ENVIRONMENT_INTERACTION_LINK 

Identifies a role-recipient of information from the 
environment 

part_of_env_in_interaction: ENVIRONMENT x 
ENVIRONMENT_INTERACTION_LINK 

Identifies the conceptualized part of the environment 
involved in interaction with a role 

has_input_ontology: ROLE x ONTOLOGY Specifies an input ontology for a role 

has_output_ontology: ROLE x ONTOLOGY Specifies an output ontology for a role 

has_input_ontology: ENVIRONMENT x ONTOLOGY Specifies an input ontology for the environment 

has_output_ontology: ENVIRONMENT x ONTOLOGY Specifies an output ontology for the environment 

has_interaction_ontology: ROLE x ONTOLOGY Specifies an interaction ontology for a role 

has_interaction_ontology: ENVIRONMENT x  
ONTOLOGY 

Specifies an interaction ontology for the environment 

has_onto_mapping: INTERACTION_LINK x 
ONTO_MAPPING 

Identifies an ontology mapping 

to_be_observed: STATE_PROPERTY 
Describes a state property that will be observed in the 
environment 

observation_result: STATE_PROPERTY x 
BOOLEAN_VALUE 

Determines if a certain state property holds in the 
environment  

to_be_performed: ACTION 
Specifies an action that will be performed in the 
environment 
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3.2   Organizational Dynamics 

At each aggregation level, it can be specified how the organization’s behavior is as-
sumed to be. To this end, organization dynamics are described by a dynamic represen-
tation, for each of the elements in an organization structure. The level of detail for 
specifying dynamics of an organization depends on its organizational type. Since the 
behavior of most mechanistic organizations is deterministic, dynamics for such or-
ganizations can only be modeled by a set of dynamic properties with high level of 
detail. In contrast, behavior of many organic organizations is defined loosely. Conse-
quently, the dynamics of models for such organizations can be specified only par-
tially; hence, actors (agents) can act autonomously.  

The dynamics of each structural element are defined by the specification of a set of 
dynamic properties, formalized using the dynamic ontology (see Table 2). 

Table 2. Dynamics ontology for formalizing properties of an organization 

Sort Description 

DYNPROP Sort for the name of a dynamic property 

DPEXPR Sort for the expression of a dynamic property 

Predicate Description 

has_dynamic_property:  ROLE x DYNPROP Specifies a role dynamic property 

has_dynamic_property:  INTERACTION_LINK x 
DYNPROP

Identifies a dynamic property for an interaction link 

has_dynamic_property:  ENVIRONMENT x 
DYNPROP

Identifies a dynamic property for the conceptualized 
part of the environment 

has_dynamic_property:  
ENVIRONMENT_INTERACTION_LINK x DYNPROP 

Identifies a dynamic property for an environment 
interaction link 

has_expression: DYNPROPx DPEXPR Specifies an expression for a dynamic property 

We define five types of dynamic properties: 

(1) A role property (RP) describes the relationship between input and output states 
of a role, over time. The input and output states are represented as an assignment of 
truth-values to the set of ground atoms, expressed in terms of a role interaction (input 
or output) ontology.  

For example, in the settings of a typical logistics company, a role property of a truck 
driver would be: if role Truck Driver receives a request from his manager to provide 
his coordinates, then role Truck Driver will generate this data for his manager. 

(2) A transfer property (TP) describes the relationship of the output state of the 
source role of an interaction link to the input state of the destination role. Again, in 
the settings of a logistic company an example of a transfer company would be: if role 
Customer generates an order to role Transport Company, then Transport Company 
will receive this order. 
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(3) An interlevel link property (ILP) describes the relationship between the input 
or output state of a composite role and the input or output state of its subrole. Note 
that an interlevel link is considered to be instantaneous: it does not represent a tempo-
ral process, but gives a different view (using a different ontology) on the same infor-
mation state. An interlevel transition is specified by an ontology mapping, which can 
include information abstraction.  

(4) An environment property (EP) describes a temporal relationship between 
states or properties of objects of interest in the environment.

(5) An environment interaction property (EIP) describes a relation either between 
the output state of the environment and the input state of a role (or an agent) or be-
tween the output state of a role (or an agent) and the input state of the environment. 
On one hand, roles (or agents) are capable of observing states and properties of ob-
jects in the environment; on the other hand, they can act or react and, thus, affect the 
environment. We distinguish passive and active observation processes. For example, 
when some object is observable by a role (or an agent) and the role (or the agent) 
continuously keeps track of its state, changing its internal representation of the object 
if necessary, passive observation occurs. For passive observation, no initiative of the 
role or agent is needed. Active observation is always concerned with the role or 
agent’s initiative. 

3.3   Deployed Model and Agent Allocation 

The generic or template model of an organization provides abstracted information 
concerning its structure and functioning. However, for a more detailed analysis, a 
deployed model is needed. It should be based on both unfolded generic relations be-
tween roles, as defined in the template model, and on creating new role instances. 
Moreover, the environment (or scenario) influences the specification of a deployed 
model considerably. Subsequently, different deployed models can be specified for 
different scenarios, using the same template model of an organization. For formaliz-
ing the structure and behavior of a deployed model, the same ontologies are used as 
for formalizing a template model. 

The deployed model abstracts from the actual agent allocation but provides the de-
tailed specifications for the behavior of role instances. Based on these specifications, a 
set of requirements is formulated for each role instance. These requirements (restricting 
and defining behavior) are imposed onto the agents, who will eventually enact these 
roles. The formalization of the allocation principles is performed in line with the formal-
ization of the template and the deployed models, using the predicate allocate_to. In 
some scenarios, a complex role can act as a single aggregated role and, thus, represent-
ing its constituting subroles. In such cases, an agent(s) can be assigned to the complex 
role. If, for some reason, an allocated agent is not anymore capable of enacting a certain 
role, dynamic reallocation of another agent will take place, as described in Section 6.  

4   Formal Specification of the Organization Model 

In the previous section, the elements of the methodology were introduced. The current 
section provides the formal specification of them. 
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4.1   Structural Properties 

Structural properties represent relations between structural elements of the organiza-
tion. They are specified in a sorted first-order predicate logic, based on the structure 
ontology. For example, in the settings of a logistics company, subroles Fleet Manager 
(FM) and Load Manager (LM) belong to the same composite role Operational de-
partment (OP). Formally: 

has_subrole(OP, FM) ∧  has_subrole(OP, LM) 

Often, structural properties are valid during the whole period of organization exis-
tence and can be considered as static. But in rapidly developing and adapting organi-
zations, structural change processes gain special importance. Structural properties for 
such organizations get a temporal dimension and can be considered as a subclass of 
dynamic properties. 

4.2   State and Dynamic Properties 

A dynamic property represents a relation in time either between (input or output) 
states of roles or a (input or output) state of a role and a (input or output) state of the 
environment. To achieve this, every role as well as the conceptualized part of the 
environment has assigned state ontologies for input and output states. A state for 
ontology Ont is an assignment of truth-values to the set At(Ont) of ground atoms ex-
pressed in terms of Ont. The set of all possible states for state ontology Ont is denoted 
by STATES(Ont).  A state property is defined by a formula over a state ontology. 

Role or environment states are related to state properties via the formally defined 
satisfaction relation |=, comparable to the Holds-predicate in situation calculus: state(γ, t, 

output(r)) |= p, which denotes that state property p holds in trace γ at time t in the output 
state of role r.

For a fixed, linearly ordered, time frame TIME (e.g., natural or real numbers), a 
trace γ over a state ontology Ont is defined as a mapping γ : TIME → STATES(Ont) or, in 
other words, a sequence of states γt (t ∈ TIME) in STATES(Ont). The set of all traces over 
state ontology Ont is denoted by TRACES(Ont).

Dynamic properties (e.g., for roles, environment, and links) are specified in the 
language Temporal Trace Language (TTL) [12], based on a sorted first-order predi-
cate logic with sorts TIME for time points and TRACE for traces, using quantifiers 
over time and logical connectives. The specification of properties in TTL is supported 
by a dedicated editor [13]. For examples of dynamic properties in formal form, see 
Sections 6. 

5   Verification and Validation 

The model as introduced in this paper offers the means for both role-centered and 
agent-centered verification and validation. This section briefly discusses these.  

Role-centered verification techniques may be used for analysis of both template and 
deployed models of organizations. Subsequently, inconsistencies and bottlenecks in an  
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organization can be detected. Agent-centered verification techniques are used for ana-
lyzing scenarios with roles of an organization model, allocated to (human) agents. 

For those cases where empirical traces (i.e., sequences of states) of the processes 
within an organization are (partially) available, it is possible to validate properties 
against such a trace. For example, a trace can be obtained from log-files of a com-
pany. If an empirical trace is given informally, the first step is to formalize it (by 
hand), using formal state ontologies. If it is already given in a formal form, the first 
step is to translate (e.g., automatically) the formal representation into one based on 
ontologies used in the organization model. For the trace that has been generated by 
simulation, translation into the right formal format can be automated as an interface 
between the simulation environment and the checking environment. Once such a trace 
is in the right formal form, it is possible to verify dynamic properties of the organiza-
tion (including structural properties), using dedicated checking software.  

As input for the verification software, a formalized trace and a formalized property 
have to be provided. Given such input, after automatic verification of the given prop-
erty against the given trace, the software will generate a decision (positive or nega-
tive). The positive decision denotes that the property holds with respect to the given 
trace. In case of a negative decision, the software explains why the property does not 
hold. This type of verification is shown in the case study in Section 6. 

Another verification method uses a simulation model based on the specification of 
the dynamic properties of the lower aggregation level for checking the properties of 
the higher aggregation level. This verification method is supported by the dedicated 
checking software [13].  

When an organization model is specified including dynamic properties at different 
aggregation levels, it is not automatically guaranteed that these properties at different 
levels fit to each other. A verification process that relates properties at one aggrega-
tion level to those of another level (e.g., as in compositional verification) can reveal 
incompleteness or inconsistencies. In the case study presented in the next section, it is 
shown how such a mutual verification process can be performed.  

6   Case study 

In this section, a case study is described. In parallel, the newly developed graphical 
representation of organization models is introduced. This case study was done within 
the project DEAL (Distributed Engine for Advanced Logistics). For the project de-
scription, we refer to http://www.almende.com/deal/. A template organizational model 
was created, based on the informal description of the structure and functioning of the 
large Dutch logistics company. To secure anonymity of the company, the real names 
of the organizational units were substituted by general ones,. 

At the highest level (abstraction level 0) we represent the whole organization as 
one role. At abstraction level 1, the organization consists of two interacting roles: TC 
and CI (see Fig.1). Note, that the organizational model is depicted in a modular way; 
i.e., components of every aggregation level can be visualized and analyzed both 
separately and in relation to each other. Consequently, scalability of graphical repre-
sentation of an organizational model is achieved. 
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Fig. 1. Representation of the organization at abstraction level 1, which consists of role Trans-
port Company (TC) and role Customer Interaction (CI) 

At abstraction level 2 role TC can be refined into three interacting roles: ST, CR, and 
OP (see Fig.2). All interactions with a customer are conducted within CI role. At 
abstraction level 2 it consists of two roles: TCR and C (see Fig. 2). Role TCR pro-
duces at its output messages from CR and ST departments of the transport company, 
i.e., CR and ST roles stand as company representatives in certain interactions with a 
customer. Therefore, the input state of role TCR has influence on the output state of 
role CR and vice versa. The same holds for role ST.  

 

Fig. 2. Representation of (a) the Transport Company (TC) and (b) the Customer Interaction role 
(CI) at abstraction level 2 

 

Fig. 3. Representation of the operational department at abstraction level 3 

The corresponding dynamic properties may be specified at abstraction level 0 and 
can be further refined into basic properties at lower abstraction levels. In our case 
study, we particularly concentrate on the structure and functioning of the OP (see 
Fig. 3), part of the TC. 
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Table 3. Role names, abbreviations, and descriptions for the organizational model in the case 
study 

Role name Abbreviation Description 
Transport Company TC Provides logistic services to customers 
Customer Interaction CI Identifies interaction rules between a customer 

and the transport company 
Strategy and Tactical 
Department 

ST Performs analysis and planning of company 
activities; considers complaints from customers; 
analyses the satisfaction level of a customer by 
means of surveys and questionnaires 

Custom Relations 
Department 

CR Handles requests from customers 

Operational  
Department 

OP Responsible for direct fulfillment of the order 
from a customer 

Transport Company 
Representative 

TCR Mediator role between a customer and the trans-
port company 

Customer C Generates an order for the transport company; 
sends inquiries about the delivery status 

Sales Person SP Assigns an order to a certain load manager, 
based on the type and the region of a delivery 

Load Manager LM Assigns orders to suitable trucks and available 
drivers; assigns fleet managers to drivers; pro-
vides CR department with up-to-date informa-
tion about delivery; provides a driver with 
instructions in case of a severe problem; in-
forms CR department about possible delays 
with delivery 

Fleet Manager FM Keeps constant contact with the assigned drivers; 
updates automatic support system with actual data 
on the delivery status; provides consultations for 
drivers in case of minor problems in transit 

Driver D Delivers goods; informs a superior fleet manager 
about the delivery status; interacts (by means of 
observations and actions) with the conceptualized 
part of the environment 

Environment Env Represents the conceptualized environment; in 
this case study only a driver interacts with it 

The static aspects of the considered organization have been formally described in the 
organization structure specification. The sets of dynamic properties for the components 
of the organization structure have been identified at different abstraction levels. For 
example, consider the information distribution property of role OP called RP1(OP),
specified at abstraction level 2. Informally, when a severe problem with some delivery 
occurs, OP should generate a message to CR about possible delay. Formally specified: 

∀γ:TRACE ∀t1:TIME ∃T:TRUCK_TYPE ∃D:DRIVER ∃ON:ORDER_NUM state(γ, t1, environment))|= 
truck_state(T, incident, severe_incident) ∧ truck_property(T, operated_by, D) ∧ order_property(ON, as-
signed_to, D) ∃t2:TIME t2>t1 state(γ, t2, output(OP))|=communicate_from_to(OP, CR, inform, or-
der_state(ON, delay, severe_incident)), 

where Table 4 provides the description of the predicates. 
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Table 4. Predicates for formalizing the dynamic properties used in the examples 

Predicate Description 
communication_from_to(r1:ROLE, r2:ROLE, 
s_act:SPEECH_ACT, message:STRING) 

Specifies the speech act s_act (e.g., inform, request, ask) from 
role-source r1 to role-destination r2 with the content message

deliverable_object(on: ORDER_NUM, 
desc:STRING) 

Assigns the order number on with the description desc to the 
object that has to be delivered  

truck_property(trt:TRUCK_TYPE, operated_by, 
d:DRIVER)  

Assigns the driver d to a truck of the type trt

order_property(on:ORDER_NUM, assigned_to, 
d:DRIVER ) 

Assignes the order on to the driver d

order_property(on:ORDER_NUM, deadline, 
d_value:INTEGER ) 

Identifies the deadline d_value for the order on

truck_state(trt:TRUCK_TYPE, st:STATE, 
descr:STATE_DESCRIPTION) 

Denotes the state st with the state description descr of a truck of 
the type trt

order_state(on:ORDER_NUM, st:STATE, 
descr:STATE_DESCRIPTION) 

Specifies the state st with the state description descr of the order 
with the number on

This property can be logically related to the conjunction of dynamic properties at a 
lower abstraction level 3 in the following way: 
EP1(Env, T, severe_incident) ∧ EIP1(Env, D) ∧ RP1(D) ∧ TP1(D, FM) ∧ RP2(FM) ∧ TP2(FM, LM) ∧ RP3(LM) ∧
ILP1(LM, OP)     RP1(OP)  

Using the verification technique, as described in Section 5, can be shown that the 
latter logical relation indeed holds. Between brackets, the abbreviations of the dy-
namic properties, are provided, conform the specification provided in Section 3.2. In 
the environment occurs an event: a severe incident with the truck T, for which role D 
is responsible (EP1). D observes this incident (EIP1) and reacts by generating a re-
quest for advice to FM (RP1). FM receives this request (TP1). FM is not empowered 
of making decisions in such situations; therefore s/he propagates the request further to 
LM (RP2). LM receives the request (TP2). LM officially identifies the incident as 
severe (RP3) and outputs the notification about a possible delay from role OP to CR 
(ILP1). Thus, by a manually conducted, mathematical proof, the previously identified 
logical relation between two adjoining aggregation level spaces indeed holds. In gen-
eral, attempting to set up such a manually conducted, mathematical proof can reveal 
missing premises or other shortcomings such as inconsistencies. 

In the deployed model for the considered case study, all roles specified at abstrac-
tion levels 1 and 2 have one-to-one mapping to the role instances. While roles LM, 
FM, and D (defined at abstraction level 3) have multiple instances; e.g., LM and FM 
are represented differently in different geographical regions and, subsequently, differ-
ent types of trucks and professional skills of drivers are required for different kinds of 
deliveries. The deployed model for our case study (see Fig. 4) is based on the assign-
ment relation. For example, assigned_to(D2, FM1) denotes that a middle-size truck 
and his driver are assigned to the fleet manager in eastern Europe and the region be-
longing relation in_region(D1, LM1) specifies that both a big-size truck driver and a 
load manager should belong to the same region in eastern Europe).  

When a template and a deployed organizational model are specified, agent alloca-
tion principles should be formulated. The capabilities of agents, essential for this case 
study were identified. For example, a driver-agent can drive a truck; hence, he has a 
driver license of a certain type, has acceptable results of medical tests etc. In addition, 
the allocation requirements for role instances were formulated; e.g., in order to enact 
role LM, an agent should have working experience as a senior manager in logistics for 
at least 3 years. 
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Let us briefly consider the scenario reconstructed from empirical data of the trans-
port company, using specified organizational model:  

(1) A Customer places an order by means of a contact with TCR (CR department in this 
case) in CI.  

(2) Inside TC this order is being transmitted from CR to OP.  
(3) Within OP the order is distributed by SP to LM1.  
(4) LM1 assigns the order to D1, D1 is associated with FM1 (see Fig. 4).  
(5) D1 starts delivery, then after some time a severe incident occurs with his truck.  
(6) D1 asks for help FM1, who incapable of making a decision in this case.  
(7) FM asks for a solution LM1, who decides to send another truck to proceed with delivery.  
(8) Now D1 is reallocated to another truck and driver, who picks up goods and continues 

delivery.  
(9) At the same time LM1 informs CR about possible delay with delivery.  

(10) CR, who shares the same knowledge with TCR, informs the Customer about possible 
delay.  

(11) D1 successfully finishes delivery and the Customer is being informed about that. 

Using formal state ontologies (see Tables 1 and 2), we formalized this trace in the 
LEADSTO environment [13]. A formalized empirical trace is useful for analysis of 
organizational functioning. For the case study, we identified several properties of 
interest that can be automatically verified against the trace. Let us consider some of 
these properties. 

(1) Delivery successfulness 
Informally: the order has been fulfilled. Formally: 
∃t:TIME ∃O:ORDER_NUM state(γ, t, environment)|= order_state(O, delivered, final_report)

An automatic verification, as mentioned in Section 5, confirmed that this property 
holds against the formalized empirical trace. 
(2) Customer notification 
Informally: always if a severe problem occurs with the truck and the driver, who was 
fulfilling the order of some customer, then this customer should be notified about 
possible delay with delivery. Formally: 
∀γ:TRACE ∀t1:TIME ∃T:TRUCK_TYPE ∃D:DRIVER ∃ON:ORDER_NUM state(γ, t1, environment))|= 
truck_state(T, incident, severe_incident) ∧ truck_property(T, operated_by, D) ∧ order_property(ON, as-
signed_to, D) ∃t2:TIME t2>t1 ∃TCR:ROLE state(γ, t2, input(customer))|=communicate_from_to(TCR, cus-
tomer, inform, order_state(ON, delay, customer_report)) 

Again automatic verification confirmed that this property holds against the trace. 
(3) Delivery accuracy 
Informally: the order has been fulfilled on time. Formally: 
∃t:TIME ∃O:ORDER_NUM ∃d_value:integer state(γ, t, environment)|= order_state(O, delivered, final_report) ∧
order_details(O, deadline, d_value) ∧ d_value ≥ t

This property does not hold with respect to the trace. The next logical step in analysis of 
the causes for property failing would be to check if some incident occurred in transit. In 
case that a severe incident happened with the truck and the agent (a truck driver) was 
incapable of performing his role any more, the next step would be to verify whether or 
not enough time is available for a role reallocation. Subsequently, analysis of organiza-
tion functioning can be continued until all inquiries about delivery are satisfied.  



 Formal Modeling and Analysis of Organizations 31 

D

FM

LM
SP

LM2

FM2

D3

D2

D1

SP

LM1

FM1

assigned_to(D, FM)

in_region(D, LM)

assigned_to(LM, SP)(a)

(b)

a5

a2

a4
a1

a3

(c)

Fig. 4. The operational department of the transport company represented at abstraction level 3, 
with (a) the template model (b) the deployed model, and (c) agent allocation 

7   Discussion 

Both in human society and for software agents, organizational structure provides the 
means to make complex, composite dynamics manageable. To understand and for-
malize how exactly organization structure constrains composite dynamics is a funda-
mental challenge in the area of organizational modeling. The modeling approach 
presented in this paper addresses this challenge. It concerns a method for formal 
specification of organizations, which can capture both structural and dynamic aspects 
of organizations and provides the means for (i) representation of organization struc-
ture, (ii) simulations of different scenarios, (iii) analysis of organization, verifying 
static and dynamic properties against (formalized) empirical data or simulated scenar-
ios, (iv) diagnosis of inconsistencies, redundancies, and errors in structure and func-
tioning. Additionally, the environment is integrated as a special component within the 
organization model. 

Specification of organization structure usually takes the form of pictorial descrip-
tions, in a graph-like framework. These descriptions often abstract from detailed dynam-
ics within an organization. Specification of the dynamic properties of organizations, on 
the other hand, usually takes place in a completely different conceptual framework; 
these dynamic properties are often specified in the form of a set of logical formulae in 
some temporal language. The logical relationships express the kind of relations between 
dynamics of parts of an organization, their interaction, and dynamic properties of the 
organization as a whole, which were indicated as crucial by Lomi and Larsen [14] in 
their introduction.  

This paper shows how pictorial descriptions, in a graph-like framework, and a set 
of logical formulae in some temporal language can be combined in one agent-based 
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modeling approach. Inspection can be done on the abstraction level preferred and 
both the pictorial and formal specifications of the dynamic properties can be in-
spected. Five essential types of dynamic properties characterizing behavior of main 
structural components of an organization model (including environment) are identi-
fied. So far, more complex cases of organizational behavior (e.g., the synchroniza-
tion problem for joint action) were not discussed. For example, in the case of joint 
lifting by roles or agents more sophisticated types of dynamic properties are needed; 
e.g., combined role properties that define temporal relations between a number of 
states for some set of roles and a number of states of another set of roles. Further-
more, the approach proposed here supports formal specification and verification for 
both static and dynamic properties. This possibility is especially useful for diagnosis 
of inconsistencies, redundancies, and errors in structure and functioning of real or-
ganizations and providing recommendations for their improvement (e.g., by way of 
evaluating of performance indicators).  

Compared to most organization-oriented, multi-agent system, design approaches 
[1, 4, 5, 22], our model allows any number of aggregation levels in the organization 
model, which makes it more suitable for modeling and analyzing real organizations. 
While a role aggregation relation is considered to be crucial for representing an organ-
izational model, other types of relations between roles should also be taken into ac-
count. For example, a role specified in a template model and its corresponding role 
instances defined in a deployed model are related by means of a generalization rela-
tion. Furthermore, it would be interesting to investigate how role hierarchies, based on 
generalization, and other types of relations can be used in the specification of a tem-
plate model. 

Let us now consider a case in which agents show autonomous behavior, independ-
ent of (or sometimes conflicting to) organizational rules and goals. In this case, an 
agent behavior can be specified from the positions of sociological theories, which take 
into account an individual behavior of social actors. One of such theories, the Sociol-
ogy of Organized Action studies an organization functioning beyond its formal rules 
and is used for specifying informal coordination mechanisms in agent organizations 
[21]. To tackle the forthcoming compatibility problems from the relationships be-
tween formally predefined organizational model and agent autonomous behavior, 
further investigation will be undertaken. When the latter would be accomplished, 
many types of modern organizations could be modeled. 

In the case of highly dynamic organizations (e.g., self-organizing and organic or-
ganizations), organizational change is a crucial and frequent process. Due to their 
high complexity, such organizations are difficult to investigate. However, different 
simulation techniques can help in providing further insights into mechanisms of func-
tioning of such organizations. For the latter purpose, research has been conducted 
based on the introduced formal model [8]. In [6] a simulation technique is suggested 
that can be used for evaluation of different alternatives of an organizational structure 
with respect to the task performance and reorganization when necessary. 

In addition, the different types of modern organizations should be taken in consid-
eration, as organization theory [15, 20] classifies and describes them. It would be 
useful to develop and formally specify the templates capturing essential structural and 
dynamic aspects of most frequently encountered types of organizations. Such tem-
plates would be of great help for organization designers and analysts.  
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In conclusion, this paper introduced a new, formal, fully traceable method on mod-
eling and analyzing (multi-agent) organizations. It comprises both static and dynamic 
aspects as well as environment representation. Hence, it provides the basis of a formal 
framework, which provides the means for both the design and for the automatic vali-
dation and verification of organizations. 
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Abstract. Collaboration environments impose high demands on humans and 
artificial systems. Especially during critical tasks team members, including 
humans, artificial systems and other (sub-) teams, require support to guarantee 
their continued effectiveness. Effectiveness of individuals and teams is an 
important ingredient for organizational effectiveness, managerial decision quality, 
as well as for maintaining organizational awareness. In this position paper we 
introduce our conceptual view on realizing sustained team effectiveness, in which 
both the measurement of effectiveness and team management play an important 
role. A unified, interdisciplinary approach facilitates measuring effectiveness in 
more complex organizations. 

1   Introduction 

Highly dynamic, or even chaotic, environments are often encountered when a disruptive 
event occurs; such as a car-crash in a tunnel involving a fuel-truck. Suddenly the 
(tunnel) environment becomes unpredictable, normal courses of action may not yield 
expected results, and performance of teams as well as individuals is affected. 
Nevertheless, individuals and teams are expected to effectively address crisis situations 
over a period of time. In our view, it is a collection of teams and individuals that make 
up an organization, in which effectiveness plays a crucial role (for an overview, see e.g. 
[1]). We loosely define the term effectiveness as the degree to which a team is 
successful in reaching its goals/objectives. In this paper we focus mostly on individuals 
and teams, as they provide us with insights which can be translated to organizations. 

Teams are often considered to consist of humans, e.g. [2, pp. 126-127] defines a team 
as "a distinguishable set of two or more people who interact dynamically, inter-
dependently, and adaptively toward a common and valued goal/object/mission, who 
have each been assigned specific roles or functions to perform, and who have a limited 
life span of membership". In our opinion, intelligent systems such as agents and robots 
can also be team-members, equivalent in status to humans. This is in contrast to a large 
amount of system-level teams and agent research, which concentrates on agent-based 
support for individual human team members, see e.g. [3], [4] and [5]. In our view, 
agents (whether software entities on a network or robots) may also take the initiative 
and give orders to human (and other agent) team members. In essence, we approach a 
‘team’ as an actor-agent community. 

 LNAI



36 N. Wijngaards et al. 

An actor-agent community is a particular type of organization that involves 
collaboration of multiple participants, including humans and artificial systems, for the 
realization of a common mission or for the support of a shared process [6]. Within a 
community there are social rules that members adhere to, and there is communication, 
sharing of responsibility and a certain distinct identity among the community 
members. From a human perspective, an actor-agent community is not unlike any 
conventional human community – the same traits apply. From a technical perspective 
an actor-agent community contains distributed systems and processes that have 
autonomous and anticipatory capabilities – software systems that can be referred to as 
agents or agent systems. Actor-agent communities are typically involved in complex 
collaborative decision making processes, such as the day-to-day air traffic 
management. These are characteristic settings where humans and artificial systems 
are foreseen to collaborate in the near future. 

In our view actor-agent communities need to be able to operate in the real world. 
This requires the ability to adapt to changes and unforeseen events. There is a need to 
be able to operate in highly dynamic situations under high degrees of uncertainty. 
Such a realistic domain is crisis management, in which both humans and artificial 
systems are involved, such as victims, rescuers, observers, and decision makers, all 
working together to mitigate the situation as quickly as possible [6]. This implies that 
a team consists of heterogeneous team members of potentially equal status (cf. ‘mixed 
initiative taking’). 

In crisis situations normal operational conditions change radically. A crisis cannot 
be predicted (otherwise it is not a ‘crisis’), yet preparations can be made (e.g., [7] and 
see the SEVESO II Directive of the European Community). Although the exact crisis is 
unknown, certain aspects of a crisis can be identified, e.g. constraints regarding the 
location of the incident, including availability of resources, victims, geographical 
setting; team structure, including team members and their skills, team resources such 
as tools and team norms; culture, as team members may originate from different 
‘host’ organizations with different cultural identities, social norms, etc. 

Crisis management involves addressing a number of interrelated issues: 

• Time-criticality: time is a critical factor in decision-making, de-escalation of 
incidents, treatment of victims, restoration of normal operating conditions, etc. 

• Performance fluctuations: during a crisis, performance of teams and machines 
changes (usually: degrades), e.g. due to (mental) fatigue, reduced alertness, 
resource depletion, etc. 

• Incomplete situation awareness: dispersed, partial, information about (parts of) 
the situation, unreliable and faulty observations, etc. 

• Changes in courses of action: chaotic environments or situations yield 
(unpredictable) changes to current goals, plans, schedules, problems at hand, etc.  

• Team-(re)composition: during a crisis, teams may be formed, changed, and 
disbanded. 

• Alignment: choreography and coordination of teams require understanding time-
critical issues, performance, shared awareness, changes in courses of action and 
composition of teams. 
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• Organizational sustainability: organizations need support for their evolution and 
adaptation at multiple levels of abstraction to address chaotic environments such 
as crisis situations, while still adhering to necessary levels of coherence and 
coordination to retain levels of effectiveness. 

In this position paper we briefly explore how to support sustained effectiveness of 
(organizations consisting of) teams consisting of heterogeneous team members, 
including humans, artificial systems and other (sub-) teams, in crisis situations. 
Section 2 addresses our view on sustained team effectiveness. Section 3 describes our 
view on team management, which is a key element in realizing team sustainability. 
Section 4 proposes a number of future research directions. 

2   Sustained Team Effectiveness 

Sustained team effectiveness is, from our perspective, a basic team property, which 
plays an important role in the usefulness, robustness, employability and composition 
of teams over a period of time. Effectiveness can be viewed as a utility, which is 
useful for planning and scheduling algorithms, for example. We explicitly assume that 
the effectiveness of individuals, teams and organizations changes over time; this 
evolving process may be manageable to a certain extent. In this section we describe 
our views on effectiveness and sustained effectiveness.  

A good source for research on effectiveness stems from Psychology, in which an 
individual’s effectiveness is often termed ‘performance’. The level of performance is 
stated in terms of behavioral measures such as reaction times and errors (false 
positives and false negatives). Of major importance is the individual fitness level, 
which is often labeled ‘vigilance’ [8]. With respect to vigilance, it is not only 
important to measure general performance levels (e.g. average performance), but also 
the changes in performance over time are critical. That is, a decrement in performance 
(even when the average performance level is not very low) is indicative of declining 
vigilance of an individual [9], [10]. Whenever a vigilance decrement sets in, the 
deterioration is bound to get worse in the near future. So, for an individual, vigilance 
is determined in the following manner: performance (reaction times, errors) and 
performance change over time. 

Interestingly enough, independence between physical and mental aspects of 
vigilance has been demonstrated [11]. That is, after demanding mental tasks, the 
mental component of vigilance is declined. Hence, subsequent mental task per-
formance is decreased. However, purely physical tasks can still be performed 
adequately. The opposite also holds true: After strenuous physical tasks, performance 
on subsequent physical tasks is worse, but performance on mental tasks is generally 
not affected. 

Besides the more basic issue of vigilance, other individual human variables also 
determine performance to a certain extent. Skills and expertise are known to have a 
considerable impact on performance [12]. Even when a person is highly vigilant, he 
or she may not be able to perform well if faced with a totally unfamiliar situation. For 
example, a skilled air-traffic operator would probably not know how to extinguish a 
fire, not even in a vigilant state. 
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Furthermore, especially in a crisis situation, performance is not only dependent on 
intrinsic aspects, but is also dependent on other aspects such as tools and external 
resources. For example, a firefighter may be both mentally fit (good and stable 
performance on mental tasks) and physically fit (good and stable performance on 
physical tasks), but if he does not have a proper suit or a full fire extinguisher, he will 
not perform as expected. Related to both aspects is whether the individual is in a 
relevant situational context: Is the right person at the right place at the right time? A 
vigilant, highly skilled and fully equipped fire fighter still needs to be near a fire in 
order to be able to extinguish it.  

As stated above, there is a separation of physical and mental tasks. This is not so 
surprising, because physical systems, such as a human, operate within different 
dynamical regimes under normal conditions. Physical tasks, such as scrolling, and 
mental tasks, such as writing a paper, are assigned to different subsystems of the 
brain. In this case one could argue that the subsystems are most likely completely 
independent, meaning that the performance of one subsystem carrying out the mental 
task is not affected by the subsystem carrying out the physical task. In sum, these 
tasks do not interfere with one another. However, in real, more complex settings such 
as air traffic control operation, this independence of subsystems in the brain that carry 
out physical and mental tasks might not be plausible, due to the complexity of the 
cognitive tasks that need to be performed. Here, the physical and mental components 
might actually be coupled.  

An example of coupling is the writing of a research paper, where the physical 
effort of clicking, scrolling and moving your head to read comments in the margin of 
a research paper interferes with the high-level mental activity of creating a nice piece 
of text that aims at getting your message across. Moving your head from the text field 
to the margin field – a physical task – involves a mental task, namely that of 
conscious motor control of neck and eye muscles. This places a burden on the other 
ongoing mental task: the creative process of writing the paper. Both physical and 
mental subsystems obstruct each other in such cases, due to their (un)fortunate 
coupling. Concluding, mental and physical task alignment, ensuring the highest 
possible independence of both subsystems, is first of all a pre-requisite for avoiding 
stress and strain, as well as mental and physical overload. Secondly, optimal 
alignment should sustain good task performance, as both sub-systems will minimally 
interfere with each other. From a cognitive ergonomic perspective it is a challenge to 
provide an empirical account of when, why and how such alignment is achieved for 
which subsystems. Furthermore, it is interesting to embody psycho-physical findings 
in future applications, systems and teams [13].  

In short, effectiveness is dependent on physical and mental aspects of an individual, 
its tools and resources, cognitive ergonomic design factors, and situational context. Part 
of our future research is to investigate whether it is possible to measure and maintain 
effectiveness of teams of humans, software agents and robots. Our initial stance is that 
these constituents of (human) effectiveness are applicable to artificial entities. For 
example, consider vigilance; although vigilance may not seem directly applicable to a 
software agent, its processing capacity and supportive resources (e.g., memory, 
electricity, fuel, and bandwidth) may deplete over time. This corresponds with one of 
the definitions of human vigilance, which refers to the availability of capacity or 
resources [8]. The use of vigilance as one of the effectiveness parameters thus appears 
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justified for both actors and agents. Despite the fact that similar principles apply, there 
of course remain structural differences between actors and agents. They will differ in 
actual task performance; quality and speed of performance will not be identical on all 
tasks.  However, this will not interfere with our statement that their effectiveness can be 
measured in a similar manner.  

We suggest that the fitness level of human teams can be measured in a similar 
manner as on the individual human level. That is, we intend to apply the same criteria 
for the team level as defined for the individual level. A unified approach facilitates 
measuring effectiveness in more complex organizations, including teams consisting of 
individuals and (sub-)teams. Determining the fitness of individuals and teams also 
requires a mechanism that monitors the actions/progress of individuals and teams in 
relation to their joint goals. E.g., in [14, p. 1] “Team situation awareness involves the 
team's assessment (i.e., perception, comprehension, and projection) of the current 
situation, which can include the surrounding environment (including any equipment 
or systems), the task, and the team itself.” We would like to extend this approach 
from human teams to ‘hybrid’ teams (consisting of actors and agents (software and/or 
robots), which can be monitored in a similar fashion to measure effectiveness.  

An important issue concerning measurements is that sustained team effectiveness 
is a desired high-level emergent property of a (possibly ad-hoc or changing) team or 
organization. This implies that the effectiveness of individuals and teams needs to be 
measured in time-critical circumstances. The measurements of effectiveness need to 
be such that they can be used in time by the right actors, agents or teams to manage 
themselves and others. Being able to measure effectiveness implies both attaching 
values to ‘effectiveness’, as well as having methods to determine these values. In 
addition, a number of ‘levels’ of effectiveness need to be distinguished in order to 
guarantee a specific level of effectiveness,. The relationship between required 
(minimal) effectiveness and coping with a certain class of problems in specific 
situations needs to become explicit as well. 

Sustained effectiveness basically entails managing team effectiveness over time 
according to some criteria. Unfortunately, changes to team effectiveness are neither 
easily planned nor predicted, as the environment is essentially unpredictable and the 
criteria are not easily determined. In addition, time-criticality requires pragmatic 
approaches to measuring effectiveness of individual humans and agents as well as 
teams, and establishing pragmatic criteria (including a desired minimal level of 
effectiveness). Nevertheless, methods and techniques are required to positively 
influence effectiveness of individuals and teams. In the next section we elaborate on 
effectively managing ad-hoc and dynamic teams. 

3   Sustained Team Management 

Sustained effectiveness, by nature, is an emergent property (which may or may not 
manifest itself), of both individuals and teams. Sustained effectiveness even shows at 
the organizational level. The Aisin crisis in the Toyota Group [15] illustrates the 
possibility that without direct high management control, sustained effectiveness is 
feasible, even in a large crisis situation. Sustained effectiveness may be measured, to 
some extent, but cannot be directly controlled; it is not a simple ‘parameter’ of any 
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human or artificial system. In organizational literature, ‘management’ is responsible 
for organization effectiveness, e.g. see [1]. We currently assume that at each level in 
the organization, team management is concerned with measuring and influencing 
effectiveness. In this section our initial model for sustained team management is 
described. First, a conceptual model is introduced, after which team management and 
its relation to sustained effectiveness is elaborated in some detail. This section is 
concluded by a discussion regarding measuring sustained effectiveness.  

3.1   Towards a Model 

To study sustained team effectiveness, a model is needed which represents teams, 
their composition, and the role of sustaining effectiveness. Our initial view is shown 
in Figure 1, in which team composition and team context are outlined. A team is a 
compositional construct, which can be composed of any combination of specific 
individuals (actors and/or agents) and sub-teams. In this compositional approach, no
strict hierarchy is enforced: A team may be sub-team of multiple other teams, and 
similarly an individual may be a team-member of multiple teams. With this approach 
we intend to model dynamic organizational structures – although this needs further 
research to understand the limitations. The work by [16] and [17] are examples of a 
formal approach to model organizations and their dynamics.  

We currently assume that it is not necessary to have a ‘top-most’ team which has a 
compositional relation with every individual in the entire organization. Similarly, we 
do not enforce that, at the ‘bottom’ of composition relations, teams can only consist of 
individuals; we leave open the possibility that a team ‘believes’ that it has a sub-team 
as a team-member, but this sub-team is not (yet) populated with individuals. How a 
sub-team is represented as a team-member is also part of future research.  

In Figure 1, the composition of one team is shown. The team consists of two 
individuals (an agent and a human actor) and two sub-teams (which may again consist 
of actors, agents, and/or sub-sub-teams). A team has an associated ‘team manage-
ment’ process, which is shared by all team-members. At this point, it is not important 
how this management process is realized by specific team-members; multiple options 
exist and will be explored in future research. On the one hand, team management is 
responsible for real-time dynamic (re)scheduling of allocation of tasks to humans and 
agents in order to solve problems given certain goals. On the other hand, there is the 
responsibility for acquiring and analyzing relevant status information of all members 
including their effectiveness, and changes of their effectiveness over time. These two 
responsibilities overlap; effectiveness is also a basis for (re)scheduling task allo-
cations. For example, the fitness or vigilance that is determined of individuals and 
sub-teams serves as a basis for task allocation. An air-traffic operator who is very 
tired (i.e. not vigilant) will not be allocated a task that requires high vigilance. 
Likewise, a highly effective sub-team will be required to take the responsibility of a 
high-priority, demanding set of tasks.  

A team operates in a specific environment. Goals and issues that are relevant for 
the situation at hand are common to all team members: the well-known joint or 
shared goals, commitments, intentions, etc. The shared environment, in turn, is part 
of the entire (global) environment. Within the global environment resides an entity  
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Fig. 1. A conceptual view on sustained team effectiveness 

(or multiple entities) that fulfill(s) the role of ‘external manager(s)’; this is explicitly 
separated from the (internally shared) team management process. It is assumed that 
each team and each individual is capable of understanding and reacting to internal 
and external management directives and needs for reports. Each individual or team 
may also fulfill the role of ‘manager’ for another individual or team, possibly 
external to its own team. So the management-relationships do not have to adhere to a 
specific team-composition structure. In addition, note that team management 
processes need not be heavy-weight; it may be virtually non-existent – which places 
a burden on external managers to manage the internals of those teams. 

3.2   Management Scenarios 

In this sub-section three example scenarios illustrate the application of our view on 
sustained effectiveness of individuals and teams. In these examples, the management 
process related to a team is shown to involve sub-processes for strategic deliberation, 
task allocation, team-composition, choreography and coordination, dealing with 
external managers and maintaining organizational synergy. In essence, a (team) 
management process entails a feedback loop, in the simplest form involving team and 
situation monitoring, deliberation and action effectuation (e.g., compare with the 
well-known OODA loop of decision making cycles: observe-orient-decide-act). The 
team as a whole follows specific strategies to deal with issues arising from the current 
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crisis within their shared environment. The initial strategy can be an arbitrary choice, 
but is nevertheless constrained by the resources available and possible rules and 
regulations imposed by the host organization(s) of the team-members. Team 
management keeps track of the available resources, task allocations and continually 
monitors the status of individual entities’ performance, team goals, and information 
from and reports to external management. 

For all scenarios, assume that a team has already been formed and currently 
addresses (part of) a crisis situation. The focus is on team management deliberations, 
irrespective of how the team management process is realized (by one or more team 
members). All team-members are currently assumed to be cooperative, reliable, and 
have non-conflicting norms, etc.  

In the first example scenario, team management aims at sustaining effectiveness of 
its own team members. The crisis situation places a heavy burden on all team 
members, and the overall effectiveness is slowly but surely decreasing. A simple, 
opportunistic management strategy to maintain an overall acceptable level of 
effectiveness within the team is to allocate new tasks directly to those team members 
that have the most suitable vigilance level, without any explicit negotiations or 
inquiries about status. This opportunistic task allocation strategy may be particularly 
appropriate in time-critical circumstances. In addition, the effectiveness of team 
members may be (in)directly influenced. For example, current measurement infor-
mation shows that one human team member in particular is showing signs of 
decreased vigilance. It is a matter of strategic deliberation when the right moment 
arises to give this human team member a ‘bogus’ high priority task which involves 
taking a rest break, and the human’s other tasks can be postponed or delegated to 
other team members. Another predictable decline in team effectiveness caused by 
resource depletion is addressed by charging a team member with an extra task to 
acquire additional resources. As an illustration of differences between humans and 
artificial team members, consider an (artificial) agent team member, whose effective-
ness in the current situation is too low to be acceptable. As its skill set is deemed 
insufficient for the current task and problem, this software agent team member is 
required to update its knowledge-bases and acquire additional functionality to 
increase its effectiveness immediately, as other team members depend on the 
performance of this specific team member.  

In the second example scenario, team management addresses the issue that team 
effectiveness cannot be increased by influencing its current team members; other team 
members need to be acquired, and possibly a number of current team members need 
to be removed to prevent unnecessary complexity in the team’s organizational 
structure. Prospective team members may for example be found by means of brokers 
(specialized actors or agents who trade in team members, e.g. external managers may 
fulfill this role as they may have more complete organizational awareness), by 
proximity in the environment (an opportunistic approach), or by searching in 
databases (yellow pages) and by ‘word of mouth’. 

In the third example scenario, an external manager coordinates collective actions of 
multiple teams. For example, the team management of the current team (team 1) 
considers its team to be sufficiently effective, and reports this to its external manager. 
However, the external manager (which may be a team by itself) is also informed by 
another team (team 2) that team 2 is currently significantly reduced in effectiveness 
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because of a skill-set deficiency. Based on information concerning the locations of 
teams 1 and 2, the external manager decides that team 1 may be in a favorable 
position to fulfill the request of team 2. Team 1 is contacted by the external manager, 
and is provided with information on team 2, its predicament, and is ordered to select a 
suitable team member to move to team 2.  

Each of these example scenarios involves a monitoring process. Maintaining 
current and accurate information on the local, intra-team situation as well as on 
(relevant parts of) the environment, is a non-trivial issue. This issue is compounded 
by the need of external management for reports on the effectiveness and other aspects 
of teams and individuals. Criteria need to be established for information distribution, 
e.g. on a ‘need to know basis’, to prevent both information overload and a higher 
likelihood of timely arrival of task-relevant information. In [18] an information 
distribution system is proposed which is capable of providing an actor or an agent 
with task-relevant information. With such a system in place, necessary information 
and/or knowledge are reported back and the team’s strategy is adapted accordingly.  

In addition, sustaining team effectiveness ultimately implies measuring the 
effectiveness of the entire organization involved in the crisis resolution. Measuring 
effectiveness on an organizational scale means that an external manager is aware of 
the entire organization. The design of an information system that supports the 
exchange of organizational information is presented in [19]. With our view we intend 
to provide a scalable approach to time-critical monitoring and control in ad-hoc, 
dynamic, organizations. 

3.3   Measurement of Sustained Effectiveness  

The above examples illustrate the role of measuring effectiveness of individuals and 
teams over time. Although time can be measured to a certain degree of accuracy in a 
distributed system, measuring effectiveness remains a challenge, especially when the 
measurement techniques need to be applicable in time-critical, resource-sparse 
organizations. A major challenge is how to come up with the right indicators that 
determine whether the performance of the individuals, teams, and the overall 
organization is optimal. A first step is to devise performance measurement techniques 
at the individual and team level. In addition, the contextual sensitivity of effectiveness 
needs to be addressed; measuring effectiveness is dependent on tasks, goals, situation 
at hand, available individuals, teams, tools and resources, etc. Note that this is in 
contrast with vigilance, which can be measured out of context as it reflects, for 
humans, a basic energetic level of information processing capacity [8]. However, the 
impact a certain level of vigilance will have on performance, depends on the actual 
task that needs to be performed. It is to be expected that the more specific the context 
becomes, the more accurate the measurement of effectiveness will be.  

The techniques for measurement should have a minimal impact on the 
effectiveness of individuals and teams, otherwise they defy their purpose. An example 
technique to determine the fitness or vigilance level of an actor involves measuring 
behavior. This may be accomplished on an objective task performance level, but also 
on a subjective scale by means of (short) alertness questionnaires. It has been shown 
that these subjective measures can be remarkably accurate as they correlate highly 
with sensitive vigilance measures such as brain responses measured in the EEG and 
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they distinguish between mental and physical components of vigilance [8]. Although 
vigilance can thus be determined with a short alertness questionnaire and with 
performance measures on tasks, these tasks should not be intrusive and should be 
naturally integrated in the work environment (such as checking incoming mail for an 
operator or answering the mobile phone for a police officer). An open question 
remains how to measure “team or organizational vigilance” in chaotic and dynamic 
environments. 

We explore the practical uses of measuring effectiveness in time-critical, chaotic 
situations. Merely measuring the time it takes before a police officer answers his 
mobile phone does not yield sufficient information. An officer who responds rather 
slowly might still be vigilant, but busy aiding civilians. Of equal importance is the 
fact that a police officer may not be able to answer to a questionnaire in a full-blown 
crisis situation. It is probably necessary to develop two (or more) styles or modes of 
measurement. The first mode entails performance and subjective measures that may 
include tasks that are not strictly part of the work environment itself (such as 
questionnaires). The second mode involves an aggregation of ‘naturalistic’ work-
related tasks.  

With respect to effectiveness of individuals and teams, it is important to distinguish 
levels of effectiveness on different dimensions. There are various facets of effective-
ness (fitness of the individual, of a team, (higher-order) goal satisfaction, etc.) and 
these facets together determine the overall effectiveness. That is, effectiveness should 
be determined in a sensitive manner (not just high or low). These different aspects or 
dimensions should be explored and determined in order to gain proper insight into 
why and how overall team effectiveness may be lacking.  

Moreover, effectiveness should not be expressed as a single value; it is a multi-
facetted concept, which looses expressiveness (and comparative usage) when used as 
a single value. This is similar to valuations of the ‘trust’ concept. Trust as a single-
value does not help to differentiate between e.g. the belief in an agent’s competence 
versus willingness: important aspects for decision making [20]. To continue the 
comparison with ‘trust’: The trust in another agent’s capacity to fulfill a certain task is 
based on aspects of the task and the other agent. Similarly, we expect effectiveness to 
consist of a number of aspects, which can also be determined (perhaps to some extent) 
for individuals, teams, problems, situations, resources and their relations. It then 
becomes possible to, for example, use aspects related to a specific problem to specify 
necessary levels of effectiveness that have to be met by a specific team. 
Differentiation in aspects is also expected to facilitate prediction of change in 
effectiveness, e.g. by task completion or management actions.  

A potential problem in using the same aspects (or concepts) to measure 
effectiveness of both actors and agent concerns the abstraction level of descriptions. 
One of the problems in the interaction of humans with computers (e.g., agents) is the 
fact that computers are described at a much lower level of abstraction than humans, 
who are supposed to work with them [21]. In order to realize actual collaboration 
between actors and agents within a community, it is necessary to describe their 
behavior in a situational context dependent manner and on related levels of 
abstraction – even if this involves additional antropomorphisation of agents. Another 
problem is that there is no a priori reason to suppose that the interaction between 
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actors and agents can be abstracted to a similar enough level, because of their 
inherently different technological make-up. 

4   Future Research 

This position paper outlines our progress towards sustained team effectiveness – in 
our opinion a basic element in managing team performance over time. The approach 
and issues presented manifest in at least three interrelated and interdisciplinary 
research projects regarding possible influences of the emergent aspect of sustained 
team effectiveness. These three research projects are intended to further refine our 
model for human-agent team management within the domain of crisis management in 
the context of the interdisciplinary ICIS research program on interactive collaborative 
information systems.  

The first research project concerns instruments for enhancing effectiveness within 
one team. An example is task allocation on the basis of vigilance levels of human 
actors and artificial agents. The second research project involves instruments for 
enhancing effectiveness of teams on the level of team formation. This project involves 
team formation and re-composition, with many types of entities (actors, artificial 
agents) and roles. The third research project focuses on increasing effectiveness on an 
‘inter-team’ level that is sustaining effectiveness over multiple teams distributed in 
the environment. A major challenge is to address the combination of increasing scale 
of organization size and crisis escalation together with the need for time-critical 
information flows.   

Our approach to modeling and analyzing team management in dynamic organi-
zations needs to be related to other, existing, approaches in literature and practice: a 
major component of our future research. For example, the well-known model for agents 
and teams [22], STEAM and it successor Machinette, provide support for communication 
and coordination within a team, where agents support humans and intend to maximize 
overall team utility. Our approach is an extension, both in the autonomy of the agents 
(from supportive to equivalent team member) and in the management of effectiveness of 
individuals and teams. Another model for organizational oriented programming, S-
MOISE

+ [23], proposes a means to provide agents with ‘organisational managers’, 
thereby reducing the agent’s complexity. How and to what extent this can be used to 
support humans in an organization is a research issue. Another research issue concerns 
the relation between team management and reorganization [e.g. 24], including issues 
such as team re-formation and intra- & inter-team task (re)allocation. In addition, our 
approach needs to be compared to other research disciplines regarding sustaining 
effectiveness (or utility) of teaming of humans and artificial systems; example research 
areas include cybernetics [e.g. 25], psychology [e.g. 26], cognitive ergonomics [e.g. 27] 
and robots [e.g. 28].  

In addition, the impact of a number of important aspects in the design of 
distributed systems needs to be investigated. For example, the role of trust in relation 
to measuring effectiveness in specific, and management processes in general; 
interoperability in terms of communication, understanding, norms and culture; and 
security, privacy and malicious intent. 
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Abstract. In the engineering of multi-agent systems both the analyst and archi-
tect may benefit by thinking about the solution in terms of the roles that agents
may enact and the relationships between them. The organisational structure thus
produced provides an effective way to capture medium- to long-term associations
and dependencies between agents. In this paper we propose a means to formally
specify, verify and analyse agent organisations, capturing notions of role, obliga-
tion and delegation (of obligations). Furthermore, our framework allows change
in the organisational structure to be modelled and alternative organisation specifi-
cations to be developed in order to handle the consequences of change. Our model
gives rise to a suite of tools and functionalities with which engineers can specify,
verify and analyse organisations, the roles of their components, their obligations
and the relationships among these roles.

1 Introduction

When engineering multi-agent systems, both the analyst and architect may benefit by
thinking about the solution in terms of the roles that agents may enact and the relation-
ships that exist between them.

In this paper we propose a means to formally specify, verify and analyse agent or-
ganisations. Ours is a flexible and expressive approach that contemplates agents taking
part in multiple organisations with distinct roles and disparate obligations. Furthermore,
our framework allows change in the organisational structure to be modelled and alter-
native organisation specifications to be developed in order to handle the consequences
of change. We adopt a normative view of organisations, and capture the notion of so-
cial influence through relationships between roles. Our model gives rise to a suite of
tools and functionalities with which engineers can specify, verify and analyse organisa-
tions, the roles of their components, their obligations and the relationships among these
roles.

Our principal contributions are:

– A formal model of organisational structure that captures both (aspects of) the nor-
mative state of a role and the influences that agents may have due to their organisa-
tional position (or role).

– Mechanisms to model changes in agents’ organisational positions. These mecha-
nisms enable an engineer to pose questions such as “what if agent a took on role
r?” and “can agent b transfer a responsibility to some other agent temporarily?”.

– Machinery for the analysis and verification of organisational structures specified
using our formal model.
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The structure of this document is as follows. In section 2 we present and justify
our notation. The social phenomena of influence in our model and the corresponding
implementation is described in section 3. The automation of verification and analysis
is discussed in section 5, as is the value of providing an additional representation of
the organisational model for the engineer. In section 4 we describe the types of change
we intend to model and how this will be done. Finally we examine how this approach
relates to existing work and discuss possible directions for future work.

2 Organisational Model

An organisation is not necessarily an independent entity, and its components may over-
lap with or be a subset of a larger organisation. Within an organisation such as a univer-
sity department, for example, many other organisations will exist for research groups,
the teaching of specific courses and so on. Some of these organisations may include
components from outside the department organisation – there may be, for example,
staff from other departments involved in teaching a course – and the department as a
whole will be a subsidiary of the larger organisations of faculties and the university.

In our formalism we choose not to consider issues such as the capabilities and mental
states of agents, and some of the details of actions. This is not to say that these are not
important features of a multi-agent system, but we choose to make this simplification
in order to focus on the organisational structure (cf. Panzarasa et al. [20]).

Prior to presenting our model of organisational structure, we need to define a number
of sets of labels to refer to the components of our model. We state that the sets be disjoint
for clarity, although the usage of a label in the formalism implies the type of component
represented.

Definition 1. Let there be a finite and non-empty set labels = (labelsAgents ∪ labelsOrgs ∪
labelsRoles ∪ labelsActions) where:

– labelsAgents = {labelAgent1 , . . . , labelAgentn} of agent identifiers,
– labelsOrgs = {labelOrg1 , . . . labelOrgn} of organisation names,
– labelsRoles = {labelRole1 , . . . , labelRolen} of role labels,
– labelsActions = {labelAct1 , . . . , labelActn} of action labels.

The rest of this section details the formal framework for specifying an organisation. A
syntactical variant of this formalism is presented in more detail in [16].

2.1 Agents

Each agent in the model is described by an agent label and a set of role allocation tuples.
The agent label uniquely identifies the agent, and each role allocation tuple consists
of an organisation label, a role label and a set of attitudes. The organisation and role
labels identify each role that the agent holds, and in which organisation it applies. The
attitudes determine the agent’s attitude to delegation in the role, the effects of which
are discussed in section 3. Note that organisations can also be considered agents in the
model. They can take on roles within other organisations in exactly the same way that
individual agents do. The consequences of this are discussed further in section 2.2.
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Definition 2. An agent is the pair A = 〈labelActor,Alloc〉 where:

– labelActor ∈ (labelsAgents ∪ labelsOrgs) is the unique identifier of the agent.
– Alloc is a set of organisation, role and attitude allocations of the form

〈labelOrg, labelRole, Attitudes〉 where:
• labelOrg ∈ labelsOrgs, labelOrg �= labelActor is the name of the organisation in

which the role allocation holds.
• labelRole ∈ labelsRoles is the label of the role held,
• Attitudes are the agent’s attitudes to delegation in this role, detailed further in sec-

tion 3.1.

At this stage we should emphasis that attitude is a property of an agent and as such
is not part of the organisational structure. An organisation can be populated with any
number of different societies of agents which may have different attitudes.

2.2 Roles

Roles are a key component of our organisational model. In its simplest form a role may
specify a single task or action to carry out, or a certain state of the world to bring about
(cf. the notion of RoleGoal in [4]). However, it is more useful if these activities can
be associated with norms – we would like to be able to express statements such as ‘It
is obligatory for all students to complete this assignment’ and ‘Students are prohibited
from sitting the exam if they have not completed the assignment’. To simplify our rep-
resentation we currently choose to include only obligations. Our definition and use of
obligations is in keeping with the work of Jones and Sergot [12], and as such obligations
can be violated by agents – our model describes the ‘ideal’ not necessarily the ‘actual’.
For an analysis of the anatomy of normative positions see, for example, [22].

As obligations are generally held by one party to another, we also require a set of
predecessor roles to whom these obligations are held.

We also want to capture the idea that one member of an organisation may influence
the behaviour of another because of the relationship that exists between them. This adds
an additional element of non-determinism to the formalism, as the agents who have the
potential to influence others may not always choose to exert it [20].

As the formalism allows organisations as well as individuals to hold roles, some or
all of the predecessor roles may be held by organisations. This flexibility adds not only
the concept of group responsibility for obligations (see [17]), but also the possibility of
organisations influencing agents, which can be compared to Jones and Sergot’s counts
as operator [12].

These notions are incorporated in the following definition of a role.

