
TreeCluster: Clustering Results of Keyword
Search over Databases

Zhaohui Peng1, Jun Zhang1,2, Shan Wang1, and Lu Qin1

1 School of Information, Renmin University of China,
Beijing 100872, P.R. China

{pengch, zhangjun11, swang, qinlu}@ruc.edu.cn
2 Computer Science and Technology College,

Dalian Maritime University, Dalian 116026, P.R. China

Abstract. A critical challenge in keyword search over relational data-
bases (KSORD) is to improve its result presentation to facilitate users’
quick browsing through search results. An effective method is to orga-
nize the results into clusters. However, traditional clustering method is
not applicable to KSORD search results. In this paper, we propose a
novel clustering method named TreeCluster. In the first step, we use la-
bels to represent schema information of each result tree and reformulate
the clustering problem as a problem of judging whether labeled trees
are isomorphic. In the second step, we rank user keywords according to
their frequencies in databases, and further partition the large clusters
based on keyword nodes. Furthermore, we give each cluster a readable
description, and present the description and each result graphically to
help users understand the results more easily. Experimental results verify
our method’s effectiveness and efficiency.

1 Introduction

Based on the full text indexing provided by RDBMS, keyword search over re-
lational databases (KSORD) enables casual users to use keyword queries (a set
of keywords) to search relational databases just like searching the Web, without
any knowledge of the database schema or any need of writing SQL queries[1, 2].
The recent studies on KSORD can be categorized into two types according to
the search mechanism, schema-graph-based and data-graph-based. The former in-
cludes DBXplore[5], DISCOVER[6], IR-Style[7]. The latter can be further classi-
fied into two types based on the search results. One is those that return a single
tuple as result, e.g. ObjectRank[8]. The other, e.g. BANKS[3, 4], called tree-like
data-graph-based KSORD (TD-KSORD), return a tuple connection tree. In this
paper, we focus on TD-KSORD systems.

One of the most critical challenges in KSORD research is how to present the
query results[1, 16]. This is not easy for the following reasons. Firstly, the results
need to be semantically meaningful to users. However, a result which is a tuple
or a tuple connection tree is not easy to be quickly understood by end users.
Secondly, it is important to avoid overwhelming users with a huge number of

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 385–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

386 Z. Peng et al.

trivial results. However, lots of similar results are often produced, which makes
users tired or confused. As we will see in section 5, previous works in KSORD
do not solve these problems very well.

Organizing search results into clusters facilitates users’ quick browsing
through search results. Users can determine whether a group is relevant or not by
examining simply its description: they can then explore just the relevant clusters
and ignore the remaining ones, so that their browsing efficiency can be improved.
This method has been widely used in presenting Web search results, while to
the best of our knowledge, it has not been employed in KSORD research.

In this paper, we propose clustering to improve the presentation of search
results, so as to improve the efficiency of users’ browsing. Although many works
about clustering have been done in related domains, traditional clustering meth-
ods are not applicable to KSORD results as is explained in section 5. In this
paper, we focus on TD-KSORD systems, and propose a novel results clustering
method named TreeCluster. It combines the structure and content information
together and includes two steps of pattern clustering and keyword clustering.
In the first step, we use labels to represent schema information of each result
tree and cluster the trees into groups. The trees in each group are isomorphic.
In the second step, we rank user keywords according to their frequencies in the
database, and further partition the large groups based on the content of keyword
nodes. Furthermore, we give each cluster a readable description, and present the
description and each result tree graphically to help users understand the results
more easily. Experimental results verify our methods’ effectiveness and efficiency.

Organization: Section 2 introduces the basic concepts needed. Section 3 pro-
vides the detail of our solution and algorithms. The experimental results are
shown in section 4. Section 5 reviews the related work. Finally, Section 6 con-
cludes this paper.

2 Basic Concepts

We define some terms we will use in the following sections. They are based on
[3] and have been adjusted slightly for simplification.

Definition 1 (Data Graph). Database can be represented as an undirected
Data Graph G(V,E) which is composed of weighted nodes and weighted edges.

