
Scalable Clustering Using Graphics Processors

Feng Cao1, Anthony K.H. Tung2, and Aoying Zhou1

1 Dept. of Computer Science and Engineering, Fudan University, China
{caofeng, ayzhou}@fudan.edu.cn

2 School of Computing, National University of Singapore, Singapore
atung@comp.nus.edu.sg

Abstract. We present new algorithms for scalable clustering using
graphics processors. Our basic approach is based on k-means. By chang-
ing the order of determining object labels, and exploiting the high com-
putational power and pipeline of graphics processing units (GPUs) for
distance computing and comparison, we speed up the k-means algorithm
substantially. We introduce two strategies for retrieving data from the
GPU, taking into account the low bandwidth from the GPU back to the
main memory. We also extend our GPU-based approach to data stream
clustering. We implement our algorithms in a PC with a Pentium IV
3.4G CPU and a NVIDIA GeForce 6800 GT graphics card. Our com-
prehensive performance study shows that the common GPU in desktop
computers could be an efficient co-processor of CPU in traditional and
data stream clustering.

1 Introduction

The rapid growth of data volume in real-life databases has intensified the need
for scalable data mining methods. Data warehouse and data stream applications
are very data and computation intensive, and therefore demand high processing
power. As a building block of data mining, clustering derives clusters which can
be visualized more efficiently and effectively than the original data. Researchers
have actively sought to design algorithms to perform efficient clustering.

Assuming that the data sets are in the secondary memory, effort to enhance
the scalability of clustering algorithms often focus on reducing the number of
disk I/O. Work in this direction have effectively reduce the scan on data sets
into one or two rounds. As such, it is difficult to further enhance scalability by
reducing I/O cost.

Meanwhile, CPU cost is no longer a minor factor for scalability improvement
in clustering algorithms (see Figure 1). In data stream applications, CPU cost
becomes more important because each data object needs to be processed in real
time. Therefore, new techniques for reducing CPU cost will greatly improve the
scalability of online and offline clustering algorithms.

Recently, the Graphics Processing Unit (GPU) has provided a programmable
pipeline, allowing users to write fragment programs that are executed on pixel
processing engines. At the same time, the computing capability of common GPU

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 372–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Scalable Clustering Using Graphics Processors 373

is becoming increasingly powerful. For example, a NVIDIA GeForce6800 chip
contains more transistors than an Intel Pentium IV 3.73GHz Extreme Edition
processor. In addition, the peak performance of GPUs has been increasing at
the rate of 2.5 – 3.0 times a year, much faster than the rate that Moore’s law
predicted for CPUs. Furthermore, due to economic factors, it is unlikely that
dedicated general vector and stream processors will be widely available on desk-
top computers [14].

Driven by the programmability and computational capabilities of GPUs, many
GPU-based algorithms have been designed for scientific and geometric compu-
tations [10][12], database operations [5], stream frequency and quantiles approx-
imation [6], etc. However, as far as we know, the computational power of GPUs
has not been well exploited for scalable clustering yet. In this paper, we will
make the following contribution:

1. Having identify distance computation and comparison as the most expensive
operations for clustering algorithms, we propose a new, highly parallelized
distance computation technique which utilizes the fragment vector process-
ing and multi-pass rendering capabilities of GPUs. We further apply multi-
texturing technology to deal with high-dimensional distance computing.

2. Our basic approach is based on k-means. By changing the order of determin-
ing object labels, and exploiting the high computational power and pipeline
of graphics processing units (GPUs) for distance computing and comparison,
we speed up the k-means algorithm substantially. We then further extend
the algorithm to perform clustering on data stream.

3. A comprehensive performance study proves the efficiency of our algorithms.
The GPU-based algorithm for stream clustering reduces clustering cost by
about 20 times as compared to prior CPU-based algorithms. The basic k-
means-based algorithm obtains 3 – 8 times speedup over CPU-based imple-
mentations. We thus bring forward the conclusion that the GPU can be used
as an effective co-processor for traditional and stream clustering.

The rest of the paper is organized as follows. Section 2 analyzes existing
clustering algorithms. Section 3 gives an overview of GPU. Section 4 presents
our GPU-based clustering algorithms. Section 5 presents the performance study.
Section 6 briefly surveys related work. Section 7 concludes the paper.