Definition 3. A role is the tuple R = 〈labelOrg , labelRole, Obls, Infs, labelsRolesP
, labelsRolesS 〉

where:

– labelOrg ∈ labelsOrgs is the name of the organisation in which this role definition applies.
– labelRole ∈ labelsRoles is the label of the role.
– Obls is the set of obligations associated with the role, described further in section 2.4.
– Infs is the set of influences associated with the role, described further in section 2.4.
– labelsRolesP ⊆ labelsRoles is the set of labels of predecessor roles to the role. This set is

the union of all the sets of predecessors in the obligations and influences of the role. (See
section 2.4.)
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– labelsRolesS ⊆ labelsRoles is the set of labels of successor roles to the role. This set is the
set of all roles in the organisation, labelOrg, in which labelRole appears in the predecessor
set.

In addition to identifying the organisation to which a role belongs, the organisation
label can be considered a context for the role. This distinction is necessary in the role
definition because the same role may have different responsibilities associated with it
in different organisations. For example, the role lecturer will have different obligations
within the organisation representing a computing science department to those associated
with the same role within an organisation representing a specific course.

The set of obligations, Obls, are the obligations of this role. The holders of prede-
cessor roles within the same organisation are also able to call upon the holders of this
role to adopt obligations in the set of influences, Infs . Influences are in exactly the same
form as obligations, but only apply when a predecessor has made a request for them to
be adopted. Even if a role has no influences, the predecessor set must be non-empty as
long as there are obligations associated with the role, as an obligation must have at least
one predecessor. The exact nature of an obligation is described in section 2.4. Note that
our definition of a role does not state that the sets Obls and Infs be non-empty. We ac-
knowledge, however, that if a role has neither obligations nor influences it is essentially
inactive in that organisation.

The set of successors, labelsRolesS

, is the set of roles within the same organisation
that hold an obligation to a role or that a role can request to adopt obligations. The
obligations that can be requested are those in the successor role’s set of influences.
Holders of successor roles can only be affected by predecessors in the same organisation
– that is, the role definitions must have the same organisational label. Note that the
sets labelsRolesS

and labelsRolesP

can be computed from the sets of obligations and
influences. Their explicit specification by the engineer may therefore not be necessary
but may be used to check consistency.

Predecessors and successors may be considered analogous to superiors and subordi-
nates, but we have avoided the use of these terms as they imply a hierarchical system
that may not necessarily be the nature of the organisation being modelled.

2.3 Actions

The set of all possible actions in the model consists of tuples of an action label, a
duration and an expression describing the constituents of the action. The action label is
simply the name of the action and the duration is a natural number signifying the length
of time that action will take to perform. The constituents are the other actions, if there
are any, that make up the action being described.

Definition 4. An action is the tuple A = 〈labelAct, n, Constituents〉 where:

– labelAct ∈ labelsActions is a label uniquely identifying the action.
– n ∈ IN is the duration of the action,
– Constituents is an expression of action labels identifying the actions that make up this

action. If Constituents is empty then the action is a primitive action, as opposed to a
composite action.
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The time or duration of an action is simply a resource requirement and as such could be
used to represent other kinds of resources such as cost or energy.

The Constituents expression is a disjunction of conjunctions of action labels. The
execution of all the actions in any one of these conjunctions equates to the execution of
the action being defined. Example 1 gives a simple example of constituents in an action
definition.

Example 1. An action definition with two alternative ways to achieve it.

Action = 〈 doChores, 100,
(vacuum ∧ dust ∧ washDishes ∧ buyGroceries)∨
(hireCleaningStaff ∧ buyGroceries) 〉

The use of disjunctive normal form allows us to express more complex situations than
simply, for example, an ordered list. When a composite action is prohibited, for exam-
ple, rather than prohibiting every action in the conjunctions we can express that there
must only remain one action in a conjunction that is not executed to ensure that the
prohibition against the composite action is not violated.

The resulting action hierarchy can be used as a plan database, allowing agents to
select from different plans to achieve the same result. This allows us to model some
interesting aspects of real world problems without having to include a more sophisti-
cated planning approach. The hierarchy can also be automatically checked for loops
and undefined actions as part of the verification process described in section 5.

2.4 Obligations

Obligations in the model are defined by an action label, conditions and a set of pre-
decessors. The conditions on an obligation determine when that obligation holds, or is
active and the predecessors are the roles to which this obligation is held:

Definition 5. An obligation is the tuple O = 〈labelAct, C, labelsRolesP ′〉 where:

– labelAct ∈ labelsActions is the name of the action to which the obligation refers.
– C is an expression determining the conditions under which the obligation holds, described

below.
– labelsRolesP ′

⊆ labelsRolesP

, labelsRolesP ′
�= ∅, is the set of labels of predecessor roles

within this organisation to whom the obligation is held.

Our model does not take into account the preconditions and effects of actions. This is
not to say that these are not important, but we make a simplification in only dealing
with conditions on obligations, not on the actions themselves. Nor are we concerned
with applying sanctions or penalties when violations are detected, although this will
be considered for future work, as it would allow for more sophisticated resolution of
conflicts of obligations.

Each obligation has conditions that denote when the obligation is active and should
be fulfilled. In our model these conditions are restricted to temporal ones, and are ex-
pressed in simple arithmetic expressions, as described in definition 6.
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Definition 6. In obligation, O = 〈labelAct, C, labelsRolesP ′〉, the conditions C are of the form
x : Exprs . Exprs is defined below, where c ∈ IN and x, y are variables.

Exprs ::= Expr, Exprs | Expr
Expr ::= Term Op Term
Term ::= y | c | f(Terms)
Terms ::= Term, Terms | Term
Op ::= < | ≤ | = | > | ≥

The use of variables throughout the conditions means that obligations can be specified
that force a partial ordering of actions. For example, an assessment has to be written by
the lecturer before it can be issued to students. Students are required to have at least a
certain amount of time to attempt the assessment (in this example, 2000 units of time)
before it is collected by the lecturer and marked. The lecturer role may contain the
obligations detailed in example 2.

Example 2. Interdependent variables in obligations.

Obls = { 〈 writeAssessment,w : w > 0, {courseCoordinator} 〉
〈issueAssessments,x : x > w, x < (y − 2000), {courseCoordinator} 〉
〈collectAssessments, y : y < z, {courseCoordinator} 〉
〈markAssessments,z : z = 5000, {courseCoordinator} 〉 }

As mentioned in section 2.2, an influence takes exactly the same form as a obligation but
only applies when a predecessor has successfully exerted the influence. The conditions
on influences refer to when that influence can be exerted by a predecessor – outside of
the specified times the power of influence does not hold.

Whilst there is no reason why this language should not be used to express condi-
tionals relating to world states, there is a practical problem in detecting violation of
conditions such as these, as the agent concerned may not believe the condition has been
satisfied. We assume that the belief in the passage of time is universally held by all
agents who share a global clock, and the eventual arrival at any specified time is in-
evitable, but beliefs about the state of the world are subjective. Similarly, whilst we
only have obligations to carry out actions it would be desirable to include obligations
to maintain certain states of the world.

We can now give our definition of an organisation. Note that we do not include the
population of agents when defining the organisational structure.

Definition 7. An organisation is the tuple Org = 〈labelOrg, Roles, Actions〉 where:

– labelOrg ∈ labelsOrgs is the name of the organisation,

– Roles = {R1, . . . , Rn} such that Ri = 〈 labelOrg, labelRolei , Oblsi, Infsi, labelsRolesP
i ,

labelsRolesS
i 〉, 1 ≤ i ≤ n, that is, all the roles have the same labelOrg label,

– Actions = {Act0, . . . , Actm} such that:
• Actj = 〈 labelActj , Durationj , Constituentsj 〉, 0 ≤ j ≤ m,

• 〈Actj , C, labelsRolesP 〉 ∈ (Oblsi ∪ Infsi).
That is, every action is part of either an obligation or influence in atleast one of the roles in
the organisation.
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3 Organisational Change Through Influencing

In this section we examine changes in the organisational state; that is, changes in the
distribution of obligations in the organisation. Such changes come about through the
phenomena of influencing captured by our model. In this section we begin by discussing
the motivation for agents attempting to influence one another. We then describes how
we can then establish a set of rules that determine the outcome of attempts to delegate
depending on the roles and attitudes held by the agents involved, and these rules can be
encoded to create a system which can predict the attempts to influence and ultimately
the actions carried out by every agent in an organisation.

3.1 Motivation for Delegation

In our model obligations are the only motivators for action, and as a result they are the
only motivators for social influence; influencing only occurs when the agent attempting
to influence has an existing obligation related to the action concerned.

When we use the term delegation in relation to our model we are referring to an
agent’s attempt to exert influence in order to have another achieve an obligation (or part
of an obligation) that it is responsible for.

Delegation requires one agent to have influence over another in regard to the action to
be delegated, and that the temporal conditions associated with the influence are satisfied.
When an agent will choose to exert influence over a successor is determined by its
attitude to delegation, which in its turn is determined in the definition of an agent. In
our definition of an agent (definition 2) we do not restrict the members of the set of
attitudes. We feel that any attitudes could be included providing the required associated
behaviour was also defined. For the time being we have chosen to restrict ourselves to
two delegator attitudes and two delegatee attitudes.

If an agent has a delegator attitude which is Keen it will attempt to carry out it’s
obligation itself, only delegating when necessary to relieve a conflict. A Lazy delegator
will attempt to delegate as many of its obligations as possible, regardless of its own
ability to schedule them.

Similarly, an agent’s response to an attempt to delegate to it is dependent to some
degree on its delegatee attitude. If an agent is Cautious it will only accept a delegated
obligation if it can fulfil the obligation itself without causing conflict with any of its
existing obligations. A Bold delegatee, however, will accept an obligation it can’t fulfill
itself as long as it believes it can influence a third agent to do so. A Bold agent may still
refuse to accept an obligation delegated to it if there is no way it could fulfil it.

If an attempt to influence is successful the delegator can remove the obligation dele-
gated from the set of obligations it is required to fulfil and the delegatee must add it to
their own obligation set.

If it is unsuccessful the delegator may have a number of other options. It may attempt
to influence a different agent to accept the obligation, or it may influence any agent to
take on an obligation concerning an action of which the original obligation action is a
constituent. If this is not possible it may attempt to influence one or more agents to take
on the constituent actions of the obligation and fulfil the original obligation that way.
Finally, if the delegate is unable to fulfill the obligation itself or delegate it with any of
the above approaches it will fail to complete the obligation.
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We want to use our model to ask questions such as “if all agents attempt to satisfy
all obligations whenever possible – if they comply with the ideal – is the organisation
feasible?” or “if agent x has an attitude such that it does not comply with the ideal, is
the organisation sufficiently robust?”.

3.2 Rules of Influence

In our investigations into describing the semantics of our representation we have been
influenced by rewrite rules to describe changes in state. In particular, the phenomena
of influence in our formalism lends itself well to expression in rewrite rules. On the
lefthand side of the rule we can describe the agents involved and the task the delegator
is attempting to delegate and on the righthand side the consequences of the attempt to
influence, either successful or unsuccessful.

It is necessary to record the attempts to influence so they can be included in the
delegatee’s schedule. However, we cannot modify a role definition when an influence
is accepted because this would affect all agents in all organisations who hold this role.
Similarly, we cannot actually remove an obligation that has been delegated from the
delegator’s obligations in the role definition. All attempts to influence must be recorded,
along with whether or not they were successful so that an agent is not repeatedly asked
to do the same thing and obligations that have been delegated are not delegated again.
So, a new structure AttemptsToInfluence is introduced.

Definition 8. The influences that have already been attempted are described by a set of
tuples
Attempt = 〈A1, Alloc1, A2, Alloc2, Obl, Inf, DelObl, Status〉 where:

– A1 ∈ labelsAgents identifies the delegator agent,
– Alloc1 is the allocation held by A1, 〈Org, R1, Attitudes1〉 that permits the attempt

to influence, where Org ∈ labelsOrgs and R1 ∈ labelsRoles.
– A2 ∈ labelsAgents identifies the delegatee agent,
– Alloc2 is the allocation 〈Org, R2, Attitudes2〉 that permits the attempt to influ-

ence, where R2 ∈ labelsRoles.
– Obl is the obligation, 〈ActionName, C1, P1〉 which the attempt is concerned with,

held by the delegator agent, where ActionName ∈ labelsActions.
– Inf is the influence 〈ActionName, C2, P2〉 that allows the delegator to attempt

to influence, where R1 ∈ P2
– DelObl is the new obligation 〈ActionName, C3, {R1}〉 that the delegatee will

take on if the attempt is successful, where C3 = C1 ∩ C2.
– Status ∈ {accepted, refused} records whether or not the delegatee accepted the

attempt to influence and took on the obligation.

We can create a set of rules that describe all possible occasions for delegation, and all
possible results of it. These rules modify the state of the organisation and their repeated
application creates a sequence of states that record how the distribution of obligations
has changed due to delegation. The rules, which can be expressed in our existing nota-
tion, check details such as the roles of the participating agents and the influences they
contain, types of conflict between obligations and the attitudes of the agents as well as
the current state.
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Agent1 = 〈A1, Alloc1〉∧
〈O, R1, Attitudes〉 ∈ Alloc1∧
Lazy ∈ Attitudes∧
Role1 = 〈O, R1, Obls1, Infs1, RP

1 , RS
1 〉∧

Details of delegator
agent

〈X, CX1 , P 〉 ∈ Obls1∧ Details of obligation
to be delegated

Agent2 = 〈A2, Alloc2〉∧
〈O, R2, Attitude〉 ∈ Alloc2∧
R2 ∈ RS

1 ∧
Role2 = 〈O, R2, Obls2, Infs2, RP

2 , RS
2 〉∧

〈X, C′
X , RP

X〉 ∈ Infs2∧
R1 ∈ RP

X∧
CX ∩ C′

X �= ∅∧

Details of delegatee
agent

〈A1, Alloc1, , , 〈X, CX1 , 〉, , , Status〉 /∈ AttemptsToInfluence∧
〈A1, Alloc1, A2, Alloc2, 〈X, CX1 , 〉, 〈X, C′

X , RP
X〉,

〈X, CX ∩ C′
X , RP

X〉, Status〉 /∈ AttemptsToInfluence∧
Delegation has not
already been attempted

getAllObls(A2, AllObls2 )∧
NewAttempts = {AttemptsToInfluence∪

〈A1, Alloc1, A2, Alloc2, 〈X, CX1 , 〉, 〈X, C′
X , RP

X〉,
〈X, CX ∩ C′

X , RP
X〉, accepted〉}∧

schedule(S, A2, NewAttempts)

Delegatee is able to
fulfill the obligation

−→
⊕〈A1, Alloc1, A2, Alloc2, 〈X, CX1 , P 〉, 〈X, C′

X , RP
X〉,

〈X, CX ∩ C′
X , RP

X〉, accepted〉
Add attempt
to record
result

Fig. 1. A sample rule template

The specific rules for an organisation and population are automatically generated
from the organisation and population definitions using a set of rule templates. An an-
notated sample rule template is given in figure 1. The template describes the case of an
agent whose has no conflict, but has the attitude Lazy in regard to a particular obligation
and as a result will attempt to delegate. In the example we introduce three new opera-
tors. The ∩ operator captures the overlap between the conditions of the obligation, CX ,
and the conditions of the influence, C′

X . This subset is the conditions under which both
sets will be satisfied. If there was no overlap then it would not be possible to satisfy
this obligation by delegating using this influence. The schedule() predicate attempts to
find a schedule where all the obligations of an agent are satisfied. This includes all the
obligations of each role, taking into account all the previously accepteded attempts to
influence and (depending on the agent’s attitudes) possible future delegations. The op-
erator ⊕ is used to add an attempt to influence to record the application of the rule –
this is the only structure that is changed; the organisation and population specification
remain unchanged.

A full set of templates detailing all possible variations of attitude types, conflict types
and so on are provided to the engineer and can be re-used within different organisations.
By finding all possible instantiations of the role, agent and action variables the templates
can be used to extract specific rules for any organisation.

We define a populated organisation as both the organisation and all the agents who
hold one or more roles in that organisation, as detailed below.

Definition 9. A populated organisation is the pair 〈Org, Agents〉 where:

– Org = 〈labelOrg, Roles,Actions〉, labelOrg ∈ labelsOrgs,
– Agents = {Agent0, . . . , Agentn} such that Agenti = 〈 labelActori , Alloci 〉, 0 ≤ i ≤ n,

∃ alloc ∈ Alloci such that alloc = 〈 labelOrg, labelRole, Attitudes 〉.
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We can automatically generate a set of rules R〈Org,Agents〉 that describe all possibilities
for delegation in a populated organisation:

〈Org, Agents〉 −→ { Rule0, . . . , Rulen} = R〈Org,Agents〉

We can also generate the intial state of the organisation S〈Org,Agents〉
0 before there has

been any attempts to delegate:

〈Org, Agents〉 −→ { Atf0, . . . , Atfn } = S〈Org,Agents〉
0

By exhaustively applying the rules R〈Org,Agents〉 to S〈Org,Agents〉
0 we can find the next

state of the organisation, S〈Org,Agents〉
1 . The process is repeated on S〈Org,Agents〉

1 and
so on:

R〈Org,Agents〉 R〈Org,Agents〉 R〈Org,Agents〉

S〈Org,Agents〉
0 −→ S〈Org,Agents〉

1 −→ S〈Org,Agents〉
2 −→ . . .

Intuitively, the lefthand side of a rule describes the conditions on the organisational
structure and distribution of obligations required for the rule to apply. The righthand
side depicts the updates to components of the organisation as a result of the attempted
delegation.

The specific rules for an organisation and population are automatically generated
from the organisation and population definitions using a set of rule templates. By finding
all possible instantiations of the role, agent and action variables the templates can be
used to extract specific rules for any organisation. A full set of templates detailing all
possible variations of attitude types, conflict types and so on are provided to the engineer
and can be re-used within different organisations. In practice, the ‘instantiated’ rules
need not be explicitly generated; the templates themselves can be used to find future
states of the organisation.

3.3 Implementation

When combined with a constraint solver the rules described above can be used to check
a model and determine if the entire organisation is viable – that is, whether all oblig-
ations can be fulfilled. We can find a ‘solution’ by finding a set of schedules, one for
each agent in the organisation. Each schedule details the actions the agent should carry
out to fulfil its obligations, allowing it to delegate actions according to the rules above
and taking into account the actions other agents have delegated to it. This allows us to

Prolog
Implementation

Rules of
Influence

Constraint
Solver

Solution
schedules

Organisation
Specification

Fig. 2. The system
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use the static model to create multiple sets of schedules that determine how the organ-
isation would operate without actually having to run it, as illustrated in figure 2. If no
set of schedules in which all agents fulfil their obligations can be found then the organ-
isation is not viable. The engineer may wish to consider the mechanisms described in
section 5.2 at this stage, such as examining the population of the organisation.

We have chosen to implement the rules in Sicstus Prolog [18], using the clp(FD)
library [15] to handle the scheduling. Our notation lends itself well to conversion into
Prolog syntax, allowing us to keep the Prolog representation of an organisation very
close to the original mathematical notation.

The implementation of these rules will also form the basis of a system that can be
used to answer many of our potential questions about change (i.e. “what happens when
agent a is removed?” “what is the smallest set of agents that could successfully populate
this organisation?”). This is discussed further in the next section.

4 Further Organisational Change

There are three main types of change that we have addressed with our approach. The
first is simply a change in the organisational state; that is, a change in the distribution
of obligations as captured by our rules of influence described in section 3.

The second is a change in the population of an organisation. We automatically gen-
erate a population for an organisation with a set of user-specificed properties. We may
wish to restrict the number of agents holding particular roles, for example, or find the
mimimum set of agents that can populate an organisation whilst still fulfilling all oblig-
ations. The analysis of this type of change is supported by the strategies discussed in
section 5.2.

Finally, we are interested in changes in the organisational structure, such as reassign-
ing obligations of an existing role to other roles in the organisation. For example, if a
lecturer is away from work for some time some of his duties may be taken on by another
member of staff. We may not necessarily wish the individual providing cover to take on
the lecturer role as a whole, however, but just parts of it – they may be required to give
lectures, for example, but not to prepare and mark assessments and exam papers.

This process is more complex to automate that the previous types of change de-
scribed due to the vast numbers of possible alternatives. As a result, this type of change
is currently manual but supported by the tools for analysis described below. That au-
tomation of this type of change is a valuable addition for future work.

5 Verification and Analysis of Models

Once engineers prepare their formal specifications of organisations, they will be able to
perform a number of automatic checks to guarantee the existence of desirable properties
(or the absence of undesirable ones). The formal specification of our model allows for
a number of checks to be carried out on the static model which should aid the engineer
in fine-tuning a specification.
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5.1 Verification

A preliminary verification concerns the well-formedness of the specifications to ensure
that the constructs conform to the syntax of our notation and that the components (la-
bels) referred to are indeed defined.

There are many properties of an organisation that can be checked for statically. One
of the most important checks concerns whether the organisation is actually workable, in
that it is possible for all the agents to fulfil all their obligations. If it is not, the designer
may wish to identify whether the conflicts arise from how the roles are assigned, or
whether it is the organisation specification itself that is unworkable.

It is also important that an organisation does not concentrate too many responsibili-
ties on one role: in this case we can perform a check whereby any role with more than
n obligations is flagged to engineers. Another automatic analysis aims to detect those
roles concentrating too many responsibilities: roles with a large set of obligations as
well as the potential to have more obligations delegated to them ought to be flagged for
they may cause catastrophic malfunctioning if agents incorporating these roles go out
of action. We can formally define how we can go about checking for properties in our
model and an example of such a definition is given in [16].

5.2 Analysis

It may also be useful to analyse the specification of an organisation in such a way that
a new specification is produced. For example, analysis could determine the minimum
number of agents of each role required to populate an organisation. Similarly, it may be
possible to generate a modified specification in which a specific role has been removed,
without losing any of the capabilities of the organisation. A specification may be pre-
sented in different ways for more detailed analysis. For example, the engineer may be
concerned with parts of an organisation concerning a specific action or may wish to
view the organisation from the perspective of a particular agent.

In addition to checking properties of the static model, the engineer may wish to ex-
amine the simulation of the organisational model defined. This is particularly useful for
examining the effect of populating the model with different societies of agents with dif-
ferent attitudes. In our implementation the output of the system described in section 3
can, to some extent, replace a true distributed simulation, as it consists of a set of pos-
sible run specifications for the organisation. These ‘solutions’ include the details of all
attempts to influence, both failed and successful, and each agent’s schedule to fulfill
their obligations.

As large, complex organisations are likely to be difficult for the engineer to examine
in either the formalism defined above or its complementary Prolog representation, we
feel there is a need to provide a third representation that can be easily manipulated for
human consumption. We will provide an XML description of an organisation specifi-
cation that can be automatically generated from the other representations. The data can
then be displayed according to the needs of the engineer. For example, the network of
relationships between agents or the action hierarchy in a specific organisation could be
extracted and displayed. Similarly, the ‘solution’ schedules for an organisation could
also be described in XML, allowing the engineer to examine the state of the organisa-
tion at a specified time.
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6 Related Work

There are a number of methods that use role models to design deployable applications.
The general approach is to study existing organisations and fully describe the organisa-
tional structure before implementation. As a result, there is usually little opportunity or
motivation for change within the organisations modelled. In GAIA [26] organisations
are viewed as collections of roles, which have a similar interpretation to our own. Zam-
bonelli et al [27] extend the role model concept used in GAIA with organisational rules,
structures and patterns which can describe organisations, including their roles, in more
detail. In Agent UML [2], an extension of the Unified Modelling Language (UML),
agents hold roles and their behaviour within these roles is defined by interaction proto-
cols. In Esteva’s [10] description of an electronic institution roles determine the actions
that can be carried out by the agent holding the role – where the actions are illocutions.

The general problem with these approaches to modelling organisations is that the role
model is fixed at the design stage – there is no support for investigating alternative role
models for the same organisation. In addition, these approaches are intended to provide
tailor-made organisational models for specific domains, and do not lend themselves
well to creating or optimising more generic models. Skarmeas [24] presents one of
the few frameworks for organisational modelling in which roles can be changed. This
framework, however, is specific to the office automation domain and cannot be used to
rapidly model the effects of change in the way we intend to. Some of the reasons for
reorganization in agent societies and the issues involved are discussed in [9].

There are a number of approaches to producing mechanisms to govern agents’ social
behaviour, some of which are discussed in depth by Conte and Castelfranchi [5, 3]. In-
fluenced by Castelfranchi’s notion of social commitment, Cavedon and Sonenberg [4]
present teamwork and collaborative action models for determining how social commit-
ments arise and how roles and relationships are determined. In the many-sorted first or-
der logic notation defined, goals are associated with roles using the modality RoleGoal.
This notion is extended by Panzarasa et al. [20], who allow roles to include beliefs and
intentions, as well as goals – a role is essentially a set of mental attitudes that is adopted
when an agent takes on that role. The notion of influence is concerned with agents ex-
erting influence over one another to change their mental states. Although our concept of
a role is also a mechanism for governing social behaviour and allowing agents to influ-
ence one another, it differs in that we are only concerned with obligations, and no other
aspect of an agent’s mental state. It is, therefore, comparable to the approach taken by
Barbuceanu [1] in which obligations and interdictions are associated with roles.

Concerning our use of obligations, this work can be compared to several other norm-
based systems. Our decision to attach obligations to roles is informed by the work of
Pacheco and Carmo [19]. They adopt a normative perspective of organisations influ-
enced by Jones and Sergot [12], as we have done, and define a logic for expressing
roles with deontic notions attached. Roles are distinct from the set of deontic notions
that they consist of in that the notions of a role can change and it is still the same
role. The formal semantics of obligations described by Dignum et al [8] fits in with
the approach used in our model. Each obligation applies within a particular society or
organisation, and has conditions that specify when it applies. Further, it is necessary
to specify between whom an obligation is held; in our model, an obligation is always
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held by a successor to a predecessor. Although it is not an area of the system we in-
tend to explore to great depth, the structure of dependency created by the obligations is
comparable to existing work in the area of dependency networks [3, 5, 23]. López and
Luck [14] examine the incorporation of norms in agent societies using a set-based the-
oretic not dissimilar to ours, however, they do not provide a clear organisational model.
Neither López and Luck nor Dignum et al provide a computational realisation.

Dastani et al [6] examine when an agent is able to adopt a role without being in con-
flict or violating a norm. Their property of consistency between the goals of an agent
and the goals of the role it wishes to adopt is similar to the conflict-free state we try
to achieve between the obligations of the roles of each agent when any change in the
organisational structure occurs. Esteva et al. [11] present a computational approach to
determining whether or not an electronic institution is normatively consistent. The NoA
agent architecture [13] also includes the notion of consistency between norms. The de-
tection of conflicts between norms concerning actions requires checking the effects of
the action against other norms, and also checking the activation and expiration con-
ditions of potentially conflicting norms. Whilst we are not concerned with the effects
of actions, this approach is comparable to ours in that we do check the actions and
temporal conditions of obligations to detect conflicts between roles.

Regarding our rules of influence, our approach is a kind of production system [21]
whose rules are exhaustively applied to a database of facts. Our institutional rules differ
from rewrite rules (also called term rewriting systems) [7] in that they do not automati-
cally remove the elements that triggered the rule (i.e., those elements that matched the
left-hand side of the rule). Our institutional rules give rise to a rule-based program-
ming language [25] to support the management of a distributed information model, our
institutional states.

7 Discussion and Future Work

There are several additions to the model that we are considering that will allow for
the specification of more sophisticated organisations. Our use of only obligations is
somewhat restrictive and it would be desirable to include additional norms and social
concepts in the notation. Jones and Sergot [12] discuss some of the many subtleties
in this area, such as the difference between permission and right. In particular, their
counts as operator would give us a possible way of expressing an agent acting as a
representative for an organisation in situations where the organisation holds a role.

If we are to extend the formalism to bring our model closer to reality we must con-
sider developing our use of conditions on obligations. Although we acknowledge the
complications this would introduce, we would like to consider allowing obligations to
become active given certain world states or the execution of certain actions.

We currently make no mention of cardinality of roles in our notation. It is feasible
that a designer may wish to specify the actual number of agents that can hold any one
role. For example, it may be the case that a particular role must be taken on by at least
one agent for the organisation to be valid, or similarly that a role cannot be held by more
than one agent within the same organisation. We feel that this issue has been overlooked
in most role-based modelling systems to date and warrants further investigation.



62 M. McCallum, W.W. Vasconcelos, and T.J. Norman

Beyond the notation itself, we intend to extend and refine our implemention of the
mechanisms for change (section 4) and further develop the tools for analysis and visu-
alisation described in section 5.

8 Conclusions

We have described means to formally specify and analyse agent organisations based
on the roles of individual components. Ours is a flexible and expressive approach that
contemplates agents taking part in multiple organisations with distinct roles and dis-
parate obligations. Our framework allows change in the organisational structure to be
modelled and alternative organisation specifications to be developed in order to handle
the consequences of change. Our model gives rise to a suite of tools and functionalities
with which engineers can specify, verify and analyse organisations, the roles of their
components, their obligations and the relationships among these roles. This is the first
recorded attempt to provide a toolkit that not only allows an engineer to develop flexible
organisations of agents but also enables the engineer to investigate issues of change.
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Abstract. The Multi-agent Systems (MAS) area, while concerning
heterogeneous and open systems, has evolved towards the specification
of global constraints that agents are supposed to follow. A subset of
these constraints are known as organisation of the MAS. This paper
describes a software implementation, called S-Moise+, that tries to fill
the gap between the organisational constraints and the agents autonomy.
This software ensures that all agents will follow the organisation without
requiring that they are developed in a specific language or architecture.
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1 Introduction

The assignment of an organisation to a Multi-Agent System (MAS) is useful to
deal with the problems that could arise from the agents’ autonomy, specially in
open MAS [12] where we do not know what kind of agent will enter into the
system (this motivation for organised MAS is well described in [21, 4]). In this
context, the organisation is a set of behavioural constraints that a group of agents
adopts in order to control the agent’s autonomy and easily achieve their global
purposes [5]. This approach is based on human societies that are successfully
using organisation (e.g. social roles) to have a global coherent behaviour. The
definition of a proper organisation for a MAS is not an easy task, once the
organisation could be too flexible (the organisation does not help the achievement
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of the global purpose) or too stiff (the organisation extinguishes the agent’s
autonomy). A initial good organisation is normally set up by the MAS designer,
however it may become not suitable in dynamic environments. In these cases the
system must support dynamic changes on its organisation [17].

The precise concept of constraint that will be used to describe an organisation
is defined by the underlying organisational model. These models may be divided
in two points of view: agent centered or organisation centered [18]. While the for-
mer takes the agents as the engine for the organisation formation, the latter sees
the opposite direction: the organisation exists a priori (defined by the designer
or by the agents themselves) and the agents ought to follow it. In addition to this
classification, we propose to group these organisational models in (i) those that
stress the society’s global plans and their execution coordination (e.g. tæms [19],
steam [22]); (ii) those that have their focus on the society’s roles and groups
(e.g. agr [8], Tove [9]); and (iii) the models based on a deontic approach where
norm, among others, is the main concept (e.g. Islander [6], Opera [4]). Thus
we should state that organisation models usually take into account the func-
tional (the first group), the structural (second group), and/or the deontic (the
third group) dimension of the organisation. The Moise+ organisational model
is an attempt to join these three dimensions into an unified model suitable for
the reorganisation process [15, 16]. The Moise+ main property concerning the
reorganisation problem is to be an organizational centered (OC) model where
the first two dimensions can be specified almost independently of each other and
after properly linked by the deontic dimension. This linkage allows the MAS
to change the structure without changing the functioning, and vice versa, the
system only needs to adjust its deontic relation.

In order to implement a system that follows organisational constraints we can
also take either an agent centered or an organisational centered point of view
(in [23] these points of view are called agent and institutional perspectives). In
the former point of view, the focus is on how to develop an agent reasoning
mechanism that follows the organisation. The implementation approach is en-
dogenous to the agent. In the latter, the main concern is how to develop a MAS
framework that ensures the satisfaction of the organisational constraints. This
point of view is more suitable for heterogeneous and open systems, since, as an
exogenous approach, the agent implementation, architecture, and programming
language do not matter. Of course the agents probably need to have access to
an organisational specification that enable them to eventually reason about it.
However, the agents will follow the organisation despite their organisational rea-
soning abilities. As far as we know, the following implementations of such a kind
of framework are available: Ameli [7] (based on Islander), MadKit [11] (based
on agr), and karma [20] (based on steam). Hence we are concerned with dy-
namic organisation, the Moise+ should be used as the underlying organisational
model. In this paper we describe an MAS framework called S-Moise+ (Sec. 3)
which ensures that agents running on it will follow the constraints specified using
the Moise+ model (Sec. 2).
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2 The Moise+ Organisational Model

The Moise+ (Model of Organisation for multI-agent SystEms) considers the
organisational structure and functioning. However, this model adds an explicit
deontic relation among these first two dimensions to better explain how an MAS’s
organisation collaborates for the global purpose and makes the agents able to
reason on the fulfillment of their obligations or not [16]. These three dimensions
form the Organisational Specification (OS). When a set of agents adopts an OS
they form an Organisational Entity (OE) and, once created, its history starts and
runs by events like other agents entering and/or leaving the OE, group creation,
role adoption, mission commitment, etc.

The Moise+ Structural Specification (SS) is built in three levels: (i) the
behaviours that an agent is responsible for when it adopts a role (individual
level), (ii) the acquaintance, communication, and authority links between roles
(social level), and (iii) the aggregation of roles in groups (collective level). The
Moise+’s SS also allows us to ascribe the well formed attribute to a group
in case the roles of the agents are compatible among them, the minimum and
maximum number of role players are satisfied inside a group, etc.

Throughout the text, a soccer team is used as an example to describe the
model (a formal definition is found in [15]). A soccer team that we will specify
is formed by players with roles like goalkeeper, back player, leader, attacker,
coach, etc. These role players are distributed in two groups (defense and attack)
which form the main group (the team group). This team structure is specified,
using the Moise+ notation, in the Fig. 1. For instance, in the defense group
specification, three roles are allowed and any defense group will be well formed
if there is one, and only one, agent playing the role goalkeeper, exactly three
agents playing backs, and, optionally, one agent playing the leader role (see the
composition relation in Fig. 1). The goalkeeper has authority on the backs. The
leader player is also allowed to be a back since these roles are compatible. Due
to the role specialization (see the inheritance relation in Fig. 1), the leader also
can play the goalkeeper role. In the same example, a team is well formed if
it has one defense sub-group, one attack sub-group, one or two agents playing
the coach role, one agent playing the leader role, and the two sub-groups are
also well formed. In this structure, the coach has authority on all players by an
authority link. The players, in any group, can communicate with each other and
are allowed to represent the coach (since they have an acquaintance link). There
must be a leader either in the defense or attack group. The leader has authority
on all players on all groups, since s/he has an authority link on the player role.
For every authority link there is an implicit communication link and for every
communication link there is an implicit acquaintance link.

A Moise+ group can have intra-group and inter-group links. The intra-group
links state that an agent playing the link source role in a group gr is linked to all
agents playing the destination role in the same group gr or in a gr sub-group.
The inter-group links state that an agent playing the source role is linked to all
agents playing the destination role despite the groups these agents belong to.
For example, the coach authority on player is an inter-group link (the coach and
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Fig. 1. The structure of the soccer team

the player agents do not need to belong to the same group), while the goalkeeper
authority on backs is an intra-group link (both agents must belong to the same
group to “use” this link).

The Functional Specification (FS) describes how an MAS usually achieves its
global (collective) goals [2] stating how these goals are decomposed (by plans)
and distributed to the agents (by missions). The scheme can be seen as a goal
decomposition tree where the root is a global goal and the leaves are goals that
can be achieved by one agent. Such decompositions may be set either by the
MAS designer who specifies its expertise in the scheme or by the agents that
store their past (best) solutions. In the soccer example, suppose the team has a
rehearsed play as the one specified in the Fig. 2. This scheme has three missions
(m1, m2, and m3) — a mission is a set of coherent goal that an agent can
commit to. When an agent commits to a mission, it is responsible for all this
missions’ goals. For example, an agent committed to the mission m3 has the
goals “be placed in the opponent goal area”, “shot at the opponent’s goal”, and,
a common goal, “score a goal”.

In a scheme, each goal gi ∈ G (where G is the set of global goals) may be
decomposed in sub-goals through plans using three operators:

– sequence “,”: the plan “g1 = g2, g3” means that the goal g1 will be achieved
if the goal g2 is achieved and after that also the goal g3 is achieved;

– choice “|”: the plan “g1 = g2 | g3” means that the goal g1 will be achieved if
one, and only one, of the goals g2 or g3 is achieved; and
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Fig. 2. A “side attack” scheme of the soccer team

– parallelism “‖”: the plan “g1 = g2 ‖ g3” means that the goal g1 will be
achieved if both g2 and g3 are achieved, but they can be achieved in parallel.

The Deontic Specification (DS) describes the roles’ permissions and obliga-
tions for missions. A permission permission(ρ,m) states that an agent playing
the role ρ is allowed to commit to the mission m. Furthermore, an obligation
obligation(ρ,m) states that an agent playing ρ ought to commit to m. For ex-
ample, in the soccer team DS (Tab. 1), three roles have the right to start the
scheme of the Fig. 2 because they have the permission for this scheme’s root
missions. Once the scheme is created, the other agents (playing back, middle,
. . . ) are obligated by their roles’ deontic relations to participate in this scheme.
These other agents ought to pursue their mission’s goals just in the order allowed
by this scheme. For instance, when a middle agent accepts the mission m2, it
will try to achieve its goal “be placed in the middle field” only after the goal
“get the ball” is already satisfied by a back agent committed to the mission m1.

Table 1. Partial view of the soccer team deontic relations

role deontic relation mission

back permission m1

middle obligation m2

attacker obligation m3

3 S-Moise+ Organisational Middleware

S-Moise+ is an open source implementation of an organisational middleware
that follows the Moise+ model. This middleware is the interface between the
agents and the overall system, providing access to the communication layer (see
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Fig. 3), information about the current state of the organisation (created groups,
schemes, roles assignments, etc.), and allowing the agents to change the organi-
sation entity and specification. Of course these changes are constrained to ensure
that the agents respect the organisational specification.

S-Moise+ has two main components: an OrgBox API that agents use to
access the organisational layer (this component is detailed in Sec. 3.2) and a
special agent called OrgManager. This agent has the current state of the OE
and maintains it consistent. The OrgManager receives messages from the agents’
OrgBox asking for changes in the OE state (e.g. role adoption, group creation,
mission commitment). This OrgManager changes the OE only if it does not
violate an organisational constraint. For example, if an agent wants to adopt a
role ρ1 but it already has a role ρ2 and these two roles are not compatible, the
adoption of ρ1 must be denied.

The state of an OE is represented by the following tuple:

〈os ,A,GI , grType, subGr , agRole,SI , scType, agMis , gState〉 (1)

where:

– os is the initial organisational specification (in S-Moise+, OrgManager
reads this OS from an XML file);

– A is the set of agents in the MAS;
– GI is the set of created groups;
– grType : GI → GT maps the group specification for each group in GI (GT

is the set of group specifications defined in os);
– subGr : GI → P(GI) maps the sub-groups of each group;
– agRole : A 	→ P(R× GI) maps the roles of the agents (R is the set of roles

defined in os);
– SI is the set of scheme instances;
– scType : SI → ST ×P(GI) maps the specification and the responsible groups

for each scheme instance (ST is the set of scheme specifications defined in
os)1;

– agMis : A 	→ P(M× SI) maps the missions of the agents (M is the set of
missions defined in os);

– gState : SI × G 	→ {unsatisfied , satisfied , impossible} maps the state of each
goal (G is the set of global goals defined in os).

3.1 Organisational Entity Dynamics

The OE is changed by organisational events created by messages that OrgMan-
ager receives from the agents. Each event has arguments, preconditions and
effects (Tab. 2 summarises these events). In this paper we describe only some
of the events using our soccer example, a full formalization can be found in [13]
and http://www.lti.usp.br/moise.

1 The current version of Moise+ does not constrain the type of the groups that are
allowed to be responsible for a scheme instance.
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Fig. 3. S-Moise+ Components

As an example, suppose we have an OE where the following events happened:

– createGroup(‘team’): a group, identified hereafter by grt , was created from
the team group specification defined in Fig. 1;

– createSubGroup(‘defense’, grt): a group, identified hereafter by grd , was
created from the defense group specification as grt sub-group;

– createSubGroup(‘attack’, grt): a group, identified hereafter by gra , was
created from the attack group specification as a grt sub-group;

– createScheme(‘side attack’, {grt}): an instance of the side attack
scheme specification (Fig. 2), identified by schsa , was created, the agents
of the group grt are responsible for these scheme missions.

After these events, the groups are not well formed, since there is no agents
engaged with their roles (see Fig. 4). The defense group, for instance, needs one
agent playing goalkeeper. If an agent α wants to adopt the role ρ in the group
gr , it must create the event roleAdoption(α, ρ, gr). Notice that a role is
always adopted inside a group of agents, since role is a relational concept [1].
The reasons for an agent to adopt a role is not covered by the Moise+ model,
for more details regarding motivations for role adoption, the reader is referred to
[10, 8, 3]. The role adoption event in S-Moise+ has the following preconditions:

1. the role ρ must belong to gr ’s group specification;
2. the number of ρ players in gr must be lesser or equals to the maximum

number of ρ players defined in the gr ’s compositional specification;
3. for all roles ρi that α already plays, the roles ρ and ρi must be intra-group

compatible in the gr ’s group specification;
4. for all roles ρi that α already plays in groups other than gr , the roles ρ and

ρi must be inter-group compatible.

In our example, suppose that eleven agents have adopted roles such as the
three groups are well formed and the goal “get the ball” of the scheme schsa
is already satisfied. Among these agents, ‘Lucio’ has adopted the role middle in
the grd group (once grd is a sub-group of grt , Lucio also belongs to grt ). Is this
agent following its organisational obligations? No, because he plays a middle role,
there is a side attack scheme created by his group, and his role is obligated to
commit to mission m2 (the Alg. 1 describes the algorithm that gets all missions
an agent is obligated to). To be organisationally well behaved, Lucio commits to
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Table 2. S-Moise+ main Organisational Events

Event Description (some preconditions)

createGroup(gt) Creates a new group from specification gt (gt ∈ GT ).
createSubGroup(gt, gi) Creates a new gi sub-group based on specification gt (gi

identifies an instance group).
removeGroup(gi) Removes the group identified by gi (the group must be

empty — no player, no sub-groups, and no schemes).

createScheme(st, gis) Creates a new scheme instance from specification st (st ∈
ST ), gis (gis � GI) is a set of groups that are responsible
for the new scheme execution.

finishScheme(si) The scheme si is finished.
setSatified(α, si, g) The goal g of the scheme si is satisfied by the agent α (α

must be committed to a mission that includes g).
setImpossible(α, si, g) The goal g of the scheme si is impossible (α must be

committed to a mission that includes g).

enterOrg(α) The agent α enters in the system.
leaveOrg(α) the agent α leaves the system (it must have neither roles

nor missions).
roleAdoption(α, ρ, gr) The agent α adopts the role ρ in the group gr .
giveRoleUp(α, ρ, gr) The agent α gives up the role ρ in the group gr (this role

missions must be finished).
commitMission(α, m, si) The agent α commits to the mission m in the scheme si .
finishMission(α, m, si) The agent α finishes its mission m in the scheme si (all the

mission’s goal must be satisfied or declared impossible).

the m2 mission through the event commitMission(‘Lucio’, m2, schsa). From
the OrgManager point of view, this event also has some preconditions:

1. the scheme must not be finished yet;
2. the agent must play a role in the scheme’s responsible groups;
3. this role must be permitted or obligated to the mission, as defined in the

DS.

After his commitment, Lucio will likely pose the question: what are the global
goal I have to achieve? In the case of his m2 goals, only the goal “be placed in
the middle field” is permitted (see Fig. 2). His second goal “go to the opponent
back line” is not permitted by the current state of schsa . This second goal should
be pursued only after another global goal is satisfied, since it depends on “kick
the ball to” achievement. The Alg. 2 is used in the OrgManager implementa-
tion to identify permitted global goals. Thus, while some goals are becoming
satisfied (event setSatified), others become permitted. When a goal becomes
permitted, the agents committed to it are informed by the OrgManager. This
mechanism is very useful to coordinate the agents in the scheme execution. The
agent developer does not need to program messages that synchronize the agents
in the schema execution.
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Fig. 4. Example of organisational entity not well formed

The OrgManager ensures that every organisational events generated by the
agents will not violate the following organisational constraints specified in
Moise+:

– the maximum number of role players in a group;
– the roles compatibility;
– an agent will commit only to missions it is permitted or obligated by its

roles;
– only specified groups, schemes, and roles can be created.

Moreover, OrgManager provides useful information for the agents’ organisational
reasoning and coordination, for example: missions they are forced to commit
to and goals it can pursue. The agents can get this information through their
OrgBox API.

Among the Moise+ specification elements, only the authority link is not
ensured in the current implementation. We probably need to change the agent
reasoning mechanism to ensure authority, and it is out of the focus of this paper.
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function getObligatedMissions(agent α)1

2

all ← empty list // list of obligated missions3

forall role ρ the agent α plays do4

gr ← the group where ρ is being played;5

forall scheme si that gr is responsible to do6

if si is not finished then7

forall mission m in the scheme si do8

if obligated(ρ,m) is in the deontic specification then9

all ← append(all ,m);10

return all ;11

Al i h Al h h bl d
Algorithm 1. Algorithm to compute the missions an agent is obligated to

function isPermitted(scheme sch, goal g)1

2

if g is the sch root then3

return true;4

else5

g is in a plan that match “g0 = · · · g · · ·”;6

if g is in a plan that match “g0 = · · · gi , g · · ·” then7

if gi is already satisfied then8

return true;9

else10

return false;11

else12

return isPermitted(sch, g0);13

Algorithm 2. Algorithm to verify permitted goals

3.2 Agents’ OrgBox

The OrgBox is the interface the agents use to access the organisational layer and
thus the communication layer. When an agent desires to (i) change the organisa-
tional entity (adopt a role, for instance), (ii) send a message to another agent, or
(iii) get the organisational entity state it has to ask this service for its OrgBox.
The OrgBox will therefore interact with the OrgManager or another agent using
the communication layer. In the S-Moise+ current implementation, the commu-
nication layer is implemented by Saci (http://www.lti.pcs.usp.br/saci) —
a KQML compliant multi-agent communication infrastructure. We have devel-
oped a protocol in the communication layer that OrgManager and OrgBox follow
to exchange information and organisational events. We can see the OrgBox as a
component that encapsulates this protocol.

When an agent asks OrgManager for a “copy” of the current state of the OE,
it will not receive exactly what is in the OrgManager’s memory. In the Moise+,
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an agent is allowed to know another agent α only in case it plays a role ρ1, α
plays ρ2 and these roles are linked by an acquaintance relation. For example
the player role of the Fig. 1 has an acquaintance link to the coach role, thus an
agent playing this role is allowed to know the agents playing coach. Indeed, since
player is an abstract role, no agent will adopt it, however other roles (like back,
leader, etc.) will inherit this acquaintance link from the player role. OrgBox also
ensures that an agent will send messages only to agents it has a communication
link with.

While the OrgBox is invoked by the agent (to send messages, ask for infor-
mation, change the organisation), it is also invoked by the OrgManager. When
the state of a scheme that some agent is committed to changes, OrgManager
informs this agent’s OrgBox about its new obligations and goals it can pursue.
The OrgBox then notifies the agent about this event. Of course the OrgBox
only informs the agent about its permitted goals, it is a matter of the agent to
achieve them (by plans, behaviours, etc.). What is stated in the organisational
model is that the agent is responsible for such a goal. However, in case the agent
does not achieve its organisational responsibilities, the current implementation
of the middleware does nothing. It is a future work to propose a solution for this
drawback.

An important feature of our proposal is that it does not require any specific
type of agent architecture, since we are concerned with open system. The only
requirement is that agents use the OrgBox API to interact with the system.
An agent could even interact with the OrgManager directly using KQML or
FIPA-ACL. However, in this case the communication link constraint will not be
guaranteed, since in this case agents are getting direct access to the communi-
cation layer.

4 Contributions and Future Work

In this paper we described a proposal towards declarative organisation program-
ming. In our proposal, a middleware called S-Moise+ ensures that the agents
will follow the organisational constraints. These constraints are declared by the
developer (or even by the agents themselves) according to an organisational
model. The organisational model used in our proposal enables the declaration
of MAS organisational structure (role, groups, links), functioning (global goals,
global plans, missions), obligations, and permission. The main features of S-
Moise+ are:

– S-Moise+ follows an organisational centred point of view where the organ-
isational specification is interpreted at runtime, it is not hardwired in the
agents’ code.

– It provides a synchronization mechanism for scheme execution.
– It is suitable for heterogeneous and open system, since S-Moise+ is an ex-

ogenous approach and therefore does not require a special agent architecture
or programming language.
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– It is suitable for reorganisation where the declaration of the organisation can
dynamically change. We have successfully used this framework in a soccer
team that change its Moise+ organisational at runtime [17] and to specify
contract dynamics in an electronic business alliance [14]. Like the organisa-
tional events described in Sec. 3.1, the S-Moise+ also has reorganisational
events that changes the current specification. However, these events are con-
trolled by a special group of agents responsible for the reorganisation process.

Regarding related frameworks, S-Moise+ is quite complementary to
Ameli[7], MadKit [11], and karma[20]. Many implementation solutions pro-
posed by these frameworks were adopted in S-Moise+ (like the OrgBox which
is very similar to Teamcore proxy from karma and governor from ameli). ameli
has a good support for communication and protocols that S-Moise+ does not
have. However, it does not stress the structural and deontic dimensions like S-
Moise+. MadKit is focused on the structural dimension and does not include
functional and deontic dimension. karma is concerned with both the structure
and the functioning and has an excellent support for coordination of global plan
execution, however it lacks an explicit deontic dimension.

As a future development, we intend to extends S-Moise+ with new features
like communication dimension, detection of violation of an agent obligation, and
a sanction system. We also plan to define an organisational meta level, inde-
pendently of the adopted organisational model, to create a (i) generic ontology
of organisational terms and (ii) to provide translation to and from a particular
organisational model to other.

Although we have adopted an organisational point of view, a complete solu-
tion towards an organisational oriented programming demands answers to some
questions related to an agent point of view. For instance, how organisational
information, obligations, and permissions are used inside the agent reasoning
cycle? How to conciliate the agent autonomy with organisational responsibili-
ties?
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Abstract. The regulation ofmultiagent systemsmaybe approached from
different stand-points. In this paper I will take the perspective of using a
certain type of devices, electronic institutions, to regulate agent interac-
tions. Furthermore, in this paper I am concerned with the tasks of design
and construction of actual electronic institutions and I will explore some
of the empirical aspects that one may encounter in such activities. More
specifically, I will focus on those empirical aspects that are characteristic of
electronic institutions rather than those thatmay be typical of multi–agent
systems development in general or other types of software engineering. I
use three examples of actual electronic institutions that show different and
complementary features in order to motivate a number of distinctions that
may be used to treat empirical features in a systematic way.

1 Introduction

Social interaction in everyday life is structured in many ways. When I buy fruit
in the local market I exchange information with the fruit lady to find out what
is today’s price of the best fruit available and, if I like the options she offers me,
I pay her and I get my apples. That simple interaction entailed conventions for
simple bargaining and payment which in turn involved a common understanding
of fruit features, money and the delivery of goods. Other interactions may involve
conventions that are far more complex that the ones my fruit lady and I need
to share. Traveling by bus, getting medical attention or passing a law through
Parliament would be impossible if we didn’t share with those with whom we
interact some conventions that guide our individual behavior and facilitate us
to achieve our intended goals; Society has developed organizations, contracts,
standard procedures, markets, laws and many other such devices to regulate
human interactions and make them effective.

In multiagent systems interactions may need to be structured as well. Gener-
ally the structuring is part of the design of the multiagent system because the
participating agents are built by the same designer that builds the environment
where the agents interact or because the rational components of agents are in
some way accessible to the system. However, when the multiagent system is open
to the participation of unknown agents or when the autonomy of participating
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agents may have undesirable social consequences, the structuring of agent in-
teractions may need to resort to regulation devices analogous to those that are
practical in human affairs.

MAS literature has addressed the problem of structuring agent interactions
from different approaches: coordination, agent communication languages, com-
munication and interaction protocols, teams and coalitions, negotiation, insti-
tutions, organizations and norms. Sometimes these efforts have taken an agent-
centric perspective in which the prevalent issues are how the agent receives,
adopts or contravenes the conventions, while other works have taken a social
perspective where the objective is the design of conventions that provoke the
intended aggregate behavior of agents and the prevalent issues are those that
affect the system components that are shared or used by participants, like the
expressiveness of languages, effectiveness of interaction protocols, enforcement
of commitments. The motivation of much of the MAS community’s work along
these lines has been theoretical, inspired by Logic, Game-Theory, (Economics)
Mechanism Design or Sociology and Social Psychology. Nevertheless there has
also been considerable work derived from applications of multiagent systems to
domains like supply networks, auctions, virtual organizations or conflict resolu-
tion that address different forms of structuring or regulating agent interactions.

In this paper I will address the subject of regulating interactions in multiagent
systems. I will look into the problem from a social perspective and will focus my
discussion around one particular approach: electronic institutions. I will concern
myself only with the empirical aspects involved in the development and use of elec-
tronic institutions, motivated by the real-world application of these devices. Al-
though in this paper I will merely test the waters, my purpose is to throw some light
on a significantbut elusive subject that, I believe, deserves a systematic treatment.

In the next section I outline the generic notion of an electronic institution
and then make explicit some compromises adopted to make such generic view
operational. Next, I discuss three examples of actual electronic institutions whose
features will allow me to outline, in Sec. 4, some empirical aspects involved in
the development of electronic institutions.

2 Institutional Intuitions

The easiest way to describe electronic institutions is as the computational coun-
terpart of traditional institutions. Traditional institutions are conventions that a
group of agents follows in order to accomplish some socially agreed upon objec-
tive. Although we take institutions to be distinct from the agents that interact
within them, it is not unusual to abuse language and identify an institution —the
set of conventions— with an entity —a firm, company, organization— which is the
warrant of those conventions ([5], p.5).1 We can picture an institution as a nicely
fenced plot in an open field. Things in the open field may be confuse and unpre-
dictable, but inside the institution agents are able to play on a safe level ground.
1 In keeping with this abuse of language we refer to the implementation of an electronic

institution as an electronic institution.
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Traditional —and electronic institutions— are used to regulate interactions
where participants establish commitments and to facilitate that these commit-
ments are upheld. It makes sense to institute some conventions if the establish-
ment of commitments between participants is a process that is repeated with
the same or different participants, but always under those same conventions.
In that way participants are liberated of devising a process for establishing the
commitments and concentrate on the decision-making tasks. The institutional
conventions are devised so that those commitments can be established and ful-
filled in an effective fashion and therefore participants be willing to submit to
those conventions.

Institutions, in general terms, are established to facilitate effective interac-
tions, and in order to do so they are devised to deal with a few complementary
concerns, the most salient are:

– Establish the institutional conventions. So that these conventions have an
objective reference that participants may invoke to understand the conven-
tions, follow them, be accountable for their satisfaction and contend the
wrongdoing of other participants.

– Assure permanence and stability of the conventions. In order that partici-
pant may hold sufficient certainty of the requirements and outcomes of their
interactions and that they may expect and choose to participate on different
opportunities without undue adjustment of their participation requirements.

– Enforce satisfaction of institutional commitments. So that all participants
may rely and be held responsible for their institutional actions as far as the
institutional conventions state.

– Guarantee accountability of institutional interactions. Be able to allocate
risk and blame in an objective and effective manner. In most institutions,
participants may be liable when they establish a commitment and if these
participants are unreliable or even malevolent, there is risk involved that the
institution is intended to allocate properly and limit damage effectively.

– Manage access and identity of participants. Validate that they satisfy the
requirements of capability, resources of entitlement as long as they act within
the institution, in order to be held accountable for their institutional actions.

From this intuitive description, it is not difficult to conceive electronic insti-
tutions as devices that facilitate on–line interactions: coordination artifacts that
constitute —in Herbert Simon’s engineering design image [8]— an interface be-
tween the internal rational decision-making capabilities of agents and the social
effect of their interactions.

Two features of that description are readily apprehended and I will take for
granted from now on: the fact that participants are willing and able to interact
and that these participants may be human or software agents. However, two more
aspects of that description need further discussion because they may be opera-
tionalized in different ways and give ground to electronic institutions of different
flavors. The first subtle issue is what constitutes an interaction, the other is the
way interactions are structured to achieve the shared or common social purpose.
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Institutional Interactions and Constitutive Rules. What would a bare-
bones interaction within an institution may be? I take it that if we think of
humans interacting with software agents, or software agents interacting amongst
themselves, in any significant way, the least one requires of any two participants
that interact is that they exchange some sort of a message that is mutually intel-
ligible to both of them.2 Intelligible messages is all we need, provided intelligibil-
ity involves some communication conventions that entail syntactic compatibility
and some ontology alignment so that, in particular, the message could satisfy
presumable conditions and have foreseeable effects that are acknowledged by the
speaker and the receiver of the message. To achieve intelligibility, electronic insti-
tutions ought to be virtual entities that establish –define and uphold– the shared
communication conventions. In this sense the electronic institution will then be
not only the set of communication conventions that regulate agent interactions,
but also the warrant of the conventions that make messages intelligible.

In order to fulfill these functions electronic institutions need to institute a
connection with the real world through some constitutive rules. Constitutive
rules fix the socially shared meaning of messages by linking the utterance of
illocutions within the institution with conditions and effects those messages have
in the real world. Hence, institutional interactions are messages that comply with
the conventions for interactions of the institution, but institutional interactions
count as real–world interactions when participants are bound to their meaning
and effects by the constitutive rules of the electronic institution where they
participate.

Notice that in the previous paragraphs I have taken a strong dialogical stance
by assuming that all institutional interactions are messages and only messages,
however these messages do have a connection with the real world through the
constitutive rules that make them count as true actions3. So, from now on, I will
assume electronic institutions to contain a set of constitutive rules on one hand
and, on the other, a set of interaction conventions that regulate institutional
actions properly.

We may think of interaction conventions as a way of establishing the pragmat-
ics of institutional illocutions, that is, what are the admissible messages, what
their proper sequencing and, in general, what their pre and post–conditions are.
We can also look at interaction conventions as sets of norms that institutional
illocutions are bound to satisfy. In the first approach we may think of the in-
stitution as commitment-based interaction protocols, as structured dialogues or
as some sort of workflow. In this case, the interaction conventions constrain the
class of potential interactions to an acceptable subclass and determine how a
2 Here I take “message” to be an ostensible manifestation (a string of characters,

a coded signal, or movements) with an ostensible effect (a change of state in the
systems or their environment).

3 Nothing extraordinary here. Recall, for example, that a trial involves merely an
exchange of statements that are linked to the purported criminal action, evidence,
and derived actions. A death sentence, for example, is based on an institutionally
valid sequence of illocutions and the prisoner’s life ended by force of a constitutive
rule
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given interaction forces or prevents certain future interactions. From the nor-
mative perspective, an institution may be formally construed as some logical
system whose components involve all the meta-normal resources involved in the
issuance, adoption, compliance and enforcement of norms. In both cases we need
to express a mixture of declarative and procedural requirements that may be ex-
pressed in different ways. The choice is made on pragmatic and formal factors
like the ease of specification, the ease of communication and adoption of the
conventions by participating agents, the completeness of the specification, its
enforceability or the computational complexity of the formalism, or, of particu-
lar relevance for this paper, the implementation constraints.

