

Lecture Notes in Computer Science 4016
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jeffrey Xu Yu Masaru Kitsuregawa
Hong Va Leong (Eds.)

Advances in Web-Age
Information Management

7th International Conference, WAIM 2006
Hong Kong, China, June 17-19, 2006
Proceedings

13

Volume Editors

Jeffrey Xu Yu
Chinese University of Hong Kong, Department of Systems Engineering and Engi-
neering Management
Shatin, N.T., Hong Kong, China
E-mail: yu@se.cuhk.edu.hk

Masaru Kitsuregawa
University of Tokyo, Institute of Industrial Science
4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
E-mail: kitsure@tkl.iis.u-tokyo.ac.jp

Hong Va Leong
Hong Kong Polytechnic University, Department of Computing
Hung Hom, Kowloon, Hong Kong, China
E-mail: cshleong@comp.polyu.edu.hk

Library of Congress Control Number: 2006927069

CR Subject Classification (1998): H.2, H.3, H.4, I.2, H.5, C.2, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-35225-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35225-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11775300 06/3142 5 4 3 2 1 0

Preface

The rapid prevalence of Web applications requires new technologies for the
design, implementation and management of Web-based information systems.
WAIM 2006, following the past tradition of WAIM conferences, was an inter-
national forum for researchers, practitioners, developers and users to share and
exchange cutting-edge ideas, results, experience, techniques and tools in connec-
tion with all aspects of Web data management. The conference drew together
original research and industrial papers on the theory, design and implementa-
tion of Web-based information systems. As the seventh event in the increasingly
popular series, WAIM 2006 made the move towards internationalization by mi-
grating out of mainland China into Hong Kong, the Oriental Pearl, and the
cultural junction and melting pot between the East and the West. It was suc-
cessful in attracting outstanding researchers from all over the world to Hong
Kong. These proceedings collected the technical papers selected for presentation
at the 7th International Conference on Web-Age Information Management, held
in Hong Kong, on June 17–19, 2006.

In response to the call for papers, the Program Committee received 290 full-
paper submissions from North America, South America, Europe, Asia, and Ocea-
nia. Each submitted paper underwent a rigorous review by three independent
referees, with detailed referee reports. Finally, 50 full research papers were ac-
cepted, from Australia, China, Germany, Hong Kong, Japan, Korea, Macau, New
Zealand, Singapore, Spain, Taiwan, the UK and USA, representing a competitive
acceptance rate of 17%. The contributed papers addressed a broad spectrum on
Web-based information systems, ranging from data caching, data distribution,
data indexing, data mining, data stream processing, information retrieval, query
processing, temporal databases, XML and semistructured data, sensor networks,
peer-to-peer, grid computing, Web services, and Web searching.

We were extremely excited with our strong Program Committee, comprising
outstanding researchers in the WAIM research area. We would like to extend our
sincere gratitude to the Program Committee members and external reviewers.

Last but not least, we would like to thank the sponsor, for their strong support
of this conference, making its every success. Special thanks go to The Chinese
University of Hong Kong, City University of Hong Kong, Hong Kong Baptist
University, The Hong Kong Polytechnic University, The Hong Kong University of
Science and Technology, The University of Hong Kong, Hong Kong Web Society,
IEEE Hong Kong Section Computer Society Chapter, and Hong Kong Pei Hua
Education Foundation.

June 2006 Jeffrey Xu Yu
Masaru Kitsuregawa

Hong Va Leong

Message from the Conference Co-chairs

It is our great pleasure to welcome you to WAIM 2006. At age 7, WAIM was
ready to reach new heights. This year, WAIM featured a couple of new ini-
tiatives. We added two accompanying workshops, one co-chaired by Hong Va
Leong and Reynold Cheng and the other co-chaired by Lei Chen and Yoshiharu
Ishikawa. A project demo session, organized by Joseph Ng, was introduced so
that conference participants could get their hands on the research prototypes
and interact directly with the researchers who developed them.

With the help of a dedicated PC, Jeffrey Yu and Masaru Kitsuregawa put to-
gether an excellent technical program, including three inspiring keynote speeches
by leading experts in the field. In addition to the paper sessions, we had a rich
tutorial program, put together by Wang-Chien Lee and Frederick Lochovsky,
and a panel that was carefully selected by Kamal Karlapalem and Qing Li to
reflect timely research issues relevant to this region.

Besides the technical program, WAIM 2006 would not have been successful
without the hard work of many members of the Organizing Committee. Hong Va
Leong, the Publication Chair, was responsible for the negotiation and logistics
for the publication of the proceedings you are reading. Xiaofeng Meng, Huan
Liu and Arkady Zaslavsky helped to publicize WAIM 2006 in four key regions,
Asia, USA, Australia and Europe.

We need to thank Joseph Fong for securing the sponsors for the conference
and Vincent Ng for carefully managing the budget. Robert Luk and Ben Kao,
the Local Arrangement Co-chairs, working with the office staff at the Hong Kong
Polytechnic University, Department of Computing, arranged the conference site
and social activities to give the conference participants an enjoyable experience
during the conference and pleasant memories to bring home.

Last but not least, the six universities in Hong Kong and the Hong Kong Web
Society provided both financial and moral support to WAIM 2006. Additional
major funding was received from Hong Kong Pei Hua Education Foundation
Limited and IEEE Hong Kong Section Computer Society Chapter. Their gen-
erosity is much appreciated.

June 2006 Dik Lun Lee and Wang Sang

Organization

WAIM 2006 was jointly organized by The Chinese University of Hong Kong, City
University of Hong Kong, Hong Kong Baptist University, The Hong Kong Poly-
technic University, The Hong Kong University of Science and Technology, and
The University of Hong Kong, and was hosted by the Department of Computing,
The Hong Kong Polytechnic University.

Organizing Committee

Honorary Conference Keith Chan, The Hong Kong Polytechnic
Chair: University, Hong Kong
Conference General Dik Lun Lee, Hong Kong University of Science
Co-chairs: and Technology, Hong Kong

Shan Wang, Renmin University of China, China
Program Committee Jeffrey Xu Yu, Chinese University of
Co-chairs: Hong Kong, Hong Kong

Masaru Kitsuregawa, University of Tokyo,
Japan

Tutorial Co-chairs: Wang-Chien Lee, Pennsylvania State University,
USA
Frederick H. Lochovsky, Hong Kong University
of Science and Technology, Hong Kong

Panel Co-chairs: Kamal Karlapalem, International Institute of
Information Technology, India
Qing Li, City University of Hong Kong, Hong
Kong

Publication Chair: Hong Va Leong, The Hong Kong Polytechnic
University, Hong Kong

Publicity Co-chairs: Xiaofeng Meng, Renmin University of China,
China
Huan Liu, Arizona State University, USA
Arkady Zaslavsky, Monash University, Australia

Exhibition and Industrial Joseph Fong, City University of Hong Kong,
Liaison Chair: Hong Kong

VIII Organization

Research Project Exhibition Joseph Ng, Hong Kong Baptist University,
and Demonstration Chair: Hong Kong
Local Arrangement Robert Luk, The Hong Kong Polytechnic
Co-chairs: University, Hong Kong

Ben Kao, The University of Hong Kong,
Hong Kong

Finance Chair: Vincent Ng, The Hong Kong Polytechnic
University, Hong Kong

Steering Committee Sean X. Wang, University of Vermont, USA
Liaison:

Program Committee

Toshiyuki Amagasa University of Tsukuba, Japan
James Bailey University of Melbourne, Australia
Sourav S. Bhowmick Nanyang Technological University, Singapore
Stephane Bressan National University of Singapore, Singapore
Ying Cai Iowa State University, USA
Wojciech Cellary The Poznan University of Economics, Poland
Chee Yong Chan National University of Singapore, Singapore
Kevin Chang University of Illinois at Urbana-Champaign,

USA
Arbee L.P. Chen National Tshing Hua University, Taiwan
Lei Chen Hong Kong University of Science and

Technology, Hong Kong
Reynold Cheng The Hong Kong Polytechnic University,

Hong Kong
Kak Wah Chiu Dickson Computer Systems, Hong Kong
Chin-Wan Chung KAIST, Korea
Gao Cong University of Edinburgh, UK
Gill Dobbie University of Auckland, New Zealand
Ling Feng Twente University, The Netherlands
Ada Fu Chinese University of Hong Kong, Hong Kong
Xiang Fu Georgia Southwestern State University, USA
Stephane Grumbach Liama The Sino-French IT Lab Institute of

Automation, China
Takahiro Hara Osaka University, Japan
Haibo Hu Hong Kong University of Science and

Technology, Hong Kong
Joshua Huang University of Hong Kong, Hong Kong
Edward Hung The Hong Kong Polytechnic University,

Hong Kong
Haifeng Jiang IBM Almaden Research Center, USA

Organization IX

Hyunchul Kang Chung-Ang University, Korea
Ben Kao University of Hong Kong, Hong Kong
Hiroyuki Kitagawa University of Tsukuba, Japan
Yasushi Kiyoki Keio University, Japan
Flip Korn AT&T, USA
Chiang Lee National Cheng-Kung University, Taiwan
Wookey Lee Sungkyul University, Korea
YoonJoon Lee KAIST, Korea
Chen Li University of California, Irvine, USA
Ee Peng Lim Nanyang Technological University, Singapore
Xuemin Lin University of New South Wales, Australia
Chengfei Liu Swinburne University of Technology, Australia
Guimei Liu National University of Singapore, Singapore
Mengchi Liu Carleton University, Canada
Tieyan Liu Microsoft Research Asia, China
Frederick H. Lochovsky Hong Kong University of Science and

Technology, Hong Kong
Nikos Mamoulis University of Hong Kong, Hong Kong
Weiyi Meng Binghamton University, USA
Xiaofeng Meng Renmin University of China, China
Mukesh K Mohania IBM India Rearch Lab, India
Miyuki Nakano University of Tokyo, Japan
Wilfred Ng Hong Kong University of Science and

Technology, Hong Kong
Beng Chin Ooi National University of Singapore, Singapore
Jian Pei Simon Fraser University, Canada
Zhiyong Peng Wuhan University, China
Keun Ho Ryu Chungbuk National University, Korea
Klaus-Dieter Schewe Massey University, New Zealand
Heng Tao Shen University of Queensland, Australia
Timothy K. Shih Tamkang University, Taiwan
Dawei Song Open University, UK
Kazutoshi Sumiya University of Hyogo, Japan
Keishi Tajima Kyoto University, Japan
Kian-Lee Tan National University of Singapore, Singapore
Katsumi Tanaka Kyoto University, Japan
Changjie Tang Sichuan University, China
David Taniar Monash University, Australia
Yufei Tao City University of Hong Kong, Hong Kong
Masashi Toyoda University of Tokyo, Japan
Anthony Tung National University of Singapore, Singapore
Guoren Wang Northeastern University, China
Haixun Wang IBM T. J. Watson Research Center, USA
Ke Wang Simon Fraser University, Canada
Min Wang IBM T. J. Watson Research Center, USA
Wei Wang Fudan University, China

X Organization

Wei Wang University of New South Wales, Australia
X. Sean Wang University of Vermont, USA
Jirong Wen Microsoft Research Asia, China
Raymond Wong University of New South Wales, Australia
Jianliang Xu Hong Kong Baptist University, Hong Kong
Chris Yang Chinese University of Hong Kong, Hong Kong
Dongqing Yang Peking University, China
Jun Yang Duke University, USA
Yun Yang Swinburne University of Technology, Australia
Masatoshi Yoshikawa Nagoya University, Japan
Cui Yu Monmouth University, USA
Ge Yu Northeastern University, China
Arkady Zaslavsky Monash University, Australia
Chengqi Zhang University of Technology, Sydney, Australia
Yanchun Zhang Victoria University, Australia
Baihua Zheng Singapore Management University, Singapore
Aoying Zhou Fudan University, China
Lizhu Zhou Tsinghua University, China
Shuigeng Zhou Fudan University, China
Xiaofang Zhou University of Queensland, Australia
Manli Zhu Institute for Infocomm Research, Singapore

Steering Committee

Guozhu Dong Wright State University, USA
Masaru Kitsuregawa University of Tokyo, Japan
Jianzhong Li Harbin Institute of Technology, China
Xiaofeng Meng Renmin University, China
Baile Shi Fudan University, China
Jianwen Su University of California at Santa Barbara, USA
Shan Wang Remin University, China
X. Sean Wang University of Vermont, USA
Ge Yu Northeastern University, China
Aoying Zhou Fudan University, China

External Reviewers

Sihem Amer-Yahia
Rebecca Lynn Braynard
Huiping Cao
Badrish Chandramouli
Bo Chen
Jinchuan Chen

Tao Cheng
Ding-Ying Chiu
Chung-Wen Cho
Shui-Lung Chuang
Yu-Chi Chung
Bin Cui

Organization XI

Manoranjan Dash
Susumu Date
Chun Feng
Guang Feng
Andrew Flahive
Chan Kai Fong
Bin Gao
Matthew Gebski
Byunghyun Ha
Rachid Hamadi
Gab-Soo Han
Wook-shin Han
Kenji Hatano
Bin He
Hao He
Qi He
Wai-Shing Ho
Ming-Qiang Hou
Kenneth Hsu
Ming Hua
Yuan-Ke Huang
Lucas Hui
Huan Huo
Nobuto Inoguchi
Yoshiharu Ishikawa
Arpit Jain
Mingfei Jiang
Govind Kabra
Odej Kao
Panagiotis Karras
Roland Kaschek
Seung Kim
Chui Chun Kit
Isao Kojima
Man Ki Mag Lau
Yuangui Lei
Hou U Leong
Chengkai Li
Chunsheng Li
Jianxin Li
Li Li
Xiaoguang Li
Xiang Lian
Seungkil Lim
Taesoo Lim

Lanturn Lin
Lienfa Lin
Tie-Yan Liu
Yen-Liang Liu
Yuting Liu
Xudong Luo
Yi Luo
Qiang Ma
Xiuli Ma
Robert Magai
Masahiro Mambo
Jiarui Ni
Zaiqing Nie
Bo Ning
Tao Qin
Wenwu Qu
Wenny Rahayu
Vasudha Ramnath
Weixiong Rao
Sourashis Roy
Jarogniew Rykowski
Takeshi Sagara
Akira Sato
Cheng Heng Seng
Vibhuti S. Sengar
Shuming Shi
Houtan Shirani-Mehr
Guojie Song
Ifang Su
Aixin Sun
Yu Suzuki
Takayuki Tamura
Nan Tang
Gu Tao
Norimasa Terada
Bernhard Thalheim
Alexei Tretiakov
Maria Vargas-Vera
Rares Vernica
Krzysztof Walczak
Bin Wang
Di Wang
En-Tzu Wang
Wojciech R. Wiza
Raymond Chi-Wing Wong

XII Organization

Junyi Xie
Linhao Xu
Liang Huai Yang
Qi Yang
Zaihan Yang
Ikjun Yeom
Cai Yi
Yiqun Lisa Yin
Man Lung Yiu
Tomoki Yoshihisa
Yaxin Yu
Yidong Yuan
Kun Yue

Shun-Neng Yung
Wanyu Zang
Xinghuo Zeng
Qing Zhang
Zhen Zhang
Qiankin Zhao
Qiankun Zhao
Xiaohui Zhao
Yuhai Zhao
Jiling Zhong
Bin Zhou
Jianhan Zhu
Sergiy Zlatkin

Sponsoring Institutions

The Chinese University of Hong Kong
City University of Hong Kong
Hong Kong Baptist University
The Hong Kong Polytechnic University
The Hong Kong University of Science and Technology
The University of Hong Kong
Hong Kong Web Society
Hong Kong Pei Hua Education Foundation
IEEE Hong Kong Section Computer Society Chapter

Table of Contents

Indexing

On-Demand Index for Efficient Structural Joins
Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu . 1

An Efficient Indexing Scheme for Moving Objects’ Trajectories on
Road Networks

Jae-Woo Chang, Jung-Ho Um . 13

Spatial Index Compression for Location-Based Services Based on a
MBR Semi-approximation Scheme

Jongwan Kim, SeokJin Im, Sang-Won Kang, Chong-Sun Hwang 26

XML Query Processing

KCAM: Concentrating on Structural Similarity for XML Fragments
Lingbo Kong, Shiwei Tang, Dongqing Yang, Tengjiao Wang,
Jun Gao . 36

A New Structure for Accelerating XPath Location Steps
Yaokai Feng, Akifumi Makinouchi . 49

Efficient Evaluation of Multiple Queries on Streamed XML Fragments
Huan Huo, Rui Zhou, Guoren Wang, Xiaoyun Hui, Chuan Xiao,
Yongqian Yu . 61

Information Retrieval I

Automated Extraction of Hit Numbers from Search Result Pages
Yanyan Ling, Xiaofeng Meng, Weiyi Meng . 73

Keyword Extraction Using Support Vector Machine
Kuo Zhang, Hui Xu, Jie Tang, Juanzi Li . 85

LSM: Language Sense Model for Information Retrieval
Shenghua Bao, Lei Zhang, Erdong Chen, Min Long, Rui Li,
Yong Yu . 97

XIV Table of Contents

Information Retrieval II

Succinct and Informative Cluster Descriptions for Document
Repositories

Lijun Chen, Guozhu Dong . 109

LRD: Latent Relation Discovery for Vector Space Expansion and
Information Retrieval

Alexandre Gonçalves, Jianhan Zhu, Dawei Song, Victoria Uren,
Roberto Pacheco . 122

Web Image Retrieval Refinement by Visual Contents
Zhiguo Gong, Qian Liu, Jingbai Zhang . 134

Sensor Networks and Grid Computing

An Effective Approach for Hiding Sensitive Knowledge in Data
Publishing

Zhihui Wang, Bing Liu, Wei Wang, Haofeng Zhou, Baile Shi 146

Tracking Network-Constrained Moving Objects with Group Updates
Jidong Chen, Xiaofeng Meng, Benzhao Li, Caifeng Lai 158

Dynamic Configuring Service on Semantic Grid
Qing Zhu . 170

Peer-to-Peer

Object Placement and Caching Strategies on AN.P2P
Su Mu, Chi-Hung Chi, Lin Liu, HongGuang Wang 182

Role-Based Peer-to-Peer Model: Capture Global Pseudonymity for
Privacy Protection

Zude Li, Guoqiang Zhan, Xiaojun Ye . 193

A Reputation Management Scheme Based on Global Trust Model for
Peer-to-Peer Virtual Communities

Jingtao Li, Xueping Wang, Bing Liu, Qian Wang, Gendu Zhang 205

Web Services

QoS-Aware Web Services Composition Using Transactional
Composition Operator

An Liu, Liusheng Huang, Qing Li . 217

Table of Contents XV

Optimizing the Profit of On-Demand Multimedia Service Via a
Server-Dependent Queuing System

Pei-chun Lin . 229

Service Matchmaking Based on Semantics and Interface Dependencies
Shuiguang Deng, Jian Wu, Ying Li, Zhaohui Wu 240

Web Searching

Crawling Web Pages with Support for Client-Side Dynamism
Manuel Álvarez, Alberto Pan, Juan Raposo, Justo Hidalgo 252

RecipeCrawler: Collecting Recipe Data from WWW
Incrementally

Yu Li, Xiaofeng Meng, Liping Wang, Qing Li . 263

CCWrapper: Adaptive Predefined Schema Guided Web Extraction
Jun Gao, Dongqing Yang, Tengjiao Wang . 275

Caching and Moving Objects

MiniTasking: Improving Cache Performance for Multiple Query
Workloads

Yan Zhang, Zhifeng Chen, Yuanyuan Zhou . 287

Cache Consistency in Mobile XML Databases
Stefan Böttcher . 300

Bulkloading Updates for Moving Objects
Xiaoyuan Wang, Weiwei Sun, Wei Wang . 313

Temporal Database

Finding the Plateau in an Aggregated Time Series
Min Wang, X. Sean Wang . 325

Compressing Spatial and Temporal Correlated Data in Wireless Sensor
Networks Based on Ring Topology

Siwang Zhou, Yaping Lin, Jiliang Wang, Jianming Zhang,
Jingcheng Ouyang . 337

Discovery of Temporal Frequent Patterns Using TFP-Tree
Long Jin, Yongmi Lee, Sungbo Seo, Keun Ho Ryu 349

XVI Table of Contents

Clustering

DGCL: An Efficient Density and Grid Based Clustering Algorithm for
Large Spatial Database

Ho Seok Kim, Song Gao, Ying Xia, Gyoung Bae Kim,
Hae Young Bae . 362

Scalable Clustering Using Graphics Processors
Feng Cao, Anthony K.H. Tung, Aoying Zhou . 372

TreeCluster: Clustering Results of Keyword Search over Databases
Zhaohui Peng, Jun Zhang, Shan Wang, Lu Qin . 385

Clustering and Classification

A New Method for Finding Approximate Repetitions in DNA Sequences
Di Wang, Guoren Wang, Qingquan Wu, Baichen Chen, Yi Zhao 397

Dynamic Incremental Data Summarization for Hierarchical Clustering
Bing Liu, Yuliang Shi, Zhihui Wang, Wei Wang, Baile Shi 410

Classifying E-Mails Via Support Vector Machine
Lidan Shou, Bin Cui, Gang Chen, Jinxiang Dong 422

Data Mining

A Novel Web Page Categorization Algorithm Based on Block
Propagation Using Query-Log Information

Wenyuan Dai, Yong Yu, Cong-Le Zhang, Jie Han, Gui-Rong Xue 435

Counting Graph Matches with Adaptive Statistics Collection
Jianhua Feng, Qian Qian, Yuguo Liao, Lizhu Zhou 447

Tight Bounds on the Estimation Distance Using Wavelet
Bing Liu, Zhihui Wang, Jingtao Li, Wei Wang, Baile Shi 460

Data Stream Processing

Load Shedding for Window Joins over Streams
Donghong Han, Chuan Xiao, Rui Zhou, Guoren Wang, Huan Huo,
Xiaoyun Hui . 472

Error-Adaptive and Time-Aware Maintenance of Frequency Counts
over Data Streams

Hongyan Liu, Ying Lu, Jiawei Han, Jun He . 484

Table of Contents XVII

Supporting Efficient Distributed Top-k Monitoring
Bo Deng, Yan Jia, Shuqiang Yang . 496

XML and Semistructured Data

Designing Quality XML Schemas from E-R Diagrams
Chengfei Liu, Jianxin Li . 508

Validating Semistructured Data Using OWL
Yuan Fang Li, Jing Sun, Gillian Dobbie, Jun Sun, Hai H. Wang 520

Data Distribution and Query Processing

Dynamic Data Distribution of High Level Architecture Based on
Publication and Subscription Tree

Yintian Liu, Changjie Tang, Chuan Li, Minfang Zhu, Tao Zeng 532

A Framework for Query Reformulation Between Knowledge
Base Peers

Biao Qin, Shan Wang, Xiaoyong Du . 544

An Efficient Indexing Technique for Computing High Dimensional
Data Cubes

Fangling Leng, Yubin Bao, Ge Yu, Daling Wang, Yuntao Liu 557

Advanced Applications

A Scientific Workflow Framework Integrated with Object Deputy
Model for Data Provenance

Liwei Wang, Zhiyong Peng, Min Luo, Wenhao Ji, Zeqian Huang 569

On the Development of a Multiple-Compensation Mechanism for
Business Transactions

Zaihan Yang, Chengfei Liu . 581

OS-DRAM: A Delegation Administration Model in a Decentralized
Enterprise Environment

Changwoo Byun, Seog Park, Sejong Oh . 593

Author Index . 605

On-Demand Index for Efficient Structural Joins

Kun-Lung Wu, Shyh-Kwei Chen, and Philip S. Yu

IBM T.J. Watson Research Center
{klwu, skchen, psyu}@us.ibm.com

Abstract. A structural join finds all occurrences of structural, or con-
tainment, relationship between two sets of XML node elements: ances-
tor and descendant. Prior approaches to structural joins mostly focus on
maintaining offline indexes on disks or requiring the elements in both sets
to be sorted. However, either one can be expensive. More important, not
all node elements are beforehand indexed or sorted. We present an on-
demand, in-memory indexing approach to performing structural joins.
There is no need to sort the elements. We discover that there are sim-
ilarities between the problems of structural joins and stabbing queries.
However, previous work on stabbing queries, although efficient in search
time, is not directly applicable to structural joins because of high stor-
age costs. We develop two storage reduction techniques to alleviate the
problem of high storage costs. Simulations show that our new method
outperforms prior approaches.

1 Introduction

Structural joins, or containment joins, have been identified as important oper-
ations for finding structural relationships, such as ancestor-descendant, within
XML documents [1, 3, 6, 13, 15]. Important for XML query processing, a struc-
tural join is a set-at-a-time operation that finds all the ancestor-descendant
relationships between two different sets of node elements.

Many prior approaches to structural joins assume that each node element is
first labeled as an interval [3, 6, 15], (start, end), a pair of numbers representing
the start and end positions of the element in the document tree [4, 15], encoding
the region of the node.1 Structural joins are then performed on these intervals.
In this paper, we similarly assume that node elements are labeled as intervals.

With region-encoded intervals, a structural join can be formally defined as
follows. Given two input lists, A and D, where A contains intervals representing
ancestor node elements and D contains intervals representing descendant node
elements, a structural join is to report all pairs (a, d), where a ∈ A and d ∈ D,
such that a.start < d.start < d.end < a.end. In other words, a contains d.

Various approaches have been proposed to perform structural joins. Most
of them assume (i) offline indexes are maintained on disks for both input sets
[9, 15, 3, 6], or (ii) the elements in both input sets are sorted [8, 15, 1, 3, 6], or
(iii) both. However, maintaining indexes on disks incurs both storage and CPU
1 In general, start and end need not be the absolute positions of the element.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 K.-L. Wu, S.-K. Chen, and P.S. Yu

costs for storing and updating the indexes, and sorting the elements is rather
time consuming. More important, as pointed out in [13], not all elements in an
XML document are indexed or sorted beforehand. In contrast, we describe an on-
demand, in-memory indexing approach, which does not require node elements to
be sorted. To the best of our knowledge, this is the first on-demand, in-memory
indexing approach to efficient structural joins.

Because node elements are labeled as intervals, we discover that there are
similarities between the problems of structural joins and stabbing queries [11].
A stabbing query problem is to find all the intervals that are stabbed by a
point. A structural join problem is to find all the ancestor/descendant element
pairs in an XML document. The two problems are similar if we treat all the
ancestor elements as intervals and use the start points (or end points) of all the
descendant elements to stab the ancestor intervals. Unfortunately, previous work
on stabbing queries is not directly applicable to structural joins. For example,
although efficient in search time, the state-of-the-art CEI (Containment-Encoded
Interval) index [14] can incur a high storage cost for structural joins.

In this paper, we develop a new, on-demand, stabbing query-based index
for structural joins, referred to as StabQ-OD. Besides keeping the advantage
of fast search time, it considerably lessens the high-storage-cost problem by
two storage reduction techniques: unit-length grid elimination and domain range
partitioning. We found that the storage cost can be reduced by almost 50% by
eliminating the unit-length grid intervals. Moreover, the entire domain range of
the ancestor elements can be divided into multiple ampartitions. Structural joins
can then be performed serially or in parallel on individual domain partitions.

In [1], an in-memory stack was used to facilitate structural joins of two or-
dered interval lists. It was the state-of-the-art non-indexed, main memory-based
approach, but the elements in both input sets must be in a sorted order. In [3, 6],
offline indexes were maintained on disks on the elements to help skip those with-
out matches. A B+-tree was proposed in [3] to skip descendants without matches.
An XR-tree was proposed in [6] to skip both ancestors and descendants without
matches. The XR-tree was the state-of-the-art approach that uses indexes to
skip elements. However, some elements might not have pre-built indexes.

In [13], a relational DB-based approach to structural joins was proposed. Each
XML node element was labeled with a number derived from embedding the XML
document tree onto a perfect binary tree. After the labeling, structural joins
are transformed into equi-joins and the traditional join operator of a relational
DBMS can be called upon to perform the operations. There is no need to sort
the elements or maintain indexes on disks. However, this is not a main memory-
based approach like ours. In [12], a partition-based scheme was proposed for
efficient processing of XML containment queries. However, it is not an index-
based approach like ours. A staircase join was proposed in [5]. It is based on
ordered encoding of XML documents and never builds indexes.

Finally, structural joins can also be applied to the problem of holistic twig
joins [2, 7], which finds the occurrences of a much more complex structural path
or twig in an XML document. It can be performed by first applying structural

On-Demand Index for Efficient Structural Joins 3

joins to individual sub-paths between two node elements and then combining the
intermediate results. However, holistic joins are outside the scope of this paper.
In this paper, we focus on structural joins between two sets of node elements.

The rest of the paper is organized as follows. Section 2 briefly summarizes
the original CEI indexing scheme for stabbing queries. Section 3 describes the
StabQ-OD schemes for structural joins. Section 4 shows our performance studies.
Finally, Section 5 summarizes the paper.

2 CEI Indexing for Stabbing Queries

2.1 Containment-Encoded Intervals

Fig. 1 shows an example of containment-encoded intervals and their local ID
labeling for CEI indexing. Assume the range of interest of an attribute A is
[0, r). First, the range is partitioned into r/L segments of length L, denoted as
Si, where i = 0, 1, · · · , (r/L − 1), L = 2k, and k is an integer. Note that r is
assumed to be a multiple of L. Segment Si contains all the attribute values in
[iL, (i + 1)L). Then, 2L − 1 CEI’s are defined for each segment.

Fig. 1. Example of containment-encoded intervals and their ID labeling

These 2L−1 CEI’s have containment relationships among them. The labeling
of CEI’s is encoded with such relationships. The ID of a CEI has two parts: the
segment ID and the local ID. For each segment, 1, 2, · · · , 2L − 1 are assigned
to each of the 2L − 1 CEI’s as their local IDs. The local ID assignment follows
the labeling of a perfect binary tree. Fig. 1 shows the assignment of local IDs to
CEI’s within a segment. The global unique ID for a CEI in segment Si, where
i = 0, 1, · · · , (r/L)−1, is simply computed as l+2iL, where l is the local ID. The
local ID of the parent of a CEI with local ID l is �l/2�, and it can be efficiently
computed by a logical right shift by 1 bit.

Note that CEI’s can be alternatively viewed as multi-layered grid intervals.
There are k + 1 layers, where k = log(L). The length of a grid interval at layer
i is exactly twice that of a grid interval at layer i + 1, where 0 ≤ i ≤ k. Layer-0
grid intervals have a length of L while layer-k grid intervals have a length of 1.

4 K.-L. Wu, S.-K. Chen, and P.S. Yu

2.2 Insertion and Search Operations

To insert a query interval, it is first decomposed into one or more grid intervals,
then its ID is inserted into the ID lists associated with the decomposed grid
intervals [14]. Fig. 2 shows an example of CEI indexing. It shows the decom-
position of four query intervals: Q1, Q2, Q3 and Q4 within a specific segment
containing grid intervals of c1, · · · , c7. Q1 completely covers the segment, and
its ID is inserted into c1. Q2 lies within the segment and is decomposed into c5
and c6, the largest grid intervals that can be used. Q3 also resides within the
segment, but its right endpoint coincides with a guiding post. As a result, we can
use c3, instead of c7 and c8 for decomposition. Similarly, c2 is used to decompose
Q4. As shown in Fig. 2, query IDs are inserted into the ID lists associated with
the decomposed grid intervals.

c1

c3 Q3

Q2

Q1

c2

Search is performed via the CEIs:
1. With a simple formula, we can compute c5 from x
2. From c5, we can derive c2 and c1 via containment encoding
3. Search result is in the ID lists of c1, c2, and c5

Q2

Q3
Q4x x

x xx

x x x

Query intervals

CEIs

x

Q1 xx

c1

c2 c3

c7c6c5c4

c4

c5

c6

c7

c8

Q4

Q2

Q3

CEI-based
query index

Fig. 2. Example of CEI indexing

The search algorithm is simple and efficient [14]. As an example, to search
with a data value x in Fig. 2, the local ID of the unit-length grid interval that
contains it is first computed. In this case it is c5. Then, from c5, the local IDs
of all its ancestors that contain c5 can be efficiently computed via containment
encoding. Namely, the parent of a grid interval with local ID l can be computed
by a logical right shift by 1 bit of l. In this case, they are c2 and c1. As a result,
the search result is contained in the 3 ID lists associated with c1, c2 and c5. We
can verify from Fig. 2 that the result indeed contains Q1, Q2, Q3 and Q4.

3 On-Demand Indexing for Structural Joins

3.1 StabQ-SP

With each node element encoded with a pair of integers, (start, end), the struc-
tural relationship between two elements can be easily determined [6, 15, 1, 3]. For
any two distinct elements u and v in a tree-structured document, the following
holds [6]: (1) The region of u is either completely before or completely after that
of v; or (2) the region of u either contains that of v or is contained by that of v.
Namely, two intervals never partially overlap with each other.

On-Demand Index for Efficient Structural Joins 5

With this complete containment property, the problem of structural joins of
two sets of intervals can be transformed into one that searches the CEI index of
the ancestor intervals with the start, or end, points of the descendant intervals.

Theorem 1. A structural join of two sets of intervals, A and D, can be carried
out by (a) constructing a CEI index with all the intervals in A, (b) using the
start (or end) point of each interval d, where d ∈ D, to search the CEI index,
and (c) constructing a join pair (a, d) for each a ∈ Ad, where Ad is the set of
interval IDs from the search output in (b).

Proof: Fig. 3 shows an example of structural joins viewed as stabbing the an-
cestor intervals with descendant start points. We draw each element interval as a
horizontal line segment. Let Ad be the set of interval IDs stabbed by the vertical
line at the start point of a descendant interval d. Because there is no partial
overlapping between any two elements, each a ∈ Ad must completely contain d.
Since the result of searching the CEI index with the start point of a descendant
interval d contains all the ancestor intervals that cover the point, such a search
operation generates all the join output pairs involving d. Similar arguments can
be made regarding the end point of a descendant interval. �

Ancestors

Descendants1d 4d

3d
2d

5d

1a

2a
3a

4a
5a

7a

)},(),,(),,(),,(),,(),,(),,{(

output join structural

57565545323121 dadadadadadada

=

6a

Fig. 3. Structural joins: stabbing ancestor intervals with descendant start points

Note that because of node element nesting, not uncommon in XML documents,
we can use only the start or end point of a descendant element to search the CEI
index of the ancestor elements for performing structural joins. For example, in
Fig. 3, a2 contains d3, but not d2.

3.2 StabQ-OD

Unit-Length Grid Elimination. The storage cost of the StabQ-SP can be
too high, especially if the domain range r is large. From Fig. 2, the pointer array
will be large if r is large.

Theorem 2. For structural joins, the unit-length grid intervals can be com-
pletely eliminated.

6 K.-L. Wu, S.-K. Chen, and P.S. Yu

Proof: A unit-length grid interval can only appear at the left endpoint and/or
the right endpoint of an ancestor element after decomposition [14]. Because
node elements are encoded with a pair of integers, representing the start and
end positions of the element in the document, no two elements can share the
same endpoint and the minimal length of an descendant interval is 1. As a
result, the start point of a descendant element would never stab at the portion
of an ancestor element that corresponds to a unit-length grid interval. Hence,
unit-length grid intervals can be eliminated. �
Note that the minimal ancestor element that can possibly contain a descendant
element has a length of at least 3 (see Fig. 4). This is because (a) the length of
any descendant element must be greater than or equal to 1 and (b) any pair of
elements cannot share the same endpoint. Therefore, ancestor elements of length
1 or 2 can be ignored in index construction.

1 || =d

3 || =axx x

1 || 1 =c 2 || 2 =c
Minimal ancestor element
containing a minimal
descendant element

Minimal descendant element

This portion of
a is never to be
stabbed.

Fig. 4. The minimal ancestor element containing a minimal descendant element

Theorem 3. For structural joins, any grid interval of length greater than or
equal to 2 cannot be eliminated, even if the minimum length of a descendant
element is greater than 2.

Proof: This theorem can be proved by a counter example. Fig. 5 shows an
example of a descendant element of length 4. It is contained by an ancestor
element of length 6. However, the start point of the descendant element d stabs
the ancestor element at the decomposed grid interval c1, which is of length 2.
Hence, we cannot eliminate grid intervals of length 2. �

xx x

4 || =d

We definitely must consider CEI of length 2 even if the minimum
descendant element length is greater than 2, such as 4, because
the start point stabs at CEI c1, which is of length 2.

6 || =a2 || 1 =c 4 || 2 =c

Fig. 5. Grid intervals of length 2 cannot be eliminated

On-Demand Index for Efficient Structural Joins 7

Domain Range Partitioning. Even with unit-length grid intervals completely
eliminated, the index storage cost of StabQ-OD can still be high. Containing lots
of empty pointers, the pointer array can be replaced with a hash table. However,
a hash computation can be too costly, compared with a direct array access.

Instead, we can divide the domain range into multiple partitions and perform
structural joins serially or in parallel on individual domain partitions. For exam-
ple, assume we divide the entire domain range [0, r) into 2 partitions: P1 : [0, r/2)
and P2 : [r/2, r). To perform a structural join between A and D, we can perform
2 in-memory scans of A and D. During the first scan, all the elements from A
that overlap with P1 are used to build a StabQ-OD index and all the starting
points of elements in D that are less than r/2 are used to search the index to
find the join output. The elements in A that are disjoint with P1 are ignored;
the elements in D with starting points outside P1 are also ignored. During the
second scan, the rest of the elements in A and D are processed.

Structural Join Algorithms with StabQ-OD. With Theorems 2 and 3,
we now describe the structural join algorithm using the StabQ-OD with P = 1,
where P denotes the number of domain range partitions. Fig. 6 shows the pseudo
code for StructuralJoin, which takes two interval sets, A and D, as inputs and
produces an output that contains all the (a, d) pairs where a ∈ A, d ∈ D and a
contains d. For each a ∈ A, it calls Insertion function with the element ID and
its start and end points as the input parameters. This builds a CEI index for
the ancestor set. After that, each descendant element is used to search the CEI
index by calling Search with the start point as the input parameter. Search
returns a set of ancestor elements that contain the descendant element. Each of
the elements in the returned set can be used to form a join output pair.

StructuralJoin (A, D) {
for (i = 0; i < |A|; i + +)

Insertion(ai, ai.start, ai.end);
// ai ∈ A & ai is the interval ID of an ancestor element

Joined = φ;
for (j = 0; j < |D|; j + +) {

Adj = Search(dj .start);
if (Adj �= NULL)

for all a ∈ Adj , Joined = Joined ∪ {(a, dj)};
}
return(Joined);

}

Fig. 6. Pseudo code for the structural join algorithm with StabQ-OD

Most of the Insertion and Search algorithms are similar to those for the
original CEI indexing [14]. However, for the StabQ-OD, there is only L grid
intervals for each segment, hence the global ID of a grid interval with a segment
ID Si and a local ID l is SiL+ l, instead of 2SiL+ l. Because no unit-length grid

8 K.-L. Wu, S.-K. Chen, and P.S. Yu

intervals are used, the search algorithm finds the local ID of the grid interval of
length 2 and more stabbed by a data point x.

4 Performance Evaluation

4.1 Simulation Studies

We implemented 5 algorithms for structural joins: the XR-tree [6], the XB-
tree [2], the Stack [1], the StabQ-SP and the StabQ-OD. For the XR-tree and
the XB-tree, we constructed in-memory indexes for both A and D lists. Once the
indexes are built, the elements on the leaf nodes are in sorted order. Hence, we did
not sort the elements again and no sorting time was included. However, for the
Stack approach, we did. For the Stab-SP and StabQ-OD approaches, only a CEI
index was built for the A list. We implemented the domain range partitioning
in a single machine and performed the structural joins serially on each domain
partition. The simulations were performed on an RS 6000 model 43P machine
running AIX 5.1. We conducted structural joins on 8 XML workloads: 4 synthetic
and 4 real (see Table 1 for the characteristics of these XML documents).

Table 1. XML workload characterization

XML description type size ancestor/descendant highly |A| |D| |output|
workload (M) nested? (M) (M) (M)

1 Departments synthetic 146 employee/name yes 1.433 2.174 4.844

2 Departments synthetic 146 employee/email yes 1.433 1.292 2.908

3 Conferences synthetic 186 paper/author no 1.017 3.389 3.050

4 Conferences synthetic 186 paper/title no 1.017 1.130 1.017

5 Treebank [10] real 86 PP/NP yes 0.136 0.435 0.281

6 Treebank [10] real 86 VP/NP yes 0.154 0.435 0.481

7 DBLP [10] real 134 inproceedings/author no 0.212 0.716 0.492

8 DBLP [10] real 134 article/author no 0.112 0.716 0.221

The synthetic XML documents were generated based on two DTDs used
in [6]. Fig. 7 shows the two DTDs, one for departments and one for confer-
ences. For the departments XML, we created two workloads, 1 and 2, and used
employee/name and employee/email, respectively, as the ancestor and descen-
dant pairs. The employee node elements can be highly nested in the document.
For the conferences XML, we used paper/author and paper/title as the an-
cestor/descendant pairs for two different workloads, 3 and 4. The paper node
elements are fairly flat for the conferences DTD.

For real XML documents, we used the DBLP and the Treebank XML doc-
uments downloaded from [10]. The Treebank XML contains English sentences,
tagged with parts of speech. The nodes in this document are deeply recursive.
For this XML, PP/NP and VP/NP were chosen as the ancestor and descendant

On-Demand Index for Efficient Structural Joins 9

+

Departments DTD

departments

department

name e-mail employee

name e-mail

+
? *

?
+

conferences

conference

paper

title author

Conferences DTD

+

+

+

Fig. 7. The DTDs for synthetic data

pairs of two different workloads, 5 and 6. DBLP stands for Digital Bibliography
Library Project. The DBLP XML document contains bibliographic informa-
tion on major computer science journals and proceedings. For DBLP, we used
inproceedings/author and article/author as the ancestor and descendant
pairs for two different workloads, 7 and 8. The inproceedings and article
node elements in the document are relatively flat, similar to the conferences
DTD as shown in Fig. 7.

Note that some readers might not think that it is fair to include the index
construction time for the prior approaches, such as the XR-trees, because they
were not designed for on-demand indexing and the indexes can be pre-built
offline. However, as we have discussed in Section 1, not all node elements would
have the indexes built beforehand when the join operations are performed. In

0

50

100

150

200

250

workload 1 workload 2 workload 3 workload 4

XML workload

to
ta

l i
nd

ex
 s

to
ra

ge
 (M

 b
yt

es
)

Stack XR-tree XB-tree StabQ-SP StabQ-OD(P=1)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

workload 1 workload 2 workload 3 workload 4

XML workload

to
ta

l j
oi

n
tim

es
 (s

ec
on

ds
)

Stack XR-tree XB-tree StabQ-SP StabQ-OD(P=1)

Fig. 8. Comparisons of structural join algorithms with synthetic XML workloads

0

20

40

60

80

100

120

140

workload 5 workload 6 workload 7 workload 8

XML workload

in
de

x
st

or
ag

e
co

st
 (M

 b
yt

es
)

Stack XR-tree XB-tree StabQ-SP StabQ-OD(P=1)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

workload 5 workload 6 workload 7 workload 8

XML workload

to
ta

l j
oi

n
tim

e
(s

ec
on

ds
)

Stack XR-tree XB-tree StabQ-SP StabQ-OD(P=1)

Fig. 9. Comparisons of structural join algorithms with real XML workloads

10 K.-L. Wu, S.-K. Chen, and P.S. Yu

such cases, the indexes must be built on the fly and the index construction time
must be counted in the total join time.

The maximal grid interval length L has impacts on both storage cost and total
join time. Detailed studies on the performance impact of L are not provided here
and can be found in [14]. In general, L should not be too small or too large. The
optimal L for the 8 different workloads varies from 8, 16 and 32. However, the
difference is rather small among three of them. Hence, we chose L = 16 for all
of our studies in this paper.

4.2 Comparisons of Different Join Algorithms

Figs. 8 and 9 show the index storage costs and total join times of 5 different
structural join algorithms using the 4 synthetic and real XML workloads, re-
spectively. Here, we used a single domain range partition for the StabQ-OD,
denoted as StabQ-OD(P=1). Each workload has a different join selectivity, as
evidenced by the different output sizes among the workloads (see Table 1). For
all workloads, the StabQ-OD substantially outperforms the XR-tree, the XB-
tree and the Stack approaches in terms of total join time. The total join time
of the StabQ-SP is comparable to that of the StabQ-OD. However, the storage
cost of the StabQ-SP is almost twice as high as that of the StabQ-OD(P=1),
which is also higher than those of the XR-tree and XB-tree. Note that there is
no index storage cost for the Stack approach.

4.3 Impacts of Input Sizes and Domain Range Partitioning

In order to understand the sensitivity of the join algorithms to the sizes of A
and D, we created 8 individual subsets of A and D, respectively, A0, · · · , A7 and
D0 · · · , D7, from each of the 8 XML workloads, following a similar approach used
in [6]. The results are similar among all 8 workloads. In this section, we only
show the results using the synthetic departments XML workload 1 (see Table 1).
Each subset was chosen uniformly from the original A and D as shown in Table 1
and each subset is a fraction of the original set. For example, A0, A1, A2, A3,
A4, A5, A6 and A7 are 90%, 70%, 55%, 40%, 25%, 15%, 5% and 1%, respectively,
of the original employee element set. D0, · · · , D7 were similarly chosen from the
original name element set. We conducted four different sets of experiments using
these 16 subsets of A and D.

Experiments I and II were designed to show the sensitivity of these join al-
gorithms to the size of D while maintaining the same A for each experiment.
Experiment I used A0 (90% of A) while experiment II used A6 (5% of A). Both
perform similarly. We only show the results of expriment I due to space limita-
tion.

Fig. 10 shows the impacts of the descendant set size on the index storage costs
and total join times of various structural join algorithms when the ancestor set
is fixed at a large size. In general, the total join time increases as the size of the
descendant set increases in size for all algorithms. However, the total join times
of the three StabQ-OD schemes, with different domain range partitioning, are
less sensitive to the increase in descendant set. For StabQ-OD, the index build

On-Demand Index for Efficient Structural Joins 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

ratio of |D|/|D0| (A = A0)

in
de

x
st

or
ag

e
(M

 b
yt

es
)

Experiment I

Stack
XR−tree
XB−tree
StabQ−OD(P=1)
StabQ−OD(P=2)
StabQ−OD(P=4)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

ratio of |D|/|original D| (A = A0)

to
ta

l j
oi

n
tim

e
(s

ec
on

d)

Experiment I

Stack
XR−tree
XB−tree
StabQ−OD(P=1)
StabQ−OD(P=2)
StabQ−OD(P=4)

Fig. 10. Experiment I: impact of the descendant set size

time is the same for all the cases in this experiment since the same ancestor
set is used. On the other hand, the XR-tree and the XB-tree need to construct
on demand two complex indexes. The Stack approach needs to sort two input
sets. Hence, their total join times are more positively correlated to the size of
the descendant set. The XR-tree, the XB-tree and the Stack approaches are all
outperformed by the three StabQ-OD schemes for all the cases. Moreover, the
performance advantages of the StabQ-OD schemes over the XR-tree, the XB-tree
and the Stack approaches increase as the descendant set increases in size.

Note that we performed the structural joins serially with domain range par-
titioning. Hence, the total join time is the entire elapsed time of the structural
join times for all the domain partitions. However, the index storage cost is mea-
sured by the maximal index storage cost of individual partitions. As shown in
Fig. 10, the index storage cost of StabQ-OD can be effectively reduced with do-
main range partitioning with P = 4. Moreover, the storage reduction is achieved
without a noticeable increase in total join time.

Experiments III and IV show the sensitivity of the structural join algorithms
to the size of A while using the same D for each experiment. Experiment III
used D0 (90% of D) while experiment IV used D6 (5% of D). Again, we only
show the results of expriment III due to space limitation.

Fig. 11 shows the impacts of different-sized ancestor sets when the descen-
dant set is large. In this experiment, all three StabQ-OD schemes with different

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

ratio of |A|/|A0| (D = D0)

in
de

x
st

or
ag

e
(M

 b
yt

es
)

Experiment III

Stack
XR−tree
XB−tree
StabQ−OD(P=1)
StabQ−OD(P=2)
StabQ−OD(P=4)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

ratio of |A|/|original A| (D = D0)

to
ta

l j
oi

n
tim

e
(s

ec
on

d)

Experiment III

Stack
XR−tree
XB−tree
StabQ−OD(P=1)
StabQ−OD(P=2)
StabQ−OD(P=4)

Fig. 11. Experiment III: impact of the ancestor set size

12 K.-L. Wu, S.-K. Chen, and P.S. Yu

domain range partitioning almost completely overlap in terms of total join times
and they all outperform the XR-tree, the XB-tree and the Stack approaches,
especially when A is small. Note that the storage cost of the StabQ-OD(P=4)
is lower than those of the XR-tree and the XB-tree in Fig. 11.

5 Summary

We have described an on-demand indexing approach to performing structural
joins, called StabQ-OD. It incorporates the concept of stabbing query-based
indexing, such as CEI indexing, with two storage reduction techniques: unit-
length grid elimination and domain range partitioning. There is no need to sort
the elements or maintain indexes on disks beforehand. Simulations show that (a)
The StabQ-OD outperforms substantially prior techniques, such as the XR-tree,
the XB-tree and the Stack approaches; (b) The two storage reduction techniques
of the StabQ-OD approach are effective.

References

1. S. Al-Khlifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu.
Structural joins: A primitive for efficient XML query pattern matching. In Proc.
of IEEE ICDE, 2002.

2. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML pattern
matching. In Proc. of ACM SIGMOD, 2002.

3. S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient structural
joins on indexed XML documents. In Proc. of VLDB, 2002.

4. P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In
Proc. of ACM Conf. on Theory of Computing, 1987.

5. T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach a relational DBMS
to watch its (axis) steps. In Proc. of VLDB, 2003.

6. H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing XML data for
efficient structural joins. In Proc. of IEEE ICDE, 2003.

7. H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic twig join on indexed XML docu-
ments. In Proc. of VLDB, 2003.

8. Q. Li and B. Moon. Indexing and querying XML data for regular path expressions.
In Proc. of VLDB, 2001.

9. J. McHugh and J. Widom. Query optimization for XML. In Proc. of VLDB, 1999.
10. XML Data Repository. Dept. of Computer Science and Engineering, University of

Washington, http://www.cs.washington.edu/research/xmldatasets.
11. H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
12. Z. Vagena, M. M. Moro, and V. J. Tsotras. Efficient processing of XML contain-

ment queries using partition-based schemes. In Proc. of IDEAS, 2004.
13. W. Wang, H. Jiang, H. Lu, and J. X. Yu. PBiTree coding and efficient processing

of containment joins. In Proc. of IEEE ICDE, 2003.
14. K.-L. Wu, S.-K. Chen, and P. S. Yu. Query indexing with containment-encoded

intervals for efficient stream processing. Knowledge and Information Systems,
9(1):62–90, Jan. 2006.

15. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting
containment queries in Relational database management systems. In Proc. of ACM
SIGMOD, 2001.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 13 – 25, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Efficient Indexing Scheme for Moving Objects’
Trajectories on Road Networks*

Jae-Woo Chang and Jung-Ho Um

Dept. of Computer Eng., Chonbuk National Univ., Chonju, Chonbuk 561-756, Korea
jwchang@chonbuk.ac.kr, jhum@dblab.chonbuk.ac.kr

Abstract. Even though moving objects usually move on spatial networks, there
has been little research on trajectory indexing schemes for spatial networks, like
road networks. In this paper, we propose an efficient indexing scheme for mov-
ing objects’ trajectories on road networks. For this, we design a signature-based
indexing scheme for efficiently dealing with the trajectories of current moving
objects as well as for maintaining those of past moving objects. In addition, we
provide both an insertion algorithm to store the initial information of moving
objects’ trajectories and one to store their segment information. We also pro-
vide a retrieval algorithm to find a set of moving objects whose trajectories
match the segments of a query trajectory. Finally, we show that our indexing
scheme achieves much better performance on trajectory retrieval than the lead-
ing trajectory indexing schemes, such as TB-tree and FNR-tree.

1 Introduction

Most of studies on spatial databases in the last two decades have considered Euclid-
ean spaces, where the distance between two objects is determined by the ideal shortest
path connecting them in the spaces [Se99]. However, in practice, objects can usually
move on road networks, where the network distance is determined by the length of the
real shortest path connecting two objects on the network. For example, a gas station
nearest to a given point in Euclidean spaces may be more distant in a road network
than another gas station. Therefore, the network distance is an important measure in
spatial network databases (SNDB). Recently, there have been some studies on SNDB
for emerging applications, such as location-based service (LBS) and Telematics [B02,
PZM03, SJK03, SKS03]. First, Speicys et al. [SJK03] dealt with a computational data
model for spatial network. Secondly, Shahabi et al. [SKS03] presented k-nearest
neighbors (k-NN) query processing algorithms for SNDB. Finally, Papadias et al.
[PZM03] designed a novel index structure for supporting query processing algorithms
for SNDB.

Because moving objects usually move on spatial networks, instead of on Euclidean
spaces, efficient index schemes are required to gain good retrieval performance on

* This work is financially supported by the Ministry of Education and Human Resources De-

velopment (MOE), the Ministry of Commerce, Industry and Energy (MOCIE) and the Minis-
try of Labor (MOLAB) though the fostering project of the Lab of Excellency.

14 J.-W. Chang and J.-H. Um

their trajectories. However, there has been little research on trajectory indexing
schemes for spatial networks, like road networks. In this paper, we propose an effi-
cient indexing scheme for moving objects’ trajectories on road networks. For this, we
design a signature-based indexing scheme for efficiently dealing with the trajectories
of current moving objects as well as for maintaining those of past moving objects. In
addition, we provide both an insertion algorithm to store the initial information of
moving objects’ trajectories and one to store their segment information. We also pro-
vide a retrieval algorithm to find a set of moving objects whose trajectories match
the segments of a query trajectory. The rest of the paper is organized as follows. In
Section 2, we introduce related work. In Section 3, we propose a signature-based
indexing scheme for moving objects’ trajectories. In Section 4, we provide the per-
formance analysis of our indexing scheme. Finally, we draw our conclusions in
Section 5.

2 Related Work

There has been little research on trajectory indexing schemes for spatial networks. So
we overview both a predominant trajectory index structure for Euclidean spaces and a
leading trajectory index structure for spatial networks. First, Pfoser et al. [PJT00]
proposed a hybrid index structure which preserves trajectories as well as allows for R-
tree typical range search in Euclidean spaces, called TB-tree (Trajectory-Bundle tree).
The TB-tree has fast accesses to the trajectory information of moving objects, but it
has a couple of problems in SNDB. Firstly, because moving objects move on a prede-
fined spatial network in SNDB, the paths of moving objects are overlapped due to
frequently used segments, like downtown streets. This leads to a large volume of
overlap among the MBRs of internal nodes. Secondly, because the TB-tree constructs
a three-dimensional MBR including time, the dead space for the moving object trajec-
tory is highly increased in case of a long time movement. This leads to a large volume
of overlap with other objects’ trajectories. Meanwhile, Frentzos [F03] proposed a new
indexing technique, called FNR-tree (Fixed Network R-tree), for objects constrained
to move on fixed networks in two-dimensional space. The general idea of the FNR-
tree is to construct a forest of 1-dimensional (1D) R-trees on top of a 2-dimensional
(2D) R-tree. The 2D R-tree is used to index the spatial data of the network, e.g. roads
consisting of line segments, while the 1D R-trees are used to index the time interval
of each object movement inside a given link of the network. The FNR-tree outper-
forms the R-tree in most cases, but it has a critical drawback that the FNR-tree has to
maintain a tremendously large number of R-trees, thus leading to a great amount of
storage overhead to maintain it. This is because the FNR-tree constructs as large
number of R-trees as the total number of segments in the networks.

3 Efficient Indexing Scheme for Moving Objects’ Trajectories

In this section, we will describe our indexing scheme not only for current trajectories
of moving objects, but also for their past trajectories. In addition, we will present both
insertion and retrieval algorithms for the trajectories of moving objects.

 An Efficient Indexing Scheme for Moving Objects’ Trajectories on Road Networks 15

3.1 Indexing Scheme for Current Trajectories of Moving Objects

For indexing road networks, the TB-tree may lead to a large volume of overlap among
the MBRs of its internal nodes. The FNR-tree usually leads to a great amount of stor-
age overhead to maintain a great number of R-trees. To solve their problems, we
propose a new signature-based indexing scheme which can have fast accesses to mov-
ing object trajectories. Figure 1 shows the structure of our trajectory indexing scheme.

TFig. 1.T TSignature-based trajectory indexing schemeT

The main idea of our trajectory indexing scheme is to create a signature of a mov-
ing object trajectory and maintain partitions which store the fixed number of moving
object trajectories and their signatures together in the order of their start time. There
are a couple of reasons for using partitions. First, because a partition is created and
maintained depending on its start time, it is possible to efficiently retrieve the trajecto-
ries of moving objects on a given time. Next, because a partition can be accessed
independently to answer a trajectory-based query, it is possible to achieve better re-
trieval performance by searching partitions in parallel. As a result, our trajectory in-
dexing scheme has three advantages. First, our indexing scheme is not affected by the
overlap of moving objects’ paths and never causes the dead space problem because it
is not a tree-based structure like TB-tree. Secondly, our indexing scheme well sup-
ports a complex query containing a partial trajectory condition since it generates sig-
natures using a superimposed coding. Finally, our indexing scheme can achieve very
good retrieval performance because it can be easily adapted to a parallel execution
environment.

Our trajectory indexing scheme consists of a partition table and a set of partitions.
A partition can be divided into three areas: trajectory information, location informa-
tion, and signature information. A partition table maintains a set of partitions which
store trajectories for current moving objects. The partition table is resided in the main
memory due to its small size. To answer a user query, we find partitions to be ac-
cessed by searching the partition table. An entry Ei for a partition i is Ei =
<p_start_time, p_end_time, p_expected_time, final_entry_no> where p_start_time,

16 J.-W. Chang and J.-H. Um

p_current_time, and p_end_time are the smallest start time, the largest current time,
the largest end time of all the trajectories, respectively, and final_entry_no means the
last entry number in a partition i. The trajectory information area maintains moving
object trajectories which consist of a set of segments (or edges). A trajectory Ti
for an object MOi is Ti =<MOiid, #_past_seg, #_future_seg, #_mismatch, {sij,eid,
start,end,ts,(te or v)}> where #_past_seg, #_future_seg, and #_mismatch are the
number of past segments, expected future segments, and the number of mismatched
segments between them, respectively. Here, sij and eid mean j-th segment of the tra-
jectory for MOi and edge ID for an edge covering sij, respectively. Start and end
mean the relative start and last location of sij in the edge of eid, respectively. ts, te,
and v mean the start time, the end time, and the average speed of sij in the edge of eid,
respectively. The location information area contains the location of an object trajec-
tory stored in the trajectory information area. This allows for accessing the actual
object trajectories corresponding to potential matches to satisfy a query trajectory in
the signature information area. The location information area also allows for filtering
out irrelevant object trajectories based on the time condition of a query trajectory
because it includes the start time, the current time, and the end time for a set of
object trajectories. Location information, Ii, for the trajectory of an object MOi is
Ii = <MOiid, Li, strat_time, current_time, end_time > where Li is the location for MOi
in the trajectory information area and start_time, current_time, and end_time mean the
time when the first trajectory, the last segment, and the expected segment for MOi is
inserted, respectively. To create a signature from a given object trajectory in an effi-
cient manner, we make use of a superimposed coding because it is very suitable to
SNDB applications where the number of segments for an object trajectory is variable
[ZMR98]. In case the total number of object trajectories is N and the average number
of segments per object trajectory is r, optimal values for both the size of a signature
in bits (S) and the number of bits to be set per segment (k) can be calculated as ln
Fd = - (ln 2)2 *S/r and k = S * ln 2/r [FC84]. Here we assume that Fd (false drop prob-
ability that a trajectory signature seems to qualify, given that the corresponding object
trajectory does not actually qualify) is 1/N. To achieve good retrieval performance,
we store both the signature and the location information in the main memory.

3.2 Indexing Scheme for Past Trajectories of Moving Objects

To answer trajectory-based queries with a past time, it is necessary to efficiently
search the trajectories of past moving objects which no longer move on road net-
works. The trajectories of moving objects can be divided into two groups: one being
frequently used for answering queries based on current object trajectories (COTSS)
and the other for answering queries based on past object trajectories (POTSS). Figure
2 shows an overall architecture of indexing schemes for moving object trajectories.
When a current moving object trajectory in COTSS is no longer changed due to the
completion of the object movement, the object trajectory should be moved from
COTSS to POTSS. The signature and the location information areas of COTSS are
resided in the main memory for fast retrieval, whereas all of three areas of POTSS are
maintained in the secondary storage. To move current object trajectories from COTSS
to POTSS, we should consider three requirements: retrieval of past object trajec-
tories in an efficient way, accesses of the small number of partitions to answer a

 An Efficient Indexing Scheme for Moving Objects’ Trajectories on Road Networks 17

trajectory-based query, and construction of an efficient time-based index structure. To
satisfy the first requirement, we make use of a bit-sliced method [ZMR98] for con-
structing a signature-based indexing scheme in POTSS, instead of using a bit-string
method in COTSS. In the bit-sliced method, we create a fixed-length signature slice
for each bit position in the original signature string. That is, we store a set of the first
bit positions of all the trajectory signatures into the first slice, a set of the second bit
positions into the second slice and so on. When the number of segments in a query
trajectory is m and the number of bits assigned to a segment is k, the number of page
I/O accesses for answering the query in the bit-sliced method is less than k*m. There-
fore, when the number of segments in a query trajectory is small, our indexing
scheme requires the small number of page I/O accesses due to the small number of
signature slices needed for the query. Figure 2 shows the movement of a partition
from COTSS to POTSS. The partitions from 1 to i-1 have been moved to POTSS and
k partitions are newly created in COTSS due to the insertion of new moving object
trajectories. Because all the trajectories of the partition i-1 have no longer changed,
the partition i-1 has just moved from COTSS to POTSS.

Fig. 2.T TMovement of partitions from COTSS to POTSS

To satisfy the second requirement, we maintain all the partitions in POTSS so that
they can hold the condition that if start_time(partition i)<start_time(partition i+1),
end_time(partition i) end_time(partition i+1). If this condition is not satisfied among
partitions in POTSS, query processing may be inefficient depending on the time win-
dow distribution of partitions in POTSS, even for queries with the same time window.
For example, assuming that there are six partitions with their start and their end time
as shown in Figure 3, three queries with the same time window can be answered by
accessing two, four, and two partitions in POTSS, respectively. Actually, if all the
trajectories of the partition i have completed their movements earlier than those of
the partition i-1, the partition i should move from COTSS to POTSS earlier than the

18 J.-W. Chang and J.-H. Um

partition i-1, leading to the dissatisfaction of the above condition. To prevent it, we
require a strategy to store partitions such that if all the trajectories of the partition i are
no longer changed, but those of the partition i-1 are changed, we exchange trajectories
being changed in the partition i-1 with those having the smallest end time in the parti-
tion I and then move the partition i-1 from COTSS to POTSS. T

Fig. 3. Example of three queries with the same time window

To satisfy the final requirement, we construct a B+-tree by using the end time of a
partition as a key so as to have fast accesses to partitions in POTSS. Figure 4 shows
the time-based B+-tree structure. A record, Rec, of a leaf node in the time-based B-
tree is <p_start_time, p_end_time, Pid, PLoc> where p_start_time and p_end_time
mean the smallest start time and the largest end time of all the trajectories for a parti-
tion in POTSS, respectively. Here, Pid and PLoc mean its partition ID and its loca-
tion, respectively. When a query is issued to find object trajectories with a time
window [t1, t2], we first get a starting leaf node by searching the time-based B+-tree
using t1, and then obtain records to satisfy the condition, p_end_time t1 AND
p_start_time t2. The search space for processing the query with [t1, t2] ranges from
Pa to Pb. Here Pa is the leaf node obtained by searching the B-tree with key = t1 and
Pb is a leaf node containing the first record without holding the above condition by
following leaf nodes in the sequence set from Pa. This allows for the minimum page
I/O accesses required for answering the query.

Fig. 4. Time-based B+-tree structure for partitions in POTSS

 An Efficient Indexing Scheme for Moving Objects’ Trajectories on Road Networks 19

3.3 Insertion Algorithms for Trajectories of Moving Objects

The algorithms for inserting moving objects trajectories can be divided into an initial
trajectory insertion algorithm and a segment insertion algorithm for its trajectory. For
the initial trajectory insertion, we find the last partition in the partition table and ob-
tain an available entry (NE) in the last partition. The initial trajectory insertion can be
performed according to two cases; one with no expected future trajectories and the
other with expected trajectories. First, for the insertion with no expected trajectories,
we create a new expected future segment based on an edge where an object currently
moves and store it into the NE entry of the trajectory information area in the last parti-
tion. Using the expected future segment created, we store start_time (StartT), cur-
rent_time (CurrentT), and end_time (ExpectedET) into the NE entry of the location
information area in the last partition. Here StartT and CurrentT are both assigned to
the start time of the moving object and ExpectedET is assigned to NULL. Figure 5

Algorithm InsertFirst(MOid, TrajSegList)
/* TraSegList contains the information of a set of expected segments for
the trajectory of a moving object Moid */
1. TrajSeg = the first segment of TrajSegList
2. Generate a signature SigTS from TrajSeg
3. StartT = CurrentT = ts of TrajSeg
4. Obtain final_entry_no of the entry, in the partition table, for

the last partition, LP
5. NE = final_entry + 1 //NE=the next available entry in LP
6. Obtain the location, Loc, of the entry NE in the trajectory info

area for inserting object trajectory
7. if(end field of TrajSeg=NULL){//no expected trajectory
8. ExpectET = NULL
9. Store <MOid,0,1,TrajSeg> into the entry NE, pointed by Loc, of

the trajectory information area in LP}
10. else { // expected trajectory exists
11. #fseg = 1
12. while (the next segment Sn of TrajSegList NULL) {
13. #fseg = #fseg + 1
14. Generate a signature SSn from Sn and SigTS = SigTS | SSn }
15. Store <MOid,0,#fseg,TrajSegList> into the entry NE, pointed by

Loc, of the trajectory info area in LP
16. Compute ExpectET by using ts, start, and v of the last segment

of TrajSegList
17. } // end of else
18. Store SigTS into the entry NE of the signature info area in LP
19. Store <MOid,Loc,StartT,CurrentT,ExpectET> into the entry NE of the

location information area in the LP
20. Store <StartT,CurrentT,ExpectET,NE> into the entry for LP in the

partition table
End InsertFirst

Fig. 5. Initial trajectory insertion algorithm for moving objects

20 J.-W. Chang and J.-H. Um

shows the initial trajectory insertion algorithm (i.e., InsertFirst). Secondly, for the
initial trajectory insertion with expected ones, we insert a list of expected future seg-
ments (TrajSegList) into the NE entry of the trajectory information area in the last
partition. In addition, we create a segment signature (SSn) from each of TrajSegList
and generate a trajectory signature (SigTS) by using superimposing (Oring) all of the
segment signatures. Using the TrajSegList, we store StartT, CurrentT, and Expect-
edET into the NE entry of the location information area. ExpectedET is assigned to
the expected end time of the last segment of the TrajSegList. Finally, we store the
SigTS into the NE entry of the signature information area. We store <StartT, Cur-
rentT, ExpectedET> into the last partition entry (LP) of the partition table.

For the segment insertion of a moving object trajectory, we find a partition storing
its trajectory from the partition table by using the start time (ST) of the moving object.

Algorithm InsertSeg(MOid, TrajSeg, ST) /* TraSeg contains a segment for
the trajectory of a moving object Moid, to be stored with an object
trajectory’s start time, ST*/
1. Generate a signature SigTS from TrajSeg
2. Locate a partition P covering ST in partition table
3. Locate an entry E covering ST for the moving object with MOid in

the location information area and get its location, Loc, in the
trajectory information area

4. Obtain #actual_seg, #future_seg, and #mismatch of the trajectory
info entry E (i.e., TE) for the MOid in P

5. if(#future_seg = 0) { // no expected trajectory
6. Insert TrajSeg into(#actual_seg+1)-th trajectory segment of TE
7. Store SigTS into the entry E of the signature info area in P}
8. else { // expected trajectory exists
9. seg_pos = find_seg(TrajSeg,Loc)
10. #actual_seg++, #future_seg = #future_seg – seg_pos
11. case(seg_pos = 0) { // find no segment
12. Insert TrajSeg into segment of TE and relocate the future

traj segments backward
13. Store SigTS into entry E of the signature info area in P }
14. case(seg_pos = 1) //find the first segment
15. Insert TrajSeg into (#actual_seg)-th trajectory segment of

TE for exchanging the old segment
16. case(seg_pos > 1) {//find the (seg_pos)-th segment
17. #mismatch = #mismatch + seg_pos – 1
18. Insert TrajSeg into (#actual_seg)-th segment of TE and relo-

cate the future traj segments forward
19. if(#mismatch/(#future_seg+#actual_seg) >))

 regenerate_sig(Loc,SigTS,E,P)}// end of case
20. } // end of else
21. Update #actual_seg, #future_seg, and #mismatch of TE
22. CurrentT = te of TrajSeg
23. Store CurrentT into the current_time of the entry E of the loca-

tion information area in the partition P and store CurrentT into
the p_current_time of the partition P entry in the partition table

End InsertSeg

Fig. 6. Segment insertion algorithm for moving object trajectories

 An Efficient Indexing Scheme for Moving Objects’ Trajectories on Road Networks 21

In addition, we obtain the entry storing the trajectory information in the partition.
Figure 6 shows the segment insertion algorithm (i.e., InsertSeg) for moving object
trajectories. Here NE is the entry in the partition covering the object identified by
MOid and Loc is the location of the NE entry in the trajectory information area. The
segment insertion can be performed in two cases. First, for a segment insertion for
trajectories with no expected future ones, we just store a new segment (TrajSeg) into
the NE entry of the trajectory information area, being addressed by Loc. In addition,
we generate a trajectory signature (SigTS) from the TrajSeg and store the SigTS into
the NE entry of the signature information area. Then, we store <MOid,Loc,
StartT,CurrentT,ExpectET> into the NE entry of the location information area. Sec-
ondly, for a segment insertion for trajectories with expected future ones, we can store
a new segment according to three types of the discrepancy between a new segment
and the expected segment of a trajectory. To check if a new segment accords with an
expected trajectory’s segment, we call a find-seg() function to find a segment coincid-
ing with TrajSeg from the expected trajectory of the NE entry. First, in case of no
segment coinciding with TrajSeg (seg_pos = 0), we perform the same procedure as
the segment insertion algorithm with no expected future segments. In addition, we
move the trajectory’s expected segments backward by one and store the TrajSeg into
the (#_actual_seg)-th segment of the NE entry. Secondly, in case where the segment
coinciding with TrajSeg is the first one (seg_pos = 1), we store only the TrajSeg into
the (#_actual_seg)-th segment of the NE entry because the TrajSeg is the same as the
first expected segment of the trajectory. Otherwise (seg_pos > 1), we delete the
(seg_pos-1) number of segments from the expected segments of the NE entry, store
the TrajSeg into the (#_actual_seg)-th segment, and move all the expected segments
forward by seg_pos-2. If the ratio of mismatched segments (#_mismatch) over all the
segments of the trajectory is less than a threshold (), we store the trajectory signature
(SigTS) generated from the TrajSeg into the NE entry of the signature information
area. Otherwise, we regenerate SigTS from the trajectory information by calling a
signature regeneration function (regenerate_sig). Finally, we update the values of
#_actual_seg, #_future_seg, and #_mismatch in the NE entry, and we update the Cur-
rentT of the NE entry in the location information area and that of the partition P’s
entry in the partition table.

3.4 Retrieval Algorithm for Trajectories of Moving Objects

The retrieval algorithm for moving object trajectories finds a set of objects whose
trajectories match the segments of a query trajectory. Figure 7 shows the retrieval
algorithm (i.e., Retrieve) for moving object trajectories. To find a set of partitions
satisfying the time interval (TimeRange) represented by <lower, upper> of a given
query (Q), we call a find_partition function to generate a list of partitions (partList) by
searching both the partition table of COTSS and the B+-Tree of POTSS. The search
cases can be determined by comparing the TimeRange (T) with the p_end_time
(PEtime) of the last partition in POTSS as well as with the p_start_time (CStime) of
the first partition in COTSS as follows.

1. If T.lower > PEtime, both T.lower and T.upper are ranged in COTSS
2. If T.upper PEtime AND T.upper < CStime, both T.lower and T.upper are

ranged in POTSS

22 J.-W. Chang and J.-H. Um

3. If T.upper PEtime AND T.upper CStime, both T.lower and T.upper are
ranged in POTSS and T.upper is at least within in COTSS simultaneously

4. If T.lower PEtime AND T.upper>PEtime, T.lower is within POTSS while
T.upper is in COTSS

For the first case, we perform the sequential search of the partition table in COTSS
and find a list of partitions (partList) to satisfy the condition that if end_time NULL,
end_time T.lower AND start_time T.upper and otherwise, current_time
T.lower AND start_time T.upper. Because the partition table of COTSS is resident
in a main memory, the cost for searching partition table is low. For the second case,
we get a starting leaf node by searching the B+-tree of POTSS with key = lower and
obtain the partList to satisfy the above condition by searching the next leaf nodes
from the starting leaf node in the sequence set. For the third case, we get two lists of
partitions to satisfy the TimeRange in both COTSS and POTSS, respectively. We
obtain the partList by merging the two lists of partitions acquired from both POTSS
and COTSS. For the last case, we get a starting leaf node by searching the B+-tree of
POTSS with key = lower and obtain a list of partitions to satisfy the TimeRange and
obtain a list of partitions to satisfy a condition p_start_time T.upper by searching

Algorithm Retrieve(QSegList, TimeRange, MOidList) /* MOidList is a set
of ids of moving objects containing a set of query segments, QsegList,
for a given range time, TimeRange */
1. Qsig = 0, #qseg = 0, partList = Ø
2. t1 = TimeRange.lower, t2 = TimeRange.upper
3. for each segment QSj of QsegList {
4. Generate a signature QSSi from Qsj
5. QSig = QSig | QSSj, #qseg = #qseg + 1 }
6. find_partition(TimeRange, partList)
7. for each partition Pn of partList {
8. Obtain a set of candidate entries, CanList, examining the sig-

natures of signature info area in Pn
9. for each candidate entry Ek of CanList {
10. Let s,e,c be start_time, end_time, current_time of the entry Ek

of location information area
11. if((s t2) AND (e t1 OR c t1)){
12. #matches = 0
13. Obtain the first segment ESi of the entry Ek of the trajectory

info area, TEk and obtain the first segment QSj of QsegList
14. while(ESi NULL and QSj NULL) {
15. if(match(Esi, QSj)=FALSE)

 Obtain the next segment ESi of TEk
16. else { #matches = #matches + 1
17. Obtain the first segment ESi of Tek }
18. if(#matches=#qseg)MOidList=MOidList∪ {TEk’s MOid}
19. } } } //end of while //end of if //end of for- CanList
20. } // end of for - partList
End Retrieve

Fig. 7. Retrieval algorithm for moving object trajectories

 An Efficient Indexing Scheme for Moving Objects’ Trajectories on Road Networks 23

the partition table of COTSS. We obtain the partList by merging the partitions ac-
quired from POTSS and those from COTSS. Next, we generate a query signature
(QSig) from a query trajectory’s segments. For each partition of the partList, we
search the signatures in the signature information area and acquire a list of candidates
(CanList). For the entries corresponding to the candidates, we determine if their
start_time, end_time, and current_time satisfy the condition. Finally, we determine if
the query trajectory matches the object trajectories corresponding to the entries. If it
matches object trajectories, we insert the object ‘s ID into a result list (MoidList).

4 Performance Analysis
T
We implement our trajectory indexing scheme under Pentium-IV 2.0GHz CPU with
1GB main memory, running Window 2003. For our experiment, we use a road net-
work consisting of 170,000 nodes and 220,000 edges [WMA]. For simplicity, we
consider bidirectional edges; however, this does not affect our performance results.
We also generate 50,000 moving objects randomly on the road network by using
Brinkhoff’s algorithm [B2]. For performance analysis, we compare our indexing
scheme with the TB-tree and the FNR tree in terms of insertion time and retrieval
time for moving object trajectories. Table 1 shows the insertion performance to store
one moving object trajectory. It is shown from the result that our indexing scheme
preserves nearly the same insertion performance as TB-tree, but the FNR tree pro-
vides about two orders of magnitude worse insertion performance than TB-tree. This
is because the FNR-tree constructs a tremendously great number of R-trees, i.e., each
per a segment in the road network.

Table 1. Ttrajectory insertion performance

 TB-tree FNR-tree Our indexing scheme
Trajectory insertion time(sec) 1.232 401 1.606

Fig. 8. Trajectory retrieval performance

24 J.-W. Chang and J.-H. Um

We measure retrieval time for answering queries whose trajectory contains 2 to 20
segments. Figure 8 shows the trajectory retrieval performance. It is shown from the
result that our indexing scheme requires about 20 ms while the FNR-tee and the TB-
tree needs 25ms and 93ms, respectively, when the number of segments in a query is 2.
It is shown that our indexing scheme outperforms the existing schemes when the
number of segments in a query trajectory is small. On the contrary, the TB-tree
achieves bad retrieval performance due to a large extent of overlap in its internal
nodes even when the number of segments in a query trajectory is small. As the num-
ber of segments in queries increase, the retrieval time is increased in both the FNR-
tree and the TB-tree; however, our indexing scheme requires constant retrieval time.
The reason is why our indexing scheme creates a query signature combining all the
segments in a query and it searches for potentially relevant trajectories of moving
objects once by using the query signature as a filter. When the number of segments in
a query is 20, it is shown that our indexing scheme requires about 20 ms while the
FNR-tree and the TB-tree needs 150ms and 850ms, respectively. Thus our indexing
scheme achieves about one order of magnitude better retrieval performance than the
existing schemes. This is because our indexing scheme constructs an efficient signa-
ture-based indexing structure by using a superimposed coding technique. On the con-
trary, the TB-tree builds a MBR for each segment in a query and performs a range
search for each MBR. Because the number of range searches increases in proportion
to the number of segments, the TB-tree dramatically degrades on trajectory retrieval
performance when the number of segments is great. Similarly, the FNR-tree should
search for an R-tree for each segment in a query. Because it gains accesses to as the
large number of R-trees as the number of segments in the query, the FNR-tree de-
grades on trajectory retrieval performance as the number of segments is increased.

5 Conclusions

Even though moving objects usually moves on spatial networks, there has been little
research on trajectory indexing schemes for spatial networks, like road networks.
Therefore, we proposed an efficient indexing scheme for moving objects’ trajectories
on road networks. For this, we designed a signature-based indexing scheme for
efficiently dealing with the current trajectories of moving objects as well as for main-
taining their past trajectories. In addition, we provided both insertion and retrieval
algorithms for their current and past trajectories. Finally, we show that our indexing
scheme achieves, to a large extent, about one order of magnitude better retrieval per-
formance than the existing schemes, such as the FNR-tree and TB-tree. As future
work, it is needed to study on a parallel indexing scheme for moving objects’ trajecto-
ries, due to the simple structure of signature files [ZMR98].

References

[B02] T. Brinkhoff, "A Framework for Generating Network-Based Moving Objects,"
GeoInformatica, Vol. 6, No. 2, pp 153-180, 2002.

[F03] R. Frentzos, "Indexing Moving Objects on Fixed Networks," Proc. of Int’l Conf on
Spatial and Temporal Databases (SSTD), pp 289-305, 2003.

 An Efficient Indexing Scheme for Moving Objects’ Trajectories on Road Networks 25

[FC84] C. Faloutsos and S. Christodoulakis, "Signature Files: An Access Method for
Documents and Its Analytical performance Evaluation," ACM Tran. on Office In-
formation Systems, Vol. 2, No. 4, pp 267-288, 1984.

[PJT00] D. Pfoser, C.S. Jensen, and Y. Theodoridis, "Novel Approach to the Indexing of
Moving Object Trajectories," Proc. of VLDB, pp 395-406, 2000.

[PZM03] S. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, "Query Processing in Spatial
Network Databases," Proc. of VLDB, pp, 802-813, 2003.

[Se99] S. Shekhar et al., "Spatial Databases - Accomplishments and Research Needs,"
IEEE Tran. on Knowledge and Data Engineering, Vol. 11, No. 1, pp 45-55, 1999.

[SKS03] C. Shahabi, M.R. Kolahdouzan, M. Sharifzadeh, "A Road Network Embedding
Technique for K-Nearest Neighbor Search in Moving Object Databases," GeoIn-
formatica, Vol. 7, No. 3,, pp 255-273, 2003.

[SJK03] L. Speicys, C.S. Jensen, and A. Kligys, "Computational Data Modeling for Net-
work-Constrained Moving Objects," Proc. of ACM GIS, pp 118-125, 2003.

[WMA] http://www.maproom.psu.edu/dcw/
[ZMR98] J. Zobel, A. Moffat, and K. Ramamohanarao, "Inverted Files Versus Signature

Files for Text Indexing," ACM Tran. on Database Systems, Vol. 23, No. 4, pp 453-
490, 1998.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 26 – 35, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Spatial Index Compression for Location-Based Services
Based on a MBR Semi-approximation Scheme∗

Jongwan Kim, SeokJin Im, Sang-Won Kang, and Chong-Sun Hwang

Department of Computer Science and Engineering, Korea University, Seoul, Korea
wany@korea.ac.kr, {seokjin, swkang, hwang}@disys.korea.ac.kr

Abstract. The increased need for spatial data for location-based services or
geographical information systems (GISs) in mobile computing has led to more
research on spatial indexing, such as R-tree. The R-tree variants approximate
spatial data to a minimal bounding rectangle (MBR). Most studies are based on
adding or changing various options in R-tree, while a few studies have focused
on increasing search performance via MBR compression. This study proposes a
novel MBR compression scheme that uses semi-approximation (SA) MBRs
and SAR-tree. Since SA decreases the size of MBR keys, halves QMBR
enlargement, and increases node utilization, it improves the overall search
performance. This scheme decreases quantized space more than existing
quantization schemes do, and increases the utilization of each disk allocation
unit. This study mathematically analyzes the number of node accesses and
evaluates the performance of SAR-tree using real location data. The results
show that the proposed index performs better than existing MBR compression
schemes.

1 Introduction

Location is an intuitive, but important, class of location-based services. Advances in
mobile devices and wireless communication technologies have enabled location-
based services (LBSs) that deliver location information to mobile users. Typical
spatial data management of LBS system is depicted in Figure 1 [1]; examples of such
services include finding a hospital or hotel, obtaining local maps, or acting as a tour
guide [2]. Client queries are sent to a server, which searches for target objects in a
spatial database and returns the search results to the mobile client. At this point, we
are interested in the server side index and query processing of location information
that is comprised of 2D positions, such as hospital or hotel locations. A LBS server
has an index stored in a spatial database to process queries, such as R-tree.

A spatial database system needs a server with considerable memory, and extended
processing power, to manage spatial objects. In order to process spatial queries more
effectively, appropriate spatial indexes and query processing schemes are required.
Most of the spatial data indexing schemes assume a region ranging from the smallest
value to the biggest value. The objects in each relevant region try to search the spatial

∗ This work was supported by the Korea Research Foundation Grant funded by the Korea
Government(MOEHRD) (KRF-2005-041-D00665).

 Spatial Index Compression for Location-Based Services 27

data effectively by indexing using a minimum-bounding rectangle (MBR). However,
a disk-based spatial database system is limited in terms of its index size. Particularly,
when the disk allocation unit is fixed in the operating system, if the index is large,
more blocks must be read and the throughput consequently decreases. If the key size
is small, a block can contain more keys and consequently fewer blocks are read.

Fig. 1. LBS system architecture and spatial data management

For spatial indexes, especially for R-tree managing two-dimensional data, MBR
keys for each dimension account for approximately 80% [3] of the index. Therefore,
if the keys are compressed, the number of entries stored in one node increases and
search performance improves accordingly. As the entries in a node increase, the
overall height of the index is reduced, decreasing disk I/O. With this method, the
index saves space. As spatial data have increased over the last few years, studies on
spatial data indexes have progressed, especially for R-tree-based indexes.
Nevertheless, few studies have attempted to improve performance by reducing the
size of the index.

In this paper, we propose a novel spatial indexing scheme and structure, which
processes effectively geographical data queries for location-based services. That is, we
propose a semi-approximation R-tree (SAR-tree) that indexes spatial data and introduces a
semi-approximation MBR (SA) scheme. The basic concept is to compress the MBRs in
the spatial index. By decreasing the size of MBR keys, SA halves QMBR enlargement,
increases node utilization, and improves overall search performance. This is the first effort,
to the best of our knowledge, to take into account the semi-approximation MBR
compression that decreases QMBR by 50% in two-dimensional data.

This paper describes three definitions: the relative coordinates of a MBR, semi-
approximated MBR using quantization, and the false-overlap region (FOR). We
analyzed the performance of SAR-tree by analyzing the number of node accesses in
two-dimensional space mathematically and using real location data. The results of the
experiment show that the proposed index performs better than existing MBR
compression methods.

In the remainder of this paper, Section 2 summarizes MBR compression schemes.
Section 3 describes the SA scheme proposed here and includes some definitions. The
SA scheme and SAR-tree are implemented in Section 4. Using a variety of
experimental results based on real data, Section 5 shows that the SAR-tree performs
better than existing MBR compression schemes. Finally, Section 6 concludes the
paper with a brief discussion of future work.

28 J. Kim et al.

2 MBR Compression Schemes

Spatial objects can be expressed by using coordinates to represent the objects, which
are expressed as MBRs consisting of the bottom-left and top-right coordinates (Fig. 2)
[4]. Since these keys take up most of the index structure, reducing the size of entries
by compression enables more entries to be stored in a node.

A number of studies have examined how to reduce the size of indexes using a
MBR compression scheme. Examples include relative representation of a MBR
(RMBR), hybrid representation of a MBR (HMBR) [3] using relative coordinates in a
MBR, quantized representation of a MBR (QMBR) [5], and virtual bounding
rectangle (VBR) [6]. The common characteristic of these studies is that they reduce
the number of MBR keys. The first two schemes, namely RMBR and HMBR,
calculate the offset of a relevant MBR from a specific coordinate of the search region.
By contrast, QMBR and VBR utilize quantization, which divides the search region
using a grid shape based on a fixed value.

RMBR compresses keys by calculating the relative offset for the MBR stored in
each entry with reference to the MBR of one node. Typically, a MBR coordinate is
stored in 4 bytes so that a MBR occupies 16 bytes of storage, as R0 in Figure 2. By
using a relative offset to store the MBR key of each entry contained in a node, 8 bytes
of space can be saved. If the end coordinate of R1 is calculated using the relative
offset from the starting coordinate, the storage space of a coordinate is reduced to 2
bytes, further improving node utilization (Fig. 3). HMBR calculates the height and
width relative to the starting point of the same MBR, without relating the relative
coordinates of the MBR with reference to the entire search space (Fig. 4).

 Fig. 2. Minimum bounding rectangles of objects Fig. 3. Relative representation of a MBR

Dividing the search space by a constant integer and compressing keys by using the
space in n-number quantization can save more space than RMBR or HMBR, and this
scheme is referred to as QMBR. We can limit a MBR to a very small value if we
replace keys with the number of quantization units by enlarging the MBR in the
directions of the x- and y-axes so that it can correspond to the quantization level q.
Figure 5 shows the result in which the x- and y-axes are quantized by 16×11 on each
axis. If a quantization level is smaller than 256, each coordinate is stored in 1 byte.

 Spatial Index Compression for Location-Based Services 29

 Fig. 4. Hybrid representation of a MBR Fig. 5. Quantized representation of MBRs

The concept of VBR, proposed in A-tree [6], reduces the number of units required
to store key values by quantizing the search region, as with QMBR. In other words, it
constructs a VBR by enlarging the MBR to the closest quantization unit.
Unfortunately, these QMBR variants make the MBR larger and thereby enlarge the
search region, causing the relevant region to be larger than the real MBR, when
searching for objects. As a result, overlap with other MBRs occurs and the number of
node accesses increases, degrading the overall search performance.

Although the results in Figures 1, 2, and 3 show that the keys are stored after
compression, RMBR and HMBR need 8 and 6 bytes of storage space, respectively. In
the case of QMBR, overlapping due to enlargement of the MBR occurs, affecting
search performance. RMBR and HMBR enable keys to be stored in fewer bytes by
calculating the relative offsets of the keys from the starting coordinates of the search
region. In RMBR, a key value stored in 16 bytes is reduced to 8 bytes, while it is
further reduced to 6 bytes in HMBR. Nevertheless, HMBR has the disadvantage that
the keys to be stored are 4 bytes larger than those for QMBR. Table 1 is a summary of
the compression schemes.

Table 1. Summary of MBR compression schemes

Scheme Approximation Size Description
MBR
RMBR
HMBR
QMBR

Two points of a rectangle
Relative coordinates
End point=(height, width)
Quantization of a space

16
8
6
4

No compression
MBR size/2 bytes
Start point=RMBR
MBR enlarges

3 Semi-approximated Representation of MBRs

Since an n-dimensional rectangle, such as a MBR, can be viewed as a 2n-dimensional
point [7], point compression saves index space and increases search performance. Four
points represent a 2-D rectangle. In the semi-approximation MBR scheme, each node has
a MBR that comprises all entries stored in that node. The MBR of a 2-D space is
represented by two endpoints (,), where = (.x, .y) and = (.x, .y). The aim of the
SA scheme is to represent as a relative value, and to quantize in order to halve the size

30 J. Kim et al.

of the false-overlap region (a region without objects due to the expanded MBRs of real
objects) in QMBR. This also minimizes the storage space required for keys and improves
search performance. We present three definitions of semi-approximation.

Definition 1. Representation of the relative coordinates of a MBR
Let M be the MBR of an entire search space; then the lower-left and upper-right corners of
M are represented by (M.lx, M.ly) and (M.rx, M.ry). The entry, R1, is composed of two
points (,), and the relative coordinate for the starting point is as follows:

.)..,..()(ylyMxlxMRM ααα −−= (1)

Definition 2. Semi-approximation of a MBR in quantization
Let (Ms, Me) be the two points of M using Definition 1, and q be the quantized level, then
is defined as follows, where Qe is the endpoint of a quantized MBR:

()=
×−−

=

.,)/()

)
)(

(

(,1

otherwiseqMMM

M
Q

ses

s
e β

β
β (2)

The endpoint is transformed into Qe according to the quantized level, which
minimizes the storage space required in bits. The quantized levels, 2n (n = 0, 1, 2, …, 8),
are represented by 1 byte. Since is determined by the quantized level q, it can be
represented by a bit string. In other words, the binary representation is (Qe)2 and the length
of the bit string is log2 q. The endpoint is stored as (Qe – 1)2. For example, if Qe(.x) = 15
and Qe(.y) = 12, the bit string is 11101011, the concatenation of the two binary codes. As
a result, the R1 keys require only 5 bytes of storage.

Definition 3. False-overlap region (FOR)
Let quantized_MBR be the region enlarged in quantization; then the search region is
enlarged by expanding a MBR to the closest quantization unit. If the enlarged region is
defined as FOR, which causes MBRs to overlap, it is defined as follows:

._ MBRMBRQuantizedFOR −= (3)

The SA scheme appears only in the areas of the expanded space (Fig. 6, false-overlap
region). The region is half that in the QMBR scheme. The coordinate space also decreases
to a minimum of 5 bytes. Although high levels of quantization increase the number of bits,
thereby increasing the stored bytes of keys, the SA scheme still maintains its advantage
over other methods.

Fig. 6. Semi-approximation of MBRs

 Spatial Index Compression for Location-Based Services 31

4 Implementation of Semi-approximation

A SAR-tree is a height-balanced tree based on R-tree. The differences between SAR-
tree and R-tree are insertion and searching. In this section, we discuss the index
structure and algorithms of SAR-tree. The SAR-tree comprises the MBRs (MBRM)
based on the minimum approximation of the objects that represent the entire region of
node entries as well as a pair of (ptr, SA(MBR)) entries with information on sub-node
pointers and the expanded MBR. As shown in Figure 7, a node has up to a maximum
m number of entries, and a flag that distinguishes whether the node is a leaf or internal
node.

The root node calculates the SA(MBR) of the entire space, and does not possess
information on the node MBR. The real MBR of an entry is calculated from the
SA(MBR), the parent MBR, and the sub-MBR. That is, the child SA(MBR)s in a
node can be calculated from the parent MBR in the same node and the child MBRs.
Accurate information on each entry is used to prune the nodes.

Fig. 7. Node structure in SAR-tree

Since the SAR-tree algorithm is based on R-tree, this section discusses only the
differences between the two trees. The major differences concern insertion and
searching. To insert an object, SAR-tree searches down from the root node to the leaf
node, calculates the object SA(MBR), and compares it to the entry for insertion.

Algorithm 1. Object insertion
Input: Node n, Object o, QuantizationLevel q
 1: Insert(n, o, q){
 2: if first time
 3: Invoke SemiApp_makeMBR(entire_space, o,
 4: q_level);
 5: if(n==root) Compare o.MBR to MBR of entire space;
 6: n=root.ptr;
 7: if(n==leaf node)
 8: Insert o into the node and check overflow;
 9: Return to upper;
 10: Else Compare SA(o.MBR) with all entries;
 11: n=Entry.ptr;
 12: Insert(n, o, q);
 13: }

Another difference is that SAR-tree compares the quantized endpoint of query
region Q with the SA key of each entry. Quantization is processed using the function
SemiApp_makeMBR (Algorithm 2). An advantage of so doing is that the two
coordinates, the query region Q and an entry, can be compared even though the SA
(MBR) is not restored to the original coordinate.

32 J. Kim et al.

Algorithm 2. Semi approximation of MBRs
Input: entireSpace M, object O, quantization q_level
 1: SemiApp_makeMBR(M, O, q_level){
 2: SAs=abs(Ms–Os);
 3: /* In detail, SA.lx=abs(M.lx-O.lx); */
 4: /* SA.ly=abs(M.ly-O.ly); */
 5: If(Oe==Ms) SAe=1;
 6: Else SAe=Ceiling(q_level*(Oe–Ms)/(Me–Ms));
 7: Return SA(O.MBR) to upper; /* SA(O.MBR)=SAs+SAe */
 8: }

5 Performance Evaluation

Search performance can be improved by increasing node size or compressing MBR
keys. In this section, we mathematically analyze the number of node accesses, and
evaluate the performance of SAR-tree using a real data set.

5.1 Analysis of the Number of Node Accesses

A mathematical analysis of the number of node accesses in R-tree is outlined in [5].
All nodes are assumed to have MBRs of equal height. Let h denote the hight and Mh

denote the number of nodes at the hight h. Then, Mh is equal to the result of Equation
(4). Defining the average region of a node as ah in a tree with height h, ah of each
node is 1/Mh. The probability that a node of height h will overlap a given query region
is ()dd

h
d as + . Let d be a dimension and s be the size of the query region, then the

overlapping region of nodes with a height of h and the query region is ()d
d

h
d

h asM + ; this
is represented as follows, where N is the total number of data and f is the average fan-
out of the leaf nodes:

.

1

d

d
h

s
f

N ⋅+ (4)

The total number of node accesses from the root to the leaf nodes in R-tree consists
of the summation of the nodes at each height, as represented by Equation (5).

.

11
1log

1

−

=

⋅++
N

h

d

d
h

f

s
f

N (5)

When the quantized level q is applied, each node has a quantized cell of qd. Since
access to the nodes in QMBR is first conducted at nodes of height h, followed by the
sub-nodes, the probability is . Since this applies to all of the nodes
from the root to the leaf nodes, the total number of node accesses is as shown in
Equation (6). The QMBR scheme accesses more nodes than the MBR scheme
because the MBRs are bigger than the real MBRs owing to quantization.

−

=
+ ⋅+⋅++

1log

1
1

.

/11
N

h

d

d
h

d
h

f

qs
f

N
s

f

N (6)

()d
d

h
d

h
d

h
d qaaqas // 1 +++ −

 Spatial Index Compression for Location-Based Services 33

Equation (6) denotes the expanded sides of a MBR, and is modified into Equation
(7) to reduce the expansion by half. This is similar to the pattern shown in Figure
8(b).

−

=
+ ⋅+⋅++

1log

1
1

.

2//11
N

h

d

d
h

d
h

f

qs
f

N
s

f

N (7)

This assumes 1,000,000 objects, a query range of 0.01%, a pointer for each entry
of 4 bytes, and that the MBR size of each entry is 16 bytes. The keys in 2-D space are
set at 8, 6, 4, and 5, for RMBR, HMBR, QMBR, and SA, respectively. In real
quantization, the false-overlap region is a slightly smaller space than in the results of
the formula.

5.2 Environment for the Experiment

To measure the practical impacts of our method, we compared SAR-tree with the
MBR, RMBR, HMBR, and QMBR schemes. The MBR scheme was performed using
R-tree, which is a 2-D index. Existing compression scheme algorithms and SAR-tree
were implemented by modifying R-tree. We used a Pentium-IV 2.6-GHz CPU with 1
GB of memory, running on Windows XP Professional.

This experiment used the SEQUOIA dataset, which contains the locations of
62,556 Californian Giant Sequoia groves [8], and was performed using Visual C++.
To eliminate the influence of background processes in Windows, we applied the
CSIM simulator [9]. Table 2 outlines the parameters in this experiment.

Table 2. Experimental parameters

Parameters Values
Node size (bytes)
Query range (%)
Buffer size (bytes)
Quantization level
Initial Fan-out
Data set

128, 256, 512, 1024
5, 10, 15, 20, 25, 30

4 K
0, 8, 16, 64, 128, 256

200
62,556 location points

5.3 Experimental Results

Measurement of performance in terms of processing queries was conducted for a
range query, and the proportion of the query region in the entire search space was set
at a range of 5 to 30%. We generated 10,000 different query rectangles of the same
size, and accumulated the results. As shown in Figure 8(a), the number of node
accesses was lower for compressed MBRs than for non-compressed MBRs in all
query regions. This is attributable to the increased fan-out of each node due to the
decrease in MBR keys. Consequently, the number of node accesses also decreases.

The quantization levels of both QMBR and SA were set at 16. Since QMBR stores
one coordinate of even the lowest level in 2 bytes, levels were set at equivalence.
RMBR and HMBR performed better than QMBR due to the false-overlap region
in QMBR. The increased size of nodes allows more node entries. As shown in

34 J. Kim et al.

Figure 8(b), SA allows more entries than does the HMBR scheme, which requires 6
bytes for keys; thus, SA has a lower number of node accesses.

5 10 15 20 25 30
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

q_level: QMBR=16, SA=16

N
od

e
A

cc
es

s

Query Region(%)

 MBR
 RMBR
 HMBR
 QMBR
 SA

(a)

128b 256b 512b 1024b
0

2000

4000

6000

8000

10000

12000

14000

16000

N
od

e
A

cc
es

s

Node Size(byte)

 MBR
 RMBR
 HMBR
 QMBR
 SA

(b)

Fig. 8. Number of node accesses of query region (a), node size (b)

As shown in Figure 9, search times reflect the node access patterns. As the node
size grows, the search time is quickly minimized. The performance using the QMBR
scheme is worse than for the other compression methods due to the increased search
region. Performance is better using the RMBR and HMBR schemes owing to the
increased number of entries due to reduced key size. It is important to note that
although the size of QMBR keys is reduced to 4 bytes, the false-overlap region owing
to enlargement by quantization causes backtracking. Thus, the search time increases.
Figure 10 shows the accumulated number of node accesses in QMBR and SA with
adjustment of the size of quantization. Using the QMBR scheme, the number reduces
slowly, but using SA it decreases radically at q=16, when the key is stored in 5 bytes,
and gradually increases thereafter. Access is much less frequent than in the QMBR
scheme.

128b 256b 512b 1024b
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

S
ea

rc
h

T
im

e

Node Size(byte)

 MBR
 RMBR
 HMBR
 QMBR
 SA

0q 8q 16q 32q 64q 128q 256q
4000

6000

8000

10000

12000

14000

16000

N
od

e
A

cc
es

s

Quantization Level

QMBR
SA

Fig. 9. Search time according to node size Fig. 10. Number of node accesses by q level

6 Conclusions and Further Work

We introduced a new scheme, SA, which applies the MBR compression scheme when
implementing indexes for spatial data in a spatial database system. In conventional
spatial index structures, indexes using MBR compression have rarely been
implemented. Existing compression schemes reduce the storage space required for

 Spatial Index Compression for Location-Based Services 35

keys in comparison with the original MBRs. Nevertheless, our scheme reduces
storage further and improves search performance by halving the enlargement region
of QMBR.

In this paper, we proposed SAR-tree, a new spatial index to reduce the size of
MBRs by using SA. The performance was evaluated and compared with existing
compression schemes by implementing an algorithm in both the SA schemes and
SAR-tree. In the experiment, the number of node accesses in SAR-tree, measured by
changing the query region, the size of the nodes, and the quantization level, were
distinct from those of the existing R-tree. The scheme also performed better than
HMBR, although the difference was small. The evaluation in terms of quantized
levels compared our method with QMBR using quantization. The methods differed
sharply at level 16 due to the difference in the enlargement space in QMBR. The
processing time for queries was equivalent to the number of node accesses, and
QMBR also differed markedly from other schemes.

The results showed that SAR-tree performed better than both the two-dimensional
index R-tree and existing compression schemes, although the difference was small. In
a structure in which the keys account for most of the index, compressing the keys
reduces the height of the tree, as well as the size of the index, thereby reducing
the search time. Therefore, we should consider the case in which we have to restore
the compressed keys to their original values, a process that is also minimized using
the algorithm proposed here. The scheme proposed in this paper can be used to
improve performance in areas that need a fast search, while having constraints on
memory size or computation capability, such as in mobile devices. Accordingly, we
plan to study performance improvement in those areas.

References

1. J. Schiller, A. Voisard, Location-Based Services. Elsevier, Morgan Kaufmann, San
Francisco (2004)

2. S.Y. Wu, K.T. Wu: Dynamic Data Management for Location Based Services in Mobile
Environments. IDEAS (2003) 180-191

3. J.D. Kim, S.H. Moon, J.O. Choi: A Spatial Index Using MBR Compression and Hashing
Technique for Mobile Map Service. Lecture Notes in Computer Science, Vol. 3453.
Springer-Verlag, Berlin Heidelberg New York (2005) 625-636

4. A. Guttman: R-trees: A Dynamic Index Structure for Spatial Searching. ACM SIGMOD Int.
Conf. on Management of Data (1984) 47-57

5. K.H. Kim, S.K. Cha, K.J. Kwon: Optimizing Multidimensional Index trees for Main
Memory Access. Int. Conf. on ACM SIGMD (2001) 139-150

6. Y. Sakurai, M. Yoshikawa, S. Uemura, H. Kojima: Spatial indexing of high-dimensional
data based on relative approximation. VLDB J. (2002) 93-108

7. J. Goldstein, R. Ramakrishnan, U. Shaft: Compressing Relations and Indexes. Proceedings
of IEEE Conference on Data Engineering (1998) 370-379

8. The R-tree Portal: http://www.rtreeportal.org
9. H. Schwetman: CSIM19: A Powerful Tool for Building System Models. Proceedings of the

2001 Winter Simulation Conference (2001) 250-255

KCAM: Concentrating on Structural Similarity
for XML Fragments�

Lingbo Kong1, Shiwei Tang1,2, Dongqing Yang1, Tengjiao Wang1,
Jun Gao1

1 Department of Computer Science and Technology,
Peking University, Beijing, China, 100871

{lbkong, ydq, tjwang, gaojun}@db.pku.edu.cn
2 National Laboratory on Machine Perception,

Peking University, Beijing, China, 100871
tsw@pku.edu.cn

Abstract. This paper proposes a new method, KCAM, to measure the
structural similarity of XML fragments satisfying given keywords. Its
name is derived directly after the key structure in this method, Keyword
Common Ancestor Matrix. One KCAM for one XML fragment is a k×k
upper triangle matrix. Each element ai,j stores the level information of
the SLCA (Smallest Lowest Common Ancestor) node corresponding to
the keywords ki, kj . The matrix distance between KCAMs, denoted as
KDist(·, ·), can be used as the approximate structural similarity. KCAM
is independent of label information in fragments. It is powerful to distin-
guish the structural difference between XML fragments.

1 Introduction

XML is rapidly emerging as the de facto standard for data representation and
exchange on Web applications, such as Digital Library, Web service, and Elec-
tronic business. Fig. 1(a) is one example XML data. In order to allow common
users to retrieve information conveniently from XML data, it is attractive to
adapt keyword search into XML data processing. During this procedure, the
similarity measuring mechanism for retrieved XML fragments is a popular issue.
It is the core of many operations, such as Top-K or K-NN techniques.

The most popular concept for similarity measuring is edit distance. Regret-
fully its CPU and I/O cost is too high. So many approximate measures are
developed, such as (i) Extended TF ∗IDF (Including ELIXIR [7], BIR [5], Tim-
ber [10], Path coefficient method [8], XRank [11], XPRES [3], MLP [13]), (ii)
Path bag model [12], (iii) Structural TF ∗ IDF ([6, 9, 14–16]). They all borrow
the concept of “term” unit from traditional IR, but in different unit forms. Ex-

� Supported by Project 2005AA4Z307 under the National High-tech Research and De-
velopment of China, Project 60503037 under National Natural Science Foundation of
China (NSFC), Project 4062018 under Beijing Natural Science Foundation (BNSF)

and

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 36– , 2006.
c© Springer-Verlag Berlin Heidelberg 2006

.

84

different labels. Even methods in (i) are not genuinely interested at the struc-
tural similarity, except MLP. Further they all do not consider the correlation
between nodes. We will illustrate this in more details at Section 2.2.

<?xml version="1.0" encoding="UTF-8"?>"

<SigmodRecord>
 <issue>
 <articles>
 <article>
 <title>Bibliography on Data Design</title>
 <authors>
 <author position ="00">G.F Sun</author>
 <author position="01">Karen Botnich</author>
 </authors>
 </article>
 </articles>
 <publisher>
 <year>2003</year>
 <address>
 <country>Germany</country>
 </address>
 </publisher>
 </issue>
<SigmodRecord>

(a) Part of SigmodRecord.xml

SigmodRecord

2003

issue

publisher

yeararticle

authors

authorauthor

address

countrytitle

Bibliography
on Data
Design

G.F Sun
00

position Karen
Botnich 01

position

Germany

element

text
String value

attribute

root0

0.0

articles
0.0.0

0.0.0.0

0.0.0.0.1

0.0.0.0.1.0 0.0.0.0.1.1

0.0.0.0.0

0.0.1

0.0.1.0 0.0.1.1

0.0.1.1.0

9,6

(b) The XML tree for SRecord.xml with
Dewey codes and XML fragment for key-
words “Botnich Bibliography” (Circled).
The integer sequences at the left of nodes
are the Dewey codes [1].

Fig. 1. The XML document and its tree model

In this paper we propose a new method, Keyword Common Ancestor Ma-
trix (KCAM in short), to cope with the structural similarity measuring of XML
fragments satisfying given keywords. It incorporates the concept of SLCA (See
Section 2.1) to capture the structural correlation between keywords, which con-
centrates on the structural similarity and is independent of labels. One KCAM
for one XML fragment is a k× k upper triangle matrix. Each element ai,j stores
the level information of the SLCA node corresponding to the keywords ki, kj .
By mapping XML fragments into matrices, KCAM can naturally borrow the
distance theory developed for matrix. This makes it have precise mathematical
illustration. It is powerful to distinguish structural difference between XML frag-
ments than those in extended TF ∗IDF and path coefficient method. The reason
is that the latter can only utilize the depth of nodes to evaluate the weight of
retrieved fragments, and do not consider the correlation structure between key-
words. Moreover, since it is independent of the labels and node positions, KCAM
can retrieve more interesting results, such as fragments with same structure but
different labels, while most current techniques are helpless for this kind of in-
terest. Finally it is easy to combine KCAM with other approximate skills. For

KCAM: Concentrating on Structural Similarity for XML Fragments 37

cept methods in (i), most of them are sensitive to the labels or node positions,
which makes them not able to retrieve the fragments with same structure but

The contributions of this paper can be illustrated as follows:

1. We propose a new mechanism KCAM, named after Keyword Common An-
cestor Matrix, to capture the structural feature of XML fragments satisfying
given keywords. Based on the matrix theory, we also propose experiential dis-
tance equation between two XML fragments, T1 and T2, based on KCAM.
We denote it as KDist(T1, T2).

2. We investigate the properties of KCAM, such as distance uniqueness, the
lower bound of edit distance with insert and delete operations only. We
can infer that KDist(T1, T2) mainly concentrates the structural similarity
between XML fragments and is independent of labels or relative position of
nodes. So we can use it to retrieve interested XML fragments with similar
structure but different labels. This is particular useful for XML retrieval
dealing with XML documents from heterogeneous background.

3. We implement related XML processing techniques, and do experiments to
evaluate the performance of different techniques.

The rest of this paper is organized as follows. Section 2 retrospects related
researches focusing on SLCA and structural similarity measuring for hierarchical
XML data. We propose KCAM method for XML keyword searching in Section
Section 4 illustrates the experiment result. Finally, Section 5 concludes this
paper and sheds light on future work.

2 Preliminaries and Related Work

Keyword search [4] is popular when trying to convenience retrieving interesting
information from XML data. Among the techniques for keyword processing,
retrieving XML fragments satisfying given keywords is the primary issue. [2]
conclude this as SLCA problem, in which Dewey encoding [1] is the popular
XML indexing scheme. The other important issue is the similarity measuring for
retrieved XML fragments.

Before the review, we first illustrate three XML fragments for keywords
k1, k2, k3, k4, k5} in Fig. 2 here. The intention is to help readers intuitively

understand the difference of our KCAM and other methods at later discussion
by real instances. The three fragments have same label domain, “{a, b, c, d }”.
The fragment in Fig. 2(a) is the source one. We achieve fragment in Fig. 2(b) by
exchanging the position of ‘k1’ and ‘k4’ of Fig. 2(a). We can directly infer that
two fragments of Fig. 2(a) and Fig. 2(b) are different in structure while having
same text distribution similarity. When we exchange the position of ‘k2’ and ‘k3’

38 L. Kong et al.

instance, if we are more interested in some fragments with special semantic (dom-
inated by some particular labels), we can put a filtering level (such as technique
from path bag model) before KCAM processing.

3.

{

a

bb

c cc c

d d

k1

k2 k3

k4 k5

(a) Source XML fragment

a

bb

c cc c

d d

k1

k2 k3

k4 k5

(b) XML fragment after ex-
changing K1 and K4

a

bb

c cc c

d d

k1

k2k3

k4 k5

(c) XML fragment after ex-
changing K2 and K3

Fig. 2. Three XML fragments. The latter two are the variants after exchanging the
sequence of some two elements.

2.1 SLCA Problem

Retrieving XML fragments for given keywords is the preliminary task for XML
keyword searching. In order to guarantee the quality of target fragments, finding
the SLCA nodes is the first step, defined as follows.

Definition 1 (SLCA problem). Given one labeled directed tree, G = (VG

EG, r, A), and a sequence of keywords W = { k1, k2, . . ., kk}, the SLCA
problem is to find all nodes which are the roots of all tightest XML fragments S
= { s1, s2, . . ., sn } corresponding to W from G. The tightest XML fragment si

(1 ≤ i ≤ n) has following properties.

1. Each si must include W ;
2. There is no any subtree in si which includes W ;

The circled part in Fig. 1(b) is the tightest fragments for keywords “Bibli-
ography Botnich”. The “article” node with Dewey code “0.0.0.0” is the SLCA
node. We can see that the Dewey code for this SLCA node is just the common
longest prefix of Dewey codes corresponding to “title” and “author01” nodes.
This obviously benefits from the property of Dewey encoding which adopts the
node path information into the Dewey codes [1].

When we investigate the linked edges from “title” node to “author01” node
across their SLCA node, we can clearly see that the relative position of SLCA
node can be used to illustrate the correlation of those two nodes. We can un-
derstand this by following analogy. The linked edges can be mapped as one
string “title.article...author01”, in which each position between two dots means
there is one linked node. When we change the position of “article” as “ti-
tle..article..author01”, it means different structure according to the mapping

KCAM: Concentrating on Structural Similarity for XML Fragments 39

in Fig. 2(a), we get the Fig. 2(c). The two fragments of Fig. 2(a) and Fig. 2(c)
in fact are same in structure and text distribution similarity.

,

XML fragments satisfying given keywords. The result is our KCAM discussed
in Section 3.

2.2 Similarity Measuring for XML Fragments

After retrieving the tightest XML fragments following SLCA processing, next
important task is to measure the similarity of the retrieved fragments. For now
researchers have developed a lot of methods, and most of them are intimate with
TF ∗ IDF concept [4] from traditional Information Retrieval theory, in which
there are two key skills. The first one is the “term” unit idea. All keyword queries
and documents are represented using these terms. The second is the distance
measure for vector space. The methods of similarity measures developed for
XML fragments can be categorized in three classes, Extended TF ∗ IDF , Path
bag model, and Structural TF ∗ IDF as follows.

• Extended TF ∗ IDF methods model the problem of XML fragment simi-
larity as multi-variant regression problem based on the text distributions on leaf
nodes. They first calculate the text distribution similarity using the concept of
TF ∗ IDF on leaf nodes. Then they use the hierarchical information of XML
fragment to calculate the final value, which corresponds to the common ancestor
node of those leaf nodes. This kind of measures only use hierarchical information
to realize the regression, and cannot distinguish fragments through the struc-
tural difference. So the three fragments always are same according to this kind
of measures.

• Path bag model uses node label path distribution vector to simulate the
distance between XML fragments. They do not consider the correlation structure
between nodes, so they take for granted that the two XML fragments in Fig. 2(a)
and Fig. 2(b) are same. [8] also introduces XPath model with “node position”
information trying to absorb the branch information. Nevertheless this also leads
to bad situation, i.e., it becomes “position” sensitive, which will see Fig. 2(a)
and Fig. 2(c) different. Obviously this method is sensitive with labels, so that it
is helpless for fragments with same structure but different labels.

• Structural TF ∗ IDF method absorbs the “term” concept of TF ∗ IDF .
But “term” here changes to the “Twig unit”. So the key task of this method is
to determine the Twig unit vector space, which is proved to be complicated. [14]
itself also admits this and resort to path based approximation, which has similar
drawback like Path bag model. Researches in [15, 16, 9] have similar ideas. They
are sensitive with labels and node position.

We can see that the prominent limitation of current work is their sensitivity
with labels and relative node position. The essence of this limitation is induced
by the structural simulation using label strings. To sum up, it is necessary to
develop new similarity method mainly concentrating on structural feature of

40 L. Kong et al.

idea. So the relative position of SLCA node with corresponding nodes can be
used to capture the structural difference between XML fragments. This fact en-
lightens us to adopt SLCA information in structural similarity measuring among

Before that, we introduce ID edit distance as the standard to illustrate the
structural similarity between XML fragments, which is independent of node
labels.

Edit Distance with Insert and Delete Operations Only In order to for-
mally illustrate the structural similarity between two XML fragments satisfying
given keywords, we propose ID edit distance following the edit distance defini-
tion.

Definition 2 (ID edit distance). The edit distance between two XML frag-
ments, T1 and T2, satisfying given keywords W , is denoted as EDistI,D(T1, T2).
It is the minimum cost of all ID edit sequences that transform T1 to T2 or vice
versa. An ID edit sequence consists only of insertions or deletions of nodes:
EDistI,D(T1, T2) = min{c(S)|S is an ID edit sequences transforming T1 to T2}

Intuitively we have EDistI,D(T1, T2) ≤ EDist(T1, T2), where EDist(T1, T2)
is the popular edit distance with additionalRelabeling.We can see that EDI,D(T1,

mainly concentrates on the structure information.