2 Analysis of Existing Clustering Algorithms

Existing clustering algorithms can be classified into partitioning [11], hierarchical
[8, 16], density-based [4], streaming methods [1, 2, 7], etc. Since multiple scan of
out of core data sets often create a bottleneck due to the I/Os, many methods
have been proposed to reduce the number of scans on data sets into one pass or
two. These include: random sampling technology in CURE [8], R∗-Tree indexing
approach adopted in DBSCAN [4], the divide and conquer strategy in STREAM
[7] to process large data sets chunk by chunk, and the CF-tree in BIRCH [16]
for performing preclustering. These methods have reduced I/O cost back to

374 F. Cao, A.K.H. Tung, and A. Zhou

a level in which the CPU cost become significant again. Specifically, distance
computation and comparison often become the most expensive operations in
existing clustering algorithms.

Fig. 1. Relative costs in clus-
tering methods

Vetex

P rocessor

Fragment

P rocessor
R asterizer

Frame

B uffer

Vertex data

P ixel data

Fig. 2. Graphics pipeline overview

The popular partitioning-based method – k-means [11] contains three steps:
(1)Initialization: Choosing k points representing the initial group of centroids.
(2)Assignment: Assigning each point to its closest centroid. When all points
have been assigned, recalculate the positions of the k centroids. (3)Termination
condition: Repeating Steps 2 and 3 until the centroids no longer move. Having
load the data into memory, the most time consuming computation is assign-
ment, i.e., distance computation and comparison (see Figure 1). The number of
distance computation and comparison in k-means is O(kmn), where m denotes
the number of iteration and n is the number of point in memory.

An effective hierarchical clustering algorithm, CURE [8], starts with the indi-
vidual points as individual clusters. At each step, the closest pair of clusters is
merged to form a new cluster. The process is repeated until there are only k re-
maining clusters. Figure 1 shows that distance computation and comparison are
about 45% of the total cost. Because these operations widely exist in methods
of finding the nearest cluster and merging two clusters. The number of distance
operations is O(n2 log n), where n denotes the number of points in a sampling.
To find the nearest cluster, we can load the clusters to the GPU and apply our
GPU-based distance computation technique to these clusters.

In order to determine the density of a given point p, density-based methods
(such as DBSCAN [4]) need to compute the distance from point p to its nearby
points and compare the distance with a pre-defined threshold ε. Therefore, the
cost on distance computation and comparison becomes an important factor (see
Figure 1). To determine the density for each point, we could load nearby data
points into the GPU, apply our GPU-based distance computation, and compare
the distance results with ε by GPU.

In the data stream environment, I/O cost no longer exists or could be ignored.
Figure 1 shows the relative costs in STREAM [7] and CluStream [1] when access-
ing data from the hard disk. Ideally, we should adopt new GPU-based methods
to improve the scalability of stream clustering.

Scalable Clustering Using Graphics Processors 375

3 Preliminaries of GPU

3.1 Graphics Pipeline

Figure 2 shows a simplified structure of the rendering pipeline. A vertex proces-
sor receives vertex data and assembled them into geometries. The rasterizer
constructs fragments at each pixel location covered by the primitive. Finally,
the fragments pass through the fragment processor. A series of tests (such as
depth test) can be applied to each fragment to determine if the fragment should
be written to the frame buffer. Frame buffers may be conceptually divided into
three buffers: color buffer, storing the color components of each pixel; depth
buffer, storing a depth value associated with each pixel; and stencil buffer which
stores a stencil value for each pixel and can be regarded as a mask on the screen.

3.2 Data Representation and Terminology

We store the data points to be clustered on the GPU as textures. A texture is
an image, usually a 2D array of values, which often contains multiple channels.
For example, an RGBA texture four channels: red, blue, green and alpha. To
perform clustering using the GPU, the attribute of each tuple is stored in mul-
tiple channels of a single texel (i.e., individual elements of the texture), or the
same texel location in multiple textures. Several data formats are supported in
textures, e.g., 8-bit bytes. In particular, the textures in Pbuffer (an off-screen
frame buffer) support the 32-bit IEEE single precision floating-point.