3 Three Examples

The following three examples illustrate various empirical features that are per-
tinent for regulated MAS development.

3.1 Example 1: Compranet, a Public Procurement Institution

Compranet is the on-line public procurement system developed and managed by
the Comptrollers Office –now part of the Ministry for Public Administration–
of the Mexican Federal Government.4 All Federal Government ministries, agen-
cies, departments and offices that are entitled to perform any contracting or
acquisition on their own and the publicly owned companies –like the very large
national oil (PEMEX), electricity (CFE, CLyFC)— are, by law, required to use
this system for all of their purchases, service contracting as well as all building
and construction of public facilities contracting.5

The more significant motivations for instituting Compranet were transparency
of government transactions, making information on demand and contract settle-
ments readily available to all potential and actual participants, enabling conve-
nient access of SME and international suppliers to the large federal market, low-
ering transaction costs and motivating the adoption of IT technology by SMEs.
The system was conceived and a prototype designed in 1995, it was gradually
deployed, starting in 1996 until it reached its full functionalities around 2002.

Description of the Compranet Institution. The system runs in a cen-
tralized location managed by the Comptroller’s Office. Each time a purchasing
agency starts a procurement process, a new procurement thread is opened in the
central site. All processes follow essentially the same interaction protocol with
minor variations in requirements and sometimes also in time. The protocol is
comprehensive of the whole process. The CFP is posted in a public database
and RFQs made available to paying participants who then may ask for clarifi-
cations of the RFQ conditions. These requests and the procurer’s responses are
4 http://www.compranet.gob.mx/
5 Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público. Out of conve-

nience, many State and Municipal governments also use this system although they
are not bound to this law.
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made available to all participating suppliers. Bids may then be submitted elec-
tronically. Bids are kept secret until the contract is awarded, then the winning
bid (only) is posted in a public database. The awarded contract is registered
in the system and landmarks are registered and audited by the Comptroller’s
Office. The process lasts from one to three months depending on the purchasing
modality. All interactions are asynchronous but subject to deadlines enforced
by the system. Appeals follow also a due process that may involve the Comp-
troller’s Office and may even force a new enactment of the procurement process.
Each buying party may activate multiple processes and suppliers may simul-
taneously participate in as many processes as they wish. In every step of the
process, electronic documents are issued by the corresponding parties and copies
of those documents are kept in the system for appeals and auditing purposes.
Compranet’s main functions are outlined in Figure 1 The diagram on the left
shows the preparatory process of procurement, from issuance of CFPs to the
purchasing of the RFQ by supplier agents. The diagram on the right shows the
ensuing, electronic bidding and contract awarding phases of the process.
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Fig. 1. The Compranet public procurement processes: (a) CFP and RFP cycle;
(b) Electronic bid submission cycle

3.2 Example 2: MASFIT, On-line Fish Market Auctions

MASFIT (Multi Agent System for FIsh Trading) is a MAS-enabled electronic
marketplace that allows buyers to bid on-line in different fish auctions simulta-
neously. The main motivation for the system is to expand the daily market of
fresh coastal fish catches by increasing the number of potential buyers and by
aggregating the offer of several local fish markets (cf. [1]).

MASFIT was a joint proposal of, on one side, a firm that provides the back–
office systems to local and electromechanical technology for handling fish (weight-
ing, labeling) and controlling the bidding clock and the the electomechanical
devices for face-to-face bidding (buttons on a desk or infrared remote–control de-
vices), AUTEC, and, on the other side, a consortium formed by the Office for Live-
stock and Fisheries of the Catalonian regional government and the lonjas (fish
markets) of three different ports. The MAS technology was originally developed
through an EU Take–up Action ( IST-2000-28221) designed to profit from the
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IIIIA’s Fishmarket developments ([4, 7, 2]) and continues through a Spanish gov-
ernment grant involving AUTEC and the IIIIA. There is a working system un-
dergoing user adoption tests and commercial deployment is pending on AUTEC
business model satisfaction.

Description of the MASFIT Institution. The MAS is subject to three
design requirements:

1. That face-to-face bidding conditions of each local marketplace continue ex-
actly as before, except for the possibility of the participation of remote buy-
ers.

2. That on-line bidding follows exactly the same conventions —information
flows, auctioneer, timing and interaction protocol— as face-to-face bidding.

3. That a remote buyer may participate simultaneously in all the fishmarkets
that subscribe to MASFIT.

Because of condition 1, the auctioning protocols were already defined. All
involve the same —dutch auction—conventions for bidding but have slight dif-
ferences on admission and accounting procedures. The consortium creates a fed-
eration of markets but it still allows each market to have direct relations with
its customers. Buyers will need to sign a contract and establish some guaran-
tees to participate in any or all local markets. For human buyers in the actual
lonja sites, the only difference from the current situation is that they may loose
a round against a buyer that is not physically present in the auction house. .
Remote buyers bid through a remote device (a PDA or some other web client),
or software agents acting on their behalf. Each remote buyer may have as many
buyer agents as he or she wants and these may participate in one or many lonjas
simultaneously. Each buyer agent is activated in a virtual lonja where a governor
(owned and controlled by the virtual lonja) is attached to it . That governor con-
trols all information flows between the agent and the specific lonjas where the
owner of that buying agent wants to bid. Buyer agents have access in real time
to all the information that is institutionally becoming available and to historical
market information. Figure 2 depicts the trading architecture.

The MASFIT system includes two important additional sevices for buyers: a
training environment and an agent-builder toolbox. In the training environment
a user may test and tailor his or her buyer agents using data from past auctions
or the information that is being generated in current auctions. The agent-builder
tool box facilitates the assembly of an agent shell that is capable of following
the lonja conventions with a decision-making model developed by the owner
of an agent. AUTEC also provides complete agents with different parametric
decision-making models that human buyers may instantiate.

3.3 Example 3: Framework for EI-Enabled Information Systems for
Organizations

This example refers to a work in progress ([6]. The general idea is to have a
framework to develop and deploy corporate information systems (CIS) whose
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Fig. 2. MASFIT virtual auction federation. Traditional fish markets (right) allow hu-
man and software buyers to participate concurrently in simultaneous auctions.

operation is regulated by a prescriptive description of the way the organization
is intended to function. The intuitions are rather simple: We take organizations
to be groups of individuals that work together to achieve their shared goals the
best way they can. Furthermore, we assume theses individuals should follow some
institutional conventions that make their interactions structured and predictable.
Our framework, then should allow us to connect the institutional conventions
that prescribe the procedures as well as the guidelines staff members should
follow in their everyday activities, with the way those activities actually happen
as reflected in the organization’s CIS.

The framework we are developing is outlined in Figure 3. Staff and client in-
teractions are coordinated by an institutional convention which, in this example,
is specified, enforced and enacted through the type of electronic institutions pro-
posed by the IIIA (top layers of the diagram). Agent interactions, are mapped
onto the CIS through a grounding language that establishes a correspondence
between the linguistic interactions that take place in the institutional layer and
actions that take place in the business domain (bottom layers).

The framework is designed for the development of actual corporate systems of
significant complexity. These CIS involve the usual CIS components: data repos-
itories, human users as well as business forms and procedures that are agentified.
6 Institutional conventions are captured as interaction protocols that take care
of procedural conventions, and as in-house software agents whose behavior —
specified and implemented by the organization— is subject to the organizational
guidelines, policies or norms.

Figure 4 is an illustration of a typical organization, a hotel, whose activities
are organized as a network of interrelated “business contexts”. The illustration

6 Simplifying things, we have conventional CIS components handled through front-end
devices —that we build— that are reified as server agents.
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Fig. 3. EIO: An institutional description of an organization (top level) is implemented
as an electronic institution that controls the operation of the organization’s conven-
tional information system (bottom level)

indicates how each business context is implemented as a standard institution
that involves client and organizational agents that act on behalf of those users
of the CIS, plus server agents that translate institutional illocutions in terms of
the CIS components (users, forms, databases, business rules, . . . ) and actions
(database updates, PDA messages, procedure executions, . . . ).

4 A Timid Proposal

I propose to look into three “dimensions” that involve the design decisions I
have found most significant in the development of electronic institutions that
are intended for use. The rationale for choice is that they are closely linked to
the concerns of institutions and to the type of conventions electronic institutions
implement that I mentioned in Section 2. Moreover, I believe these dimensions
apply also to regulated multiagent systems in general and are peculiar to them in
the sense that they are not equally significant for other types of MAS applications
or conventional IS development.

It is worth mentioning here that the design of electronic institutions, and
regulated MAS, is in practice a matter of organizational design [3], and as such
involves engineering and design technologies, methodological approaches and
validation assessments that are part of that discipline. My remarks will take
them for granted.

4.1 Grounding

This dimension is concerned with the relation between the actions that take
place within the institution and the relation they have with the real world. How



90 P. Noriega

User

BRag

Business
Rules

Uag

BRag

Business
Rules

BRag

Business
Rules

Uag

BRag

Business
Rules

BRag

Uag

BRag

Business
Rules

BRag

Uag

BRag

Business
Rules

g7 gvg6g5

SM 2 SM mSM 1IM TM 2 TM kTM 1... ... 

g3 g4g2
g1

staff agents

governors

AMELI

...

JADE

g7 gvg6g5

SM 2 SM mSM 1IM TM 2 TM kTM 1

...

...

g3 g4g2g1

staff agents

governors

AMELI

...

JADE

g7 gvg6g5

SM 2 SM mSM 1IM TM 2 TM kTM 1... ... 

g3 g4g2g1

staff agents

governors

AMELI

...

JADE

Form Form Form

BRag

Business
Rules

Uag

BRag

Uag

BRag

Business
Rules

Uag

BRag

Business
Rules

BRag

Uag

BRag

Business
Rules

BRag

Business
Rules

Uag

BRag

Business
Rules

BRag

Uag

BRag

Business
Rules

Form

UserUser

Reservations

Group Check in
Business Context

PSP PSP PSP E I kE I jE I i

Check in Hotel Services

User
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institutional actions represent, correspond and get to count as legitimate actions
in the world, i.e. how to establish the constitutive conventions of an electronic
institution

It is worth distinguishing two types of grounding, the first is legitimating the
institution, i.e. making it legitimate or, more plainly, making it exist in the world.
The other type of grounding is achieved by establishing a working correspondence
between entities that are involved in institutional actions, within the institution,
and the entities of the real world that should affect and be affected through
institutional actions. The first involves, usually some constitutional act like a
contract between participants, a public charter for the institution or a legal
regulation that declares the achievement of a legitimate status —in the actual
social world— of the institution and the commitments established therein. The
second type involves the establishment of a sort of isomorphism between the
language of the institution and the application domain where the institution
applies.

Our three examples provide good illustration of different grounding mecha-
nisms.

Compranet was created as an electronic institution to support the actual
compliance with a law. It came to exist as an act of authority from the office in
charge of enforcing and interpreting the law that regulates public procurement
in the Federal Government. In fact, once Compranet became operational, the
regulations that determined the procedures involved in public procurement were
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rewritten to be a textual description of a functional specification of the Com-
pranet sytem. Those regulations made precise the correspondence between insti-
tutional actions and the real world, by stating, for instance, the conditions that
a company needed to fulfill in order to participate in any procurement contract,
how RFP should be paid, what were the requirements for a valid “electronic
bid” or how to appeal an award resolution.

In MASFIT constitution comes about through a contract that binds the tech-
nology supplier and the lonjas, on one side and another contract between the
lonjas and the participants on the other. The first contract makes the virtual
institution become the actual regulator and enforcer of the conventions for on-
site trading as well as remote on–line trading. The other contracts make the
trading regulations applicable to participants. The first contract establishes the
ontological and procedural grounding that translate virtual exchanges into real
exchanges. The second agreement guarantees that both parties will be liable.

Notice that the MASFIT contracts need to be concerned with very concrete
matters like setting up guarantees to cover misbehaviors of different sorts in order
to make the grounding work. For instance, the lonja establishes the obligation
to pay the seller every item sold in an auction and to deal with the eventuality
of a defaulting buyer, the lonja falls back on a credit line —or some escrow
mechanism— that buyers need to establish when signing their corresponding
contract with the lonja. Likewise the technology supplier commits to a certain
level of service and some penalties in case of system malfunction, that may for
instance be underwritten in an insurance policy.

The case of EIO is of a different nature. The company owns the institution
and “owns” the staff that is supposed to work under the institutional conven-
tions. Grounding in this case involves the obvious constitutional act of making
the system operational but the isomorphism between institutional actions and
activities in the world takes a very characteristic form. First note that grounding
is in fact made not in the physical world properly but in the virtual world of the
corporate information system on which the company operates. The links between
the CIS and the real world are the ones we are familiar with and do not require
further comment, but the link between the institutional conventions and the CIS
involves an ontology alignment between illocutionary language terms and CIS
entities and the instrumentalization of the institutional actions catalogue into
functionalities of the CIS (e.g. Database diagrams correspond to constants and
relations in the EI; functions —like making a payment— correspond to table
look-ups, execution of business rules and updating database registers).

An important concern in the design of an electronic institution is —as with
traditional ones— to determine the interplay of interests involved in the agents’
interactions and the proper allocation of responsibility and control that such
interplay requires. It is essentially a matter of choosing appropriate checks and
balances to make the interplay conducive to the stated objectives of the insti-
tution. It is also a matter of deciding what to make an institutional convention
and how.
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In EIO the company that owns the CIS that is regulated by the EI is the
the same company that defines, deploys and runs the EI. The choice of conven-
tions and their enforcement mechanisms is made by the same company that will
abide by them. The choice of conventions and their enforcement mechanisms is
precisely a matter of institutional design, in classical terms, that the designer of
the company undertakes in order to shape everyday activities to better serve the
company needs and in the case of EIO the chosen checks and balances, depart-
mental structure, lines of authority, decision guidelines and standard procedures
are the conventions that define the EI. The EI is just making the normative
specification becoming operational.

The case of Compranet is quite different. The EI facilitates the interactions of
buyers and sellers and is in fact an independent third party that guarantees fair
play and ideally contributes to make the market more effective. Consequently,
fairness and effectiveness are the leading design features. In Compranet, for ex-
ample, the choice of having a unique centralized procurement clearinghouse over
a distributed procurement mechanism –a little Compranet in every government
agentcy– was to better serve the objective of guaranteeing that the public pro-
curement market was fair and reliable. In that light, the choice of a single trading
room housed at the Comptroller’s Office signaled its ostensible unquestionable
authority for that market. In addition, although centralization concentrated risk
of technical and political failure, it greatly facilitated the adoption of the institu-
tional practices and, in fact, their gradual deployment and uniform applicability.
Both aspects make the third party strong vis a vis the sometimes conflictive ob-
jectives of buyers and sellers, and specially vis a vis a corruption-prone market
culture.

MASFIT is an interesting case where the technology supplier creates a vir-
tual institution that is a market-maker, an independent third party between
buyers and sellers whose ownership is shared by the technology supplier, and
a consortium of the regional government with the lonjas –which in turn are
owned by the fishermen guilds and hence twice-removed from the sellers. How-
ever, the same technology supplier may enable buyers with buyer agents that
perform aptly in the virtual institution thus blurring the border between the
independent market-maker and the buyer. Notice then that the stakeholders in
the fish trade have different relationshipos with the technology supplier who is
on one hand in charge of enforcing the conventions, and on the other facilitating
the participation of buyers through a technology that would be hard to develop
by them but that unless the buyers have it they could hardly profit from the
advantages of the virtual institution over the traditional lonjas.

4.2 Degree of Agentification

The fact that agents are present in one form or another in an electronic insti-
tution is again a matter of institutional design in the sense that agents are a
component that is brought into the design in order to achieve certain function-
alities or realize certain advantages, but that as other components the use of
agents needs to be managed in order to achieve the intended benefits without
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undesirable side effects. The characteristic features that agents may bring into
the institutional design are persistence, automated rationality and ubiquity.
They need to be assessed against their effect on reliability of the interactions,
identity or entitlement of the participants, and their competency as suggested
before, and upon this assessment decide where, to what extent and in what
capacity agents are conducive to a better articulation of interactions in the ap-
plication. By degree of agentification I want to refer to those choices, the type
and level of functionalities that is delegated to software agents in the system and
to the way such delegation is managed in the electronic institution. I hope the
examples clarify what I mean.

I have used the notion of electronic institution as a rather generic coordina-
tion artifact without committing to many specific features. In particular I have
not required, nor assumed, the need of software agents anywhere. Not as a con-
stitutive component of the institution, not as participants. Thus I am confident
to talk about Compranet as an electronic institution even if it didn’t involve
any agents whatsoever. In fact it doesn’t assume the need of software agents in
its design. It was designed to support them and some care was taken in order
to guarantee that all institutional interactions could be performed by software
agents but that is as far as the “agentification” of Compranet went. It was only
agent–compatible. In Compranet no agent is involved n the operation of the
institution, although agents may be —are being— used by suppliers to find in-
teresting CFPs, to analyze competitors or market behavior, and by authorities
to audit contracts, keep track of incidents and to gather evidence of punishable
misbehavior.

The case of MASFIT is another extreme. The federation of lonjas is accessible
only through software agents that represent the human buyers. In MASFIT
human buyers may still bid in a physical lonja exactly as they used too, and they
may get to participate in the different physical lonjas in the same circumvented
and limited way they used to: having a partner present in another lonja to bid
on their behalf and using a telephone to coordinate with that partner. Notice
that, from the buyers perspective, the real benefits of the virtual market are
realized to their full potential when software agents are making bidding decisions
autonomously for two main reasons. First, because a human user may deploy
software agents that can participate simultaneously in all the lonja according to
whatever buying strategy the buyer delegates on them –notably strategies that
involve real-time information from other lonja and coordination of the buyer
agents; second because those software agents may profit from all the information
that is available in the market whose volume and speed is excessive for human
users and are able to exploit it in whatever automated reasoning technology their
owner puts in their decision-making strategies. On the market-maker side agents
are also essential as internal “staff” to govern buyer agents, manage bidder’s
interactions, access to the virtual auction floors and on-line clearing of bids and
keeping track of the commitments incurred by the totality of agents belonging
to each buyer. MASFIT is agent-based in a very strong sense: it is feasible only
if software agents are involved.
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While in Compranet agentification is dispensable, in MASFIT it is essen-
tial. The case of EIO is still a different type of MAS agentification, it is agent-
pervasive. You start with a human organization and a traditional CIS that sup-
ports its operation, and you end–up with agents all over: agents that mediate
interactions with external users, agents that encapsulate the decision–making
functions of the organization’s staff, agents that mediate the interactions human
staff users of the CIS still need to perform and, finally, agents that manage the
resources of the CIS, that is, server agents that interact with CIS components
in order to get or pass information to a data base, activate a business rule or a
standard procedure.

4.3 Autonomy

In the previous subsection I purposely left autonomy out of the characteristic
features of agents that need to be assessed for the design of an electronic institu-
tions. I left autonomy out because, I believe, it deserves a more systematic treat-
ment along two aspects that are fundamental in electronic institution design: the
openness of the electronic institution and the way institutional conventions are
enforced.

Openness can be understood in two ways. First, as the extent of requirements
imposed on participants to join an institutions, second as an indication of how
structured or rigid are the conventions the institution upholds. Evidently, both
have to do with the flexibility agents may or need to have in order to participate
in a given institution and to a certain extent to the type of autonomy they are
entitled or forced to exercise.

MASFIT is a good example of a rather generous openness of access and highly
inflexible interaction conventions. In MASFIT any potential buyer is admitted as
long as he or she provides good enough guarantees to cover his or her purchases
and accept other conventional contractual obligations. Once the human buyer is
accepted he or she may deploy in the federated market any (external) software
agent of whatever structure or composition he or she wishes. No requirements
are imposed on the agent’s capabilities, truthfulness, livelihood, benevolence
and none is validated in the institution, thus in the first sense of the term, that
electronic institution is completely open. However, the external buyer agent has
no choice over the way it would go about buying fish, it has to abide strictly
by the MASFIT rules. The institutional interaction conventions in MASFIT
are explicit and comprehensive and the buyer agent is only allowed to utter
admissible utterances at admissible moments. The contents of the buyer agent
utterances are up to the agent’s internals and the institution has no business in
determining how or why a given utterance has such or such content. MASFIT
either admits it or refuses it, but if MASFIT admits it the buyer agent is held
to the commitments entailed by that utterance in a strict unavoidable manner.
The autonomy of the buyer agent is limited only to its choice of parameters for
the admissible illocutions it decides to make. And that is quite enough for an
auction market.
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In the Compranet case the situation is similar but less definite. Access to
any particular procurement process is restricted to suppliers who have first doc-
umented their personality, entitlements, pertinence and competitiveness in the
thorough manner dictated by the Law of Acquisitions and its associated regula-
tions, once that process is completed the admissible suppliers need to buy their
right to submit a bid by paying for the RFQ of the specific procurement event.
Once these —grounding conditions— are met, the supplier may participate by
following the legally established protocol. The protocol conventions are explicit
but are open to adjustment and interpretation to a certain extent. Institutional
actions are electronic documents that register bids, clarifications, protocol ad-
justments (time-schedules, updated conditions), award resolutions, signed con-
tracts, certifications of termination and acceptance, etc. All may be performed
electronically and the procedure doesn’t impose any condition on the agents
rationality in performing those actions, only in their preconditions and effects.
Compranet as a third party in the process keeps a register of all institutional
actions and as I will comment below, sees to it that commitments are satisfied.
Hence, the institution is rather open to access and the statement and satisfaction
of interaction conventions is not as explicit and inflexible as MASFIT.

The EIO model leans towards the opposite balance. It is mostly closed in the
sense that many interactions involve agents that are owned by the organization,
and it is somewhat open in the sense that the organizational staff does have contact
with external agents whose motivation and worthiness are opaque to the organi-
zation. For the organization, those external agents are black boxes that are dealt
with like buyer agents are dealt with in MASFIT: each external agent is governed
by an internal agent that controls all information flows in and out of that agent
and imposes on it the interaction conventions of the organization in a strict man-
ner. However, having control over internal agents allows the designer to use au-
tonomy in a rather fruitful way. The point of having a prescriptive description of
the organization in the top-level of the EIO model is to govern interactions of the
members or the organization in such a way that all participants are aware of what
is expected of them and do what they are expected to do in foreseeable situations.
In practice, this means that stable institutional conventions govern explicitly pro-
cedures and also some of the decision-making processes some staff agents are en-
dowed with. Evidently there is a problem of granularity, the detail with which
procedural conventions need to be expressed is related to the complexity of the
process, its variability and the amount of local decision-making needed to make
the conventions work. But notice that having control of the deliberative compo-
nents of staff agents allows the designer to rely on their autonomy by specifying
simpler standard procedures and program, in some autonomous staff agents, the
decision-making capabilities to contend with non-standard situations institution-
ally, that is, according to the prescriptive definition of the organization. These
individual decision-making capabilities can in fact be considerable since nothing
prevents the designer from making the statement of the convention for a case
—standard or not— in a way that prescribes —declaratively— the intended fi-
nal outcome and leaves the —procedural— implementation up to the intervening
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staff agents that have been endowed with sufficient knowledge and dexterity to
carry out the task in question.

Enforcement of Conventions. While the EIOs model can take advantage of
the autonomy of its staff agents, inside the institution autonomy is nil for all
external agents. Likewise in MASFIT. In both cases, that is a significant design
decision. In both cases, the explicit definition of the interaction conventions and
their strict enforcement is necessary in order to assure reliability, fairness, trust
and accountability vis a vis their clients. Although in Compranet trust, reliabil-
ity, fairness, accountability and transparency are also relevant design features,
the enforcement of conventions is more discretional. The reason is the way con-
stitutive conventions are established. MASFIT and the EIO are autarchic: Their
constitutive conventions legitimize a social space where they define the rules,
they control them and they let agents participate in that space if and only if
those agents are willing to abide by the rules and, notably, MASFIT and the
EIO are capable of strictly enforcing those rules. Strict enforcement is possible
because the rules are explicit, and because of the way interaction conventions
are implemented in that private space, their observance is mandatory and in-
fractions are impossible. Through the constitutive conventions, MASFIT and the
EIO have the authority, capability and power to enforce interaction conventions
universally and strictly.

By contrast, Compranet is legitimized through an implementation that insti-
tutes only very basic procedural interactions, leaving participants enough leeway
in their compliance of the conventions that are declaratively instituted by law
and practice. Compranet as an electronic institution leaves considerable auton-
omy to participants at many stages of the process and its interaction conventions
are not explicit enough to prevent discretional interpretation. Compranet solves
this problem through two classical mechanisms self-enforcement and authority.
Self-enforcement is achieved by the fact that pertinent information is made public
(transparency), that supplier and buyer interests are opposed, by having checks
and balances among the roles that different buyer staff agents perform and by
establishing significant penalties for misbehavior. Authority is centralized and
final, has access to every institutional commitment, resolves any interpretation
disagreements and has power to impose sanctions swiftly.

5 Closing Remarks

The three examples I discussed are representative of a variety of applications
that regulated MAS may have. In particular, the highly structured model be-
hind MASFIT is adequate for applications that are heavy in individual agent’s
decision-making but light in interaction, however high the liability of participants
may be. Applications of this sort are typical in electronic commerce, customer
complaints management and TRAMITES, the model is also convenient for clas-
sical mechanism design. Compranet is a token of due processes, whose purpose
is to channel a complex agreement or coordination process into a manageable



Fencing the Open Fields 97

—potentially intricate— sequence of standardized interaction stages that facili-
tate fair and objective conditions for the parties involved. Common examples of
these processes arise for instance in conflict resolution, judiciary and legislative
practice or in the execution of publicly sponsored programs. The EIO model is
being developed to apply to large corporate information systems and should be
applicable to recursively decomposable complex systems (i.e. that are decompos-
able into a few similar subsystems of less complexity, and these decomposable
in turn). Hence, hospitals, retail chains and franchises, emergency response or-
ganizations are natural applications of it.

The comments I made around the three examples show how tentative and
unsystematic my understanding of the subject still is. Nevertheless I hope that
they serve to facilitate the establishment of a rudimentary set of distinctions and
considerations that may be beneficial for the development of applied regulated
agent systems.

Although I made my remarks around the notion of electronic institution I be-
lieve that most of what I said applies to other ways of regulating MAS because
the main concerns of an institution that I postulated are also in the domain of
most regulation of agent interactions. Notwithstanding this intended generality, I
did persist in holding to a single major bias along my discussion: I have assumed
that interactions among agents are repeated and structured around rather stable
processes. It is a justified bias in the sense that (as stated above) it is appropriate
for a large number of applications and also in the sense that is has proven feasible
to implement a set of tools that have been adequate for a variety of applications.
Nevertheless, the assumption imposes regulatory features that are unnecessary in
some cases and unacceptable in others. I trust it can be weakened by focusing on
the essential features required for peer to peer interaction I mentioned in Section 2.

When addressing the more general problem of regulating interactions in open
systems we may profit by holding another metaphor that frees us from a building
a neat enclosure and allows us to regulate directly the essential communication
and commitment making assumptions that permit agents to interact “in the
wild”. So far we have learned how to “fence the open fields” we may now consider
“hanging the bell on the cat”.
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Abstract. In this paper we discuss the use of the Answer Set Programming para-
digm for representing and analysing specifications of agent-based institutions. We
outline the features of institutions we model, and describe how they are translated
into ASP programs which can then be used to verify properties of the specifica-
tions. We demonstrate the effectiveness of this approach through the institutions
of property and exchange.

1 Introduction

Most human interactions are governed by conventions or rules of some sort, having
their origin in society (emergent) or the laws (codification of emergent rules) that so-
ciety has developed. Thus we find that all human societies, even the least developed
ones, have some kind of social constraints upon their members in order to structure
their relations and simplify their interactions. Some of these constraints are quite infor-
mal (taboos, customs, traditions) while some others are formally defined (written laws,
constitutions).

The economist and Nobel laureate Douglas North has analysed the effect of this cor-
pora of constraints, that he refers as to institutions, on the behaviour of human organisa-
tions (including human societies). North states in [10] that institutional constraints ease
human interaction (reducing the cost of this interaction), shaping choices and making
outcomes foreseeable. By the creation of these constraints, either the organisations and
the interactions they require can grow in complexity while interaction costs can even be
reduced. Having established these institutional constraints, every competent participant
in the institution will be able to act—and expect others to act—according to a list of
rights, duties, and protocols of interaction.

Within the field of multi-agent systems there is a view, which we share, that the
social consequences of real-world (communicative) interactions among agents may be
captured through an explicit social semantics [25, 17], these social semantics give an
objective description of how an agents’ actions in a society may necessarily lead to to
the creation of social states which in turn may effect the consequences of agents’ future
interactions on other social states. We take the view that a particular social institution
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can be represented through the description of the types of social state which may created
by agents participating in that institution, and the social rules which cause those states
to be created.

Institutions can be applied to the description of a large class of social systems, operat-
ing at varying levels of abstraction, from highly abstract notions such as that of property
to more concrete ones such as exchange scenarios and protocols. Additionally institu-
tions may be related to one another in a variety of ways, with one making reference
to, or depending on another. Our intention is to make it possible to specify a variety of
these institution independently and in the case that two institutions are related, to make
those relationships explicit.

By encoding institutions as declarative specifications it becomes possible to com-
putationally reason about the consequences of “real world” actions such as message
exchanges on social states, allowing agents participating in an institution to take an ac-
count of events up to given point in time and to execute the specification in order to
determine the social state at that time, this then allows agents to reason about the social
effects of future actions.

As with any complex specification language the potential for errors in institution
specifications is high, and as such it is highly desirable to have a reasoning framework in
which instances of specifications can be animated, and the presence of various desirable
properties verified.

In this paper we report on our initial experiments in capturing some of the concepts
above using the Answer Set Programming (ASP) paradigm, we show how institution
specifications may be written as answer set programs, and reasoned about using an
answer set solver.

Answer set programming formalised as AnsProlog∗[4] is a modern logic program-
ming system, designed for semantic clarity, efficient implementation and ease of use
for knowledge representation and declarative problem solving. It has been under devel-
opment for the past 15 years and as well as an extensive body of theoretical work, a
number of mature implementations [11, 23] exist.

ASP has a variety of powerful and useful features supporting non-monotonic reason-
ing, handling of multiple possible world views, both classical and epistemic negation
and the ability to characterise and reason about partial and incomplete information, it is
these capabilities we aim to exploit in modelling and reasoning about institutions.

2 Why Answer Set Programming?

ASP is a powerful and intuitive non-monotonic logic programming language for mod-
elling reasoning and verification tasks. One common question asked of researchers
working on non-monotonic logic programming systems such as ASP is ‘Prolog has
been around for many years and is a mature technology, why not just use that?’. The
short answer is that Prolog has a number of limitations both in concept and design
that make it unsuitable for many knowledge representation and ‘real world’ reasoning
tasks. As with comparing any languages or language paradigms the key issues here are
suitability and ease of expression in the problem domain in question.

Negation is problematic in logic programming languages and Prolog is no exception.
A variety of different mechanisms for computing when the negation of a predicate is
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true and a variety of different intuitions of what this means have been proposed[8]. The
most common approach is to compute negation as failure, i.e. not(p) is true if p cannot
be proved using the current program; and to characterise this as classical negation i.e.
every proposition is either true or false and cannot be both. This combination creates
a problem referred to as the closed world assumption when using Prolog to model real
world reasoning. By equating negation as failure with classical negation anything that
cannot be proven to be true is known to be false, essentially assuming that everything
that is known about the world is contained in the program.

In contrast the semantics used in ASP naturally give rise to two different forms of
negation, negation as failure and constraint-based negation. Negation as failure, (i.e. we
cannot prove p to be true) is characterised as epistemic negation, (i.e. we do not know p
to be true). Constraint-based negation introduces constraints that prevent certain combi-
nations of atoms from being simultaneously true in any answer set. This is characterised
as classical negation as it is possible to prevent a and¬a both being simultaneously true,
a sufficient condition for modelling classical negation. This is a significant advantage
in some reasoning tasks as it allows reasoning about incomplete information, and is
supported by the intuition that “I do not know that P is true” (auto-epistemic negation)
and “I know that P is not true” (classical negation) are fundamentally different. Criti-
cally the closed world assumption is not present in ASP, as negation as failure is not
associated with classical negation.

One key difference with Prolog is that the semantics of ASP clearly give rise to
multiple possible world views in which the program is consistent. The number and
composition of these varies with the program. Attempting to model the same ideas in
Prolog can lead to confusion as the multiple possible views may manifest themselves
differently dependant on the query asked. In ASP terms Prolog would answer a query
on a as true if there is at least one answer set in which a is true. However there is no
notion of in which answer set this is true. Thus a subsequent query on b might also
return true, but without another query it would not be possible to infer if a and b could
be simultaneously true.

3 Answer Set Semantics

There is a large body of literature about ASP but it is largely unknown in the agents
community, for in-depth coverage see [4]. For the sake of this paper we provide a brief
overview.

AnsProlog∗ uses a language that has terms which are inductively closed. A term
is a variable or a constant. An atom is denoted a(t1, . . . , tn), where a is a predicate of
arity n and t1, . . . , tn , its arguments, are terms. A term or an atom is called ground
if it does not contain any variables. A literal is an atom a(t1, . . . , tn) or its nega-
tion ¬a(t1, . . . , tn), where ¬ should be read in the classical sense (i.e. a(t1, . . . , tn)
is proven to be false). An extended literal is a literal L or not L with not being nega-
tion as failure ( L cannot be proven to be true ).

An AnsDatalog∗ program is made up of a series of rules. Each rule has the form:
L0 ← L1, . . . , Ln,not Ln+1, . . . ,not Lm .
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Where L0 is a literal or ⊥ and Li for i ∈ [1, m] are literals. L0 is the head of
the rule, denoted H(r) for rule r and {L1, . . . , Lm} is the body, denoted B(r). The
intuition for this rule is that if all of L1, . . . , Ln are known and none of Ln+1, . . . , Lm

are known then L0 is considered to be known (in the case that L0 is ⊥, this indicates a
contradiction).

When speaking about the status of rules with respect to a given set of ground literals
the terms applicable and applied are used. A rule is said to be applicable with respect
to a set if all of L1, . . . , Ln and none of Ln+1, . . . , Lm are in the set. It is applied if it
is applicable and L0 is also in the set.

In order for a program to obtain its full semantics, all variables that appear in the
program need to be replaced by values. This process is called grounding. The values
that a variable can take are defined by the ground terms in your program. Having these,
a ground instance of a rule may be obtained by replacing each variable symbol by one
of these values. The ground version of a program is the set of all ground instances of all
the rules in the program.

In this paper we shall use the characterisation of answer set semantics given by [16].
This is divided into two sections, the semantics of ground programs that do not contain
negation and a semantic criterion and reduct for removing negation. Ground programs
without negation as failure (not )(also referred to as AnsDatalog−not) each have at
most one answer set. It can be obtained from the logical closure of the rule set, i.e.
starting with the facts (rules that have no body and are thus not dependent on anything),
recursively build a set of anything that can be concluded using a rule who’s body is in
the set.

To remove negation the Gelfond-Lifschitz reduct (or transformation)[15] is used,
working with respect to a set of ground literals S:

– Removing every rule that contains not p in the body if p ∈ S
– Removing all remaining negative literals (i.e. not q) from the rules

The answer sets of the program are the sets of literals S such that S is the answer set
of the reduced program.

In short the answer sets of a program can be thought of as all of the possible world
views that can be supported by the rules. For example, program: P :

{a ← b; c ← not d, a; d ← not c; b ; e ← d}
has two answer sets {a, b, c} and {a, b, d, e}. When reduced with respect to {a, b, c},
only one rule is removed resulting the program:

{a ← b ; c ← a ; b ; e ← d}
which has the answer set {a, b, c} (thus making it an answer set of P ). Note that e is
not included in the answer set of the reduced program as there is no way of concluding
d and so the rule giving e cannot be used. On the other hand if P is reduced by {a, b, e}
then the following program is obtained:

{a ← b ; c ← a ; d ; b ; e ← d}
which has the answer set {a, b, c, d, e}, which is not the same as the set used to perform
the reduct and thus not an answer set of P . Notice that each answer set is a set of literals
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in which every rule in a program is either applied or not applicable. The converse is not
true: a set of literals that makes every rule in a program not applicable or applied is not
necessarily an answer set; consider the set {a, b, c, e} and the program P .

Algorithms and implementations for obtaining answer sets of (possibly un-ground)
logic programs are referred to as answer set solvers. The most popular and widely used
solvers are DLV[11] and Smodels[23] which we use for the development of this paper.

4 Specification of Agent-Based Social Institutions

The foundation of our approach revolves around the descriptions of institutional states,
and how these evolve over time. We define an institutional state as a set of institutional
facts (cf. the definition of institutional fact in philosophy [19]) which may be held to
be true at given point in time. These facts may be broken down into institutional do-
main facts, which are dependant on the institution being modelled (such as “A owns
something” in our example below), and normative facts which are common to all spec-
ifications, which may be classified as follows.

Institutional Power. We incorporate the notion of explicit institutional power (based
on the formalisation in [20]) this may be summarised as the capability of an agent
to bring about a change in some facts in the institutional state. We do not represent
the power to change institutional facts directly, instead we allow institutional facts
which describe agents’ ability to perform empowered institutional actions, (see
below). In this case power separates meaningful (empowered) actions, which may
have an effect, from unempowered (meaningless) actions.

Permission. This describes an agent’s ability to perform some institutional action with-
out sanction. Each permission fact captures the property that an agent is allowed to
perform a given empowered institutional action. If an agent performs an empow-
ered institutional action, and that action is not permitted, then a violation occurs
with respect to that agents behaviour.

Obligation. Obligation facts are modelled as the dual of permission and are targeted
towards a particular agent. We draw on the the formalism for obligations with
explicit deadlines described in [14] where each obligation is associated with a
corresponding deadline (this is is similar to Singh’s formalisation of conditional
commitment in [25]). In this paper we limit the obligations to those of the form
OA(done(α) � δ) where α is some action and δ is some deadline, which may be
read as “Agent A is obliged to have done action α before deadline δ”.

Violation. Violation facts model the consequence of an agent either performing an
action for which they did not have permission or not performing an action they
were obliged to do before the deadline state of that obligation was reached. At
present we do not model the effect of sanctions or an agent’s ability to recover
from violation.

Within our specifications we define a number of abstract institutional action descrip-
tions, each of these notionally associates the satisfaction of some conditions in the cur-
rent institutional and/or world state (such as the issuing of an utterance) with some
consequences on the institution state. Actions are said to be have been performed by an
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agent if it caused these conditions to be met , and validly performed if the action was
performed and the agent was empowered to do perform the action. In order to capture
relationships between institutions we also allow an action’s consequences to explicitly
cause performance of an action in another institution.

Finally, the operational semantics of a specification are given by a set of social con-
straints which describe how institutional facts may be determined and evolve over time.
Constraints may describe static declarative dependencies between institutional facts
(such as “If an agent is empowered to perform an action then they are also permitted to
perform that action”) and causal rules which describe the effects of validly performed
actions, such as “An obligation to pay before some timeout is caused by the valid per-
formance of a buy action”.

5 Expressing Institution Specifications in ASP

We express institution specifications as a set of ASP rules which describe possible val-
ues for each institutional fact at a given instance of time. The general form of these rules
for determining the value of a fact of type f with parameters Fp1, . . . , Fpn at time I is
as follows:

f(Fp1, . . . , Fpn, I) ← cons1(..., I), . . . consn(..., I).

Where cons1, . . . , consn are atoms (denoting the of state of some institutional facts at
time I) which must hold true at time I . We express change in the value of institutional
facts using a frame rule of the form:

f(Fp1, . . . , Fpn, I + 1) ← cons1(..., I), . . . consn(..., I).

Where cons1 . . . , consn are atoms which must hold in the previous state (such as the
occurrence of an action or, the value of one or more institutional states). In some cases
we wish the value of some institutional fact to have inertia that is it should stay the
same in the next state, unless something causes it to stop holding, we express inertia
using classical negation as follows:

f(Fp1 . . . , Fpn, I + 1) ← f(Fp1 . . . , Fpn, I), not ¬f(Fp1 . . . , Fpn, I + 1).

Which states that f holds in the next state, if it held in the previous state and we cannot
show that it does not hold in the next state. A corollary of this is that inertial facts must
be terminated by causal rules of the form ¬f(Fp1 . . . , Fpn, I) ← . . ..

Institutional Actions: Each action description (denoting the possible performance of
an institutional action) is represented in ASP by a set of atoms of the form1:

iact(actType(Ap1, . . . , Apn))

Where actT ype(Ap1, . . . , Apn) denotes an action type and its parameters, which
may refer to agents, or objects in the domain of the specification.
We represent the occurrence of an institutional action at a given time with a set of
atoms of the form: iact happened(Agent, IAct, I) meaning Agent has performed

1 Note that in this and subsequent examples we use the symbolic function extension to con-
ventional ASP syntax; iact(actType(X,Y, Z)) is equivalent to there being a set of atoms
iact(α) with α ranging over X × Y × Z for all grounded values of X,Y and Z.
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the necessary conditions for IAct to have occurred at time I (Note that the effects
of IAct are not performed unless Agent was also empowered to perform the action
(see institutional power below)).

Institutional Power: Power is modelled through a set of atoms of the form:
pow(Agent, IAct, I) which state that a given agent Agent has the power to enact
institutional action IAct at time I . Power atoms are used to determine when per-
formance institutional action is considered to be valid (i.e. has some institutional
effect), this fact is recorded through atoms of the form

valid act happened(Agent,IAct)

these atoms are inferred using the following rule:

valid act happened(Agent,IAct, I) ←
iact happened(Agent, IAct, I), pow(Agent, IAct, I).

Which states that at a given time, if an agent causes the conditions for some insti-
tutional action IAct to be met at time I , and that action was empowered for that
agent, then a valid occurrence of IAct action occurred.

Permission and Violation: Permission is represented in a similar way to power as a
set of atoms of the form: permi(Agent, IAct, I).
The presence of permission entails the possibility for violation and violations are
modelled as a set of atoms of the form viol(Agent, I) indicating that Agent is in
a state of violation at time I . Violation atoms (in the case of performing an action
which is not permitted (see obligation with deadlines, below)) are determined using
the following causal rule:

viol(Agent, I + 1) ←
valid act happened(Agent,IAct, I), not permi(Agent, IAct, I).

which states that at time I + 1 agent is in violation if it validly performed action
IAct at time I and it was not permitted to do so at time I .

Obligation and Deadlines: Each deadline is declared with an atom of the form
deadline(Deadline). Deadlines expire when some deadline condition is satisfied,
a fact which is modelled by atoms of the form deadline sat(Deadline, I) indi-
cating that Deadline is satisfied at time I . Additionally deadlines have implicit
inertia, so once they become satisfied they remain satisfied, this is modelled using
a frame rule as follows:

deadline sat(Deadline, I + 1) ← deadline sat(Deadline, I).

The presence of an obligation on Agent to have performed some institutional action
IAct before Deadline is represented with atoms of the form
obl deadline(Agent, IAct, Deadline, I). An obligation is satisfied if there exists
a previous valid occurrence of an institutional action which satisfies the obligation
and the obligation deadline has not been satisfied:

obl deadline sat(Agent, IAct,Deadline, I) ←
obl deadline(Agent, IAct,Deadline, I), not deadline sat(Deadline, I),
valid act happened(Agent,IAct,J), J < I.

Once an obligation on Agent is instantiated at time I , the state of the obligation
persists until either the obligation is satisfied, or its deadline is satisfied:
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obl deadline(Agent,Obl, Deadline, I + 1) ←
obl deadline(Agent,Obl, Deadline, I),
not ¬obl deadline(Agent,Obl, Deadline, I + 1),
not obl deadline sat(Agent,Obl, Deadline, I + 1),
not deadline sat(Deadline, I + 1).

The above rule also allows for the cancellation of obligations through the clause
not ¬obl deadline(Agent, Obl, Deadline, I +1) which prevents a deadline from
persisting if a rule asserts ¬obl deadline(. . .) in this case the obligation is neither
satisfied or violated.
Finally a violation against Agent occurs at time I + 1 if the obligation deadline is
satisfied at time I and the obligation condition has not been satisfied by this time.
viol(Agent, IAct, I + 1) ← obl deadline(Agent, IAct,Deadline, I),

deadline sat(Deadline, I),
not obl deadline sat(Agent,Obl, Deadline, I).

5.1 Making Specifications Executable

In order to make institution specifications in ASP executable, it is necessary to define
a set of “real world” actions Actag which might be performed by participating agents,
such that each action in Actag corresponds to the performance of exactly one institu-
tional action in the modelled specification (this mapping may be partial in the case of
derived institutional actions, or if we are only modelling a subset of the institution). By
limiting the number of action rules from Actag which may be inferred at any given time
instance with an ASP constraint, we allow the definition of a labelled transition system
over the institutional states, this has the effect in ASP of limiting answer sets to those
containing action traces of the form:

ag act happened(acta, 0), ag act happened(actb, 1), . . . , ag act happened(actx, n)

and all associated inferable institutional states.
In general we assume that actions in Actag model communicative actions, and as

such may be performed (albeit invalidly) by any agent at any time, this condition is
necessary in the case of prediction and postdiction queries (see below) (where a chain
of actions may have occurred, but due to one or more actions not being empowered no
corresponding change in institutional state occurred). However in the case of planning
queries where we wish to determine if a given institutional state can be obtained, we
can omit meaningless actions (as they have no possible effect on the institution state)
from the transition system.

5.2 Specification Queries

We identify three classes of query (from [3]):

Prediction: Where we know that a given sequence of events has occurred and we wish
to determine some information about the institution state at some point along this
trace.

Postdiction: In which we have some information about a final state and partial infor-
mation about the initial state and the sequence of events which led us to this state
and we wish to determine some additional information about the initial state.
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Planning: Where given an initial state we wish to determine one or more sequences of
agent actions which lead us to a desired final state.

Queries are specified in ASP by encoding a description of the initial state and then
computing answer sets which include the states specified by the query. In the case of
prediction and planning the initial state description is known and is asserted as a set of
facts in the program. In the case of postdiction the initial state description is expressed
as a set of choice rules denoting all possible initial states. If the query is satisfied then
the result is one ore more answer sets describing possible traces which satisfy the query.
Verification questions will in general be expressed as planning queries describing de-
sirable or undesirable states, for example with simple validation, “given initial state,
is this outcome ever possible”, or more complex query to determine conflicts between
two institutions which regulate a common set of agents: “is it possible for an agent to
be in a state of obligation but unable or forbidden to dispense that obligation”.

6 An Example

In order to illustrate our approach we specify a simplified institution of property (own-
ership of goods) and a related institution for exchanging goods with payment.

In our institution of property we wish to describe one type of institutional domain
fact F1 which captures the state of ownership of some type of object by one of a set of
agents, and a single institutional action description A1 which accounts for the transfer
of ownership from one agent to another. We also wish to include the following

social constraints.

C1: After a valid transfer of ownership of an object the recipient of the transfer be-
comes the owner of the object.

C2: After a valid transfer of ownership of an object the original owner ceases to be the
owner of the object.

C3: Agents are permitted to transfer ownership of objects, if they own them.
C4: Transfers are empowered if the initiator of the transfer is the owner of the object

being transferred.

The state of F1 over time is modelled with a set of atoms of the form:

owns(Agent,Object, I).

As this fact has inertia we also add the following frame rule:

owns(Agent,Object, I + 1) ← not ¬owns(Agent,Object, I + 1),
owns(Agent,Object, I).

The sorts of action described by A1 are specified with a set of atoms of the form:

iact(transfer ownership(FromAgent,ToAgent,Object)).

C1 and C2 are encoded with the following rules:
owns(ToAgent,Object, I + 1) ← valid act happened(FromAgent,

transfer ownership(FromAgent,ToAgent,Object), I).
¬owns(FromAgent,Object, I + 1) ← valid act happened(FromAgent,

transfer ownership(FromAgent,ToAgent,Object), I).
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C3 is encoded as follows:
permi(FromAgent, transfer ownership(FromAgent,ToAgent,Object), I) ←

owns(FromAgent,Object, I).

and C4 as follows:
pow(FromAgent, transfer ownership(FromAgent,ToAgent,Object), I) ←

owns(FromAgent,Object, I),ToAgent �= FromAgent.

The exchange institution is described below, in this institution we describe a small
family of protocols where goods are exchanged for some payment, the scenario allows
encodes the following five actions:

A2 Request Goods: A customer sends a request for some goods to a merchant.
A3 Refuse Request: The merchant refuses a request from a customer.
A4 Send Goods: The merchant sends goods to the customer.
A5 Send Payment: The customer sends payment for the good.
A6 Send Receipt: The merchant sends a receipt to the customer.

We impose also impose the following constraints:

C5 : Sending a request for goods (A2) creates an obligation on the merchant to have
sent the goods before the interaction ends (C5).

C6 : Sending a refusal (A3) cancels the merchants obligation to send goods.
C7 : Sending goods (A4) creates an obligation on the customer to have payed for the

goods before the interaction ends.
C8 : Sending payment creates an obligation on the merchant to have sent a receipt for

the payment before the interaction ends.
C9 : Customers are initially empowered to perform actions of type A2, A5.
C10 : Merchants are initially empowered to actions of type A3, A4

C11 : All actions are permitted if they have not already been performed (i.e. all agents
are only permitted to perform each action once).

C12 : Sending a receipt (A6) is empowered only if an agent has received a valid pay-
ment (A5) in the past.

We additionally wish to express the following relationship between the exchange sce-
nario actions and the property institution:

C13 : If both a valid Send Goods (A4) action a valid Send Payment (A5) action take
place between two agents then a transfer of ownership occurs .

Atoms for actions A2,...6 are declared as follows:

iact(sendRequest(Cust,Merch, Object)).iact(sendRefuse(Merch, Cust, Object)).
iact(sendGoods(Merch, Cust, Object)).iact(sendPayment(Cust,Merch, Object)).
iact(sendReceipt(Merch,Cust, Object)).

Where Cust, Merch are agent atoms, Object ranges over atoms matching the domain
predicate object(Object) which is shared with the ownership institution.

Constraints C5 and C6 are written as follows (C7 and C8 are omitted for space rea-
sons):
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obl deadline(Merch, sendGoods(Merch, Cust, Object), end int, I + 1) ←
valid act happened(Cust,sendRequest(Cust,Merch, Object), I).

obl deadline sat(Merch, sendGoods(Merch, Cust, Object), end int, I + 1) ←
obl deadline(Merch, sendGoods(Merch, Cust, Object), Deadline, I),
valid act happened(Cust,sendRefuse(Merch,Cust, Object), I).

The translations of C9, . . . , C12 are omitted from this description.
C13 is written using the following rules (indicating either of the orderings of A4 and
A5.
iact happened(Merch, transfer ownership(Merch, Cust, Object), I) ←

valid act happened(Merch, sendGoods(Merch,Cust, Object), I),
J < I , valid act happened(Cust, sendPayment(Cust,Merch, Object), J).

iact happened(Merch, transfer ownership(Merch, Cust, Object), I) ←
valid act happened(Cust,sendPayment(Cust,Merch, Object), I),
J < I , valid act happened(Merch, sendGoods(Merch, Cust, Object), J).

A sample validation query is described as follows, given a merchant alis and a cus-
tomer bob and one object soft and an initial state of alis owning soft we wish to deter-
mine if there is a valid sequence of actions after which bob owns soft during which time
neither alis or bob are ever in violation. In ASP the domain, initial state and query are
encoded as follows:

agent(alis; bob).
merchant(alis).customer(bob).
time(0..3).
owns(alis, soft, 0).
compute all{owns(bob, soft, 3), not viol(alis, 3), not viol(bob, 3)}.

=========== ANSWER SET 1 ===========
owns(alis,soft,0)
ag_act_happened(bob,sendPayment(bob,alis,soft),0)
iact_happened(bob,sendPayment(bob,alis,soft),0)
valid_act_happened(bob,sendPayment(bob,alis,soft),0)
owns(alis,soft,1)
obl_deadline(alis,sendReceipt(alis,bob,soft),end_i,1)
ag_act_happened(alis,sendGoods(alis,bob,soft),1)
iact_happened(alis,sendGoods(alis,bob,soft),1)
iact_happened(alis,transfer_ownership(alis,bob,soft),1)
valid_act_happened(alis,sendGoods(alis,bob,soft),1)
valid_act_happened(alis,transfer_ownership(alis,bob,soft),1)
-owns(alis,soft,2)
owns(bob,soft,2)
obl_deadline(alis,sendReceipt(alis,bob,soft),end_i,2)
obl_deadline(bob,sendPayment(bob,alis,soft),end_i,2)
obl_deadline_sat(bob,sendPayment(bob,alis,soft),end_i,2)
ag_act_happened(alis,sendReceipt(alis,bob,soft),2)
iact_happened(alis,sendReceipt(alis,bob,soft),2)
valid_act_happened(alis,sendReceipt(alis,bob,soft),2)
deadline_sat(end_i,3)
owns(bob,soft,3)
obl_deadline_sat(alis,sendReceipt(alis,bob,soft),end_i,3)
obl_deadline_sat(bob,sendPayment(bob,alis,soft),end_i,3)

Fig. 1. First answer set for example query
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Two answer sets are produced indicating traces of actions corresponding to
< A4, A5, A6 > and < A5, A4, A6 >. Figure 1 shows how the social states (in bold)
evolve in relation to the first trace (facts relating to permission and power have been
omitted).

The above traces demonstrate how two independently specified institutions (one
based on a description of communicative acts and another based on a higher-level in-
terpretation of their institutional effects) interact to give a set of traces which represent
possible conversations which fulfil particular desired requirements. By modifying the
query structure the same approach can be applied to searching for conversation traces
which satisfy undesirable conditions. In such a case the absence of any answer sets sat-
isfying the query would indicate the absence of the undesirable property in the analysed
model, and the presence of one or more answer sets would indicate traces in which the
undesirable property was present.

7 Discussion and Related Work

Normative and institutional aspects of multi-agent systems have been studied exten-
sively in recent years, while complete account of related work is beyond the scope of
this paper, however some recent work deserves mention.

In [18] Vázquez-Salceda, Dignum et al outline the need for an operational system
for expressing norms which allows for both their interpretation and also their efficient
implementation and enforcement. In their work (including [14, 9]) they outline a lan-
guage for expressing norms, their approach describes three types of deontic modality
(OBLIGED, PERMITTED, FORBIDDEN) which may refer to either actions or states
and which may be predicated on system states including temporal (BEFORE, AFTER)
references to the occurrence of actions. As well as capturing a concise social semantics
for norms they also extend their descriptions to include advisory properties which make
explicit how the violation of norms should be detected by an agent responsible for the
enforcement of a norm, and plans which describe how such agents should go about
sanctioning violating agents. In their approach, unlike ours social states beyond those
related to the deontic properties described above are not considered in the description of
norms, our approach allows for the inclusion of the subset of these states which relate
to the institution as institutional facts while still allowing for external states and actions,
which we feel provides a better basis for the types of modelling we describe above.

Colombetti et al in [5] outline an abstract model for agent institutions based on so-
cial commitments. Their model describes institutions as being composed of a set of
registration rules which deal with the entry and exit of agents from institutions, a set of
interaction rules which govern how commitments are created and dispensed between
agents, a set of authorisations which describe agents innate abilities to perform cer-
tain actions and an internal ontology which describes a model for the interpretation of
terms relevant to the institution. A number of aspects of this approach correspond with
our model for describing institutions as outlined in Section 4, in particular interaction
rules correspond to our social rules, authorisations with our treatment of institution-
alised power and the internal ontology with our domain specific rules. One particularly
appealing aspect of their approach (further expanded in [13, 6, 26]) is the notion that
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institutions of this type can be applied to the specification of agent communication
languages in general, with social consequences such as commitments between agents
being ascribed to speech acts of a particular type. The combination of “base-level” in-
stitutions such as these with institutions capturing more general social properties such
as ours provides an interesting area for further study.

The types of specification we describe are closely related to the work of Artikis et
al described in [1, 2, 3, 21] from which we derive much of our specification model. In
their work specifications of social systems are formalised in both the event calculus [22]
and using a subset of the action language C+ [12]. Intuitively our approach is capable
of expressing similar constraints and social properties as specifications in the above
languages. However as our approach lacks a formal basis beyond its syntax in ASP at
present, we are unable to make a formal comparison. In comparison to C+, which has
similar reasoning capabilities (with similar complexity) to ASP using the CCalc tool,
we feel our approach yields a more intuitive way of expressing social constraints which
include temporal aspects such as C13 in our example (in C+ the program must be mod-
ified to record action histories). This also extends to the formulation of queries, where
ASP makes it possible to encode queries similar to those found in (bounded) temporal
logic model checking. As with C+, the properties we can verify using our approach are
limited to those which can be found in models of specifications of a limited depth in
time and with a somewhat limited number of grounded actions, states, and agents. This
is partly a constraint on the grounding process used in Smodels which requires that all
possible atoms be grounded and stored in memory before answer sets are computed and
partly due to the implicit complexity of computing answer sets of large models. Despite
this constraint, early results indicate that even for relatively complex models which
ground to hundreds of thousands of rules interesting properties may still be shown in
reasonable time.

C+ and ASP share a common heritage and both have both been used to model plan-
ning and verification problems in artificial intelligence. C+ offers a concise syntax for
the description of problems involving the modelling of actions their effects which can
be somewhat cumbersome when expressed directly in ASP as we have done, this how-
ever comes at the cost of not being able to naturally express certain properties such as
conventional generation of actions and complex queries based on the temporal relation-
ship between actions. A natural solution to this would be to extend C+ to include these
desired properties as is proposed by Sergot in [24] where institutional properties such
as permission, violation and conventional generation of action are incorporated.

In this paper we have not dealt directly with expressing sanctions on violating agents,
or agents’ ability to recover from violations. Intuitively these may be expressed in our
framework as follows: a sanction on a violating agent may be expressed as a permission
and/or obligation and/or empowerment on a third party agent or agents to perform some
sanction action or actions. Recovery from sanction would then be expressed as effects
of the successful application of the sanction action(s). Sanctions play an important role
when considering efficacy of institutions, in order for a sanction to be effective it must
both be applicable (i.e. it must be possible for the sanctioning agent to successfully
perform the actions required) and effective in that the result of the sanction must be
sufficient to discourage or negate the social cost of the violation which entails it. While
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the second issue is outside the scope of our approach (as we do not use a quantify
agents’ utilities in our model) the former presents interesting questions which could
potentially be expressed as queries for verification using our framework.

We have not discussed a general mechanism for representing institutional roles which
give a convenient way of referring to groups of permissions, obligations and empower-
ments in a variety of institutions, intuitively the property of an agent assuming a particu-
lar role may be expressed as an institutional fact which evolves in the same way as other
normative facts which may then be used as constraints on the application or social rules
according to the roles they are relevant to, the modelling of this is left to future work.