3 KCAM: Keyword Common Ancestor Matrix

3.1 KCAM Concept

K1 K2 K3 K4 K5

K1 3 2 2 1 1

K2 4 3 1 1

K3 4 1 1

K4 3 2

K5 3

(a) KCAM for Source XML
fragment in Figure 2(a)

K1 K2 K3 K4 K5

K1 3 1 1 1 2

K2 4 3 2 1

K3 4 2 1

K4 3 1

K5 3

(b) KCAM for XML frag-
ment in Figure 2(b)

K1 K2 K3 K4 K5

K1 3 2 2 1 1

K2 4 3 1 1

K3 4 1 1

K4 3 2

K5 3

(c) KCAM for XML frag-
ment in Figure 2(c)

Fig. 3. Three KCAM instances for XML fragments in Figure 2

Though the relative position of SLCA node with two nodes can illuminate
the structural information, it is deficient to use mapped strings to calculate the
structural difference. The reason is that it is sensitive to labels and relative
ositions of related nodes as demonstrated in Section 2.2. For seeing this, we

propose KCAM as follows to capture the structural information.

T2)

p

KCAM: Concentrating on Structural Similarity for XML Fragments 41

position. It should also be easy to combine with other skills so as to satisfy users
when they are interested in fragments with special labels. Our KCAM here is
one example, we will discuss it in detail at Section 3.

XML fragments. The new method should be independent of the labels and node

.

.

upper triangular matrix whose element ai,j (1 ≤ i ≤ k, i ≤ j ≤ k) is determined
by following equations:

ai,j =

{
Level of keywordki i = j

Level of the SLCAnode of keywordski and kj i �= j
(1)

The matrices for fragments in Fig. 2 are listed in Fig. 3. And we can see that the
KCAM for given fragment is unique when the order of keywords W is appointed.
This is not a problem for similarity measuring using KCAM because we can build
KCAMs for all XML fragments in the same order. Since we can build unique
matrix for every fragment satisfied W , we can directly use the norm equations
developed in matrix theory. We prefer to use the popular Frobenius norm because
it not only has simple computation but also covers the whole elements.

||A||F =

√√√√ k∑
i=1

k∑
j=i

|ai,j |2 (2)

Using the matrix distance induced from Frobenius norm, we have following The-
orem 1 which guarantees the uniqueness of distance based on KCAM.

Theorem 1. Here is some keywords, W , we have two keyword sequences W1
and W2. According to two given fragments, T1 and T2, there are two KCAMs
corresponding to W1 and W2, denoted as AT1,W1 , AT1,W2 for T1, and AT2,W1 and
AT2,W2 for T2 according to T2.

They must satisfy following equation:

||AT1,W1 − AT2,W1 ||F = ||AT1,W2 − AT2,W2 ||F (3)

Proof (Sketch). The SLCA node of any two keyword nodes, ki and kj, is definite
and unique. its level information is independent of the order of keyword sequence.
So the element corresponding to ki and kj is unique. According to the linear
transformation for matrix in ‘Linear Algebra’ theory, two KCAMs from two
keyword sequence for same tree with fixed keywords can be interconverted. So the
distance of T1 and T2 under W1 is equal to the distance of T1 and T2 under W2.
The Equation (3) is tenable. �

3.2 Structural Distance ased on KCAM

Based on KCAM concept and matrix distance above, we conclude KCAM dis-
tance between given XML fragments satisfying some keywords as Definition 4.

Definition 4 (KCAM Distance). Given a sequence of keywords W = { k1,
k2, . . ., kk}, there are two XML fragments T1 and T2 satisfying W . According to
Definition 3 we can construct two KCAMs corresponding to T1 and T2 as AT1

and AT2 . The KCAM distance KDist(T1, T2) between T1 and T2 is defined as
follows:

B

42 L. Kong et al.

Definition 3 (KCAM). Given a sequence of keywords W = { k1, k2, . . ., kk},
the KCAM A for one XML tightest fragment si according to W is one k × k

We have following theorem which shows KDist is one lower bound of EDitI,D.

Theorem 2. Here is one keyword sequence W with k words (k ≥ 2 by default),
and two XML fragments satisfying W , T1 and T2. The edit distance with only In-
sert and Delete operations is denoted as EDistI,D(T1, T2). The KCAM distance
is marked as KDist(T1, T2). They have following relationship:

KDist(T1, T2) ≤ EDistI,D(T1, T2) (5)

Proof (Sketch). We only discuss the influence when we insert one node into T1 so
as to transform T1 to T2. The largest influence occurs when the insertion involves
maximum leaf nodes, such as changing Fig. 4(a) into Fig. 4(b) with inserting one
new node (Black triangle). The difference matrix according to KCAM concept
is illustrated in Fig. 4(c). We have

√
5 ∗ (5 − 1)/2 where ‘5’ is the number of

keywords. When we continue to insert n nodes of this kind for largest influence,
the EDistI,D is n. The KDist for this situation is as follows.

KDist =

√
k(k−1)

2 n2

k − 1
=

√
1
2

k

k − 1
n2

The ratio of KDist and EDistI,D is
√

1
2

k
k−1 . Since k ≥ 2, the ratio must be

less than or equal with 1. So we get the Equation. (5). �

w1 w2 w3 wk

K-1

(a) Source XML fragment

w1

w2 w3 wk

K-1

1

(b) Inserting one node

K1 K2 K3 K4 K5

K1 0 0 0 0 0

K2 1 1 1 1

K3 1 1 1

K4 1 1

K5 1

(c) Difference matrix be-
tween 4(a) and 4(b)

Fig. 4. Demonstration for the largest influence when inserting one node

KCAM: Concentrating on Structural Similarity for XML Fragments 43

KDist(T1, T2) =
||AT1 − AT2 ||F

k − 1
(4)

The (k − 1) is used as factorial coefficient.

From illustration above, we can see that KCAM mainly concentrates the
structural differences between XML fragments. Based on the mathematical de-
scription, it is straightforward to design and implement corresponding algo-
rithms. We do not illustrate the pseudo code of KCAM method here for room
reason. The only thing reminding here is that when continuing to implement the
KCAM method, we suggest to use vector w.r.t the upper triangle matrix rather
than the matrix itself to calculate KDist. The conversion from one upper tri-
angle matrix to its vector is to “flatten” the matrix according to matrix theory,
illustrated as following:

⎛
⎜⎜⎜⎝

a1,1 a1,2 · · · a1,k

a2,2 · · · a2,k

...
...

ak,k

⎞
⎟⎟⎟⎠ =⇒ (a1,1, · · · , a1,k, a2,2, · · · , a2,k, · · · , ak,k) (6)

Our KCAM mechanism has similar properties with MLP scheme proposed
in [13]. MLP also has the ability to simulate the structural similarity, but is
different from other methods in Extended TF ∗ IDF , which essentially care the
weight of keywords in retrieved fragments. MLP is also independent of labels and
node position. Different from level information of our SLCA nodes, it uses the
maximum length among all pathes from the node to its leaves. So MLP cannot
distinguish the difference of fragments in Fig. 3(a) and Fig. 3(b). Finally, MLP
can also be combined with other label filtering skill when users are interested
more at specific domain.

4 Experiments

4.1 Experimental Environment

Since the main property of KCAM is to evaluate the structural similarity, the
motif of experiments is unwound around this. Regretfully as we can see from
Section 2.2, only Extended TF ∗ IDF methods are not sensitive to label or
node position. However even they are helpless for structural similarity of XML
fragments. Hence there is no ready datasets for experimentations. We resort to
synthesized data here. We use MLP as the comparison object. The reason is
that it can measure the structural similarity like our KCAM and is independent
of labels and node position. We do not do experiments on other methods in
Extended TF ∗ IDF , because they have similar computation like MLP.

The synthesized data is constructed similarly with the fragments in Fig. 2.
We first build several template fragments like Fig. 3(a), and then increase the
number of fragments by randomly shuffling the keyword position and inserting

44 L. Kong et al.

Based on the definition of KDist(T1 , T2), we can see the distance between
Fig. 2(a) and Fig. 2(b) is

√
6/4 ≈ 0.612. The distance between Fig. 2(a) and

Fig. 2(c) is 0. Clearly we can use KCAM to distinguish Fig. 2(a) and Fig. 2(b),
and at the same time we will not classify Fig. 2(a) and Fig. 2(c) as same.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Ten templates for experimental XML fragments

template fragments and their variants after insertion. The number of exchange
is 20. Finally we get 10 × 20 × 40 = 8000 fragments.

After getting synthesized dataset, we do two kinds of experiments. The first
one is for structural sensitivity. After specified fixed keyword number (for ex-
ample, 4), we construct 10 groups of fragments, each of which has 30 XML
fragments randomly selected from the synthesized data and all have fixed key-
words. Then we run our KCAM and MLP on them, and compare their precision.
The result is show in Fig. 6. The second is for the computation performance. We
separate the dataset into 5 groups, from 500 to 2500. We run all methods on each
group, and illustrate the running time of each method. We also do experiments
to investigate the situations when changing the number of keywords. We pick
up one fragment randomly as the structure of keywords. Its result is shown as
Fig. 7.

All experiments are run on a Dell Dimension 8100 computer with 1.4GHz
Pentium IV processor and 256MB of physical memory. The Operating System
is Windows 2000 Professional. We use JAVA as the programming language. The
JDK is Java 2 SDK Standard Edition Version 1.4.1. We execute each test 6 times
with the performance result of the first run discarded.

4.2 Experiment Result

Fig. 6 is the result for precision comparison of KCAM and MLP. When the
number of keywords is specified, we run MLP and KCAM on the sampled XML
fragments. After we obtain the precision of KCAM and MLP, we get the ratio of
the two precision values corresponding to the two methods. From Fig. 6 we can

KCAM: Concentrating on Structural Similarity for XML Fragments 45

new node. There are four parameters to control the fragments. One is keyword
number (10 in our experiment). The second is the number of template fragments.
We select 10 kinds, see Fig. 5. The third is the times of randomly insertion.
We set it as 20. The last one is the exchange times among keywords for each

Illustration for precision ratio of KCAM and MLP on XML fragments
with different keyword number

Number of keywords for XML fragments

0 2 4 6 8 10 12

P
re

ci
si

on
 r

at
io

 o
f

K
C

A
M

 a
nd

 M
LP

 (
K

C
A

M
/M

LP
)

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

KCAM/MLP vs # of Keywords

Fig. 6. Precision ratio of KCAM and
MLP on different XML fragments

Time consuming for structural similarity computation

Total number of XML fragments

0 10000 20000 30000 40000 50000

C
os

t t
im

e
(m

ill
i.s

ec
)

0

2000

4000

6000

8000

10000

12000

KCAM5Key vs FragmentNum
KCAM10Key vs FragmentNum
MLP5Key vs FragmentNum
MLP10Key vs FragmentNum
Regression line

Fig. 7. Time consuming for KCAM
and MLP with fragment scale increas-
ing

Fig. 7 illustrates the runtime performance result of the two methods. We first
construct two kinds of synthesized data corresponding to 5 and 10 keywords with
different number of fragments from 5000 to 45000. Then we run KCAM and MLP
respectively on the datasets. “KCAM5Key” and “KCAM10Key” mean that there
are 5 and 10 keywords in all fragments when running KCAM. “MLP5Key” and
“MLP10Key” mean that there are 5 and 10 keywords in all fragments when
running MLP. From Fig. 7 we can see that when the number of keywords is
small, KCAM has comparatively performance with MLP even there are 45000
fragments. When there is many keywords, the performance of KCAM becomes
lower than MLP, and the gap becomes larger and larger as fragment number
increases.

Though the performance of KCAM is lower than MLP from Fig. 7, KCAM’s
merit is still obvious according to Fig. 6, that is KCAM has more power to distin-
guish the structural difference. Besides, we notice that the largest cost of KCAM
performance is lower than 12000 millisecond. This shows that the computation
of KCAM is still efficient and has pragmatic value for real application.

5 Conclusion and Future Work

In this paper, we propose an effective structural similarity measure for XML
fragments satisfying given keywords. We name it as keyword common ancestor
matrix, KCAM for short. KCAM is a k × k upper triangle matrix w.r.t one
XML fragment. Element ai,j (i �= j) stores the level information of SLCA node
corresponding to keywords ki and kj . Based on distance theory of matrix space,

46 L. Kong et al.

see that the KCAM/MLP precision ratio is adjacent when the keyword number
is small. While the ratio become larger when the keyword number increases.
This evolution verifies our KCAM method is more sensitive with the structural
changes than MLP method.

KCAM with other semantic filtering techniques so as to confine fragments in
specific domain.

Our future work will concentrate on investigating techniques in one mech-
anism which can support XML keyword search and XML query processing
(XPath, XQuery) together.

References

1. I. Tatarinov, S. D. Viglas. Storing and Querying Ordered XML Using a Relational
Database System. ACM SIGMOD’2002.

2. Y. Xu, Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in XML
Databases. SIGMOD. 2005.

3. F. Weigel, H. Meuss, K. U. Schulz, F. Bry. Content and Structure in Indexing and
Ranking XML. WebDB. 2004

4. Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval : Pear-
son Education Limited.

5. Wolff, J. E., Flörke, H., & Cremers, A. B. (2000). Searching and browsing col-
lections of structural information. In Proceedings of IEEE Advances in Digital
Libraries (ADL 2000), 141–150.

6. Schlieder, T., & Meuss, H. (2000). Result ranking for structured queries against
xml documents. DELOS Workshop: Information Seeking, Searching and Querying
in Digital Libraries.

7. Chinenyanga, T., & Kushmerick, N. (2001). Expressive and Efficient Ranked
Querying of XML Data. WebDB.

8. Kotsakis, E. (2002). Structured Information Retrieval in XML documents. Pro-
ceedings of the 2002 ACM symposium on Applied computing, 663–667.

9. Guha, S., et al. (2002, June 3-6). Approximate XML Joins. Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data (SIGMOD).

10. Yu, C., Qi, H., & Jagadish, H. V. (2002). Integration of IR into an XML Database.
INEX Workshop, 162–169.

11. Guo, L., Shao, F., Botev, C., & Shanmugasundaram, J. (2003, June 9-12).
XRANK: Ranked Keyword Search over XML Documents. SIGMOD 2003.

12. Joshi, S., Agrawal, N., Krishnapuram, R., & Negi, S. (2003, August 24-27). A
Bag of Paths Model for Measuring Structural Similarity in Web Documents.
SIGKDD’03.

13. Kailing, K., Kriegel, H., Schönauer, S., & Seidl, T. (2004, March 14-18). Efficient
Similarity Search for Hierarchical Data in Large Databases. Advances in Database
Technology - EDBT 2004, 9th International Conference on Extending Database
Technology, ISBN 3-540-21200-0, 676–693.

14. Amer-Yahia, S., et al. (2005, August 30 - September 2). Structure and Content
Scoring for XML. Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB), 361–372.

KCAM: Concentrating on Structural Similarity for XML Fragments 47

k keywords, KDist(·, ·). It is independent of label and node position, while most
of current similarity measures for XML fragments are restricted by this. It is
exciting that we can retrieve fragments from heterogeneous XML databases even
they are substantially different on labels. By the way, it is convenient to combine

we deduce the structural distance between any XML fragments satisfying given

15. Yang, R., Kalnis, P., & Tung, A. K. (2005, June 13-16). Similarity Evaluation on
Tree-structured Data. ACM SIGMOD Conference.

16. Augsten, N., Böhlen, M. H., & Gamper, J. (2005, August 30 - September 2).
Approximate Matching of Hierarchical Data Using pq-Grams. Proceedings of the
31st International Conference on Very Large Data Bases (VLDB), 301–312.

84 L. Kong et al.

A New Structure for Accelerating XPath
Location Steps

Yaokai Feng and Akifumi Makinouchi

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Hakozaki 6-10-1, Fukuoka City, Japan

{fengyk, akifumi}@is.kyushu-u.ac.jp

Abstract. Multidimensional indices have been successfully introduced
to the field of querying on XML data. Using R*-tree, T. Grust proposed
an interesting method to support all XPath axes. In that method, each
node of an XML document is labeled with a five-dimensional descriptor.
All the nodes of the XML document are mapped to a point set in a
five-dimensional space. T. Grust made it clear that each of the XPath
axes can be implemented by a range query in the above five-dimensional
space. Thus, R*-tree can be used to improve the query performance for
XPath axes. However, according to our investigations, most of the range
queries for the XPath axes are partially-dimensional range queries. That
is, the number of query dimensions in each of the range queries is less
than five, although the R*-tree is built in the five-dimensional space. If
the existing multidimensional indices are used for such range queries,
then a great deal of information that is irrelevant to the queries also has
to be read from disk. Based on this observation, a new multidimensional
index structure (called Adaptive R*-tree) is proposed in this paper to
support the XPath axes more efficiently.

1 Introduction

As XML has been so successful in being adopted as a universal data exchange for-
mat, particularly in he World Wide Web, the problem of managing and querying
XML documents poses interesting challenges to database researchers. Although
XML documents could have rather complex internal structures, they share the
same data type underlying the XML paradigm: ordered tree. Tree nodes rep-
resent document elements, attributes or text data, while edges represent the
element-subelement (or parent-child) relationship.

To retrieve such tree-shaped data, several XML query languages have been
proposed in the literature. Examples include XPath [2] and XQuery [3]. XQuery
is being standardized as a major XML query language. The main building block
of XQuery is XPath, which addresses part of XML documents for retrieval [16].
For example, ”paragraph//section” is to find all sections that are contained in
each paragraph. Here, the double slash ”//” represents the ancestor-descendant
relationship. A single slash ”/” in an XPath represents a parent-child relation-
ship, for example ”section/figure”.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 49–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 Y. Feng and A. Makinouchi

In line with the tree-centric nature of XML, XPath provides operators to
describe path traversals in a tree-shaped document. Path traversals evaluate
to a collection of subtrees (forests), which may then, recursively, be subject
to further traversal. Starting from a so-called context node, an XPath query
traverses its input document using a number of location steps. For each step,
an axis describes which document nodes (and the subtrees below these nodes)
form the intermediate result forest for this step. The XPath specification [2]
lists a family of 13 axes (among these the children and descendant-or-self axes,
probably more widely known by their abbreviations / and //, respectively).

Generally speaking, XPath expressions specify a tree traversal via two para-
meters: (1) a context node (not necessarily for the root) which is the starting
point of the traversal, (2) and a sequence of location steps syntactically sepa-
rated by /, evaluated from left to right. Given a context node, a step’s axis (only
one step of a regular XPath expressions) establishes a subset of document nodes.
This set of nodes, or forest, provides the context nodes for the next step which
is evaluated for each node of the forest in turn. The results are unioned together
and sorted in document order. To illustrate the semantics of the XPath axes,
Figure 1 depicts the result forests for three steps along different axes taken from
context node e (note that the preceding axis does not include the ancestors of
the context node). Table 1 lists all XPath axes.

a

b

c

d

e

f g

h

context node

a

b

c

d

e

f g

h

context node

a

b

c

d

e

f g

h

context node

ancestor nodes of e preceding nodes of e descendant nodes of e

Fig. 1. Results of three XPath axes, circled nodes are elements of the result

It is important and basic work to efficiently implement XPath axes on XML
documents. In work [1], R*-tree has been successfully applied to implementing
XPath axes and the method proposed in [1] is able to support all XPath axes. In
[1], each node of an XML document is labeled with a five-dimensional tuple. All
the nodes of the XML document are mapped to a point set in a five-dimensional
space. T. Grust made it clear that each of the XPath axes can be implemented
by a range query on the above five-dimensional space. Thus, R*-tree is helpful
to improving the query performance of the range queries of XPath axes. This
method has been proved efficient in [1]. However, according to our investigations,
most of the range queries for the XPath axes are partially-dimensional range
queries (i.e., the number of query dimensions in each of the range queries is less
than five, although the R*-tree is built in five-dimensional space). If the existing

A New Structure for Accelerating XPath Location Steps 51

Table 1. All axes and their semantics

Axis Result
child Direct element child nodes of the context node
descendant All descendant nodes of the context node
descendant-or-self Like descendant, plus the context node
parent Direct parent node of the context node
ancestor All ancestor nodes of the context node
ancestor-or-self Like ancestor, plus the context node
following Nodes following the context node in document order
preceding Nodes preceding the context node in document order
following-sibling Like following, same parent as the context node
preceding-sibling Like preceding, same parent as the context node
attribute Attribute nodes of the context node
self Context node itself
namespace Namespace nodes of the context node

multidimensional indices (such as R*-tree, which is used in [1]) are used for such
range queries, then a great deal of information that is irrelevant to the queries
also has to be read from disk, which heavily degrades the query performance.
Based on this observation, in this study, a new multidimensional index structure
(called Adaptive R*-tree) is proposed to support XPath axes more efficiently.
The discussions and experiments with various datasets indicate that Adaptive
R*-tree is better suited to XML documents, especially large documents.

In the remainder of this paper, Section 2 is some related works and our ob-
servation is presented in Section 3. Section 4 presents the proposed method, a
new index structure for XPath axes, including its structure and algorithm. The
experiment results are presented in Section 5. Section 6 concludes this paper and
point out the future works.

2 Related Work

The concept of regular path expressions dominates this field of research by far
[4, 5, 6, 7]. The work [4] presented an index over the prefix-encoding of the paths
in an XML document tree (in a prefix-encoding, each leaf l of the document tree
is prefixed by the sequence of element tags encountered during a path traversal
from the document root to l). Since tag sequences obviously share common pre-
fixes in such a scheme, a variant of the Patricia-tree is used to support lookups.
Clearly, the index structure is tailored to respond to path queries that originate
in the document root. Paths that do not have the root as the context node need
multiple index lookups or require a post-processing phase (as does a restore of
the document order in the result forest). In [4], so-called refined paths are pro-
posed to remedy this drawback. Refined paths, however, have to be preselected
before index loading time.

The T-index structure, proposed by Milo and Suciu in [6], maintains (approx-
imate) equivalence classes of document nodes which are indistinguishable with

52 Y. Feng and A. Makinouchi

respect to a given path template. In general, a T-index does not represent the
whole document tree but only those document parts relevant to a specific path
template. The more permissive and the larger the path template, the larger the
resulting index size. This allows to trade space for generality, however, a specific
T-index supports only those path traversals matching its path template (as re-
ported in [6], an effective applicability test for a T-index is known for a restricted
class of queries only).

There is other related work that is not directly targeted at the construc-
tion of index structures for XML. In [8], the authors discuss relational support
for containment queries. Especially the multi-predicate merge join (MPMGJN)
presented in [8] would provide an almost perfect infrastructure for the XPath
accelerator. MPMGJN join supports multiple equality and inequality tests. The
authors report an order of magnitude speed-up in comparison to standard join
algorithms.

The work [1] successfully adopts multidimensional index structure in process-
ing XML queries. It proposes an XPath accelerator that can completely live
inside a relational database system, i.e., it is a relational storage structure in
the sense of [10]. The implementation of the proposal in [1] benefits from ad-
vanced index technology, esp. the R-tree, that has by now found its way into
mainstream relational database systems. It has been developed with a close eye
on the XPath semantics and is thus able to support all XPath axes.

The main contributions of [1] are that (1) it proposed a five-dimensional de-
scriptor (labeling schema) for each node of the XML document, (2) it made it
clear that, using this labeling schema, each of the 13 XPath axes can be mapped
to a range query in the five-dimensional descriptor-space, and (3) the range
queries for XPath axes were implemented using R*-tree.

In this paper, based on the work [1], we will (1) present our observations on
the range queries of XPath axes, and (2) according to the features of these range
queries, present a new index structure (instead of R*-tree) to further improve
the query performance of XPath axes. Since our work is based on [1], the key
idea of [1] is described as follows.

2.1 Labeling Schema and Mapping XPath Axes to Range Queries

Each node v of an XML document is represented by the following five-
dimensional descriptor:

desc(v)= < pre(v), post(v), par(v), att(v), name(v)>,
where pre(v) and post(v) are the preorder and the postorder of v, respectively.
par(v) is the preorder of parent node of v. att(v) is a Boolean value indicating
whether v is attribute node or not. The last one, name(v) is the name of v. In
this way, all the nodes in an XML document can be mapped to a set of points
in the five-dimensional descriptor space (or say labeling space).

As others have noted [5, 8, 11], one can use pre(v) and post(v) to efficiently
characterize the descendants v′ of v. We have that

v′ is a descendant of v ⇐⇒ pre(v′) > pre(v) ∧ post(v′) < post(v) (1)
In the same way, we have that

A New Structure for Accelerating XPath Location Steps 53

v′ is a ancestor of v ⇐⇒ pre(v′) < pre(v) ∧ post(v′) > post(v) (2)

v′ is a preceding node of v ⇐⇒ pre(v′) < pre(v) ∧ post(v′) < post(v) (3)

v′ is a following node of v ⇐⇒ pre(v′) > pre(v) ∧ post(v′) > post(v) (4)

v: context node

ancestor

preceding

 following

descendant

preorder

postorder

v

Fig. 2. Four XPath axes in two-
dimensional space

According to the above four equa-
tions, we can see that the four XPath
axes of descendant, ancestor, preceding
and following can be mapped to range
queries in the two-dimensional space of
preorder/postorder, which is shown in Fig.
2. With the help of the other items in the five-
dimensional descriptor, the other XPath axes
also can be mapped to range queries. Table
2 presents the ranges of all the XPath axes.
Like [1], the two axes of self and namespace
are omitted since they are so simple.

2.2 Implementation of Range Queries Using R*-Tree

Since all of the XPath axes can be mapped to range queries in the five-
dimensional descriptor-space, R*-tree (used in [1]) seems helpful to improving
the range query performance. Because we will propose a new structure to further
improve the range query performance, R*-tree is briefly recalled here.

R*-tree [12] is a hierarchy of nested multidimensional MBRs. Each non-leaf
node of the R*-tree contains an array of entries, each of which consists of a
pointer and an MBR. The pointer refers to one child node of this node and the
MBR is the minimum bounding rectangle of the child node referred to by the
pointer. Each leaf node of the R*-tree contains an array of entries, each of which
consists of an object identifier and the object itself (for point-object datasets) or

Table 2. XPath axes and their ranges in descriptor space (v is the context node)

ranges in descriptor-space
XPath Axes pre post par att name

child pre(v) false *
descendant (pre(v), ∞) [0, post(v)) false *
descendant-or-self [pre(v), ∞) [0, post(v)] false *
parent [par(v), par(v)] *
ancestor [0, pre(v)) (post(v), ∞) *
ancestor-or-self [0, pre(v)] [post(v), ∞) *
following (pre(v), ∞) (post(v), ∞) false *
preceding [0, pre(v)) [0, post(v)) false *
following-sibling (pre(v), ∞) (post(v), ∞) par(v) false *
preceding-sibling [0, pre(v)) [0, post(v)) par(v) false *
attribute pre(v) true *

54 Y. Feng and A. Makinouchi

its MBR (for extended object datasets). In the present paper, object and tuple
are used interchangeably. In the R*-tree, the root node corresponds to the entire
index space and each of the other nodes represents a sub-space (i.e., the MBR
of all of the objects contained in this region) of the space formed by its parent
node. Note that, each MBR in R*-tree nodes is denoted by two points. One is
the lowest vertex with the minimum coordinate in each axis and the other is the
upper-most vertex with the maximum coordinate in each axis. When R*-tree is
used for a range query, all of the nodes intersecting the query range are accessed
and their entries have to be checked.

3 Our Observations

From the above-mentioned Table 2, we can observe that most of the query ranges
of XPath axes only use partial items of the five-dimensional descriptor. For
example, child axis only uses par and att; parent axis only uses pre. In this
paper, the range queries that only use partial (rather than all) dimensions of the
entire space are called partially-dimensional range queries (denoted as PD range
queries). Contrarily, the range queries that use all dimensions of the entire space
are called all-dimensional range queries (denoted as AD range queries).

We want to note that all the existing multidimensional indices are designed
to evaluate AD queries. This is because all of the objects are clustered in the
leaf nodes according to their information in all index dimensions and every node
contains information of its entries in all of the index dimensions. Actually, they
can also evaluate PD range queries as follows. Using one n-dimensional index in
the entire n-dimensional index space, one PD range query using d (d < n) query
dimensions can be evaluated by simply extending the query range in each of the
(n − d) irrelevant index dimensions to the entire data range.

However, a disadvantage of using all-dimensional indices for PD range queries
is that each node of the index contains n-dimensional information, but only d-
dimensional information is necessary for a PD range query using only d (d < n)
dimensions. This means that a great deal of unnecessary information, i.e., the
information in the irrelevant dimensions, also has to be read from disk, which de-
grades the query performance. In other words, the irrelevant information in the
index nodes decreases capacity (fanout) of each node. Directing to this disadvan-
tage and considering that most of the query ranges of XPath axes are PD range
queries, a new index structure for indexing XML data is proposed in this paper.

4 New Structure: AR*-Tree

According to the features of the range queries of XPath axes, a new index struc-
ture, called Adaptive R*-tree (denoted as AR*-tree), is proposed to improve the
performance of such range queries.

4.1 Structure

The key concept of AR*-tree is to divide each of the n-dimensional R*-tree
nodes into n one-dimensional nodes (these n one-dimensional nodes are called a

A New Structure for Accelerating XPath Location Steps 55

node-group), each of which holds information in only one dimension, while each
node of R*-tree holds information in all of the dimensions of the index space.
Like each node in R*-tree, each node-group in AR*-tree corresponds to an n-
dimensional subspace in the index space. Every entry of nodes in each index
node-group corresponds to an edge of the corresponding subspace, while each
entry of one R*-tree index node corresponds to a subspace.

entry1 entry2 ... entryi

entry1 entry2 ... entryi

... ...
entry1 entry2 ... entryi

MBR1 MBR2 MBRi

entry1 entry2 ... entryi

R*-tree node

A
R

*-
tr

ee
 n

od
e-

gr
ou

p

Fig. 3. Node structures of R*-tree and
AR*-tree

Figure 3 shows the structure dif-
ference between R*-tree nodes and
AR*-tree node-group. All of the en-
tries with the same index in the n
nodes of this node-group form a com-
plete n-dimensional MBR in the index
space. Whereas every entry in R*-tree
nodes includes MBR information in all
of the dimensions, each entry in the
nodes of AR*-tree includes only one-
dimensional information. The term en-
try of node-group, which refers to the
set of entries having the same index
distributed in all the different nodes of
one node-group, is used hereinafter. One entry of each index node-group corre-
sponds to a complete MBR in the index space. In Fig. 3, all of the entries in an
ellipse form an complete entry of the node-group, which is a complete MBR in
the entire index space.

The question then arises as to whether the total number of nodes in AR*-tree
becomes n times that in R*-tree, because each node of R*-tree has been divided
into n nodes. However, this is not the case because the maximum number of
entries in each node of AR*-tree is up to approximately n times that in R*-tree
since the dimensionality of each node in AR*-tree becomes 1. The structure
of AR*-tree guarantees that it can be applied to PD range queries with any
combinations of the query dimensions and that only the relevant one-dimensional
nodes are visited.

The main advantage of AR*-tree over R*-tree (all-dimensional index) is that,
for PD range queries, only the relevant nodes of the accessed node-groups need
be visited and the other nodes, even if they are in the same node-groups, can be
skipped. In R*-tree, information in all of the index dimensions is contained in
each R*-tree node, but only information in the query dimensions are necessary
for PD range queries, which means that a great deal of irrelevant information
has to be loaded from disk and this certainly degrades the search performance,
especially for large datasets.

4.2 Algorithms of AR*-Tree

The insert algorithm of AR*-tree is a naive extensions of the counterparts of R*-
tree. After the new tuple reaches the leaf node-group, it is divided and stored
in different nodes of the leaf node-group according to dimension. If some node-
group must be split, then all of its nodes have to be split at the same time

56 Y. Feng and A. Makinouchi

and the split may be up propagated. After a delete operation, if the node-group
under-flowed, then all of its nodes should be deleted at the same time and all of
its entries are inserted to the AR*-tree again. That is, all of the nodes in each
node-group must be born simultaneously and die simultaneously.

A range query algorithm for AR*-tree, which can be used for AD range queries
and PD range queries, is shown in Table 3.

Table 3. Algorithm for range queries on AR*-tree

Procedure RangeQuery (rect, node-group)
Input: rect: query range

node-group: initial node-group of the query
Output: result: all the tuples in rect
Begin
For each entry e in node-group Do

If e INTERSECT rect in all the query dimensions Then
If (node-group is not at leaf) Then

RangeQuery (rect, e.child); //e.child means the child node-group of e
Else result ← e

EndFor
End

Staring with the root node-group, each entry of the current node-group needs
to be checked to determine whether its MBR intersects the query range. If its
MBR intersects the query range, and the current node-group is not at the leaf
level, then this algorithm is invoked recursively with the corresponding child
node-group. Note that, when each entry e of the current node-group is checked,
(1) not all of the nodes in the current node-group have to be accessed (such
irrelevant nodes are skipped), and (2) even, not all of the nodes in the relevant
dimensions (query dimensions) have to be visited. That is, further checks are
not necessary after the current entry is found not to intersect the query range
in some dimension.

5 Experiments

5.1 Experiment Process

The process of our experiments is shown in Fig. 4.

XML Documents. The XML documents used in our experiments are generated
by XMLgen [17], an easily accessible XML generator, which is developed for the
Xmark benchmark project [14]. Using XMLgen, three documents shown in Table
4 were generated and used. In this table, XMLgen factor were given as a size
factor to control document sizes.

Figure 5 is the distribution of the nodes in the 5.5 MB XML document.
Because Figure 5 (a) contains a total of 103,135 nodes, it could not be seen

A New Structure for Accelerating XPath Location Steps 57

Reader Performance
comparison

XML Documents
Accel tables

R*-tree

AR*-tree

Fig. 4. Process of experiments

Table 4. XML documents used in the experiments

Document size [MB] Number of nodes XMLgen factor
5.5 103135 0.05
11.1 206130 0.10
22.4 413108 0.20

clearly. Figure 5 (b) is a partial enlargement, in which there are nearly 200
nodes of this XML document. The X axis represents preorder and the Y axis
postorder.

Reader. Based on Libxml2 [15] which is an XML C parser and toolkit, we built
a loader to obtain one accel table for each XML document, which is used to
build the indices. Because the XML documents have a total of 77 different node
names, all of the possible node names are encoded from 0 to 76 in order to be
dealt with by R*-tree and AR*-tree.

Accel Table. Each tuple of accel table is the five-dimensional descriptor of
one node of an XML document. As mentioned above, all of the node names

0

20000

40000

60000

80000

100000

120000

0 20000 40000 60000 80000 100000 120000

po
st

or
de

r

preorder

49900

49920

49940

49960

49980

50000

50020

50040

50060

50080

50100

49900 49920 49940 49960 49980 50000 50020 50040 50060 50080 50100

po
st

or
de

r

preorder

(a) Node distribution of 5.5M document (b) Partial enlargement

Fig. 5. Node distribution on preorder/postorder plane

58 Y. Feng and A. Makinouchi

are encoded from 0 to 76. The accel table is directly used to build R*-tree and
AR*-tree.

R*-Tree and AR*-Tree. An R*-tree and an AR*-tree are constructed for the
accel table of each XML document. The node size is set to 4096 bytes.

Performance Test. We assume that the multidimensional index is disk-
resident, which is reasonable for large datasets. Thus, the query performance
is tested in term of the number of node accesses. Except the three XPath axes of
self, attribute, and namespace (they are too simple and performance difference
between R*-tree and AR*-tree could not be shown clearly), the query perfor-
mance of all the other 10 XPath axes are tested using R*-tree and AR*-tree,
respectively. By comparing the query performance of XPath axes on R*-tree and
AR*-tree, we will see which of R*-tree and AR*-tree is better suited to XPath
axes.

5.2 Experiment Result

The experiment result is shown in Tables 5. The context nodes for different XML
documents are chosen independently. That is, the same XPath axis is possibly
tested with different context nodes for different data documents. Certainly, for
the sake of comparison, all the tests on R*-tree and AR*-tree for the same XML
documents used the same context nodes.

From the above experiment, we can obtain the following observation. Except
the XPath axes of ancestor (including ancestor-or-self) and preceding-sibling, for
which the advantage of AR*-tree is not shown very clearly, AR*-tree performs
clearly better than R*-tree for the other seven XPath axes. As mentioned in
Section 1, the query performance of XPath axes is very important because that
the main building block of XQuery is XPath and XPath expressions consists

Table 5. Experiment result

XML document parent ancestor descendent following preceding child
5.5M R*-tree 10.3 13.3 749.0 1420.0 1186.2 484.6

AR*-tree 4.4 12.9 582.1 1095.2 973.4 116.0
11.1M R*-tree 11.6 17.8 1507.2 2700.3 1641.3 1200.3

AR*-tree 6.4 14.5 1163.0 2072.2 1321.0 230.4
22.4M R*-tree 11.6 13.3 2995.6 5705.6 2972.0 1848.0

AR*-tree 7.0 12.4 2304.6 4375.1 2323.6 439.9

XML document following-sibling preceding-sibling descendent-or-self ancestor-or-self
5.5M R*-tree 485.1 22.6 749.0 13.3

AR*-tree 338.3 21.1 582.1 12.9
11.1M R*-tree 493.2 17.8 1507.2 17.8

AR*-tree 353.0 17.7 1163.0 14.5
22.4M R*-tree 1030.5 21.9 2995.6 13.3

AR*-tree 680.4 18.0 2304.6 12.4

A New Structure for Accelerating XPath Location Steps 59

of a sequence of XPath axis operations, which are evaluated from left to right.
Moreover, each step of an XPath expression (one XPath axis operation) often
obtain a great number of intermediate results, which means that the evaluation of
one XPath expression may need a great number of XPath axis operations. Thus,
any improvement on the query performance of XPath axes will be significant.

6 Conclusion and Future Work

Multidimensional indices have been successfully introduced to the field of query-
ing on XML data. And, the query performance of XPath axes is very important
because they are the main building blocks of XQuery. The evaluation of one
XPath expression may need a great number of XPath axis operations since each
step of an XPath expression (one XPath axis operation) often obtain a great
number of intermediate results. Thus, any improvement on the query perfor-
mance of XPath axes will be significant. The existing methods that introduced
multidimensional indices to implementing XPath axes apply all-dimensional in-
dices (e.g., R*-tree in [1]). In this paper, a new multidimensional index structure,
called AR*-tree, was proposed and discussed. The discussion and experiments
using various XML documents showed that the proposed method has a clear
performance advantage for XPath axes compared with R*-tree, a famous and
popular all-dimensional index structure. As one of future works, the performance
of AR*-tree for XPath axes will be examined using some other kinds of XML
documents.

Acknowledgment

This research was supported in part by the Japan Society for the Promotion of
Science through Grants-in-Aid for Scientific Research 17650031 and 16200005.
In addition, the authors would like to thank Mr. Satoshi Tani, who conducted
the experiments, and to thank Prof. Kunihiko Kaneko for his helpful comments.

References

1. T. Grust: Accelerating XPath Location Steps. Proc. ACM SIGMOD International
Conference, pages 109-120, 2002.

2. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, et.al.: XML Path Language
(XPath) 2.0. Technical Report W3C Working Draft, Version 2.0, World Wide Web
Consortium, December 2001. http ://www. w3. org/TR/xpath20/.

3. S. Boag, D. Chamberlin, M. F. Fernandez,et.al.: XQuery 1.0: An XML query lan-
guage. In W3C Working Draft 16 August 2002, http://www.w3.org/TR/xquery/,
2002.

4. B. F. Cooper, N. Sample, M. J.Franklin, G. R. Hjaltason, and M. Shadmon: A
Fast Index for Semistructured Data. Proc. the 27th International Conference on
Very Large Data Bases (VLDB), pages 341-360, 2001.

60 Y. Feng and A. Makinouchi

5. Q. Li and B. Moon: Indexing and Querying XML Data for Regular Path Expres-
sions. Proc. the 27th International Conference on Very Large Data Bases (VLDB),
pages 361-370, 2001.

6. D. Suciu and T. Milo: Index Structures for Path Expressions. Proc. the 7th In-
ternational Conference on Database Theory (ICDT), LNCS 1540, pages 277-295
Springer Verlag, 1999.

7. R. Goldman and J. Widom: DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. Proc. the 23rd International Conference on
Very Large Databases (VLDB), pages 436-445, 1997

8. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman: On Supporting Con-
tainment Queries in Relational Database Management Systems. Proc. ACM SIG-
MOD International Conference on Management of Data, pages 425-436, 2001.

9. H. P. Kriegel, M. Potke, and T. Seidl: Managing Intervals efficiently in Object-
Relational Databases. Proc. the 26th International Conference on Very Large Data-
bases (VLDB), pages 407-418, 2000.

10. H. P. Kriegel, M. P. otke, and T. Seidl: Managing Intervals Efficiently in Object-
Relational Databases. Proc. the 26th International Conference on Very Large Data-
bases (VLDB), pages 407-418, 2000.

11. P. F. Dietz and D. D. Sleator: Two Algorithms for Maintaining Order in a List.
Proc. the 19th Annual ACM Symposium on Theory of Computing (STOC), pages
365-372, 1987. ACM Press.

12. N. Beckmann, and H. Kriegel: The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles. Proc. ACM SIGMOD Intl. Conf., pp.322-331, 1990.

13. G.R.l Hjaltason and H. Samet: Distance Browsing in Spatial Database. ACM
Transactions on Database Systems, Vol.24, No.2, pages 265-318, 1999.

14. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey,
and R. Busse: The XML Benchmark Project. Technical Report INSR0103, CWI,
Amsterdam, The Netherlands, April 2001.

15. http://xmlsoft.org/
16. H. Jiang, H. Lu, W. Wang, B. C. Ooi: XR-Tree: Indexing XML Data for Efficient

Structural Joins. Proc. International Conference on Data Engineering (ICDE), page
253-263, 2003.

17. http://monetdb.cwi.nl/xml/downloads.html

Efficient Evaluation of Multiple Queries on
Streamed XML Fragments

Huan Huo, Rui Zhou, Guoren Wang, Xiaoyun Hui,
Chuan Xiao, and Yongqian Yu

Institute of Computer System, Northeastern University, Shenyang, China
wanggr@mail.neu.edu.cn

Abstract. With the prevalence of Web applications, expediting mul-
tiple queries over streaming XML has become a core challenge due to
one-pass processing and limited resources. Recently proposed Hole-Filler
model is low consuming for XML fragments transmission and evaluation;
however existing work addressed the multiple query problem over XML
tuple streams instead of XML fragment streams. By taking advantage of
schema information for XML, this paper proposes a model of tid+ tree
to construct multiple queries over XML fragments and to prune off du-
plicate and dependent operations. Based on tid+ tree, it then proposes
a notion of FQ-Index as the core in M-XFPro to index both multiple
queries and XML fragments for processing multiple XPath queries in-
volving simple path and twig path patterns. We illustrate the effective-
ness of the techniques developed with a detailed set of experiments.

1 Introduction

The recent emergence of XML [1] as a de facto standard for information rep-
resentation and data exchange over the web has led to an increased interest in
using more expressive subscription/filtering mechanisms that exploit both the
structure and the content of XML documents. Evaluating XML queries, such as
XPath [2] and XQuery [3], is thus widely studied both in traditional database
management systems and in stream model for web applications. Figure 1 gives
an XML document and its DOM tree, which acts as an example of our work.

Recently, many research works [4,5,6,7,8,9,10] focus on answering queries on
streamed XML data, which has to be analyzed in real-time and by one pass. In
the push-based model [5, 4], XML streams are broadcasted to multiple clients,
which must evaluate continuous, sophisticated queries (as opposed to simple, sin-
gle path specifications) with limited memory capacity and processing power. In
the pull-based model [6,7,8,9,10], such as publish-subscribe or event notification
systems, XML streams are disseminated to subscribers, but a larger number of
registered queries pose heavy workload on the server. Hence, expediting multiple
queries on XML streams is the core technical challenge.

In order to reduce processing overhead, Hole-Filler model is proposed in [11].
In the model, a hole represents a placeholder into which another rooted subtree
(a fragment), called a filler, could be positioned to complete the tree. In this

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 61–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 H. Huo et al.

way, infinite XML streams turn out to be a sequence of XML fragments, and
queries on parts of XML data require less memory and processing time, without
having to wait for the entire XML document to be received and materialized.
Furthermore, changes to XML data may pose less overhead by sending only
fragments corresponding to the changes, instead of sending the entire document.

<co mmo d ities >
 <v en d o r>
 <n ame>W al-M art</n ame>
 <items >
 <item>
 <n ame>PDA </n ame>
 <make>HP</make>
 <mo d el>PalmPilo t</mo d el>
 <p rice cu rren cy =" USD" >315.25</p rice>
 </item>
 ...
 </items >
 </v en d o r>
 ...
</co mmo d ities >

1

commodities

2

vendor

3

name

4

items

6

name

7

make

8

model

9

price

5

item

currency

W al-Mart

USDPDA HP PalmPilot 315.25

...... 93

item

……

vendor

name items

Carrefour

315 316

314

......

......

Fig. 1. An XML Document and its DOM Tree

However, to the best of our knowledge, there is no work for evaluating mul-
tiple queries on streamed XML fragments so far. In XFrag [4] and XFPro [12],
XML fragments can only be evaluated under simple, single queries. While other
research work [6, 7, 8, 9, 10] consider problems on a stream of XML tuples, not
XML fragments, and can not avoid “redundant” operations caused by fragments.

In this paper, we present an efficient framework and a set of techniques for
processing multiple XPath queries over streamed XML fragments. As compared
to the existing work on supporting XPath/XQuery over streamed XML frag-
ments, we make the following contributions: (i)we propose techniques for en-
abling the transformation from multiple XPath expressions to optimized query
plan. We model the query expressions using tid+ tree and apply a series of prun-
ing policies, which enable further analysis and optimizations by eliminating the
“redundant” path evaluations. (ii)based on tid+ tree, we present a novel index
structure, termed FQ-Index, which supports the efficient processing of multiple
queries (including simple path queries and twig path queries) for streamed XML
fragments by indexing both the queries and the fragments. (iii)based on FQ-
Index, we address the main algorithms of query evaluation in M-XFPro, which
is able to both reduce the memory cost as well as avoid redundant matchings
by recording only query related fragments. Note that, we assume the query ends
cannot reconstruct the entire XML data before processing the queries.

The rest of this paper is organized as follows. Section 2 introduces Hole-Filler
model as the base for our XML fragments. Section 3 gives a detailed statement of
our multiple query processing framework. Section 4 shows experimental results
from our implementation and reflects the processing efficiency of our framework.
Our conclusions are contained in Section 5.

Efficient Evaluation of Multiple Queries on Streamed XML Fragments 63

2 Model for Streamed Fragmented XML Data

In our approach, we adopt the hole-filler model [11] to correlate XML fragments
with each other. We assume that XML stream begins with finite XML documents
and runs on as and when new elements are added into the documents or updates
occur upon the existing elements.

Given an XML document tree Td = (Vd, Ed, Σd, rootd, Did), a filler Tf =
(Vf , Ef , Σf , rootf , f id, tsid) is a subtree of XML document associating a fid
and a tsid, where Vf , Ef , Σf is the subset of node set Vd, edge set Ed and
element type set Σd respectively, and rootf (∈ Vf)is the root element of the
subtree; a hole H is an empty node v(∈ Vd) assigned with a unique hid and a
tsid, into which a filler with the same fid value could be positioned to complete
the tree. Note that the filler can in turn have holes in it, which will be filled
by other fillers. We can reconstruct the original XML document by substituting
holes with the corresponding fillers at the destination as it was in the source.
In this paper, we assume that XML documents have been fragmented already.
Fragmenting algorithm is stated in [13] and omitted here. Figure 2 gives two
fragments of the document in Figure 1.

Fragm ent 1:
<c om m odities filler id="0" ts id="1">
 <vendor>
 <nam e>W al-Mart</nam e>
 <item s>
 <s tream : hole id="10" ts id="5" />
 <s tream : hole id="20" ts id="5" />
 . . .
 </vendor>

</c om m odities>

Fragm ent 2:
<s tream : filler id="10" ts id="5">
 <item >
 <nam e>PDA</nam e>
 <m ake>HP</m ake>
 <m odel>Palm Pilot</m odel>
 <pric e c urrenc y="USD">315.25</pric e>
 </item >
</s tream : filler>

Fig. 2. XML Document Fragments

1

commodities

2

vendor

3

name

4

items

*

+

6

name

7

make

8

model

9

price

5

item

<s tream: s tru ctu re>
 <tag n ame=" co mmo d ities " id =" 1" Filler=" tru e" >
 <tag n ame=" v en d o r" id =" 2" Filler=" tru e" >
 <tag n ame=" n ame" id =" 3" />
 <tag n ame=" items " id =" 4" >
 <tag n ame=" item" id =" 5" Filler=" tru e" >
 <tag n ame=" n ame" id =" 6" />
 <tag n ame=" make" id =" 7" />
 <tag n ame=" mo d el" id =" 8" />
 <tag n ame=" p rice" id =" 9" />
 </tag >
 </tag >
 </tag >
 </tag >
</s tream: s tru ctu re>

Fig. 3. Tag Structure of Hole-Filler Model

In order to summarize the structure of XML fragments, tag structure [11] is
exploited to provide structural information (including fragmentation informa-
tion) for XML and capture all the valid paths. A tag structure TS = (Vt, Et,

64 H. Huo et al.

roott, Σt, TY PEt) is itself structurally a valid XML fragment with the highest
priority, where Vt is a set of tag nodes in XML document, Et is a set of edges,
Σt is a set of tsids identifying the tag nodes in XML document, and TY PEt is a
set of tag node type. Tag structure can be generated according to XML Schema
or DTD, and also can be obtained when fragmenting an XML document with-
out DTD. The DTD and the corresponding tag structure of the XML document
(given in Figure 1) are depicted in Figure 3.

3 M-XFPro Query Handling

Based on the Hole-Filler model, we have proposed M-XFPro, a system aimed
at providing efficient evaluation for multiple queries over streamed XML frag-
ments. In this section, we first introduce tid+ tree for rewriting the queries for
XML fragments, and describe the pruning policies to eliminate “redundant”
path evaluations. Then we present our novel FQ-Index for processing streamed
XML fragments based on optimized tid+ tree. We present the main matching
algorithms for query handling with FQ-Index at last.

3.1 Tid+ Tree Construction

In our earlier framework [12], we propose tid tree to represent the structural
patterns in an XPath query. Each navigation step in an XPath is mapped to a
tree node labelled with a tag code, which encodes the tsid and “TYPE” together.
For “F iller = true”, we set the end of the tag code with “1”, otherwise we set
it with “0”. As for tsid, we separate it from the “TYPE” code by a dot. By
checking the end of the code, we can easily tell subroot nodes (i.e. the root of a
filler) from subelement nodes (i.e. the node that locates in a filler but is not the
root of the subtree).

We expand the concept of tid tree into tid+ tree to represent multiple query
expressions and enable further analysis and optimizations on query operations.

Given a collection of XPath expressions P = {p1, p2, · · · , pn}, we map multiple
queries into a single tree, noted as tid+ tree, by defining roott as a special
root node, which allows for conjunctive conditions at the root level. Parent-
child relationship is represented by a single arrow, while ancestor-descendant
relationship is represented by a double arrow. And the output of each query
qi is depicted by a single arrow and marked with the ID of qi. In order to
distinguish between the nodes that represent a tag code and the nodes that
represent an atomic predicate, we represent nodes of tag code with circles and
values of predicate with rectangles. The operators (such as <, >, ≥, ≤, =)
and boolean connectors are represented with diamonds. Note that the common
prefixes of all the queries are shared.

Figure 4 shows an example of such a tid+ tree, representing three queries on
the XML document described in Section 1, where Query 1 and Query 2 share the
common prefix “/commondities/vendor” (i.e./1.1/1.2). Since “name” in Query
2 corresponds to two tsids in the tag structure, we enumerate all the possible
tsids in the tid+ tree such that Query 2 has two output arrows.

Efficient Evaluation of Multiple Queries on Streamed XML Fragments 65

Since tid+ tree is the base for FQ-Index to install multiple XPath expressions
into the indexing structure, the optimization of tid+ tree impacts both the space
and performance of the index. We now introduce two kinds of optimizations on
tid+ tree to eliminate the redundant operations as early as possible.

1.1

2.1

4.0

5.1

9.0

6.0

=

Q 1=/com m odities/vendor/item s/item [nam e="PD A"]/price
Q 2=/com m odities/vendor//nam e
Q 3=//vendor/*/*/m ake

6.03.0

*

7.0

*

"PDA"

root

{Q1} {Q2} {Q2} {Q3}

2.1

Fig. 4. Tid+ Tree

Duplication Pruning. Given an XPath p, we define a simple subexpression s
of p if s is equal to the path of the tag nodes along a path < v1, v2, · · · vn > in
the tid tree of p, such that each vi is the parent node of vi+1(1 ≤ i < n) and the
label of each vi (except perhaps for v1) is prefixed only by “/”.

Definition 1. Given a collection of XPath expressions P = {p1, p2, · · · , pn},
subexpression s is a common subexpression if more than one tid tree of pi con-
tains s. If a common subexpression is also a simple subexpression, we define it
as a simple common subexpression. A common subexpression s is defined as a
maximal common subexpression if no other longer common subexpression in the
tid+ tree of P contains s.

Common subexpressions degrades the performance significantly, especially when
the workload has many similar queries. Since the common prefixes of all the
queries are shared in tid+ tree, we consider optimizing tid+ tree by grouping all
the common subexpressions in the structure navigation.

In order to extract the common subexpressions, we have to find out the struc-
tural relationship shared among the queries. By taking advantage of tag struc-
ture, we can replace “//” in tid+ tree with the corresponding structure consisting
of “/” and expand “*” in tid+ tree to specify query execution. As for twig pat-
tern query, we add the subroot nodes involved in the branch expression into
the tid+ tree if the testing node and the branch expression belong to different
fragments. In this way, common subexpressions turn out to be simple common
subexpressions, and all the possible duplicated expressions can be pruned off.

Figure 5(a) presents the tid+ tree in Figure 4 after eliminating “//” and “*”
based on tag structure, where the dashed regions enclose the subexpression (i.e.
/1.1/2.1/4.0/5.1) shared by Query 2 and Query 3 while the solid regions enclose
the subexpression (i.e. /1.1/2.1/4.0) shared by Query 1, Query 2 and Query
3. Since tid node 5.1 in Query 1 has a predicate, which is not included in the
other two queries, we treat the tid node 5.1 in Query 1 as a different node and

66 H. Huo et al.

exclude it in the common subexpression. Note that Figure 5(a) captures all the
maximal common subexpressions among the queries. The optimized tid+ tree
after pruning off the duplicated subexpressions is presented in Figure 5(b).

1.1

2.1

4.0

5.1

9.0

6.0

=

3.0

6.0

4.0

7.0

5.1

"PDA"

root

{Q 1} {Q 2}{Q 2}
{Q 3}

2.1

1.1

4.0

5.1

1.1

2.1

4.0

5.1

9.0

6.0

=

3.0

"PDA"
{Q 1}

{Q 2}

{Q 2}

7.0

{Q 3}

root

5.1

6.0

(a) Common Subexpressions in Tid+ Tree (b) Tid+ Tree after Duplication P runing

Fig. 5. Duplication Pruning on Tid+ Tree

Dependence Pruning. Before we describe the dependence pruning policy for
tid+ tree, we first introduce some definitions of operation dependence.

Definition 2. Given any pair of nodes in a tid+ tree < n1,n2 >, if the query
result of n2 is valid only if the query result of n1 is valid, n2 is defined as
dependent on n1. We use a directed edge e = (n1, n2) to imply the dependence
between n1 and n2.

Definition 3. Given any pair of nodes in a tid+ tree < n1,n2 >, we say that
n2 is subsumption dependent on n1 if: (i) n2 is dependent on n1, and (ii) the
query result of n2 is a subset of the query result of n1.

In streaming XML fragment model, operation dependence usually occurs when
the query results to preceding query node and successive query node are in
the same fragment(here we are not considering predicates), since the fragments
with the same tsid share the same structure so that any fragment matching the
preceding node also matches the successive one. In most cases, the dependence
operation can be eliminated by removing the successive query nodes.

When the query node involve predicates, if the result set of predicate p2 is
a subset of that of predicate p1, we refer to p2 as subsumption dependent on
p1. Subsumption-free queries are intuitively queries that do not contain “redun-
dancies”. Some queries can be rewritten to be subsumption-free, by eliminating
redundant portions.

Much of our analysis focuses on pruning off operation dependencies on tid
nodes caused by fragmentation to eliminate “redundant” structural evaluations.
Since tag structure guarantees that the fragments with the same tsid share the
same structure, we keep all the subroot nodes and delete the subelement nodes
which have no predicates and are not the leaf nodes in tid+ tree. According to tag
code, subroot nodes ended with “1” are kept in the tid+ tree while subelement
nodes ended with “0” and without predicate nodes in their children are removed.
Thus the original tid+ tree becomes an optimized tid+ tree.

Efficient Evaluation of Multiple Queries on Streamed XML Fragments 67

Figure 6(a) shows the operation dependence in the optimized tid+ tree in
Figure 5(b), where tid node 4 depends on tid node 2 and is referred to as a
dependent node. We use dashed arrows to represent operation dependencies,
and dashed rectangles for dependent nodes. Figure 6(b) shows the optimized
tid+ tree after pruning off the operation dependencies.

1.1

2.1

4.0

5.1

9.0

6.0

=

3.0

"PDA"
{Q 1 } {Q 2 }

{Q 2 }

7.0

{Q 3 }

root

5.1

6.0

1.1

2.1

5.1

9.0

6.0

=

3.0

"PDA"
{Q 1 } {Q 2 }

{Q 2 }

7.0

{Q 3 }

root

5.1

6.0

(a) T he Dep end ence No d e in T id + T ree (b) T he T id + T ree after Dep end ence P runing

Fig. 6. Dependence Pruning on Tid+ Tree

3.2 FQ-Index Scheme

Our FQ-Index is a hybrid index structure, which indexes both the queries and
fragments on the basis of optimized tid+ tree. An FQ-Index consists of two key
components: (1) a query index (denoted by QI), constructed by tid+ tree to
facilitate the detection of query matchings in the input XML fragments; and (2)
a filler table (denoted by FT), which stores the information about each XML
fragment. Both of the components share a hash table for subroot nodes in tid+
tree. We now describe each of these two components in detail.

Query Index. Query index is generated from optimized tid+ tree before
processing to keep track of the query steps that are supposed to match next. Let
P = {p1, p2, . . . , pn} denote the set of XPath expressions, and T = {t1, t2, . . . , tn}
denote the subroot nodes in optimized tid+ tree. Query index QI of P for each
ti is a 4-tuple list. Each item in the query list for ti is a 4-tuple (query id set,
predecessor, successor, predicate), denoted as q-tuple, where:

– Query id set represents the queries in set P that share the same predicate,
predecessor and successor.

– Predecessor refers to the tag code of the fragment in tid+ tree corresponding
to the parent node of qi. (Predecessor = NULL if qi is a root node.)

– Successor refers to the tag code of the fragment in tid+ tree corresponding
to the child node of qi. (Successor = NULL if qi is the end of the query.)

– Predicate is the branch expression of twig path queries in tid+ tree.

Predecessor and successor in each item keep track of the query steps, while
predicate keeps the reference of branch expressions. With the help of query id
set, we can avoid duplicate evaluations shared by multiple queries. Since subroot

68 H. Huo et al.

nodes indicate the tsids of the fragments involved in the queries, we can directly
access the relative query steps by the corresponding entry of the hash table
when a fragment arrives. Figure 7 presents the query index converted from the
optimized tid+ tree(“all” represents all of the queries in set P) in Figure 6(b).

ts id= 1 fid= 0
hid (1 , 21 ,41)

h id (2 , 3 , . . . ,20)
ts id= 2 fid= 1

:
:

H A SH TA BLE Q U ERY IN D EX

1.1

2 .1

5 .1

(all, null, 2 .1 , null)

(q1 , 2 .1 , 9 .0 , 6 .0="P DA")

(q2 , 1 .1 ,3 .0 , null)(all, 1 .1 , 5 .1 ,null)

(q2 , 2 .1 , 6 .0 ,null) (q3 , 2 .1 , 7 .0 , null)Q

F

F

F

Q

Q

O utput: Q 1:{} Q 2:{name/text()} Q 3:{}

0 1,21 ,41 <all,T >

2,3,.. . ,201 <all,T>

Fig. 7. FQ-Index of Tid+ Tree

Filler Table. As fragments in the original document may arrive in any order
and query expressions may contain predicates at any level in the XML tree, it is
necessary to keep track of the parent-child links between the various fragments.
We maintain the fragments’ information in filler table at each entry of the hash
table when processing arrived fragments. Since the structural information corre-
sponds to a small part of the actual data in the XML fragment, the rest of which
is not relevant in producing the result, we discard the fragments corresponding
to intermediate steps to save space cost.

The filler table FT contains one row for each fragment. Each row in FT is
denoted as a f-tuple (fillerid, {holeid}, {< qi, tag >}), in which tag can be set
to true, false, undecided (⊥), or a result fragment corresponding to qi in set
P . While the former three values are possible in intermediate steps that do not
produce a result, the latter is possible in the terminal steps in the tid+ tree
branch. Figure 7 shows the construction of filler table.

With the hash table, the filler table and the query index cooperate together
as FQ-Index. Taking advantage of the query index, we can quickly inquire the
parent fragment by matching the same holeid in the predecessor’s FT . In this
way, filler table enhances the performance by only maintaining the information
of fragments that will contribute to the results. Thus FQ-Index efficiently sup-
ports the online evaluation of multiple queries over streamed XML fragments,
including both simple path queries and twig pattern queries.

3.3 Query Handling

In this section, we address the main algorithms of query evaluation in M-XFPro.
The basic idea of the matching algorithms is as follows. We use the query index
QI to detect the occurrence of matching tsids as the input fragments stream
in, since before we record the structrual information of a fragment, it needs to
verify if the preceding operation has excluded its parent fragment due to either
predicate failure or due to exclusion of its ancestor.

Efficient Evaluation of Multiple Queries on Streamed XML Fragments 69

For example, Query 1: /commodities/vendor[name=“Wal-Mart”]//item [ma-
ke = “HP”] is a twig pattern query with two atomic predicates, while Query
2: /commodities/vendor[name=“Price-Mart”]//item[make=“IBM”] is a similar
query just with different predicates. When the “commodities” fragment with
tsid “1”, filler id “0” and hole ids “1, 21, 41” arrives, the FT to the en-
try 1 is updated as (0, {1, 2, 41}, {< all, T >}). Note that, the “commodities”
filler can be discarded as it is no more needed to produce the result and the
hole filler association is already captured. This results in memory conserva-
tion on the fly. When the “vendor” fragment with tsid “2”, fillerid “1”, holeid
“2, 3, · · · , 20” and “name=Wal-Mart” arrives, the FT to the entry 2 is updated
as (1, {2, 3, · · · , 20}, {< q2, T >, < q3, F >}). When the “item” fragment with
fillerid “2” arrives, only after determine that the filler matches the predicate of
Query 1 [make = “HP ′′], the fragment can be regarded as the query result of
Query 1. Taking advantage of QI, it won’t be mixed up with the result of Query
2 [make = “IBM ′′] since the Predecessor has excluded its parent fragments.

Algorithm 1. startElement()
1: if (isFragmentStart()==true) then
2: fid=getFid(); tsid=getTsid();
3: if (hashFindEntry(tsid)!=null) then
4: fillQueryFT(tsid,createFTuple(fid));

// generate an f-tuple and fill it into the corresponding queries’ lists in FT ;
5: end if
6: end if
7: if (isHoleTag()==true) then
8: hid=getHid(); tsid=getTsid();
9: addQueryFT(tsid,hid);

// find the entry by tsid and fill hid into the corresponding f-tuple;
10: else if (isElementTag()==true) then
11: tsid=getTsid();
12: if (isQueryRelatedTag()==true) then
13: relevantTag==true;
14: end if
15: end if

We implement the callback functions startElement() and endElement() of
SAX interface when parsing each XML fragment. In algorithm 1, if an element
is a subroot node, the information of the corresponding fragment in which it
falls will be captured and loaded into FT. Similar operation is performed when
encountering the element representing a hole. The variable relevantTag will be
set to true if the element is query related. In algorithm 2, parent fragment and
predicate fragment of the filler containing the element are inquired, and tag
value of the corresponding f-tuple is set to true in case both kinds of the above
fragments are valid. Child fragments need to be trigged as well, for some early
arrived fragments may be set to “⊥” and waiting for their parent fragments.

70 H. Huo et al.

Algorithm 2. endElement()
1: if (isFragmentEnd()==true) then
2: // ft is the corresponding f-tuple of the current fragment
3: if (findParentFTuple(ft)!=null) then
4: ft.parentValue=parentFTuple(ft).parentValue;
5: end if
6: if (findTwigPredicate(ft)!=null) then
7: ft.conditionValue=conditionFTuple(ft).conditionValue;
8: end if
9: if (findChildFTupleList(ft)!=null) then

10: for each child f-tuple ftc of ft do
11: ftc.parentValue=ft.parentValue && ft.conditionValue;
12: end for
13: end if
14: end if

4 Performance Evaluation

In this section, we present the results of performance evaluation of various algo-
rithms over queries with different types, depths and document sizes on the same
platform. We consider the following algorithms: (1) M-XFPro, (2)Du-XFPro, i.e.
M-XFPro based on tid+ tree without dependence pruning, (3)De-XFPro, i.e. M-
XFPro based on tid+ tree without duplication pruning. All the experiments are
run on a PC with 2.6GHz CPU, 512M memory. Data sets are generated by the
xmlgen program [14]. We have written an XML fragmenter that fragments an
XML document into filler fragments to produce an XML stream, based on the
tag structure defining the fragmentation layout. And we implemented a query
generator that takes the DTD as input and creates sets of XPath queries of
different types and depths.

In figure 8(a) three kinds of processing strategies over various query num-
bers are tested and compared. The numbers of queries in each set are 1,2,10
respectively. From the result, we can conclude that dependence pruning and du-
plication pruning in M-XFPro play an important role in efficiently evaluating
multiple queries. In the following experiments, we fix the query number and
test other properties of the queries. Figure 8(b) shows the performance on dif-
ferent types of queries: (1)simple path queries only involving “/”, denoted as
Q1 (2)simple path queries involving “*” or “//”, denoted as Q2 (3)twig pattern
queries with value predicates, denoted as Q3. We can see that for any query
type, M-XFPro outperforms its counterparts, and query types do not bring in
exceptions, i.e. query performance doesn’t vary much on different query types.
For simplicity, but without losing generality, we only test twig queries in the
next two set of experiments. Figure 8(c) shows the impacts of various query
depths. Considering the depth of the XML documents generated by xmlgen, we
design three query sets of depth 3, 5 and 7 respectively. As is shown in the figure,
when the depth increases, the processing time of De-XFPro and Du-XFPro in-
creases due to the increased path steps. While with duplication and dependence

Efficient Evaluation of Multiple Queries on Streamed XML Fragments 71

pruning, M-XFPro greatly reduces path steps, furthermore time cost of deep
queries is much less than short queries, since fragment processing is much faster.
Figure 8(d) shows the influence of different document size: 5M, 10M and 15M.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

5 10 15
(d) Document Size

E
l
a
p
s
e

T
i
m
e
(
m
s
)

De-XFPro

Du-XFPro

M-XFPro

0

50000

100000

150000

200000

250000

300000

350000

400000

3 5 8
(c) Depth of Queris

E
l
a
p
s
e

T
i
m
e
(
m
s
)

De-XFPro Du-XFPro M-XFPro

0

200000
400000

600000

800000

1000000

1200000

1400000

1600000
1800000

2000000

1 2 10
(a) Number of Queries

E
l
a
p
s
e

T
i
m
e
(
m
s
)

De-XFPro

Du-XFPro

M-XFPro

0

50000

100000

150000

200000

250000

300000

350000

400000

Q1 Q2 Q3
(b) Differen Type of Queries

E
l
a
p
s
e

T
i
m
e
(
m
s
)

De-XFPro Du-XFPro M-XFPro

Fig. 8. Experimental Results

5 Conclusions

In this paper, we have proposed a framework and a set of techniques for process-
ing multiple XPath queries over streamed XML fragments. We first model the
multiple queries into tid+ tree, which helps to transform queries on element
nodes to queries on XML fragments and serves as the base for analyzing “redun-
dant” operations caused by common subexpression and operation dependence.
Based on optimized tid+ tree after duplication pruning and dependence prun-
ing, FQ-Index is proposed to index both the queries and fragments by sharing a
hash table for tid nodes, which supports not only simple path queries, but also
twig pattern queries. Our experimental results over multiple XPath expressions
with different properties have clearly demonstrated the benefits of our approach.

Acknowledgments. This research was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 60273079 and 60573089) and Spe-
cialized Research Fund for the Doctoral Program of Higher Education (SRFDP).

References

1. W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edi-
tion). (2000) http://www.w3.org/TR/REC-xml.

2. W3C Working Draft: XML Path Languages (XPath), ver 2.0. (2001) Tech. Re-
port WD-xpath20-20011220, W3C, 2001, http://www.w3.org/TR/WD-xpath20-
20011220.

72 H. Huo et al.

3. W3C working draft: XQuery 1.0: An XML Query Language. (2001) Technical
Report WD-xquery-20010607, World Wide Web Consortium.

4. Bose, S., Fegaras, L.: XFrag: A query processing framework for fragmented XML
data. In: Eighth International Workshop on the Web and Databases (WebDB
2005), Baltimore, Maryland (June 16–17,2005)

5. Bose, S., Fegaras, L., Levine, D., Chaluvadi, V.: A query algebra for fragmented
XML stream data. In: Proceedings of the 9th International Conference on Data
Base Programming Languages, Potsdan, Germany (September 6–8, 2003)

6. Altmel, M., Franklin, M.: Efficient filtering of XML documents for selective dis-
semination of information. In Abbadi, A.E., Brodie, M.L., Chakravarthy, S., Dayal,
U., Kamel, N., Schlageter, G., Whang, K.Y., eds.: Proceedings of the 26th Inter-
national Conference on Very Large Data Bases, Cario, Egypt, Morgan Kaufmann
(2000) 53–63

7. Diao, Y., Fischer, P., Franklin, M., To, R.: YFilter: efficient and scalable filtering
of XML documents. [15]

8. Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient fltering of XML
documents with XPath expressions. [15]

9. Gupta, A.K., Suciu, D.: Stream processing of XPath queries with predicates. In:
SIGMOD Conference, San Diego, CA, ACM (2003) 419–430

10. Lee, M.L., Chua, B.C., Hsu, W., Tan, K.L.: Efficient evaluation of multiple queries
on streaming XML data. In: Eleventh International Conference on Information
and Knowledge Management, McLean, Virginia, USA (November 4–9, 2002)

11. Fegaras, L., Levine, D., Bose, S., Chaluvadi, V.: Query processing of streamed
XML data. In: Eleventh International Conference on Information and Knowledge
Management (CIKM 2002), McLean, Virginia, USA (November 4–9, 2002)

12. Huo, H., Wang, G., Hui, X., Zhou, R., Ning, B., Xiao, C.: Efficient query processing
for streamed XML fragments. In: The 11th International Conference on Database
Systems for Advanced Applications, Singapore (April 12–15,2006)

13. Huo, H., Hui, X., Wang, G.: Document fragmentation for XML streams based on
hole-filler model. In: 2005 China National Computer Conference, Wu Han, China
(October 13–15,2005)

14. Diaz, A.L., Lovell, D.: XML Generator. (1999) http://www.alphaworks.ibm.com/
tech/xmlgenerator.

15. Proceedings of the the 2002 International Conference on Data Engineering. In:
ICDE Conference, San Jose, California, USA (2002)

Automated Extraction of Hit Numbers from Search
Result Pages

Yanyan Ling1, Xiaofeng Meng1, and Weiyi Meng2

1 School of Information, Renmin University of China, China
{lingyy, xfmeng}@ruc.edu.cn

2 Dept. of Computer Science, SUNY at Binghamton, Binghamton, NY 13902, USA
meng@cs.binghamton.edu

Abstract. When a query is submitted to a search engine, the search engine re-
turns a dynamically generated result page that contains the number of hits (i.e.,
the number of matching results) for the query. Hit number is a very useful piece
of information in many important applications such as obtaining document fre-
quencies of terms, estimating the sizes of search engines and generating search
engine summaries. In this paper, we propose a novel technique for automatically
identifying the hit number for any search engine and any query. This technique
consists of three steps: first segment each result page into a set of blocks, then
identify the block(s) that contain the hit number using a machine learning ap-
proach, and finally extract the hit number from the identified block(s) by com-
paring the patterns in multiple blocks from the same search engine. Experimental
results indicate that this technique is highly accurate.

1 Introduction

Today the Web has become the largest data repository and more and more information
on the Web can be accessed from search engines and Web databases (WDBs). Ordinary
users can retrieve information from search engines and WDBs by submitting queries
to their search interfaces. As we observed, besides the wanted results, most web sites
also return a number (we call it hit number) indicating how many results are found for
this query. Fig.1shows an example obtained by submitting a query “game” to Ikotomi,
which is a web site providing online technical documents. In the result page, besides
the results, we also get knowledge from the hit number on how many matching records
there are in Ikotomi’s database (in our example, it is 1400). Furthermore, by comparing
the hit numbers of different web sites providing similar information, such as docu-
ments on java, a rank can be assigned to each one showing their capabilities. And based
on them, interesting applications of integrating or utilizing these web sites can be im-
plemented, such as giving user suggestions according to his/her queries. For example,
when a user wants to find technical documents using key word “java, the system can
suggest to him/her the web site having the largest database about Java, which probably
returns results he/she wants. Therefore, there is a need for the technique for automatic
discovery of this hit number from any search result web pages.

Much useful information about a search engine can be derived from the hit num-
bers. First, for a single-term query t submitted to a search engine S, the hit number

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 73–84, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

74 Y. Ling, X. Meng, and W. Meng

is in fact the document frequency of t in the document collection indexed by S. As
we know, document frequency information is critical in some applications, such as
metasearch engines that utilize document frequency of each term to compute the impor-
tance/usefulness of terms in representing and differentiating different document data-
bases. Second, the hit numbers can be used to estimate the size of search engines. Third,
hit numbers can be used to classify search engines. For example, the method proposed
in [4] uses the hit numbers of probe queries, which represent specific categories (e.g.
sports), to compute the coverage and specificity of each search engine and then classify
it into an appropriate category of a concept hierarchy. These applications suggest that,
we need an automatic hit number extraction technique to be devised. Despite the im-
portance to obtain the hit numbers automatically, this problem has not been seriously
studied before to the best of our knowledge.

Intuitively, we may think that most hit numbers are placed in a special block in
the result web pages (we call it the hit number block, HNB for short).“1400 results
found, top 500 are sorted by relevance” is the HNB in Fig.1. Sometimes by using some
simple patterns, HNBs may be identified and the hit numbers can be extracted. This
naive solution does solve this problem in some cases, but, unfortunately, when we want
to extend it and devise a general method, it broke. Our study shows that it is quite
difficult to accurately and automatically extract hit numbers from general search result
web pages because HNBs vary from one web site to another. In other words, there are
numerous formats and patterns, which will be studied in Section 2 in detail. So, the main
problem studied in this paper is to automatically find hit numbers in returned result web
pages of search engines or web databases, and our contributions are: (1) we report a
detailed study on various cases of HNBs; (2) we propose a novel method for solving
the hit number extraction problem by applying machine learning techniques; and (3)
we evaluate on our method experimentally and the experimental results show that our
approach is highly effective.

Fig. 1. A Result Page obtained from Ikotomi

The rest of the paper is organized as follows. In Section 2, we report our survey of
the diverse patterns of hit number presentations by different systems. From this survey,
we can see that the hit number extraction problem is not trivial. In Section 3, a result
page is represented as a set of blocks and we discuss how to identify the HNBs among
all blocks based on its special features including layout features, visual features and
semantic features. In Section 4, we propose an approach to extract the hit numbers
from the HNBs. In Section 5, we report our experimental results based on 500 real result

Automated Extraction of Hit Numbers from Search Result Pages 75

pages from various search engines and WDBs. We review related works in Section 6.
We conclude the paper in Section 7.

2 Diversity of Hit Number Patterns

In this Section we show our investigation on various hit number patterns based on ob-
serving numerous real life Web sites. Below, we summarize our investigation: first we
introduce some intuitive patterns used by web page authors; second we show many
diverse cases which cannot easily be covered by naive pattern recognition techniques.
Finally, in support of our strategy, we will also discuss the reason why intuitive ap-
proaches actually cannot solve the hit number extraction problem.

2.1 Intuitive Patterns of Hit Numbers

Web page authors frequently report the hit numbers of specific queries using a literal
structure containing the word “of”. Table 1 shows some examples of this kind. Gen-
erally speaking, this pattern consists of more than one number, which is usually in the
order “X V Y U Z”, where “X” and “Y” are two numbers forming a range, “V” is
preposition such as “-”, “to” and “through”, “U” contains a variation of the “of” struc-
ture such as “of about” and “out of”, and “Z” is the hit number we want. Based on our
investigation, 41.7% (167 out of 400) result pages contain hit numbers in this pattern.
And as we also observed, designers of search engines prefer this kind of pattern, and
there are also some variations (e.g. the fourth example in Table 1 contains four numbers,
in which the fourth one denotes the query processing time).

Table 1. Most common pattern

(1) Jobs 1 to 50 of more than 1000
(2) Now displaying vehicles 1 - 4 of to-
tal 4
(3) Results 1 through 10 of about
19,000,000
(4) Hits 1-10 (out of about 1,259,425
total matching pages) in 0.51 seconds

Table 2. Active voice pattern

(1) Your search resulted in 1 business
that matched
(2) Your single word search for tax
found 202 names - top 150 listed
(3) Your search for “life” returned 230
of 33793 records
(4) Your search produced 26 records

Table 3. Passive voice pattern

(1) 32 documents match your query
(2) 24 objects returned
(3) 3 occurrence(s) found for “troy”
(4) 54 unique top-ten pages selected
from 48,809,621 matching results

Table 4. Diverse cases

(1) Document count: apple (30)
(2) There are 6 institutions
(3) For: “WEB” Total Hits: 40
(4) 2 Total Resources Below:
(5) Page: 1 2 3 4 5 of 100 or more hits

Our survey also shows that the designers of search engines and web databases also
like another type of pattern to show hit numbers. For example, Table 2 and Table 3 give
out some examples retrieved from web databases and search engines. In general, there
are two kinds of patterns. One embeds hit numbers in active voice structures (Table 2

76 Y. Ling, X. Meng, and W. Meng

shows examples of this kind). As we can see, the hit numbers usually follow a verb, such
as “return”, “result in”, and “produce”. Among the 400 we surveyed, 122 or 30.5% are
in this pattern, and some variations also exist, such as the 3rd example in Table 2, which
contain extra numbers. The other pattern embeds hit numbers in passive voice structures
(Table 3 shows some examples of this kind). It is similar to the active voice case with
differences. The hit numbers appear before verbs, as we can see in the examples in
Table 3. 13.3% (53 out of 400) web pages we surveyed are in this pattern and there are
also variations.

Though most of the web pages (85.5% in all) are covered by intuitive patterns we
have discussed. Naively developing programs based on them do not lead to an effective
solution. Two reasons are as follows: (1) there are still 14.5% pages that are not covered
by these patterns; (2) variations for each pattern make it difficult to use only basic
patterns. Thus, we need a general, robust and automated solution.

2.2 Diverse Cases of Hit Numbers

The remaining 14.5% web pages introduce diverse cases on embedding hit numbers.
In our survey, we found out some formats that are beyond our imaginations. Table 4
displays some diverse cases. As one can see, some do not have any verbs (1st example),
some do not have complete sentences (1st, 3rd, and 4th examples). The appearance lo-
cation of hit numbers also varies, such as at the beginning of a sentence (4th example),
the middle of a sentence (2nd example), and the end of a sentence (1st and 3rd exam-
ples). One of the worst cases is the 5th example, where it does not show the accurate
hit number at all (it uses the word “more”). Instead it displays numbers like 1, 2, 3, 4,
5, and 100, which can easily cause most solutions to fail.

In summary, due to the diversity and unpredictability of the patterns used to present
hit numbers by different search systems, traditional pattern recognition strategies are
unlikely to work well for solving the hit number extraction problem. In this paper,
we explore the special features in the web context such as visual features and layout
features, to solve this problem.

2.3 The Problem of an Intuitive Solution

Before we introduce our solution, in this subsection we would like to discuss an intuitive
solution by giving the reasons why it is not general enough, which also provides a
clearer picture on how complex this problem is.

One may think that the hit numbers can be easily detected since they often appear
at the beginning of the result pages and have distinguishing colors to attract users’
attention. In fact, this is not true in general. Sometimes the hit number appears before
the data records while other times after them. Due to the different sizes of data regions
and advertising regions of different result pages, the absolute positions of hit numbers
on result pages are uncertain. Also, only a small percentage of result pages use special
colors to display hit numbers.

Therefore, based on all these analyses above, we take all the helpful cues into con-
sideration because none of them is a decisive factor. In our method, all these helpful
information are utilized to achieve high performance. Generally speaking, the basic
idea of our approach is that we first split web pages into blocks (we will explain it be-
low) and select the ones that probably contain hit numbers, and then we check all these

Automated Extraction of Hit Numbers from Search Result Pages 77

blocks in the hope of finding hit numbers. Thus our method consists of following two
main steps - Hit Number Block discovery and Hit Number extraction.

3 Hit Number Block Discovery

As we have stated, the mission of this step is to split web pages into blocks and then
select the ones that probably contain hit numbers. In our strategy, a block in web pages
is just a group of adjacent words, in which no more than 3 consecutive white spaces are
allowed. By ignoring tags in web pages, result web page can be split into many blocks
according to this definition, and we call them result page blocks (RPB for short). In
Fig.1, the contents in thick-lined boxes are examples of RPBs. After a result web page
is split into a set of RPBs, the next step is to identify HNB(s), which probably contain
hit numbers.

3.1 Splitting Web Page and Preprocessing RPBs

Splitting web page into RPBs is easy and straightforward. By viewing web pages as a
token sequence, RPBs can be derived according to their definition, where in our work, a
token can be a HTML tag, a single word, or consecutive white spaces. As the techniques
used for splitting are fairly simple, we do not discuss them here.

Next we do basic preprocessing on obtained RPBs. Two kinds of RPBs will be re-
moved from the set as they definitely do not contain hit numbers. One is RPBs that do
not contain any digit, which are definitely not hit number block. The other is RPBs that
do contain digit(s) but these digit(s) cannot be hit numbers. For example, Such RPBs
contain only float numbers (they can be easily identified by their formats), or numbers
for prices (they have a common prefix such as “$”), and numbers for date (they usually
are concatenated by special characters, such as “/”). After preprocessing, for a given re-
sult web page, the RPBs that contain possible hit numbers are identified. The remaining
steps only need to identify whether they contain hit numbers or not. In our solution, a
machine learning method is employed to perform this.

3.2 HNB Identification by Decision Tree

Many features of web pages, which can be discovered by simply observing example
web pages, could be utilized to identify hit number blocks. However, not all of these
features are significant. Some of them are critical in identifying hit number block while
some are not. Thus we need a mechanism to discover and select significant features.
Thus in our work we apply the C4.5 learning technique to induce a decision tree, which
is implemented based on Weka [6].Then we can do identifications based on induced
decision tree. In overall picture, the steps of our strategy are as follows.

1. We select some example web pages, and manually identify HNBs from RPBs. The
results will be recorded in a log file.

2. For each example web page, values of various web page features of each block are
checked and calculated. The results will also be logged.

3. We apply C4.5 algorithm to induce a decision tree with selected examples. Each
condition in decision tree is represented in the form whether a specific web page
feature is fulfilled.

78 Y. Ling, X. Meng, and W. Meng

4. Finally we evaluate the induced decision tree with training set and possibly
refine it.

In our work, for each RPB, almost 50 web features are checked and calculated. As we
investigated, some features have discrete values, such as where specific word exists, but
most of them have continuous values, such as various offsets. Therefore we prefer the
C4.5 algorithm to ID3 for its ability to handle continuous values. The most important
part, which is also our contribution, is to identify various web page features. Next we
will discuss each of them in detail.

3.3 Web Page Features

This subsection describes various web page features used in inducing decision tree for
identifying HNBs. You will see that for each RPB, various features can be utilized to do
identification. In particular, human beings also rely on these features to separate HNB
from other parts of the web page. They can be visual cues, text characteristics, and even
frequent words. In the following paragraphs we will describe them one by one. Before
doing that, we would like to introduce an illustrative example first, which is shown in
Fig.2. As we can see, there is a hit number block “3577 stories and blog posts contain
the term health” in the broken-line box, and let us mark it as B.

HNB

Underlying colored block

Fig. 2. A Result Page obtained from AlterNet

Layout Related Features. Firstly, we observe that HNB is not randomly placed on a
result page and the HNB is usually small in size. Thus the absolute position of each
RPB in the result page is taken into consideration, such as BlockOfsetX, BlockOfsetY,
BlockWidth, BlockHeight. For example, the distance between the left border of B and
the left border of the page along the X-axis is 14 pixels (B.BlockOfsetX = 14 pixels).

Secondly, considering the result page structure, we find that HNB(s) usually oc-
cur either near the beginning or the end of the data region. Hence, the relative dis-
tance between HNB(s) and data regions should also be taken into consideration, such
as DataRegionOfsetX, DataRegionOfsetY, DataRegionWidth, DataRegionHeight, Rela-
tiveY1, RelativeY1Ra, RelativeY2 and RelativeY2Ra. Many works deal with the problem
of data region identification. [5] proposed a technique which is able to mine both con-
tiguous and noncontiguous data records. [5] proposed a novel partial alignment tech-
nique based on tree matching and extract data region very accurately. In general, we
cannot dismiss RPBs within the data region,because none of the current techniques on

Automated Extraction of Hit Numbers from Search Result Pages 79

data region identification is perfect.So we will calculate the above features for each
candidate RPB. For example, B is closer to the top border of the data region, and the
distance between the bottom border of RPB and the top border of the data region along
the Y-axis is 38 pixels (B.RelativeY1 = 38 pixels).

Finally, sometimes the HNBs are emphasized with a background block with out-
standing color to attract people. Then some layout features of the background block are
taken into consideration, such as BoxOfsetX, BoxOfsetY, BoxWidth and BoxHeight. If
no background block exists, the 4 features are set to zero. For example, the height of
the background block of B is 42 pixels (B. BoxHeight = 42 pixels).

Color Related Features. This class of features is based on our observation that HNBs
on a result page usually have special appearances distinguishable from other RPBs.
The designers of Web pages often make the HNB salient with outstanding background
color and foreground color, in order to emphasize it and attract users’ attention. There-
fore, some color related features are taken into consideration, such as BackgroundColor,
ForeColor, BodyBackgroundColor, ColorCount and IsHighlight. For example, the color
behind the content of B in Fig.2 is gray (B. BackgroundColor=gray). In addition, 2 dif-
ferent font colors are used in B (B.ColorCount=2).

Characters Related Features. Firstly, we observed that numbers occurred in HNB(s)
may have their own features distinguishable from the numbers in other RPBs. Some
features such as DigitalCount, CharacterCount, DigitPercent, NumberCount, Word-
Count and NumberPercent are taken into considerations. For example, the amount
of numbers appeared in the RPB (NumberCount) is usually within a range. In Fig.2
B.NumberCount=1 (“3577”) and B.NumberPercent=11% while NumberPercent
denotes the ratio of the NumberCount and the total amount of words in the RPB.

Secondly, we observed that seldom words were hyperlinked within a HNB and some
words were overstriked in order to emphasize them and attract the users’ attention.
Therefore, LinkCount and BoldCount may also help in identifying HNB. For example,
B.BoldCount=2 while 2 words are overstriked (“3577” and “health”).

Semantic Related Features. This class of features is based on our observation that
some frequent words play an important role in HNB identification. These words will
be called clue words. A survey is conducted to identify the frequent terms in a set of
more than 400 HNBs from different result pages. Top-n words were selected (here n is
set to 20). A fraction of the results is listed in Table 5. Though such terms would often
appear in HNBs, their appearances alone are not enough to accurately identify HNBs.
First, such words may also appear in other RPBs. For example, “of” appears in “Page
1 of 20”. Second, some HNBs do not have any of these frequent words. For example,
none of the frequent words appear in “There are 6 institutions” even though this block
is a real HNB.

Frequency =
occurrences of HNBs

total number of HNBs

For each frequent word w, we use B.Count (w) to denote the number of times the
word occurs in block B. For 20 frequent words, 20 such Counts will be collected as

80 Y. Ling, X. Meng, and W. Meng

20 features for each block. In addition, we use CountTotal to denote the summation of
these Counts for each block. Overall, there are 21 (20+1) features involved in this class.
For example, B.Count(Term) denotes how many times the word “term” occur in B and
we have B.Count(Term) = 1.

Table 5. Frequent Terms

Terms Frequency Terms Frequency
- 47% search 17%

result 38% return 16%
of 34% document 11%
for 19% you 11%

match 18% found 9%
show 17%

4 Hit Number Extraction from HNB

After the HNBs are found, the next step is to extract the hit numbers from them. Intu-
itively, we may think that the largest number in a HNB is the hit number. However this
simple heuristic rule is not valid in general. For example, there is an example “Found
72 of 1,434 searched” we find when doing investigations. It is clear that the hit number
is “72”, which is not the largest number (“1,434”).

Fig. 3. Example obtained from Salon(www.dir.salon.com)

On the other hand, one may discover that for a given web site, different result pages
returned by submitting different queries share similar template. For example, consider
the HNBs, where one is “1-10 of 4,199 results for java” and the other is “1-10 of 7,509
results for database”. By comparing them, we find out that only hit numbers (4,199 vs.
7,590) and query keywords (java vs. database) are different. It seems a solution can
be devised based on comparing changed numbers. Unfortunately, it is also not general
enough. Let us check a complex example in Fig.3. By comparing “Race, articles 1- 13
of 120 << 2 3 4 5 6 7 8 9 10 >> Next” with “Craig Seligman, articles 1- 13 of 16 <<
1 2>> Next”, we can see that more than one number changed and the idea of simply
comparing changed numbers does not work.

With the above observations in mind, we learn that simple pattern-matching algo-
rithm is not general enough to identify hit numbers. A hybrid algorithm combining

Automated Extraction of Hit Numbers from Search Result Pages 81

CountResult

RelativeY1 LinkCount

CountFoundBackgroundColor CountShow

CountOf CountReturn

CountOf

IsHighlight

BlockHeight

No

>2 <=2

No Yes

<=#7E20FF

>0

<=0 >0

>17 <=17

>#7E20FF

No

<=0>0

Yes

<=0

NoYes

>0<=0

Yes

>0

No

<=0>0

Yes

No

No

NoYes

>24<=24

Fig. 4. Induced Decision Tree, which is induced with 50 features

characteristics observed so far should be invented. Thus in our work, we propose a
novel algorithm which identifies the hit number step by step.

The input of our algorithm consists of two or more HNBs retrieved by submitting
different query keywords to the same web site. And the output is the hit numbers (if
there is one). Our algorithm consists of the following steps:

1. Identify number sequence and remove it from HNBs: A number sequence is a se-
quence of integer numbers, such as “2 3 4 5 6 7 8 9 10” in the left portion and “1
2” in the right portion in Fig.3. Number sequences could not be hit numbers.

2. Identify range pattern and remove it from HNBs: A range pattern consists of two
integers with a connector in between, where the connector can be “-”, “to”, and
“through”. For example, “1-13” is a range pattern. Range patterns do not contain
hit numbers.

3. Identify all non-numbers and remove them from HNBs: The words or characters
strings that are all non-numbers in HNBs will be removed. For the two HNBs in
Fig.3, the static contents include “articles”, “of”, “<<”, “>>”, and “Next”.

4. Identify query keyword(s) that is a number and remove them from HNBs: They are
the key words which may be numbers submitted to retrieve the result pages. The
reason for doing this is to remove possible numbers used in queries.

5. Identify hit number by comparing HNBs: At this time, each number in HNB could
be the hit number and we simply choose the largest one.

The basic idea behind our algorithm is to gradually identify impossible cases. It is
easy to implement as well as effective. Next we will show experiments to support it.

82 Y. Ling, X. Meng, and W. Meng

5 Empirical Evaluation

5.1 Data Set

In this section we will show the empirical evaluations of our prototype system for hit
number extraction. First of all we introduce the data set of web pages obtained from
real-life Web pages.

These web pages are manually retrieved by submitting queries to Web sites listed in
www.completeplanet.com. To be general enough, web sites belonging to a broad range
(news, media, business, society, science etc..) are selected. In all, there are 500 web sites
in our data set, and for each of them, one result web page was retrieved. Half of them
are used as the training set and the other half as the testing set.

Table 6. Evaluation Result on Test Set

Possible HNB Found 271
Predicted HNB 264
Actual HNB 269
Precision 264

271 = 97.4%
Recall 264

269 = 98.1%

Each result web page in the entire data set is broken into RPBs, and we manually
mark out HNBs. Remember that we remove RPBs that cannot be HNBs (Section 3.1),
however, the number of RPBs (including Non-HNBs and HNBs) is lager than the num-
ber of web pages. In general, some web pages may contain more than one HNB for
different purposes. Therefore, we generated a training set containing 272 positive ex-
amples (HNB) and 352 negative examples (non-HNB). Similar work is also done on the
testing set where 269 positive instances (HNB) and 376 negative instances (non-HNB)
are identified. The training set will be used for inducing decision tree and the testing set
will be used in empirical evaluation.

5.2 Evaluatation of the HNB Discovery Algorithm

Fig.4 shows the decision tree induced from web page features described in Section 3.3.
9 out of 50 features are selected and associated with nodes in the decision tree. Feature
selection is automatically implemented by this classification algorithm. All 50 features
were weighted and ranked individually and the top 9 highest weighted features were
selected, which work very well on random selected HNB discovery in our experiments.

Then we do classification by using the reduced decision tree on our testing set. In
order to measure the performance, recall and precision are defined. They are defined as

Recall =
|PredictedHNB ∩ ActualHNB|

|ActualHNB| Precision =
|PredictedHNB ∩ ActualHNB|

|PredictedHNB|

where ActualHNB is the set of real HNBs in the testing set (it is manually obtained),
and PredicatedHNB is the set of HNBs discovered by our method.

Table 6 shows the evaluation result on the testing set. In fact, there are 269 actual
HNBs, which is known when we preparing this set. Our algorithm found 271 HNBs, in

Automated Extraction of Hit Numbers from Search Result Pages 83

which 264 of them are real HNBs (we manually checked them). Therefore, the precision
is 98.1 % and the recall is 97.4%. As we can see, our method is highly effective.

5.3 Evaluation of the Hit Number Extraction Algorithm

After HNBs are identified, we proceed to evaluate our hit number extraction algorithm
on them. In the previous step we obtained 264 HNBs, and, remember that in the training
step, we also obtained 277 HNBs. So in all there are 541 HNBs. After the execution, our
algorithm identified 536 right hit numbers (we also manually checked them). Therefore
the accuracy is 99.1%, which clearly shows that our algorithm is highly effective.

6 Related Work

Discovering hit numbers from search result pages of search engines and WDBs can
be considered as a special case of automated data extraction for specific information
from web pages. There are lots of works focusing on extracting specific information
from text documents and web pages of different domains. For example, there are works
which automatically identify human names or extracting individual product informa-
tion, such as price [3]. The closest work to ours is [1], which tried to detect and extract
postal addresses from web pages. But we are not aware of any prior work on automatic
hit number extraction. In terms of techniques used, we adopted and adapted two kinds
of techniques proposed in literature in our solution. One is classification by inducing a
decision tree. The work reported in [2] induced a decision tree for automatically dis-
covering search interfaces from a set of HTML forms. Similar classification techniques
are also used in our work. The other is utilizing visual cues in web pages. As reported
in [7], by utilizing specific visual cues, such as shape of HTML block, layout position,
data records can be automatically extracted from result web pages returned by search
engines. However, in our work, by inducing a decision tree from many visual features
of various representations of hit numbers, the above two techniques are combined to-
gether to form a novel and effective method to identify and extract specific pieces of
data, which in our case are hit numbers.

7 Conclusion and Future Work

In this paper, we proposed an automatic approach to extract hit numbers from the re-
sult pages returned from search engines and WDBs. As mentioned in the introduction,
automatic hit number extraction is important in several important applications. This ap-
proach consists of three steps. The first step segments a result page into a set of RPBs.
The second step applies a machine learning technique to discover HNB(s) from the
RPBs based on an extensive list of features. The third step identifies hit numbers from
HNBs based on comparing the patterns among multiple HNBs from the same site. Ex-
periments show our approach is highly effective with its accuracy close to perfection.

In the future, we plan to consider hit number extraction from result pages containing
multiple data regions. Each region may have its own hit number and the presence of
multiple data regions may pose new complications to this problem.

84 Y. Ling, X. Meng, and W. Meng

Acknowledgments

This research was partially supported by the grants from the Natural Science Foundation
of China under grant number 60573091, 60273018; China National Basic Research and
Development Program’s Semantic Grid Project (No. 2003CB317000); the Key Project
of Ministry of Education of China under Grant No.03044 ; Program for New Century
Excellent Talents in University (NCET) and NSF IIS-0414981.

References

1. Lin Can, Zhang Qian, Xiaofeng Meng, and Wenyin Lin. Postal address detection from web
documents. In WIRI, pages 40–45. IEEE Computer Society, 2005.

2. Jared Cope, Nick Craswell, and David Hawking. Automated discovery of search interfaces
on the web. In Klaus-Dieter Schewe and Xiaofang Zhou, editors, ADC, volume 17 of CRPIT,
pages 181–189. Australian Computer Society, 2003.

3. Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A scalable comparison-shopping
agent for the world-wide web. In Agents, pages 39–48, 1997.

4. Panagiotis G. Ipeirotis, Luis Gravano, and Mehran Sahami. Probe, count, and classify: Cate-
gorizing hidden web databases. In SIGMOD Conference, 2001.

5. Bing Liu, Robert L. Grossman, and Yanhong Zhai. Mining web pages for data records. IEEE
Intelligent Systems, 19(6):49–55, 2004.

6. Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and techniques
(2nd edition). Morgan Kaufmann, San Francisco, 2005.

7. Hongkun Zhao, Weiyi Meng, Zonghuan Wu, Vijay Raghavan, and Clement T. Yu. Fully
automatic wrapper generation for search engines. In Allan Ellis and Tatsuya Hagino, editors,
WWW, pages 66–75. ACM, 2005.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 85 – 96, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Keyword Extraction Using Support Vector Machine

Kuo Zhang, Hui Xu, Jie Tang, and Juanzi Li

Department of Computer Science and Technology, Tsinghua University
Beijing, P.R.China, 100084

{zkuo99, xuhui99, j-tang02}@mails.tsinghua.edu.cn,
ljz@keg.cs.tsinghua.edu.cn

Abstract. This paper is concerned with keyword extraction. By keyword ex-
traction, we mean extracting a subset of words/phrases from a document that
can describe the ‘meaning’ of the document. Keywords are of benefit to many
text mining applications. However, a large number of documents do not have
keywords and thus it is necessary to assign keywords before enjoying the bene-
fit from it. Several research efforts have been done on keyword extraction.
These methods make use of the ‘global context information’, which makes the
performance of extraction restricted. A thorough and systematic investigation
on the issue is thus needed. In this paper, we propose to make use of not only
‘global context information’, but also ‘local context information’ for extracting
keywords from documents. As far as we know, utilizing both ‘global context in-
formation’ and ‘local context information’ in keyword extraction has not been
sufficiently investigated previously. Methods for performing the tasks on the
basis of Support Vector Machines have also been proposed in this paper. Fea-
tures in the model have been defined. Experimental results indicate that the
proposed SVM based method can significantly outperform the baseline methods
for keyword extraction. The proposed method has been applied to document
classification, a typical text mining processing. Experimental results show that
the accuracy of document classification can be significantly improved by using
the keyword extraction method.

1 Introduction

Keywords summarize a document concisely and give a high-level description of the
document’s content. Keywords provide rich semantic information for many text min-
ing applications, for example: document classification, document clustering, docu-
ment retrieval, topic search, and document analysis.

Unfortunately, a large portion of documents (on internet and intranet) still do not
have keywords assigned. In order to enjoy the benefit of keywords, it is necessary to
extract keywords from the documents. This is exactly the problem addressed in this
paper.

Existing methods on keyword extraction have been done mainly by using a prede-
fined controlled-vocabulary, which cannot process the unknown words/phrases. In
natural language processing, base Noun Phrase (baseNP) finding and key-term recog-
nition have been studied. But the extracted baseNPs are not necessary to be keywords

86 K. Zhang et al.

of the document. Recently, several methods are proposed to extract keywords by
utilizing the ‘global context information’. The global information includes term fre-
quency, term inverted document frequency, etc. This kind of global information
ignores the term’s local context information and makes the extraction performance
limited. In the research community, no previous study has so far sufficiently investi-
gated the problem by making use of not only the ‘global context information’, but
also the ‘local context information’, to the best of our knowledge.

Three questions arise for keyword extraction: (1) how to formalize the problem
(since it involves many different understandings of the ‘keyword’), (2) how to solve
the problem in a principled approach, and (3) how to make an implementation.

(1) We formalize keyword extraction as a classification problem, in which the
words/phrases in a document can be classified into three groups: ‘good keyword’,
‘indifferent keyword’, and ‘bad keyword’. We give a specification of keyword in this
paper.

(2) We propose to conduct keyword extraction by a classification approach. In the
approach, we select the candidate keywords by tri-grams, and then define the features
by both ‘global context information’ and ‘local context information’. We then accom-
plish the keyword extraction by a classification model that is trained in advance.

(3) We propose a unified statistical learning approach to the tasks, based on Sup-
port Vector Machines (SVMs).

We tried to collect data from as many sources as possible for experiments. Our ex-
perimental results indicate that the proposed SVM based method performs signifi-
cantly better than the baseline method for keyword extraction. We also applied our
method to document classification. Experimental results indicate that our method can
indeed enhance the accuracy of document classification. We observed improvements
ranging from 7.79% to 22.12% on document classification in terms of F1-Measure.

The rest of the paper is organized as follows. In section 2, we introduce related
work. In section 3, we formalize the problem of keyword extraction. In section 4, we
describe our approach to the problem and in section 5, we explain one possible im-
plementation. Section 6 gives our experimental results. We make concluding remarks
in section 7.

2 Related Work

2.1 Keyword Extraction

Keyword extraction is the task of selecting a small set of words/phrases from a docu-
ment that can describe the meaning of the document. It is an important area in text
mining [Hulth2004].

For example, Turney has developed a system, called GenEx, for keyword extrac-
tion based on a set of parameterized heuristic rules that can be tuned by using a ge-
netic algorithm [Turney2000]. The system optimizes the rules’ parameters from the
training documents.

Eibe Frank et al propose a key phrase extraction algorithm, called KEA, based
on Naïve Bayes machine learning approach [Frank1999, Witten1999]. They have

 Keyword Extraction Using Support Vector Machine 87

employed the extracted keywords to learn a model and have applied the model for
finding keywords from new documents. They have defined the features in the model
by utilizing the global context information, i.e. term frequency and first occurrence of
the word/phrase.

Tang et al also apply Bayesian decision theory to the task of keyword extraction
[Tang2004]. They make use of word linkage information and define two ‘local con-
text’ features. See also [Azcarraga2002, Hulth2004, Matsuo2004, Zhu2003].

Our method exploits both global context and local context information. We trans-
late the problem of keyword extraction to a binary classification problem, and use
SVM algorithm as the classifier.

2.2 Keyword Assignment

Keyword assignment is aimed to assign keywords from a predefined controlled-
vocabulary to documents.

For example, Dumaisn et al propose a method for finding a mapping from docu-
ments to the categories that are defined as keywords in a controlled-vocabulary [Du-
mais1998]. They make use of machine learning method to learn classifiers from a set
of training documents. A new document then is processed by each of the classifiers
and is assigned to those categories with higher probability. Keyword assignment has
been limited by the predefined controlled-vocabulary, which cannot process the un-
known words/phrases.

2.3 Key-Term Recognition

Term extraction is a task in which base noun phrases (base NP) are extracted from
documents [Xun2000]. The extracted terms can be used as features of documents for
document mining applications such as document categorization and document cluster-
ing. It is different from keyword extraction in two aspects. First of all, the goals are
different. Term extraction is aimed to extract base noun phrases that can be used as
features of documents for other mining applications, while keyword extraction is
aimed to extract the most meaningful words/phrases that can be used to describe the
documents. In this way, a keyword can be a base NP; however, a base NP is not nec-
essary a keyword. Secondly, the number of extracted words/phrases can be signifi-
cantly different. Keywords extracted from a document should be as few as possible if
only they can make the user easily distinguish the document from the others, while
term extraction can extract many words/phrases. See also [Brill1999].

2.4 Text Summarization

Text summarization is another type of similar work to keyword extraction. Infor-
mally, the goal of text summarization is to take a textual document as input, extract
content from it, and present the most ‘meaningful’ content to users in a condensed
form and in a manner sensitive to the user's or application’s needs [Mani2001]. Ex-
tracted content by text summarization can be paragraph(s) or sentences(s). Therefore,
text summarization differs in nature from keyword extraction.

Zha, for instance, proposes a summarization method by first clustering sentences of
a document (or a set of documents) into topical groups and then, within each topical

88 K. Zhang et al.

group, selecting the key phrases and sentences by their saliency scores [Zha2002].
See also [Berger2000, DUC, Mani1999].

3 Keyword Extraction

Keywords extracted from a document play an important role in describing the mean-
ing of that document. For example, in a simple application, a user wants to find an
expertise report in a certain field from a document collection. He can quickly judge
whether or not a document is what he wants by using only keywords of that docu-
ment. In more sophisticated application, the user can group documents by using
keywords. Keywords can be also useful for text mining applications, for example:
document classification and document clustering. In section 6, we will demonstrate
that keywords indeed improve the accuracy of document classification.

Now we formally define the keyword extraction problem that we are solving.
Given a document D with a bag of words w1, w2, …, wN, we need to find a small set of
keywords. Here, the word is the smallest language unit in our problem, and a keyword
can be either a word or a word sequence (i.e. phrase). This also means that the key-
words extracted should occur in the document.

Judging whether a word/phrase is keyword in an objective way is hard. However,
we can still provide relatively objective guidelines for judgment. We call it the speci-
fication in this paper. It is indispensable for development and evaluation of keyword
extraction.

In the specification, we create three categories for keywords which represent their
goodness as keywords: ‘good keyword’, ‘indifferent keyword’ and ‘bad keyword’.

A good keyword must contain the general notion of the document, and several im-
portant properties of the document. From a good keyword, one can understand the
basic meaning of the document. Furthermore, a good keyword should be easily
searchable and understandable by humans and it should be specific enough to allow
the user to distinguish between documents with similar contents.

A bad keyword neither describes the general notion nor properties of the document.
It can be difficult to be understood by human. One cannot get the meaning of the
document by reading a bad keyword.

An indifferent keyword is one that between good and bad keyword.

4 Our Approach

We formalize keyword extraction as a classification problem. We take ‘good key-
word’, ‘indifferent keyword’, and ‘bad keyword’ as classes, words/phrases manually
labeled with the three classes in the ‘training documents’ as training examples,
words/phrases in the ‘test documents’ as test examples, so that keyword extraction
can be automatically accomplished by predicting the class of each test example.

We perform keyword extraction in two passes of processing: learning, and keyword
extraction.

In learning, we construct the classification model that can predict the class of each
word/phrase. In the classification model, we view each word/phrase as an example.
For each example, we define a set of features and assign a label. The label represents

 Keyword Extraction Using Support Vector Machine 89

whether the word/phrase is a ‘good keyword’, ‘indifferent keyword’, or ‘bad key-
word’. We use the labeled data to train the classification models in advance.

In keyword extraction, the input is a document. We extract a bag of words/phrases
from that document. Then, for each word/phrase in that document, we employ the
learned classification models to predict whether it is ‘good keyword’, ‘indifferent
keyword’, or ‘bad keyword’. We next view the words/phrases that are predicted as
‘good keywords’ as keywords.

In this paper, we will focus our implementation on how to classify a word/phrase
as ‘keyword’ or not, and re-formalize the problem as a two-classification problem.
However, to determine whether a word/phrase is ‘good keyword’, ‘indifferent key-
word’, or ‘bad keyword’ is still one of our near future work.

5 Implementation

We consider one implementation of our approach. We make use of SVM (Support
Vector Machines) as the classification model [Vapnik1995].

Let us first consider a two class classification problem. Let {(x1, y1), … , (xN, yN)}
be a training data set, in which xi denotes an example (a feature vector) and

}1,1{ +−∈iy denotes a classification label. In learning, one attempts to find an optimal
separating hyper-plane that maximally separates the two classes of training examples
(more precisely, maximizes the margin between the two classes of examples). The
hyper-plane corresponds to a classifier (linear SVM). It is theoretically guaranteed
that the linear classifier obtained in this way has small generalization errors. Linear
SVM can be further extended into non-linear SVMs by using kernel functions such as
Gaussian and polynomial kernels.

We use SVM-light, which is available at http://svmlight.joachims.org/. We choose
polynomial kernel, because our preliminary experimental results show that it works
best for our current task. We use the default values for the parameters in SVM-light.
When there are more than two classes, we adopt the “one class versus all others”
approach, i.e., take one class as positive and the other classes as negative.

5.1 Process

The input is a document. The implementation carries out extraction in the following
steps.

(1) Preprocessing. For a document, we conduct the sentence split, word tokeniza-
tion and POS (part-of-speech) tagging by using GATE [Cunningham2002]. We next
employ Linker [Sleator1991] to analyze the dependency relationships between words
in each sentence. After that, we employ tri-gram to create candidate phrases, and then
filter the phrases whose frequencies are below a predefined threshold. We also ex-
clude the common words in the stop-words list. We conduct a gentle stemming by
using WordNet [Miller1990]. Specifically, we only stem the plural noun, gerund, and
passive infinitive by their dictionary form. Finally, we obtain a set of ‘keyword candi-
date’ for the later processing.

(2) Feature extraction. The input is a bag of words/phrases in a document. We
make use of both local context information and global context information of a
word/phrase in a document to define its features (see following section for a detailed

90 K. Zhang et al.

definition of the features). The output is the feature vectors, and each vector corre-
sponds to a word/phrase.

(3) Learning. The input is a collection of feature vector by step (2). We construct a
SVM model that can identify the keyword. In the SVM model, we view a
word/phrase as an example, the words/phrases labeled with ‘keyword’ as positive
examples, and the other words/phrases as negative examples. We use the labeled data
to train the SVM model in advance.

(4) Extraction. The input is a document. We employ the preprocessing and the fea-
ture extraction on it, and obtain a set of feature vectors. We then predict whether or
not a word/phrase is a keyword by using the SVM model from step (3). Finally, the
output is the extracted keywords for that document.

The key issue here is how to define features for effectively performing the extrac-
tion task.

5.2 Features in the Model

We make use of both ‘global context information’ and ‘local context information’
features to represent our data. Each word/phrase is represented by a set of its local
context features and the document global context features.

(1) Global Context Features
TFIDF Feature. The feature is calculated by TF*IDF, where TF is the Term Fre-
quency in the document and IDF is the Inverted Document Frequency, i.e.
log((N+1)/(n+1)). N is the total number of the documents in the document collection.
n is the number of documents in which the current word/phrase occurs.

First Occurrence Feature. The feature represents the percentage of words/phrases
occurring before the current word/phrase to the total number of words in the docu-
ment. Its value ranges between 0 and 1.

Position Features. Three features respectively represent whether or not the current
word/phrase occurs in document title, abstract (if there exists), and section title (if
there exists). The words/phrases occurring in the document title, abstract and section
title have higher probabilities of being keywords.

(2) Local Context Features
Local context features have not been investigated previously for the task of keyword
extraction.

POS Feature. The feature represents the POS of the current word. A keyword usually
is a noun word/phrase. For phrase, we define a unified POS: “PHRASE”.

Linkage Features. In the preprocessing step, the dependency relationships between
words are recognized. We give two linkage definitions: Linkage Authority and Link-
age Hub. Linkage Authority denotes how many words that modify the word. The
more the word is modified by, the higher authority it has. Linkage Hub denotes how
many words that are modified by the word. The more the word modifies, the higher
hub it has.

The two linkages are defined as follows:

(,) (,)
log

(,)
i i

h

freq w df w
wl

count N

∀ ∀
= × −

∀ ∀

 Keyword Extraction Using Support Vector Machine 91

(,) (,)
log

(,)
i i

a

freq w df w
wl

count N

∀ ∀
= × −

∀ ∀

Where:

h
wl and

a
wl represent the modifying relationship and the modified relationship re-

spectively.

(,)
i

freq w ∀ is the number of words that iw is modifying in a given document.

(,)
i

df w ∀ is the number of documents containing the modifier relation

(,)
i

freq w ∀ in the global corpora.

(,)count ∀ ∀ is the number of total modifier relationships.

N is the size of the global corpora.

The value
h

wl and
a

wl are located between 0 and 1. log((,) /)idf w N∀ is the log of

probability that this word appears in any document of the corpora.

Contextual TFIDF Feature. Contextual TFIDF is the sum of the TFIDF of words in
the ‘context’ of the current word/phrase, which represents the contextual TFIDF. We
view words in the same sentence as the current word as its contextual words.

6 Experimental Results

Data Sets and Evaluation Measures
Data Sets. We tried to collect documents for experiments from as many sources as
possible. We randomly chose in total 350 documents from four sources and created
four data sets. ACM is from the proceedings of conference from 2002 to 2004 in
ACM digital library (http://portal.acm.org/portal.cfm). CiteSeer is from CiteSeer
website (http://citeseer.ist.psu.edu/cs). Reuter is from the distribution 1.0 of Reuter
text collection (http://www.research.att.com/~lewis/ reuters21578.html). Web Doc
is downloaded arbitrarily from the Internet.

Table 1 shows the statistics on the data sets. The columns present respectively the
data set, its description and the number of documents in it.

Among the four datasets, some research papers already have author assigned key-
words, but some of the keywords do not conform to our specification (defined in

Table1. Statistics of the datasets in experiments

Dataset Description Total Number

ACM
From ACM Digital Library, proceedings of

conferences hold during 2002~2004
200

CiteSeer From CiteSeer 65

Reuter Distribution 1.0 of Reuter text collection 50

Web Doc Downloaded arbitrarily from internet 35

92 K. Zhang et al.

section 3). Moreover, the other documents do not have keywords. Human annotators
conducted annotation on all the documents. Keywords of research papers were up-
dated according to the specification, and keywords in the other documents were
labeled. Specifically, five graduates in our laboratory were asked to conduct the anno-
tation for all the documents. The number of annotated keywords ranges from 4 to 10.
The average of annotated keywords is 9.69 per document. Finally, for each document,
intersection of keywords assigned by different annotators is taken as the ‘correct’
keywords. In this way, each document has six ‘correct’ keywords averagely.

Evaluation Measures. In all the experiments on extraction, we conducted evaluations
in terms of precision, recall and F1-Measure. The evaluation measures are defined as
follows:
Precision: P = A / (A + B)
Recall: R = A / (A + C)
F1-Measure: F1 = 2PR / (P + R)
where A, B, C and D denote number of instances.