The term multi-texturing refers to the applications of more than one texture
on the same surface. Multi-pass rendering is a technique for generating complex
scene. That is, the GPU renders several passes and combines the resulting images
to create a final frame. Stencil test is used to restrict computation on a portion
of the frame buffer. When a new fragment arrives, stencil test compares the
value at the corresponding location in the stencil buffer and a reference value.
The new fragment is discarded if it fails the comparison.

A group of stencil operations are provided to modify the stencil value, e.g.,
keeping the stencil value in the stencil buffer or replacing the stencil value to
the reference value. Typically, if stencil test is passed, depending on the result
of depth test, the user could define different stencil operations.

4 Clustering Using GPUs

K-means is a basic method for clustering which has wide applications. When the
algorithm is implemented on the CPU, distances to the k centroids are evaluated
for a single output object label at a time, as illustrated in Figure 3(a).

Instead of focusing on computation of the label for a single object one at a
time, we calculate the distances from a single input centroid to all objects at
one go, as shown in Figure 3(b). The distances to a single input centroid can be
computed in the GPU for all objects simultaneously. In this case, the final label
of a single object is only available when all input centroids have been processed.

376 F. Cao, A.K.H. Tung, and A. Zhou

D eno tes ob ject
D eno tes cen tro id

(a) Object-centered

D eno tes ob ject
D eno tes cen tro id

(b) Centroid-centered

Fig. 3. Object-centered vs. centroid-centered distance computation

The rationale for the approach is as follow: GPU essentially operates by ap-
plying simple, identical operations to many pixels simultaneously. Naturally,
these operations have access to a very limited number of inputs. However, in
the k-means algorithms, k inputs are needed in order to calculate the label of
a single data point. Furthermore, centroid-oriented distance computation allows
comparison operations to be done outside each fragment, thus greatly reducing
the number of operations in the fragment program.

4.1 Distance Computing

Typically, Euclidean distance is a used as a similarity measure for clustering.
The Euclidean distance between 2 d-dimensional points X and Y is defined as
follows: dist(

−→
X − −→

Y) =
√

Σd
i=1(xi − yi)2.

Assuming that there are a set of d-dimensional points Xi(1 ≤ i ≤ N) and k
centroids Yj , where 1 ≤ j ≤ k. We arrange Xi into an array A (named point
array) as follow, where R denotes the number of rows , L denotes the number
of columns, R ∗ L equals the number of points N . In the actual implementation,
a point array is a texture (see Section 3.2). If the number of points is above the
maximal size of one texture, the point array can be partitioned into multiple
textures. In order to better utilize the parallelism of GPU, R and L are set at
�
√

N�. The unused portion of the array could be simply masked by stencil.

A =

∣
∣
∣
∣
∣

X1 · · · XL

. .
X(R−1)∗L+1 · · · XR∗L

∣
∣
∣
∣
∣

Dj =

∣
∣
∣
∣
∣

dot2(X1 − Yj) · · · dot2(XL − Yj)
. .
dot2(X(R−1)∗L+1 − Yj) · · · dot2(XR∗L − Yj)

∣
∣
∣
∣
∣

Each element a[m][n] in array A corresponds to point X(m−1)∗L+n. We cal-
culate the result array Dj (named distance array) for each centroid Yj as above,
where dot2(X) is the dot product of vector X with itself. Each element e[m][n] in
Dj corresponds to the distance from point X(m−1)∗L+n to centroid Yj . Without
loss of generality, we adopt squared Euclidean distance as the goodness mea-
surement here. GPUs are capable of computing dot product on vectors in par-
allel giving high efficiency. Here, we propose a GPU-based method for distance
computation.

ComDistance (Algorithm 1) computes the distance array for the point array
in tex to centroid vcen. To allow a more precise fragment, Line 1 actives Pbuffer.
Line 2 enables the fragment program. Line 3 renders a textured quadrilateral

Scalable Clustering Using Graphics Processors 377

using FComDist. SUB and DOT are hardware optimized vector subtract and
dot product instructions, respectively. Finally, the distance array is stored in the
depth component of each fragment. In case of very large databases, we can swap
textures in and out of video memory using out-of-core techniques.