Nodes: For each tuple t in the database, the graph has a corresponding node
ut ∈ V . We will speak interchangeably of a tuple and the corresponding node in
the graph.

Edges: For each pair of tuples t1 and t2 such that there is a foreign key from t1
to t2, the graph contains an undirected edge < ut1 , ut2 >.

Weights: Each node and edge is assigned a weight.

Definition 2 (Keyword Query). User’s input is defined as a keyword query,
which generally consists of n (n ≥ 1) search terms k1, k2, ..., kn.

TreeCluster: Clustering Results of Keyword Search over Databases 387

C ites

Citing
Cited

...

Foreign Key

Paper

PaperId
Name

...

Write

AuthorId
PaperId

...

Author

AuthorId
Name

...

Primary Key

Fig. 1. DBLP Schema

Authorid

PaperId Name

PaperId

Authorid Name

Author Tuple Author Tuple

Write TupleWrite Tuple

Paper Tuple

155179 Yannis PapakonstantinouVagelis Hristidis 4769

155179 HristidisGP03

HristidisGP03 Efficient IR-Style Keyword Search...

4769 HristidisGP03

... ...

(root node)

Fig. 2. An Example of result tree

A node is relevant to a search term if it contains the search term as part of an
attribute value. It is called a keyword node. Generally, the first step of search
algorithms is to locate the set of keyword nodes Si that are relevant to ki for
each ki in the query.

Definition 3 (Result Tree). An answer to a query is a rooted weighted tree
containing at least one node from each Si.

The relevance score of a result tree is computed from the weights of its nodes
and edges. Result trees should be ranked in descending order of relevance score
to meet the requirement of top-k query.

We call the root node of a result tree a information node, which connects
all the keyword nodes, and strongly reflects the relationship among them.

For example, Figure 1 shows the schema of DBLP[14] dataset. Given a key-
word query (Hristidis, Papakonstantinou), TD-KSORD systems find top-k result
trees from the datagraph of DBLP. Figure 2 shows an example of one of the
result trees, which is a subgraph of DBLP’s data graph and means Hristidis and
Papakonstantinou coauthor a paper.

3 TreeCluster

The problem we will solve is to find a clustering method to organize result trees
into significant groups. First, we introduce the intuition of our method, and then
describe the implementation, finally introduce the graphical user interface.

3.1 Intuition

We did much observation on different datasets, and found that many of the
result trees were of the same pattern. For example, in DBLP, keyword query
(Jim Gray, Transaction) may lead to many results. Some of them belong to
the pattern that Jim Gray writes papers about transaction, while some of them
belong to the one that Jim Gray’s papers are cited by papers about transaction,
and others may belong to the one that Jim Gray’s papers cites papers about
transaction. Thus, we can cluster all these results into various groups according
to different patterns, and give a readable description for each group.

388 Z. Peng et al.

a result tree

select root node

a labeled tree

traverse the tree

clustering

standard code

label the tree

a rooted tree

groups whose element
 number>threshold

groups whose element
 number>threshold

clustering based on k1

 clustering based on k2

...

clustering based on kn

the first-level clusters the second-level clusters

Pattern
Clustering

Keyword
Clustering

groups whose element
 number>threshold

Fig. 3. Architecture of TreeCluster

Furthermore, we find that the resulting clusters in some patterns are quite
large. So we decide to partition the large clusters further based on the content.
From users’ viewpoints, the most meaningful things are the keywords they input,
so we can do partitioning based on the content of keyword nodes. The keywords
should not be treated equally however. In fact, different keywords have different
”frequencies” in the database. For instance, in DBLP, for keyword query (Gray,
Transaction), Gray only appears in a few tuples, while Transaction appears in
lots of tuples. We can partition large clusters based on the content of nodes
relevant to low frequency keywords first. In this example, we partition a large
group according to nodes relevant to Gray first. Thus result trees relevant to
different ”Gray”s, e.g. Jim Gray and W.A.Gray, are separated. Users need only
examine the label (Jim Gray) or (W.A.Gray) for each subgroup to determine
which one they are interested in instead of browsing through each result in the
large group.