Table 2. Contingence table on results of detection and extraction

 Is Target Is Not Target

Detected A B

Non Detected C D

In all evaluations, we view a keywords assigned by humans as a ‘target’. If a
method can extract the target, we say that it makes a correct decision; otherwise, we
say that it makes a mistake. Precision, recall, and F1-Measure are calculated on the
basis of the result.

Baseline Method. We use TFIDF as the baseline to extract the keyword (many text
mining applications use this method for bag-of-word feature selection). Specifically,
for a document, we selected six words/phrases with the higher TFIDF as keywords.
We also carried out the comparison of our method and the KEA algorithm
[Frank1999, Witten1999]. KEA algorithm has been proposed by Eibe Frank et al. It
uses TFIDF and first occurrence as features and uses Naïve Bayes for learning and
extraction. We downloaded the KEA algorithm from http://www.nzdl.org/Kea/
index.html#download, and applied it to the four datasets.

Finally, we conducted the experiments of using only global features and using all
the features we defined in our model (including global and local features). We carried
out the comparison of the results by our methods with the two kinds of features.

Keyword Extraction
Experiment. We evaluated the performances of our keyword extraction methods on
the four data sets.

We performed comparisons with the baseline methods and the KEA algorithm. We
also evaluated our method with only the global context features and with all the fea-
tures we defined.

Because the average number of keywords annotated manually is six, we select six
keywords in the baseline method and KEA method. In our approach, we select the
words as keywords that are classified as positive examples by the SVM model.

 Keyword Extraction Using Support Vector Machine 93

Table 3 shows the five cross-validation results on the four data sets. In the table,
Global, Local respectively denotes the global context features and local context fea-
tures. The second column indicates the average number of keywords extracted.

Table 3. Evaluation of Keyword Extraction (%)

Average
Number Precision Recall F1-Measure

Baseline Method 6 12.70 13.11 12.90

KEA 6 32.39(+19.69) 29.09(+15.98) 30.65(+17.75)

Our Method
(Global)

5.88 70.75(+58.05) 42.87(+29.76) 53.39(+40.49)

Our Method
(Global)+(Local)

7.75 67.43(+54.73) 53.87(+40.76) 59.90(+47.00)

We see that our method can significantly outperform the baseline method and the
KEA algorithm. Our method by using global context features and local context fea-
tures also outperforms that by using only global context features. We conducted sign
tests on the results. The p values are significantly smaller than 0.01, indicating that the
improvements are statistically significant.

Discussions
(1) Improvements over baseline method. The TFIDF based extraction method re-
sults in a poor performance (only 12.90% in terms of F1-Measure). When using only
global context features, we can obtain greatly improvement +40.09% in terms of F1-
Measure. Furthermore, by combining the global context features and local context
features, we can again obtain improvement +47.00% in terms of F1-Measure.
(2) Improvements over KEA algorithm. When using only global context features,
we can obtain greatly improvement +22.47% in terms of F1-Measure over KEA algo-
rithm. Furthermore, by combining the global context features and local context fea-
tures, we can again obtain improvement +29.25% in terms of F1-Measure.
(3) Effectiveness of local context features. Our method using both global context
features and local context feature outperforms that using only global context features
(+6.51% in terms of F1-Measure). In the latter method more keywords were assigned
as keywords than that in our method with only global features. With the local fea-
tures, we observed significant improvement (+11.00%) in terms of recall. We also
note that the precision drops a little. This is because of inevitable mistaken assign-
ments.
(4) Error analysis. We conducted error analysis on the results.

For the method using global context features only, 80% of the errors were from
those extracted words that have high scores in global context features but are not
‘keyword’. 20% of the errors were due to the ‘ambiguity’ of the extracted keywords.
Those ‘ambiguity’ words/phrases represent some kind of the meaning of the given
document. But it is difficult to classify them to ‘keyword’ or not. Maybe they should
correspond to the ‘indifferent keyword’ in our specification.

For the method combining both global and local context features, 25% of the errors
were from those words having high scores in global context features but not ‘key-

94 K. Zhang et al.

word’. This was due to the effect of local context features. 75% of the errors were due
to the ‘ambiguity’ of the extracted keywords.
(5) No free lunch. As the proverb says, “Every coin has its two sides”. Although the
local context features can improve the performance of the keyword extraction, their
computation costs are heavy, especially on linker analysis. The linker analysis on the
four data sets cost nearly 22 hours.
(6) Difficult task. It is difficult to accurately extract keywords from documents. That
is because in some cases judging whether a word/phrase is keyword or not is difficult,
even for human.

Document Classification
Experiment. In order to evaluate the effectiveness of our keyword extraction method,
we have applied it to document classification. Document classification is a task in
which we aim to assign documents of a corpus to a fixed set of categories. We chose
Naïve Bayes as the classification method. For each document, the extracted keywords
are viewed as features and are assigned with higher weights.

Table 4. Performance of document classification (%)

Category Method Precision Recall F1-Measure

Bayes 65.71 91.09 76.35
alt.atheism

+Keyword 81.51(+18.5) 96.04(+4.95) 88.18(+11.83)

Bayes 27.17 68.32 38.88
comp.graphics

+Keyword 50.00(+22.83) 78.22(+9.9) 61.00(+22.12)

Bayes 28.25 86.14 42.55comp.os.ms-
windows.misc +Keyword 43.96(+15.71) 90.10(+3.96) 59.09(+16.54)

Bayes 29.23 75.25 42.10comp.sys.ibm.pc.hard
ware +Keyword 39.90(+10.67) 82.18(+6.93) 53.72(+11.62)

Bayes 27.65 85.15 41.74comp.sys.mac.hardwa
re +Keyword 38.99(+11.34) 84.16(-0.99) 53.29(+11.55)

Bayes 51.72 44.55 47.87
comp.windows.x

+Keyword 64.04(+12.32) 56.44(+11.89) 60.00(+12.13)

Bayes 31.60 84.16 45.95
misc.forsale

+Keyword 40.95(+9.35) 85.15(+0.99) 55.30(+9.35)

Bayes 33.33 92.08 48.94
rec.autos

+Keyword 50.00(+16.67) 96.04(+3.96) 65.76(+16.82)

Bayes 39.83 93.07 55.79
rec.motorcycles

+Keyword 47.76(+7.93) 95.05(+1.98) 63.58(+7.79)

Bayes 50.54 93.07 65.51
rec.sport.baseball

+Keyword 60.63(+10.09) 96.04(+2.97) 74.33(+8.82)

Bayes 38.50 81.29 50.57
Average

+Keyword 51.77(+13.27) 85.94(+4.65) 63.43(+12.86)

 Keyword Extraction Using Support Vector Machine 95

The data set used for classification is 20 newsgroups, which is downloaded from
CMU Text Learning Group Data Archives (http://www-2.cs.cmu.edu/afs/cs.cmu.
edu/project/theo-20/www/data/news20.html). Among the collection, ten categories
were used in the evaluation. The bag-of-word (BOW) features are extracted as fea-
tures. Both stemming and stop-word removal were applied in the processing of fea-
ture extraction.

We carried out the experiments as follows. In the first experiment, we used all the
BOW features to evaluate the classification performance. In the other experiment, we
conducted the keyword extraction, viewed them as features, and doubled the weight
of the extracted keywords.

Table 4 shows the five cross-validation results on the ten categories. In the table,
the first column lists ten categories. Bayes, Keyword respectively denotes the Naïve
Bayes classification on the original data and on the data with extracted keywords.

From table 4, we see that by using keyword extraction, a significant improvement
can be obtained on the task of document classification (ranging from 7.79% to
22.12% in terms of F1-Measure). We observed improvements on precision
(+13.27%), recall (+4.65%), and F1-Measure (+12.86%) on average. The results indi-
cate that our method of keyword extraction is effective. The results are also consistent
with the result obtained in the experiment of keyword extraction.

We also applied the extracted keywords to document classification by using SVM
as the document classification method. However, no significant improvement
obtained. The reason maybe lies in that SVM has already achieved the start-of-art
result on the task of document classification.

7 Conclusion

In this paper, we have investigated the problem of keyword extraction. We have de-
fined the problem as that of extracting words/phrases in the document. We have pro-
posed a classification approach to the task. Using Support Vector Machines, we have
been able to make an implementation of the approach. Experimental results show that
our approach can significantly outperform baseline methods for keyword extraction.
When applying it to document classification, we observed a significant improvement
on extraction accuracy.

As future work, we plan to make further improvement on the accuracy. We also
want to apply the keyword extraction method to other text mining applications.

References

[Azcarraga2002] Azcarraga, A; Yap, T. J.; and Chua, T. S. Comparing Keyword Extraction
Techniques for WEBSOM Text Archives, International Journal of Artificial Intelligence
Tools, 11(2):219 - 232.

[Berger2000] Berger, A. L.; and Mittal, V. O. OCELOT: A System for Summarizing Web
Pages. In Proceedings of the 23rd ACM SIGIR Conference, 144 - 151.

[Brill1999] Brill, E.; and Ngai, G. Man vs. machine: A case study in baseNP learning. In Pro-
ceedings of the 18th International Conference on Computational Linguistics, 65-72.

96 K. Zhang et al.

[Cunningham2002] Cunningham, H.; Maynard, D.; Bontcheva, K.; and Tablan, V. GATE: A
Framework and Graphical Development Environment for Robust NLP Tools and Applica-
tions. In Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics. Philadelphia.

[DUC] Document Understanding Conference. http://www-nlpir.nist.gov/projects/duc/.
[Dumais1998] Dumais, S.T.; Platt, J; Heckerman, D.; and Sahami, M. Inductive Learning

Algorithms and Representations for Text Categorization. In Proceedings of the 7th Interna-
tional Conference on Information and Knowledge Management, 148-155.

[Frank1999] Frank, E.; Paynter, G. W.; and Witten, I. H. Domain-Specific Keyphrase Extrac-
tion. In Proceedings of the 16th International Joint Conference on Artificial Intelligence,
668-673, Stockholm, Sweden, Morgan Kaufmann.

[Hulth2004] Hulth, A. Combining Machine Learning and Natural Language Processing for
Automatic Keyword Extraction. Ph.D. diss., Dept. of Computer and Systems Sciences,
Stockholm University.

[Mani1999] Mani, I.; and Maybury, M. T. Advances in Automatic Text Summarization. The
MIT Press.

[Mani2001] Mani, I. Automatic Summarization. John Benjamins Pub Co.
[Matsuo04] Matsuo, Y.; and Ishizuka. M. Keyword Extraction from a Single Document using

Word Co-occurrence Statistical Information, Int'l Journal on Artificial Intelligence Tools,
13(1):157-169.

[Miller1990] Miller, G.; Beckwith, R.; Fellbaum, C.; Gross, D.; and Miller, K.J. Wordnet: An
On-line Lexical Database. International Journal of Lexicography, 3(4):235--312.

[Sleator1991] Sleator, D.; and Temperley, D. Parsing English with a Link Grammar. Technical
Report, CMU-CS-91-196, Dept. of Computer Science, Carnegie Mellon University.

[Tang2004] Tang, J.; Li, J.Z.; Wang, K.H.; and Cai, Y.R. Loss Minimization based Keyword
Distillation. In Proceedings of 6th Asia-Pacific Web Conference, 572-577. Springer, LNCS
3007, ISBN 3-540-21371-6.

[Turney2000] Turney, P.D. Learning Algorithms for Keyphrase Extraction. Information Re-
trieval, 2(4):303–336.

[Vapnik1995] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer.
[Witten1999] Witten, I. H.; and Paynter, G. W. et al. 1999. KEA: Practical Automatic Key-

phrase Extraction. In Proceedings of 4th ACM Conference on Digital Libraries, 254-255.
Berkeley, CA.

[Xun2000] Xun, E.; Huang, C.; and Zhou, M. A Unified Statistical Model for the Identification
of English baseNP. In Proceedings of the 38th Annual Meeting of the Association for Com-
putational Linguistics. Hong Kong.

[Zha2002] Zha, H. Generic Summarization and Keyphrase Extraction Using Mutual Rein-
forcement Principle and Sentence Clustering. In Proceedings of the 25th ACM SIGIR Con-
ference, 113-120.

[Zhu2003] Zhu, M.; Cai, Z.; and Cai, Q. Automatic Keywords Extraction of Chinese Document
Using Small World Structure. In Proceeding of the international conference on Natural Lan-
guage Processing and Knowledge Engineering.

LSM: Language Sense Model for Information Retrieval

Shenghua Bao, Lei Zhang, Erdong Chen, Min Long, Rui Li, and Yong Yu

APEX Data and Knowledge Management Lab,
Department of Computer Science & Engineering,

Shanghai Jiao Tong University, Shanghai, P.R.China, 200230
{shhbao, zhanglei, edchen, mlong, rli, yyu}@apex.sjtu.edu.cn

Abstract. A lot of work has been done on drawing word senses into retrieval to
deal with the word sense ambiguity problem, but most of them achieved negative
results. In this paper, we first implement a WSD system for nouns and verbs,
then the language sense model (LSM) for information retrieval is proposed. The
LSM combines the terms and senses of a document seamlessly through an EM
algorithm. Retrieval on TREC collections shows that the LSM outperforms both
the vector space model (BM25) and the traditional language model significantly
for both medium and long queries (7.53%-16.90%). Based on the experiments,
we can also empirically draw the conclusion that the fine-grained senses will
improve the retrieval performance when they are properly used.

1 Introduction

Word sense disambiguation (WSD) has been studied for a long time in natural language
processing. In the field of information retrieval (IR), word sense ambiguity is regarded
as one of the main causes which affect the retrieval performance for two reasons:

– Polysemy: One word may have different meanings under different contexts.
– Synonymy: Different words may have the same meaning.

This encouraged various of work to integrate the WSD into IR. However, most of
them achieved negative results, e.g. [1, 2, 3]. At the same time, the potential causes for
the poor results were intensively studied, which can be categorized as follows:

– Fine-grained Sense: The words might be resolved to senses which are too specific
for IR[4].

– Poor WSD Results: The low accuracy of the WSD system affects the final perfor-
mance of the sense based IR system a lot[5].

– Cannot Fall Back: The pure sense based IR system can not fall back to the term
based IR system. The term based IR system does not suffer from the ambiguity
problem severely due to word collocation, and word senses’ skewed distribution[6].
So It is not easy for a pure sense based IR system to exceed the term based IR
system.

An example which successfully solved the three problems above would be Kim’s
work in 2004 which improved retrieval performance significantly[7]. Firstly, it achieved

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 97–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 S. Bao et al.

the high WSD accuracy by using the coarse-grained senses which consisted of 25 root
senses in WORDNET1. Secondly, it combined the root senses and the document terms
through a revised vector space model. It successfully integrated the coarse-grained
senses and terms. However, there are still some questions to be further addressed,

– Will the integration of fine-grained senses and terms work as well?
– Is there any other model to integrate the terms and senses besides the vector space

model?

To answer these questions, we first implement a WSD system using the fine-grained
senses in WORDNET. In our WSD system, only nouns and verbs are disambiguated
because the nouns and verbs play important roles in IR and they are much easier to
disambiguate with a comparatively higher accuracy.

Then, the fine-grained senses are utilized based on the language model[8]. Firstly, the
language model on term representation (LMTR) and sense representation (LMSR) are
studied. Then, a novel model, language sense model (LSM) for information retrieval, is
proposed which utilizes both sense and term representations. The experimental results
on the TREC collections shows that the LMSR can not bring any improvement. How-
ever, the LSM outperforms both vector space model and traditional language model for
medium and long queries significantly (7.53% - 16.90%).

The rest of the paper is organized as follows. In Section 2, some related work is
discussed . In Section 3, the process and evaluation of WSD are presented. The discus-
sion of the LSM is given in Section 4. The experiment results of the LSM are given in
Section 5. Finally, we make a conclusion and give some future work in Section 6.

2 Related Work

In this section, the related work is surveyed in two aspects. One relates to the previous
efforts on WSD for IR while the other to the previous work on language models.

2.1 Word Sense Disambiguation for Information Retrieval

Most of the early work which integrated WSD into IR resulted in no improvement. A
complete review of the integration of WSD and IR prior to the year 2000 can be found in
the work of Sanderson [9]. In this section, we review some recent work which reported
significant improvements by integrating WSD into IR.

In 2003, Stokoe represented documents and queries with sense vectors and retrieved
the relevant documents using the traditional vector space model[10].Their experiments
on TREC WT10G data collection empirically showed that their WSD system could sig-
nificantly improve the retrieval performance. However, it was problematic that the ab-
solute precision of the baseline and the proposed system were too low to investigate the
effect of sense-based retrieval. Compared with Stokoe’s work, the LSM improves the
retrieval performance significantly when the baseline’s absolute precision is compara-
tively much higher. More importantly, in the LSM, the terms and senses are integrated
to achieve a better performance.

1 http://wordnet.princeton.edu/

LSM: Language Sense Model for Information Retrieval 99

In 2004, Kim et al proposed the root sense tagging approach for information retrieval
by integrating the root sense tags into the vector space model[7]. As proposed in Section
1, Kim solved the three existing problems successfully. Different from Kim’s work, the
LSM utilizes fine-grained senses, and combines the terms and senses in the language
model.

2.2 Language Model

For many years, the primary consumers of statistical language models were speech
recognition systems [11]. In 1998, Ponte and Croft [8] proposed a smoothed version
of the document unigram model to assign a score to a query, which can be thought of
as the probability that the query was generated from the document model. Since then,
there emerged a great amount of research work related to language model. Most of them
tried to solve the following two problems:

– Data Sparseness: Many smoothing methods were suggested to re-evaluate the
probabilities of generating the query terms that did not appear in the document.
Song and Croft proposed the good-turing smoothing based on terms’ power law dis-
tribution [12]. Zhai et al proposed the two-stage smoothing for language model[13].
In addition, cluster based smoothing methods were proposed and achieved signif-
icant improvement[14, 15]. In the LSM, the existing smoothing methods can be
applied easily on both terms and senses to solve the data sparseness problem.

– Term Dependency: The unigram language model made an improper assumption
that all terms were generated independently. Plenty of work has been done to model
the proper dependencies between the query terms. Srikanth et al proposed the con-
cept language model, where the query was viewed as a sequence of concepts and
each concept as a sequence of terms[16]. Gao et al introduced the dependence lan-
guage model by integrating the linkage of query terms as a hidden variable[17].
Recently, Cao et al exploited the word relations of WORDNET and co-occurrences
and then integrated them into language models[18]. In the LSM, the query inde-
pendent assumption can be relaxed to a certain extent as the terms and senses in the
LSM depend strongly on each other.

3 Word Sense Disambiguation

Word Sense Disambiguation (WSD), which is a classical problem in Natural Language
Processing (NLP), aims to improve the accuracy, namely the number of words cor-
rectly disambiguated. Our approach is based on the Co-occurrence, SEMCOR 2, and
WORDNET. In order to achieve the high disambiguation accuracy, only the nouns and
verbs on both the queries and the documents are disambiguated. Most of the methods
are based on popular and effective techniques in [19, 7, 20].

SEMCOR2.0 is distributed with WORDNET2.0, an online thesaurus created at Prince-
ton University. WORDNET2.0 consists of 90,000 terms and collocates organized into
Synsets. Each Synset contains words which are synonymous with each other, while

2 http://multisemcor.itc.it/semcor.php

100 S. Bao et al.

the links between Synsets represent hypernymy and hyponomy relationships to form
a WORDNET hierarchical semantic network. SEMCOR2.0 is a manually sense tagged
subset of the Brown Corpus consisting of 352 documents split into three data sets.
The tag set used in SEMCOR consists of the unique sense identifiers used within
WORDNET.

At first, three pre-processing procedures are implemented. Firstly, each word is
tagged with part-of-speech (POS) by Brill’s tagger3. Secondly, ANNIE TAGGER4

performs on the text to remove named entities from the WSD candidate set. In the exper-
iment, only three types of named entities: LOC (location), PER (person) and ORG (or-
ganization) are extracted. Thirdly, each monosemous word is identified with the unique
sense it owns. In the following three subsections, we will introduce the main methods
of the WSD system.

Our WSD system makes use of mutual information (MI) of the adjacent words in
the text. Besides, WORDNET and SEMCOR information is integrated into the following
procedures to identify the senses of the candidate words. We get context clues from the
SEMCOR of the occurrence of the collocation. If, in all the occurrences of the collo-
cation, the word has only one sense, and the number of the occurrences is larger than
a given threshold (≥ 2 in our experiment), then we identify the word with the sense.
We identify the sense of a word by comparing the original context of the word and the
context set of the word’s senses at WORDNET and SEMCOR . The following nouns will
be added to the context set of the sense: the words in the sense at WORDNET, the first
shortest noun phrase from the definition of the sense at WORDNET, all the nouns which
occur within a window size (20 words in our experiment) with respect to the sense in
SEMCOR.

Our WSD system also integrates the hierarchical information of the synsets in
WORDNET. In WORDNET, all the words with the same POS are organized into hi-
erarchies, each synset is a part of a hierarchy. Taking the noun as an example, there
are 25 root senses. For two words t1 and t2 within a window size, if the hierarchical
distance between a sense of the word t1 and the word t2 is equal to or less than 1, the
system identifies the two words with their corresponding senses.

We trained our method on the first 300 documents of SEMCOR, and tested it on the
last 52 documents. The accuracy of noun is 78.12% and accuracy of verb is 60.58%,
the overall accuracy of WSD system is 72.40%, which is much higher than the previous
WSD sytem applied to IR.

4 Integrating Sense into Language Model

In this section, we talk about how to utilize the fine-grained word senses. In Section 4.1,
the language model for term and sense representations is proposed. Then, the smoothing
methods are discussed and a new hierarchical smoothing method is proposed. Finally,
in Section 4.2, the LSM and the correspondingly parameter estimation methods are
proposed to integrate the term and sense representations.

3 http://www.cs.jhu.edu/ brill/
4 http://gate.ac.uk/ie/annie.html

LSM: Language Sense Model for Information Retrieval 101

4.1 Language Model and Smoothing Methods

Language Model for Term and Sense Representations. In this paper, each document
has two different representations: namely term representation and sense representation,
as shown in Figure 1. Two examples from TREC Fbis corpus are given in the right.

Doc um ent
(d)

T erm
Representation

(dt)

Sense
Representation

(dS)

<D O C>
 <D O CN O >FBIS3 -1 </D O CN O >
 <T E X T >

P O L IT ICIA N S, P A RT Y P RE FE RE N CE S
 Sum m ary : N ewsp ap ers.. .
 </T E X T >
</D O C>

<D O C>
 <D O CN O >FBIS3 -1 </D O CN O >
 <T E X T >
 N 9 7 7 2 2 7 7 , N 7 7 5 8 1 7 3 N 7 0 3 8 9 6 3
 N 6 0 6 6 8 1 7 : N 5 8 8 5 1 6 5 ...
 </T E X T >
</D O C>

E .g:

Fig. 1. Document Representations

The language model on term representations (LMTR) is the traditional approach. It
first generates a model dt for each document d. Given a query qt = qt1qt2 . . . qtm, the
documents are ranked according to the probability the model could generate. In this
paper, the urigram language model is adopted and the equation could be represented as
follows:

P (qt|dt) =
m∏

i=1

P (qti|dt) (1)

Where qt and dt means the term representations of query q and document d respectively.
qti means the ith term of the query qt and m is the length of the query qt.

The language model on sense representations (LMSR) is similar to the one on term
representations. It first generates a sense model ds for each document d using the sense
representation, and then estimates the probability of ds generating the sense query qs =
qs1qs2 . . . qsm. The corresponding equation can be shown as follows.

P (qs|ds) =
m∏

i=1

P (qsi|ds) (2)

Smoothing Methods. The smoothing method plays an important role in language
model due to the data sparseness problem. An empirical study of smoothing methods
for the language model can be found at [21]. Table 1 shows three of them which are
popularly used in language model for information retrieval [13].

The three smoothing approaches can be applied to the LMTR and the LMSR. For the
LMSR, we developed a new smoothing method, namely hierarchical smoothing, based
on the WORDNET hierarchy as follows:

P h(qs|ds) =
m∏

i=1

(1 − λh)P (qsi|ds) + λhP (Relative(qsi)|ds)) (3)

102 S. Bao et al.

Table 1. Smoothing Methods of Language Model for Information Retrieval

Smoothing Methods Formula
Jelinek-Mercer (1 − α)P (w|d) + αP (w|C)
Dirichlet c(w;d)+μP (w|C)

w
c(w;d)+μ

Absolute discount max(c(w;d)−δ,0)

w
c(w;d) + δ|d|u

|d| P (w|C)

Here the Relative(qsi) can be defined as the hypernym sense or hyponym sense of
the sense qsi in the WORDNET hierarchy.λh is a constant from 0 to 1 which measures
the confidence of the Relative(qsi).

4.2 Language Sense Model (LSM)

In this section, we firstly propose the language sense model (LSM) for information
retrieval which utilizes both term and sense representations. Then the model parameter
estimation is discussed.

Model Description. Figure 2 shows the framework of the LSM. In the LSM, the model
generates the probability of a given query from both document’s term representation and
sense representation. The sense representation ds can be further extended to dh and dr

which stand for sense’s hypernym sense and root sense respectively. In this paper, we
choose the ds to be integrated with dt as we want to study the effects of the fine-grained
senses in information retrieval. So the LSM can be shown as Equation 4:

P (q|d) =
m∏

i=1

((1 − λ)P (qti|dt) + λP (qsi|ds)) (4)

where P (qti|dt) and P (qsi|ds) means the probability of generating the ith query term
qi from term representation and sense representation respectively. Note that not all the

T erm s
(dt)

Senses
 (ds)

Hypernym Senses
(dh)

Root Senses
(dr)

Query

Doc um ent

P(qti|dt) P(qsi|ds) P(qhi|dh) P(qri|dr)

Language Sense Model (P(qi|d)

Fig. 2. Language Sense Model for Information Retrieval

LSM: Language Sense Model for Information Retrieval 103

terms in qt can be disambiguated as the WSD is only conducted on the nouns and verbs.
A default value will be given to the qsi if qti can not be disambiguated.

To solve the data sparseness problem, the existing smoothing method (as shown in
Table 1) can be integrated into the LSM. An integration example of Jelinek-Mercer
smoothing into LSM can be shown as follows:

P (q|d) =
m∏

i=1

(1−α)[(1−λ)P (qti|dt)+λP (qsi|ds)]+α[(1−λ)P (qti|Ct)+λP (qsi|Cs)]

(5)
Other than the traditional smoothing methods, the hierarchical smoothing can also

be integrated by replacing P (qsi|ds) and P (qsi|Cs) in Equation 5 with P h(qsi|ds) and
P h(qsi|Cs) defined in Equation 3 as follows:

P (q|d)=
m∏

i=1

(1−α)[(1−λ)P (qti|dt)+λP h(qsi|ds)]+α[(1−λ)P (qti|Ct)+λP h(qsi|Cs)]

(6)

Parameter Estimation. To compute the query generating probability from the LSM,
there are three components to be estimated: P (qti|dt), P (qsi|ds) and the combination
parameter λ.

P (qti|dt), P (qsi|ds) can be estimated as the maximally likelihood of the term rep-
resentation and sense representation generating the corresponding query term. Given a
query, we estimate the optimal weights λ∗ which could maximize the likelihood of the
queries. This method is similar to Zhai’s method in estimating the parameter of the two
stage model[13] and Cao’s method in estimating the combination in NSLM [18] . Let
λ∗ be the optimal weight, taking the formula 5 as an example, we have:

λ∗ = arg max
λ

log

{
(1 − α)

∑N
i=1 πi

∏m
j=1[(1 − λ)P (qtj |dti) + λP (qsj |dsi)]

+α
∑N

i=1 πi

∏m
j=1[(1 − λ)P (qtj |Ct) + λP (qsj |Cs)]

}
(7)

where N is the number of documents in the dataset, and m is the length of query q.
{πi}N

i=1 acts as the prior probability with which to choose the document to generate
the query. With this setting, the EM formulae to update the parameter can be shown as
follows:

π
(r+1)
i =

π
(r)
i

∏m
j=1[(1 − λ(r))P (qtj |dti) + λ(r)P (qsj |dsi)]∑N

i=1 π
(r)
i

∏m
j=1[(1 − λ(r))P (qtj |dti) + λ(r)P (qsj |dsi)]

(8)

and

λ(r+1) =
1
m

m∑
j=1

(1 − α)
∑N

i=1 π
(r)
i λ(r)P (qsj |dsi) + αλ(r)P (qsj |Cs)

(1 − α)
∑N

i=1 π
(r)
i [(1 − λ(r))P (qtj |dti) + λ(r)P (qsj |dsi)]+

α[(1 − λ(r))P (qtj |Ct) + λ(r)P (qsj |Cs)]

(9)

The EM algorithm will be terminated if the log-likelihood of the query changes within
a threshold. In the experiment, we initialized the πi with uniform distribution. In fact,

104 S. Bao et al.

It allows to initialize the πi with randomized value too because the EM algorithm guar-
antees the convergence with a local optimization. The EM update formula for Dirich-
let and Absolute Discount smoothing can be inferred similarly. Note that there are no
training data and testing data. The EM algorithm estimates the optimal λ for each
query directly without training on sample data. The λ for each query is generated
independently.

5 System Evaluation and Analysis

5.1 Experiment Setup

The whole TREC FBIS collection is used in our experiment. At first, all the nouns
and verbs of queries and documents of TREC FBIS corpus were disambiguated with
the methods proposed in Section 3. In order to evaluate the LSM’s performance on
different length queries, we generated three types of queries, shown as in Table 2. The
queries are extracted from the TREC-5 routing topic which consists of 50 queries with
40 titles, 50 descriptions and 50 narratives.

Table 2. Short Queries, Medium Queries and Long Queries Extracted from the TREC-5 Routing
Task

Query Type Query Count Average Length(Term/Sense) Extracted From
Short query 40 3.60 / 2.3 Title
Medium query 50 21.86 / 10.34 Tilte, Description
Long query 50 78.34 / 31.04 Title, Description,Narrative

The LSM system is built based on the Lemur 3.1. The Vector Space Model is based
on the BM25 formula whose term frequency component is implemented as follows
[22]:

TF (t, d) =
k ∗ f(t, d)

k ∗ ((1 − b) + b ∗ doclen/avgdoclen) + f(t, d)
(10)

where f(t,d) means the term count of t in document d. In the experiment, k and b are set
to 1 and 0.3 respectively.

In the following experiment, the standard mean average precision(MAP) and the
total retrieved relevant document number (Recall) are used to evaluate the retrieval per-
formance.

5.2 Evaluation of LMTR and LMSR

The results of language models on term and sense representations are compared on dif-
ferent queries and different smoothing methods, shown as Table 3. From the table, we
can see that the language model on term representation (LMTR) performs much better
than language model on sense representation (LMSR) in both precision and recall. Not-
ing that some terms in the term representation cannot be disambiguated, we generated
a mixed document representation, where the undisambiguated terms are reserved in the

LSM: Language Sense Model for Information Retrieval 105

Table 3. Comparison of LMTR and LMSR

Query Type Smoothing Methods LMTR LMSR Improved Improved
(MAP/Recall) (MAP/Recall) MAP Recall

Jelinek-Mercer 0.1041 1692 0.0646 1388 -61.15% -17.97%
Short Query Dirichlet 0.1247 1859 0.0773 1569 -61.32% -15.60%

Absolute Discount 0.1133 1726 0.0736 1435 -53.94% -16.86%
Jelinek-Mercer 0.1228 2329 0.0892 1887 -37.67% -18.99%

Medium Query Dirichlet 0.1339 2357 0.1005 2126 -33.23% -9.80%
Absolute Discount 0.1150 2203 0.0961 1920 -19.67% -12.85%
Jelinek-Mercer 0.1649 2707 0.1222 2262 -34.94% -16.07%

Long Query Dirichlet 0.1630 2603 0.1337 2473 -21.91% -4.99%
Absolute Discount 0.1363 2431 0.1141 2142 -19.46% -11.89%

Table 4. Comparison of LMTR and LSM

Query Type Smoothing Methods LMTR LSM Improved Improved Sign
(MAP/Recall) (MAP/Recall) MAP Recall MAP

Jelinek-Mercer 0.1041 1692 0.1060 1677 1.90% -0.89% 0.1695
Short Query Dirichlet 0.1247 1859 0.1310 1897 5.06% 2.04% 0.1688

Absolute Discount 0.1133 1726 0.1208 1769 6.59% 2.49% 0.1693
Vector Space Model 0.1161 2042 � 0.1310 1897 12.83% -7.10% 0.0506
Jelinek-Mercer 0.1228 2329 0.1344 2356 9.46% 1.16% 0.0805

Medium Query Dirichlet 0.1339 2357 0.1478 2492 10.36% 5.72% * 0.0272
Absolute Discount 0.1150 2203 0.1344 2326 16.90% 5.58% * 0.0179
Vector Space Model 0.1112 2391 � 0.1478 2492 32.91% 4.22% * 0.0223
Jelinek-Mercer 0.1649 2707 0.1792 2784 8.68% 2.84% * 0.0381

Long Query Dirichlet 0.1630 2603 0.1752 2719 7.53% 4.46% * 0.0388
Absolute Discount 0.1363 2431 0.1516 2526 11.26% 3.90% * 0.0487
Vector Space Model 0.0907 2531 � 0.1752 2719 93.16% 7.42% * 0.0001

sense representation. However, we got the conclusion again that the LMTR performs
much better than the language model on mixed representations.

The hierarchical smoothing for LMSR is also tested with two kinds of Relative(qsi),
namely hypernym sense and hyponym sense. However, the result of LMSR remains
almost unchanged. So in the next section, the experiments of the LSM is conducted
without hierarchical smoothing.

5.3 Evaluation of Language Sense Model

The results of the LMTR and LSM are compared with different queries and different
smoothing methods as shown in Table 4, where a diamond (�) means the LSM using
the Dirichlet smoothing. From the “Improved Map” column, we can see that the LSM
outperforms both the traditional language model and vector space model (BM25) on
all queries. From the “Improved Recall” column, we can see that the LSM improved
the recall on the medium and long queries as well. The 11-point precision/recall curves
for the LSM using the Jelinek-Mercer, Dirichlet and Absolute Discount smoothing are

106 S. Bao et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Medium Queries

LSM
LMTR
LMSR

VSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Long Queries

LSM
LMTR
LMSR

VSM

Jelinek-Mercer Smoothing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Medium Queries

LSM
LMTR
LMSR

VSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Long Queries

LSM
LMTR
LMSR

VSM

Dirichlet Smoothing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Medium Queries

LSM
LMTR
LMSR

VSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Long Queries

LSM
LMTR
LMSR

VSM

Absolute Discount smoothing

Fig. 3. 11-point precision/recall curves for the LSM, LMTR, LMSR and VSM on Medium and
Long Queries

shown in Figure 3. In each figure, the four curves from the up-right to bottom-left
are LSM, LMTR, LMSR and VSM respectively. To understand whether these improve-
ments are statistically significant, we performed t-tests on MAP. The p-values are shown
in the “Sign” column of Table 4 where an asterisk (*) means significant improvement
(< 0.05). From the result, we can see that the LSM improves significantly on both
medium and long queries, however, not significantly on short queries. It’s reasonable
because that:

– There are less nouns and verbs to be disambiguated for short queries (see Table 2).
– It’s much harder to disambiguate the short queries because of the sparse context.

LSM: Language Sense Model for Information Retrieval 107

6 Conclusion and Future Work

In the work, we implement a WSD system which is designed for nouns and verbs only.
Then the language model on sense representations (LMSR) and language sense model
(LSM) are proposed. The LSM integrated the fine-grained disambiguated senses and
terms seamlessly through an EM algorithm. The experiments show that the LSM outper-
forms both vector space model (BM25) and traditional language models significantly
on both medium and long queries (7.53%-16.90%) with various smoothing methods.
From this study, we can also empirically draw that the fine-grained senses will help the
information retrieval if they are properly utilized.

In the future, we will study the hierarchical smoothing using more WORDNET rela-
tions. In addition, we will further evaluate the LSM on more corpus and study how the
accuracy of WSD affects the LSM.

References

1. Voorhees, E.M.: Using wordnet to disambiguate word senses for text retrieval. In Korfhage,
R., Rasmussen, E.M., Willett, P., eds.: Proceedings of the 16th Annual International ACM-
SIGIR Conference on Research and Development in Information Retrieval. Pittsburgh, PA,
USA, June 27 - July 1, 1993, ACM (1993) 171–180

2. Wallis, P.: Information retrieval based on paraphrase. (1993)
3. Sussna, M.: Word sense disambiguation for free-text indexing using a massive semantic

network. In: CIKM ’93: Proceedings of the second international conference on Information
and knowledge management, ACM Press (1993) 67–74

4. Gonzalo, J., Verdejo, F., Chugur, I., Cigarran, J.: Indexing with WordNet synsets can improve
text retrieval. In: Proceedings of the COLING/ACL ’98 Workshop on Usage of WordNet for
NLP, Montreal, Canada (1998) 38–44

5. Sanderson, M.: Word sense disambiguation and information retrieval. In: Proceedings of the
17th annual international ACM SIGIR conference on Research and development in informa-
tion retrieval, Dublin, Ireland (1994) 142–151

6. Krovetz, R.: Viewing Morphology as an Inference Process,. In: Proceedings of the Sixteenth
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. (1993) 191–203

7. Kim, S.B., Seo, H.C., Rim, H.C.: Information retrieval using word senses: root sense tag-
ging approach. In: SIGIR ’04: Proceedings of the 27th annual international conference on
Research and development in information retrieval, ACM Press (2004) 258–265

8. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Re-
search and Development in Information Retrieval. (1998) 275–281

9. Sanderson, M.: Retrieval with good sense. Information Retrieval 2 (2000) 47–67
10. Stokoe, C., Oakes, M.P., Tait, T.: Word sense disambiguation in information retrieval revis-

ited. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. Text representation (2003) 159–166

11. Rosenfeld, R.: Two decades of statistical language modeling: Where do we go from here
(2000)

12. Song, F., Croft, W.B.: A general language model for information retrieval. In: Proceedings
of the eighth international conference on Information and knowledge management. (1999)
316 – 321

108 S. Bao et al.

13. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to infor-
mation retrieval. ACM Transactions on Information Systems 22 (2004) 179–214

14. Kurland, O., Lee, L.: Corpus structure, language models, and ad hoc information. In: Pro-
ceedings of the 27th International ACM SIGIR conference conference. (2004) 194–201

15. Xu, J., Croft, W.: Cluster-based retrieval using language models. In: Proceedings of the 27th
International ACM SIGIR conference conference. (2004)

16. Srikanth, M., Srihari, R.K.: Exploiting syntactic structure of queries in a language modeling
approach to ir. In: Proceedings of the 2003 ACM CIKM International Conference on Infor-
mation and Knowledge Management, New Orleans, Louisiana,USA, ACM (2003) 476–483

17. Gao, J., Nie, J.Y., Wu, G., Cao, G.: Dependence language model for information retrieval.
In: Proceedings of the 27th annual international conference on Research and development in
information retrieval. (2004)

18. Cao, G., Nie, J.Y., Bai, J.: Integrating word relationships into language models. In: Proceed-
ings of 17th ACM SIGIR conference. (2005) 298–305

19. Mihalcea, R.F., Moldovan, D.I.: A highly accurate bootstrapping algorithm for word sense
disambiguation. International Journal on Artificial Intelligence Tools 10 (2001) 5–21

20. Liu, S., Liu, F., Yu, C., Meng, W.: An effective approach to document retrieval via utilizing
wordnet and recognizing phrases. In: SIGIR ’04: Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval, New York,
NY, USA, ACM Press (2004) 266–272

21. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language mod-
eling. In Joshi, A., Palmer, M., eds.: Proceedings of the Thirty-Fourth Annual Meeting of
the Association for Computational Linguistics, San Francisco, Morgan Kaufmann Publishers
(1996) 310–318

22. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at TREC. In:
Text REtrieval Conference. (1992) 21–30

Succinct and Informative Cluster Descriptions
for Document Repositories�

Lijun Chen and Guozhu Dong

Wright State University, Dayton, OH 45435, USA
{lichen, gdong}@cs.wright.edu

Abstract. Large document repositories need to be organized, summa-
rized and labeled in order to be used effectively. Previous clustering stud-
ies focused on organizing, and paid little attention to producing cluster
labels. Without informative labels, users need to browse many documents
to get a sense of what the clusters contain. Human labeling of clusters is
not viable when clustering is performed on demand or for very few users.
It is desirable to automatically generate informative cluster descriptions
(CDs), in order to give users a high-level sense about the clusters, and
to help repository managers to produce the final cluster labels.

This paper studies CDs in the form of small term sets for document
clusters, and investigates how to measure the quality or fidelity of CDs
and how to construct high quality CDs. We propose to use a CD-based
classification for simulating how to interpret CDs, and to use the F-
score of the classification to measure CD quality. Since directly searching
good CDs using F-score is too expensive, we consider a surrogate qual-
ity measure, the CDD measure, which combines three factors: coverage,
disjointness, and diversity. We give a search strategy for constructing
CDs, namely a layer-based replacement method called PagodaCD . Ex-
perimental results show that the algorithm is efficient and can produce
high quality CDs. CDs produced by PagodaCD also exhibit a monotone
quality behavior.

1 Introduction

Large document repositories need to be organized, summarized and labeled in
order to be used effectively. Cluster labels are essential for users to efficiently
get a high-level sense of what the clusters contain, and for use as conceptual
“handles” to the clusters. Without such labels, users will need to browse many
documents in the clusters to get that sense. Human labeling of clusters is not
viable when clustering is performed on demand or for few users. It is desirable
to automatically generate cluster labels, or succinct and informative cluster de-
scriptions (CDs), so that users can get that sense about the clusters by just
examining the CDs. Such CDs can also be used as hints for producing final
cluster labels by humans.
� This work was partially supported by a grant from AFRL. Lijun Chen was also

partially supported by a DAGSI scholarship.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 109–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

110 L. Chen and G. Dong

Much research has been done on document clustering. However, previous clus-
tering algorithms mainly focused on cluster formation, and paid little attention
to producing CDs. Even when CDs were generated [1, 2, 3, 4, 5], they were often
just by-products of the clustering process: [1, 2, 3] use the most frequent terms
as CDs, [6, 7, 4] use “descriptive” or centroid-like terms as CDs, [4] use “dis-
criminating” terms as CDs, and [5] use terms and their frequency distributions
as CDs. Except [5], these approaches did not treat CDs as primary product to
generate. Furthermore, none of them addressed the diversity factor on the terms
in CDs, and the quality of CDs has not been thoroughly addressed, to the best
of our knowledge. While there are approaches that produce a short summary
for multiple documents by extracting some key phases or sentences [8, 9, 10], our
study is focused on succinct and informative CDs consisting of a set of terms.
We believe that such CDs is more useful for cluster labeling.

We propose a CD-based classification for simulating how to interpret CDs; the
corresponding classifier only uses the CDs and their associated interpretation
in making classification decisions. We then propose to use the F-score of the
classification to measure CD quality. This classification approach also allows us
to resolve cluster competition in the interpretation process.

Using F-score directly to search for high quality CDs is too expensive. We
need some “surrogate” measures of F-score for efficient search. In this paper we
consider the CDD measure which combines the three factors of coverage, disjoint-
ness between terms across CDs for different clusters, and diversity among terms
within the CD of one cluster. Notice that diversity measures overlap among terms
in the CD of one cluster, whereas disjointness measures overlap among terms in
CDs of different clusters. We will argue that diversity is important in captur-
ing the different flavors of a given cluster. Diversity has not been considered
explicitly in previous work on CD construction.

We give a search algorithm, namely PagodaCD, for constructing CDs. Pago-
daCD is a layered improvement-based replacement algorithm, and it uses the
CDD surrogate quality measure. We also preselect a set of candidate terms to
reduce computation cost. Experimental evaluation on subsets of the Reuters
collection shows that the PagodaCD algorithm is efficient, and it can produce
high quality CDs. CDs produced by PagodaCD also has the monotone quality
behavior, giving higher quality CDs when more terms are in the CDs.

Organizationally, Section 2 discusses related works. Section 3 defines cluster
description. Section 4 introduces our CD quality evaluation methodology. Section
5 discusses the CDD surrogate measure. Section 6 presents the PagodaCD search
algorithm. Section 7 describes our experimental evaluation. Section 8 concludes.

2 Related Works

Roughly speaking, we study CD in the form of small term sets for document
clusters, and address the issues of how to measure the quality of CDs and how
to construct high quality CDs. Related works can be categorized as follows:

Succinct and Informative Cluster Descriptions for Document Repositories 111

Frequent-terms as CDs. Reference [3] uses frequent terms to represent clus-
ters for browsing. References [1, 2] use frequent term-sets to produce a hierarchy
of clusters and those frequent terms can be considered as CDs.

Descriptive or Centroid-like CDs. In [7, 4], each cluster is described by
a descriptive CD, consisting of a set of terms whose corresponding values in
the centroid vector1 are above a user-given threshold. Reference [6] describes a
cluster by k objects located near the center of the cluster.

Discriminating CDs. The Cluto clustering toolkit [4] also generates discrimi-
nating CDs, which are selected from those terms that are “more prevalent in the
cluster compared to the rest of the objects”(here objects mean documents).

COBWEB CDs. In COBWEB [5], a conceptual clustering algorithm, each
cluster is summarized by a list of attributes and associated probabilities.

Notice that these term-based approaches did not address the diversity factor
on the terms in CDs. The quality of CDs as cluster labels has not been thoroughly
addressed, to the best of our knowledge.

Others. There are approaches that try to produce a short summary for multiple
documents by extracting some key phases or sentences [8, 9, 10]. In contrasts, our
study is focused on succinct and informative CDs consisting of a set of terms.
Some of the other approaches extract information from documents based on
certain pre-defined templates [11]. The filled templates can be considered as
some kind of CDs. This approach involves the use of NLP and Information
Extraction (IE) techniques, which is different from our term-based approach.

There are also other approaches to describing clusters for non-textual data.
[12] uses “bounding boxes” plus some statistics to represent clusters; [13] uses
multiple representatives in a cluster to represent the cluster; CLIQUE [14] gen-
erates CDs in the form of DNF expressions.

3 Cluster Description

Let D be a given collection of documents. A document is a set of terms and
is not treated as a bag or sequence. A clustering2 K consists of a number L of
clusters, C1, C2, ..., CL, of all the documents in D. Roughly speaking, a CD is
intended to be used as a succinct cluster label. Formally, we have:

Definition 1. A cluster description (CD) for a cluster C is a set of k terms.
A clustering description for a clustering K consists of L cluster descriptions
CD1, ..., CDL, one for each cluster Ci. �

To allow easy interpretation, k should be a fairly small number. Constraints can
be imposed on the terms in a CD. For example, we can require a CD to contain

1 The centroid vector for a collection of documents S is commonly defined as
1

|S| d∈S d, assuming that each document d is represented as a TF-IDF vector.
2 Clustering is used as a noun here.

112 L. Chen and G. Dong

only terms that occur in its cluster. While we consider document clusters only
here, one can also consider CDs for non-document clusters.

Although previous studies also considered using sets of terms as CDs, as
discussed in Section 2, they have not considered the following important issues:
(i) how to interpret CDs, (ii) how to measure the quality of CDs, and (iii) how to
produce high-quality CDs. We will address those issues in the rest of the paper.

4 CD Interpretation and Quality

To be useful as descriptive “labels” to clusters, CDs should allow users to get a
rough picture of the contents of the clusters; they should get such a picture by
looking at the CDs (but not the actual contents of the clusters) and mentally
interpreting them in some natural manner. The interpretation can be viewed as
a mapping from CDs to the interpreted clusters; the interpreted clusters contain
what users believe are in the clusters. The amount of difference between the
interpreted and the original clusters can then measure the quality of the CDs.
We formalize the interpretation process and consider the CD quality below.

4.1 Interpretation Via CD-Based Classification

Suppose the original clusters are C1, ..., CL, and their corresponding CDs are
CD1, ..., CDL. The interpretation can be illustrated in Figure 1. The initial clus-
ters are only provided to show the entire picture; users do not need to examine
them during interpretation.

Fig. 1. Clusters, CDs and interpreted
clusters

(a) T ′: Less Diverse (b) T : More Diverse
CD CD

Fig. 2. Importance of Diversity

CD interpretation can be formalized in different ways. We believe that a
natural way is the following: a user combines his/her understanding or interpre-
tation of the individual terms in the CDs to form a rough picture of the clusters’
contents. We capture user interpretation of individual terms as follows.

Definition 2. The interpretation of a term t w.r.t. an underlying universe S
of documents, denoted as INTS(t), is the set of documents in S containing the
term t: INTS(t) = {d | d ∈ S such that t ∈ d}. We will omit S when S is the
collection D of all documents under consideration. �

Succinct and Informative Cluster Descriptions for Document Repositories 113

While INTS(t) is semantically the same as the concepts of tid-set, cover or SAT
previously used in the literature, we use the notation of INT to emphasize that
these sets are the basis of users’ perception of the terms. Notice that one can
also consider other factors such as synonyms of terms when defining INTS(t).

When interpreting CDs, users form virtual or interpreted clusters by assigning
documents to clusters based on their intuition and some “rough mental reckon-
ing”. Since a term t can occur in different clusters, there is competition in the
interpretation of t with respect to the “right” cluster. On the other hand, since a
document d can contain terms from CDs of multiple clusters, there can be com-
petition regarding which cluster to assign d to: if d contains a term t1 ∈ CD1
and a term t2 ∈ CD2, then competition occurs since t1 indicates that d should
belong to C1 and t2 indicates that d should belong to C2.

We combine the interpretation of the terms in CDs and resolve the competi-
tion to form interpretations for all clusters by using the CD-based classification
approach. Here, we use the terms in the CDs as a classifier to classify documents
into interpreted clusters as follows:

Algorithm 1. The CD-based classification
1. For each document d and each cluster Ci, let Score(d, Ci) be defined3 as

|∪t∈d ∩ CDi
INTCi

(t)|
|Ci| . Each document d′ in INTCi(t) gives a signal regarding the

membership of d in Ci, where t ∈ d ∩ CDi. By using the union of INTs, this
score uses the signal contained in any given document d′ exactly once.

2. A document d is assigned to the interpreted cluster C′
i if d has the highest

score at cluster Ci (i.e., Score(d, Ci) = max{Score(d, Cj) | 1 ≤ j ≤ L}). If the
highest score is zero, then d is assigned to the unknown cluster. We break ties by
assigning d to the first cluster (in some fixed order) having the highest score. �

Collectively, the interpreted clusters C′
1, ..., C

′
L will be referred to as the inter-

pretation of the CDs using the CD-based classification approach. While Score
combines terms using roughly the OR, other logical connectives can also be
used.

Table 1. The interpreted clusters using CD-based classification

CD1 = {a, c} CD2 = {g, i}
d11: a b c d d21: e g h i
d12: a c e f d22: c i j

C′
1 C′

2

d11: a b c d d21: e g h i
d12: a c e f
d22: c i j

(a) Two given clusters and their CDs (b) The interpreted clusters

Example 1. We now use the example given in Table 1 to illustrate. Suppose we
are given two clusters C1 = {d11, d12} and C2 = {d21, d22}, and two CDs CD1 =
{a, c} and CD2 = {g, i} (See (a)). To evaluate the quality of the given CDs, we
apply our CD-based classification approach to those documents. The interpreted
3 We use |S| to denote the cardinality of a set S.

114 L. Chen and G. Dong

clusters formed by this process are shown in (b). Consider document d22. It
contains c in CD1 and i in CD2. Both d11 and d12 contain c, so score(d22, C1) =
|{d11, d12}|/2 = 1. Only d22 contains c or i, so score(d22, C2) = |{d22}|/2 = 0.5.
Since score(d22, C1) > score(d22, C2), we assign it to C′

1. Note that the scores
are calculated based on the contents of the original clustering. �

4.2 F-Score as Measure of Quality

We measure the quality of CDs by using the amount of difference between the
original and the interpreted clustering. We measure the difference using F-score
[15], also called F-measure.

Suppose the original clustering is K = {C1, ..., CL}, the corresponding CDs
are CD1, ..., CDL, and the interpreted clustering of the CDs is K′ = {C′

1, ..., C
′
L}.

For each i, the F-score for C′
i and Ci, denoted by F (C′

i, Ci), is defined as
F (C′

i, Ci) = 2∗P (C′
i,Ci)∗R(C′

i,Ci)
P (C′

i,Ci)+R(C′
i,Ci)

, where P (C′
i, Ci) = |C′

i ∩ Ci|/|Ci| is the pre-
cision, R(C′

i, Ci) = |C′
i ∩Ci|/|C′

i| is the recall. The overall difference between the
interpreted clustering and the original clustering is defined as the weighted av-
erage of the F-score of the component clusters: F (K′,K) =

∑L
i=1

|C′
i|

|D| F (C′
i, Ci),

where D = ∪L
i=1Ci. We use F (K′,K) as our measure of CD quality.

5 Surrogate CD Quality Measures for Efficient Search

Using F-score to directly search for good CDs is too expensive (The detailed
analysis is omitted due to the space limitation). So we need to give efficient
surrogate quality measures for use in the search process. In this section, we
introduce one such measure, namely the CDD measure, which combines the
three factors of coverage, disjointness, and diversity.

Intuitively, coverage is used to encourage the selection of terms with high
frequency (matching large number of documents) in a given cluster, disjointness
is used to discourage the selection of terms with high inter-cluster overlap, and
diversity is used to discourage the selection of terms with high intra-cluster
overlap. Consequently, the three factors help us to capture the quality measure
discussed in Section 4.

5.1 Three Factors

We now discuss the three factors of coverage, disjointness, and diversity. While
the disjointness is defined on CDs for one clustering, the other two are on CDs
for one cluster.

To describe the contents of the clusters well, a CD must cover the cluster well:
A good CD for a cluster C is a term set T where CovC(T) is large.

Definition 3. The coverage of a CD = T for a cluster C measures how well a
term set T covers C, and is defined by CovC(T) = | t∈T INTC(t)|

|C| . �

To avoid the adverse impact of competition, the CDs for different clusters should
have minimal competition against each other: good CDs for a clustering C1, ...,
CL is a set of CDs such that Dis(CD1, ..., CDL) is large.

Succinct and Informative Cluster Descriptions for Document Repositories 115

Definition 4. Let CD1, ..., CDL be a CD for a given clustering C1, ..., CL. Dis-
jointness measures overlap between terms in different CDs, and is defined by
Dis(CD1, ..., CDL) = 1

1≤i,j≤L, i�=j |INTCj
(CDi)|+1 . �

The terms in a good CD should be as different as possible (less overlap among
INTs): A good CD for a cluster C is a term set T such that DivC(T) is large.

Definition 5. The diversity of a CD = T for a cluster C measures overlap
among terms of T , and is defined by DivC(T) = 1

t,t′∈T, t�=t′ |INTC(t)∩INTC(t′)|+1 .

To see why DivC(T) is important, consider the cluster C depicted in Figure 2.
Suppose T = {t1, t2, t3, t4} and T ′ = {t′1, t′2, t′3, t′4} are two candidate term sets.
Suppose the unions of their INTs are the same, i.e. ∪4

i=1INTC(ti)=∪4
i=1INTC(t′i).

Suppose further that overlap in (Figure 2.a) is much larger than overlap in
(Figure 2.b). Metaphorically speaking, a term t can be viewed as the centroid
of INTC(t). The centroids are much closer to each other in Figure 2.a than in
Figure 2.b. As a consequence, it is much harder to synthesize the whole picture
of the entire cluster using T ′ than using T .

In general, when the centroids are close to each other, it is hard to synthesize
the whole picture of the entire cluster; in contrast, when they are more widely
and evenly distributed, they can be combined to offer better picture of the whole
cluster. The importance of diversity can also be seen from an analogy: diversity
is important [16] for the performance of classifier ensembles [17, 18], and the
terms in a CD play a similar role for the collective interpretation of the CD as
the committee-member classifiers in the collective classification.

5.2 The CDD Measure

We now define the CDD surrogate measure in terms of the three factors. For
use in the search process, we are interested in comparing two CDs, a new and
an old, to determine the quality improvement offered by the new over the old.
We will first define improvement for the factors, and then combine them to form
improvement of the CDD measure.

Let C1, ..., CL be a given clustering. Let CDo
1, ..., CDo

L and CDn
1 , ..., CDn

L be
two (an old and a new) CDs for the clustering. We require that the new be
obtained from the old by modifying4 just one of the CDo

i ’s, keeping the others
unchanged; let CDo

j be the CDo
i that is modified.

The improvement of the factors are defined as:

δ(Cov)=
CovCj

(CDn
j)−CovCj

(CDo
j)

CovCj
(CDo

j) , δ(Dis) = Dis(CDn
1 ,...,CDn

L)−Dis(CDo
1 ,...,CDo

L)
Dis(CDo

1 ,...,CDo
L) ,

δ(Div) =
DivCj

(CDn
j)−DivCj

(CDo
j)

DivCj
(CDo

j) .

Observe that δ(Cov) and δ(Div) are defined in terms of the cluster CD being
modified, whereas δ(Dis) is defined in terms of the entire clustering CDs.

4 Later we will consider adding or replacing one term only in our search.

116 L. Chen and G. Dong

The CDD measure is defined in terms of the three factors. For the old CD
CDo

1, ..., CDo
L and new CD CDn

1 , ..., CDn
L, the CDD improvement is defined by

ΔCDD =
{

δ(Cov) + δ(Dis) + δ(Div), if min(δ(Cov), δ(Dis), δ(Div)) ≥ 0
0, otherwise.

Observe that in the formula we took the sum of the individual improvements
for the three factors and insisted that each improvement is non-negative. We
can also replace “sum” by “multiply”, or drop the non-negative improvement
requirement; however, experiments show that these do not perform as well.

When combining multiple factors to form a quality measure, trade-off among
the factors occurs. In the above formula each factor carries a constant and equal
weight; one may also use different and adaptive weights.

6 The PagodaCD Algorithm

We now consider how to efficiently construct succinct and informative CDs.
We will present the PagodaCD Algorithm, which is a layer-based replacement
algorithm using the CDD surrogate quality measure.

A natural but naive approach to searching good CDs is to repeatedly perform
the best single-term replacement among all clusters and candidate terms, until
no good replacement can be found. Our experiments indicated that this method
suffers from two drawbacks: it is still quite expensive, and it does not necessarily
produce better CDs when the CD size increases. These drawbacks motivate us
to introduce the PagodaCD Algorithm.

Roughly speaking, our PagodaCD Algorithm divides the search process into
multiple major steps, working in a layered manner. Each major step corresponds
to the iterative selection of some ks new terms for each CDi; it does not replace
terms selected at earlier steps. This process is level by level, and in each level all
clusters are considered together. This is why the algorithm is called PagodaCD .

Algorithm 2. The PagodaCD Algorithm

Inputs: Clusters C1, ..., CL; k (CD size); baseSize, incSize, minImp;
Outputs: CDs
Method:
1. For each i, set CDi to ∅, and let CPi consist of the most frequent 50 + k

terms occurring in cluster Ci;
2. IterReplace(CP ,CD,minImp,baseSize); //CP and CD are vectors
3. For j = 1 to k−baseSize

incSize do IterReplace(CP ,CD,minImp,incSize);
4. Return (CD1, ..., CDL) �

Parameter baseSize is the number of terms to be obtained for each CDi in the
first major step, and incSize is the number of terms to be added for each CDi

in each subsequent major step. Parameter minImp is a user given minimum
quality improvement threshold.

Succinct and Informative Cluster Descriptions for Document Repositories 117

The IterReplace procedure is used to select stepSize new terms for each CDi,
while keeping the terms selected in previous levels unchanged. It first selects the
most frequent stepSize unused terms from the candidate term pools (CDTL),
and then use the CDD measure to repeatedly select the best replacement terms.
For each iteration, it finds the best replacement term among all clusters and all
terms for the current major step. This is repeated until no replacement term
with significant quality improvement is found.

Method 1. IterReplace(CP , CD, minImp, stepSize)

1. For each i, let CDTLi = {the most frequent stepSize of terms in CPi −
CDi}, and let CDi = CDi ∪ CDTLi;

2. Repeat until no replacement is found:
- For each i, term to ∈ CDTLi and term tn ∈ CPi − CDi, compute
ΔCDDi(to, tn) for the hypothetical replacement of to in CDi by tn. Suppose
the best replacement among all possible (to,tn) pairs for i is ΔCDDi(toi , t

n
i),

achieved at toi and tni .
- Let Cj be the cluster with the largest ΔCDDi, i.e. ΔCDDj(toj , t

n
j) =

maxi ΔCDDi(toi , t
n
i).

If ΔCDDj(toj , t
n
j) > minImp, then (a) let CDn

j (respectively CDTLj) be
the result of replacing toj in CDj (respectively CDTLj) with tnj , (b) replace
CDj by CDn

j , and (c) keep the other CDi unchanged. �

Notice that PagodaCD uses IterReplace to do the replacement only in a lo-
cal one-layer-at-a-time manner. This leads to both faster computation and the
monotone-quality behavior (getting higher F-scores when CDs become larger).
Due to the space limitation, we omit the complexity analysis here.

We conclude this section with some remarks on preselection of candidate
terms. For large document collections, the number of unique terms can be very
large. Constructing CDs from all those terms is expensive. Moreover, some terms
will not contribute much to quality CDs, especially when some terms only been
appeared in few documents. To address these concerns, it is desirable to select
and use only a subset of terms for constructing the CDs. In this paper, we
preselect a number of the most frequent terms for each Ci as candidate terms.
Notice that the choice of the number of candidate terms involves a trade-off
between quality and efficiency. Here, we choose to have that number be γ =
50 + k, where k is the desired description size (or CD size) for each cluster.

7 Experimental Evaluation

In this section, we present an empirical evaluation of various CD construction
algorithms, including ours. The goals of the experiments are (1) to demonstrate
the superior quality of CDs produced by our algorithms than those produced by
other algorithms, and (2) to validate the claims that coverage, disjointness and
diversity are important factors for constructing succinct and informative CDs.

118 L. Chen and G. Dong

7.1 Experiment Setup

In this paper, we only consider CDs and assume that a clustering is given by
other algorithms. We used the Cluto [4] toolkit to generate the clusterings; the
clustering algorithm we used is repeated bisecting, which was shown to outper-
form the basic k-means and UPGMA algorithms [19]. Below, all data sets are
divided into 10 clusters, unless indicated otherwise.

We evaluate the following CD construction approaches, in addition to Pago-
daCD. The “Descriptive CD” and “Discriminating CD” were described in Section
2, and were generated using the Cluto package. The “Frequency-based CD” were
simply the most frequent terms from each cluster. Finally, the “COBWEB-like
CD” approach is also considered, which uses the utility category [20, 5, 21] as
the search criterion and uses our PagodaCD strategy to search.

7.2 Data Sets

Our experiments were performed on the Reuters-21578 [22] documents collec-
tion. The collection contains 21578 news articles, distributed in 22 files. We con-
structed five subsets, Reuter2k, Reuter4k, Reuter6k, Reuter8k and Reuter10k,
containing 2k, 4k, 6k, 8k and 10k documents respectively, in the following man-
ner: The 22 files were first concatenated in the order given. We then eliminated
those documents contain little or no meaningful textual content. Finally, we got
the desired number of documents from the concatenation starting from the be-
ginning, i.e. Reuter2k contains the first 2000 documents from the concatenation,
Reuter4k the first 4000 documents, and so on. All documents were preprocessed
by removing stop-words and stemming, following common procedures in docu-
ment processing.

7.3 CD Quality

PagodaCD vs. Existing Approaches. We compare the CD quality of our ap-
proach with other existing approaches. Figure 3 shows the average F-score of
different approaches for different CD-Sizes in the Reuter8k data set. We can see
that PagodaCD outperforms the Descriptive approach, which is the best among
others, by at least 15% relative (or 8% absolute) percent for all description sizes.
Figure 4 shows the average F-score of different approaches in Reuter2k, 4k, 6k,
8k and 10k data sets, with the description size fixed at 8. Again, the PagodaCD
Algorithm outperforms the Descriptive approach by at least 10% relative (or
7% absolute) percent. For other data sets and description sizes, the performance
comparison is similar.

Interestingly, when the description size increases, the average F-score of CDs
produced by PagodaCD and COBWEB-like CD also increases. However, this
is not true for other approaches. Figure 3 indicates that the F-score of other
approaches jumps up and down, and it even deteriorates in some cases when the
description size increases.

Table 2 shows some description terms produced by different approaches in
Reuter4k when the description size is 4. We selected 2 clusters from total of 10

Succinct and Informative Cluster Descriptions for Document Repositories 119

Table 2. CDs by different approaches when CD-Size = 4 in Reuter4k

Approaches Cluster 4 Cluster 7
PagodaCD bank pct financ billion offer dlr stock share
Descriptive CD bank rate stg debt share offer stock common
Discriminating CD bank net shr loss share net shr offer
Frequency-based CD bank said pct rate share dlr inc compani
COBWEB-like CD funaro reschedul imf citibank registr redeem subordin debentur

clusters to save space. Although terms are in their root or abbreviated form, we
can still sense that cluster 4 is about “large-scale” bank financing and cluster
7 is about stocks. This will be more obvious to domain experts. PagodaCD and
Descriptive CDs give us better sense about these topics. For Discriminating CDs,
there are duplicated terms in both clusters, namely net and shr. For Frequency-
based CD, inc and compani in cluster7 give redundant information.

Impact of Clustering Quality on CD Quality. Clustering quality has big
impact on CD quality. High clustering quality means that documents in a cluster
are very similar to each other, but are very different from those in other clusters.
It turns out that CDs constructed from high quality clusterings tend to have
high quality, and those constructed from low quality clustering tend to have low
quality. To demonstrate the effect of clustering quality, we produced different
clusterings (5, 10, 15, 20-way) from Reuter4k. We measured the clustering quality
by the weighted sum of the difference between the internal similarity and external
similarity of each cluster. Interestingly, the clustering quality deteriorates when
the number of clusters increases for this dataset. Figure 5 indicates that CD
quality also deteriorates when clustering quality deteriorates.

7.4 Importance of the Three Factors

Experiments confirmed that the three factors of coverage, disjointness and diver-
sity are very important for constructing informative CDs. Indeed, if we leave any
of them out, the CD quality is not as good as when all three are used. Figures 6
and 7 show the importance of different factors in terms of relative loss or gain

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 4 6 8 10 12 14 16

A
ve

ra
g
e
 F

-s
co

re

Description size

PagodaCD
Descriptive CD

Discriminating CD
Frequency-based CD

COBWEB-like CD

Fig. 3. F-score vs CD-Size
in Reuter8k

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 2 4 6 8 10

A
ve

ra
g

e
 F

-s
co

re

Data sets

PagodaCD
Descriptive CD

Discriminating CD
Frequency-based CD

COBWEB-like CD

Fig. 4. F-score vs data
sets when CD-Size = 8

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

5 10 15 20

Number of clusters

Av
era

ge
 F-

so
cre

PagodaCD Descriptive CD
Discriminating CD Frequency-based CD
COBWEB-like CD

Fig. 5. F-score vs. number
of clusters in Reuter4k

120 L. Chen and G. Dong

 0.8

 0.85

 0.9

 0.95

 1

 4 6 8

R
el

at
iv

e
lo

ss

Data sets

With all three
Without Coverage
Without Diversity

Without Disjointness

Fig. 6. Relative F-score loss vs data sets
when one factor is left out

 0.8

 0.85

 0.9

 0.95

 1

 4 6 8 10 12 14 16

R
el

at
iv

e
lo

ss

Description size

With all three
Without Coverage
Without Diversity

Without Disjointness

Fig. 7. Relative loss vs CD-Sizes when
one factor is left out in Reuter8k

of average F-score . Because the candidate terms are frequent terms, coverage
is less important than diversity. In other experiments we observed that, when
coverage is less important, the other two factors, especially diversity, are very
important.

8 Concluding Remarks

We argued that constructing succinct and informative CDs is an important com-
ponent of clustering process, especially for managing large document reposito-
ries. We believe that succinct and informative CDs can help users quickly get
a high-level sense of what the clusters contain, and hence help users use and
“digest” the clusters more effectively.

We discussed and formalized how to interpret the CDs and how to resolve
perception competition. We introduced a CD-based classification approach to
systematically evaluate CD quality. We identified a surrogate quality measure
for efficiently constructing informative CDs. We gave a layer-based replacement
search method called PagodaCD for constructing CDs. Experimental results
demonstrated that our method can produce high quality CDs efficiently, and
CDs produced by PagodaCD also exhibits a monotone quality behavior.

For future research, we would like to do the following: (1) performing clus-
tering and constructing informative CDs at the same time in order to get high
quality CDs and clusterings, (2) giving the three factors different weights in dif-
ferent situation, and considering new surrogate quality measures, (3) considering
synonyms and taxonomy in forming CDs, (4) involving human evaluation efforts
to further validate the understandability of CDs, and (5) adapting previous ideas
on the use of emerging patterns and contrasting patterns for building classifiers
[23, 24, 25, 26] to construct succinct and informative CDs.

References

1. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: Proc. 8th Int.
Conf. on Knowledge Discovery and Data Mining (KDD). (2002)

2. Fung, B.C., Wang, K., Ester, M.: Hierarchical document clustering using frequent
itemsets. In: Proc. of SIAM Int. Conf. on Data Mining. (2003)

Succinct and Informative Cluster Descriptions for Document Repositories 121

3. Hearst, M.A., Karger, D.R., Pedersen, J.O.: Scatter/gather as a tool for the navi-
gation of retrieval results. In: Working Notes of AAAI Fall Symp. (1995)

4. Karypis, G.: Cluto: A clustering toolkit (release 2.1.1) (2003)
5. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Ma-

chine Learning 2 (1987) 139–172
6. Gordon, A.: Classification, 2nd ed. Chapman & Hall (1999)
7. Hotho, A., Stumme, G.: Conceptual clustering of text clusters. In: Proceedings of

FGML Workshop. (2002) 37–45
8. Hovy, E., Lin, C. Y.: Automated text summarization in summarist (1997)
9. DUC: Document understand conferences. http://duc.nist.gov/ (2005)

10. Maybury, M.T., Mani, I.: Automatic summarization. Tutorial on ACL (2001)
11. Mooney, R.J., Bunescu, R.: Mining knowledge from text using information extrac-

tion. SIGKDD explorations 7, 1, pp. 3-10. (2005)
12. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering

method for very large databases. In: Proc. ACM-SIGMOD. (1996) 103–114
13. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large

databases. In: SIGMOD. (1998) 73–84
14. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-

tering of high dimensional data for data mining applications. In: Proc of the ACM
SIGMOD int’l conference on management of data. (1998) 94–105

15. van Rijsbergen, C.J.: Information Retireval. Butterworths, London (1979)
16. Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles

based on feat ure selection. In: ECML. (2000) 109–116
17. Shapire, R.: The strength of weak learnability. ML 5(2) (1990) 197–227
18. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
19. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering

techniques. In: Proceedings of KDD Workshop on Text Mining. (2000)
20. Biswas, G., Weinberg, J.B., Fisher, D.H.: ITERATE: A conceptual clustering

algorithm for data mining. IEEE Tran. 28C (1998) 219–230
21. Gluck, M.A., Corter, J.E.: Information, uncertainty, and the utility of categories.

In: Proc of the Seventh Annual Conference of the Cognitive Science Society. (1985)
22. Lewis, D.D.: Reuters-21578 text categorixation test collection (1997)
23. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and

differences. In: Proc. of the 5th ACM SIGKDD. (1999)
24. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerg-

ing patterns. In: Discovery Science. (1999) 30–42
25. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on

multiple class-association rules. In: ICDM. (2001) 369–376
26. Han, J., Fu, Y.: Exploration of the power of attribute-oriented induction in data

mining. In Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., eds.:
Advances in Knowledge Discovery and Data Mining. (1996) 399–421

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 122 – 133, 2006.
© Springer-Verlag Berlin Heidelberg 2006

LRD: Latent Relation Discovery for Vector Space
Expansion and Information Retrieval

Alexandre Gonçalves1, Jianhan Zhu2, Dawei Song2,
Victoria Uren2, and Roberto Pacheco1,3

1 Stela Institute, Florianópolis, Brazil

{a.l.goncalves, pacheco}@stela.org.br
2 Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom

{j.zhu, d.song, v.s.uren}@open.ac.uk
3 Department of Computing and Statistics, Federal University of Santa Catarina,

Florianópolis, Brazil
rpacheco@inf.ufsc.br

Abstract. In this paper, we propose a text mining method called LRD (latent re-
lation discovery), which extends the traditional vector space model of document
representation in order to improve information retrieval (IR) on documents and
document clustering. Our LRD method extracts terms and entities, such as per-
son, organization, or project names, and discovers relationships between them by
taking into account their co-occurrence in textual corpora. Given a target entity,
LRD discovers other entities closely related to the target effectively and effi-
ciently. With respect to such relatedness, a measure of relation strength between
entities is defined. LRD uses relation strength to enhance the vector space model,
and uses the enhanced vector space model for query based IR on documents and
clustering documents in order to discover complex relationships among terms
and entities. Our experiments on a standard dataset for query based IR shows
that our LRD method performed significantly better than traditional vector space
model and other five standard statistical methods for vector expansion.

1 Introduction

Textual corpora, such as web pages on a departmental website and blogs of a group of
people, often mention named entities which are related to each other, and their relat-
edness is often shown by their co-occurrence in the same documents and their occur-
ring close to each other in these documents, e.g., one document mentions Thomas
works on project X in one sentence, and another document mentions Jack works on X
in one paragraph. Given an entity, we can use either standard statistical measures such
as mutual information [12] or our own CORDER method [11] to find related entities
in a textual corpus. Given a document, suppose there are a number of entities origi-
nally occurring in the document, however, entities which are related to these original
entities may not necessarily also occur in the document, e.g., Thomas and Jack both
work on X but one document only mentions Thomas works on X.

Therefore, we propose to enhance the content description of a document with enti-
ties, which are not in the document but are closely related to existing entities in a
document. By doing so, we can enrich what is missing but in fact very relevant to the

 LRD: Latent Relation Discovery for Vector Space Expansion and IR 123

document, e.g., since Thomas and Jack both work on X, we add Jack to one document
which only mentions Thomas works on X.

In terms of information retrieval (IR), vector space models are traditionally used to
index a document with terms and words occurring in the document for term-based
querying and document clustering. Thus, we propose to enhance the vector of a docu-
ment with entities and terms (CORDER and statistical methods are applied to terms in
the same manner as entities) which are not in the document but are closely related to
existing entities and terms in the document. Since humans’ term-based queries are
often an approximation of the kind of information they are looking for, these enhanced
vectors can often lead to improved quality of returned documents, e.g., one document,
which has Thomas and Jack as original dimensions and project X as an enhanced di-
mension, will match the query “X”, and the user may find this document useful since it
provides detailed information about Thomas and Jack, two members of X.

In this paper, we propose a text mining method called LRD (latent relation discov-
ery) which can automatically process a textual corpus for unearthing relationships
among entities and terms, and use these relationships to enhance traditional vector
space model for IR and document clustering.

We propose a relevance measure for a pair of co-occurring entities by taking into
account both their co-occurrence and distance. The relevance measure measures the
degree of relatedness and is referred to as relation strength between them. Given a
target entity, we aim to find its related entities and rank them by their relation
strengths to the target entity.

LRD is based on our own CORDER algorithm [11]. LRD can be viewed as an un-
supervised machine learning method, i.e., the method does not need either richly
annotated corpora required by supervised learning methods or instances of relations as
initial seeds for weakly supervised learning methods.

LRD identifies entities which are relevant to a given target entity based on its co-
occurrence and distance with other entities in a textual corpus. Given a document,
entities, which are not in the document but are relevant to entities originally in the
document, are used to enhance the vector representation of the document. The en-
hanced vector space model has led to improved IR on these documents and document
clustering over the traditional vector space model. Since richer contexts are encoded
in enhanced vectors, a document A, which is judged as not relevant to a query Q or
another document B in the traditional vector space, however can be judged as relevant
to the query Q or document B in the enhanced vector space. We have evaluated LRD
in terms of F measure, a combination of precision and recall, in IR and compared with
five other standard methods, and LRD has significantly outperformed all of them and
the original vector space model.

The rest of the paper is organized as follows. We present related work in Section 2.
Our LRD method is presented in Section 3. The experimental results are reported in
Section 4. Finally, we conclude the paper and discuss future work in Section 5.

2 Related Work

Co-occurrence based methods have been widely applied, for instance, in the identifi-
cation of collocations and information retrieval. Such methods aim to correlate textual
structures in order to unearth latent relationships. One of these approaches is Latent

124 A. Gonçalves et al.

Semantic Indexing (LSI) [3], which automatically discovers latent relationships
among documents and terms through Singular Vector Decomposition (SVD). LSI has
been applied mainly in the information retrieval area, and also used to discover highly
related terms [4]. Furthermore, LSI can reduce the dimensionality without undermin-
ing precision in information retrieval systems. However the method is time-
consuming when applied to a large corpus [7].

Other related methods which can be applied in this context are t test, chi-squared, z
score, and mutual information (MI) [12]. Criticisms of these methods are that prob-
abilities are assumed to be approximately normally distributed in t test, Z score is only
applicable when the variance is known, t test and 2χ test do not work well with low

frequency events, and mutual information does not deal properly with data sparseness.
Unlike these methods, LRD can deal with data sparseness and scales well to a large
corpus since LRD treats each document as an atomic unit and any change requires
only unitary reprocessing (the details of LRD is presented in Section 3).

In the line of document clustering, Hotho and Stumme [6] have made use of For-
mal Concept Analysis using background knowledge by mapping words to some con-
cept in Wordnet in order to improve the clustering process. Also, Hotho et al. [5]
proposed a model called COSA (Concept Selection and Aggregation) which uses
ontologies for restricting the set of document features through aggregations. Another
approach is based on analogy, aiming to produce, through alignment, pairs of defini-
tions that share the same headword term, and promotes replacements in pairs without
major changes in the meaning [1]. In previous work, we [9] presented a model that
extracts relevant terms from researchers’ curricula vitae integrated with ontology
aiming to promote support to clustering. The problem with this approach lies in its
ontology dependency. Our LRD method analyzes co-occurrences through textual
corpora in order to establish the relation strength among entities which in turn im-
proves IR and document clustering tasks.

In essence, our proposed LRD method is similar to those co-occurrence based ap-
proaches which aim to enhance context representation. However, by combining rela-
tion strength, which establishes latent relationships between entities, with the vector
space model, our LRD method has achieved better results.

3 Proposed Approach

3.1 Overview

Our LRD model maps entities and their relationships extracted from documents. Enti-
ties are named entities extracted from documents using a Named Entity Recognition
(NER) tool called ESpotter [10] and terms in the document. We calculate the relation
strength between every pair of entities1 by taking into account the pair’s co-
occurrences in these documents. We represent each document as a vector of entities,
and construct an entity-by-document matrix. Given a document and its vector, the
most relevant entities to those originally in the vector are identified to expand the
document vector. We use these expanded vectors for query based information re-
trieval and document clustering.

1 Entities refer to both named entities recognized by ESpotter and terms in the document.

 LRD: Latent Relation Discovery for Vector Space Expansion and IR 125

3.2 Entity Extraction

Named Entity2 Recognition (NER) is a well studied area [2]. We have used ESpotter
[10], a NER system based on standard NER techniques and adapted to various do-
mains on the Web by taking into account domain knowledge. ESpotter recognizes
Named Entities (NEs) of various types. Users can configure ESpotter to recognize
new types of entities using new lexicon entries and patterns. Domain knowledge,
taken from sources such as ontologies, is represented as lexicon entries (e.g., the pro-
ject names in an organization).

3.3 Relation Strength

Given a target entity (E1) which occurs in various documents, there are a number of
entities which co-occur with it in these documents. We propose a latent relation dis-
covery algorithm which ranks co-occurring NEs based on relation strength. Thus, NEs
which have strong relations with a target NE can be identified. Our approach takes
into account three aspects as follows:

Co-occurrence: Two entities are considered to co-occur if they appear in the same
text fragment, which can be a document or a text window. For simplicity, in this sec-
tion, we use document as the unit to count entity co-occurrence. The effect of differ-
ent granularities of text fragments will be discussed later in Section 4. Generally, if
one entity is closely related to another entity, they tend to co-occur often. To normal-
ize the relatedness between two entities, E1 and E2, the relative frequency [8] of co-
occurrence is defined as follows.

ˆ (1, 2)p E E =
(1, 2)Num E E
N

 (1)

where Num(E1,E2) is the number of co-occurring documents for E1 and E2, and N is
the total number of documents in a corpus.

Distance. Two NEs which are closely related tend to occur close to each other. If two
NEs, E1 and E2, occur only once in a document, the distance between E1 and E2 is
the difference between the word offsets of E1 and E2. When E1 or E2 occur multiple
times in the document, given E1 as the target, the mean distance between E1 and E2
in the ith document, mi(E1, E2) is defined as follows.

(1)

1

min(1 , 2)

(1, 2)
(1)

if E

j
j

i
i

E E

m E E
f E

== (2)

where fi(E1) is the number of occurrences of E1 in the ith document, min(E1j, E2) is
the minimum distance between the jth occurrence of E1, E1j, and E2. Generally,
mi(E1, E2) is not equal to mi(E2, E1).

Relation Strength: Given an entity, E1, the relation strength between two entities E1
and E2 takes into account their co-occurrence, mean distance, and frequency in co-

2 In this paper, named entities are proper names consisting of words or collocations extracted

from documents and labeled as a particular class, i.e., person or organization.

126 A. Gonçalves et al.

occurred documents as defined in Equation 3. The greater the mean distance is, the
smaller the relation strength. Generally, the relation strength between E1 and E2 is
asymmetric depending on whether E1 or E2 is the target.

((1)) ((2))
ˆ(1, 2) (1, 2) ,

(1, 2)
i i

i i

f Freq E f Freq E
R E E p E E

m E E

×= × (3)

where ((1)) (1)f Freq E tfidf Ei i= , ((2)) (2)f Freq E tfidf Ei i= , and (1)Freq Ei and (2)Freq Ei

are the numbers of occurrences of E1 and E2 in the ith document, respectively. The
term frequency and inverted document frequency measure tfidf is defined as

()() () * log /2 jtfidf j tf j N dfii = , where tfi(j)= fi(j)/ max(fj(k)) is the frequency fi(j) of

entity j in the ith document normalized by the maximum frequency of any entity in
the ith document, N is the number of documents in the corpus, and dfj is the number of
documents that contain the entity j.

3.4 Vector Expansion

In vector composition, we intend to enhance the vector space by co-occurred entities.
After entity extraction, we calculate the relation strength between every pair of enti-
ties using Equation 3. For example, in Table 1, an entity-by-document is constructed
from 3 documents (D1, D2, and D3) and 7 entities.

Table 1. Example of a document-to-entity matrix and frequencies in the matrix are normalized
using tfidf in the matrix on the right (D1-N, D2-N and D3-N)

Entities D1 D2 D3 D1-N D2-N D3-N
E1 4 2 0 0.5850 0.5850 0
E2 2 0 3 0.2925 0 0.5850
E3 3 2 0 0.4387 0.5850 0
E4 1 1 0 0.1462 0.2925 0
E5 0 2 0 0 1.5850 0
E6 0 0 2 0 0 1.0566
E7 1 0 2 0.1462 0 0.3900

We create a table consisting of pairs of related entities. Each row in the table con-
sists of a document ID, a source and a target entity co-occurring in the document with
their frequencies, the frequency of their co-occurrences, and their intra-document
distance. As an example, Table 2 shows pairs of related entities in document 1, their
frequencies and the distance between them calculated using Equation 2 and the intra-
document relation strength calculated using the second part of Equation 3 (i.e.,
(((1)) ((2))) / (1, 2)i i if Freq E f Freq E m E E×). Similarly, we can get the table for co-occurred

entities in document 2 and 3.
Given a pair of entities, we can calculate their relation strength shown in Table 3.

For example, the relation strength between target entity (TE) E1 and source entity
(SE) E3,is computed using Equation 3 as R(E1,E3)=2/3*(0.4938+0.5850)=0.7192.
Relation strength is used to recompose the vector space. For example, in Table 1, the
vector of document 1 does not contain E5 and E6. However, judging by relation

 LRD: Latent Relation Discovery for Vector Space Expansion and IR 127

Table 2. Example of co-occurred entities in documents

Doc Source Entity
(SE)

SE tf Target Entity
(TE)

TE
tf

Distance Intra-doc relation
strength

1 E1 4 E2 2 2.0000 0.4387
1 E1 4 E3 3 2.0731 0.4938
1 E1 4 E4 1 2.3634 0.3094
1 E1 4 E7 1 2.8540 0.2562
1 E2 2 E3 3 2.3412 0.3123
1 E2 2 E4 1 2.6887 0.1632
1 E2 2 E7 1 3.0805 0.1424
1 E3 3 E4 1 2.2642 0.2584
1 E3 3 E7 1 2.5654 0.2280
1 E4 1 E7 1 3.8074 0.0768

Table 3. Example of relation strengths between co-occurred entities

SE/TE E1 E2 E3 E4 E5 E6 E7
E1 N/A 0.1462 0.7192 0.4788 0.2590 0 0.0854
E2 0.1136 N/A 0.1041 0.0544 0 0.2609 0.3290
E3 0.6528 0.0364 N/A 0.3898 0.3155 0 0.0760
E4 0.3675 0.1754 0.2568 N/A 0.1847 0 0.0256
E5 0.3687 0 0.4876 0.2512 N/A 0 0
E6 0 0.1856 0 0 0 N/A 0.1423
E7 0.1569 0.4587 0.1233 0.0489 0 0.1423 N/A

strength, the most relevant entity to E3 not in the vector of document 1 is E5 and to
E2 not in the vector of document 1 is E6, with relation strength 0.3155 and 0.2609,
respectively. Since E3 and E2 are dimensions in the vector of document 1, E5 and E6
are considered to be added to the vector of document 1. Generally, for each entity
originally in a document vector as the target, we add each of the top n entities related
to the target and not in the document vector (ranked by their relation strengths), Enew,
to the document vector. The weight of Enew, w(Enew), is defined as follows.

(,)

1

() (,) ()
newnum E D

new new i i
i

w E R E E w E
=

= × (4)

where R(Enew,Ei) is the relation strength between Enew and Ei, which is originally in the
vector of document D, w(Ei) is the weight of Ei in document D, and num(Enew,D) is the
total number of entities originally in the document vector having Enew in the top n
most relevant entities in terms of relation strength.

In Table 4, we set n=1. We add E5 (No. 1 entity not in document vector (N1NDV)
of SEs: E1, E3, E4) and E6 (N1NDV of SE: E2) to document one, E2 (N1NDV of
SE: E1, E4) and E7 (N1NDV of SE: E3) to document two, and E3 (N1NDV of SE:
E1, E2, E7) to document three. For example, the weight of E5 in D1 is:
0.5850*0.2590+0.4387*0.3155+0.1462*0.1847 = 0.3169.

3.5 Query-Based Information Retrieval and Document Clustering

We calculate a cosine coefficient between the expanded vector of each document and
the vector of a term-based query and use the cosine coefficients to rank documents
with respect to the query. We setup a threshold on the cosine coefficient to trade pre-
cision against recall in retrieving these documents.

128 A. Gonçalves et al.

We apply a clustering algorithm to generate patterns for in-depth analysis of how
documents and entities are inter-connected. Unlike the traditional k-means algorithm
which is based on the parameter k (number of clusters), we use an approach based on
a radius parameter (r) to control the cluster formation.

Table 4. Example of an entity-by-document matrix enhanced by related entities

Entities D1 D2 D3
E1 0.5850 0.5850 0.1462
E2 0.2925 0.1368 0.5850
E3 0.4387 0.5850 0.2143
E4 0.1462 0.2925 0
E5 0.3169 1.5850 0
E6 0.0763 0 1.0566
E7 0.1462 0.0445 0.3900

The algorithm starts with selecting a vector (either randomly or the one most sepa-
rated from the others) and forms the first cluster. By repeating the process, the next
vector is selected and compared with the first cluster by applying the cosine measure
defined as follows.

()

() ()
1cos

22

11

n
t qi ii

n n
t q jk jk

θ
∗

==

∗
==

,
(5)

where ti and tk are the normalized frequencies of the ith and kth entities in the vector t,
and qi and qj are the normalized frequencies of the ith and jth entities in the vector q.

If the similarity between a vector and a cluster centroid subtracted from 1 is greater
than the r parameter, the vector forms a new cluster. Otherwise, it is assigned to the
cluster and we recalculate the centroids of the clusters. Experiments using a range of
values of r from 0.2 to 0.7 were carried out and the best results were achieved with
r = 0.3. During the next iterations, if the vector moves from one cluster to another, the
centroid updating is carried out in both the new cluster to which the vector has been
added and the old cluster from which the vector has been removed.

The clustering process stops when it reaches convergence, which is determined by
the total average difference between the current and previous epoch. Our experiments
on different datasets have shown that epochs between 2 and 10 are required. After the
clustering, we get clusters consisting of vectors and cluster centroid average.

4 Empirical Evaluation

We have evaluated our proposed relation strength model (LRD) in term of F measure,
which combines precision and recall, by comparing with five standard statistical
methods (LSI and four other methods based on a relation strength model for vector
expansion) in information retrieval. In order to automate the evaluation process, the
Glasgow Information Retrieval benchmark dataset called CISI3 containing 1,460

3 http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/cisi/

 LRD: Latent Relation Discovery for Vector Space Expansion and IR 129

documents and 112 queries has been used. Terms in the documents and entities ex-
tracted from documents using ESpotter are used during the correlation and vector
expansion processes.

4.1 Relation Strength Models

We have compared LRD with four standard statistical methods in relation strength
calculation. These relation strengths are used for vector expansion. The four methods,
i.e., mutual information (MI), improved MI, phi-squared, and Z score are presented as
follows.

Mutual Information (MI) compares the probability of two entities, x and y or any
other linguistic unit, such as named entities, appearing together against the probability
that they appear independently. The higher the MI value, the greater the degree of
relevance between two entities. MI is defined as follows.

)()(

),(
log),(2 yPxP

yxP
yxI = , (6)

where P(x,y) is the probability that x and y co-occur in a text fragment (which can be
a document, or a text window), and P(x) and P(y) are the probabilities that x and y
occur individually.

We have also applied Vechtomova et al.’s improved MI (VMI) method [13]. The
standard MI is symmetrical, i.e. I(x,y) = I(y,x), as joint probabilities are symmetrical,
P(x,y) = P(y,x). Unlike traditional MI, VMI is asymmetrical. An average window size
calculated from all windows around term x is used to estimate the probability of oc-
currence of y in the windows around x. VMI is defined as follows.

2

22)()(

),(

log
)()(

),(
log),(

N

yfxf

Nv

yxf

yPxP

yxP
yxI xv

v ==
,

(7)

where f(x,y) is the joint frequency of x and y in the corpus, f(x) and f(y) are frequen-
cies of independent occurrence of x and y in the corpus, vx is the average window size
around x in the corpus, and N is the corpus size.

Phi-squared (2φ) makes use of a contingency table as follows:

 2w
2w

1w a b

1w c d

where cell a indicates the number of times entities w1 and w2 co-occur in a window.
Cell b indicates the number of times w1 occurs but w2 does not. Cell c indicates the
number of times w2 occurs but w1 does not. Finally, cell d indicates the number of

times neither entity occurs, that is, ,
N

d a b c
S

= − − − where N is the size of the corpus

and S the size of the text window. 2φ measure between w1 and w2 is defined as:

130 A. Gonçalves et al.

2
2 (-)

()()()()

ad bc

a b a c b d c d
φ =

+ + + +
, (8)

where 20 1φ≤ ≤ . Unlike MI which typically favors entities with low frequency, 2φ

can be used as an alternative, since it tends to favor high frequency ones.
Z score has been used by Vechtomova et al. [13] for query expansion. Z score is

defined as follows.

() ()
(,)

(,)
() ()

x

x

v f x f y
f x yO E NZ x y

E v f x f y

N

−−= =
,

(9)

where f(x,y) is the joint frequency of x and y in the corpus, f(x) and f(y) are frequen-
cies of independent occurrence of x and y in the corpus, vx is the average window size
around x in the corpus and N is the corpus size.

4.2 Experimental Results of Vector Space Model for Information Retrieval

By expanding document vectors and applying different relation strength methods we
intend to establish a way to automatically evaluate our proposed method. In this sense
we have compared LRD, Phi-squared, MI, VMI and Z score in order to find out enti-
ties and terms closely related to the original entities and terms in the vector. For each
method, the original vector is expanded using the method by taking into account dif-
ferent text windows and expansion factors.

Given a document vector, it is expanded using the method presented in Section 3
with different text windows and n factors (the n most related entities to each original
entity in a document vector, which do no occur in an original vector as dimensions,
are added to the vector). We have used the text window of 20, 50, 100 and 200, and
the whole document (i.e., two entities are considered as co-occurring as long as they
occur in a same document). For the n factor, values of 1, 5, 10, 20, 30, 40 and 50 most
relevant entities are used to expand the vector space. The same vector expansion proc-
ess using each of the relation strength methods is applied to the corpus using different
text window and n factor.

We have applied each relation strength method to the 1,460 documents in the CISI
dataset. The constructed vector space by each method using different text window and
n factor is used for information retrieval. We randomly selected 20 queries from the
112 queries in CISI. Given a query, we calculate a cosine coefficient between the
vector of each document and the vector of the query to rank these documents against
the query.

Given a query, we set a threshold on the cosine coefficient and only documents
having cosine coefficient with the query above the threshold are taken into account in
our precision and recall calculation. Given a query, the precision (P) of our answer is
the number of relevant documents returned divided by the total number of returned
documents, and recall (R) is the number of relevant documents returned divided by
the total number of relevant documents as the gold standard in CISI. We define the F
measure as 2 P R

F
P R

× ×=
+

. In our experiments, we set the cosine similarity threshold as

 LRD: Latent Relation Discovery for Vector Space Expansion and IR 131

0.54 which maximizes F measure on most queries. Given a relation strength method
with different window size and n factor, we average the F measure for each of the 20
answers to get the total F measure and the results are shown in Table 5.

Table 5. The average F measure for LSI and 5 methods with seven expansion factor (n) values
and five text window settings, the highest F measure for each window setting is in bold and
shaded cell

F-measure (%) n=1 5 10 20 30 40 50
LRD 16.5 18.4 18.1 18.7 19.3 18.9 17.8
Phi-squared 12.9 11.5 10.8 10.8 10.9 11.3 12.1
MI 9.3 6.6 6.3 5.9 5.8 5.7 5.9
VMI 10.5 6.6 6.1 5.8 5.8 5.9 5.9
Z Score 14.7 12.8 13.0 11.8 11.0 10.0 10.0

No
win-
dow

LSI 15.3 16.1 15.7 16.1 16.6 15.2 14.9
LRD 16.9 18.3 18.7 18.9 19.0 18.7 18.6
Phi-squared 15.3 12.9 13.1 10.7 12.0 11.7 11.1
MI 10.3 6.6 6.2 5.9 5.8 6.0 5.9
VMI 10.6 6.7 6.2 5.9 5.8 6.0 5.9

Size
=20

Z Score 14.4 14.3 14.4 14.9 14.5 15.6 15.3
LRD 16.8 18.4 18.2 18.8 18.9 18.9 18.7
Phi-squared 13.3 10.6 9.7 9.6 9.3 10.8 9.9
MI 10.3 6.7 6.2 5.9 5.8 5.9 5.9
VMI 10.5 6.7 6.1 5.8 5.8 6.0 5.9

Size
=50

Z Score 14.5 14.5 14.0 15.6 15.2 17.1 16.1
LRD 16.5 18.4 18.1 18.6 19.2 18.8 17.7
Phi-squared 13.8 10.4 7.9 8.1 7.1 6.6 6.3
MI 9.4 6.7 6.3 5.9 5.8 5.7 5.9
VMI 9.6 6.6 6.1 5.8 5.8 5.9 5.9

Size
=100

Z Score 14.5 14.6 13.9 15.2 15.4 17.4 16.8
LRD 16.5 18.3 18.1 18.7 19.2 18.8 17.8
Phi-squared 14.2 13.0 12.0 8.7 7.7 7.6 7.2
MI 9.3 6.6 6.2 5.9 5.8 5.7 5.9
VMI 10.5 6.6 6.1 5.8 5.8 5.9 5.9

Size
=200

Z Score 14.5 14.6 13.9 15.2 15.4 16.7 16.6

The average F measure for the original vector space model, i.e., without vector ex-
pansion and text window, is 9.2% and provides a baseline for our comparison. As
shown in Table 5, LSI, which is only evaluated based on the use of whole documents
rather than text windows, is also included. For LSI and the other five methods which
work on different window settings, LRD consistently performs the best. The highest F
measure is 19.3% using LRD with no window and n=30. The second best performing
method is LSI with highest F measure 16.6% with n=30. The third best performing
method is Z score with highest F measure 17.4% with window size 100 and n=40. MI
and VMI have similar performance.

In terms of the influence of n factor on these methods, when n factor increases, the
F measure of LSI keeps roughly the same. For a given window setting, when n factor
increases, the F measures of LRD and Z score increase (for the F measure of LRD,
the biggest increases is from n=1 to n=5 and the increase from n=5 becomes very
small even some small decreases), the F measure of phi-squared, MI and VMI de-
crease. Since the baseline is 9.2%, we can see that vector expansion with LRD, LSI,
phi-squared and Z score have a positive effect on information retrieval and with the
other methods have a negative effect on information retrieval. LRD has achieved the

132 A. Gonçalves et al.

best performance for all window sizes when n = 30, and larger n values will not bring
benefit to the performance and on the contrary bring computational cost.

In terms of the effect of window size on average F measure, LRD and Z score are
not very sensitive to the varying window sizes, and consistently perform better than
the other methods. Phi-squared, MI, and VMI achieve better F measures with smaller
window sizes than those with larger window sizes.

5 Conclusions and Future Work

We present a co-occurrence based approach, namely LRD (Latent relation Discov-
ery), which associates entities using relation strengths among them. We propose to
use inter-entity relation strength to enhance the traditional vector representation of
documents in order to provide additional meaning and improve query based informa-
tion retrieval on these documents. Our initial experiments using the CISI dataset have
shown that LRD can dramatically improve the F measure of information retrieval
over the traditional vector space model, and significantly outperformed five standard
methods for vector expansion. Our experiments on the CISI dataset show that LRD’s
running time increases linearly with the size of documents and the number of docu-
ments it examines. It can incrementally evaluate existing relations and establish new
relations by taking into account new documents. Thus, LRD can scale well to a large
corpus.

Our future work is five-fold. First, we are working on refining the LRD model in
order to improve the metrics used to establish the relation strengths between entities
and improve the clustering method. Second, we propose clustering documents based
on the enhanced vector space models produced by our LRD method, however, the
evaluation and interpretation of these clusters is neither an easy nor an intuitive task.
We are carrying out work on using various techniques to evaluate these clusters. Our
work underway is the visualization of these clusters in order to show complex patterns
of inter-connected entities in clustered documents for easy comparison between these
clusters produced by different vector space models. Third, we are evaluating our en-
hanced vector space models for information retrieval and clustering on large scale
TREC collections such as TIPSTER. Fourth, dimensionality reduction is another
direction and needs to be studied in order to improve the performance of our method.
Finally, entities and their relations constitute a social network of communities of prac-
tice. We are working on using the social network to help analyze and understand the
behavior of these communities.

References

1. Castillo, G., Sierra, G., and McNaught, J. An improved algorithm for semantic clustering.
In Proc. of 1st International Symposium on Information and Communication Technolo-
gies, ACM International Conference Proceeding Series, Dublin, Ireland, 2003, 304-309.

2. Cunningham, H. GATE: a General Architecture for Text Engineering. Computers and the
Humanities, vol. 36, issue 2, 2002, 223-254.

 LRD: Latent Relation Discovery for Vector Space Expansion and IR 133

3. Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman, R. A.
Indexing by latent semantic analysis. Journal of the American Society of Information Sci-
ence, vol. 41, issue 6, 1990, 391-407.

4. Ding, C. H. Q. A probabilistic model for dimensionality reduction in information retrieval
and filtering. In Proc. of the 1st SIAM Computational Information Retrieval Workshop,
Raleigh, NC, 2000.

5. Hotho, A., Maedche, A., and Staab, S. Text clustering based on good aggregations. In Pro-
c. of the 2001 IEEE International Conference on Data Mining, IEEE Computer Society,
San Jose, CA, 2001, 607-608.

6. Hotho, A., and Stumme, G. Conceptual clustering of text clusters. In Proc. of the Fach-
gruppentreffen Maschinelles Lernen (FGML), Hannover, Germany, 2002, 37-45.

7. Ikehara, S., Murakami, J., Kimoto, Y., and Araki, T. Vector space model based on seman-
tic attributes of words. In Proc. of the Pacific Association for Computational Linguistics
(PACLING), Kitakyushu, Japan, 2001.

8. Resnik, P. Semantic similarity in a taxonomy: An information-based measure and its ap-
plication to problems of ambiguity in natural language. Journal of Artificial Intelligence
Research: An International Electronic and Print Journal, vol. 11, 1999, 95-130.

9. Gonçalves, A., Uren, V., Kern, V. and Pacheco, R. Mining Knowledge from Textual Data-
bases: An Approach using Ontology-based Context Vectors. In Proc. of the International
Conference on Artificial Intelligence and Applications (AIA 2005), Innsbruck, Austria,
2005, 66-71.

10. Zhu, J., Uren, V., and Motta, E. ESpotter: Adaptive Named Entity Recognition for Web
Browsing. In Proc. of the 3rd Conference on Professional Knowledge Management (WM
2005), pp.518-529, Springer LNAI, 2005.

11. Zhu, J., Gonçalves, A., Uren, V., Motta, E., and Pacheco, R. (2005). Mining Web Data for
Competency Management. In Proc. of Web Intelligence (WI 2005), France, 2005, pp. 94-
100, IEEE Computer Society.

12. Church, K., and Hanks, P. Word association norms, mutual information, and lexicography.
Computational Linguistics, vol. 16, issue 1, 1990, 22-29.

13. Vechtomova, O., Robertson, S., and Jones, S. Query expansion with long-span collocates.
Information Retrieval. vol. 6, issue 2, 2003, 251-273.

Web Image Retrieval Refinement
by Visual Contents

Zhiguo Gong, Qian Liu, and Jingbai Zhang

Faculty of Science and Technology
University of Macau

P.O.Box 3001 Macao, PRC
{zggong, ma46620, ma46597}@umac.mo

Abstract. For Web image retrieval, two basic methods can be used for
representing and indexing Web images. One is based on the associate
text around the Web images; and the other utilizes visual features of
images, such as color, texture, shape, as the descriptions of Web images.
However, those two methods are often applied independently in practice.
In fact, both have their limitations to support Web image retrieval. This
paper proposes a novel model called ’multiplied refinement’, which is
more applicable to combination of those two basic methods. Our experi-
ments compare three integration models, including multiplied refinement
model, linear refinement model and expansion model, and show that the
proposed model yields very good performance.

1 Introduction

With the explosive increase of the Web, Web images, with huge amount and
comprehensiveness in meaning, are becoming one of the most indispensable in-
formation representation types on the Web. Comparing with Web pages, it is,
however, much difficult to find a model to support efficient and effective Web
image retrieval. The main reason is due to the facts that (1) The Web images
are used freely in the Web pages, and no standard exists for the relationships
between the texts and embedded images in the same Web pages; (2) Web images
are quite comprehensive in meaning, and they are created by different persons
for different purposes; (3) the qualities of the Web images vary greatly. For
those reasons, we can not either use the traditional database models (relational
model), or visual-content-based model alone for the Web image retrieval. Those
challenges make web image retrieval become an attractive research area. For a
web image, two sources can be used as its content descriptions: high level or
semantic content, such as what the image means, and visual content, such as
color, texture, and shape of the objects. Accordingly, two basic approaches are
exploited in the web image retrieval: text-based and visual content-based.

Semantic content-Based or text-based web image retrieval(TBIR)[1, 2] utilizes
semantic content and is based on the assumption that the associated text can
describe the semantics of Web images. Therefore, the associated text is used
to index the images. Such systems, such as google and yahoo, try to correlate

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 134–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Web Image Retrieval Refinement by Visual Contents 135

associated terms to the embedded images with respect to their importance and
relative positions to the image. However, many words, though close to the image,
are irrelevant to its semantics. Further more, many noise images exist, such as
logos, banners, buttons, which generate many noises to the result. In contrast
to the text-based method, the other method is visual content-based web image
retrieval(CBIR) [3, 4, 5, 6, 7, 8]. The method assumes that images of the same
kind are related to each other in visual features, such as color and texture,
and it uses visual content features to support image retrieval. As a matter of
the fact, visual content-based image search systems can only provide satisfied
performances if all the images are for the same semantic. However, in the context
of Web, large percent of noise images will be in the result. That is, visual feature-
based method alone can not work well for Web image retrieval.

To improve the performance, in recent years, the hybrid method[9, 10] is
used. The basic idea of the hybrid model is to combine text-based ranking with
content-based ranking using linear composition model. However, the linear com-
bining model does not take into account of the co-support of those two rankings
and great margin of their performance. In this paper we propose a novel model
called ’multiplied refinement’ for the integration of these two basic models to
overcome the limitations of that model. In our solution, the user can start his
image search with words or concepts, then he can refine his search with visual fea-
tures by sample images by multiplied refinement model. Our experiments reveal
that the multiplied refinement model is better than both the linear refinement
model and expansion model.

The rest of the report will be organized as follows. Sect. 2 introduces some
related work. Sect. 3 presents the architecture of web image retrieval and the
technologies of its components: text-based image retrieval and visual content
image retrieval. Sect. 4 describes different integration models of visual content-
based and text-based. Sect. 5 compares their performances and Sect. 6 gives our
conclusion.

2 Related Work

There are two basic approaches to support Web image retrieval, including TBIR
and CBIR. TBIR creates text-based image indices using the associate texts of
the Web images. And in general, a term’s relevance to a Web image is based
on its locations in the Web document. One of the early researches of TBIR was
reported by Chua et al.[1] and Chang and Lee[11]. Sanderson and Dunlop[12]
attempted at modeling the semantic of a Web image as a bag of words extracted
from both the owner page of the image and the source pages which link to the
owner page. Shen et al.[13] modeled surrounding texts, including image’s title,
image’s caption, page’s title and image’s alt, into corresponding chainnets with
different weights. However, it is hard to support fast access to the Web images.

On the other hand, CBIR is also attractive. It utilizes visual contents of
images, such as color, texture and shape. Kato[14] was among the first to model
visual contents of images. Shortly, John and Chang[5] provided image retrieval

136 Z. Gong, Q. Liu, and J. Zhang

based on color set. More recently, Yanai[15] incorporated visual features such
as color and region signatures to model visual contents of images. However, the
performance of this method is low and inadequate. To address this problem,
Aslandogan and Yu[16] relied on special features to look for human images on
the web.

However, Both approaches are pros. and cons.. Therefore, some researches
are based on the integration of TBIR and CBIR. Chen et al.[17] and Zhuang et
al.[9] utilized expansion model with linear combination of the two approaches.
But low precision of CBIR affects the performance.

3 The Technologies of Image Retrieval

Image retrieval includes two basic components, CBIR and TBIR. Its architec-
ture is shown in Fig. 1. There are two basic technologies, including semantic

�

�

�

Image
Sample

Image
Web

Keyword

Preprocess

Preprocess

Preprocess

�

�

�

Extract

Extract

Matching

�

� Index & Store

Matching

�
By Contents

�
By Keywords

�
Image

Retrieval Ranking

�

Integration

�
Image

Retrieval Ranking �Images
Result

Fig. 1. The Architecture of the System

extractions and visual feature representations of Web images. In this section, we
introduce those two technologies in our model.

3.1 Text-Based Image Retrieval

TBIR is to annotate Web images using their associate texts. Then, the techniques
for traditional text retrieval can be employed for the Web image retrieval. In
order to do so, it is time to determine what parts of the associate texts are used
for the extraction and what are the impacts of different parts to the semantics
of the images.

Semantic Source. To obtain semantic representation, semantic source (scope
of the associated text) must be traced. Based on the relationship between the
HTML documents and their containing web images, several parts of the text
should be taken into account: image’s title, image’s alt, image’s caption, page’s
title [2, 13] and other nearest surrounding texts[2]. There are also some other

Web Image Retrieval Refinement by Visual Contents 137

sources, such as HTML meta data. But these sources may provide false informa-
tion, which is unrelated to the image and causes some confusion. At length,
the five parts, including image’s title(STT), image’s alt(STA), image’s cap-
tion(STC), page’s title(STP) and nearest surrounding text(STS), fall into better
choices.

Semantic Representation. There are several common models to represent
the semantics of Web images, including term oriented representation model[2]
and ChainNet model[13]. The term oriented model assumes each terms in the
associate text are independent with each other and calculates terms’ contribu-
tions to the images with respect to their locations in the text. That is, different
words may have different weights according to the type of its semantic source
text. A variable of TFIDF model[2] is used in our system for the calculation of
the semantic relevances of terms tk in any type of text blocks STl with respect
to image ij as follows:

ntf(tk)|STl
=

tf(tk)|STl

|STl| (1)

In (1), tf(tk)|STl
is the frequency of term t in text block STl which is any of

STT, STA, STC, STP or STS. |STl| is the size of block STl. Thus, the total
semantic relevance of term tk for image ij is defined as:

ttf(tk)|ij =
L∑

k=1

wl ∗ ntf(tk)|STl
(2)

In (2), L is the total number of the text blocks extracted from the associate
text of the image, and wl is the weight of STl, which is defined according to
how much that semantic text block contributes to the image ij in semantics and∑L

k=1 wl = 1. The experiment in [2] shows this method provides satisfactory
performance.

3.2 Visual Content-Based Image Retrieval

Besides TBIR, visual content-based model is popularly used in traditional im-
age database search. For CBIR, there are several necessary components,including
identifying the available visual content features, adopting effective feature rep-
resentation, automatically extracting the visual features and choosing the dis-
criminating function for the visual features. Now, visual contents include color,
texture, objects’ shape and spatial frequency, which can be the information of
the whole images or the region after partitioning the whole image into several re-
gions. Because segmentation of image is still an open research, the whole image’s
information is used in this paper.

Color Extraction. Color is the basic and most straight-forward characteristic
of the image and most extensively used in CBIR. There are several important
issues for color extraction, including appropriate color space and effective color
representation. Generally, there are many different color spaces, such as RGB,

138 Z. Gong, Q. Liu, and J. Zhang

CMY, HSL. Among those spaces, HSL represents color by three variables: hue,
lightness and saturation, and is more similar to human vision system principles.
More importantly, HSL is its tractability, perceptually uniform, and possible and
easy transformation from popular RGB space to HSL space.

There are several choices for color representation: color histogram, color co-
herence vector[22], color correlogram, color moments and color set[8]. Global
color histogram is effective and easy to compute and robust to translation, ro-
tation and scale. In global color histogram, each bin represents the number of
pixels which has the same color. For an image, there may be plenty of bins which
makes for a tremendous increase in the cost of computing the similarity of two
images and also leads to inefficient index. Thus, it is necessary to preprocess
images and quantization is an effective way.

Texture Extraction. Texture is an innate property of all surfaces and refers to
visual patterns of homogeneity. It is discriminable and important structure of the
image. There are three basic approaches to extract texture: spectral approaches,
structural approaches and statistical approaches. In recent years, wavelet, as
one of structural approaches, is popular used in image processing. Based on
wavelet transform, the useful information is the statistics of coefficients in each
frequency in wavelet transform processing, and mean and variance of the energy
distribution of the coefficients for each frequency at each decomposition are used
to construct the vector. This representation of texture vector is:

−→
fvt = { μ11

δμ11

,
σ11

δσ11

,
μ12

δμ12

,
σ12

δσ12

, · · · , μij

δμij

,
σij

δσij

, · · · , μNM

δσNM

,
σNM

δσNM

} (3)

In (3), N is the level of the transform and M is the number of frequencies of
each level, and that number is four denoting one approximation frequency and
three detail frequencies. μij and σij is respectively the mean and variance of
the frequency j in level i. δσij and δμij are standard deviations of σij and μij

respectively in the entire database.

Dissimilarity Functions. Jan Puzicha et al.[18] summarize dissimilarity func-
tions and propose four categories, including heuristic histogram distances, non-
parametric test distances, information-theoretic distances and ground distances.
Among the functions of those kinds, Euclidean distance is the effective and com-
mon dissimilarity function. In fact, Euclidean distance is effective and easy to
calculate. The calculation of Euclidean distance, for vector v1 and v2, whose
form is {b1, b2 . . . , bL}, is:

d =
L∑

l=1

(v1.bl − v2.bl)
2 (4)

In (4), L is the dimensions of vector. In our methods, those two vectors can be
color histogram vector and texture vector.

Web Image Retrieval Refinement by Visual Contents 139

4 Integration Models of Visual Content-Based Image
Retrieval and Text-Based Image Retrieval

In our prototype system, an image query can be q=(qt, qi), where qt is the query
description for TBIR and qi is the sample images for CBIR. In the case of
qi=NULL(users do not provide), the query is TBIR. if qt is NULL, it is CBIR.
If users provide both qt and qi at the same time, that is the combined image
retrieval, which has a common situation where after the retrieval with q=(qt,
NULL), qi is selected from the result for CBIR. There, the structure of retrieval
results for TBIR and CBIR are defined as follows:

RSTBIR = {(i1, R1), (i2, R2) . . . (ij , Rj) . . . (iN , RN)}
RSCBIR = {(i1, S1), (i2, S2) . . . (ij , Sj) . . . (iN , SN)} (5)

In 5, supposed the image collection {i1, i2 . . . iN} has totally N images. RSTBIR
is the resultant set of TBIR, RSCBIR is the resultant set of CBIR. Item (ij , Rj)
means the relevance between image ij and some keyword is Rj , and item (ij , Sj)
means the similarity between image ij and some sample image is Sj . Before inte-
gration, RSTBIR can prune the images with Rj less than some threshold, gener-
ally, that value is 0 and we call the rest prune-RSTBIR, and RSCBIR also prune
the image with Sj less than some threshold for the low performance of CBIR
and we call the rest prune-RSCBIR. Therefore, the integrated set may be com-
posed of three parts, including common items which is in both prune-RSTBIR
and prune-RSCBIR, TBIR-only items which is in prune-RSTBIR but not in
prune-RSCBIR, and CBIR-only items which is in prune-RSCBIR but not in
prune-RSTBIR. In our prototype system, the retrieval result set is {i1, i2 . . . iM}
with M images. If that set includes those three parts, that is, the integrated set
is (RSTBIR, RSCBIR), and then ranks items again based on integrated rele-
vance, that model is expansion model. If only common items and TBIR-only
items is in that set, and prunes CBIR-only items, that is, the integrated set is
still (RSTBIR) but the sequence of their items may be changed based on inte-
grated relevance, that model is refinement model. Each model can use different
integrated method to obtain the integrated relevance, such as linear method and
multiplied method. It is linear combined method, if the integrated relevance is
produced by the formula RSnew = α ∗ Rj + β ∗ Sj , where RSnew is new inte-
grated relevance, and α and β are coefficients and α+β=1. Without more words,
in that linear formula, Sj of TBIR-only items and Rj of CBIR-only items are 0.
And if the formula, RSnew = Rj ∗ (1 + Sj)γ , where RSnew and γ is coefficient,
is used to compute the integrated relevance, it is multiplied combined method.
In that multiplied formula, the similarity Sj is added by 1 to avoid the rele-
vance based on TBIR multiplied by zero for TBIR-only items. Therefore, there
are three available models: linear expansion model, linear refinement model and
multiplied refinement model.