Algorithm 1. ComDistance (tex, vcen)
1: ActivePBuffer();
2: Enable fragment program FComDist;
3: RenderTexturedQuad(tex);
4: Disable fragment program FComDist;
FComDist(vcen)

1: vtex = value from tex
2: tmpR = SUB(vtex,vcen)
3: result.depth = DOT(tmpR,tmpR);

The ARB fragment program OpenGL extension allows depth values to be
assigned in the fragment program. We exploit this feature to accelerate the
comparison step described in Section 4.2 by avoiding the storage of the distance
array in a texture which mean reloading the texture into the depth buffer.

High-dimensional Distance Computing. In case of d > 4, we divide every
four dimensions of points into a point array, calculate each of these �d

4� arrays
with the corresponding section of Yj , and sum up them to get the final Yj .

Our algorithm uses multi-texturing technology to handle high-dimensional
data. Although current GPUs only support eight simultaneous texture units
resulting in at most 32 dimensions in one pass, we believe that future generation
of GPU will provide more simultaneous texture units. At the current stage, we
adopt multi-pass rendering in case of d > 32. Assuming a given GPU support
m simultaneous texture units, the number of passes will be equal to � d

4m�.

4.2 Labeling

In k-means clustering, labeling is achieved by comparing the distances between
the point and each centroid. We utilize multi-pass rendering to realize this oper-
ation. Depth test is enabled to compare the depth value of the arriving fragment
to the corresponding pixel in the depth buffer. The stencil buffer is configured
to maintain the label of the nearest centroid. Finally, the distance array Dj is
rendered for each j (1 ≤ j ≤ k). Algorithm 2 describes this procedure in detail.

We compute and store distance array D1 directly in the depth buffer, and
initialize the stencil buffer with 1. That is, all the points are labelled to centroid
1 at first. Then, depth test is enabled and set to pass if the depth value of
arriving fragment is less than the corresponding pixel. Stencil test is set to always
being passed. If the arriving fragment passes depth test, the corresponding pixel
is updated with the new depth value, and Line 9 replace the stencil value in

378 F. Cao, A.K.H. Tung, and A. Zhou

X1n X2n X3n ...

...

...

...

X12 X22 X32 ...

...

...

...

X11 X21 X31 ...

...

...

...

Texturen

Texture2

Texture1

. .
.

.
..

1 1 1 ...

...

...

...

Centroid 1

1 2 2 ...

...

...

...

Centroid 2

1 k 2 ...

...

...

...

.

.

.

5.4 9.6 7.5 ...

...

...

...

5.4 8.0 7.2 ...

...

...

...

5.4 5.0 7.2 ...

...

...

...

Stencil buffer Depth buffer

.

.

.

The label of the nearest centroid The distance to the nearest centroid

Xi1~Xin correspond one
 d-demensional data point

Centroid k

Fig. 4. Labeling

corresponding position with the new label i+1. Otherwise, we keep the depth and
stencil values. Therefore, after each distance array Di is generated, the stencil
buffers contains the label of the nearest centroid for each point (named label
array). The depth buffer contains the corresponding minimal distance value.
Figure 4 illustrates this process. In the pipeline of the labeling algorithm, various
operations can be processed simultaneously: the fragment program computes
distance arrays; depth test compares depth value in the depth buffer; and stencil
test updates the labels in the stencil buffer.

4.3 Generating New Centroids

It is a bottleneck of current hardware to retrieve data from GPU to the main
memory (sending data from the main memory to GPU is much faster by say
ten times). According to the data retrieved, we design the following two strate-
gies to generate new centroids, corresponding to GPU-C (GPU-based clustering
by retrieving centroids) and GPU-L (GPU-based clustering by retrieving label
array) algorithms, respectively:

1. Retrieve Centroids. One way is to compute the centroids in GPU and
retrieving them from GPU. Stencil test is utilized to filter out points in
the same cluster and summarize them by mipmaps. Mipmaps are multi-
resolution textures consisting of multiple levels. The highest level contains
the average of all the values in the lowest level. A group of occlusion querys
must be called in order to obtain the number of points in each cluster. An
occlusion query returns the number of fragments that pass the variance tests.
In our case, the test is a stencil test. The procedure is shown in Algorithm 3.
In case of d > 4, we need to render �d

4� times for each centroid. Finally,
we retrieve the highest level of the mipmaps texout[i] and the result of the
occlusion query qi from GPU in order to calculate the final centroid results.
Although this strategy has the advantage of reducing communication cost,
its computation cost overwhelms the saving on communication cost, as our
experiments in Section 5.4 will show.