Finally, in this paper we have focussed on using ASP to reason about institutions
from a design perspective. In [7] we describe an extension to ASP for reasoning within
communicating agents, it would be interesting to see if these two approaches can be
combined to allow agents to reason about institution descriptions online.

References

1. Alexander Artikis. Executable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, Department of Electrical & Electronic Engineering, Imperial College Lon-
don, September 2003.

2. A. Artikis, M. Sergot, and J. Pitt. An executable specification of an argumentation protocol.
In Proceedings of conference on artificial intelligence and law (icail), pages 1–11. ACM
Press, 2003.

3. A. Artikis, M. Sergot, and J. Pitt. Specifying electronic societies with the Causal Calcula-
tor. In F. Giunchiglia, J. Odell, and G. Weiss, editors, Proceedings of Workshop on Agent-
Oriented Software Engineering III (AOSE), LNCS 2585. Springer, 2003.

4. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

5. M. Colombetti, N. Fornara, and M. Verdicchio. The role of institutions in multiagent systems.
In Proceedings of the Workshop on Knowledge based and reasoning agents, VIII Convegno
AI*IA 2002, Siena, Italy, 2002.

6. Marco Colombetti and Mario Verdicchio. An analysis of agent speech acts as institutional
actions. In The First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’02), pages 1157–1164, New York, NY, USA, 2002. ACM Press.

7. Marina De Vos and Dirk Vermeir. Extending Answer Sets for Logic Programming Agents.
Annals of Mathematics and Artifical Intelligence, 42(1–3):103–139, September 2004. Spe-
cial Issue on Computational Logic in Multi-Agent Systems.

8. Mark Denecker. What’s in a Model? Epistemological Analysis of Logic Programming. Ceur-
WS, September 2003. online CEUR-WS.org/Vol-78/.

9. Virginia Dignum, John-Jules Meyer, Frank Dignum, and Hans Weigand. Formal Specifi-
cation of Interaction in Agent Societies. In Formal Approaches to Agent-Based Systems
(FAABS-02), volume 2699 of Lecture Notes in Computer Science, pages 37–52, October
2003.

10. Douglass C. North. Institutions, Institutional Change and Economic Performance. Cam-
bridge University Press, 1991.

11. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
KR system dlv: Progress report, comparisons and benchmarks. In Anthony G. Cohn,
Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Repre-
sentation and Reasoning, pages 406–417. Morgan Kaufmann, San Francisco, California,
1998.



Specifying and Analysing Agent-Based Social Institutions 113

12. Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson Turner.
Nonmonotonic causal theories. Artificial Intelligence, Vol. 153, pp. 49-104, 2004.

13. Nicoletta Fornara and Marco Colombetti. Operational specification of a commitment-based
agent communication language. In AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, pages 536–542, New York, NY,
USA, 2002. ACM Press.

14. Frank Dignum, Jan Broersen, Virginia Dignum, and John-Jules Meyer. Meeting the Dead-
line: Why, When and How. In Michael G. Hinchey, James L. Rash, and Walter F.
Truszkowski, editors, Proceedins of the 3rd Conference on Formal Aspects of Agent-Based
Systems (FAABS III), Greenbelt, Maryland, USA, volume 3228 of Lecture Notes in Computer
Science, pages 30–40. Springer-Verlag, 26 April 2004.

15. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of fifth logic programming symposium, pages 1070–1080. MIT PRESS, 1988.

16. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, 9(3-4):365–386, 1991.

17. Frank Guerin and Jeremy Pitt. Denotational semantics for agent communication language.
In AGENTS ’01: Proceedings of the fifth international conference on Autonomous agents,
pages 497–504. ACM Press, 2001.

18. Javier Vázquez-Salceda, Huib Aldewereld, and Frank Dignum. Imlementing Norms in Mul-
tiagent Systems. In Gabriela Lindemann, Jörg Denzinger, Ingo J. Timm, and et al., editors,
Multiagent System Technologies: Second German Conference, MATES 2004, Erfurt, Ger-
many, volume 3187 of Lecture Notes in Computer Science, pages 313–327. Springer Verlag
GmbH, September 2004.

19. John R. Searle. The Construction of Social Reality. Allen Lane, The Penguin Press, 1995.
20. Andrew J.I. Jones and Marek Sergot. A Formal Characterisation of Institutionalised Power.

ACM Computing Surveys, 28(4es):121, 1996. Read 28/11/2004.
21. L. Kamara, A. Artikis, B. Neville, and J. Pitt. Simulating computational societies. In P. Petta,

R. Tolksdorf, and F. Zambonelli, editors, Proceedings of workshop on engineering societies
in the agents world (esaw), LNCS 2577, pages 53–67. Springer, 2003.

22. R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Comput., 4(1):67–95,
1986.
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Abstract. This paper is about control mechanisms for virtual organizations. As a
case study, we discuss the Renewables Obligation (RO), a control mechanism that
was introduced in the United Kingdom to stimulate the production of renewable
energy. We apply a conceptual model based on normative multiagent systems
(NMAS). We propose to model both the participants and the normative system as
autonomous agents, having beliefs and goals. Norms, which can be internalized
by the agents as obligations, are translated into conditional beliefs and goals of
the normative system, which concern both detection and sanctioning measures.
We show that the model can handle both the regulative and the evidential aspects
of the case.

1 Introduction

Recent developments in the areas of computer supported collaborative work, distrib-
uted knowledge management and ‘grid’ architectures for sharing resources and compu-
tational services have lead to an increasing interest in what has been termed a virtual
organization: a collection of enterprizes or organizations that need to coordinate across
organizational boundaries [23, 27, 26]. A crucial aspect of virtual organizations is that
participants are autonomous: they can join and leave, and although some participants
are more powerful than others, there is no central authority that can completely impose
its will. Joining a virtual organization may provide benefits which participants could not
achieve by themselves. On the other hand, participants must trust other participants not
to behave opportunistically. To create a sustainable network, participants must there-
fore observe some general norms about what constitutes accepted behavior. In the case
of computational coordination infrastructures, such norms will have to be enforced au-
tomatically, by means of electronic data interchange protocols or web services [21].
That means that norms will have to be encoded explicitly, in the form of some specific
control mechanism [17, 6]. Ideally, a control mechanism is evaluated before it is imple-
mented. To facilitate the specification and evaluation of control mechanism, we need a
conceptual model that allows us to reason about the expected behavior of participants
when they are subjected to norms in a virtual organization.

We discuss a case study of an actual control mechanism, the Renewables Obliga-
tion (RO), which was introduced in the United Kingdom to stimulate the production of
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energy from renewable sources [20]. The ruling involves an obligation for energy sup-
pliers to produce evidence of having distributed a certain minimal amount of renewable
energy. In case energy producers do not comply, a buy-out fee must be paid. This is an
example of a so called regulative rule. To present evidence of the amount of renewable
energy produced, suppliers use so called Renewables Obligation Certificates (ROCs).
This shows the use of a so called constitutive rule. The ROCs can be traded freely. The
whole process is administered by a special agency, called OfGEM, with several tasks. It
must monitor the amount of ROCs presented by suppliers, to detect whether the oblig-
ation has not been breached. If so, it must collect the penalty. OfGEM also accredits
those renewable energy producers that are allowed to issue ROCs. This shows the use
of a delegation mechanism.

Because of the inherent autonomy of participants and the lack of central control, the
conceptual models used to design and reason about virtual organizations are likely to
be similar to the kinds of models used in agent-oriented software engineering [9, 28, 8].
Typically, such models speak of an organizational structure involving agents that ful-
fill tasks on the basis of the organizational roles they play. Because agents may have
conflicting tasks, or even conflicting individual goals, the possible behavior of agents
is restricted by social norms. Although the RO case is not about computational agents
as such, the network of energy producers does form a virtual organization. Energy pro-
ducers share a network on which they have to coordinate energy distribution. There is a
global objective, to produce more renewable energy, but the government is not in a po-
sition to force all energy producers to make the initial investments involved. Therefore
a control mechanism is introduced, that should achieve the global objective indirectly.
So in both cases we are dealing with a form of mechanism design: a control mechanism
is designed in such a way, that the resulting agent society or virtual organization will
uphold a general norm, and thus be able to sustain itself.

In this paper we therefore present a style of conceptual modeling based on normative
multiagent systems (NMASs). Normative multiagent systems are ”sets of agents (human
or artificial) whose interactions can fruitfully be regarded as norm-governed; the norms
prescribe how the agents ideally should and should not behave. [...] Importantly, the
norms allow for the possibility that actual behavior may at times deviate from the ideal,
i.e., that violations of obligations, or of agents’ rights, may occur” [13]. The idea is
to model all parties involved by autonomous agents: agents that are free to determine
their courses of action, based on their interests (goals) and on their current information
about the world (beliefs). Norms govern the behavior of agents, based on the roles they
occupy in a virtual organization. A crucial aspect of our approach is that in principle
any decision making entity can be modeled as an autonomous agent. In particular, the
normative system itself can be viewed as an autonomous agent too, with specific beliefs
and goals [5, 4]. The model has also been applied to other case studies. In particular, it
has been used to explain issues of trust in electronic commerce [3].

The remainder of the paper is structured as follows. In section 2 we give a brief
description of the RO case. In section 3 we define our version of normative multiagent
systems, and illustrate it by two examples. In section 4 we then show how the RO
case can be modeled using normative multiagent systems. The paper ends with lessons
learned from this modeling exercise.
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2 Case Description: Renewables Obligation

An example of an actual control mechanism is provided by the Renewables Obligation
case [20, 14]. In order to comply with international environmental agreements, such
as the Kyoto protocol, governments implement different incentive schemes, to stim-
ulate the generation and supply of ‘renewable energy’. Research and development of
renewable energy generating technologies such as wind turbines, photovoltaic panels,
hydro-electric power generators, and others, require high initial investments by energy
producers. Therefore the production costs of renewable energy are higher than those
of the energy produced by conventional means. The incentive scheme implemented in
Great Britain, starting from April 2002, is based on the Renewables Obligation (RO)
[20]. This is a legal obligation on all licensed electricity suppliers to produce evidence
that they have supplied a percentage target of their electricity from renewable energy
sources to customers in Great Britain. A special organization, the Office of Gas and
Electricity Markets (OfGEM), a branch of the official regulator of the British Gas and
Electricity markets, has been set up to manage the scheme.

Suppliers are required to produce evidence to OfGEM of their compliance with the
RO. An important evidence token is the so-called Renewables Obligation Certificate
(ROC). A ROC is received by the supplier when it buys electricity from an accred-
ited renewable producer. A ROC can also be traded. Because electricity can be added,
bought and sold as a commodity, it does not matter which supplier actually produces the
ROCs, and which supplier buys them. This has led to the development of a market for
ROCs. If the target number of ROCs increases, the total number of renewable energy in
the system will increase, which was the objective of the scheme.

So suppliers can meet their Renewables Obligation in three ways. They can produce
ROCs corresponding to the target level, expressed as a percentage of all electricity
supplied to customers in Great Britain; they can use a so called buy-out clause which
allows them to pay £30.51/Mwh for any shortfall below the target level, or they can
use a combination of ROCs and buy-out fees. If a supplier fails to meet its obligation,
either through ROCs or buy-out payments, the supplier is likely to be in breach of the
Electricity Act, and may be liable to enforcement action. In practice this means that an
additional fine has to be paid. Note that the OfGEM can manipulate the level of the
buy-out fees in such a way that it becomes more beneficial for a supplier to buy the
relatively expensive renewable energy with corresponding ROCs, rather than to violate
the Renewable Obligation.

OfGEM has the authority to accredit electricity producers that are capable of gen-
erating electricity from renewable sources. Such renewable energy producers are sub-
sequently allowed to issue ROCs. By modifying the accreditation criteria, the British
government can make adjustments. For instance, there are plans to extend eligibility to
producers that make use of biomass [16].

The efficiency of the Renewables Obligation has been evaluated and the result is
largely positive: “The large majority of respondents considered that the Obligation
has provided a positive stimulus for investment in renewable technologies, particularly
lower cost technologies such as onshore wind and landfill gas. Most considered that the
Obligation is largely working as anticipated and would deliver a significant expansion
in renewable electricity generation over the coming years.” [16]
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3 Normative Multiagent Systems

We present the basic idea of our version of normative multiagent systems here. For a
more technical exposition, please refer to [5, 4].

The model is based on mental attitudes of agents, like beliefs (information) and goals
(internal motivation), that drive decisions to plan and execute actions. External motiva-
tions, such as social norms or laws, can be represented in the form of obligations, once
they are known and accepted by the agent. Later we show how obligations can again
be reduced to goals of the individual agent and the normative system, using violation
conditions and sanctions.

Mental attitudes of agents are represented in a logical representation language. The
logic allows us to derive what other mental attitudes can be inferred from the specifica-
tion of the agents, and what not. When the rules of the model are implemented, we can
run simulations of the decision making of various agents.

3.1 Mental Attitudes

In our logic, the mental attitudes are not represented as sets of sentences as is custom-
ary, but as sets of conditionals or production rules. This expresses the fact that mental
attitudes are context dependent [12]. So each attitude Bel, Goal, etc., is represented
by a set of rules of the form A → B, where both A and B are formulas, composed of
facts by means of logical operators ∧ (and), ∨ (or), ¬ (not) and the constant � (always
true). Here A represents the conditions under which the facts represented by B may be
inferred by the agent. Moreover, B may contain special decision variables, also called
actions, that will alter the state of the world. The values of decision variables are under
the control of the agent. For simplicity, both facts and decision variables are represented
by boolean variables, being either true or false. The decision making process of an agent
is represented by a forward reasoning loop, which runs roughly as follows1.

The agent receives input from observations, represented as a set of facts S. Alterna-
tively, the agent may start with a set of initial goals, represented by a set of decision
variables S. Now the agent tries to match each rule A → B against S. If A is contained
in S, and the facts of B do not contradict a fact in S, the rule is applicable. However,
there may be several rules applicable to S, from the same and from different mental
attitudes, each with a different possible outcome. Using a priority ordering, the agent
selects one rule – this is called conflict resolution – and applies it: the result B is now
added to S. This process continues, until a stable set of facts is reached, to which no
further additions can be made. Such a stable set, an extension, represents one of the
possible outcomes of the decision making.

The decision making behavior of an agent crucially depends on the way the conflicts
among the mental attitudes are resolved. Different priority orders may lead to different
extensions, which represent sets of goals and hence lead to different behavior.

Example 1 (Beer and Smoking.). An agent has the following inclination. Whenever it
finds itself at a party, it wants to drink beer. And whenever it is drinking beer, it needs a

1 Technical details of the reasoning is expressed using input/output logics [18]. Their application
to Normative Multiagent Systems is explained in [5, 4].
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cigarette. The agent knows that smoking is bad, and therefore the agent has the intention
not to smoke. What will happen?

Belief: at party
Goal 1: at party → drink beer
Goal 2: drink beer → smoke cigarette
Goal 3: ¬ smoke cigarette

What will happen depends on the relative strength of the agent’s urge to smoke and its
resolution not to. These relative strengths can be expressed by a priority ordering on
sets of rules. Rules in one set are considered equally important. In general, belief rules
outrank goal rules; otherwise the agent would suffer from wishful thinking [7]. There
are two possibilities. If the urge to smoke is too strong, and the agent has already drunk
a beer, it will smoke despite its resolution not to. But if the resolution outranks the urge,
the agent will refrain from smoking, or refrain both from drinking and smoking.

Priority: Belief > {Goal 1, Goal 2} > Goal 3
Outcome: {at party, drink beer, smoke cigarette}

Priority: Belief > Goal 3 > {Goal 1, Goal 2}
Outcomes: {at party, drink beer } , { at party}

What do we observe in this example? Before trying to achieve its goals, an agent
will consider the previously derived goals in the extension along with their conse-
quences. This process is called goal generation [7]. Goal generation precedes the plan-
ning process. Roughly, there are two kinds of goals. Achievement goals are satisfied
once some state of affairs has been realized. An example is the goal to reach some
location. Maintenance goals on the other hand, are only satisfied for as long as some
state of affairs continues to hold. Consider for example the goal to maintain some safety
standard.

3.2 Norms and Obligations

Now what about norms and obligations? Some people have observed that the stabilizing
effect of goals for individual agents, is similar to the stabilizing effects of norms on a
community of agents. Norms protect long term interests of the group against individual
deviators. But how can we model norms in this setting?

The general idea is to use a reduction of obligations to goals of the normative system,
where the normative system itself is seen as a separate agent. This may be summarized
by the slogan “Your wish is my command”: the wishes of the normative system count
as commands for the individual agent, provided that the normative system has authority
over the individual agents.

The reduction makes use of a so called violation predicate [1]. Although violation
predicates have been known for a long time, making a reduction to goals rather than to
modal or epistemic operators, does make a difference. It expresses that the normative
agent makes a conscious decision to detect or sanction a violation. Violation detection
is a specific kind of goal of the normative system. It may lead to the addition of a belief
in case a violation is indeed detected. Violation detection is separated from sanctioning.
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Sanctioning concerns the decision to sanction an agent in case a violation has been
detected, and what sanction is most appropriate.

To make sure that obligations are translated correctly, a number of conditions must
be observed [4].

Definition 1 (Conditional Obligations). Agent a is obliged to bring about x under
sanction s in circumstances C, with respect to a normative system n in a given model
M , written as M |= Oa−n(x, s|C), iff:

1. Goal of n: C → x
If agent n believes that C, then it has as a goal that x should be brought about.

2. Goal of n: C ∧ ¬x → V iol(¬x)
If agent n believes that C and ¬x is the case, then it has the goal V iol(¬x), i.e., to
recognize ¬x as a violation by agent a.

3. Goal of n: ¬V iol(¬x)
By itself, agent n has no goal for violations. This is to prevent arbitrary detection.

4. Goal of n: C ∧ V iol(¬x) → s
If agent n believes that C and detects V iol(¬x), then it has as a goal to apply
sanction s.

5. Goal of n: ¬s
By itself, agent n does not have a goal to apply sanction s. This is to prevent arbi-
trary sanctions.

6. Goal of a: ¬s
Agent a has a goal not be sanctioned. Without this condition, the sanction would
not deter agent a from violating the obligation.

Example 2 (Common-Pool Resources). Consider the following situation. There is a
group of agents A = {a1, .., an} that share access to a common pool resource R.
Think for example of common fishing grounds, which may suffer from overfishing in
spring [22]. Only if all fishermen have a modest spring catch, the fish stocks can be
sustained. For this reason, a normative system is set up, with a norm that in spring, no
fisherman is allowed to catch more than some predetermined quota2.

The model Mpool is set up as follows. We use boolean variables ‘spring’ to represent the
fact that it is now spring, ‘overfish’, which stands for fishing more than the quota allow,
and ‘fine’ for the penalty that must be paid. Variable a ranges over agents a1, .., an.
Now we have an obligation of agent a towards the community, not to overfish in spring
against the penalty of paying a fine. Using definition 1, this obligation can be modeled
as follows.

Mpool |= Oa−n(¬overfish, fine|spring), if and only if:

1. Goal of n: spring → ¬ overfish
2. Goal of n: spring ∧ overfish → V iol(overfish)
3. Goal of n: ¬V iol(overfish)

2 Such cases have been studied extensively in economics, for example using evolutionary game
theory. See for example [25]. Our example is only meant for illustrative purposes.
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4. Goal of n: spring ∧ V iol(overfish) → fine
5. Goal of n: ¬ fine
6. Goal of a: ¬ fine

In addition to these aspects of the norm, we must also model the usual beliefs and goals
of an agent. In particular, we must model the fact that without the obligation, overfishing
is profitable. This aspect is modeled here by a simple goal. Moreover, for the sake of
simulation, let us suppose that it is now spring and that everybody believes this.

7. Goal of a: overfish
8. Belief of a, n: spring

3.3 Recursive Modeling

How are these rules applied? Suppose it is spring and agent a has a goal to overfish.
Agent a also has a goal not be fined. So we get an initial extension of the form {spring,
overfish, ¬ fine}. Because the consequences are to a large part controlled by other
agents, agent a will try and predict the goals and actions of other agents. It applies
all the rules it knows that other agents possess, including those of the normative agent
n. A set of rules of another agent is called a profile. Crucially, profiles contain rules that
are affected by the actions of the agent itself. That is why we call this process recur-
sive modeling. However, for most applications no infinite recursion is needed; recursive
models up to three levels of embedding are quite sufficient.

In the first step, a applies n’s rule 2 to its own initial extension, which will trigger
a goal to detect a violation. On the other hand, n has goal 3 not to detect violations.
Which of these will get priority depends on a’s profile of n. Lets assume that a believes
that n’s conditional goal to report a violation outranks its general goal not to detect
violations. That will produce an extension { spring, overfish, V iol(overfish), ¬ fine}.

In the second step, a applies n’s goal 4 to sanction, weighed against n’s goal 3 not
to sanction. If a believes that n’s goal not to sanction outweighs its goal to sanction, for
example because of prohibitive costs of sanctioning, a will form the goal to overfish. But
if a believes n will indeed punish detected overfishing, this would produce an extension
{ spring, overfish, V iol(overfish), fine, ¬ fine}, which contains a contradiction. This
conflict will have to be resolved by a’s own priority order. In case the goal not to be fined
outweighs the goal to overfish – in practice: if the penalty is larger than the expected
profits – the agent will not form a goal to overfish.

The example shows that an obligation will only work, if two conditions are met. First,
the sanction must outweigh the benefits of overfishing. In our model we can express this
by a priority constraint.

Goal of a: ¬ fine > Goal of a: overfish

Second, the perceived chances of being detected and fined, must be sufficiently high. In
our model we can express this by adding priority constraints to the profiles of n used
by a during recursive modeling.

Goal of n: (spring ∧ V iol(overfish) → fine) > Goal of n: ¬ fine
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Thus a lot depends on the enforcement mechanism. Because the normative system,
embodied by the village council for example, has no physical power, violation detection
and sanctioning must be delegated to specific agents, such as a police force. There
are examples of self-organizing communities in which these tasks are performed by
ordinary community members, who may even behave altruistically, in the sense that
they are not compensated for their detection and punishing efforts [22].

3.4 Constitutive Norms

So how do we model the fish quota? Suppose there is an accepted belief among the
fishing community that a catch of more than two tonnes a week ‘counts as’ overfishing.
The idea is to use constitutive norms [24] to model such general beliefs of the com-
munity. A constitutive norm applies only under certain circumstances and is intimately
linked to an institution. This institution can be a (legal) person or an abstract entity such
as a community of users. Whether a rule applies depends on the jurisdiction of the in-
stitution. In case we have a normative system, we can re-apply index n to stand for the
institution. Thus constitutive rules are of the form “x counts as y under circumstances
C in institution n”.

In the example, the quota for overfishing in spring can be expressed as a belief rule
of the institution n, and all agents a that fall under its jurisdiction.

Belief of a, n: spring ∧ (weekly catch > 2 tonnes) → overfish

Constitutive norms can create new institutional facts. The prototypical example is a
declarative speech act [2]. For example, the utterance “I name this ship Johanna”, ut-
tered by a lady at an appropriate christening ceremony, will create the institutional
fact of the ship bearing this name. So the right kind of utterance uttered by the right
person under the right circumstances ‘counts as’ as the creation of an institutional
fact.

3.5 Value Objects

One way to express that objects represent a value in a community of agents, is as a
goal to obtain such objects, attributed to an abstract agent that represents the shared
conventions in the community. Just like beliefs can capture ‘counts as’ rules, goals
can capture value, up to a point. Note that the attribution of value need not be shared.
There are conventions about what is considered valuable in a community, but the value
that an individual agent attaches to an object is not modeled. In our example, the fact
that overfishing is generally considered profitable, clause 7, is an example of a value
expression.

Goal of a: overfish

Although we do not explicitly model value, as for example [11], the effect of the relative
priority of goals in the recursive simulation and violation games that agents play with
each other, is similar to that of value.
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4 Case Analysis

The case hinges on several aspects. There is a penalty mechanism that creates an in-
centive for energy suppliers to acquire evidence of having distributed a minimal level
of renewable energy to British customers. The supplier has a choice whether to buy the
obligatory amount of “green” energy, to buy ROCs from other suppliers, or else to pay
a buy-out fee that corresponds to the amount of ROCs missing. The penalty aspect can
be modeled by violation detection and sanctioning goals, similar to the obligation in
section 3.

We consider a set of suppliers {s1, .., sn} and the normative system, appropriately
called OfGEM. The main variables of the model MROC are ‘meet target’, which rep-
resents the fact that a supplier has collected enough ROCs, either by selling renewable
energy to customers, or by buying them of other suppliers, ‘buy-out’ which represents
that a supplier must pay a buy-out fee, and ‘enforcement order’ which represents the
sanctioning action of OfGEM in case the Renewables Obligation has been breached.

The normative status of the buy-out fee is interesting. There are two options. On the
one hand, paying a buy-out fee is a legitimate way of conforming to the Renewables
Obligation. A supplier who pays a buy-out fee is not in breach of the law. This would
suggest that there is one obligation, that can be fulfilled in two different ways3:

Os−OfGEM(meet target ∨ buy-out, enforcement order|�)

On the other hand, paying a buy-out fee is not the preferred option. The buyer can
choose to pay a buy-out fee, but the penalty level is set by OfGEM in such a way, that
paying the fee is always more expensive than the appropriate number of ROCs would
have been. Hence, we believe that the buy-out fee is better classified as a sanction for
not meeting the target. That suggests that there are in fact two obligations. When the
supplier is in breach of this second obligation, to buy the buy-out fee, OfGEM can call
for a further sanction: an enforcement order. This will force the supplier to pay, against
a penalty of further legal sanctions.

Os−OfGEM(meet target, buy-out|�)
Os−OfGEM(¬buy-out, enforcement order|¬meet target)

The first of these clauses is worked out in more detail.
MROC |= Os−OfGEM(meet target, buy-out|�), if and only if:

1. Goal of OfGEM: meet target
2. Goal of OfGEM: ¬ meet target → V iol(¬ meet target)
3. Goal of OfGEM: ¬V iol(¬ meet target, a)
4. Goal of OfGEM: ¬ meet target ∧ V iol(¬ meet target) → buy out
5. Goal of OfGEM: ¬ buy out
6. Goal of s: ¬ buy out

Again, we have to state that without the RO scheme, not meeting the target for renew-
able energy would be profitable, because of the initial investments required.

7. Goal of s: ¬ meet target

3 Note that the representation does not account for the fact that a partial shortfall in ROCs may
also be supplemented with a corresponding partial buy-out fee.
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How can we predict the behavior of an average supplier? What matters is the relative
priority of goals 6 and 7. This priority is determined by economic considerations of the
supplier agents. Since renewable energy is much more expensive to purchase for the
supplier than non-renewable energy, the supplier will only consider purchasing renew-
able energy, when the level of the buy-out fee is set high enough. So, if the buy-out
fee is higher than the extra cost for purchasing renewable energy, then the supplier will
prefer 6 to 7. However, if the buy-out fee is less than the extra cost for purchasing re-
newable energy, then the supplier will prefer 7 to 6. A detailed profitability analysis to
determine this preference ordering is beyond the scope of this paper. Detailed tools
exist for such purposes. An example is the e3-value tool [11]. We will investigate the
links with profitability in further research.

Regulative Aspect. The Renewable Obligation will only work, in case some further
conditions are met. First, the probability of being detected must be perceived to be high
by the energy suppliers. Since the ROC scheme makes use of evidential documents
and the burden of proof lies with the suppliers, this condition is taken care of. Second,
the perceived probability of the OfGEM actually collecting buy-out fees, must be high
enough. Currently, buy-out fees flow back into the system. They are used to finance the
OfGEM itself and for other renewable energy stimulation. Thus, it is in the interest of
OfGEM to actually collect buy-out fees. Moreover, if a supplier fails to pay the buy-out
fees, a more severe sanction is invoked. In the ROC case this is called an enforcement
order. The obligation Os−OfGEM(¬buy-out, enforcement order|¬meet target) is mod-
eled analogously to clause 1-7 above.

In the two years that the scheme has been up and running, OfGEM has managed
to collect most buy-out fees that were due. Recently, two electricity suppliers, Atlantic
Electric and Gas Ltd and Maverick Energy Ltd were fined for their likely breach of the
Renewables Obligation. Because both companies went into administrative receivership
(bankruptcy), OfGEM decided not to issue further enforcement orders [19]. This shows
that OfGEM is willing and able to enforce the Renewables Obligation.

Evidential Aspect. The ROC documents provide evidence of a certain amount of energy
having been produced from renewable sources. This evidence is needed for different
control purposes, such as to verify that the energy is indeed from an accredited renew-
able generator, that suppliers meet their Renewables Obligation, and that ROCs keep
their value when traded.

This use of ROC evidence documents can be modeled by specific constitutive rules
of the normative system, in this case embodied by the OfGEM. So OfGEM guarantees
that within the wider community of energy trade, these ROCs ‘count as’ evidence that
renewable energy was produced, and can be traded as such. In our formalization, this
comes out as a simple belief rule of the normative system, and of all relevant suppli-
ers. Similar reasoning holds for the establishment of the target number of ROCs that a
supplier must meet. Note that this target number is relative to the size of the supplier.

Belief of s,OfGEM: 1 ROC → 1 Mwh renewable electricity
Belief of s,OfGEM: x ROC ∧ (x > target) → meet target

OfGEM delegates authority to accredited renewable energy producers. Only accredited
producers are allowed to issue ROCs. The effect of this delegation relation also shows
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as part of the ‘counts as’-rules. Thus, only documents by accredited energy producers
will count as true ROCs.

As long as the OfGEM continues to guarantee the validity of the evidence doc-
uments, these documents themselves can be traded as valuables. The identity of the
holder of a ROC does not matter. For the overall objective of the scheme – to increase
the amount of renewable energy produced – it does not matter whether a ROC or real
renewable energy is traded, since every ROC stands for a certain quantity of renewable
energy having been generated at some point. Because of the existence of a trading mar-
ket, a supplier may specialize. Some, most notably in Scotland, are better at producing
renewable energy; others are better at distributing it.

Other Aspects. Regarding some of the other aspects of the case, like the total flow of
value between parties, and the fact that no ROCs must disappear from the system, our
approach can still benefit from insights of other formalisms. In particular, modeling the
decision of a supplier whether to produce ROCs, buy them or pay the buy-out fee, and in
what relative proportions, would require the use of more detailed profitability analysis
tools. We refer to [14, 15] for an analysis of the case that makes use of the e3-value
method [11], which does provide such quantitative tools. In an extension to e3-value,
called e3-value+, Gordijn and Tan [10] also incorporate aspects of trust and control
into the e3-value approach. A promising direction for further research, is to investigate
further combinations of value-based and normative approaches to virtual organizations.

5 Conclusions

In this paper we analyze how normative systems help create a sustainable network or
virtual organization. Participants can make a choice to participate in a network or not.
When there is no normative structure, participants may suffer from opportunistic be-
havior of others. The example of the common pool resource illustrated how this can
be remedied by a normative system. On the other hand, when too severe a sanction
is imposed, agents may not survive, or leave the network. Thus participants are au-
tonomous in their decision to remain in the network. For this reason, it makes sense to
apply agent-based modeling techniques. In particular, we apply Normative Multiagent
Systems (NMAS) [5, 4]

We model a normative system as an autonomous agent, with explicit beliefs and
goals. Norms are reduced to beliefs and goals of the subjects and the normative system,
according to the slogan “My wish is your command”. Having an explicit agent to repre-
sent the normative system helps in particular to deal with delegation relations, and the
way norm enforcement mechanisms such as detection and sanctions are implemented.
It also makes it possible to explicitly capture the objectives of a norm, namely as the
goals of the normative system.

The normative multiagent systems approach is validated with a case study of the
Renewables Obligation in the United Kingdom. This control mechanism was introduced
to stimulate the production of energy from renewable sources. What lessons did we
learn from this modeling effort?

With respect to the RO case, we learned that the status of the buy-out fee is un-
clear. It can either be regarded as a legitimate way of complying with the Renewables
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Obligation, or as a kind of sanction. The difference comes out clearly in the model.
We choose to model the Renewables Obligation as a combination of two obligations:
one to meet the target, and a second one that is conditional on not meeting the target,
to pay the buy-out fee. This pattern of cascading obligations, in which sanctions are
themselves modeled as regulative rules, is quite common in legal texts. Another lesson
is that evidential documents like ROCs are difficult to capture. They have an ambiva-
lent meaning because they are both evidential documents and value objects that can be
traded themselves.

With respect to the Normative Multiagent Systems approach, we learned that there
are in fact normative systems that need the whole range of concepts to be modeled ac-
curately: beliefs, goals, obligations, violation conditions, sanctions and ‘count as’-rules.
The case study shows that a complex example can be modeled consistently (internal va-
lidity), and that normative multiagent systems can analyze relevant aspects of existing
control mechanisms in a virtual organization (external validity).

The model does have important limitations. First, the underlying representation of
facts and events is too simple. For example, temporal or organizational relationships
can not be conveniently captured. Second, the approach is only qualitative, using rela-
tive comparisons to model priorities. Many applications need a quantitative profitability
analysis to set the right penalty levels, for the incentive scheme to work. But only after a
qualitative analysis has shown the viability of a control mechanism, does it pay to make
a detailed quantitative model.

Acknowledgements. Thanks to Vera Kartseva for providing details of the RO case.
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Abstract. As agent autonomy emphasises the need of norms for gov-
erning agent interactions, increasing attention is being devoted to (elec-
tronic) institutions for modelling organisations governed by norms. Mov-
ing from the concepts of role (with its normative consequences, i.e. oblig-
ations, permissions and prohibitions), norms (both regulative and consti-
tutive), and normative agents, we first introduce the notion of computa-
tional institution for modelling norm-regulated MAS. Then, we discuss
how infrastructural abstractions like coordination artifacts can be ex-
ploited to express norms inside computational institutions. Finally, we
present an example based on the TuCSoN infrastructure.

1 Norms and Agents

Generally speaking, norms are rules, enforced by some (trusted) third parties,
aimed at governing the individual behaviour of the members of a society. Al-
though the most common semantics of norm recalls the idea of imposing a spe-
cific rule or behaviour, this is not always the case in real life. According to
Searle’s classification [1], norms can be classified in two categories:

– constitutive norms, i.e. norms that are affirmed to create (constitute) new
states of affairs (example: the rules of a game, like chess);

– regulative norms, also called deontic rules [2], i.e. norms that are aimed
at governing activities, by expressing the obligation or the permission to
perform an action (example: “you should drive on the right”).

According to Peczenik [3], a special case of constitutive norms is the case of quali-
fication norms, which are defined as constituting some particular legal properties;
among these, notable examples are norms that confer competence and norms that
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confer power—i.e, norms that constitute a specific ability for some specific en-
tity. On the other hand, regulative norms are further classified into behavioural
norms and aim norms.

In the context of MAS, we will mainly refer to Searle’s classification, since the
basic distinction is between norms for ruling social activities (which fall inside the
class of regulative norms), and norms for ascribing responsibilities and creating
new concepts (which belong to the class of constitutive norms). In particular,
regulative norms should both enable each agent to achieve its goal(s), and allow
interactive social activities to be handled as virtual organisations or societies,
somehow mediating among different exigencies.

In this paper, we introduce the concept of computational institution as a
model to capture the notion of norm into virtual organisations, and show how
computational institutions can be actually represented and effectively set up
via suitable coordination artifacts [4] exploited as normative abstractions. As
a concrete example, we outline a case study showing how to build a simple
computational institution on top of the TuCSoN coordination infrastructure.

2 Organisations and Virtual Institutions

From an abstract viewpoint, an organisation can be defined as “a social unit or
human grouping deliberately constructed to seek specific goals” [5]. Institutions,
in their turn, can be introduced as “the framework within which interaction takes
place” [6]: they provide a society with the structure and the rules (constraints)
needed to shape interaction among its participants. Among the models defined
in the literature to frame the concept of virtual institution, Noriega and Sierra
introduced the notion of electronic institution [7, 8], later extended by Vasconce-
los by introducing the notion of logic-based e-institution [7]. On the other hand,
in the MAS context, Boella and Van der Torre defined the notion of normative
system [9, 10, 11] as a MAS with norms. Altogether, these models introduce the
key concepts of deliberative agent, role, norm, and normative agent.

Both electronic institutions and normative systems adopt a notion of agent
which emphasises agent autonomy: there, agents can decide to violate a norm
to achieve their goals, or to change their goals so that they match the existing
norms—a property called norm autonomy. This is why such agents are known as
norm autonomous agents or deliberative normative agents [12]—in the following,
just deliberative agents, for short.

Each agent in the institution can play one or more roles, which determine what
an agent can do: basically, the concept of role is common to both approaches.
Roles may be shared by several agents, and may be acquired either statically or
dynamically.

On the contrary, norms are not seen in the same way in the approaches
above, since normative systems feature both regulative and constitutive norms,
while electronic institutions consider regulative norms only. So, the electronic
institution norms can be seen as a subset of the normative-system norms. In
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particular, electronic institutions define regulative norms that may be submitted
to preconditions—a natural choice, since they mainly focus on communication
languages and interaction protocols.

The concept of normative agent—i.e., a member of the institution whose goal
is to enforce norms—, instead, is unique to normative systems.

Within computational systems, electronic institutions and normative systems
can both be considered as institutions. Nevertheless, they take into account
only some institutional aspects which are often complementary. Consequently, a
more general definition of institution is required, which should also abstract from
implementation details. In such way all the most common notions of institution
could be captured. This is what computational institutions are introduced for.

3 Computational Institutions

A computational institution is a virtual organisation ruled by norms intended as
in Section 1. The word “computational” means that the entities participating
in the institution are not necessarily humans, but also computational virtual
entities that operate in order to achieve the social shared goal(s). As in real life,
according to [8], the main institutional tasks are:

– to manage the identity of the participants;
– to define and validate the requirements on participant capabilities;
– to establish some conventions for the interaction among agents;
– to enforce the possible obligations.

With respect to the first issue, each member of the institution is characterised
by its identity, and by the role played in the institution. Of course, participant
identity management is essential, for both social and legal reasons: on the one
hand, knowing participants’ identities might be necessary to perform some tasks,
or just to facilitate their collaboration; on the other, knowing their identities also
simplifies the task of creating and enforcing norms.

As regards the second issue, every agent works in the institution in order to
achieve individual/social goal(s) by playing one or more roles which describe what
actions it can do. Each role can be associated to some requirements that the agents
playing such role(s) should fulfil in order to be a member of the institution.

Computational institutions consider three main roles:

– the legislative role, which consists of making laws;
– the judicial role, which consists of deciding whether there is a violation;
– the executive role, which consists of detecting violations and enforcing norms

by applying the proper sanctions.

So, unlike normative systems and electronic institutions, considered in Section 2,
within computational institutions a normative agent is an agent that plays one
of the above roles. Moreover, unlike normative roles presented in [13], com-
putational institutions distinguish the normative roles (legislative, judicial and
executive) from the roles played by non-normative agents. In case the institution
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implements the separation of roles, in order to ensure objectivity, an agent can
be assigned only one of the normative roles (as in any “well-formed” political
structure).

Also, since every institution is created in order to achieve some goals, every
agent must be able to perform its task correctly. For this purpose, the institution
should establish some conventions for the interaction between agents. According
to [14], conventions play a key role in the social process. They represent a be-
havioural constraint, striking a balance between individual freedom on the one
hand, and the goal of the agent society on the other.

Within computational institutions, normative agents should ensure that all
conventions are followed by creating suitable norms. Of course, normative agents
should also enforce all norms necessary for the achievement of the institutional
goal.

A computational institution, thus, can be defined by the n-ple:

〈A, R, Req, N, G, aL, aJ, aE, S, Act〉

where

– A is the set of the agents participating to the institution;
– R is the set of the roles that agents can play;
– Req is the set of the requirements related to the roles R that the institution

defines: each agent playing a given role is expected to satisfy the correspond-
ing requirements;

– N is the set of the norms ruling institution execution;
– G is the institution goal (shared between all institution members);
– aL are the legislative agents;
– aJ are the judicial agents;
– aE are the executive agents;
– S is the set of the sanctions;
– Act is the set of the activities that need to be performed for the institution

goal to be achieved. Such activities include also communication actions.

Given our model, the computational institutions architecture can be represented
as composed of the following elements:

– an institutional goal;
– a set of agents, which works in the institution in order to achieve individual

and institutional goals by playing one or more roles. They describe what
actions agents can do and can be associated to some requirements that the
agents playing such role(s) should fulfil in order to be a member of the
institution. Computational institutions consider three main roles:
• the legislative role, which consists of making laws;
• the judicial role, which consists of deciding whether there is a violation;
• the executive role, which consists of detecting violations and enforcing

norms by applying the proper sanctions.
– a set of norms, whose violation implies the application of sanctions.
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In order to help the reader in understanding the architecture of computational
institutions, let us consider the case of virtual enterprises (VE henceforth) [15].
A VE is a temporary aggregation of autonomous and usually heterogeneous
enterprises, aimed at achieving a common goal, and whose light-weight structure
is well-suited to face the frequent changes and openness of business scenarios in
a flexible and adaptable way. As an aggregation of enterprises, a VE requires
suitable norms and sanctions, possibly negotiated in its set-up phase, so as to
govern the mutual dependencies and coordinate the individual enterprises, as
well as the definition of the roles needed to represent the tasks to be performed
in order to achieve the VE’s goal.

So, a VE can be interpreted as a computational institution, where the follow-
ing elements are present:

– the VE goal;
– the set of the VE agents that cooperate in the VE. VE agents can play three

kinds of role: client, VE initiator, and VE partner. Each VE agent must
satisfy certain requirements, according to its role, in order to be admitted
to participate to the VE;

– the set of the norms and sanctions ruling the VE, which are established either
in the (initial) negotiation phase, or by some other higher- level entity, such
as the Government, State, etc.;

– the legislative agent, which is the VE initiator or client;
– the judicial and executive agents, which are the competent bodies.

A more detailed example will be discussed in Section 5.
The advantages of using computational institutions are both the chance to

define the requirements that agents should fulfil in order to be members of
the institution, and the separation of executive, judicial and legislative powers,
which—if it is implemented—enables to distinguish the different roles. Moreover,
by abstracting from technical details, computational institutions can be seen as
a general framework for virtual institutions.

So far, we discussed the definition of computational institution and its com-
posing elements based on a legal analysis of human institutions. With respect to
the social aspects of computational institutions, we should examine the activities
performed by agents in order to achieve their goals.

According to the research studies in the field of human (cooperative) activi-
ties, mainly in Activity Theory [16, 17], non-trivial human activities are always
mediated by some kind of artifacts, that enable and mediate interaction, rul-
ing/governing the resulting global and “social” behaviour [18]. In fact, artifacts
are widespread in human society: the language can be considered an artifact, as
well as the writing, blackboards, maps, post-its, traffic signs such as semaphores,
electoral cards or the signature on a document.

Based on this background, coordination artifacts were recently introduced as
a conceptual and engineering framework for MAS and agent societies [4, 18]: our
goal is to exploit coordination artifacts also for the engineering of computational
institutions in MAS. So, in next Sections we explore this aspect, discussing in
particular how two infrastructural abstractions—namely, coordination artifacts
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and ACCs—can be exploited for modelling and engineering computational in-
stitutions as MAS.

4 Coordination Artifacts for Computational Institutions

A coordination artifact [4, 18] is a conceptual and run-time abstraction aimed at
entailing a form of mediation among the agents that use it, and embedding and
effectively enacting some coordination policy (i.e. suitable laws and norms). Ac-
cordingly, from our viewpoint, coordination artifacts feature both a constructive
and a normative nature, as they take care respectively of creating/composing
social activities, and of ruling/governing them.

From a “norm-oriented” viewpoint, the encapsulation, malleability, inspectabil-
ity and controllability properties of coordination artifacts are particularly rele-
vant, since they correspond to desired properties of computational institutions.

Encapsulation means that a coordination artifact encapsulates a coordination
service [19], allowing user agents to abstract from the actual service implemen-
tation. In the context of computational institutions, this translates in the chance
for user agents to abstract from how normative agents actually rule/supervise the
institutional activity (and possibly punish any “illegal” behaviour). Malleabil-
ity, in its turn, represents the ability of a coordination artifact to be changed
dynamically, following the intrinsic dynamism and unpredictability of MAS—so
that coordination laws can be adapted and modified at run time. This aspect
is common also to computational institutions, where norms have sometimes to
be adapted dynamically to cope with change of organisations. Analogously, in-
spectability/controllability of the coordination artifact structure enable agents to
use/control the artifact correctly; indeed, a worthy feature of computational in-
stitution is precisely the inspectability of its dynamic state, i.e., of what happens
during the institution run-time. This property makes it possible to inspect/access
any stored information about interaction histories and events occurred within
an institution, for instance for normative purposes like incorrect behaviour de-
tection and violation detection.

TuCSoN [20] is an example of agent coordination infrastructure supporting
a notion of coordination artifact called tuple centre [21]. Tuple centres are pro-
grammable tuple spaces, which agents access by writing, reading, and consuming
tuples—that is, ordered collections of heterogeneous information chunks—via
simple communication operations (out, rd, in), which access tuples associatively.
While the behaviour of a tuple space in response to communication events is
fixed, the behaviour of a tuple centre can be programmed by defining a set of
specification tuples expressed in the ReSpecT language [22], which define how
a tuple centre should react to incoming/outgoing communication events. As a
result, tuple centres can be seen as general-purpose customisable coordination
artifacts, whose behaviour can be dynamically specified, forged and adapted so
as to automate the co-ordination stage among agents [18].

Topologically, tuple centres are collected in TuCSoN coordination nodes, spread
over the network: each node constitutes an organisation context. In order to
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access/use the tuple centres of an organisation context, an agent must first ne-
gotiate and enter an Agent Coordination Context (ACC henceforth, [23]), which
defines the agent’s presence and position inside the organisation in terms of ac-
tions allowed on tuple centres by virtue of the agent’s role(s). An ACC is meant
both to model the environment where the agent interacts, and to enable/rule the
interactions between the agent and the environment, by defining the space of the
admissible agent interactions [24].

As discussed above, the set of norms comprises regulative and constitutive
norms. Since regulative norms aim at governing activities by expressing the
obligation, the permission, or the prohibition to perform an action, they can
be naturally managed by ACCs. On the other hand, constitutive norms may
be embedded into coordination artifacts, e.g. by defining a suitable tuple or by
programming the tuple centre so as to react to selected events. The corresponding
specification tuples could be inserted in the tuple centres by the legislative agent.

Accordingly, while tuple centres can be used to model the social aspect of
computational institutions, embedding the corresponding norms, ACCs can be
exploited to model the presence of an agent in a computational institution with
respect to organisation, access control, and relationships between agents and
institution. So:

– in order to be member of a computational institution, an agent must first
obtain an ACC, which defines its role in the institution. Then the agent
exploits its ACC to perform actions (coordination primitives), that is, to
access the tuple centres of the institution, according the constraints enforced
by the specific ACC configuration;

– to exit the institution, the agent simply quits the ACC, thus ending its
working session

Multiple ACCs can be held by an agent simultaneously, one for each institutions
where the agent is actively playing.

Summing up, coordination artifacts appears to be suitable tools for building
computational institutions, possibly in conjunction with other abstractions—
such as ACCs—for the management of roles, requirements and regulative norms.
According to that, next section discusses a simple example, showing how to define
a computational institution on top of the TuCSoN infrastructure artifacts.

5 Example: Public Competitive Tender

In this section, we show how a simple public competitive tender could be seen
as a computational institution, and also how it could be implemented upon
TuCSoN coordination artifacts. Public competitive tenders are onerous contracts
stipulated between one or more economic operators, called bidders, and one
or more awarding administrations, whose subject is the execution of a work
or the supply of a product or service. Among the various kinds of procedures
usually adopted for competitive tenders, we consider here only the so-called
“open procedure”, i.e., the procedure adopted when any economic operator can
participate to the tender as a bidder.
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In the first step, the awarding administration publishes the announcement of
the competitive tender; then, the examining commission is set up, according to
the criteria defined in the announcement, which also states the acceptance crite-
ria for the bidders’ offers. Usually, the most common criteria for acceptance are
either the most advantageous offer (evaluating altogether quality, price, feature,
usage cost, terms of delivery, etc.) or simply the lowest price. When all the (valid)
bids have been examined, the examining commission eventually announces the
winner.

Public competitive tenders can be represented as computational institutions
according to the definition introduced in Section 3, where:

– A is the set of the agents involved in competitive tenders;
– R is the set of roles occurring in a competitive tender as defined above, that

is the awarding administration, the economic operators, the members of the
examining commission;

– Req is the set of the requirements stated in the tender announcement, con-
cerning skills and abilities required from the economic operators, such as, for
instance, economic skills, financial abilities, technical or professional skills,
etc.;

– N is the set of all the norms ruling the competitive tender according to the
laws/directives in force;

– G is the institution goal, which in this case is to stipulate a contract between
the awarding administration and the winner economic operator;

– aL are the legislative agents which issue the law/directive (e.g. the European
Union);

– aJ are the judicial agents (e.g. judges, tribunals, etc.);
– aE are the executive agents, charged of enforcing the norms by applying

sanctions (e.g. the police or some public officer);
– S is the set of the sanctions, usually listed in the norms stated by the legisla-

tive agent, to be applied in case of violations—for instance, exclusion from
the current competitive tender, and possibly from further tenders;

– Act is the set of activities to be performed inside the procedure, such as emit-
ting the announcement, setting up the examining commission, evaluating the
offers, etc.

Mapping such a computational institution onto TuCSoN coordination artifacts
amounts at adopting tuple centres to capture the institution’s social aspects, and
ACCs to model agent individual issues with respect to the organisation. So, a tu-
ple centre could be charged of governing interaction among the tender’s agents,
according to the tender’s procedure; moreover, suitable ACCs should be intro-
duced for each of the different tender’s roles/agents. Then, a suitable behaviour
specification should be defined in order to enforce the norms related to agent
interaction, and possibly also some norms related to regulative aspects; how-
ever, how much of the burden of norm enforcing should be charged onto specific
normative agent(s), and how much should be embedded into the programmable
coordination artifacts, is an open design dimension.
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AWA

announcement(idA( 2 ), admin(name),subject(s1),criterion( lowest price ))

offer(idA( 2 ), bidder(b1),price( 2000 ))

winner(idA( 2 ), bidder(b1))

commission_member(idA( 2 ), admin(name))

MEC1B2
4. out

1. out

2. in

3. out

offer(idA( 2 ), bidder(b2),price( 3000 ))

..

B1

3. out

..

5. in

5. in

commission_member(idA( 2 ), admin(name))
commission_member(idA( 2 ), admin(name))

Fig. 1. Mapping a computational institution onto TuCSoN tuple centres: the public
tender example

In particular, the “open procedure” described above may be expressed by in-
troducing three agent roles (the awarding administration, AWA; the member of
examining commission, MEC ; and the bidder, B) along with the related interac-
tion protocols in terms of exchanged tuples, and by representing the procedure
phases, too, as suitable tuples.

Fig.1 shows a competitive tender in which the administration name publishes
the announcement, and two bidder agents, B1 and B2, participate to the tender.
Of course, some commission will decide the winner. So, suitable ACCs should be
introduced for the awarding administration role, the member of the examining
commission role and the bidder role. Then, for instance, the procedure could
take place as follows:

1. The agent playing the role of the awarding administration, AWA, publishes
the announcement by inserting the announcement/4 tuple :

announcement(idA(ID),admin(Admin),subject(S),criterion(C))

where ID is the announcement’s unique identifier, Admin is the awarding
administration name, S is the subject of the contract, and C is the crite-
rion (most advantageous offer or lowest price) to be used for this tender. In
response, the tuple centre’s supposed behaviour is to trigger the automatic
insertion of a commission member/2 tuple for each required member of the
examining commission. i.e. for each MEC agent1:

1 Their number is supposed to be a constitutive norm, expressed as a suitable tuple,
too (not shown).
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commission member(idA(ID),admin(Admin))

This is possible by programming the tuple centre, with a suitable reaction.
2. The agents playing as bidders express their intention to bid for this tender

by inserting an offer/3 tuple such as

offer(idA(ID),bidder(Bidder),price(Price))

where Bidder is, rather obviously, the bidder agent’s identifier, and Price
is the offered price.

3. When the offer deadline expires, MEC agents (properly coordinating them-
selves via some interaction protocol enforced by the tuple centre rules) gather
all the offers, and select the winner according to the criterion specified in
the announcement. As a result, a winner/2 tuple is emitted to publish the
winner’s name (see Fig.1).

Within an institutional context, the ACC can be interpreted / exploited as a
legal artifact defining the kinds of interaction service(s) granted to the agent
by the infrastructure—and, conversely, what kinds of actions the agent can be
expected to execute given its role(s). Roughly speaking, the ACC could represent
a contract between the agent and the institution releasing it. Such a contract
is a description of the relationships between the agent and the institution, in
particular of the policy enacted by the ACC in order to rule agent actions and
interaction protocols.

In the following, we will briefly illustrate an example of ACC contracts for our
case study (for a more detailed explanation of the ACC structure, we forward
the interested reader to [24]).

Table 1 shows the ACC contracts for the different roles involved in the public
competitive tender. Each contract contains the description of the relationships
established between the agent and the institution, encoded in the Prolog lan-
guage in the form of a logic theory. The information includes the name of the
institution releasing the ACC (institution(ID)) and the roles actively played
by the agent (role(ID,SocietyID)). Most importantly, the contract contains
the policy that the ACC uses to establish if an agent action can be executed or
not. This policy is obtained by composing the individual role policies, which are
expressed2 in the form of Prolog rules like the following:

can do(CurrentState,Action,NextState) :- Conditions.

This rule means that Action can be executed in the role state CurrentState
if Conditions hold, and—in that case—next role state is NextState .3 The
concept of role state is used as a way to easily express interaction protocols: any
Prolog term—also structured, partially specified—can be used to denote the role
state. By default, the starting state is denoted by the init atom. Finally, Action
denotes an agent action expressed in terms of coordination primitives.
2 Inside the tuple centre of the gateway admitting the agent.
3 Conditions can contain also builtin predicates useful to describe context-aware

(with respect to local time, space and identity/positions of the agents) policies.
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Table 1. ACC contracts for the awarding administration role (first chunk), the com-
mission member role (second chunk) and the bidder role (third chunk)

0 institution(public competitive tender).
1 role(awarding administration, buy).
2 can do(init, out(announcement( )), init).
0 institution(public competitive tender).
1 role(member of the commission, buy).
2 can do(init, rd(announcement( )), publish announcement).
3 can do(publish announcement, rd(offer( )), award bidder).
4 can do(award bidder, out(winner( )), init).
0 institution(public competitive tender).
1 role(bidder, buy).
2 can do(init, rd(announcement( )), read announcement).
3 can do(read announcement, out(offer( )), bid).
4 can do(bid, rd(winner( )), init).

In particular, Table 1 shows the ACC policy for

– the awarding administration (first chunk), which enforces the publication of
the announcement (line 2).

– the members of the commission (second chunk), which enforces an interac-
tion protocol composed of three different role states (represented by the Pro-
log terms init, award bidder, publish announcement),which correspond
to different protocol stages (initialisation, the publication of the announce-
ment, and bidder awarding). The policy constraints the member of the com-
mission to read the announcement (line 2), read the offers (line 3), award
the agent which made the best offer and announce the winner (line 4).

– the bidders (last chunk), which specifies an interaction protocol composed
of three states (init, read announcement, bid), which correspond to dif-
ferent protocol stages (initialisation, announcement read, bidding and result
retrieving). The policy constraints a bidder to read the announcement (line
2), make a bid (line 3) and read the winner (line 4).

On the other hand, constitutive rules may define the tuple templates used in the
institution, as follows:

const norm(announcement(ID,Admin,Subject,criterion([...]))).
const norm(commission member(ID,Admin)).
const norm(offer(ID,Bidder,Price)).
const norm(winner(ID,Bidder)).

Let us now consider a violation scenario: in Fig.2, the tender criterion (published
in the announcement) is the lowest price, but the commission communicates
that the winner is an agent whose offer is not the lowest. The executive agent
monitoring the tender should then insert a tuple sanction/2 describing the
agent involved in the violation, along with the type of sanction. The judicial
agent will finally insert the tuple related to the correct winner. For the sake
of simplicity, in this example the executive and the judicial agents take care of
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AWA

announcement(idA( 2), admin(name),subject(s1),criterion( lowest price ))

offer(idA(2), bidder(b1),price( 2000))

winner(idA( 2), bidder(b2))

MEC1

B2

4. out

1. out

2. in

3. out

offer(idA(2), bidder(b2),price( 3000))

..

B1

3. out

..

EXA
JA

5. rd
sanction(idagent(MEC1),type(fine))

5. in

6. out
winner(idA( 2), bidder(b1))

7. out

commission_member(idA(2), admin(name))
commission_member(idA(2), admin(name))
commission_member(idA(2), admin(name))

Fig. 2. Violation scenario

detecting violation and inserting the winner and sanction tuples in the tuple
centre. In order to exploit the tuple centre programmability these tasks can be
automatically performed by programming the tuple centre with proper reactions.

6 Related Work and Conclusion

In this paper we analysed the concept of norm both in the legal and coordination
field. Although several analogies exist, there are different nuances of meaning:
for instance, coordination policies rule only agent coordination, while norms are
typical of the institutional goal, and therefore their violation entails sanctions [2].

This general concept of norm is common to all virtual institutions examined
so far, that is computational institutions, electronic institutions and normative
systems. Some differences comes out on the distinction between constitutive
norms and regulative norms. Indeed, while agents and roles are intended basically
in the same way, normative rules in electronic institutions only include regulative
norms. Constitutive norms, on the other hand, exist in Boella and Van der
Torre’s normative system framework. Furthermore, electronic institutions define
concepts such as dialogic framework, scene and performative structure that are
particularly suited to capture the issues related to the communication languages
and protocols, and that have no counterpart in computational institutions.

With respect to the management of roles within norm-regulated MAS, a sim-
ilar approach can be found in the OperA framework [25], which exploits social
contracts essentially for two functions:

– the enactment of roles, that is, social contracts describe the responsibilities
and the capabilities of the agent within the society;
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– the verification of the outcome of the system, since social contracts are trans-
lated into formal expressions and therefore ensure that compliance can be
verified.

In short, the social contract provides a ‘window’ to the agent, through which
other agents know what to expect and how to interact with the first agent.

The ACC, instead, models the environment where an agent can interact and
the agent-environment interaction by defining the space of the admissible agent
interaction. Even if the negotiation of an ACC specifies a sort of “contract”
between the agent and the MAS, the ACC model goes far beyond. First, an
ACC is a design and run-time abstraction which makes it possible to realise a
wide range of conceptual frameworks. An example is the RBAC-MAS framework,
rooted in role-based access control approaches, which exploits the notion of ACC
as its basic brick [26]. TuCSoN ACCs are a particular instance of ACCs, whose
action model is specialised to operate on tuple centres.