Linear expansion model is reported by Chen et al.[17] and Zhuang et al.[9].
However, expansion model makes the same disposal for common items and oth-
ers. As we know, the precision of those two parts varies greatly and more greatly

140 Z. Gong, Q. Liu, and J. Zhang

in CBIR. However, that model treats TBIR and CBIR equally, that is, items
with same value of their contribution in TBIR and CBIR is handled with same
importance. In fact, CBIR often produces many irrelevant results because of the
comprehensive semantics of Web images. In other words, even though an image
is much similar to the sample image in visual features, it may have a far dis-
tance in semantics. To overcome the limitation, Guojun Lu and Ben Williams[10]
provided the linear refinement model to integrate CBIR into TBIR. And differ-
ent from the expansion model, CBIR-only items are pruned. Refinement model
makes different disposal of common items and CBIR-only items. However, linear
expansion model and linear refinement model make integration based on linear
method, which is not sensitive to the co-support of retrieval sets of CBIR and
TBIR. More importantly, linear method disregards the speciality for two im-
age retrieval sets: the correlation between the terms and images which is more
apparent in refinement.

In detail, in the refinement, image retrieval starts with the query q=(qt,
NULL), then users can refine their retrieval with visual features by sample Web
images with the query q=(NULL,qi). From this process, we know that the rele-
vance of the keywords to some resultant image obtained by keywords is original,
and more importantly, the refinement by CBIR means that under the situation
some sample image is completely semantic to the keyword and other images
possess different similarity between them and the sample image, what is the new
relevance of the keywords to some resultant image. Without question, the corre-
lation of keywords and images is implied and new relevance can be obtained by
multiplying original relevance by the similarity of the sample image and other
resultant images. That is the novel multiplied refinement model and that model
overcomes the limitation of expansion model and linear method. To evaluate the
performance of different models, the prototype system is implemented, which is
similar to Fig. 1.

In the prototype system, TBIR extracts the associated text in STT, STA,
STC, STP and STS, and calculates the relevance based on the variation of
TFIDF model. In CBIR, color and texture are utilized. In detail, color his-
togram and statistic of the wavelet transform are used as the feature vectors.
For color histogram, HSL color space is better choice and quantization method
is used to get color histogram, that is, hue is divided into eighteen levels, satu-
ration and lightness are divided into three levels respectively, and grey color is
scaled into four levels. Therefore, the color vector is 166-dimension(18*3*3+4).
For texture, Daubechies wavelet transform is used. As we know, four frequencies
are obtained after one time wavelet transform: one is composed of approximation
coefficients(LL) and three are composed of detail coefficients, including horizon-
tal coefficients(LH), vertical coefficients(HL) and diagonal coefficients(HH). And
wavelet transform can be continued further based on the data of those four fre-
quencies. There are two popular methods for that continuing wavelet transform:
pyramid-structured wavelet transform(PWT), which only decomposes LL, and
tree-structured wavelet transform(TWT), in which all frequencies will be decom-
posed. For PWT, some information is lost and for TWT, the decomposition of

Web Image Retrieval Refinement by Visual Contents 141

HH is unstable. Therefore, the composite method is to decompose the frequen-
cies except HH in each level of the transform again. The mean and variance of
each frequencies in each level are utilized as components of the feature vector.
The prototype system makes use of wavelet transform four times and produces
320-dimension(2*4*(1+3+9+27)) texture vector.

5 Performance Evaluation

In our prototype system, more than 12000 web images from 50000 web pages are
gathered after noise images, such as icons, banners, logos and any image with
size less than 5k, removed. In the experiments, 20 terms with their 60 relevant
images are used to obtain the optimal parameters and 10 terms with their 20
relevant images are used for testing. In the prototype system, the performance
is evaluated by average precision (AP) objective in (6),

APjk =
1

Rjk

Rjk∑
k=1

k

Nk
(6)

where Rjk is the number of relevant images in the result and Nk is the number
of the results when there are up to k revelant results.

The first step is to determine the parameters for each integration. There are
five parameters, two for linear expansion model, two for linear refinement model
and one for our novel model. Based on the prototype system, Tables 1 can be
obtained. Tables 1 are for linear expansion model, linear refinement model and
multiplied refinement model. For the left table, the smaller the parameter, β,
for the similarity of visual contents is, the better the integration’s precision is,
which is due to its low precision and single-independence of linear method, that

Table 1. Coefficients of Different Models

Linear Expansion Model Linear Refinement Model Multiplied Refinement Model
β

0

β:0-0.1
α:0.9-1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

α AP
1 0.428571

α:0.98 0.429175
α:0.96 0.429375
α:0.94 0.430828

α:0.92 0.429134
0.9 0.428252
0.8 0.4003912
0.7 0.391616
0.6 0.380326
0.5 0.374529
0.4 0.323
0.3 0.290917
0.2 0.263213
0.1 0.197241

β

0
0.1
0.2
0.3
0.4
0.5

β:0.5-0.6
α:0.4-0.5

0.6

β:0.6-0.7
α:0.3-0.4

0.7
0.8
0.9

α AP
1 0.428571

0.9 0.429186
0.8 0.429308
0.7 0.430311
0.6 0.432207
0.5 0.43651

α:0.44 0.437063
α:0.42 0.438132

0.4 0.438

α:0.38 0.438625
α:0.36 0.438209

0.3 0.434484
0.2 0.430433
0.1 0.435272

γ

0
1
2
3

3
to
4

3.4
3.6
3.8

4
4
to
5

4.2

4.4
4.6

5
6
7

AP
0.428571
0.436518
0.442337
0.443291
0.44434
0.444258
0.445431
0.447749
0.448586

0.447794
0.447237
0.446812
0.446704
0.445797

142 Z. Gong, Q. Liu, and J. Zhang

is, the images with larger value in each collection may be contribute more largely
to resultant ranking than common items with smaller value in both collections.
In our prototype system, better β is 0.06 for its maximum AP 0.430820. For the
middle table, β for the similarity of visual contents is actually for common items
for refinement model prunes CBIR-only items before. Therefore, better value of
β is larger than that of linear expansion model. In our prototype system, better
β is 0.6 for its maximum AP 0.438. From the comparison of linear expansion
model and linear refinement model, the precision of common items and of CBIR-
only items in CBIR vary largely through better value of β. For the right table,
4.2 for γ is optimal with maximum AP 0.448586.

The next experiment is to compare the performance of different models and
the result in Fig. 2 can be obtained. Figure 2 shows that all models improve

Fig. 2. Comparison between Different Models

the performance. In Fig. 2, original retrieval’s AP is 0.428571, its maximum
recall is 0,53856 and the AP before the recall with 0.113381 is 0.444375. Linear
expansion model, at the beginning of the recall, gives a little improvement. Out
of question, this model can obtain higher recall, 0.572158. In our prototype
system, its AP is 0.430828, its maximum recall is 0.572158 and the AP before
the recall with 0.113381 is 0.457954. The expansion model is more effective
when TBIR has less recall. For each refinement, the maximum has no change.
Therefore, it is more effective when TBIR has higher recall but less AP. In
our prototype system, linear refinement model provides better improvement. Its
AP is 0.439073 and the AP before the recall with 0.113381 is 0.525908. More
importantly, multiplied refinement model provides best improvement. Its AP is
0.450086 and the AP before the recall with 0.113381 is 0.551451. From Fig. 2,
the notable improvement cannot be shown. But the remarkable improvement
is the beginning of the retrieval. As we know, users most focus on the first
K items of each retrieval. Therefore, those items are most important and the

Web Image Retrieval Refinement by Visual Contents 143

improvement of those items is more interesting and useful. From our experiment,
the APs of original retrieval, Linear expansion model, linear refinement model
and multiplied refinement model before the recall with 0.113381 are 0.444375,
0.457954, 0.525908 and 0.551451, respectively. From those values, we know all
model make satisfied improvement and the improvement of multiplied refinement
model is the best.

To make clear comparison of different integration model , More statistics is
provided in Table 2, where ’O’, ’M’, ’L’ and ’E’ represent original retrieval,
the retrieval of multiplied refinement model, the retrieval of linear refinement
model and the retrieval of linear expansion model, respectively. Table 2 shows

Table 2. Examples for Comparison between Different Models

Top 16 Images Top 48 Images Top 96 Images
Keyword O M L E O M L E O M L E

dv 8 12 9 9 37 36 36 36 46 49 48 51
notebook 8 11 10 10 19 25 24 19 26 34 21 24

game 5 9 7 7 30 40 37 36 56 55 53 41

that each integration model can produce better performance before the top 48
images. At the 100 images, the variation is small, even if some original result may
be better because of the noise of the integration. Among those integration, our
novel multiplied refinement model show best performance because it overcomes
the limitation of expansion model and linear method.

Fig. 3. Original Result
of ”Notebook”

Fig. 4. Original Result
of ”DV”

Fig. 5. Original Result
of ”Game”

Fig. 6. Refined Result
of ”Notebook”

Fig. 7. Refined Result
of ”DV”

Fig. 8. Refined Result
of ”Game”

144 Z. Gong, Q. Liu, and J. Zhang

For the detail of the performance of multiplied refinement model, we give
some examples where there are top 16 images of search results to show. The
result of text-based retrieval of notebook, dv and game is respectively in Fig. 3,
Fig. 4 and Fig. 5. In our novel refinement model, Fig. 6, Fig. 7 and Fig. 8 are
obtained after refinement. Without more words, the refinement produces better
performance. Take the images of ”DV”, there are 12 related images compared
to 8 images before refinement.

6 Conclusion

Much attention [9, 10] has been devoted to Web image retrieval. And two basic
approaches for image retrieval are TBIR and CBIR, which utilize the associated
text and visual features, respectively. Each can be utilized independently but
has its limitations. Therefore, different integration models are tried. Expansion
model and refinement model are two common models, and multiplied method
and linear method are two common methods. Therefore, the available models in-
clude linear expansion model, linear refinement model and multiplied refinement
model. However, expansion model doesn’t consider low precision of CBIR and
linear method disregards the correlation of TBIR and CBIR. Therefore, this
report has proposed a novel model—multiplied refinement model to integrate
CBIR into TBIR to overcome those limitations and the performance is better
than others.

References

1. Chua T. S et al: A Concept-based Image Retrieval System. Proceedings of 27th
Annual Hawaii International Conference on System Science, Maui, Hawaii, January
4-7 1994. (1994) 590-598

2. Zhiguo Gong, Leong Hou U, Chan Wa Cheang: An Implementation of Web Image
Search Engines. ICADL. (2004) 355-367

3. Jonathan Ashley et al: The Query By Image Content (QBIC) System. SIGMOD
Conference. (1995) 475

4. Ediz Saykol, Ugur Güdükbay,Özgür Ulusoy: Integrated Querying of Images by
Color, Shape, and Texture Content of Salient Objects. ADVIS. (2004) 363-371

5. John R. Smith, Shih-Fu Chang: Single Color Extraction and Image Query. ICIP-95.
(1995)

6. John R. Smith, Shih-Fu Chang: Automated Image Retrieval Using Color and Tex-
ture. Pattern Analysis and Machine Intelligence (PAMI). (1996)

7. John R. Smith, Shih-Fu Chang: Tools and Techniques for Color Image Retrieval.
Storage and Retrieval for Image and Video Databases (SPIE). (1996) 426-437

8. John R. Smith, Shih-Fu Chang: TVisualSEEk: A Fully Automated Content-Based
Image Query System. ACM Multimedia. (1996) 87-98

9. Yueting Zhuang, Qing Li,Rynson W. H. Lau: Web-Based Image Retrieval: A Hy-
brid Approach. Computer Graphics International. (2001) 62-72

10. Guojun Lu, Ben Williams: An Integrated WWW Image Retrieval System.
http://ausweb.scu.edu.au/aw99/papers/lu/paper.html. (1999)

Web Image Retrieval Refinement by Visual Contents 145

11. C. C. Chang, S. Y. Lee: Retrieval of similar pictures on pictorial databases. Pattern
Recogn. 24 (1991) 675–681

12. V. Harmandas, Mark Sanderson, Mark D. Dunlop: Image Retrieval by Hypertext
Links. SIGIR. (1997) 296-303

13. Heng Tao Shen, Beng Chin Ooi, Kian-Lee Tan: Giving meanings to WWW images.
MULTIMEDIA ’00: Proceedings of the eighth ACM international conference on
Multimedia. (2000) 39–47

14. Kato T: Database Architecture for Content-Based Image Retrieval. Proceedings
of Society of the Photo-Optical Instrumentation Engineers: Image Storage and
Retrieval, 1662. 1992. San Jose, California, USA, SPIE. (1992)

15. Keiji Yanai: Generic image classification using visual knowledge on the web. ACM
Multimedia. (2003) 167-176

16. Y. Alp Aslandogan, Clement T. Yu: Multiple evidence combination in image re-
trieval: diogenes searches for people on the Web. SIGIR. (2000) 88-95

17. Zheng Chen et al: Web mining for Web image retrieval. JASIST. 52 (2001) 831-839
18. Jan Puzicha et al: Empirical Evaluation of Dissimilarity Measures for Color and

Texture. ICCV. (1999) 1165-1172
19. Petra Nass: The Wavelet Transform. http://www.eso.org/projects/esomidas/doc/

user/98NOV/volb/node308.html. (1999)
20. M. K. Mandal, T. Aboulnasr: Fast wavelet histogram techniques for image index-

ing. Comput. Vis. Image Underst. 75 (1999) 1077-3142
21. Wikipedia: HSL color space. http://en.wikipedia.org/wiki/HLS color space.
22. Greg Pass, Ramin Zabih, Justin Miller: Comparing Images Using Color. ACM

Multimedia. (1996) 65-73

An Effective Approach for Hiding Sensitive
Knowledge in Data Publishing

Zhihui Wang, Bing Liu, Wei Wang, Haofeng Zhou, and Baile Shi

Department of Computing and Information Technology,
Fudan University, Shanghai, China

{041021056, 031021057, weiwang1, haofzhou, bshi}@fudan.edu.cn

Abstract. Recent efforts have been made to address the problem of pri-
vacy preservation in data publishing. However, they mainly focus on pre-
serving data privacy. In this paper, we address another aspect of privacy
preservation in data publishing, where some of the knowledge implied
by a dataset are regarded as private or sensitive information. In particu-
lar, we consider that the data are stored in a transaction database, and
the knowledge is represented in the form of patterns. We present a data
sanitization algorithm, called SanDB, for effectively protecting a set of
sensitive patterns, meanwhile attempting to minimize the impact of data
sanitization on the non-sensitive patterns. The experimental results show
that SanDB can achieve significant improvement over the best approach
presented in the literature.

1 Introduction

With the wide application of computer and the Internet, data publishing is easier
than before. However, privacy concerns have limited the data publishing. Recent
efforts have been made to address the problem of privacy preservation in data
publishing. But they mainly focus on preserving data privacy, i.e., preventing
the disclosure of raw data.

Some studies consider to limit the disclosure of raw data, meanwhile attempt-
ing to minimize the impact on knowledge minable from the published database.
These studies maintain the data privacy by perturbing raw data with some kind
of random noise. At the same time, they allow to reconstruct the data distribu-
tion at an aggregate level, and thus retain the accuracy of mining results [2, 9, 11].
Other studies [7, 8] aim at preventing from re-identification of individuals or en-
tities when the published data contains sensitive information of individuals or
entities. These studies mainly preserve the anonymity of individuals or entities
by applying generalizations and suppressions on quasi-identifiers in raw data,
before the data are published.

In this paper, we address another aspect of privacy preservation in data pub-
lishing. That is, we consider some of the knowledge implied by a dataset as sen-
sitive information, instead of data themselves. These sensitive knowledge need
be hidden before publishing the dataset. For example, consider a data owner
publishes his data on the Internet. A malicious user may acquire the sensitive

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 146–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Effective Approach for Hiding Sensitive Knowledge in Data Publishing 147

knowledge by mining the published data, while the data owners do not want to
open those knowledge to the public.

In particular, we consider that the data are stored in a transaction database,
and the knowledge is represented in the form of patterns. Some of the patterns
contain sensitive information, which cannot be disclosed. We propose an effec-
tive approach, called SanDB, for protecting the sensitive patterns during data
publishing. SanDB hides sensitive patterns by a procedure of data sanitization.
We assign a threshold for each sensitive pattern, and let the data owner con-
trol the degree of sensitive pattern protection. At the same time, we attempt to
minimize the impact on non-sensitive patterns in the published dataset. The ex-
perimental results show that our approach is much more effective than previous
research.

The remainder of this paper is organized as follows. We introduce related
work in Section 2, and define the problem of our research in Section 3. Then,
we present a special data structure, called Weak Pattern Tree (or WPTree in
short) in Section 4, and describe the details of our SanDB algorithm in Section 5.
With the help of WPTree, SanDB can fast identify appropriate transactions and
items, sanitize them from database, thus hide sensitive knowledge. Finally, we
conclude our work in Section 7.

2 Related Work

Studies closely related to our work can be classified into two categories:
sanitization-based approaches and obscurity-based approaches.

Sanitization-based approaches prevent the disclosure of sensitive rules through
removing or adding data items in raw data. Data sanitization was first proposed
by Atallah [3]. They proved that finding an optimal solution for data sanitiza-
tion was NP-Hard by reducing the data sanitization problem to the hitting-set
problem. Dasseni [4] addressed the problem of hiding association rules by san-
itizing the data to modify the support and confidence of rules. Oliveira and
Zäıane [10, 12] further proposed some better heuristics of data sanitization for
protecting from the discovery of sensitive frequent itemsets. Their best algorithm
is called SWA, which sanitizes a transaction database by removing items from
transactions. These removed items have higher frequencies in the set of sensitive
frequent itemsets.

Obscurity-based approaches were proposed by Saygin [5, 6]. Instead of re-
moving or adding data items, obscurity-based approaches selectively replace the
values of data items with unknowns to obscure the sensitive rules, thus to hide
sensitive rules from the published data. The rationale underlying obscurity-base
approaches is to increase the uncertainty of the supports and confidences of
sensitive rules. However, obscurity-based approaches may have the risk of dis-
closing sensitive knowledge. A malicious attacker may reconstruct the raw data
from the published data, then obtain sensitive rules by mining on the data
reconstructed.

148 Z. Wang et al.

3 Problem Statement

3.1 Basic Concepts

Let I = {i1, i2, ..., in} be a set of literals, called items. A transaction T =
(Tid, Titems), where Tid is the unique identifier associated with the transaction
T , and Titems is a set of items from I, i.e., Titems ⊆ I. A transaction database
D is a set of transactions.

An itemset X is a subset of items I, X ⊆ I. If there are k items in X , we say
that the length of itemset X is k, or X is a k-itemset. A transaction T contains
itemset X if and only if X ⊆ Titems. The support of itemset X is the percentage
of transactions in database D that contain X , denoted SUPPX . For facility, we
write an itemset p = {i1, i2, · · · , in} in the form of p = i1i2 · · · in. Particularly,
an itemset is also called pattern in this paper.

3.2 The Problem

We consider some of the knowledge implied by a dataset as sensitive information
in this paper. These sensitive knowledge need be hidden before publishing the
dataset. At the same time, there are some important non-sensitive knowledge
we may want to release in the published dataset.

Particularly, we consider the data are stored in a transaction database, and
the knowledge is represented in the form of patterns. Our problem is stated as
follows. Let D be a transaction database, PS and PK are two sets of patterns
in D. When publishing D, we need hide PS and release PK . Specifically, we
transform D to D′ by data sanitization, and release database D′, meanwhile
attempting to minimize the impact on SUPPq(q ∈ PK).

For each p ∈ PS , we provide a threshold σp, which is controlled by the data
owner. Let SUPPp and SUPP ′

p be p’s support in D and D′, respectively. When
SUPP ′

p ≤ (σp × SUPPp), we say p is hidden from D′. The threshold σp ex-
presses the degree of sensitive knowledge hiding. When σp = 0%, the pattern p
is completely hidden from D′. When σp = 100%, p is not any longer required to
be hidden.

For facilitating our discussion, we call PS sensitive pattern set, PK released
pattern set, and σp disclosure threshold of pattern p. We assume that PS , PK and
σp are identified by domain experts, according to the requirements of specific
applications. Furthermore, we assume that PS and PK are disjoint. That is,
�p, p ∈ (PS ∩ PK).

We focus on a special form of data sanitization in this paper. That is, we
get the published database D′ by removing some items from transactions in
D. Intuitively, for hiding ∀p ∈ PS , we only need consider the transactions con-
taining p (called sensitive transactions), and remove from them the items also
contained in p (called sensitive items). We give the formal definitions of sensitive
transactions and sensitive items below.

Definition 1 (Sensitive transaction). Let T be a transaction in D. If p ∈ PS

and p ⊆ Titems, then T is a sensitive transaction of p. The set of p’s all sensitive

An Effective Approach for Hiding Sensitive Knowledge in Data Publishing 149

transactions is called sensitive transaction set of p, denoted TSp. The size of TSp

is SUPPp.

Definition 2 (Sensitive item). Let p ∈ PS , and T ∈ TSp. For item s ∈ p, if
s ∈ Titems, then s is a sensitive item of p in T .

The goal of our research is to hide ∀p ∈ PS , meanwhile attempting to minimize
the impact on SUPPq(q ∈ PK) after data sanitization. Therefore, it is important
to identify appropriate sensitive transactions, and remove appropriate sensitive
items from them. We show this with an example given below.

Example 1. In Fig. 1, we have a transaction database D shown at the left hand,
PS and PK at the right hand. Let p1 = bc, p2 = be, and σp1 = σp2 = 50%. The
sensitive transaction sets of p1 and p2 are {T6, T8} and {T5, T8}, respectively. A
good choice is to remove item b from T8. That hides both p1 and p2, and there
is no impact on SUPPq, where q ∈ PK .

Tid Titems

T1 a f g
T2 e f g
T3 a c e f g
T4 a b d
T5 b d e
T6 a b c
T7 d e f g
T8 b c e

PS = {bc, be}
PK = {ab, ac, af, ag, bd, ce, de,

ef, eg, fg,afg, efg}

Fig. 1. An Example of Data Sanitization

Before giving the details of our approach, we first introduce a special data
structure, called Weak Pattern Tree, or WPTree in short. We use it to organize
the patterns, and thus fast identify appropriate sensitive transactions and items.

4 Weak Pattern Tree

4.1 Definition

Given a transaction database D, our approach hides a sensitive pattern by re-
moving its sensitive items from the transactions in D. For example, let p = xy
be a sensitive pattern. We hide p by removing item x or y from p’s sensitive
transactions in D. An observation is that except for p, only the supports of the
patterns containing x or y may be affected. We call them weak patterns. The
formal definition of weak pattern is given below.

Definition 3 (Weak pattern). Let p be a pattern in D. If ∃p′ ∈ PS and
p ∩ p′ �= ∅, we say that p is a weak pattern.

150 Z. Wang et al.

Theorem 1. Given sensitive pattern set PS, database D is sanitized by re-
moving sensitive items of p ∈ PS. Let D′ be the result database, SUPPp and
SUPP ′

p be p’s support in D and D′ respectively. If p is not a weak pattern, then
SUPPp = SUPP ′

p.

Proof. Since p is not a weak pattern, then ∀p′ ∈ PS , p∩p′ = ∅. Therefore, p does
not contain any sensitive item. The data sanitization considered only removes
sensitive items from D. Thus, SUPPp = SUPP ′

p. ��
According to Theorem 1, we only need consider weak patterns when sanitizing D.
For q ∈ PK , if q is not a weak pattern, we filter it from PK . Notice that ∀p ∈ PS

is a weak pattern. Furthermore, we can determine a set of weak patterns just
according to PS . We use a data structure, called weak pattern tree, to organize
the weak patterns. The definition of weak pattern tree is given below.

For facility, we order the set of items I ascendingly, denoted IO. ∀i, j ∈ IO, i ≺
j if and only if (1) i is a sensitive item, and j is not; or (2) Both i and j are
sensitive or non-sensitive items, and i ≺ j in ascending lexicographic order.

Definition 4 (Weak Pattern Tree (WPTree)). Each node in a WPTree is
labelled by an item. The root of a WPTree is labelled by a special item ∅. The
children of a WPTree node are sorted in the order of IO. Each WPTree node
N represents a weak pattern pN , where items are in the order of IO. The weak
pattern pN can be obtained by concatenating the label items of nodes along the
path from root to node N(except for item ∅).

Definition 5 (S-node, R-node). Let N be a WPTree node. If the path from
root to node N represents a sensitive pattern, we say that node N is a sensitive
node, or S-node in short. Similarly, if the path from root to node N represents
a released pattern, we say that node N is a released node, or R-node in short.

WPTree has some nice properties, which can help us to prune the tree during
traversing a WPTree. We give the properties below, and describe how to prune
a WPTree during tree traverse in Section 5.2.

Property 1. Let Ni be a WPTree node (labelled by item i). If a WPTree node
Nj (labelled by item j) is a descendant of Ni, then i ≺ j.

Property 2. Let Ni be a WPTree node (labelled by item i). If a WPTree node
Nj (labelled by item j) has the same parent as Ni, and Nj is one of the right
siblings of Ni, then i ≺ j.

For facilitating the traverse of WPTree, we augment each node with parent-
link. The parent-link of a node points to its parent. With parent-link, we can
easily get the weak pattern represented by a WPTree node. If a WPTree node
is labelled by a sensitive item, we also argument it with node-link.The node-link
points to next node labelled by the same sensitive item. For a WPTree, we keep
a header table of node-links, denoted HLink. Each entry of the header table has
two fields: a sensitive item, and a node-link to the first WPTree node labelled
by that item. For an item i, its entry in the header table is denoted as HLinki.

An Effective Approach for Hiding Sensitive Knowledge in Data Publishing 151

4.2 Constructing Weak Pattern Tree

Given sensitive pattern set PS and released pattern set PK , the algorithm for
constructing weak pattern tree is shown in Fig. 2.

Algorithm: Construct WPTree
Input: sensitive pattern set PS, released pattern set PK

Output: WPTree rooted at NR, and its node-links’ head table HLink
1: filter non-weak patterns from PK ;
2: construct root node NR, labelled by ∅;
3: construct HLink with an entry for each sensitive item;
4: N = NR;
5: FOR each p = (i1, i2, · · · , in) ∈ (PS ∪ PK) DO
6: sort items in p in the order of IO;
7: FOR i = i1 TO in DO
8: IF ∃ node N ’s child Ni, labelled by item i THEN N = Ni;
9: ELSE
10: create a new node N ′

i , labelled by item i;
11: let N ′

i be a child of N ;
12: IF i is a sensitive item THEN add N ′

i into HLinki;
13: N = N ′

i ;
14: ENDIF
15: ENDFOR
16: IF p ∈ PS THEN N is a S-node;
17: IF p ∈ PK THEN N is a R-node;
18: ENDFOR

Fig. 2. Algorithm for Constructing WPTree

In algorithm Construct WPTree, we first filter non-weak patterns from PK ,
since they are not impacted by our data sanitization. Then, we initialize the
WPTree by constructing a root node labelled by ∅, and an empty head table of
node-links. The patterns p = (i1, i2, · · · , in) ∈ (PS ∪PK) are added into WPTree
one by one. For an item i ∈ p, if we cannot find its corresponding WPTree node,
we then create a new node N ′

i , and add N ′
i as a child of the current WPTree

node. If item i is a sensitive item, we also insert N ′
i into the node-link HLinki.

Finally, if p ∈ PS (or p ∈ PK), the WPTree node corresponding to item in is a
S-node (or R-node).

Example 2. Continue with Example 1. Consider the database D, sensitive pat-
tern set PS and released pattern set PK in Fig. 1. The weak pattern set is
{ab, ac, bc, bd, be, ce, de, ef, eg, efg}, and IO = (b, c, e, a, d, f, g) in ascending or-
der. Its weak pattern tree is shown in Fig. 3. The black nodes in the tree are
S-nodes, and the square nodes are R-nodes.

152 Z. Wang et al.

Fig. 3. Weak Pattern Tree with Node-Links

5 The Sanitization Algorithm

For hiding ∀p ∈ PS , we first find its sensitive transaction set TSp, then remove
appropriate sensitive items from transactions in TSp, thus decrease SUPPp be-
low disclosure threshold σp. The key steps of our algorithm are described below.

5.1 Finding Sensitive Transaction Set

Given a transaction database D with a finite set of items I = {i1, i2, · · · , in},
we read each transaction from D, and represent it in the form of n-dimensional
vector. Suppose there are m transactions in D, then D can be represented in a
m × n matrix, denoted MatD. If an item ij appears in a transaction Tk, then
MatD[k, j] = 1. Otherwise, MatD[k, j] = 0. For example, for the transaction
database in Fig. 1, its matrix representation is shown in Fig. 4.

a b c d e f g

T1 1 0 0 0 0 1 1
T2 0 0 0 0 1 1 1
T3 1 0 1 0 0 1 1
T4 1 1 0 1 0 0 0
T5 0 1 0 1 1 0 0
T6 1 1 1 0 0 0 0
T7 0 0 0 1 1 1 1
T8 0 1 1 0 1 0 0

Fig. 4. The Matrix Representation of Transaction Database

The matrix representation of transaction database can facilitate us to find
the sensitive transaction set of a pattern p ∈ PS . Consider a sensitive pat-
tern p = (ij , ij+1, · · · , ik), its sensitive transactions can be obtained by inter-
secting together the column vectors Vj , Vj+1, · · · , Vk corresponding to items
ij, ij+1, · · · , ik. In the result vector VR, if ∃l, VR[l] = 1, then Tl is a sensitive
transaction of p. Thus, the sensitive transaction set of p is TSp = {Tl|VR[l] = 1}.

An Effective Approach for Hiding Sensitive Knowledge in Data Publishing 153

5.2 Identifying Victim Item

When the length of a sensitive pattern p is larger than one, there are more than
one sensitive items in transaction T ∈ TSp. For sanitizing T , it is enough to
remove only one of the sensitive items from T . We call that item victim item.

In order to identify victim item, we assign a score for each sensitive item of p
in T . The definition of item score is given below.

Definition 6 (Gain, Loss, and Item score). Let p ∈ PS, and T ∈ TSp. For
a sensitive item i of p in T , its gain is the size of Si = {p1|p1 ∈ PS , p1 ⊆ Titems,
and i ∈ p1}, denoted Gi = |Si|; its loss is the size of S′

i = {p2|p2 ∈ PK , p2 ⊆
Titems, and i ∈ p2}, denoted Li = |S′

i|. The score of item i is Scorei = Gi/(Li +
1). The sensitive item with the highest score is T ’s victim item for p.

Algorithm: Identify VItem
Input: WPTree (rooted at NR) with head table HLink, sensitive pattern p,

transaction T (T ∈ TSp, Titems = (i1, · · · , in) sorted in order of IO)
Output: victim item iv , and its score Scorev

1: iv = ∅; Scorev = 0;
2: FOR im = i1 to in DO
3: IF im is a sensitive item of p THEN
4: Gm = Lm = 0;
5: Nm = HLinkm’s first node;
6: WHILE Nm �= NULL DO
7: get pattern pm represented by node Nm;
8: IF pm ⊆ Titems THEN call Calc GainLoss(Nm, T, Gm, Lm);
9: Nm = HLinkm’s next node;
10: ENDWHILE
11: calculate item im’s Scorem = Gm/(Lm + 1);
12: IF Scorev < Scorem THEN iv = im; Scorev = Scorem;
13: ENDIF
14: ENDFOR

Fig. 5. Algorithm for Identifying Victim Item

The algorithm for identifying victim item is shown in Fig. 5. Given sensitive
pattern p, and T ∈ TSp sorted in the order of IO, algorithm Identify VItem
calculates the score of each sensitive item in T , and chooses the one with the
highest score as T ’s victim item for p. For a sensitive item im, we locate WPTree
node Nm labelled by im with node-link HLinkm, and use the parent-link to get
the pattern pm represented by Nm. If pm ⊆ Titems, we then calculate im’s gain
and loss by calling algorithm Calc GainLoss, which is shown in Fig. 6.

In algorithm Calc GainLoss, if Nm is a S-node, we increase the gain by one.
Otherwise, if Nm is a R-node, we increase the loss by one. Then, we recursively
traverse the sub-WPTree rooted at node Nm, and accumulate the values of
gain and loss. When traversing the WPTree, we do tree pruning according to

154 Z. Wang et al.

Algorithm: Calc GainLoss
Input: WPTree node Nm(labelled by item im),

transaction T (Titems = (i1, · · · , in) sorted in order of IO)
Output: gain G, loss L (G and L are passed by reference)
1: IF im ∈ Titems THEN
2: IF Nm is a S-node THEN G = G + 1;
3: IF Nm is a R-node THEN L = L + 1;
4: IF im = in THEN RETURN;
5: Ns = Nm’s first child; (Ns labelled by item is)
6: WHILE (Ns �= NULL) AND (is � in) DO
7: Calc GainLoss(Ns, T, G, L);
8: Ns = Nm’s next child;
9: ENDWHILE
10: ENDIF

Fig. 6. Algorithm for Calculation of Gain and Loss

WPTree’s properties in Section 4. At line 4 of algorithm Calc GainLoss, we
prune a WPTree node’s children according to Property 1. At line 6, we prune a
WPTree node’s right siblings according to Property 2.

5.3 The SanDB Algorithm

For hiding a pattern p ∈ PS , it is often unnecessary to sanitize all the transactions
in TSp. Given disclosure threshold σp, we just need meet SUPP ′

p ≤ (σp ×
SUPPp), where SUPPp and SUPP ′

p are p’s support in D and D′, respectively.
Sanitizing more transactions may have greater impact on the support of q ∈ PK .

Particularly, we select transactions from TSp according to transaction score,
and remove the corresponding victim item in a chosen transaction. The definition
of transaction score is given below.

Definition 7 (Transaction score). Let p ∈ PS, T ∈ TSp, and iv be T ’s
victim item for p. The score of transaction T is the score of item iv, that is,
ScoreT = Scorev.

In practice, a database may have so many transactions that the whole
database cannot be held in memory. Therefore, our algorithm reads k trans-
actions each time. We call k transaction buffer size. The details of our SanDB
Algorithm is shown in Fig. 7.

SanDB first constructs a WPTree according to PS and PK , then reads k
transactions from D each time, and represents the k transactions in a matrix.
For each pattern p ∈ PS , we find its current sensitive transaction set TSk

p in the
k transactions, and calculate the victim item and the score for each transaction
T ∈ TSk

p . Notice that even for a same pattern p, different transactions in TSk
p

may have different victim items. We then sanitize (1 − σp)× |TSk
p | transactions

from TSk
p in the descending order of transaction score. Finally, we write the k

transactions into D′.

An Effective Approach for Hiding Sensitive Knowledge in Data Publishing 155

Algorithm: SanDB
Input: transaction database D, sensitive pattern set PS ,

disclosure threshold σp for p ∈ PS, released pattern set PK

Output: published database D′

1: call Construct WPTree(PS , PK), get WPTree rooted at NR;
2: FOR each k transactions in D DO
3: read them from D, and represent in a matrix;
4: FOR each p ∈ PS DO
5: find p’s current sensitive transaction set TSk

p ;
6: FOR each transaction T ∈ TSk

p DO
7: sort Titems in the order of IO;
8: call Identify VItem(NR, p, T), get T ’s victim item iv;
9: ScoreT = Scorev;
10: ENDFOR
11: sort TSk

p in the descending order of transaction score;
12: FOR i = 1 to (1 − σp) × |TSk

p | DO
13: remove victim item from the i-th transaction Ti of TSk

p ;
14: ENDFOR
15: ENDFOR
16: write the k transactions into D′;
17: ENDFOR

Fig. 7. Algorithm for Database Sanitization

6 Experimental Results

In this section, we evaluate the performance of our algorithm SanDB, and com-
pare it with SWA. Because as reported in [10], SWA is better than other algo-
rithms in previous related work. SWA chooses an item with higher frequency
in sensitive patterns as victim, and sanitizes sensitive transactions in ascending
order of transaction size. All the experiments are performed on a 733MHz Intel
Pentium III PC with 512MB main memory, running Red Hat Linux 9.0.

We use a synthetic dataset, T40I10D100K, which is generated by IBM data
generator. The generation procedure is described in [1]. In the synthetic dataset,
there are 1000 different items, and 100K transactions. The average size of trans-
actions is 40 items. We choose 10 patterns from T40I10D100K as sensitive pat-
tern set PS , and measure the effectiveness of algorithms by varying transaction
buffer size k, disclosure threshold σp, and the size of released pattern set PK .
We choose PK by applying Apriori [1] on T40I10D100K with some minimum
support threshold τ , and ∀p ∈ (PS ∩ PK) is removed from PK .

The effectiveness of algorithm is measured as follows. We first use SanDB or
SWA to transform the synthetic dataset into the published database D′. Then,
we mine on D′ by Apriori with the same τ as the one for generating PK . The
mined result is denoted P ′

K , and ∀p ∈ PS ∩P ′
K is removed from P ′

K . We measure
algorithm’s effectiveness with the metric PattLoss = |{p|p ∈ PK , p /∈ P ′

K}|,

156 Z. Wang et al.

0 4 8 12 16 20
0

5

10

15

20

25

30

35

40

45

Transaction Buffer Size (K)

P
at

tL
os

s
(K

)

SanDB
SWA

(a)

1 1.1 1.2 1.3 1.4 1.5 1.6
0

5

10

15

20

25

30

35

40

45

Minimum Support Threshold (%)

P
at

tL
os

s
(K

)

SanDB
SWA

(b)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Disclosure Threshold (%)

P
at

tL
os

s
(K

)

SanDB
SWA

(c)
Fig. 8. Experimental results

i.e., the number of patterns in PK but not in P ′
K . An algorithm with smaller

PattLoss is more effective.
In the first set of experiments, we measure the effectiveness of SanDB and

SWA with different transaction buffer size k. We fix disclosure threshold σp =
20% for each p ∈ PS . The released pattern set PK is generated by applying
Apriori on T40I10D100K with minimum support threshold τ = 1%. There are
65236 patterns in PK . We vary transaction buffer size from 1000 to 20000, and
measure PattLoss for SanDB and SWA, respectively. The results are shown in
Fig. 8(a). As it can be seen, the PattLoss of SanDB is roughly half of that of
SWA in various settings of transaction buffer size.

In Fig. 8(b), we report the experimental results when varying the size of
released pattern set. The disclosure threshold is fixed as σp = 20% for each
p ∈ PS . The transaction buffer size k = 10000. We generate different sizes of
released pattern sets by applying Apriori on T40I10D100K with different τ .
Specifically, we set τ = 1%, 1.2%, 1.4%, 1.6%, and the corresponding sizes of
released pattern sets are 65236, 19412, 8293, 4591, respectively. As the size of
released pattern set decreases, the PattLoss is reduced for both SanDB and
SWA. However, for a large released pattern set, the performance of SanDB is
much better than that of SWA.

The effect of disclosure threshold on PattLoss is shown in Fig. 8(c). In this
set of experiments, we fix the transaction buffer size k = 10000. The released
pattern set PK is generated by applying Apriori with τ = 1%. The size of
PK is 65236, fixed in this set of experiments. We let all p ∈ PS have a same
disclosure threshold σp, but vary the value of σp from 0% to 30% in different
experiments. A smaller disclosure threshold means higher degree of sensitive
knowledge protection. That is, more sensitive transactions need be sanitized.
Particularly, for sensitive pattern p with σp = 0%, p will be completely hidden
from the published dataset. The experimental results in Fig. 8(c) show that the
PattLoss of SanDB is dramatically less than that of SWA for each settings of
disclosure threshold.

7 Conclusion

In this paper, we address the problem of privacy preservation in data publishing,
where some of the knowledge implied by a dataset are regarded as private or

An Effective Approach for Hiding Sensitive Knowledge in Data Publishing 157

sensitive information. In particular, we consider that the data are stored in a
transaction database, and the knowledge is represented in the form of patterns.
We have presented an effective data sanitization algorithm, called SanDB, for
hiding a set of sensitive patterns, meanwhile attempting to minimize the im-
pact on the released patterns in data publishing. The experimental results have
shown that SanDB can achieve significant improvement over the best approach
presented in the literature.

References

1. Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association
Rules in Large Databases. VLDB 1994: 487-499

2. Shariq Rizvi, Jayant R. Haritsa: Maintaining Data Privacy in Association Rule
Mining. VLDB 2002: 682-693

3. M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, V. Verykios: Disclosure Lim-
itation of Sensitive Rules. KDEX 1999: 45-52

4. Elena Dasseni, Vassilios S. Verykios, Ahmed K. Elmagarmid, Elisa Bertino: Hiding
Association Rules by Using Confidence and Support. Information Hiding 2001: 369-
383

5. Yücel Saygin, Vassilios S. Verykios, Chris Clifton: Using Unknowns to Prevent
Discovery of Association Rules. SIGMOD Record 30(4): 45-54 (2001)

6. Yücel Saygin, Vassilios S. Verykios, Ahmed K. Elmagarmid: Privacy Preserving
Association Rule Mining. RIDE 2002: 151-158

7. Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina
Panigrahy, Dilys Thomas, An Zhu: Anonymizing Tables. ICDT 2005: 246-258

8. Kristen LeFevre, David J. DeWitt, Raghu Ramakrishnan: Incognito: Efficient Full-
Domain K-Anonymity. SIGMOD Conference 2005: 49-60

9. Shipra Agrawal, Jayant R. Haritsa: A Framework for High-Accuracy Privacy-
Preserving Mining. ICDE 2005: 193-204

10. Stanley R. M. Oliveira, Osmar R. Zäıane: Protecting Sensitive Knowledge By Data
Sanitization. ICDM 2003: 613-616

11. Rakesh Agrawal, Ramakrishnan Srikant: Privacy-Preserving Data Mining. SIG-
MOD Conference 2000: 439-450

12. Stanley R. M. Oliveira, Osmar R. Zäıane: Privacy Preserving Frequent Itemset
Mining. IEEE ICDM Workshop on Privacy, Security and Data Mining, 2002

Tracking Network-Constrained Moving Objects
with Group Updates

Jidong Chen, Xiaofeng Meng, Benzhao Li, and Caifeng Lai

School of Information, Renmin University of China,
Beijing, 100872, China

{chenjd, xfmeng, bzli, laicf}@ruc.edu.cn

Abstract. Advances in wireless sensors and position technologies such
as GPS enable location-based services that rely on the tracking of con-
tinuously changing positions of moving objects. The key issue in tracking
techniques is how to minimize the number of updates, while providing
accurate locations for query results. In this paper, for tracking network-
constrained moving objects, we first propose a simulation-based predic-
tion model with more accurate location prediction for objects movements
in a traffic road network, which lowers the update frequency and assures
the location precision. Then, according to their predicted future func-
tions, objects are grouped and only the central object in each group
reports its location to the server. The group update strategy further
reduces the total number of objects reporting their locations. A simula-
tion study has been conducted and proved that the group update policy
based on the simulation prediction is superior to traditional update poli-
cies with fewer updates and higher location precision.

1 Introduction

The continued advances in wireless sensors and position technologies such as
GPS enable new data management applications such as traffic management and
location-based services that monitor continuously changing positions of moving
objects [2, 7]. In these applications, large amounts locations can be sampled by
sensors or GPS periodically, then sent from moving clients to the server and
stored in a database. Therefore, continuously maintaining in a database current
locations of moving objects namely tracking technique becomes a fundamental
component of these applications [1, 2, 9, 10]. The key issue is how to minimize
the number of updates, while providing precise locations for query results.

The number of updates from moving objects to the server database depends
on both the update frequency and the number of objects to be updated. To
reduce the location updates, most existing works are proposed to lower the
update frequency by a prediction method [1, 9, 10]. They usually use the linear
prediction which represents objects locations as linear functions of time. The
objects do not report their locations to the server unless their actual positions
exceed the predicted positions to a certain threshold. This provides a general
principle for the location update policies in a moving object database system.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 158–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tracking Network-Constrained Moving Objects with Group Updates 159

However, few research works focus on improving the update performance from
the aspect of reducing the number of objects to be updated. We observe that
in many applications, objects naturally move in clusters, including vehicles in a
congested road network, packed goods transmitted in a batch, animal and bird
migrations. It is possible that the nearby objects are grouped and only one object
in the group reports its location to the server to represent all objects within it.
Considering real life applications, we focus on objects moving on a road network.
Figure 1 gives an example of grouping vehicles on a part of road network. Due
to the grouping of vehicles in each road segment, the total location updates sent
to the server are reduced from 9 to 5.

c1

c2

c3

c4 o1
o2

o4
o3

o5

o8

o6o7

o9

c5

o4
n1

n2

n3

n4

n5

Fig. 1. Group location updates

t

t+1

o3 o1o2

o3 o1o2

v=4 v=5 v=1

v=5 v=2 v=1

o4

 CA of edge (n1,n2)

Fig. 2. A transition of the CA on an edge

The idea of grouping objects for location updates is similar to the GBL pro-
posed in [6], but the GBL groups objects by their current locations and predicted
locations after a time parameter τ . In fact, it obtains the predicted locations also
by the linear prediction model assuming the linear movement with current veloc-
ity. However, in the urban road network, due to complex traffic conditions, cars
may update their velocities frequently even for each timestamp. In this case,
the linear prediction used in the GBL and other location update methods is
inapplicable because the inaccurate predicted locations result in frequent loca-
tion updates and lots of group management. In this paper, for the purpose of
improving the performance of tracking for network-constrained moving objects,
we focus on the both two factors affecting location updates and propose our
solutions. One is a better prediction model to lower update frequency, and the
other is a group update strategy to reduce the total number of objects reporting
their locations. The accurate prediction model also reduces the maintenance of
the groups and assures the location precision for querying.

Therefore, we first propose a simulation-based prediction (SP) model which
captures traffic features in constrained networks. Specifically, we model road
networks by graphs of cellular automata, which are also used to simulate vehicles
future trajectories in discrete points in accordance with the surrounding traffic
conditions. To refine the accuracy, we simulate two future trajectories to obtain
the predicted movement function, which correspond to the fastest and slowest
possible movements. We then propose a group location update strategy based on
the SP model (GSP) to minimize location updates. In the GSP, for each edge in
the road network, the objects with their predicted movement functions similar

160 J. Chen et al.

are grouped or clustered and only the object nearest to its group center needs to
report the location of the whole group. Within a certain precision, the locations
of other objects can be approximated to their group location. Finally, through
the experimental evaluations, we show that the GSP strategy has more efficient
update performance as well as higher location precision.

The rest of the paper is organized as follows. Section 2 surveys related work
by classifying the existing tracking techniques. In Section 3, a road network
modeled as a graph of cellular automata is represented and our simulation-based
prediction model is proposed. Section 4 describes our group update strategy.
Section 5 contains an experimental analysis, and finally Section 6 concludes.

2 Related Work

Research on tracking of moving objects has mainly focused on location update
policies. Existing methods can be classified according to the threshold, the route,
the update mode or the representation and prediction of objects future positions.

Updates differ in threshold and route
Wolfson et al.[9] first proposed the dead-reckoning update policies to reduce the
update cost. According to the threshold, they are divided into three policies,
namely the Speed Dead Reckoning (SDR) having a fixed threshold for all loca-
tion updates, the Adaptive Dead Reckoning (ADR) having different thresholds to
different location updates and the Disconnection Detection Reckoning (DTDR)
having the continuously decreasing threshold since last location update. The
policies also assume that the destination and motion plan of the moving ob-
jects is known a priori. In other words, the route is fixed and known. In [4],
Gowrisankar and Nittel propose a dead-reckoning policy that uses angular and
linear deviations. They also assume that moving objects travel on predefined
routes. Lam et al. propose two location update mechanisms for further consider-
ing the effect of the continuous query results on the threshold [7]. The idea is that
the moving objects covered by the answers of the queries have a lower threshold,
leading to a higher location accuracy. Zhou et al. [11] also take the precision of
query results as a result of a negotiated threshold by the Aqua location updating
scheme proposed.

Updates differ in representation and prediction of future positions
Wolfson and Yin [10] consider tracking with accuracy guarantees. They introduce
the deviation update policy for this purpose and compare it with the distance
policy. The difference between the two polices lies in the representation of future
positions respectively with the linear function in the former and constant func-
tion in the latter. Based on experiments with artificial data generated to resemble
real movement data, they conclude that the distance policy is outperformed by
the deviation policy. Similarly, Civilis et al. [1, 2] propose three update policies: a
point policy, a vector policy, and a segment-based policy, which differ in how they
predict the future positions of a moving object. In fact, the first and third policy
are the good representatives of the policies in [10]. They further improve the
update policies in [2], by exploiting the better road-network representation and

Tracking Network-Constrained Moving Objects with Group Updates 161

acceleration profiles with routes. It should also be noted that Ding and Guting
[3] have recently discussed the use of what is essentially segment-based track-
ing based on their proposed data model for the management of road-network
constrained moving objects. In paper [8], the non-linear models such as the ac-
celeration are used to represent the trajectory which is affected by the abnormal
traffic such as traffic incident.

Updates based on individual object and their group
Most existing update techniques are developed to process individual updates
efficiently [1, 2, 9, 10]. To reduce the expensive uplink updates from the objects
to the location server, Lam et al. [6] propose a group-based scheme in which
moving objects are grouped so that the group leader will send location update
on behalf of the whole group. A group-based location update scheme for personal
communication network is also proposed in [5]. The aim is to reduce location
registrations by grouping a set of mobile objects at their serving VLRs.

Our work improves the tracking technique from the aspect of prediction model
and update mode, and focuses on the accuracy of the predicted positions of the
objects in urban road networks. Based on their predicted movement functions,
we groups objects to further reduce their location updates. To the best of our
knowledge, there exists no proposal for tracking of moving objects that com-
bines the simulation based prediction and grouping of objects by exploiting the
movement features of objects in traffic systems.

3 Data Model and Trajectory Prediction

We model a road network with a graph of cellular automata (GCA), where
the nodes of the graph represent road intersections and the edges represent road
segments with no intersections. Each edge consists of a cellular automaton (CA),
which is represented, in a discrete mode, as a finite sequence of cells. The CA
model was used in this context by [12].

In the GCA, a moving object is represented as a symbol attached to the cell
and it can move several cells ahead at each time unit. Intuitively, the velocity is
the number of cells an object can traverse during a time unit. Let i be an object
moving along an edge. Let v(i) be its velocity, x(i) its position, gap(i) the number
of empty cells ahead (forward gap), and Pd(i) a randomized slowdown rate which
specifies the probability it slows down. We assume that Vmax is the maximum
velocity of moving objects. The position and velocity of each object might change
at each transition of the GCA according to the rules below (adapted from [12]):

1. if v(i) < Vmax and v(i) < gap(i) then v(i) ← v(i) + 1
2. if v(i) > gap(i) then v(i) ← gap(i)
3. if v(i) > 0 and random() < Pd(i) then v(i) ← v(i) − 1
4. if (x(i) + v(i)) ≤ l then x(i) ← x(i) + v(i)

The first rule represents linear acceleration until the object reaches the maxi-
mum speed Vmax. The second rule ensures that if there is another object in front

162 J. Chen et al.

of the current object, it will slow down in order to avoid collision. In the third
rule, the Pd(i) models erratic movement behavior. Finally, the new position of
object i is given by the fourth rule as the sum of the previous position with
the new velocity if it is in the CA. Figure 2 shows a transition of the cellular
automaton of edge (n1, n2) in Figure 1 in two consecutive timestamps. We can
see that at time t, the speed of the object o1 is smaller than the gap (i.e. the
number of cells between the object o1 and o2). On the other hand, the object
o2 will reduce its speed to the size of the gap. According to the fourth rule, the
objects move to the corresponding positions based on their speeds at time t + 1.

We use GCAs not only to model road networks, but also to simulate the
movements of moving objects by the transitions of the GCA. Based on the
GCA, a Simulation-based Prediction (SP) model to anticipate future trajectories
of moving objects is proposed. The SP model treats the objects simulated results
as their predicted positions. Then, by the linear regression, a compact and simple
linear function that reflects future movement of a moving object can be obtained.
To refine the accuracy, based on different assumptions on the traffic conditions
we simulate two future trajectories to obtain its predicted movement function.
Figure 3 and Figure 4 show the comparison of the SP model and the linear
prediction (LP) model. We can see from Figure 3 that the LP model cannot
predict accurately the future trajectories of objects due to the frequent changes
of the object velocity in traffic road networks.

l

t

real trajectory
predicted function

th
th

th

Fig. 3. The Linear Prediction

t

l

slowest movement

fastest
movement

a

L1
L2

L3
predicted function
simulated trajectory

Fig. 4. The Simulation Based Prediction

Most existing work uses the CA model for traffic flow simulation in which
the parameter Pd(i) is treated as a random variable to reflect the stochastic,
dynamic nature of traffic system. However, we extend this model for predicting
the future trajectories of objects by setting Pd(i) to values that model different
traffic conditions. For example, laminar traffic can be simulated with Pd(i) set to
0 or a small value, and the congestion can be simulated with a larger Pd(i). By
giving Pd(i) two values, we can derive two future trajectories, which describe,
respectively, the fastest and slowest movements of objects. In other words, the
object future locations are most probably bounded by these two trajectories. The
value of Pd(i) can be obtained by the experiences or by sampling from the given
dataset. Our experiments show one of methods to choose the value of Pd(i). It
is proved that 0 and 0.1 are realistic values of Pd(i) in our cases.

For getting the future predicted function of an object from the simulated
discrete points, we regress the discrete positions to a linear function by the

Tracking Network-Constrained Moving Objects with Group Updates 163

Least Square Estimation (LSE) in Statistics. It can be calculated efficiently with
low data storage cost. Let the discrete simulated points be (t0, l0), (t1, l1), ...,
(ti, li), ..., (tn−1, ln−1)(i ≥ 0, n > 0), where ti is the time at i+1 timestamp, li is
the relative distance of the moving object in an edge at timestamp ti, n is the
total time units for the simulation, a linear function of time variable t can be
obtained as follows:

l = a0 + a1t (1)

where the slope a1 and the intercept a0 can be calculated in Statistics

a1 =
n

n−1∑
i=0

tili −
n−1∑
i=0

ti
n−1∑
i=0

li

n
n−1∑
i=0

t2i − (
n−1∑
i=0

ti)2
(2)

a0 =
1
n

n−1∑
i=0

li − a1

n

n−1∑
i=0

ti (3)

After regressing the two simulated future trajectories to two linear function
denoting L1 and L2 in Figure 4, we can compute the middle straight line L3, the
bisector of the angle a between L1 and L2 as the final predicted function L(t).

Through the SP model, we obtain a compact and simple linear prediction
function for the moving object. However, this is different from the linear pre-
diction in that the simulation-based prediction method not only considers the
speed and direction of each moving object, but also takes correlation of objects
as well as the stochastic behavior of the traffic into account. The experimental
results also show it is a more accurate and effective prediction approach.

4 Group Location Update Strategy

As the number of updates from moving objects to the server database depends
on both the update frequency and the number of objects updated, we propose
a group location update strategy based on the SP model (GSP) to minimize
location updates. In the GSP, for each edge in a road network, the objects are
grouped or clustered by the similarity of their predicted future movement func-
tion and their locations are represented and reported by the group (Figure 1). It
means that the nearby objects with similar movement during the future period
on the same edge are grouped and only the object nearest to its group center
needs to report the location of the whole group. Within a certain precision, the
locations of other objects can be approximated to their group location.

The idea of grouping objects for location updates is similar to the GBL pro-
posed in [6]. The main differences are that the GSP groups the objects by their
future movement function predicted from the SP model instead of their current
locations and predicted locations after a time parameter τ obtained by current
velocity. Grouping by objects predicted movement function can insure the valid-
ity of the groups. The accurate prediction from the SP model can also reduce the

164 J. Chen et al.

maintenance of the groups. Due to the constraint of the road network, each group
in the GSP has its lifetime in accordance to the edge. A group only exists on one
edge and will be dissolved when objects within it leave the edge. Furthermore,
unlike the GBL in which objects have to send a lots of messages to each other
and compute the costly similarities for grouping and leader selection, the GSP
executes the grouping on the server after predicting. This alleviates the resource
consumption of moving clients and overloads of wireless communication.

The similarity of two objects simulated future trajectories in the SP model
has to be computed by comparing a lot of feature points on the trajectories. A
straightforward method is to select some of the simulated points to sum their
distance difference. However, the computation cost for simulated trajectories is
very high. For simplicity and low cost, we group objects by comparing their final
predicted linear functions. Therefore, the movement similarity of two objects
on the same edge can be determined by their predicted linear functions and
the length of the edge. Specifically, if both the distance of their initial locations
and their distance when one of the objects arrives the end of the edge are less
than the given threshold (corresponding to the update threshold ε), we group
the two objects together. These distances can be easily computed by their pre-
dicted functions. Figure 5 shows the predicted movement functions (represented
as L1, L2, L3, L4, L5) of the objects o1, o2, o3, o4, o5 on the edge (n1, n2) from
Figure 1. le is the length of the edge and t1, t2, t3, t4 are respectively the time
when the objects o1, o2, o3, o4 arrive the end of the edge. Given the threshold is
7, for objects o1, o2, the location difference between them at initiate time and
t1 are not larger than 7, therefore, they are clustered in one group c1. We then
compare the movement similarities of o3 and o1 as well as o3 and o2. The location
differences are all not larger than 7, so o3 can be inserted to c1. Although at the
initiate time, o3 and o4 are very close with the distance less than 7, they move
far away each other in the future and their distance exceeds 7 when o3 arrives
the end of the edge. They cannot be grouped in one cluster. In the same way,
o4 and o5 form the group c2. Therefore, given a threshold, there are three cases
of the objects predicted linear function when they are grouped together on one
edge. These cases can be seen in the Figure 5 respectively labeled by a (L2 and
L3 with objects moving close), b (L1 and L3 with objects moving far away) and
c (L1 and L2 with one object exceeding another one).

In a road network, we group objects on the same edge. When objects move out
of the edge, they may change direction independently. So we dissolve this group

t

l
L1 L2 L3 L4

t1

le

(a)

(b)
(c)

2

1

4

4

3
8

2

L5

t2 t3 t4

6

7

5

Fig. 5. Grouping objects by their predicted functions

Tracking Network-Constrained Moving Objects with Group Updates 165

and regroup the objects in adjacent edges. Each group has its lifetime from the
group formation to all objects within it leaving the edge. For each edge, with
the objects predicted functions, groups are formed by clustering together sets of
objects not only close to each other at a current time, but also likely to move
together for a while on one edge. We select the object closest to the center of its
group both the current time and some period in future on the edge to represent
the group. The central object represents its group and is responsible for reporting
the group location to the server. For reselecting the central object, according to
objects predicted future functions, we can choose the objects close to the center
of the group during its lifetime as the candidates of the central object. We can
also identify when the central object will move away from the group center and
choose another candidate as a new central object. A joining from a moving object
to a group must be executed as follows. The system first finds the nearby groups
according to the edge the object lies and then compares the movement similarity
of the object and the group by their predicted functions. If the object cannot
join to the nearby groups, a new group will be created with only one member.
When a moving object leaves a group, the central object of the group needs to be
reselected. However, for the object leaving an edge, to reduce the central object
reselection of its group, we just delete it from its group and do not change the
central object until the central object leaves the edge.

Algorithm 1. GroupUpdate(objID, pos, vel, edgeID, grpID)
input : objID, edgeID and grpID are respectively the identifier of the object

to be updated, its edge and group, pos, vel are its position and velocity
Simulate two future trajectories of objID with different Pd by the CA;
Compute the future predicted function l(t) of objID;
if objID does not enter the new edge then

if objID is the central object of grpID then
Update the current position pos and predicted function l(t) of grpID;
Send the predicted function l(t) of grpID to the client of objID;

end
else

if GetObjNum(grpID) > 1 then
Deletes objID from its original group grpID;
if objID is the central object of grpID then

Reselect the central object of grpID, update and send its group info;
end

else Dissolve the group grpID;
Find the nearest group grp1 for objID on edgeID;
Compute the time te when objID leaves edgeID by l(t) and edgeID length;
if Both distances between objID and grp1 at initiate time and te ≤ ε then

Insert objID into grp1 and send grp1 identifier to the client of objID;
Reselect the central object of grp1, update and send its group info;

else Create a new group grp2 only having objID and send its group info;
end

166 J. Chen et al.

In the GSP, the grouping method assures the compactness and movement
similarity of the objects within a group. Given the precision threshold ε, the
objects locations in a group may be approximated by the location of the group
(i.e. location of its central object). Only the location update from the central
object of the group to the location server is necessary. After the server makes
predictions for objects in a road network and initiates their groups, the client
of the central object measures and monitors the deviation between its current
location and predicted location and reports its location to the server. Other ob-
jects do not report their locations unless they enter the new edge. The prediction
and grouping of objects are executed in the server and the group information
(including the edge id, the central object id, its predicted function and a set of
objects within the group) is also stored in the database of the server. The update
algorithm in the server is described in Algorithm 1.

5 Performance Evaluation

In this section, we experimentally measure the performance of the point-based,
segment-based [1], and our GSP update policies. We also evaluate the simulation
based prediction (SP) method used in the GSP update policy with the simulation
parameter Pd and prediction accuracy compared to the linear prediction (LP)
method. We implemented the three update policies in Java and carried out
experiments on a Pentium 4, 2.4G PC with 256MB RAM running Windows XP.

5.1 Datasets

The datasets of our experiments are generated by Thomas Brinkhoff Network-
based Generator of Moving Objects [13], which is used as a popular benchmark
in many related work. The generator takes a map of a real road network as input
and may simulate the moving behaviors of various kinds of moving objects in
real world. Our experiment is based on the real map of Oldenburg city with
7035 segments. For modeling the road network, we associate those adjacent but
not crossed segments together to form edges of the graph. After that, the total
number of edges is 2980 and their average length is 184. We set the generator
the parameter “maximum time” to be 20, “maximum speed” 50 and the number
of initial moving objects 100000. The generator places these objects at random
positions on the road network, and updates their locations at each time-stamp.
The positions of the objects are given in two dimensional X-Y coordinates. We
transform them to the form of (edgeid, pos), where edgeid denotes the edge
identifier and pos denotes the object relative position.

5.2 Update Performance

For evaluating update performance and accuracy, we consider two metrics,
namely, the number of updates (for 100000 moving objects during 20 time-
stamps) and average error of the location of each object at each times-tamp as
following.

Tracking Network-Constrained Moving Objects with Group Updates 167

average error =
1

mn

n−1∑
j=0

m−1∑
i=0

|lij − lrij | (4)

where lij is the predicted location of moj or approximated location by its group
at the timestamp ti, lrij is the real location of moj at timestamp ti, m is total
update time-stamps and n is the number of moving objects.

Figure 6 and 7 show the update number and average error of three update
policies respectively with different update thresholds. We observe that with in-
crease of the threshold, the update number will decrease and the average error
will increase in any one of these three policies. This is because the larger the
threshold is, the larger the allowable deviation between the predicted location
and its real location, and the less updates it causes. However, the GSP update
policy outperforms the other two policies for fewer number of update and aver-
age error. Specifically, the GSP only causes 30%-40% updates of segment-based
policy and 15%-25% of point-based policy, while improves the location accuracy
with lower average error. This owns to the accurate prediction of the SP method
and the technique of grouping moving objects. For the GSP policy, larger thresh-
old results in more objects in one group and therefore fewer group updates and
higher location average error. In addition, notice that the largest performance
improvement of the GSP policy over other policies is for smaller thresholds.
For thresholds below 10, the GSP policy is nearly three times better than the
segment-based policy and four times than the point-based policy.

2500k

2000k

1500k

1000k

500k

0
252015105

N
um

be
r

of
 u

pd
at

es

Threshold

Point-based
Segment-based

GSP

Fig. 6. Number of Updates

 0

 5

 10

 15

 20

 25

252015105

A
ve

ra
ge

 E
rr

or

Threshold

Point-based
Segment-based

GSP

Fig. 7. Average Error of Updates

5.3 Prediction Performance

The Slowdown Rate Pd. We study the effect of the choices of different Pd, which
determines two predicted trajectories corresponding to the fastest and slowest
movements. We use Pd from 0 to 0.5 and measure the prediction accuracy by the
average error and overflow rate. The overflow rate represents the probability of
the predicted positions exceeding the actual positions. The purpose of this metric
is to find the closest two trajectories binding the actual one as future trajectories.
In this way, we choose the Pd with both the lower average error and overflow
rate, which can also be treated as one of methods to set the proper values of Pd

in a given dataset. Figure 8 and Figure 9 show the prediction accuracy of the SP
method with different Pd. We can see that when Pd is set to 0 and 0.1, both the

168 J. Chen et al.

average error and overflow rate are lower than others. Therefore, we use them
in the experiments to obtain better prediction results.

 9.7

 9.8

 9.9

 10

 10.1

 10.2

 10.3

0.50.40.30.20.10

A
ve

ra
ge

 e
rr

or

Pd

Fig. 8. Average Error with Different Pd

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.50.40.30.20.10

O
ve

rf
lo

w
 r

at
e

Pd

Fig. 9. Overflow Rate with Different Pd

Prediction Accuracy and Cost. Finally, we compare the prediction accuracy of
the SP method with the LP method. We measure the average error for predicted
locations (without grouping) with different thresholds. From Figure 10, we ob-
serve that the average error will increase when the threshold increases. This is
tenable in both the LP and SP method. However, the SP method predicts more
accurately than the LP method with any threshold. For the costs of SP method,
as its time complexity depends on many factors, we compute average CPU time
when simulating and predicting the movements of one object along the edge with
length 1000. The results show that the average cost of one prediction is about
0.25ms. This is acceptable even for large number of moving objects.

 0

 2

 4

 6

 8

 10

 12

 14

252015105

A
ve

ra
ge

 e
rr

or

Threshold

LP
SP

Fig. 10. Comparison of Prediction Accuracy

6 Conclusion

Motivated by the features of vehicles movements in traffic networks, this paper
presents new techniques to track network-constrained moving objects. Our con-
tribution is twofold. First we propose a prediction model, based on simulation,
which predicts with a great accuracy the future trajectories of moving objects.
This lowers location update frequency in tracking. Then, based on the predic-
tion, we propose a group update strategy which further reduces location updates
and minimizes the cost of wireless communication. The experiments show that
the update strategy has much higher performance and location accuracy.

Tracking Network-Constrained Moving Objects with Group Updates 169

Acknowledgments

This work was partially supported by the grants from the Natural Science
Foundation of China with grant number 60573091, 60273018; China Na-
tional Basic Research and Development Program’s Semantic Grid Project
(No.2003CB317000); the Key Project of Ministry of Education of China un-
der Grant No.03044; Program for New Century Excellent Talents in Univer-
sity(NCET); Program for Creative PhD Thesis in University.

References

1. A. Civilis, C. S. Jensen, J. Nenortaite, S. Pakalnis. Efficient Tracking of Moving
Objects with Precision Guarantees. In MobiQuitous 2004: 164-173.

2. A. Civilis, C. S. Jensen, S. Pakalnis. Techniques for Efficient Road-Network-Based
Tracking of Moving Objects. In IEEE Trans. Knowl. Data Eng. 17(5): 698-712
(2005).

3. Z. Ding, R. H. Guting. Managing Moving Objects on Dynamic Transportation
Networks. In SSDBM 2004: 287-296.

4. H. Gowrisankar, S. Nittel. Reducing Uncertainty In Location Prediction Of Moving
Objects In Road Networks. In GIScience 2002: 228-242.

5. Y. Huh, C. Kim. Group-Based Location Management Scheme in Personal Com-
munication Networks. In ICOIN 2002: 81-90.

6. G. H. K. Lam, H. V. Leong, S. C. Chan. GBL: Group-Based Location Updating
in Mobile Environment. In DASFAA 2004: 762-774.

7. K. Y. Lam, O. Ulusoy, T. S. H. Lee, E. Chan, and G. Li, An Efficient Method for
Generating Location Updates for Processing of Location-Dependent Continuous
Queries. In DASFAA 2001: 218-225.

8. G. Trajcevski, O. Wolfson, B. Xu, Peter Nelson: Real-Time Traffic Updates in
Moving Objects Databases. In DEXA 2002: 698-704.

9. O. Wolfson, A. P. Sistla, S. Camberlain, Y. Yesha. Updating and Querying Data-
bases that Track Mobile Units. In Distributed and Parallel Databases 7(3): 257-387
(1999).

10. O. Wolfson and H. Yin. Accuracy and Resource Consumption in Tracking and
Location Prediction. In SSTD 2003: 325-343.

11. J. Zhou, H. V. Leong, Q. Lu, K. C. Lee. Aqua: An Adaptive QUery-Aware Location
Updating Scheme for Mobile Objects. In DASFAA 2005: 612-624.

12. K. Nagel and M. Schreckenberg, A Cellular Automaton Model for Free Traffic, In
physique I, 1992, 2: 2221-2229.

13. T. Brinkhoff. A Framework for Generating Network-based Moving Objects, In
GeoInformatica 6(2): 153-180 (2002).

Dynamic Configuring Service on Semantic Grid

Qing Zhu

Department of Computer Science, Information School,
Renmin University of China,
Beijing, 100872, P.R.China

zq@ruc.edu.cn

Abstract. Dynamic configuring service composition can automatically
leverage distributed service components and resources to compose an
optimal configuration according to the requirements on Semantic Grid.
One major challenge is how to comprehend service-specific semantics and
how to generate workflow to reuse common service composition func-
tionalities. Current ontological specifications for semantically describing
properties of Grid services are limited to their static interface descrip-
tion. In this paper, we present an automaton [1, 2] model in which service
providers express their service-specific knowledge in the form of a ser-
vice template and create composition plan that is used by a synthesizer
to perform dynamic configuring composition automatically. Our main
contribution is to formally describe dynamic processing of composition,
to take QoS-driven composition goal into account to find best quality
composition on Semantic Grid.

1 Introduction

The Semantic Grid [3] is an Internet decoupling interconnection environment
that can effectively organize, share, cluster, fuse, and manage globally distributed
versatile resources based on the interconnection semantics. Semantic Grid ser-
vices will allow the semi-automatic or automatic annotation, discovery, selection,
composition, and execution of inter-organization service logic. It can make the
Internet become a global common platform when semantic web re-organizations
and individuals communicate among each other to carry out various activities
and to provide value-added services. In order to fully harness the power of web
services, their functionality must be re-combined to create process workflow on
Grid. Semantics can play an important role in all stages of process lifecycle.

Service composition not only enables the reuse of existing services, but pro-
vides an attractive way for dynamic production and customized delivery of ser-
vice contents on Semantic Grid. One promising challenge for developing such
services is dynamic composition. Instead of statically integrating components [4]
while the service is developed, dynamic services dynamically combine available
components and resources into optimized service configurations at the invoca-
tion time, when a user request is received. This allows the service composition
process to take the semantic requirement and the system characteristics into
consideration.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 170–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Dynamic Configuring Service on Semantic Grid 171

How can one describe the service composition on semantic Grid? Ontology
[5] is a formal, explicit specification of a shared conceptualization. We can de-
scribe the ontology of a program by defining a set of representational terms and
knowledge about a domain. Definitions associate the names of entities in the
universe of classes, relations, functions or other objects with human-readable
text describing what the names mean and formal axioms that constrain the in-
terpretation and well-formed use of these terms. A set of grid services that share
the same ontology will be able to communicate about a domain of knowledge.
In this paper we address the problem of automatic composition description and
synthesis of web services sharing knowledge based on Semantic Grid.

The rest of the paper is organized as follows. Section 2 describes an overview
of dynamic composition model. Section 3 presents the design, configurations and
operation of synthesizer. Section 4 presents key technology of physical mapping.
Section 5 presents simulation and evaluation. Section 6 discusses related work.
Finally, the paper concludes with future work in Section 7.

2 System Architecture

Dynamic service composition [6], generally, consists of two main steps [7]. The
first one, sometimes called composition synthesis, describes the process of au-
tomatically computing a specification of how to coordinate the components to
answer a service request. The second step, often referred to as orchestration,
defines the actual run-time coordination of service executions, considering also
data and control flow among services.

2.1 Model of Service Composition

We propose GSC (Grid service composition) architecture for dynamic configu-
ration of services to achieve flexibility of sharing knowledge on semantic Grid.
The service specification defines the components required by a service and de-
scribes how components are interrelated after user requesting. Resource dis-
covery identifies the location and capabilities of processing resources to build
a resource graph describing the physical topology. Service mapping translates
the service specification onto the physical resource graph while taking into ac-
count all service-specific constraints. The service allocation task reserves and
configures appropriate physical resources as determined by the service mapping
process. Once the service has been deployed, service deployment is the final task
that executes all required components to provide an operational service composi-
tion for users. Our main contribution is to formally describe dynamic processing
of composition and mapping process on Semantic Grid, to validate the feasibility
and adaptability of such an approach.

The GSC architecture is implemented as a distributed middleware infrastruc-
ture deployed in wide-area networks, which can automatically map the user’s
composite service requests into an instantiated distributed application service
in semantic web. The GSC architecture includes a semantic interpreter and a
resource synthesizer, which consistent of interpreter module and facility module.

172 Q. Zhu

A semantic interpreter realizes operational description of the domain knowledge
and executes a template submitted by a developer to compose a service config-
uration for each user request. A resource synthesizer is across different services
and contains discovery, mapping, allocation, and deployment modules (Fig. 1).
The synthesizer provides the basic building components to build new services
through composition and provides common, reusable service composition func-
tionalities, component selection algorithms and mechanisms for accessing the
support infrastructure.

Fig. 1. Service Composition System Architecture

In dynamic composition model, the synthesizer identifies relevant services,
explicitly states their interactions and creates a composition plan. Composi-
tion plans are created at runtime based on dynamically defined composition
objectives, their semantic descriptions, constraints, and available services and
resources. This model can support self-configuring behaviors, changeful inter-
action patterns and can be synthesized on-demand at design time. A key con-
tribution is an dynamic composition model based on service-specific knowledge
and automata model in which service providers express their service-specific
knowledge.

From the view of the point, service specification is the foundation of service
composition which can describe semantic explanation of user requisition and
create requiting goal. It is the key problem that consists automatically of new
process work-flow of Grid service by using available web services. This paper
focuses on the service specification and composition plan part.

2.2 Overview of the Approach

Service composition is a process of binding execution of two or more services.
Dynamic composition is defined the integration of generating services automat-
ically. That means that a new web service achieves a given goal by interacting
with some of the available web services. More specifically, we take a declar-
ative description of the program that realizes the service. Given the process
description of n available services (S1, · · ·, Sn), we encode each of them in a

Dynamic Configuring Service on Semantic Grid 173

state automata (ΣS1, · · · , ΣSn), State automata provide a sort of operational
semantics to process models. Each of them describes the corresponding web ser-
vice as state-based dynamic automata, that can evolve changing state, and that
can be partially controlled and tested.

From the view of Fig.2, the new composed service ΣS that is the process of
state transition has to be generated by the state automata (ΣS1, · · ·, ΣSn). Each
of ΣSi constitutes the environment to operate by receiving and sending service
requests (S1, · · ·, Sn). They constitute the planner in a planning [8] domain
where the planner has to plan for a goal. In our case, the planning domain is
a state automata Σ that combines (ΣS1, · · ·, ΣSn) and Goal G (G1, · · ·, Gn).
The Composition Goal G imposes some requirements on the desired behavior
of the planning domain. The planner generates a plan Γ by given Σ and G
to satisfy the goal G and interacts with the external services S1, · · ·, Sn. The
plan encodes the new service S that has to be generated, which dynamically
receives and sends invocations from/to the external services (S1, · · ·, Sn), tests
their behaviors, and behaves depending on responses received from the external
services. G is encoded as an automaton that, depending on the testing and on
its internal state, executes different actions.

Fig. 2. Dynamic Service Composition Model Fig. 3. Service Composition Function

Formally, this combination is a synchronous product, which allows the n ser-
vices to evolve independently and in parallel. They can be described as Fig 3. In
the rest of the paper, we will describe step by step the automated composition
task introduced above through the following example.

3 Specification of Service Composition

In this section, we present how a real-world application benefit from placing
processing functions into the physical resources using the state automata. We
demonstrate how the application can conveniently express their processing re-
quirements using state transition, how our service composition software maps
these requirements onto available resources, and how processing modules and
forwarding state interior to the physical resources are finally configured.

174 Q. Zhu

3.1 Model of Service Composition

There is an example for the travel industry. Consumers can now acquire service
compositions from a diversity of Web sites including online agencies and airlines.
With the spread of service online of travel industry, a new technology of ontology
has surfaced for the leisure travel industry. For the development of dynamic
integrating solutions it is necessary to look in detailed at the service components
needed to enhance the online vacation planning experience.

By transitioning service in most applications, dynamic service synthesizer
can better select composition offerings, pricing and merchandizing to consumer
demand. The cumulative effort of various companies and international organi-
zations, including air, car, cruise, rail, hotel, travel agencies, tour operators and
technology providers, has produced a fairly complete set of available services for
the travel industry.

3.2 Formal Specification

The development of such service Grid can be used to bring together autonomous
and heterogeneous Grid services, processes, applications, data, and components
residing in distributed environments. Semantics allow rich descriptions of Grid
services and processes that can be used by computers for automatic processing
in various tourism related applications. The deployment of ontology help under-
stand a well-defined set of common data elements or vocabulary that can support
communication across multiple channels, accelerate the flow of information, and
meet travel industry and customer needs.

The problem is to automatically generate the plan corresponding to the travel
industry service, when the travel industry service should interact with available
services: S1, S2, · · ·, Sn. We interpret process models as state automata, which
describe dynamic systems that can be in one of their possible states and can
evolve to new states as a result of performing some actions. A transition function
describes how the execution of an action leads from one state to possibly many
different states. System’s evolutions can be tested through QoS [9] describing
the visible part of the system state.

Definition 1. Service composition is modeled using nondeterministic state au-
tomaton Σ = (S, A, Q, I, F, ξ, λ), where

(1) S is a finite set of states. I ⊆ S is the set of initial states; F ⊆ S is the
set of final states; we require I �= ∅ and F �= ∅.

(2) A is the set of actions.
(3) Q is the set of Quality of Service.
(4) ξ: S × A → 2S is the transition function; it associates to each current

state s ∈ S and to each action a ∈ A the set ξ(s, a) ⊆ S of next states.
(5) λ: S → Q is the testing function of Quality of Service.

Each action may result in several different outcomes and the transition function
returns sets of states, so state automata are nondeterministic. Non-deterministic
state automata are needed since the system cannot often know a priori-level which

Dynamic Configuring Service on Semantic Grid 175

outcome will actually take place, whether it will receive a confirmation or a cance-
lation from an available service. Moreover, our state automata are partially testing
QoS of user requirement to transfer to next states.

3.3 QoS-Driven Composition Goals

QoS-driven composition goals express requirements for the service to be auto-
matically generated according to user providing and character of system. They
should represent conditions on the temporary evolution of services, and require-
ments of different strengths and preference conditions, by addressing the QoS-
driven composition of Semantic Grid services.

When we create a composite service and subsequently execute it following a
user request, the number of component services involved in this composite service
may be large, and the number of Grid services from which these component
services are selected is likely to be even larger. On the other hand, the QoS of the
resulting composite service executions is a determinant factor to ensure customer
satisfaction, service goal. Different users may have different requirements and
preferences regarding QoS. For example, a user may require minimizing the
execution duration while satisfying certain constraints in terms of price and
reputation, while another user may give more importance to the price than to the
execution duration. A QoS-driven approach to service composition is therefore
needed, which maximizes the QoS of composite service executions by taking into
account the constraints and preferences of the users.

A multi-dimensional QoS model [10] is a broad concept that includes a num-
ber of non-functional properties such as price, duration, availability, succeed-rate,
and reputation. These properties apply both to alone Grid services and to new
composite Grid services. In order to reason about QoS properties in Grid ser-
vices, the QoS model is needed to captures the descriptions of these from a user
requirement. It can be formally defined as follow:

QoS = (Q1, · · ·, Qn), for example: Q1 = Q.price, Q2 = Q.duration, Q3 =
Q.availability, Q4 = Q.succeed-rate, Q5 = Q.reputation; QoS = (Q1, · · ·, Qn)
⇒ Goal G = (G1, G2, · · ·, Gn), Where: ”⇒” expresses create composition goal.

3.4 Automated Composition

The composition goal and the planning domain Σ decide the planner (see Fig 2).
The planning domain Σ represents all the ways in which the services represented
by (ΣS1, · · ·, ΣSn) can evolve. Formally, this combination is a synchronous
product, Σ = ΣS1 × · · · × ΣSn. The dynamic service composition is created by
finding a domain plan that satisfies the composition goal G on Semantic Grid.
We are interested in complex plans that may encode sequential, conditional
and iterative behaviors. The plan can represent the flow of interactions of the
synthesized composed service and the required QoS over the other services. We
therefore model a plan as an automaton.

Definition 2. A plan for planning domain Σ = (S, A, Q, I, F, ξ, λ), is a tuple
Γ = (P, p0, β, δ), where

176 Q. Zhu

(1) P is the set of plan contexts. p0 ∈ P is the initial context.
(2) β : P × Q → A is the action function; it associates to a plan context p ∈

P and an quality of service q ∈ Q, an action a ∈ A, a = β(p, q) to be executed .
(3) δ: P × Q → P is the context evolutions function, it associates to a plan

context p ∈ P and an quality of service q ∈ Q, a new plan context p’ ∈ P, p’ =
δ(p, q).

The contexts of the plan have been chosen from a composition goal by taking into
account the semantic knowledge during the previous execution steps. Actions
defined by action function β to be executed by the testing quality of service and
on the context. Once an action is executed, the context evolutions function δ
updates the plan context. Functions β and δ are partial deterministic since a
plan may be obtained from a composition goal and the contexts correspond to
the sub-formulas of the goal.

3.5 Dynamic Configuration Composition

Dynamic configuration composition describes the state of the domain and the
plan and can be executed by abstract described and physical mapping. The exe-
cution of a plan over a domain can be described in terms of transitions between
configurations on semantic grid.

Definition 3. A configuration for domain Σ = (S, A, Q, I, F, ξ, λ) and plan
Γ = (P, p0, β, δ), is a pair (s; p) such that s ∈ S and p ∈ P. Configuration
(s; p) may evolve into configuration (s’, p’), written (s, p) → (s’, p’), if s’ ∈
ξ(s; β(p, δ(s))) and p’ = δ(p, λ(s)). Configuration (s; p) is initial if s ∈ I and
p = p’.

As we know, a dynamic configuration is a snapshot of the domain controlled
by the plan. A ”non-deterministic” finite automation has the power to be in
several states at once. This ability is often expressed as an ability to ”guess”
something about its input. We may have an infinite number of different execu-
tions of a plan due to the non-determinism in the domain. But we can convert
”non-deterministic” finite automation to ”deterministic” finite automation. So
we can provide a finite presentation of these executions with execution workflow
configurations as states.

Definition 4. The execution structure corresponding to domain Σ and plan Γ
is the execution structure ΣΓ = (W, W0, R) where:

(1) W is the set of configurations, W = S × P;
(2) W0 ⊆ W is the initial configurations;
(3) R ⊆ S × P → W is the transitions between configurations.

The execution workflow ΣΓ represents the evolutions of the domain Σ controlled
by the plan Γ and must satisfy the composition goal G (see Fig. 2).

If ((S)→(ΣS)) ⊗ (G) ⇒ (W), we say that Γ is a valid plan for G on Σ.

Dynamic Configuring Service on Semantic Grid 177

3.6 Mapping Procession

Dynamic composition techniques automate the entire composition process by
using AI planning or similar technology. The synthesizer addresses the auto-
mated composition problem by GSC framework which uses generic procedures
and semantically marked up services to guide composition. The synthesizer acts
as a gateway to Grid services and is responsible for selecting and invoking the
services. We assume the existence of a mapping procedure. In the absence of
one, mapping cannot proceed. Additionally, if the synthesizer cannot match a
service, execution will fail. An important component of automated composition
is the discovery of the services required.

An abstract configuration is a graph consisting of nodes representing the ab-
stract components and links representing the connections between the compo-
nents. While the synthesizer needs to use the knowledge in the template to decide
what components and connections to use, the structures for the graph can be
reused across services to handle abstract configurations.

For instance, a search for travel service is done in parallel with a flight, a car
and an accommodation booking. After the searching and booking operations
complete, the distance from the hotel to the accommodation is computed, and
either a car or a hotel rental service is invoked, in Fig.2.

As an example, the travel industry service should interact with three avail-
able services: s0, s1, s2, and s3; s0=flight, s1=car, s2=hotel, s3=cruise, which
are described as OWL-S process models and translated to state transition sys-
tems. Where: a1=s0 → s1, a2=s1 → s2, a3=s2 → s3; q0: QoS of flight-service,
q1: QoS of car-service, q2: QoS of hotel-service, q3: QoS of cruise-service. The
problem is to automatically generate the plan p0={providing flight-service},
p1 = {providing car-service}, p2 = {providing hotel-service}, p3 = {providing
cruise-service} corresponding to the travel industry service. Finally, ΣΓ creates
configuration workflow: (s0, p0) → (s1, p1) → (s2, p2) → (s3, p3). We express
process models as state automata, which describe dynamic systems that can be
in one of their possible states (some of which are marked as initial states) and
can evolve to new states as a result of performing some actions. A transition
function describes how (the execution of) an action leads from one state to pos-
sibly many different states. System’s evolutions can be tested through Quality of
Service (QoS) describing the visible part of the system state. A Quality of Service
(QoS) defines the user associated to each state of the domain. Specifically, we
introduce the mapping of service composition. Mapping of service composition
includes four parts.

Firstly, state automaton Σ = (S, A, Q, I, F, ξ, λ), where, user’s require services
S = {s0, s1, s2, s3}; state transfer action A = {a0, a1, a2, a3, a4}; QoS Q=q1
and q2 and q3, provide resources for S; Start State I = {S0}, Final State F =
{S3}; Mapping of transition function: s1=ξ(s0, a1), s2=ξ(s0, a0), s2=ξ(s1, a2),
s3=ξ(s2, a3), s3=ξ(s1, a4), a ∈ A, s ∈ S, Mapping of testing QoS q0= λ(s0),
q1= λ(s1), q2= λ(s2), q3= λ(s3), si ∈ S, qi ∈ Q.

Secondly, plan is a four-tuple Γ = (P, p0, β, δ) for planning domain Σ = (S,
A, Q, I, F, ξ, λ); where (1) P = {p0, p1, p2, p3} is the set of plan contexts. p0

178 Q. Zhu

∈ P is the initial context. (2) Mapping of providing resources and testing QoS:
a1 = β(p0, q0), a2 = β(p1, q1), a3 = β(p2, q2) are the action function to be
executed; it associates to a plan context p and an quality of service qi. Mapping
of the context evolutions function: p1 = δ(p0, q0), p2 =δ(p1, q1), p3 =δ(p2, q2),
it associates to a plan context p ∈ P and an quality of service qi ∈ Q, a new
plan context P={p0, p1, p2, p3}.

Thirdly, a configuration for domain Σ = (S, A, Q, I, F, ξ, λ) and plan Γ =
(P, p0, β, δ), is a pair (s, p) such that s ∈ S and p ∈ P. Configuration (s, p)
may evolve into configuration (s’, p’), written (s, p) → (s’, p’), if s’ ∈ ξ(s, β(p,
λ(s)))= ξ(s, β(p, q))= ξ(s, a) and p’ =δ(p, λ(s))= δ(p, q). Configuration (s0,
p0) is initial if s0 ∈ I and p’ = p0.

Finally, the execution structure is ΣΓ = (W, W0, R), where W is the set of
configurations; w=(s, p), W0 ⊆ W =S × P are the initial configurations, R ⊆ S
× P → W are the transitions between configurations. Thus, configuration work-
flow: W = {w0, w1, w2, w3} = {(s0, p0), (s1, p1), (s2, p2), (s3, p3)}; si’=R(s),
pi’=R(p). (si’, pi’), i=1, 2, 3, · · ·, n, consists the sets of configuration from (s, p).

4 Physical Mapping

To enable flexible services on semantic grid, there is a need for synthesizer on top of
physical processing capabilities that facilitates the deployment and configuration
of available services. The synthesizer can be seen as a distributed system com-
ponent that automates the configuration of Grid resources to form services that
applications use. The system accepts processing demands from applications of
template, discovers available processing resources, maps those processing require-
ments onto Grid resources, and configures the appropriate state on Grid nodes.

Given an abstract configuration, the synthesizer generates a physical configu-
ration specifying which physical component should be selected for each abstract
component such that a Goal is optimized. The GSC uses a dynamic adaptable
algorithm to match each service in the abstract mapping with an instance of an
executable service available on the network. Let us first describe formally the
problem and discuss the algorithms for solving them.

To state the mapping problems more formally, we use the following notation.
We are given a directed graph, M = (S, A), with a transmission cost co(a), for
each link a ∈ A, and a service cost unit co(s), for each node s ∈ S. Let the source
be defined by Σ and the destination by Γ , In graphs, we denote transmission
costs on the links and the unit for processing costs within the node. For now
we assume that all services require a cost of 1, that is, the cost for processing
a service corresponds to co(s). This convenience will allow us to express the
mapping problem as a shortest-path problem.

5 Simulation and Evaluation

In this section, we illustrate our approach by using a scenario from the travel
domain and provide some preliminary results of performance evaluation exper-
iments. All the main components are implemented as Grid services. We use

Dynamic Configuring Service on Semantic Grid 179

existing Semantic Web tools and reasoning mechanisms to provide the basic
representation and reasoning technology. Services are described using OWL-S.

To analyze data of templates are correlated with the signal using fast correla-
tion by a technique known as matching. This simulation uses approximately 50
separate services connected together to form a process workflow. The GSC gen-
erates a process model referring to the services by their logical mapping. These
are then matched to actual simulations available on the network by physical
mapping. The purpose of our experiments is two-fold: to assess plan generation
times and success rates. We ran our experiments on a Windows machine with a
1.4GHz Intel processor and 512Kb RAM.

Fig. 4. Times of Creating Plan Fig. 5. Success Rates of Creating Plan

We first evaluate the time for generating process workflows (see Fig. 4). There
is an exponential relationship between the number of services in a plan and the
time required to match and compose an executable graph. We also looked at
the workflow generation success rates (see Fig. 5). We compared our framework
with a simple automated back-tracking composition algorithm. We used the
same process ontology and composition requests for both of these techniques.
Based on 50 requests, the results show that our framework had a success rate
of 80% while the back-tracking algorithm had a success rate of about 60%. This
confirms our expectation that our adaptive framework has a higher probability
of successfully generating workflows.

6 Related Work

In the research area of e-service, there are service composition methods and
tools of using automata. Finite state automata [2] are proposed as conceptual
model for e-services, taking time constraints into account, and using a new web
service transition language that integrates well with standard languages in order
to completely specify e-Services. The work in [11] illustrates that e-services are
modeled by automata whose alphabet represents a set of activities or tasks to

180 Q. Zhu

be performed (namely, activity automata), automated design is the problem of
”delegating” activities of the composite e-service to existing e-services so that
each word accepted by the composite e-service can be accepted by those e-
services collectively with each accepting a subsequence. Their approach focus on
description, our approach, however, focus on understanding semantic to formally
describe dynamic processing of composition, to take QoS-driven composition goal
into account to find best quality composition on Semantic Grid.

7 Conclusion and Future Work

In this work, we have shown how to use semantic descriptions to aid in the
composition of Grid services. We have developed a simulated system and shown
that it can compose the Grid services deployed on the internet as well as provid-
ing processing capabilities where a number of similar services may be available.
Our system can directly combine the user’s semantic service descriptions with
sharing knowledge allowing us to execute the composed services on the Grid.

As a future work, we are working on the incorporation of planning technology
in the inference automata that would result in further automation of the system.
We are also investigating the possibility of machine learning from past user activ-
ity. Generating richer ontology with more specific descriptions will also improve
the performance of the machine. The key idea is the incorporation of multiple
types of knowledge and multiple machine learning techniques into all stages of
the mapping process, with the goal of maximizing mapping accuracy. Finally,
we are going to implement the design of the synthesizer to select an appropri-
ate optimization algorithm according to a developer’s service-specific between
optimality of component selection and optimization cost in our prototype.

Acknowledgements

This work is supported by National Natural Science Foundation of China under
Grant No. 60473069, and the project of China Grid (No. CNGI-04-15-7A).

References

1. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Second Edition, Addison Wesley, 2001.

2. D. Berardi, F. De Rosa, L. De Santis, M. Mecella: Finite State Automata as Con-
ceptual Model for E-Services. Proceedings of the 7th World Conference on Inte-
grated Design and Process Technology (IDPT 2003), Special Session on Modeling
and Developing Process-Centric Virtual Enterprises with Web-Services (VIEWS
2003).

3. H. Zhuge, Semantic Grid: Scientific Issues, Infrastructure, and Methodology,
Communica-tions of the ACM. 48 (4) (2005)117-119.

4. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Mecella: Automatic Compo-
sition of Transition-based Semantic Web Services with Messaging. In Proceedings
of the 31st Inter-national Conference on Very Large Data Bases (VLDB 2005)
(Trondheim, Norway, 2005).

Dynamic Configuring Service on Semantic Grid 181

5. I. B. Arpinar, R. Zhang, B. Aleman, and A. Maduko, Ontology-Driven Web Ser-
vices Com-position. IEEE E-Commerce Technology, July 6-9, 2004, San Diego,
CA.

6. S. Majithia, D. W. Walker and W. A. Gray, A framework for automated service
composi-tion in service-oriented architecture, in 1st European Semantic Web Sym-
posium, 2004.

7. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella, Automatic
com-position of e-services that export their behavior. In Proc. 1st Int. Conf. on
Service Oriented Computing (ICSOC), volume 2910 of LNCS, pages 43-58, 2003.

8. M. Carman, L. Serafini, and P. Traverso, Web service composition as planning,
in proceed-ings of ICAPS03 International Conference on Automated Planning and
Scheduling, Trento, Italy, June 9-13 2003.

9. X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward, QoS-Assured Service Compo-
sition in Managed Service Overlay Networks. Proc. of IEEE 23nd International
Conference on Dis-tributed Computing Systems (ICDCS 2003), Providence, RI,
May 2003.

10. Hanhua Chen, Hai Jin, Xiaoming Ning, Q-SAC: Toward QoS Optimized Service
Auto-matic Composition, Proceedings of 5th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid05), May, 2005.

11. Z. Dang, O. H. Ibarra, and J. Su. Composability of Infinite-State Activity Au-
tomata, Proceedings of the 15th Annual International Symposium on Algorithms
and Computation (ISAAC), 2004.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 182 – 192, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Object Placement and Caching Strategies on AN.P2P∗

Su Mu1, Chi-Hung Chi2, Lin Liu2, and HongGuang Wang2

1 School of Computing, National University of Singapore, Singapore
2 School of Software, Tsinghua University, Beijing, China

chichihung@mail.tsinghua.edu.cn

Abstract. This paper discusses the object placement and caching strategies on
the AN.P2P, which is an Application Networking infrastructure to implement
pervasive content delivery on the peer-to-peer networks. In general, the AN.P2P
allows the peer to send the content’s original object with the associated content
adaptation workflow to other peers. The recipient peer can reuse the original
object to generate different content presentations. In order to achieve reasonable
performance, this paper proposes several object placement schemes and caching
strategies. Our simulation results show that these methods could effectively
improve the system performance in terms of query hops, computation cost and
retrieval latency.

1 Introduction

In recent years, the peer-to-peer (P2P) systems have witnessed more heterogeneous
presentation requirements than before because of the emergence of diverse devices.
However, legacy P2P file sharing facilities [5,6,11,16,17] cannot deal with these
requirements effectively without necessary system support to content adaptation and
service customization. For instance, a PC based peer shared a piece of high quality
media content. However, a smart phone based peer cannot render this content unless it
is adapted to a lower quality version. This necessitates the architectural change in
tandem.

Our previous work [20] on Application Networking (App.Net) was to implement
pervasive content delivery for heterogeneous requirements. Its key idea was rooted
from the observation that despite the heterogeneous requirements for object
presentations, the processes to generate the presentations are homogeneous. In
general, the App.Net enables the delivery of content’s original or intermediate object
with an associated workflow. The recipient node can thus reuse these objects to
generate different presentations by performing the tasks in the workflow. In
particular, our work [21] on AN.P2P attempted to apply the Application Networking
mechanism onto the P2P file sharing systems. We have shown that the AN.P2P could
help to reduce the average search size because of the reuse of original object and the
associated workflow.

However, integrating the Application Networking mechanism into a practical P2P
system is not a trivial exercise. It involves multiple aspects as performance

∗ This research is supported by the funding 2004CB719400 of China.

 Object Placement and Caching Strategies on AN.P2P 183

optimization, service security, application reuse, and so on. The work of this paper
focused on improving overall performance on AN.P2P through dedicated object
placement methods and the revised caching strategies. In particular, we proposed two
placement schemes to populate objects and their associated workflow, in order to
improve the query efficiency and to reduce the mean retrieval delay. Our simulation
showed that these methods could help to improve the overall system performance.

2 Summary of Previous Work

In general, the Application Networking mechanism [20] allows the content provider
associate a piece of content adaptation logic to the published content. Instead of
encapsulating the logic into a single application module, we specified the logic as a
workflow composed by multiple tasks, each of which can be instantiated by an
application module. We have defined a standard interface, called ANlet, for mobile
applications. Given application modules that implement the ANlet interface, the
Application Networking nodes can dynamically load them locally and remotely. In
particular, we defined a callback function in ANlet, as given by equation (1).

AppNetContent modResponse (queryMsg msg, AppNetContent content); (1)

The function has two input parameters: the query message and available content
object. The query message contains the presentation profile of the client and
AppNetContent contains both the content object and the attributes of the object.
Therefore, the ANlet can generate the appropriated output ANP2PContent according
to the input parameters.

Hence, if we input the original object to a workflow, it can output the final
presentation of the input object by performing the adaptation tasks. In particular, we
believe the workflow structure can facilitate the progressive application deployment
in that the fundamental applications are loaded first, while the remaining ones are
loaded later on demand. Moreover, the workflow can get the intermediate objects of
the original object. Our simulation results will show that caching these intermediate
objects can help to reduce the average computation time by avoiding repeated content
adaptation.

Upon receiving a request, the content host can send the original or intermediate
object and the associated workflow to the requestor. The recipient can thus reuse the
retrieved object to generate appropriate content presentations by performing the
workflow associated with the response object. In addition, a workflow normally
specifies a list of URLs, which can provide the relevant application modules. In case
of no available local application module to instantiate a task, the node can download a
mobile application from remote site according the URL specified by the workflow.
Due to dynamic application loading, we can achieve reasonable system scalability in
the open Internet environment.

In particular, our recent work on AN.P2P [21] implemented an Application
Networking platform on P2P networks. The AN.P2P can reside on any P2P substrate
and is not mandatory to install on each peer within the network. When an AN.P2P
peer serves an ordinary peer, it will send a particular presentation of the content as if
the AN.P2P is transparent to the ordinary peers. In contrast, when an AN.P2P peer
serves another AN.P2P peer, it can send either the original object and the workflow or

184 S. Mu et al.

a final presentation. We believe this back compatibility feature could ease the
adoption of AN.P2P into existed P2P networks.

Our preliminary simulation results have shown that using AN.P2P, we can achieve
better system performance in terms of query hops and response transmission cost. It
suggested that the AN.P2P has the potential benefits to deliver content in P2P
networks with heterogeneous presentation requirements.

However, to derive a feasible AN.P2P infrastructure, we need to consider more
aspects, such as the effects of different object placement methods, the cost of content
adaptation, the trade-off between the computation delay and the transmission delay.
These gaps motivated the study of this paper.

3 Object Placement Schemes

Generally, the AN.P2P aims to improve the overall system performance by placing
the replica of objects and their workflow within the network. We defined two object
placement schemes in the AN.P2P, as shown in figure 1.

P3

P2

P1

P0 query msg

query msg

query msg

response msg

replication msg

ANlet
downloading

(a) Caching Scheme (b) Replication Scheme

Fig. 1. Object placement schemes

In this paper, we call the peer that publishes the content as the home peer (e.g. P3 in
figure 1), the peer that issues a query as the requesting peer (e.g. P0), all peers that
forward the query as the intermediate peers (e.g. P1 and P2), and the peer that serves
the query as the target peer. The target peer can be the home peer itself or another
peer with a replica of the content. We supposed the requesting peer could insert the
user’s presentation profile into the query message when it issues a query.

The caching scheme piggybacks the placement instruction within the response
message, as shown in figure 1(a). Upon receiving a query message, the home peer can
send either the final presentation of the queried content or its original object and the
associated workflow to the requesting peer using a response message. The decision is
made according to specific system policy.

After receiving the response message, the requesting peer will treat the response
object as the final presentation of the queried content if there is no workflow within
the response message. Then the requesting peer will render it to the user directly.

 Object Placement and Caching Strategies on AN.P2P 185

However, if the requesting peer detects there is a workflow within the response
message, it will attempt to instantiate the workflow by downloading relevant ANlet
modules. After that, the requesting peer feeds the received object to the workflow
tasks, which will generate the appropriate content presentation according to the user
profile in the query message. At the same time, the requesting peer will store the
response message and the downloaded ANlets in its local cache. When it receives a
later query for the same content, the peer can serve it directly. Similar to the home
peer, the intermediate peer can either send the final presentation or the original object
and the workflow to the new requesting peer.

In contrast, the replication scheme performs content placement using a dedicated
replication message, as shown in figure 1(b). Upon receiving a query message, the
home peer generates the final presentation of the queried content according to the user
profile in the query message. Then it sends the generated content presentation to the
requesting peer directly using a response message.

At the same time, the home peer can select a particular intermediate peer and send
it a replica of the original object with the workflow. Upon receiving the replication
message, the intermediate peer will store it in its local cache. When this peer receives
a new query for the same content, it will load the cached object, instantiate the
associated workflow using the downloaded ANlets, and generate the final
presentation to the new requesting peer. Similarly, this peer can select another peer to
replicate the object and workflow.

In summary, the replication scheme enables the AN.P2P to select an optimal peer
to place the replica at the cost of dedicated replication message. On the other side, the
caching scheme naturally populates content to the requesting peers at the cost of the
forfeit of selective content placement.

In practice, the caching scheme and the replication scheme can coexist with each
other. However, our later simulation will evaluate them separately to study their
respective effect to the overall system performance.

In our simulation based on Pastry, the target peer will attempt to replicate the
object to the intermediate peer at the previous hop of the current query path. Our
simulation results will show that this last-hop replication strategy is much more
efficient than a random placement on the structured P2P networks, such as Pastry,
Chord and DKS.

4 Cache Design

Figure 2 shows the general architecture of an AN.P2P peer. The user interacts with a
particular file sharing software utility, which performs interaction with the end user,
retrieves content from the network to the local file directory, and shares the files
within the directory to other peers. In addition, the software utility is responsible to
provide the user presentation profile to the back-end AN.P2P platform. The profile is
specified as a list of name and value pairs, including the user device type, display
size, processing capabilities, and so on. We intended to leverage on existing
techniques, such as CC/PP [4], to specify the user profile.

The AN.P2P platform resides between the software utility and the P2P network. It
issues queries according to the user action, forwards bypassing messages, receives
responded or replicated objects, and delivers the retrieved content to the software utility.

186 S. Mu et al.

Fig. 2. Architecture of an AN.P2P peer

In particular, each AN.P2P maintains a local cache to store the response message
or the replication message. We have designed an XML format to encapsulate both the
content object and the workflow specification into a single message.

In AN.P2P cache, the content id is not sufficient to identify a cached item since
multiple versions of the same content may coexist. Hence, we use the union of
content id and a list of attribute entries to identify an object. Each attribute entry is
specified as a name and value pair.

When the peer lookups its cache, it first checks if there exist cached items with the
requested content id. If found, the peer cache then matches each profile entry in the
query message against the corresponding attribute entry of the cached item. If all entries
are compatible, it is a cache hit and the cache can use this item to serve the query, with
possible content adaptation by the associated workflow. Otherwise, it is a cache miss.

If there is a profile entry in the query message but no corresponding attribute entry
of the cached item, the cache treats it as a compatible match since the content
provider cannot predict all possible entries inserted by the client. Therefore, our
matching strategy attempts to achieve the best-effort content availability while
avoiding conflicting attributes.

In particular, we defined two types of entries. One type is the “string” entry, whose
value is a character string. For instance, the language attribute of a document is of
string type (e.g. lang=”eng”). To match a string type attribute, the two strings in
comparison should be exactly same. The second type is the “range” entry, whose
value is a numerical range. To match a query message to the cached item, the
numerical range in the query message should be within the range defined by the
attribute of the cached item. For instance, the quality attribute of a music clip defines
the range of (0, 0.8). This item can be used to a query with quality profile (0, 0.4), but
cannot be used to a query for full quality music (0, 1).

5 Performance Evaluation

5.1 Background

Recently, P2P file sharing is infamous for copyright infringement, as evident in the
rampant piracy in P2P media-sharing applications. Hence, digital rights management
on P2P has become an urgent requirement by the media-recording industry.

Iwata and Abe [9] proposed several P2P based DRM models. In general, when
authoring content, the media object will be encapsulated by a secured container. The

 Object Placement and Caching Strategies on AN.P2P 187

secured object is distributed in the network and any peer can download it freely. In
order to render the content, the recipient’s media player needs to retrieve a license that
supplies the key to disclose the secured object. Pioneer implementations have paved
the way for this new paradigm, such as Altnet [1]. However, integrating DRM into
P2P systems is not a trivial exercise. It involves multiple functions as identification,
tracking and sharing of music with those of licensing, monitoring and payment
[12,13]. Our case study in this paper considered two particular problems: (i)
watermarking to trace user and (ii) transcoding on secured object.

First, traditional DRM system normally traces the user of content by watermarking
the content before it is secured on the original server. However, this method cannot be
applied to the P2P network, since the intermediate peers are not authorized to
watermark the secured object. Secondly, media transcoding to the secured objects
would be infeasible on intermediate peers without explicit system support. If all
watermarking and adaptation are performed on the home peer of the content, the
system will regress to the server-client model.

To tentatively address the problems above, we implemented a sample workflow to
deliver media objects with DRM copyright protection. The home peer attaches its
secured object with this workflow composed by two ANlets, as shown in figure 3.
Each of them contains the key to disclose the associated object, transform it, and write
it back securely using the key. The first ANlet is a media trimmer that transforms
original media object to appropriate lower quality versions according to the type of
the recipient device. The second ANlet inserts watermark into the object according to
the certification presented by the user. After receiving the response object, the
recipient media player will attempt to obtain the license and render the media. In
addition, the protection of key in ANlet and the peer authentication are beyond the
scope of this paper. We intend to leverage existing research results on mobile code
safety [7,19] and distributed authentication methods [15].

Fig. 3. Emulated peer-to-peer DRM workflow

5.2 Simulation Results

Our simulation emulated two P2P DRM scenarios. The first one is the End-user
scenario, where the P2P network is composed directly by end users who want to
retrieve and share media content on the network. In the simulation, we authored
10000 media contents on a Pastry network with 1024 peers. We assume each peer is
resided on PC, PDA or mobile phone. The percentages for the number of these

188 S. Mu et al.

devices are 50%, 20% and 30% respectively. The PC renders the original media, the
PDA renders 0.6 quality of original media, and the mobile phones can only render 0.3
quality of original media. Finally, we treated the PC as the high-end peers who are
capable to execute ANlets. Hence, the AN.P2P schemes only deploy workflow to
these PC peers, while treating PDA and phone peers as ordinary peers.

The other scenario is the Media-library scenario, where whole network is a hybrid
structure. In particular, the end user will connect to a particular local media library to
search and retrieve media content, while several media libraries will form a Pastry
network to share media content between each other. In the simulation, we assumed
there are 16 media libraries located in different places to share 10000 media contents
in total. Similarly, we assume the end users connected to each library are resided on
PC (50%), PDA (20%) or mobile phone (30%). Since all library peers are installed on
powerful servers, the AN.P2P schemes can place object and workflow to all of them.

In both simulations, we assume the sizes of the original media objects follow the
Pareto [3] distribution with =1.25 and k=3MB, and the user requests follow the Zipf-
like [2] distribution with =0.7. The simulation results will be presented in the
following sections respectively.

5.2.1 Placement Schemes
Our first experiment evaluated the effect of the caching and replication placement
schemes. Figure 4 presents the network cache hit ratio of the two placement schemes
under different cache size. In particular, we defined there is a network cache hit when
a query is resolved from an intermediate peer instead of the home peer of the queried
content. Hence, the network cache hit ratio can represent the percentage of queries
that are resolved from replicas distributed within the network.

It is noticeable that the replication scheme greatly outperforms the caching scheme.
The hit ratio of the replication scheme increases considerably when we enlarge the
cache size, in contrast to the trivial enhancement under the caching scheme. This is
because our last-hop replication scheme attempts to place replicas to the previous hop
along query path. Based on the Pastry routing mechanism, the last hop peer tends to
receive more queries for the content. Hence, the last-hop replication would achieve
higher cache reuse rate. In contrast, the caching scheme places replicas to the
randomly generated requesting peers. On the structured P2P network, the replica
reuse rate under this random placement tends to be rather low.

Network Cache Hit Ratio

0

0.1

0.2

0.3

0.4

0.5

0 60 120 240 480 960 1920 3840

Cache Size (MB)

H
it

 R
at

io

cache scheme replicate scheme

Fig. 4. Network cache hit ratio under different placement schemes

 Object Placement and Caching Strategies on AN.P2P 189

Query Hops

3.5

3.7

3.9

4.1

4.3

4.5

4.7

0 60 120 240 480 960 1920 3840

Cache Size (MB)

H
op

s

cache scheme replicate scheme

Fig. 5. Query hops under different placement schemes

Moreover, figure 5 presents the average query hops under the two placement
schemes. In our simulation, the number of query hops is defined as the number of
peers passed until the query is resolved. In general, less query hops implies higher
searching efficiency and smaller query delay. The result shows that the replication
scheme outperforms the caching scheme, because the former can achieve much higher
replica reuse than the latter.

Because our simulation is based on the structured P2P network, the absolute
reduction of query hops may not be much significant. However, if applying the
AN.P2P to unstructured P2P networks, such as Gnutella, the reduction of searching
size would be much more considerable.

Figure 6 presents the reduction of direct distance under the two placement schemes.
We define the direct distance as the geographic distance between the requesting peer
and the target peer. The curves within the figure represent the reduction ratio of direct
distance after applying a placement scheme, compared to no scheme applied. The
figure shows that the replication scheme can reduce the average distance by 10% with
the increase of cache size. However, the caching scheme only achieves insignificant
improvement (less than 2%). The result suggests that under the replication scheme,
requesting peers are more likely to retrieve contents from nearby peers.

Figure 7 presents the retrieval latency under the two placement schemes. Figure
7(a) shows that the replication scheme achieves much lower overall retrieval latency
than the caching scheme, while figure 7(b) gives the detailed computation and
transmission latencies.

Direct Distance Reduction

0

0.02

0.04

0.06

0.08

0.1

0.12

0 60 120 240 480 960 1920 3840

Cache Size (MB)

dD
is

t R
ed

uc
tio

n

cache scheme

replicate scheme

Fig. 6. Distance reduction under different placement schemes

190 S. Mu et al.

Fig. 7. Delays under different placement schemes

6 Related Work

There have been many P2P file sharing systems in use or under development. Early
systems are based on either the central index server such as Napster [16], or the
unstructured substrate such as Gnutella [6] and KaZaA [11]. These systems were
primarily intended for the large-scale of data files; while persistence and reliable
content location were not guaranteed or necessary in those environments.

Many later researchers proposed other systems built upon key-based routing
(KBR) overlays. Typical examples are the PAST [17] and CFS [5]. They both aimed
to provide a large-scale peer-to-peer persistent storage utility, based on Pastry [18]
and Chord [22] respectively. In particular, the CFS storage is block-oriented. Each
block is stored on multiple nodes with adjacent Chord node ids and popular blocks
can be cached at additional nodes. Though the block based file structure causes
additional overhead as each file data and metadata block must be located using a
separate Chord lookup, CFS allows fine-grained block storage and permits parallel
block retrievals, which benefits large files.

Based on the fundamental P2P file sharing systems above, recent researchers have
proposed many augmented application and studies, including the Top-K replication,
Squirrel web cache, replica enumeration, and LAR. Top-K [14] and Squirrel [10] are
two similar systems. They targeted to implement the peer-to-peer based community
storage. The key idea was to enable the end user to share their local caches, to form an
efficient and scalable P2P file sharing systems. In particular, the Squirrel aimed to
cache the Web objects, while the Top-K focused on the storage of large media files.
Moreover, Kangasharju also provided their in-depth study on fundamental issues of
Top-K replication and file replacement in the P2P community.

Waldvogel [23] designed a replica enumeration method, which allowed for
controlled replication. The possibility of enumerating and addressing individual
replicas allows dynamic updates as well as superior performance without burdening
the network with state information, yet taking advantage of locality information when
available.

Gopalakrishnan [8] proposed the LAR, a system neutral replication protocol. It
aimed to maintain low access latencies and good load balance even under highly
skewed demand. Instead of creating replicas on all nodes on a source-destination path,
LAR relied on server load measurement to choose the replication points precisely. In

 Object Placement and Caching Strategies on AN.P2P 191

addition, LAR augmented the routing process with lightweight “hints” that effectively
shortcut the original routing and direct queries towards new replicas. However, LAR
did not address the server joining and leaving problems. Hence, the effect of the
network structure change on the LAR performance is not clear yet.

7 Conclusion

The work of this paper was to improve the overall performance of AN.P2P through
dedicated content placement schemes and caching strategies. Our simulation results
based on an emulated P2P based DRM system suggests that the proposed methods
could help to achieve higher overall performance. In particular, the replication scheme
could effectively place the object replica onto peers within a structured network. Our
performance evaluation was restricted on structured P2P network. A thorough
evaluation on both structured and unstructured P2P networks can help to infer
complete understanding on various strategies. Moreover, our simulation was based on
synthetic workload. We are looking forward to deploying the AN.P2P onto real P2P
networks, which could help us study the Application Networking mechanism in more
details.

References

1. Altnet. [online]. http://www.altnet.com
2. L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, “Web Caching and Zipf-like

Distributions: Evidence and Implications”, Proceedings of INFOCOM, 1999.
3. M. E. Crovella, A. Bestavros, “Self-Similarity in World Wide Web Traffic: Evidence and

Possible Causes”, Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems, 1996.

4. Composite Capabilities/Preferences Profile . http://www.w3.org/Mobile/CCPP.
5. F. Dabek, , M. F. Kaashoek, D. Karger, “Wide-area Cooperative Storage with CFS”,

Proceedings of Symposium of Operation System Principles, 2001.
6. Gnutella, http://www.gnutella.com
7. G. McGraw, E.W. Felten, “Securing Java: Getting Down to Business with Mobile code”,

Wiley, 1999.
8. V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, P. Kelenher, “Adaptive Replication in

Peer-to-Peer Systems”, Proceedings of 24th Inter. Conf. on Distributed Computing
System, 2004.

9. T. Iwata, T. Abe, K. Ueda, H. Sunaga, “A DRM System Suitable for P2P Content Delivery
and the Study on its Implementation”, Proceeding of the 9th Asia-Pacific Conf. on Comm.,
Vol.2, 21-24, pp.806-811, 2003.

10. S. Iyer, A. Rowstron, P. Drusche, “Squirrel: A Decentralized Peer-to-peer Web Cache”,
Proceedings of the 21st ACM Symposium on Principles of Distributed Computing, July
2002.

11. KaZaA, http://www.kazaa.com
12. W. Ku, C-H. Chi, “Survey on the technological aspects of Digital Rights Management”,

Proceedings of the 7th Information Security Conference, 2004.

192 S. Mu et al.

13. T. Kalker, D. Epema, P. Hartel, I. Lagendijk, M. v. Steen, “Music2Share – Copyright-
compliant Music Sharing in P2P Systems”, Proceedings of the IEEE, vol.92(6):961-970,
June 2004.