Figure 3 shows the framework of TreeCluster. It includes two steps, and
produces two levels of clusters. After pattern clustering, we get the first-level
groups, each of which corresponds to a kind of tree pattern. The large groups,
whose numbers of elements exceed the threshold, will be processed by keyword
clustering, after which, we get the second-level groups.

3.2 Pattern Clustering

Firstly, we cite definitions and conclusions about labeled trees from [9, 10], with-
out detailed explanations due to space limitations.

Theorem 1. Two rooted ordered labeled trees are isomorphic if and only if their
preorder traversal codes are equal.

Definition 4 (Standard Code). Let T be a rooted unordered labeled tree.
All rooted ordered trees derived from T are named T1, T2, ..., Tn, whose preorder
traversal codes are S1, S2, ..., Sn respectively. We call the minimum code Smin

of S1, S2, ..., Sn the standard code of T.

TreeCluster: Clustering Results of Keyword Search over Databases 389

Algorithm 1: GetStandardCode(t)
Global: special symbols ’#’ and ’$’ (′#′ >′ $′ >all the label symbols)
Input: t: the root of a rooted unordered labeled tree T
Output: the standard code of T
St ← label(t)+”$”; // ”+” means connecting
for each edge e that comes from t to its sons do

St2 ← label(e); get another node n of e;
insert St2+GetStandardCode(n)+”$” into set S;

end
sort strings in S in ascending order;
for each string s in S do

append s to St;
end
return St+”#”;

Theorem 2. Algorithm 1 computes the standard code of a rooted unordered
tree correctly.

Theorem 3. Two rooted unordered labeled trees are isomorphic if and only if
their standard codes are equal.

Now, we label the nodes and edges with schema information, so that we can
express the pattern using traversal code of the tree. For an ordinary node (not
keyword nodes), we may easily use the relation name it belongs to as its label.
For a keyword node, things are more complex, because a keyword node may
contain several keywords, and a keyword may appear in several attributes of
a node. For an edge, what we concern is the primary-foreign key relationship.
Thus we get the following rules.

Rule 1. Assume a node t, t ∈ relation R. If t is an ordinary node, the label
of t is [R]. If t is a keyword node, which contains keywords k1, k2, ..., kn, and
ki is contained in attributes Ai1 , Ai2 , ..., Aimi

(1 ≤ i ≤ n), then the label of t is
[Rk1(A11A12 ...A1m1

)...ki(Ai1Ai2 ...Aimi
)...kn(An1An2 ...Anmn

)].

Rule 2. Assume an edge < t1, t2 >, t1 ∈ relation R1, t2 ∈ relation R2, and
assume the corresponding foreign key is (A1, ..., Ar)(Ai ∈ R1, 1 ≤ i ≤ r), the
corresponding primary key is (B1, ..., Br)(Bi ∈ R2, 1 ≤ i ≤ r), then the label of
< t1, t2 > is {(A1, ..., Ar), (B1, ..., Br)}.

Because of the search mechanism in TD-KSORD systems, the roots of result
trees in the same pattern may not be correspondent. For example, different result
trees (the two authors coauthor different papers) in Figure 4 and Figure 2 have
the same pattern, but their root nodes are not in correspondence. Therefore,
we need to select a new root for each result tree to ensure the roots of trees in
the same pattern are correspondent. In addition, such root nodes should contain
as much information as possible. In this example, the root node of the tree in
Figure 4 should be the ”Paper Tuple”.

390 Z. Peng et al.

PaperId Name

Authorid PaperId

Authorid Name

Author Tuple

Author Tuple

Write Tuple

Write Tuple

Paper Tuple

155179

Yannis Papakonstantinou

Vagelis Hristidis

4769

155179 HristidisP02

HristidisP02 DISCOVER: Keyword Search...

4769 HristidisGP02

...

...