Scalable Clustering Using Graphics Processors 379

2. Retrieve the Label Array. In this strategy, we retrieve the label array
from the stencil buffer directly. To reduce communication cost, the label
array is retrieved from the stencil buffer by an impact mode GL BYTE.
Although 8-bit value constraint exists in this mode (that is the upper bound
of k is 256), it can meet the requirements of most real applications. After
retrieving the label array, we generate the new centroids in CPU by adding
up the points with the same label.

Algorithm 2. Labeling (texin, vcentroid[k])
1: glClearStencil(1);
2: ComDistance(texin,vcentroid[0]);{ generate distance array D1 and store it in depth

buffer}
3: glEnable(GL DEPTH TEST);
4: Set depth test to pass if incoming fragment is less than the corresponding value in

depth buffer.
5: for i = 1; i < k; i + + do
6: Set stencil test to always pass;
7: ComDistance(texin,vcentroid[i]);{ generate a frame of fragments corresponding

to distance array Di+1}
8: if depth test passed then
9: replace stencil value with the reference value i + 1;

10: else
11: keep the stencil value;
12: end if
13: end for
14: glDisable(GL DEPTH TEST);

Algorithm 3. GetControids (texin, texout[i])
1: for i = 1; i ≤ k; i + + do
2: Set stencil reference value as i;
3: Set stencil test to pass if stencil value is equal to the reference value.
4: Enable Occlusion query i;
5: RenderTexturedQuad(texin);{ generate a frame of fragments which correspond

to all the points belonging to centroid i}
6: Disable Occlusion query i;
7: MipMap the fragments in framebuffer into texout[i]
8: end for

4.4 Clustering Data Stream

We extend our GPU-based method to data stream clustering, specifically, land-
mark window [7] and sliding window clustering [2]. The pipe-line architecture
and parallel processing of the GPU are well suited for stream processing [14].

1. Landmark Window Clustering. We adopt the divide-and-conquer
methodology [7] and our GPU-L method (abbr. STREAM-GPU) to cluster

380 F. Cao, A.K.H. Tung, and A. Zhou

a data stream. We compare STREAM-GPU with three CPU-based algo-
rithms: BIRCH-KM, STREAM-KM and STREAM-LS [7]. Figures 5(a)(b)
show that STREAM-GPU achieves the highest processing rate with com-
petitive SSQ (the sum of square distance). Although STREAM-LS achieves
the lowest SSQ, its processing rate is 15 times slower than STREAM-GPU.
STREAM-GPU is more efficient than BIRCH-KM with 200% effectiveness
gain. Considering only clustering cost, STREAM-GPU is nearly 20 times
faster than an optimized CPU-based implementation.

2. Sliding Window Clustering. In sliding window clustering, only the N
most recent points contribute to the results at any time. We adopt the
algorithm in [2], and the basic operation in combination procedure is im-
plemented by our GPU-L method. Figure 5(c) shows the comparison result
with window size N = 100, 000. GPU-based clustering is always better than
an optimized CPU-based implementation by about 19 – 20 times.

(a) Efficiency comparison
in landmark window

(b) Effectiveness compari-
son in landmark window

(c) Efficiency compari-
son in sliding window

Fig. 5. GPU-based vs. CPU-based stream clustering

5 Experiments and Results

5.1 Experimental Setting

We tested our algorithms on a Dell workstation with a 3.4 GHz Pentrium IV
CPU and a NVIDIA GeForce 6800GT graphics card. To generate the fragment
programs, we used NVIDIA’s CG compiler. The CPU algorithms were compiled
using an Intel compiler with hyper-threading technology and SIMD execution
option. Data exchange between GPU and CPU was implemented with an AGP
8X interface. The points in synthetic data sets followed Gaussian distributions.
The data sets had between 10K and 10,000K points each, varied in the number
of clusters from 8 to 256, and ranged in dimensionality from 4 to 28.