14. J. Kangasharju, K. W. Ross, D. A. Turner, “Adaptive Content Management in Structured
P2P Communities”, Proceedings of 21st ACM Symposium on Principles of Distributed
Computing, 2002.

15. J. Li, M. Yarvis, P. Reiher, “Securing distributed adaptation”, Proceeding of Computer
Networks, Vol. 38, pp. 347-371, 2002.

16. Napster. http://www.napster.com.
17. A. Rowstron, P. Druschel, “Storage Management and Caching in PAST, a Large-scale,

Persistent Peer-to-peer Storage Utility”, Proceedings of ACM Symposium on Operating
Systems Principles, Nov. 2001.

18. A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized Object Location and Routing
for Large-scale Peer-to-peer Systems”, Proceedings of the 18th IFIP/ACM International
Conference of Distributed Systems Platforms, Nov. 2001.

19. A. D. Rubin, E.E. Greer, “Mobile Code Security”, IEEE Internet Computing, Nov. 1998.
20. M. Su, C-H. Chi, “Architecture and Performance of Application Networking for Pervasive

Content Delivery”, Proceedings of 21st International Conference on Data Engineering,
Tokyo, 2005.

21. M. Su, C-H. Chi, “Application Networking on Peer-to-peer Networks”, Proceedings of the
14th International World Wide Web Conference, Japan, 2005.

22. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications”, Proceedings of the 2001 ACM
SIGCOMM Conference, 2001.

23. M. Waldvogel, P. Hurley, D. Bauer, “Dynamic Replica Management in Distributed Hash
Tables”, IBM Research Report, July 2003.

Role-Based Peer-to-Peer Model: Capture Global
Pseudonymity for Privacy Protection

Zude Li, Guoqiang Zhan, and Xiaojun Ye

Institute of Information System and Engineering,
School of Software, Tsinghua University, Beijing, China. 100084

{li-zd04, zhan-gq03}@mails.tsinghua.edu.cn, yexj@mail.tsinghua.edu.cn

Abstract. Peer-to-peer (P2P) resource dissemination has raised some
security concerns for privacy protection and intellectual property rights
protection along resource dissemination over the network. To solve these
challenges, we propose the Role-Based P2P model, in which the role
notion is functioned as the bridge component between users and re-
sources to enforce secure resource dissemination together with relative
constraints. The property rights attached to resource and user’s private
identity information are both protected as promise by taking each local
role as a permission set in local centralized network and each global role
as a user’s pseudonym in global decentralized network. Furthermore, we
propose the access control algorithm to describe how to handle access
requests by the role policy in the role-based hybrid P2P model. In ad-
dition, we illustrate the intra and inter access schemas as two kinds of
access processes. The model is feasible as its role structure and the con-
nection with user and resource in open environment are consistent with
the application objectives. The model is extensible, as the role structure
can be also available for Purpose-Based Privacy Protection technologies.

Keywords: Peer-to-Peer, Privacy Protection, Role, Pseudonymity.

1 Introduction

The notion of peer -to-peer (P2P) refers to a class of systems and applications
that employ distributed resources to perform a critical function in a decentralized
manner [8]. Currently the growth of availability of powerful networked computers
and decentralizing trends of large-scale software development are to form the
perfect playground for P2P research and product development [21], which result
in many namable systems and applications, such as FreeNet [3], Napster1, PAST
[9], Gnutella2, Seti@Home3, etc. Since there is no general agreement about what
is and what is not P2P [17], here we only extract some striking features to
describe its general meaning as follows: (1) Sharing of digital resources by direct

1 Napster system introduction, www.napster.com
2 Gnutella. The Gnutella web site: http://gnutella.wego.com
3 The seti@home project web site. http://setiathome.ssl.berkeley.edu

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 193–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

194 Z. Li, G. Zhan, and X. Ye

exchange; (2) Fault-tolerant (variable connectivity and transmission) and self-
organizing [10, 14, 17]; (3) Decentralized computing with independent addressing
system on operational computers.The advantages of P2P systems are obvious,
cost sharing/reduction, improved scalability/reliability, resource aggregation and
interoperability, increased autonomy and anonymity (a privacy feature [20]) [8].

Resource dissemination is an important P2P application category on the net-
work, which allows personal computers to function in a coordinated manner as
a distributed storage medium by contributing, searching, and obtaining digital
resource [17, 22]. However, it also raises some security concerns for privacy pro-
tection, intellectual property rights protection along resource dissemination in
P2P environment. For example, in some applications, different users in the P2P
network may need different identity control policies when they try to access dif-
ferent resources, which can be exactly expressed by access control models. But
whether or how to enforce access control mechanisms on P2P network is still
an open problem [4], as many P2P systems just focus on enough information
sharing but not authentication and authorization on resource dissemination.

We argue that a feasible access control policy or mechanism is indispens-
able for property rights protection in generic hybrid P2P resource dissemination
applications [22, 17]. In addition, privacy protection on user attracts more and
more human attention. In generic P2P applications, a troubling contradiction is
that the user’s identity should be hid as user’s private information in a resource
dissemination transaction while it is needed to be known by another user for
the trust relationship establishment between two sides, which is a critical factor
for successful resource dissemination beside property rights allowance. The user
pseudonymity is a requirement for privacy protection [5, 1, 20, 2], which should
refer to that user’s identity should be hid in the access transaction to the system.
Further, the relative user’s behaviors should also be protected as the unobserv-
ability requirement for privacy protection [20, 2].

With advantages of neutral-policy, self-organization, and ease administration,
Role-Based Access Control (RBAC) forms to a popular access control policy
deployed in a large number of applications for secure resource access [18, 7]. The
role notion in RBAC application is a system entity as the bridge of privilege
management and information flow between user and resource. So we introduce
it into generic P2P modelling for effective control on resource dissemination for
property rights protection, as well as privacy protection through its pseudonym
function in global decentralized P2P environment.

We propose the Role-Based P2P model to capture all of the above require-
ments (access control, property rights protection, privacy protection on user’s
identity and behaviors) in hybrid resource dissemination P2P applications, which
is the main contribution of the paper. The model can be used for integrating sev-
eral centralized RBAC applications to be a decentralized hybrid P2P system by
taking global role as the connection among diverse (local) role structures. At the
same time, global role can be seen as user’s pseudonym over the global network
that is consistent with the pseudonymity requirement of privacy protection on
user’s identity. In each local environment, the initial role hierarchies, user-role

Role-Based Peer-to-Peer Model 195

assignment, and role-permission assignment relations are maintained without
change, while the local access decision module can collaborate with others to
provide more resource sharing and dissemination opportunities.

The rest of this paper is organized as follows: Section 2 identifies the hybrid
P2P model based on the taxonomy of P2P, the security challenges and the re-
quirement for role policies and relative constraints in RBAC. Section 3 focuses
on the role-based hybrid P2P integrating hybrid P2P model with RBAC mech-
anism. Finally, Section 4 gives a short conclusion of the whole paper.

2 Preliminaries

As proposed in the literature [17], we can classify P2P model into two categories:
pure P2P and hybrid P2P model.

– Pure P2P refers to a completely decentralized P2P system, in which all nodes
are fully equivalent in terms of functionality and tasks they perform. The
Gnutella system is a typical pure P2P application instance;

– Hybrid P2P refers to a P2P system with limited nonequivalent nodes, such as
super nodes, host peers), etc., which are designed as local reference monitors.
Napster, seti@Home and Kazaa4 are typical instances.

The essential difference between pure and hybrid P2P is the degree of central-
ization. In fact, there are three classifications for the centralization difference:
fully (globally) centralized, partially (locally) centralized, non-centralized (com-
pletely decentralized). The first one refers to non-P2P systems, such as general
RBAC systems, which is not in the scope of this paper, but the second refers
to hybrid P2P and the third refers to pure P2P. In general, a hybrid P2P has
more advantages than a pure one, such as its better flexibility, and effective
resource dissemination among peers with respect to access control and privacy
protection. And especially, all requirements and security mechanisms for the
pure model should be described and specified for the hybrid one. So we take the
hybrid P2P model as the generic base for convenient discussion in this paper.

As the hybrid P2P model definition described, there are some limited
nonequivalent peers in hybrid P2P applications. So in our hybrid P2P model, we
classify peers into three types according to their different privileges and domains:
host peer, user peer and resource peer.

– Host peer refers to a local supernode with a control domain similar to a
central server-side reference monitor of RBAC application, including user
authentication, user-role assignment based on role’s predefined permissions
(later discussed more), active paths of resource dissemination, etc.;

– User peer refers to a user end-point, such as client-side automatic access
requesting software, or explore-frame operation set, which presents the cor-
responding a user’s identity and status when it is activated;

4 Kazaa. The Kazaa web site. http://www. kazaa.com

196 Z. Li, G. Zhan, and X. Ye

H1

U1

H4H3

H2

U5U4

U2 U3

R1

R3

R2

 - Host Peer

- Resource Peer

- User Peer

Note:

Fig. 1. The topology of a hybrid P2P model with four intra-P2P networks

– Resource peer refers to a storage warehouse in end-point storage medium to
store digital resource for P2P dissemination applications.

It should be noted that user peer and resource peer can be integrated together
in one end-point, which can both store and disseminate resource to other peers
as well as access to resource in others.

A typical hybrid P2P network topology is demonstrated in Fig.1. It is obvious
that there are different relations between user and resource, or among users in
the hybrid P2P application. In some narrow domains consisting of several peers,
users may be familiar with each other, including the name, role, habit, and
behavior in the system. So user’s identity is unnecessary to be hid in such a
narrow environment. But users may require the system to protect (hide) their
identities during the resource dissemination transaction with others out of the
local environment. To distinguish the above different requirements while keep the
role mechanism still feasible for such a complicated hybrid P2P application, we
firstly identify two basic networks induced by the hybrid P2P model topology
as the base for the solution, and then take local and global role structures to
handle the difference, where the detail is discussed in the next section.

Definition 1 (inter-P2P network). An inter-P2P network (also named host
peer network) refers to a subnetwork of the whole P2P topology consisting of all
active host peers and their connections.

We define that a peer is active if it is on-line on the current time point. An active
host peer takes the function of a reference monitor over the access requests to
the outer resource from inner users and the requests to the inner resource from
outer users. The inter -P2P network is a full complete graph, since there is always
a connection edge(path) that have been existed or can be existed between any
two active host peers.

Definition 2 (intra-P2P network). An intra-P2P network (also named local
centralized network) is a subnetwork of a hybrid P2P topology consisting of one
active host peer, several user and resource peers that connect to the host peer.

Role-Based Peer-to-Peer Model 197

The intra-P2P network represents a narrow control domain which is indepen-
dent from the outer peers. In such a domain, inner resource can be accessed
and disseminated to inner users through the authentication and authorization
mechanism on the host peer, which is worked as a local reference monitor in this
domain. In general, we just define just one monitor in an intra-P2P network (it
is helpful for control consistency). Overall, the network is similar to a centralized
access control topology.

In any hybrid P2P network model, there is one and only one induced inter -
P2P network, but several induced intra-P2P networks. As in Fig.1, there are
four intra-P2P networks in the model (marked by four circles). In such a hybrid
P2P model, it is obvious that any two host peers connect mutually in the inter -
P2P network, and any user/resource peer connects with an active host peer in
at least one local intra-P2P network.

To capture the different requirements above, the role mechanism is indispens-
able to a successful hybrid P2P resource dissemination application. There are
several reasons supporting this view.

– Role is semantic constraint integration expressing a set of permissions, which
can used for appropriate digital rights protection along resource dissemina-
tion over network;

– Role mechanism can be extended for user identity and behavior information
protection. Since an active role is a de facto user’s pseudonym in application,
the user identity need not be disclosed and the behaviors also cannot map
to the identity.

In short, the extended role mechanism is indispensable for a privacy-preserving
hybrid P2P application. Before the elaborate solution on their integration, we
first introduce the general RBAC model that contains role mechanism as the
“bridge” function between users and permissions.

RBAC is a centralized policy by taking a reference monitor (with server func-
tion) to control all subjects’ requests for resource, which is concerned more with
access to functions and information than strictly with access to information in
many applications [18, 7]. Role in RBAC is a bridge of information flow and
permission management between subject and object. Core concepts of the gen-
eral RBAC model include roles (and its hierarchy structure), users, permissions,
user-role assignments, role-permission assignments, static/dynamic separation of
duty (SSD/DSD) [6, 7].

RBAC is preferred within limited centralized control domain, and it is impos-
sible to efficiently handle access requests from a large number of users within
decentralized environment only by itself [11].

In our P2P modelling process, we should utilize RBAC’s advantages, such
as high efficiency for narrow centralized access control decision, while avoid its
disadvantages including low performance for large-scale decentralized control.

To achieve the goal in a hybrid P2P model, we design the local and global role
mechanisms for resource access decision in intra-P2P network and inter -P2P
network, respectively. In intra-P2P environment, the role structure, user-role
assignment, and role-permission assignment are maintained similar to general

198 Z. Li, G. Zhan, and X. Ye

RBAC application. While in the inter -P2P environment, we take global role
as a conversion balance among these roles in different local networks. Such a
mechanism is contained in our proposed Role-Based hybrid P2P model.

3 Secure Role-Based Hybrid P2P Model

The above hybrid P2P model is just a framework abstracting generic P2P ap-
plications. Based on it, we define the Role-Based Hybrid P2P model to achieve
the objectives proposed above, including digital rights protection through au-
thorization and authentication, user’s identity and behavior protection.

It uses the local role mechanism and the relative constraints in the local intra-
P2P environment to build the quasi-RBAC reference monitor in the host peer
domain, while it creates a global role structure to balance the access permission
conversion among different local networks.

– It is an extended hybrid P2P model that can be available for most compre-
hensive resource dissemination applications;

– It is a dual-technology model providing maximal resource dissemination un-
der an appropriate access control mechanism;

– It is a privacy-aware model, in which the pseudonymity feature is satisfied as
user’s identity is replaced by relative global roles, while the unobservability
feature is also achieved as user’s behaviors cannot map to user itself. Further,
with this model, some other privacy protection techniques can be formed
directly, such as Purpose-Based Access Control (PBAC) [12, 13].

H1U1

R1

H2 U2

R2

r'1

r'2
r''1

r''2

g1

g2

L1 L2

Fig. 2. A simple Role-Based Hybrid P2P model application

Fig.2 illustrates an application with the model. Node H1 (or H2), R1 (or R2),
and U1 (or U2) refer to the host peer, resource peer, and user peer in intra-P2P
network L1 (or L2). The role structures in L1 and L2 are different, such as r′1
and r′2 in the former structure and r′′1 and r′′2 in the latter one. In L1 (or L2),
U1 (or U2) can successfully access to resources in R1 (or R2) through activating

Role-Based Peer-to-Peer Model 199

an appropriate role satisfying relative constraints in H1 (or H2). For accessing
to resource out of the local environment, as the model defined, we set several
global roles to balance the access permission conversion between the two role
structures. For instance, we take g1 as the conversion between r′1 and r′′2 , and
g2 between r′2 and r′′2 . It means if a user in L1 can activate r′1 (or r′2), he/she
can also activate r′′1 (or r′′2) in L2 and successfully access to some resources in
R2 that can be accessed by local users who can activate r′′1 (or r′′2). Users in L2
can do similarly. Overall, with the model, resource dissemination and sharing
have been extended obviously while the relative digital rights protection and
user identity protection are handled appropriately.

To specify the elaborate access control mechanism with role structure and
some relations on the abstract hybrid model, we should firstly clarify the local
and global notions for user, resource and role identification in various situations:

– A user is a local user within his/her belonged intra-P2P network, but is iden-
tified as a global one by peers in other indirect connected intra-P2P networks;
– A resource is a local resource within the intra-P2P network, but is identified
as a global one by peers in other indirect connected intra-P2P networks;
– A local role refers to a role defined in a local centralized host peer as the bridge
between local user and local resource, but a global role refers to a role as permis-
sion or function connection way of role hierarchy structure among host peers,
which is activated automatically when a user accesses a resource dominated in
different intra-P2P networks.

A global roles should be equivalent on access rights with a corresponding local
role. For the whole P2P application with this model, the unique global admin-
istration task is to define global roles and their comparable relations with local
roles in all intra-P2P networks. How to accomplish this work will be discussed
later. Further, we describe the access trace from user to the resource by an active
path defined as follows.

Definition 3 (Active Path). An active path, denoted as <ActiveHostPeerID,
ActiveResourcePeerID, ResourceID>, is a dissemination channel which is avail-
able for resource dissemination from an active resource peer to an active user
peer in the current P2P network status, where AcitiveHostPeerID, AcitiveRe-
sourcePeerID, ResourceID denotes the identity of an active host peer, an active
resource peer, and a special resource respectively.

The preconditions for a resource can be disseminated to a user is that existing
an active path towards the resource, and secondly, the user should be powerful
(with enough rights) to access that resource, or in another word, the user can
activate a role of appropriate permissions to do it. Now we define elements in
our model formally.

– Resource(Re)={<ResourceID>}, which is dominated in the user peer side
to list all resources (both local and global) in the network;

– Resource-RoleSet(RR)={<ResourceID,RoleSet>}. It is dominated in the re-
source peer side to list qualified local/ global roles for access corresponding
resources inside;

200 Z. Li, G. Zhan, and X. Ye

– Resource-HostPeer(RHP)={<ResourceIDHostPeerIDSet>}, which is domi-
nated in the host peer side to list which local/global resource that is possessed
in which a local centralized environment represented by its unique host peer;

– Resource-ResourcePeer(RRP)={<ResourceID,ResourcePeerID>}, which is
dominated in the host peer side to list which local resource is possessed in
which local resource peers;

– User-Role(UR)={<UserID,LocalRole,GlobalRole>}, which is dominated in
the host peer side to list which local roles and their equivalent global roles
can be acquired by a user;

– Role-Hierarchy(RH)={<Role,Role>}, which denotes the role hierarchy
structure in P2P resource dissemination applications. < Ri, Rj > ∈ RH
(i �= j), (Ri ≥ Rj), which indicates permissions of Rj are all contained
in Ri.

– Static-Separation-of-Duty(SSD)={<Role,Role>}, which denotes mutual ex-
clusive roles that cannot be possessed by same roles. < Ri, Rj > ∈ SSD
(i �=j), indicates Ri and Rj cannot be possessed by a role.

We can specify the relative RBAC security constraints by the above UR,
RH and SSD within P2P network peers, and the expressive capability by our
specification is equivalent to the original constraints in general RBAC models.
We describe the security constraints within the above formula as follows:

Constraint 1. ∀ < u, ri >, < u, rj > ∈ UR5, < ri, rj > �∈ SSD.

Constraint 2. < ri, rj > ∈ SSD, < rj , rk > ∈ RH ⇒ < ri, rk > ∈ SSD.

Constraint 3. ∀ < u, ri >, < u, rj > ∈ UR, < ri, rj > �∈ RH.

Constraint 4. For roles activated by users to access to resource peers should
be listed in UR.

Access Control Algorithm Running the Model. Now we propose the access
control algorithm to describe the detail resource dissemination mechanism in
the Role-Based Hybrid P2P model for general access control, property rights
protection, and the user’s pseudonym feature as follows:

1. A user peer submits request to direct-connected host peers for resource denoted
by resourceID listed in Re;

2. A host peer receives the request and may do the following steps:
(a) acquires the corresponding local role set and its equivalent global role set for

this user from UR;
(b) acquires the corresponding host peer set from RHP and judges whether the

current host peer is contained in the set;
– if the current host peer is in the set,

• if the corresponding resource peer with respect to the resource in RRP
is active, then returns the local role and the active path (the active
resource peer) to the user peer;

5 Here ri, rj are local or global roles.

Role-Based Peer-to-Peer Model 201

• or refuses the user’s request by returning null and reporting that there
are no active resource peers containing the resource;

– or, broadcasts the resourceID into other host peers in the set and
• if existing an active host peer which is in the set and the resource is

listed in RRP, then
∗ if the corresponding resource peer with respect to the resource in

RRP is active, then returns the local and the corresponding global
role, and the active path (the active host and the resource peer) to
the user peer;

∗ or, refuses the user’s request by returning null and reporting that
there are no active resource peers containing the resource.

• or, refuses the user’s request by returning null and reporting that there
are no active host peers in the set available.

3. The user may do the following step according to the result from host peers:
– if the result is the active path of the needed resource, then builds the connection

according to the active path and activates a proper role (local role for local
resource peer or global role for global resource peer) to send the access request
to the active resource peer.

• if the role is in the role set listed in RR in the resource peer with respect
to the resource, the resource peer directly disseminates the resource to the
user.

• or, the resource peer refuses the request and reports the role’s inability
property to the user peer.

– or, terminates the access process.

Through the algorithm, we can get two schemas of resource access process,
the first is the access policy in an intra-P2P network, or called the intra schema,
and the second is the access to resource among indirect connected intra-P2P
networks, or called the inter schema.

Intra Schema. This schema is the simple one, where resource dissemination is
limited in an intra-P2P network with local roles (without global roles). In Fig.3I ,
user peer U1 wants to require resource r1, we can demonstrate the process within

H1

U1
R1

1

2

1-

2-

U1
ResourceID--r1

LRole, ActivePath
H1

U1
LRole, ActivePath

Rosource
R1

H1

U1 R3

1

2

H31+

1-

2-

U1
ResourceID--r3

GRole, ActivePath
H1

U1
GRole, ActivePath

Rosource
R3

ResourceID--r3

 ActivePath
H3

I II

Fig. 3. I : the intra schema; II : the inter schema

202 Z. Li, G. Zhan, and X. Ye

this schema as follows: (1) U1 sends the resource identity denoted by r1 to the
direct-connected active host peer H1; (2) H1 returns an active local role properly
and an active path towards the resource peer R1 containing r1; (3) U1 builds a
connection to R1 for r1 dissemination; (4) R1 directly sends r1 to U1.

Inter Schema. This schema is the complex one, where resource dissemination
is propagated to global network with both local and global roles. In Fig.3II , user
peer U1 wants to require resource r3, we can demonstrate the process within
this schema as follows: (1) U1 sends the resource identity denoted by r3 to the
direct-connected active host peer H1; (2) H1 sends r3 to any active host peers;
(3) the host peer H3 returns H1 an active path towards to the resource peer R3
containing r3; (4) H1 retransmits it with an active global role properly to U1;
(5) U1 builds a connection to R3 for r3 dissemination by the global role; (6) R3
directly sends r3 to U1.

Case Study 1 : Distributed Dissemination Control (DCON). DCON
means that the distributor or rights holder can control recipients’ access to the
digital information [11], In another word, it is a security policy of controlling
digital resource access before and after distribution [15, 16]. Through Internet,
DCON can be applied as large as possible by taking local networks as intra-
P2P networks and taking routers as host peers in P2P resource dissemination
application model with RBAC policy. The special constraints in the real ap-
plication, which should be implemented in P2P system, include: (1) different
resources need different restriction levels for intellectual property rights protec-
tion, which can be expressed by role (with its hierarchy structure) mechanism;
(2) it is allowed that customers in the DCON application are anonymous, which
can be implemented by special technics on user peer identity in the P2P system;
(3) resource property right should be materialized by users’ some contributions
such as money, contracts or other payments, which is implemented by a special
e-payment system dominated in host peers. In conclusion, a DCON application
can be modelled by a hybrid P2P network model with a special RBAC policy.

Case Study 2 : Audio/Video (AV) Supply Application. Building a dis-
tributed AV supply application on P2P network requires that, (1) different AV
agents should acquire and process different kinds of AV products; (2) different
AV products can be stored in different databases or computers in different re-
gions; (3) AV centers do not need to support the service 24 hours for 7 days a
week; (4) different databases or AV agents can open or close the service freely.
So the active statues of these centers, agents, and databases should be monitored
dynamically for successful resource dissemination. We can easily use our hybrid
P2P model with a special RBAC policy to express and specify this application
practice. In our model, we define that, a host peer denotes a local AV supply
center, a user peer denotes an AV agent and a resource peer denotes an AV
supply database, a resource is an AV product and a user is a customer or a
sub-AV center principal. It is reasonable in reality that an AV agent contains
some AV products, which is also mapped to the coexistence of a host peer or a
user peer and some resource. From the above mapping specification, we can infer

Role-Based Peer-to-Peer Model 203

that the detail access process in this AV resource dissemination application can
be simulated by the access control algorithm in our model.

Administration. The administration of our hybrid P2P model with RBAC
policy mainly should dominate in host peers to manage all access control deci-
sions and active status modification, since host peers contains the RBAC policy
management to handle all requests from users and to be the access bridge for re-
source dissemination from resource peers to user peers. For administrating host
peers in our model, we propose that it be preferred to set a central adminis-
trator (a software of automatization capability preferred) to manage the whole
P2P system’s work. It is feasible and effective since there is only one induced
inter -P2P network in every P2P network model, where access elements in every
host peer and transmission connections among them can be monitored efficiently
by a central administrator. The corresponding tasks are: (1) automatically main-
tains Re list in user peer side, and makes sure that resourceIDs listed in Re can
cover all existed or newly emerged resource identities; (2) automatically main-
tains RR list in resource peer side according to role setting and local resource
status changes; (3) automatically maintains RHP, RRP in host peer side dy-
namically, and makes sure the active path can be built successfully according to
the current P2P network status; (4) automatically maintains UR, RH, SSD in
host peer side, and makes sure constraints for RBAC policy can be effective in
time. Further, the dynamical status of P2P network should be monitored in real
time. Any interaction can arise the modification of the whole P2P network.

4 Conclusion

This paper propose a hybrid P2P model with RBAC policy and constraints to
effectively manage resource dissemination within the hybrid P2P environment.
The access control algorithm provided describes how to handle access requests by
RBAC policy and constraints within P2P network environment. The two access
schemas (intra and inter) are to express the algorithm in detail. We propose
the item active path for a role activated by a user to access to a resource by
satisfying RBAC constraints on role cardinality, role hierarchy, static separation
of duty. The advantages of our model include flexibility, scalability, and security.

In the above, we give the way of building a hybrid P2P model with RBAC
policy and a novel access control algorithm to guide the real resource dissemi-
nation application on P2P network. The administration part proposed briefly in
the end of the paper describes the functions of an excellent administrator, which
should be specified in more detail in the following P2P modeling research.

References

1. Anna Lysyanskaya and Ronald L.Rivest and etc.: Pseudonym Systems, the-
ory.lcs.mit.edu/ rivest/ LysyanskayaRivestSahaiWolf-PseudonymSystems.pdf

2. Anonymity, Unlinkability, Unovervability, Pseudonymity and Identity
Management–A Consolidated Proposal for Terminology, Http://dud.inf.
tu-dresden.de/

204 Z. Li, G. Zhan, and X. Ye

3. Clarke,I. et al.: Protecting Free Expression Online with Freenet. IEEE Internet
Computing 6(1). January-February. (2002) 40-49

4. Daswani, N., Garcia-Molina, H., Yang, B.: Open Problems in Data-Sharing Peer-
to-Peer Systems. In Proceedings of the 9th International Conference on Database
Theory. Siena, Italy. (2003)

5. Daniel Cvrček and Václav Matyáš Jr.: Pseudonymity in The Light of Evidence-
Based Trust, Twelfth International Workshop on Security Protocols, In Authentic
Privacy, Berlin, DE, Springer, 109-116 (2002)

6. David Ferraiolo and Richard Kuhn: Role-Based Access Controls. Proceedings of
the 15th National Computer Security Conference Vol. II. (1992) 554-563

7. David. Ferraiolo, Rsvi Sandhu, Serban Gavrila, D. Richard Kuhn and Ramaswamy
Chandramouli: Proposed NIST Standard for Role-Based AccessControl, ACM
Transactions on Information and System Security, Vol.4, No.3, (2001) 224-274

8. Dejan S. Milojicic, Vana Kalogeraki, and Rajan Lukose, er al. : Peer-to-peer Com-
puting. HP Laboratories, HPL-2002-57, March 8th (2002)

9. Druschel P., Rowstorn, A.: PAST: A Large-Scale, Persistent Peer-to-Peer Storage
Utility, HotOS VIII, Schloss Elmau, Germany, May (2001)

10. Graham, R.L.: Traditional and Non-Traditional Applications. Peer-to-Peer Net-
works. Lecture. http://www.ida.liu.se/ TDTS43/tdts43-10-peer-topeer.pdf. (2001)

11. Jaehong Park, Ravi Sandhu and James Schifalacqua: Security Architectures for
Controlled Digital Information Dissemination. IEEE. (2000)

12. Ji-won Byun, Elisa Bertino and Ninghui Li: Purpose-Based Access Control Of
Complex Data For Privacy Protection, SACMAT’05, Sweden, Jun, (2005)

13. Ji-won Byun, Elisa Bertino and Ninghui Li: Purpose-Based Access Control For
Privacy Protection In Rrelational Database Systems, Technical Report 2004-52,
Purdue University, (2004)

14. Peer-to-Peer Working Group. http://www.p2pwg.org. (2001)
15. Roshan K.Thomas and Ravi Sandhu: Towards Multi-dimensional Characterization

of Dissemination Control, Proceedings of the 5th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY’04), (2004)

16. Renato Lannella and Peter Higgs: Driving Content Management with Digital
Rights Management, IPR systems whitepaper series, (2003)

17. Stephanos, Dreoutsellis Theotokis, and Diomidis Spinellis: A Survey of Peer-to-
Peer Content Distributioon technologies. ACM Computing Survey, Vol.36, No.4,
December (2004) 335-371

18. Ravi Sandhu, et al.: Role-based Access Control Models, IEEE Computer, Vol.29,
No.2, (1996) 38-47

19. Serban I. Gavrila and John F.Barkley: Formal Sepcification for Role Based Access
Control User/Role and Role/Role Relationship Management. 3rd ACM Workshop
on Role-Based Access Fairfax VA, (1998) 81-91

20. The Common Criteria Project Sponsoring Organisations: Common Criteria for
Information Technology Security Evaluation, part 2, draft version 3 and version
2.1-2.3, August, (2005)

21. Todd Sundsted: A New-Fangled Name, but An Old and Useful Approach to Com-
puting Level: Introductory. http://www-128.ibm.com/developerworks/library/
j-p2p/index.html. (2001)

22. Yu Zhang, Xianxian Li, et al.: Access Control in Peer-to-Peer Collaborative Sys-
tems. Distributed Computing Systems Workshops, 25th IEEE International Con-
ference June (2005) 835-840

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 205 – 216, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Reputation Management Scheme Based on Global
Trust Model for Peer-to-Peer Virtual Communities*

Jingtao Li, Xueping Wang, Bing Liu, Qian Wang, and Gendu Zhang

School of Information Science & Engineering, Fudan University, Shanghai, 200433, China
{lijt, wangxp}@fudan.edu.cn

Abstract. Peer-to-peer virtual communities are often established dynamically
with peers that are unrelated and unknown to each other. Peers have to manage
the risk involved with the transactions without prior knowledge about each
other's reputation. SimiTrust, a reputation management scheme, is proposed for
P2P virtual communities. A unique global trust value, computed by aggregating
similarity-weighted recommendations of the peers who have interacted with
him and reflecting the degree that the community as a whole trusts a peer, is as-
signed to each peer in the community. Different from previous global-trust
based schemes, SimiTrust does not need any pre-trusted peers to ensure algo-
rithm convergence and invalidates the assumption that the peers with high trust
value will give the honest recommendation. Theoretical analyses and experi-
ments show that the scheme is still robust under more general conditions where
malicious peers cooperate in an attempt to deliberately subvert the system, con-
verges more quickly and decreases the number of inauthentic files downloaded
more effectively than previous schemes.

1 Introduction

Inauthentic file attacks by anonymous malicious peers are common on today’s popu-
lar Peer-to-Peer (P2P) file-sharing communities. For example, malicious peer u pro-
vides a fake resource with the same name as the real resource peer v is looking for.
The actual file could be a Trojan Horse program or a virus like the well-known
VBS.Gnutella worm [3]. The recent measurement study of KaZaA [1] shows that
pollution is indeed pervasive in file sharing, with more than 50% of the copies of
many popular recent songs being polluted [2].

One way to address this uncertainty problem is to develop strategies for establish-
ing reputation systems that can assist peers in assessing the level of trust they should
place on the quality of resources they are receiving (e.g. [4, 7, 8, 9, 12]). Most exist-
ing reputation management systems require a central server for storing and dissemi-
nating the reputation information, and it does not accord with the open and distributed
nature of these P2P systems. So the very core of the reputation mechanism in a P2P
community is to build a distributed reputation management system that is efficient,
scalable, and secure in both trust computation and trust data storage and dissemina-
tion. The main challenge of building such a reputation mechanism is how to effec-

* This work is supported by the National Natural Science Foundation of China (No. 60373021).

206 J. Li et al.

tively cope with various malicious collectives of peers who know one another and
attempt to collectively subvert the system by providing fake or misleading ratings
about other peers [8, 9].

We present such a scheme, called SimiTrust (the degree a peer trusts another
peer’s recommendations depends on the similarity between these two peers in our
model), for reputation management in P2P virtual communities. The scheme includes
a mathematical model for quantifying the trustworthiness and a distributed algorithm
to implement the model over a structured P2P overlay network. The paper has a num-
ber of contributions. First, each peer i is assigned a unique trust value by aggregating
similarity-weighted recommendations of the peers in the community who has inter-
acted with peer i, and an iterative method is given to compute this trust value in our
model (section 3); Second, the SimiTrust algorithm is presented to implement the
iterative method in a decentralized way (section 4&5); Finally, A series of simulation-
based experiments show that the SimiTrust scheme is robust and efficient to cope
with various malicious collectives in Section 6.

2 Related Work

The reputation management systems can be classified into two major categories; those
based on micro-payment [7, 12] and those based on recommendation [4, 8, 9].

In the eBay Feedback System [4] which is a reputation system currently in use,
buyers and sellers can rate each other based on their past transactions with each other.
It can be regarded as a recommendation-based local trust model. We call it local trust
model in that a peer’s knowledge about the other peers’ trust value only depends on
the recommendations of a few peers (or a few neighbors of the peers) in the commu-
nity; that is, it only reflects the peer’s local view. Li Xiong [8] presents an elaborate
local trust model with five important parameters and a general trust metric combining
these parameters for evaluating the trustworthiness of a peer in a P2P community.

Sepandar D. Kamvar et al proposed the eigentrust [9] algorithm for P2P file-
sharing networks and ranked the eigentrust as a global trust model wherein each peer i
is assigned a unique global trust value that reflects the experiences of all peers in the
network with peer i. However, its basic assumption that the peers with high trust
value will give the honest recommendations is questionable. A threat model (threat
model DM in section 6.6) has been given to show that this assumption will not hold
under it [9]. We also argue that the pre-trusted peers (the few peers born with higher
trust value than the other peers, which are used to ensure the convergence of the ei-
gentrust algorithm) may not be available in all cases and we give a more general ap-
proach in this paper.

In our approach, each peer i uses the similarity of rating behavior between peer i
and peer j to weight the recommendations of peer j; That is, the more similar between
i and j, the higher credibility of j’s recommendations. The credibility of j’s recom-
mendation depends not only on the trust value of j, but also on the similarity between
i and j. Further more, we do not need any pre-trusted peers to ensure the convergence
of our algorithm. A series of simulation-based experiments show that our scheme is
still robust under more general conditions (even under threat model DM) and also

 A Reputation Management Scheme Based on Global Trust Model 207

converges more quickly and decreases the number of inauthentic file downloads more
effectively than the eigentrust.

3 The Trust Model

In this section, we present a general trust metric and describe the formulas which we
use to compute the trust value for each peer in a P2P virtual community. For the ab-
straction of the model, we do not consider the dynamics of the P2P system in this
section. The community consists of n peers and no peer joins or leaves. The dynamic
issues such as peer joining/leaving will be discussed in the following two sections
when we consider the distributed implementation of the trust model.

3.1 Problem Formulation

Each peer i rates another peer j with which it tries to make transactions by rating each
transaction as either positive or negative, depending on whether i was able to accom-
plish a transaction with j or not. The sum of the ratings of all of i's interactions with j
is called a local trust value Sij. Sij=Gij -Fij wherein Gij denotes the number of positive
transactions which i has made with j and Fij denotes the number of negative transac-
tions. For example, in a P2P file-sharing community, peer i set Gij =Gij+1, if i has
downloaded a file from j and the file is validated by i.

Definition 1. A normalized local trust value Lij is defined as follows:

=

j
ij

ij
ij

),(S

),(S
L

0max

0max
 . (1)

Lij is a real value between 0 and 1, and =
j

ijL 1. If
j

ij),(S 0max =0, we define

n
TL i

ij = where Ti is peer i’s global trust value which will be given in Definition 3.

We choose to normalize the local trust values in this manner because it ensures the
convergence of the iterative method for global trust value computation that we de-
scribe below. And any peer can not assign local trust value larger than 1 to another
peer to boost his trust value. For the same reason, we let Lii=0 for each peer i. Lij re-
flects the peer i’s local view on the credibility of the peer j with whom he has directly
interacted. And Lij is used as the recommendation of i in the rest of the paper. Our
goal is to get a global view of the whole system on the peer j by summarizing the
recommendations of j’s friends and by asking friends of friends.

One critical step in our model is to compute the similarity between rating opinions
of peers and then to weight the peers’ recommendations by that value. The basic idea
in similarity computation between the rating opinion of peer i and that of peer j is to
first define the rating opinion vector of a peer and then to apply a similarity computa-
tion technique to determine the similarity. There are a number of different ways to
compute the similarity between vectors [6]. Here we use such a method, called co-
sine-based similarity. The similarity between them is measured by computing the
cosine of the angle between these two vectors.

208 J. Li et al.

Definition 2. For any peer i and peer j, the similarity between peers i and j, denoted
by Cij, is given by

ji

ji
ij

BB

BB
C

⋅

∗
= , (2)

where " * " denotes the dot-product of the two vectors. Here Bi denotes the rating
opinion vector of peer i, defined as Bi= [Bi1, Bi2, ..., Bin] where Bik (k=1, ...,n) is the
rating opinion of peer i on peer k. Bik is defined as follows:

If i k, and Gik +Fik= 0, then Bik = 0;

if i k, and Gik +Fik > 0, then
()

() <+−

≥+
=

ikikikikik

ikikikikik

ik

FGFGF

FGFGG
B . (3)

For each peer i, we let Bii =1+ where is an arbitrarily small positive constant.

Definition 3. A global trust value vector, T = [T1, T2, ... , Tn]
T, is given by

∈
⋅⋅=

iUk
kkikii TCLT)(, (4)

where " T " denotes the transposition of a vector or a matrix and Ti denotes the unique
global trust value of peer i, which reflects a view of the community as a whole on
peer i and serves as peer i’s reputation score in the community. And Ui denotes the set
of those who have interacted with i and have recommended i, given by:

Ui = {j | peer j has interacted with peer i, and rated i by a recommendation, Lji };
The global trust value of peer i is the sum of the weighted recommendations of the

peers that have interacted with i in a single iteration. The recommendation of peer k
(Lki) is weighted by the similarity (Cki) between peer k and peer i, and weighted by the
global trust value of peer k (Tk). After several iterations (notice that the global trust
value of every peer k, k Ui, is also computed by (4)) of asking friends of friends by
using the above formula, Ti reflects a view of the entire community.

The credibility of the recommendations of a peer is different from that of the peer
itself, especially under some threat models (e.g. threat model DM in section 6.6). We
weight the recommendations of peer k by the similarity between k and i. That means,
when considering the credibility of the recommendations, a peer trusts more on the
peers whose rating opinions are similar to him rather than those with high global trust
values. Therefore the DM peers (in section 6.6) who act as normal peers in the com-
munity and try to increase malicious peers’ global trust value can not take effect when
our scheme is activated.

This can be written in matrix notation as

TRT T= , (5)

where R denotes a recommendation matrix. The element of the ith row and jth col-
umn of R, Rij, is given by

ijijij CLR ⋅= . (6)

 A Reputation Management Scheme Based on Global Trust Model 209

3.2 An Iterative Method for Global Trust Value Computation

We can easily derive an iterative method to get the solution of the linear equation (5):
)k(1)(k TRT T ⋅=+ . (7)

We will prove the convergence of the iterative method given in (7) since the matrix
norm of the iterative matrix, RT, is less than 1.

Theorem 1. For any)0(T nℜ , the sequence {)k(T }, k=1… , generated by (7)

converges to T nℜ (the solution to (7)). (nℜ denotes n-dimensional real space).

Proof. The iteration is sufficient for convergence if ||RT||<1 for some induced matrix
norm [10].

Now ||RT||1 = ⋅
j

ijij
i

CL ||max ⋅
j

ij
i

ij
ji

LC max||max
,

||max
,

ij
ji

C . Because Lij = Lii = 0

for each i=j, we have iiiiijij CLCL ⋅=⋅ = 0. Thus, we have ||max
,

ij
ji

C ||C ij
j)i,j(i ≠

max . And Cij

is the cosine of the angle between two vectors, Bi and Bj. Because there is at least one
element, Bii (Bii=1+), in Bi differs from that, Bji (|Bji| 1), in Bj , we have |Cij|<1 for
any i and j, i j. Therefore we have ||C ij

j)i,j(i ≠
max <1, so that ||RT||1 < 1.

So we proved the convergence of the iterative method given in (7).

4 The Decentralized Trust Data Management Scheme

Decentralized and secure trust data management, i.e., how to efficiently and securely
store and look up trust data that are needed to compute the trust value of a peer, is
important in implementing a P2P trust model such as SimiTrust. We achieve these in
two steps: First, having another, deterministically chosen peer in the network take
over a peer’s calculation job on his own trust value, becoming this peer’s trust value
manager. This can be done by using DHT (Distributed Hash Table) such as Chord to
map peers to their trust value managers. Second, adding redundancy to the calcula-
tions through having each calculation being performed by several peers in parallel.
Each peer can be queried for the results of his calculations, and the final result of a
calculation is determined by a majority vote among the collaborating peers. The de-
tailed methods are not given here due to space constraints.

Each peer is assigned several trust value managers and each peer also serves as a
trust value manager for some other peers to store and calculate trust values. A trust
value manager of peer i, Mi, shall have the following duties: (1) Storing the trust data
of peer i such as Gij, Fij, Lij, etc.; (2) Verifying the consistency of the stored data (i.e.,
comparing the G’

ij , newly submitted by peer i, to Gij , now stored by Mi, if G
’
ij -Gij>1,

it is very possible that peer i has submitted the malicious data); (3) Computing the
global trust value of peer i; (4) Submitting the trust value, rating opinion vector, etc.
of peer i as responses to search requests of other peers in the community.

5 The SimiTrust Algorithm

The SimiTrust algorithm is proposed in this section to implement the iterative method
given in section 3.2 in a decentralized way. After introducing the trust value manager

210 J. Li et al.

mechanism, a peer’s global trust value is computed by his trust value managers based
on the trust data that are collected about the peer.

5.1 Algorithm Description

Here we describe the SimiTrust algorithm to compute a global trust value vector.
Before the description, we introduce the following two primitives which will be used
in the algorithm:

Submit (IDi, (IDj, IDk), Value1, Value2) submitting Value1and Value2 to the trust
value managers of peer i. We use the Value1 and Value2 to refer to the normalized
local trust value, Ljk, that peer j place in k and rating opinion vector of peer j, as the
meaning will be clear from context;

Query (IDj, Tj, Lji, Bj) querying the global trust value, recommendation, and rating
opinion vector of peer j from j’s trust value managers.

The algorithm consists of two components: the Algorithm1 and Algorithm2 as
shown in pseudo-code in Table 1 and Table 2 respectively. Each peer i plays two
roles: an ordinary peer who rates, or rated by, other peers, and a trust value manager
of certain peers. As an ordinary peer, peer i uses the Algorithm1; as a trust value
manager of peer u, i uses the Algorithm2.

Table 1. Pseudo-code for the Algorithm1

Algorithm 1. // peer i, as an ordinary peer.
UpdateAndSubmitTrustdata()
// submits its rating (Gij, Fij) after a transaction with j.
{

If (a good transaction) Gij Gij+1;
else Fij Fij+1;
Submit(IDi, (IDi, IDj), Gij, Fij);
 // submits Gij and Fij to Mi, and triggers the UpdateLocaltrust() in Mi.

}

There are two ways to trigger CalcGlobaltrust(): it will be triggered as soon as
peer i receives a submit() primitive from one of the peers who have interacted with u;
or peer i sets up a threshold, and it is triggered when the number of the received sub-
mit() primitives reaches the threshold.

5.2 The Overhead of the Algorithm

After each transaction, peer i only needs one message to submit its rating to its trust
value manager in the Alogrithm1. CalcGlobaltrust() only needs to ask, for one round,
the peers who have interacted with peer u for their global trust values, recommenda-
tions and rating opinion vectors in the Algorithm2. Therefore the message complexity
of our algorithm is O(n) which is less than that (O(n2)) of the eigentrust.

The complexity of the algorithm is also bounded in that the algorithm converges
fast: For a community of 500 peers, the algorithm has converged after less than 6

 A Reputation Management Scheme Based on Global Trust Model 211

Table 2. Pseudo-code for the Algorithm2

Algorithm 2. // peer i, as a trust value manager of peer u.
UpdateLocaltrust() // updates Luv and Buv after receiving the Submit() from u.
{

Verify the consistency of Guv and Fuv;
Compute Suv, Luv, Buv;
Submit (IDv, (IDu, IDv), Luv, null);
// submits Luv to Mv, and triggers the procedure to put IDu into the set Uv.

}
CalcGlobaltrust() // calculates the global trust value of peer u.
{

for (every j Uu (j u))
 {
 Query (IDj, Tj, Lju, Bj);

uj

uj
ju

BB

BB
C

⋅
←

*
 ; // calculates the similarity between u and j.

 Tu Tu + jjuju TCL ⋅⋅ ;

 }
 return Tu;

}

iterations, i.e., the computed global trust values do not change significantly any more
after a low number of iterations. In the simulation of our algorithm, this corresponds
to less than 6 query cycles of updated trust values among peers (see Section 6 for
more detail).

Since either trust value store or computation processes in a decentralized manner,
every peer only needs to have the knowledge of its neighbors to maintain the underly-
ing structured P2P network and to store and compute the trust values of certain peers
as a trust value manager. As a trust value manager of peer u, peer i only needs to keep
the most recent trust data items about peer u (e.g. the ratings to u in recent 100 trans-
actions) using an FIFO-like cache replacement policy. These data items should be
refreshed so the values reflect the latest behavior of peer u. To get the reputation of
the peer j from which he try to make a transaction, a peer i only needs to send a mas-
sage to ask j’s trust value manager for j’s global trust value.

6 Experiments

In this section, we will assess the performance of our scheme as compared to the
eigentrust algorithm and to a P2P community where no reputation system is imple-
mented, called random peer selection scheme. We call it random since peers ran-
domly select a peer to make a transaction in such a community. We shall demonstrate
the schemes’ performance under a variety of threat models.

212 J. Li et al.

6.1 Simulation Setup

As a test bed for our experiments, we use the Query Cycle Simulator [11], which
simulates a typical peer-to-peer file-sharing community. The global trust values in
this community are used to bias download sources.

Each simulation is divided into query cycles. In each query cycle, any given peer in
the community could be issuing a query, inactive, or down and not responding to
queries. After issuing a query, a peer waits for incoming responses from the peers that
have the file he is looking for, selects a peer, whose global trust value is the highest
among those responding, as the download source, and downloads the file. The last
two steps are repeated until the peer receives a complete, authentic copy of the file.
After each query cycle, the global trust value computation is triggered and the num-
bers of authentic and inauthentic downloads observed by each peer are calculated.
Then the simulation comes into the next query cycle. Each experiment is run several
times and the results of the runs are averaged.

We set up a community consisting of 500 peers, 10 of which are pre-trusted peers
for the eigentrust, and we do not need any pre-trusted peer to ensure the convergence
of our algorithm. All peers divided into normal, good peers (peers who are participat-
ing in the community in order to share files) and malicious peers (peers who are
participating in the community in order to spread bogus files and undermine its per-
formance). The proportion of malicious peers will be given in the description of each
experiment. When they join the community, malicious peers connect to the 6 most
highly-connected peers in the community in order to receive as many queries travel-
ing though the community as possible. And the good peers only connect to 3
neighbors. The pre-trusted peers also have 6 neighbors in the eigentrust. The initial
distribution of the global trust values is a uniform probability distribution over all n
peers, that is)(

i
T 0 =1/n (i=1, … , n). The other detailed settings are described in [11].

6.2 Threat Models

We will consider two strategies of malicious peers to cause inauthentic uploads even
when a reputation management scheme is activated, since the main challenge of
building a reputation mechanism in a P2P environment is how to effectively cope
with various malicious collectives of peers who know one another and attempt to
collectively subvert the system.

Threat Model IM: Individual malicious peers, called IM peers, always provide an
inauthentic file when selected as a download source and they always set their local
trust values to Sij= Fij -Gij, valuing inauthentic file downloads instead of authentic file
downloads and assigning high local trust values to malicious peers from whom they
try to download files.

Threat Model DM: Two groups of malicious peers (IM and DM) are present in the
community. DM peers provide only authentic files and uses the reputation they gained
to boost the trust values of IM peers that only provides inauthentic files. DM peers,
answer 0.05% of the most popular queries and provide a good file when used as a
download source for all queries that they answer. DM peers can get high global trust
values in this way, and then DM peers assign trust values of 1 to all the IM peers in

 A Reputation Management Scheme Based on Global Trust Model 213

the community and trust values of 0 to the other peers. Precisely, if IMs and DMs
respectively denote the set of IM peers and the set of DM peers in the community,
each peer u DMs sets Luv =1/||IMs|| if peer v IMs.

6.3 Performance Indices

We are interested in evaluating the performance of the SimiTrust scheme and in com-
paring it with the two mentioned schemes. To facilitate our comparison, we consider
the following metrics:

Proportion of Authentic Downloads (PAD), the ratio of the number of authentic
downloads to the number of all downloads viewed by all good peers, is defined as

PAD =
+

i
ij

j
ij

i j
ij

)F(G

G

(for all i, peer i is a good peer). (8)

PAD is calculated for all good peers at the end of each experiment. This metric di-
rectly measures the effectiveness of the reputation management schemes. In an ideal
P2P community where no malicious peers present, we have PAD=1.

Convergence Time is defined as the least number of query cycles required to
make the number of inauthentic downloads in the community, defined as

i j
ijF ,

approach to 0. If an algorithm for reputation management does work, the good peers
can be differentiated from the malicious peers by their global trust values after a few
query cycles; that is, the good peers can get the higher trust value than the malicious
peers though every peer has the same initial global trust value. The inauthentic
downloads in the community then approach to 0 because peers always choose the peer
whose trust value is the highest among the peers responding their queries as the
downloading source. The less query cycles required to eliminate the inauthentic
downloads in the community, the faster an algorithm converges.

6.4 IM Experiments and Discussion

IM experiments are carried out in the presence of IM peers. Fig. 1 shows the number
of inauthentic file downloads measured for each query cycle when the simulation of
the P2P community proceeds from one query cycle to the next. We have IM peers
make up 40% of all peers in the community. Using random peer selection scheme,
malicious peers succeed in inflicting many inauthentic downloads in the community.
Yet, if our scheme is activated, the inauthentic files downloaded are almost eliminated
after the 5th cycle. The Convergence Time, 5, is less than that when using the eigen-
trust. That means malicious peers can not get the high global trust values when our
scheme is activated, and because of their low trust values, malicious peers are rarely
chosen as download sources which minimizes the number of inauthentic file
downloads in the community.

In the next experiment, we have between 0% and 50% of the peers in the commu-
nity be malicious peers, increasing this percentage in steps of 10% for each run of the
experiment. The results of the number of inauthentic downloads of each query cycle
are similar to that showed in Fig. 1 (using our scheme, inauthentic downloads are

214 J. Li et al.

almost eliminated after 3-6 cycles). Fig. 2 plots the proportion of authentic downloads
(PAD) against the percentage of IM peers in the community. The PAD is higher than
80% even if IM peers make up a half of the peers in the community when our scheme
is activated.

Fig. 1. The number of inauthentic downloads
measured for each query cycle when the
simulation proceeds

Fig. 2. The PAD against the percentage of IM
peers

6.5 DM Experiments and Discussion

We assume that malicious peers are so intelligent that IM and DM peers can collabo-
rate to subvert the reputation system in the DM experiments. Some experiments were
also made in the analysis of the eigentrust [9], but the results are not good enough.
Our experiments show that the eigentrust algorithm does not converge under threat
model DM; that is, the good peers can not be differentiated from the malicious peers

Fig. 3. The number of inauthentic downloads
measured for each query cycle when the simu-
lation proceeds. We have malicious peers
make up 40% of all the peers in the commu-
nity and DM peers make up 10% of all the
malicious peers. When the eigentrust is acti-
vated, there are a considerable number of
inauthentic downloads in the community, even
more than that when using the random
scheme, and that number does not tend to
decrease.

Fig. 4. The influence of the different percent-
age of DM peers on the performance of the
SimiTrust. The y-axis plots the number of
inauthentic downloads measured for each
query cycle when the simulation proceeds.
We have malicious peers make up 40% of
the peers in the community and DM peers
make up between 0% and 45% of all the
malicious peers.

 A Reputation Management Scheme Based on Global Trust Model 215

by their global trust values, even if there are only a few DM peers (less than 4% of all
the peers) in the community. The fundamental reason is that DM peers have high
global trust values, but they give untrue recommendations. The eigentrust algorithm
does not distinguish the credibility of peers from that of the recommendations given
by peers, and we use the similarity between peers to weight their recommendations so
that the recommendations of DM peers can be screened. Therefore the performance of
our scheme is still robust under this threat model. Fig. 3 shows the number of inau-
thentic downloads measured for each query cycle when the simulation proceeds from
one query cycle to the next.

When we have more DM peers in the community, the eigentrust does not converge
yet. We designed the next experiment to see how the increase of the percentage of
DM peers in the community can influence the performance of the SimiTrust. Fig. 4
shows the number of inauthentic files downloaded in each query cycle when the simu-
lation proceeds. We observe an interesting phenomenon that the more DM peers pre-
sent, the less inauthentic file downloads occur. Malicious peers operating under threat
model DM need to pay cost for uploading inauthentic files: DM peers have to provide
some share of authentic files, which is undesirable for them. Suppressed by our
scheme, malicious peers can not increase inauthentic uploads, but they contribute a
considerable share of authentic files.

7 Conclusion

We have presented SimiTrust, a reputation management scheme for quantifying and
comparing the trustworthiness of peers in a P2P virtual community. Each peer is as-
signed a global trust value which reflects the experience of the community as a whole
with the peer. The global trust value for a peer is computed by calculating the similar-
ity-weighted recommendations of the peers who have interacted with him, taking into
consideration the entire community’s history with the peer. In experiments, these trust
values are used to bias downloads and this method is successful to reduce the number
inauthentic files in a P2P file-sharing community under a variety of threat scenarios.
The effectiveness of our scheme has shown to get the advantage over that of the ei-
gentrust, especially under threat model DM.

References

1. Kazaa, http://www.kazaa.com/.
2. J. Liang, R. Kumar, Y. Xi, K. Ross, Pollution in p2p file sharing systems, Proceedings of

IEEE Infocom 2005. (2005) http://photon.poly.edu/~jliang/ pollution.pdf.
3. VBS.GnutellaWorm,

http://securityresponse.symantec.com/avcenter/venc/data/vbs.gnutella.html.
4. eBay Feedback Forum,

http://pages.ebay.com/services/forum/feedback.html?ssPageName=STRK.
5. S. Saroiu, P.K. Gummadi, S.D. Gribble, A Measurement Study of Peer-to-Peer File Shar-

ing Systems, Proceedings of Multimedia Computing and Networking 2002 (MMCN’02),
Proceedings of SPIE, Vol 4673. (2002) 156–170.

216 J. Li et al.

6. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-Based collaborative filtering recommen-
dation algorithms, Proceedings of the 10th International World Wide Web Conference.
ACM Press. (2001) 285–295.

7. M. Gupta, P. Judge, M. Ammar, A Reputation System for Peer-to-Peer Networks, Pro-
ceedings of 13th ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV'03). ACM Press. (2003) 144–152.

8. L. Xiong, L. Liu, PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Elec-
tronic Communities, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING 16(7). IEEE Press. 843–857.

9. S.D. Kamvar, M.T. Schlosser, The eigentrust algorithm for reputation management in P2P
networks, Proceedings of the 12th international conference on World Wide Web. ACM
Press. (2003) 640–651.

10. WM. Shi, HF. Yang, YS. Wu, X. Sun, Numerical Analysis, 2nd edition, Beijing. BEIJING
INSTITUTE OF TECHNOLOGY PRESS. (2004) 91–93.

11. M.T. Schlosser, T.E. Condie, S.D. Kamvar, Simulating a File-Sharing P2P Network, Pro-
ceedings of First Workshop on Semantics in P2P and Grid Computing. (2003) 69–80.

12. P. Golle, K. Leyton-Brown, I. Mironov, Incentives for Sharing in Peer-to-Peer Networks,
Proceedings of the 3rd ACM conference on Electronic Commerce. (2001) 264-267.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 217 – 228, 2006.
© Springer-Verlag Berlin Heidelberg 2006

QoS-Aware Web Services Composition Using
Transactional Composition Operator

An Liu1,2,3, Liusheng Huang1,2, and Qing Li2,3

1 Department of Computer Science and Technology
University of Science & Technology of China, Hefei, China

2 Joint Research Lab of Excellence
CityU-USTC Advanced Research Institute, Suzhou, China

3 Department of Computer Science
City University of Hong Kong, Hong Kong, China

liuan@ustc.edu, lshuang@ustc.edu.cn, itqli@cityu.edu.hk

Abstract. As composite web services are often long lasting, loosely coupled,
and cross application and administrative boundaries, transactional support is re-
quired. Most of the work has so far focused on relaxing some ACID properties
of the traditional transaction model, with little being done on investigating how
the transaction can influence the quality of service (QoS) of a composite web
service. In this paper, a composition model is proposed to evaluate the quality
of service (QoS) of a composite service with various transactional requirements.
The proposed model is based on a transactional composition operator, which
extends the traditional workflow patterns and integrates transactional properties.
Using a recursive approach, the QoS of a composite service can easily be calcu-
lated, in spite of transactional requirements given by service providers or end
users.

1 Introduction

As the use of web services grows, it becomes increasingly popular for organizations
to introduce new value-added services (composite services) by composing some pre-
existing web services (component services). Such a composite service is often long-
running, loosely coupled, and cross application and administrative boundaries, thus
requiring transactional support. Recently, much work has been proposed to address
the requirements of different kinds of transactions, such as Business Transaction Pro-
tocol (BTP) [1], Web Services Transactions specifications [2], and Web Services
Transaction Management (WS-TXM) [3]. These efforts focus on how to relax some
ACID properties to ensure a reliable composition. However, improper transaction
usage in the web service composition may degrade the quality of service (QoS), due
to the inherent loss of concurrency of the two-phase commit protocol (2PC) which is
used to guarantee the ACID property [4]. Therefore, how the transaction will influ-
ence the QoS of a composite web service has been largely overlooked, which never-
theless is a relevant and challenging problem.

On the other hand, QoS management in service composition has also received in-
creasing attention recently. It is not sufficient to only consider the functional require-

218 A. Liu et al.

ments and interface signatures of service. The nonfunctional characteristics, particu-
larly, quality of service, should also be taken into account. Most of the relevant work
focused on the dynamic runtime selection of component services and execution paths
based on a set of quality criteria. Little attention, however, has been paid to the QoS
of a composite service in design-time. We argue that the consideration of QoS in
design time is as important as in runtime, and can complement the existing work in
service composition with QoS management.

In this paper we propose a model for the composition of web services with various
transactional requirements. Based on this model, we can easily evaluate the QoS of
the composite service using a recursive approach. The kernel of the proposed model is
transactional composition operator, which extends the workflow patterns [5] intro-
duced in the workflow community.

The rest of the paper is organized as follows. Section 2 presents related work on
QoS management in web services and transactional web service composition. Section
3 introduces a motivating example that will be used throughout the reminder of the
paper. Our transactional composition operator is presented in section 4. Section 5
explains how to determine the QoS of a composite service based on the transactional
composition operator. Section 6 concludes the paper.

2 Related Work

QoS issues in web service have been widely investigated in the web service research
community. We only mention here some representative proposals or ones most rele-
vant to our work. D.A. Menasce described QoS from the perspective of service pro-
vider and service consumer, and discussed calculation of throughput, one of the QoS
criteria of a service. He also mentioned that the transaction might degrade the QoS of
a service, however, none further analysis was given [4]. In another paper, he dis-
cussed the QoS based on the composite web services flow and pointed out that not
only the selection of component service but also the different composite flow would
influence the QoS [6]. The composite flow is actually a kind of workflow patterns [5],
which have been compiled from an analysis of various workflow languages.

One of the challenging problems in QoS Management in service composition is the
runtime selection of component service. Zeng et al. considered it as a global optimiza-
tion problem and solved it using linear programming methods [7]. However, this kind
of work does not consider the influence caused by the abstract process at design time,
which, according to [6], is an equally important issue of concern.

The most relevant work to ours is the one proposed by Jaeger et al. in [8]. The authors
first defined a set of composition patterns which are derived from workflow patterns, and
then analyzed these patterns from five QoS dimensions. However, as we will see in sec-
tion 3, these composition patterns are unable to express the transaction requirements
which can change the QoS of composite services. Another related work by Cardoso et al.
focused on QoS for workflows [9]. In that work, a predictive QoS model is proposed to
compute the QoS for workflows automatically based on elementary task QoS attributes.
Like [8], no consideration is given on the influence caused by transactions.

Recently, some work has been proposed to model the transactional properties in
web service composition. Vidyasankar and Vossen presented a multi-level service

 QoS-Aware Web Services Composition 219

composition model which could specify transactional properties at all levels [10].
Four kinds termination were used to define atomicity for basic activities. Termination
of composite activity was built on the combination of its component activities’ termi-
nations. Based on these terminations, some theorems were used to induce the transac-
tional properties of composite services. Similar work has been done by Fauvet et al. in
[11]. They divided services into three groups, each with a different transactional prop-
erty. The characteristics of their work lay in a service composition operator which
could specify atomicity constraints. However, the composition operator only sup-
ported parallel execution of services. Obviously, it is insufficient to express complex
composite service with various transactional requirements.

3 Scenario

As a motivating example, consider an international conference scenario, where re-
searchers around the world are going to attend the conference hold in city A and
participate in some additional entertainment during the meeting. The conference or-
ganizers provide a web service to help attendants arrange the whole tour. The service
(S) performs two primary tasks. One is accommodation arrangement, the other is
entertainment arrangement. The former contains three sub-tasks. First, some flight
tickets should be purchased. We assume that two flight booking service (FB1 and
FB2) are used, each of them is provided by certain airways. Then a hotel booking
service (HB) is used to reserve a hotel room and, finally, to book a taxi is through a
taxi booking service (TB). The function of entertainment arrangement is realized by
two alternative services named sightseeing service (SI) and shopping service (SH),
which help to purchase some entrance tickets and arrange a bus to send attendants to a
shopping mall that has sales promotion, respectively. Note that, the notion “service”
here is abstract, that is, it only describes functionality, and no binding information for
execution is given. For the sake of concise description, we shall use “service” to refer
to both abstract service and concrete service in this paper. However, the particular
kind can be easily determined according to its context.

This scenario is carried out by a composite service as illustrated in Figure 1. Rec-
tangles represent web services, and ovals represent workflow patterns in which AND-
s, XOR-s, AND-j, XOR-j, and Disc are abbreviations for AND-split, XOR-split,
AND-join, XOR-join, and Discriminator, respectively.

While the composite service in Figure 1 seems to be fine, consider such a case
where some attendants want to purchase ten tickets at certain particular time. Unfor-
tunately, there are only six tickets available through service FB1 and two tickets
available through service FB2. Although both of FB1 and FB2 may be completed
successfully, the composite service will fail because it does not satisfy the global
constraint given by the user. Consequently, there is no need to invoke services HB
and TB, and the service SH or SI may be cancelled. Similarly, some attendants may
require that a taxi is necessary if the reserved hotel is far from the conference hall, and
if no taxi available, they would rather book another hotel by themselves through other
web services. Therefore, if service TB fails, service HB needs to be cancelled or com-
pensated. However, the composite service can still succeed if no error occurs in ser-
vices SH and SI.

220 A. Liu et al.

AND-s

AND-s

XOR-s

FB1

SI

SH

FB2

Disc HB TB

XOR-j

AND-j

Fig. 1. A composite service for conference arrangement based on workflow patterns

To guarantee the correctness and reliability of the composite service under differ-
ent requirements, it is insufficient to use workflow patterns only; instead, transac-
tional support needs to be added in. In next section, a transactional composition
operator is introduced to solve this problem.

4 Composition Model

This section presents a composition model for web services with various transactional
requirements. In section 4.1, we extend the workflow patterns to composition pat-
terns. In section 4.2, we introduce dependency to solve the different transactional
requirements. Based on these, we propose a transactional composition operator and
show how it works in the last subsection.

4.1 Pattern Evolution

Web service composition requires interactions between component services, which
are driven by explicit process models. Currently, lots of process modeling languages
including BPEL [12] have been proposed to capture the logic of a composite service,
and some of them are still evolving. Rather than choosing a particular modeling lan-
guage, we think it is better to adopt an abstract model to describe the composition, so
that in case these languages are revised or disappear, the abstract model could be
adapted to the changes more easily [8].

Although Van der Aalst’s workflow patterns have excellent expressive power, they
are not suitable for recursive analysis of a composite service. Instead, we need to first
adapt them for recursive analysis which will be discussed in section 4.3. Note that,
this point of view is similar to that of composition pattern [8], but ours results are
different from theirs, especially in parallel cases. We will still use the term “composi-
tion pattern” here to reflect its accurate meaning.

The comprehensive list of our composition patterns is given in Table 1, where CP1
denotes a sequence case, and CP2 to CP8 are all parallel cases.

Let us first consider the sequence case. There are two workflow patterns aiming at
linear sequence: sequence (WP1) and interleaved parallel routing (WP17). The former
is ordered, and the latter is out-of-order and does not allow two activities in the

 QoS-Aware Web Services Composition 221

sequence to be active at the same time. CP1 is the same as WP1. WP17 can be im-
plemented by WP1 and dependencies between activities (services). The dependency is
one part of our transactional composition operator, which will be introduced in next
sub-section.

Table 1. Composition Patterns (CP) and Corresponding Workflow Patterns (WP)

CP WP CP WP
CP1 WP1 CP5 WP4 + WP5
CP2 WP2 + WP3 CP6 WP6 + WP5
CP3 WP2 + WP5 CP7 WP6 + WP7
CP4 WP2 + WP9 CP8 WP6 + WP9

The parallel cases are more complex. The common structure of our composition
patterns consists of one split workflow pattern and one join workflow pattern. There
are three kinds of split patterns and five kinds of join patterns. The WP8 (OR-join)
can be implemented by multiple parallel WP1 [5], so we do not consider it in pattern
combination. It is a fact that some split patterns and some join patterns are incompati-
ble, such as WP4+WP3. We also note that some combinations could be implied by
other combinations, for example, WP2+WP7 is implied by WP2+WP3. Taking this
into consideration, we have seven valid composition patterns for the parallel cases.

There are still ten workflow patterns that are not involved in our composition pat-
tern. These workflow patterns either are not relevant to composition or could be im-
plemented by above patterns and dependencies. Note that, arbitrary cycles (WP10) are
left out here for two reasons: firstly, some modeling languages do not allow it (e.g.,
BPEL only supports structured cycles); secondly, the number of loops can not be
determined during the design time. This pattern will be a possible direction of our
future work when these modeling languages are standardized.

4.2 Dependency Between Services

As described in the above scenario and last sub-section, workflow patterns and com-
position patterns can not express complex transactional requirements. Generally, these
transactional requirements can be mapped into a set of dependencies between these
activities (services). The concept “dependency” has been widely investigated in data-
base and workflow research communities [13-15]. It describes various relationships
between transactions (activities), and can ensure the correct and reliable execution.
We use here some simplified dependency instances discussed in [13] to revisit the
scenario.

Firstly, let us consider one of the problems remains in the context of only using
workflow patterns. Recall that if service TB fails, service HB must be cancelled or
compensated. Thus we have an abort-dependency [13] from HB to TB.

Secondly, assume the conference organizers have such a plan: concerning the en-
tertainment part of the conference, attendants can either go sightseeing or go shop-
ping, but not both. Thus there is an exclusion-dependency [13] from service SI to SH,
and vice versa. Note that, this dependency is implied by WP4.

222 A. Liu et al.

Generally, transactional requirements in a composite service can always be de-
scribed by dependencies between services. However, it is difficult and inconvenient to
use these complicated dependencies directly. On the other hand, patterns provide a
high level but limited expressive power. Therefore, it is natural to combine them to-
gether. In principle, we should use composition patterns to cover as many the required
dependencies as possible, even though there are some dependencies that can not be
covered by patterns.

4.3 Transactional Composition Model

Let us continue our conference scenario. Suppose the attendants want to purchase ten
tickets, but there are only eight tickets available, then the service fails. Unfortunately,
this kind of requirements still can not be captured by the combination of composition
patterns and dependencies. In fact, we will need a global constraint to express such
requirements. For example, we may have: {avl(FB1)+avl(FB2) 10}, where function
avl(S) returns the number of tickets service S can provide.

Summarizing above discussions, we give below the definition of a transactional
composition operator.

AND-s

AND-s

XOR-s

FB1

SI

SH

FB2

Disc HB TB

XOR-j

AND-j

AND-s

XOR-s

SI

SH

HB TB

XOR-j

FB

AND-j AND-s

XOR-s

SI

SH

HTB

XOR-j

FB

AND-j

AND-s

XOR-s

SI

SH

XOR-j

AccoA

AND-j

AND-s

EnteA

AccoA
AND-j ConfA

(a) First Step

(b) Second Step (c) Third Step

(d) Fourth Step (e) Fifth Step (f) Sixth Step

 Legend TCO A new high-level service component service workflow pattern

TCO1

TCO2 TCO3

TCO4
TCO5

Fig. 2. Recursive composition using transactional composition operator (TCO)

 QoS-Aware Web Services Composition 223

Definition 1 - Transactional composition operator (TCO). A TCO is defined
as a 3-tuple (CP, DL, GCE), where:

· CP is a kind of composition patterns.
· DL is a list of dependencies.
· GCE is a global constraint expression.

When we use a composition pattern to combine a set of component services, we get a
new high-level abstract service, which encapsulates the control flow, and transac-
tional requirements existing in these services.

To illustrate how to use the transactional composition operator (TCO) to recur-
sively aggregate services, let us consider the conference trip scenario further, by mak-
ing the requirements step by step. Assume an attendant wants to first purchase ten
tickets, and next he only takes the flight tickets and ignores hotel room booking if no
taxi is made available. He has no special preferences on the entertainment arrange-
ment. The recursive aggregation process is as illustrated in Figure 2.

As shown in Figure 2, we use TCO one at a time. After using five TCOs, we get a
top-level service named ConfA which provides all expected functions. The specific
TCO used in each step is given in Table 2, where each row stands for a TCO, and
each column stands for one value of the TCO.

21 SS a⎯→⎯ means that there is an

abort-dependency from S1 to S2. means there is no dependency or global con-
straint.

Table 2. TCO for conference trip composition

TCO CP DL GCE
TCO1 CP4 avl(FB1)+avl(FB2) 10

TCO2 CP1 TBHB a⎯→⎯
TCO3 CP1
TCO4 CP5
TCO5 CP2 AccoAEnteA a⎯→⎯

Based on this stepwise approach, every service has been associated with a TCO.
For example, service ConfA has associated with TCO5. For uniformity, let an ele-
mentary service have also a TCO, namely, TCO which has as value (, ,). We
can now easily evaluate the QoS of a composite service. In section 5, both the transac-
tional properties and the QoS of services are to be discussed, as we aim at QoS under
different transactional requirements.

5 QoS Analysis

This section introduces how to evaluate the QoS of composite services based on the
TCO. In section 5.1, we discuss transactional properties of services. In section 5.2, we
present two algorithms to evaluate the QoS of a composite service.

Various quality criteria have been proposed to evaluate the QoS of composite ser-
vices [4,7,8,9]. In the study of this paper, we consider only two: execution cost and

224 A. Liu et al.

response time. The execution cost is the cost to execute a service. The response time
is the time a service needs to process a request.

5.1 Transactional Properties of Composite Services

There are many classifications concerning the transactional properties, such as com-
pensatable, retriable, and pivot [16], atomic, quasi-atomic, and non-atomic [17]. We
adopt and adapt here the terms atomic, quasi-atomic, and non-atomic to label transac-
tional properties of a web service. A service is said to be atomic if it has no effect at
all when it aborts. A service is said to be quasi-atomic if it needs compensation to
undo its effect when it aborts. A service is said to be non-atomic if its effect cannot be
eliminated once completed. In terms of QoS, atomic services have no execution cost
when they need to be aborted. On the contrary, quasi-atomic services have to incur
additional cost, namely, penalty.

The transactional property of a composite service is determined by its component
services. If all component services are atomic, the composite service is atomic. If
there is at least one quasi-atomic component service and no non-atomic ones, the
composite service is quasi-atomic. Only if there is a non-atomic component service,
the composite service is non-atomic.

Consider such a case where a composite service needs to abort. If it is atomic, there
is no additional execution cost since all its component services are atomic, and if it is
quasi-atomic, the additional execution cost comes from the quasi-atomic component
services. Note that in the database field, when a transaction needs to abort, which
operation should do first and which operation should do next is strictly defined, usu-
ally the operation sequence is determined by logs. However, in web services envi-
ronments, this restriction is much more relaxed because of the inherent autonomy of
web services. Therefore, we assume that there are no strict requirements on operation
sequence when an abortion is needed.

5.2 QoS of Composite Services

When evaluating the QoS of a composite service, two actions, i.e. start and abort,
should be considered individually. We first discuss the case where no abortion or
compensation is needed.

The QoS of each composition pattern is given in Table 3. Assume each pattern
involves following services: s1,s2,…,sn. Ti and ci represent the response time and exe-
cution cost of si, respectively, where i=1,2,…,n. For CP5, si will be invoked with
probability pi. For CP6 to CP8, they all use WP6, which makes the analysis more
complex. WP6 means at least one of n services will be invoked, that is, there are
2n-1 kinds of choices. Once a choice is made, CP6, CP7 and CP8 could be sim-
plified into CP3, CP2, and CP4, respectively. We use function TimeCP(s1, ,sn)
and CostCP(s1, ,sn) to calculate the response time and execution cost of CP
involving n services that will be executed, respectively. Assume that the choice

),...,,(
21 jkkk sss is made with probability p, where 1 j n, and nkkk j ≤<⋅⋅⋅<<≤ 211 , then

we have corresponding expressions for CP6 to CP8 (see Table 3).

 QoS-Aware Web Services Composition 225

Table 3. QoS of composition patterns (CP)

CP Response Time Execution Cost

CP1 }max{ it
=

n

i ic
1

CP2 =

n

i it1

=

n

i ic
1

CP3 }min{ it
=

n

i ic
1

CP4 }min{ it
=

n

i ic
1

CP5 =
⋅n

i ii tp
1

=

⋅n

i ii cp
1

CP6),...,,(
21

3

jkkk
CP sssTimep ⋅),...,,(

21

3

jkkk
CP sssCostp ⋅

CP7),...,,(
21

2

jkkk
CP sssTimep ⋅),...,,(

21

2

jkkk
CP sssCostp ⋅

CP8),...,,(
21

4

jkkk
CP sssTimep ⋅),...,,(

21

4

jkkk
CP sssCostp ⋅

Based on above analysis, let us consider TCO from the QoS point of view. GCE
only describes some transactional constraints on TCO. It is the DL (list of dependen-
cies) that leads to additional actions to ensure transactional requirements. These ac-
tions may bring additional execution cost and response time. Therefore, the QoS
value of a TCO consists of two parts: one is from CP, and the other is from DL.

Now, consider what will happen on QoS if a dependency in DL requires a service
to abort. The detailed abortion process is as discussed in section 5.1. From the discus-
sion, we know the structure of the composite service, that is, composition pattern, is
not important: it only sends asynchronous messages to its component services to tell
them to abort. Therefore, the total response time equals to the maximal component
service’s response time, and the total execution cost is the sum of every quasi-atomic
component service’s penalty.

Summarizing the above discussions, we present two algorithms for QoS evaluation
immediately below.

Algorithm 1. Evaluating the QoS of a service
Input: s - a service which has been associated with a TCO
Output: qos - an instance of the 2-tuple(time, cost)
Function getQoS()
Begin
01 qos.time = 0; qos.cost = 0; tco = s.TCO;
02 if (tco.CP ==) { //elementary service
03 qos.time = s.time; qos.cost = s.cost;
04 }
05 else { //composite service, then recursively invoke function getQoS()
06 // assume tco.CP involves n services that will be executed
07 qos.time = qos.time + Timetco.CP(s1, s2, …, sn);
08 qos.cost = qos.cost + Costtco.CP(s1, s2, …, sn);
09 for each service sk which needs to start according to tco.DL {
10 newQos = getQoS(sk);

226 A. Liu et al.

11 qos.time = qos.time + newQos.time; qos.cost = qos.cost + newQos.cost;
12 }
13 for each service sj which needs to abort according to tco.DL {
14 penalty = getPenalty (sj);
15 qos.time = qos.time + penalty.time; qos.cost = qos.cost + penalty.cost;
16 }
17 }//end if
18 return qos;
End

Algorithm 2. Evaluating the penalty when aborting a service
Input: s - a service needs to abort
Output: penalty: an instance of the 2-tuple(time, cost)
Function getPenalty()
Begin
01 penalty.time = 0; penalty.cost = 0;
02 if (s.TCO.CP ==) { //elementary service
03 if (s is atomic) penalty.time = s.time;
04 else if (s is quasi-atomic) {penalty.time = s.time; penalty.cost = s.cost;}
05 else exception handling;
06 }
07 else { //assume the composite service involves n component services:
08 for (i = 1; i++; i <= n) {
09 penaltyi = getPenalty(si);
10 penalty.cost = penalty.cost + penaltyi.cost;
11 }
12 penalty.time = max{penalty1.time,…, penaltyn.time};
13 }
14 return penalty;
End

Algorithms 1 and 2 both use a depth-first approach. Lines 07-08 and 09-16 of algo-
rithm 1 evaluate QoS value caused by CP and DL, respectively. Lines 02-06 of algo-
rithm 2 calculate the penalty when aborting an elementary service, according to its
transactional properties. Lines 07-13 of algorithm 2 deal with the composite service.
Note that, these algorithms only give the upper bound on the QoS values of a compos-
ite service. Because there is no loop pattern in the composite service, thus every
component service will be invoked or cancelled at most once. Therefore, the time
complexity of these two algorithms are both O(n).

Table 4. QoS for each component service

Service Response Time Execution Cost Penalty.cost
FB1 1.5 3 1.5
FB2 1 4 2
HB 2 1.5 1
TB 2.5 2 0
SH 2.5 2 1
SI 1.5 1 0

 QoS-Aware Web Services Composition 227

Table 5. QoS for each composite service at all different levels

Service Response Time Execution Cost Penalty.cost
FB 1.5 7 3.5

HTB 6.5 4.5 1
AccoA 8 11.5 4.5
EnteA 2 1.5 0.5
ConfA 12 13.5 5

Consider here a numeric example based on above scenario. Table 4 shows the
response time, execution cost, and penalty.cost for each component service. Assume
that the penalty.time equals to (normal) response time and every branch of CP5 is
selected with equal probability. Table 5 shows the QoS values for composite services
at different levels (See Figure 2).

6 Conclusion and Future Work

Transaction is generally used to ensure correct and reliable execution; however, it
does influence the QoS of a composite service. In this paper, we have presented a
composition model which captures both control flow and transactional requirements.
The model aims at easily evaluating the QoS of a composite service with various
transactional requirements. Based on the transactional composition operator (TCO),
two algorithms are designed for the purpose of evaluating the QoS of composite ser-
vices. Our model builds on TCO, which extends the classic workflow patterns, and
thus is quite flexible.

One relevant issue is dynamic service selection in web service composition. This
kind of work focuses on improving QoS of a composite service at runtime. Our work
is complementary to such work since we focus on QoS improvement at design-time.
Currently, our work of this paper only analyzed the transactional effects on QoS. How
to design transactions to ensure not only correct execution but also optimal QoS re-
mains a challenging problem, which is to be addressed in our subsequent research.

Acknowledgements

The research described here is supported by the National Basic Research Fund of
China (“973” Program) under Grant No.2003CB317006, and has been benefited from
various discussions among the group members of the Joint Research Lab between
CityU and USTC in their advanced research institute in Suzhou (China), particularly
Mr. Zhe Shan, Lin Baoping, and Liu Hai.

References

1. M. Potts, B. Cox and B. Pope, Business Transaction Protocol Primer, OASIS
Committee Supporting Document, Available: http://www.oasis-open.org/committees/
business-transactions/documents/primer/Primerhtml/BTP

228 A. Liu et al.

2. Web Services Transactions specifications, Available: http://www-128.ibm.com/
developerworks/library/specification/ws-tx/

3. D. Bunting et al., Web Services Transaction Management (WS-TXM) Version 1.0, July
28, 2003

4. D.A. Menasce, QoS Issues in Web Services, IEEE Internet Computing, 2002.6(6): pp. 72-
75.

5. W.M.P. van der Aalst et al., Workflow Patterns, Distributed and Parallel Databases, 2003,
vol.14, pp. 5-51.

6. D.A. Menasce, Composing Web Services: A QoS View, IEEE Internet Computing,
2004.8(6): pp. 88-90.

7. L. Zeng et al., Quality Driven Web Services Composition, in Proceedings of 12th Interna-
tional Conference on World Wide Web, 2003, ACM Press: Budapest, Hungary.

8. M.C. Jaeger et al., QoS Aggregation for Web Service Composition using Workflow Pat-
terns, in Proceedings of 8th International Enterprise Distributed Object Computing Con-
ference, 2004.

9. J. Cardoso et al, Modeling Quality of Service for Workflows and Web Service Processes,
Technical Report#02-002 v2, LSDIS Lab, Computer Science, University of Georgia, De-
cember 2002.

10. K. Vidyasankar and G. Vossen, A Multi-Level Model for Web Service Composition, in
Proceedings of 2nd IEEE International Conference on Web Services, 2004.

11. M.-C. Fauvet et al., Handling Transactional Properties in Web Service Composition, in
Proceedings of 6th International Conference on Web Information Systems Engineering,
2005.

12. Business Process Execution Language for Web Services Version 1.1, Available:
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

13. P.K. Chrysanthis and K. Ramamritham, A Formalism for Extended Transaction Models, in
Proceedings of 17th International Conference on Very Large Data Bases, 1991, Morgan
Kaufmann Publishers Inc.

14. P.K. Chrysanthis and K. Ramamritham, ACTA: A Framework for Specifying and Reason-
ing about Transaction Structure and Behavior, in Proceedings of 1990 ACM SIGMOD In-
ternational Conference on Management of Data, 1990, ACM Press: Atlantic City, New
Jersey, United States.

15. D. Georgakopoulos, M. Hornick and A. Sheth, An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure, Distributed and Parallel
Databases, 1995, vol.3, pp. 119-153.

16. S. Mehrotra et al., A Transaction Model for Multidatabase Systems, in Proceedings of 12th
International Conference on Distributed Computing Systems, 1992.

17. C. Hagen and G. Alonso, Exception Handling in Workflow Management Systems, IEEE
Transactions on Software Engineering, 2000.26(10): pp. 943-958

Optimizing the Profit of On-Demand Multimedia
Service Via a Server-Dependent Queuing System

Pei-chun Lin

Department of Transportation and Communication Management Science,
National Cheng Kung University,

1, University Road, Tainan 701, Taiwan
peichun@mail.ncku.edu.tw

Abstract. This study presents a profit maximization model that adopts
the number of requests for image or voice transferring services on a net-
work as decision variables for when to switch a second server on and
off based on the costs of using a second server and of users waiting. A
Markovian queue with a number of servers depending upon queue length
and finite capacity is discussed. The data of interarrival time and service
times of requests are collected by observing a queuing system. An empir-
ical Bayesian method is then applied to estimate the traffic intensity of
the system, which denotes the need for host computers. The mean num-
ber of transfer requests in the system and the queue length of transfer
requests are calculated as the characteristic values of the system.

1 Introduction

A server, such as a web server, is a host computer linked to a network, such as
the Internet, which provides data in response to requests by client computers
(Fig. 1.). For instance, clients in an on-demand video server environment make
requests for a movies to a centralized video server. Client requests may peak at
particular hours in the day, causing congestion of data across the connection, or
delaying the transfer requests, resulting in client dissatisfaction. To shorten the
wait time, the number of servers must be increased which also increases the cost
of providing services. However, servers are idle and resources are wasted when
the demand declines, incurring unnecessary cost. Determining how to allocate
servers efficiently to reduce unnecessary facility cost, idle cost, and the cost of
losing transfer requests, while catering for varia-tions in demand, is a crucial
issue for computer host managers.

The primary objective of this study is to establish an evaluation model for
planning server requirements to optimize the profit of providing video or audio
on demand. Decision makers may determine the service requirement and the
number of servers needed according to the regular flow rate for requesting images
or sounds across the network and on the expected service rate. An objective
and effective model is necessary to operate systems optimally. This research
implements the empirical Bayesian approach to estimate the network requests

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 229–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

230 P.-c. Lin

Requests

Clients

Responses

Server

Fig. 1. Host computer connected to a network (Source: [6])

requirement based on the actual queuing operation, then constructs a server-
dependent queuing system. The controllable system switches a second server on
whenever the number of transfer requests in the system reaches a threshold, and
switches it off whenever the number of transfer requests in system falls below
another threshold. This study has the following specific goals:

1. Consider the randomness of transfer requests arrival and service time and
utilize the empirical Bayesian approach to estimate the required numbers of
transfer requests.

2. Construct a server-dependent M/M/2/L queuing system, that initiates an-
other server whenever the queue length in front of the first server reaches
length N , and closes the second server whenever the queue length in front of
first server falls to length Q. Additionally, the system characteristics, such
as the expected number of transfer requests in system, and the probability
of server being idle, should be analyzed.

3. Build a model to maximize the expected profit of providing services based
on the cost of utilizing the second server and waiting for transfer requests,
using N and Q as decision variables.

2 Related Literatures

This section first describes the reason for using traffic intensity to define the
amount of transfer requests requirement, then describes the system character-
istics and the development of a server-dependent queuing system and discusses
the related references.

2.1 Traffic Intensity vs. the Amount of Transfer Requested

The definition of traffic intensity ρ is given by the ratio of arrival rate over
service rate, and it is an important reference of queuing system, representing

Optimizing the Profit of On-Demand Multimedia Service 231

the utilization or proportion of the server being occupied. This study utilizes
traffic intensity to indicate the number of transfer requests required. A higher
traffic intensity means a higher transfer requests arrival rate or a lower service
rate. The transfer requests arrival rate is great than or equal to the service rate
when ρ ≥ 1. A system with a single server is clearly insufficient to cope with the
amount of service requirement, and eventually blown up [14]. Queues are caused
by the uncertainty of the speed at which transfer requests arrive and the variation
of service time. The waiting time is zero only when transfer requests arrive at
a fixed interval and the service time is a constant. In reality, transfer requests
arrive at random intervals, and the time needed to serve a transfer request is
also random. To avoid the assumption that the transfer requests arrival rate and
the service rate are known, this research applies the empirical Bayes-ian method
to estimate the traffic intensity of a queuing system, which can satisfy the actual
randomness and uncertainty and ensure that the proposed model is reasonable.

2.2 Server-Dependent Queues

Whitt [13] investigated how performance scaling in the standard M/M/n queue
with growing congestion-dependent customer demand. Assuming growing con-
gestion dependent demand, service efficiency can be attained even if the potential
demand is highly uncertain, because the actual arrival rate is adjusted according
to the congestion. Zhang et al. [16] presented a nonlinear integer optimization
model to determine the number of machines at each tier in a multi-tier server
network, and utilized a result from an open queuing network model on the av-
erage response time. The optimization model minimizes the weighted sum of
number of servers while fulfilling the average response time constraint. Jennings
et al. [5] proposed a procedure to determine how many servers are needed, as
a function of time, in a nonstationary stochastic service system. Singh [7] de-
veloped a server-dependent queue that provided a new service facility whenever
the queue in front of the server reaches a certain length. Garg et al. [3] extended
Singh’s concept to develop an M/M/2 queue with several homogeneous or het-
erogeneous servers depending on the queue length. The service rate for the first
and the second server are different in a two-server heterogeneous system. Garg
et al. also proposed that the second server should be used at queue length N to
maximum profit. Yamashiro [15] revised the model of Garg et al. [3] and assumed
that a queue with finite capacity was applicable (M/M/2/L). Dai [2] proposed
the finite capacity M/M/3/L queuing system where the number of servers varies
according to the queue length. Bansal et al. [1] investigated the cost factors for
activating the second server.

Most of previous research concentrated on switching the second server on
when the queue length reached N . Some approaches are set up so that the
first server is not initiated until the queue reach length N . Researchers such
as Wang et al. [10] considered the server with unexpected failure to derive the
non-reliable M/M/1/L system; Wang et al. [9] drew Erlang distribution into
the non-reliable server in a finite and infinite M/H2/1 queuing system. Hsie
[4] proposed an M/M/1 system that turned the server off to reduce idling cost

232 P.-c. Lin

when it had no one to serve. The above studies all used the optimal queue length
N as the decision variable to determine when to turn on the first server, and
constructed the objective function for the minimum expected cost.

Wang et al. [11] and Dai [2] incorporated cost into the objective function.
Their studies quantified the waiting cost of transfer requests, and addressed the
cost of activating the second server, and its idle cost for building the model of
the minimum expected cost. However, Yamashiro [15], Wang et al. [9], Garg et
al. [3] and Dai [2] did not describe how to obtain the traffic intensity. This study
estimates the traffic intensity by the empirical Bayesian approach. Additionally,
the proposed system is set up so that the first server is always operating, thus
fitting most conditions. This study also adopts the queue length as decision
variables to switch on/off the second server.

3 Research Method

This investigation applied the empirical Bayesian approach to estimate the de-
mand for service. A server-dependent queuing system using the queue length to
activate and close the second server was constructed to maximize the expected
profit for a decision maker. In part 1, the required amount of service was es-
timated using numerical data from simulation and observation, and the traffic
intensity estimated with the empirical Bayesian approach proposed by Thiru-
vaiyaru [8]. The probability for each state was then calculated for an M/M/2/L
server-dependent queuing system in Part 2. Finally, the parameters of cost were
considered, and the results of Parts 1 and 2 were combined to solve the opti-
mal queue lengths N for starting a second server, and Q for switching it off.
The method was first introduced to estimate traffic intensity using the empirical
Bayesian approach and obtain observational data.

3.1 Empirical Bayesian Estimator of Traffic Intensity

Thiruvaiyaru [8] considered there are H independent M/M/1 queues in which
the interarrival times {Uik, i = 1 . . . n} of the first n transfer request, and the
service times {Vjk, j = 1 . . . m} of the first m transfer requests are observed for
k = 1 . . .H. The arrival rate λk , and {Uik, k = 1 . . .H } are i.i.d exponential
(λk) random variables, where

fUk
(uk|λk) = λn

kexp{−λk

n∑
i=1

uik} (1)

where Uk = (Uik, i = 1 . . . n)′.
Additionally, the service rate μk , and {Vjk, j = 1 . . .m} are i.i.d. exponential

(μk) random variables, given by

fVk
(vk|μk) = μm

k exp{−μk

m∑
j=1

vik} (2)

where Vk = (Vjk, j = 1 . . .m)′.

Optimizing the Profit of On-Demand Multimedia Service 233

The arrival rates {λ1 . . . λn} are assumed to be i.i.d. Gamma(α1, β1) (prior
distribution) and the service rates {μ1 . . . μm} are assumed to be i.i.d.
Gamma(α2, β2) (prior distribution). Additionally, the two sequences {λ1 . . . λn}
and {μ1 . . . μm} are assumed to be independent of each other. The empirical
Bayesian estimator is derived as

ρ̂ =
(n + α̂1)(

∑m
j=1 vj + β̂2)

(m + α̂2 − 1)(
∑n

i=1 ui + β̂1)
(3)

where α̂1, α̂2, β̂1, and β̂2 denote the one-step maximum likelihood estimators of
α1, α2, β1, and β2 respectively. First, let η̂l = (α̂l, β̂l)

′, l = 1, 2 be the one-
step maximum likelihood estimators of ηl = (αl, βl)

′, l = 1, 2. Let m11 =∑H
k=1
∑n

i=1
Uik

Hn and m21 =
∑H

k=1
∑n

i=1
U2

ik

Hn , to calculate m11 = β1/(α1 − 1)
and m21 = 2β2

1/(α1 − 1)(α1 − 2). The moment estimator (α̃1, β̃1) of (α1, β1) is
given by

α̃1 = 2(m21 − m2
11)/(m21 − 2m2

11) . (4)

β̃1 = m11m21)/(m21 − 2m2
11) . (5)

Again, let m12 =
∑H

k=1
∑m

j=1
Vjk

Hm and m22 =
∑H

k=1
∑m

j=1
V 2

jk

Hm , the moment
estimator of (α2, β2) are

α̃2 = 2(m22 − m2
12)/(m22 − 2m2

12) . (6)

β̃2 = m22m12)/(m22 − 2m2
12) . (7)

Then, the one-step maximum likelihood estimators of ηl = (αl, βl)
′, l = 1, 2 are

given by
η̂l = η̃l − W−1

l (η̃) · Sl(η̃), l = 1, 2 . (8)

where the marginal likelihood function is

L = f(x1, ..., xn) =
H

Π
k=1

f(Uk)f(Vk)

=
H

Π
k=1

[
β

α1
1

Γ (α1) · Γ (α1+n)
(Σn

i=1 uik+β1)α1+n · β
α2
2

Γ (α2) · Γ (α2+m)
(Σm

j=1 vjk+β2)m+α2

] (9)

and

ηl = (αl, β1)′, Sl(η̃) =
[
∂lnL

∂αl
,
∂lnL

∂βl

]′
ηl=η̃l

, l = 1, 2 . (10)

and

Wl(η̃) =

[
∂2 ln L

∂α2
l

∂2 lnL
∂αl∂βl

∂2 ln L
∂αl∂βl

∂2 lnL
∂β2

l

]
ηl=η̃l

, l = 1, 2 . (11)

234 P.-c. Lin

3.2 Server-Dependent M/M/2/L Queuing System

The major objective of this section is to establish a server-dependent M/M/2/L
queuing system with finite capacity L. This system is set up so that the first
server is al-ways on. When the number of transfer requests reaches N, the second
sever is acti-vated to release the congestion in the system; when the number of
transfer requests in systems falls to Q, then the system is no longer congested,
and the second server can be switched off to cut cost. The number of waiting
line is only 1, as demonstrated in Fig. 2.

The assumptions, parameters and variables used in the model are defined as
follows.

Assumptions

1. The service rule is FCFS.
2. The interarrival time of transfer requests is exponentially distributed with

unknown parameters.
3. The service time for each transfer request is exponentially distributed with

unknown parameters.
4. The service system can provide a maximum of two servers, but at least one

server remains active to serve transfer requests.
5. The system has finite capacity L, where L � N .
6. The service rates of the two servers are identical.
7. 1 < ρ < 2.

Definition of symbols

λ: arrival rate of transfer requests;
μ: service rate of server;
ρ: traffic intensity = λ \ μ;
i: number of servers in service, i = 1, 2;
j: number of transfer requests in system, j = 0, . . . , L;
P (1, j): the steady-state probability that only one server is in service when the
number of transfer requests in system is j, where j = 0, 1, 2, . . . , Q, Q + 1, . . . ,
N − 1;
P (2, j): the steady-state probability that only one server is in service when the
number of transfer requests in system is j, where j = Q+1, Q+2,. . . , N , N + 1,
. . . , N − 1,L.

This study build a server-dependent M/M/2/L system based on the above
assumptions and symbols. Figure 3 depicts the rate diagram of the birth and
death process. To solve the birth-death flow balance equations based on Fig. 3,
this study begins by expressing each P (1, j) and P (2, j) in terms of P (1, 0). The
steady-state probability of no transfer request in the system, given by P (1, 0),
is solved as follows:

P (1, 0) =
{

1
1 − ρ

− ρN{(2 − ρ)(N − Q) + ρ(1 − ρ)(ρ
2)L−N [1 − (ρ

2)N−Q]}
(2 − ρ)2(1 − ρN−Q)

}−1

(12)

Optimizing the Profit of On-Demand Multimedia Service 235

Then (12) can then be utilized to determine P (1, j), P (2, j). Each term of P (1, j),
P (2, j) is a function of the traffic intensity ρ, and the decision variables N ,
Q. The cost parameters can now be adopted to formulate an NLP to maxi-
mize the expected profit resulting from waiting for transfer requests and server
operation.

Server
1

Server
2

Off

L

STATUS OF SERVER NUMBER OF CUSTOMERS IN SYSTEM

0 1 2 Q Q+1 N-1 N N+1

On

On

Server 1 is always on

When number of customer in system
reaches N, turn on server 2

When number of customer in system
reduces to Q, turn off server 2

L-1

The decision variable for
turning off the second server

The decision variable for
turning on the second server

The maximum capacity
of system

Server
1

Server
2

Off

L

STATUS OF SERVER NUMBER OF CUSTOMERS IN SYSTEM

0 1 2 Q Q+1 N-1 N N+1

On

On

Server 1 is always on

When number of customer in system
reaches N, turn on server 2

When number of customer in system
reduces to Q, turn off server 2

L-1

The decision variable for
turning off the second server

The decision variable for
turning on the second server

The maximum capacity
of system

Fig. 2. Server-dependent queuing system with single waiting line

Fig. 3. Rate diagram for M/M/2/L queuing system

3.3 Formulation of Objective Function

An objective function is then built to minimize the expected cost of the M/M/
2/L controllable queuing system. The definitions of parameters are as follows:
R: expected subscription revenue per day;
Cs: fulltime operating cost for second server per day;
Ci: fulltime idle cost for second server per day;
CL: penalty cost for system being fully loaded per day;
Ce: cost for system being empty per day;
Con: start up cost for turning the second server on per day;
Coff : shut down cost for turning the second server off per day;
Cw: the average waiting cost for each transfer request per day,

236 P.-c. Lin

The expected profit per day is then given by

π(N, Q |ρ) = R − Cs ·
L

Σ
Q+1

P (2, j) − Cw · N−1
Σ

j=0
Max[0, (j − 1)] · P (1, j)

−Cw · L

Σ
j=Q+1

Max[0, (j − 2)] · P (2, j) − Ci ·
N−1
Σ

j=0
P (1, j) − Con · P (2, N)

−Coff · P (1, Q) − Ce · P (1, 0) − CL · P (2, L)

(13)

Equation (13) is written as a function of the traffic intensity ρ and decision vari-
ables N and Q. ρ is estimated by substituting an empirical Bayesian estimator
and substituting ρ̂EB into (13) to obtain P̂ (1, 0):

P̂ (1, 0) ={
1

1−ρ̂EB − (ρ̂EB)N (2−ρ̂EB)(N−Q)+ρ̂EB(1−ρ̂EB)(ρ̂EB

2)L−N 1−(ρ̂EB

2)N−Q

(2−ρ̂EB)2(1−(ρ̂EB)N−Q)

}−1

(14)
The expected profit maximization model is as follows:

Maximize(N, Q
∣∣ρ̂EB) = R − Cs ·

N

Σ
j=Q+1

(ρ̂EB)N ·(1−ρ̂EB)·[1−(ρ̂EB

2)j−Q]
(2−ρ̂EB)·[1−(ρ̂EB)N−Q] · P̂ (1, 0)

−Cs ·
L

Σ
j=N+1

(ρ̂EB)N ·(1−ρ̂EB)·[1−(ρ̂EB

2)N−Q]·(ρ̂EB

2)j−N

(2−ρ̂EB)·[1−(ρ̂EB)N−Q] · P̂ (1, 0)

−Cw · Q

Σ
j=0

Max[0, (j − 1)] · (ρ̂EB)j · P̂ (1, 0)

−Cw · N−1
Σ

j=Q+1
Max[0, (j − 1)] · ρ̂EB ·[(ρ̂EB)j−1−(ρ̂EB)N−1]

[1−(ρ̂EB)]N−Q · P̂ (1, 0)

−Cw · N

Σ
j=Q+1

Max[0, (j − 2)] · (ρ̂EB)N ·(1−ρ̂EB)·[1−(ρ̂EB/2)j−Q]
(2−ρ̂EB)·(1−(ρ̂EB)N−Q) · P̂ (1, 0)

−Cw · L

Σ
j=N+1

Max[0, (j − 2)]· (ρ̂
EB)N ·(1−ρ̂EB)·[1−(ρ̂EB/2)N−Q]

(2−ρ̂EB)·(1−(ρ̂EB)N−Q) · (ρ̂EB

2)j−N · P̂ (1, 0)

−Ci ·
[

Q

Σ
j=1

(ρ̂EB)j · P̂ (1, 0) +
N−1
Σ

j=Q+1

ρ̂EB ·[(ρ̂EB)j−1−(ρ̂EB)N−1]
[1−(ρ̂EB)]N−Q · P̂ (1, 0)

]
−Con · (ρ̂EB)N ·(1−ρ̂EB)·[1−(ρ̂EB/2)N−Q]

(2−ρ̂EB)·(1−(ρ̂EB)N−Q) · P̂ (1, 0)
−Coff · (ρ̂EB)Q · P̂ (1, 0)

−Ce · P̂ (1, 0) + CL · (ρ̂EB)N ·(1−ρ̂EB)·[1−(ρ̂EB/2)N−Q]
(2−ρ̂EB)·(1−(ρ̂EB)N−Q) · (ρ̂EB

2)L−N · P̂ (1, 0)
(15)

The above NLP is hard to solve analytically to prove that its feasible region
is a convex set possessing the optimal N∗ and Q∗ and globally maximizing the
expected profit. Therefore, this study applied a numerical method to explore
how changes in the NLP ’s parameters change the optimal solution.

4 Sensitivity Analysis

This section illustrates some results obtained in previous sections with a hypo-
thetical queuing experiment. The Monte Carlo simulation was first conducted

Optimizing the Profit of On-Demand Multimedia Service 237

to generate random data for five queues and the one-step maximum likeli-
hood estimator (α̂1, β̂1) = (58.19542203,11.31472722), (α̂2, β̂2) = (28.31890446,
6.954543058). The empirical Bayesian estimator of traffic intensity was calcu-
lated to ρ̂EB =1.294695872. A numerical analysis was performed to identify the
influence of individual parameter and discover the following rules:

1. When there is no start up and shut down cost for the second server, in order
to attain the maximum profit the second server should be turned on and off
fre-quently.

2. The second server does not readily provide service as the fulltime operating
cost for second server increases.

3. The second server should be kept busy most of the time when its fulltime
idle cost rises.

4. The service system can provide a maximum of two servers, but at least one
server remains active to serve transfer requests.

5. As long as the average waiting cost for each transfer request increases, the
system should not keep transfer requests to wait, so the second server should
be turned on as soon as possible.

6. The variation of penalty cost for system being fully loaded and empty reveal
does not significantly affect the minimum cost. However, the penalty cost
for system being fully empty does significantly change optimal N∗ and Q∗
significantly.

7. If the second server offered service at no cost, then it would be turned on
as soon as possible. However, the startup cost and shut-down cost would
prevent the sec-ond server from being turned on and off at will.

8. The greater the traffic intensity, the sooner the second server should be
turned on to ease the congestion.

Fig. 4. The expected profit vs. the queue lengths N for starting a second server, and
Q for switching it off

238 P.-c. Lin

9. The system capacity L does not affect the optimal solution when it is suffi-
ciently large.

Figure 4 depicts the relationship among the expected profit, the queue lengths
N for starting a second server, and Q for switching it off.

5 Conclusions

This study built a server dependent queuing system by applying the empiri-
cal Bayesian approach to estimate the demand for service. An NLP model of
maximum ex-pected profit for a decision maker was then constructed by utiliz-
ing the queue lengths as decision variables for when to activate and deactivate
the second server. The optimal value of N and Q to maximize profit was ob-
tained from the relationship among the costs of initializing the second server,
switching it on and off, and waiting by transfer requests. A sensitivity analy-
sis was undertaken to discover the effect of changes in the NLP’s parameters
(R;Cs;Ci;CL;Ce;Con;Coff ;Cw) on the optimal solution. The numerical analysis
reveals the following conclusions:

1. Increasing the fulltime operating cost of the second server and the penalty
cost of an empty system causes N∗ and Q∗ to rise;

2. Increasing the fulltime idle cost for the second server, the average waiting
cost for each transfer request, and the penalty cost for system being fully
loaded would decrease N∗ and Q∗;

3. Increasing the startup and shut-down cost for turning the second server on
and off would cause larger N∗ to increase but decrease Q∗. The results
of the evaluation model present a reference for service facility requirement
planning.

References

1. Bansal, K.K., Garg, R.L.: An Additional Space Special Service Facility Heteroge-
neous Queue. Microelectronics and Reliability, Vol. 35(4). (1994) 725–730

2. Dai, K.Y.: Queue-Dependent Servers in an M/M/3 Queueing System with Finite
Capacity. Master Thesis, National Chung Hsing University. Taiwan. (1999)

3. Garg, R.L., Singh, P.: Queue Dependent Servers Queueing System. Microe-
lectronics and Reliability, Vol. 33(15). (1993) 2289–2295

4. Hsieh, W.F.: Optimal Control of the Finite Capacity and Infinite Capacity with a
Removable Service Station Subject to Breakdown. Master Thesis, National Chung
Hsing University. Taiwan. (1993)

5. Jennings, O.B., Mandelbaum, A., Massey, W.A., Whitt, W.: Server Staffing to
Meet Time-Varying Demand. Management Science, Vol. 42 1383–1394 (1996)

6. Nahum, E.M., Rosu, M., Seshan, S., Almeida, J.: The Effects of Wide-Area Condi-
tions on WWW Server Performance. In Proc. ACM SIGMETRICS. Cambridge,
MA, (2001)

7. Singh, V.P.: Two-server Markovian Queues with Balking. Heterogeneous vs. Ho-
mogeneous Servers. Operations Research, Vol. 18(1), 145–59 (1970)

Optimizing the Profit of On-Demand Multimedia Service 239

8. Thiruvaiyaru, D., Basawa, I.V.: Empirical Bayes Estimation for Queueing Systems
and Networks. Queueing Systems, Vol. 11, 179–202 (1992)

9. Wang, K.H., Huang, H.M.: Optimal Control of a Removable Server in an M/Ek/1
Queueing System with Finite Capacity. Microelectronics and Reliability, Vol. 35(7),
1023–1030 (1995)

10. Wang, K.H., Hsieh, W.F.: Optimal Control of a Removable and Non-reliable Server
in a Markovian Queueing Systems with Finite Capacity. Microelectron. Reliab.,
Vol. 35(2), 189–196 (1995)

11. Wang, K.H., Chang, K.W., Sivazlian, B.D.: Optimal Control of a Removable and
Non-reliable Server in an Infinite and a Finite M/H2/1 queueing sys-tem. Applied
Mathematical Modelling, Vol. 23(8), 651–666 (1999)

12. Wang, Y.L.: Optimal Control of an M/M/2 Queueing System with Finite Capac-
ity Operating Under the Triadic (0,Q,N,M) Policy. Master Thesis, National Chung
Hsing University. Taiwan. (2001)

13. Whitt W.: How Multiserver Queues Scale with Growing Congestion-Dependent
Demand. Operations Research, Vol. 51(4), 531–542 (2003)

14. Winston, W.L.: Operations Research. 3rd edition, Duxbury, Indiana University
(1994)

15. Yamashiro, M.: A System Where the Number of Servers Changes Depending on
the Queue Length. Microelectronics and Reliability, Vol. 36(3), 389–391 (1996)

16. Zhang, A., Santos, P., Beyer, D., Tang, H.: Optimal server resource alloca-tion
using an open queueing network model of response time. Technical Report HPL-
2002-301, HP Labs. (2002)

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 240 – 251, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Service Matchmaking Based on Semantics
and Interface Dependencies

Shuiguang Deng, Jian Wu, Ying Li, and Zhaohui Wu

College of Computer Science, Zhejiang University, Hangzhou 310027, China
{dengsg, wujian2000, cnliying, wzh}@zju.edu.cn

Abstract. Most of the current service matchmaking algorithms are based on
one presupposition, in which all inputs of a service are indispensable to each
output of that service. However, this presupposition does not always hold. This
paper analyses this presupposition and argues that it exerts a negative influence
on the recall rate and precision to current matchmaking algorithms. A formal
service model is then introduced, which extends the service profile of OWL-S.
A new service matchmaking algorithm based on the model and semantics is
proposed. Compared with other algorithms, the proposed one takes interface
dependencies into consideration while performing matchmaking. This algo-
rithm has been applied in a service composition framework called DartFlow.
Our experimental data show that this novel service matchmaking outperforms
others in terms of the recall rate and precision.

1 Introduction

Web service technologies provide a new way for business enterprises to communicate
with their partners and customers. The number of services presented on the open
Internet is growing at an explosive speed, which subsequently brings great challenges
to the accurate, efficient and automatic retrieval of target services for consumers.
Much work aspires to solve this challenge. Among those efforts, SWS (Semantic Web
Service) is regarded as the most promising technology to retrieve services in an accu-
rate and automatic way. Relying on related languages and inference engines, it aims at
providing machine understandable descriptions of what services do and how they
achieve their goals [1]. Based on it, many service matchmaking algorithms are pro-
posed [2-6].

However, most of the service matchmaking algorithms are based on the presuppo-
sition, in which each output fully depends on all the inputs in a service. In other
words, it is imperative for service consumers to provide all the inputs of the service in
order to get even one output of the service. This requirement leads to some unwanted
situations. If those algorithms are used, some deserved target services are not returned
only because the number of each service’s input is less than the one specified in the
service request, even other information is the same. Consider such a matchmaking
scenario between a service S and a service request R, where S has three inputs (a, b
and c) and two outputs (o and p), and R specifies two inputs (a and b) and one output
(o). Most of the existing algorithms do not return S to R, as R cannot provide all of the
inputs to invoke S. This case indicates that the current algorithms take it for granted

 Service Matchmaking Based on Semantics and Interface Dependencies 241

that all the inputs (a, b and c) are indispensable to get the output (o). But for service
providers, in fact, this presupposition is not always consistent with their original in-
tention. In the above scenario, the actual intention of the service provider is that o
depends on only a and b, and p depends on only b and c. Hence service consumers
can only provide a and b when they invoke S to get o. Accordingly, S is certainly one
target service for R.

The presupposition is accepted by the existing service matchmaking algorithms be-
cause the current service specification languages, such as WSDL and OWL-S, do not
provide such a mechanism to depict and publish interface dependency information
inside a service. We argue that interface dependencies should be added to the current
service specifications and a good service matchmaking algorithm should take the
interface dependencies into consideration.

The remainder of this paper is organized as follows. First, a formal service model
with interface dependencies is given in Section 2. Based on it, the novel service
matchmaking algorithm is presented in Section 3. After that, its implementation in our
service composition framework - DartFlow is described in Section 4. The major re-
lated work and their comparison with the proposed algorithm are discussed in Section
5. Finally, Section 6 concludes this paper.

2 A Formal Service Model

Definition 1. A service is a 9-tuple: (, , , , , , , ,)S I O p eη σ υ π ψ= where:

(1) η is a service name.

(2) σ depicts some general information about the service in natural language for
human reading, such as the functional description.
(3) υ is a provider description of the service, which contains information about the
service provider such as the provider name and the corresponding method.
(4) π is a category name of the service based on the taxonomies such as NAICS1
and UNSPSC2.
(5) 1 2{ , , ... , }nI i i i= is the set of inputs.

(6) 1 2{ , , ..., }nO o o o= is the set of outputs. I O∪ is called interface set of the ser-

vice. e I O∀ ∈ ∪ is expressed using a domain-dependent ontology class with some
properties.
(7) p is the precondition.
(8) e is the effect.
(9) : 2IOψ → is the dependency function from the output set to the input power

set.

For an output o O∈ , () 2Ioψ ω= ∈ , meaning that o depends on input set ω . ψ

can be regarded as an extension to OWL-S, which as the specification of SWS is an

1 The North American Industry Classification System (NAICS) published by the US Census.
2 The United Nations Standard Product and Services Classification (UNSPSC) System

developed jointly by the UNDP (United Nations Development Program) and D&B (Dun &
Bradstreet Corporation) in 1998.

242 S. Deng et al.

ontology language for Web services with three main parts: the service profile that
provides public information for advertisement and discovery, the process model that
tells “how the service works” in detail, and the grounding that tells “how to access the
service” [1]. The service model extends the service profile of OWL-S by providing a
mechanism for service providers to depict and publish interface dependency informa-
tion. The meaning of dependency between outputs and inputs is defined below.

Definition 2. Given an output o and an input i of a service S, o depends on i (de-
noted as o i) if and only if i must be provided in order to get o in the service invo-
cation.

Definition 3. Given a service (, , , , , , , ,)S I O p eη σ υ π ψ= and an output o O∈ , if

o I i.e. ()o Iψ = , o is a fully-dependent output. If ()o Iψ ⊂ , o is a partially-

dependent output.

As Fig. 1 shows, both outputs o1 and o2 depend on i1 and i2 while o3 depends on only
i1. So o1 ad o2 are fully-dependent outputs and o3 is a partially-dependent output. We
represent a fully-dependent output as a dot-filled rectangle and a partially-dependent
output as a fork-filled rectangle as shown in Fig.1.

Fig. 1. An example of a service

Note that a service specification based on Definition 1 is used not only for service
matchmaking algorithms but also for service providers to publish their services. It
has the same purpose as the service profile of OWL-S and covers not only all the
content of the service profile, but also provides additional mechanisms for service
providers to depict and publish interface dependencies. The extended service profile
ontology for OWL-S is illustrated in Fig. 2. Compared with the standard service pro-
file ontology of OWL-S, the extended one has a new ontology classes named par-
tially-dependent output. It has three properties named output, dependOnInput and
dependOnInputs, respectively.

3 A Service Matchmaking Algorithm

This section presents a novel algorithm that is based on the extended service model,
which considers the interface dependencies implied in a service. In fact, this algo-
rithm is an improved version of our pre-published algorithm [16], in which we present
some semantic similarity definitions and computations in order to do service match-
making based on semantics. In this paper, the improved version also makes use of the
semantic similarity definitions and computations shown as below.

 Service Matchmaking Based on Semantics and Interface Dependencies 243

Fig. 2. An extended service profile ontology for OWL-S

3.1 Semantic Similarity Computation

Definition 4. For two ontology classes X and Y , X is semantically similar to
Y (denoted as X Y) if they have one of the following four relations:

(1) X and Y are the same class (denoted as X Y=).
(2) Inherited relation (denoted as X Y→). X is the subclass of Y , hence X in-
herits properties of Y . Thus they are semantically similar to some extent.
(3) Property relation (denoted as X Y). Class X is the property of class Y ,
hence X can partly provide the information of Y .
(4) Mixed relation (denoted as X Y∝).Class X has the property relation with
some class named Z (X Z), while class Y has the inherited relation with
Z (Y Z→), the relation between X and Y is called mixed relation. Since Y in-
herits all the properties of Z , including X , they are partly matched.