(root node)

Fig. 4. A result tree in the same pattern with
the tree in Figure 2

Author Name: PapakonstantinouAuthor Name: Hristidis

Write

Paper

Write

arrowhead directions
 are configurable

Fig. 5. An Example of the first-
level cluster description

We consider firstly the nodes having the maximum degree, if there are many
such nodes, we select those closest to the center of the tree. Usually, there is only
one candidate node meeting the above two conditions. If there are more than
one however, we use each of the candidate nodes in turn as the root and employ
Algorithm 1 to compute the standard codes of the tree respectively. The one
with the minimum standard code is selected as the information node. If there
are more than one root node resulting in the minimum standard code, we can
use any of them as the root node, because they produce the same standard code
and do not affect the judging of isomorphism.

Now we get a rooted unordered labeled tree, we could use algorithm 1 to
compute its standard code. According to Theorem 3, trees having the same
standard codes are isomorphic and are clustered into a group. Thus we get the
first-level clusters.

3.3 Keyword Clustering

We firstly rank the keywords according to their frequencies in the database, i.e.
the number of keyword nodes which contain the specified keyword. Assume the
new order is k1, k2,...,kn. Then, we examine each group. If the number of elements
in the group exceeds the threshold, we partition it firstly based on k1, that is, if
the contents of nodes in two trees relevant to k1 are the same, the two trees are
put into one group, otherwise separated into different groups. If the new groups
still contain more than the threshold number of elements, we will continue to
partition them based on k2, and etc, until the number of elements in each cluster
is less than the threshold or all the keywords are used up. Algorithm 2 shows
the details.

3.4 GUI and Cluster Description

We build a graphic user interface for result representation, as demonstrated in
Figure 6, in windows explorer style. For the results in each cluster, we rank
them according to the relevant score in descending order. Furthermore, we get
the maximum relevant score of each cluster, and rank clusters based on their
maximum scores in descending order too.

TreeCluster: Clustering Results of Keyword Search over Databases 391

In order to make the results semantically meaningful to users, we give a read-
able description for each cluster and present the description and each result
graphically. Each tuple connection tree is presented in graph, as shown in Fig-
ure 2. The first-level cluster description mainly has the following characteris-
tics. Firstly, it uses alias for database relations and attributes, so that database
schema information is shielded to end users and improve the readability. Sec-
ondly, in order to focus on the pattern information, an ordinary node is only
annotated with its relation alias, while a keyword node annotated with its rela-
tion alias, attribute alias and keyword itself. Thirdly, the direction of the edges
between nodes can be configured in advance to provide more semantical mean-
ing. Figure 5 is the cluster description of Figure 2 and Figure 4. Apparently, it
can be understood quickly by users. For the second-level clusters, we label them
with the keywords based on which the group is produced.

Algorithm 2: Group(S, k)
Global: THRESHOLD; KeyWord[]: an array of ranked keywords according to
their frequencies in ascending order
Input: S: a group (set of trees) to be clustered; k: the index of current keyword
Output: set of the subgroups of S
if k > KeywordNum then {insert S into V; return V;}
for each tree t in S do

search set S2 in V, requiring the content of nodes relevant to KeyWord[k] of
trees in S2 is the same as that of t;
if S2 exists then {add t into S2;}
else {NEW(S2), add t into S2, and insert S2 into V;}

end
for each set S2 in V do

if |S2| < THRESHOLD then { add S2 into V2;}
else

V 3 ← group(S2, k + 1);
for each set S3 in V3 do

add S3 into V2;
end

end
end
return V2;

4 Experiments

A search result clustering system is designed using Java, as shown in Figure 6.
The system accepts query inputs from users and passes them to KSORD systems.
Users can select one of the two result presentation manners: list or cluster. The
former is the traditional method that simply presents ranked results in order,
while the latter is this paper’s work of presenting ranked results in clusters. As
experiments demonstrates below, the latter is almost as fast as the former.

392 Z. Peng et al.

Fig. 6. The GUI of Search Result Clustering

Users

Userid

...

Ratings

Userid
Movieid
Rating

Movies

MovieId
Title

...