Execution time was adopted to evaluate various costs. The costs of the CPU-
based k-means algorithm (abbr. CPU-K) are: (1)tc = cc + I/O cost, where tc
is total cost; cc is clustering cost. (2)cc = pt ∗ m, where pt is the cost of one
iteration; m is the number of iterations. (3)pt = dc + gc, where dc is the cost of
distance computation and comparison; gc is the cost of generating new centroids.
The costs of the GPU-based algorithm are: (1)ccgpu = ptgpu ∗ m + m2g, where
m2g is the cost of sending data from CPU to GPU. (2)ptgpu = dc + gc + g2m,

Scalable Clustering Using Graphics Processors 381

where g2m is the cost of retrieving data from GPU to CPU. Unless otherwise
mentioned, the experiments adopted d = 8, k = 8 normal distributed data set.

5.2 Total Cost

Figure 6(a) shows that the total costs of GPU-L, GPU-C and CPU-K increase
linearly to the size of data sets. The total cost of GPU-L is about 60% of CPU-
K’s. However, the total cost of GPU-C almost equals to CPU-K’s. We will discuss
this phenomenon in Section 5.4. Because total cost includes I/O cost and the
number of iteration is about 20, the influence of I/O cost on the total cost is
very big. The impact of I/O cost reduces as the number of iterations increases.
And the performance improvement of GPU-L and GPU-C will be greater.

5.3 Clustering Cost and Cost of One Iteration

Figure 6(b) illustrates that the clustering cost of GPU-L is about 1/4 that of
CPU-K. First, the performance improvement benefits from the parallel compu-
tation of pixel processing engines. For example, a NVIDIA GeForce 6800 GT
graphic processor can process 16 pixels in parallel. Second, the vector instruc-
tions in the GPU are well optimized, which greatly improves the process rate
of distance computation. Third, as the distance is compared via depth test, no
branch mispredictions exist in the GPU implementation, which leads to further
performance gain. Branch mispredictions can be extremely expensive on mod-
ern CPUs. For example, a branch misprediction on a Pentium IV CPU costs 17
clock cycles. Figure 6(c) compares the costs of one iteration. It shows the same
tendency of Figure 6(b). GPU-L constantly outperforms CPU-K by four times.

(a) Total cost (b) Clustering cost (c) Cost of one iteration

Fig. 6. GPU-based vs. CPU-based clustering

5.4 Costs of Generating Centroids and Retrieving Data

We compare the cost of generating centroids gc in GPU-C and GPU-L. Figure 7
shows the gc in GPU-C is about 10 times larger than the gc in GPU-L. This is
because in order to generate centroids, GPU-C needs to perform several times
of slow texture writing, which is often a relatively slow operation.

Figure 7 shows GPU-C has the advantage of retrieving data from GPU at
low cost. The cost of retrieving data from GPU g2m is a constant in GPU-C

382 F. Cao, A.K.H. Tung, and A. Zhou

because it only needs to retrieve k centroids and the number of points in each
cluster. However, this advantage is overwhelmed by its great cost on generating
centroids in GPU-C. Therefore, the overall clustering cost of GPU-L is much
smaller than that of GPU-C.

Figure 8 illustrates the cost of retrieving data from GPU g2m in GPU-L.
As the number of points grow, g2m increases linearly. However, as we adopt
a compact mode of data retrieval, the cost of retrieving data in GPU-L is not
significant compared to the cost of one iteration.

5.5 Clustering Cost vs. k and d

Because the number of centroids k and dimensions d may significantly effect the
clustering cost, we test several data sets with 16,000 data points for various k
and d. Figure 9 shows as k increases, the costs of GPU-L, GPU-C and CPU-K
increase linearly. GPU-C has almost the same cost as CPU-K, while the cost
of GPU-L is much lower than that of CPU-K. As k grows, the advantage of
GPU-L becomes more obvious. This is because the larger k is, the advantage of
parallelism is better utilized. Figure 10 shows that the clustering cost in CPU-K,
GPU-L and GPU-C increase linearly as d increases.