Summing up, on the one side ACCs resemble a social contract as they make it
possible to represent the role(s) that an agent is playing inside an organisation,
its responsibilities, permissions, interactive behaviour (protocols, conversations),
what kind of interaction service the infrastructure promised to the agent, and,
conversely, what kind of actions an agent was expected to execute depending on
his role(s) [24]. On the other hand, the ACC abstraction can be further used to
model both forms of dynamic access control to environment resources and the
quality of interaction. Finally, unlike social contracts, an approach based on a
runtime abstraction like ACC also allows that the compliance to be enforced a
priori, not just verified a posteriori.

Of course, several other test cases need to be mapped as computational insti-
tutions to validate this approach. Moreover, some key aspects deserve a deeper
investigation: in particular, further work is needed to better explore the issues
related to mapping computational institutions onto TuCSoN coordination arti-
facts, with special regard to the critical issue of suitably mapping the (different
kinds of) norms.
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Abstract. The notion of artificial institution is crucial for the specification of
open and dynamic interaction frameworks where heterogeneous and autonomous
agents can interact to face problems in various fields. In our view the specifi-
cation of artificial institutions requires a clear standard definition of some basic
concepts: the notion of ontology, authorizations, conventions, and the normative
component. In this paper we propose an event driven approach to the definition of
norms that is mainly based on the manipulation of commitments. We will discuss
the crucial differences between the notion of authorization and permission and
how the notion of permissions, obligations, and prohibitions can be expressed in
our model. We will investigate the connections among the specification of dif-
ferent artificial institutions, in particular how an institution can enrich or further
regulate the entities defined in another one. Finally we will briefly present the
specification of the Dutch Auction Institution and of the Auction House Institu-
tion in order to exemplify the model presented in this paper.

1 Introduction

In the literature, the term institution is used with different meanings. Following orga-
nization theories, an institution can be seen as an established organization (especially
of a public character) with a code of law, like for example a hospital. Drawing inspira-
tion from economics, in multiagent systems the term electronic institution is commonly
used to refer to a specific organization or to an abstract pattern that regulates the interac-
tion among agents [6, 21]. In particular, institutions are viewed as means for regulating
agent behavior in open and dynamic interaction systems , that is, systems where hetero-
geneous and autonomous agents enter and leave dynamically. In such systems norms
play a crucial role because they: (i) regulate the behavior of agents, and (ii) create ex-
pectations on the behavior of other agents.

In [17], the term institution is used to refer to a set of concepts that exist only thanks
to the common agreement of a community of agents, like for example in the case of
ownership. Drawing inspiration from Searle’s analysis of social reality, in [9] we have
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introduced the concept of an artificial institution as a set of shared concepts and rules
that regulate agent interactions. Artificial institutions are abstract specifications defined
to obtain open interaction systems where agents can perform actions whose effects are
not only limited to the state of the interaction system, but also affect human reality. For
example, when an agent participates to an auction and offers an amount of money for
an product on sale, if it is declared to be the winner, that product will be delivered to
the address of its user, whose bank account will be charged of the negotiated amount
of money. We envisage that our framework is suitable for modeling and analyzing e-
business and e-government applications.

In [9] we have investigated the relation existing between agent communication and
institutional reality, in particular on how agents can modify such reality. Our tenet is
that agent communication changes the institutional reality existing among agents, by
creating commitments between agents as in [8, 4] and also by creating new institutional
states of affairs [9]. One of the most interesting aspects of our research is that we model
the context where agent interactions take place and the semantics of communicative acts
by means of the very same concepts. In particular, in [9] we have defined a model of in-
stitutional reality which can also be employed to describe commitments as institutional
entities defined by an institution, that is, the Basic Institution.

Another important advantage of our approach is the coherence between the seman-
tics of communicative acts and the normative component, that is, the set of norms and
deontic concepts that model what agents should or should not do when their interac-
tions are regulated by a specific institution. In fact, both communicative acts and norms
are defined in terms of operations on institutional reality, in particular on social com-
mitments, a concept widely used to define the semantics of communicative acts [19].

This paper is organized as follows. In Section 2 our view of the main components
necessary for the specification of artificial institutions is presented. Among those com-
ponents norms play a crucial role; our event driven model of norms based on the manip-
ulation of commitments is discussed in Section 3. In Section 4 the connections among
the specifications of different artificial institutions are investigated and in Section 5 our
model is clarified through an example. Finally in Section 6 we draw some conclusions
and delineate some directions for future work.

2 Artificial Institutions

To allow designers to program agents which are able to carry out institutional actions
on behalf of their users in different environments, a clear and standard definition of
what are the fundamental concepts of an artificial institution is needed. In our view, the
specification of an artificial institution consists of the following components [9]:

– the core ontology, that is, the definitions of the institutional concepts introduced by
the institution and of the institutional actions that operate on them;

– a set of authorizations specifying what agents are authorized to perform the insti-
tutional actions;

– a set of conventions for the concrete performance of institutional actions;
– a set of norms that impose obligations, prohibitions and permissions for the agents

that interact within the institution.
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To specify artificial institutions we adopt an operational semantics and an object-
oriented style of specification, like that of the Unified Modeling Language (UML) [2]
and Object Constraint Language (OCL) [16]. An advantage of this approach is the fact
that it employs concepts that are close to the intuition and knowledge of practitioners.
We believe the model we have developed can be easily understood by software engineers
who design and implement open multiagent systems. Moreover, our model does not
dictate how the system should be implemented, so that the specification of an artificial
institution might be implemented on different platforms and with different languages
(not necessarily object oriented), which is a fundamental requirement of open systems.

2.1 The Core Ontology

We assume that each institution defines an ontology describing the entities that con-
stitute the context shared by the interacting agents and potentially affected by their
communicative acts. In particular, the interaction system is modeled by a set of enti-
ties, represented through UML classes, which may have both natural and institutional
attributes. While natural attributes are assumed to represent physical properties, like
the size of a book, institutional attributes, like the price of a product on sale, exist only
thanks to the common agreement of the agents participating to the institution. An ontol-
ogy also provides a set of institutional actions that allow agents to change institutional
attributes.

We define institutional actions by specifying:

– an action name followed by a possibly empty list of parameters: iaction(param);
– a possibly empty set of (ontological) preconditions, which specify the values that

certain institutional attributes must have;
– a nonempty set of postconditions, which specify the values of certain institutional

attributes after a successful performance of the action.

Preconditions and effects of institutional actions are expressed through OCL formulae.

2.2 Authorizations and Conventions

Given that institutional actions modify institutional attributes, agents cannot perform
such actions by exploiting causal links occurring in the natural world, like the movement
of a robotic arm. Instead, we assume that all institutional actions are performed by
means of a single type of instrumental actions, namely exchanging messages, thanks to
the counts-as relation which binds the exchange of a message to the performance of an
institutional action.

In order to enable counts-as relations, a set of conventions specifying what kind of
message corresponds to every specific institutional action is needed. To specify what
kind of message implements an institutional action we define conventions in the fol-
lowing form:

ExchMsg(msg type, sender, receivers, content) =conv iaction(param)

By itself, a convention is not sufficient to guarantee the successful performance of
an institutional action by the exchange of the appropriate message: indeed, some addi-
tional conditions must be satisfied. Firstly, an agent must be authorized to perform an
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institutional action. In the specification of an interaction system authorizations are ex-
pressed in term of roles, which are usually defined relative to an institutional entity. For
example the role of participants and auctioneer are defined relative to the auction entity
(see Section 5), and only the auctioneer can open an auction. Moreover an authorization
typically holds if certain conditions about the state of the system, expressed by suitable
Boolean expressions, are satisfied. For example, it may be established that an auction
is validly opened only if there are at least two participants. Therefore, we abstractly de-
fine the authorization to perform a specific institutional action (with given parameters)
associating it to a role defined in the context of a specific institutional entity (ientity) as
follows:

Auth(ientity.role, iaction(param), conditions)

Secondly, messages realizing institutional actions should be received by all agents that
are affected by the performance of the act; for example all the participants of an auction
must receive the message that opens it. Finally, ontological preconditions of institutional
actions should be satisfied; for instance, an auction cannot be closed if it has not been
opened yet.

If all these conditions are satisfied, the exchange of a message conventionally bound
to an institutional action counts as the successful performance of such action and its
institutional effects take place. In [9] we have discussed how agents can perform all
types of institutional actions by means of a single message type, that is, declare.

3 The Normative Component

In open systems, norms have been analyzed and used from two different points of view:
the design of autonomous agents [13, 7] and the design of interaction systems [20, 21].
From the second perspective norms have been exploited to indicate desirable path for
the evolution of the system from an external point of view and to verify if agents are
correctly behaving. In doing so, norms play an important role in a multiagent system,
in that they make an agent’s behavior at least partially predictable and allow agents
to coordinate and plan their actions according to the expected behavior of the others,
as studied in [15, 14]. But if we do not assume that norms are constraints encoded in
each agent as in [15] and [14], norms are not sufficient to prevent undesirable behav-
ior. In fact, in an open multiagent system by themselves norms are not able to banish
violations, because the sincerity and benevolence of agents are not guaranteed. In this
respect, our point of view is close to [7, 20, 21], where no assumptions are made about
the internal structure of agents.

In our framework norms play a fundamental role, because they regulate the execu-
tion of institutional actions by an authorized agent and indicate the desired behavior
imposing which actions should or should not be performed. We represent agent obliga-
tions and prohibitions as commitments that are manipulated by norms, which are treated
as event-driven rules. Therefore, before presenting our conceptualization of norms, we
need to introduce our model of commitment and how we describe events occurring in a
multiagent system.
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3.1 Commitments

In this paper we give only a short description of our model of commitment, which is the
fundamental entity of what we call the Basic Institution [9, 4].

We regard a commitment as an institutional entity characterized by a debtor, a cred-
itor, a content, and a state. Commitments are represented with the following notation:

Comm(state, debtor, creditor, content)

A commitment undergoes the life cycle described in [8] by reacting either to institu-
tional actions performed by agents or to domain-dependent events, which modify the
truth value of the temporal propositions (for a detailed treatment see [4]), which can
be undefined, true, or false. In [4] we have defined how the truth value of a temporal
proposition is calculated. When the content of a commitment is no longer undefined,
as a consequence of the occurrence of a domain event, the state of that commitment
is automatically set to fulfilled if the content has become true, otherwise it is set to
violated.

In our framework every agent is authorized to create a commitment by perform-
ing the makeCommitment institutional action, whose successful performance creates an
unset commitment. The debtor of an unset commitment may refuse it by executing set-
Cancel, or it may undertake the proposed commitment by executing setPending. We
represent a refused commitment by means of the cancelled state, whereas an accepted
commitment is depicted with the pending state. The creditor of pending or unset com-
mitment can always set it to cancelled. Here we report the specification of another in-
stitutional action, used in the example of Section 5, makePendingComm, which creates
a pending commitment and whose execution coincides with the sequential performance
of makeCommitment and setPending.

name : makePendingComm(debtor, creditor, content)
pre : not Comm.allInstances → exists(c|c.debtor = debtor

and c.creditor = creditor and c.content = content)
post : Comm.allInstances → exists(c|c.state = pending and

c.debtor = debtor and c.creditor = creditor and c.content = content)

3.2 Events

As we will see, norms are event-driven rules that, when are fired by events happen-
ing in the system, modify commitments affecting the agents having a certain role. In-
spired by UML notation for signals1, here we propose to model type of events as stereo-
typed classes [2] having attributes that provide information about the state transition that
caused them. In our formalization we have singled out three main categories of events:

– a TimeEvent, that occurs when the system reaches a certain instant of time;
– a ChangeEvent, that happens when an institutional entity changes in some way.

This kind of event type can be specialized further:

1 UML models four kinds of events: signals, calls, passing of time and change in state.
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• an InstitutionalPropertyChange, registered when an attribute has changed its
value;

• an InstitutionalRelationChange, occurring when a new relation is created or an
existing one between the institutional entity and another one is dropped;

• an InstitutionalStateChange, occurring when an entity modifies its type in a
given taxonomy (e.g., when an auction from open becomes closed);

– an ActionEvent, that happens when an agent perform an action (an interesting type
of this kind of events is ExchMsg (see Section 2.2), which represents the act of
sending a message).

The definition of event types allows us to describe event templates, that is, event
types with some restrictions on certain attributes that describe a set of possible event
occurrences. Event templates are used in the on section of a norm to specify what kind
of domain dependent events makes a norm fire.

In our experience, the specification of event templates in the definition of norms can
be exploited to obtain an efficient implementation of our framework. In fact, norms
should observe events occurring in the system avoiding time consuming operation to
detect such changes (a similar problem is also treated in [21]). For this reason, to im-
plement our framework we propose to apply the observer pattern [11], which means
that objects where certain kinds of events may happen are requested to notify their
observers, that is, those objects interested in such events, whenever an event occurs.
According to the observer pattern, when a norm is interested in observing a certain kind
of events, it should register at the institutional entity where they may occur. In order to
reduce the number of notifications a norm receives, norms register also an event tem-
plate describing what kind of events they are interested in. When an event matches an
event template, the institutional entity will notify the observer that has registered it by
communicating the occurred event.

3.3 Norms

We regard norms as event-driven rules that create or cancel commitments affecting a
set of agents that enact a specified role within the institution. From our point of view,
commitments are not a specialization of norms as in [7] and norms are not themselves a
special kind of commitments as in [3] and [18]. We perceive norms as rules that manip-
ulate commitments of the agents engaged in an interaction. In fact, norms are associated
to roles rather than to individual agents, and strictly speaking they cannot be fulfilled or
violated: what can be fulfilled or violated is not a norm, but rather a commitment cre-
ated by the application of a norm. Obviously, when a commitment created by a norm is
violated, also that norm can be considered violated, but this fact is not directly recorded
in the system.

At an abstract level, a norm is part of the definition of an artificial institution; its
instances then regulate and are bounded by the organization that reifies the institution.
When an agent fills a role in an institution, we assume that it accepts that norms create
commitments binding the agent to a pseudo-agent representing the institution, which
we call an institutional agent. Such agent allows us to keep trace of commitments cre-
ated by a certain instance of institution, which also means that commitments created by
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norms of an institution can be canceled only by norms defined by the same institution;
this is because only the creditor of a pending commitment can set it to cancelled [9].
Furthermore, if two commitments are in conflict, an agent can decide which is more im-
portant with respect to its own policy (see [13]) by reasoning about which institutional
agents have created such commitments.

A norm is defined within an institution and observes an entity of that institution by
registering an event template to be notified whenever an event matching the template
occurs. Typically, interesting event types are not only communicative acts like in [20],
but also the filling of a role by an agent, a value change of an institutional attribute,
the reaching of certain instants of time, and so on. When an event matches the given
descriptor, the corresponding norm is fired, its variable e is filled with the event, and
the norm is activated. If certain contextual conditions, expressed through an OCL for-
mula, are met, the activated norm is applied to a collection of liable agents, which are
described by an OCL selection expression; in general, the collection of liable agents
corresponds to the set of agents that play a given role in the institution. For every liable
agent, the norm executes a sequence of institutional actions which create or cancel com-
mitments of the agent toward the institutional agent. The general structure of a norm
can be described as follows:

within context name: ientity
on e: event template
if contextual conditions then

foreach agent in liable agent selection expression
do {commitmentActionDescription(agent, inst agent, parameters)}+

A crucial property of our approach is the possibility to verify at runtime if agents are
compliant with a given system of norms by identifying whether they have fulfilled all
commitments created by norms. Furthermore, by creating a new commitment whenever
a norm is applied, we can compute how many times a norm has been violated or fulfilled
by counting how many commitments instantiated by that norm are violated or fulfilled.
This is important because we consider that a normative system should allow one to
detect not only the presence of violations, but also differentiate when and how often
they occur. For example, because sanctions may depend on how often an agent have
violated a specific norm. Furthermore, the analysis of violations, the conditions that
have produced them, and their frequency may provide useful information for the design
and improvement of artificial institutions.

Using our formalization of norms, institutions can regulate in an uniform way both
the communication protocol and protocol-independent normative aspects, like for in-
stance the fulfillment of agreements made during the interaction. Norms can be used to
specify protocols, because they can dictate that in certain circumstances an agent ought
to send a given type of message, or react to a message in a specific way. At the same
time, norms can forbid the execution of institutional actions, in particular communica-
tive acts, even if they are authorized. Furthermore, in correspondence of events that
conclude the interaction process, norms can instantiate commitments to noncommu-
nicative actions, like the payment of the purchased goods at the price negotiated during
the interaction (see section 5 and [9, 22]).
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3.4 Obligations, Permissions, Prohibitions and Authorizations

In our framework commitments are used to represent all deontic relationships between
agents, including as a special case the deontic relationships undertaken by the debtor
through communicative acts [9]. In particular, commitments toward institutional agents
are used to represent obligations and prohibitions. In general, we perceive obligations
and prohibitions as commitments undertaken by an agent enacting a role within an
institution, toward the institution itself; more precisely, obligations are commitments to
perform an action of a given type, and prohibitions are commitments not to perform
an action of a given type. Furthermore, we interpret the absence of positive or negative
commitments to the execution of an action of a given type as permissions.

Usually in the agent literature authorization is not distinguished from permission or
the former encompasses the latter [5]. For example, in [20] and [6] agent interaction are
specified through finite state machines, which represent acts which are both authorized
and permitted. Furthermore, in [6, 20] the authors introduce governor agents, which do
not allow agents to perform communicative acts that are not acceptable according with
the current protocol. Similarly, in [13] and [21] norms are used to specify authorizations,
which are not distinguished from permissions.

Coherently with the concept of institutionalized power of [12, 1], we distinguish be-
tween the notions of authorization and permission. The main difference between au-
thorization and permission resides in the effects of the action. Whereas the former
represents a necessary condition for the execution of institutional action, permission
represents the need to regulate the performance of authorized actions, but it cannot pre-
vent the effects deriving from the performance of a forbidden act. According to [1] an
unauthorized act is performed but invalid, while in our approach is not even performed.
Instead, what is successfully performed is the act of exchanging a message, which does
not count as the performance of the corresponding institutional action.

4 Connections Among Different Artificial Institutions

We envision that when a designer starts to specify a new artificial institution, there is at
his or her disposal a library of previously defined institutions that can be used to create
new ones. To obtain a modular and incremental specification of new institutions, we are
investigating what relations hold among artificial institutions.

When a new institution is defined by the composition of existing institutions, it can
only specify new properties which refer to them but it cannot alter previous specifica-
tions. This is because institutional facts exist only thanks to common agreement, and
agents involved by the former institution might not participate in the second, and thus
might not access it. To preserve agents’ common agreement, the new institution must
regulate further aspects not regarded by others institutions and cannot be employed as
an alternative or substitute of them. Drawing inspiration from UML, we have named
this kind of relationship usage relation, which means that a client institution introduces
several features which refer to properties defined by a supplier institution. In particular,
a client institution may:
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– define new institutional attributes relative to entities defined in a supplier institution;
– create norms concerning the performance of institutional actions described by a

supplier institution; however, to keep the supplier institutions unaffected, the set of
agents liable to such norms must consist of the agents enacting a role in the client
institution.

The possibility of creating a new institution from preexisting institutions brings to the
foreground our distinction between authorizations and permissions (i.e., the absence of
prohibitions). In fact, the supplier institution may authorize the agents enacting a given
role to perform a type of institutional action, whose execution is then constrained by
local norms in the client institution. In this case, the agent has the necessary institutional
power, but it is not permitted to perform that action by the second institution. If it
executes such action, its effects take place, but the agent violates a commitment created
by a norm.

5 An Example: The Dutch Auction and the Auction House

In this section we will present two specification of artificial institutions to exemplify
how norms are specified in our framework. This allows us to show how different insti-
tutions interact and to clarify the distinction between authorizations and permissions.
To this purpose, we shall present our formalizations of the Dutch Auction and of the
Auction House holding auctions regulated by the former institution. Due to space limi-
tations, we focus our attention only on those aspects involved in fixing the price of the
product on sale.

5.1 The Dutch Auction Institution

During a Dutch Auction an auctioneer tries to fix the price of a product. An agent
taking part in a Dutch Auction can fill the role of participant, auctioneer or transaction
agent, the agent that attends to the exchange of money and goods when a price has been
accepted. During an auction we assume that a participant cannot be the auctioneer or
the transaction agent, while an auctioneer might also fill the role of transaction agent.

After a period of time reserved to the registration of participants, the interaction starts
when the start time has elapsed and the auctioneer has declared the auction open. Then,
the price of the product on sale is initialized, usually higher than the expected final
result. When a new price is declared, during the validity of such price, the auctioneer
declares as the winner the first participant that accepts the current price, and then closes
the auction. Otherwise, after the time of validity has elapsed, the auctioneer should
declare a new current price, lower than the previous one, or close the auction.

The ontology of the Dutch Auction is described by the class diagram reported in Fig-
ure 1, where institutional entities are assigned to packages representing what institution
defines them. Furthermore, concepts like Agent, Product, together with the owner role
are imported from external ontologies. It is important to observe that the current price is
defined relative to the Product, which means that the Dutch Auction ontology enriches
the definition of such an entity by adding a new institutional attribute recognized by the
agents involved in the current interaction.
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Fig. 1. The Dutch Auction and Auction House Ontologies

The Dutch Auction ontology also defines a set of institutional actions that allow
agents to operate on such institutional entities. In particular, an agent may change the
current price of a Dutch Auction by performing the setCurPrice institutional action.
We assume that an agent may change the current price of a Dutch Auction only if the
auction is open and the previous price is higher than the new one, which becomes the
current price of the auction.

name : setCurPrice(a id, p)
pre : OpenDA.allInstances → exists(id = a id and currentPrice.price > p)
post : OpenDA.allInstances → exists(id = a id and currentPrice.price = p)

The Dutch Auction defines a set of authorizations for the performance of institu-
tional actions. Some of these authorizations are conditional: for example an auctioneer
is authorized to open an auction only if its start time has elapsed and if there are at least
two agents registered as participants. Here we report only the authorization that allows
the auctioneer of a given auction to perform the setCurPrice institutional action.

Auth(DutchAuction.allInstances → select(id = auction id).auctioneer,
setCurPrice(auction id, price), true)

The behavior of agents that have joined an interaction system regulated by the Dutch
Auction Institution is constrained by a normative system, which prescribes what agents
should or should not do in correspondence to relevant institutional events. Likewise [9],
we have defined a set of norms that regulate both the communicative acts performed by
agents and the final exchange of good and money between the transaction agent and the
winner of the auction (see [22]). The main advantage of our formalization with respect
to the one specified by FIPA [10] is that, due to the explicit representation of norms
as rules that modify agent commitments, it is possible to model in an uniform way the
interaction protocols and the other rules that regulate the interaction framework. Fur-
thermore, when an interaction terminates successfully, agents are explicitly committed
by suitable norms to carry out the economic transaction.
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5.2 The Auction House Institution

As reported in Figure 1, the Auction House is an institution constituted by a set of
employee agents, holding several auctions and regulating the commercial relation with
the owner of the product on sale. The Auction House defines only one role, employee,
which is the role that an agent should hold in order to fill both the roles of auctioneer
and transaction agent.

In order to obtain simpler and shorter OCL expressions, in this paper we will assume
that an Auction House runs at most one Dutch Auction. When an agent decides to sell a
product trough an auction, it reaches an agreement with the Auction House concerning
the minimum price at which the product may be sold. Such an institutional fact does not
require the agreement of the participants: in fact, participants are not even assumed to
know about the existence of a reservation price (not to mention its actual current value).
We regard reservation price as an institutional attribute associated to the product and
representing a private agreement established between the Auction House and the owner
of the product on sale.

A norm of the Auction House is related to the agreement stipulated between the
owner of the good and the auction house and is activated when an employee becomes
the auctioneer. This norm commits the auctioneer to not declare a price lower than
agreed reservation price.

within h: AuctionHouse
on e: InstitutionalRelationChange(h.dutchAuction, auctioneer, created)
if true then

foreach agent in h.employee → select(em | e.involved → contains(em))
do makePendingComm(agent, DutchInstAgent(not setCurPrice(

h.dutchAuction.id, ?p [?p < h.agreement.reservationPrice]),
< now, now + time of(e1 : InstitutionalStateChange(
h.dutchAuction, OpenDA, ClosedDA)) >, ∀))

This norm is activated when an employee fills the role of auctioneer and constrains
its behavior to not declare a current price lower than the reservation price, although any
price would be legal from the point of view of the Dutch Auction. In fact, the Dutch
Auction authorizes the auctioneer to set a new current price, imposing through the on-
tological preconditions of the setCurPrice that it should be lower than the previous one,
but not further constrains are imposed.

This example shows clearly that authorizations and permissions may differ when
they are relative to different sources. In fact, when a designer wants to force an agent to
not perform an institutional action in correspondence of a certain state, he or she can: (i)
define a new norm that creates a prohibition to not perform such action; (ii) remove the
authorization to perform such act. When a designer specifies a new institution, he or she
may arbitrarily choose one of these options to limit agent actions. Instead, when new
institutions are defined by using previously defined institutions, agent behaviors can be
conditioned only through norms, which prescribe prohibited and permitted actions.
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6 Conclusions

In this paper we have presented a model for the specification of artificial institutions
which clarify what are the basic concepts that must be specified in order to obtain an
institution. We have focused on the conceptualization of norms as event-driven rules
that modify agent commitments. The main advantage of our approach is that it employs
concepts and a notation that are close to the intuition and knowledge of practitioners,
and it is compatible with state-of-art software implementation techniques, in particular
with events programming. Furthermore, we have discussed the fundamental role played
by norms, which allow us to express obligations and prohibitions in terms of commit-
ments. Indeed, norms can represent in a unified way both interaction protocols and other
normative aspects. Finally we have shown, through an example, how an interaction sys-
tem can be specified in terms of norms defined by different artificial institutions. In
particular, we have discussed how a designer may define a new interaction framework
by using several artificial institutions and what connections might exist between them.

Several research questions are still open, and will be tackled in our future work.
We will investigate the development of methods for discovering inconsistencies among
different artificial institutions. In particular, we are interested in verifying during the
specification phase whether norms may create obligations to perform unauthorized ac-
tions, or under what conditions two norms may generate conflicting commitments.
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22. F. Viganò, N. Fornara, and M. Colombetti. An Operational Approach to Norms in Artificial
Institutions. Technical Report 2, Institute for Communication Technologies, Università della
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Abstract. In highly regulated environments, where a set of norms de-
fines accepted behaviour, protocols provide a way to reduce complex-
ity by giving direct, step by step guidelines for behaviour, as long as
the protocols comply with the norms. In this work we propose a formal
framework to design a protocol from a normative specification. In order
to be able to connect (descriptive) norms with (operational) protocols,
an intermediate level is created by the use of landmarks.

1 Introduction

In the last years there has been an explosion of new approaches, both theoretical
and practical, focusing on normative specifications as a flexible way to structure,
restrict and/or impose behaviour in multiagent systems (MASs).In particular,
recent developments focus on norm languages, agent-mediated electronic insti-
tutions, contracts, protocols and policies. Our work focuses on a normative ap-
proach based on the use of norms in electronic institutions (eInstitutions). Norms
are high-level specifications of acceptable behaviour within a given context. De-
finitions of norms range from very philosophical, in deontic logic, to precise
specifications of protocols in agent-mediated eInstitutions.

One of the questions that arises is how to properly connect the norm spec-
ification with the behaviour of the agents. Norms are usually defined in some
form of deontic logic [19], in order to express accepted (legal) behaviour through
obligations, permissions and prohibitions. However, it is hard to directly connect
this kind of norms with the practice as:

1. Norms in law are formulated in a very abstract way, i.e., the norms are ex-
pressed in terms of concepts that are kept vague and ambiguous on purpose.

2. Norms expressed in deontic logic are declarative, i.e., they have no operational
semantics (they express what is acceptable, but not how to achieve it).

3. As Wooldridge and Ciancarini explain in [24], in those formalisms and agent
theories based in possible worlds, there is usually no precise connection be-
tween the abstract accessibility relations used to characterise an agent’s state
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Fig. 1. Comparison between Laws, Regulations and Practice

and any computational model. This makes it difficult to go directly from a
formal specification to an implementation in a computational system.

All these three issues together create a gap between the normative dimension
of agent-mediated institutions and their procedural one (first introduced in [8]).
Some of our previous work has focused on reducing this gap from different per-
spectives. In [15, 16] formal tools have been proposed to link abstract normative
specifications to more concrete ones (issue 1). In [10, 12, 13] the expressiveness of
norms (issue 2) is extended by means of some variations of deontic logic that in-
clude conditional and temporal aspects [4, 9]. However, by introducing some sort
of temporal or dynamic logic operators, the resulting specification becomes more
expressive but computationally too expensive to be used at run-time by agents.
We have also explored some of the operational aspects of norms, by focusing on
how norms should be operationally implemented in multiagent systems (MAS)
from an institutional perspective [21, 22], including the ontological aspects of
norm implementation [3, 5, 15]. Here we try to bring our previous work further,
tackling in part issue 3 and proposing a formal approach to describe an explicit
bridge between institutional norms and protocols.

Our approach is inspired by how the gap is bridged in human institutions.
Human laws express in a very abstract way wanted (legal) and unwanted (il-
legal) states of affairs. Although laws are very expressive, they do not express
how to achieve a given state of affairs, and therefore they are very hard to use
in practice to, e.g., guide each decision point in a process. In practice more ef-
ficient representations are needed, such as protocols or guidelines. In rule-based
legal systems (those based in Roman-Germanic law), regulations add an inter-
mediate level between laws and practice, by giving some high-level specifications
on some constraints about how things can or cannot be done. These high-level
descriptions are therefore interpretations of the law that add some operational
constraints to be met by the practice (see figure 1). Using this idea, we introduce
an intermediate level between institutional norm specifications and institutional
protocols based on landmarks.

In this paper we consider norms as specifying deontic constraints at a level that
abstracts from the procedural aspects of institutions which are instead involved
in the design of the protocols of the institution [8]. Additionally, we view norms
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as specifying (abstract) constraints which have an intrinsic temporal flavour [11].
In particular, we are interested in two types of norms: 1) Norms of the form “it
ought to be the case that ρ is the case before δ happens”, which will be represented
by formulas such as O(ρ ≤ δ); and 2) Norms of the form “it ought never to be
the case that ρ”, which will be represented by formulas Fρ.

Throughout this paper we will use as an example a simplification of the infor-
mation sharing problem between Police forces that belong to either a) different
geographical regions, or to b) different levels of national security (standard police,
secret services, military forces), with national and/or international regulations
that highly constrain the amount of information that can be shared between
the forces. In our simplified version of the problem, let us suppose that police
officers from two different regions have an individual investigation towards a
suspect. However, both regions are forced by law to protect their investigation
and, therefore, they cannot always ask the other about this suspect because that
could compromise their investigation. The problem can be summarised in the
following norm:

“Police regions are obliged to confirm the knowledge of other police re-
gions about suspects (without leaking that information) before exchang-
ing information on this suspect.”

From this norm the following issues arise: 1) How can such a norm be linked to
a norm-abiding protocol? 2) Can this link be formally described? These are, in
a nutshell, the motivating questions of the present paper.

We claim that landmarks can provide a viable bridge between norms and
protocols. If norms specify abstract constraints on a temporal structure, then
from this normative/temporal specification a landmark pattern can be extracted
which can be used as a yardstick to evaluate the norm compliance of concrete
protocols. In order to tackle the problem, our approach consists of three steps:
1) formalising a conception of institutional norms (tuned on the ideas just pre-
sented); 2) extracting landmark patterns (from such a formalisation); and 3)
relating landmark patterns to protocols.

The remainder of this paper is organised as follows. In the next section we
discuss the framework for using norms, expressed in CTL, to obtain the land-
marks which we use to design a protocol. Then in section 3 we show a concrete
example using this formal framework. We end the paper with some conclusions.

2 From Norms to Protocols Via Landmarks: A
Framework

2.1 Landmarks

The notion of landmarks has obtained much attention in recent work on mul-
tiagent systems. In [18] landmarks are used in order to specify conversation
protocols between agents at an abstract level. They are represented as states
and they are structured in a partial order describing, essentially, the respective
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order in which each landmark should be reached. In [12] and [23] landmarks are
used with similar purposes in order to provide abstract specifications of organi-
sational interaction in general. In that work, landmarks are formalised as state
descriptions, and therefore as sets of states (in a modal logic setting). Analo-
gously, these state descriptions are then partially ordered in directed graphs to
form landmark structures which are called landmark patterns.

No matter how landmarks are represented – as states, or sets of states –
their relevance in protocol specification is dictated by the simple observation
that several different agents’ actions can bring about the same outcome. Once
the outcomes of actions are organised in a structured description (i.e. a land-
mark pattern), it becomes possible to represent families of protocols abstracting
from the actual transitions by which each protocol is constituted. Intuitively, a
landmark pattern then represents the important steps that any protocol should
contain, and the order in which those steps should be performed: “which steps
should be performed and in which order”.

In this work, we intend to borrow the notion of landmarks and apply it to
the domain of eInstitutions. However, to apply the landmark approach to eIn-
stitutions a key refinement is necessary. In domains such as the one concerning
information exchange between Police regions, such positive constraints are not
always enough. In fact, institutional regulations also express explicit limitation
aspects by means of norms of a prohibitive type. Therefore, in the present work
we also introduce a notion of negative landmarks. Intuitively, negative landmarks
mark the states that should not be reached by any protocol. By means of them, it
becomes then possible to extend a landmark pattern description to incorporate
a reference to “which steps should not be performed”.

The formal definition of a landmark pattern we propose is the following one.

Definition 1 (Landmark pattern). A landmark pattern is a structure L =
〈L+, L−,≤〉 where L+ and L− are finite sets of landmarks and ≤ is a partial
order on L+.

It is instructive to notice that landmarks will be treated just as distinct elements
of a structure (the landmark pattern). In fact, we are not interested in repre-
senting the content of a landmark, but just that a landmark exists and is related
in a specific way with other landmarks. Nevertheless, as we will see in Section
2.4, landmarks will be extracted on the basis of CTL expressions.

Protocols are treated as state-transition systems, that is, structures composed
of states and labelled transitions expressing how one can change between states.
This means that actions in protocols are expressed as state-transitions, changing
the state of the world/protocol.

Definition 2 (Protocol). A protocol is a structure P = 〈S, {Rα}α∈A〉 where:
S is a non-empty finite set of states containing s0 (the starting state of the
protocol) and such that Sf ⊆ S with Sf a finite non-empty set (the set of final
states of the protocol), and {Rα}α∈A is a family of relations indexed by a non-
empty set of transition labels A.

The set A is inductively defined from a set A of atomic labels as follows: 1)
A ⊂ A; 2) if α, β ∈ A then α; β and α∪β ∈ A. Composite labels α; β and α∪β
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denote transitions obtained via the relational algebra operations of, respectively,
sequencing and choice. That is, labels of the form α; β denote the transitions
obtained performing first an α-transition and then a β-transition: (s1, s3) ∈ Rα;β
iff exists s2 ∈ S s.t. (s1, s2) ∈ Rα and (s2, s3) ∈ Rβ. Analogously, labels of the
form α ∪ β denote the transitions obtained performing either an α-transition or
a β-transition: (s1, s2) ∈ Rα∪β iff (s1, s2) ∈ Rα or (s1, s2) ∈ Rβ

1.

We will show how to connect these two definitions and how to exploit the notion
of landmark pattern as a useful tool in order to build an intermediate step
between the norms specifying the deontic constraints ranging on the institutions
and the actual protocols operating the institution itself.

2.2 Computational Tree Logic

In this section we provide a brief sketch of computational tree logic (CTL),
referring to [6, 7, 14] for more detailed discussions.

Well-formed formulas of the language LCTL consist of propositional elements
combined with ¬, ∧ and the temporal operators E(ϕUψ) and A(ϕUψ), with
the following informal reading: E(ϕUψ) means that there is a future for which
eventually, at some point m the condition ψ will hold, while ϕ holds from now
until then; A(ϕUψ) means that for all futures, eventually, at some point m the
condition ψ will hold, while ϕ holds from now until then. Other CTL-operators
we use are introduced as abbreviations: EFϕ ≡def E(�Uϕ) and AGϕ ≡def

¬EF¬ϕ. With the following informal meaning: EFϕ means that there exists a
future in which ϕ will eventually hold; AGϕ means instead that for all possible
futures ϕ holds globally. Standard propositional abbreviations are also assumed.

A CTL model M = (S,R, π), consists of a non-empty set S of states, an
accessibility relation R, and an interpretation function π for propositional atoms.
A full path σ in M is a sequence σ = s0, s1, s2, . . . such that for every i ≥ 0, si is
an element of S and siRsi+1, and if σ is finite with sn its final state, then there
is no state sn+1 in S such that snRsn+1. We say that the full path σ starts at
s if and only if s0 = s. We denote the state si of a full path σ = s0, s1, s2, . . . in
M by σi. The validity, M, s |= ϕ, of a CTL-formula ϕ in a world s of a model
M = (S,R, π) is defined as (the propositional connectives are interpreted as
usual):

M, s |= E(ϕUψ) ⇔ ∃σ in M with σ0 = s, and ∃n such that:
(1) M, σn |= ψ and
(2) ∀i with 0 ≤ i ≤ n it holds that M, σi |= ϕ

M, s |= A(ϕUψ) ⇔ ∀σ in M such that σ0 = s, it holds that ∃n such that
(1) M, σn |= ψ and
(2) ∀i with 0 ≤ i ≤ n it holds that M, σi |= ϕ

Validity on a CTL model M is defined as validity in all states of the model. If
ϕ is valid on a CTL model M, we say that M is a model for ϕ. General validity
of a formula ϕ is defined as validity on all CTL models. The logic CTL is the
set of all general validities of LCTL over the class of CTL models.
1 Notice that P is then nothing but a frame for propositional dynamic logic [17].
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2.3 A CTL Reduction of Deontic Logic

In this work, we represent norms making use of the CTL reduction approach of
deontic logic investigated in [4, 9, 11]. The language LCTL is expanded by adding
a violation constant of the form V iol2 to the set of propositional atoms. Seman-
tically, the atom V iol works like all other atomic propositions and it intuitively
denotes the fact that “a violation (of the relevant regulation) occurs”.

Definition 3 (Semantics of O(ρ ≤ δ)). Let M be a CTL model, s a state,
and σ a full path starting at s. The modal semantics for formulas O(ρ ≤ δ) is
then defined as follows:

M, s |= O(ρ ≤ δ) ⇔ ∀σ with σ0 = s, ∀j :
if ∀i, 0 ≤ i ≤ j : M, σi |= ¬ρ

then M, σj |= δ → V iol.

This captures the following intuitive reading: if at some future point δ occurs,
and until then ρ has not yet been achieved, a violation occurs at that point.
Another way to express this is that what norms do is specify which temporal
substructures (i.e. which CTL paths) are norm abiding, i.e., do not contain a
violation state. It is easy to see that this semantic constraint corresponds to the
semantics of the following CTL-formula: ¬E(¬ρU(δ ∧¬V iol)). Intuitively, there
is no path where a state σj exists satisfying δ and ¬V iol and such that ¬ρ holds
in all the states up to σj . This yields the following CTL reduction of O(ρ ≤ δ)
expressions:

O(ρ ≤ δ) ≡ ¬E(¬ρU(δ ∧ ¬V iol)).

More complex reductions are extensively discussed in [4, 9].
With respect to prohibitive norms we define the following CTL reduction.

Definition 4 (Semantics of Fρ). Let M be a CTL model, s a state, and σ a
full path starting at s. The modal semantics for formulas Fρ is then defined as
follows:

M, s |= Fρ ⇔ ∀σ with σ0 = s, ∀i : M, σi |= ρ → V iol.

Intuitively, the semantics just says that in all future paths it is globally true
that ρ implies a violation. Readers acquainted with deontic logic will recognise
that this semantics reflects a straightforward transposition of the Andersonian
reduction of deontic logic [2] in a CTL modal setting3. Notice also that this
semantics consists in an unconditioned version of the semantics presented in
2 For reasoning in a multiagent context we may provide violation constants of the

form V iol(a) where a ∈ Ag, and Ag a finite set of agent identifiers.
3 Anderson’s reduction consists of interpreting a deontic operator in terms of an alethic

one in combination with a violation constant: Oφ := �(¬φ → V iol). Such reduction
strategy has the advantage of enabling deontic notions in a simple and intuitive way.
However, it suffers the typical shortcomings lying in the use of classical material
implication. For a discussion of these issues see [19].
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Definition 3. Indeed, a CTL characterisation of this reduction is the following
one:

Fρ ≡ AG(ρ → V iol).

This is easily proven considering the equivalences between the AG and EF
operators stated in the previous section: AG(ρ → V iol) ≡ ¬E(�U(ρ → V iol)).

2.4 From Norms to Landmark Patterns

Given the semantics of norms presented in the previous section, the operation of
extracting landmark patterns from normative specifications amounts to consid-
ering the temporal structure characterising the CTL paths in which no violation
ever occurs. Technically, this means to explore the CTL models which satisfy
the set of norms at issue together with the assertion AG¬V iol (for all paths, it
holds globally that ¬V iol). Please note that a general and automated manner
for extracting landmarks from a large set of norms is still future work. In this
section we give an example to show the intuitions of the idea.

Let us consider the simple case in which the only norms are O(ρ ≤ δ) and
Fψ. It is easy to see that the following semantic constraint is obtained:

∀σ with σ0 = s, ∀j : either M, σj |= ¬δ and not M, σj |= ψ

or ∃i, 0 ≤ i ≤ j : M, σi |= ρ and not M, σj |= ψ.

As we would intuitively expect, ψ never occurs and either the condition δ also
never occurs, or, if it occurs at a certain state, then ρ is the case in some preceding
state. In other words, among the paths that abide by Fψ, there are two types
of paths which abide by O(ρ ≤ δ): the ones in which the condition δ never
occurs, and the ones in which the condition does occur after the required state
ρ has been reached. Given that we want our protocols to be not just norm-
abiding (safety), but also goal directed (liveness)4, a trivial landmark pattern
for O(ρ ≤ δ) and Fψ would then be the structure L = 〈L+, L−,≤〉 where
L+ = {l+1 , l+2 }, L− = {l−1 } and ≤= {(l+1 , l+2 )} and l+1 = ρ, l+2 = δ, l−1 = ψ; this
is expressed in figure 2.

This way of understanding the relation between norms and landmark patterns
presupposes the idea that, from one set of norms, many landmark patterns can
actually be extracted which are equivalent as far as that set of norms is con-
cerned. Trivially, another landmark pattern for the simple example above can be
obtained strengthening the positive landmarks or weakening the negative one.

2.5 From Landmark Patterns to Protocols

Given the landmark structure, we design a protocol which abides by the norms
of the domain. In this process the landmarks are considered to be sub-goals
that protocols need to fulfil. The idea is then that certain protocol states can
be linked to the landmark states that were obtained from the norms. For the
4 The point is that a “do nothing” protocol is usually norm-compliant. The liveness

issue has been discussed in [1].
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Fig. 2. From norms to landmarks

protocol to be norm-compliant, the linked states of the protocol should satisfy
the relational constraints that are included in the landmark structure.

Technically, we have to define a formal relation between definitions 1 and 2.

Definition 5 (P compliance with L). Given a landmark pattern L =
〈L+, L−,≤〉 and a protocol P = 〈S, {Rα}α∈A〉, we say that P complies with
L if it is possible to define a relation R ⊆ L+ ∪ L− × S such that:

1. the restriction L+�R of the domain of R to L+ is non-empty and such that:
if (l, s) ∈ L+�R, then there is an α ∈ A such that (s0, s) ∈ Rα; and there is
at least a pair (li, si) ∈ L+�R where landmark li ∈ L+ and si ∈ Sf .

2. the restriction L−�R of the domain of R to L− is either empty, or such that
if (l, s) ∈ L−�R, then there is no α ∈ A such that (s0, s) ∈ Rα.

3. there is no state s ∈ S such that (li, s), (lj , s) ∈ R with li ∈ L+ and lj ∈ L−.

Condition 1 can be strengthened in order to force an embedding of the landmark
pattern on the protocol, we say that P is linearly compliant with L:

– the restriction L+�R of the domain of R to L+ defines an embedding f :
L −→ P. That is to say, that f is a mapping from L+ to S such that, for
all l1, l2 ∈ L+: l1 ≤ l2 iff there exists an α ∈ A, s.t. f(l1)Rαf(l2); and there
is at least a pair (li, si) ∈ L+�R where landmark li ∈ L+ and si ∈ Sf .

Condition 1 says that positive landmarks are related to states in the protocol
such that those states are always reachable in the protocol from the starting
state and that at least one landmark is related to one of the protocol’s final
states5; condition 2 states that P does not contain states which count as neg-
ative landmarks and if it contains them they are innocuous since they are not
reachable from the starting point; condition 3 states that a state cannot be at
the same time linked to a positive and a negative landmark. In case P is linearly
5 This is a way of capturing the liveness condition we touched upon in Section 2.4.
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compliant with L, the set of positive landmarks is actually mapped on (and not
just related to) the protocols. Intuitively, in order for a protocol to embed a land-
mark pattern, the protocol should behave linearly with respect to the pattern,
avoiding branches which require a multiplication of the landmark corresponding
states. The example analysed in the following section displays such a protocol.

3 Landmarks in Practice

In this section we show how the theory, explained in previous sections, can
be used to guide the behaviour of normative multiagent systems. To do so let
us return to the example. Let it be the case that the police in region A has
an investigation towards a suspect X that operates in region A. A, however,
suspects that X is operating in region B as well, and therefore A assumes that
B might have an investigation towards X as well. Moreover, as A suspects that X
has connections to corrupt police officers it is imperative that A does not simply
asks B “Do you know anything about X?”, since that would expose that X is a
suspect in an investigation of A, and thereby jeopardising his investigation.

To ensure the safety of A’s investigation, A has to abide to the norms holding
for this domain. That would mean that A should be aware of whom he is talking
to (if A does not confirm that he asks his questions to B it would jeopardise his
investigations even more) and that he has to make certain that B knows about X
before asking for information about X . Also, by regulation, police regions are not
allowed to ask or exchange personal details about persons not being suspected of
a criminal offence. The norms that are applicable to this domain are:

1. The identity of police officers should be known to both parties before they
begin interacting.

2. Police regions are obliged to confirm the knowledge of other police regions
about suspects (without leaking that information) before exchanging infor-
mation on this suspect.

3. Sharing information about persons who are not under suspicion (of a crime)
is forbidden.

By means of the logical formalism described in 2.2 and 2.3 we can translate
these norms into the following formulas (we use P1 and P2 as variables for police
regions, and Y as variable for a person):

1. O(authenticated(P1, P2) ≤ interacted(P1, P2))
2. O(confirmed know(P1, P2, suspect(Y )) ≤ exchanged info(P1, P2, Y ))
3. F (exchanged info(P1, P2, non suspect(Y )))

From these formal norms we can derive, by use of the process described in
section 2.4, the positive and negative landmarks and the landmark pattern. From
the first norm we obtain the positive landmarks l+1 = authenticated(P1, P2) and
l+2 = interacted(P1, P2), and the sub-pattern (l+1 , l+2 ) ∈ ≤. The landmarks we
derive from the second norm are l+3 = confirmed know(P1, P2, suspect(Y )) and
l+4 = exchanged info(P1, P2, Y ), and the sub-pattern (l+3 , l+4 ) ∈ ≤. Finally we
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obtain a negative landmark l−1 = exchanged info(P1, P2, non suspect(Y )) from
the third norm. When combined this forms the following landmark structure:

L =
〈
{l+1 , l+2 , l+3 , l+4 }, {l−1 }, {(l+1 , l+2 ), (l+3 , l+4 )}

〉

As described in section 2.5 we use this landmark structure to guide the behav-
iour of the multiagent system used to assist the officers in regions A and B. The
protocol that we obtain from the landmark structure given above is basically
made of three separate parts. The first part is a protocol for determining the
identity of the different parties involved. This can be anything from the exchange
of identity-papers (or, in the case of agents, digital certificates hashed/encoded
by some cryptographic key), to something as complex as a cryptography-based
authentication protocol for determining identities.

1. A sends B its certificate signed by A’s private key (s0 � s1).
2. B sends A its certificate signed by B’s private key (s1 � s2).

After obtaining the certificate from the other party, A needs to decide whether
he wants to continue (in case he is conviced of the identity of B), or that he
wants to halt the protocol (steps 3.1 (s2 � s3.1) and 3.2 (s2 � s3.2)); we are
now in landmark l+1 .

The part of the protocol that A and B execute when A decides to go forth is,
in itself, a complex protocol, taken from [20], that needs to be executed so that
A knows that B already knows about X and vice versa, i.e., the protocol is used
such that both parties prove their knowledge about X to the other party. Note
that starting this part of the protocol is considered interacting, and we therefore
reached landmark l+2 .

4. Region A chooses an Information Block (IB) IA ∈ KBA of which they want
to prove their knowledge to region B, and of which they want to test B’s
possession (s3.1 � s4).

5. A computes IA∗ ⊆ KBA and generates a random challenge CA such that it
discriminates within IA∗ (s4 � s5).

6. A sends B the message {H1 = hash(pad(IA, {N})), CA} (s5 � s6).
7. B computes IB∗ ⊆ KBB (s6 � s7).
8. B does one of the following:

(1) B generates a random challenge CB such that it discriminates within
IB∗ , and sends A the message {CB} (s7 � s8.1).

(2) B sends A the message {halt} and the protocol is halted (s7 � s8.2).
9. A sends B the message {H2A = hash(pad(IA, {N, A, CB}))} (s8.1 � s9).

10. B verifies whether the received H2A equals any hash(pad(IBi , {N, A, CB})),
where IBi ∈ IB∗ (locally computed). If they are equal, B concludes that IA

equals the matching IBi , and thereby verifies that A knows the matching
IBi (which is called IB from here on) (s9 � s10).

11. If B is willing to prove his knowledge of IB to A, B sends A the message
{H2B = hash(pad(IB, {N, B, CA}))} (s10 � s11).

12. A verifies whether the received H2B is equal to hash(pad(IA, {N, B, CA}))
(locally computed). If they are equal, A concludes that IA equals IB , and
thereby verifies that B knows the matching IA (s11 � s12).
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Fig. 3. From landmarks to protocol

Again, at the end A needs to decide whether he wants to go through or not,
depending on whether B succeeded in proving to A that he knows about A
(step 13.1 (s12 � s13.1) and 13.2 (s12 � s13.2)). Note that B has a similar
decision point at step 8. By now we have arrived landmark l+3 .

The final part (to get from l+3 to l+4 ) can then be as simple as:

14. A tells B everything he knows about X (s13.2 � s14).
15. B tells A everything he knows about X (s14 � s15).

More complex interaction and information exchange protocols can be used in-
stead if desired, though.

Given the protocol specification above we obtain the following formal protocol
structure (as specified in definition 2):

P = 〈{s0, s1, s2, s3.1, s3.2, . . . , s15}, {Ri}i∈A〉

where A is the set {1, 2, 3.1, 3.2, . . . , 14, 15} closed under ; and ∪ operations.
Figure 3 depicts this protocol and its compliance with the landmark pattern.
Compliance of P is guaranteed, on the basis of definition 5, by the following
relation between landmarks and states in the protocols:

R = {(l+1 , s2), (l+2 , s3.1), (l+3 , s12), (l+4 , s15)}.

Please note that a) (l+1 , l+2 ) ∈ ≤ iff (s2, s3.1) ∈ R3.1, and (l+3 , l+4 ) ∈ ≤ iff
(s12, s15) ∈ R13.2;14;15; b) there is no s ∈ {s0, . . . , s15} such that (l−1 , s) ∈ R;
and c) that landmark l+4 is associated to one of the final states of the protocol.

4 Conclusions

In this paper we proposed a formal framework to design agent protocols from
a normative specification. As norms are declarative in nature, they cannot be
directly connected to a protocol (operational in nature). In order to tackle the
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problem, we introduced landmarks as an intermediate level. Landmarks reduce
the complexity of normative reasoning by capturing a) the important states of
affairs, as defined in the norms, and b) the operational constraints between those
states. This information can then be used to design a norm-compliant protocol.

Although we only examined a small set of norms in this paper, we feel confi-
dent that this approach can be used for larger and more complex domains as well.
Note, however, that large sets of complex norms can lead to a CTL-model with
violations occurring along all paths. This does not indicate a flaw in the model
or the technique used, but merely indicates that no norm-compliant protocol
can be extracted for such a domain.

Norm compliance has also been studied in [1], where the main focus was on
checking the norm compliance of a given protocol against the norms by means of
a formal framework. Here instead, we introduce the idea of extracting landmarks
from the norms to guide the protocol design. We also foresee landmarks as a way
for agents to evaluate norm compliance of protocols on-line, i.e. at runtime.

One of the lines we want to explore is how agents may use landmarks to
dynamically create or adapt protocols at run-time: given a protocol and the
landmarks, agents may reason about acceptable variations of the protocol that
are legal and that allow them to fulfil their interests or to cope with an un-
expected situation not foreseen in the protocol. Given some landmarks, agents
may even negotiate the protocol to use. Another line to explore is the impact of
landmarks in norm enforcement: on-line checking the execution of protocols by
making sure that the systems does not pass through any negative landmarks.
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Abstract. Design by contract is a well known theory that views software con-
struction as based on contracts between clients (callers) and suppliers (routines),
relying on mutual obligations and benefits made explicit by assertions. However,
there is a gap between this theory and software engineering concepts and tools.
For example, dealing with contract violations is realized by exception handlers,
whereas it has been observed in the area of deontic logic in computer science that
violations and exceptions are distinct concepts that should not be confused. To
bridge this gap, we propose a software design language based on temporal deon-
tic logic. Moreover, we show how preferences over the possible outcomes of a
supplier can be added. We also discuss the relation between the normative stance
toward systems implicit in the design by contract approach and the intentional or
BDI stance popular in agent theory.

1 Introduction

Design by contract [1, 2, 3] is a well known software design methodology that views
software construction as based on contracts between clients (callers) and suppliers
(routines), relying on mutual obligations and benefits made explicit by assertions. It
has been developed in the context of object oriented programming, it is the basis of
the programming language Eiffel, and it is well suited to design component-based and
agent systems. However, there is still a gap between this methodology and formal tools
supporting it. For example, dealing with contract violations is realized by exception
handlers, whereas it is well known in the area of deontic logic in computer science
[4, 5] that violations and exceptions are distinct concepts that should not be confused.
Formal tool support for design by contract is therefore a promising new application of
deontic logic in computer science [6]. In this paper we study how extensions of deontic
logic can be used as a design language to support design by contract. We address the
following four research questions.

1. Which kind of deontic logic can be used as a design language to support design by
contract?
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2. How can we add preferences over possible outcomes of a routine?
3. What kind of properties can be formalized by such a design logic?
4. How does this approach based on deontic logic compare to the BDI approach, dom-

inant in agent oriented software engineering?

The motivation of our work is the formal support for agent based systems. Recently
several agent languages and architectures have been proposed which are based on oblig-
ations and other normative concepts instead (or in addition to) knowledge and goals
(KBS), or beliefs, desires and intentions (BDI). In artificial intelligence the best known
of these normative approaches is probably the IMPACT system developed by Subrah-
manian and colleagues [7]. In this approach, wrappers built around legacy systems are
based on obligations. We are interested in particular in designing component based
agent systems such as agents based on the BOID architecture [8]. Notice that this paper
does not address pure logical aspect. We do not define a specific logic for reasoning
about such notions, but we use existing formalisms to model design by contract and
preferences about possible outcomes of a routine.

The layout of this paper is as follows. In Section 2 we discuss design by contract, the
deontic design language and contract violations. In Section 3 we introduce preferences
over outcomes. In section 4 we compare this approach based on deontic logic to the
KBS/BDI approach.

2 Design by Contract

We explain design by contract by an example program in the Eiffel programming lan-
guage. The explanation of design by contract as well as the example have been taken
from [9]. For further details on design by contract, see [1, 2, 3].

2.1 Conditional Obligations

Design By Contract views software construction as based on contracts between clients
(callers) and suppliers (routines), relying on mutual obligations and benefits made ex-
plicit by assertions. These assertions play a central part in the Eiffel method for building
reliable object-oriented software. They serve to make explicit the assumptions on which
programmers rely when they write software elements that they believe are correct. In
particular, writing assertions amounts to spelling out the terms of the contract which
governs the relationship between a routine and its callers. The precondition binds the
callers; the postcondition binds the routine.

The Eiffel class in the left column of Figure 1 illustrates assertions (ignore for now
the right column). An account has a balance (an integer) and an owner (a person). The
only routines – is . . . do . . . end sequences – accessible from the outside are increas-
ing the balance (deposit) and decreasing the balance (withdraw). Assertions play the
following roles in this example.

Routine preconditions express the requirements that clients must satisfy when they
call a routine. For example the designer of ACCOUNT may wish to permit a with-
drawal operation only if it keeps the account’s balance at or above the minimum.
Preconditions are introduced by the keyword require.
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class ACCOUNT
feature
balance: INTEGER
owner: PERSON
min_balance: INTEGER is 1000
deposit(sum:INTEGER) is
require
sum >= 0 -- Ocr(sum >= 0)
do
add(sum)
ensure balance = old balance + sum -- Orc(balance = old balance + sum)
end

withdraw(sum:integer) is
require
sum >= 0 -- Ocr(sum >= 0)
sum <= balance - min_balance -- Ocr(sum <= balance - min_balance)
do
add(-sum)
ensure
balance = old balance - sum -- Orc(balance = old balance - sum)
end

feature [NONE]
add(sum:INTEGER) is
do
balance:=balance+sum
end

invariant
balance >= min_balance -- Or(balance >= min_balance)

end -- class ACCOUNT

Fig. 1. Class ACCOUNT

Routine postconditions, introduced by the keyword ensure, express conditions that
the routine (the supplier) guarantees on return, if the precondition was satisfied on
entry.

A class invariant must be satisfied by every instance of the class whenever the instance
is externally accessible: after creation, and after any call to an exported routine of
the class. The invariant appears in a clause introduce by the keyword invariant, and
represents a general consistency constraint imposed on all routines of the class.

2.2 Deontic Design Language

We are interested in a deontic design language to support specification and verifica-
tion based on design by contract. The deontic design language is therefore a kind of
specification and verification language.

Syntactically, assertions are boolean expressions. To formalize the assertions in our
design language, we use a deontic logic based on directed obligations, as used in elec-
tronic commerce and in artificial intelligence and law [10, 11, 12, 13]. A modal formula
Oa,b(φ) for a, b in the set of objects (or components, or agents) is read as “object a is
obliged toward object b to see to it that φ holds”. We write c and r for the caller and
for the routine, such that the assertions in the program can be expressed as the logical
formulae given in the right column in Figure 1. Summarizing:

Require φ = Oc,r(φ): caller c is obliged toward routine r to see to φ.
Ensure φ = Or,c(φ): routine r is obliged toward caller c to see to φ.
Invariant φ = Or(φ): routine r is obliged to see to φ.
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To use the obligations above in a deontic design language, we have to add temporal
information. First, we have to formalize “old expression” as it occurs for example in
line 12 of class ACCOUNT . This expression is only valid in a routine postcondition,
and denotes the value the expression has on routine entry. Consequently, we have to
distinguish between expressions true at entry of the routine and at exit of it. More gen-
erally, we have to reason how the assertions change over time. For example, the require
obligation only holds on entrance, the ensure obligation holds on exit, and the invariant
obligation holds as long as the object exists. The obligations only hold conditionally.
For example, if the preconditions do not hold, than the routine is not obliged to see to
it that the ensure expression holds. Finally, the conditional obligations come into force
once the object is created, and cease to exist when the object is destructed.