Foreign Key Primary Key

Fig. 7. MDB Schema

We conduct tests using Oracle9i on a AMD844*4 CPU and 4G memory Dawn-
ing server running Windows 2000 Advanced Server, using BANKS as KSORD
system and it connects to Oracle9i through JDBC. In our figures, C-BANKS
means BANKS using cluster as presentation manner, while L-BANKS means
BANKS using list manner. For each test, we experiment on two real datasets, a
subset of DBLP and a subset of MDB[15]. Our DBLP consists of about 497,000
nodes and 567,000 edges. Our MDB consists of about 506,000 nodes and 997,000
edges. The schema of MDB is shown in Figure 7.

For each experiment, we randomly generate 100 queries, and test the average
effectiveness and efficiency. We partition the keywords extracted from the two
datasets into three category according to their frequencies: high(H), medium(M),
and low(L). We will show the experimental results of various patterns of keyword
queries, although we only use keywords in medium and high frequency to do tests
in order to meet the real-life case.

Due to space limitations, we always set the threshold of keyword clustering
to 10 and do not report experimental results of other threshold. Apparently, as
the threshold arise, the group number of the second-level will decrease.

4.1 Effectiveness

We call the average group number of the first-level F-Num, and use it to evaluate
the effectiveness of pattern clustering. We use the number of overall groups
including groups of the first-level that do not have subgroups and groups of the
second-level to evaluate the overall effectiveness, and call it O-Num. Apparently,
neither too many nor too few groups is good, and only medium F-Num and O-
Num helps to improve users’ browsing efficiency.

Number of Keywords. In Figure 8 and 9, we fix result number to 100 and
vary the number of keywords from 2 to 6, to test F-Num and O-Num. We can see
that in most cases, F-Num and O-Num are medium, which verifies our methods’
effectiveness.

TreeCluster: Clustering Results of Keyword Search over Databases 393

 0

 10

 20

 30

 40

 50

65432

C
lu

st
er

 n
um

be
r o

f t
he

 fi
rs

t l
ev

el

Number of keywords

C-BANKS / DBLP
C-BANKS / MDB

Fig. 8. Effectiveness(a): F Num. Fix Top-
k = 100, and vary KeywordNum.

 0

 10

 20

 30

 40

 50

65432

O
ve

ra
ll

cl
us

te
r n

um
be

r

Number of keywords

C-BANKS / DBLP
C-BANKS / MDB

Fig. 9. Effectiveness(b): O Num. Fix
Top-k = 100, and vary KeywordNum.

In Figure 8, F-Num in DBLP is always larger than that in MDB, because
the schema of MDB (primary-foreign key relationship) is simpler than that of
DBLP, so that top-k results are likely in the same pattern. As keyword number
increases, F-Num in MDB increases while that in DBLP decreases with over 3
keywords. The reason is that keyword frequencies in MDB are significantly lower
than those in DBLP, so results that contain more keywords in MDB are not likely
in the same pattern, while in DBLP, results containing more keywords are more
likely produced by one Cartesian product[3] and thus in the same pattern.

It’s easy to understand that if F-Num is small, the element number of each
group is more likely to exceed the threshold and will be partitioned further by
keyword clustering. Thus in Figure 9, although the varying trend of O-Num is
similar to that of F-Num, it varies more gently.

Number of Results. In Figure 10 and 11, we fix keyword number to 3 and
vary the number of returned results from 20 to 120. We can see F-Num and
O-Num basically linearly increase as the top-k increases, which demonstrates
our methods’ good scalability.

Keyword Patterns. In Figure 12 and 13, we fix the number of keywords to 3,
and the number of returned results to 100, and report 10 representative keyword
patterns. For instance, pattern MML represents two medium frequency and one
low frequency keywords.

 0

 10

 20

 30

 40

 50

 60

12010080604020

C
lu

st
er

 n
um

be
r o

f t
he

 fi
rs

t l
ev

el

Number of returned results

C-BANKS / DBLP
C-BANKS / MDB

Fig. 10. Effectiveness(c): F Num. Fix
KeywordNum = 3, and vary Top-k.

 0

 10

 20

 30

 40

 50

 60

12010080604020

O
ve

ra
ll

cl
us

te
r n

um
be

r

Number of returned results

C-BANKS / DBLP
C-BANKS / MDB

Fig. 11. Effectiveness(d): O Num. Fix
KeywordNum = 3, and vary Top-k.