Definition 5. The relations among ontology classes construct a semantic
tree { , }G V E= , where:

(1) V is the set of finite and nonempty vertexes, and each vertex represents an
ontology class or a data type.
(2) E V V⊆ × is the set of the relations between the two vertexes. If X is a sub-
class ofY , there is a directed real line from Y to X . If X is the object property

244 S. Deng et al.

ofY , there is a directed dashed line from Y to X . If X is the data type property
ofY , there is a directed dashed dotted line from Y to X . In the latter two situa-
tions, there is no dashed connection between X and the subclass ofY .

Figure 3 is an example of the semantic tree.

Fig. 3. An example of a semantic tree

Definition 6. Given a semantic tree (,)G V E , the property degree of vertex a (de-

noted as ()PropertyNum a) is the number of the directed dashed lines and directed

dashed dotted edges emitted from the vertex a .

Definition 7. Inheriting vertex set (,)VexI a b . If there is a path connected by di-

rected real lines from vertex a to vertex b in G, (,)VexI a b contains all the vertexes in

the path, including a and b .

Definition 8. Property vertex set (,)VexP a b . In a semantic tree (,)G V E , if there

exists a path connected the dashed edges and dashed dotted edges from vertex a to
vertex b , (,)VexP a b contains all the vertexes in the path except b .

Definition 9. (,)Similarity X Y is the matching degree of class X to class Y . If

X can provide all the properties that Y embodies, they are totally matched. If X can
only partially provide the properties that Y embodies, they are partially matched. The
value of (,)Similarity X Y ranges from 0 to 1. The value 0 means X is not semanti-

cally similar to Y at all, while the value 1 means X is the same as Y . Note
that (,)Similarity X Y and (,)Similarity Y X represent different matching degrees.

Different relations between X and Y result in different formulae of similarity
evaluation.

 Service Matchmaking Based on Semantics and Interface Dependencies 245

(1) X Y= : (,) (,) 1Similarity X Y Similarity Y X= = =1.

(2) X Y→ : (,)Similarity X Y =1, since X inherits all the properties that Y embod-

ies. For example, in Fig. 3, Similarity (H, A) =1.

1(,)

1(,)

Pr ()

(,)
Pr ()

node Vex X Z

node Vex Y Z

opertyNum node

Similarity Y X
opertyNum node

∈

∈

= , where Z is the primal ances-

tor of X and Y . We hypothesize that the whole information of some class can be
described by its properties. Child class possesses not only its own properties, but also
those inherited from its ancestors. So (,)Similarity Y X is the ratio of the number of

properties they possess. For example, in Fig. 3, Similarity (A, H) =3/6.

(3) X Y : (,)Similarity Y X =1.

For example, in Fig. 3, Similarity (A, I) =1.

2(,)

1
(,)

()
node Vex Y X

Similarity X Y
PropertyNum node

∈

=
∏

.

We hypothesize that all the properties of some class are of the same weight. If
some class possesses n properties, then any one of the properties, namely X , contains
1/n information. If the class itself is a property of some class, namelyY , with m prop-
erties, then X contains 1/n*m information of Y . Analogically, (,)Similarity X Y is

defined as the above formula. For example, in Fig. 3, Similarity (I, A) =1/6.

(4) X Y∝ : (,)Similarity Y X =1, since Y inherits the property X from its ancestor.

For example, in Fig.3, Similarity (H, B) = 1.

2(,)

1(,)

1
Pr ()

(,)
Pr ()

node Vex Z X

node Vex Z Y

opertyNum node
Similarity X Y

opertyNum node
∈

∈

=
∏

,

where X Z and Y Z→ . For example, in Fig.3, similarity (B, H) =1/18.
(5) Otherwise, (,) (,)Similarity X Y Similarity Y X= =0

3.2 Service Matchmaking Based on Semantics and Interface Dependencies

In general, a service request specifies its input/output requirements, optional QoS
criteria and additional information such as the service category name and description
in its specification. In fact, the input/output requirements are the critical factors for
matchmaking algorithms. For the purpose of simplicity, this paper discusses only the
input/output requirements in a service request.

Definition 10. A service request is a 2-tuple: (,)r rR I O= , where

(1) 1 2{ , ,..., }r r r r
mI i i i= is the set of inputs, and

(2) 1 2{ , ,..., }r r r r
nO o o o= is the desired set of outputs.

246 S. Deng et al.

Note that all the elements in rI and rO can be expressed using a domain-
dependent ontology class with some properties.

Definition 11. Given a service (, , , , , , , ,)S I O p eη σ υ π ψ= and a service request

(,)r rR I O= , the matching degree between S and R is denoted as (,)S RΩ , which is

calculated according to the algorithm SERVICE_MATCHMAKING below.

Fig. 4. An example to illustrate the principle of SERVICE_MATCHMAKING

This algorithm ensures the value of a matching degree ranging from 0 to 1. Due to
space limitation, we just use the example in Fig. 4 to show how to calculate the
matching degree. If there are the following relations in the example:

1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1

3 3 3 3

(1) () , (,) 0.8 (2) () , (,) 0.6

(3) () , (,) 1.0 (4) () , (,) 0.7

(5) () , (,) 0.5

r r r r

r r r r

r r

o o similarity o o o o similarity o o

i i similarity i i i i similarity i i

i i similarity i i

χ χ
γ γ

γ

= = = =

= = = =

= =

The matching degree between S and R calculates as follows according to
SERVICE_MATCHMAKING. The relation 1 2()ro oχ = means that within the set .S O

the most similar concept to 1
ro of . rR O is 2o , while 2 1() ri iγ = means that within the

set . rR I the most similar concept to 2i of .S I is 1
ri .

(0.6 (1.0 0.7 0.5)) 3 (0.8 (0.5 0.7)) 2
(,) 0.46

2
S R

× + + + × +Ω = =

 Service Matchmaking Based on Semantics and Interface Dependencies 247

4 DartFlow: A Framework of Service Composition

The proposed formal service model and the SERVICE_MATCHMAKING algorithm
have been applied in DartFlow [7], which as a sub-project of DartGrid
(http://ccnt.zju.edu.cn/projects/dartgrid) [8, 9] is a framework for service composition
in the grid environment. It is oriented towards providing a convenient and efficient
way for TCM (Traditional Chinese Medicine) researchers to collaborate with each
other in research activities and experiments. It offers interfaces to allow researchers to
register, query, compose and execute services at the semantic level.

So far we have teamed up with China Academy of Chinese Medical Sciences
(http://www.catcm.ac.cn/) to establish the TCM domain ontology using Protégé and
the OWL-plug-in, which covers about 8000 class concepts and 50,000 instance con-
cepts [10]. Figure 5 (A) is a snapshot of our TCM ontology in Protégé. Moreover, we
have implemented a novel semantic-based grid client called Semantic Browser as
shown in Fig. 5 (B), which not only sketches out a semantic view of domain-ontology
for end-users but also provides a friendly interface for end-users to browse and search
for different resources such as TCM services and databases.

Fig. 5. Some screenshots of DartFlow

Based on the TCM domain ontology, we have developed a service registration
portal as shown in Fig. 5 (C). So far DartFlow has been injected with more than 60
categories of TCM services and the total number of services reaches about 800. All
services are provided by different TCM research organizations distributed in over 20
provinces of China. When users want to query services, they also provide a service
profile specifying their requirements to the portal. The portal invokes the matchmak-
ing agent to retrieve target services for users. The agent has implemented the

248 S. Deng et al.

proposed SERVICE_MATCHMAKING algorithm. Figure 5 (D) illustrates the work-
space for service composition.

5 Evaluation and Comparison

In order to display its advantages, we have carried out a series of experiments in
DartFlow. We select the standard UDDI and Paolucci’s method as reference. Here we
randomly select 200 services from 6 different categories registered in DartFlow as the
test set. The name of category and the number of services of each category are shown
in the top two rows of Table 1.

Table 1. Experiment results

Service Category Name
Pharmacology
Analysis (PhA)

Toxicology
Analysis (TA)

Pathology
Analysis (PA)

Symptomatology
Analysis (SA)

Prescription
generation (PG)

TCM
Mining (TM)

Service Number 42 30 24 15 52 37
Key-based Method 51(7) 35(4) 31(4) 14(2) 64(8) 45(6)
Semantic-Based Method 35(25) 26(18) 20(14) 13(9) 44(31) 31(22)
Our Method 44(36) 32(26) 26(21) 16(13) 58(47) 40(32)

Table 2. Recall rate and precision comparison

(%) Retrieve PhA Retrieve TA Retrieve PA Retrieve SA Retrieve PG Retrieve TM Average

Recall Rate 16.7 13.3 16.7 13.3 15.3 16.2 15.5
Precision 13.7 11.4 12.9 14.3 12.5 13.3 12.9

Recall Rate 59.5 60.0 58.3 60.0 59.6 59.4 59.5
Precision 71.4 69.2 70.0 69.2 70.5 70.9 70.4

Recall Rate 78.6 80.0 83.3 80.0 84.6 81.1 81.5
Precision 81.8 81.3 80.8 81.3 81.0 80.0 81.1

Key-based
Method

Semantic-Based
Method

Our Method

Totally six experiments are conducted. Each time we make three queries on the test
service set to retrieve one category of service using the key-based, Paolucci’s and the
proposed methods, respectively. From the third to fifth row in Table 1, each row re-
cords the results from one method in six experiments. The number out of a pair of
brackets denotes the total number of services retrieved from the method in an experi-
ment and the number in a pair of brackets denotes the number of target services in the
total number. For example, we get 13 services in total while using the semantic-based
method to retrieve symptomatology analysis (SA) services from the test set. However,
only 9 from 13 services indeed belong to the SA category. Table 2 shows the recall
rate and precision calculated from Table 1. The average recall rates for these methods
are 15.5%, 59.5% and 81.5%, respectively. The average precisions are 12.9%, 70.4%
and 81.1%, respectively. It shows that the semantic-based method can get better recall
rate and precision than the key-based method and our method gets better results than
the semantic-based method. Compared to the semantic-based method, our proposed
method gains improvements of 22% and 10.7% in recall rate and precision, respec-
tively. Thus we can draw a conclusion that mining functional unit relations and con-
sidering interface dependencies within services will enhance the performance of
matchmaking algorithms.

 Service Matchmaking Based on Semantics and Interface Dependencies 249

6 Related Work

Service matchmaking has captured many researchers’ attraction and much work has
been done [2-6]. Researchers aim at pursuing high recall rate and precision while
designing their service matchmaking algorithms. Precision is the proportion of re-
trieved documents that are relevant, and recall is the proportion of relevant documents
that are retrieved [11]. Most service matchmaking algorithms can be classified into
two categories: keyword and semantic-based methods. As a de-facto standard registry
for Web services, UDDI provides the typical keyword-based service matchmaking
function based on only names, comments and service descriptions. Because the key-
word-based search fails to recognize the similarities and differences between the ca-
pabilities provided by Web services, UDDI does not yield a satisfactory recall rate
and precision. To address this limitation, great efforts have been made to import ser-
vice semantics and non-functional attributes into UDDI and to propose alternative
ways to enhance its search functions [4, 12].

As a result, many semantic-based service query/matchmaking algorithms appear [2,
3, 6]. Klein [2] defines a fully-typed process ontology and then proposes an ontology-
based approach that employs the characteristics of process taxonomy to increase
recall without sacrificing precision and computational complexity of the service re-
trieval process. Paolucci [3] introduces a matchmaking algorithm based on the service
profile of DAML-S, which considers the matching of input/output concepts defined
by the same ontology. And also his group has developed a system called DAML-S
Matchmaker to augment current UDDI architecture with semantic service descrip-
tions. The matchmaker improves the discovery process by allowing location of ser-
vices based on their capabilities described in DAML-S. Syeda-Mahmood [6] explores
the use of domain-independent and domain-specific ontologies to find matching ser-
vice descriptions. The domain-independent relationships are derived using an English
thesaurus after tokenization and part-of-speech tagging.

Besides what is mentioned above, there are still many other semantic-based service
matchmaking algorithms [13, 14, 15]. They will gain better recall rate and precision if
they take into consideration the interface dependency information within a service.

7 Conclusion and Future Work

This paper proposes a novel service matchmaking algorithm to retrieve target services
in an accurate, efficient and automatic way based on the extended service profile
ontology of OWL-S. The main contributions of this work are (1) it is the first time to
point out the presupposition accepted by the current service matchmaking algorithms
and find out that it lower the recall rate and the precision of matchmaking algorithms;
(2) it extends the service profile ontology of OWL-S with feasible and convenient
mechanisms to describe and publish interface dependencies implied in services for
matchmaking algorithms. Those mechanisms can be regarded as important supple-
ments to the current service specification languages; (3) it proposes a novel service
matchmaking algorithm. Compared with other algorithms, the proposed one takes into
account the interface dependencies implied within a functional unit. The experiments
carried out in DartFlow show that the proposed algorithm has both a better recall rate

250 S. Deng et al.

and precision than others. However, this work has not taken into account the QoS and
other additional requirements in service requests. They also influence the matchmak-
ing results to some extent. They should be taken into further consideration in the
future research.

Acknowledgement

This work is supported by China 973 fundamental research and development project:
The research on application of semantic grid on the sharing of knowledge and service
of Traditional Chinese Medicine; Intel / University Sponsored Research Program:
DartGrid: Building an Information Grid for Traditional Chinese Medicine; and China
211 core project: Network-based Intelligence and Graphics.

References

1. Paolucci M. and Sycara K., 2004. Semantic Web Services: Current Status and Future Di-
rections. In: Proceeding of the IEEE International Conference on Web Services
(ICWS’04), p12-31.

2. Klein M. and Bernstein A., 2001. Searching services on the semantic Web using process
ontologies. In: Proceeding of the Int’l Semantic Web Working Symposium. (SWWS’01),
p159-172.

3. Paolucci M, Kawamura T, Payne TR, Sycara K., 2002. Semantic matching of Web services
capabilities. In: Proceeding of the International Semantic Web Conference (ISWC’02),
p36-47.

4. Kawamura T., Blasio JD., Hasegawa T., Paolucci M., Sycara K., 2004. Public Deployment
of Semantic Service Matchmaker with UDDI Business Registry. In: Proceeding of the
International Semantic Web Conference (ISWC’04), p752-766.

5. Benatallah B., Hacid M., Alain L. Christophe R., Farouk T., 2005. On automating Web
services discovery. VLDB Journal, 14(1), p84-96.

6. Syeda-Mahmood T., Shah G., Akkiraju R., Ivan A.-A, Goodwin R. 2005. Searching Ser-
vice Repositories by Combining Semantic and Ontological Matching. In: Proceeding of the
IEEE International Conference on Web Services (ICWS’05), p13-20.

7. Deng S.G., Wu Z.H., 2004. Management of Serviceflow in a Flexible Way, In: Proceeding
of the 5th International Conference on Web Information Systems Engineering (WISE’04),
p428-438

8. Wu Z.H., Chen H.J., 2004. DartGrid: Semantic-Based Database Grid. In: proceeding of
the International Conference on Computational Science (ICCS’04), p59-66.

9. Wu Z.H., Tang S.M, Deng S.G, 2005. DartGrid II: A Semantic Grid Platform for ITS.
IEEE Intelligent Systems 20(3), p12-15.

10. Zhou X.Z., Wu Z.H. et al, 2004. Ontology Development for Unified Traditional Chinese
Medical Language System, Journal of Artificial Intelligence in Medicine, 32(1), p183-194.

11. Voorhees E., 1998. Using WordNet for Text Retrieval. WordNet: An Electronic Lexical
Database, The MIT Press.

12. Zhou C., Chia L.T., Lee B.S., 2004. QoS-Aware and Federated Enhancement for UDDI.
International Journal of Web Services Research 1(2), p58-85.

 Service Matchmaking Based on Semantics and Interface Dependencies 251

13. Verma K., Sivashanmugam K., Sheth A., Patil A., Oundhakar S., Miller J., 2004.
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and
Discovery of Web Services. Journal of Information Technology and Management 6(1),
p17-39.

14. Sivashanmugam K., Verma K., Sheth A., Miller J., 2003. Adding Semantics to Web Ser-
vices Standards. In: Proceeding of the 1st International Conference on Web Services
(ICWS’03), p23-26.

15. Hausmann, J.H., Heckel, R. and Lohmann, M., 2005. Model-Based Development of Web
Services Descriptions Enabling a Precise Matching Concept. International Journal of Web
Services Research 2(2), p67-84.

16. Kuang L. Wu J. Deng S.G. et al. Exploring Semantic Technologies in Service Matchmak-
ing. In: Proceeding of the Third European Conference on Web Services (ECOWS’05),
p226-234.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 252 – 262, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Crawling Web Pages with Support for
Client-Side Dynamism*

Manuel Álvarez1, Alberto Pan1,**, Juan Raposo1, and Justo Hidalgo2

1 Department of Information and Communications Technologies,
University of A Coruña, 15071 A Coruña, Spain

{mad, apan, jrs}@udc.es
2 Denodo Technologies Inc, 28039 Madrid, Spain

jhidalgo@denodo.com

Abstract. There is a great amount of information on the web that can not be ac-
cessed by conventional crawler engines. This portion of the web is usually
known as the Hidden Web. To be able to deal with this problem, it is necessary
to solve two tasks: crawling the client-side and crawling the server-side hidden
web. In this paper we present an architecture and a set of related techniques for
accessing the information placed in web pages with support for client-side
dynamism, dealing with aspects such as JavaScript technology, non-standard
session maintenance mechanisms, client redirections, pop-up menus, etc. Our
approach leverages current browser APIs and implements novel crawling mod-
els and algorithms.

1 Introduction

The “Hidden Web” or “Deep Web” [1] is usually defined as the part of WWW docu-
ments that is dynamically generated. The problem of crawling the “hidden web” can
be divided in two tasks: crawling the client-side and crawling the server-side hidden
web. Client-side hidden web techniques are concerned about accessing content dy-
namically generated in the client web browser, while server-side techniques are fo-
cused in accessing to the valuable content hidden behind web search forms [3] [6].
This paper proposes novel techniques and algorithms for dealing with the first of
these problems.

1.1 The Case for Client-Side Hidden Web

Today’s complex web pages use scripting languages intensively (mainly JavaScript),
session maintenance mechanisms, complex redirections, etc.

Developers use these client technologies to add interactivity to web pages as well
as for improving site navigation. This is done through interface elements such as

 * This research was partially supported by the Spanish Ministry of Education and Science

under project TSI2005-07730.
** Alberto Pan’s work was partially supported by the “Ramón y Cajal” programme of the Span-

ish Ministry of Education and Science.

 Crawling Web Pages with Support for Client-Side Dynamism 253

pop-up menus or by disposing content in layers that are either shown or hidden de-
pending on the user actions.

In addition, many sources use scripting languages, such as JavaScript [10], for a
variety of internal purposes, including dynamically building HTTP requests for sub-
mitting forms, managing HTML layers and/or performing complex redirections. This
situation is aggravated because most of the tools used for visually building web sites
generate pages which use scripting code for content generation and/or for improving
navigation.

1.2 The Problem with Conventional Crawlers

There exist some problems that make it difficult for traditional web crawling engines
to obtain data from client-side hidden web pages. The most important problems are
described in the following sub-sections.

1.2.1 Client-Side Scripting Languages
Many HTML pages make intensive use of JavaScript and other client-side scripting
languages (such as Jscript or VBScript) for a variety of purposes such as:

• Generating content at runtime (e.g. document.write methods in JavaScript).
• Dynamically generating navigations. Scripting code may be for instance in the

href attribute of an anchor, or can be executed when some event of the page is
fired (e.g. ‘onclick’ or ‘onmouseover’ for unfolding a pop-up menu when the user
clicks or moves the mouse over a menu option). It is also possible for the scripting
code to rewrite a URL, to open a new window or to generate several navigations
(more than URL to continue the crawling process).

• Automatically filling out a form in a page and then submitting it.

Successfully dealing with scripting languages requires that HTTP clients imple-
ment all the mechanisms that make it possible to a browser to render a page and to
generate new navigations. It also involves following anchors and executing all the
actions associated to the events they fire. Using a specific interpreter (e.g. Mozilla
Rhino for JavaScript [7]) does not solve these problems, since real world scripts as-
sume a set of browser-provided objects to be available in their execution environment.
Besides, in some situations such as multi-frame pages, it is not always easy to locate
and extract the scripting code to be interpreted. That is why most crawlers built to
date, including the ones used in the most popular web search engines, do not provide
support for this kind of pages.

To provide a convenient execution environment for executing scripts is not the
only problem associated with client-side dynamism. When conventional crawlers
reach a new page, they scan it for new anchors to traverse and add them to a master
list of URLs to access. Scripting code complicates this situation because they may be
used to dynamically generate or remove anchors in response to some events. For
instance, many web pages use anchors to represent menus of options. When an anchor
representing an option is clicked, some scripting code dynamically generates a list of
new anchors representing sub-options. If the anchor is clicked again, then the script
code may “fold” the menu again, removing the anchors corresponding with the sub-
options. A crawler dealing with the client-side deep web should be able to detect

254 M. Álvarez et al.

these situations and to obtain all the “hidden” URLs, adding them to the master URL
list.

1.2.2 Session Maintenance Mechanisms
Many websites use session maintenance mechanisms based on client resources like
cookies or scripting code to add session parameters to the URLs before sending them
to the server. A number of challenges to deal with:

• While most crawlers are able of dealing with cookies, we have already stated that
is not the case with scripting languages.

• Another problem arises for distributed crawling. Conventional architectures for
crawling are based on a shared “master list” of URLs from which crawling pro-
cesses (maybe running in different machines) pick URLs and access them inde-
pendently in a parallel manner. Nevertheless, with session-based sites, we need to
insure that each crawling process has all the session information it requires (such
as cookies or the context for executing the scripting code). Otherwise, any attempt
to access the page will fail. Conventional crawlers do not deal with these situa-
tions.

• Accessing the documents at a later time. Most web search engines work by index-
ing the pages retrieved by a web crawler. The crawled pages are usually not stored
locally but they are indexed with their URLs. When at a later moment a user ob-
tains the page as result of a query against the index, he can access the page through
its URL. Nevertheless, in a context where session maintenance issues exist, the
URLs may not work when used at a later time. For instance, the URL may include
a session number that expires a few minutes after being created.

1.2.3 Redirections
Many websites use complex redirections that are not managed by conventional crawl-
ers. For instance, some pages include JavaScript redirections executed after an on
load page event (the client redirects after the page has been completely loaded);

<BODY onload="executeJavaScriptRedirectionMethod()”>

In these cases, the HTTP client would have to analyze and interpret the page con-
tent to detect and correctly manage these types of redirections.

1.2.4 Applets and Flash Code
Other types of client technology are applets or flash code. They are executed on the
client side, so it has to implement a container component to process them. Although
accessing the content shown by programs written in these languages is difficult due to
their “compiled” nature, a web crawler should at least be able to deal with the com-
mon situation where these components are used as an “introduction” that finally redi-
rects the user to a conventional page where the crawler can proceed.

1.2.5 Other Issues
Web page elements such as frames, dynamic HTML or HTTPS, accentuate the afore-
mentioned problems. In general terms, we can say that it is very difficult to consider
all the factors, which make a Website visible and navigable through a web browser.

 Crawling Web Pages with Support for Client-Side Dynamism 255

1.3 Our Approach

Due to all the reasons mentioned above, many designers of web sites avoid these
practices in order to make sure their sites are on good terms with the crawlers. Never-
theless, this forces them to either increment the complexity of their systems by mo-
ving functionality to the server, or reducing interactivity with the user. Neither of
these situations is desirable: web site designers should think in terms of “improving
interactivity and friendliness of sites”, not about “how the crawlers work”.

This paper presents an architecture and a set of related techniques to solve the
problems involved in crawling web pages with support for client-side dynamism. Our
system has already been successfully used in several real applications in the fields of
corporate search and technology watch.

The main features of our approach are the following:

• Our crawling processes are not based on http clients. Instead, they are based on
automated “mini web browsers”, built using standard browser APIs (our current
implementation is based on the MSIE – Microsoft Internet Explorer [4] - Web-
Browser Control). These “mini-browsers” understand NSEQL (see section 2), a
language for expressing navigation sequences as “macros” of actions on the inter-
face of a web browser. This enables our system to deal with executing scripting
code, managing redirections, etc.

• To deal with pop-up menus and other dynamic elements that can generate new an-
chors in the actual page, it is necessary to implement special algorithms to ma-nage
the process of generating new “routes to crawl” from a web page (see section 3.4).

• To solve the problem of session maintenance, our system uses the concept of route
to a document, which can be seen as a generalization of URL. A route specifies a
URL, a session object containing the needed session context for the URL, and a
NSEQL program for accessing the document when the session used for crawling
the document has expired.

• The system also includes some functionality to access pages hidden behind forms.
More precisely, the system is able to deal with authentication forms and with
value-limited forms. We term the ones exclusively composed of fields whose pos-
sible values are restricted to a certain finite list as value-limited forms (e.g. forms
composed exclusively of fields ‘select’, ‘checkbox’, ‘radio button’,…).

2 Introduction to NSEQL

NSEQL [5] is a language to declaratively define sequences of events on the interface
provided by a web browser. NSEQL allows to easily express “macros” representing a
sequence of user events over a browser.

NSEQL works “at browser layer” instead of “at HTTP layer”. This lets us forget
about problems such as successfully executing JavaScript or dealing with client redi-
rections and session identifiers.

Figure 1 shows an example of an NSEQL program, which is able to execute the
login process at YahooMail [11] and navigate to the list of messages from the Inbox
folder.

256 M. Álvarez et al.

The Navigate command tells the browser to navigate to the given URL. Its effects
are equivalent to that of a human user typing the URL on his/her browser address bar
and pressing the ENTER key.

The FindFormByName(name, position) command looks for the position-th HTML
form in the page with the given name. Then, the SetInputValue(fieldName, posi-
tion, value) commands are used to assign values to the form fields.

The ClickOnElement(name, type, position) command, clicks on the position-th
element of the given type and name from the current selected form. In this case, it is
used to submit the form and load the result page. The ClickOnAnchorByText (text,
position, exactToken) command looks for the position-th anchor, which encloses
the given text and generates a browser click event on it. This will cause the browser to
navigate to the page pointed by the anchor.

Although not included here, NSEQL also includes commands to deal with frames,
pop-up windows, MS Windows events, etc.

3 The Crawling Engine

As well as in conventional crawling engines, the basic idea consists of maintaining a
shared list of routes (pointers to documents), which will be accessed by a certain
number of concurrent crawling processes, distributed into several machines. The list
is initialized with a list of routes. Then, each crawling process picks a route from the
list, downloads its associated document and analyzes it in order to obtain new routes
from its anchors, which are then added to the master list. The process ends when there
are no routes left or when a specified depth level is reached. The value proposition in
our approach is the way we obtain new routes.

The structure of this section is as follows. In section 3.1, we introduce the concept
of route in our system, and how it enables us to deal with sessions. Section 3.2 pro-
vides some detail about the mini-browsers used as the basic crawling processes in the
system, as well as the advantages they provide us with. Section 3.3 describes the ar-
chitecture and basic functioning of the system. Finally, section 3.4 shows the algo-
rithm used for generating new routes from anchors and forms controlled by scripting
code (e.g. JavaScript).

Navigate(http://mail.yahoo.com);

FindFormByName(login_form,0);

SetInputValue(login,0,loginValue);

SetInputValue(passwd,0,passwordValue);

ClickOnElement(_NULL_,INPUT,24);

ClickOnAnchorByText(Go to Inbox,1,true);

Fig. 1. NSEQL Program

 Crawling Web Pages with Support for Client-Side Dynamism 257

3.1 Dealing with Sessions: Routes

In conventional crawlers, routes are just URLs [12]. Thus, they have the problems
with session mechanisms that we have already mentioned in section 1.2.2. We pro-
pose a new concept for “route”, which will be composed by three elements:

• A URL pointing to a document. In the routes from the initial list, this element may
also be an NSEQL program. This is useful to start the crawling in a document,
which is not directly accessible through a URL (for instance, this is usually the
case with websites requiring authentication).

• A session object containing all the required information (cookies, etc.) to restore
the execution environment in which the crawling process was running in the mo-
ment of adding the route to the master list.

• An NSEQL program representing the navigational sequence followed by the sys-
tem to reach the document.

The second and third elements are automatically computed by the system for each
route. The second element allows a crawling process to access a URL added by other
crawling process (even if the original crawling process was running in another ma-
chine). The third element is used to access the document pointed by the route when
the session originally used to crawl the document has expired. This is useful when
session expiration times are short and, as we will see later, to allow for later access to
crawled documents.

3.2 Mini-browsers as Crawling Processes

Conventional engines implement crawling processes by using http clients. Instead, the
crawling processes in our system are based on automated “mini web browsers”, built
by using standard browser APIs (our current implementation is based on the MSIE
WebBrowser Control), and which are able to execute NSEQL programs.

This allows our system to:

• Access the content dynamically generated through scripting languages (e.g.
JavaScript document.write methods).

• Evaluate the scripting code associated with anchors and forms, so we can obtain
the real URLs these elements are pointing to.

• Deal with client redirections: after executing next navigations, the mini-browser
waits until all the navigation events of the actual page have finished.

• Provide an execution environment for technologies such as Java applets and Flash
code. Although the mini-browsers cannot access the content shown by these “com-
piled” components, they can deal with the common situation where these compo-
nents are used as a graphical introduction, which finally redirects the browser to a
conventional web page.

3.3 System Architecture / Basic Functioning

The architecture of the system is shown in Figure 2.
When the crawler engine starts, it reads its configuration parameters from the

Configuration Manager Component. The metainformation required to configure the

258 M. Álvarez et al.

system includes a list of URLs and/or NSEQL navigation sequences to access the
initial sites, the desired depth for each initial route, download handlers for different
kinds of documents, content filters, a list of regular expressions representing DNS
domains to be included and excluded from the crawling, and other metainformation
not dealt with here.

The following step consists of starting the URL Manager Component with the list
of initial sites for the crawling, as well as starting the pool of crawling processes.

The URL Manager is responsible for maintaining the master list of routes to be ac-
cessed; all the crawlers share this list.

Once the crawling processes have been started, each one picks a route from the
URL Manager. It is important to note that each crawling process can be executed
either locally or remotely to the server, thus allowing for distributed crawling. As we
have already remarked, each crawling process is a mini web-browser able to execute
NSEQL sequences.

Then the crawling process loads the session object associated to the route and
downloads the associated document (it uses the Download Manager Component to

Crawled Document
Repository

Common URL
Repository

Browsers PoolBrowsers Pool

IExplorer tech

Mozilla tech

InternetInternet

index

ActiveX

Indexer

Generic
Searcher

Crawlers Pool
CrawlerComponent

CrawlerComponent

CrawlerComponent

Configuration
Manager

Component

C
ra

w
le

r
E

n
g

in
e

Content Manager
Component

Download Manager
Component

URLManager Component

Indexer Component

Searcher Component

Data Repository

Content filters
Local URL List

State

Fig. 2. Crawler Architecture

 Crawling Web Pages with Support for Client-Side Dynamism 259

choose the right handler for the document, such as PDF, MS Word, etc). If the ses-
sion has expired, the crawling process will use the NSEQL program for accessing the
document again.

The content from each downloaded document is then analyzed by using the Con-
tent Manager Component. This component specifies a chain of filters to decide if the
document can be considered relevant and, therefore, if it should be stored and/or in-
dexed. For instance, the system includes filters which allow checking if the document
verifies a keyword-based boolean query with a minimum relevance in order to decide
whether to store/index it or not. Another chain of filters is used for post-processing
the document. For instance, the system includes filters to extract relevant content
from HTML pages or to generate a short document summary.

Finally, the system tries to obtain new routes from analyzed documents and adds
them to the master list. In a context where scripting languages can dynamically ge-
nerate and remove anchors and forms, this involves some complexities. See section
3.4 for detail.

The system also includes a chain of filters to decide whether the new routes must
be added to the master list or not. In the most usual configuration, while the maximum
desired depth is not reached, all the anchors of the documents will generate new
routes. Value-limited forms (those having only fields with a finite list of possible
values, as commented on section 1.3) will generate a new route for each possible
combination of the values of its fields.

The architecture also includes components for indexing and searching the crawled
contents, using state of the art algorithms. The crawler generates an XML file for each
crawled document, including metainformation such as its URL and the NSEQL se-
quence needed to access it.

The NSEQL sequence will be used by another component of the system architec-
ture: the ActiveX for automatic navigation Component. This component receives as a
parameter a NSEQL program, downloads itself into the user browser and makes it
execute the given navigation sequence. In our system this is used to solve the problem
of access to documents at a later time (see section 1.2.2). When the user executes a
search against the index and the list of answers contains some results, which cannot
be directly accessed by using its URL due to session issues, the anchors associated to
those results in the list will invoke the ActiveX component passing as parameter the
NSEQL sequence associated to the page. Then, if the users click on the anchor, the
ActiveX will make their browser automatically navigate to the desired page.

3.4 Algorithm for Generating New Routes

This section describes the algorithm used in our system to generate new routes to be
crawled given a HTML page. This algorithm deals with the difficulties associated
with anchors and forms controlled by scripting languages.

In general for the new routes to be crawled from a given HTML document, it is
necessary to analyze the page looking for anchors and value-limited forms. A new
route will be added for each anchor and for each combination of all possible values of
the fields from each value-limited form. The anchors and forms which are not con-
trolled by scripting code can be dealt with as in conventional crawlers: for anchors, a
new route is built from the value of its href attribute, while for static forms, the new

260 M. Álvarez et al.

routes for each combination of values can also be routinely built by analyzing the
action attribute of the form tag and the tags representing the form fields and their
possible values.

Nevertheless, if the HTML page contains client-side scripting technology, the
situation is more complicated. The main idea of the algorithm consists of generating
click events over the anchors controlled by scripting languages in order to obtain valid
URLs (NOTE: we will focus our discussion on the case of anchors. The treatment of
value-limited forms is analogous), but there are several additional difficulties:

• Some anchors may appear or disappear from the page depending on the scripting
code executed (e.g. pop-up menus).

• The script code associated to anchors must be evaluated in order to obtain valid
URLs.

• One anchor can generate several navigations.
• In pages with several frames, it is possible for an anchor to generate new URLs in

some frames and navigations in others.

Now we proceed to describe the algorithm. Remember that our crawling process is
a “mini-browser” able to execute NSEQL programs. The browser can be in two
states: in the navigational state the browser functions normally, and when it executes
a click event on an anchor or submits a form, it performs the navigation and
downloads the resulting page; in turn, in the simulation state the browser only cap-
tures the navigation events generated by the click or submit events, but it does not
download the resource.

1. Let P be an HTML page that has been downloaded by the browser (navigational
state).

2. The browser executes the scripting sections, which are not associated to condi-
tional events.

3. Let Ap be all the anchors of the page with the scripting code already interpreted.
4. For each ai Ap, remove ai, and:

• If the href attribute from ai does not contain any associated scripting code and it
has not got an onclick attribute (or, if the system is configured to do so, other at-
tributes used to assign scripting code to specific events such as onmouseover),
the anchor ai is added to the master list of URLs.

• Otherwise, the browser changes to simulation state, and generates a click event
on the anchor -and, if configured to do so, other relevant events such as mouse-
over-:

• There exist some anchors that, when clicked, can generate undesirable ac-
tions (e.g. a call to the “javascript:close” method closes the browser). The
approach followed to avoid this is to capture these undesirable events and
to ignore them.

• The crawler captures all the new navigation events that happen as a conse-
quence of the click. Each navigation event produces a URL. Let An be the
set of all the new URLs.

• Ap = An U Ap.
• Once the execution of the events associated to a click over an anchor has

fi-nished, the crawler analyzes again the same page looking for new an-
chors that could have been generated by the click event (for instance, new

 Crawling Web Pages with Support for Client-Side Dynamism 261

options corresponding to pop-up menus), Anp. New anchors are also added
to Ap, Ap = Anp U Ap.

5. The browser changes to navigational state, and the crawler is ready to process a
new URL.

If the processed page has several frames, then the system will process each frame
in the same way.

Note that the system processes the anchors in a page following a bottom-up ap-
proach, so new anchors are added on the list before the existing ones. This way, new
anchors will be processed before some other click can remove them from the page.
Also notice that the added anchors will have to match the filters for adding URLs
mentioned in section 3.3.

4 Related Work and Conclusions

A well-known approach for discovering and indexing relevant information is to
“crawl” a given information space (e.g. the WWW, the repositories of a corporate
Intranet, etc.) looking for information verifying certain requirements. Nevertheless,
today’s web “crawlers” or “spiders” [2] do not deal with the hidden web.

During the last few years, there have been some pioneer research efforts dealing
with the complexities of accessing the hidden web [3] [6] using a variety of ap-
proaches. Nevertheless, these systems are only concerned with server-side hidden
web (that is, learning how to interpret and query HTML forms).

Some crawling systems [9] have included JavaScript interpreters [7] [8] in the
HTTP clients they use in order to provide some limited support for dealing with
JavaScript. Nevertheless, our system offer several advantages over them:

• It is able to correctly execute any scripting code in the same manner it would be
executed by a conventional web browser.

• It is able to deal with session maintenance mechanisms for both crawling and later
access to documents (the latter is made through an ActiveX component able to exe-
cute NSEQL programs).

• It is able to deal with anchors and forms generated dynamically in response to
events produced by the user (e.g. pop-up menus).

• It is able to deal with redirections (including those generated by Java applets and
Flash programs).

Finally, we want to remark that the system presented in this paper has already been
successfully used in several real-world applications in fields such as corporate search
and technology watch.

We have found the need for crawling the client-side hidden web to be very fre-
quent in these application domains. The reason is that, although most popular “main-
stream” websites avoid using JavaScript and other similar techniques in order to be
correctly indexed by large-scale engines such as Google, many medium-scale web-
sites containing information of great value continue to use them intensively.

This is specially the case for websites requiring subscription or user authentication:
since these sites do not have any incentive for easing the work of the large scale
search engines, many of them make intensive use of client dynamism. Nevertheless,

262 M. Álvarez et al.

this kind of sites usually is the most valuable for many focused search applications,
like technology watch or vertical search engines. Thus, our experience says the efforts
for accessing the client-side deep web are valuable and should be continued.

References

1. Bergman, M. The Deep Web. Surfacing Hidden Value. http://www.brightplanet.com/
technology/deepweb.asp

2. Brin, S., Page, L. The Anatomy of a Large-Scale Hypertextual Search Engine. In Proceed-
ings of the 7th International World Wide Web Conference (1998)

3. Ipeirotis, P., Gravano, L. Distributed Search over the Hidden Web: Hierarchical Database
Sampling and Selection. In Proceedings of the 28th International Conference on Very
Large Databases (VLDB 2002).

4. Microsoft Internet Explorer WebBrowser Control, http://www.microsoft.com/windows/ie
5. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, A. Semi-Automatic Wrapper Genera-

tion for Commercial Web Sources. In Proceedings of IFIP WG8.1 Working Conference on
Engineering Information Systems in the Internet Context (EISIC 2002).

6. Raghavan S., García-Molina, H. Crawling the Hidden Web. In Proceedings of the 27th In-
ternational Conference on Very Large Databases (2001)

7. Mozilla Rhino - JavaScript Engine (Java). http://www.mozilla.org/rhino/
8. Mozilla SpiderMonkey – JavaScript engine (C) http://www.mozilla.org/js/spidermonkey/
9. WebCopier – Feel the Internet in your Hands. http://www.maximumsoft.com/

10. Scripts in HTML Documents. http://www.w3.org/TR/html4/interact/scripts.html
11. Yahoo Mail. http://mail.yahoo.com
12. Naming and Addressing: URIs, URLs, ... http://www.w3.org/Addressing/

RecipeCrawler: Collecting Recipe Data
from WWW Incrementally

Yu Li1, Xiaofeng Meng1, Liping Wang2, and Qing Li2

1 School of Information, Renmin Univ. of China, China
{liyu17, xfmeng}@ruc.edu.cn

2 Computer Science Dept., City Univ. of Hong Kong, HKSAR, China
50095373@student, itqli@.cityu.edu.hk

Abstract. WWW has posed itself as the largest data repository ever available
in the history of humankind. Utilizing the Internet as a data source seems to be
natural and many efforts have been made. In this paper we focus on establish-
ing a robust system to collect structured recipe data from the Web incrementally,
which, as we believe, is a critical step towards practical, continuous, reliable web
data extraction systems and therefore utilizing WWW as data sources for various
database applications. The reasons for advocating such an incremental approach
are two-fold: (1) it is impractical to crawl all the recipe pages from relevant web
sites as the Web is highly dynamic; (2) it is almost impossible to induce a gen-
eral wrapper for future extraction from the initial batch of recipe web pages. In
this paper, we describe such a system called RecipeCrawler which targets at in-
crementally collecting recipe data from WWW. General issues in establishing an
incremental data extraction system are considered and techniques are applied to
recipe data collection from the Web. Our RecipeCrawler is actually used as the
backend of a fully-fledged multimedia recipe database system being developed
jointly by City University of Hong Kong and Renmin University of China.

1 Introduction

WWW has posed itself as the largest data repository ever available in the history of
humankind, which also is highly dynamic as there are web pages created and/or deleted
on a daily basis. Utilizing WWW as a data source seems to be natural and many efforts
have been made according to the literatures. However, devising generic methods for
extracting Web data is a complex (if not impossible) task, because the Web is very
heterogeneous as well as there are no rigid guidelines on how to build HTML pages
and how to declare the implicit structure of the Web pages. Various systems, either
prototypes or commercial products, try to solve the problem in two specific domains:
(1) data intensive pages (such as the search results on Amazon) usually generated by
online database search engines, and (2) data record pages (such as a single product
page on Amazon) usually for product descriptions. The main difference between the
two domains is that in the former case, there is more than one data record in each page
whereas in the latter case, there is only one record in each page. Furthermore, data
records of the first case share a common keyword since the web page is generated by
a search engine, but for the second case the web pages usually share the same page
template as they are formatted by a web page generator.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 263–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

264 Y. Li et al.

In this paper we focus on the latter case through building a robust system to collect
structural data from WWW continuously. It is a part of a collaborative project between
Renmin University of China and City University of Hong Kong, the goal of which is
to build a fully-fledged multimedia recipe database by collecting as many recipe web
pages as possible. We extract the data records from the collected recipe pages which will
be later on used in a multimedia database application–RecipeView (Fig.2). Generally
speaking, recipe web pages are very similar to online product web pages in that (a)
one web page contains only one record, (b) they follow an underlying template, and (c)
there are many optional attributes. Some examples of recipe pages are shown in Fig.1.
Thus by applying existing techniques, which are roughly classified into two categories–
wrapper induction and automatic extraction, our goal may be achieved. However, this
turns out to be a non-trivial task because of the following reasons:

– It is impractical to crawl all the recipe pages from a web site. In Fig.1(c), there
is an example of a recipe category list. The webmaster will add/update some new
recipe links (shown in red circle) while updating other links such as advertisements
and activities. Naive crawling of all updated links will not only lead to an ineffi-
cient strategy but also impact the latter steps by introducing some noisy web pages.
Thus we have to consider how to identify real recipe links while crawling pages
incrementally.

– It is almost impossible to induce a general wrapper with initial batch of recipe web
pages. Because of the continuous updating of recipe web sites, the changes of the
underlying schema may cause the existing wrapper broken. For example, Fig.1(a) is
a typical recipe web page when the web site was created. It only contains a name, a
picture, a material list, a seasoning list and some cooking steps. As time elapses, the
webmaster provides us with some new recipes, one of which is shown in Fig.1(b).
Because some complex new optional attributes are added (e.g. two styles of sauce
in Fig.1(b)) and the existing attributes are revised (e.g. seasoning turns to be re-
peatable), such of these variations not only cover simple representation changes,
but also involve serious schema evolutions, which definitely makes conventional
extraction techniques inapplicable.

Due to these observations, our approach is to build a system (called RecipeCrawler)
that can automatically extract relevant content data, and be able to do so incrementally
so that the new web pages containing new recipe records may be added dynamically.
To this end it must support the following incremental features in extraction of newly
crawled web pages from the recipe websites.

1. Incrementally crawling specific web pages. In our system, some web data
sources, such as recipe web site’s categories, recipe blog pages, or even recipe
online forums, are monitored. Whenever the links are updated, crawler should not
only grab the web page pointed by the link, but also justify whether it is the one we
need. It is possible as we have some extracted recipe data records, which can give
us the domain knowledge of recipes.

2. Incrementally extracting web pages for data records. Either wrapper based or
automated method faces the problem of web site’s schema evolutions. The extrac-
tion program should not only be able to adapt itself to meet the schema revision,

RecipeCrawler: Collecting Recipe Data from WWW Incrementally 265

Fig. 1. Examples of Recipe and Category List Web Pages

but also be able to identify new attributes. This is important to help applications
which rely on the extraction system to be of more concrete, useful, and valuable
services. And it also enables the extraction system to be a reasonable and practical
web data extraction system.

By putting all things together, we aim to build our system as a practical robust system
which supports incremental automated data extraction. It is different from existing sys-
tems in that novel modifications are made upon the tradition architecture. In a nutshell,
our contributions in this paper include: 1) a framework for building incremental web
data extraction system, which is implemented in our prototype system for collecting
recipe data from WWW incrementally; 2) solutions for adopting and adapting existing
data extraction techniques under incremental scenarios.

In this paper we describe our RecipeCrawler system in detail. The rest of this paper
is organized as follows. In section 2, we briefly review some existing techniques on web
data extraction. Section 3 gives out an overview of RecipeCrawler. Section 4 and 5 dis-
cuss our main considerations in designing and implementing each component. Finally
we give out a conclusion and future works in section 6.

2 Related Work

One of the reasons why the Web has achieved its current huge volume of data is that
a great and increasing number of data-rich web sites automatically generate web pages
according to the data records stored in their databases. Taking advantage of this fact,
several approaches have been proposed and systems have been built to extract these
data in literature. Generally these systems fall into two categories: wrapper induction
versus automatic extraction.

With wrapper induction techniques, some positive web pages are selected as posi-
tive examples and then wrappers are trained. Though using wrappers to do continuous

266 Y. Li et al.

extraction is possible, wrappers may expire in future [6]. Thus wrapper maintenance
problems arose and efforts were paid in solving it. However, to our knowledge, it as-
sumes that there are only few small changes in web pages’ representation whereas in
fact the underlying schema may change [8], such as:(1) attributes that have never ap-
peared in previously extracted pages may subsequently be added; (2) attributes appeared
in previously extracted web pages may later be removed. These can cause the templates
induced from existing web pages to be invalid, thus intuitive extraction strategies can
not be applied. Therefore wrapper induction is not practical towards long-time, contin-
uous data extraction.

On the other hand, as automatic extraction techniques can automatically extract
structural data without doing wrapper maintenance from web pages, it becomes more
popular recently years. The first reported work on automated data extraction was done
by Grumbach and Mecca [5], in which the existence of collections of data-rich pages
bearing a similar structure (or schema) was assumed. In RoadRunner [3], an algorithm
was proposed to infer union-free regular expressions that represent page templates. Un-
fortunately, this algorithm has an exponential time complexity hence it is impractical
for real-life data extraction systems. Then Arvind and Hector [1] proposed an improved
version with a polynomial time complexity by employing several heuristics. Both of
these works view web pages in HTML as a sequence of tokens (single words and tags),
so when it comes to infer a template from complex web pages with many nesting struc-
tures, their solutions are still inapplicable. Other researchers have tried to solve the
automated data extraction problem by viewing web pages as a long string, through em-
ploying similar generalization mechanisms (e.g., [2] and [10]). Be aware of the tree
structure of web pages, [9] and [11] presented techniques based on tree edit distance for
this problem. Both of them utilize a restricted tree edit distance computation process to
find mapping between two web pages and then do future data extraction. In [9], wild-
cards are attached to tree nodes and heuristics are employed when there is a need to
generalize them. In [11], a more advanced technique named partial tree alignment was
proposed, which can align corresponding data fields in data records without doing wild-
cards generalizations. In our system, we use a similar technique and make it applicable
under incremental data extraction.

While some major works have been done on clustering or classifying web pages,
few of them are on automated data extraction as far as we can see from the literature.
In [4], several web page features were proposed for wrapper-oriented classification.
In the news extraction system [9], a hierarchical clustering technique was proposed to
cluster web pages according to their HTML tree structures. A basic distance measure-
edit distance is calculated by comparing two HTML DOM trees, which can tell us how
similar the two web pages are. When the web page contains more than one data record,
there is almost no need to do the clustering. But new problems do arise. For example,
how to identify data regions containing data records in such kind of web pages is a
problem. In particular, several strategies have been proposed in [7] and [12].

Combining these existing automated data extraction techniques may lead us to a
generic system that is able to crawl, cluster and extract structured data from a whole
web site once for all. For our recipe collection scenarios, we need to continuously col-
lect recipe data from the web, hence modifications to such techniques or other novel

RecipeCrawler: Collecting Recipe Data from WWW Incrementally 267

techniques are needed. In the rest of this paper we show our approach to build an incre-
mental data extraction system by adopting and adapting the existing web data extraction
techniques.

3 RecipeCrawler - A Recipe Data Collection System

Starting from this section, we will discuss the general considerations on how to build
a system to support incremental features in conventional architecture by introducing
our recipe data collection system. As Fig.2 illustrates, general architecture of current
existing extraction systems were applied. Besides adopting and adapting the classic
components such as web crawler, web data extractor and annotator, a new component
called “Monitor” is advocated to keep a close watch on recipe sources. Instead of dig-
ging into the details on how it is designed and implemented as well as how it supports
incremental features, in this section we would like to give an overview on how recipe
data are collected.

Fig. 2. Recipe Data Extraction System - An Overview

The mission of RecipeCrawler is to provide RecipeView with the recipe data records
which are embedded in web pages. Here RecipeView is a user-centered multimedia view
application built on top of the recipe database and means to provide user continuous,
flexible user experience. It requires the extraction system (viz. RecipeCrawler) to be
incremental because it needs recipe data updated every day on WWW.

Fig.2 shows an overall picture on how RecipeCrawler works. In particular, we incre-
mentally grab recipe web pages by monitoring some data sources, which are as shown
in the left part of Fig.2, including recipe web sites, recipe blogs and recipe online fo-
rums et. al. Considering that their indices are usually accessible (such as category lists
in recipe web sites, taxonomy pages in recipe blogs and archive lists in recipe online fo-
rums), we establish a module called “Monitor” to find out the updated links from these
sources. In order to identify whether the specific updated link is just the one we need,
extracted data has been used as domain knowledge to do data clarifications. And sur-
vivors, which are definitely the ones we need, are sent to “Crawler” which does basic
crawling as well as validation and repairing on HTML pages.

268 Y. Li et al.

Next the crawled web pages are delivered to the “Classifier” which puts pages into
different categories. In this procedure, an algorithm proposed in [9] has been adopted
and adapted to classify web pages according to their underlying structures (or underly-
ing template). Two categories–“Recipe Web Pages” and “Recipe Category Pages” are
derived through this step, where the former one usually contains the detailed informa-
tion of each recipes and the latter one usually maintains taxonomy of recipes.

In the extraction procedure, web pages in each category are processed by an “Au-
tomated Extractor” and thus category information and recipe data are retrieved. An-
notation was done by a module named “Interactive Annotation” which is operated by
human, who tells the system what attribute is about what. As our system means to work
in incremental way, being able to handle schema changes is critical so we proposed a
method by adopting algorithms in [11]. We will further discuss it in section 5 as well
as the mechanism of annotation process. So finally we get the desired data with cor-
responding annotations and thus can import them into DBMS for future applications,
which is RecipeView in our case.

Before we go to the sections that discuss the details of each component, we want
to emphasize the incremental nature of RecipeCrawler again. Incremental features in
RecipeCrawler are the basic requirements and also the significant differences compar-
ing with other systems. Though there is an initial web page set, which can be extracted
before the RecipeView system is established, we can not guarantee that the wrapper in-
duced or the schema learnt in them will always be valid for future cases, because we
can not naively believe the webmaster will always update recipes activities, or assume
the schema will not change. In other words, our RecipeCrawler should face the very dy-
namic perspective of WWW and the only choice is to make sure that each component
of our system has the ability of doing incremental update.

4 Retrieving Recipe Web Pages

Monitoring, crawling and classifying procedures in RecipeCrawler are implemented
to retrieve recipe web pages. In this section we mainly focus on the mechanism of
monitoring and classifying procedures whereas crawling procedure is omitted because
its implementation is fairly simple and straightforward.

4.1 Monitoring Recipe Data Sources

Recipe data sources on WWW usually have an index facility, such as category lists
in recipe web sites, taxonomy pages in recipe blogs and archive lists in recipe online
forums and so on. Monitoring them for updated recipe links generally should (1) find
out whatever new/updated links, and (2) identify whether they are recipe-related links
or not. The former step is easy by simply comparing current web page with history
version whereas the latter one is complicated. The link discovery procedure of conven-
tional crawler usually does simple identifications based on several rules, such as URL
domains, file types and so on. Few works are done on semantic link discovery because:
(1) crawlers are usually of general use; (2) insufficient domain knowledge can be uti-
lized to do it. However, in RecipeCrawler, we focus on recipe web pages, concerning
not to introduce noisy web pages to subsequent procedures; we can even have domain

RecipeCrawler: Collecting Recipe Data from WWW Incrementally 269

knowledge by analyzing the extracted data of the initial set, which can always be se-
lected out when first time we crawl the web site. With these characteristics in mind, we
proceed to present a semantic link discovery method.

Fig. 3. Identifying Recipe Links Based on the
Extracted Data - An Example

Fig. 4. Classifying Recipe Web Pages

As illustrated in Fig.3, our strategy of identifying recipe links on the basis of the
extracted data works as follows. First, the current index of a web page is compared to
the old one. In this way, the updated links, texts and HTML paths can be retrieved.
For example, “Fowl Staffed Duck”(in short, FSD) with its link and HTML DOM path
can be retrieved. Secondly we try to find records in extracted data which have similar
links, as machine does not know whether it is a recipe link. Two links are similar if
we can find a common pattern in them (In our system, we uses common URL prefix).
Only considering URL pattern is sometimes not enough as there are still some links
such as activities may survive. Therefore we utilize HTML paths and texts for further
clarifications. After finding out similar records of a specified link, we first check how
many records residing in the same subtree according to HTML paths. Referring back to
the example, as we have FSD’s DOM path, we also know similar records’ DOM path
(which are recorded in last time’s extraction), by finding common parent nodes, such
as “L” node of the DOM tree in right bottom corner of Fig.3. Note that we only give a
simple DOM tree here due to the space reason, in which number denotes the content.
If we can not find any, this link is probably not a recipe link so we discard it. If we can
only find few (in our system, we use 0.5 as the threshold, which means half out of total
records), the text is used as the third judgment, which is simple keyword matching in
our system, in the hope of finding common recipe keywords(such as “Beef”, “Pork”
and so on). If most records reside in the same subtree, we let the link survive. Figure 3
illustrates the whole process we have just described, which, based on our practice, has
been quite effective and efficient.

4.2 Classifying Recipe Web Pages

In the next step, we build a module “Classifier” to handle the web page classification.
The classifier program in our system has two stages, as shown in Fig.4. In the first
stage we organize the web pages according to URLs, thus obtaining categories of web
sites. This stage is relatively easy. Next we further classify crawled web pages accord-
ing to the tree structures. A clustering algorithm based on tree edit distance [9] has

270 Y. Li et al.

been adopted and adapted. As mentioned before, recipe web pages in our scenario may
contain repeatable attributes, so we have modified the matching process to cover re-
peatable cases. It is called sibling matching which is also used in automated extraction
procedure and the details will be given in section 5.1. After classification we will get
two categories, namely recipe web pages and recipe category pages, for each web site.
Subsequent extractions will be done in these categories.

The classification procedure is in nature incremental for cases where there are no big
changes in page templates. When a template (or structure) changes a lot, a new initial
data set needs to be generated so that a new classification process can proceed.

5 Retrieving Recipe Records

We now describe how RecipeCrawler retrieves recipe data from the crawled recipe web
pages. There are two modules involved, namely “Automated Extrator” and “Interac-
tive Annotation”. Though they do different functions in retrieving recipe data, there is
no rigid execution order. In RecipeCrawler, they are actually invoked asynchronously.
Fig.5 gives an illustration on how these two modules cooperate with each other. The
Automated Extractor continuously does extraction on web pages while the Interactive
Annotation is notified each time new attributes are identified. Automated Extrator will
generate two data tables, namely “Recipe Data” and “Category Data”, from recipe web
pages and recipe category pages, respectively. Each table may contain some new at-
tributes during the incremental extraction. Thus an execution of annotation procedure is
needed. Then we select data fields that have been annotated from these two tables, and
join them according to URLs. Finally data is extracted and ready to be imported into
DBMS.

Fig. 5. Retrieving Recipe Data from Web
Pages

Fig. 6. Illustration of How Automated Recipe
Data Extraction Works

5.1 Automated Extraction

In this module, we adopt techniques proposed in [11] for automated extraction. As
reported in [11], an algorithm named partial tree alignment based on the simple tree

RecipeCrawler: Collecting Recipe Data from WWW Incrementally 271

matching was used to extract data records in data intensive web pages, such as result
pages returned by online retailer web sites. The recipe category web pages in our system
are also data intensive web pages, so data records can be directly extracted by applying
this algorithm. But we need to modify it in order to extract new/updated records in it
for supporting incremental features. This can be done by comparing currently extracted
results to the former ones, so the details are omitted here.

On the other hand, extracting data from recipe web pages is not so easy. It is a non-
trivial problem because: (1) attributes that have never appeared in previously extracted
pages may subsequently be added; (2) attributes that appeared in previously extracted
web pages may later be removed; (3) attributes that appeared as singleton in previously
extracted web pages may be modified to be repeatable. For example, referring back
to Fig.1, the “sauce” attribute appearing in Fig.1(b) is an example of added attributes,
and the “seasoning” attribute appearing both in Fig.1(a) and Fig.1(b) is an example of
revised attributes, which later can be repeatable. There is no example of removed at-
tributes in Fig.1, but it is easy to give out: any optional attribute can be it when we start
from web pages containing it to web pages without it. Though the technique proposed
in [11] can roughly handle these situations by selecting and starting from the maximal
web page in the hope of that it contains as many optional nodes as possible, it is un-
fortunately inapplicable in our incremental crawling scenario. So we have adapted it to
fulfill the incremental requirements.

Instead of explaining the detailed algorithm used by RecipeCrawler, we give an il-
lustrative example in Fig.6 to show how it works. We suppose there are 5 recipe web
pages, and to be simple, we present them in simple characters sequence, in which each
character denoting a subtree directly contains text values, such as “Materials:

Beef 150g” . We can get the sequence by specific traversal of HTML
tree [11], and we use pre-order traversal here. According to [11], partial tree alignment
first selects the biggest web page as the seed and then do multiple tree alignment. In
our example, the biggest one is t3. But in an incremental situation, t3 may not be in the
initial set because it is not created by any webmaster at all. In our example, we assume
that the initial set has t1 t2, whereas t3, t4 and t5 are added subsequently.

For the initial set we apply the partial tree alignment technique. First we do a sibling
matching (as shown in Fig.6(2)), which is used to handle repeatable attributes (“d” in
t2). The sibling matching scans each tree and tries to match siblings in it. If two sib-
ling nodes match, they will be replaced by a single example node (we simply take the
first one). We do not consider non-sibling nodes because usually a list of repeatable
attributes will not be interrupted by other attributes. (For example, the webmaster will
not insert some cooking steps in the middle of listing materials.) And the sibling match-
ing performs whenever we match a web page to another (as well as the template, see
below). After doing that we make the tree matching based on the edit distance compu-
tation to find mappings. By taking the biggest one t2 as the template, we can align t1
to it and by applying partial tree alignment techniques [11] we can also align optional
nodes. The basic idea of partial template alignment is trying to find the unique insertion
location for each unmatched nodes. In our example, “b” of t1 is unmatched, but we can
find a unique insertion location in t2 for it, because “a” and “d” are matched and there is
nothing between them in t2. So “b” should be inserted between “a” and “d” in t2 to form

272 Y. Li et al.

a template. After inserting all optional nodes as proven in [11], recipe data is extracted
and a template (shown in Figure 6(3)) is induced. Then an annotation process may be
invoked, but at this time we are not sure that the nodes “b” and “f” are the data attributes
we need (they can be useless values such as “copyright by” et. al.). Another reason is
that they may be disjunctions as we have only few instances. So, in our example, we
simply suppose no annotation in it, so actually we only extract “a”, “d” and “e”.

Now we come to the part of incremental extraction. Supposing that t3, t4 and t5 will
be updated and crawled one by one, Fig.6(4,5,6) shows how the extraction is done. The
basic idea is to match new crawled web pages with the existing template and insert the
unmatched nodes into the template. When there is no unique insertion location for the
specific node, we insert it by merging it as a possible value into a possible node. In our
example, when t3 comes, we find that “c” does not have a unique insertion location as
there is already an unannotated “b” between “a” and “d”, so we merge “c” as a possible
value into “d”, thus the template can cover t3 (as shown in Fig.6(4)). At this time t3 can
be partially extracted with some part left in the induced template, which may be further
matched or annotated (extraction process will give annotation process a notification at
this time). Another node, say “f”, matches with the one in the template, thus we have
enough instances to identify “f” as an attribute and both “f” nodes in t2 and t3 will be
extracted.

After processing t3, t4 comes in subsequently. This time we match it with the tem-
plate too. The difference is that when matching with node “b c”, we need to match
two times to find the best one. We can see that “c” will be matched thus attribute “c”
will be identified. But we can not take it out from the “b c” node for there is still no
unique insertion location. The template after matching and extracting t4 is as be seen in
Fig.6(5). After t5 comes, matching with t5 will identify the attribute “b” too. And the
order of attributes “b” and “c” can be identified since we have t5 as the instance (there
is a “b” “c” sequence in t5). Thus all attributes are identified and can be extracted. The
induced template is shown in Fig.6(6). Next time when new web pages come in, the
same processing techniques can be used.

Note that currently we do not consider disjunctions in our strategy due to two rea-
sons. Firstly, disjunctions are actually not that serious when we are doing incremental
extraction. By using following web pages as examples (Fig.6(6)), identifying whether
there are disjunctions is easy. Secondly, the chances of disjunctions making our strategy
broken are fairly few. For example, considering a web page t6(“a c b d e”), our strat-
egy would break while handling it. But this is rare because t6 means that web master
changes the order of attributes (such as giving “cooking steps” before “materials”). It is
almost unlikely and we did not find any cases in our practice, so we leave this problem
to be a possible future work.

5.2 Interactive Annotation

Currently in RecipeCrawler the annotation procedure is designed as an interactive pro-
gram. It can be asynchronously invoked by a system operator while the system does
automated extraction. The template induced by automated extraction will be presented
to the operator for annotation instead of requiring him to do annotation on each record.
When a new attribute is identified, a notification will be given. Then the system oper-
ator can check the revised template and examples to decide what kind of attribute it

RecipeCrawler: Collecting Recipe Data from WWW Incrementally 273

is. Having annotations made to the extracted recipes and category data, they will be
selected out and joinned based on URLs to generate the final extraction results. Unan-
notated data will be reserved in the extracted data storage for future annotation. This
mechanism ensures us to be able to incrementally extract meaningful recipe data for
RecipeView as soon as newly crawled web pages come in. In our practice, we perform
the interactive annotation when the initial set was extracted and when enough (e.g., 10)
new web pages are extracted. The current practice of RecipeCrawler shows that such
an approach is quite reasonable and effective.

5.3 Importing Recipe Data Records

As shown in Fig.2, the extracted recipe data records by RecipeCrawler are to be utilized
by a front-end application system called RecipeView. Since the retrieved recipe data
records come from various sources, they should go through an importation procedure
before they can be fully utilized. This procedure is called “Preprocess” in RecipeView,
which involves Filtering and Standardization. The Filtering module makes sure that all
the recipe records are qualified for the system requirements (e.g. by checking whether
the data fields of each record are correctly identified). In the Standardization module, all
the recipe records have to conform to a standard presentation by fusing different data
formats together. For instance, the display sequence of the data fields in each record
must be the same. Thus they become uniform and consistent. After the “Preprocess”
procedure, the recipe data records are imported into an underlying DBMS for possible
user manipulations within the RecipeView system.

6 Conclusion and Future Work

As we believe, building incremental data extraction is a critical step towards practi-
cal, continuous, reliable web data extraction systems that utilize WWW as the data
source for various database applications. In this paper, we have described such a system
(viz., RecipeCrawler) which targets at incrementally collecting recipe data from WWW.
General issues in establishing an incremental data extraction system are considered
and techniques applied to recipe data collection from the Web. Our RecipeCrawler has
served as the backend of a multimedia database application system (called RecipeView)
and offers good experimental results. Various techniques proposed in literature for data
extraction from WWW are adopted and adapted to do the automated recipe data extrac-
tion as well as to support incremental features. As for future research, besides evaluat-
ing and improving our system, we also plan to address other important issues, including
better crawling strategies and automated annotation algorithms.

Acknowledgments

This research was partially supported by the grants from the Natural Science Foundation
of China under grant number 60573091, 60273018; the National 973 Basic Research
Program of China under Grant No.2003CB317000 and No.2003CB317006; the Key
Project of Ministry of Education of China under Grant No.03044 ; Program for New
Century Excellent Talents in University(NCET).

274 Y. Li et al.

References

1. A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In Proceed-
ings of the 22th ACM SIGMOD International Conference on Management of Data, pages
337–348, 2003.

2. C.H. Chang and S.C. Lui. Iepad: information extraction based on pattern discovery. In
Proceedings of the 10th International World Wide Web Conference, pages 681–688, 2001.

3. V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic data extraction
from large web sites. In Proceedings of 27th International Conference on Very Large Data
Bases, pages 109–118, 2001.

4. V. Crescenzi, G. Mecca, and P. Merialdo. Wrapping-oriented classification of web pages. In
Proceedings of the 17th ACM Symposium on Applied Computing (SAC), pages 1108–1112,
2002.

5. S. Grumbach and G. Mecca. In search of the lost schema. In ICDT ’99, pages 314–331,
1999.

6. N. Kushmerick. Wrapper verification. World Wide Web, 3(2):79–94, 2000.
7. B. Liu, R. L. Grossman, and Yanhong Zhai. Mining data records in web pages. In Proceed-

ings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 601–606, 2003.

8. X. Meng, D. Hu, and C. Li. Schema-guided wrapper maintenance for web-data extraction.
In the 5th ACM CIKM International Workshop on Web Information and Data Management,
pages 1–8, 2003.

9. D.C. Reis, P.B. Golgher, A.S. Silva, and A.H.F. Laender. Automatic web news extraction
using tree edit distance. In Proceedings of the 13th international conference on World Wide
Web, pages 502–511, 2004.

10. J. Wang and F. H. Lochovsky. Data extraction and label assignment for web databases. In
Proceedings of the 12th International World Wide Web Conference, pages 187–196, 2003.

11. Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In Proceedings of
the 14th international conference on World Wide Web, pages 76–85, 2005.

12. H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. T. Yu. Fully automatic wrapper generation
for search engines. In Proceedings of the 14th international conference on World Wide Web,
pages 66–75, 2005.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 275 – 286, 2006.
© Springer-Verlag Berlin Heidelberg 2006

CCWrapper: Adaptive Predefined Schema
Guided Web Extraction*

Jun Gao, Dongqing Yang, and Tengjiao Wang

Department of Computer Science and Technology, Peking University, Beijing, China
{gaojun, dqyang, tjwang}@pku.edu.cn

Abstract. In this paper, we propose a method called CCWrapper (Classifica-
tion-Cluster) to extract target data items from web pages under the guide of the
predefined schema. CCWrapper extracts and combines the different HTML
nodes features, including the style, structure, thesaurus and data type attributes
into one unified model, and generates the extraction rules with Bayes classifica-
tion in the training step. When the new HTML page is handled, CCWrapper
generates the probability of the target element for each HTML node and clus-
ters the HTML nodes for extraction based on the intra-document relationship in
the HTML document tree. The preliminary experimental results on real-life web
sites demonstrate CCWrapper is a promising extraction method.

1 Introduction

With the web becoming the abundant information resource, web data extraction,
which can map loosely-structured data from web pages into a formal structure, has
received much attention in the past few years [1-11]. The extracted web data can be
used to provide users with better service. The module of web extraction is also called
the wrapper.

How to extract data from web pages of different web sites while at the same time
to reduce the human involvement is a big challenge. Since the initial purpose of
HTML is for human browsing rather than computer processing, the structure, style, or
the layout of web pages are different from each other. In addition, some web sites take
the anti-extraction strategy to prevent their data from being extracted. The structures
for HTML document trees may be changed dynamically with time. Although the
users may not be aware of those changes, some HTML page structure based wrapper
cannot work.

There are several types of data extractions from web pages: (1) region extraction
(extracting the interesting region in the form of HTML from the original HTML
page); (2) target data extraction (extracting individual data items scattered on web
pages, such as name of a product and its price); (3) schema guide data extraction
(extracting individual data items scattered and annotating individual data according to

* Project 60503037 supported by NSFC, Project 4062018 supported by Beijing Natural Sci-

ence Foundation.

276 J. Gao, D. Yang, and T. Wang

the predefined schema). Our method falls into the third category, but also borrows
some ideas from the methods in the first two categories.

Although the current methods have made great achievement in the web extraction,
they can be improved in the following aspects: improving the quality of the extracted
data; improving the adaptability of the wrapper; reducing the human burden in the
web extraction.

In order to overcome the limitation of the existing methods and handle the prob-
lems in extraction, we attempt to propose a method called CCWrapper. Specifically,
the contributions of this paper can be summarized as follows:

 Rather than treating a HTML document as a sequence of tokens, we exploit
more semantic features, including the style, structure, thesaurus and data type
attributes, from the HTML nodes. We extract the features of HTML node
which is mapped to the target element in the training phase. The Bayes net-
work classification method is used to generate the extraction rules based on
the HTML nodes features set.

 Based on the probability produced from the Bayes network classifier over the
HTML nodes in a new HTML tree, we cluster these nodes and establish the
mapping from the nodes in HTML tree to the target elements based on a
benefit model. In addition, we discuss how to exploit the intra-document rela-
tionship for HTML nodes to improve the quality of the web extraction.

 The experiments on the real data set demonstrate the effectiveness of
CCWrapper.

The rest of the paper is organized as follows. Section 2 introduces some prelimi-
nary knowledge. Section 3 proposes the extraction rules generation and application in
CCWrapper. Section 4 shows experimental results, and Section 5 reviews the related
work. Section 6 concludes the whole work and discusses the further work.

2 Preliminary Background

This section reviews the preliminary knowledge including HTML and target schema
for the extracted information, and discusses the criteria to evaluate the web extraction
methods.

2.1 HTML

HTML can be modeled as a node labeled tree. Each node is annotated with one node
name and may have different sub nodes and attributes. There are different kinds of
nodes according to the role of the nodes in the HTML tree. The structure node can
describe the structure of the HTML web page, for example, <body>, <td>, <tr>…etc.
The text nodes are always the leaf nodes in the HTML document tree, which contains
the target data for extraction. If the text node is not a hyperlink node, it is called a
normal text node, or else, it is a hyperlink text node. The style node controls the ap-
pearance of the HTML text nodes. The code nodes include the scripts codes which
can run in the HTML page.

 CCWrapper: Adaptive Predefined Schema Guided Web Extraction 277

2.2 The Target Predefined Schema

Due to the heterogeneous nature of web pages, we use the flexible DTD to represent
the schema of extracted data. DTD can support the element definition with the regu-
lar expression of the sub elements. Given a regular expression definition R of ele-
ment e, the “*” annotated on sub element e1 of e indicates zero-many occurrence of
sub element e1, denoted as Card(e1)=*; the “?” annotated on the sub element
e1 indicates zero-one occurrence of sub element e1, denoted as Card(e1)=?. The
one time occurrence of sub element e1 in the expression is represented by Card
(e1)=1. If the element definition is not recursive, DTD can be represented by a
schema tree.

2.3 The Evaluation of Web Extraction Methods

Given a set of the web pages W from the web sites set S, the data set D1 behind the
web pages set W, the data set D2 extracted from the web pages W with method M, the
recall of M can be defined as |D1∩ D2|/|D1|, the precision of M can be defined as
|D1∩ D2|/|D2|.

A web wrapper can be represented as a set of extraction rules. Suppose the rules of
a web wrapper E are not specific to some given web sites, we call E the adaptive
wrapper. Suppose the rules of web wrapper E can be generated on the training set
automatically rather than hand crafting, we call E the semi-automatically generated
web wrapper.

3 CCWrapper: Adaptive Predefined Schema Web Extraction

The problem handled in the paper can be described as follows: Given a training set W
of web pages from a web sites set S, the target schema T with the regular expression
element definition including “*” or “?”, how to build a web wrapper W to extract data
from web page under the guide of target schema T, while to improve the recall and
precision of the extracted data, to improve the adaptability of W and to reduce the
human burden in the process.

3.1 The Framework of CCWrapper

The framework of CCWrapper can be illustrated in the following figure. First, a user
establishes mappings from the nodes in training HTML document to the target ele-
ments with a user friendly interface. Second, CCWrapper extracts the features includ-
ing the structure features, style features, data type feature and layout features of the
HTML nodes which have been mapped to the target elements. Third, CCWrapper
generates a Bayes network classifier C to represent the extraction rules over the fea-
tures set. Fourth, CCWrapper uses classifier C to get the probability of target element
for each node in a new HTML page. In the final step, CCWrapper exploits the intra-
document relationship in HTML page to cluster the nodes and annotate the HTML
nodes with the target elements in the schema.

278 J. Gao, D. Yang, and T. Wang

Build Mapping from the HTML DOM tree nodes
to the elements in target schema

Training HTML
pages

Target Schema

Human Design

Mappings

Extract the features of HTML nodes and build
the training set for the classification

Trainning Set
Generate the extraction rules with Bayes

Classifier
Bayes Classifier

Build the mapping from HTML nodes to
elements

Testing HTML
pages

 Extracted Results

Generate the target element probability for the
HTML nodes

HTML Structured Based Nodes Cluster

HTML nodes with probability

Clustered Nodes

Fig. 1. The framework of the Web extraction

3.2 Extraction Rules Generation Based on Classification

With the mappings from the HTML tree to the target schema tree, the next step is to
extract the features of the corresponding HTML nodes for each target schema node,
which can be used as the basis for the extraction rules. CCWrapper combines differ-
ent features of HTML nodes into one unified model. The attributes of HTML node
used as the nodes features in CCWrapper can be divided into four categories: style
attributes, structure attributes, thesaurus attributes and the data type attributes.

Style Attributes: The style attributes control the appearance of the web page. Differ-
ent HTML nodes may have different style features. In addition, it is observed that the
web pages in the same domain are often displayed in a similar way. For example, the
font size of the news title is always largest in the whole web page. The product name
in the E-commerce domain is always emphasized, etc. As a result, the extraction rules
based on the site independent features can be used in the web sites not in the training
set. Some selected style attributes on the HTML node used in CCWarpper are de-
scribed in the following table:

Table 1. The Style Attributes of the HTML Node

AF/RF The Absolute (Relative) Font size
BD Whether the node is emphasized

LN/CLN The length (context length) of the node text
PS/RPS The Position (Relative Position) of the node

Structure Attributes: The structure attribute in the HTML page represents the path
from the root node to the leaf node in the HTML page. Since many data intensive web
sites are generated from the backend database, the paths for the HTML node corre-
sponding to the same element in the target schema are similar for HTML pages in the

 CCWrapper: Adaptive Predefined Schema Guided Web Extraction 279

one web site. In order to exploit structure attribute as one of the important features of
the HTML node, we give the following definition:

Definition 1. (the similarity between the paths). Given two HTML paths p1 and p2, we
create a mapping M from p1 to p2, where the mapped element node n2 in p2 denoted as
M(n1) is annotated with the same node name as that of element node n1. In addition, if
node n11 is a preceding node of n12 in path p1, M(n11) is a preceding node of M(n12) in
path p2. The similarity between two paths can be defined as |A|/|B|, where A is the
mapped element nodes set in path p1 and p2, B is all element nodes set in path p1 and
p2.

In the extraction rules training, we can construct the HTML paths set P(e) for tar-
get element e from different training HTML pages. In the extraction rules application,
given a path p from the root node to the leaf node n in a new HTML tree, the similar-
ity between p and the path set P(e) for element e can be obtained as the maximum
similarity between p and every path in P(e).

Thesaurus Attributes: The thesaurus attribute TA of node n1 is the content of node
n2, where n2 is the preceding node of n1 in the HTML layout and the content of n2
describes the content of node n1.

Different web pages may have different thesaurus attributes for the same element
node in the target schema. For example, in the E-commerce domain, the preceding
node of the Price node for product may be labeled by “the price” or “the discounted
price” or “our price”. In order to handle this problem, we extract the thesaurus attrib-
utes from the HTML nodes in different pages which are mapped to the target element
e, organize the thesaurus into ontology O(e) and annotate O(e) on the target element e
in the training phase. In the rule application phase, given a node n1 in a HTML web
page, we can locate its thesaurus attribute ta. If ta is one of the concepts in the ontol-
ogy O(e) for target element e, we know that it is highly likely that node n1 can be
mapped to element e.

The Data Type Attribute: The data types of the contents on different nodes can also
reveal some differences among nodes. For example, the data type of “publication
time” of news is date time, and the price values of “product price” in E-commerce
web sites are numerical data. The currently supported data types in CCWrapper in-
clude money, date time, and user defined date types, for example, address, telephone,
e-mail, postal code, etc.

The given predefined schema is only validated for one specific domain. As for the
web extraction in one domain, we need to select the features used in the extraction
rules. For example, we need not combine the thesaurus features into the training set in
new domain since there are little useful thesaurus features of the HTML nodes in
news domain. However, the thesaurus attributes play very important roles in the ex-
traction rules in E-Commerce domain.

3.3 Basic Extraction Rules Application

With the generated Bayes network classifier based on the HTML nodes features set,
we can determine the probability of the target element e for each HTML node n, de-
noted as Prob(n, e). In the following, the probability can be used as the basis to build
a valid mapping from the HTML tree to target schema tree.

280 J. Gao, D. Yang, and T. Wang

Definition 2. (Mapping M from HTML DOM tree T1 to Target Schema Tree T2). A
mapping M can be defined in the form of nodes pair (n1, n2), where n1 is a leaf node in
T1, n2=M(n1) is a leaf node of schema tree T2. There is one mapping node in T1 in the
case of Card(n2)=1. There are zero or more mapping nodes in T1 in the case of Card
(n2)=*. There is at most one mapping node in T1 in the case of Card (n2)=?.

Since there are many valid mappings from a HTML DOM tree to a target schema
tree, we need a benefit model to evaluate which mapping is better than others.

Definition 3. (The weight of mapping M from a HTML DOM tree T1 to a Target
Schema Tree T2). The weight of the mapping M denoted as Weight(M) can be defined
as the production of the Weight(e) for each element e in the target schema. As for
each target element, Weight(e) can be defined as Prob(n, e) in the case of Card(e)=1,
where M(n)=e; Weight(e) can be defined as Prob(n1,e)*…Prob(nk,e)(1-
Prob(nk+1,e))*(1-Prob(nm,e)) in the case of Card(e)=*, where M(n1)=e,.. M(nk)=e and
M(nk+1)≠e…M(nm)≠e; Weight(e) can be defined as Prob(n1,e)*(1-Prob(n2,e))..(1-
Prob(nm, e)) in the case of Card (e)=?, where M(n1)=e and the rest of nodes do not
map to element e.

In the case of Card (e)=1, we select a HTML node n with the maximum Prob(n, e)
among all HTML nodes. In the case of Card (e)=?, we select a HTML node n with
maximum Prob(n, e) among all HTML nodes if Prob(n, e) is greater 50%, or else, we
do not create the mapping for element e. In the case of Card(e)=*, we select all
HTML nodes {n0,..nk}with Prob(ni, e) (0≤i≤k) greater than 50%.

The above rules can be used to establish the mapping from the HTML tree nodes to
the node in the target schema tree. In addition, the rules works well for the element
with Card(e)=1 if the necessary features are used. However, the simple strategy may
lead to the problem in the mapping to the element with Card(e)=*. Taking the news
content extraction as example, the hyper link node n may have low Prob(n, e) due to
the limited length of the text even though n belong to the news content; The advise-
ment node n may has high Prob(n, e) if the feature of n is similar to those of news
content nodes. In order to handle this problem, we not only consider the HTML node
n itself, but also consider the context of node n. We make the following assumption:

Assumption 1. The leaf nodes {n1,..nk} which map to a target element e with Card
(e)=* are adjacent in the preorder traversal of leaf nodes in tree T. In addition, the
HTML node mapping to element e with Card(e)=1 can not be in the middle of adja-
cent nodes set {n1,..nk}.

Assumption 1 can be accepted in many domains. For example, the nodes for the
content of the news web page are always adjacent. In addition, it is less likely that the
nodes for the news title are located in the middle of the news content nodes.

Definition 4. (Stub Node) Given one target element e with Card(e)=1, if there exists
one HTML node n with Prob(n, e) much greater (10 times or higher) than Prob(n1,
e), where n1 is any HTML leaf node and n1≠n, we call HTML node n the Stub node.

Since it is likely to map the stub node n to the correct target element node e with
Card(e)=1, we know that node n is less likely in the middle of the adjacent nodes sub
sequence for the element with Card(e)=*. Therefore, the stub node can be used to
divide the whole HTML leaf nodes sequence into a set of the node units:

 CCWrapper: Adaptive Predefined Schema Guided Web Extraction 281

Definition 5. (HTML Nodes Unit) Given a HTML leaf nodes sequence S={n0,…,nk}
in a preorder traversal and a stub node ni (0≤i≤k) in the sequence S, the stub node
divides the sequence S into two sub sequence with S1={n0,…ni-1} and S2={ni+1,…nk}.
S1 or S2 is called nodes unit.

With the HTML node units, we avoid the case that we map the nodes from differ-
ent nodes unit to element e with Card(e)=*. The basic extraction process with the
HTML node units can be described in the following algorithm.

Algorithm 1. The basic extraction rule application
Input: the HTML web page P, the Classifier C, the target schema S
Output: the mapping M for the extraction on the web page P
For each leaf node n in the web page P
 Calculate Prob(n, e) with Classifier C for each target element e
For each element e with Card(e)=1
 Select node n with the maximum Prob(n, e)// n maps to e;
 If node n meets the requirement of stub node

Divide the whole nodes sequence into HTML node units with node n.
For each element e with Card(e)=* or Card(e)=?

For each HTML node unit U
 Generate the weight of the mapping M from the node in U to element e;

Select the mapping M with the maximum weight.
Return the mapping from HTML nodes to all target elements.

3.4 Extraction Rules Application Based on Cluster over the HTML Tree

Although the basic method can implement the web extraction, the precision of the
basic method can be further improved. For example, even if we can select the map-
ping with the maximum weight from the nodes in HTML nodes unit U to the element
node e in the case Card(e)=*, it is likely that some nodes in U should not map to
element e.

We make a deep analysis on the basic method in section 3.3. The reason that the
basic method cannot remove the unrelated nodes from the HTML node units correctly
lies in that the features used to generate the extraction rules only include the features
of the single HTML node itself, which ignores the HTML tree structure as a whole
totally. Next, we make another assumption on the HTML tree structure in the News or
E-commerce domain.

Assumption 2. The web page p1 contains a region with adjacent hyperlinks, for ex-
ample, the related news links in the news web page or the lists of products in
E-commerce web page. Since the content of one hyperlink p2 can be retrieved fully
from another web page which is pointed by p2, we assume that users are not interested
in the extraction of hyperlink p2 in the process of the extraction of p1.

In order to remove these adjacent hyperlink nodes more reasonable, we also need
to consider the internal structure in one HTML nodes unit. We introduce the notation
of the weight of the internal node to decide which nodes in one HTML nodes unit can
be removed.

282 J. Gao, D. Yang, and T. Wang

Definition 6. (the weight of the Internal Node for HTML nodes Unit). Given a HTML
nodes unit U, for each node n in U, we locate an ancestor node a for n, nodes set
S=Des(a)∩Unodes(U), where Des(a) is a descendant nodes set of a, Unodes(U) is a
nodes set in nodes unit U, the weight of node a for target element e, denoted as
weight(a, e), can be defined as (TotalLen-LinkLen)/Totallen*(TotalNodes-
LinkNodes)/TotalNodes*P, where TotalLen is the total length of the node content for
all nodes in S, LinkLen is the total length of the node content for all hyperlink text
nodes in S, TotalNodes is the number of the all nodes in S, LinkNodes is the number
of the hyperlink text nodes in nodes S. P is the sum of Prob(s, e), where s∈S.

The above definition conforms to the assumption 2. We notice that the more the
hyperlink nodes under internal node a are, the less the weight of node a is. In other
words, the weight of the internal node for the normal text nodes (extraction target
nodes) is much higher than that of the internal node for the leaf hyperlink nodes. Such
a characteristic can be used to locate one internal node “cover” all and only extraction
target nodes for one HTML node unit.

Definition 7. (the lowest common ancestor LA for a nodes unit U with the threshold
T). Given an internal node n, and the direct child set C={c1,..ck}, if there does NOT
exist a child node c, where weight(c)≥weight(c1)*T, c1 is any node in C, c1≠c, node
LA is called the lowest common ancestor of a nodes unit U with threshold T.

The location of lowest common ancestor LA from HTML nodes unit U with thresh-
old 30 can be illustrated in Fig.2. We start to locate the lowest common ancestor LA
from the root HTML node. Since the weight of one direct child node Body of HTML
node is much higher (more than 30 times) than that of other child nodes, we know that
it is more likely that the nodes interesting to the users are under node Body. We han-
dle the internal nodes similarly until we find the last TD node. Notice that the lowest
common ancestor can be used to improve the recall of web extraction, especially
when there is a hyperlink node h in the middle of the text nodes sequence. That is,
although the weight of node h itself is 0, such as the third P node under the last TD
node in Fig.2, it will be extracted since it is under the lowest common ancestor node
TD.

Fig. 2. An example of the lowest common ancestor for a HTML nodes unit

 CCWrapper: Adaptive Predefined Schema Guided Web Extraction 283

Compared with the basic method, we improve the precision of CCWrapper by ex-
ploiting the HTML internal structure to remove the unrelated nodes, mainly the adja-
cent hyperlink text nodes, from the HTML nodes unit when mapping HTML nodes to
the target element e with Card(e)=*. Such a process can be described as Algorithm 2.

Algorithm 2. The HTML structure based node cluster for the nodes mapping
Input: the HTML nodes units set in web page P, the element e with Card(e)=*, the

threshold T
Output: the nodes mapping M from the nodes in web page P to e
For each HTML nodes unit U

Calculate the weight for each internal node a for nodes unit U;
Determine the lowest common ancestor LA with the maximum probability given
the threshold T in a top down fashion;
Build mapping M from all nodes n1…..nk under node LA to element e;
Calculate the weight of mapping M;

Select a nodes unit Umax with the maximum Weigtht(M);
Output the mapping M from the nodes under the lowest common ancestor node in

nodes unit Umax to element e;

4 The Performance Study

We implemented CCWrapper with the JDK 1.4 on Windows 2000 running on a Dell
Optiplex GX260 with P4 2GHz CPU and 512MB RAM. The Bayes Classifier pack-
age used in CCWrapper is JBNC[13]. We evaluate CCWrapper against the news web
pages from the influential web sites in China. The target schemas in the experiments
contain the element e with Card(e)=*.

4.1 The Analyze of CCWrapper

The precision of CCWrapper is related to the features used in the extraction rules. In
the news or the E-commerce domain, it is relatively easy to find the features that
distinguish the node from others, especially for the target element e with Card(e)=1.
The recall of CCWraper can be improved by the notation of the lowest common an-
cestor. All leaf descendant nodes under the lowest common ancestor node will be
extracted, regardless what the mapping probabilities of these nodes are.

The threshold used in locating the lowest common ancestor affects the recall and
recall of the web extraction. The increase of threshold denotes that it is less likely to
find a child node whose weight meets the requirement. Therefore, we cannot lower
the common ancestor for the HTML nodes unit, which leads to the increase of recall
and decrease of precision. On the other hand, the decrease of threshold indicates the
decrease of the recall and increase of the precision.

The adaptability of CCWrapper is addressed by the extracted rules based on the
site independent features of HTML nodes for the different web sites. These features
include the style attributes or the thesaurus attributes or date type attributes, etc. The
extraction rules based on these features can also be applied on the web pages from
web site not in the training set. In addition, assumptions 1 and 2 are always true on

284 J. Gao, D. Yang, and T. Wang

the web pages from different web sites, which also improve the adaptability of
CCWrapper.

As for the human involvement in CCWrapper, human needs to select features used
in extraction for target elements in a given predefined schema. In addition, user needs
to establish the mapping from HTML nodes to target element nodes. The remaining
steps in extraction rules generation from the training web pages and the application of
these rules over the testing web pages can be performed automatically.

4.2 The Real Data Set Test

We evaluate CCWrapper over the web pages in the news domain. The training set
includes three HTML pages from www.sina.com.cn, www.sohu.com.cn, www.tom.
com.cn. The target schema includes the news title, news source, news publish date,
news content, news link with Card(news content)=*. We build the mapping from the
HTML pages to the target schema. The evaluation data set also includes the web
pages from other web sites. The precision and recall can be obtained from the nodes
mapping generated from the CCWrapper.

From the results in table 2, the average of the precision and recall is 92.5% and
94.7% for the web pages in 9 different web sites. The main reason behind the error
mapping is the irregularity of the real web page. For example, there may be only one
picture as the main content of the HTML news, or the features of the news content are
similar to those of other parts of the HTML pages. In addition, we also notice that the
average precision and recall of the extracted result for the web sites not in the training
set is not as high as that in the training set. This is because the features on the HTML
nodes are a little different for the web pages from different web sites. On the other
hand, the results in table 2 also demonstrate the adaptability of CCWrapper.

Table 2. the web extraction over the real test set

Web site Total web
pages

Total Target
Data Items

precision Recall

www.sina.com.cn 115 2875� 94.3� 96.8�
www.sohu.com.cn 114 2736� 95.2� 97.2�
www.tom.com.cn 128 3072� 95.1� 98.2�
www.qq.com.cn 35 910� 92.1� 93.2�
www.gmv.com 45 990� 89.3� 92.1�

www.chinadaily.com.cn 49 1029� 88.9� 93.2�
www.xinhua.com 75 1725� 94.2� 97.3�

www.cnradio.com.cn 67 1474� 91.1� 90.2�
www.hf365.com 58 1334� 92.3� 94.2�

Total 686� 16145� 92.5� 94.7�

The CCWrapper can be implemented efficiently. Given n HTML leaf nodes and m
target schema elements, we generate n*m probability with the trained classifier. The
calculation of the weight for each internal node n takes the linear time in the size of
the total descendant leaf nodes of node n. The lowest common ancestor can be de-
tected in the linear time in the size of internal node in the HTML tree. Fig.3 also

 CCWrapper: Adaptive Predefined Schema Guided Web Extraction 285

demonstrates the efficiency of CCWrapper. The extraction time cost in CCWrapper is
even less than that of parser time cost for some web pages.

Sina Tom Xinhua Sohu CnRadio
0

100

200

300

400

500

600
T

im
e(

m
s)

Web Site

 ParserTime
 ExtractTime

Fig. 3. The time cost of CCWrapper over Real set

5 The Related Work

As for the target data extraction, RoadRunner[2], EXALG[3],Omini[5],MDR[6],
Meng[4] do not need manual labeling, but need a set of positive pages of the same
template. Our method also shares some ideas from their work. For example, the gen-
eralized node [6] plays the similar role as low common ancestor node in our method.
However, the location of low common ancestor in our method is guided not only by
the HTML tree structure, but also by the probability generated on the features of the
HTML nodes. The method [4] also utilizes the visual information to extract the data.
Our method supports an open framework which can incorporate different kinds of the
heuristic features, including the visual features. Most important, the difference be-
tween CCWrapper and this kind of methods lies in that CCWrapper not only extracts
the data items, but also annotates the extracted item with the target element.

The schema guide data extraction can be divided into the automatic wrapper induc-
tion and handed crafted wrapper. Traditional Information extraction approach [7]
treats web documents as tokens streams and use delimiter-based patterns to extract the
web pages. If the query interface on the web is available, the fully automatic extrac-
tion and annotation method is studied in [8]. Compared with this kind of methods,
CCWrapper can exploit more semantic features rather than frequent tokens sequence.
In addition, CCWrapper does not need the support from the query interface.

The hand crafted wrapper receives high attention [9,10,11]. Although this kind of
method can extract the web pages precisely, the construction and maintenance of the
wrapper is costly. In addition, there is little chance that the path based wrapper de-
signed for one specific site is still valid on other web sites.

The problem of schema mapping is studied recently in the data integration system
[12]. The web data extraction can be regarded as a special case of the schema map-
ping. Different rules can be generated based on the structure, thesaurus, and date type

286 J. Gao, D. Yang, and T. Wang

attributes or the similarity between instances. We also share the similar idea in the
features selection and extraction rules generation with Bayes classification. However,
the HTML tree structure and the semantic meaning of the HTML node can also pro-
vide the heuristic knowledge in the rules application, which is ignored totally in the
schema mapping in the relational database context.

6 Conclusion

In this paper, we propose a web extraction method called CCWrapper. Our method
can combine different heuristics into one model and generate the extraction rules with
classification method. In addition, our method exploits the HTML structure to im-
prove the quality of the web extraction. The future work includes the extensive ex-
periments on more web sites and incorporation of the inter-document relationship into
our CCWrapper framework to improve the recall and precision of the web extraction.

Reference

[1] A.H. F. Laender, B.A. Ribeiro-Neto, A.S.Silva, J.S.Teixeira. A Brief Survey of Web
Data Extraction Tools. In SIGMOD Record, Volume 31(2002), No.2.

[2] V.Crescenzi, G.Mecca, P.Merialdo. RoadRunner: Towards Automatic Data Extraction
from Large Web Sites. In Proc. of VLDB, 2001,pp:109-118.

[3] A.Arasu, H.G.Molina: Extracting Structured Data from Web Pages. In Proc. of SIGMOD
2003, pp:337-348

[4] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. Yu. Fully Automatic Wrapper Generation
for Search Engines. In Proc. of WWW, 2005.

[5] D. Buttler, L. Liu, C. Pu. A Fully Automated Object Extraction System for the World
Wide Web. In Proc. of ICDCS, 2001.

[6] B. Liu, R. Grossman and Y. Zhai. Mining Data Records in Web Pages. In Proc. of
SIGKDD, 2003.

[7] D Freitag, N. Kushmerick, Boosted wrapper generation. In Proc of AAAI, 2000.
[8] J.J.Wang, J.R.Wen, F.H. Lochovsky, W.Y.Ma: Instance-based Schema Matching for

Web Databases by Domain-specific Query Probing. In Proc of VLDB, 2004, pp:408-419
[9] L.Liu, C.Pu, W.Han. XWRAP: An XML-enabled Wrapper Construction System for Web

Information Sources. In Proc. of ICDE, 2000, pp: 611-621.
[10] T.J.Wang, S.W.Tang, D.Q.Yang, J.Gao, et al. COMMIX: Towards Effective Web Infor-

mation Extraction, Integration and Query Answering. In Proc. of SIGMOD, 2002,
pp:620.

[11] L.Y.Li, S.W.Tang, D.Q.Yang, T.J.Wang, Z.H.Su, EGA: An algorithm for automatic
semi-structured web documents extraction. In Proc. of DASFAA, 2004, 787-789

[12] R.B.Dhamankar, Y.Lee, A.H.Doan, A.Y.Halevy, P.Domingos: iMAP: Discovering Com-
plex Mappings between Database Schemas. In Proc. of SIGMOD, 2004, pp: 383-394

[13] Java Bayes Package http:// jbnc.sourceforge.net

MiniTasking: Improving Cache Performance for
Multiple Query Workloads

Yan Zhang1, Zhifeng Chen2, and Yuanyuan Zhou3

1 National laboratory on machine perception, Peking Univ., Beijing, 100871, China
zhy@cis.pku.edu.cn

2 Google, USA
zhifeng.chen@gmail.com

3 Department of Computer Science, University of Illinois at Urbana-Champaign, USA
yyzhou@cs.uiuc.edu

Abstract. This paper proposes a novel idea, called MiniTasking to reduce the
number of cache misses by improving the data temporal locality for multiple
concurrent queries. Our idea is based on the observation that, in many workloads
such as decision support systems (DSS), there is usually significant amount of
data sharing among different concurrent queries. MiniTasking exploits such data
sharing characteristics to improve data temporal locality by scheduling query ex-
ecution at three levels: (1) It batches queries based on their data sharing char-
acteristics and the cache configuration. (2) It groups operators that share certain
data. (3) It schedules mini-tasks which are small pieces of computation in op-
erator groups according to their data locality without violating their execution
dependencies.

Our experimental results show that, MiniTasking can significantly reduce the
execution time up to 12% for joins. For the TPC-H throughput test workload,
MiniTasking improves the end performance up to 20%. Even with the Partition
Attributes Across (PAX) layout, MiniTasking further reduces the cache misses by
65% and the execution time by 9%.

1 Introduction

1.1 Motivation

With the increasing size of main memory, most of query processing working set can fit
into main memory for many database workloads. As a result, the main memory latency
is becoming a major performance bottleneck for many database applications, such as
DSS (Decision Support System) applications [2, 20, 31]. This problem will get worse
as the processor-memory speed gap increases. Previous work demonstrates that the L2
data stall time is one of the most significant components of the query execution time [2].
We conducted similar measurements using IBM DB2 with DSS workloads. Our results
demonstrate that on Pentium 4, the L2 cache misses contribute 18%-56% of CPIs (cycle
per instructions) for most TPC-H queries. Therefore, improving the L2 cache hit ratio
is critical to reduce the number of expensive memory accesses and improve the end
performance for database applications.

An effective method for improving the L2 data cache hit ratio is to increase data
locality, which includes spatial locality and temporal locality. Many previous studies

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 287–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

288 Y. Zhang, Z. Chen, and Y. Zhou

Fig. 1. CPI breakdown of some TPC-H queries on Shore using PAX

have proposed clever ideas to improve the data spatial locality of a single query by
using cache-conscious data layout. Examples include PAX (Partition Attributes Across)
by Ailamaki et al. [1], data morphing by Hankins and Patel [14] and wider B+-tree
nodes by Chen et al. [8]. These layout schemes place data that are likely to be accessed
together consecutively so that servicing one cache miss can “prefetch” other data into
the cache to avoid subsequent cache misses.

While the above techniques are very effective in reducing the number of cache
misses, the memory latency still remains significant contributor for the query execu-
tion time even though the amount of contribution is not as high as before. For example,
as shown in Figure 1, with the PAX layout, the L1 and L2 cache misses still contribute
around 20% of CPIs for TPC-H queries. Therefore, it is still necessary to seek other
complementary techniques to further reduce the number of cache misses.

Improving temporal locality is a potential complementary technique to reduce cache
miss ratio by improving data temporal reuse. This approach has been widely studied for
scientific applications. Most previous work in this category maximizes data temporal
locality by reordering computation, e.g., compiler-directed tiling or loop transforma-
tions [32, 18, 11, 3], fine-grained thread scheduling [23, 34]. While these techniques are
very useful for regular, array-based applications, it is difficult to apply them to database
applications that usually have complex pointer-based data structures, and whose struc-
ture information is known only at run-time after the database schema is loaded into the
main memory. So far few studies have been conducted to improve the temporal cache
reuse for database applications.

1.2 Our Contributions

In this paper, we propose a technique called MiniTasking to improve data temporal
locality for concurrent query execution. Our idea is based on the observation that, in a
large scale decision support system, it is very common for multiple users with complex
queries to hit the same data set concurrently [16], even though these queries may not be
identical. MiniTasking exploits such data sharing characteristics to improve temporal
locality by scheduling query execution at three levels:(1) It batches queries based on
their data sharing characteristics and the cache configuration. (2) It groups operators
that share certain data. (3) It schedules mini-tasks which are small fractions of operator
groups according to their data locality without violating their execution dependencies.

MiniTasking is complementary to previously proposed solutions such as PAX [1]
and data morphing [14], because MiniTasking improves temporal locality while cache

MiniTasking: Improving Cache Performance for Multiple Query Workloads 289

conscious layouts improve spatial locality. MiniTasking is also complementary to mul-
tiple query optimization (MQO) techniques that produce a global query plan for them
[13, 28, 27].

We implemented MiniTasking in the Shore storage manager [6]. Our experimen-
tal results with various DSS workloads using the TPC-H benchmark suite show that,
MiniTasking improves the end performance up to 20% on a real compound workload
running TPC-H throughput testing streams. Even with the Partition Attributes Across
(PAX) layout, MiniTasking reduces the L2 cache misses by 65% and the execution time
of concurrent queries by 9%.

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 introduces data temporal locality. Section 4 describes MiniTasking in
detail. Section 5 demonstrates the experimental evaluation. Finally, we show our con-
clusions in Section 6.

2 Related Work

Multiple Query Optimization. endeavors to reduce the execution time of multiple
queries by reducing duplicated computation and reusing the computation results. Previ-
ous work proposes to extract common sub-expressions from plans of multiple queries
and reuse their intermediate results in all queries [10, 13, 27, 28]. Early work shows
that the multiple query optimization is an NP-hard problem and proposes heuristics for
query ordering and common sub-expressions detection and selection [13, 27]. Roy et
al. propose to materialize certain common sub-expressions into transient tables so that
later queries can reuse the results [26]. Instead of materializing the results of common
sub-expressions, Davli et al. focus on pipelining the intermediate tuples simultaneously
to several queries so as to avoid the prohibitive cost of materializing and reading the
intermediate results [10]. Harizopoulos et al. propose a operator-centric engine Qpipe
to support on-demand simultaneous pipelining [15]. O’Gorman et al. propose to reduce
disk I/O by scheduling queries with the same table scans at the same time and there-
fore achieve significant speedups [22]. However, reusing intermediate results requires
exactly same common sub-expressions. For example, a little change in the selection
predicate of one query will render previous results not usable.

Improving Data Locality. is another important technique to improve performance of
multiple queries, especially when the memory latency becomes a new bottleneck for
DSS workload on modern processors. Ailamaki et al. show that the primary memory-
related bottleneck is mainly contributed by L1 instruction and L2 data cache misses [2].

Many recent studies have focused on improving data spatial locality to reduce cache
misses in database systems [1, 9, 19, 33, 25]. Cache-conscious algorithms change data
access pattern of table scan [4] and index scan [33] so that consecutive data accesses
will hit in the same cache lines. Shatdal et al. demonstrate that several basic database
operator algorithms can be redesigned to make better use of the cache [29]. Cache-
conscious index structures pack more keys in one cache lines to reduce cache misses
during lookup in an index tree [9, 19, 25]. Cache-conscious data storage models par-
tition tables vertically so that one cache line can store the same fields from several
records [1, 24]. Although these techniques effectively reduce cache misses within a sin-
gle query, data fetched into processor caches are not reused across multiple queries.

290 Y. Zhang, Z. Chen, and Y. Zhou

Much previous work studies improving data temporal locality for general programs
[7, 5, 12]. For example, based on the temporal relationship graph between objects gener-
ated via profiling, Calder et al. present a compiler directed approach for cache-conscious
data placement [5]. Carr and Tseng propose a model that computes temporal reuse of
cache lines to find desirable loop organizations for better data locality [7, 21]. Although
these methods are effective in increasing cache reuse, it is difficult to apply them di-
rectly to DSS workload because it is hard to profile ad hoc DSS queries.

3 Feasibility Analysis: Improving Temporal Locality

Processor caches are used in modern architectures to reduce the average latency of
memory accesses. Every memory load or store instruction is first checked inside the
processor cache (L1 and L2). If the data is in the cache, a.k.a. a cache hit, the access
is satisfied by the cache directly. Otherwise, it is a cache miss. Upon a cache miss,
the accessed data is fetched into the cache from the main memory. Because access-
ing the main memory is 10–30 times slower than accessing the processor cache, it is
performance critical to have high cache hit ratios to avoid paying the large penalty of
accessing main memory.

There are two kinds of locality: spatial locality and temporal locality. Our work fo-
cuses on improving temporal locality via locality-based scheduling. Temporal locality
is the tendency that individual locations, once referenced, are likely to be referenced
again in the near future. Good temporal locality allows data in processor caches to be
reused (called as temporal reuse) multiple times before being replaced and thereby
improving the cache effectiveness.

In most real world workloads, database servers usually serve multiple concurrent
queries simultaneously. Usually, there is significant amount of data sharing among
many of such concurrent queries. For example, Query 1 (Q1) and Query 6 (Q6) from the
TPC-H benchmark [30] share the same table Lineitem, the largest one in the TPC-H
database.

However, due to the locality-oblivious multi-query scheduling that is commonly used
in modern database servers, such significant data sharing is not fully exploited in data-
bases to improve the level of temporal reuse in processor caches and reduce the number
of processor cache misses. As a result, before a piece of data can be reused by another
query, it has already been replaced and needs to be fetched again from main memory
when it is needed by another query.

Fig. 2. Comparison between locality-oblivious and locality-aware multi-query scheduling

MiniTasking: Improving Cache Performance for Multiple Query Workloads 291

Let us looking at an example using Q1 and Q6 from the TPC-H benchmark. Suppose
Lineitem has 1M tuples, with each tuple occupying one cache line of 64 bytes (for the
simplicity of description), and the L2 cache holds only 64K cache lines (total of 4
MBytes). Suppose that the scheduler decides to execute Q1 first in concurrent to some
other queries that do not share any data with Q1 and Q6. After Q1 accesses the 128K-th
tuple, Q6 is scheduled to start from the 1st tuple. Since the L2 cache can only hold 64K
tuples, the first tuple of Lineitem is already evicted from L2. Therefore, the database
needs to fetch this tuple again from main memory to execute Q6.

In contrast, if we use a locality-aware multi-query scheduling and execution, we can
schedule Q1 and Q6 together in an interleaved fashion so that, after a query fetches a
tuple from main memory into L2, this tuple can be accessed for both queries before
being replaced from L2.

Figure 2 shows that, for multiple queries of different types (Q1+Q6), the locality-
aware scheduling is able to reduce the number of cache misses by 41.7% and result
in 9.7% reduction in execution time. For multiple queries of the same type but with
different arguments (Q6+Q6’), the locality-aware scheduling reduces the number of
cache misses by 42.4% and the execution time by 9.9%. These results indicate that
locality-awareness in multi-query scheduling is very helpful to reduce the number of
cache misses and improve database performance, which is the major focus of our work.

4 MiniTasking

4.1 Overview

To exploit data sharing among concurrent queries for improving temporal locality,
MiniTasking schedules and executes concurrent queries based on data sharing char-
acteristics at three levels: query level batching, operator level grouping and mini-task
level scheduling. While each level is different, all levels share the same goal: improving

Algorithm Greedy-Selecting:
;; Given n queries Q1, ..., Qn, return a batch of
;; queries that will be processed as a whole.
S={Qa, Qb|maxi,jAmountDataSharing(Qi, Qj)}
while |S| < MaxBatchSize
do
Find Q /∈ S s.t. ∃Q′ ∈ S

AmountDataSharing(Q,Q′) is maximized
if AmountDataSharing(Q,Q′) �= 0

S=S ∪ {Q}
else

exit the loop ;; No more queries sharing with S
return S

Fig. 3. Greedy batch selecting algorithm

292 Y. Zhang, Z. Chen, and Y. Zhou

temporal data locality. Therefore, at each level, all decisions are made based on data
sharing characteristics with consideration of other factors that are specific to each level.

At the query level, due to the processor cache capacity limit, it is not beneficial to
execute together all concurrent queries (queries that have already arrived at the database
management server and are waiting to be processed). Therefore, MiniTasking carefully
selects a batch of queries based on their data sharing characteristics and the processor
cache configuration to maximize the level of temporal locality in the processor cache.
Queries in the same batch are then processed together in the next two levels.

At the second level, MiniTasking produces a locality-aware query plan tree for each
batch of queries. MiniTasking does this by starting from the query plan tree produced
by the optimizer and group together those operators that share significant amount of
data. Operators that do not share data with others remain untouched.

At the third level, MiniTasking further breaks each operator into mini-tasks, with
each mini-task operating on a fine-grained data block. Then all mini-tasks from the
same of query plan tree are executed one after another following an order to maximize
temporal data reuse in the processor cache.

4.2 Query Level Batching

Obviously, the first criteria for query batching should be data sharing. If two queries
access totally different data, there is no chance of reusing each other’s data from the
processor cache. Such case can happen even when two queries access the same table
but access different fields that do not share the same cache line. In this case, we call that
these two queries do not have overlapping working sets, which is defined as the set of
data (cache lines) accessed by a query.

Therefore, to batch queries based on data sharing characteristics, MiniTasking needs
to estimate the amount of sharing between any two concurrent queries. A metric, called
as AmountDataSharing is introduced to measure the estimated amount of data shar-
ing, i.e. the amount of overlapping in working set, between two given concurrent
queries. Since only coarse-grain data access characteristics are known at the query level,
we estimate a query’s working set based on the tables and the fields accessed by this
query.

MiniTasking schedules queries in batches and processes these batches one by one.
Given a large number of concurrent queries that share data with each other, intuitively,
it sounds beneficial to execute concurrently as many queries as possible so that the
amount of data reuse can be maximized.

However, in reality, due to the limited L2 cache capacity, scheduling too many con-
current queries can result in even poor temporal locality because data from different
queries can replace each other in the cache before being reused. Therefore, we should
carefully decide how many and which concurrent queries should be batched together.
To address this problem, we use a threshold parameter, MaxBatchSize, to limit the
number of concurrent queries in a batch.

Based on the above analysis, we use a heuristic greedy algorithm to select batches
of queries, as shown in Figure 3. It works similar to a clustering algorithm: divide all
concurrent queries into clusters smaller than MaxBatchSize to maximize the total
amount of data sharing.

MiniTasking: Improving Cache Performance for Multiple Query Workloads 293

4.3 Operator Level Grouping

Since queries consist of operators, MiniTasking goes one step further to group together
operators from the same batch of queries according to their data sharing characteristics.
MiniTasking scans every physical operator tree produced by the query optimizer for
each query in a batch and groups operators that share some certain data. The evaluation
process is similar to the one used at the query level. If the results of an operator is
pipelined to other operators, MiniTasking also puts these related operators into the same
group. Each group of operators is then passed to the mini-task level. Operators that do
not share data with others are all put into the last group and is executed last using the
original scheduling algorithm.

MiniTasking supports operator dependency by maintaining a pool of ready opera-
tors. An operator is ready and joins the ready pool when it does not dependent on other
unexecuted operators. MiniTasking selects a group of operators from the ready pool
using a similar algorithm to the one used in query batching described in Figure 3. After
this group of operators finishes execution via mini-tasking (described in the next sub-
section), some operators that depend on the ones just executed will be “released” and
join the ready pool if they do not have other dependencies. MiniTasking will select the
next group of operators and so on so forth until all operators are executed.

Figure 4 uses an example to demonstrate how MiniTasking works at the operator
level. Suppose there are two queries, namely Q and Q’. Op1 to Op5 are operators of
query Q, and Op′1 to Op′4 are operators of query Q’. As both Op1 and Op′1 access table
T1, they are grouped together. Suppose Op′3 and Op4 are implemented using pipelining.
MiniTasking also puts them into the same group as Op1, Op′1, Op2 and Op′2. This group
does not contain Op′4 or Op5, because the results of Op′3 and Op4 are materialized.

4.4 Mini-task Level Scheduling

At the mini-task level, the challenge is how MiniTasking breaks various query operators
into mini-tasks and achieves benefit from rescheduling them. We show our method by

Op4

Op1

Table Scan T1

Op2

Table Scan T2

Op5

Op3

Table Scan T3

Op6

Op’3

Op’1

Table Scan T1 Table Scan T2

Op’2

Op’4

Op4

Op’1

Table Scan T1

Op2

Table Scan T2

Op5

Op3

Table Scan T3

Op6

Op’2Op1

Op’3

Op’4
MiniTasking

Original Plans:

Enhanced Plans:

Fig. 4. An example of the operator grouping process. The output of Op′
3 to Op′

4 and the output
of Op4 to Op5 are materialized.

294 Y. Zhang, Z. Chen, and Y. Zhou

Fig. 5. MiniTasking breaks the operators into
mini-tasks and schedules them

Fig. 6. The layouts for the two join relations
and the join query

illustrating a data-centric method applied to a table scan. The idea can be extended to
handle other query operators.

The goal of MiniTasking is to make the data loaded into the cache reused by queries
as much as possible before it is evicted from the cache. Therefore, MiniTasking care-
fully chooses an appropriate value for the whole working set size, which means the
total size for all the data blocks that can reside in the cache. It has a big impact on the
query performance. If it is too large, some data may be evicted from the cache before
being reused. However, decreasing it will result in more mini-tasks and thereby heavier
switching overhead.

Generally, this parameter is related to the target architecture, the data layouts and
the queries, especially the L2 cache size, the L2 cache line size and the associativity.
According to our experiments, it is not very sensitive to the type of queries. Once the
target architecture and the data layouts are specified, it is feasible to run some calibra-
tion experiments in advance to determine the best value for this parameter.

Therefore, for a table scan, MiniTasking divides the table into n fine-grained data
blocks, with each block suitable for the working set. Correspondingly, MiniTasking
breaks the execution of each scan operator into n mini-tasks, according to the data
blocks they use. Thereafter, when a data block is loaded by the first mini-task, Mini-
Tasking schedules other mini-tasks that share this data block to execute one by one.
When no mini-tasks use this data block, it will be replaced by the next data block. Thus
the data resided in the cache can be maximally reused before being evicted.

The following example illustrates this data-centric scheduling method. Suppose there
are three table scan operators Op1, Op2, Op3 and they share the table T , as shown
in Figure 5. Table T is divided into three data blocks. According to the data blocks
they access, the three operators are broken into (Op1,1, Op1,2, Op1,3), (Op2,1, Op2,2,
Op2,3), and (Op3,1, Op3,2, Op3,3), respectively. MiniTasking schedules them in such
an order: Op1,1, Op2,1, Op3,1, Op1,2, Op2,2, Op3,2, Op1,3, Op2,3, and Op3,3. In this
way, the data block (DTj) loaded into the cache by Op1,j (j=1, 2, 3) can be reused by
the subsequent mini-tasks Op2,j and Op3,j .

MiniTasking: Improving Cache Performance for Multiple Query Workloads 295

5 Experimental Evaluation

5.1 Evaluation Methodology

We implement MiniTasking in the Shore database storage manager [6], which provides
most of the popular storage features used in a modern commercial DBMS. Previous
work show that Shore exhibits memory access behaviors similar to several commer-
cial DBMSes [1]. Since Shore’s original query scheduler is fairly serialized (executing
one query after another), we have extended Shore to use a slightly more sophisticated
scheduler which switches from one query to another after a certain time quantum or
when this query yields voluntarily due to other reasons (e.g. I/Os). This scheduler em-
ulates what would really happen with a multi-threaded or multi-processed commercial
database server. Our results also show that this scheduler performs slightly better than
the original scheduler in Shore. Therefore, we use this time quantum-based scheduler
as our baseline to compare with MiniTasking.

Experimental Workloads. For DSS workloads, we use a TPC-H-like benchmark, which
represents the activities of a complex business that manages, sells and distributes a large
number of products [30]. The following are the table sizes in our TPC-H-like database:
600572 tuples in Lineitem, 150000 tuples in Orders, and 20000 tuples in Part.

Experimental Platform. Our evaluation is conducted on a machine with a 2.4GHz Intel
Pentium 4 processor and 2.5GB of main memory. The processor includes two levels of
caches: L1 and L2, whose characteristics are shown on Table 2. The operating system
is Linux kernel 2.4.20. For measurements, we use a commercial tool, the Intel VTune
performance tool [17], which collect performance statistics with negligible overhead.