We therefore combine the logic of directed obligations with linear time logic (LTL),
well known in specification and verification [14]. There are many alternative temporal
logics which we could use as well. For example, in [15] deontic logic is extended with
computational tree logic in BDIOCTL, and in [16] it is extended with alternating time
logic (ATL). Semantics and proof theory are straightforward, see for example [15].

Definition 1 (Syntax OLTL). Given a finite set A of objects (or components, or agents)
and a countable set P of primitive proposition names. The admissible formulae of OLTL

are recursively defined by:

1 Each primitive proposition in P is a formula.
2 If α and β are formulae, then so are α ∧ β and ¬α.
3 If α is a formula and a, b ∈ A, then Oa,b(α) is a formula as well.
4 If α and β are formulae, then Xα and αUβ are formulae as well.

We assume the following standard abbreviations:
disjunction α ∨ β ≡def ¬(¬α ∧ ¬β)
implication α → β ≡def ¬α ∨ β
globally α �(α) ≡def �Uα
future α �(α) ≡def ¬�(¬α)
permission Pa,b(α) ≡def ¬Oa,b(¬α)
prohibition Fa,b(α) ≡def ¬Pa,b(α)
obligation Oa(α) ≡def Oa,a(α)

We now illustrate how to use the logic to reason about assertions. We assume the fol-
lowing propositions: create(c) holds when object c is created, destruct(c) holds when
object c is destructed, call(c1,c2,f ) holds when object c1 calls routine f in object c2.
We assume that if a routine in an object is called, there is an earlier moment in time at
which the object is created. However, since our operators only consider the future, this
property cannot be formalized. We assume that propositions can deal with integers, a
well known issue in specification and verification, see [14] for further details. Finally,
we assume that the time steps of the temporal model are calls to routines. The first rou-
tine and the invariant in the class account in Figure 1 can now be formalized as:

call(c1,c2,deposit(sum:INTEGER)) → Oc1,c2 (sum ≥ 0)
(call(c1,c2,deposit(sum:INTEGER)) ∧(sum >= 0) ∧ (balance = b)) → XOc2,c1 (balance = b + sum)
create(c) → (Oc(balance ≥ min balance) U destruct(c))



174 C. Garion and L. van der Torre

These formulas can be read as follows. If there is a call of c1 to c2 to deposit a sum,
then c1 is obliged towards c2 that this sum is not negative. If there is such a call, the
sum is not negative and the balance is b, then there is an obligation of c2 towards c1 that
the new balance is b increased with the deposited sum. Once an object is created and
until it is destructed, it is obligatory that the balance is at least the minimal balance.

2.3 Contract Violations

Whenever there is a contract, the risk exists that someone will break it. This is where
exceptions come in the design by contract theory. Exceptions – contract violations –
may arise from several causes. One is an assertion violation, if run-time assertion mon-
itoring is selected. Another is a signal triggered by the hardware or operating system
to indicate an abnormal condition such as arithmetic overflow, or an attempt to create a
new object when there is not enough memory available. Unless a routine has been spec-
ified to handle exceptions, it will fail if an exception arises during its execution. This in
turn provides one more source of exceptions: a routine that fails triggers an exception
in its caller.

A routine may, however, handle an exception through a rescue clause. An example
using the exception mechanism is the routine attempt deposit that tries to add sum to
balance:

attempt_deposit(sum:INTEGER) is
local
failures: INTEGER

require
sum >= 0; -- Ocr(sum >= 0)

do
if failures < 50 then
add(sum);
successful := True
else
successful := False

rescue
failures := failures + 1;
retry

ensure
balance = old balance + sum -- Orc(balance = old balance + sum)

end

The actual addition is performed by an external, low-level routine add; once started,
however, add may abruptly fail, triggering an exception. Routine attempt deposit tries
the deposit at most 50 times; before returning to its caller, it sets a boolean attribute
successful to True or False depending on the outcome. This example illustrates the
simplicity of the mechanism: the rescue clause never attempts to achieve the routine’s
original intent; this is the sole responsibility of the body (the do clause). The only role
of the rescue clause is to clean up the objects involved, and then either to fail or to retry.

The principle is that a routine must either succeed or fail: it either fulfills its contract,
or not; in the latter case it must notify its caller by triggering an exception. The optional
rescue clause attempts to “patch things up” by bringing the current object to a stable state
(one satisfying the class invariant). Then it can terminate in either of two ways: either
the rescue clause may execute a retry instruction, which causes the routine to restart
its execution from the beginning, attempting again to fulfil its contract, usually through
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another strategy (this assumes that the instructions of the rescue clause, before the retry,
have attempted to correct the cause of the exception), either the rescue clause does not
end with a retry and the routine fails; it returns to its caller, immediately triggering an
exception (the caller’s rescue clause will be executed according to the same rules).

In our design language, the exception can be formalized as a violation, and the ex-
ception handler gives rise to a so-called contrary-to-duty obligation, a kind of obligation
comes in force only in sub-ideal situations. The formalization of contrary-to-duty oblig-
ations has been the subject of many debates in deontic logic due to its role in many of
the notorious deontic paradoxes such as the Chisholm and Forrester paradox; we do not
go into the details here.

For example, there is a violation if the postcondition does not hold, i.e., we do not
have balance = old balance + sum. In case of violation, a retry means that the obligation
persists until the next time moment. We extend the language with the proposition retry.
Now, the fact that a retry implies that the postcondition holds again for the next moment
can be characterized as follows: Oc1,c2(φ) ∧ ¬φ ∧ retry → XOc1,c2(φ). This formula
can be read as follows. If c1 is obliged towards c2 that φ, φ is not the case and retry is
true, then in the next state there is again such an obligation for c1 towards c2.

3 Contracts for Agents

In this section we adapt the design by contract theory to deal with the autonomy of
agents, and we extend the deontic design language with preferences.

3.1 Preferences over Outcomes

In this paper we are in particular interested in contracts with agent routines [17]. We
assume as usual that the distinction between agents and components or objects is that
agents are autonomous. In this paper we interpret this autonomy in the sense that agent
routines can select among various outputs satisfying the caller’s condition. We illus-
trate our notion of autonomy by adapting the class Account, which is often used to
illustrate design by contract and other object-oriented techniques, such that a call to a
routine may result in several outcomes. An account now consists of a set of bank notes,
and when depositing we have to specify not only the amount but also how the amount is
distributed over the notes. Moreover, when withdrawing money, the routine can choose
how to return it. For example, when returning euro 100 the routine can either return one
euro 100 note, two euro 50 notes, five euro 20 notes, etc.

Considering now such an autonomous routine, both routine and caller have prefer-
ences over outcomes. The routine specifies which outcomes it tries to achieve, and the
caller has preferences over outcomes too, and uses them to evaluate whether the routine
has satisfactorily fulfilled the contract. In some cases the preferences of both caller and
routine coincide. For example, concerning the level of precision, both caller and routine
may prefer more precise outcomes over less precise ones. However, this is not always
the case. For example, a routine may prefer fast global results over slow detailed results.

In the running example, it may seem unnatural to define preferences over outcomes –
it is therefore also not a good example to illustrate the use of autonomy for agents.
However, many examples discussed in the agent literature can naturally be described
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in this way. That is, the autonomy of agents can often be described by their ability to
decide for themselves which answer to return from a set of alternatives. For example,
an agent component for hotel search in a web-based booking application has to choose
among a huge set of answers. This agent component can be specified by a contract as
defined in section 2. The preconditions may be the location of the hotel, the arrival and
departure dates of the customer. An informal postcondition for the hotel search compo-
nent can be “the component will produce a set of hotels satisfying the precondition”.
However, among this set of hotels, the caller of the routine may choose only the cheap-
est hotels. Or the agent component may prefer not to have all the hotels satisfying the
preconditions, but to obtain the result in less than one second to economize resources.
When these criteria are taken into account in the agent component’s preconditions, then
the component would not longer be autonomous. However, this is clearly not how it
works in practice. The reason that such web services are autonomous is that the number
of possible answers is very large, and it is changing all the time. Obliging the caller to
foresee all possible answers is unrealistic.

We do not want to claim that all kinds of autonomy – or all kinds of agents - can be
modelled using preferences over outcomes. For example, another kind of autonomy is
the ability of agents to violate norms. It is not clear how to specify this kind of autonomy
using preferences over outcomes. However, this kind of norm autonomy can already be
specified in the deontic design language introduced in the previous section, because
agents can violate the obligations.

3.2 Quality of Outcomes

In the design by contract theory, such preferences have not been incorporated yet. The
reason is that this theory has been developed for passive objects and components. How-
ever, such preferences have been studied in cases where the routines are more au-
tonomous, such as service level architectures, agent theory and artificial intelligence.
We therefore propose to extend the contracts between caller and routine such that the
contract specifies the preferences of the routine as well as the preferences of the caller.

In our deontic design language, we have to combine the deontic notion of obligation
with conditional preferences studied in practical reasoning and decision theory. We
use a preference order on the possible answers given by the component. For instance,
consider the withdraw routine of the Account class. Suppose that the routine can
return euro 100 notes, euro 50 notes and euro 20 notes. The routine may prefer to
deliver as many euro 100 notes as possible, thereafter as many euro 20 notes as possible
and finally as many euro 50 notes as possible. Using 20, 50 and 100 as propositional
variables with the obvious meaning, the preference order over outcomes for the routine
will be (these outcomes are mutually exclusive): 100∧¬50∧¬20 <r ¬100∧¬50∧20 <r

¬100∧50∧¬20.
Those preferences are given ceteris paribus [18], i.e., the routine prefers delivering

as many euro 100 notes as possible to delivering as many euro 50 notes as possible
all else being equal. Notice that the previous preference order over outcomes can be
conditional. The conditions are some properties of the input of the component, as prop-
erties of the outcomes are used in the preference order. For instance, the routine may
use this order only if the sum to be withdrawn is more than 200 euros. In the contrary
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case, the routine may prefer to deliver as many euro 50 notes as possible. Like in the
CP-net formalism [19], the preference specification of the withdraw routine can now
be represented by a conditional preference table:

200+ 100∧¬50∧¬20 <r ¬100∧¬50∧20 <r ¬100∧50∧¬20
¬ 200+ ¬100∧50∧¬ 20 <r ¬100∧¬50∧20 <r 100∧¬50∧¬20

The caller of the routine may also specify some preference order over the outcomes.
For instance, a user of the withdraw routine may specify that he/she prefers to have
as many euro 20 notes as possible, then to have as many euro 50 notes as possible and
finally to have as many euro 100 notes as possible: ¬100∧¬50∧ 20 <c¬100∧50∧¬20
<c 100∧¬50∧¬20.

In a preference specification, the caller of the routine may use an “aspiration level”
to specify under which level the answer of the component is no more acceptable. For in-
stance, let us resume the previous preference specification for the caller of withdraw.
The caller may want to precise that in this specification, he/she will consider that the
quality is not satisfactory if the withdraw routine delivers as many euro 100 notes
as possible. This specification does not interfere with the primary preference specifica-
tion and the caller may be able to change the acceptability level. For instance, he/she
may now want to consider only ¬100∧¬50∧ 20 as a satisfactory quality. We will use a
marker �c in the caller preference specification to indicate where the least acceptable
outcome is for the caller. This can be viewed as a quality specification for the caller
of the routine. As previously, we can use conditional preference tables to represent the
caller preferences. A complete preference specification of routine withdraw is:

200+ 100∧¬50∧¬20 <r ¬100∧¬50∧20 <r ¬100∧50∧¬20
¬ 200+ ¬100∧50∧¬ 20 <r ¬100∧¬50∧20 <r 100∧¬50∧¬20

� ¬100∧¬50∧ 20 <c¬100∧50∧¬20 �c 100∧¬50∧¬20

3.3 Deontic Design Language

We now extend the syntax of OLTLto OPLTLwhich takes into account the preference
specification. The crucial question here is how time and preferences interact. Can we
reason about the change of preferences in time (external dynamics), or can we reason
about preferences among propositions at distinct moments in time (internal dynamics)?
It is tempting to define temporal preference logics along these lines, but they seem to be
too complex to be used in practice. We therefore encode in our logic preferences sep-
arately from the temporal reasoning over obligations. The preferences specify desired
behavior, but the preferences themselves cannot change. This may seem very limited at
first sight, though it should be observed that it is in line with standard models in decision
theory, where typically a utility function is assumed to be fixed over time.

The preference relations <a,b are indexed by two objects. The first one represents the
object asking for a specification and the second one represents the object on which the
preference specification is made. For instance <withdraw,withdraw represents a preference
specification on the withdraw routine emitted by the routine itself. <c,withdraw repre-
sents a preference specification on the withdraw routine emitted by another agent or
routine C.
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Definition 2 (Syntax OPLTL). Given a finite set A of objects (or components, or agents)
and a countable set P of primitive proposition names. The admissible formulae of
OPLTL are recursively defined by:

1 If Φ is a formula of OLTL, then Φ is a formula of OPLTL.
2 If α, β1, . . . βm are propositional formulae and a, b ∈ A, then the following formula

is a formula of OPLTL.
α : β1 <a,b . . . <a,b βi �a,b βj <a,b . . . <a,b βm

The semantics of the OLTLpart of OPLTLis straightforward, see for instance [15].
The preference specification semantics is given by CP-net semantics, see [19]. Notice
that, as shown in [19], we can use indifference between outcomes in the preference
specification without losing interesting properties of CP-nets.

3.4 Contract Violations

Now, as a routine contract can provide a level of acceptability in the preference speci-
fication expressed by the caller of a routine, we have to define what happens if this ac-
ceptability level is not verified by the routine’s outcome. For instance, if the withdraw
routine specified in the previous section delivers as many euro 100 notes as possible, the
user specification is violated. We must integrate the acceptability notion into the con-
tract we defined previously. Let us consider a routine r, its preconditions Ocr(φ) and
a preference specification <c,r and its associated quality level represented by β1 <c,r

. . . βj �c,r . . . <c,r βm. There are two possibilities:

– either the violation of the acceptability level is unacceptable for the caller and in this
case we can express it as a postcondition for the component. This will be called as
a strong acceptability level. We can integrate the acceptability level in the contract
by specifying φ → XOrc(β1 ∨ . . . ∨ βj).

– either the violation of the acceptability level is acceptable for the caller. For in-
stance, a caller may consider that what is important for him/her is that the com-
ponent produces an outcome verifying the postcondition. The quality specification
he/she produces is a bonus for his/her use of the application. In this case, we can-
not express the acceptability level as a postcondition, because the violation of the
postcondition will induce strong consequences on the component. We denote such
acceptability level specification as weak acceptability specification. It can be in-
tegrated in the contract by the following formula: φ → X(¬(β1 ∨ . . . ∨ βj) →
unsatisfied(c)). The meaning of unsatisfied is the following: if the quality is not
enough for the caller, then he/she has a right which he/she can execute or leave.

In the case of a strong acceptability specification, there are still good reasons to dif-
ferentiate the satisfactory quality and “classical” postconditions. The acceptability spec-
ification can evolve: the user can change his/her mind, there is not only one user, . . . , so
the acceptability specification is not a real postcondition which will be verified by all
“executions” of the component.

In a real-world application, several components are combined in order to build the
whole application. Those components will have contracts as preference specification.
We can use the CP-net formalism to represent the information flow among components
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and to represent the quality specification of a component as preference relations condi-
tioned by the outcome of the previous component. For instance, consider a web-based
booking system. This system is composed of two components: a component Cp which
searches plane tickets and a component Ch which searches hotel rooms. A user of the
system can specify that he/she wants first to find a plane ticket before finding an ho-
tel. For instance, the first component may prefer fast travels. Ch may then prefer cheap
hotels if the outcomes of Cp are fast travels (because they are more expensive), and
comfortable hotels if the travel is not fast (because the traveller may want to have rest).
A CP-net graph formalising this specification is:

Plane

fast <Cp,Cp ¬fast

¬fast

fast

conf <

¬conf <Ch,Ch

Ch,Ch ¬conf

 conf

Room

Using the CP-net machinery, we can deduce that the preference specification for the
global component is: fast∧¬conf <Cp+Ch,Cp+Ch fast∧conf <Cp+Ch,Cp+Ch ¬fast ∧
conf <Cp+Ch,Cp+Ch ¬fast∧¬conf. An important subject for further research is how to
formally derive global acceptability level from each component’s acceptability level, or
the implication of using a cyclic graph representing the components “communications”.
Some references about cyclic CP-nets are given in [19].

4 The Normative Stance

In this section we compare the normative stance, a phrase due to Jan Broersen [20] and
implicit in design by contract, with the intentional or BDI stance popular in agent ori-
ented software engineering. The following table summarizes the comparison between
the intentional stance and the normative stance:

Stance intentional stance normative stance
Concepts BDI OP, rights, responsibility

from folk psychology ethics, law, sociology
Computer human = angry, selfish, . . . God, master/slave, servant

Class of systems decision making decision making
Realization specification and verification components

Implementation programming objects, operation
specification BDICTL temporal deontic logic

First, the intentional stance is rooted in the philosophical work of Dennett, whereas
such grounding does not seem to exist for the normative stance (though there are can-
didates, such as [21]). The concepts from the intentional stance come from folk psy-
chology. The normative stance borrows concepts from ethics, law or sociology. Other
examples of this normative stance we mentioned in the introduction are the IMPACT
system [7] and the BOID architecture [8].
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Second, the success of the intentional stance is that people like to talk about their
computer as a human which has beliefs and desires, which may be selfish, or which can
become angry. The implicit assumption of design by contract is that designers find it
useful to understand software construction in terms of contracts, or, more generally, in
terms of obligations. The success of design by contract may be explained by the fact
that “social contract” is well established in social sciences [22]. We may call this the
normative stance towards computer systems. The success is due to the fact that humans
either consider the computer as their master, which has to be obeyed, or as their slave,
which has to obey orders.

Third, the intentional stance has been advocated for agent systems, which are for
example autonomous and proactive. It has been used as a high level specification lan-
guage, as well as low level programming language. We believe the normative stance can
be used in a wider setting. In the examples we used it also for low level objects. How-
ever, it is particularly useful if we use a higher abstraction level in terms of components
or agents.

5 Concluding Remarks

In this paper we study how extensions of deontic logic can support design. We propose
a deontic design language, that is a kind of specification language whose primary op-
erator is an “obligation” operator (see Section 4). First, we ask which kind of deontic
logic can be used as a design language to support design by contract We show how
directed modal operators are capable of formalizing contracts between clients (callers)
and suppliers (routines), relying on mutual obligations and benefits made explicit by
assertions. These formalisms have been developed and studied in electronic commerce
and artificial intelligence and law. Moreover, we show how temporal operators can be
used to formalize dynamic behavior such as contract violations.

Second, we introduce preferences over outcomes of a routine. This is a necessary
extensions of the design by contract approach when the components is autonomous in
the sense that it can return several outputs, such as autonomous agents or autonomous
services. We illustrate how the preferences can be used to specify the desired quality
of a contract. We show how the preferences can be specified with ceteris paribus or
CP nets. In further research we study qualities of service level contracts that refer to
multiple routine calls, such as average response times.

Third, we ask what kind of properties should be formalized by such a design logic.
This is summarized in the following table:

social contract assertions directed obligations
violation exception violations

repair exception handling contrary-to-duty reasoning
contract form interface ?

testing and debugging ? ?

In this paper, we do not consider contract forms and contracts for testing and debug-
ging. The contract form of a class, also called its “short form”, serves as its interface
documentation. It is obtained from the full text by removing all non-exported features
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and all implementation information such as do clauses of routines, but keeping inter-
face information and in particular assertions. The use of these elements in our deontic
design language, for example to combine assertions, is subject of further research.

Fourth, we ask how this approach based on deontic logic compares to the BDI ap-
proach, dominant in agent based software engineering. Whereas the BDI approach is
based on an attribution of mental attitudes to computer systems, design by contract is
based on an attribution of deontic attitudes to systems. We suggest that the normative
stance has a wider scope of applicability than the intentional stance, though this has to
be verified in practice. In further research we study the relation with commitments in
Shoham’s Agent Oriented Programming (AOP) [17], and with rely/guarantee reason-
ing [23].

The formalism developed here may seem too “formal” to be used in real applications.
It would be interesting to develop practical tools taking our approach into account, in
order to offer a support for deontic software engineering. We may for instance extend
CP-nets tools.

Another topic for further research is the introduction of other elements of contracts
in our formalism. Contracts typically consist not only of regulative norms (obligations),
but also of constitutive norms (counts-as conditionals) [24]. How to introduce them in
design by contract, and in particular in our deontic design language OPLTL?
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Abstract. A norm-governed agent takes social norms into account in
its practical reasoning. Such norms characterise its role within a specific
organisational context. By adopting a role, the agent commits to fulfil
and adhere to the social norms associated with that role. These com-
mitments require the agent to act in a way that does not violate any
of its prohibitions or obligations. In adopting different sets of norms,
an agent may experience conflicts between these norms as well as in-
consistencies between possible actions for fulfilling its obligations and its
currently adopted set of norms. In order to resolve such problems, it must
be informed about conflicts and inconsistencies. The NoA architecture
for norm-governed agents implements a computationally efficient mech-
anism for identifying and indicating such problems – possible candidates
for action are assigned a specific label that contains cross-referenced in-
formation of actions and norms. As actions are indicated as problematic
and not simply filtered out, the agent can still choose to either act accord-
ing to its norms or against them. The labelling mechanism presented in
this paper is therefore a critical step towards enabling an agent to reason
about norm violations – the agent becomes norm-autonomous.

1 Introduction

Norm-governed agents are able to reason about rules and regulations established
in an organisational context. With that, their practical reasoning is not only
based on what they believe, desire and intend, but what they are actually obliged,
permitted or forbidden to do in a specific social context. Norms are essential for
the creation of organisational structures, because they characterise the rights and
duties of individuals taking on specific organisational roles. Agents in such roles
must be norm-governed - they must be able to take their current normative
position into account in their decision-making [14]. To provide an agent with
abilities to reason about norms, a set of issues must be investigated:

– How are norms and actions represented?
– How do norms influence the practical reasoning of the agent?
– How do agents resolve conflicts between norms they currently hold and deal

with inconsistencies between their actions and their norms?
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A specific model and architecture for norm-governed practical reasoning has
been developed in the form of the NoA architecture [12]. NoA is a reactive
planning architecture in the tradition of concrete implementations of practical
reasoning systems [10] with extensions that allow the reasoning about norms.
Specific care has been taken to make NoA agents norm-autonomous [5] – a NoA
agent can decide whether to honour its obligations and prohibitions. This re-
quires that the agent, in its attempt to fulfill obligations, does not simply filter
out options for action that are inconsistent with its current set of norms, but
that the complete set of options for action are taken into account during delib-
eration. NoA agents use a labelling mechanism to characterise options for action
as either consistent or inconsistent with their current set of norms. In this pa-
per, we use concepts introduced in [14] and [12] and investigate in more detail
the concept of “informed” deliberation. For this purpose, an enriched form of
a label for candidate actions is introduced that guides or “informs” the delib-
eration of a norm-governed agent. In its deliberation, the agent can use this
label to reason about consistency of a possible option for action – whether an
action is norm-compliant or not. In case of inconsistencies, it will be beneficial
for the agent to become informed about the reasons of such an inconsistency
– which norms are responsible for the inconsistency of an action? Are all op-
tions inconsistent, or is there still a possibility to remain norm-compliant? Can
the normative authority, which issued such norms, be convinced to revoke exist-
ing prohibitions or obligations or at least temporarily grant a permission that
overrides a prohibition? Which violation of a norm results in the least damage
to the agent’s reputation? To support the agent in resolving inconsistency, the
labelling mechanism described in this paper holds cross-referenced information
between possible candidates for action of the agent and its currently held set of
norms.

2 Norm-Governed Agents

Norm-governed agents are able to reason about norms and take them into ac-
count in their practical reasoning. Such an agent must be socially aware – it
must be able to (a) adopt norms such as obligations, permissions and prohibi-
tions as they are established within a community of agents, (b) process them
correctly and (c) anticipate the possible interactions between the effects of its
actions and its norms. The NoA system [12, 14] comprises an abstract model of
norm-governed agency and a concrete agent architecture for the implementation
of norm-governed agents. In the development of this model and architecture, a
set of design decisions were made: (a) practical reasoning is based on reactive
planning, with a set of pre-specified plan procedures representing the agent’s
behavioural repertoire, (b) obligations are the principal motivators for the agent
to act, (c) plan procedures are declared with explicit effect specifications – this
allows the agent to reason about the effects of its actions, whether they are con-
sistent with its currently held norms and (d) a clear distinction is made between
the agent achieving a state of affairs or performing an action (see [16]). This
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distinction is reflected in the NoA norm and plan specifications, with norms
refering to an activity that is either the achievement of a state or the perfor-
mance of an action. Norms are central to the NoA model of norm-governed prac-
tical reasoning. In this model, the norms held by the agent are its obligations,
permissions and prohibitions:

– Obligations are the principal social motivators within NoA — they moti-
vate the agent to either achieve a state of affairs or to perform an action.
Based on such a motivation, a norm-governed agent may select an appro-
priate plan for execution. Obligations can be viewed as analogous (although
not identical) to goals (or desires) within traditional Belief-Desire-Intention
agent architectures such as Jason [1].1 The analogy lies in the fact that, as
with goals (or desires), it may not be the case that the agent will instantiate
and select a plan (i.e. adopt an intention) to satisfy an obligation; this will
depend on other social constraints on the agent’s activities along with its
capabilities (encoded in its available plans) and the current circumstances
it finds itself in (that leads to the generation of a set of instantiated plan
options).

– Prohibitions require the agent to not achieve a state of affairs or perform an
action – the agent is forbidden to pursue a specific activity. Prohibitions are
not motivators for the agent, but explicitly restrict the choices of activities
the agent can ideally employ.

– Permissions explicitly allow the achievement of a state of affairs or the per-
formance of an action.

In the following, we present a detailed specification of the NoA model of
norm-governed agency.

2.1 The Abstract Model

The NoA model of norm-governed agency maintains a set of BELIEFS as a
representation of the current state of the world, the set PLANS containing the
plan specifications, the set NORMS representing the adopted set of norms, and
the set ROLES comprising all those roles the agent has adopted. Each role is
characterised by a set of norms – when the agent adopts a role it adopts all
the norms annotated to this role as well. All norm specifications over all the
adopted roles comprise the set NORMS. An agent joins an organisation and
adopts (one or more) roles within this organisation by signing a contract with
members (representatives) of the organisation. Each role r ∈ ROLES is specified
in a contract c ∈ CONTRACTS. To allow a unique identification of elements
within these sets, the concept of an identifier is introduced. These concepts are
plans, norms, roles, agents and contracts:

1 In the research reported here, we do not discuss the distinctions between desires
(internal motivators) and obligations (social motivators), but focus exclusively on
the way that norms are interpreted; this is clearly a topic for future investigation,
but see, for example, Castelfranchi [3] for some insights into this issue.
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Definition 1. The set INORMS = {n1, ..., nn} describes a finite set of norm
identifiers. The set IPlans = {p1, ..., pn} describes a finite set of plan identifiers.
The set IRoles = {r1, ..., rn} describes a finite set of role identifiers. The set
IAgents = {a1, ..., an} describes a set of agent identifiers. The set IContracts =
{c1, ..., cn} describes a finite set of contract identifiers. IDENTIFIERS =
IRoles ∪ IAgents ∪ IPlans ∪ IContracts is the set of all identifiers, where IRoles,
IAgents, IPlans and IContracts are mutually disjunct.

In the context of NoA, the norm-governed agent is described as pursuing either
a state-oriented or action-oriented activity [16]. Norm declarations, therefore,
contain a so-called activity specification:

Definition 2. An activity A determines either the achievement of a state of
affairs, called state-oriented activity, or the performance of an action, called
action-oriented activity. The expression achieve(p) expresses the achievement
of a state of affairs p. The expression perform(σ) expresses the performance
of action σ, where σ describes the signature of a pre-specified plan procedure
formulated in the NoA language. An agent can be allowed, forbidden or required
to achieve or not achieve a state of affairs (or its negation):

– “achieve a state of affairs p”: achieve(p)
– “achieve a state of affairs ¬p”: achieve(¬p)
– “not achieve a state of affairs p”: ¬achieve(p)
– “not achieve a state of affairs ¬p”: ¬achieve(¬p)

An agent may also be obliged, forbidden or allowed to perform or to not perform
an action:

– “perform action σ”: perform(σ)
– “not perform action σ”: ¬perform(σ)

Norm specifications, comprising the set NORMS and expressing either an oblig-
ation, permission or prohibitions, contain such activity specifications expressing
that a state or action is either obliged, permitted or prohibited. A label is introduced
to identify a norm specification as either an obligation, permission or prohibition.

Definition 3. The set LNorms = {obligation, permission, prohibition} is the
set of labels used to identify obligations, permissions and prohibitions2.

A norm specification can then be defined in the following way:

Definition 4. A norm specification, expressing an obligation, permission, pro-
hibition is a tuple 〈n, iRoles, A, a, e〉, where

– n ∈ LNORMS

– iRoles ∈ IRoles is a role identifier for a norm addressee
2 A label “sanction” exists as syntactic sugar, as it is an obligation for an agent in

the role of a so-called “authority” to pursue certain activities that represent such
sanctions (see [13] for more details).
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– A is the activity specification
– a is the activation condition
– e is the expiration condition

With such a definition in place, norms can be specified in NoA. Norms are de-
clared according to the possibilities of expressing a specific activity. For example,
according to this definition of a norm specification, an obligation can express that
a norm addressee is obliged to see to it that a specific state of affairs is achieved
(or not achieved) or that it is obliged to not see to it that a specific state of
affairs is achieved (or not achieved).

Norms in NoA are conditional entities — they are relevant to an agent under
specific circumstances only. Our model of norm-governed agents includes a con-
cept of explicit norm activation and deactivation: norms carry two conditions,
an activation condition and an expiration condition. These two conditions allow
an exact specification of circumstances under which a norm becomes active and,
therefore, relevant to the agent, and when it expires. A separate expiration con-
dition allows a more precise specification of the circumstances when a norm is
actually active:

– As soon as the activation condition holds, a norm is activated and becomes
relevant to the agent.

– It continues to be activated, even if the activation condition ceases to hold.
– A norm is transferred from an activated into a deactivated state only if the

expiration condition holds.

With that, the two conditions test two events — the occurrence of a state
of affairs that activates the norm and the occurrence of a state of affairs that
deactivates the norm.

NoA is a reactive planning system. Characteristic for a reactive planning
system is the provision of pre-specified plan procedures at design time as the
behavioural repertoire of an agent. A NoA agent adopts a set of such plans as
its set PLANS. Obligations can motivate either the achievement of a state of
affairs or the performance of an action. Plan procedures in NoA service both
cases. If a state-oriented activity is required, plans are selected according to
their effects – NoA introduces explicitly specified effects into plan declarations.
If an action-oriented activity is required, plans are selected directly according
to their signature. An abstract definition of a plan is given in the following:

Definition 5. A plan is defined as a tuple P = 〈σ, precondition , effects , body〉,
where:

– σ is the signature of the plan specification, with σ = 〈IPlans, {par1, .., parn}〉
comprising a plan identifier and a set of parameters,

– precondition comprises an expression over predicates and operators ∧,∨,¬;
if the set BELIEFS reflects a state of affairs that evaluates the precondition
to true, the plan becomes activated,

– effects comprises a list of terms expressing possible effects occurring during
the execution of the plan body,

– body comprises an executable specification of the plan.
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2.2 Activation, Selection and Execution

The concept of activation is essential in NoA. As described before, norm and plan
declarations contain conditions that determine under what circumstances norms
are activated (and instantiated in the course of this activation) and, therefore,
relevant to the agent and when plans are activated and, therefore, instantiated
and available as potential options for execution. The currently activated norms
determine the agents current normative position. The currently activated plans
determine its current potential behavioural repertoire. Two sets express the cur-
rent activation state of an agent: (a) the set INSTNORMS, representing the set
of activated and instantiated norms and (b) the set INSTPLANS, representing
the set of activated and instantiated plans.

Definition 6. The set INSTNORM = INSTOBL ∪ INSTFOR ∪
INSTPER is the set of currently activated and, therefore, instantiated norms.
Subsets of the set INSTNORMS are INSTOBL, INSTFOR and INSTPER,
which are the sets of currently instantiated obligations, prohibitions and permis-
sions.

The sets INSTNORMS and INSTPLANS are permanently changing accord-
ing to changes in the set of beliefs of the agent. Therefore, at any time, a specific
set of norms is activated and and a set of plans instantiated. A subset of these
activated norms are the currently activated obligations of the agent, INSTOBL.
Each obligation o ∈ INSTOBL motivates the agent to act – either to achieve a
state of affairs or to perform an action. The agent has to select options or can-
didates for action from the set of currently instantiated plans, INSTPLANS.
The set CANDIDATES is formed, containing all those plan instantiations that
are candidates for obligations in the set INSTOBL.

Traditionally, agents based on reactive planning architectures have to select
one specific candidate for execution from this set (which is described here as the
set CANDIDATES) – in a process of deliberation, the agent has to apply spe-
cific strategies for this selection. Norm-governed agent have to take norms into ac-
count in their practical reasoning. With the introduction of norm-awareness into
an agent architecture, the agent is enabled to reason about the consistency of its
actions in terms of norms – certain actions, which are possible candidates for fulfill-
ing an obligation are maybe forbidden. One way of dealing with such inconsistent
candidates would be to simply filter them out – but with such a strategy the agent
becomes completely benevolent and is not norm-autonomous. Norm-autonomy is
essential to NoA agents – the agent can decide whether to honour its obligations
and prohibition. Therefore, before the agent decides which candidate from the set
CANDIDATES will be executed, it has to investigate the consistency of these
options. For this, NoA introduces a labelling mechanism that identifies each can-
didate as either consistent or inconsistent with the set INSTNORMS.

2.3 Investigating Norm Consistency

In essence, two problems have to be investigated: (a) Possible Conflicts between
permissions and prohibitions and (b) Possible Inconsistencies between candidate
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plans and norms. Permissions and prohibitions configure the normative position
of an agent, either restricting or expanding the set of possible actions (plans)
the agent can employ without causing norm violation. In terms of inconsistency,
obligations may motivate the creation of a set CANDIDATES, where none,
some or all plan instantiations contained in this set are prohibited because
either the execution of the plan itself is prohibited or because the plan produces
at least one (side-)effect that is prohibited. Conflicts between permissions and
prohibitions have to be resolved so that the consistency of candidates in the
set CANDIDATES can be investigated. For this purpose, NoA puts forward
conflict resolution strategies that are discussed in detail in [12, 14].

For a definition of consistent execution of plans in NoA, it is necessary to
observe the relationship between candidates – plan instantiations – and norms.
The set INSTNORMS expresses that either the achievement of certain states
of affairs or the performance of certain actions (plan instantiations) is either
allowed, forbidden or obliged:

Definition 7. The set SO describes those states of affairs obliged by currently
active obligations contained in the set INSTOBL, whereas the set TO describes
actions obliged by currently active obligations contained in the set INSTOBL.
Similarly, the sets SF and SP and the sets TF and TP describe states of affairs
prohibited / permitted and actions prohibited / permitted by currently active
norms.

According to definition 10, a plan instantiation in the set INSTPLANS is a
consistent candidate for a specific obligation o ∈ INSTOBL, if this plan instan-
tiation is (a) not a currently forbidden action, (b) none of its effects are forbidden
states of affairs and (c) none of its effects counteracts any obligation in the set
INSTOBL. To allow the investigation of possible effects of an instantiated plan
p ∈ INSTPLANS, a function effects(p) is introduced:

Definition 8. For a plan instantiation p ∈ INSTPLANS, the function
effects(p) provides the set of fully instantiated effect specifications:

effects(p) = { e | e is an effect of plan instantiation p ∈ INSTPLANS}

A second function is needed that allows us to refer to states of affairs that are
the negation of states expressed by plan effects. The function producing this set
is called neg effects(p).

Definition 9. For a plan instantiation p ∈ INSTPLANS, the function
neg effects(p) describes a set that contains a negated version for each element e
of the set described by effects(p):

neg effects(p) = { n | e ∈ effects(p) ∧ n = ¬e}

With these definitions in place, a norm-consistent execution of a plan can be
expressed in the following way:
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Definition 10. The execution of a plan instantiation p ∈ INSTPLANS, with
p /∈ TF (p is not a currently forbidden action), is consistent with the current
set of active norms, INSTNORMS, of an agent, if none of the effects of p is
currently forbidden and none of the effects of p counteracts any currently active
obligation:

consistent(p, TF , SF , SO) iff p /∈ TF

and SF ∩ effects(p) = ∅
and SO ∩ neg effects(p) = ∅

An investigation into the consistency in NoA takes place according to this defini-
tion of consistent execution of a plan instantiation. The result of such an investiga-
tion will be the set of prohibitions that either forbid the candidate to be executed
directly or that forbid the candidate’s effects to occur as states of affairs, and the
set of obligations that are counteracted by the effects of the candidate. In NoA,
this information is accumulated in the consistency label for candidates:

Definition 11. A label, expressing consistency / inconsistency of a plan instan-
tiation c ∈ CANDIDATES, is a tuple

L = 〈c, MOTIV ATORS, PROHIBITORS〉,
where

– c ∈ CANDIDATES is the labelled candidate for a set of motivating oblig-
ations

– MOTIV ATORS = { oc | oc ∈ INSTOBL ∧ c ∈ CANDIDATES ∧
effects(c) ∩ SO /∈ ∅ } ∪ { oc | oc ∈ INSTOBL ∧ c ∈ CANDIDATES ∧
c ∈ TO } is the set of obligations that motivated the addition of this candidate
to the the set CANDIDATES, because (a) one of its effects achieves the
state of affairs demanded by this obligation or (b) it is the action demanded
by these obligations

– PROHIBITORS = { f c | f c ∈ INSTFOR ∧ c ∈ CANDIDATES ∧ c ∈
TF } ∪ { f c | f c ∈ INSTFOR∧c ∈ CANDIDATES∧effects(c)∩SF /∈ ∅} ∪
{ oc | oc ∈ INSTOBL ∧ c ∈ CANDIDATES ∧ neg effects(c)∩SO /∈ ∅}
is the set of conflicting prohibitions or obligations

From this labelling, the agent can derive the consistency of its current normative
position. For a candidate c ∈ CANDIDATES, a label expresses consistency, if
the set of PROHIBITORS is empty:

– Label expressing consistency: 〈 c, MOTIV ATORS, {} 〉
A partitioning of the set CANDIDATES emerges into consistent and incon-

sistent candidates. By translating the set CANDIDATES into a labelled set
CANDIDATESL, this partitioning occurs, where each element is annotated
with a label L expressing consistency or inconsistency.

Via characterising the consistency of candidate plans, we can define the con-
sistency of an obligation. To be able to address the subset of candidates that are
options for a specific obligation, the function options(o), with o ∈ INSTOBL,
is defined:
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Definition 12. For a specific instantiated obligation o ∈ INSTOBL, the func-
tion options(o) describes a subset of elements from the set CANDIDATES,
where each element of this subset is a candidate for obligation o:

options(o) = { co | co ∈ CANDIDATES ∧ o ∈
INSTOBL ∧ is candidate(co, o)}

For a specific obligation o ∈ INSTNORMS, a specific subset of the set
CANDIDATESL represents the set options(o) of possible candidates. There
are three possible configurations for this set: (a) all elements in options(o) are
labelled consistent, (b) at least one element in options(o) is labelled consistent or
(c) all elements are labelled inconsistent. According to these three possibilities,
we introduce three so-called consistency levels for a specific obligation:

– Strong Consistency. An obligation is strongly consistent if all options(o) ⊆
CANDIDATESL are labelled as consistent:

strong consistent(o, SF , SO, TF ) iff
∀p ∈ options(o). consistent(p, TF , SF , SO)

– Weak Consistency. An obligation is weakly consistent if at least one candi-
date in the set options(o) is labelled as consistent:

weak consistent(o, SF , SP , SO, TF ) iff
∃p ∈ options(o) s.t.consistent(p, TF , SF , SP , SO)

– Inconsistency. An obligation is inconsistent if no candidate in the set
options(o) is labelled as consistent:

inconsistent(o, SF , SO, TF ) iff ∀p ∈ options(o). ¬consistent(p, TF , SF , SO)

For a NoA agent, this norm-annotated set of candidates, CANDIDATESL,
is the input into the subsequent deliberation process to find a single plan for
execution for each obligation in the set INSTOBL. According to the concept
of norm-autonomy [5], norm-inconsistent options for action are not simply fil-
tered out but remain – albeit inconsistent – options for the agent’s deliberation.
During deliberation, the agent can then decide whether to honour its obligations
and prohibitions by only selecting norm-consistent options or to act against its
currently held norms. NoA agents are, therefore, norm-autonomous.

3 Informed Deliberation

Informed Deliberation is the mechanism within NoA for dealing with consis-
tency between the agent’s actions and its currently held set of norms. For the
agent to be able to deliberate about its actions, it needs information about a
partitioning of the set CANDIDATES of applicable actions into allowed and
forbiddent actions. Such a partitioning must be “complete” – if the normative
situation for specific candidates is not decided because of conflicts in the set of
norms, then these conflicts have to be resolved. In the context of NoA, specific
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conflict resolution strategies are proposed (see [12]). The following strategies are
under investigation in the context of the NoA model: (a) Arbitrary decision, (b)
Recency, (c) Seniority, (d) Cautiousness, (e) Boldness, (f) Social power and (g)
negotiation with the norm issuer. These are conflict resolution strategies that
can be employed during the agent’s deliberation. It helps the agent to achieve
a complete partitioning of its candidate set into allowed and forbidden plans.
The strategy “arbitrary decision” can be utilised as the simplest form of conflict
resolution as it does not take into account any information about the conflict
situation itself. If the agent chooses “recency” or “seniority”, then a form of
time stamp is required that records the activation time of a norm. With that, a
ranking according to activation time can be established and selections according
to “recency” or “seniority” can take place. The agent is pursuing a “cautious”
strategy, if prohibitions always overrule permissions and it is pursuing a “bold”
strategy, if permissions always overrule prohibitions.

An agent can also “renegotiate” specific norms and reach agreements to either
revoke prohibitions or receive additional permissions that override prohibitions.

A conflict resolution strategy according to “social power” would utilise relation-
ships of dependency and influence between roles. Such relationships can be used
to determine, if a norm is “more powerful” to override a conflicting norm. If the
issuer of norms, acting in a position of power, issues multiple conflicting norms,
the agent, despite being able to detect such conflicts, will not be able to resolve
the conflict according to “social power” as all conflicting norms are issued by the
same source. The agent may claim that this source is inconsistent itself and re-
quire it to resolve these conflicts and to reissue a set of norms without conflicts.
Such a situation can be regarded as a distributed conflict resolution strategy.

Finally, the agent may not be able to remove prohibitions on its actions. If
these actions are necessary for the fulfilment of its obligations, it may decide to
act against existing prohibitions. In such a case, it may investigate the conse-
quences or sanctions for such a violation – according to a rational reasoning, the
agent may decide to choose an action that incurs a minimum of costs in terms of
sanctions. This would require the enhancement of the NoA labelling mechanism
to capture such costs.

The consistency label of candidates is used in NoA to indicate the consistency
of specific candidate plans – candidate plans for execution are simply identified
as either consistent or inconsistent. In the following discussion, the information
conveyed by the label in the form of the set PROHIBITORS is taken into
account in a more detailed fashion. The goal is to give an agent means to remove
inconsistencies so that it can pursue its intended activities. The agent has to
change its consistency level.

The normative situation within a society can be quite complex. An agent
can take on different roles and, with that, adopt different sets of – possibly
conflicting – norms. NoA employs a model of norm specifications with conditions
that determine under what circumstances norms are “active” and, therefore,
“relevant” to the agent. Inconsistencies between norms and actions are, therefore,
apparent only if specific circumstances activate inconsistent norms and actions.
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3.1 Example

For example, let us assume that an agent holds a set INSTNORMS = { p1, p2 }
with two plans p1 and p2 as its current (instantiated) capabilities. We assume
that these plans will produce the following states of affairs as their effects during
execution:

– plan p1 : effects(p1) = { s, t }
– plan p2 : effects(p2) = { s }
We also assume that the agent adopts two roles, ROLES = { r1, r2 } and,

consequently, two sets of norms annotated to these roles. If we use specific syn-
tactic forms to express norm specifications according to Definition 4 (see [14, 12]
for details), then we can describe the two role-related norm sets in the following
way:

– role r1 : { obligation(r1, achieve(s), φ, ψ), prohibition (r1, perform(p2), φ, ψ) }
– role r2 : { prohibition(r2, achieve(t), φ, ψ) }
According to Definition 4, norm specifications are characterised by a reference

to a role, an activity specification and two conditions, the activation and expi-
ration condition (denoted here as φ and ψ). For the following discussion, we as-
sume that these two norm sets are issued by two different normative authorities,
authority Ax and Ay. With that, the agent’s set INSTNORMS, comprising
these two role-related norm sets, contains norms issued by different normative
authorities.

This agent is motivated by its obligation obligation(r1, achieve(s), φ, ψ) to
achieve this state of affairs. Consequently, it forms the set CANDIDATES.
Plan p1 as well as p2 produce s as one of their effects and, therefore, comprise
the set CANDIDATES:

– CANDIDATES = { p1, p2 }
The investigation of consistency yields following problems: candidate p1 is

inconsistent with the prohibition to achieve state t, as t ∈ effects(p1) and candi-
date p2 is inconsistent with the prohibition to perform action p2. A set of labels
emerges, characterising these inconsistencies (see Definition 11):

Lp1 = 〈p1, {obligation(r1, achieve(s), φ, ψ)}, {prohibition(r2, achieve(t), φ, ψ)}〉

Lp2 =〈p2, {obligation(r1, achieve(s), φ, ψ)}, {prohibition(r2, perform(p2), φ, ψ)}〉
In both labels, the set MOTIV ATORS (see Definition 11) contains the one

motivating obligation. In both cases, the set PROHIBITORS is not empty but
contains the corresponding conflicting prohibitions. The motivating obligations
responsible for forming this set CANDIDATES is at a level of inconsistency.

In this situation, the agent has two options:

– although the agent is in a state of inconsistency, it acts by selecting one of
the candidates for execution.

– the agent tries to improve the level of consistency for its obligation, so that
at least one of the candidates becomes a consistent option
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3.2 Improving the Level of Consistency

As outlined before, the consistency of candidate plans defines the consistency of
an obligation. For a specific obligation o ∈ INSTNORMS, a specific subset of
the set CANDIDATESL represents the set options(o) of possible candidates
for this obligation. This set can have one of the three following states: (a) all
candidates are consistent, (b) at least one of them is consistent or (c) none of
them is consistent. According to the consistency situation of options(o), the
obligation o is then either strongly consistent, weakly consistent or inconsistent.
An obligation can be fulfilled without violating other norms, if it is at least
weakly consistent. A change of such a consistency level may take place because
of the activation of new permissions and prohibitions. Permissions allow actions
to occur whereas prohibitions declare certain actions as forbidden.

In the previous example, the set MOTIV ATORS for the two candidates
p1, p2 contains one obligation to achieve a state of affairs s:

obligation(r1, achieve(s), φ, ψ)

According to the labelling outlined in the example, none of the candidate plans
for this obligation are consistent – a prohibition exists for both candidates in
the set CANDIDATES. The agent is regarded as operating at a “level of
inconsistency” in terms of this obligation.

If the agent decides to fulfill this obligation in a norm-consistent way, then
it must try to upgrade the level of consistency of this obligation. This would
mean to free – maybe temporarily – at least one of the candidate plans from its
prohibitors. This can take place by engaging with the authority that issued the
prohibitors in a dialogue and reach an agreement that can be the following:

– the authority revokes the prohibiting norms
– the authority issues a permission that temporarily overrides the existing

prohibition (see [14, 12] for details about precedence and overriding between
norms and appropriate conflict resolution strategies)

If the authority issues a (temporary) permission, then a situation of conflict
occurs with the existing norms contained in the set PROHIBITORS of at least
one of the candidates for this obligation. In this case, such a conflict is intentional
– during the dialogue with the authority, the agent negotiates the release of such
a permission, using knowledge about the possible classes of conflict (as outlined
above) between norms. After receiving such a permission, the agent relies on
its set of conflict resolution strategies to achieve the correct overriding between
norms.

Let us assume that the agent could convince the authority to issue following
permission:

permission(r1, achieve(t), φ, ψ)

In our example, the agent has adopted two roles, r1 and r2. Let us assume
that the agent receives this permission for its role r1. As this permission allows
the achievement of state t that is forbidden by the existing prohibition, a conflict
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occurs. The agent can employ a conflict resolution strategy – for example, one
of those outlined in [12] – to make the permission the dominant norm. With
that, the agent allows the prohibitor for candidate plan p1 to be overridden –
this candidate becomes a consistent choice. Candidate p2 is still inconsistent,
therefore the agent can fulfill this obligation at a level of weak consistency.

In the example above, two different normative authorities are introduced, Ax

and Ay. The agent has to decide which authority to contact for relaxing its nor-
mative situation. It also has to decide, for which action the prohibition should
be either revoked or relaxed. The information contained in the label assigned to
each candidate in the set CANDIDATES can be used in this decision process.
It gives a clear indication about all the norms that create the current state of in-
consistency. If additional information about relationships of power and influence
between authorities is made available, these power relationships within organi-
sations can be used to find an authority at a superior level in this hierarchy that
has the power to override decisions of subordinates and upgrade the agent’s level
of consistency. A conflict resolution strategy according to social power would
require a substantial extension of the role model within NoA to express relation-
ships of dependency and influence between roles. Such relationships can be used
to determine, if a norm is “more powerful” to override a conflicting norm. The
indication of such role-relationships within the NoA labelling mechanism will be
investigated in future work.

As the NoA architecture uses mechanisms to perform plan and norm acti-
vations efficiently (using a Rete network implementation [9]), information con-
tained in labels is maintained whenever plan and norms are activated or deacti-
vated. It represents, therefore, an efficient form of informing the deliberation of
the agent.

4 Related Work

Research into norm-governed reasoning and the concept of norm-autonomy, as
described in this paper, is influenced by related work, especially [4, 6, 7] and [5].
The model of norm-governed agency also takes influences from the work by Jones
and Sergot [11] and by Pacheco and Carmo [17]. They describe the modelling
of complex organisations and organisational behaviour based on normative con-
cepts. The design of the NoA architecture takes influences from various sources,
most prominently the BDI model of agency [18], but also from classical plan-
ners regarding the declaration of plans and from production systems regarding
plan activation, selection and execution. NoA is a reactive planning architecture
[8, 10], where the behaviour of an agent is determined by pre-specified plans. NoA
differs from these classic models and systems: (a) a clear distinction is made be-
tween agents achieving a state of affairs or performing an action, reflected in
norm and plan specifications, (b) plan procedures contain explicit effect specifi-
cations to allow a norm-governed practical reasoning, and (c) NoA employs a de-
tailed model of conflict resolution and inconsistencies between actions and norms
and inform the deliberation of the agent about possible inconsistencies to make
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the agent norm-autonomous. In terms of designing a normative architecture,
Broersen et al. [2] describe the BOID architecture. Conflict resolution strategies
are presented as overruling orders between the concepts “belief”, “obligation”,
“intention” and “desire”. NoA takes, in contrast to BOID, a practical approach
towards modelling norm-governed agency and provides a design for a specific ar-
chitecture for norm-governed agents. But similar problems, as conflicts between
norms and precedence relationships between them, are also discussed in the con-
text of NoA. NoA, as a practical reasoning system based on reactive planning
mechanisms, puts forward a set of conflict resolution strategies. Similarly, Lopez
et al. [15] discuss how agents decide whether or not to adopt norms, taking into
account issues of consistency.

5 Conclusion

A norm-governed agent must be able to anticipate whether its actions are vi-
olating any norms that are associated with its role in a specific organisational
context. The NoA model of norm-governed practical reasoning introduces a la-
belling mechanism to focus the deliberation of the agent on such violations. The
deliberation of the agent is informed about inconsistencies between potential
candidate actions it could deploy to fulfill its obligations and its currently held
set of norms. Instead of simply filtering out inconsistent candidates for action, a
label is attached to each candidate action containing a rich set of information,
cross-referencing options for action (plans) with motivating obligations and pos-
sible norms that are inconsistent with such an action. With that, an agent may
attempt to comply with a specific norm, but still violate others. By informing
and focussing the deliberation of the agent on such cases of inconsistencies, the
agent can use certain resolution strategies such as, for example, engaging in a
dialogue with a normative authority to reach an agreement about “relaxing” its
social constraints. Or it can decide to simply violate a norm. The mechanisms
within NoA to identify such violations is an important step in enabling an agent
to reason about norm violations.
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Abstract. In this paper we introduce organizations and roles in Shoham and Ten-
nenholtz’ artificial social systems, using a normative system. We model how real
agents determine the behavior of organizations by playing roles in the organiza-
tion, and how the organization controls the behavior of agents playing a role in it.
We consider the design of an organization in terms of roles and the assignment of
agents to roles, and the evolution of organizations. We do not present a complete
formalization of the computational problems, but we illustrate our approach by
examples.

1 Introduction

The basic idea of the artificial social systems approach of Shoham and Tennenholtz
[12, 13] is to add a mechanism, called a social law, that will minimize the need for both
centralized control and on-line resolution of conflicts. A social law is defined as a set of
restrictions on the agents’ activities which allow them enough freedom on the one hand,
but at the same time constrain them so that they will not interfere with each other. Sev-
eral variants have been introduced to reason about the design and emergence of social
laws. Shoham and Tennenholtz use game theoretic approach and inherit the advantages
and drawbacks of game theory. On the one hand they work in a well understood frame-
work, agent interactions can be defined precisely and computational problems can be
defined in a precise way, but on the other hand due to the used abstractions it is difficult
to differentiate agents and to simulate complex systems.

Several extensions have been proposed to this game-theoretic approach to artificial
social systems. Shoham and Tennenholtz [12] introduce off-line design of useful so-
cial laws for artificial agent societies, and Fitoussi and Tennenholtz [7] distinguish two
criteria to choose social laws called minimal and simple social laws. Shoham and Ten-
nenholtz [13] study the emergence of rational social laws in repeated games instead of
their off-line design. Briggs and Cook [6] introduce so-called flexible social laws that
can be violated if an agent cannot obey the law [1]. Moreover, Tennenholtz [14] intro-
duces stable social laws as a kind of qualitative equilibrium, in the sense that agents
can deviate from the law, but they do not want to do so when the other agents follow
it. This approach deals with bridging social laws with conflict resolution. Brafman and
Tennenholtz [5] study efficient learning equilibria in repeated games. Boella and van
der Torre [3] introduce enforceable social laws by extending artificial social systems
with a control system – called a normative system – that represents the (consequences
of) social laws.

O. Boissier et al. (Eds.): ANIREM and OOOP 2005, 3913, pp. 198–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

LNAI



Organizations in Artificial Social Systems 199

There is a significant body of literature on the role of organizations in multi-agent
systems going back to the beginnings of the field in the late 70’s [9]. Despite the popu-
larity of the game theoretic approach to artificial social systems as initiated by Shoham
and Tennenholtz, as far as we know organizational concepts have not yet been intro-
duced in them. However, the use of organizations could be useful to explain the in-
teraction of social laws and other social concepts such as roles and norms. Moreover,
organizations allow to describe the system at different levels of abstraction. Finally, the
introduction of organizational concepts leads to new interesting computational prob-
lems which can be defined and studied using the game-theoretic framework, such as an
organizational design problem (decompose the organization into a set of roles such that
the organizational goals are achieved if the roles’ goals are achieved), a role assignment
problem (assign real agents to roles such that goals of roles and thus goals of organiza-
tion are achieved), etc. We are therefore interested in the following research questions
in this paper:

1. How can organizations and roles be defined in artificial social systems?
2. How do role playing agents determine the behavior of an organization?
3. How does the organization use real agents playing roles in organization to enforce

social laws (so-called defender agents)?
4. How can we define an organizational design problem in artificial social systems?
5. How can we define a role assignment problem in artificial social systems?
6. How can we model the evolution of organizations in artificial social systems?

To answer these questions, we use a model of artificial social systems and enforce-
able social laws developed in [3, 4] as an extension of Tennenholtz’ stable social laws.
The normative system is represented by a socially constructed agent. Roughly, a social
law is in force when it can be extended to a stable social law. Design of social laws can
be formalized as updating the utility function of the normative system. In this paper the
organization is modeled as the normative system, i.e., a a control system, and we extend
the model of artificial social systems with another class of socially constructed agents
called roles.

This extension with a normative system of the game-theoretic approach to artificial
social systems builds on work in normative multiagent systems. This work formalizes
norms as a kind of soft constraint, jut like other approaches, but it also considers what
happens when a norm is violated (and how this can be repaired), permissions and rights
and their relations to obligations, how norms change in time, the negotiation of new
norms, decision making in normative systems, the interaction among normative sys-
tems, norms as a coordination mechanism, etc. Moreover, as Searle [10] argues, a dis-
tinction can be made between two types of rules, a distinction which also holds for
formal rules like those composing normative systems:

“Some rules regulate antecedently existing forms of behaviour. For example,
the rules of polite table behaviour regulate eating, but eating exists indepen-
dently of these rules. Some rules, on the other hand, do not merely regulate an
antecedently existing activity called playing chess; they, as it were, create the
possibility of or define that activity. The activity of playing chess is constituted
by action in accordance with these rules. The institutions of marriage, money,
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and promising are like the institutions of baseball and chess in that they are
systems of such constitutive rules or conventions” ([10], p. 131).

For Searle, institutional facts like marriage, money and private property emerge from
an independent ontology of “brute” physical facts through constitutive rules of the form
“such and such an X counts as Y in context C” where X is any object satisfying cer-
tain conditions and Y is a label that qualifies X as being something of an entirely new
sort. E.g., “X counts as a presiding official in a wedding ceremony”, “this bit of pa-
per counts as a five euro bill” and “this piece of land counts as somebody’s private
property”.

In this paper we consider how the behavior of an organization is determined by the
behavior of role playing agents. We therefore consider how real agents enforce control
in artificial social systems. To be able to reason about roles when no agent has been
assigned to it yet, we distinguish between the possible behaviors of the role and the
possible behaviors of the real agent. In a fully specified organization, the behavior of
the organization is determined by the behavior of the roles, and the behavior of the role
is determined by the behavior of the real agents. We formalize how role playing agents
determine the behavior of a organization using the constitutive norms of the normative
systems. The relations between the behaviors is represented by a counts-as relation
among strategies, such that a strategy of a real agent can count as a strategy of a role,
and a strategy of a role can count as a strategy of the organization. These counts-as rules
are abstractions of constitutive norms defining the organization.