394 Z. Peng et al.

 0

 10

 20

 30

 40

 50

 60

HHHHHMHHLHMMHMLHLLMMMMMLMLLLLL

C
lu

st
er

 n
um

be
r o

f t
he

 fi
rs

t l
ev

el

Keyword patterns

C-BANKS / DBLP
C-BANKS / MDB

Fig. 12. Effectiveness(e): F Num. Fix
KeywordNum = 3, Top-k = 100, and vary
Keyword Pattern.

 0

 10

 20

 30

 40

 50

 60

HHHHHMHHLHMMHMLHLLMMMMMLMLLLLL

O
ve

ra
ll

cl
us

te
r n

um
be

r

Keyword patterns

C-BANKS / DBLP
C-BANKS / MDB

Fig. 13. Effectiveness(f): O Num. Fix
KeywordNum = 3, Top-k = 100, and vary
Keyword Pattern.

In Figure 12, as keyword pattern contains higher frequency keywords, F-Num
decreases in DBLP, which shows that keywords in higher frequency is more likely
to produce results in the same pattern. F-Num varies a little in MDB because
most of the keywords in MDB appear only a few times.

Figure 13 shows that higher frequency words play an import role in keyword
clustering, because they appear in many tuples and the contents of these tuples
are usually not equal.

Discussion. In general, simpler database schema and higher frequency keywords
incline to decrease F-Num, while lower frequency keywords incline to increase
F-Num. Higher frequency keywords incline to increase the group number of the
second-level resulting in the increment of O-Num.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

65432

Ti
m

e
(m

se
c)

Number of keywords

L-BANKS / DBLP
C-BANKS / DBLP
L-BANKS / MDB
C-BANKS / MDB

Fig. 14. Efficiency(a). Fix Top-k = 100
and vary KeywordNum.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

12010080604020

Ti
m

e
(m

se
c)

Number of returned results

L-BANKS / DBLP
C-BANKS / DBLP
L-BANKS / MDB
C-BANKS / MDB

Fig. 15. Efficiency(b). Fix KeywordNum
= 3 and vary Top-k.

4.2 Efficiency

We run the system using two result presentation manners (original list presenta-
tion and our cluster presentation) separately and compare their execution time.
We can see from Figure 14 and 15 that two manners needs almost the same
execution time. As keyword number varies from 2 to 6 or as the number of re-
turned results varies from 20 to 120, clustering time increases only a little (the
difference between C-BANKS/dataset and L-BANKS/dataset means the value
of clustering time). The efficiency of BANKS on MDB is lower than that on

TreeCluster: Clustering Results of Keyword Search over Databases 395

DBLP, which is also because keyword frequencies in MDB are lower than those
in DBLP.

Usually, clustering search results always hurts the efficiency of systems, as
previous works in Web search do. However, our method has slightly effect on
original system efficiency.

5 Related Work

In KSORD research, many ways are used to present query results. BANKS[3]
shows the query results in a nested table, based on which [13] improves the
answer format by addressing readability. DbSurfer[12] uses tree-like structures
to display all trails, while DataSpot[11] uses a distinguished answer node to
represent a result. However, these works do not solve the problem of lots of
similar results. In this paper, we organize the results into clusters and present
them graphically to improve users’ browsing efficiency.

[9] proposes a result classification method. In preprocessing, the system pro-
duces various patterns, and in processing a query, users select a particular pattern
and the system searches the results matching the selected pattern. [13] mentions
the similar idea, however with no implementation details. This method has to
be implemented inside the search engine of a KSORD system, and closely bun-
dled with the system. Our method can be implemented outside the system and
applicable to various TD-KSORD systems.

Clustering results has been investigated in many works in the context of Web
search. These works (e.g. [17, 18, 19]) are based on the content similarity and
cluster documents into topically-coherent groups. Vivisimo[20] is a real demon-
stration of clustering Web search results. However, clustering methods used in
Web are not applicable to KSORD. On the one hand, results of KSORD belong
to a community (a professional database, such as DBLP or MDB), clustering
based on content similarity usually can not get distinguished groups. On the
other hand, information of RDBMS schema which is not available in Web search
should be employed to instruct clustering.