5.2 Results for Micro-Join

We use a two-relation join query to examine MiniTasking, as shown in Figure 6. We
vary the number of tuples in the two relations and examine four representative combi-
nations for them, as shown in Table 1.

Our experiments show that MiniTasking improves the performance of join operations
by 4%–12%. When a hash join is used, if the hash table on the inner relation is small
enough to be put into the cache, MiniTasking can be effectively applied to the outer
relation. For example, when two instances of the join query are running, MiniTasking
improves the query performance by 9% in the case of Hash-1 and 12% in the case of
Hash-2, as shown in Figure 7. MiniTasking has similar speedup for the index-based join

Table 1. The sizes of the outer and inner rela-
tions used by Micro-join

Hash Joins Index Joins
Tuples Hash-1 Hash-2 Index-1 Index-2
Outer 106 106 106 5,000
Inner 5,000 100 500,000 106

Table 2. Processor cache parameters of the
evaluation platform

Parameters L1 D cache L2 cache
Size 8KB 512KB

Associativity 4-way 8-way
Cache line 64B 64B

Cache miss latency 7 cycles 350 cycles

296 Y. Zhang, Z. Chen, and Y. Zhou

Fig. 7. Performance of join operations. MiniTasking reduces execution time up to 12.1% for hash
joins and 8.2% for index nested-loops joins. MT stands for MiniTasking.

(a) Normalized execution time (b) CPI breakdown

Fig. 8. Performance of throughput-real tests. Each test runs several concurrent streams. The exe-
cution time of each test is normalized to the baseline without MiniTasking.

(a) Normalized execution time (b) CPI breakdown

Fig. 9. The execution time and the CPI breakdown of four concurrent queries (TPCH-Q1). The
PAX data layout is used in Shore and MT.

since it can break the index probing into mini-tasks. As a result, MiniTasking reduces
the query execution time by up to 8.2% for two concurrently running instances of the
join query.

5.3 Results for Throughput-Real

We validate our MiniTasking strategy using a real workload, modeling after the through-
put test of TPC-H benchmark. The standard TPC-H throughput test is composed of
multiple concurrent streams. Each stream contains a sequence of TPC-H queries in an
order which TPC-H benchmark specifies. Accordingly, our experiment follows these
sequences and let each stream execute the six TPC-H queries we implemented.

MiniTasking: Improving Cache Performance for Multiple Query Workloads 297

Our experimental results show that MiniTasking is very effective for this workload.
Figure 8(a) shows that the execution time of each test is reduced by 11%-20% for var-
ious number of concurrent query streams. As shown on Figure 8(b), the performance
gain comes from the reduction in L2 cache misses: MiniTasking significantly reduces
the number of L2 cache misses by 41%-79%. This is all because MiniTasking’s locality-
aware query scheduling and execution effectively improves the access temporal locality.
Meanwhile, MiniTasking do not affect other processor events very much since it adds
little overhead. Therefore, the improved L2 cache hit ratios is proportionally reflected
into the end performance.

5.4 Improvement upon PAX Layout

Figure 9 shows the effects of MiniTasking on cache-conscious data layout such as
PAX [1]. MiniTasking can still effectively reduce the number of L2 cache misses by
65% and the execution time by 9%. The performance speedup is less pronounced with
PAX than with the default NSF layout because, with PAX that has significantly im-
proved spatial locality in accesses, the L2 cache miss time contributes less to the exe-
cution time than with NSM.

6 Conclusion

In this paper, we propose a technique called MiniTasking to improve database per-
formance for concurrent query execution by reducing the number of processor cache
misses via three levels of locality-based scheduling. Through query level batching,
operator level grouping and mini-task level scheduling, MiniTasking can significantly
reduce L2 cache misses and execution time. Our experimental results show that, Mini-
Tasking can significantly reduce the execution time up to 12% for joins. For the TPC-
H throughput test workload, MiniTasking reduces the number of L2 cache misses up
to 79% and improves the end performance up to 20%. With the Partition Attributes
Across (PAX) layout, MiniTasking further reduces the cache misses by 65% and the
execution time by 9%, which indicates that our technique well compliments previous
cache-conscious layouts.

References

1. A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page layouts for relational databases on
deep memory hierarchies. The VLDB Journal, 11(3):198–215, 2002.

2. A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a modern processor:
Where does time go? In VLDB ’99, pages 266–277, 1999.

3. A.-H. A. Badawy, A. Aggarwal, D. Yeung, and C.-W. Tseng. Evaluating the impact of mem-
ory system performance on software prefetching and locality optimizations. In International
Conference on Supercomputing, pages 486–500, 2001.

4. P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized for the new
bottleneck: Memory access. In VLDB ’99, pages 54–65, 1999.

5. B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement. In ASPLOS
’98, pages 139–149, 1998.

298 Y. Zhang, Z. Chen, and Y. Zhou

6. M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F. Naughton, D. T.
Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling. Shoring
up persistent applications. In SIGMOD ’94, pages 383–394, 1994.

7. S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for improving data local-
ity. In ASPLOS ’94, pages 252–262, 1994.

8. S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index performance through prefetching.
In SIGMOD ’01, pages 235–246, 2001.

9. S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal prefetching b+-trees: optimiz-
ing both cache and disk performance. In SIGMOD ’02, pages 157–168, 2002.

10. N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. Pipelining in multi-query optimization.
In PODS ’01, pages 59–70, 2001.

11. C. Ding and K. Kennedy. Inter-array data regrouping. In Languages and Compilers for
Parallel Computing, pages 149–163, 1999.

12. C. Ding and M. Orlovich. The potential of computation regrouping for improving locality.
In ACM/IEEE SC2004, Nov. 6-12, 2004.

13. S. Finkelstein. Common expression analysis in database applications. In SIGMOD ’82, pages
235–245, 1982.

14. R. A. Hankins and J. M. Patel. Data morphing: An adaptive,cache-conscious storage tech-
nique. In VLDB ’03. Morgan Kaufmann, 2003.

15. S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A simultaneously pipelined rela-
tional query engine. In SIGMOD ’05, pages 383–394, 2005.

16. IBM. Personal communication with IBM, Jan. 2005.
17. Intel Corporation. Intel vtune performance analyzer. http://www.intel.com/software/

products/vtune/, 2004.
18. K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data local-

ity via loop fusion and distribution. In Proceedings of the 6th International Workshop on
Languages and Compilers for Parallel Computing, pages 301–320. Springer-Verlag, 1994.

19. K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index trees for main memory
access. In SIGMOD ’01, pages 139–150. ACM Press, 2001.

20. J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy, and S. S. Parekh. An
analysis of database workload performance on simultaneous multithreaded processors. In
ISCA ’98, pages 39–50. IEEE Computer Society, 1998.

21. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop transformations.
ACM Transactions on Programming Languages and Systems, 18(4):424–453, July 1996.

22. K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple query optimization by cache-aware
middleware using query teamwork. In ICDE ’02, page 274. IEEE Computer Society, 2002.

23. J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and K. Li. Thread scheduling for cache
locality. In ASPLOS ’96, pages 60–71. ACM Press, 1996.

24. R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for fractured mirrors. In VLDB ’02, pages
430–441, 2002.

25. J. Rao and K. A. Ross. Making b+- trees cache conscious in main memory. In SIGMOD ’00,
pages 475–486, New York, NY, USA, 2000. ACM Press.

26. P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi
query optimization. In SIGMOD ’00, pages 249–260. ACM Press, 2000.

27. T. Sellis and S. Ghosh. On the multiple-query optimization problem. IEEE Transactions on
Knowledge and Data Engineering, 2(2):262–266, 1990.

28. T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–52, 1988.
29. A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious algorithms for relational query

processing. In VLDB ’94, pages 510–521, 1994.
30. Transaction processing performance council. http://www.tpc.org.

MiniTasking: Improving Cache Performance for Multiple Query Workloads 299

31. P. Trancoso, J.-L. Larriba-Pey, Z. Zhang, and J. Torrellas. The memory performance of DSS
commercial workloads in shared-memory multiprocessors. In HPCA ’97, 1997.

32. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In PLDI ’91, 1991.
33. J. Zhou and K. A. Ross. Buffering accesses to memory-resident index structures. In VLDB

’03, pages 405–416, 2003.
34. Y. Zhou, L. Wang, D. W. Clark, and K. Li. Thread scheduling for out-of-core applications

with memory server on multicomputers. In IOPADS ’99, pages 57–67. ACM Press, 1999.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 300 – 312, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Cache Consistency in Mobile XML Databases

Stefan Böttcher

University of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany
stb@uni-paderborn.de

http://wwwcs.upb.de/cs/boettcher/

Abstract. Whenever an XML database is used to provide transactional access
to mobile clients in multi-hop networks, standard database technologies like
query processing and concurrency control have to be adapted to fundamentally
different requirements, including limited bandwidth and unforeseeable lost
connections. We present a query processing approach that reduces XML data
exchange to the exchange of difference XML fragments wherever possible. Ad-
ditionally, within our approach transactions can even use cached results of out-
dated queries and of neighbor clients, wherever they result in a reduction of
data exchange. Furthermore, our approach supports a pipelined exchange of
queries and partial answers. Finally, we present a timestamp-based approach to
concurrency control that guarantees cache consistency and minimizes data ex-
change between the mobile clients and the XML database server.

1 Introduction

XML has become a widely accepted standard for data exchange in the Web, and
XPath [16] is most widely used in query languages accessing Web data and XML
databases. Whenever an XML database is used by multiple clients in mobile ad-hoc
networks, database technologies face new challenges. For example, transaction man-
agement has to consider unpredictable disconnections of clients for applications that
require transactional guarantees like serializability of histories of concurrent transac-
tions. Similarly, limited bandwidth and limited energy supply require new approaches
to query processing which includes data exchange, replication, and caching of query
results. Within a multi-hop mobile network, it appears to be promising to interchange
data between mobile participants that cache different XML data fragments. However,
the identification of outdated data and an integration of caching with transaction syn-
chronization become even more challenging than in traditional client-server systems.

In this paper, we present an integrated approach to XML query processing, transac-
tion synchronization and caching in multi-hop mobile networks that guarantees trans-
action serializability and that is optimized towards minimal data exchange. By
minimizing the data exchange required for correct transaction processing, our ap-
proach saves the consumption of limited resources like bandwidth and also of energy
supply, whenever the energy required for sending and receiving data significantly
exceeds the energy required for internal computations. In order to achieve this goal,
our paper addresses and solves the following four problems. First, how we can reuse
cached XML fragments of multiple mobile clients for query processing in multi-hop
networks instead of retrieving all the data from the XML database. Second, how can

 Cache Consistency in Mobile XML Databases 301

we efficiently identify which XML fragments are missing in the cache of a network
node. Third, how can we identify outdated data without additional communication
overhead. Forth, how can we guarantee transaction serializability with a minimum of
data exchange.

In order to solve the problems mentioned, our paper presents the following new
contributions. First, we show how cached query results can be reused. Second, we
provide a fast detection technique for missing XML data fragments. Third, we reuse
the serializability check results of validation for cache consistency checking and
maintenance. Finally, we provide a variety of techniques to minimize XML data ex-
change. Therefore, we consider our approach to be useful to almost all applications
which need transactional guarantees during their work on XML fragments and for
which access to an XML database from single-hop and multi-hop mobile networks is
a major bottleneck, i.e. is most energy or time consuming.

The related works to our research involve approaches based on data replication
[8,9,11], works that discuss caching but do not take advantage of transaction synchro-
nization for cache consistency checking (e.g. [6,7]) as well as protocols for the syn-
chronization of mobile transactions (e.g. [15]). A previous approach to the combina-
tion of caching and synchronization ([4]) considers only transactions that involve at
most one client, i.e. it does neither synchronize transactions that involve multiple
clients, nor does it optimize cache access in multi-hop environments. As a conse-
quence, it does neither propagate nor re-compute forwarded queries or partial an-
swers. In addition to propagation and computation of forwarded queries and partial
answers, our approach includes a bit-vector based test for reusing cached results.
Therefore, to the best of the author’s knowledge, our integration of XML data caching
and transaction synchronization in multi-hop ad-hoc networks has not been proposed
anywhere before.

2 Reusing Cached XML Data

We apply a variety of techniques to reduce the bandwidth consumed for the transport
of XML fragments from one node of the network to another node. These techniques
include XPath query translation, XML fragment caching, pipelined reuse of cached
XML fragments, and computation of forwarded queries. In order to preserve correct-
ness of transactions, transactions are separated into the following phases: a read phase
where they are allowed to read cached and possibly outdated data, followed by a vali-
dation phase where cache consistency is checked and repaired, and an optional write
phase for successfully validated writing transactions.

2.1 XPath Query Translation

In order to answer an application’s XPath database query AQ, it is sometimes neces-
sary to access more data than we get as the query result of AQ. This occurs especially
in the cases, where we have to access data in order to evaluate the filter expressions of
AQ that would reduce the selected answer fragment. In order to retrieve the relevant
data, we use the technique of projecting XPath expressions as described in [13]. We
use this technique to translate AQ into a set of queries S={Q1,…,Qn} such that the
results to the queries of S are sufficient to answer AQ. For the following discussion,

302 S. Böttcher

we assume that the translation of AQ into S has been performed and we discuss how
to treat the queries Qi∈S within our approach.

2.2 Fragment Caching and Reuse

During the read phase, we reuse the cached query results regardless of whether they
are outdated or incomplete. Note that errors are detected and repaired within the fol-
lowing validation phase. The whole process of transferring an XML fragment to the
client can be considered as a pipelined process where sub-fragments of the queried
fragment are retrieved from the next node on the shortest path to the server (c.f.
Figure 1). Whenever these sub-fragments are sufficient to answer the query, we do
not need to retrieve the queried fragment from the server. In other words, our goal is
that the server transfers only those sub-fragments which are not cached in a node on
the shortest path from the requesting client to the server.

Of course, a query only has to be forwarded, if there is still data missing to answer
the query. That is the reason why the set of queries forwarded to the next node on the
path to the server may change, say from Qs to Qs1 to Qs2. As long as the complete
answer to a given query set Qs on the requesting client is not yet computed, each
cache on the way from the requesting client to the server submits a pair (Qsi/PAi)
consisting of a forwarded XPath query set Qsi and the XPath string PAi that describes
the partial answer to Qs(i-1) collected so far. In the opposite direction XML frag-
ments are sent to the clients, however we only send XML difference fragments, i.e.
data that are not contained in any cache on the path to the client.

Fig. 1. Answering a set Qs of generated queries in the read phase

2.3 Reusing Old Data During the Read Phase

During the read phase, cached data is reused regardless of the time-stamps associated
with the data. This may result in the use of outdated data. The motivation behind this
is that usually XML databases contain a lot of data that very rarely changes. For ex-
ample, let us look at changes in a commercial XML database that contains customer
and product descriptions: the name or the address of a given customer or the name or
the description of an ordered product will change very rarely. Even if that data
changes from time to time, no error occurs because each transaction is validated. Only
if the data has been changed since the last time when it was validated, it is outdated,
i.e. only in this case outdated data has been used by a query. But even then, it is quite
common that only a small portion of the data has changed, e.g. a phone number in the
customer’s contact data. Because we can compute outdated data from the global write
set (defined in Section 3.1), within our approach, only this changed XML difference
fragment is transferred from one node to the next on the way from the server to the

 Cache Consistency in Mobile XML Databases 303

clients. This offers the clients on that path the chance to actualize their cached data
using the transferred fragment, i.e. they are again up to date without re-submitting
their query to the XML database server.

2.4 Using Incomplete Data and Data Integration During the Read Phase

When a query can be partially answered by a fragment that is cached on a client, it is
not necessary to retrieve the whole fragment from the server. Instead, the query result
can be combined from both, the cached fragment and the remaining part that is not
found in the cache but has to be retrieved from the server. We use a unique document
numbering scheme outlined in [2] for the server-side XML document and all partial
copies on a client. This numbering scheme allows each node to integrate XML frag-
ments received over the network into its locally stored XML fragments at the correct
position.

Within the next subsections, we outline how we identify which data is contained in
a cache and which is missing and whether the query set Qsi must be forwarded.

2.5 Forwarding Queries and Returning Partial Answer Fragments

The computation of partial answers is based on asynchronous messages that are sent
back and forth on the shortest path from the requesting client to the server. There are
two kinds of incoming messages to a client and two kinds of outgoing message calls
from a client. The first incoming message, Query, is querying for an XML fragment
which is required to answer a query on the requesting client. The first outgoing mes-
sage calls Query again on the next client on the path to the server and asks for the
same or for a smaller XML fragment.

A second outgoing message Answer contains a partial answer fragment to a query
set Qs1 received as part of a previous Query message. Finally, the second kind of
incoming message receives such a partial answer fragment that is contained in an
Answer message that has been sent by the next client on the path to the server. While
the Query messages are forwarded from each client to the next node on the shortest
path to the server, the Answer messages are forwarded in the opposite direction, i.e.
towards the requesting client.

When Query messages are forwarded from one client to the next on the shortest
path to the server, they contain not only a set of queries, but also a set of XPath ex-
pressions describing partial answers found in the caches of previous clients on the
path to the server. To achieve this goal, the implementation of the Query message
computes two sets for a given set Qs1 of queries and a given set PAs1 of partial
answer XPath expressions: the set Qs2 of queries to be forwarded and the set PAs2
of partial answer XPath expressions. The implementation of the Query message is
outlined in Algorithm 1 below.

Algorithm 1. Implementation of the asynchronous method used for querying

(1) Query(in:Qs1,PAs1)
(2) // used in asynchr. output messages: Qs2, PAs2
(3) { Qs2 = ∅ ; PAs2 = empty ;
(4) for each Qi in Qs1
(5) { computeXPathExpr(Qi, XPA, QF) ;

304 S. Böttcher

(6) if (QF!=empty) Qs2 = Qs2 ∪ {QF} ;
(7) if (XPA!=empty) PAs2 = PAs2 | XPA ;
(8) }
(9) send(NextClientOnPathToRequestingClient,
(10) Answer(computeLocalAnswer(PAs2-PAs1))) ;
(11) if (Qs2 != ∅)
(12) send(NextClientOnPathToServer,
(13) Query(Qs2, (PAs1|PAs2));
(14) }

The input parameters of the Query message (line (1)) are a set Qs1 of given que-

ries and a set PAs1 of XPath expressions describing partial answers to Qs1 that have
already been found. In (line(3)), two local variables, i.e. Qs2 and PAs2 are initialized
to the empty set and to the empty XPath query string respectively. Qs2 describes the
set of queries to be forwarded, and PAs2 describes the cached query results of the
actual client node that are relevant to the queries in Qs2.

Then (within lines (4)-(8)), the set Qs2 of queries and the XPath expression PAs2
are computed. Qs2 simply collects the queries QF to be forwarded (line (6)) and
PAs2 collects the XPath expressions XPA describing reusable cached query results
(line (7)) from each call of the procedure computeXPathExpr. The procedure
computeXPathExpr (given in Section 2.6) computes a query QF to be forwarded
and a partial answer XPath expression XPA for a single query Qi contained in Qs.

Within line (10), the partial answer fragment Ans1 is computed from the difference
XPath expression (PAs2-PAs1), and it is sent back to the next client on the path to
the requesting client. We use the difference (PAs2-PAs1) here, because it is not
necessary to include a fragment described by PAs1 in the answer as this fragment of
the answer has already been found.

Finally, if the XPath query string Qs2 to be forwarded is non-empty (line (11)), a
Query message is sent to the next client on the shortest path to the server (lines (12)-
(13)). The parameters are the computed set Qs2 of queries to be forwarded and the
XPath expression (PAs1|PAs2), which is the union of the XPath expression PAs1
of previously found partial answer fragments and the XPath expression PAs2 describ-
ing the partial answer fragment found on the actual client.

To answer a query, that partial answer PAs2 of the locally cached fragment F that
is not covered by the partial answers PAs1 of previous clients, i.e. PAs2-PAs1 is
transferred to the requesting client (line (10)). A straight-forward implementation of
the message Answer simply forwards each partial answer XML fragment to the
requesting client by sending the message Answer again. The server simply answers
an incoming query by accessing the XML database and returns the answer fragment
within a separate Answer message. The Answer message contains also the actual
time-stamp generated for the purpose of transaction synchronization and cache con-
sistency checking.

2.6 Conditions for Query Forwarding and Using a Containment Test

As we can see from lines (11)-(13) of Algorithm1, queries are forwarded only if the
set Qs2 contains at least one non-empty query QF. Given Query Qi, the computation
of a query QF to be forwarded is done by a procedure computeXPathExpr (out-
lined in Figure 2 below), which additionally computes an XPath expression XPA

 Cache Consistency in Mobile XML Databases 305

describing the partial answer found in a local cache. A call to computeXPathExpr
returns that QF is empty (line (10) of Figure 2), i.e. an XPath query Qi∈Qs is not
forwarded, if the answer to Qi is contained in the cached query result of a previous
query Qold. This could be tested by checking query containment (c.f. line (9) of
Figure 2). The containment tester tries to prove that Qi is subsumed by Qold, i.e.
every answer to Qi is also an answer to Qold - independently of the database state.
When the test yields that Qi is subsumed by Qold, this is sufficient to guarantee that
every node selected by Qi is also selected by Qold. Therefore, Qold is sufficient to
search for the fragment F that answers Qi.

However, the execution time needed for a complete XPath containment test would
exhaust the mobile devices’ power and time resources (e.g. [12]). Therefore, we have
added a number of optimizations that avoid the containment test in most cases, i.e.
compute XPA and QF from Qi without performing an XPath containment test at all.
Instead, wherever possible, we substitute an XPath containment test with a more effi-
cient test based on DTD node bit-vectors which are described in the next section.
Furthermore, we simplify the remaining XPath containment tests by using a fast but
incomplete tester [5].

(1) computeXPathExpr(in: Qi ; out: XPA, QF)
(2) { XPA = empty ;
(3) for each query Qold, the result of which is cached do
(4) { if ((Qi.bitvector and Qold.bitvector) == 0) skip;
 //Qold is not relevant,as they have no bit in common
(5) else
(6) if ((Qi.bitvector and complement(Qold.bitvector))==0)
(7) //test containment only if every bit set in the
 bit-vector of Qi is set in the bit-vector of Qold
(8) and (Qi.querystring == Qold.querystring
(9) or Qi is subsumed by Qold)
(10) { QF = empty ; XPA = Qi ; return ; }
(11) else
(12) { XPA = XPA | Qold ; }
(13) }
(14) QF=Qi ; // forward Qi unchanged
(15) }

Fig. 2. Computing partial answer and forwarded XPath expression for a query Qi

2.7 Mapping of Queries to DTD Node Bit-Vectors

The requesting client, that submits a query Qi, generates a DTD node bit-vector for
Qi as an approximation to decide whether or not a cached result of a query Qold can
be reused for answering Qi. The idea behind DTD node bit-vectors is that Qold can
be reused, only if Qold and Qi select at least one common attribute or element. In
such a case, we call Qold relevant to Qi.

A DTD node bit-vector contains one bit for each element or attribute defined in a
DTD. Basically a query Qi is translated into its bit-vector by setting a bit for each leaf
element and for each attribute selected by Qi or accessed by a filter of Qi. Within a
query Qi = /E1[./E2[E3]/E4]/E5/E6, the elements E3, E4 and E6 are the leaf elements
of Qi whereas E1, E2 and E5 are not. Note that an element can be a leaf element of a

306 S. Böttcher

query, although all elements in an XML database with the same name represent inner
XML element nodes.

Note however that the DTD node bit-vector is changed for a query Qold, the re-
sult of which is cached. Qold is translated into its bit-vector by setting a bit only for
each leaf element and for each attribute selected by Qold, i.e. the elements or attrib-
ute occurring only in a filter are ignored. For example, the bit for E6 is the only bit set
in the bit-vector of a query Qold=/E1[./E2[E3]/E4]/E5/E6.

Whenever a query result of an old query Qold is cached, the query string and the
bit-vector of Qold are cached too. The bit-vectors are used to restrict the number of
XPath containment tests as follows. Only if each bit set in the bit-vector of Qi is also
set in the bit-vector of Qold (line (6) of Figure 2), we perform the fast containment
test for XPath queries described in [5]. Otherwise, Qi can not be answered com-
pletely by Qold, i.e. we do not need an XPath containment test.

Now, we can explain the remaining parts of the procedure computeXPathExpr.
This procedure processes one cached query Qold after the other (line (3)) and stops
immediately if a containment test was successful (line (10)). It distinguishes the fol-
lowing cases for reducing the number of containment tests.

First, if the bit-vectors of Qi and Qold have no bit set in common (line (4)), we
are then sure that there is no leaf element or attribute node in any valid XML docu-
ment that is both selected by Qold and required to answer Qi. In other words, we are
sure that the cached query result for Qold cannot contribute to answer Qi. If this
condition holds for all old query results Qold in a client, then the query QF for-
warded to answer Qi is simply the same as Qi (line (14)), i.e. Qi is forwarded to the
next client on the path to the server.

Second, if Qi selects or a filter of Qi depends on at least one leaf element or at-
tribute that is not selected by Qold, there is at least one bit in set in the bit-vector of
Qi that is not set in the bit-vector of Qold (i.e. the test in line (6) fails). As the query
result Qold may partially contribute to the answer of Qi, the XPath query expression
of Qold is added to XPA, the XPath query expression of partial answers to Qi. Note
that the containment test (line (9)) is skipped, and the only tests required so far are
two fast tests on bit-vectors.

Third, if the bit-vectors of Qi sets a subset of the bits of the bit-vector of Qold
(line(6)), it is first checked whether the query strings of Qi and Qold are identical
(line (8)). If the query strings are identical, the fragment that is cached for Qold is
exactly what we need to answer Qi. Therefore, forwarding of Qi is stopped.

Finally, only if none the above three conditions applies, the fast but incomplete
containment test described in [5] is performed. If the containment test yields the result
that Qi is subsumed by Qold, Qold can be searched for the fragment F that answers
Qi. Therefore again, the forwarding of Qi is stopped.

To summarize the contributions of Section 2: After translating an application query
AQ into a set Qs of queries Qi, we have suggested to reduce data transfer by using
cached results and outdated data, and to ask only for missing data fragments. Fur-
thermore, we have shown how to compute XPath queries for missing data fragments
and how to check whether or a cached result can be reused and whether or not a query
has to be forwarded. The advantages of these techniques are that queries are sent only
when necessary and only to as few nodes on the path to the server as necessary and
that the size of transferred answer fragments is reduced to a minimum.

 Cache Consistency in Mobile XML Databases 307

3 Cache Consistency and Synchronization of Mobile Transactions

3.1 Overview of Our Validation Based Approach to Synchronization

As mobile clients have a higher chance to loose their connection to the database
server than traditional static clients, we do not grant locks to resources accessed by
mobile clients. Instead, we use a server-side scheduler that combines time-stamps and
an optimistic approach. While this idea has been applied to relational databases, we
use XML databases and want to minimize data exchange within multi-hop environ-
ment, both of which lead to new requirements - to be discussed later.

As within the traditional validation protocols ([10]), our transactions are divided
into phases. A read phase is followed by a validation phase, which in case of success-
ful validation is eventually followed by a write phase. Transactions are ordered ac-
cording to the end of their read phase, i.e. transaction Told is defined to be older than
a transaction T, if Told ends its read phase (and thereby starts its validation phase)
before T ends its read phase. Younger transactions T are validated against older trans-
actions Told. As the scheduler’s decision on commit or abort during the validation
phase of a T depends on timestamps and data read or written by T, each transaction T
uses a read set and a so called private write set to inform the scheduler about XML
data fragments that have been read or shall be written by T. The scheduler combines
the private write sets received by all (non-aborted) transactions into the so called
global write set, which is used to check whether an actually validating transaction T
conflicts with the write operations of previous transactions Told.

Inspired by the idea of [14] that uses queries in predicative validation, we use
XPath expressions instead of XML fragments within the read set and, wherever pos-
sible, within the private write set too. This significantly reduces the amount of data
exchanged for the purpose of validation as the XPath expressions are usually much
smaller than the XML fragments read by a transaction.

Within the read phase, transactions query the XML database itself or the cached
copies of XML fragments in the network which may contain outdated data. Further-
more, write operations during the read phase of a transaction are performed on the
client’s local copy of an XML database fragment, and both the operations and the new
values of altered fragments are stored in the private write set of the transaction. Fi-
nally, at the end of the read phase, a writing transaction transfers its private write set
to the server. Note however that the private write set is not applied to the server-side
XML database as long as the transaction has not been validated successfully.

During the validation phase, the transactions’ queries together with the time-
stamps computed for the query results are compared with the write operations per-
formed by concurrent transactions as described below. As a result of the validation
phase, an XML difference fragment is returned from the database server to all the
mobile clients participating in the transaction. This XML difference fragment contains
all the information needed to bring the client up to date, i.e., the new values of out-
dated data and the information which data has been inserted or deleted on the server
by concurrent transactions since the data used by the client has been read from the
server. If this XML difference fragment is empty, the transaction has only used actual
data; therefore the clients know that the transaction has been completed successfully.
Otherwise, the clients use the XML difference fragment to refresh their cached data
and assign a new time-stamp to the refreshed data before they restart the transaction.
By using XML difference fragments to refresh cached data, we avoid the conflicts

308 S. Böttcher

that previously lead to the abortion of the transaction, and we bring the client up to
date without reading all the data used by the client again.

Within the write phase, the server-side transaction scheduler applies all the write
operations contained in the private write set of a successfully validated transaction to
the XML database. Then the scheduler generates a time-stamp for the write operations
and copies the transaction’s private write set together with the generated time-stamp
into the server-side global write set, which is now actualized for the validation of
further concurrent transactions.

3.2 Time Stamp Generation

As mentioned earlier, the scheduler generates a new timestamp during the write phase
of each transaction after the transaction’s changes have been made permanent to the
database. Timestamp generation is the only mutual exclusive step, i.e. the only step
that has to be done in a critical section. Furthermore, the actual time-stamp is assigned
to each query submitted to the server, before the query is applied to the server-side
XML database. The resulting answer XML fragment is associated with this timestamp
and reflects the time at which data collection for this fragment started. This time-
stamp will be used in the validation phase. Finally, a new time-stamp is generated
before the data collection for an XML difference fragment is started.

Time-stamps are assigned to the query results and XML difference fragments be-
fore the data collection for the query and the XML difference fragment starts, whereas
time-stamps for write operations are generated after the data has been written to the
XML database. This is required for the following reason. When a query (or an XML
difference fragment computation) of transaction T with a time-stamp t conflicts with
write operations of a transaction Told with an older time-stamp told, we are then
sure that the write operations performed by Told on the XML database are com-
pleted before the read operations of the query or the XML difference computation for
T start. This allows us to conclude that no transaction dependency “T reads dirty data
that has been changed by Told” can result from this particular query and this particu-
lar write phase.

Whenever a cached XML fragment is transferred to another client, the original time-
stamp set by the database server for this fragment is associated with the copy too.

3.3 Details of the Validation Phase

Within the validation phase, each transaction T is validated against older writing
transactions Told. As we allow for parallel validation of transactions, we have to
check for read-write conflicts and for write-write conflicts. Note however that it is not
necessary to validate a transaction T against older reading transactions, as they did not
chance the XML database and therefore did not change the data read by T.

In comparison to node-based locking or validation approaches, we use the XPath
expressions that have been used in the data collection phase of a query also in the
validation phase. These XPath expressions are applied to the XML difference frag-
ments F that are stored in the global write set, i.e. to the old values of updated and
deleted fragments and to the new values of updated and inserted fragments. A read
operation read(Q) that uses an XPath expression Q and a write operation write(F) that
modifies a fragment F are defined to be in conflict if Q(F), i.e. Q applied to F, is non-
empty. Whenever read(Q) and write(F) are in conflict, the time-stamps associated to

 Cache Consistency in Mobile XML Databases 309

Q and to F are used to check whether or not read(Q) was a dirty read. Whenever, the
time-stamp of F is at least as old as the time-stamp of Q, we are then sure that the
values read by read(Q) could not have been invalidated by the operation write(F).
Therefore, Q(F) is added to the XML difference fragment only if the time-stamp of Q
is older than the time-stamp of F.

Some write-write conflicts have to be checked because at validation time, we can
not be sure whether the older transaction writes conflicting data first. Similarly as for
queries, we use the XPath expressions X that occur in write operations and that are
stored as operations in the validating transaction’s private write set. A write operation
using an XPath expression X is in conflict with a write operation modifying a frag-
ment F, if and only if X(F) is non-empty. Similarly as with read-write conflicts, a
write-write conflict of an older transaction Told and a validating transaction T can
not yield a lost update if we are sure that Told writes before T writes. This is the
case, if the time-stamp generated in the write phase of Told is older than the time-
stamp for T‘s validation phase begins.

If however, we have a write-write conflict and the time-stamp of the write phase of
Told either is not older than the time-stamp for T‘s validation begins or has not yet
been created, we can not be sure whether write-write conflicts between Told and T
yield lost updates. In this case, we have to prevent that T writes before Told writes.
This can either be done by restarting T or by suspending the write phase of T until
Told’s write phase is completed. Which option is the best choice, depends on the
server’s stability considerations, i.e. we decided for a stable server to suspend the start
of T’s write phase until Told’s write phase is completed instead of aborting and
restarting T as in the standard parallel validation protocol. The advantage of fewer
restarts than in the standard parallel validation protocol is that we reduce the amount
of data that has to be exchanged between server and client, which is essential in mo-
bile environments.

4 Reducing Data Exchange for Validation

4.1 Reduced Data Exchange at the End of the Read Phase

Data exchange at the end of the read phase is minimized because the data needed for
validation is restricted to a minimum as follows. The largest reduction is to exchange
XPath expressions or IDs for XPath expressions instead of exchanging read XML
fragments. A second reduction applies to delete operations, for which the client sends
only paths to the deleted fragments instead of sending the deleted fragment to the
server. Each insert operation is sent as a pair consisting of an inserted fragment and
the path to it. A third reduction applies to update operations. We use the path to each
updated fragment for both, deleting the old fragment and inserting the new fragment,
i.e. we avoid sending the old fragment back to the server. Finally, whenever the
XPath expressions are stored on the server-side and associated with IDs, the system
can exchange IDs instead of strings for XPath expressions except for the first time
when an XPath expression is transmitted.

4.2 XML Difference Fragment Computation in the Validation Phase

In the validation phase, the scheduler computes which data is missing or outdated but
required on the clients to correctly answer all its computed queries Qi. The scheduler

310 S. Böttcher

compiles an XML difference fragment containing this required data. The XML differ-
ence fragment contains the answer fragment X to the union of all queries Qi of the
transaction minus those fragments that have been transferred or validated before and
have not been changed since the last transfer or validation. In order to check whether
or not a fragment has been changed since the last transfer or validation, the time-
stamps are used as described in Section 3.2. After all the fragments have been sub-
tracted from X which, according to the time-stamps, may contain outdated data, the
remaining XML difference fragment is transferred to the client.

4.3 XML Difference Fragment Propagation to the Client

Once computed, the XML difference fragment is transferred hop by hop on the short-
est path from the server to the requesting client. This fragment can be used to actual-
ize the cache content of the inner network nodes. Whenever the cache of a requesting
client or of an inner network node caches an XML fragment that is actualized by
applying the updates of an XML difference fragment, the actualized fragment inherits
the time-stamp of the XML difference fragment.

Note that this cache actualization of intermediate network clients results in a more
actual state of is their cached data without extra bandwidth consumption. The advan-
tage of this more actualized intermediate caches is that transactions started on other
clients may eventually reuse this cached data, i.e., we can reduce the number of re-
quired data exchange steps of further queries or it may lead to fewer failing validation
steps of other transactions. Furthermore, note that this advantage holds even if the
difference fragment is empty. Then, all the clients on the shortest path from the server
to the requesting client know the following. All the data that is needed for the queries
of the actual transaction and that these clients have in their cache is up to date. There-
fore, all the clients on the path to server including the requesting client can modify
their time-stamps without exchanging additional data.

5 Time-Stamp Computation for Mixed Fragments

When queries are partially answered by cached query results, there are in principle
two options for computing the time-stamp of the query. First, the query result can
combine the data and take the oldest time-stamp as the time-stamp of the combined
result. Second, the query can be split, i.e. it can be replaced with two or more queries,
each representing one cached fragment. Both approaches have their pros and the cons.
The first approach is easy to implement and does not require to communicate and to
manage extra query strings. In comparison, the second approach, in general, attaches
newer time-stamps which may lead to fewer failing validations.

6 Summary and Conclusions

As mobile clients may lose their connection to a database server, we do not grant
locks to resources accessed by mobile clients. Instead, we use an optimistic approach
that allows unprepared disconnections of clients at any time without blocking the
server. Additionally, our approach allows repairing lost connections, i.e. continuing
interrupted transactions after link failures have been repaired without restarting a

 Cache Consistency in Mobile XML Databases 311

running transaction. Furthermore, it allows for cross-transaction optimization, i.e. to
use cached and outdated data of previous transactions, and it allows using cached data
of other clients.

Data exchange during the read phase is further reduced by a pipelined data ex-
change technique that considers partial answers that have already been found and
transports only missing XML difference fragments. Furthermore, missing XML dif-
ference fragments are taken from the first client found in order to keep the transporta-
tion distance as short as possible.

Data exchange in the validation phase is reduced to an absolute minimum as the
XML difference fragments contain only the required information about outdated
fragments and fragments not yet cached at the client. Furthermore, the difference
fragments can be used by the inner mobile network nodes to update their caches.

Cache consistency is checked and guaranteed within our approach as a result of the
validation step during the transactions’ commit-request and does not require any addi-
tional data exchange. We regard this as a significant contribution as validation-based
synchronization appears to be appropriate for mobile transactions, and our approach
reduces the major bottle-neck and most energy consuming process in mobile net-
works, i.e. the size of exchanged data fragments.

Although, we have used a validation based approach on the server, our approach of
validating clients, that perform a cache consistency check without extra XML frag-
ment exchange, is not restricted to client-server architectures that use validation as a
server-side synchronization protocol. [3] shows that that client-side cache-consistency
checking integrates well with centralized or distributed servers in wired networks that
use a lock-based protocol. Finally, although we have described our approach for a
single stable XML database server, we consider the approach to be applicable also to
transactions running on multiple databases located on different MANET nodes, if it is
appropriately combined with an atomic commit protocol for MANETs as e.g. [1].

References

[1] Joos-Hendrik Böse, Stefan Böttcher, Le Gruenwald, Sebastian Obermeier, Heinz
Schweppe, Thorsten Steenweg. An Integrated Commit Protocol for Mobile Network Da-
tabases. The 9th International Database Engineering and Applications Symposium
(IDEAS 2005). Montreal, Canada, July 2005.

[2] Stefan Böttcher, Adelhard Türling. Caching XML Data for Mobile Web Clients. Interna-
tional Conference on Internet Computing IC'04, Las Vegas, June 2004.

[3] Stefan Böttcher, Adelhard Türling. Transaction Synchronisation for XML Data
in Client Server Web Applications. In: Informatik 2001 , Tagungsband der GI-
Jahrestagung 25.-28. September 2001, Vienna, Austria , Volume 1, pages 388-
395.

[4] Stefan Böttcher. Repairing lost connections of mobile transactions with minimal XML
data exchange. IFIP TC8 Working Conference on Mobile Information Systems
(MOBIS). Oslo, Norway, September 2004.

[5] Stefan Böttcher, Rita Steinmetz. Testing Containment of XPath Expressions in order to
Reduce the Data Transfer to Mobile Clients. 7th East-European Conference on Advances
in Databases and Information Systems, Dresden, Germany, September 2003.

312 S. Böttcher

[6] Çetintemel, Ugur, Peter J. Keleher, Bobby Bhattacharjee and Michael J. Frank-
lin: Deno: A Decentralized, Peer-to-Peer Object-Replication System for Weakly
Connected Environments. IEEE Trans. Computers 52(7): 943-959 (2003)

[7] Chung, I.-Y., Hwang, C.-S.: Transactional Cache Management with Aperiodic Invalida-
tion Scheme in Mobile Environments. ASIAN 1999: 50-61

[8] Hara, T., and Madria, S.: Consistency management among replicas in peer-to-peer mo-
bile ad hoc networks, Proc. of Int'l Symposium on Reliable Distributed Systems (SRDS
2005), pp.1-8, 2005.

[9] Karumanchi, G., Muralidharan, S., and Prakash, R.: Information dissemination in parti-
tionable mobile ad hoc networks, Proc. Int'l Symposium on Reliable Distributed Systems
(SRDS'99), pp.4-13, 1999.

[10] Kung, H.T., Robinson, J.T.: On Optimistic Methods for Concurrency Control. ACM
TODS, 6, 2, 1981.

[11] Luo, J., Hubaux, J.P., and Eugster, P.: PAN: Providing reliable storage in mobile ad hoc
networks with probabilistic quorum systems, Proc. ACM MobiHoc'03, pp.1-12, 2003.

[12] Frank Neven, Thomas Schwentick: XPath Containment in the Presence of Dis-
junction, DTDs, and Variables. ICDT 2003: 315-329.

[13] Amelie Marian, Jerome Simeon: Projecting XML Documents, VLDB 2003.
[14] Manuel Reimer: Solving the Phantom Problem by Predicative Optimistic Concurrency

Control, 9th VLDB, Florenz, 1983.
[15] Türker, Can, Klaus Haller, Christoph Schuler and Hans-Jörg Schek. “How can we sup-

port Grid Transactions? Towards Peer-to-Peer Transaction Processing”. In: Proceedings
of the Second Conference on Innovative Data Systems Research, CIDR 2005, January 4-
7, 2005, Asilomar, CA, USA, pp. 174-185, 2005.

[16] World Wide Web Consortium (W3C), XML Path Language (XPath) Version 1.0, W3C
Recommendation, http://www.w3.org/TR/xpath/, 1999.

Bulkloading Updates for Moving Objects�

Xiaoyuan Wang, Weiwei Sun, and Wei Wang

Department of Computing and Information Technology
Fudan University, Shanghai, China

{xy wang, wwsun, weiwang1}@fudan.edu.cn

Abstract. Supporting frequent updates is a key challenge in moving
object indexing. Most of the existing work regards the update as an
individual process for each object, and a large number of separate up-
dates are issued respectively in update-intensive environments. In this
paper, we propose the bulkloading updates for moving objects (BLU).
Based on a common framework, we propose three bulkloading schemes
of different spatial biases. By grouping the objects with near positions,
BLU prefetches the nodes accessed on the shared update path and com-
bines multiple disk accesses to the same node into one, which avoids I/O
overhead for objects within the same group. We also propose a novel
MBR-driven flushing algorithm, which utilizes the dynamic spatial cor-
relation and improves the buffer hit ratio. The theoretical analysis and
experimental evaluation demonstrate that BLU achieves the good update
performance and does not affect the query performance.

1 Introduction

The rapid advances in wireless communications and electronic technologies en-
able a wide range of emerging location-aware applications in mobile environ-
ments, such as traffic monitoring and intelligent transportation systems. Moving
objects with positioning devices move continuously and their location informa-
tion is reported to the server for further processing. Efficiently tracking the
changing positions of moving objects can substantially improve the quality of
these applications.

Spatial indexes like R-tree provide a basis for indexing moving objects. The
key challenge is to handle the frequent updates because the sampled location
values are dynamically changing and need to be updated frequently. The high
demand for updates is motivated by most location-aware applications. Several
indexing technologies have been proposed for moving objects [12, 6, 9, 16, 4, 2, 17].
One way is to accelerate the location steps of the old and new entries in leaf
nodes, and reduces the number of disk accesses to internal nodes in traverse of
the index structure [6, 9, 16, 17]. Another way is to model the objects’ movement
as a function of time to support the future trajectory queries [12, 4]. Only when
the function parameters change, is an update issued, which reduces the number
� This work was supported in part by Natural Science Foundation of China under

grant number No. 60503035.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 313–324, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

314 X. Wang, W. Sun, and W. Wang

of location updates. Most of the existing work regards the update as an individual
process for each object, and separate updates are issued respectively in update-
intensive environments. With a large number of moving objects, this one-by-one
manner causes a high volume of update path traverses and duplicate disk accesses
to same nodes by different objects.

In this paper, we propose the bulkloading updates (BLU) for moving objects,
which efficiently utilize the spatial correlation between different updates and
achieve significantly lower update cost. We first present a framework of BLU,
in which there is no need to modify any existing disk-based update or query
algorithm. Thus BLU can be applied to the existing moving object indexes as
a flexible component. Based on it, we propose three bulkloading schemes with
different spatial biases. Each of them utilizes its spatial bias to group objects
with near positions. Within the same group, shared update paths are prefetched
into the buffer and multiple disk accesses to the same node can be combined into
one. In this way, BLU avoids I/O overhead for objects with the same group. We
also propose a novel MBR-driven flushing algorithm. It organizes the flushing
order in an MBR-driven manner and improves the buffer hit ratio. We conduct
the theoretical analysis and experimental evaluation. As shown in the analysis,
one distinguishing feature of BLU is that its query performance is lossless, that
is, it does not affect the query I/O cost of the index it is applied to. Both the
analysis and experimental results demonstrate that BLU has the good update
performance.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 presents the bulkloading updates (BLU) in detail. Section 4
conducts the experimental evaluation and we conclude the paper in Section 5.

2 Related Work

The bulkloading technique [5, 7, 15] is usually used for the construction phase of
an index structure and can improve the overall performance with fairly static
data. However, for dynamic data, especially frequently updated data like moving
objects, the effect of bulkloading for the initial index construction is trivial.
Several group updates for spatial indexes [1, 10] have been proposed and little
work is favorable to moving object applications. Recently [8] proposes a lazy
group update method for moving objects. With a disk-based insertion buffer for
each internal node in R-tree, it improves the update throughput and also incurs
additional I/O overhead in query evaluation.

Moving object indexing problems are generally categorized into three kinds:
(1) Indexing the historical trajectories of objects [11, 13]. (2) Indexing the cur-
rent positions of objects [6, 9, 16, 2, 17]. (3) Indexing the near future positions of
objects [12, 4]. Among category (2) and (3), how to support frequent updates
as well as efficient query processing is the key challenge to the existing index
technologies.

To support frequent updates, several indexing methods have been proposed
recently. Different from the traditional deletion-insertion way, Lazy R-tree [6]

Bulkloading Updates for Moving Objects 315

updates the index only when an object moves out of the corresponding MBR.
Q+Rtree [16] differentiates fast-moving objects and quasi-static objects, and con-
structs a hybrid tree structure consisting both an R*-tree and a Quadtree. The
Frequently Updated R-tree (FUR-tree) [9] incorporates the localized bottom-up
strategies into R-tree. It locates the leaf node via a secondary object-ID index,
and a bottom-up search is issued from the leaf node to find the new entry to
be inserted. [4] proposes a B+-tree based structure Bx-tree for indexing current
and near future positions of moving objects. [2] proposes the change tolerant in-
dexing for high update environments. The MBR is defined based on the changes
to data values and thus can reduce the number of updates that cross MBR
boundaries. [17] presents an R-tree variant that avoids disk accesses for purg-
ing old entries during an update process. Most of the existing work regards the
update as an individual process, and a large number of separate updates are
issued respectively in update-intensive environments. In this paper, we propose
the bulkloading update (BLU) and apply it to FUR-tree [9], a typical moving
object index that has been widely used. Meanwhile, the proposed technique is
also applicable to other moving object index structures.

3 Bulkloading Updates

3.1 Motivation

The basic idea behind BLU is to group the objects with close positions and com-
bine their individual updates into a common process. An example is illustrated
in Figure 1. The location updates for object o1 and o2 are issued in FUR-tree.
Both of them are deleted in leaf node A and respectively inserted into leaf node
B and C in a bottom-up way. We assume an LRU buffer of four disk pages. In
the traditional way where a separate update for each object is issued one by
one, there is no correlation between the update for o1 and the one for o2. Figure
1(b) shows the buffer states and disk page swapping occurs frequently between
two individual update phases. It incurs 8 disk accesses totally (here we do not
account the I/O cost for accessing the secondary object-ID index). Now we con-
sider the bulkloading way. o1 and o2 are clustered together and then a common
update process is issued. Two objects almost share the same update path in
FUR-tree. As shown in Figure 1(c), it incurs only 5 disk accesses. In fact the
update path ADE has been prefetched into the buffer before the update for o2.

A B C

D

E

(a)

o1
o2

object-ID index

o1

o2
A A A A X X X A

D D
E

D
E
B

X
X
A

X
A
D E

D
A D

E
C

A A
D

A
D
E

A
D
E
B

D
E
B
A

E
B
A
D

B
A
D
E

A
D
E
C

(b)

(c)

Fig. 1. An example to show the update path and buffer state

316 X. Wang, W. Sun, and W. Wang

3.2 A Framework of Bulkloading Updates

We first present a framework of bulkloading updates for moving objects, as
shown in Figure 2. It consists of two phases loading and flushing. An in-memory
loading pool is maintained for buffering the incoming location information. When
a new tuple (oid, pos) comes at each time step, it is first put into the loading pool
according to a certain criteria. When the loading pool has not enough memory to
accommodate the new incoming tuples, the flushing phase is issued. The location
values in the loading pool are group by group flushed into the disk-based index.
Then an ordinary update operation is performed for each object in a group. Two
points should pointed out here.

1. In this framework, there is no need to modify any disk-based update (inser-
tion/deletion) algorithm in the existing moving object indexes. Therefore BLU
can be applied to the current moving objet databases as a flexible component.

2. When a new ad hoc query comes, BLU first checks whether the loading
pool is empty. If not, it flushes the remaining values in the loading pool and
then performs the query evaluation, as shown in Figure 2. In this way, only one
active copy of each object’s location information is kept at the same time, and
no additional overhead is incurred to keep the data values consistent between
the loading pool and the disk index. Similarly, there is no need to modify any
disk-based query algorithm and BLU remains adaptive in dynamic environments.

Within the above framework, two problems become critical to the perfor-
mance of BLU: the grouping criteria and the flushing algorithm. According to
the grouping criteria, we propose three bulkloading schemes in Section 3.3, and
the flushing algorithm will be investigated in Section 3.4.

FlushingLoading Full?
Yes

No

Yes

Empty?

No

Incoming tuples

Ad hoc queries

Disk index

Fig. 2. A framework of bulkloading updates

3.3 Bulkloading Scheme

For a given group of objects with approximate positions, their updates in the
disk index might share the same path from the old entry to the new entry, like
the path ADE in Figure 1. With the concept of the shared path, we use the
relative cost ratio ξ to measure the effect of BLU,

ξ =
CostBLU

Costnon−BLU
=

ls +
n∑

i=1
li

ls · ns +
n∑

i=1
li

(1)

Bulkloading Updates for Moving Objects 317

where ls is the shared path length, ns is the number of objects whose update
path contains the shared path, n is the total number of objects in this group,
and li is the length of object i’s update path excluding the shared path. The
path length is referred to the number of nodes accessed on it. For example, in
Figure 1 ls = 3, ns = 2 and ξ = 3+2

6+2 = 5
8 . In the BLU schemes, we expect both

ls and ns to be large so that the nodes on the shared path repeatedly accessed
by multiple objects can be prefetched into the buffer and efficiently combined
into one disk access. We first introduce the concept of bulkloading bias, which
forms the basis of bulkloading schemes.

Definition 1. (Bulkloading Bias)The bulkloading bias is defined as the spa-
tial unit based on which the moving objects are grouped. The objects are called
neighbors if their positions are within the same spatial unit.

According to the bulkloading bias, the loading pool is partitioned into a set
of buckets, each of which forms a group and accommodates the continuously
incoming tuples. A hash-based bucket function h is used to determine which
bucket a new tuple (oid, pos) should be put into. The processing logic of BLU
is described in Algorithm 1. We present three bulkloading schemes of different
spatial biases, each of which has its own bucket function.

Algorithm 1. BLU(new tuple (oid, pos), scheme S)
1. if the loading pool is full
2. collect the buckets and flush the data to the disk-based index.
3. for each bucket bk
4. for each tuple (oid, pos) in bk
5. issue a bottom-up update in FUR-tree.
6. return.
7. obtain the new tuple’s key of the bucket function according to scheme S.
8. put the new tuple (oid, pos) into the bucket h(key) in the loading pool.

MBR Biased Scheme(MBS)
In this scheme, the bulkloading bias is the MBR (Minimum Bounding Rectangle)
in R-tree based indexes. Note that we distinguish two kinds of positions, the
old position and the new position. The former is reported at last time step and
currently stored in the index structure. The latter comes from the new tuple (oid,
pos) and will be processed. For each object, its old and new positions respectively
correspond to the old and new MBRs the position lies in. We employ the old
MBR in MBS since the new MBR of an object is unknown before traverse of
the index structure. In this way, objects whose old positions are located in the
same MBR are grouped in the same bucket. In R-trees, the leaf node and the
leaf MBR have a one-to-one relationship. Two objects reside in the same MBR
if and only if their corresponding entries are within the same leaf node. Thus
the leaf node serves as a tag of the MBR and becomes the key of the bucket
function. Especially in FUR-tree, the leaf node N can be directly located via the
secondary object-ID index before a bottom-up search is issued. The new tuple
(oid, pos) is then put into the bucket h(N) in the loading pool.

318 X. Wang, W. Sun, and W. Wang

Grid Biased Scheme(GBS)
Different from MBS that objects with near old positions are grouped together,
we take into consideration the grouping effect of new positions in GBS. Although
the new MBR of each object is not known in the loading phase, we use the grid
partition as approximation. The space is uniformly divided into k ∗ k grids of
same size. For a new position pos(x, y), it is easily to obtain the grid cell that
pos lies in. With row-major ordering, the grid cell id gid is (y/yunit) ∗ k +
x/xunit, where yunit and xunit are the grid cell side length of y-axis and x-axis
respectively. The new tuple (oid, pos) is put into the bucket h(gid) in the loading
pool.

It should be noted that GBS is approximate grouping while MBS is precise
grouping. In MBS, it is concerned with the old positions and objects keep con-
sistent between the buckets and the old MBRs. In GBS, it considers the new
positions and the grid is just the spatial approximation to the new MBR. Ob-
jects in the same grid might be in the same new MBR and there are also chances
that they reside in different MBRs. In other words, MBS is a look-back scheme
and GBS is a look-ahead scheme.

Hybrid Biased Scheme(HBS)
Based on MBS and GBS, we propose the hybrid biased scheme (HBS). We
combine the grouping effect of both MBS and GBS in a unified way. The key of
the bucket function is (N, gid), where N is the leaf node located in MBS and
gid is the grid cell id calculated in GBS. Thus objects are clustered in a more
compact way. Only those whose old positions are located in the same MBR and
new positions are approximately neighboring can be grouped in the same bucket
and then a common disk-based update is issued. In fact, the concern in HBS is
a trajectory between two time steps rather than a single position. The shared
update path is expected to be longer in HBS while the number of objects in each
bucket might be less.

Figure 3 illustrates three bulkloading schemes. The objects o1, o2, o3 move
from the old positions to the new positions respectively. In MBS, two groups
are formed h(MBR1) = {o1, o2} and h(MBR2) = {o3}. In GBS, h(g1) = {o1}
and h(g2) = {o2, o3}. In HBS, three groups are formed because of the finer
granularity, h(t1) = {o1}, h(t2) = {o2}, and h(t3) = {o3}.

o1

o3

o2 o1

o3

o2 o1

o3

o2

t1

t2

t3

MBR1

MBR2

g1

g2

(a) MBS (b) GBS (c) HBS

Fig. 3. An example of bulkloading schemes

Bulkloading Updates for Moving Objects 319

3.4 MBR-Driven Flushing Algorithm

When the loading pool can not accommodate new tuples, the data values in the
buckets are flushed into the disk index. The flushing algorithm considers in what
order the buckets are collected. The buckets reflect the spatial location of the
objects in it, and different flushing orders lead to different buffering effects as
well as disk I/O cost. Intuitively, the spatial units preserving proximity should
be close in the flushing order. We propose an MBR-driven flushing algorithm. A
stack-like MBR Table (MT) with LRU replacement is used to maintain the leaf
nodes recently accessed. The size of MT is a parameter that can be dynamically
adjusted.

Algorithm 2. MBR-driven Flushing for MBS
1. While there are non-empty buckets
2. choose a non-empty bucket and set N to the bucket key.
3. push N into MT.
4. while MT is not empty
5. N = MT.pop().
6. if the bucket h(N) is not empty
7. for each tuple (oid, pos) in the bucket h(N)
8. issue a bottom-up update.
9. if leaf node N ′ is pinned into the buffer
10. push N ′ into MT.
11. clear the bucket h(N) to empty.

The flushing algorithm for the MBR biased scheme is described in Algorithm
2. Note that N and N ′ are referred to the leaf node ID rather than the actual
page. When a leaf node is pinnned into the buffer by previous updates, its ID
is pushed into MT. In this way, MT records the leaf nodes that have been
accessed and still reside in the buffer. The subsequent buckets driven by the leaf
node (MBR) popped from MT can directly access the in-buffer nodes without
I/O overhead. Even some of consecutive buckets share a common update path,
which has been prefetched into the buffer. It should be noted that the shared
path here is subtly different from that in Section 3.3. We distinguish them as
in-bucket shared path and between-bucket shared path respectively. The former
means that the update path is prefetched into the buffer and shared by objects
within the same bucket, as described in Section 3.3. The between-bucket shared
path here means that it is commonly accessed by objects belonging to different
buckets, which is the immediate effect of the flushing algorithm.

The flushing algorithm for the grid biased scheme is different from that for
MBS in two points: (1) The key of the bucket function h is the grid id gid
instead of the leaf node id N . (2) To find which grid to be driven by the MBR
popped from MT, we map the MBR to the grid space and select the grids whose
region overlap with the MBR as the next one in the flushing order. Since the grid
partition is uniform, the mapping calculation is simple. For example, in Figure 3,
when MBR1 is popped from MT, the grids that MBR1 intersects are selected and

320 X. Wang, W. Sun, and W. Wang

their corresponding buckets will be next collected for flushing. The MBR-driven
order is distinguished from other space-filling curves like row-major order or
Hilbert curve, since it utilizes the dynamic spatial correlation based on buffer hit,
instead of a predefined visiting order. As for the hybrid biased scheme, the above
MBR-driven flushing algorithm either for MBS or for GBS can be employed.

3.5 Cost Analysis

We first introduce a theorem to show the query performance of BLU. Let T be
the original index structure and BLU-T be the corresponding index with the
proposed bulkloading updates.

Lemma 1. Let o1 and o2 be two objects to be updated. For an R-tree based index,
two updates of different orders, o1-first-o2-second and o2-first-o1-second, have
the same average query I/O cost.

Theorem 1. The query performance of BLU is lossless, that is, the query I/O
cost of BLU-T is not more than that of T.

Proof. Let T0 be the index before the update, n be the total number of ob-
jects, Cq(T , n) and Cq(BLU-T, n) be the query I/O cost of T and BLU-T. An
update is an index structure change denoted as a binary tuple, that is, (T0,
T) and (T0, BLU-T) respectively. For all the objects, there is an update se-
quence (o1, o2, ..., on) in (T0, T), and the sequence is (oi1 , oi2 , ..., oin) in (T0,
BLU-T). We prove that Cq(BLU-T, n) is not larger than Cq(T , n) by induc-
tion of n. (1) When n = 1, there is only one object and the conclusion exists.
(2) When n > 1, there exist the update sequence (o1, ...S1..., oin , ...S2..., on)
for (T0, T) and (oi1 , ...S

′
1..., on, ...S′

2..., oin) for (T0, BLU-T). We make a se-
ries of bubble swapping for the first sequence so that on swaps with its left
neighbor and oin swaps with its right neighbor repeatedly until it turns a new
sequence (o1, ...S1..., on, ...S2..., oin). According to Lemma 1, Cq(T , n) is not af-
fected by the bubble swapping. Now for the sequence (o1, ...S1..., on, ...S2..., oin)
for T and (oi1 , ...S

′
1..., on, ...S′

2..., oin) for BLU-T, we consider their (n−1)-length
form (o1, ...S1..., on, ...S2..., on−1) and (oi1 , ...S

′
1..., on, ...S′

2..., oin−1). By induc-
tion, Cq(BLU-T, n − 1) is not larger than Cq(T , n − 1). Therefore the same for
the n-length sequence and we have the conclusion when n > 1. ��
From Theorem 1, we see that BLU keeps the good query performance of the
existing R-tree variants. Different from some of the previous approaches, which
sacrifice the query performance for the update performance, BLU does not need
to make a compromise between them. In fact, since objects with close positions
are updated together, BLU-T keeps a more compact index structure than T and
even might slightly improve the query performance.

Update Cost. We first analyze the update I/O cost of the bottom-up approach.
For simplicity, we use the form cost(read or write, the accessed object) in the
following analysis. If the new entry remains in the old leaf node, the cost = 1(R,
secondary index) + 2(R/W, leaf node) = 3. If the new entry is inserted into some

Bulkloading Updates for Moving Objects 321

sibling of the old leaf node, the cost = 2(R/W, secondary index) + 2(R/W, leaf
node) + 2(R/W, sibling node) = 6. Otherwise, a bottom-up search is issued and
the nodes on the top-down path are accessed to locate the new entry. The cost =
2(R/W, secondary index) + 2(R/W, old leaf node) + (h− 1)(R, internal nodes
on the top-down path) + 2(R/W, new leaf node) = 5 + h, where h is the height
of the top-down path in the search. Let p1, p2 and p3 be the probability that a
new entry is located in the old leaf node, in the sibling node, and in the new leaf
node respectively. The cost of a bottom-up update is 3p1 +6p2 +(5+h)p3. For a

group of m objects in a bucket, the total cost is 3mp1 + 6mp2 + (
m∑

i=1
(5 + hi))p3.

For the bulkloading update of MBR biased scheme, the objects in a bucket
reside in the same old MBR and multiple node accesses can be combined into
one. Let ls be the length of the shared update path as described in Section 3.3.
For m objects in a bucket, we analyze the I/O cost in the above three cases.
In case 1, the cost = m·1(R, secondary index) + 2(R/W, leaf node) = m + 2.
In case 2, the cost = m·(2(R/W, secondary index) + 2(R/W, sibling node))
+ 2(R/W, leaf node) = 4m + 2. In case 3, the cost = m·(2(R/W, secondary

index) + 2(R/W, new leaf node)) + 2(R/W, old leaf node) +
m∑

i=1
(hi − 1 − ls)

= 4m + 2 +
m∑

i=1
(hi − 1 − ls). Therefore the total cost is

CostBLU = (m + 2)p1 + (4m + 2)p2 + (4m + 2 +
m∑

i=1

(hi − 1 − ls))p3 (2)

From the above equation we see that the longer shared update path, the more
cost reduced. Note that here we only consider the in-bucket shared path and do
not take into account the effect of the between-bucket shared update path as
described in Section 3.4.

Memory Requirement. The additional memory requirement in BLU is the
size of the loading pool Slp, which is the maximum number of accommodated
tuples. Given a fixed available memory of size Stotal, how to allocate Stotal to
Slp and the buffer size Sbuf is an interesting problem, and we will investigate it
in the experiments.

4 Experimental Evaluation

4.1 Experimental Setup

We compare the following four approaches: FUR-tree [9], BLU-based FUR-tree
with MBR biased scheme (BLU-MBS), BLU-based FUR-tree with grid biased
scheme (BLU-GBS), and BLU-based FUR-tree with hybrid biased scheme (BLU-
HBS). All the experiments are conducted on Pentium IV 2.0GHz with 512 MB
RAM running Windows Server 2003. The size of disk page is set to 4KB. We
use synthetic datasets generated by GSTD [14]. All the objects are uniformly
distributed in a unit-square space and can move arbitrarily with a maximum

322 X. Wang, W. Sun, and W. Wang

moving distance of 0.2. The default number of objects is 100K. The performance
metric is the number of disk accesses. Since BLU does not affect the query I/O
cost according to Theorem 1, in the following experiments we focus on the update
performance and do not report the results of query performance.

For a fair comparison, we allocate the same memory size (10% of dataset size)
to all the approaches. For FUR-tree, the buffer size is set to the whole available
memory size. For BLU, the same memory size is allocated to the buffer and the
loading pool respectively, and the allocation ratio λ = Slp

Sbuf
is 0.25. We employ

an LRU buffer with the write-through strategy. The setting of k in BLU-GBS
(grid cell number per dimension) depends on the size of loading pool Slp. Let
Nlp be the number of tuples the loading pool can accommodate, we set k to√

Nlp

η , where η is a tuning parameter and set to 2 in the experiments.

4.2 Results and Discussion

We conduct a set of experiments to investigate the effect of maximum moving
distance, memory size, number of objects and allocation ratio respectively.

We first vary the maximum moving distance of objects from 0.01 to 0.15 and
investigate its effect on the update performance. Figure 4(a) gives the update I/O
cost for all the approaches. With the increase in objects’ moving distance, the
update cost rises up slightly. This is due to the fact that in FUR-tree more objects
move far from old leaf nodes to new leaf nodes. The larger moving distance
indicates the longer bottom-up and top-down update path, which further results
in more accesses to index nodes. BLU-based FUR-trees outperform that without
BLU. The bulkloading manner enables objects with similar positions to issue
updates together, and reduces the additional disk access to common update
paths. Figure 4(a) also shows that MBR biased scheme has the lower cost than
grid biased scheme. This reveals a look-back bulkloading scheme performs better
than a look-ahead one. An interesting result is that BLU-MBS and BLU-HBS
almost have the same I/O cost. This is because the MBR bias puts more effects on
the performance and the hybrid scheme prefers to it. Meanwhile HBS employs
the same MBR-driven flushing algorithm with MBS, and the flushing unit of
both of them is MBR instead of Grid. In this way, BLU-HBS can be regarded
as a finer-granularity version of BLU-MBS.

We then study the effect of memory size by varying it from 0% to 15% of
dataset size. For BLU, the allocated memory serves as the loading pool besides
buffer space. As shown in Figure 4(b), when no memory is allocated, all the
approaches have the same I/O cost because of each direct disk access to index
nodes without buffering. When memory size is increased to 5% of dataset size,
there is a great drop in the update cost. Update performance continues to im-
prove with the increasing memory size, as can be expected. From Figure 4(b) we
see that the enlargement of memory size has a strong impact on the performance
of BLU due to variety of the loading pool size.

Figure 4(c) gives the update performance with different number of objects
from 100K to 1M. BLU keeps the update cost steady with the increasing number

Bulkloading Updates for Moving Objects 323

of objects. Still BLU-MBS and BLU-HBS have the lowest I/O cost. It should be
noted that although the dataset size is increasing, it does not affect the tuple
load of the loading pool in each flushing phase due to a fixed loading volume.

In Figure 4(d) we investigate the effect of the allocation ratio. We set the
allocation ratio λ, that is, the percentage of loading pool size to buffer size, to 1/4,
2/3, 3/2, and 4/1 respectively. The variety indicates more memory size allocated
to the loading pool. BLU improves its update performance when λ changes from
1/4 to 3/2. This is because the larger loading pool can accommodate more tuples,
and thus the shared update path can be longer and accessed by more objects, as
discussed in Section 3.5. When λ varies from 3/2 to 4/1, the update cost does
not change too much, which means the performance turns stable and does not
fluctuate in this interval. Figure 4(d) also shows that under different allocation
ratios BLU-MBS and BLU-HBS still have the similar performance and performs
better than BLU-GBS. In actual applications, MBS or HBS is a good choice.

0.01 0.03 0.06 0.1 0.15
0

1

2

3

4

5

6

7

Maximum Moving Distance

A
vg

 D
is

k
I/O

FUR−tree
BLU−MBS
BLU−GBS
BLU−HBS

(a) Varying maximum moving dis-
tance

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

Memory Size (% of dataset size)

A
vg

 D
is

k
I/O

FUR−tree
BLU−MBS
BLU−GBS
BLU−HBS

(b) Varying memory size

20 40 60 80 100
0

1

2

3

4

5

6

7

8

Number of Objects (In 10 thousands)

A
vg

 D
is

k
I/O

FUR−tree
BLU−MBS
BLU−GBS
BLU−HBS

(c) Varying number of objects

1/4 2/3 3/2 4/1
0

1

2

3

4

5

6

 Allocation Ratio

A
vg

 D
is

k
I/O

BLU−MBS
BLU−GBS
BLU−HBS

(d) Varying allocation ratio

Fig. 4. Update Performance Results

5 Conclusion

We propose an efficient method, the bulkloading updates (BLU), for moving
object databases. It is adaptive to the existing moving object indexes and can
be applied to commercial systems as a flexible component. Both the theoretical

324 X. Wang, W. Sun, and W. Wang

analysis and experimental results demonstrate that BLU significantly improves
the update performance while keeping the good query performance all the same.
In future work, we would like to extend BLU to other types of index structures,
and accelerate the update process in various update-intensive environments.

References

1. L. Arge, K. Hinrichs, J. Vahrenhold and J. Vitter. Efficient Bulk Operations on
Dynamic R-trees. In Proc of Workshop on Algorithm Engineering and Experimen-
tation, 1999.

2. R. Cheng, Y. Xia, S. Prabhakar, and R. Shah. Change Tolerant Indexing for Con-
stantly Evolving Data. In Proc of ICDE, 2005.

3. A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In Proc
of SIGMOD, 1984.

4. C. S. Jensen, D. Lin, and B. C. Ooi. Query and Update Efficient B+-Tree Based
Indexing of Moving Objects. In Proc of VLDB, 2004.

5. I. Kamel and C. Faloutsos. On Packing R-trees. In Proc of CIKM, 1993.
6. D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions of Moving Objects

Using the Lazy Update R-Tree. In Proc of MDM, 2002.
7. S. T. Leutenegger, M. A. Lopez, and J. Edgington. STR: A Simple and Efficient

Algorithm for R-tree Packing. In Proc of ICDE, 1997.
8. B. Lin and J. Su. Handling Frequent Updates of Moving Objects. In CIKM, 2005.
9. M.L. Lee,W. Hsu, C.S. Jensen, B. Cui, and K. L. Teo. Supporting Frequent Updates

in R-trees: A Bottom-Up Approach. In Proc of VLDB, 2003.
10. L. Malmi and E. S. Soininen. Group Updates for relaxed height-balanced trees. In

Proc of PODS, 1999.
11. D. Pfoser, C. S. Jensen, Y. Theodoridis. Novel Approaches in Query Processing

for Moving Object Trajectories. In Proc of VLDB, 2001.
12. S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez. Indexing the Positions

of Continuously Moving Objects. In Proc of SIGMOD, 2000.
13. Y. Tao and D. Papadias. The MV3R-Tree: A Spatio-Temporal Access Method for

Timestamp and Interval Queries. In Proc of VLDB, 2001.
14. Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the Generation of Spa-

tiotemporal Datasets. In Proc of SSD, 1999.
15. J. van den Bercken and B. Seeger. An Evaluation of Generic Bulk Loading Tech-

niques. In Proc of VLDB, 2001.
16. Y. Xia and S. Prabhakar. Q+Rtree: Efficient Indexing for Moving Object Data-

bases. In Proc of DASFAA, 2003.
17. X. Xiong and W. G. Aref. R-trees with Update Memos. In Proc of ICDE, 2006.

Finding the Plateau in an Aggregated
Time Series

Min Wang1 and X. Sean Wang2

1 IBM T. J. Watson Research Center
Hawthorne, NY 10532, USA

min@us.ibm.com
2 Department of Computer Science, The University of Vermont

Burlington, VT 05405, USA
xywang@cs.uvm.edu

Abstract. Given d input time series, an aggregated series can be formed
by aggregating the d values at each time position. It is often useful to
find the time positions whose aggregated values are the greatest. Instead
of looking for individual top-k time positions, this paper gives two al-
gorithms for finding the time interval (called the plateau) in which the
aggregated values are close to each other (within a given threshold) and
are all no smaller than the aggregated values outside of the interval. The
first algorithm is a centralized one assuming that all data are available
at a central location, and the other is a distributed search algorithm that
does not require such a central location. The centralized algorithm has
a linear time complexity with respect to the length of the time series,
and the distributed algorithm employs the Threshold Algorithm by Fa-
gin et al. and is quite efficient in reducing the communication cost as
shown by the experiments reported in the paper.

1 Introduction

Given a set of d input time series, by aggregating the d values at each time
position, we obtain an aggregated time series A. A top-k query is to determine
the top k time positions on A, namely, the time positions with the k greatest
aggregated values. The well-known threshold algorithm (TA) [2] may be used to
answer this type of query.

Recently, there has been active research on data aggregation in sensor net-
works [5, 6, 7, 1] and the top-k query can be very useful. For example, in an
environmental monitoring system, multiple sensors may be used in an interested
area to measure the temperature, humility, etc., at every minute. The measured
data are stored in these sensors, and the system may need to find, within a spe-
cific time period, the time positions with the k highest average temperatures [3].

Assume the aggregated time series contains the average temperature for each
minute during the past week and k = 3. If Friday is the warmest day during the
week and the highest temperature during the week is at 1:30pm on Friday, we
may very likely get the following three time positions as the answer to our top-3
query: 1:29pm on Friday, 1:30pm on Friday, and 1:31pm on Friday.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 325–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

326 M. Wang and X.S. Wang

We believe that a more interesting query is to find the plateau over the ag-
gregated time series. The plateau is defined as the maximum interval such that
all the values on the time positions in the interval are no less than all the values
at the time positions outside of the interval. Compared to the top-k time posi-
tions, the plateau may give us more information. The plateau definition becomes
more interesting and useful when we add another constraint: all the values in
the plateau should be “close enough” to the top-1 value of the whole sequence.
How close is “close enough” can be a value specified by the user.

In the example above, assume that the user considers two degrees as close
enough, and asks for the plateau. The answer will be the interval [1:10pm on
Friday, 1:45pm on Friday] if the temperature at each time position in this interval
is at most two degrees lower than the highest temperature observed at 1:30pm on
Friday, and all the time positions outside of this interval have temperature values
no higher than the value of each time position in the interval. Obviously, the
plateau carries more information about high-temperature time positions than
that of the k time positions we get from a traditional top-k query.

In this paper, we formally define the plateau over time series and present effi-
cient algorithms to find the plateau in both centralized and distributed settings.
We show that the plateau can be found in linear time with respect to the length
of time series in the centralized setting. For the distributed setting, we develop
a distributed search algorithm and through experiments we show that it signif-
icantly outperforms a direct extension of the TA algorithm in terms of number
of accesses to the distributed sources.

The rest of the paper is organized as follows. In the next section, we introduce
some basic notions and formally define the key concept of plateau. Sections 3
and 4 describe our algorithms for finding the plateau in an aggregated time
series in a centralized setting and a distributed setting, respectively. We present
our experimental results in Section 5 and draw conclusions in Section 6.

2 Preliminary and Basic Assumptions

We first define time series. A time series is a finite sequence of real numbers and
the number of values in the sequence is its length. We assume all time series are
sampled at the fixed (discrete) time positions t1, . . . , tn. A time series is denoted
as s, possibly with subscripts, and its value at time t is denoted s(t).

An aggregated time series is a time series whose value at time position t is
from aggregating the values from multiple input time series. Specifically, given
s1, . . . , sd and an aggregation function f , the aggregated time series is sf with
sf (t) = f(s1(t), . . . , sd(t)) for each t. We shall use A to denote aggregated time
series, and omit the mentioning of function f when it is understood. A “normal”
time series can be considered as a degenerated aggregated time series, and hence
we shall use A to denote both “normal” time series and aggregated ones.

Definition 1. Given a time series A and a real value ε, a time interval [tl, tr]
is said to be an ε-plateau of A if for each time position t ∈ [tl, tr], we have
(1) |A(t)−A(t′)| ≤ ε for all t′ ∈ [tl, tr], and (2) A(t) ≥ A(t′′) for all t′′ �∈ [tl, tr].

Finding the Plateau in an Aggregated Time Series 327

Intuitively, an ε-plateau in a time series is the largest time interval that has
values no less than the value of any time position outside of the interval, and the
difference between the values within the time interval is at most ε. An ε-plateau
must contain a time position with the greatest value in the time series.

We abbreviate ε-plateau to simply plateau when ε is implicit or irrelevant. A
maximum ε-plateau is an ε-plateau that is not a proper subinterval of another
ε-plateau. In the sequel, when not explicitly stated and clear from the context,
we will use the term plateau to mean the maximum plateau.

When there are more than one top-1 time position in the aggregated time
series, two cases arise: all the top-1 time positions are either contiguous or not.
In the former case, we will have only one maximum plateau. For the latter,
the only (maximum) plateaux we will find are formed by top-1 time positions,
regardless of the ε value. This is rather trivial algorithmically since it is equivalent
to finding all top-1 time positions (and possibly combine these positions that are
contiguous with each other). We do not pursue this case any further. Since the
former case is equivalent to having a unique top-1 position, we will in the sequel
assume that the top-1 position is unique in each aggregated time series, and
hence we will have a unique maximum plateau for each ε value.

Example. Consider the maximum plateau in the (aggregated) time series shown
in Fig. 1. The top-1 time position is td = t10 with value 12. If ε = 2, then the
plateau is [t9, t10]. If ε = 10, then the plateau is [t8, t11].

An equivalent way of defining a plateau is by a minimum value threshold τ .
That is, instead of condition (1) in the definition, we would insist that A(t) ≥ τ

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

12

Time position

V
al

ue

Fig. 1. Example time series

for all t ∈ [tl, tr]. Obviously, this is
equivalent to the original definition
if we take τ = A(tm)− ε, where tm
is a time position with the great-
est value. In the sequel, we may
use plateau to mean an ε-plateau or
equivalently a plateau with a mini-
mum value threshold.

We may also define the ε-plateau
via the notion of rank as follows.

Definition 2. Given a time series, the top-rank, or simply rank, of a time
position t, denoted R(t), is defined as 1 plus the number of time positions that
have greater values, that is, R(t) = 1 + |{t′|A(t′) > A(t)}|.
If R(t) ≤ k, we will also say that t is a top-k time position. Hence, a
top-1 time position has a value that is no less than that of any other time
positions.

Given a time series and real value ε, if [tl, tr] is an ε-plateau, then for each
time position t ∈ [tl, tr], all the time positions with ranks higher (or R() values
smaller) than R(t) must be in [tl, tr]. For example, if the plateau includes a rank
3 time position then all the rank 1 and rank 2 time positions must also be in the
plateau.

328 M. Wang and X.S. Wang

Much has appeared in the literature for algorithms that look for top-k items
from multiple data sources (e.g., [4]). Many algorithms use a variant of Fagin et
al.’s threshold algorithm (TA), which has been shown to be optimal [2]. In TA,
the aggregation function f is assumed to be monotonic, i.e., x1 ≤ y1, . . . , xd ≤ yd

implies f(x1, . . . , xd) ≤ f(y1, . . . , yd). Many practical aggregation functions, like
sum, average, maximum, are monotonic.

We now briefly review TA, as applied to look for top-k time positions in
the aggregated time series. Assume we have d input time series s1, . . . , sd. We
sort each time series based on the values (from large to small), and keep the
time position information with the values. Thus, we have d such sorted lists:
L1, . . . , Ld. In TA, we proceed as follows.

1. Do sorted access in parallel (or using a round-robin schedule) to each of the d
sorted lists. As a value v is retrieved under the sorted access from one list (as-
suming the associated time position is t), do random access to the other time
series to find the values si(t) for all i, and compute A(t) = f(s1(t), . . . , sd(t)).
We say time position t has been “seen” and A(t) is kept for each “seen” time
position t.

2. For each list Li, let vi be the last value returned under the sorted access. De-
fine the threshold value θ to be f(v1, . . . , vd). Stop as soon as there are at least
k distinct A(t) values on the “seen” time positions that are greater than θ,
and then output the top-k time positions among all the “seen” time positions.

3 Centralized Algorithm

In this section, we discuss how to find the plateau for an aggregated time series
when all the input time series are available at a central point. For example, we
can imagine each sensor in a sensor network sends its measurement data to the
control center every hour. In such a setting, the central point can calculate the
aggregated time series A based on the input time series and the given aggregation
function. We present a linear time algorithm for finding the plateau on A.

We first define a left ε-plateau of the time series A to be an ε-plateau when
we only consider the time series on the left of (and including) the top-1 time
position. That is, it is an ε-plateau we find in A(t1), . . . , A(tm), where tm is
the top-1 time position. Right ε-plateaux are defined analogously. We define the
maximum left and right ε-plateaux in a similar way as we defined the maximum
ε-plateau, and use the term left and right plateau to mean the maximum left and
right plateau, respectively, when the context is clear. Note, however, the union
of a left and a right ε-plateaux does not necessarily form an ε-plateau as will be
shown in the example at the end of this section.

The following result directly follows the definitions.

Theorem 1. Denote min right(i)= min
{
A(tj)

∣∣ i ≤ j ≤ m
}
, and max left(i) =

max
{
A(tj)

∣∣ 1 ≤ j < i
}
. Interval [tl, tm] (l ≤ m) is a left ε-plateau if and only if

min right(l) ≥ A(tm) − ε and min right(l) ≥ max left(l) where tm is the top-1
time position.

Finding the Plateau in an Aggregated Time Series 329

In the above theorem, we assume max left(1)=−∞. We have an analogous the-
orem for the right ε-plateaux. These theorems give the basis for our linear
time algorithm in finding the maximum left and right ε-plateaux. It is obvi-
ous that min right and max left for the time positions before tm (and min left
and max right for the positions after tm) can be computed in an incremen-
tal fashion with two sequential scans, using for example the recurrence relation
min right(i) = min{min right(i + 1), A(i)}. Assume these values are available
and assume τ = A(tm) − ε. Then we can easily design the procedure:

find left plateau ([tL, tm] , τ) : [tl, tm] , τl

The input parameters are [tL, tm] and τ , where tL is the left boundary of the
time series to be considered, tm is the right boundary of the time series to be
considered (tm is also the top-1 position in [tL, tm]), and τ is the required min-
imum value threshold. The output parameters are [tl, tm] and τl, where [tl, tm]
is the maximum left plateau and τl = max

{
τ, A(ti)

∣∣ i = l, . . . , l − 1
}
. The

procedure simply scans from tL towards tm and finds the first time position tl
such that min right(l) ≥ max left(l) and min right(l) ≥ τ .

The correctness of this procedure follows Theorem 1 directly. It is also clear
that the time complexity of the procedure is O(l − L + 1).

The question now is how to get the global ε-plateau. Assume find left plateau
and find right plateau return [tl, tm] and τl, and [tm, tr] and τr, respectively. By
Theorem 1, all the positions in [tl, tm] have values no smaller than τl while all the
positions in [t1, tl) have values no greater than τl. We have similar conclusions
for [tm, tr] and τr. If τl = τr, we can merge the left and right ε-plateaux to obtain
the maximum ε-plateau. Otherwise, we should shrink the side with the smaller
τ using the greater τ . This shrinking process is repeated until τl = τr and we
then merge the left and right ε-plateaux into the ε-plateau. The whole process
is summarized in Fig. 2. The algorithm finds the maximum ε-plateau [tl, tr] of
time series A. It also returns a real value τ such that all the values in [tl, tr] are
no smaller than τ while all the values not in [tl, tr] are no greater than τ .

Algorithm Find Plateau

Input: Time series A of length n, and ε.
Output:[tl, tr]: maximum ε- plateau

τ = max{A(tm) − ε,A(tj)|tj �∈ [tl, tr]}, where tm is the top-1 time position
(1) Find the top-1 time position tm.Set τ = A(tm) − ε, and compute min right ,

max left , min left and max right as described earlier.
(2) Call find left plateau([t1, tm], τ). Return [tl, tm], τl.
(3) Call find right plateau([tm, tn], τ). Return [tm, tr], τr.
(4) Let tL = tl and tR = tr. If τl = τr then τ = τl. Return [tL, tR], τ . Done.
(5) If τl > τr then call find right plateau([tm, tR], τl). Return [tm, tr], τr. Goto Step 4.
(6) If τl < τr then call find left plateau([tL, tm], τr). Return [tl, tm], τl. Goto Step 4.

Fig. 2. The Find Plateau algorithm

.

330 M. Wang and X.S. Wang

Theorem 2. Algorithm Find Plateau correctly finds the ε-plateau of time series
A in linear time and space.

Proof. The space complexity of the algorithm is obvious since we only need to
store two numbers for each time position. Now we analyze its time complexity.
Steps 1-3 take linear time as mentioned earlier. The nontrivial part of the proof
is that find left plateau and find right plateau may be called multiple times due
to Steps 5 and 6. However, each repeated call to find left plateau will start the
scan from the stopping position of the previous call. That is, even in the worst
case, the multiple calls to find left plateau will scan up to m positions and thus
the complexity of all calls is O(m). Similarly, the complexity of all possible
multiple calls to find right plateau is O(n−m + 1). Hence, the time complexity
of Algorithm Find Plateau is O(n).

The correctness follows the correctness of the procedures find left plateau and
find right plateau . Indeed, with Steps 2 and 3, we find the respective maximum
plateaux with A(tm)− ε as the minimum value threshold for the plateaux. It is
clear that Steps 5 and 6 will both still return ε-plateaux. The question is whether
the final result is the maximum ε-plateau. The answer is positive since each time
we used smallest τl and τr value that is necessarily to maintain the combined
interval to be a plateau.

Example. We want to find the 10-plateau in the time series shown in Fig. 1. The
top-1 time position is tm = t10 with value 12. Given ε = 10, we have threshold
τ = 12 − 10 = 2 initially. The call to find left plateau([t1, t10], 2) returns with
the maximum left plateau [t8, t10] and τl = 7, and find right plateau([t10, t12], 2)
returns with the maximum right plateau [t10, t12] and τr = 2. Note that we
cannot combine the left and right plateaux into one yet since τl �= τr (actually,
[t9, t12] is not a plateau). Since τl > τr, so we call find right plateau([t10, t12], 7).
This time, it returns a new right plateau [t10, t11] and a new τr = 7. Now we can
combine the left and right plateaux into P = [t8, t11]. We also output τ = 7.

4 Distributed Algorithm

In this section, we discuss how to find the plateau for an aggregated time series
without bringing all the data into a centralized server. The reason for this may
include the large size of the time series from the data sources, and the high
communication costs. In this setting, we would like to calculate the ε-plateau
with a minimum amount of communication. To do this, we assume that data
sources have some computation power to support the local processing as required
by the Threshold Algorithm (TA) of [2].

In the distributed setting, as required by the TA, we assume the aggregation
functions are monotonic.

4.1 A Naive Algorithm

A straightforward way of finding the plateau in a distributed setting is to find
the top-1 time position tm in the aggregated time series, and then to find all the
time positions whose aggregated values are no smaller than A(tm) − ε.

Finding the Plateau in an Aggregated Time Series 331

The top-1 time position tm and its aggregated value A(tm) can be found by
a direct use of TA. We may trivially extend the TA algorithm to proceed, after
finding top-1 time position, to repeatedly find the next top time positions and
their associated aggregated values until the threshold θ is smaller than A(tm)−ε.
In this way, we find all the time positions with values no smaller than A(tm)−ε.
With these time positions, we can use our linear algorithm to find the maximum
ε-plateau. Indeed, a little deeper analysis of the linear algorithm indicates that if
we change all the values smaller than A(tm)− ε to a very small number (smaller
than all possible values), then the plateau found by the linear algorithm is the
same as the one found with all the data available.

4.2 A Distributed Search Algorithm

In some situations, the above naive algorithm performs very poorly. Indeed, con-
sider the following aggregated time series of length n:

2, 2, . . . , 2, 1, 3
and consider 1-plateau (i.e., ε = 1). Clearly, the top-1 time position is tn, and
the 1-plateau is [tn, tn]. However, the above naive algorithm will need to retrieve
all the time positions t1 through tn−2, in addition to tn. The run time and the
communication cost will be proportional to n. A simple observation will yield
that if we find out that the time position tn−1 has a value 1 that is lower than
A(tn) − ε = 3 − 1 = 2 and the greatest value between t1 and tn−1 is 2, then we
can safely conclude that [tn, tn] is the plateau we are seeking.

values

Time

Value

Case 1

Case 2

Case 3

Left top-1

Current left plateau

Local bottom-1

between left top-1 and

current left plateau

Extending the left plateau

Fig. 3. Three cases for the distributed algorithm

Similar to the linear centralized algorithm in Section 3, we first concentrate
on finding the left and right plateaux, separately, and then combine them into
a single plateau. The above example is for the left plateau. Let us examine it a
little closer with the help of the diagram in Fig. 3. In this diagram, the current
(not necessarily maximum) left plateau is the one we have already found (e.g.,
[tm, tm] where tm is the top-1 point in the whole series), and we would like to
see if we can extend the current left plateau towards the left in order to find
the maximum left plateau. For this purpose, we find the top-1 time position

332 M. Wang and X.S. Wang

(called “left top-1” in the digram) on the left of the current left plateau, and
then we find the bottom-1 time position (called “local bottom-1” in the diagram)
between the left top-1 and the current left plateau.

Three cases arise based on the τ value as depicted in Fig. 3. (Recall that τ
gives the restriction that all the values in the plateau must be no less than τ).
Consider Case 2 first as this is the case for the above example. In this case, the τ
value is between the left top-1 value and the local bottom-1 value. The following
are two useful observations for this case:

(1) Any value in the maximum plateau must be no less than the value of this
left top-1. This gives us a new τ value for the left plateau.

(2) The left plateau cannot be extended to the time position of the local bottom-
1. This gives us a new boundary when extending the left plateau.

By using these observations, we can extend the left plateau by using the new τ
value and the boundary. This can be done with a recursive call to the extending
procedure itself. One condition for the recursion to stop is if the new boundary
is actually the current plateau. Going back to the above example, the proce-
dure stops after we find the local bottom-1 is at position tn−1, which is at the
immediate left of the current left plateau (i.e., [tn, tn]).

Now consider Case 1. Since the left top-1 value is below τ , we know no time
positions on the left of the current left plateau can be in the maximum left
plateau. In this case, the current left plateau is the maximum left plateau.

Finally consider Case 3. In this case, we may be tempted to conclude that
the left plateau can be extended to the time position of left top-1. However, this
would be wrong if going to further left (left of the left top-1), we would meet a
time position with a value lower than τ and then another time position with a
value higher than the value of the local bottom-1. See Fig. 3 for this situation.
What we need to do in this case is to find out if such a situation actually occurs.
To do this, we recursively consider the time series on the left of (and including)
the time position for the left top-1. Now local top-1 forms a left plateau by
itself since it is a top-1 value in this subseries, and we try to extend the “local”
plateau to the left. This (recursive) procedure will return a “local” left plateau
starting from left top-1, and returns the actual τ value used by this “local” left
plateau. If this returned τ value is still lower than the value of the local bottom-
1, then we can conclude that all the positions on the right of the left top-1 are
indeed in the left plateau (together with all the time positions in the “local” left
plateau). Otherwise (i.e., the returned τ value is greater than the value of the
local bottom-1), then we can conclude that the left plateau cannot be extended
to the time position of left top-1, and the new τ value to use is the returned τ
value from the “local” left plateau procedure.

We can now summarize our search algorithm in Fig. 4. In this algorithm, we
refine the TA algorithm to look for top-1 and bottom-1 time positions (in terms of
aggregated values) in an interval of [left , right] of the time series. We assume TA
will return the aggregated values associated with the top-1 and bottom-1 time
positions. This extension can be obtained straightforwardly without requiring
the data sources maintain separate sorted lists for each different time interval.

Finding the Plateau in an Aggregated Time Series 333

Procedure: find left plateau

Input: [tl, tm] where tl is the left boundary of the time interval
to be considered and tm is the top-1 position in [tl, tm]
and the right boundary of the time series to be considered,
τ : the minimum value threshold for the left plateau

Output: [tl′ , tm]: maximum left plateau
τ ′ = max{τ,A(ti)|i = l, . . . , l′ − 1}.

(0) If l = m, then return [tm, tm] and τ .
(1) Let tt = top[tl, tm−1], and tb = bot [tt, tm−1].
(2) Three cases.

(2.1) if A(tt) < τ , then return [tm, tm] and τ .
(2.2) if A(tt) ≥ τ and A(tb) < τ , then

if b = m − 1, then return [tm, tm] and A(tt);
else recursively call find left plateau with [tb+1, tm] and τ = A(tt), and

return what’s returned from recursive call
(2.3) if A(tb) ≥ τ , then

if tt = tl, then return [tl, tm] and τ ;
else recursively call find left plateau with [tl, tt] and τ

assume the returned values are [tl′ , tt] and τ ′

(2.3.1) if τ ′ ≤ A(tb), then return [tl′ , tm] and τ
(2.3.2) if τ ′ > A(tb), then set τ = τ ′ and goto Step (2).

Fig. 4. The find left plateau procedure for the distributed setting

We will use the notation top[left , right] and bot[left , right], where left and right
are time positions, to denote the top-1 and bottom-1 time positions found by
TA within the interval [left , right], respectively.

Theorem 3. The algorithm in Fig. 4 correctly finds the maximum left plateau.

The procedure to find the right plateau is similar. The complete algorithm that
finds the plateau is the same as for the centralized algorithm, but will use TA
to find the top-1 time position (Step 1, without computing the four arrays) and
the search algorithms to find the left/right plateaux (Steps 2-6). It is easily seen
that this complete procedure will find the correct plateau.

Example. Consider the time series in Fig. 5. We will only show how to find the
left 8-plateau with tm = t6 and τ = 2. During the initial call (C-1) with [t1, t6],

0 1 2 3 4 5 6 7

0

2

4

6

8

10

Time position

Va
lu

e

Fig. 5. Another example time series

we find left top-1 is at tt = t4, and
local bottom-1 is at tb = t5. Since
A(tb) = A(t5) = 3 > τ = 2, we are
in Case 3 (Step 2.3), and we make
a recursive call (C-2) with interval
[t1, t4] and τ = 2. In C-2, we have
tt = t2 and tb = t3, and we are
looking at Case 2. Since b = 3 =
m−1 = 4−1 in this case, we return

334 M. Wang and X.S. Wang

to C-1 with [t4, t4] and a new τ = A(t2) = 5. In C-1, we were in Case 3 with
returned τ ′ = 5, and since τ ′ = 5 > A(tb) = A(t5) = 3, we set τ = 5 and
go back to Step 2. Now we are looking at Case 2 since A(tt) = A(t4) = 7 >
τ = 5 > A(tb) = A(t5) = 3. Since 5 = b = m − 1 = 6 − 1, we return [t6, t6].
Hence, we have found the maximum left 8-plateau to be [t6, t6] and the return
τ = A(tt) = A(t4) = 7.

4.3 Optimizing the Distributed Search Algorithm

There are many optimization techniques to add to the search algorithm. Here
we only mention three of them that are used in our implementation. Other
opportunities are abundant but are not pursued in this paper.

To start with, for Step 1, we may want to find the leftmost top[tl, tr−1] and
rightmost bot [tt, tr−1] if there are multiple left top-1 and local bottom-1 time po-
sitions. While the algorithm is still correct if we use an arbitrary top[tl, tr−1] and
bot [tt, tr−1] time positions among the multiple possibilities, the use of the left-
most and rightmost time positions, respectively, generally gives us the advantage
in obtaining the plateau faster.

For Step 2.3, if tt = tb, then we know that all the time positions between
[tb, tm] have values no less than A(tt) (also no less than τ), then we may im-
mediately extend the left plateau to [tb, tm] without any recursion (although
recursion will eventually find this extension as well).

Since we repeatedly use TA to find top[tl, tr] and bot [tl, tr], it is possible
to reuse of the results across the different runs. For example, we may need to
find top[tl, tr] and later top[tl, tr−k]. During the search for top[tl, tr], the final
threshold value θ for TA used may be on a time position within [tl, tr−k]. In this
case, we have already obtained the top[tl, tr−k].

5 Experimental Results

In this section, we report the experimental evaluation of our distributed search
algorithm. For the purpose of comparison, we also implemented the naive algo-
rithm as mentioned in Section 4.1.

In order to control the experiments, we used synthetically generated data
sets. We are interested in the situation that all the distributed data sources
are monitoring the same phenomenon and hence the data should be somewhat
correlated. In order to simulate this, to generate one data set, we first use a
random walk to generate a core time series sc, and then generate each input time
series by (1) adding to the core with a fixed “shift” value, and then (2) randomly
perturbing the value at each time position. That is, s(t) = sc(t)+shift+randpert ,
where shift is a fixed (randomly picked) value for the entire time series s, and
randpert is a random number at each time position. The parameters we used in
our experiments are as follows: each step of the random walk takes a random
value between [−0.5, +0.5], i.e., sc(i) = sc(i − 1) + rand [−0.5, 0.5], and the shift
is a random value between [−5, 5] and the randpert is a random number between
[−2.5, 2.5]. We used the sum as our aggregation function.

Finding the Plateau in an Aggregated Time Series 335

To give a “trend” to the random walk data, we modified the above generation
of sc with a slight bias. For the first half of the core time series, we add a small
value (0.01 is used in the experiments) to each step, i.e., add 0.01 to sc(i), and
in the second half of the core time series, we subtract the same small bias. This
way, it’s more likely that the time series will peak when reaching the middle of
the time series. Since the bias is rather small, the trend is not prominent in our
data sets.

Basically, three parameters affect the performance: the length of time series,
the number of time series, and the ε value used for the plateau. Therefore, we
tested our distributed search algorithm in three different ways, each varying
one parameter while keeping the other two constant. The performance of our
algorithm is measured on the number of accesses needed to the data sources
(i.e., the number of sorted and random accesses required by the TA). For each
fixed set of parameters, we generated 10 different data sets as described above
and report the average number of accesses.

The result of the first experiment is reported in Fig. 6. In this experiment,
we fixed number of series to 30, and ε to 90. As can be seen, the length of
the series do not affect the performance too much on both algorithms, al-
though our distributed algorithm performs better with one scale of magnitude.

5 10 20 30 40 50 60 70 80 90 100
10

3

10
4

10
5

Length of time series (x100)

N
um

be
r

of
 a

cc
es

se
s

Naive algorithm
Distributed algorithm

Fig. 6. Varying series length

Intuitively, the naive algorithm would
be affected by the series length be-
cause there may be more time po-
sitions with aggregated value above
A(tm) − ε. However, in our particular
setting, due to the one “peak” nature
of our time series, the performance of
the naive algorithm does not degen-
erate as series length increases. As we
observed (but not reported here), if we
use a larger ε value, the performance
of the naive algorithm generally goes
poorer as the series length increases.
In general, however, the performance of our distributed algorithm scales well
with series length even in multiple-peak situations.

The result of the second experiment is reported in Fig. 7. In this experiment,
we fixed the time series length to 3, 000, but varied the number of input time
series from 1 to 100. Since we used sum as our aggregation, we varied the ε
value in proportion to the number of time series. Specifically, ε is three times
the number of time series (thus, if we have 30 time series, ε = 90). As can be seen
that our distributed algorithm performs much better than the naive algorithm,
with one scale of magnitude, consistently.

The result of the third experiment is reported in Fig. 8. In this experiment,
we fixed the time series length to 3, 000 and the number of time series to 30. In-
terestingly, when ε value is very small, the naive algorithm performs better than
our distributed algorithm. In such cases, the naive algorithm retrieves almost

336 M. Wang and X.S. Wang

0 1 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

10
4

10
5

Number of time series

N
u
m

b
e
r

o
f
a
cc

e
ss

e
s

Naive algorithm
Distributed algorithm

Fig. 7. Varying number of series

1 10 30 50 70 90 110 130 150 170 190
10

2

10
3

10
4

10
5

ε value

N
u
m

b
e
r

o
f
a
c
c
e
s
s
e
s

Naive algorithm
Distributed algorithm

Fig. 8. Varying ε value

exactly all the time positions in the plateau. In general, if the plateau consists
of all (or most of) the points that is above A(tm) − ε, then the naive algorithm
works very well. However, such cases should be rare in practice.

6 Conclusion

In this paper, we introduced the notion of the plateau in time series and presented
two algorithms to find the plateau in aggregated time series. The first algorithm
deals with the situation when all the data are available at a central location.
In such a setting, we showed how the plateau can be found in linear time with
respect to the length of the time series. The second algorithm is for distributed
data sources in which we would like to reduce the communication cost. We
presented a search algorithm that gives one scale of magnitude reduction in terms
of communication cost over a straightforward use of the Threshold Algorithm [2].

As we observed, in some very special situations, the naive algorithm actually
performs better than our more sophisticated search algorithm. It will be inter-
esting to see how to merge the naive strategy into the search algorithm to take
advantage of the special situations.

References

1. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical in-network data
aggregation with quality guarantees. In Proceedings of EDBT, 2004.

2. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences, 66:614–656, 2003.

3. D. Gunopulos. Data storage and analysis in sensor networks with large memories,
presentation at IBM Watson Research Center, 2005.

4. C. A. Lang, Y.-C. Chang, and J. R. Smith. Making the threshold algorithm access
cost aware. IEEE Trans. Knowl. Data Eng, 16(10):1297–1301, 2004.

5. S. Madden, M. J. Franklin, and J. M. Hellerstein. TAG: A tiny aggregation service
for ad-hoc sensor networks. In Proceedings of OSDI, 2002.

6. A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and deltas: Efficient and robust
aggregation in sensor network streams. In Proceedings of ACM SIGMOD, 2005.

7. M. Sharifzadeh and C. Shahabi. Supporting spatial aggregation in sensor network
databases. In Proceedings of ACM-GIS, 2004.

Compressing Spatial and Temporal Correlated
Data in Wireless Sensor Networks Based on

Ring Topology

Siwang Zhou1, Yaping Lin1,2, Jiliang Wang1, Jianming Zhang1,
and Jingcheng Ouyang1

1 College of Computer and Communication,
Hunan University, Changsha, China

2 College of Software, Hunan University, Changsha, China
myswzhou@hotmail.com, yplin@hnu.cn,

{jilwang, eway chang, oyjchen}@hotmail.com

Abstract. In this paper, we propose an algorithm for wavelet based
spatio-temporal data compression in wireless sensor networks. By em-
ploying a ring topology, the algorithm is capable of supporting a broad
scope of wavelets that can simultaneously explore the spatial and tem-
poral correlations among the sensory data. Furthermore, the ring based
topology is in particular effective in eliminating the “border effect” gen-
erally encountered by wavelet based schemes. We propose a “Hybrid”
decomposition based wavelet transform instead of wavelet transform
based on the common dyadic decomposition, since temporal compres-
sion is local and far cheaper than spatial compression in sensor net-
works. We show that the optimal level of wavelet transform is different
due to diverse sensor network circumstances. Theoretically and experi-
mentally, we conclude the proposed algorithm can effectively explore the
spatial and temporal correlation in the sensory data and provide sig-
nificant reduction in energy consumption and delay compared to other
schemes.

1 Introduction

Wireless sensor networks are widely used in military and civil fields, such as
battle monitoring, environmental exploration, and traffic control [1, 2]. Sensor
networks usually have limited energy and link bandwidth and hence sending
the original data directly is not feasible. Wavelet data compression has been
attracting extensive research efforts in wireless sensor networks targeting at re-
ducing network load and hence energy consumption and delay. Wavelets are a
mathematics technique that can simultaneously represent the data’s time and
frequency behavior. This representation inherently provides the multi-resolution
analysis view needed by applications while still preserving the data’s statistical
interpretation regardless of the scale or compression ratio. It’s fairly promis-
ing for wavelets in both theory and application in sensor networks. WISDEN

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 337–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

338 S. Zhou et al.

system [3] is designed for structural monitoring; it performs the wavelet com-
pression in single sensor node firstly and then wavelet coefficients are sent for
further processing centrally. Aiming at time-series sampled by a single sensor
node, RACE [4] proposes a rate adaptive Haar wavelet compression algorithm.
The support of Haar wavelet is 1 and its structure is simple, so the algorithm
can come true easily. However, those wavelet algorithms do not exploit the fact
that data originated from spatially close sensors are likely to be correlated. En-
ergy would be wasted with the transmission of redundant data. DIMENSIONS
[5] proposes a hierarchical routing with its wavRoute protocol, which exploits
temporal data redundancy of sensor nodes in the bottom firstly, and then spatial
data reduction in the middle hierarchy. Obviously, there exists the transmission
of spatial redundancy from the bottom to middle hierarchy. Noticeably, a se-
ries of papers have pioneered in wavelet based distributed compression [6, 7, 8]
recently. While these papers have provided certain insights in employing dis-
tributed wavelet transform(WT) to exploit spatial correlation among data, they
are often limited to the cursory application of wavelet function. Although these
algorithms are shown to be simple, they lack the consideration of property of
WT, such as “border effect” [9], the level of WT, and so on. Furthermore, ex-
isting schemes have often focused on either exploiting the temporal correlation
or spatial correlation of the sensory data, but not both simultaneously. This, in
turn has limited their performance and application scope.

Motivated thereby, in this paper, we propose a ring topology based distrib-
uted wavelet compression algorithm. Our scheme simultaneously exploits the
spatial and temporal correlation residing in the sensor data within a cluster.
Furthermore, our scheme is capable of accommodating a broad range of wavelets
which can be designated by different applications. Moreover, the ring model will
naturally eliminate the “border effects” encountered by WT and hence further
strengthen its support to general wavelets. The common dyadic decomposition
based WT is not feasible in sensor networks, since temporal compression is local
and far cheaper than spatial compression. We propose a “Hybrid” decomposi-
tion based WT and show that the optimal level of WT is different due to diverse
natures of data and the distance between sensor nodes and cluster head. Theo-
retically and experimentally, we analyze the performance of the ring based WT
and perform comparison with non-distributed approach.

The remainder of this paper is organized as follows. In Section 2, we detail the
ring model and describe the WT thereon. In Section 3, we analyze the perfor-
mance of the proposed framework and study the optimal level WT theoretically.
Experimental study is presented in Section 4 and we conclude in Section 5.

2 Spatio-temporal Wavelet Compression Algorithm

In this section, we first present the network model and the construction of the
virtual ring topology. The wavelet based algorithm for compressing spatial and
temporal correlated data is then detailed.

Compressing Spatial and Temporal Correlated Data in WSNs 339

2.1 Virtual Grid and Ring Topology

We assume that the sensor network is divided into different clusters, each of
which is controlled by a cluster head [10]. Our focus is given to energy-efficient
gathering of the sensory data from various cluster members to the cluster head.
Routing the data from the cluster head to the sink is out of the scope of this
paper although it may benefit from the compression algorithm presented in this
paper. We assume that in each cluster, nodes are distributed in a virtual grid as
illustrated in Fig. 1. Due to redundancy, one node in each grid cell is required to
report its data to the cluster head. Without confusion, we will simply use node
to refer to this reporting sensor. We remark that this model is neither restrictive
nor unrealistic. In the worst case, a single node can be logically reside in one
grid cell and can be required to report its data corresponding to every query or
during every specified interval.

B C D

E F

G H I

A

N

M

Fig. 1. Ring topology based on virtual grid

The key for our construction is that we form a ring topology among the
reporting sensor nodes, as illustrated in Fig. 1. In this ring topology, neighboring
nodes belong to spatial adjacent grid cells. A node on the ring receives data from
one of its neighbors, fuses the data with its own, and further forward the results
to the other neighbor. As the nodes are relaying the sensory data, WT will
be executed and certain wavelet coefficients will be actually stored locally and
some others will be actually forwarded. Indeed, nodes in a particular grid cell can
alternatively participate in the ring and hence the data gathering procedure. This
way, energy consumption can be more evenly distributed among the nodes and
thus extend the network lifetime. Readers are referred to [11] for approaches of
scheduling nodes within one grid, for example, power on and off, for this purpose.

Given the ring topology, in each data gathering round, a node will be cho-
sen as the “head” of the ring and the nodes will be indexed accordingly as
s0, s1, · · · , si, · · · , sN−1, where N is the number of nodes on the ring. In addi-
tion, we assume that sensor i stores data cji, j = 0, 1, · · · , M − 1, where j is the
temporal index and cji represents the sensory data of sensor i at time index j.
Evidently, dependent on M , each sensor will window out history data. Accord-
ingly, we can arrange the sensory data on the ring according to their spatial and
temporal relationship to a matrix C0 = {cji}, 0 ≤ i < N, 0 ≤ j < M , where
column i represent the data of sensor node i. For ease of notation, we will use Ci

340 S. Zhou et al.

to denote column i. Notice that C0 and CN−1 are adjacent on the ring topol-
ogy and hence will possess relatively higher correlation. As we will detail later,
this unique feature of ring topology can effectively help us eliminate the “border
effects” of WT.

2.2 “Hybrid” Decomposition Based Distributed Spatio-temporal
Wavelet Transform

Our goal is to employ the WT for compression sensory data on the ring so that
it can be energy efficiently transmitted to the cluster head. The approach is to
simultaneously exploit the temporal and spatial correlation among the nodes’
data and reduce the redundancy thereby. As the data is represented by matrix
C0, the temporal (within a node) and spatial (among multiple nodes) correlation
is then captured by the columns and rows respectively.

(a) Dyadic tree decomposition (b) “Hybrid” decomposition

Fig. 2. The structure of five-level decomposition

Intuitively, we can perform two-dimensional WT on the matrix C0 to ex-
ploit the spatio-temporal correlation. For two-dimensional tensor product WT,
the common structure of decomposition is dyadic tree decomposition as illus-
trated in Fig. 2(a). Using the structure of dyadic tree decomposition, we will
first perform WT on each row, and then perform WT on the column. These row
WT and column WT will be performed recursively to achieve a K-level WT.
Communication constraints in sensor networks drive a time first, space next ap-
proach to compressing the sensory data, since temporal compression is local and
far cheaper than spatial compression. Correspondingly, the common dyadic tree
decomposition will not adapt to sensor networks.

In this section, we propose a “hybrid” decomposition based distributed WT,
as illustrated in Fig. 2(b). We will first perform K-level WT on all columns to
exploit temporal correlation, followed by a dyadic WT on the row to exploit
spatial correlation. Notice that column WT is within a single node hence no
communication is required although data shall be buffered. On the contrary, the
row WT is among the sensor nodes and hence require additional communications.

Compressing Spatial and Temporal Correlated Data in WSNs 341

This way, by reducing the temporal data firstly, the communication overhead of
column WT is reduced. Without loss of generality, we consider K = 2 levels
distributed spatio-temporal WT.

Our first step is to perform K-level transform on the columns of C0 to exploit
temporal correlation. Let Ln and Hn be lowpass analysis filter and highpass
analysis filter respectively, we have

c
L1

c

m,i =
∑

n

L(n−2m)Ci(n) (1)

c
H1

c

m,i =
∑

n

H(n−2m)Ci(n), 0 ≤ m ≤ M/2 − 1 (2)

c
L2

c

m,i =
∑

n

L(n−2m)c
L1

c

n,i (3)

c
H2

c

m,i =
∑

n

H(n−2m)c
L1

c

n,i, 0 ≤ m ≤ M/4 − 1 (4)

where C
Lk

c

m,i represents the mth approximation wavelet coefficient in ith column

in the kth level of the column WT, C
Hk

c

m,i is the corresponding detail wavelet coef-
ficient, where 1 ≤ k ≤ K and Ci(n) denotes the nth element of Ci. Notice that
this transform is performed within each node on its own sensory data and thus
does not require any communication among the nodes on the ring. Subsequently,
we can realign the resultant wavelet coefficients and obtain matrix

C1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
L2

c
0,0 c

L2
c

0,1 · · · c
L2

c

0,N−1
...

...
. . .

...

c
L2

c
M
4 −1,0 c

L2
c

M
4 −1,1 · · · c

L2
c

M
4 −1,N−1

c
H2

c
0,0 c

H2
c

0,1 · · · c
H2

c

0,N−1
...

...
. . .

...

c
H2

c
M
4 −1,0 c

H2
c

M
4 −1,1 · · · c

H2
c

M
4 −1,N−1

c
H1

c
0,0 c

H1
c

0,1 · · · c
H1

c

0,N−1
...

...
. . .

...

c
H1

c
M
2 −1,0 c

H1
c

M
2 −1,1 · · · c

H1
c

M
2 −1,N−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Given matric C1, our second step is to perform K-level transform on its rows
to explore the spatial correlation among the nodes. Note that the first and the
last column are adjacent on the ring topology, and this resembles “the periodic
extension to signal”. Towards this end, for general wavelets with arbitrary sup-
ports whose lowpass analysis filter is Ln, −i1 ≤ n < j1 and highpass analysis
filter is Hn, −i2 ≤ n < j2, where i1, i2, j1, j2 ≥ 0, we analyze the different cases
of the row transform based on whether j1 and j2 are even or odd.

342 S. Zhou et al.

Case I: If j1 is even and j2 is odd, by performing the first WT on the rows in
a similar way to the column WT, we obtain

C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
L1

rL2
c

0,l0
c
H1

r L2
c

0,h0
· · · c

L1
rL2

c

0,l N
2 −1

c
H1

r L2
c

0,h N
2 −1

...
...

. . .
...

...

c
L1

rL2
c

M
4 −1,l0

c
H1

r L2
c

M
4 −1,h0

· · · c
L1

rL2
c

M
4 −1,l N

2 −1
c
H1

r L2
c

M
4 −1,h N

2 −1

c
L1

rH2
c

0,l0
c
H1

r H2
c

0,h0
· · · c

L1
rH2

c

0,l N
2 −1

c
H1

r H2
c

0,h N
2 −1

...
...

. . .
...

...

c
L1

rH2
c

M
4 −1,l0

c
H1

r H2
c

M
4 −1,h0

· · · c
L1

rH2
c

M
4 −1,l N

2 −1
c
H1

r H2
c

M
4 −1,h N

2 −1

c
L1

rH1
c

0,l0
c
H1

r H1
c

0,h0
· · · c

L1
rH1

c

0,l N
2 −1

c
H1

r H1
c

0,h N
2 −1

...
...

. . .
...

...

c
L1

rH1
c

M
2 −1,l0

c
H1

r H1
c

M
2 −1,h0

· · · c
L1

rH1
c

M
2 −1,l N

2 −1
c
H1

r H1
c

M
2 −1,h N

2 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where li = (N−j1+2i
2 modN

2), hi = (N−j2+2i+1
2 modN

2), c
Lk1

r Lk2
c

m,li
or c

Lk1
r Hk2

c

m,li
repre-

sents the li
th approximation wavelet coefficient of mth row in the kth

1 level of the
row WT to the approximation or detail coefficients generated by the kth

2 level

column WT, and c
Hk1

r Lk2
c

m,li
or c

Hk1
r Hk2

c

m,li
represents the corresponding detail coeffi-

cients. We remark that for a node with index i, if i is even, the node stores coeffi-
cients c

Lk1
r Lk2

c

m,
N−j1+i

2 mod N
2

and c
Lk1

r Hk2
c

m,
N−j1+i

2 mod N
2

; if i is odd, the node stores coefficients

c
Hk1

r Lk2
c

m,
N−j2+i

2 mod N
2

and c
Hk1

r Hk2
c

m,
N−j2+i

2 mod N
2

, where 1 ≤ k1, k2 ≤ K, 0 ≤ m ≤ M/2 − 1.

Notice that this transform is performed among the sensor nodes on the ring
to harvest the spatial correlation and hence resultant wavelet coefficients cannot
be realigned as in the column WT.

Based on the the approximation coefficients in C2, we can obtain matrix C3
as follow:

C3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
L1

rL2
c

0,l0
c
L1

rL2
c

0,l1
· · · c

L1
rL2

c

0,l N
2 −1

...
...

. . .
...

c
L1

rL2
c

M
4 −1,l0

c
L1

rL2
c

M
4 −1,l1

· · · c
L1

rL2
c

M
4 −1,l N

2 −1

c
L1

rH2
c

0,l0
c
L1

rH2
c

0,l1
· · · c

L1
rH2

c

0,l N
2 −1

...
...