As an illustrating example of the kind of analysis which can be done in our ex-
tension of the game-theoretic approach to artificial social systems, consider some real
agents and an organization controlling their behavior. The behavior of the socially con-
structed organization is determined by the real agents in the system, for example by
a policeman. Moreover, the behavior of the policeman is also controlled by the nor-
mative system, so to get system stability, we may have an infinite set of agents each
controlling one another. So there is a police-policeman controlling the policeman, a
police-police-policeman controlling the police-policeman, etc. In reality there is no in-
finite set of agents. Instead it is assumed that at some point the agents are trusted, due to
the bounded reasoning of agents, or we have two policemen, each controlling the other
and thus breaking the infinite sequence. For example, assume that we have four agents
{a1, a2, p1, p2} and the usual kind of prisoner’s dilemma for {a1, a2}. Then we have
two policemen {p1, p2}, where p1 can punish a1 if he defects, and p2 can punish a2 if
he defects. Moreover, p1 can punish p2 if a2 defects but p2 does not punish him, and p2
can punish p1 if a1 defects but p1 does not punish him. Our game theory can be used to
analyze under which conditions this solution works.

The layout of this paper is as follows. In Section 2 we discuss artificial social systems
and stable social laws as introduced by Tennenholtz and colleagues, and we introduce
our extension with explicit normative system and enforceable social laws. In Section
3 we discuss how role playing agents determine the behavior of the organization, and
how the organization controls agents playing a role in it. In Section 4 we discuss the
(top-down) design of organizations, in Section 5 the assignment of roles, and in Section
6 we discuss the evolution of organizations in artificial social systems.



Organizations in Artificial Social Systems 201

2 Artificial Social Systems and Social Laws

Shoham and Tennenholtz [12] introduce social laws in a setting without utilities. They
define also rational social laws [13] as social laws that improve a social game vari-
able. A game or multi-agent encounter is a set of agents with for each agent a set of
strategies and a utility function defined on each possible combination of strategies. We
extend artificial social systems with a control system, called a normative system, to
model enforceable social laws. Following Boella and Lesmo [2], the normative system
is represented by a socially constructed agent called the normative agent or agent 0.
In [3], the normative system is represented by the set of control strategies of agent 0,
but not by a utility function.

Definition 1. A normative game (or a normative multi-agent encounter) is a tuple
〈N, R, S, T, U1, U2〉, where N = {0, 1, 2} is a set of agents, R, S and T are the sets of
strategies available to agents 0, 1 and 2 respectively, and U1 : R × S × T → IR and
U2 : R× S × T → IR are real-valued utility functions for agents 1 and 2, respectively.

We use here as game variable the maximin value, following Tennenholtz [14]. This
represents safety level decisions, see Tennenholtz’ paper for a motivation.

Definition 2. Let R, S and T be the sets of strategies available to agent 0, 1 and
2, respectively, and let Ui be the utility function of agent i. Define U1(R, s, T ) =
minr∈R,t∈T U1(r, s, t) for s ∈ S, and U2(R, S, t) = minr∈S,s∈S U2(r, s, t) for t ∈ T .
The maximin value for agent 1 (respectively 2) is defined by maxs∈S U1(R, s, T ) (re-
spectively maxt∈T U2(R, S, t)). A strategy of agent i leading to the corresponding max-
imin value is called a maximin strategy for agent i.

A social law is useful with respect to an efficiency parameter q if each agent can choose
a strategy that guarantees it a payoff of at least q.

Definition 3. Given a normative game g = 〈N, R, S, T, U1, U2〉 and an efficiency pa-
rameter q, we define a social law to be a restriction of S to S ⊆ S, and of T ⊆ T . The
social law is useful if the following holds: there exists s ∈ S such that U1(R, s, T ) ≥ q,
and there exists t ∈ T such that U2(R, S, t) ≥ q.

A social law is quasi-stable if an agent does not profit from violating the law, as long as
the other agent conforms to the social law (i.e., selects strategies allowed by the law).

Definition 4. Given a normative game g = 〈N, R, S, T, U1, U2〉, and an efficiency
parameter q, a quasi-stable social law is a useful social law (with respect to q) which
restricts S to S and T to T , and satisfies the following: there is no s′ ∈ S \ S which
satisfies U1(R, s′, T ) > maxs∈S U1(R, s, T ), and there is no t′ ∈ T \T which satisfies
U2(R, S, t′) > maxt∈T U2(R, S, t).

When the set of strategies R of agent 0 is a singleton, then our definitions reduce to those
of Tennenholtz [14]. With the extension of agent 0 representing the control system we
define enforceable social laws as quasi-stable social laws in normative games where the
strategies of agent 0 may have been restricted [3].
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Definition 5. Given a normative game g = 〈N, R, S, T, U1, U2〉, and an efficiency
parameter e, a social law (i.e., a restriction of S to S ⊆ S, and of T ⊆ T ) is enforceable
if there is a restriction of R to R ⊆ R such that S, T is quasi-stable in the normative
game g = 〈N, R, S, T, U1, U2〉.

In [4] we extend normative games with a utility function of agent 0, to represent the en-
forced norms. Since agent 0 is a socially constructed agent, in the sense of Searle [11],
its utility function can be updated. In particular, the enforcement of a social law by
R ⊆ R is represented by giving R strategies a high utility, and R \ R strategies a low
utility. Moreover, we vary the utility of agent 0 depending on the strategies played by the
other agents, and by considering incremental updates of the utility function to represent
the evolution of artificial social systems. Formally, we extend a normative game with a
utility function U0 : R × S × T ⇒ IR, we define U0(r, S, T ) = mins∈S,t∈T U0(r, s, t)
for r ∈ R, and we define useful and quasi-stable social laws in the obvious way. En-
forced social laws are defined as follows.

Definition 6. Given a normative game g = 〈N, R, S, T, U0, U1, U2〉, and an efficiency
parameter e, a social law (i.e., a restriction of S to S ⊆ S, and of T ⊆ T ) is enforced
if there is a unique restriction of R to R ⊆ R such that R, S, T is quasi-stable.

The game in Table 1 illustrates that the computational problem to find quasi-stable laws
corresponds in extended normative games to the identification of enforced social laws.
The table should be read as follows. Strategies are represented by literals, i.e., atomic
propositions or their negations. Each table represents the sub-game given a strategy of
agent 0, represented by ¬n and n, respectively. Agent 1 is playing columns and agent 2
is playing rows. The values in the tables represent the utilities of agent 0 (in italics), 1
and 2.

Table 1. What is the enforced social law?

¬n p ¬p

q 3,3,3 0,4,1
¬q 0,1,4 1,2,2

n p ¬p

q 3,3,3 1,2,1
¬q 1,1,2 0,2,2

Agent 0 can play strategy ¬n or n, agent 1 can play strategy p or ¬p, agent 2 can
play strategy q or ¬q. When the normative system plays ¬n, the sub-game of agent 1
and 2 is a classical prisoner’s dilemma. Intuitively, the strategy ¬n corresponds to the
state before the social law is introduced, and n corresponds to the introduction of a
control system that sanctions an agent for deviating from p, q. For example, the utility
of agent 1 in ¬p, q, n (2) is lower than its utility in ¬p, q,¬n (4) due to this sanction.

When the normative system plays n, the agents are always worse off compared to
the normative agent playing ¬n, all else being equal. Nevertheless, due to the dynamics
of the game, the overall outcome is better for both agents. For example, in the sub-
game defined by strategy ¬n, the only Nash equilibrium is 2, 2. Now suppose we set the
efficiency parameter to 3, which means that all agents will be better off. If the normative
system plays n, then the sub-game has a Nash equilibrium which is the (Pareto optimal)
3, 3. This explains why the agents accept the possibility to be sanctioned.
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3 Role Playing Agents Enforcing Social Laws

The behavior of the organization is determined by real agents. We formalize this intu-
ition in our game theoretic setting such that in a fully specified organization, the organi-
zation can play only one strategy. Likewise, if a role is assigned to an agent, then the role
can play only the unique strategy determined by the agent playing the role. However, if
the organization has not been fully specified yet, or the role has not yet been assigned
to agents, then the behavior of the socially constructed agents is not deterministic.

3.1 Organized Games

To define that role playing agents determine the behavior of an organization, we assume
that there is a set of counts as conditionals defined on strategies of agents, which de-
crease the set of strategies socially constructed agents can play. At first sight, it may
seem strange that we relate the behaviors of agents with counts-as conditionals. Nor-
mally, at a much more detailed level of analysis, counts-as conditionals are used to say
that a piece of paper counts as money, or that going through a particular kind of cer-
emony counts as marrying two people. In general, counts-as conditionals are used to
create institutional acts, such as money, marriage, property, liability, etc. However, at
our level of abstraction, this implies that the behavior of the organization is defined by
counts-as conditionals. We do not claim that our notion of counts-as conditionals covers
all possible notions of counts-as conditionals, but it is sufficient for our purposes.

The basic idea of an organizational structure with counts-as conditionals is as fol-
lows. First, an organizational structure is a relation Org ⊆ 2N × N that relates a set
of agents to an agent, such that (A, i) ∈ Org means that set of agents A directly de-
termines the behavior of agent i. The relation {(a, b) | ∃(A, b) ∈ Org, a ∈ A} reflects
a hierarchy on agents and is therefore anti-reflexive, anti-symmetric and anti-transitive.
Moreover, for each (A, i) ∈ Org, a counts-as conditional from a set of agents A to
agent i is a function from the set of strategies played by the agents A to a function on
the strategies of agent i: counts-as : ×k∈ASk → (Si → Si). Applying the counts-
as conditional to a game results in a new game, defined by Uj(s1, . . . , si, . . . , sn) =
Uj(s1, . . . , counts-as(sA)(si), . . . , sn). Applying all counts-as conditionals is formal-
ized by applying all these rules from the bottom of the organizational structure to the
top. The counts-as conditionals have to satisfy the following properties, which intu-
itively represents that the agents can no longer distinguish between the strategies within
an equivalence class of agent i.

1. The strategies of the agents A determine an equivalence relation on the set of strate-
gies of agent i. For all (A, i) ∈ Org with associated counts-as, and for any set of
strategies S1 and S2 of the agents A, the reflexive, symmetric and transitive clo-
sures on counts-as(S1) and on counts-as(S2) are the same equivalence relation. If
A determines the behavior of agent i, then it is a universal relation.

2. For each equivalence class, all strategies of the equivalence class are mapped onto
the same strategy. For all (A, i) ∈ Org with associated counts-as, and all set of
strategies S of the agents A, if (s1, s2), (s2, s3) ∈ counts-as(S), then s2 = s3.

3. If there are two sets of agents that together determine the behavior of agent i, then
the order of applying the counts-as rules to a game is irrelevant (to simplify the
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procedure). For all (A, i), (B, i) ∈ Org with associated counts-as1 and counts-as2,
we have counts-as1(SA) ◦ counts-as(SB) = counts-as1(SB) ◦ counts-as(SA).

Definition 7. An organized game (or an organizational multi-agent encounter) is a tu-
ple 〈N, S0, . . . , U0, . . . , Org, counts-as〉, where N = {0, 1, 2, . . .} is a set of n agents,
Si is the set of strategies available to agent i, and Ui : S0 ××Sn−1 → IR is the utility
function for agent i, and Org and counts-as are as defined above.

An organized game can be reduced to a normal game using the procedure described
above. Thus, from the bottom of the organizational structure to the top, we apply the
counts-as rules. We call the bottom of the organizational structure the real agents, and all
the other agents socially constructed agents. Moreover, if the top of the organizational
structure is unique, then we refer to it as the organization. If there are more socially
constructed agents in between the real agents and the organization, then we call the
socially constructed agents just above the real agents the roles, and the other socially
constructed agents we call functional areas.

3.2 Illustration of Organized Games

We illustrate the counts-as conditionals first by extending the running example with
a defender or police agent enforcing the control system. Assume a police agent 3
playing either the strategy to work w or not to work ¬w. We assume he is lazy and
gives utility 10 to not working and utility 0 to working. The organizational structure
is such that the behavior of the policeman determines the behavior of the organization,
Org(3, 0). There are no roles or functional areas. Moreover, assume that the associ-
ated counts-as conditional is that w counts as n, and ¬w counts as ¬n. Thus, we have
counts-as(w)(x) = n and counts-as(¬w)(x) = ¬n for x ∈ {n,¬n}.

If we reduce the game using the counts-as rules, the game in Table 2 results. The
cells of the table have been extended with the utility of agent 3. The left table contains
the utilities when agent 3 does not work and the right table represents the utilities when
agent 3 does work. Since the utilities of agent 0 for all its strategies have become the
same due to the counts-as rules, we only represent one of its strategies.

Table 2. p, q is not an enforced social law

¬w p ¬p

q 3,3,3,10 0,4,1,10
¬q 0,1,4,10 1,2,2,10

w p ¬p

q 3,3,3,0 1,2,1,0
¬q 1,1,2,0 0,2,2,0

In this game the norm will not be enforced, because the policeman is lazy and will
play ¬w whatever the other agents play. From a role assignment perspective, assigning
agent 3 to enforce the social law of the organization was not a smart choice. Moreover,
the example illustrates that the organization should also contain mechanisms to motivate
the agents playing a role in it. There two issues are discusses in further sections.

We now illustrate how the mechanism used to define the behavior of the organiza-
tion can be used to define the behavior of roles and role playing agents. We assume
that there is an additional socially constructed agent for the police role, as an abstrac-
tion from the real agent playing the police role. Assume that there is a role 4 which
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can play strategy police in role r and no police in role ¬r respectively. We define this
socially constructed role by giving utility 10 to r and utility 0 to ¬r. The organiza-
tional structure is such that the behavior of the police role determines the behavior of
the organization, Org(4, 0), and we no longer assume Org(3, 0). Moreover, assume
that the associated counts-as conditional is that r counts as n, and ¬r counts as ¬n.
Thus, we have counts-as(r)(x) = n and counts-as(¬r)(x) = ¬n for x ∈ {n,¬n}.

If we reduce the game using the counts-as rules, the game in Table 3 results. This
figure can be read as follows. The cells of the table have been extended with the utility
of role 4 (in italics, since it is a socially constructed agent). The left table contains the
utilities when role 4 is not being played and the right table represents the utilities when
agent 4 is being played. Agent 3 does not influence the game so we have not represented
its utilities. In the case of an ideal police role, p, q is an enforced social law.

Table 3. p, q is an enforced social law (enforced by r)

¬r p ¬p

q 3,3,3,?,0 0,4,1,?,0
¬q 0,1,4,?,0 1,2,2,?,0

r p ¬p

q 3,3,3,?,10 1,2,1,?,10
¬q 1,1,2,?,10 0,2,2,?,10

Moreover, assume that agent 3 is assigned to the role 4. The organizational structure
is such that the behavior of the police role determines the behavior of the organization
as before, Org(4, 0), and now we also have that the behavior of the police agent deter-
mines the behavior of the police role, Org(3, 4). Moreover, assume that the associated
counts-as conditional is that as before r counts as n, and ¬r counts as ¬n, but now also
w counts as r, and ¬w counts as ¬r. Thus, we have as before counts-as(r)(x) = n
and counts-as(¬r)(x) = n for x ∈ {n,¬n}, and now also counts-as(w)(x) = r and
counts-as(¬w)(x) = ¬r for x ∈ {n,¬n}. If we reduce the game using the counts-as
rules, the game in Table 4 results.

Table 4. p, q is not an enforced social law

¬w p ¬p

q 3,3,3,10,0 0,4,1,10,0
¬q 0,1,4,10,0 1,2,2,10,0

w p ¬p

q 3,3,3,0,10 1,2,1,0,10
¬q 1,1,2,0,10 0,2,2,0,10

This figure can be read as follows. The cells of the table have been extended with the
utility of role 4. The left table contains the utilities when role 4 does not being played
and the right table represents the utilities when agent 4 is being played. As before in
Table 2, with a lazy policeman, p, q is not an enforced social law.

4 Organizational Design Problem

We now consider the construction of socially constructed agents. The design problem
consists of various sub-problems: we have to design the utility function of the organi-
zation (or normative system), the socially constructed agents such as functional areas
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and roles with their utility functions, and the organizational structure with the counts-as
norms. While doing this, we have to ensure that the organizational goals are achieved.
In the previous examples, for example, when we assigned the ideal police role the so-
cial law was enforced, but when we assigned a lazy police agent to the police role, the
social law was no longer enforced. Likewise, if we would assign another role such as a
secretary, probably the social social law would not be enforced either.

We now consider the example in the introduction, where, to get system stability,
we may have an infinite set of agents each controlling one another. So there may be a
police-policeman controlling the policeman, a police-police-policeman controlling the
police-policeman, etc. In real life there is no infinite set of agents, for example because
at each step of recursion control become easier (it is easier to check a policeman or
a judge than a mafia boss), sanctions are easier to apply (just remove earning), and
the controller is more motivated to stick to the rules since its power depends on the
reputation of the institution he works in (no fun to be a policeman of a corrupted police:
no one listen to you). Here we consider the possibility that police agents control each
other.

So we consider an organization, agent 0, with four real agents, 1, 2, 3, 4. For simplic-
ity we do not consider roles or functional areas. Agent 1 and 2 play the same prisoner’s
dilemma as before. The behavior of the socially constructed organization is determined
by policemen 3 and 4. Agent 3 can play w1 or ¬w1, and agent 4 can play w2 or ¬w2.
Moreover, the behavior of the policeman is also controlled by the normative system, in
the sense that the two policemen are controlling each other. Consider the utility func-
tions in Table 5, where we assume that the behavior of the organization is deterministic
(i.e., determined by the two policemen).

Table 5. p, q is an enforced social law

¬w1, ¬w2 p ¬p

q 3,3,3,5,5 0,4,1,5,5
¬q 0,1,4,5,5 1,2,2,5,5

w1, w2 p ¬p

q 3,3,3,3,3 1,2,1,3,3
¬q 1,1,2,3,3 0,2,2,3,3

w1 ¬w1

w2 ?,?,?,3,3 ?,?,?,0,10
¬w2 ?,?,?,10,0 ?,?,?,5,5

This table should be read as follows. The first two tables are the same as before,
besides the fact that they do not depend on w but on w1 and w2, that is, whether both
the agent 3 and agent 4 work. Both agents prefer not to work over working; we did
not represent the case in which only one of them works in these tables. The third table
details the utilities of the two policemen. When one of them works but the other does
not, then the working agent gets a high utility and the one not working a low one.
This represents that the one not working is sanctioned by the other one. To keep things
simple, the utilities of the policemen do not depend on the strategies of the two other
agents.

If we consider only the last table, then we see that this is again a prisoner’s dilemma.
The two policemen would prefer not to work, but the only stable outcome is that they
work. The reason is that if they do not work, they may be punished by the other police
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agent. This is independent of the strategies of the other agents. Consequently, we have
w1 and w2, and therefore the prisoner’s dilemma for the first two agents is evaded too.
Summarizing, p, q is again an enforceable social law.

It is instructing to consider the case in which agent 1 and 2 play ¬p and ¬q, but
agent 3 and 4 do not punish them, and they do not punish each other. Before our for-
mal analysis, intuition might tell us that this should also be an equilibrium. However,
it is not the case, because agent 3 and agent 4 cannot cooperate. Remarkably, the pris-
oner’s dilemma for agent 3 and 4 has led to this solution, which shows that although the
prisoner’s dilemma may indicate a social problem in general, in some particular cases
like the one under consideration, the prisoner’s dilemma may be used to solve a social
problem.

One may object to our analysis that agent 1 and 2 have increased their utilities by
introducing a social law, so why don’t agent 3 and 4 also create a social law to in-
crease their utilities? The answer is, of course, that an artificial social system must be
designed such that defender agents like our policemen cannot change the normative
system. Agent 1 and 2 would suffer from such a new social law, and they should have
the power to block it.

We have a huge freedom in designing organizations in this framework, and it is
therefore at this point not clear how to define the organizational design problem as a
computational problem. We leave this for further research.

5 Role Assignment Problem

The role assignment problem is to find a set of real agents such that the real agents
determine the behavior of the roles, and enforce the social law. In other words, in the
role assignment function a game is given, and we are looking for an organizational
structure with counts-as conditionals.

At this moment, it may be useful to take a further look into our roles: what are they
precisely? When there is no agent playing the role, then the role describes the ideal
behavior of a role playing agent. If there is an agent playing the role, then the role
describes the actual role playing agent.

From this interpretation follows that there can be only one agent playing a particular
role. If there are for example two policemen, as in our running example, then we have
to introduce two roles. This illustrates that roles in our setting are what is sometimes
called a role instance.

6 Evolution of Organizations

We may further extend the example by introducing another role and another agent who
has the power to change the normative system. This is well known from political sci-
ence, in particular from the separation of powers in the Trias Politica.

The social law design problem in this setting is, given a normative game, to define a
new utility function for the normative system [4]. The principle that we like to maintain
as much as possible from the existing social laws can be represented by the use of
the principle of minimal change. Table 6 represents the evolution of an artificial social
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Table 6. Iterated design

¬n1, ¬n2 p1 p2 ¬p1, ¬p2

q1 0,3,3 0,4,1 0,6,0
q2 0,1,4 0,2,2 0,0,0

¬q1, ¬q2 0,0,6 0,0,0 0,0,0

n1 p1 p2 ¬p1, ¬p2

q1 1,3,3 1,4,1 1,0,0
q2 1,1,4 1,2,2 1,0,0

¬q1, ¬q2 1,0,0 1,0,0 1,0,0
n2 p1 p2 ¬p1, ¬p2

q1 3,3,3 3,1,1 3,0,0
q2 3,1,1 3,0,0 3,0,0

¬q1, ¬q2 3,0,0 3,0,0 3,0,0

system by an incremental increase of the utility of agent 0 to the efficiency parameter
of the new social law.

The first table represents that the normative system does not impose a control system,
the second table represents that there is a sanction for playing¬p1,¬p2 or ¬q1,¬q2, and
the third table represents that there is an additional sanction for playing something else
than p1 and q1. The first social law is S = {p1, p2}, T = {q1, q2} based on control
system R = {n1, n2}, and the second social law is S = {p1}, T = {q1} based on
control system R = {n2}.

7 Related Research

There is a lot of related research in organizational science, in multiagent systems, in
normative multiagent systems, and in game theory. For example, evolutionary game
theory can be used as an inspiration to make the ideas in this paper more precise. How-
ever, as ar as we know, these game theories have not been reduced to artificial social
systems setting we have considered in this paper.

There are also many systems where the issues discussed in this paper can be used
to study the interaction among agents. For example, it can be used in the development
of electronic institutions where self-interest agents (from different organizations) form
virtual organizations (coalitions) to solve a users problem [8].

8 Concluding Remarks

Enforceable social laws are a bridge between two important theories of social systems.
On the one hand artificial social systems based on social laws, and on the other hand nor-
mative multiagent systems based on norms and deontic logic. In this paper we illustrate
how organizations and roles, which were already defined in normative multiagent sys-
tems, can be defined in artificial social systems. Moreover, we illustrated how the game
theory used in artificial social systems can be used to analyze the interaction among
role playing agents in an organization. The use of organizations could be useful to ex-
plain the interaction of social laws and other social concepts such as roles and norms.
Moreover, organizations allow to describe the system at different levels of abstraction.
Finally, the introduction of organizational concepts leads to new interesting computa-
tional problems which can be defined and studied using the game-theoretic framework,
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such as an organizational design problem (decompose the organization into a set of
roles such that the organizational goals are achieved if the roles’ goals are achieved), a
role assignment problem (assign real agents to roles such that goals of roles and thus
goals of organization are achieved), etc.

Organizations, functional ares and roles are defined as agents in artificial social sys-
tems. The advantage is that we do not extend the ontology of the games we play, and
we can use the same game theory as used in other artificial social systems. Role playing
agents determine the behavior of an organization using counts-as rules, which transform
a game into another game. The resulting game is again a standard game which can be
used to determine quasi-stable and enforceable social laws. An organized game with
organizational hierarchy and counts-as conditionals can be used to define new compu-
tational problems. The organization uses real agents playing a role in the organization
by controlling their behavior too. We can define the control of such defender agents by
using the game dynamics. In particular we have illustrated that we can use a prisoner’s
dilemma to ensure that agents do not cooperate to evade the control of the normative
system.

Two kinds of organizational design problems are given. The first organizational de-
sign problem is given a game including the roles, find counts-as rules to associate roles
to the organization such that its behavior is determined by the roles, and there is sta-
ble social law such that organizational goals are achieved. The second organizational
problem is to create roles (with appropriate utilities) such that the first problem can be
solved. The role assignment problem can simply be defined as associating the roles with
the agents, such that the agents determine the behavior of the roles, and the organization
goals are achieved. The evolution of organizations can be modeled by updating the util-
ities of the organization. Here additional principles can be accepted, such as minimal
change criteria.

In future work, we intend to further formalize the various notions introduced in this
paper, study the complexity of the decision problems, and test the model on some ex-
amples. We are also interested in further extensions of our model, for example for other
organizational structures, or systems in which all powers of the Trias Politica are for-
malized.
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Abstract. Reorganization of the structure of an organization is a crucial
issue in multi-agent systems that operate in an open, dynamic environ-
ment. Ideally, autonomous agents must be able to evaluate and decide the
most appropriate organization given the environment conditions. That
is, there is a need for dynamic reorganization of coordination structures.
In this paper, we describe how simulation studies could help to deter-
mine whether and how reorganization should take place, and present
a simulation scenario that can be used to evaluate the congruence, or
fit, between organizational structure and task performance. Preliminary
results using a simulation environment illustrate how one can explore
triggers for reorganization and compare strategies.

1 Introduction

Establishing an organizational structure that specifies how agents in a system
should work together helps the achievement of effective coordination in Multi-
Agent Systems (MAS) [1]. An organization-oriented MAS starts from the social
dimension of the system, and is described in terms of organizational concepts
such as roles (or functions, or positions), groups (or communities), tasks (or
activities) and interaction protocols (or dialogue structure). The structure of an
agent organization significantly influences its performance characteristics – in
different environments and on different tasks [16].

Environments in which MAS function are not static. Their characteristics can
change, ranging from new communication channels to tasks that are no longer
useful or are new. In such a changing environment, agents can disappear, be cre-
ated or they can migrate. In addition, organizational objectives can change, or
operational behavior can evolve. Models for MAS must therefore not only cater
for adaptive agents [17] but also be able to describe organizations that can adapt
dynamically to changes in the environment or to accommodate changes in the
organizational objective(s) [7]. We are interested in mechanisms for an organiza-
tion to evaluate its own own ”health” (i.e. success and other utility parameters)
and to action to preserve or recover it, by performing suitable integration and
reconfiguration actions.

O. Boissier et al. (Eds.): ANIREM and OOOP 2005, 3913, pp. 213–230, 2006.
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Many applications require a set of agents that are individually autonomous
(in the sense that each cognitive agent determines its actions based on its own
state and the state of the environment, without explicit external command), but
corporately structured. As such, there is a growing recognition that a combina-
tion of structure and autonomy is often necessary. More realistic models for the
simulation of organizations should also be based on cognitive agents. In fact,
greater cognitive realism in social simulations may make significant differences
in terms of organizational performance. [21] presents a study showing that dif-
ferent combinations of social structure and individual cognition level influence
organizational performance. In this work we do not address these key issues of
the interplay between individual autonomy and the pursuit of organizational
goals. Rather we focus on the organizational level, in particular on aspects of
how and why organizations should seek to restructure.

In [7], we discussed different types and motivations for reorganization and
the consequences for MAS models of enabling dynamic reorganization at differ-
ent complexity levels. We also described an abstract framework for classifying
reorganization and discussed how simulations could be used to discover some
properties of the reorganization process. Here we build on that framework, to
draw from a discussion of related literature from the study of adaptivity in hu-
man organizations, to make more precise some elements of that framework, and
also to present some initial illustrations of working with a simulation [8] to tease
out relevant characteristics of organizational adaptation.

The paper is structured as follows. In section 2 we discuss our assumptions
of the organizational frameworks. Organizational change is discussed in section
3 and motivations for the use of simulations to study reorganization are pre-
sented in section 4. Section 5 introduces the VILLA simulation tool. The use of
VILLA for the exploration of reorganization strategies is discussed in section 6.
Conclusions are presented in section 7.

2 An Organizational Framework

Both in the MAS literature as well as in management literature there are many
ways to describe organizational structures focussing on different aspects. For the
purpose of this paper, we assume a basic organizational model containing roles,
agents and interactions [7].

– The Organizational structure consists of a set of roles, their relationships
and pre-defined (abstract) interaction patterns. The organizational struc-
ture must reflect and implement the global objectives of the organization.
Roles are characterized by their capabilities, objectives and norms. Role ob-
jectives are determined by the global aims of the organization and determine
possible dependencies between different roles. Roles are related to other roles
by dependency relations. Desired interaction patterns between roles can be
specified.

– An Agent participates in the organization (system) by playing one or more
roles. Role enactment is achieved either by allocation by the system devel-
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opers that determine which available agent is the most adequate for a task,
or is decided by the agents themselves. In both cases, analysis techniques
are needed to compare and evaluate different role allocations [19]. The set
of agents that at a given moment is active in an organization, is called the
population. An agent population achieves the animation of organizational
structures.

– The Interaction between different agents realizes the organizational objec-
tives. Activities in a society are the composition of multiple, distinct and
possibly concurrent interactions, involving different agents, playing different
roles. Actual interactions form the behavior of the organization.

Even though not all MAS models recognize these concepts explicitly , we feel
that by raising these concepts to the status of first-class modelling entities [18],
we allow for the specification of open systems, and can describe both emergent
and designed organizations. Similar modelling approaches have been advocated
in [6, 13, 23].

2.1 Organizational Utility

One of the main reasons for having organizations, is to achieve stability. Nev-
ertheless, environment changes and natural system evolution (e.g. population
changes), require the adaptation of organizational structures. Reorganization is
the answer to change in the environment or the organizational goals. As reorga-
nization is contrary to stability, the question is then: under which conditions is
it better to reorganize, knowing that stability will be (momentarily) diminished,
and when to maintain stability, even if that means loss of response success. In
order to answer this question, it is necessary to define the utility of an organi-
zation. Reorganization is therefore desirable if it leads to increased utility of the
system. That is, the reorganized instance should perform better in some sense
than the original situation.

Given the assumption of agent autonomy, utility must be able to be evaluated
differently from the perspectives of the organization and of the agents. Here we
focus on the organizational level:

Organizational Utility. We define the utility of an organization based on
organization properties:

– Goal Success : how well are global objectives met.
– Interaction success : how often do interactions result in the desired aim.
– Role success : how often do enacting agents realize role goals.
– Structure success: how well are global objectives achieved in an organiza-

tional structure.
– Adaptation costs : how difficult is it to adapt this organization to a change

in the environment.

The factors indicated above are not very precise yet. The research and simulations
reported in this paper are exactly intended to find some indications on how these
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factors can be made more precise and how they should be combined. For exam-
ple, Goal Success can be defined if the goal is defined quantitatively for a fixed
period. E.g. ”sell 100 computers each month”. The goal success of an organiza-
tion can then be defined as the ratio of the actual number of computers sold and
the target set. However, one might right away question whether it would not be
better to take an average over at least 12 months to measure the success. Just like
in human organizations, the temporal aspect in measuring the success of an orga-
nization is very important. Using long time spans creates a stable utility number,
but is maybe too rigid. A very short time span has as consequence that the utility
changes quickly as well (one bad month has a direct effect on the utility). This
might again lead to overreaction of the organization on the environment.

It is worth noting that the organizational utility depends also on the cost of
a possible reorganization. That is, any function to measure organization utility
must take in account both the success of a given structure, and the cost of any
change needed to achieve that structure from the current situation [14].

Given the above very general and rather vague observations, the only (general)
statement that can be made at this point is that a given combination of structure
and population is said to be successful if the overall success (given a certain
measuring system for all factors) of the organization is higher in that situation
than for others.

3 Organizational Change

In early work on reorganization, restructuring was only possible off-line. I.e. if
different organizational structures were tried one had to change the structure by
hand in between runs of the software. During the actual runs, the structure was
fixed. Currently, most dynamic approaches to reorganization are concerned with
the change of the behavior of the organization. That is reorganization affects the
current population of agents in the system, both at the social (i.e. interactions and
relationships) [2], as well as individual level [15]. Existing implementations of or-
ganizational adaptation include approaches based on load balancing or dynamic
task allocation. The later is often the case in organizational self-design in emergent
systems that, for example, include composition and decomposition primitives that
allow for dynamic variation of the organizational structure (macro-architecture)
while the system population (micro-architecture) remains the same [20]. Another
common approach is dynamic participation, in which agent interaction with the
organization is modelled as the enactment of some roles, and adaptation occurs
as agent move in and out of those roles [3, 6, 14, 22]. However, few of these systems
allow agents to change the problem-solving framework of the system itself [1]. Ba-
sically, reorganization is a response to two different stimuli: a reaction to (local)
changes in the environment, or as the means to implement modified overall inten-
tions or strategies. Based on the above considerations, we have separated out in
[7, 8] the following reorganization aspects1:
1 Elsewhere we will seek to make more precise these categorizations, but for now we

leave them as informally presented.
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Behavioral change: Change at the behavior level, that is, the organizational
structure remains the same, but the behavior of agents enacting organiza-
tional roles changes. Examples are when agents join or leave the society, when
they change between existing roles, or when their characteristics change (e,g.
more or less consumption or production of some resources). It does not affect
future enactments and therefore there is no need for organizational memory.

Structural change: Aims at accommodating long-term changes, such as new
situations or objectives. Structural change influences the behavior of the cur-
rent but also of future society instantiations. Examples of structural change
are adding, deleting or modifying structural elements (e.g. roles, dependen-
cies, norms, ontologies, communication primitives) Change at social level im-
plies a need for society level learning. That is, by keeping an organizational
memory, the society itself can reflect on the difference between desired and
actual behavior and decide on social level changes (roles, norms, etc.).

Another dimension of the reorganization problem, concerns the ways the re-
organization decision is taken, i.e. who has the authority to take a decision to
reorganize, and how the decision is conveyed and implemented. For example, in
distributed decision-making situations it may be that all roles are collectively
responsible for a change decision, whereas in other situations (for example, those
typified by military structures as C3 [23] - Command, Control and Communi-
cations - different roles may have authority to effect changes at different levels).
Furthermore, reorganization decisions can be evaluated in terms of timing (re-
active or proactive) and intention (defensive or offensive) [12]. Together, these
considerations form the 5 W’s of reorganization, as follows:

What - the aspects of an organization that are to be reorganized.
– Behavior: change of the individual characteristics of the current popula-

tion, as a response to environment changes
– Structure: change of the global characteristics of the organization, as a

response to change of intent or strategy
Who - authority to take reorganization decisions, how are decisions taken:

– Directive, role-based decision making
– Collaborative, consensus-based decision making

When - the timing, when should the reorganization occur:
– Proactive, preparing in advance for an unpredictable future change
– Reactive, making adjustments after an event has occurred

Why - The strategic reasons for reorganization
– Offensive, aiming at gaining competitive advantage
– Defensive, aiming at organizational survival

Whether - the threshold for reorganization, when is the fit so bad that reor-
ganization is likely to be beneficial
– High threshold, stability is seen as more desirable than flexibility
– Low threshold, flexibility is seen as more desirable than stability



218 F. Dignum, V. Dignum, and L. Sonenberg

4 Towards a Useful Simulation for Reorganization

In the previous sections we have outlined a number of aspects and ideas that play
a role in the reorganization of MAS. In this section we wish to explain how we
see the use of simulations to substantiate the theory. To motivate the discussion
we draw on some recent research in the investigation of organizational restructur-
ing in human organizations [5, 10] to assist in identifying aspects of organizational
structuring that need to be made explicit in the design of organizational adapta-
tion. Our interest in drawing on research in human organizations is twofold: first
we look to draw on general organizational principles that may apply to artificial as
well as human organizations; second, we are ultimately interested in being able to
build hybrid human-agent networks, and so staying within the bounds of organi-
zational properties that have some analogue in human behavior seems desirable.

In human settings, organizational performance has been demonstrated empir-
ically to be associated with the degree of congruence (or ’fit’) between organi-
zational structure and properties of the task or environment [9]2. Accordingly,
it is to an organizations advantage to monitor the fit between its structure and
mission, and to alter its structure when a misfit is identified. There is empiri-
cal evidence that high performing organizations can discern when environmental
forces have changed the state of congruence (i.e., the goodness of fit), thus driving
changes in the strategies (e.g., communication patterns, back-up behaviors) that
they employ [11]. Rarely, however, do human organizations make changes to their
organizational structures (i.e., asset allocation, team member roles and respon-
sibilities) in order to facilitate congruence and some, at least, of the explanation
for this relates to the characteristics of human behavior which is not necessarily
replicated in artificial organizations. However, we believe there are aspects of hu-
man organizational adaptation from which lessons can be drawn for the design
of mechanisms for the adaptivity of artificial organizations. In particular we are
interested to understand what can be identified from human organizational be-
havior about the triggers for reorganization, and strategies for implementation.
We are especially interested to explicate the kinds of knowledge that need to be
considered when making reorganization decisions.

The research that is of most direct value to the above goals has been performed
in military settings. Especially interesting is the extensive empirical work of the
Aptima group www.aptima.comon organizational adaptation in military settings.
They have manipulated experimental conditions to explore degradation of organi-
zational performance in a fine-grained way - monitoring the nature and quantity
of communication, and perceived workload of individuals, as well as measures of
task performance [5, 10]. They were seeking to identify how organizations coped
with incongruence, and in particular sought to identify the conditions that might
be salient enough to cause organizations to alter not only their strategies, but also
their structures. Their data pointed toward a set of indicators that have the po-
tential to yield diagnostic information regarding congruence early in a mission

2 Unfortunately the theory is described in rather vague and verbose terms and thus
is not readily used for our purposes
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scenario, including: performance measures (composite variables such as mission
tasks processed, latency, and accuracy), team coordination processes (e.g. com-
munication patterns), and workload levels (e.g. subjective assessments).

Now let us turn to consider the implications of these observations for the
design of simulation settings in which (artificial) organizational redesign can be
investigated. Here, we must point out that a theory on reorganization brings
together a number of aspects on different levels of the MAS that cannot be
studied all in the same simulation. Therefore we have to divide the process into
a number of steps, each building on the previous one. The main complicating
factor is that we assume that the behavior of an agent in a MAS does not only
depend on its own internal state and the state of the environment, but that it
also depends on the organizational structure of the MAS in which it operates.
Importantly, we cannot assume the organization to be just another part of the
environment, because it cannot be changed in the same way as other parts of
the environment by a single agent (we recognize that this is not a very strict
distinction, but the important part is that the organization does have a special
status when we take into account explicit reorganizations). We will now describe
the different steps in the development of the theory in turn.

1. Identify the factors that determine the need for reorganization
The first step in the exploration of the reorganization process is thus to find out
exactly what is the influence of the organization form on the behavior of the
MAS in a certain environment. In order to make this more precise we have to
indicate which are the elements of the organizational form that we consider.

Without claiming completeness, we consider the following aspects to be the
most important ones3:

– The type of goal of the organization. Is it a very simple, unrestrictive goal
or a hard to achieve, very limiting goal. Is the goal quantifiable or is it a
qualitatively one?

– Which are the roles to be distinguished? I.e. how are the organizational goals
divided over roles. In the extreme cases all agents play the same role or all
agents play a different role.

– Related to the previous point is how the roles are instantiated to agents.
How many agents play the same role.?

– The interaction between the agents playing roles. This concerns both the
interaction patterns (communication protocols) as well as role dependencies
(does a role have power over resources, task allocation, etc. and can thus
steer other roles).

Given a certain environment and agents with fixed capabilities we can use
simulations with differently organized MAS to find out which of the organiza-
tions performs ”best” in such an environment. In such a way it will be possible
to make a match between organizational form and type of environment. The

3 As noted above, we do not consider yet the important interplay between organiza-
tional form, agent cognitive capability and organizational performance cf. [21].
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research question here is thus ”Which type of organization structure performs
best given a certain environment and organizational objectives?”

2. How should the reorganization be performed?
The next step in the exploration process is about the actual reorganization itself.
In this step we want to find out how an organization should be reorganized from
one form to another to best suit an environment that changed (drastically). So,
in this step we actually explore the possibilities for reorganization given in the
previous section. Aspects that will be important here are how quick an organi-
zation can react to a changing environment and how big are the ”costs” of the
reorganization. If a certain mechanism takes too much time the MAS might not
recover in time to survive. On the other hand, the costs of a reorganization can
be so big that it is better to quit the organization and start all over from scratch.
The aim of this step is thus to evaluate the different possibilities for changing
into a more adequate structure given a change of environment characteristics.

3. Who initiates the reorganization and based on which triggers?
In the previous we assumed that all agents within the organization somehow will
know that the environment changed and a certain type of reorganization has to
be performed. In the last step we will look at cases where certain agents will dis-
cover that the environment changes and the reorganization has to be initiated
through communication. This is a very typical scenario for crisis management in
which teams of agents have to react to changing circumstances that are detected
by one or more members of the team. Especially in this last step we will look at
the reasoning and communication capabilities of the agents in the MAS and the
influence this has on the reorganization possibilities.

In summary: Exploration of organizational adaptation requires not only that
we have an explicit representation Ω of the set of available organization types,
ω, and some measure of organizational utility, but we also need to represent:

1. organizational performance (with respect to a goal, and measured over time);
2. a set Γ of change indicators γ, i.e. potential triggers for changing organi-

zational structure, these will relate to observable suboptimal or degraded
organizational performance, and are likely highly context dependent, cf [5];

3. a mapping μ : ω → ω′ between organization types that provides a recipe for
reorganization; and

4. a cost function f(ω, ω′) that computes the cost of implementing the reorga-
nization.

Then organizational adaptation should occur when the performance falls be-
low some acceptable level, and/or some trigger condition is activated. The trigger
condition likely takes into account a performance trajectory over time, as part
of the context, and not just an instantaneous snapshot. The choice of struc-
ture for the new organization should take into account the expected increase in
organizational utility, and discount for the cost of change.

Ultimately we would seek to encode such dynamism explicitly as part of orga-
nizational definition. For now, we seek to simulate various alternate conditions



Exploring Congruence 221

and understand the tradeoffs between structure and performance, given different
environmental conditions. In the next section we discuss an initial attempt to
develop a simulation tool that on the one hand is simple enough to be control-
lable and interpretable, and on the other hand is complex enough to allow rich
parameter variation and the exhibition of interesting behaviors.

5 Discovering Conditions for Reorganization

As described in the previous section, the aim of our research is to develop a
simulation tool that enables the study of the effects of reorganization strategies
on the performance of societies consisting of multiple agents. We are interested
in investigating both the properties of systems that exhibit reorganization pos-
sibilities and the degree of complexity necessary to build agents that are able to
reason about social reorganization. In order to simulate real-life organizations
it is first necessary to find out which are the most important parameters and
measurements. I.e. part of the first step in the development process discussed in
the previous section. For this purpose we have developed a simulation environ-
ment, VILLA, representing a simple organization. The VILLA environment is
described in more detail in section 5.1.

5.1 The VILLA Simulation Environment

The simulation environment, VILLA, was designed to meet the following require-
ments: (1) be simple enough to enable empirical evaluation of the results, but
(2) be complex enough to emulate situations where reorganization really mat-
ters. The basic requirement was thus that in VILLA an organization should be
described in which different roles with different capabilities play a role. It should
be possible for agents to switch roles. Furthermore, the organization should have
a global goal that was (at least partly) independent from the goals of the agents.
We found that the society as we will shortly describe is one of the most simple
organizational structures that complies to the above requirements. VILLA has
been fully described in [8]. For the ease of understanding the remainder of this
paper, we will describe here the main features of VILLA. VILLA simulates a
society inhabited by number of Creatures, divided into three groups: the Gath-
erers, the Hunters, and the Others. The unique goal of the society is to survive
(one or more Creatures stay alive). All Creatures must eat in order to survive.
When Creatures don’t eat, their health decreases, until their health is 0 and
they die. Gatherers and Hunters are responsible to keep the food stack supplied.
Gatherers and Hunters should eat more than Others to allow for the effort of
collecting food. Furthermore, the health of Gatherers and Hunters determines
how much food they can collect. That is, the healthier a Hunter or Gatherer is
the more food it can collect. However, food collection is not always guaranteed
and Gatherers or Hunters may only sporadically be successful. The probabil-
ity of success of Gatherers is higher than that of Hunters. On the other hand,
when successful, Hunters can collect more food than Gatherers. Gatherers find
food on their own but Hunters must hunt in groups (two or more). Therefore,
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Hunters must be able to move in order to find other Hunters with whom they
can hunt. The hunting capability increases with the size of the group. Other
Creatures can be seen as the elderly and children of the society, they only eat
and are not in state of contributing to the food collection effort. Concentrating
on the food aspect makes it possible to restrict the environmental variables that
influence the performance of the society. The VILLA simulation game consists
of a fixed number of runs. During each run, Gatherers and Hunters will gather
food, and as many Creatures will eat as the food stack allows. Each run consists
of a number of ’ticks’. Each agent can use each tick either to act or to reason
(not both simultaneously). Each of the agents occupies a cell in a large grid (that
represents the natural environment of the Creatures).

The definition of VILLA implements Ω, the explicit representation of organi-
zation types discussed in section 4 and assuming the role-based model described
in section 24. Formally, a VILLA simulation can be defined through the following
tuple:
V illa SIM = (E, T, S, V illa), where:

– E ∈ Int, is the number of runs
– T ∈ Int, is the number of ticks per run
– S ⊂ Int × Int, is the size of the grid
– V illa = (C, G, H, FS, F0, mE , ME , S, R) describes the actual society

The elements of the tuple V illa = (C, G, H, FS, F0, mE , ME , S, R) are described
as follows:

– C = {c : c = ({health, foodintake}, {eat}, {Oc(eat|food > 0)})} ,
are the creatures (i.e the set of agents fulfilling the creature role c). For each
creature we keep track of its health and food-intake. All creatures have eating as
their objective. Finally, the obligation indicates that all creatures must eat if there
is food available.

– G = {g : g = ({gatherpower,gatherprobability},{gather},
{t < E,Og(gather(g, t))}}},
is the subset of Gatherers (i.e the set of agents fulfilling the gatherer role g). Their
objectives are to eat and to gather. The obligation indicates that gatherers are
obliged to gather food in each run.

– H = {h : h = ({huntpower, huntprobability, position},
{hunt, observe,move}, {t < E, Oh(hunt ∨ move))}},
is the subset of Hunters (i.e the set of agents fulfilling the hunter role h). Their
objectives are to eat, to hunt, but also they want to observe and to move around.
The obligation indicates that hunters are obliged to either hunt or move in each
run.

– G ⊆ C, H ⊆ C, H ∩ G = � Gatherers and Hunters are both creatures and thus
inherit properties, objectives and norms from the creature role and no agent can
be both Gatherer and Hunter at the same time.

– FS = {food}, is the food stack, describing the amount of food available at any
moment

– F0 ∈ Int, is the value of the initial food stack

4 In VILLA roles are defined as Role = {Properties,Objectives, Norms}
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– mE ∈ Int, mE ≤ |C|, minimal number of creatures at time E
– ME ∈ Int, maximal amount of food at time E
– R = {r1, r2, r3, ..., r12} are the society rules

The society rules use the properties and objectives of the roles as functions for the
individual creatures.

r1 ∀c ∈ C, ∀i ≤ E, eat(c, i) → food(i) = food(i − 1) − foodintake(c) i.e. the food
stack decreases with the amount that is eaten.

r2 ∀g ∈ G, ∀i ≤ E,
gather(g, i)→food(i) = food(i−1)+gatherpower(g, t)×gatherprobability(g, t)i.e.
the food stack increases with the amount the gatherers have gathered, which is
related to their power and the probability that they find food.

r3 p = {h1, ..., hn} ↔ ∀hx, hy ∈ p, adjacent−position(hx, hy) A group of hunters is
defined as hunters occupying adjacent positions on the grid.

r4 ∀p ∈ 2H , ∀i ≤ E,
p = {h1, ..., hn} ∧ hunt(p, i) → food(i) = food(i − 1) + Σn

i=1((huntpower(hi, t) ×
huntprobability(hi, t)))A group of hunters brings in the sum of what all the indi-
vidual hunters might bring in (once they are part of the group).

r5 ∀c ∈ C, (food(i) �= 0) → eat(c, i) Each creature eats at each cycle iff there is food
available.

r6 ∀c ∈ C, noteat(c, i) → health(c, i) = health(c, i − 1) − 1 if a creature does not eat,
its health decreases.

r7 ∀c ∈ C, health(c, i) = 0 → dead(c) if the health of a creature gets down to 0 it dies.
r8 ∀g ∈ G, ∀i ≤ E, gatherpower(g, i) = f(health(g, i)), i.e. gatherpower is a function

of health
r9 ∀h ∈ H, ∀i ≤ E, huntpower(h, i) = f(health(h, i)), i.e. huntpower is a function of

health
r10 ∀h ∈ H,∀i ≤ E, move(h, i) → position(h, i) �= position(h, i − 1) when a hunter

moves it changes position.
r11 ∀c ∈ C, dead(c) → |C| = |C| − 1 if a creature dies the the number of creatures

diminishes with 1.
r12 success(V illa) ↔ |C| ≥ mE ∧ food ≤ ME A particular configuration of VILLA is

successful if enough creatures are left in the end and not too much food is stocked
(the latter to ensure a fair division of the food).

Informally, the goal of VILLA can be described as to have as many as possible
creatures surviving at as low possible cost. In each run, all Creatures eat, as
long as there is enough food; Gatherers and Hunters try to catch some food to
replenish the common food stack. Furthermore, Hunters need to move around
the field in order to get together with other hunters and therefore be able to
hunt. All other agents (Gatherers and Others) either gather food and/or eat
in their own block. Rule r12 describes the success factors of VILLA. At this
stage, we only consider goal success (cf. section 2.1) as a measure of success,
which in VILLA is strongly related to role success. Due to the simplicity of
interactions in VILLA, we do not consider yet interaction success. Structure
success will be the object of the extension of VILLA discussed in section 6,
where we will look at the appropriateness of different reorganization strategies.
We have implemented the VILLA simulation game using the RePast simulation
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environment [4]. VILLA is a very simple organization, and can hardly be taken
as a representation of realistic situation. However, we have found it useful to
start with a simple artificial organization in order to keep the complexity in
hand and as such be able to identify conditions for reorganization, as described
in the next section 5.2. In the next steps of this project, we will move into more
realistic situations.

5.2 Using Simulation in the Identification of Reorganization
Conditions

As discussed before, the first step in the exploration of the reorganization process
is to find out what is the influence of the organization form on the behavior of
the MAS in a certain environment. In order to make this more precise, we have
to indicate which elements of the organizational form we need to consider. The
representation in VILLA of the aspects presented in section 4:

– Organizational Goal: survival.
– Organizational Roles: Gatherers, Hunters and Others.
– Agents: in each simulation, different numbers of agents can play VILLA

roles. At this stage of development, agents are not cognitive entities, but are
limited to reproduce the behavior described in the role specification

– Interaction: Interaction occurs through sharing of resources (the food stack
and the area of movement)

We have simulated different organizational settings (varying the amount of
initial food, food collection probabilities, the number of agents per role, and the
capabilities of roles) in order to find out which of the organizations performs
”best” in that environment. Assuming the amount of initial food and the food
collection probabilities as a representation of the ’hardship’ of a certain environ-
ment, the aim of the simulation is to find out which type of population is the
most appropriate for each environment. The availability of such a match between
environment characteristics and successful organizational types, makes dynamic
adaptation possible by giving agents the heuristics to determine which is the
best structure for given environment conditions. For this effect, VILLA was run
using the version without reorganization. Basically the experiment consisted of
running many simulations, each with the same initial environment setup, but
with variable organization setups: role combinations (only one type, different
types,...), number of agents per role, and role capabilities (catch power, eating
power,...).

Society Typologies. Society typology (types of roles and numbers of agents
per role) can be seen as a simple way to describe an organization structure,
abstracting from interaction forms and role dependencies. Our first study was
to analyze the influence of agent distribution to the success of a society. For this
effect, we simulated several societies where reorganization was not available,
fixing the all society parameters except for the number of agents per role, which
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Fig. 1. Success of different society typologies. Legend: typologies are given as (Gatherer,
Hunter, Other). An M before the role indicates a majority of that type.

was different for each simulation. Figure 1 gives an overview of the results of
simulations with different configurations, for simulations with a length of 500
runs and a total of 117 agents. The large difference in utility of the different
settings involving Hunters, can be attributed to the fact that Hunters must hunt
in groups and are therefore dependent on the chance of finding other Hunters.
Gatherers are the stable factor on collecting food, even if by design their catch
power is lower than that of Gatherers. Actually, the simulation tool demonstrates
that in societies with only Gatherers the chances of survival depend on the initial
food stack and on the gather probability. More realistic settings, with still a high
chance of survival, are those where there is a majority of Gatherers. It can also be
seen that Others are mainly a ”burden” for the society since they only eat. Their
function is their capability to assume other roles, during society reorganization,
as will be discussed in the next section. The simulations showed that a society
could reach an equilibrium with the existence of all three roles.

Environment Conditions. Besides its typology, the success of a society de-
pends on the conditions of the environment. In VILLA, the hardship of an en-
vironment is represented by a low probability of collecting food. Easy, friendly
environments have high food collection probabilities. Furthermore, large envi-
ronments make it more difficult for Hunters to find each other and as such, the
ratio between number of Hunters and grid size can also be interpreted as an in-
dication of the difficulty of an environment. We have performed a large number
of simulations, varying on the size of the grid, the number of agents and the food
collection probabilities. In these simulations the society typology was fixed (7
Gatherers, 6 Hunters and 4 Others). Due to lack of space, we will not describe
these simulations in detail. In general, given this setting, environments where
gather probability is higher than 15% result in healthier societies, independently
of the capabilities of the Hunters and the size of the grid. It should be evident
that given a fixed society typology, a larger grid will make it more difficult for
Hunters to contribute to food collection, as it will be more difficult for them to
form groups. Figure 2 shows an example of a healthy society on a grid of 60x60
that becomes bad on a grid of 120x120.
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Fig. 2. Average health of typology (10,6,4). Left: 60x60 grid. Right: 120x120 grid.

5.3 Discussion

The success of societies where no reorganization can occur is, as can be expected,
highly dependent on the initial settings (environment conditions and typology).
An important factor for mixed societies (containing all different roles) to survive
is the likelihood that Hunters will effectively be able to contribute to the food
collection effort, which is dependent on their chances of forming groups. In the
current version of VILLA, initial position of the agents and the movements of
Hunters are randomly determined. A more realistic version should include the
possibility for Hunters to actively search for partners, and possibly to learn
from their earlier efforts. Translating this back to the general case means that
successful interactions are crucial for the success of an organization. In VILLA,
failing interactions (Hunters that cannot find the other Hunters) even cause the
organization to fail completely.

The above experiments have enabled us to start to understand the conditions
that indicate the need for reorganization of a society. By studying the results
of many different simulations, several aspects have been identified that can be
taken as candidate conditions for reorganization. In particular, we have studied
food stack value, average food in a certain period of time, health of Others, and
average health. In general, the food stack decreases drastically at the beginning
of the simulation. To define it as a trigger for reorganization is useful because the
reorganization process will be done early and the society will have time to adapt
to the change. The same can be said from the use of the average of food stack as
a parameter for reorganization. Food stack average also decreases strongly, even
if less drastically. The food stack could be compared to taking the value of an
organizations stock as a measure of its utility value. It also reacts quick to the
environment, but is prone to volatile (quick changing) environmental changes.
In addition, we have used the overall average health and the average health of
Others as possible triggers for reorganization. Finally, we have observed that
measures for utility, or success, of an organization should not consider only one
point in time, but look at the situation during a time interval. That is why
average health seems to be more relevant as trigger for reorganization than the
current value of the food stack. So, in general derived measures that take longer
periods of time in consideration are better measures for an organizations success
than quick reacting measures such as stock or food stack.
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As a side effect, the analysis of reorganization conditions lead us to under-
stand that the status of the society should not be evaluated too soon after a
reorganization trial. That is, it is necessary to allow for the reorganization to
take effect before another trial is performed. This has been achieved by intro-
ducing a new parameter defining the delay of reorganization, which specifies a
time interval that the simulator will wait to apply the reorganization rule again.

6 Simulating Reorganization

Our objective is to use the VILLA environment to understand and implement
different reorganization strategies. Based on the experiments described in the
previous section, we have come up with a set of change indicators (cf. section
4) to be used as triggers for reorganization: amount of food in the stack, aver-
age food stack, average overall health, average Hunter health, average Gatherer
health, and average Other health. So far, we have only considered the role-based
decision making case (cf. section 3), in which one role has the capabilities to eval-
uate the current situation, and the power to order others to effectuate changes
demeaned necessary. To this effect, a new role is introduced, the society Head,
that evaluates the overall state of the society, and decides on possible changes for
the next run. VILLA implements the reorganization strategies discussed before
as follows:

– Behavioral change: the Head can change the food intake and food collec-
tion power of creatures. Society typology remains fixed.

– Structural change: the village Head can order Others to enact the role of
either Gatherer or Hunter, and as such change the society typology.

The simulation environment enables the user to indicate which reorganization
strategy to be chosen, which condition the Head should use to determine the
utility of the society at a given moment, and the reorganization action that the
Head must take. The user can also indicate the length of the simulation.

6.1 Using VILLA to Determine Congruence

We are currently setting up the empirical experimentation that will allow for the
rigorous evaluation of the different reorganization strategies described above, and
how they compare to the situation where no reorganization occurs. Initial statis-
tical results are available, but lack of time has prevented us to present here the
complete experiment. The current experiment concerns the comparison of dif-
ferent reorganization strategies, given a fixed initial setting. We have performed
30 simulations (10 without reorganization, 10 following a behavioral adaptation
strategy and 10 following a structural adaptation strategy). Initial environment
conditions and society typology were the same in all 30 simulations, as follows:
V illa = {C, G, H, FS, 200, 200, 1, 0,∞, 60× 60, Rules}, where:

– C = {c1, ..., c25 : c = ({100, 2.0}, {eat}, ...)}
– G = {g1, ..., g10 : g = ({100, 4.0, 20, 9%}, {eat, gather}, ...)}
– H = {h1, ..., h8 : h = ({100, 4.0, 30, 15%}, {eat, gather,observe,move}, ...)}
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The change indicator that triggers reorganization (both in the structural as
in the behavioral case) is: γ = (AverageHealth ≤ 75). Reorganization attempts
have a delay of 4 runs (that is, during 4 runs after a change no other reorgani-
zation attempt will happen). The mapping μ between organizations types, that
provides the recipe for reorganization (cf. section 4) is for the behavioral case:
γ then g ∈ G : gatherpower(g) = gatherpower(g) + 3; and, for the structural
case: if γ then ∃c ∈ C : c /∈ G ∧ c /∈ H → G = G ∪ {c}

The comparison of the simulations is depicted in figure 3, where the three sets
of simulations are organized from worse to best performance. Both reorganization
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Fig. 3. Comparison of reorganization strategies

strategies are, as expected, better than no reorganization. This as to do with the
initial setting. In this setting, where Gatherers alone are not able to collect
enough food to feed the whole group, a society without reorganization can only
survive if Hunters manage to form groups and thus contribute to the food stack.
This was also the case in the four best simulations without reorganization. From
the results, it also appears that behavioral reorganization performs better than
structural reorganization. However, this is for some part the consequence of
the fact that no limit was set to how much food a Gatherer can collect and
thus gatherpower can increase for ever, which is of course a not very realistic
situation. In the case of a structural reorganization, the number of new Gatherers
is fixed by the number of available Others, and thus finite. Our next step is to
introduce a limit to the amount of food that can be collected by a Gatherer. A
final remark concerns the cost of reorganization. As discussed in section 4, the
exploration of organizational adaptation, requires the definition of a function
f(ω, ω′) that computes the cost of implementing the reorganization. So far, our
experiments have not considered the cost of reorganization. This is again a reason
for the less realistic results obtained and is an issue we are now implementing.