[21] proposes to categorize the results of SQL queries, and generates multi-
level category structure. However, according to the characteristics of our method,
we only produce two levels of categorization, including the results of pattern
clustering and keyword clustering respectively.

Traditional clustering research includes partitioning method, hierarchical
method, density-based method, and etc[22]. Our method is different from them,
aiming at the character of KSORD results. There are many works about judging
isomorphism of rooted labeled trees. We directly cite the conclusions from [9, 10]
without detailed explanations due to space limitations.

6 Conclusion and Future Work

In this paper, we proposed a novel clustering method named TreeCluster to orga-
nize search results of TD-KSORD system to improve users’ browsing efficiency.

396 Z. Peng et al.

Furthermore, we generated readable cluster description, and presented the de-
scription and each result graphically to help users understand the results more
easily. Experimental results verify effectiveness and efficiency of our method.
This is the first proposal for clustering search results of KSORD.

In future work, we will detect more database schema information in the search
process of KSORD and utilize it to improve the clustering results.

Acknowledgement

This work was supported by the National Natural Science Foundation of China
(No.60473069 and No.60496325).

References

1. Shan Wang and Kun-Long Zhang. Searching Databases with Keywords. Journal
of Computer Science and Technology, Volume 20, No.1, January 2005.

2. A. Hulgeri, G. Bhalotia, C. Nakhe et al. Keyword Search in Databases. IEEE Data
Engineering Bulletin, vol. 24, pages 22-32, 2001.

3. G. Bhalotia, A. Hulgeri, C. Nakhe et al. Keyword Searching and Browsing in
Databases using BANKS. ICDE’02.

4. Varun Kacholia, Shashank Pandit, Soumen Chakrabarti et al. Bidirectional Ex-
pansion For Keyword Search on Graph Databases. VLDB’05, pages 505-516.

5. S. Agrawal et al. DBXplorer: A System For Keyword-Based Search Over Relational
Databases. ICDE’02.

6. V. Hristidis et al. DISCOVER: Keyword Search in Relational Databases. VLDB’02.
7. V. Hristidis et al. Efficient IR-Style Keyword Search over Relational Databases.

VLDB’03.
8. A. Balmin et al. ObjectRank: Authority-Based Keyword Search in Databases.

VLDB’04.
9. Kun-Long Zhang. Research on New Preprocessing Technology for Keyword Search

in Databases. PH.D thesis of Renmin University of China, 2005.
10. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.
11. S. Dar et al. DTL’s DataSpot:Database Exploration Using Plain Language.

VLDB’98.
12. R. Wheeldon et al. DbSurfer: A Search and Navigation Took for Relational Data-

bases. The 21st Annual British National Conference on Databases, 2004.
13. B. Aditya et al. User Interaction in the BANKS System: A Demostration. ICDE’03,

Demo.
14. DBLP Bibliography. http://www.informatik.uni-trier.de/ ley/db/index.html.
15. J. Riedl and J. Konstan. MoveLens. http://www.grouplens.org/.
16. V. Hristidis et al. Keyword Proximity Search on XML Graphs. ICDE’03.
17. Cutting D. R. et al. Constant Interaction-Time Scatter/Gather Browsing of Very

Large Document Collections. SIGIR’93.
18. Zamir O. et al. Web Document Clustering: A Feasibility Demonstration. SIGIR’98.
19. Hua-Jun Zeng et al. Learning to Cluster Web Search Results. SIGIR’04.
20. Vivisimo clustering engine,(2004) http://vivisimo.com.
21. K.Chakrabarti et al. Automatic Categorization of Query Results. SIGMOD’04.
22. A.K. Jain et al. Data Clustering: A Review. ACM Computing Surveys, Vol 31,

No.3, 1999: 264-323.

	Introduction
	Basic Concepts
	TreeCluster
	Intuition
	Pattern Clustering
	Keyword Clustering
	GUI and Cluster Description

	Experiments
	Effectiveness
	Efficiency

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