Fig. 7. Costs of
generating centroids
and retrieving data

Fig. 8. Cost of
retrieving data vs.
cost of one iteration

Fig. 9. Clustering
cost vs. k

Fig. 10. Clustering
cost vs. d

6 Related Work on GPU-Based Computing

High performance vertex processors and rasterization capability are utilized for
certain numerical processing, including dense matrix-matrix multiplication [12],
general purpose vector processing [15], etc. Different from these vertex-based
methods, our algorithm achieves vector processing ability at the fragment level,
which possesses higher parallel ability. Hall et al provided a GPU-based iterative
clustering method [9]. As being designed for geometry processing, it doesn’t fully
utilize the pipeline of GPUs for mining large databases, let alone data streams.
New techniques have been developed to take advantage of the highly optimized
GPU hardware functions, e.g, 2D discrete Voronoi Diagrams [10] and 3D object
collision detection [3]. Different from these 2D or 3D approximate algorithms,
our clustering methods yield exact results for high-dimensional data points.

There has been interest in using GPUs to speed up database computations.
Sun et al [13] used GPUs for spatial selection and join operations. Govindaraju et

Scalable Clustering Using Graphics Processors 383

al [5] presented algorithms for predicates and aggregates on GPUs. Another work
[6] presents algorithms for quantile and frequency estimation in data streams.

7 Conclusion

In this paper, we have presented a novel algorithm for fast clustering via GPUs.
Our algorithm exploits the inherent parallelism and pipeline mechanism of
GPUs. Distance computing and comparison are implemented by utilizing the
fragment vector processing and multi-pass rendering capabilities of GPUs.
Multi-texturing technology is applied to handle high-dimensional distance com-
puting. We have also extended our method to stream clustering. Our implemen-
tation of the algorithms on a PC with a Pentium IV 3.4G CPU and a NVIDIA
6800GT graphics card highlights their performance. Our future work includes
developing algorithms for other data mining tasks such as outlier detection and
classification.

References

1. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. In Proc. of VLDB, 2003.

2. B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Proc. of PODS, 2003.

3. G. Baciu, S. Wong, and H. Sun. Recode: An image-based collision detection algo-
rithm. Visualization and Computer Animation, 10(4):181–192, 1999.

4. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. of KDD, 1996.

5. N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and et al. Fast computation of
database operations using graphics processors. In Proc. of SIGMOD, 2004.

6. N. K. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast and approximate
stream mining of quantiles and frequencies using graphics processors. In Proc. of
SIGMOD, 2005.

7. S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
data streams:theory and practice. In IEEE TKDE, pages 515–528, 2003.

8. S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large
databases. In Proc. of SIGMOD, pages 73–84, 1998.

9. J. D. Hall and J. C. Hart. Gpu acceleration of iterative clustering. In Proc. of
SIGGRAPH poster, 2004.

10. K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation
of generalized voronoi diagrams using graphics hardware. In Proc. of SIGGRAPH,
pages 277–286, 1999.

11. A. Jain and R. Dubes. Algorithms for clustering data. New Jersey, 1998.
12. E. S. Larsen and D. K. McAllister. Fast matrix multiplies using graphics hardware.

In Proc. of IEEE Supercomputing, 2001.
13. C. Sun, D. Agrawal, and A. E. Abbadi. Hardware acceleration for spatial selections

and joins. In Proc. of SIGMOD, pages 455–466, 2003.
14. S.Venkatasubramanian. The graphics card as a stream computer. In SIGMOD

Workshop on Management and Processing of Data Streams, 2003.

384 F. Cao, A.K.H. Tung, and A. Zhou

15. C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures for
general-purpose computing: A framework and analysis. In Proc. of IEEE/ACM
International Symposium on Microarchitectures, pages 306–317, 2002.

16. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering
method for very large databases. In Proc. of SIGMOD, pages 103–114, 1996.

	Introduction
	Analysis of Existing Clustering Algorithms
	Preliminaries of GPU
	Graphics Pipeline
	Data Representation and Terminology

	Clustering Using GPUs
	Distance Computing
	Labeling
	Generating New Centroids
	Clustering Data Stream

	Experiments and Results
	Experimental Setting
	Total Cost
	Clustering Cost and Cost of One Iteration
	Costs of Generating Centroids and Retrieving Data
	Clustering Cost vs. k and d

	Related Work on GPU-Based Computing
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