7 Conclusions

Reorganization of an organization is a crucial issue in multi-agent systems that
operate in an open, dynamic environment. In this paper, we presented a clas-
sification of reorganization types which considers two layers of reorganization:



Exploring Congruence 229

behavioral and structural. We further described how simulations can help to de-
termine whether and how reorganization should take place. We presented current
work on the development of a simulation tool, VILLA, that is used to evaluate
the different reorganization forms. The aim of VILLA is to understand triggers
for reorganization and evaluate different strategies and not to enable the dy-
namic adaptation of organization. As such, triggers and strategies are setup by
the user. The specific scenario of VILLA was chosen due to its simple yet rich
structure as discussed in section 5.1. We are not specially interested in the an-
thropological or ecological issues of the scenario. Our current research on the
development of a simulation tool for reorganization experimentation will enable
to identify conditions and requirements for change, ways to incorporate changes
in (running) systems, how to determine when and what change is needed, and
how to communicate about changes. Another important future research direction
(following the simulation work), is the development of conceptual formal models
that enable the specification of dynamic reorganization of agent societies. Fur-
thermore, we also plan to simulate decentralized decision-making reorganization
strategies.
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Abstract. There is a wide agreement on the use of norms in order to spec-
ify the expected behaviour of agents in open MAS. However, in highly reg-
ulated domains, where norms dictate what can and cannot be done, it can be
hard to determine whether a desired goal can actually be achieved without vi-
olating the norms. To help the agents in this process, agents can make use of
predefined (knowledge-based) protocols, which are designed to help reach a goal
without violating any of the norms. But how can we guarantee that these proto-
cols are actually norm-compliant? Can these protocols really realise results with-
out violating the norms? In this paper we introduce a formal method, based on
program verification, for checking the norm compliance of (knowledge-based)
protocols.

1 Introduction

Agents in open multiagent systems are sometimes as diverse as humans, as heteroge-
neous agents may behave in different ways in trying to complete their specified tasks.
As some of this behaviour might not be desired, one needs mechanisms to constrain
the behaviour of the agents joining the system by defining what is right and wrong. By
doing so one can guarantee a safe and regulated environment for the agents to work in.

An Electronic Institution (eInstitution) is such an environment, where the expected
behaviour of the agents joining the institution is described by means of an explicit
specification of norms [9] [24]. As in human institutions, norms in eInstitutions are
stated in such a form that allows them to regulate a wide range of situations over time
without the need for modification. To achieve this stability, the formulation of norms
abstracts from a variety of concrete aspects [11] [24]; i.e., norms are expressed in terms
of concepts that are kept vague and ambiguous on purpose [13].

Because of their abstract nature, norms tend to be hard to understand and, as in real
life, adhering to the norms that regulate the institution of which you are a part can be, at
the least, a bit challenging. In highly regulated systems agents might become overly cau-
tious, trying not to violate any of the norms. This can seriously reduce their efficiency
and even influence the outcome and success of their goals. In order to help agents act
in such an environment and increase their efficiency as well as their chance of success
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one can specify norm-compliant protocols for the tasks that are to be accomplished in
the institution.

A norm-compliant protocol is a guideline that makes sure that, when followed, one
does not violate any of the norms, and as such it provides a quick and efficient manner
to do the tasks one is assigned, since one does not need to review the norms and check
norm compliance whenever one is planning to perform an action. In order to guarantee
this the protocol should be checked for norm compliance, which means that one should
check that no norms are violated by the protocol during its execution in all situations,
i.e. the norm compliance of the protocol should not depend on the state of the world.
Therefore, the protocol should provide a violation-free path to achieve the agent’s goals.
As long as the protocol is followed to the letter the agent should stay out of harm’s way.

In this paper we present a formal method for checking the norm compliance of proto-
cols based on temporal logic, using an approach used in concurrent programming [14].
We have chosen this approach over traditional techniques for verifying (sequential) pro-
grams, because verification methods for concurrent programs and temporal logics allow
us to see whether norms are violated in intermediate steps as well, where traditional
techniques are only for checking the input and output of a program. The formalism
of [14] is, however, limited to checking properties and assertions for concurrent pro-
grams, not for checking norm compliance. Therefore we enhanced the formalism with
the means to express norms and violations and prove the non-violating of these norms
by the protocol. Some of the additions to the formalism from [14] are mentioned in the
following sections.

The novelty of the approach presented in this paper lies in merging known techniques
for verifying concurrent programs with deontic logics, in order to create a formalism
for verifying the norm compliancy of protocols in highly normative domains; a problem
which, to our knowledge, has not been handled in literature before. We would like to
stess that we are not trying to invent a new version of a deontic formalism to represent
and reason with norms; instead we propose a formalism that uses (static) representa-
tions of norms, expressed in one of the existing formats, and checks whether a protocol
specified for a highly regulated domain adheres to the constraints that are layed down
by these norms. While deontic reasoning is interesting in itself, the approach we are
discussing in this paper is aimed at verifying protocols which can be used by agents in
normative systems such that the agent does not have to reason about the norms of the
system at run-time, thus reducing the complexity of the system.

The outline of this paper is as follows. We start by a discussion of the work done in
the field of norms and agents. Then, in §3, we present the formal framework and explain
some of the difficulties one will encounter when formalising protocols and norms. In
§4 we show how the formalism works on an example protocol taken from the medical
domain. We end this paper with some conclusions and propose some future work.

The example problem that we are going to use throughout this paper is a real-life
protocol that describes which steps should be taken by a doctor to determine whether
he can extract the organs of a donor or not (for the use of transplantation). This protocol
is run after the patient has deceased, and specifies that a doctor needs to check whether
the patient satisfies all of the listed criteria and none of the contra-indications of becom-
ing a donor. If this first test is succesful, the doctor needs to check whether the patient
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Fig. 1. Protocol for organ donation

is registered in the Donor Register (a special register which contains the approval or
disaproval of people to become a post-mortal donor), and whether this registration per-
mits the doctor to extract the organs for donation. If no such registration exists, other
routes need to be taken to check whether the patient would have approved to donating
his organs (by checking for the existance of an statement of intent giving this approval,
or by consulting the relatives of the patient). Only if the permission for donation can be
obtained (through any of these routes), and if the patient has not died from a non-natural
death is the removal of the organs allowed.

A simplified version of this protocol is included in figure 1. We are using this real-life
protocol because of the complexity of the norms applicable to the domain. We feel that
if the formalism is able to express and handle such norms, it can be applied to all sorts
of normative domains. Also, although it is not feasible to have agents performing the
tasks mentioned in this example protocol, protocols that are designed for use by agents
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are of similar structure and complexity. And even though this protocol is knowledge-
based1, the method we present in this paper can be applied to other sorts of protocols as
well.

2 Related Work

In those situations where agents might deviate from expected behaviour to fulfil their
own goals, a multi-agent system needs mechanisms to defend and recommend right
and wrong behaviour, along with safe environments to support those mechanisms. As
we mentioned in §1, in eInstitutions expected behaviour is defined by means of norms.
But providing agents with a set of norms is not enough; an eInstitution should also
ensure norm compliance.

In the literature, there are two approaches for norm compliance from the individual
agent perspective:

– agents that always obey norms [3] [20]
– agents that autonomously decide to obey norms [2] [5] [7] [16] [15] [24].

The former ensures norm compliance by default and it is used in those domains where
total control of the agent behaviour is needed, but issues on the conflict between the
agent goals and the norms should be solved. The latter allows the design of dynamic
systems where agents are able to join a society while satisfying their own goals. The
conflict between the agents’ goals and the norms controlling their behaviour is handled
explicitly in the reasoning process of the agent. In [15], autonomous norm compliance
is divided in two separate processes: a) a process to deliberate about whether to comply
with a norm (the norm deliberation process), and b) a process to update the goals and
intentions of agents accordingly (the norm compliance process).

In those systems where autonomous norm compliance is allowed from the agent per-
spective, there is a need to enforce to some extent the compliance of norms from the
social perspective. In [15] there is no direct enforcement on norm compliance, but influ-
enced norm compliance, where behaviour of other agents against the non-compliance
of a norm influences the decision of each agent. In [23] a more direct approach is taken:
the agent platform hosting the eInstitution provides time-efficient services to help a
special type of agent (the Police Agents) to enforce proper behaviour. As Police Agents
cannot see or control the internal mental states and the reasoning process of the other
agents, norm enforcement is based on the detection of violation situations in terms of
(public) messages and (visible) actions.

The use of protocols to ease agent interaction (as discussed in §1) adds an extra level
between the norms and the agent behaviour. In this case norm compliance is divided
into two different levels:

– norm compliance of the protocol: to ensure that a given protocol adheres to the
norms defined in a context. If the protocol is norm-compliant, following the proto-
col ensures that the agent(s) will not violate the norms.

1 Knowledge-based protocols depend on the knowledge of the agent to decide which action is
to be performed next, which results in a change of knowledge. The goal of such protocols is to
determine whether something is known by the agent at the end of the protocol’s execution.
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– protocol compliance by the agent: to check that the behaviour of an agent complies
with the expected behaviour defined by the protocol [25].

The former is the focus of this paper (see §3.3 and §4), as it is usually overlooked
in other works. The latter (protocol compliance) has been studied both in theoretical
and practical approaches. In [25] a formal framework for commitment protocols is pre-
sented. Verification in this case is an external process and therefore it cannot use the
internal knowledge of the agents, only the (observable) behaviour. In [8] protocol com-
pliance is handled by means of interaction scripts that are explicitly accepted by the
agents through interaction contracts. Each contract includes the interacting agents, the
roles they are playing, the contract clauses and the protocol. Verification of protocol
compliance is an optional clause in the contract that, if included, specifies who and how
will verify the interaction and the actions to take if the protocol is not followed. In [9]
interaction protocols are structured in a performative structure. Although agents can
decide not to follow the protocol (there is no direct control of the agent platform over
the agents’ beliefs and desires), there is an intermediate actor, the governor, that filters
any non-allowed message that the agent tries to send to the eInstitution and is not al-
lowed. Therefore protocol compliance is ensured by filtering those messages that, for a
given state of the interaction, are not included in the protocol as possible messages to be
uttered. However, in none of these works there is a method to ensure that the protocols
are norm-compliant.

3 Our Approach

In this section we will set out the steps of the verification process necessary for checking
the norm compliance of protocols. While discussing these steps we will also focus on
some interesting aspects and problems that one can encounter.

3.1 Formalising the Protocol

First, we start with formalising the protocol that we want to check. Since protocols are
very similar to programs we have based our protocol checking formalism on the for-
mal verification methods designed for parallel programs taken from [14]. This program
verification method uses first-order linear-time temporal logic (LTL) to express how
programs change the world over time, and uses this logic to prove that certain specified
properties of a program hold (e.g., deadlock freedom, mutual exclusion, termination,
etc.). In this paper we will not go into an elaborate syntactical and semantical definition
of the language used and will only give the informal interpretations of the operators.
The proper definitions of the operators can be found in [1].

The protocol we want to verify is translated into a program using a syntax containing
among others variable assignments, if − then− else−fi and while−do−od statements,
with the conditions of these statements being formulas of a classical first-order predicate
logic LP. For ease of reference all statements are labelled, with the labels being unique
throughout a program, i.e., no two labels occurring in a program are equal. Using this
we can formalise the example-protocol from figure 1 as follows (we only include the
part of the protocol necessary for the proof we provide in §4, the complete version can
be found in [1]):
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Π= Initial R;

π0: 〈check criteria & contra-indications〉;
π1: if know criteria(d,y)∧know no contra-indication(d,y)

then π2: know potential donor(d,y):=TRUE
else π3: know not potential donor(d,y):=TRUE
fi;

π4: if know potential donor(d,y)
then π5: 〈consult donor register〉
fi;
...

π33: 〈fill donor form〉;
πe: stop

This formal program is a representation of the top three boxes of the protocol shown
in figure 1 and describes the steps taken by the doctor. These steps are; 1) the doctor first
checks whether the patient satisfies the conditions and none of the contra-indications for
becoming an organ donor (formalised in π0), then 2) using the results of these tests the
doctor determines whether the patient is a suitable donor (formalised in π1 to π3). In the
case that the patient does not satisfy the criteria or shows one of the contra-indications,
the doctor knows that the patient is not a potential donor, thereby terminating the pro-
tocol (shown in π3

2). However, if the patient does satisfy the criteria and does not show
any of the contra-indications, the doctor determines that the patient is a potential donor
(see π2), and then 3) continues to check whether the patient has registered his permis-
sion (or prohibition) for extracting organs for transplantation (formalised in π4 and π5).

Note that the result of the actions like check criteria & contra-indications is de-
pendent on the domain, i.e. if the patient satisfies the criteria and none of the contra-
indications, the result of the action in π0 would be that the doctor knows this, thus
know criteria(d, y) ∧ know no contra-indication(d, y).

The logic used for verifying protocols consists of a classical first-order predicate
logic LP which is extended with � (next-state), � (always) and atnext (first time) oper-
ators to obtain a first-order linear-time temporal predicate logic LT P. Using these oper-
ators we can also derive the ♦ (sometime) and until operators. To reason about events in
the past, LT P is extended with past-time operators, which are discussed in the next sec-
tion (for formal semantics of LT P see [14] and [1]). The logic LT P is then expanded to
LT PΠ by adding the set of propositional variables at λ (which means that action labelled
λ is next to be executed), to link the protocol state to a state in the temporal model of
the logic. Therefore, although the protocol has actions, the logic, instead, only uses the
labels of the actions.

In order to prove that a protocol is norm-compliant in all situations that might arise
we need to check the protocol in various different models and see whether the norm
compliance holds. For instance, a protocol for obtaining donor organs needs to be
checked in models where the donor is male and in models where the donor is female
to determine that the protocol does not violate a norm about no discrimination between
donors based on sex, race, etc. Only if the protocol generates the desired and expected
result in both situations, we can say that the protocol does not violate that norm.

2 The fact that know not potential donor(d, y) becomes true means in this protocol that all of
the next steps are skipped, and the protocol terminates by specifying that no permission can be
obtained.
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Since time is defined as semi-finite (it starts at the start of the protocol), protocols
cannot use information about previous runs and next runs (unless explicitly modelled).
If protocols Π1 and Π2 are run one after another (i.e., Π1;Π2), Π1 cannot use infor-
mation from or about Π2 and Π2 cannot use information from or about Π1; they are
considered as separate runs. This means that the value of program variables, truth val-
ues of predicates and states and information gathered is restricted to the runtime of the
protocol. Propositions and predicates can change their truth values during a protocol
run, however, but only because of actions taken in the protocol.

3.2 Formalising the Norms

The norms that apply to the domain in which we are checking the protocol are then
translated into a high-level formal language, which should provide enough room for
the formal representation of the norms to keep their abstract nature. We have used a
formalism similar to the one used in [23]. In order to be able to use these high-level
formalised norms in the checking of the protocols we needed to extend the first-order
language specified above with deontic concepts, Ox, Px, Fx, to express x being obliged,
permitted or prohibited some action, respectively. To give meaning to these deontic
operators we introduced special predicates to denote when violations occur. To handle
the temporal aspects of norms, such as deadlines, we used ideas from [4], [6] and [8]
and adapted these to be used with the first-order temporal logic as specified above.
Furthermore we have extended our language with DOx λ (x is going to do λ next) to
reason about actions and�ϕ (past operator) and �ϕ (previous-state operator) to reason
about the events that have happened (such as actions that have been done: DONEx α ≡
�DOx α).

The deontic operators discussed above are introduced as abbreviations of complex
temporal formulas. Definition 1 shows the temporal translations of obligations in our
formalism (based on [8]).

Definition 1 (Obligations)

Ox(DOx α < δ) ≡ ♦δ∧
[
(¬δ∧¬viol(x,DOx α,δ)∧¬DONEx α) until

((DOx α ∧�(�¬viol(x,DOx α,δ)))∨
(¬DOx α∧�(δ∧ viol(x,DOx α,δ))))

]

This definition intuitively expressing that a) a deadline always occurs at sometime, b)
until that moment no violations can occur because of the norm, and c) either the action
is done before the deadline and no violations occur ever because of this norm, or the
deadline passes while the action has not yet been done and a violation occurs. Similar
temporal translations are made for permissions and prohibitions (not included here due
to space constrains, see [1] for these definitions).

Norms applicable to the example mentioned in §1 are, for instance, obliging doctors
to talk to relatives for obtaining permission before extracting organs from a donor, pro-
hibiting the extraction of organs without the approval of the district attorney in case of
suspicion of a non-natural death , etc3. In §4 we prove that the protocol abides to the
norm that doctors are obliged to pronounce dead of a patient before removing an organ.

3 A full set of norms is available in [1].
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Permissions and Non-permissions. In theoretical deontic studies, such as [17], [21]
permissions are normally modelled as Px(DOx α) ≡ DOx α → ¬viol(x, α), which says
that being permitted to do α means that doing α leads to non-violation. Moreover,
permissions are, in classic deontic studies, normally defined as being equivalent to
¬Fx(DOx α) and ¬Ox(¬DOx α). The problem with this definition, which is also dis-
cussed in deontic studies (cf. [18]), is that it makes the existence of permissive norms
nonessential when trying to determine whether violations occur. From observations of
the legal domain, and as already proposed in [18], it follows, however, that permissions
can be considered as exceptions to a general prohibition. The fact that an article in a law
provides a certain set of people in a certain situation with the permission to do α means
that in other situations these people, or other people at all times, are prohibited to do
α. Some lawbooks even express this explicitly by means of an article that something is
forbidden unless stated otherwise within that lawbook. We model this relation between
permissions by a technique similar to negation as failure, as used in logic programming
[22]; the inability to derive that you are permitted to do α means that you are forbidden
to do α:

∼ Px(DOx α)→ Fx(DOx α)

Of course, we could have opted for a relation in the other direction, i.e., ∼Fx(DOx α)→
Px(DOx α) which means that if something is not explicitly forbidden it is permitted.
The choice between whether to use the first or the second relation entirely depends on
the nature of the norms one is trying to formalise, i.e., the choice is dependent on the
character of the legal system, thus whether it is permissive in nature or restrictive (see
[19] for a discussion on the character of legal systems).

Now, since we add the ∼ Px(DOx α) → Fx(DOx α) rule to our system to model
that permissions are exceptions to general prohibitions (where this general prohibition
might only follow from the characteristic nature of the law), we get into trouble if we
don’t assume that permissions follow from obligations (i.e., Ox(DOx α)→ Px(DOx α)).
This assumption is an axiom in most deontic systems, but we are reluctant to insert it
because we feel that in the real world this might not necessarily hold. It is, however, true
that a normative system is supposed to uphold this principle, i.e., normative systems
should be designed such that obligations to do α can actually be fulfilled, but this is
actually the ideal situation. When designing a normative system (thus, when laws are
postulated) it should be taken into account that obligations can be fulfilled. However, it
is not necessarily the case that this condition is always met in normative systems (due to
mistakes in designing the system). In the case presented in §4, however, we can safely
assume that this assumption has not been violated by the law-maker.

Linking Levels. A problem that arises because of the high-level of abstraction for the
formalisation of norms is the mapping between the concepts in the norms and the ac-
tions specified by the protocols. In order for the norms to range over a wide variety of
situations, and in order to function for a long duration without the need of modifica-
tion, norms tend to abstract from a variety of concrete aspects, such as time, role, etc.
Therefore, in order to check whether certain concrete actions and situations contained
in the protocol violate a norm we need to map these concrete actions and situations to
the abstract actions and situations described by the norms. The mappings that we can
provide are generally considered to be one-way mappings, that is, a concrete action a
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in a protocol can be considered to be an instance of an abstract action α mentioned
in the norms, but since there are many more actions conceivable that can be consid-
ered instances of α, we cannot say that a and α are equivalent; we can only say that
a is an instance of α, or that doing a counts as doing α (DOx a � DOx α). Although
this mapping problem seems to follow from our high-level formal language, it is also
present when using formalisms with a lower abstraction level (although implicit). The
explicit mapping that we need to make between the protocols and norms now is in such
a case taken care of when formalising the norms (by means of choosing the appropriate
concrete concepts in the formalisation of the norms). In this paper we use a simplified
version of the counts as as defined in [10] and [12].

3.3 Verifying Protocols

The next step of the process is the actual verification of the protocol. The formalism that
we have chosen allows us to specify properties that are verified by means of automated
reasoning. This means that we check the protocol in all sorts of different situations (that
apply to the protocol and norms) in order to check whether all situations guarantee the
norm compliance that we require.

In order to check the protocol on norm compliance we specify a safety property that
has to be derivable from the protocol. This safety property is an invariant, a formula that
should hold during the entire execution of the protocol. We define the safety property
for checking protocols as follows:

Definition 2 (Safety Property of Protocols)

startΠ ∧ �Norms→ �¬violation

Where startΠ ≡ at α0 (the protocol is at its start label), Norms being the conjunction of
all applicable norms, and violation ≡ ∨x,α,δ viol(x, α, δ) (violation is the disjunction of
all viol-formulas that occur in Norms). This safety property of protocols is defined as
the global invariance of ¬violation for the protocol Π under the condition that Norms
always holds, i.e., if �Norms holds upon the start of running Π , then ¬violation will
hold in all states of the run.

To prove that a protocol satisfies this property we introduce the following rule:

Theorem 1 (Invariance Rule). The following rule is valid:

startΠ ∧ �Norms→ ¬violation
¬violation invof M̄Π

startΠ ∧ �Norms→ �¬violation

Where C invof α ≡ atα ∧ C → � C (C is an invariant of α) and C invof M ≡
C invof α1 ∧ . . . ∧ C invof αm (C is an invariant of every α ∈ M ), and M̄Π is the
set of all labels in the program except for the label of stop, the end-statement. A proof
of this theorem can be found in [14]. This rule is also very close to the intuition one
might have about protocols being norm-compliant, namely if there are no steps in the
protocol that violate any norm, the protocol will not violate any of the norms as a whole
(if no violation existed when the protocol started running).
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Of course, this is not the only property that a protocol needs to satisfy. Because law
is generally applicable to a single context, one who is not participating in the activities
of that context is not regulated by these laws; the laws mean nothing to someone not
trying to do anything regulated by that particular set of laws. For instance, traffic laws
have no influence on those who do not participate in traffic situations; if someone sits at
home all times, these laws will never be violated. The problem is that laws regulating a
specific domain assume that you are trying to do something or otherwise participate in
that domain, and only regulates these actions and participations.

While all protocols that satisfy the aforementioned safety property are compliant to
the norms, we would actually like to be able to say a bit more about the protocols we
are trying to verify. Since protocols that do satisfy the safety protocol, and thereby the
norm compliance, that merely consist of actions that are not regulated by the applica-
ble norms, are not that interesting to the agents interacting in the eInstitutions (e.g.,
although “while True do skip od” does satisfy almost all violation invariances, it is not
very interesting from an interaction or institution’s point of view). Therefore, we need to
define another property that allows us to determine whether a protocol is, next to being
norm-compliant, also trying to achieve something interesting. Norm-compliant proto-
cols that are actually relevant to the domain not only satisfy the violation invariance
property, but also a liveness property. These sorts of properties specify that a proto-
col/program will, at sometime, reach a certain (interesting) state. We can use this to
check whether the protocol achieves a specified goal at the end of its run:

Definition 3 (Liveness Property of Protocols)

startΠ ∧ �Norms→ ♦(at αe ∧ goal)

Where at αe is the stop-statement of Π and goal is the goal that the protocol should
reach. In our example this is a complex declarative statement specifying that when the
conditions hold (i.e., the donation should ideally take place), the agent/doctor running
the protocol will know that the donation can take place, and when one of the conditions
for the donation fails, the agent/doctor knows that the donation cannot take place.

4 Practice

Now that we have seen a description of the approach we are using to verify the norm
compliance, we show in this section how this approach is to be used. We show this by
using the example protocol mentioned above in figure 1. To ensure the norm compliance
of this protocol we need to check whether the safety and liveness properties, as specified
before, are satisfied. Although it is possible to give a fully formal proof we will only
show the first steps due to space limitations. In this proof we assume that y denotes
the patient with respect to whom the protocol is run, d denotes the doctor running the
protocol and d′ is a doctor-variable (denoting a unspecified doctor).

For the invariance proof, i.e. proving that ¬violation is an invariant of the proto-
col, we make use of the invariance rule as mentioned in theorem 1. We assume that
startΠ ∧ �Norms → ¬violation holds (1) and will try to prove that ¬violation is an
invariance of every following step of the protocol, thereby deriving that ¬violation is
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an invariant of the protocol. We can make this assumption because we are not interested
in the situations where this assumption does not hold, such as the situation in which the
protocol is started when a violation has already occurred, since starting the protocol in
such a situation would say nothing about the norm compliance of the protocol, only that
it cannot “repair” the situation it started in.

Note that we only need to check the actions taken by the protocol, since the “control
points” used in the protocol (i.e. protocol labels referring to conditions of if-clauses)
are trivially norm-compliant since they do not change the value of any viol-predicate
(actually, the action that is thereafter chosen shows whether the decision made at the
control point was correct). This is expressed in step (3).

(1) startΠ∧�Norms→¬violation assumption
(2) startΠ→(at π0∧intented(organ removal)) definition of startΠ
(3) ¬violation invofM̄Π \{π0,π5,π7,π9,π14,π16,π21,π23,π24,π26,π33} Trivial

Next we prove that step π0 of the protocol (checking whether the patient satisfies
the criteria and none of the contra-indications for being a donor) is norm-compliant.
The only norm in the law concerning this actions is the fact that doctors are supposed
to check whether a patient is brain death before removing any organs, of which the
translation is seen in step (5). In order to use this deontic expression for determining
whether violations occur, we need to “expand” the norm in (5) to its temporal coun-
terpart by using the definition 1 seen earlier, as seen in (6). Now, since we can derive
from the structure of the protocol that DOd′ remove organ(d′, y) has not yet occurred,
or is occurring now (7), we can derive that the value of V1 will not be changed by
DOd certi f y dead(d, y), shown in (8) and (10). Finally, after connecting the abstract
norm level to the protocol level using (4) to derive (11), remembering the fact that
obligations imply permissions (12) (and therefore do not lead to violations by acting
upon the obligation)4, and adding the fact that no other norms were applicable and
thereby cannot be violated (13), we can conclude that ¬violation is an invariant of π0,
see (15).

(4) atπ0�DOd certi f y dead(d,y)
(5) Od(DOd certi f y dead(d,y)<DOd′ remove organ(d′,y)) Art. 14
(6) ♦DOd′ remove organ(d′ ,y)∧

[
(¬DOd′ remove organ(d′ ,y)∧¬V1∧¬DONEd certi f y dead(d,y)) until

((DOd certi f y dead(d,y)∧��¬V1) ∨
(¬DOd certi f y dead(d,y)∧�(DOd′ remove organ(d′ ,y)∧V1)))

]

V1=viol(d,DOd certi f y dead(d,y),DOd′ remove organ(d′ ,y)) (5)
(7) ¬�DOd′ remove organ(d′,y) (Π)
(8) DOd certi f y dead(d,y)∧¬violation→��¬V1 (6),(7)
(9) ��ϕ→�ϕ (taut)
(10) DOd certi f y dead(d,y)∧¬violation→�¬V1 (8),(9)
(11) atπ0∧¬violation→�¬V1 (4),(10)
(12) Pd(DOd certi f y dead(d,y)<DOd′ remove organ(d′,y)) (5)
(13) atπ0∧¬violation→�¬viol(d,α,δ) (VC)

for all viol-predicates other thanV1

(14) atπ0∧¬violation→�¬violation (11),(13)
(15) ¬violation invofπ0 (14)

4 Remember that not being able to derive this permission would have meant that there existed a
prohibition on this action, see §3.2.
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And so, after checking the norm compliance of π0 we continue with checking whether
the next actions (starting with π5 and so on, see the formalised protocol in §3.1 and the
full proof in [1]) do not violate the norms. After deriving that ¬violation is an invariant
of all the protocol steps we can derive, by theorem 1, that the protocol does not violate
any of the norms, see (111).

...
(110) ¬violation invofπ33

No norms concerning filling in donor form (VC)
(111) ¬violation invofM̄Π (1),(3),(15),...,(110)

In a similar fashion we can prove that a liveness property as specified in definition 3
holds for Π . Where

atαe ≡ atπe

goal ≡ criteria(y)∧¬contra-indication(y)∧ (statement permission(y)∨ other statement(z,y)∨ relative permission(y))∧
(¬non-natural dead(y)∨DA permission(p,remove organs))

→ know permission(d,remove organ(y))
∧ ¬ (criteria(y)∧¬contra-indication(y)∧ (statement permission(y)∨ other statement(z,y)∨ relative permission(y))∧

(¬non-natural dead(y)∨DA permission(p,remove organs)))

→ know no permission(d,remove organ(y))

This goal represents that the protocol is supposed to make sure that the agent obtains
the knowledge whether it has the permission for the organ transplantation or not, after
ending the protocol run. By proving these safety and liveness properties we show that
Π is not only norm-compliant, but also that Π actually achieves the goal for which it
is designed (that is, to determine whether you are allowed to extract the patients organs
for transplantation).

5 Evaluation

While proving the liveness of the example protocol, shown partially in the previous sec-
tion, it became even more evident that the attempt to represent a domain for verifying
the norm compliance of a protocol (i.e. trying to “flesh out” the meaning of the concepts
used in the domain) is a very important aspect of the approach presented in this paper.
Without the formal meaning of the concepts in the domain, the verification cannot take
place and with the wrong meaning the verification could lead to incorrect results. In a
sense, the approach discussed in this paper is actually about defining the logical context
of these concepts, and therein very similar to the legal domain where legality/illegality
of certain events/actions is determined by the interpretation of the details of an investi-
gation.

At the end of the verification process described in this paper, a list of assumptions
under which the protocol can be proven correct has been composed and it is not only
the proof itself, but, perhaps even more, this list of assumptions that is the interesting
result of the verification process. This list of assumptions is what actually makes the
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verification of norm compliance different from other protocol verification techniques
as well as concurrent program verification methods, as it is this list of assumptions that
defines the correctness of the proof. These latter approaches are only useable when all is
crystal clear and neatly specified, but this is a situation that cannot occur when handling
norms. The approach presented in this paper shows that for proving normative protocols
such a list of assumptions is necessary in order to be able to say anything about the norm
compliance of a protocol.

6 Conclusions and Future Work

In this paper we discussed a formal approach on norm compliance of protocols based on
the verification of programs. We give a view of how these techniques can be used, after
some adaptation and extension, to verify that a (knowledge-based) protocol is norm-
compliant. We also show, as an example, how norm compliance of a knowledge-based
protocol (actually used in the medical domain) can be proven. Moreover we have shown
that it is actually the assumptions that one has to make when trying to proof the norm
compliance of a protocol that are the most interesting result of the presented work,
as one can never fully handle the abstractness of norms when trying to proving norm
compliance.

Please note that norm compliance of the protocols used by the agents is only a step
towards the implementation of norms in MAS. Protocols are guidelines and agents are,
therefore, not necessarily constrained to follow the protocol. A more direct enforcement
is needed instead. Norms can be enforced either by the use of violation detection and
sanctioning these violations [23], or by directly constraining the agents such that they
can only do actions that do not violate norms.

Currently our formal method is suited for verification of single sequential protocols.
We plan to extend our LT PΠ language to prove norm compliance of parallel protocols
(such as interaction protocols). We also plan to extend the LT P language with opera-
tors from epistemic logic in order to improve expressiveness of knowledge and beliefs
of agents following a protocol. Moreover, we are very interested in seeing how this
extended approach can, for instance, be used for the checking of security and authenti-
cation protocols.

The framework discussed in this paper uses a theorem proving method to verify the
norm compliance of protocols. This is known to be labour-intensive. We are currently
considering the use of model-checking, instead.
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Abstract. This paper proposes a rule language for defining social expectations
based on a metric interval temporal logic with past and future modalities and a
current-time binding operator. An algorithm for run-time monitoring compliance
of rules in this language based on formula progression is also presented.

1 Introduction

The study of electronic institutions—explicit declarative models of the rules govern-
ing particular open systems of autonomous agents—has gained much recent attention
[1]. An institution provides a social model of a multi-agent system in which agents
agree (by the act of joining the society) or are required to conform to particular norms
of behaviour and role and empowerment structures. However, in an open system it is
not sufficient to simply formally or semi-formally define an institution and hope that
agents will follow its rules. As in human society, the successful functioning of an in-
stitution requires that all (or at least most) members will conform. There is therefore
a need for mechanisms that prevent or at least discourage anti-social behaviour. Possi-
ble approaches to maintaining social order include designing the rules of interaction so
that rational agents will have no benefit from breaking them, the formal verification of
agents’ code to prove they will behave as expected—something that is not possible in
an open system, and the implementation of infrastructure supporting social constructs
such as trust and reputation. When it is not possible to ensure compliance by design or
verification, it is necessary to have a means of determining when agents fulfil or violate
the norms of their society, whatever use is then made of the resulting information.

There has been a significant amount of recent research on statically verifying prop-
erties of institutions as well as interpreting institutions to manage or guide agent inter-
action (examples include several papers in the DALT’04 workshop [2] as well as earlier
work such as that by Huget et al. [3] and Cliffe and Padget [4]). However, there has
been less attention paid to mechanisms for run-time compliance checking, i.e. moni-
toring events in a running agent system, determining the future expectations of agents’
behaviour according to norms of the institution, and checking if these are fulfilled or
violated. This paper focuses on that issue.

Verdicchio and Colombetti [5, 6] have developed a formal model of social com-
mitment with its semantics based on a propositional branching time logic with future
and past-time modal operators (CTL±), but with an axiomatic account of events and
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commitments expressed using predicate logic and CTL± operators together. This pa-
per presents the results of an investigation into how implication formulae of the style
used by Verdicchio and Colombetti can be formally characterised and, with appropriate
syntax restrictions, be used for practical reasoning by agents at run time. An important
requirement for this purpose is the ability to reason efficiently about how event occur-
rences relate to specific points or intervals in time. We have therefore developed a logic
named hyMITL± that combines CTL± with Metric Interval Temporal Logic (MITL)
[7], as well as features of hybrid logics [8]. We present a subset of hyMITL± that pro-
vides a rule language for defining social expectations and show how the technique of
formula progression from the planning system TLPlan [9] can be used to monitor social
expectations until they are fulfilled or violated.

The structure of the paper is as follows. Sections 2 and 3 define the syntax and
semantics of hyMITL±, respectively, with the rule language presented in Section 4 and
an example of its use in Section 5. Section 6 gives details of the compliance-monitoring
algorithm. Finally some related work is discussed in Section 7 and Section 8 concludes
the paper.

2 Syntax of hyMITL±

Formulae of hyMITL± are defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | ∀x.φx | X+φ | X−φ |
φ U+

I φ | φ U−
I φ | A φ | E φ | ↓ux.φx | I

I ::= (−∞,+∞) | [b, b] | [b, b) | (b, b ] | (b, b)

b ::= a | +d | −d

where:

– p is an atomic formula from a first order language L.
– φx denotes a formula φ in which variable x is free (i.e. not bound by ∀ or ↓).
– u is a unit selector on the ↓ binding operator, referring to the desired granularity of

time (e.g. year or minute) for binding x to the current time. A value of now indicates
maximum precision.

– a and d are terms, possibly containing variables, that denote (respectively) absolute
points in time and durations1.

We constrain the use of variables within interval bounds b: any such variables must be
bound by an enclosing ↓ operator.

In this logic, the temporal operators X (the next/previous state) and U (until) can
be applied in the future direction (when adorned with a superscript ‘+’) or the past
(indicated by a ‘−’). Following MITL [7], the two U operators are qualified by an
interval I that can be open or closed at each end (depending on whether a round or

1 We do not define a language for these terms in this paper, but note that Verdicchio and Colom-
betti [10] have proposed a suitable language, which has inspired the treatment here.



248 S. Cranefield

square bracket is used, respectively)2. The meaning of X+φ is that φ is true in the next
state, and φ U+

I ψ asserts that φ will remain true from the current state for some (possibly
empty) sequence of consecutive future states, followed by a state that is within the time
interval I and for which ψ holds. X− and U−

I are defined similarly, but in the past
direction.

The bounds of intervals can be specified either relatively or absolutely—a prefix of
“+” or “−” indicates a relative time value. Relative times (except for values of plus or
minus zero) must indicate the units used, and the language for expressing time points
must define a syntax for this, e.g. “−3 hours”. When qualifying U−, the interval bounds
are written in the reverse order from usual (e.g. [−2 hours,−3 hours]), to reflect the
backwards-looking nature of this operator.

A and E are temporal path quantifiers. They assert that the formula that follows the
operator applies to all, or respectively at least one, of the possible sequences of states
passing through the current state.

The ↓ operator is the “binder” operator used in hybrid logics [8]. It binds a variable to
a term denoting the current date/time, using the same syntax as absolute interval bounds.
The optional unit selector u is a time unit constant from the date/time sublanguage and
indicates that the variable should be bound to the time point resulting from rounding
down the current date/time to a particular degree of precision, e.g. to the start of the
current year, month or day.

The final type of formula is an interval formula. This is true if the timepoint associ-
ated with the current state is within the interval3. The usual abbreviations of predicate
logic are defined for disjunction (∨), implication (→) and existential quantification (∃).
We also use the standard abbreviations for existential and universal quantification over
states in a path: F+

I φ ≡ true U+
I φ and G+

I φ ≡ ¬F+
I ¬φ, with similar definitions for F−

I

and G−
I . We define future and past “weak until” operators in the following way4:

φ W+
[l,u]ψ ≡ ↓now t.(G+

[t,u]φ ∨ φ U+
[l,u]ψ)

with similar definitions for intervals with open bounds and for W−. Finally, if a tem-
poral operator is qualified by the interval (−∞,+∞), we allow this to be suppressed for
brevity, and a ↓ operator with no superscript is an abbreviation for ↓now.

3 Semantics of hyMITL±

Let S be a set of states, each being a first-order model for the language L over the fixed
domain D, and all having the same interpretation for the date/time sublanguage of L.
We denote the image of date terms under this shared interpretation by Date and the
image of the set of time unit constants by U .

2 We do not choose to qualify X− and X+ by an interval. Although one version [11] of MITL
qualifies its next-state operator in this way, the version used in TLPlan [12] does not, and the
original definition of MITL [7] did not include this operator at all.

3 This is a generalisation of the notion of a nominal in hybrid logics: a formula that names a
point in a model and is true if the current point is the one named.

4 A straightforward extension of the usual definition would give φ W+
I ψ ≡ G+

I φ ∨ φ U+
I ψ,

which would be true if φ is true throughout a future interval I but not before then.
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〈M, p, V 〉 |= φ where φ is an atomic formula,
iff 〈p0, V 〉 |= φ.

〈M, p, V 〉 |= ¬φ iff 〈M, p, V 〉 �|= φ.

〈M, p, V 〉 |= φ ∧ ψ iff 〈M, p, V 〉 |= φ and 〈M, p, V 〉 |= ψ.

〈M, p, V 〉 |= ∀x.φx iff for all d ∈ D, 〈M, p,V [d/x]〉 |= φx.

〈M, p, V 〉 |= X+φ iff 〈M, p1, V 〉 |= φ.

〈M, p, V 〉 |= X−φ iff for some path q, q1 =p and

〈M, q, V 〉 |= φ.

〈M, p, V 〉 |= φ U+
I ψ iff for some n≥0, 〈M, pn, V 〉 |= ψ,

τ (pn) ∈ IM,V and for all m s.t. 0≤m<n,

〈M, pm, V 〉 |= φ.

〈M, p, V 〉 |= φ U−
I ψ iff for some path q and for some n, qn =p,

〈M, q, V 〉 |= ψ, τ (q)∈ IM,V , and for all

m s.t. 0<m≤n, 〈M, qm, V 〉 |= φ.

〈M, p, V 〉 |= A φ iff for all q ∈ Paths(p0), 〈M, q, V 〉 |= φ.

〈M, p, V 〉 |= E φ iff for some q ∈ Paths(p0), 〈M, q, V 〉 |= φ.

〈M, p, V 〉 |=↓ux.φx iff 〈M, p, V [ floor(τ(p),uM )/x]〉 |= φx.

〈M, p, V 〉 |= I where I is an interval formula, iff τ (p) ∈ IM,V .

Fig. 1. The semantics of hyMITL±

A hyMITL± model M is a tuple 〈S, <, τ,≺, floor〉 where < is a a total order relation
on Date, τ is a function mapping from S into Date, ≺ is a state predecessor relation
in which every state has a unique predecessor and a non-empty set of successors and
which is consistent with the ordering on dates: ∀s1, s2 ∈ S, s1 ≺ s2 → τ(s1)≤ τ(s2),
and floor is a function from Date×U to Date representing the notion of rounding down
a time value to a particular level of granularity5.

A path in a model is an infinite sequence of states with each pair of adjacent elements
si and si+1 satisfying si ≺ si+1. Following the notation of Verdicchio and Colombetti
we write pi to denote element i+1 of a path p (with indices starting at 0), pi for the
subsequence of p beginning with state pi, and we extend the date function τ to operate
on paths: τ(p) = τ(p0). The set of all paths starting from state s is denoted Paths(s).

Let V be a variable assignment mapping variables to elements of the domain D. The
notation V [d/x] represents a variable assignment that is identical to V , except with x
mapping to d. For interval expressions I in our language we write IM,V (or just IM for
ground interval expressions) to denote the interval in Date formed by applying V and
the interpretation of date constants and function symbols that is common in all states
of M to the bounds of I . We define (−∞,+∞)M,V = Date. The interpretation in D of a
ground term t in the date/time sublanguage is denoted tM .

5 The floor function is subject to a number of semantic constraints that we do not discuss here.
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The truth of a formula in a model M and for a path p in M is then defined as shown
in Figure 1. Note that as states in our semantics are first order models for L, the truth of
an atomic formula on a given path reduces to its truth in the initial state of that path.

4 The Rule Language

We now identify a subset of hyMITL± that is suitable for encoding social expectations
in a form that can be used in run-time compliance monitoring. We define the language
R to be the set of all formulae of the following form:

AG+ ∀1≤i≤nxi.(φ → ψ)

for n≥0, where:

– φ and ψ are linear-time formulae, i.e. they do not contain A or E;
– free variables(φ) = free variables(ψ) = {x1, . . . , xn};
– φ and ψ do not contain any occurrences of ∀, except when represented using the ∃

abbreviation as outlined in the following clause.
– Any occurrence of ∃ must be of the following restricted form6: ∃x.(αx∧βx) where

x is free in αx and βx, and αx is atomic.

The intent of the last restriction is that matching αx to the current state should pro-
duce a finite set of variable bindings for x, each of which should leave βx with no free
variables. This cannot be expressed syntactically and remains the responsibility of the
rule designer (although any insufficiently instantiated instances of βx can be detected
and discarded at run time).

Rules of this form are intended to be used in the following compliance-monitoring
process:

Given a current state and the history of all prior states and their associated
times, for each rule, match the left hand side (φ) against the current state and
history, resulting in a set of instances of the right hand side (ψ). Add these
instances to the set of current expectations, then check all expectations to see
which are fulfilled or violated. Any expectations that cannot yet be evaluated
because they involve future states will be ‘progressed’ to the next state when it
is created by an event observation.

This process requires that the left hand side of a rule can be matched against the
current state and history, leaving no residual formula involving future states. This is not
a syntactic constraint—e.g. future modalities can legitimately appear in the left hand
side of a rule: consider F−

I (α ∧ X+β). However, this constraint can be checked at run
time, with a rule application simply failing if its left hand side cannot be matched using
the current state and history alone. The rule designer must also use his/her knowledge of
the domain model to ensure that the left hand side can only have a finite (and preferably
bounded) number of matches for any state and history.

The following section presents an example rule in this notation and then Section 6
describes the compliance-monitoring process in more detail.

6 This is equivalent to TLPlan’s bounded existential quantification [9].
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AG+ (Done(c, make payment(c, p, amount, prod num)) ∧ [t, t +1 week) →
↓week w.(↓week cw.(¬X−[cw, −0] →

F+
[+0, cw+1 week)Done(p, send report(c, prod num, cw)))

W+
[w+1 week, w+53 weeks)

Done(c, cancel order(c, p, prod num))))

Fig. 2. A rule expressing the terms of service offered by agent p to agent c

5 Example

Consider the case of an agent that can provide weekly reports on a particular market for
an annual fee. A potential customer is advised of a fee for the service and has one week
to confirm the order and make payment. After this time the price is not valid and a new
quote must be sought. Once payment is made, the service-providing agent is committed
to sending a report to the customer once a week for 52 weeks or until the customer
cancels the order. If the customer cancels the order before 52 weeks have passed, he or
she may be eligible for a partial refund, but we do not model that here.

Figure 2 shows how the service-providing agent could encode its conditional com-
mitment using our rule syntax (where p and c are the names of service provider and
customer agents respectively, t is an expression representing the time the offer is made,
and amount and prod id are expressions representing the amount to be paid for the ser-
vice and the service provider’s identification number for this product). This rule could
be sent from the provider to the customer as the content of a communicative act that ex-
plicitly asserts the commitment is being made. Alternatively, making this commitment
may be an “institutional action” [6] that is inferred by both p and c to have occurred as
a result of a particular dialogue between them having been completed.

The rule in Figure 2 states that if the current state is one in which c has just made
payment for the service, and this state is within the one week period from the time
the offer was made (time t) then weekly reports will be sent during the next 52 weeks
(beginning the week after the payment is made) until p optionally cancels the order.
The assertion that weekly reports will be sent (the left hand side of the W+ operator) is
encoded as the implication that if it is not the case that the previous state is in the closed
interval from the start of the current week to the present time (i.e. the current state is the
first since the start of the current week) then the report will be sent some time between
now and the end of the week7.

This rule assumes that the actions of making a payment, sending a report and can-
celling an order can be observed by both agents as occurring at a unique well defined
time. In practice, agents will not observe events simultaneously, and their clocks can-
not be guaranteed to be perfectly synchronised. However, if these actions are imple-
mented by sending messages, the sending time (as recorded by the sender and included
in the message header) can be taken as the time the action occurs. Provided that the
intervals in a commitment are of a significantly greater magnitude than the likely clock

7 A tighter specification could identify a particular day of the week on which the report will be
sent.
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function check state
inputs: A history of state/time pairs h = 〈(s0, t0), . . . , (sn, tn)〉,

where sn is the new state to be checked, a set of formulae
En−1 representing expectations that could not be fully
evaluated in sn−1, and a set of rules R.

outputs: A set of partially evaluated formulae En and a set of
notification assertions N

begin
vars E = progress formulae(En−1, h, n−1) ∪

new expectations(h, R),
En = ∅, N = ∅

for each φ in E:
var φ′ = peval(φ, h, n)
if φ′ = true, N = N ∪ {fulfilled(φ)}
else if φ′ = false, N = N ∪ {violated(φ)}
else if worth progressing(φ′), En = En ∪ {φ′}

return 〈En, N〉
end

Fig. 3. The main algorithm: check state

slippage and message delivery delay, this approximation should be acceptable. The pos-
sibility of significantly inaccurate message times (either forged or caused by inaccurate
clocks) is difficult to deal with; however, for ease of modelling, the attempted detection
of such occurrences (if possible and required) is best handled by a separate mechanism.

6 The Compliance-Monitoring Process

The compliance monitoring process is performed by function check state shown in Fig-
ure 3. This should be called by an agent when it has performed an action or observed
some event that it (or the agent programmer) considers significant. The check state
function assumes that the agent has already created a new state name and asserted into
its world model for that state any facts that it knows to hold (including facts express-
ing the occurrence of the actions and events that are considered to have triggered the
transition to a new state). The function receives as arguments the history of states, the
current unfulfilled expectations, and the set of rules defining the social expectations of
the institution to which the agent currently belongs.

The function progress formulae applies a modified version of the progress algorithm
of Bacchus and Kabanza [12] to every unfulfilled expectation from the previous state,
with that previous state’s time stamp as an additional argument. This algorithm gener-
ates a formula expressing what needs to be true in the new state if the input expectation
was required to be true in the previous state, but was not yet able to be evaluated there.
For example, progress(X+φ, t) = φ, and if t is within the interval I , progress(φ U+

I ψ, t)
has the following value:

�progress(ψ, t)� ∨ (�progress(φ, t)� ∧ φ U+
�rtoa(I,t)� ψ)
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function match (non-deterministic)
inputs: A formula φ, a history of state/time pairs h =

〈(s0, t0), . . . , (sn, tn)〉, and an index i for the current state
output: A variable binding or ⊥ (failure)
begin

if (i<0 ∨ i>n) fail
case φ is an atomic formula:

choose any σ s.t. Dom(σ)=vars(φ) and 〈si, σ〉 |= φ

return σ

case φ = ¬φ1:
if free variables(φ)=∅ and match(φ1, h, i) fails, return {}
else fail

case φ = φ1 ∧ φ2:
choose σ1 =match(φ1, h, i) and σ2 =match(φ2σ1, h, i)
return σ1 ∪ σ2

case φ = ∃x.(φ1 ∧ φ2):
choose σ1 =match(φ1, h, i)
if nonvar(xσ1), choose σ2 =match(φ2σ1, h, i) and return σ1�dom(σ1)\{x} ∪ σ2

else fail
case φ = X+φ1: return match(φ1, h, i+1)
case φ = X−φ1: return match(φ1, h, i−1)
case φ = φ1 U+

I φ2:
begin

case ti >I : fail
case ti <I : choose σ=match(φ1, h, i)

return match(�φ1σ� U+
�rtoa(I, ti)��φ2σ�, h, i+1)

case ti ∈I : either choose σ as for case ti <I

or choose σ=match(φ2, h, i)
end

case φ = φ1 U−
I φ2:

Mirror image of U+
I case

case φ =↓ux.φx:
return match(�φx[ � floor(ti, uM )�/x]�, h, i)

case φ = I , where I is an interval formula:
if ti ∈ I return {} else fail

end

Fig. 4. The match function

where corner quotes (� and �) are used to indicate the parts of the formula that should
be evaluated to generate subexpressions, and rtoa (“relative to absolute”) is a function
that takes an interval and the ‘current’ time and produces an equivalent interval with
any relative bounds converted to absolute time points8.

8 As some units of relative time (such as month) have a length that depends on the current date,
the rtoa function is used during progression instead of TLPlan’s adjustment of relative intervals
by the time difference between adjacent states.
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The function new expectations matches the left hand side of each rule to the state
history, and for each resulting rule instantiation, adds the instantiated right hand side
to the set of new expectations that this function returns. Any expectations that are not
fully instantiated by this process (i.e. they have free variables) are discarded. The match
function used in this process is shown in Figure 4. It is presented in the figure as a
non-deterministic function that can either fail or return multiple variable bindings (one
at a time). The notation �t� indicates a mapping from the semantic to the syntactic
domain that chooses a term that names a given time point. This must be built into an
implementation.

Once the new expectations have been computed, each formula in the combined set
of old and new expectations is partially evaluated using the function peval shown in
Figure 5. This uses the history to evaluate a formula as much as possible, resulting in
true or false if the truth of the formula can be determined yet, and otherwise returning a
formula equivalent to the original one (given the facts in the history states) but modified
where possible to make progression and future evaluation easier. The simplify function
removes double negations and simplifies formulae that have true and false as subfor-
mulae. In the U+

I case of the match function, when ti < I , the rtoa function is used to
convert any relative interval bounds to absolute ones. In the case for ↓ formulae, a time
constant must be generated using the floor function that is part of the semantic domain.

The test worth progressing can be used to discard expectations that could not be
evaluated for reasons other than lack of future information, such as atomic formulae for
which peval did not return true or false (if closed-world reasoning is not used within
states) or formulae with past modalities that needed a longer history in order to be
evaluated.

The use of the peval function means that the progression function does not need to
handle atomic formulae (so it needs no state argument as in the original definition [12]),
∃, ↓ or interval formulae.

In the match and peval functions, comparisons and operations involving intervals
are required. The semantics of hyMITL± assumed that there is a date/time sublanguage
with a total order < on time, and in the following we assume we have an implementation
of that relation, extended in the obvious way to allow comparisons with ±∞. As both
absolute and relative times can appear in interval bounds, we extend equality and the
< relation to apply to the combined set of absolute and relative times: for any absolute
time t and relative time r, t "=r, t<r ≡ r>0 and r<t ≡ r<0. We define membership
of a point in an interval as follows:

t∈ [l, u] ≡ ((l< t<u) ∨ (l is a relative bound and l=±0)
∨ (l is an absolute bound and l= t)
∨ (u is a relative bound and u=±0)
∨ (u is an absolute bound and u= t))

with similar (but simpler) definitions for intervals with open ends.
A consequence of these definitions is that (e.g.) ∀t∈Date, t∈ [−1, +1]. The intuition

is that we are only interested in performing this test when considering t as the current
time.
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For a time point t and interval I with lower bound l we define:

t<I ≡ (t<l ∨ (t= l ∧ l "∈I))

We define t > I in similar way.

7 Related Work

Several other approaches to the modelling and run-time monitoring of social norms
have been proposed recently.

The SOCS-SI system [13] performs run-time protocol compliance monitoring based
on social integrity constraints: rules that express positive and negative expectations as
the consequences of observed actions. Abductive inference is used to generate expecta-
tions during run time and these are monitored to determine their fulfilment or violation.
The semantics do not include an underlying model of time. Instead explicit time vari-
ables are associated with the observation and expectation atoms in rules, and constraint
logic programming constraints can be used to relate these time points.

Mallya et al. [14] proposed a language for representing social commitments that have
a temporal nature. Their notation uses interval expressions representing universal or
existential state quantification within these intervals, with semantics based on a timed
version of CTL. They provided an analysis showing how to determine when a given
commitment could be known to be fulfilled or violated.

Verdicchio and Colombetti [10] presented a rich language for making statements
involving time, including interval expressions that are a generalisation of the work by
Mallya et al. The language is defined axiomatically, and so would not support run-
time use as efficiently as the approach proposed here, where metric time is built in
to the semantics and evaluation mechanism. This work inspired the use of a date/time
sublanguage in the present paper.

Farrell et al. [15] use event calculus to represent contracts by modelling the effects
that actions have on the normative relations between agents. They have implemented a
system to track the state of contracts expressed in this way.

Garcı́a-Camino et al. [16] proposed a language that can express conditional per-
missions, prohibitions and obligations of agents, including temporal constraints, and
described a mechanism for tracking the normative state of an institution by translating
these rules into rules of the production system JESS. The JESS rules, when fired, as-
sert facts representing new rules that will be added to the production system at a specific
time point by an external process that monitors the time and the JESS working memory.

In other research, Garcı́a-Camino et al. [17] developed a form of production system
that uses constraint logic programming techniques to maintain the institutional state as
a set of facts and constraints. Rules expressing norms can assert and retract facts and
add constraints. In addition, a tuple space is used to store the institional state, allowing
multiple agents to access it.

Endriss [18] discusses the use of generalised model checking for deciding whether
a trace of an agent dialogue conforms to a protocol expressed in propositional linear
temporal logic.



256 S. Cranefield

Case Result

φ = I

(an interval formula)

true if 0≤ i≤n ∧ ti ∈I

false if (0≤ i≤n ∧ ti �∈I) ∨ (i<0 ∧ t0 <I) ∨ (i>n ∧ tn >I)

φ otherwise

φ = φ1 U+
I φ2

φ if i<0 ∨
(i>n ∧ tn ≤I)

false if (i>n ∧ tn >I) ∨
(0≤ i≤n ∧ ti >I)

simplify(

�peval(φ2, h, i)� ∨
( �peval(φ1, h, i)� ∧

X+ �peval(φ1 U+
�rtoa(I, ti)�φ2, h, i+1)� ))

if 0≤ i≤n ∧ ti ∈I

simplify(

�peval(φ1, h, i)� ∧
X+ �peval(φ1 U+

�rtoa(I, ti)�φ2, h, i+1)� )

if 0≤ i≤n ∧ ti <I

φ = φ1 U−
I φ2 Mirror image of U+

I case

Other formula types

when i<0 ∨ i>n
φ

The following cases assume 0≤ i≤n

φ is atomic
true if si |= φ

false if si �|= φ

φ = ¬φ1 simplify(¬ �peval(φ1, h, i)�)
φ = φ1∧φ2 simplify(�peval(φ1, h, i)� ∧ �peval(φ2, h, i)�)

φ = ∃x.(φx∧ψx)

false if match(φx, h, i) fails

simplify(

ψ∈Ψ�peval(ψ, h, i)�)
if Ψ ={ψxσ | σ=match(φx, h, i) ∧

nonvar(xσ) }
is non-empty

⊥ otherwise (an error condition)

φ = X+φ1 simplify(X+�peval(φ1, h, i+1)�)
φ = X−φ1 simplify(X−�peval(φ1, h, i−1)�)
φ =↓ux.φx simplify(�peval(�φx[ � floor(ti, u

M )�/x]�, h, i)�)

Fig. 5. Function peval(φ, h, i), where h = 〈(s0, t0), . . . , (sn, tn)〉

This paper presented an extension of the CTL± logic and defined first-order seman-
tics for it. Verdicchio and Colombetti have recently provided their own first-order se-
mantics for a multi-sorted version of CTL± [6].
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8 Conclusion

This paper has defined a rule language for defining social expectations based on a
branching time metric interval temporal logic and has presented an algorithm that can be
used at run time in a multi-agent system to monitor when expectations are generated,
fulfilled and violated—either for the system as a whole (if all events can be detected
by a specialised monitoring agent) or within an individual agent wishing to monitor
the expectations it has of other agents. A prototype implementation of the compliance
monitoring procedure has been implemented using SWI Prolog. Most of the features
described here have been implemented, although currently the system is not connected
to an agent—it uses a static database of states and their facts.

Future work includes investigating the expressivity of the rule language for mod-
elling complex scenarios, enhancing it with additional operators (e.g. bounded univer-
sal quantification) and applying it to interaction protocol verification—where the X+

operator will have particular relevance. It is also intended to deploy and evaluate this
approach in a distributed multi-agent application.
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