. . .
...

c
L1

rH2
c

M
4 −1,l0

c
L1

rH2
c

M
4 −1,l1

· · · c
L1

rH2
c

M
4 −1,l N

2 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We perform the second level row WT on matrix C3 as those to matrix C2 and
extend to the Kth level row WT.

Compressing Spatial and Temporal Correlated Data in WSNs 343

After K-level distributed spatial-temporal WT are performed, the original
data gathered by the nodes on the ring are transformed to wavelet domain.
Since the spatial and temporal correlations are exploited, we can represent the
original data using fewer bits. In lossless compression, all the wavelet coefficients
are encoded and sent to the cluster head. In lossy compression, according to
different application-specific requirements, such as error bound, energy cost, etc.,
we can accordingly select the wavelet coefficients, and then they are encoded and
sent to the cluster head.

Case II: If j1 and j2 are both odd, while we can perform the transform follow-
ing similar procedure, the matrices C2 will be significantly different. Due space
limitation, we omit them here but remarks that those nodes whose indexes are
even will not store wavelet coefficients and become pure delays.

When j1 is odd and j2 is even, it will be similar to the first case, and when j1
and j2 are all even, it will be similar to the second case discussed above. i1 and
i2 will not affect the distribution of wavelet coefficients. The reason is that when
we perform row WT, the first group of approximation coefficients are calculated
using the data stored in the ((N − i1)modN)th node to the (j1modN)th node
and are stored in the (j1modN)th node. The corresponding detail coefficients are
calculated using the data stored in the ((N−i2)modN)th node to the (j2modN)th

node and are stored in the (j2modN)th node.

2.3 Discussion

In the above WT, the ring head can be alternated among different nodes when
performing the data gathering procedure. Consequently, the wavelet coefficients
will be distributed to different nodes accordingly which in turn will balance
the energy consumption within the cluster. Furthermore, neighboring nodes on
the ring belong to spatial adjacent virtual grids, so the data gathered by the
neighboring nodes are more likely spatially correlated. Because the calculation
of approximation and detail wavelet coefficients are for neighboring nodes within
a support length, performing WT based on the ring can make full use of spa-
tial correlation to remove the data redundancy and hence reduce transmission
cost.

More importantly, performing WT based on ring topology naturally eliminates
the “border effect” problem inherent in WT. It is well known that general wavelet
functions are defined on the real axis R while the signal is always limited in a
finite region K. Therefore, the approximate space L2(R) will not match the signal
space L2(K) which will result in the “border effect” and thus introduce errors
during signal reconstruction. One of the general methods to deal with “border
effect” is extending border. The ring topology resembles a periodic extension to
the signal that naturally dissolves the “border effect”.

3 Analysis

We now briefly analysis the total energy consumption and delay of the proposed
scheme and study the optimal level spatio-temporal WT. For this purpose, we

344 S. Zhou et al.

adopt the first order radio model described in [10]. In this model, a radio dissi-
pates Eelec amount of energy at the transmitter or receiver circuitry and εamp

amount of energy for transmit amplifier. Signal attenuation is modelled to pro-
portional to d2 on the channel, where d denotes distance. For k bits data and a
distance d, the transmission ETx and reception energy consumption ERx can be
calculated respectively as follows:

ETx(k, d) = ETx−elec(k) + ETx−amp(k, d) (5)
ETx(k, d) = Eelec ∗ k + εamp ∗ k ∗ d2 (6)

ERx(k) = ERx−elec(k) = Eelec ∗ k (7)

We further assume that the sensor nodes can transmit simultaneously and
neglect the processing and propagation delay. Let the transmission time of one
data unit be one unit time. For performance comparison, we employ a non-
distributed approach for data gathering. In this approach, sensor nodes in the
cluster will send their data to the cluster head directly, and thus no inter-nodes
communications are required.

3.1 Energy Consumption and Delay Analysis

In this subsection, We analysis the total energy consumption and delay of the
proposed scheme. Let EIN and DIN represents the energy consumption and
delay resulting from communication among the nodes within this cluster for
performing the proposed WT, We can derive the following theorem.

Theorem 1. For general wavelets with arbitrary supports, let the lowpass analy-
sis be Ln,−i1 ≤ n < j1, and the highpass analysis be Hn,−i2 ≤ n < j2, where
i1, i2, j1, j2 ≥ 0. For a K-level distributed spatial-temporal WT based on the ring
topology proposed above, to gather the sensory data in a cluster of N nodes, we
have

EIN =
∑K

k=1
∑N/2k−1

l=0 (EP
k,l + 2Eelec(

∑i1+j1+1
i=0 qL

ikl +
∑i2+j2+1

i=0 qH
ikl)

+εamp(
i1+j1+1∑

i=0

(qL
ikl · dL

ikl) +
i2+j2+1∑

i=0

(qH
ikl · dH

ikl))) (8)

DIN =
K∑

k=1

(max
0≤l≤ N

2k −1
(
i1+j1−1∑

l=0

qL
ikl) + max

0≤l≤ N

2k −1
(
i2+j2−1∑

l=0

qH
ikl)) (9)

where

qL
ikl = qL

k,(−i1+N+2kl+(2k−1−1)(i1+j1)+2k−1i)modN ,

qH
ikl = qH

k,(−i2+N+2kl+(2k−1−1)(i2+j2)+2k−1i)modN ,

dL
ikl = (

−i1+N+2kl+(2k−1−1)(i1+j1)+2k−1−1∑
j=−i1+N+2kl+(2k−1−1)(i1+j1)

djmodN)2,

dH
ikl = (

−i2+N+2kl+(2k−1−1)(i2+j2)+2k−1−1∑
j=−i2+N+2kl+(2k−1−1)(i2+j2)

djmodN)2,

Compressing Spatial and Temporal Correlated Data in WSNs 345

qL
k,i and qH

k,i are the data amount transmitted by the ith node when the lth approx-
imation coefficient and the corresponding detail coefficient in the kth level row
WT are calculated respectively, djmodN is the distance between the (jmodN)th

node and the ((j + 1)modN)th node, EP
k,l is the processing energy of when the

lth wavelet coefficients is calculated in the kth level WT.

Proof. When the lth approximation wavelet coefficient in the kth level row WT is
calculated, the transmitting cost EL

k,l is: EL
k,l = ETx+ERx = 2Eelec

∑i1+j1
i=0 qL

ikl+
εamp

∑i1+j1
i=0 (qL

ikl ·dL
ikl) (10). When the lth detail wavelet coefficient in the kth level

row WT is calculated, the transmitting cost EH
k,l is: EH

k,l = 2Eelec

∑i2+j2
i=0 qH

ikl +
εamp

∑i2+j2
i=0 (qH

ikl ·dH
ikl) (11). When the kth level WT is performed, the processing

cost Ep is: EP =
∑ N

2k −1
l=0 EP

k,l (12). Then, the energy consumption in the kth WT

is Ek,IN : Ek,IN = EP +
∑N/2k−1

l=0 (EL
k,l +EH

k,l) (13). if K-level WT are performed,

the energy cost EIN is: EIN =
∑K

k=1(Ep +
∑ N

2k −1
l=0 (EL

k,l + EH
k,l)) (14). Taking

(10), (11) and (12) into (14), we can obtain (8). The network delay of the kth WT
is Dk,IN : Dk,IN = max0≤l≤ N

2k −1(
∑i1+j1−1

l=0 qL
ikl) + max0≤l≤ N

2k −1(
∑i2+j2−1

l=0 qH
ikl)

(15). Hereby, it is easy to get (9).

Notice that EP
k,l includes two parts: one is the processing cost when nodes

perform column WT in single node, the other is the processing cost when nodes
fuse data obtained from the proceeding nodes. We can conclude from the theorem
that, along with increasing levels of the WT, the energy cost also increases.
However, the detail wavelet coefficients stored by the nodes also increase. As a
result, the data can be coded using fewer bits.

3.2 The Optimal Level Spatio-temporal Wavelet Transform

In this subsection, we will study how many levels WT needed to be performed to
obtain optimal network performance. From the viewpoint of information theory,
only by decreasing entropy of wavelet coefficients is WT worthy. As we known,
entropy corresponds to the average encoding bits. If the entropy of wavelet coef-
ficients is smaller than those in above level WT, the average encoding bits would
be decreased. Generally speaking, the entropy of wavelet coefficients lies on the
magnitude of signal (set), the specific measured signal (data) and the wavelet
function (wavelet). Let Bk−1 and Bk are the average encoding bits of wavelet
coefficients in the (k − 1)th and kth level respectively, then we have:

Bk−1 − Bk = f(set, data, wavelet)

Compared to non-distributed approach, our scheme reduces the data by elim-
inating the spatio-temporal correlation among the sensory data. However, per-
forming WT requires inter-nodes communication and computation within nodes,
and thus need additional energy consumption and delay. Apparently, there are a
trade-off point between WT and non-distributed approach. Studying the optimal
level spatio-temporal WT, we have the following theorem:

346 S. Zhou et al.

Theorem 2. Let the average distance between nodes and the cluster head be D
meters, K1 = max(k : Ek,IN − Eelec(Bk−1 − Bk) − εamp(Bk−1 − Bk)D2 ≤ 0),
K2 = max(k : Dk,IN − Bk + Bk−1 ≤ 0), Ek,IN and Dk,IN are illustrated in
(13) and (15) in the above subsection respectively, then, the optimal level of
spatio-temporal WT is K: K = max(K1, K2).

Proof. The energy consumptions of sending (Bk−1 −Bk) bits are (Eelec(Bk−1 −
Bk)+ εamp(Bk−1 −Bk)D2) and delays are (Bk−1 −Bk). If the energy consump-
tions and delays generated by the kth level WT are less than or equal to them
respectively, the kth level WT would be performed. So, according to the theorem
1, we can easily obtain the theorem 2.

4 Simulation and Results

In this section, using Haar wavelet we evaluate the performance of our algorithm
and in particular compare it with the non-distributed approach.

We consider a ring composed of 96 nodes, assuming that the nodes are uni-
formly distributed and the average distance among the neighboring nodes is
5 meters.We use real life data obtained from the Tropical Atmosphere Ocean
Project (http://www.pmel.noaa.gov/tao/), which are the ocean temperatures
sampled by 96 sensor nodes from different mornings at different depths at
12:00pm from 1/20/2004 to 5/26/2004. In the experiment, we employ uniform
quantization and no entropy coding. Two cases are compared: optimal level Haar
WT and non-distributed approach. The results are shown in Fig. 3 and 4. The re-
lations among optimal level of WT(Opt-level), distance between nodes and clus-
ter head(Distance), peak signal to noise ratio(PSNR), energy consumption(ED)
and delay(DD) are shown in Table 1.

As we can see, when the proportion of the discarding detail coefficients to
total wavelet coefficients in the WT reachs 73 percent, the PSNR is still reach
49dB. We believe that the reasons are the data used in the simulation have
strong spatio-temporal correlations and our algorithm can move them efficiently.
In our simulation, the optimal level of WT is 0 when the distance between
nodes and cluster head is less than 20 meters. This indicates that WT is not

30
40

50
60

70

0
50

100
150

200
0

1

2

3

4

x 10
7

PSNR(dB)

PSNR*D*E
D

D(m)

E
D

(n
J)

(a) D × PSNR × ED

30
40

50
60

70

0
50

100
150

200
0

1

2

3

4

5

x 10
4

PSNR(dB)

PSNR*D*D
D

D(m)

D
D

(u
ni

t)

(b)D × PSNR × DD

Fig. 3. For optimal level WT

Compressing Spatial and Temporal Correlated Data in WSNs 347

−50
0

50
100

0
50

100
150

200
0

2

4

6

x 10
8

PSNR(dB)

D*PSNR*Ec

D(m)

E
c(

nJ
)

(a) D × PSNR × Ec
−50

0
50

100

0
50

100
150

200
0

5

10

15

x 10
4

PSNR(dB)

D*PSNR*Dc

D(m)

D
c(

un
it)

(b)D × PSNR × Dc

Fig. 4. Non-distributed Approach

Table 1. The optimal level WT

Opt-level Distance(m) PSNR(dB) ED(107nJ) DD(104unit)
1 20 47.6 0.7 2.6
1 30 47.6 0.9 2.6
2 40 48.9 1.0 1.3
3 50 47.0 1.1 0.7
3 60 47.0 1.2 0.7
3 70 47.0 1.2 0.7
3 80 47.0 1.3 0.7
3 90 47.0 1.4 0.7
3 100 47.0 1.5 0.7
4 110 46.2 1.5 0.5
4 120 46.2 1.5 0.5
4 130 46.2 1.6 0.5
4 140 46.2 1.7 0.5
4 150 46.2 1.8 0.5
4 160 46.2 1.9 0.5
4 170 46.2 2.0 0.5
4 180 46.2 2.1 0.5
4 190 46.2 2.2 0.5
4 200 46.2 2.3 0.5

necessary under this case, for the non-distributed approach has no additional
energy consumption. However, with increasing distance between the nodes and
the cluster head, the benefit of compression outweigh the energy due to inter-
node communication for performing the WT, and then the proposed algorithm
will save more energy.

5 Conclusion

In this paper, we have proposed a distributed spatio-temporal compression algo-
rithm based on the ring model. Our algorithm accommodates to a broad range of
wavelet function, and can remove the temporal and spatial correlation of original
data simultaneously, the ring mode can cope with “border effect” and thus ben-
efit WT. We have analyzed the energy cost and network delay and studied the

348 S. Zhou et al.

optimal level WT. The Simulation experiment suggests that the optimal level
of WT is different due to different PSNR and the distance between nodes and
cluster head, along with the increasing of the distance between the nodes and
cluster head, the distributed spatio-temporal wavelet compression algorithm has
better performance than that of non-distributed approach.

How to accept or reject the detail wavelet coefficients produced by distributed
spatio-temporal WT effectively, and thus gaining constant or limited bit rate to
improve the transmitting scheduling in sensor networks is our future work.

References

1. D. Estrin, R. Govindan, J. Heideman and S. Kumar, Next century challenges:
scalable coordination in sensor networks, in Proc. MOBICOM, Seattle, USA, Aug.,
1999.

2. S. Lindsey, C. Raghavendra and K. Sivalingam, Data gathering algorithms in sen-
sor networks using energy metrics, IEEE transactions on parallel and distributed
systems, vol.13, pp.924-935, 2002.

3. N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,R. Govindan, and
D. Estrin, A wireless sensor network for structuralmonitoring, in Proc. ACM Sen-
Sys, Maryland, USA, Nov., 2004.

4. H. Chen, J. Li and P. Mohapatra, RACE: Time Series Compression with Rate
Adaptive and Error Bound for Sensor Networks, in Proc. MASS, Fort Lauderdale,
USA, Oct., 2004.

5. D. Ganesan, D. Estrin, and J. Heidemann, DIMENSIONS: Why do we need a new
data handling architecture for sensor networks?, SIGCOMM Comput. Commun.
Rev., vol. 33, no. 1, pp. 143-148, 2003.

6. S. Servetto, Distributed signal processing algorithms for the sensor broadcast prob-
lem, in Proc. CISS, Philadelphia, USA, Mar., 2003.

7. A. Ciancio and A. Ortega, A distributed wavelet compression algorithm for wireless
multihop sensor networks using lifting, in Proc. ICASSP, Philadelphia, USA, Mar.,
2005.

8. J. Acimovic, R. Cristescu and B. Lozano, Efficient distributed multiresolution
processing for data gathering in sensor networks, in Proc. ICASSP, Philadelphia,
USA, Mar., 2005.

9. G. Karlsson and M. Vetterli, Extension of finite length signals for subband coding,
Signal processing, vol.17, pp.161-168, 1989.

10. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy- Efficient Com-
munication Protocol for Wireless Microsensor Networks, in Proc. HICSS, Hawaii,
USA, Jan., 2000.

11. Y. Xu, J. Heidemann, and D. Estrin, Geography-informed energy conservation for
ad hoc routing, in Proc. MobiCom, Rome, Italy, Jul., 2001.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 349 – 361, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovery of Temporal Frequent Patterns
Using TFP-Tree

Long Jin, Yongmi Lee, Sungbo Seo, and Keun Ho Ryu

Database/Bioinformatics Laboratory, Chungbuk National University, Korea
{kimlyong, ymlee, sbseo, khryu}@dblab.chungbuk.ac.kr

http://dblab.chungbuk.ac.kr/index.html

Abstract. Mining temporal frequent patterns in transaction databases, time-
series databases, and many other kinds of databases have been widely studied in
data mining research. Most of the previous studies adopt an Apriori-like candi-
date set generation-and-test approach. However, candidate set generation is still
costly, especially when there exist prolific patterns and long patterns. In this
paper, we propose an efficient temporal frequent pattern mining method using
the TFP-tree (Temporal Frequent Pattern tree). This approach has three advan-
tages: (i) one can scan the transaction only once for reducing significantly the
I/O cost; (ii) one can store all transactions in leaf nodes but only save the star
calendar patterns in the internal nodes. So we can save a large amount of mem-
ory. Moreover, we divide the transactions into many partitions by maximum
size domain which significantly saves the memory; (iii) we efficiently discover
each star calendar pattern in internal node using the frequent calendar patterns
of leaf node. Thus we can reduce significantly the computational time. Our per-
formance study shows that the TFP-tree is efficient and scalable for mining, and
is about an order of magnitude faster than the classical frequent pattern mining
algorithms.

1 Introduction

Frequent pattern mining plays an essential role in mining association, correlations,
causality, sequential patterns, episodes, multidimensional patterns, max-patterns,
partial periodicity, emerging patterns, and many other important data mining tasks
[1,2,3]. For example egg coffee (support: 3%, confidence: 80%) means that 3% of
all transactions contain both egg and coffee, and 80% of the transactions that have egg
also have coffee in them. In real dataset, time is one of the important factors. For ex-
ample, eggs and coffee may be ordered together primarily between 7AM and 11AM.
Therefore, we may find that the above association rule has a support as high as 40%
among the transactions that happen between 7AM and 11AM and has a support as
low as 0.005% in other transactions. So we can discover more useful knowledge if we
consider the time interval.

Informally, we refer to the association rules along with their temporal intervals as
temporal association rules. The discovery of temporal association rules has been dis-
cussed in the literature. For example, in [4], the discovery of cyclic association rules

350 L. Jin et al.

(i.e., the association rules that occur periodically over time) was studied. However,
periodicity has limited expressiveness in describing real-life concepts such as the first
business day of every month since the distances between two consecutive such busi-
ness days are not constant. In general, the model does not deal with calendric con-
cepts like year, month, day, and so on. In [5], the work of [4] was extended to treat
user-defined temporal patterns. Although the work of [5] is more flexible than that of
[4], it only considers the association rules that hold during the user-given time inter-
vals described in term of a calendar algebraic expression. In other words, a single set
of time intervals is given by the user and only the association rules on these intervals
are considered. This method hence requires user’s prior knowledge about the tempo-
ral patterns. In calendar based temporal association rules [6], this work was about
temporal association rules during time intervals that follow some user-given calendar
schemas. Generally, the use of calendar schemas makes the discovered temporal asso-
ciation rules easier to understand. An example of calendar schema is (year, month,
day), which yields a set of calendar-based patterns of the form <d3, d2, d1>, where
each di is either an integer or the symbol “*”. Such calendar-based patterns represent
all daily, monthly, and yearly patterns. For example, <2005, *, 10> is such a pattern,
which corresponds to the time intervals consisting of all the 10th day of all months in
year 2005. But [6] adopts an Apriori-like candidate set generation-and-test approach.
So it is costly to handle a huge number of candidate sets and tedious to repeatedly
scan the database and check a large set of candidates by pattern matching, which is
especially true for mining long patterns.

In this paper, we propose an efficient temporal frequent pattern mining method us-
ing TFP-tree (Temporal Frequent Pattern tree). We propose a completed TFP-tree for
efficient mining. This approach has three advantages: (i) this method only scans data-
base once and maintains all transactions using FP-tree. So we can reduce significantly
the I/O cost; (ii) this method stores all transactions in leaf nodes but only saves the
star calendar patterns in the internal nodes. So we can save a large amount of mem-
ory. Moreover, we separate the transactions into many partitions by maximum size
domain for saving the memory; (iii) we efficiently discover each star calendar pat-
terns of internal node using the frequent calendar patterns of leaf node. So we can
reduce significantly the run time.

The remaining of this paper is organized as follows. Section 2 designs the TFP-tree
structure and its construction method is shown in Section 3. Section 4 develops a
TFP-tree based frequent pattern mining algorithm, TFP-tree Mining. Section 5 pre-
sents our performance study. Section 6 summarizes this paper.

2 Design Frequent Pattern Tree and Other Definitions

Table 1 show the first running example of a transaction database. For convenience of
later discussions, we continue to use this example and describe each part.

Let I={a1,a2, …,am} be a set of items, and a transaction database DB=<T1,T2,…,Tt>,
where Ti(i∈[1..t]) is a transaction which contains a set of items in I. The support (or
occurrence frequency) of a pattern A, which is a set of items, is the number of transac-
tions containing A in DB. A is a frequent pattern if A’s support is no less than a prede-
fined minimum support threshold, .

 Discovery of Temporal Frequent Patterns Using TFP-Tree 351

Table 1. A transaction database as a running example

TID Items Time Stamp
01 c,d,e,f,g,i <1,1,1,1>
02 a,c,d,e,m,b <1,1,1,1>
03 a,c,d,e,b <1,1,1,1>
04 a,c,d,h <1,1,1,3>
05 a,b,d,h,i <1,1,1,3>
06 a,b,d,e,g,k <1,1,1,3>
07 c,d,f,g,b <1,1,3,1>
08 b,c,d,e <1,1,3,1>
09 a,c,e,k,m <1,1,3,3>
10 b,d,e,m <1,1,3,3>

We present a class of calendar related to temporal patterns called calendar patterns.
Calendar pattern represents the sets of time intervals in terms of calendar schema
specified by user. Calendar schema is a relational schema R=(fn:Dn, fn-1:Dn-1, ..., f1:D1),
where each attribute fi is a time granularity name such as year, month, day, and so on.
Each Di is a domain value corresponding to fi. In the example of Table 1, there is
given a calendar schema (year:{1,2}, month:{1,2}, week:{1,2,3}, day:{1,2,3,4}). And
a calendar pattern on the calendar schema R is a tuple on R of the form <dn, dn-

1,...,d1>. Each di is a positive integer in Di or the symbol "*". "*" denotes all the values
corresponding to domain and means "every." Exactly, it represents periodic cycles on
the calendar pattern such as every week, every month, and so on. According to the
above example 1, the calendar pattern <1,1,*,3> represents time intervals which
means the third day of every week of January in the first year.

To design a compact data structure for efficient temporal frequent pattern mining,
we define TFP-tree as follows.

Definition 1. (TFP-tree) If a calendar schema R has n attributes, then a temporal fre-
quent pattern tree (or TFP-tree in short) is a tree structure defined below:

1. It consists of one node of all the star patterns all_star, a two dimensional array
of internal nodes internal_array[n-2][n], and one dimensional array of leaf
nodes leaf_array[n].

2. The structure of the internal nodes of a TFP-tree that is called internal_node is
as follows. It consists of one label of star calendar pattern label and a large k
itemset large_itemset which is constructed by a star calendar pattern and an
internal_pattern point, where the structure of internal_pattern is constructed
by one label of star calendar pattern calendar_pattern and a frequent pattern
list freqnt_list. If there is an internal node that is ith subtree of m level, the la-
bel of internal node is as follows.

.200

)1(,,......1,,......0,,......1

)1(,,......0,,......1,,......0
)1()1(

)1(1

−≤<≤<
>+−><

≤+−><
=

−−−−+−

−−−−

nmandniwhere

nmi

nmi
labelnode

inmnnmi

minmi

 (Formula 1)

3. The structure of the leaf node of a TFP-tree that is called leaf_node is as fol-
lows. It consists of one label of star calendar pattern label and a large 1-
itemset large_itemset which is constructed by a star calendar pattern and a

352 L. Jin et al.

leaf_pattern point, where the structure of leaf_pattern is constructed by one
label of star calendar pattern calendar_pattern, a transaction list tran_list, a
FP-tree point FP_T, and a frequent pattern list freqnt_list. The label of the ith
leaf node is as follows.

.0

2,,......1,0,,......1

2,,......0,,......1,,......0
)1(2

211

niwhere

i

i
labelnode

ini

ini

≤<
>><

≤><
=

−−−

−−−

 (Formula 2)

From the above definition, we can generally construct a TFP-tree shown in the ex-
ample of Table 1 and Fig. 1.

Fig. 1. The TFP-tree in example 1

Why do we use the arrays and are there not any missing or overlapping transac-
tions? We prove this problem in Problem A of Appendix.

3 Construction of Temporal Frequent Pattern Tree

This section shows how to construct a TFP-tree based on Definition 1. The construc-
tion process consists of two important procedures: (i) insert_tree() procedure inserts

 Discovery of Temporal Frequent Patterns Using TFP-Tree 353

transactions into TFP-tree and (ii) refresh_tree() procedure constructs FP-tree.
Based on Definition 1, we have the following TFP-tree construction algorithm in
detail.

Scanning the transactions, we sort the transactions according to maximum size
domain. There are several reasons. (i) For saving the memory, TFP-tree only saves
transactions into the array of leaf nodes and the array of internal nodes does not store
the transactions but saves only the corresponding to star calendar patterns. But there is
still a need of n times memory space of the total number of all transactions. Consider
example 1 above, there needs 4 times memory space. So a solution to save the mem-
ory efficiently is necessary. Solving this problem, we use maximum size domain to
separate many partitions of transactions. Why do we select maximum size domain?
This reason is that the leaf node is 1-star calendar pattern and only one domain is “*”.
Therefore we must select maximum size domain and can separate many partitions of
transactions by it. (ii) Scanning each part of transactions and inserting these into
leaf_array of TFP-tree, we construct all of FP-trees that the 1-star calendar pattern
contains this domain value of maximum size domain before scanning next part of
transactions. Completing the process of constructing FP-Tree, we delete transactions
in each 1-star calendar pattern for saving the memory space. From these reasons, we
can guarantee to not only save the memory but also discover frequent patterns effi-
ciently. In example 1, the maximum size domain is D1 and we sort the transactions. It
is shown in the left table of Fig. 2.

The procedure of insert_tree() is a function that inserts each transaction into the
transaction list of the covering the basic time in leaf node.

This insert_tree() procedure consists of two parts: inserting transactions into leaf
node and star calendar patterns into internal node. In the process of inserting into leaf
node, each transaction is inserted into each leaf node in TFP-tree. In the process of

354 L. Jin et al.

inserting into internal node, all of star calendar patterns that cover the basic time are
inserted into the corresponding to internal node. In this case, we insert the star calen-
dar pattern into internal node only if the internal node does not contain it. The exam-
ple is shown in Fig. 2.

Fig. 2. TFP-tree of inserting first partition of transactions in example 1

The procedure of refresh_tree() is a function of creating FP-tree that the 1-star cal-
endar pattern contains max_domain at leaf nodes.

Completing the process of inserting a part of transactions, we construct all of FP-
trees that the 1-star calendar pattern contains this part of domain value of maximum
size domain and delete the corresponding to transactions for saving the memory. So
we only maintain this FP-tree and do not need the transactions. If there are a large
amount of databases, we can save so much memory and do not affect the mining
frequent patterns. Where the procedure of FP-insert_tree([p|P]; T) is the creating FP-
tree function in [7]. The example is shown in Fig. 3.

 Discovery of Temporal Frequent Patterns Using TFP-Tree 355

Fig. 3. TFP-tree of inserting second partition of transactions in example 1

4 Mining Frequent Patterns Using TFP-Tree

Construction of a compact TFP-tree can be performed with a rather compact data
structure. However, this does not generate the frequent patterns. In this section, we
will study how to explore the compact information stored in a TFP-tree and to de-
velop an efficient method for mining the complete set of frequent patterns.

Given a transaction database DB and a minimum support threshold, , the problem
of finding the complete set of frequent patterns is called the frequent pattern mining
problem. Based on the above section, we have the following algorithm for mining
frequent patterns using TFP-tree.

To help the understanding of TFP-tree mining algorithm, we illustrate frequent pat-

terns mining in Fig. 4 using 3-subtree of TFP-tree in Fig. 3. Where the minimum

356 L. Jin et al.

support threshold is 0.6, the minimum support of the leaf node is 2 and the internal
node is 5.

The algorithm of TFP-tree mining consists of three parts. The first part is to gener-
ate the frequent itemsets of 1-star calendar pattern. In this part, we can mine frequent
patterns using each FP-T in the leaf node of TFP-tree. Where the algorithm of mining
frequent pattern is FP-growth(Tree,) in [7]. The results are shown in the top right of
Fig. 4. The second part is to generate the frequent itemsets of k-star calendar pattern
(1<k<n). And the third part is to generate the frequent itemsets of all star calendar
patterns. In the second and third parts, we get the frequent patterns using the proce-
dure generate_pattern(). And the detail of process is as follows.

The procedure generate_pattern() is the function that generates the frequent calen-

dar pattern. For each sub-tree, each internal node scans the leaf node of this sub-tree
and generates frequent pattern itemsets. In other words, we scan each itemset of 1-star

Fig. 4. The illustration of mining the frequent patterns using TFP-tree in example 1

 Discovery of Temporal Frequent Patterns Using TFP-Tree 357

calendar pattern in a leaf node and merge these frequent itemsets into the star calendar
pattern that covers this 1-star calendar pattern. If there already exists an itemset, we
only add the count. Otherwise, we insert the itemset into there. An example of these
results is shown in the bottom right of Fig. 4. And we eliminate the itemsets that do
not satisfy the minimum support 5 and select the frequent itemsets. The results are
shown in the bottom left of Fig. 4.

Does this TFP-tree mining guarantee the frequent patterns in internal node without
missing any frequent itemsets? We prove this problem in Problem B of Appendix.

5 Experiment and Evaluation

In this section, we perform a series of experiments for evaluating the performance of
TFP-tree with the classical frequent pattern mining algorithms on synthetic data. All
the experiments are performed on a Windows 2000 Server desktop with Pentium PC
2.8GHz and 512 Mbytes of main memory. Also we use JDK 1.4, MS-SQL 2000 data-
base and JDBC driver for connecting MS-SQL 2000.

Our data generation procedure takes the calendar schema (D4:{1,…,4},
D3:{1,…,6}, D2:{1,…,12}, D1{1,…,30}). The number of items is 100 and the pattern-
ratio is 0.5. The average number of per-internal itemsets and transactions per basic
time interval are 100 and 1000, respectively. The average size of the transactions and
per-interval itemsets are 10 and 4, respectively. For examining the performance, we
generate a series of data sets, most of which are generated by varying one parameter
while keeping others at their default values. The size of the data sets ranges from
500MB to 5GB.

In our experiments, we compare three algorithms: nontemporal association match
(NTA match), calendar temporal association match (CTA match), and temporal fre-
quent pattern match (TFP match).

Fig. 5. Comparison of the run time of TFP-tree with other algorithms

The first experiment studies the run time versus support threshold by decreasing
support threshold from 2 to 0.25 on the left of Fig. 5. It also shows that TFP match
method has good scalability with the reduction of support threshold. The second

358 L. Jin et al.

experiment is about the run time versus average number of transactions per e0, in-
creasing from 1000 to 80000 on the right of Fig. 5. Both NTA match and CTA match
have linear scalability with the number of transactions, but TFP match is more scal-
able. In both experiments, the run time of TFP match method is increasing more
smoothly than others. This reason is that only the run time of mining the frequent
pattern using TFP-tree is increased according to decreasing the support threshold
while all constructions of TFP-tree have same time. Therefore, discovery temporal
frequent patterns using TFP-tree has a better performance than the classical frequent
pattern mining algorithms.

6 Conclusion

We have proposed a novel data structure, that is temporal frequent pattern tree (TFP-
tree), for storing compressed, crucial information about temporal frequent patterns,
and developed a pattern growth method, TFP-tree mining, for efficient mining of
frequent patterns in large databases. TFP-tree has several advantages compared to
other approaches: (i) one scans the transaction only once for reducing significantly the
I/O cost; (ii) one stores all transactions in leaf nodes but saves only the star calendar
patterns in the internal nodes, then we can save a large amount of memory. For saving
the memory efficiently, we divide the transactions into many partitions by maximum
size domain. We prove that there are no transactions missed in Section 2 and Appen-
dix; (iii) we efficiently discover each star calendar pattern of internal node using the
frequent calendar patterns of leaf node. We prove that there are not any missing fre-
quent itemsets in Section 4 and Appendix.

Our performance study showed that the TFP-tree is efficient and scalable for min-
ing, and is about an order of magnitude faster than the classical frequent pattern min-
ing algorithms.

Acknowledgment

This work was supported by the RRC program of MOCIE and ITEP and the Regional
Research Centers Program of the Ministry of Education & Human Resources Devel-
opment in Korea.

References

1. R. Agrawal and R. Srikant.: Fast algorithms for mining association rules, In Proc. of the
1994 Int’l Conf. on Very Large Data Bases (VLDB), 1994.

2. R. Agrawal and R. Srikant.: Mining sequential patterns, In Proc. of ICDE’95, 1995.
3. S. Brin, R. Motwani, and C. Silverstein.: Beyond market basket: Generalizing association

rules to correlations, In Proc. of SIGMOD’98, 1998.
4. B. Ozden, S. Ramaswamy, and A. silberschatz.: Cyclic association rules, In Proc. of the

14th Int’l Conf. on Data Engineering , 1998.

 Discovery of Temporal Frequent Patterns Using TFP-Tree 359

5. S. Ramaswamy, S. Mahajan and A. Silberschatz.: On the discovery of interesting patterns
in association rules, In Proc. of the 1998 Int’l Conf. on Very Large Data Bases (VLDB),
1998.

6. Y. Li and P. Ning.: Discovering Calendar-based Temporal Association Rules, In Proc. of the
8th Int’l Symposium on Temporal Representation and Reasoning, 2001.

7. J. Han, J. Pei, and Y. Yin.: Mining frequent patterns without candidate generation, In Proc.
of 2000 ACM-SIGTMOD Int. Conf. Management of Data (SIGMOD’00), 2000.

8. Y. J. Lee, Y. J. Lee, H. K. Kim, B. H. Hwang, and K. H. Ryu.: Discovering Temporal Rela-
tion Rules from Temporal Interval Data, EurAsia-ICT2002, 2002.

9. Sungbo Seo, Long Jin, Jun Wook Lee, Keun Ho Ryu, Similarity Pattern Discovery using
Calendar Concept Hierarchy in Time Series Data, Asia Pacific Web Conference (APWeb),
2004.

Appendix

Proof of Problem A. Why do we use the arrays and are there not any missing or
overlapping transactions? We can use two parts to answer this question.

1. The leaf nodes of each sub-tree has all transactions.
If there give transaction Ti(i�[1…t]) in DB and a sub-tree of 1-star calendar
pattern that Dj(j�[1…n]) in the calendar schema R is star calendar, there is
maximum size of Dn x ··· x D1(Dj is except from there) of 1-star calendar pat-
terns in the leaf node of this sub-tree. And all of these 1-star calendar patterns
cover the basic time e0 in Ti. So the leaf node of this sub-tree contains all
transactions.

2. Each internal node covers all transactions not any missing or overlapping trans-
actions.

Case 1:

(1)1

1 1 2

0,......,1,...... , 0,...... 1 (1)

0,......,1,...... , 0,...... 2 (2)

.

,

2 1 1

1

(2)

n i mi m

i n i

from formula

from formula

First part of star calendar is same

From second part

m n m n

m n

The numer of basic time in is l

− − −−

− − −

< >

< >

≤ − + ≤ −
∴ < −

∴ (1).

,

2 2

(1) 2 (1)

2 1 (2) 1 (2)

(1) (2).

(1) (2).

arge than

From third part

m n m n

n i m m i m

i i i

The number of star calendar in is large than

The star calendar of covers

≤ − + ≤
∴ − − − ≥ + − − −

= − + = − + > −
∴

∴

360 L. Jin et al.

Case 2:

(1) (1)

(1)2

1,...... , 0,......,1,...... 1 (3)

1,...... , 0,1,...... 2 (4)

,

2

(1) (1) 2

(2) 1 (2)

(4)

i m n n in m

n ii

from formula

from formula

From first part

m n

i m n i n n

i i

The number of basic time in is large than

− + − − −−

− −−

< >

< >

≤ −
∴ − + − ≤ − + − −

= − − < −
∴ (3).

,

2 2

1

(3) (4).

.

(3) (4).

From second part

m n n m

n m

The number of star calendar in is large than

Third part of basic time is same

The star calendar of covers

≤ − − ≥
∴ − >

∴

∴

So each internal node covers all the transactions, without any missing or overlap-
ping transactions.

Proof of Problem B. We prove the correctness of the frequent patterns in internal
node without missing any frequent itemsets.

If there is a m-star calendar pattern P in the internal node of a sub-tree and k of 1-
star calendar patterns, p1,…,pk, respectively that are covered with P, we express P =
{p1,…,pk} in short and the domain is {D1,…,Dm}. So we can consider that the transac-
tions are partitioned into k parts. Hence this problem is converted into the problem of
partition algorithm for mining the frequent itemsets.

Let L be the set of actual frequent itemsets in P. Since the global frequent itemsets
are generated by counting the support for every itemset in CG, it is sufficient to show
that CG L. Assume there exists an itemet l that is actually frequent but does not ap-
pear in CG, i.e., l L but l∉CG. But CG = Ui=1,…,kL

i
j. Hence l∉Li for i=1,2,…,k. Let

|pi| be the size of 1-star calendar pattern pi. And |P| is the size of m-star calendar pat-
tern P. Let |pi(l)| be the number of transaction containing the itemset l in pi. Since
l∉Li, it must be true that

1 2

1 2

() () ()
... k

k

p l p l p l
minSup minSup minSup

P P P
< ∧ < ∧ ∧ <

or

1 1 2 2() () ... ()k kp l minSup p p l minSup p p l minSup p< × ∧ < × ∧ ∧ < ×

This is equivalent to

1 2 1 2() () ... () (...)k kp l p l p l minSup p p p+ + + < × + + +

But |p1|+|p2|+…+|pk| is the total size of 1-star calendar pattern in leaf node and
|p1(l)|+|p2(l)|+…+|pk(l)| is the total number of transactions containing l in DB.

 Discovery of Temporal Frequent Patterns Using TFP-Tree 361

1 2 1 2

1 2

1 2

1 2 1 2

... ...

...

...

() () ... () (...)

m k

m

k

k k

D D D p p p

P D D D

p p p P

p l p l p l minSup p p p

minSup P

+ + + = + + +

= × × ×

∴ + + + <

∴ + + + < × + + +

< ×

Therefore support(l) < minSup and so l∉L. But this is a contradiction.
Hence the internal node contains all of the frequent patterns without missing any

frequent itemsets.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 362 – 371, 2006.
© Springer-Verlag Berlin Heidelberg 2006

DGCL: An Efficient Density and Grid Based Clustering
Algorithm for Large Spatial Database∗

Ho Seok Kim1, Song Gao2, Ying Xia2, Gyoung Bae Kim3, and Hae Young Bae1

1 Department of Computer Science and Information Engineering, Inha University
Yonghyun-dong, Nam-gu, Incheon, 402-751, Korea

hskim@dblab.inha.ac.kr, hybae@inha.ac.kr
2 College of Computer Science and Technology,

Chongqing University of Posts and Telecommunications,
Nan'an Distinct ChongQing City, 400065, P.R. China

gao_fly@hotmail.com, xiaying@cqupt.edu.cn
3 Department of Computer Education, Seowon University, 231

Mochung-dong Heungduk-gu Cheongju-si Chungbuk, 361-742, Korea
gbkim@seowon.ac.kr

Abstract. Spatial clustering, which groups similar objects based on their dis-
tance, connectivity, or their relative density in space, is an important component
of spatial data mining. Clustering large data sets has always been a serious chal-
lenge for clustering algorithms, because huge data set makes the clustering
process extremely costly. In this paper, we propose DGCL, an enhanced Den-
sity-Grid based Clustering algorithm for Large spatial database. The character-
istics of dense area can be enhanced by considering the affection of the
surrounding area. Dense areas are analytically identified as clusters by remov-
ing sparse area or outliers with the help of a density threshold. Synthetic data-
sets are used for testing and the result shows the superiority of our approach.

1 Introduction

Spatial data mining is the discovery of interesting characteristics and patterns that
may exist in large spatial databases. Usually the spatial relationships are implicit in
nature. Because of the huge amounts of spatial data that may be obtained from satel-
lite images, medical equipments, Geographic Information System (GIS) etc, it’s ex-
pensive and unrealistic for the users to examine spatial data in detail. Spatial data
mining aims to automate the process of understanding spatial data by representing the
data in a concise manner and reorganizing spatial databases to accommodate data
semantics.

The aim of data clustering algorithms is to group the objects in spatial databases
into meaningful subclasses. A good clustering algorithm should have the following
characteristics. First, due to the huge amount of spatial data, an important challenge

∗ This research was supported by the MIC (Ministry of Information and Communica-

tion),Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Assessment).

 DGCL: An Efficient Density and Grid Based Clustering Algorithm 363

for clustering algorithm is to achieve good time efficiency. Second, a good clustering
algorithm should be able to identify clusters irrespective of their shapes or relative
position. Third, it should have better ability to handle noise or outliers. Fourth, it
should be order insensitive with respect to input data. Last, the parameter count
should be minimized for users.

This paper presents an enhanced density-grid based clustering algorithm, DGCL,
which can handle huge amount of spatial data with noise efficiently and find natural
clusters correctly. In this algorithm, we set a default number of intervals according to
the number of input data. The time complexity mostly depends on the grid number N,
and it can be O(N). It’s also order insensitive.

 The rest of this paper is organized as follows. Section 2 reviews related work. The
detail algorithm is described in Section 3. Section 4 we analyze the time complexity.
Section 5 shows the results of experiments. A conclusion is presented in the last
section.

2 Related Work

Density-based and grid-based clustering are two main clustering approaches. The
former is famous for its capability of discovering clusters of various shapes and elimi-
nating noises, while the latter is well known for its high speed. Shifting grid and
GDILC are two kinds of clustering methods which are based on density and grid.
Both of them have advantages and disadvantages.

Density–based [1] clustering algorithms regard clusters as dense regions of objects
in the data space that are separated by regions of low density. A density-based cluster
is a set of density-connected objects that is maximal with respect to density-
reachability. Every object not contained in any cluster is considered to be noise. Typi-
cal example is DBSCAN. It grows regions with sufficiently high density into clusters
and discovers clusters of arbitrary shape in spatial databases with noise. It has two
parameters (ε , MinPts). But the users usually don’t know clearly about the suitable
values of these two parameters for some data sets. Other drawback of this technique is
the high computational complexity because of examining all the neighborhoods in
checking the core condition for each object. Specially when the algorithm runs on
very large datasets, this step is very expensive. Its time complexity is O(n log n),
where n is the number of data objects [2].
 Grid-based [1] clustering algorithms use a multi-resolution grid data structure. It
quantizes the space into a finite number of cells that form a grid structure on which all
of the operations for clustering are performed. The main advantage is its fast process-
ing time, which is typically independent of the number of data objects, yet dependent
on only the number of cells in each dimension in the quantized space.
 A shifting grid [3] clustering algorithm uses the concept of shifting grid. This algo-
rithm does not require users inputting parameters. It divides each dimension of the
data space into certain interval to form a grid structure in the data space. Based on the
concept of sliding window, shifting of the whole grid structure is introduced to obtain
a more descriptive density profile. It clusters data in a way of cell rather than in points
[4]. Because of its recursive execution, the performance is not better even though it
can enhance the accuracy of the results.

364 H.S. Kim et al.

 GDILC [5] is a grid-based density-isoline clustering algorithm. The idea of cluster-
ing using density-isoline comes from contour figures, density-based and grid-based
clustering algorithms. When clustering, density-isoline figure obtained from the
distribution densities of data sample can be used to discover clusters. Because this
algorithm needs to calculate the distance between each data sample and every data
sample in its neighbor cells, the cost is also too high, especially for huge data set.

3 The Density and Grid Based Algorithm

In this part, the structure of this algorithm and the detail of the sub-procedure will be
described.

3.1 Procedure of DGCL

In DGCL, we regard each spatial data as a point in the space. There are 7 steps in
DGCL. In step 1, get the total number of the data points. According to the total num-
ber, construct the grid cell. In step 2, read the data set from the disk. If there is not
sufficient memory to contain the whole data set, this algorithm divides them to sev-
eral parts and read one part at a time to calculate the density of each cells until all
parts have been read for one time. In step 3, calculate the density threshold DT by
using the equation in GDILC. The aim is to remove the outliers and empty cells as
much as possible in step 4. And the fourth step can be regarded as a pre-clustering.
The remainder cells will be regarded as useful cells. In the following steps, only
the useful cells will be considered. So the number of useful cells is small compared to
the number of data. In step 5, from the remainder cells, assign the adjacent cells to the
same group which should be regarded as a cluster. But that’s not the final result,
because the fifth step can only find groups in the sub-region, and some groups are
adjacent with each other. So, it’s necessary to merge the adjacent groups together to
become one group in step 6. There are still some outliers exiting in the groups, so in
the last step, DGCL removes the outliers again to optimize the result. In the end, each
group is a cluster. The sketch of DGCL is shown in Fig.1.

1: Construct grid cell according to the number of data points.
2: Load data set.
3: Distribute the data points into cells and calculate the density threshold

DT.
4: Remove outliers and empty cells.
5: Group assignment.
6: Group mergence procedure.
7: Optimization.

Fig. 1. The sketch of DGCL

3.2 Number of Intervals

In this step, setting the number of intervals is a very critical procedure. If the size of
the cells is too large, the algorithm will merge two or more clusters into one. Another

 DGCL: An Efficient Density and Grid Based Clustering Algorithm 365

drawback is that even though it can find the cluster at the right place, it still has so
many blank spaces in the large size of the cell. So the result is not exact and satisfy-
ing. If the size of cell is too small, the algorithm may make the number of cells equal
or close to the number of points. For large dataset, the cost of calculation is too ex-
pensive even though we regard the cell as the minimum unit for clustering. So it’s
necessary to find a method to set a suitable interval value to get both a better cluster-
ing result and a good efficiency. Here we adopt the method of GDILC [5]. The fol-
lowing formula is used to calculate the number of intervals m.

coefM

n
m =

(1)

In equation 1, n is the number of data points. coefM is a coefficient to adjust the value
of m. we propose it as an positive integer. In fact, it stands for the average number of
data samples in a cell. But we don’t want to regard it as a fixed value. Because in the
experiments, we find the relationship between the number of cells and that of data
points is not linear. So coefM also need to be adjusted to get a better result. In our
experiments, coefM changes according to the following curve in Fig. 2. And it can get
a better result as we expect.

Fig. 2. coefM depends on the number of data

3.3 Density of the Cell

In general, we term the density as the number of data points in the cell. The original
grid-based clustering algorithm just considers about the density of the current cell
itself [6]. The disadvantage is that it may decrease the relationship of neighbor cells
which have similar data points. The attributes of a spatial object stored in a database
may be affected by the attributes of the spatial neighbors of that object [4]. To im-
prove this situation, we calculate the density of the considered cell with considering
the data points in its neighbor cells such as what the shifting grid clustering algorithm
does [3] as illustrated in Fig. 3. L means the width of each cell. And we never con-
sider about the empty cells.

366 H.S. Kim et al.

Fig. 3. The cell with gray color is the considered cell. The density of the considered cell is the
sum of the density of the grey area and the line-shadowed part.

 The definition of neighbor cells satisfies the following inequation. Assume that cell
Ci1i2

 and Cj1j2
 are neighbor cells. m is the number of intervals.

1≤− pp ji , (p = 1,2; mji ≤≤ ,1) (2)

3.4 Selection of the Density Threshold DT

The dense cells are surrounded by the sparse cells which are regarded as outliers.
From the experiments, we find that the density of the dense cells usually decrease
gradually from the core of the cluster to the boundary as illustrated in Fig. 4. And the
density of sparse cells is obviously smaller than that of the boundary cells. So before
clustering the cell set, we define a measurement to remove the sparse cells. The aim is
to decrease the cost of calculation and increase the efficiency. The measurement, we
call it density threshold (DT) [5], is defined using the following equation.

coefDT
m

Densitymean
DT ×=

)(log

)(
2

10

(3)

In equation 3, mean(Density) means the average density of all of the cells. m is the
number of intervals. coefDT is an adjustable coefficient between 0.7 and 1. Lots of
experiments show that when setting it to 0.95, good clustering result can be achieved
in most conditions. All the cells of which the density is smaller than DT will be

Fig. 4. Varying grid density within a circle cluster

 DGCL: An Efficient Density and Grid Based Clustering Algorithm 367

removed from the cell set. The remainder cells will be regarded as useful cells. In the
following steps, the algorithm only considers about the useful cells, so compared with
the number of data points, they’re really few enough. The remainder cells also contain
some unexpected cells. They will be further removed in step 7 (optimization).

3.5 Group Assignment

This procedure starts from the first useful cell. If the considered cell Ci and all its
useful neighbors, all belonging to set Si, haven’t been assigned a group ID, the algo-
rithm assigns a new group ID for all the cells in the set Si. If some cells in Si have had
group IDs, the algorithm finds the ID of the cell with the maximum density in Si and
assigns it to the other cells in Si. This procedure will not stop until all useful cells have
been checked. Fig. 5 shows the sketch of group assignment.

Fig. 5. The sketch of group assignment

3.6 Group Mergence

The procedure of group assignment only considers the current cell and its neighbors,
so it clusters the similar cells into the same group in a sub-area. In the whole data
space, the adjacent groups need to be merged together to form one group as we ex-
pected. The sketch of group mergence is shown in Fig. 6.

Fig. 6. The sketch of group mergence

3.7 Optimization

As we mentioned in the previous part, after step 4, the remainder cells also contain
some cells which we are not expect.

368 H.S. Kim et al.

Fig. 7. Situations of neighbors: (a) 3 neighbors in the corner and (b) 5 neighbors at the edge and
(c) 8 neighbors inside

In DGCL, we calculate the cell density with considering about its neighbors. There
are three kinds of situations of neighbors in 2-D space as illustrated in fig. 7. The
problem is that if the considered cell only contains a few data points, its useful
neighbors contribute so much to calculate its density. It also includes into a group.
But in fact, this cell should be regarded as a cell which contains outlier. And lots of
experiments show that these situations often happen at the boundary of the group.
Fig. 8 shows one situation of the problem. The fuscous cell is the considered cell. It
only contains a relatively few data points compared with its neighbors when calculat-
ing the density. So this cell should be removed. The removed cells are regarded as
unuseful cells. And the final result only contains the useful cells. We remove the cells
which satisfy the following inequation.

1+
<

Num

TD
RD

(4)

In equation 4, RD means the real number of data points which are contained in the
considered cell. TD means the total density of the considered cell. Num is the number
of its useful neighbors and 1 means the considered cell itself.

Fig. 8. The fuscous cell should be removed

4 Time Complexity

In DGCL, we use the following equation which we have mentioned previously to
calculate the number of intervals.

 DGCL: An Efficient Density and Grid Based Clustering Algorithm 369

coefM

n
m =

(1)

 The total number of cells is m2, namely n/coefM, in which n is the number of data
points. After we get the data set, both the data distribution and removing outlier pro-
cedure need check or calculate all the cells. After that, only few cells need to be
checked for group assignment, merge procedure and optimization. So in most of the
situations, the time complexity is smaller than O(n). It much more depends on the
number of the useful cells.

5 Experimental Results

We performed experiments using a personal computer with 768MB of RAM and
Pentium(R) 4 CPU 1.8GHz and running Windows XP Professional. The data sets are
generated ourselves. In the data set, the data points are generated randomly according
to certain kinds of distributions. Noises are randomly distributed. And the clustering
results are tagged by different colors. Fig. 9 (a) shows a data set with 100000 data
points, including 30000 for circle, 40000 for rectangle, 25000 for sine curve and 5000
noises.

The result shows that DGCL can find the clusters correctly and eliminate outliers
efficiently. Furthermore it also fast enough. If users want to get more exact result,
they can adjust the coefficient coefM. The smaller the coefM is, the more exact result
DGCL gets. But it need more time for calculation. Because GDILC has higher per-
formance than shifting grid algorithm, we only show the comparison of DGCL and
GDILC in Fig. 10. From that graph, we know that this algorithm has higher perform-
ance than GDILC. Other data sets are also used to test this algorithm, the result is
shown in Fig. 11.

Fig. 9. (a) test data set includes 100000 data points with 5000 noises and (b) clustering result (3
clusters)

370 H.S. Kim et al.

Fig. 10. Comparison between DGCL and GDILC

Fig. 11. Datasets and clustering results (a) 20000 data points with 1000 noises and (b) 1 cluster
and (c) 250000 data points with 10000 noises and (d) 3 clusters

6 Conclusion

In this paper, we present an enhanced density and grid based clustering algorithm,
DGCL. By considering the neighbor cells when calculating the density of current cell
and removing the outliers efficiently with the help of a proper measurement, a better
clustering result can be provided by this algorithm. Compared with the shifting grid
clustering algorithm and GDILC, it’s much faster because it doesn’t need to cluster

 DGCL: An Efficient Density and Grid Based Clustering Algorithm 371

recursively or calculate the distance between data points. The time complexity de-
pends on the number of cells. Drawback of this algorithm is that all the cluster
boundaries are either horizontal or vertical. Moreover, it is not affected by the outliers
and can handle them properly. And DGCL is order insensitive. A faster method to do
I/O, such as an efficient indexing method or parallel control, will make the algorithm
a whole lot faster. In conclusion, the experiments show that DGCL is a stable and
efficient clustering method for large spatial data set.

References

1. Jiawei Han, Micheline Kamber: <<Data Mining: Concepts and Techniques>>. 2001 by
Academic Press

2. Yasser El-Sonbaty, M.A. Ismail, Mohamed Farouk: An Efficient Density Based Clustering
Algorithm for Large Databases. ICTAI (2004)

3. Ma, W.M., Eden, Chow, Tommy, W.S.: A new shifting grid clustering algorithm. Pattern
Recognition 37(3), 503-514 (2004)

4. A.H. Pilevar, M. Sukumar: GCHL: A grid-clustering algorithm for high-dimensional very
large spatial data bases. Elsevier B.V. (2004)

5. ZHAO Yanchang, SONG Junde: GDILC: A Grid-based Density-Isoline Clustering algo-
rithm. IEEE (2001)

6. Xiaowei Xu, Martin Ester, Hans-peter Kriegel, Jorg Sander: Clustering and Knowledge Dis-
covery in Spatial Databases (1997)

7. Yanchang Zhao, Chenqi Zhang, Yi-Dong Shen: Clustering High-Dimensional Data with
Low-Order Neighbors. Proceedings of the IEEE/WIC/ACM International Conference on
Web Intelligence (WI’ 04)

8. Yu Qian, Kang Zhang: GraphZip: A Fast and Automatic Compression Method for Spatial
Data Clustering. SAC ’04, March 14-17, 2004, Nicosia, Cyprus

9. Yu Qian, Gang Zhang, Kang Zhang: FACADE: A Fast and Effective Approach to the Dis-
covery of Dense Clusters in Noise Spatial Data. SIGMOD 2004

Scalable Clustering Using Graphics Processors

Feng Cao1, Anthony K.H. Tung2, and Aoying Zhou1

1 Dept. of Computer Science and Engineering, Fudan University, China
{caofeng, ayzhou}@fudan.edu.cn

2 School of Computing, National University of Singapore, Singapore
atung@comp.nus.edu.sg

Abstract. We present new algorithms for scalable clustering using
graphics processors. Our basic approach is based on k-means. By chang-
ing the order of determining object labels, and exploiting the high com-
putational power and pipeline of graphics processing units (GPUs) for
distance computing and comparison, we speed up the k-means algorithm
substantially. We introduce two strategies for retrieving data from the
GPU, taking into account the low bandwidth from the GPU back to the
main memory. We also extend our GPU-based approach to data stream
clustering. We implement our algorithms in a PC with a Pentium IV
3.4G CPU and a NVIDIA GeForce 6800 GT graphics card. Our com-
prehensive performance study shows that the common GPU in desktop
computers could be an efficient co-processor of CPU in traditional and
data stream clustering.

1 Introduction

The rapid growth of data volume in real-life databases has intensified the need
for scalable data mining methods. Data warehouse and data stream applications
are very data and computation intensive, and therefore demand high processing
power. As a building block of data mining, clustering derives clusters which can
be visualized more efficiently and effectively than the original data. Researchers
have actively sought to design algorithms to perform efficient clustering.

Assuming that the data sets are in the secondary memory, effort to enhance
the scalability of clustering algorithms often focus on reducing the number of
disk I/O. Work in this direction have effectively reduce the scan on data sets
into one or two rounds. As such, it is difficult to further enhance scalability by
reducing I/O cost.

Meanwhile, CPU cost is no longer a minor factor for scalability improvement
in clustering algorithms (see Figure 1). In data stream applications, CPU cost
becomes more important because each data object needs to be processed in real
time. Therefore, new techniques for reducing CPU cost will greatly improve the
scalability of online and offline clustering algorithms.

Recently, the Graphics Processing Unit (GPU) has provided a programmable
pipeline, allowing users to write fragment programs that are executed on pixel
processing engines. At the same time, the computing capability of common GPU

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 372–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Scalable Clustering Using Graphics Processors 373

is becoming increasingly powerful. For example, a NVIDIA GeForce6800 chip
contains more transistors than an Intel Pentium IV 3.73GHz Extreme Edition
processor. In addition, the peak performance of GPUs has been increasing at
the rate of 2.5 – 3.0 times a year, much faster than the rate that Moore’s law
predicted for CPUs. Furthermore, due to economic factors, it is unlikely that
dedicated general vector and stream processors will be widely available on desk-
top computers [14].

Driven by the programmability and computational capabilities of GPUs, many
GPU-based algorithms have been designed for scientific and geometric compu-
tations [10][12], database operations [5], stream frequency and quantiles approx-
imation [6], etc. However, as far as we know, the computational power of GPUs
has not been well exploited for scalable clustering yet. In this paper, we will
make the following contribution:

1. Having identify distance computation and comparison as the most expensive
operations for clustering algorithms, we propose a new, highly parallelized
distance computation technique which utilizes the fragment vector process-
ing and multi-pass rendering capabilities of GPUs. We further apply multi-
texturing technology to deal with high-dimensional distance computing.

2. Our basic approach is based on k-means. By changing the order of determin-
ing object labels, and exploiting the high computational power and pipeline
of graphics processing units (GPUs) for distance computing and comparison,
we speed up the k-means algorithm substantially. We then further extend
the algorithm to perform clustering on data stream.

3. A comprehensive performance study proves the efficiency of our algorithms.
The GPU-based algorithm for stream clustering reduces clustering cost by
about 20 times as compared to prior CPU-based algorithms. The basic k-
means-based algorithm obtains 3 – 8 times speedup over CPU-based imple-
mentations. We thus bring forward the conclusion that the GPU can be used
as an effective co-processor for traditional and stream clustering.

The rest of the paper is organized as follows. Section 2 analyzes existing
clustering algorithms. Section 3 gives an overview of GPU. Section 4 presents
our GPU-based clustering algorithms. Section 5 presents the performance study.
Section 6 briefly surveys related work. Section 7 concludes the paper.

2 Analysis of Existing Clustering Algorithms

Existing clustering algorithms can be classified into partitioning [11], hierarchical
[8, 16], density-based [4], streaming methods [1, 2, 7], etc. Since multiple scan of
out of core data sets often create a bottleneck due to the I/Os, many methods
have been proposed to reduce the number of scans on data sets into one pass or
two. These include: random sampling technology in CURE [8], R∗-Tree indexing
approach adopted in DBSCAN [4], the divide and conquer strategy in STREAM
[7] to process large data sets chunk by chunk, and the CF-tree in BIRCH [16]
for performing preclustering. These methods have reduced I/O cost back to

374 F. Cao, A.K.H. Tung, and A. Zhou

a level in which the CPU cost become significant again. Specifically, distance
computation and comparison often become the most expensive operations in
existing clustering algorithms.

Fig. 1. Relative costs in clus-
tering methods

Vetex
P rocessor

Fragment
P rocessor

R asterizer
Frame
B uffer

Vertex data

P ixel data

Fig. 2. Graphics pipeline overview

The popular partitioning-based method – k-means [11] contains three steps:
(1)Initialization: Choosing k points representing the initial group of centroids.
(2)Assignment: Assigning each point to its closest centroid. When all points
have been assigned, recalculate the positions of the k centroids. (3)Termination
condition: Repeating Steps 2 and 3 until the centroids no longer move. Having
load the data into memory, the most time consuming computation is assign-
ment, i.e., distance computation and comparison (see Figure 1). The number of
distance computation and comparison in k-means is O(kmn), where m denotes
the number of iteration and n is the number of point in memory.

An effective hierarchical clustering algorithm, CURE [8], starts with the indi-
vidual points as individual clusters. At each step, the closest pair of clusters is
merged to form a new cluster. The process is repeated until there are only k re-
maining clusters. Figure 1 shows that distance computation and comparison are
about 45% of the total cost. Because these operations widely exist in methods
of finding the nearest cluster and merging two clusters. The number of distance
operations is O(n2 log n), where n denotes the number of points in a sampling.
To find the nearest cluster, we can load the clusters to the GPU and apply our
GPU-based distance computation technique to these clusters.

In order to determine the density of a given point p, density-based methods
(such as DBSCAN [4]) need to compute the distance from point p to its nearby
points and compare the distance with a pre-defined threshold ε. Therefore, the
cost on distance computation and comparison becomes an important factor (see
Figure 1). To determine the density for each point, we could load nearby data
points into the GPU, apply our GPU-based distance computation, and compare
the distance results with ε by GPU.

In the data stream environment, I/O cost no longer exists or could be ignored.
Figure 1 shows the relative costs in STREAM [7] and CluStream [1] when access-
ing data from the hard disk. Ideally, we should adopt new GPU-based methods
to improve the scalability of stream clustering.

Scalable Clustering Using Graphics Processors 375

3 Preliminaries of GPU

3.1 Graphics Pipeline

Figure 2 shows a simplified structure of the rendering pipeline. A vertex proces-
sor receives vertex data and assembled them into geometries. The rasterizer
constructs fragments at each pixel location covered by the primitive. Finally,
the fragments pass through the fragment processor. A series of tests (such as
depth test) can be applied to each fragment to determine if the fragment should
be written to the frame buffer. Frame buffers may be conceptually divided into
three buffers: color buffer, storing the color components of each pixel; depth
buffer, storing a depth value associated with each pixel; and stencil buffer which
stores a stencil value for each pixel and can be regarded as a mask on the screen.

3.2 Data Representation and Terminology

We store the data points to be clustered on the GPU as textures. A texture is
an image, usually a 2D array of values, which often contains multiple channels.
For example, an RGBA texture four channels: red, blue, green and alpha. To
perform clustering using the GPU, the attribute of each tuple is stored in mul-
tiple channels of a single texel (i.e., individual elements of the texture), or the
same texel location in multiple textures. Several data formats are supported in
textures, e.g., 8-bit bytes. In particular, the textures in Pbuffer (an off-screen
frame buffer) support the 32-bit IEEE single precision floating-point.

The term multi-texturing refers to the applications of more than one texture
on the same surface. Multi-pass rendering is a technique for generating complex
scene. That is, the GPU renders several passes and combines the resulting images
to create a final frame. Stencil test is used to restrict computation on a portion
of the frame buffer. When a new fragment arrives, stencil test compares the
value at the corresponding location in the stencil buffer and a reference value.
The new fragment is discarded if it fails the comparison.

A group of stencil operations are provided to modify the stencil value, e.g.,
keeping the stencil value in the stencil buffer or replacing the stencil value to
the reference value. Typically, if stencil test is passed, depending on the result
of depth test, the user could define different stencil operations.

4 Clustering Using GPUs

K-means is a basic method for clustering which has wide applications. When the
algorithm is implemented on the CPU, distances to the k centroids are evaluated
for a single output object label at a time, as illustrated in Figure 3(a).

Instead of focusing on computation of the label for a single object one at a
time, we calculate the distances from a single input centroid to all objects at
one go, as shown in Figure 3(b). The distances to a single input centroid can be
computed in the GPU for all objects simultaneously. In this case, the final label
of a single object is only available when all input centroids have been processed.

376 F. Cao, A.K.H. Tung, and A. Zhou

D eno tes ob ject
D eno tes cen tro id

(a) Object-centered

D eno tes ob ject
D eno tes cen tro id

(b) Centroid-centered

Fig. 3. Object-centered vs. centroid-centered distance computation

The rationale for the approach is as follow: GPU essentially operates by ap-
plying simple, identical operations to many pixels simultaneously. Naturally,
these operations have access to a very limited number of inputs. However, in
the k-means algorithms, k inputs are needed in order to calculate the label of
a single data point. Furthermore, centroid-oriented distance computation allows
comparison operations to be done outside each fragment, thus greatly reducing
the number of operations in the fragment program.

4.1 Distance Computing

Typically, Euclidean distance is a used as a similarity measure for clustering.
The Euclidean distance between 2 d-dimensional points X and Y is defined as
follows: dist(

−→
X −−→

Y) =
√

Σd
i=1(xi − yi)2.

Assuming that there are a set of d-dimensional points Xi(1 ≤ i ≤ N) and k
centroids Yj , where 1 ≤ j ≤ k. We arrange Xi into an array A (named point
array) as follow, where R denotes the number of rows , L denotes the number
of columns, R ∗L equals the number of points N . In the actual implementation,
a point array is a texture (see Section 3.2). If the number of points is above the
maximal size of one texture, the point array can be partitioned into multiple
textures. In order to better utilize the parallelism of GPU, R and L are set at
�√N�. The unused portion of the array could be simply masked by stencil.

A =

∣∣∣∣∣
X1 · · · XL

. .
X(R−1)∗L+1 · · · XR∗L

∣∣∣∣∣ Dj =

∣∣∣∣∣
dot2(X1 − Yj) · · · dot2(XL − Yj)
. .
dot2(X(R−1)∗L+1 − Yj) · · · dot2(XR∗L − Yj)

∣∣∣∣∣
Each element a[m][n] in array A corresponds to point X(m−1)∗L+n. We cal-

culate the result array Dj (named distance array) for each centroid Yj as above,
where dot2(X) is the dot product of vector X with itself. Each element e[m][n] in
Dj corresponds to the distance from point X(m−1)∗L+n to centroid Yj . Without
loss of generality, we adopt squared Euclidean distance as the goodness mea-
surement here. GPUs are capable of computing dot product on vectors in par-
allel giving high efficiency. Here, we propose a GPU-based method for distance
computation.

ComDistance (Algorithm 1) computes the distance array for the point array
in tex to centroid vcen. To allow a more precise fragment, Line 1 actives Pbuffer.
Line 2 enables the fragment program. Line 3 renders a textured quadrilateral

Scalable Clustering Using Graphics Processors 377

using FComDist. SUB and DOT are hardware optimized vector subtract and
dot product instructions, respectively. Finally, the distance array is stored in the
depth component of each fragment. In case of very large databases, we can swap
textures in and out of video memory using out-of-core techniques.

Algorithm 1. ComDistance (tex, vcen)
1: ActivePBuffer();
2: Enable fragment program FComDist;
3: RenderTexturedQuad(tex);
4: Disable fragment program FComDist;
FComDist(vcen)

1: vtex = value from tex
2: tmpR = SUB(vtex,vcen)
3: result.depth = DOT(tmpR,tmpR);

The ARB fragment program OpenGL extension allows depth values to be
assigned in the fragment program. We exploit this feature to accelerate the
comparison step described in Section 4.2 by avoiding the storage of the distance
array in a texture which mean reloading the texture into the depth buffer.

High-dimensional Distance Computing. In case of d > 4, we divide every
four dimensions of points into a point array, calculate each of these �d

4� arrays
with the corresponding section of Yj , and sum up them to get the final Yj .

Our algorithm uses multi-texturing technology to handle high-dimensional
data. Although current GPUs only support eight simultaneous texture units
resulting in at most 32 dimensions in one pass, we believe that future generation
of GPU will provide more simultaneous texture units. At the current stage, we
adopt multi-pass rendering in case of d > 32. Assuming a given GPU support
m simultaneous texture units, the number of passes will be equal to � d

4m�.

4.2 Labeling

In k-means clustering, labeling is achieved by comparing the distances between
the point and each centroid. We utilize multi-pass rendering to realize this oper-
ation. Depth test is enabled to compare the depth value of the arriving fragment
to the corresponding pixel in the depth buffer. The stencil buffer is configured
to maintain the label of the nearest centroid. Finally, the distance array Dj is
rendered for each j (1 ≤ j ≤ k). Algorithm 2 describes this procedure in detail.

We compute and store distance array D1 directly in the depth buffer, and
initialize the stencil buffer with 1. That is, all the points are labelled to centroid
1 at first. Then, depth test is enabled and set to pass if the depth value of
arriving fragment is less than the corresponding pixel. Stencil test is set to always
being passed. If the arriving fragment passes depth test, the corresponding pixel
is updated with the new depth value, and Line 9 replace the stencil value in

378 F. Cao, A.K.H. Tung, and A. Zhou

X1n X2n X3n ...

...

...

...

X12 X22 X32 ...

...

...

...

X11 X21 X31 ...

...

...

...

Texturen

Texture2

Texture1

. .
.

.
..

1 1 1 ...

...

...

...

Centroid 1

1 2 2 ...

...

...

...

Centroid 2

1 k 2 ...

...

...

...

.

.

.

5.4 9.6 7.5 ...

...

...

...

5.4 8.0 7.2 ...

...

...

...

5.4 5.0 7.2 ...

...

...

...

Stencil buffer Depth buffer

.

.

.

The label of the nearest centroid The distance to the nearest centroid

Xi1~Xin correspond one
 d-demensional data point

Centroid k

Fig. 4. Labeling

corresponding position with the new label i+1. Otherwise, we keep the depth and
stencil values. Therefore, after each distance array Di is generated, the stencil
buffers contains the label of the nearest centroid for each point (named label
array). The depth buffer contains the corresponding minimal distance value.
Figure 4 illustrates this process. In the pipeline of the labeling algorithm, various
operations can be processed simultaneously: the fragment program computes
distance arrays; depth test compares depth value in the depth buffer; and stencil
test updates the labels in the stencil buffer.

4.3 Generating New Centroids

It is a bottleneck of current hardware to retrieve data from GPU to the main
memory (sending data from the main memory to GPU is much faster by say
ten times). According to the data retrieved, we design the following two strate-
gies to generate new centroids, corresponding to GPU-C (GPU-based clustering
by retrieving centroids) and GPU-L (GPU-based clustering by retrieving label
array) algorithms, respectively:

1. Retrieve Centroids. One way is to compute the centroids in GPU and
retrieving them from GPU. Stencil test is utilized to filter out points in
the same cluster and summarize them by mipmaps. Mipmaps are multi-
resolution textures consisting of multiple levels. The highest level contains
the average of all the values in the lowest level. A group of occlusion querys
must be called in order to obtain the number of points in each cluster. An
occlusion query returns the number of fragments that pass the variance tests.
In our case, the test is a stencil test. The procedure is shown in Algorithm 3.
In case of d > 4, we need to render �d

4� times for each centroid. Finally,
we retrieve the highest level of the mipmaps texout[i] and the result of the
occlusion query qi from GPU in order to calculate the final centroid results.
Although this strategy has the advantage of reducing communication cost,
its computation cost overwhelms the saving on communication cost, as our
experiments in Section 5.4 will show.

Scalable Clustering Using Graphics Processors 379

2. Retrieve the Label Array. In this strategy, we retrieve the label array
from the stencil buffer directly. To reduce communication cost, the label
array is retrieved from the stencil buffer by an impact mode GL BYTE.
Although 8-bit value constraint exists in this mode (that is the upper bound
of k is 256), it can meet the requirements of most real applications. After
retrieving the label array, we generate the new centroids in CPU by adding
up the points with the same label.

Algorithm 2. Labeling (texin, vcentroid[k])
1: glClearStencil(1);
2: ComDistance(texin,vcentroid[0]);{ generate distance array D1 and store it in depth

buffer}
3: glEnable(GL DEPTH TEST);
4: Set depth test to pass if incoming fragment is less than the corresponding value in

depth buffer.
5: for i = 1; i < k; i + + do
6: Set stencil test to always pass;
7: ComDistance(texin,vcentroid[i]);{ generate a frame of fragments corresponding

to distance array Di+1}
8: if depth test passed then
9: replace stencil value with the reference value i + 1;

10: else
11: keep the stencil value;
12: end if
13: end for
14: glDisable(GL DEPTH TEST);

Algorithm 3. GetControids (texin, texout[i])
1: for i = 1; i ≤ k; i + + do
2: Set stencil reference value as i;
3: Set stencil test to pass if stencil value is equal to the reference value.
4: Enable Occlusion query i;
5: RenderTexturedQuad(texin);{ generate a frame of fragments which correspond

to all the points belonging to centroid i}
6: Disable Occlusion query i;
7: MipMap the fragments in framebuffer into texout[i]
8: end for

4.4 Clustering Data Stream

We extend our GPU-based method to data stream clustering, specifically, land-
mark window [7] and sliding window clustering [2]. The pipe-line architecture
and parallel processing of the GPU are well suited for stream processing [14].

1. Landmark Window Clustering. We adopt the divide-and-conquer
methodology [7] and our GPU-L method (abbr. STREAM-GPU) to cluster

380 F. Cao, A.K.H. Tung, and A. Zhou

a data stream. We compare STREAM-GPU with three CPU-based algo-
rithms: BIRCH-KM, STREAM-KM and STREAM-LS [7]. Figures 5(a)(b)
show that STREAM-GPU achieves the highest processing rate with com-
petitive SSQ (the sum of square distance). Although STREAM-LS achieves
the lowest SSQ, its processing rate is 15 times slower than STREAM-GPU.
STREAM-GPU is more efficient than BIRCH-KM with 200% effectiveness
gain. Considering only clustering cost, STREAM-GPU is nearly 20 times
faster than an optimized CPU-based implementation.

2. Sliding Window Clustering. In sliding window clustering, only the N
most recent points contribute to the results at any time. We adopt the
algorithm in [2], and the basic operation in combination procedure is im-
plemented by our GPU-L method. Figure 5(c) shows the comparison result
with window size N = 100, 000. GPU-based clustering is always better than
an optimized CPU-based implementation by about 19 – 20 times.

(a) Efficiency comparison
in landmark window

(b) Effectiveness compari-
son in landmark window

(c) Efficiency compari-
son in sliding window

Fig. 5. GPU-based vs. CPU-based stream clustering

5 Experiments and Results

5.1 Experimental Setting

We tested our algorithms on a Dell workstation with a 3.4 GHz Pentrium IV
CPU and a NVIDIA GeForce 6800GT graphics card. To generate the fragment
programs, we used NVIDIA’s CG compiler. The CPU algorithms were compiled
using an Intel compiler with hyper-threading technology and SIMD execution
option. Data exchange between GPU and CPU was implemented with an AGP
8X interface. The points in synthetic data sets followed Gaussian distributions.
The data sets had between 10K and 10,000K points each, varied in the number
of clusters from 8 to 256, and ranged in dimensionality from 4 to 28.

Execution time was adopted to evaluate various costs. The costs of the CPU-
based k-means algorithm (abbr. CPU-K) are: (1)tc = cc + I/O cost, where tc
is total cost; cc is clustering cost. (2)cc = pt ∗ m, where pt is the cost of one
iteration; m is the number of iterations. (3)pt = dc + gc, where dc is the cost of
distance computation and comparison; gc is the cost of generating new centroids.
The costs of the GPU-based algorithm are: (1)ccgpu = ptgpu ∗ m + m2g, where
m2g is the cost of sending data from CPU to GPU. (2)ptgpu = dc + gc + g2m,

Scalable Clustering Using Graphics Processors 381

where g2m is the cost of retrieving data from GPU to CPU. Unless otherwise
mentioned, the experiments adopted d = 8, k = 8 normal distributed data set.

5.2 Total Cost

Figure 6(a) shows that the total costs of GPU-L, GPU-C and CPU-K increase
linearly to the size of data sets. The total cost of GPU-L is about 60% of CPU-
K’s. However, the total cost of GPU-C almost equals to CPU-K’s. We will discuss
this phenomenon in Section 5.4. Because total cost includes I/O cost and the
number of iteration is about 20, the influence of I/O cost on the total cost is
very big. The impact of I/O cost reduces as the number of iterations increases.
And the performance improvement of GPU-L and GPU-C will be greater.

5.3 Clustering Cost and Cost of One Iteration

Figure 6(b) illustrates that the clustering cost of GPU-L is about 1/4 that of
CPU-K. First, the performance improvement benefits from the parallel compu-
tation of pixel processing engines. For example, a NVIDIA GeForce 6800 GT
graphic processor can process 16 pixels in parallel. Second, the vector instruc-
tions in the GPU are well optimized, which greatly improves the process rate
of distance computation. Third, as the distance is compared via depth test, no
branch mispredictions exist in the GPU implementation, which leads to further
performance gain. Branch mispredictions can be extremely expensive on mod-
ern CPUs. For example, a branch misprediction on a Pentium IV CPU costs 17
clock cycles. Figure 6(c) compares the costs of one iteration. It shows the same
tendency of Figure 6(b). GPU-L constantly outperforms CPU-K by four times.

(a) Total cost (b) Clustering cost (c) Cost of one iteration

Fig. 6. GPU-based vs. CPU-based clustering

5.4 Costs of Generating Centroids and Retrieving Data

We compare the cost of generating centroids gc in GPU-C and GPU-L. Figure 7
shows the gc in GPU-C is about 10 times larger than the gc in GPU-L. This is
because in order to generate centroids, GPU-C needs to perform several times
of slow texture writing, which is often a relatively slow operation.

Figure 7 shows GPU-C has the advantage of retrieving data from GPU at
low cost. The cost of retrieving data from GPU g2m is a constant in GPU-C

382 F. Cao, A.K.H. Tung, and A. Zhou

because it only needs to retrieve k centroids and the number of points in each
cluster. However, this advantage is overwhelmed by its great cost on generating
centroids in GPU-C. Therefore, the overall clustering cost of GPU-L is much
smaller than that of GPU-C.

Figure 8 illustrates the cost of retrieving data from GPU g2m in GPU-L.
As the number of points grow, g2m increases linearly. However, as we adopt
a compact mode of data retrieval, the cost of retrieving data in GPU-L is not
significant compared to the cost of one iteration.

5.5 Clustering Cost vs. k and d

Because the number of centroids k and dimensions d may significantly effect the
clustering cost, we test several data sets with 16,000 data points for various k
and d. Figure 9 shows as k increases, the costs of GPU-L, GPU-C and CPU-K
increase linearly. GPU-C has almost the same cost as CPU-K, while the cost
of GPU-L is much lower than that of CPU-K. As k grows, the advantage of
GPU-L becomes more obvious. This is because the larger k is, the advantage of
parallelism is better utilized. Figure 10 shows that the clustering cost in CPU-K,
GPU-L and GPU-C increase linearly as d increases.

Fig. 7. Costs of
generating centroids
and retrieving data

Fig. 8. Cost of
retrieving data vs.
cost of one iteration

Fig. 9. Clustering
cost vs. k

Fig. 10. Clustering
cost vs. d

6 Related Work on GPU-Based Computing

High performance vertex processors and rasterization capability are utilized for
certain numerical processing, including dense matrix-matrix multiplication [12],
general purpose vector processing [15], etc. Different from these vertex-based
methods, our algorithm achieves vector processing ability at the fragment level,
which possesses higher parallel ability. Hall et al provided a GPU-based iterative
clustering method [9]. As being designed for geometry processing, it doesn’t fully
utilize the pipeline of GPUs for mining large databases, let alone data streams.
New techniques have been developed to take advantage of the highly optimized
GPU hardware functions, e.g, 2D discrete Voronoi Diagrams [10] and 3D object
collision detection [3]. Different from these 2D or 3D approximate algorithms,
our clustering methods yield exact results for high-dimensional data points.

There has been interest in using GPUs to speed up database computations.
Sun et al [13] used GPUs for spatial selection and join operations. Govindaraju et

Scalable Clustering Using Graphics Processors 383

al [5] presented algorithms for predicates and aggregates on GPUs. Another work
[6] presents algorithms for quantile and frequency estimation in data streams.

7 Conclusion

In this paper, we have presented a novel algorithm for fast clustering via GPUs.
Our algorithm exploits the inherent parallelism and pipeline mechanism of
GPUs. Distance computing and comparison are implemented by utilizing the
fragment vector processing and multi-pass rendering capabilities of GPUs.
Multi-texturing technology is applied to handle high-dimensional distance com-
puting. We have also extended our method to stream clustering. Our implemen-
tation of the algorithms on a PC with a Pentium IV 3.4G CPU and a NVIDIA
6800GT graphics card highlights their performance. Our future work includes
developing algorithms for other data mining tasks such as outlier detection and
classification.

References

1. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. In Proc. of VLDB, 2003.

2. B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Proc. of PODS, 2003.

3. G. Baciu, S. Wong, and H. Sun. Recode: An image-based collision detection algo-
rithm. Visualization and Computer Animation, 10(4):181–192, 1999.

4. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. of KDD, 1996.

5. N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and et al. Fast computation of
database operations using graphics processors. In Proc. of SIGMOD, 2004.

6. N. K. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast and approximate
stream mining of quantiles and frequencies using graphics processors. In Proc. of
SIGMOD, 2005.

7. S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
data streams:theory and practice. In IEEE TKDE, pages 515–528, 2003.

8. S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large
databases. In Proc. of SIGMOD, pages 73–84, 1998.

9. J. D. Hall and J. C. Hart. Gpu acceleration of iterative clustering. In Proc. of
SIGGRAPH poster, 2004.

10. K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation
of generalized voronoi diagrams using graphics hardware. In Proc. of SIGGRAPH,
pages 277–286, 1999.

11. A. Jain and R. Dubes. Algorithms for clustering data. New Jersey, 1998.
12. E. S. Larsen and D. K. McAllister. Fast matrix multiplies using graphics hardware.

In Proc. of IEEE Supercomputing, 2001.
13. C. Sun, D. Agrawal, and A. E. Abbadi. Hardware acceleration for spatial selections

and joins. In Proc. of SIGMOD, pages 455–466, 2003.
14. S.Venkatasubramanian. The graphics card as a stream computer. In SIGMOD

Workshop on Management and Processing of Data Streams, 2003.

384 F. Cao, A.K.H. Tung, and A. Zhou

15. C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures for
general-purpose computing: A framework and analysis. In Proc. of IEEE/ACM
International Symposium on Microarchitectures, pages 306–317, 2002.

16. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering
method for very large databases. In Proc. of SIGMOD, pages 103–114, 1996.

TreeCluster: Clustering Results of Keyword
Search over Databases

Zhaohui Peng1, Jun Zhang1,2, Shan Wang1, and Lu Qin1

1 School of Information, Renmin University of China,
Beijing 100872, P.R. China

{pengch, zhangjun11, swang, qinlu}@ruc.edu.cn
2 Computer Science and Technology College,

Dalian Maritime University, Dalian 116026, P.R. China

Abstract. A critical challenge in keyword search over relational data-
bases (KSORD) is to improve its result presentation to facilitate users’
quick browsing through search results. An effective method is to orga-
nize the results into clusters. However, traditional clustering method is
not applicable to KSORD search results. In this paper, we propose a
novel clustering method named TreeCluster. In the first step, we use la-
bels to represent schema information of each result tree and reformulate
the clustering problem as a problem of judging whether labeled trees
are isomorphic. In the second step, we rank user keywords according to
their frequencies in databases, and further partition the large clusters
based on keyword nodes. Furthermore, we give each cluster a readable
description, and present the description and each result graphically to
help users understand the results more easily. Experimental results verify
our method’s effectiveness and efficiency.

1 Introduction

Based on the full text indexing provided by RDBMS, keyword search over re-
lational databases (KSORD) enables casual users to use keyword queries (a set
of keywords) to search relational databases just like searching the Web, without
any knowledge of the database schema or any need of writing SQL queries[1, 2].
The recent studies on KSORD can be categorized into two types according to
the search mechanism, schema-graph-based and data-graph-based. The former in-
cludes DBXplore[5], DISCOVER[6], IR-Style[7]. The latter can be further classi-
fied into two types based on the search results. One is those that return a single
tuple as result, e.g. ObjectRank[8]. The other, e.g. BANKS[3, 4], called tree-like
data-graph-based KSORD (TD-KSORD), return a tuple connection tree. In this
paper, we focus on TD-KSORD systems.

One of the most critical challenges in KSORD research is how to present the
query results[1, 16]. This is not easy for the following reasons. Firstly, the results
need to be semantically meaningful to users. However, a result which is a tuple
or a tuple connection tree is not easy to be quickly understood by end users.
Secondly, it is important to avoid overwhelming users with a huge number of

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 385–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

386 Z. Peng et al.

trivial results. However, lots of similar results are often produced, which makes
users tired or confused. As we will see in section 5, previous works in KSORD
do not solve these problems very well.

Organizing search results into clusters facilitates users’ quick browsing
through search results. Users can determine whether a group is relevant or not by
examining simply its description: they can then explore just the relevant clusters
and ignore the remaining ones, so that their browsing efficiency can be improved.
This method has been widely used in presenting Web search results, while to
the best of our knowledge, it has not been employed in KSORD research.

In this paper, we propose clustering to improve the presentation of search
results, so as to improve the efficiency of users’ browsing. Although many works
about clustering have been done in related domains, traditional clustering meth-
ods are not applicable to KSORD results as is explained in section 5. In this
paper, we focus on TD-KSORD systems, and propose a novel results clustering
method named TreeCluster. It combines the structure and content information
together and includes two steps of pattern clustering and keyword clustering.
In the first step, we use labels to represent schema information of each result
tree and cluster the trees into groups. The trees in each group are isomorphic.
In the second step, we rank user keywords according to their frequencies in the
database, and further partition the large groups based on the content of keyword
nodes. Furthermore, we give each cluster a readable description, and present the
description and each result tree graphically to help users understand the results
more easily. Experimental results verify our methods’ effectiveness and efficiency.

Organization: Section 2 introduces the basic concepts needed. Section 3 pro-
vides the detail of our solution and algorithms. The experimental results are
shown in section 4. Section 5 reviews the related work. Finally, Section 6 con-
cludes this paper.

2 Basic Concepts

We define some terms we will use in the following sections. They are based on
[3] and have been adjusted slightly for simplification.

Definition 1 (Data Graph). Database can be represented as an undirected
Data Graph G(V,E) which is composed of weighted nodes and weighted edges.

Nodes: For each tuple t in the database, the graph has a corresponding node
ut ∈ V . We will speak interchangeably of a tuple and the corresponding node in
the graph.

Edges: For each pair of tuples t1 and t2 such that there is a foreign key from t1
to t2, the graph contains an undirected edge < ut1 , ut2 >.

Weights: Each node and edge is assigned a weight.

Definition 2 (Keyword Query). User’s input is defined as a keyword query,
which generally consists of n (n ≥ 1) search terms k1, k2, ..., kn.

TreeCluster: Clustering Results of Keyword Search over Databases 387

C ites

Citing
Cited

...

Foreign Key

Paper

PaperId
Name

...

Write

AuthorId
PaperId

...

Author

AuthorId
Name

...

Primary Key

Fig. 1. DBLP Schema

Authorid

PaperId Name

PaperId

Authorid Name

Author Tuple Author Tuple

Write TupleWrite Tuple

Paper Tuple

155179 Yannis PapakonstantinouVagelis Hristidis 4769

155179 HristidisGP03

HristidisGP03 Efficient IR-Style Keyword Search...

4769 HristidisGP03

... ...

(root node)

Fig. 2. An Example of result tree

A node is relevant to a search term if it contains the search term as part of an
attribute value. It is called a keyword node. Generally, the first step of search
algorithms is to locate the set of keyword nodes Si that are relevant to ki for
each ki in the query.

Definition 3 (Result Tree). An answer to a query is a rooted weighted tree
containing at least one node from each Si.

The relevance score of a result tree is computed from the weights of its nodes
and edges. Result trees should be ranked in descending order of relevance score
to meet the requirement of top-k query.

We call the root node of a result tree a information node, which connects
all the keyword nodes, and strongly reflects the relationship among them.

For example, Figure 1 shows the schema of DBLP[14] dataset. Given a key-
word query (Hristidis, Papakonstantinou), TD-KSORD systems find top-k result
trees from the datagraph of DBLP. Figure 2 shows an example of one of the
result trees, which is a subgraph of DBLP’s data graph and means Hristidis and
Papakonstantinou coauthor a paper.

3 TreeCluster

The problem we will solve is to find a clustering method to organize result trees
into significant groups. First, we introduce the intuition of our method, and then
describe the implementation, finally introduce the graphical user interface.

3.1 Intuition

We did much observation on different datasets, and found that many of the
result trees were of the same pattern. For example, in DBLP, keyword query
(Jim Gray, Transaction) may lead to many results. Some of them belong to
the pattern that Jim Gray writes papers about transaction, while some of them
belong to the one that Jim Gray’s papers are cited by papers about transaction,
and others may belong to the one that Jim Gray’s papers cites papers about
transaction. Thus, we can cluster all these results into various groups according
to different patterns, and give a readable description for each group.

388 Z. Peng et al.

a result tree

select root node

a labeled tree

traverse the tree

clustering

standard code

label the tree

a rooted tree

groups whose element
 number>threshold

groups whose element
 number>threshold

clustering based on k1

 clustering based on k2

...

clustering based on kn

the first-level clusters the second-level clusters

Pattern
Clustering

Keyword
Clustering

groups whose element
 number>threshold

Fig. 3. Architecture of TreeCluster

Furthermore, we find that the resulting clusters in some patterns are quite
large. So we decide to partition the large clusters further based on the content.
From users’ viewpoints, the most meaningful things are the keywords they input,
so we can do partitioning based on the content of keyword nodes. The keywords
should not be treated equally however. In fact, different keywords have different
”frequencies” in the database. For instance, in DBLP, for keyword query (Gray,
Transaction), Gray only appears in a few tuples, while Transaction appears in
lots of tuples. We can partition large clusters based on the content of nodes
relevant to low frequency keywords first. In this example, we partition a large
group according to nodes relevant to Gray first. Thus result trees relevant to
different ”Gray”s, e.g. Jim Gray and W.A.Gray, are separated. Users need only
examine the label (Jim Gray) or (W.A.Gray) for each subgroup to determine
which one they are interested in instead of browsing through each result in the
large group.

Figure 3 shows the framework of TreeCluster. It includes two steps, and
produces two levels of clusters. After pattern clustering, we get the first-level
groups, each of which corresponds to a kind of tree pattern. The large groups,
whose numbers of elements exceed the threshold, will be processed by keyword
clustering, after which, we get the second-level groups.

3.2 Pattern Clustering

Firstly, we cite definitions and conclusions about labeled trees from [9, 10], with-
out detailed explanations due to space limitations.

Theorem 1. Two rooted ordered labeled trees are isomorphic if and only if their
preorder traversal codes are equal.

Definition 4 (Standard Code). Let T be a rooted unordered labeled tree.
All rooted ordered trees derived from T are named T1, T2, ..., Tn, whose preorder
traversal codes are S1, S2, ..., Sn respectively. We call the minimum code Smin

of S1, S2, ..., Sn the standard code of T.

TreeCluster: Clustering Results of Keyword Search over Databases 389

Algorithm 1: GetStandardCode(t)
Global: special symbols ’#’ and ’$’ (′#′ >′ $′ >all the label symbols)
Input: t: the root of a rooted unordered labeled tree T
Output: the standard code of T
St ← label(t)+”$”; // ”+” means connecting
for each edge e that comes from t to its sons do

St2 ← label(e); get another node n of e;
insert St2+GetStandardCode(n)+”$” into set S;

end
sort strings in S in ascending order;
for each string s in S do

append s to St;
end
return St+”#”;

Theorem 2. Algorithm 1 computes the standard code of a rooted unordered
tree correctly.

Theorem 3. Two rooted unordered labeled trees are isomorphic if and only if
their standard codes are equal.

Now, we label the nodes and edges with schema information, so that we can
express the pattern using traversal code of the tree. For an ordinary node (not
keyword nodes), we may easily use the relation name it belongs to as its label.
For a keyword node, things are more complex, because a keyword node may
contain several keywords, and a keyword may appear in several attributes of
a node. For an edge, what we concern is the primary-foreign key relationship.
Thus we get the following rules.

Rule 1. Assume a node t, t ∈ relation R. If t is an ordinary node, the label
of t is [R]. If t is a keyword node, which contains keywords k1, k2, ..., kn, and
ki is contained in attributes Ai1 , Ai2 , ..., Aimi

(1 ≤ i ≤ n), then the label of t is
[Rk1(A11A12 ...A1m1

)...ki(Ai1Ai2 ...Aimi
)...kn(An1An2 ...Anmn

)].

Rule 2. Assume an edge < t1, t2 >, t1 ∈ relation R1, t2 ∈ relation R2, and
assume the corresponding foreign key is (A1, ..., Ar)(Ai ∈ R1, 1 ≤ i ≤ r), the
corresponding primary key is (B1, ..., Br)(Bi ∈ R2, 1 ≤ i ≤ r), then the label of
< t1, t2 > is {(A1, ..., Ar), (B1, ..., Br)}.
Because of the search mechanism in TD-KSORD systems, the roots of result
trees in the same pattern may not be correspondent. For example, different result
trees (the two authors coauthor different papers) in Figure 4 and Figure 2 have
the same pattern, but their root nodes are not in correspondence. Therefore,
we need to select a new root for each result tree to ensure the roots of trees in
the same pattern are correspondent. In addition, such root nodes should contain
as much information as possible. In this example, the root node of the tree in
Figure 4 should be the ”Paper Tuple”.

390 Z. Peng et al.

PaperId Name

Authorid PaperId

Authorid Name

Author Tuple

Author Tuple

Write Tuple

Write Tuple

Paper Tuple

155179

Yannis Papakonstantinou

Vagelis Hristidis

4769

155179 HristidisP02

HristidisP02 DISCOVER: Keyword Search...

4769 HristidisGP02

...

...

(root node)

Fig. 4. A result tree in the same pattern with
the tree in Figure 2

Author Name: PapakonstantinouAuthor Name: Hristidis

Write

Paper

Write

arrowhead directions
 are configurable

Fig. 5. An Example of the first-
level cluster description

We consider firstly the nodes having the maximum degree, if there are many
such nodes, we select those closest to the center of the tree. Usually, there is only
one candidate node meeting the above two conditions. If there are more than
one however, we use each of the candidate nodes in turn as the root and employ
Algorithm 1 to compute the standard codes of the tree respectively. The one
with the minimum standard code is selected as the information node. If there
are more than one root node resulting in the minimum standard code, we can
use any of them as the root node, because they produce the same standard code
and do not affect the judging of isomorphism.

Now we get a rooted unordered labeled tree, we could use algorithm 1 to
compute its standard code. According to Theorem 3, trees having the same
standard codes are isomorphic and are clustered into a group. Thus we get the
first-level clusters.

3.3 Keyword Clustering

We firstly rank the keywords according to their frequencies in the database, i.e.
the number of keyword nodes which contain the specified keyword. Assume the
new order is k1, k2,...,kn. Then, we examine each group. If the number of elements
in the group exceeds the threshold, we partition it firstly based on k1, that is, if
the contents of nodes in two trees relevant to k1 are the same, the two trees are
put into one group, otherwise separated into different groups. If the new groups
still contain more than the threshold number of elements, we will continue to
partition them based on k2, and etc, until the number of elements in each cluster
is less than the threshold or all the keywords are used up. Algorithm 2 shows
the details.

3.4 GUI and Cluster Description

We build a graphic user interface for result representation, as demonstrated in
Figure 6, in windows explorer style. For the results in each cluster, we rank
them according to the relevant score in descending order. Furthermore, we get
the maximum relevant score of each cluster, and rank clusters based on their
maximum scores in descending order too.

TreeCluster: Clustering Results of Keyword Search over Databases 391

In order to make the results semantically meaningful to users, we give a read-
able description for each cluster and present the description and each result
graphically. Each tuple connection tree is presented in graph, as shown in Fig-
ure 2. The first-level cluster description mainly has the following characteris-
tics. Firstly, it uses alias for database relations and attributes, so that database
schema information is shielded to end users and improve the readability. Sec-
ondly, in order to focus on the pattern information, an ordinary node is only
annotated with its relation alias, while a keyword node annotated with its rela-
tion alias, attribute alias and keyword itself. Thirdly, the direction of the edges
between nodes can be configured in advance to provide more semantical mean-
ing. Figure 5 is the cluster description of Figure 2 and Figure 4. Apparently, it
can be understood quickly by users. For the second-level clusters, we label them
with the keywords based on which the group is produced.

Algorithm 2: Group(S, k)
Global: THRESHOLD; KeyWord[]: an array of ranked keywords according to
their frequencies in ascending order
Input: S: a group (set of trees) to be clustered; k: the index of current keyword
Output: set of the subgroups of S
if k > KeywordNum then {insert S into V; return V;}
for each tree t in S do

search set S2 in V, requiring the content of nodes relevant to KeyWord[k] of
trees in S2 is the same as that of t;
if S2 exists then {add t into S2;}
else {NEW(S2), add t into S2, and insert S2 into V;}

end
for each set S2 in V do

if |S2| < THRESHOLD then { add S2 into V2;}
else

V 3 ← group(S2, k + 1);
for each set S3 in V3 do

add S3 into V2;
end

end
end
return V2;

4 Experiments

A search result clustering system is designed using Java, as shown in Figure 6.
The system accepts query inputs from users and passes them to KSORD systems.
Users can select one of the two result presentation manners: list or cluster. The
former is the traditional method that simply presents ranked results in order,
while the latter is this paper’s work of presenting ranked results in clusters. As
experiments demonstrates below, the latter is almost as fast as the former.

392 Z. Peng et al.

Fig. 6. The GUI of Search Result Clustering

Users

Userid

...

Ratings

Userid
Movieid
Rating

Movies

MovieId
Title

...

Foreign Key Primary Key

Fig. 7. MDB Schema

We conduct tests using Oracle9i on a AMD844*4 CPU and 4G memory Dawn-
ing server running Windows 2000 Advanced Server, using BANKS as KSORD
system and it connects to Oracle9i through JDBC. In our figures, C-BANKS
means BANKS using cluster as presentation manner, while L-BANKS means
BANKS using list manner. For each test, we experiment on two real datasets, a
subset of DBLP and a subset of MDB[15]. Our DBLP consists of about 497,000
nodes and 567,000 edges. Our MDB consists of about 506,000 nodes and 997,000
edges. The schema of MDB is shown in Figure 7.

For each experiment, we randomly generate 100 queries, and test the average
effectiveness and efficiency. We partition the keywords extracted from the two
datasets into three category according to their frequencies: high(H), medium(M),
and low(L). We will show the experimental results of various patterns of keyword
queries, although we only use keywords in medium and high frequency to do tests
in order to meet the real-life case.

Due to space limitations, we always set the threshold of keyword clustering
to 10 and do not report experimental results of other threshold. Apparently, as
the threshold arise, the group number of the second-level will decrease.

4.1 Effectiveness

We call the average group number of the first-level F-Num, and use it to evaluate
the effectiveness of pattern clustering. We use the number of overall groups
including groups of the first-level that do not have subgroups and groups of the
second-level to evaluate the overall effectiveness, and call it O-Num. Apparently,
neither too many nor too few groups is good, and only medium F-Num and O-
Num helps to improve users’ browsing efficiency.

Number of Keywords. In Figure 8 and 9, we fix result number to 100 and
vary the number of keywords from 2 to 6, to test F-Num and O-Num. We can see
that in most cases, F-Num and O-Num are medium, which verifies our methods’
effectiveness.

TreeCluster: Clustering Results of Keyword Search over Databases 393

 0

 10

 20

 30

 40

 50

65432

C
lu

st
er

 n
um

be
r o

f t
he

 fi
rs

t l
ev

el

Number of keywords

C-BANKS / DBLP
C-BANKS / MDB

Fig. 8. Effectiveness(a): F Num. Fix Top-
k = 100, and vary KeywordNum.

 0

 10

 20

 30

 40

 50

65432

O
ve

ra
ll

cl
us

te
r n

um
be

r

Number of keywords

C-BANKS / DBLP
C-BANKS / MDB

Fig. 9. Effectiveness(b): O Num. Fix
Top-k = 100, and vary KeywordNum.

In Figure 8, F-Num in DBLP is always larger than that in MDB, because
the schema of MDB (primary-foreign key relationship) is simpler than that of
DBLP, so that top-k results are likely in the same pattern. As keyword number
increases, F-Num in MDB increases while that in DBLP decreases with over 3
keywords. The reason is that keyword frequencies in MDB are significantly lower
than those in DBLP, so results that contain more keywords in MDB are not likely
in the same pattern, while in DBLP, results containing more keywords are more
likely produced by one Cartesian product[3] and thus in the same pattern.

It’s easy to understand that if F-Num is small, the element number of each
group is more likely to exceed the threshold and will be partitioned further by
keyword clustering. Thus in Figure 9, although the varying trend of O-Num is
similar to that of F-Num, it varies more gently.

Number of Results. In Figure 10 and 11, we fix keyword number to 3 and
vary the number of returned results from 20 to 120. We can see F-Num and
O-Num basically linearly increase as the top-k increases, which demonstrates
our methods’ good scalability.

Keyword Patterns. In Figure 12 and 13, we fix the number of keywords to 3,
and the number of returned results to 100, and report 10 representative keyword
patterns. For instance, pattern MML represents two medium frequency and one
low frequency keywords.

 0

 10

 20

 30

 40

 50

 60

12010080604020

C
lu

st
er

 n
um

be
r o

f t
he

 fi
rs

t l
ev

el

Number of returned results

C-BANKS / DBLP
C-BANKS / MDB

Fig. 10. Effectiveness(c): F Num. Fix
KeywordNum = 3, and vary Top-k.

 0

 10

 20

 30

 40

 50

 60

12010080604020

O
ve

ra
ll

cl
us

te
r n

um
be

r

Number of returned results

C-BANKS / DBLP
C-BANKS / MDB

Fig. 11. Effectiveness(d): O Num. Fix
KeywordNum = 3, and vary Top-k.

394 Z. Peng et al.

 0

 10

 20

 30

 40

 50

 60

HHHHHMHHLHMMHMLHLLMMMMMLMLLLLL

C
lu

st
er

 n
um

be
r o

f t
he

 fi
rs

t l
ev

el

Keyword patterns

C-BANKS / DBLP
C-BANKS / MDB

Fig. 12. Effectiveness(e): F Num. Fix
KeywordNum = 3, Top-k = 100, and vary
Keyword Pattern.

 0

 10

 20

 30

 40

 50

 60

HHHHHMHHLHMMHMLHLLMMMMMLMLLLLL

O
ve

ra
ll

cl
us

te
r n

um
be

r

Keyword patterns

C-BANKS / DBLP
C-BANKS / MDB

Fig. 13. Effectiveness(f): O Num. Fix
KeywordNum = 3, Top-k = 100, and vary
Keyword Pattern.

In Figure 12, as keyword pattern contains higher frequency keywords, F-Num
decreases in DBLP, which shows that keywords in higher frequency is more likely
to produce results in the same pattern. F-Num varies a little in MDB because
most of the keywords in MDB appear only a few times.

Figure 13 shows that higher frequency words play an import role in keyword
clustering, because they appear in many tuples and the contents of these tuples
are usually not equal.

Discussion. In general, simpler database schema and higher frequency keywords
incline to decrease F-Num, while lower frequency keywords incline to increase
F-Num. Higher frequency keywords incline to increase the group number of the
second-level resulting in the increment of O-Num.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

65432

Ti
m

e
(m

se
c)

Number of keywords

L-BANKS / DBLP
C-BANKS / DBLP

L-BANKS / MDB
C-BANKS / MDB

Fig. 14. Efficiency(a). Fix Top-k = 100
and vary KeywordNum.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

12010080604020

Ti
m

e
(m

se
c)

Number of returned results

L-BANKS / DBLP
C-BANKS / DBLP
L-BANKS / MDB
C-BANKS / MDB

Fig. 15. Efficiency(b). Fix KeywordNum
= 3 and vary Top-k.

4.2 Efficiency

We run the system using two result presentation manners (original list presenta-
tion and our cluster presentation) separately and compare their execution time.
We can see from Figure 14 and 15 that two manners needs almost the same
execution time. As keyword number varies from 2 to 6 or as the number of re-
turned results varies from 20 to 120, clustering time increases only a little (the
difference between C-BANKS/dataset and L-BANKS/dataset means the value
of clustering time). The efficiency of BANKS on MDB is lower than that on

TreeCluster: Clustering Results of Keyword Search over Databases 395

DBLP, which is also because keyword frequencies in MDB are lower than those
in DBLP.

Usually, clustering search results always hurts the efficiency of systems, as
previous works in Web search do. However, our method has slightly effect on
original system efficiency.

5 Related Work

In KSORD research, many ways are used to present query results. BANKS[3]
shows the query results in a nested table, based on which [13] improves the
answer format by addressing readability. DbSurfer[12] uses tree-like structures
to display all trails, while DataSpot[11] uses a distinguished answer node to
represent a result. However, these works do not solve the problem of lots of
similar results. In this paper, we organize the results into clusters and present
them graphically to improve users’ browsing efficiency.

[9] proposes a result classification method. In preprocessing, the system pro-
duces various patterns, and in processing a query, users select a particular pattern
and the system searches the results matching the selected pattern. [13] mentions
the similar idea, however with no implementation details. This method has to
be implemented inside the search engine of a KSORD system, and closely bun-
dled with the system. Our method can be implemented outside the system and
applicable to various TD-KSORD systems.

Clustering results has been investigated in many works in the context of Web
search. These works (e.g. [17, 18, 19]) are based on the content similarity and
cluster documents into topically-coherent groups. Vivisimo[20] is a real demon-
stration of clustering Web search results. However, clustering methods used in
Web are not applicable to KSORD. On the one hand, results of KSORD belong
to a community (a professional database, such as DBLP or MDB), clustering
based on content similarity usually can not get distinguished groups. On the
other hand, information of RDBMS schema which is not available in Web search
should be employed to instruct clustering.

[21] proposes to categorize the results of SQL queries, and generates multi-
level category structure. However, according to the characteristics of our method,
we only produce two levels of categorization, including the results of pattern
clustering and keyword clustering respectively.

Traditional clustering research includes partitioning method, hierarchical
method, density-based method, and etc[22]. Our method is different from them,
aiming at the character of KSORD results. There are many works about judging
isomorphism of rooted labeled trees. We directly cite the conclusions from [9, 10]
without detailed explanations due to space limitations.

6 Conclusion and Future Work

In this paper, we proposed a novel clustering method named TreeCluster to orga-
nize search results of TD-KSORD system to improve users’ browsing efficiency.

396 Z. Peng et al.

Furthermore, we generated readable cluster description, and presented the de-
scription and each result graphically to help users understand the results more
easily. Experimental results verify effectiveness and efficiency of our method.
This is the first proposal for clustering search results of KSORD.

In future work, we will detect more database schema information in the search
process of KSORD and utilize it to improve the clustering results.

Acknowledgement

This work was supported by the National Natural Science Foundation of China
(No.60473069 and No.60496325).

References

1. Shan Wang and Kun-Long Zhang. Searching Databases with Keywords. Journal
of Computer Science and Technology, Volume 20, No.1, January 2005.

2. A. Hulgeri, G. Bhalotia, C. Nakhe et al. Keyword Search in Databases. IEEE Data
Engineering Bulletin, vol. 24, pages 22-32, 2001.

3. G. Bhalotia, A. Hulgeri, C. Nakhe et al. Keyword Searching and Browsing in
Databases using BANKS. ICDE’02.

4. Varun Kacholia, Shashank Pandit, Soumen Chakrabarti et al. Bidirectional Ex-
pansion For Keyword Search on Graph Databases. VLDB’05, pages 505-516.

5. S. Agrawal et al. DBXplorer: A System For Keyword-Based Search Over Relational
Databases. ICDE’02.

6. V. Hristidis et al. DISCOVER: Keyword Search in Relational Databases. VLDB’02.
7. V. Hristidis et al. Efficient IR-Style Keyword Search over Relational Databases.

VLDB’03.
8. A. Balmin et al. ObjectRank: Authority-Based Keyword Search in Databases.

VLDB’04.
9. Kun-Long Zhang. Research on New Preprocessing Technology for Keyword Search

in Databases. PH.D thesis of Renmin University of China, 2005.
10. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.
11. S. Dar et al. DTL’s DataSpot:Database Exploration Using Plain Language.

VLDB’98.
12. R. Wheeldon et al. DbSurfer: A Search and Navigation Took for Relational Data-

bases. The 21st Annual British National Conference on Databases, 2004.
13. B. Aditya et al. User Interaction in the BANKS System: A Demostration. ICDE’03,

Demo.
14. DBLP Bibliography. http://www.informatik.uni-trier.de/ ley/db/index.html.
15. J. Riedl and J. Konstan. MoveLens. http://www.grouplens.org/.
16. V. Hristidis et al. Keyword Proximity Search on XML Graphs. ICDE’03.
17. Cutting D. R. et al. Constant Interaction-Time Scatter/Gather Browsing of Very

Large Document Collections. SIGIR’93.
18. Zamir O. et al. Web Document Clustering: A Feasibility Demonstration. SIGIR’98.
19. Hua-Jun Zeng et al. Learning to Cluster Web Search Results. SIGIR’04.
20. Vivisimo clustering engine,(2004) http://vivisimo.com.
21. K.Chakrabarti et al. Automatic Categorization of Query Results. SIGMOD’04.
22. A.K. Jain et al. Data Clustering: A Review. ACM Computing Surveys, Vol 31,

No.3, 1999: 264-323.

A New Method for Finding Approximate
Repetitions in DNA Sequences

Di Wang1, Guoren Wang1, Qingquan Wu1,2, Baichen Chen1, and Yi Zhao1

1 College of Information Science & Engineering
Northeastern University, Shenyang 110004, China

wangdeedee@vip.sina.com
http://mitt.neu.edu.cn

2 Shanghai Baosight Ltd., Shanghai 201900, China

Abstract. Searching for approximate repetitions in a DNA sequence
has been an important topic in gene analysis. One of the problems in the
study is that because of the varying lengths of patterns, the similarity
between patterns cannot be judged accurately if we use only the concept
of ED (Edit Distance). In this paper we shall make effort to define a
new function to compute similarity, which considers both the difference
and sameness between patterns at the same time. Seeing the computa-
tional complexity, we shall also propose two new filter methods based on
frequency distance and Pearson correlation, with which we can sort out
candidate set of approximate repetitions efficiently. We use SUA instead
of sliding window to get the fragments in a DNA sequence, so that the
patterns of an approximate repetition have no limitation on length. The
results show that with our technique we are able to find a bigger number
of approximate repetitions than that of those found with tandem repeat
finder.

1 Introduction

In the human, coding sequences comprise less than 5% of the genome, whereas re-
peat sequences account for at least 50% or much more [1] [2].They embody a large
amount of information concerning key clue of human evolution and abundant
information of antiquated life [2]. Nowadays the repeat sequence as a heretical
mark is widely applied in the fields of tumor biochemistry, forensic medicine in-
dividual recognition, parent-child appraisal, population genetics and so on [3] [4].
For example, the recent research shows that CCG trinucleotide repetitions have
important effect on pre-mutation of X chromosome [5].

Finding repetitions is a difficult task and the first obstacle in the way is how to
give a formal definition of repetitions as was once pointed out by G. Benson [6].
The search of the repetitions can be classified into two kinds, perfect repetitions
and approximate repetitions, the patterns of one perfect repetition being all
the same. We have proposed a new definition LPR for prefect repetitions and
designed an index SUA for finding LPRs [14]. However, events such as mutations,
translocations and reversal events will often render the copies imperfect over

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 397–409, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

398 D. Wang et al.

time, so the approximate repetitions are present, whose patterns are not all
the same. Finding approximate repetitions is harder work than finding perfect
repeats and has been studied by many researchers during recent years. In this
paper, we will focus on the search for approximate repetitions, whose copies of
a repetition are tandemly.

The approximate repetitions search methods can be classified into two kinds
according to the search result: the exact method by which all the repetitions can
be found according to the given definition and the heuristic method with which
we cannot be sure to find all the repetitions. In the exact methods, Landau and
Schmidt [7] proposed the algorithm for finding the tandem repeats where the
hamming or edit distance of the two patterns of the repeat has some given value.
Kurtz proposed the algorithm for finding all the maximal repeat pairs under the
given hamming distance. Sagot and Myers designed the algorithm for finding
approximate tandem array [8], but the algorithm requires the length of a pattern
be less than 40 and the continuous occurrence of the pattern be given in advance.
Compared with exact methods, heuristic methods are not so good in that we
cannot with those methods find all the approximate repetitions according to the
definitions of the repetitions that we are able to find with exact methods, but the
definitions are more acceptable to the biologist. Most of the methods are based
on statistic, with which we find possible approximate repetitions according to
the statistics information, and then discover the approximate repetitions from
them [9] [10]. One of the most popular algorithms is Tandem Repeat Finder [10].

In this paper we’ll present a new approach to detect approximate repetitions
in DNA sequence. Similar to [10] and [11], we use a two-phased algorithm, which
consist of candidate phase and verification phase. Our main contributions are i)
we use a new criterion to express the percentage differences between patterns
even though the lengths of the copies may not be equal; ii)in candidate phase
we employ frequency distance and Pearson correlation as filter to find the candi-
dates; iii) our method requires no priori knowledge such as the pattern, pattern
size or the number of copies; iv) we use SUA index instead of sliding window to
find patterns which has no limitation on the size of copies in a repetition.

The remainder of this paper is organized as follows. In section 2, we import a
new criterion for approximate repetitions. We design the filters for detection of
candidates of approximate repetitions in section 3. In section 4, we first use SUA
to attain copies of repetitions and then use the two-phased method to find the
approximate repetitions. In section 5 the algorithm is tested thoroughly. Finally,
in Section 6 we draw our conclusion.

2 New Criterion for Approximate Sequences

To process approximate matching, one common and simple approximation met-
ric is called edit distance.

Definition 1. Edit distance The edit distance between two sequences is
defined as the minimum number of edit operations (i.e. insertions, deletions and

A New Method for Finding Approximate Repetitions in DNA Sequences 399

substitutions) of single characters needed to transform the first string into the
second. Ed(S, P) is used to denote the edit distance between sequence S and P.

Given the two sequences S1 and S2, the similarity between them is the fixed
number of differences in traditional methods, i.e. Edit distance. But Edit distance
suitable for short patterns would be unreasonably restrictive for long patterns in
the repetitions comparison. Conversely, Edit distance suitable for long patterns
would be not strict enough for short patterns. Another criterion of similarity is
percentage difference proposed in [10], which takes the Edit distance and the
lengths of patterns into account. But the lengths of copies in an approximate
repetition are different so that we cannot use this percentage difference directly.
Take S1=ACCT ACG ACGTA for instance, the Edit distances between every
two copies are the same but the lengths of copies are different. In this case we
cannot evaluate the similarity of copies by percentage difference. But it is obvious
that in the process of the comparison between two copies of chars, in which we
change one copy into the other copy with the minimum number of deletions,
insertion or replacements, the number of chars which remain unchanged in their
original positions is fixed.

Definition 2. ReservedChar Let S1, S2 be two sequences from the alphabet∑
= {a1, a2, · · · , an}; Let S’ be the alignment result sequence of S1, S2 by dy-

namic programming. If cj is a char of S1 with index j (0 ≤ j < |S1|), and
cj still occurred (not been deleted or replaced) in S’ with index j’,we call cj is
a ReservedChar of S1 to S2. In the same way, if ck is a char of S2 with index
k (0 ≤ k < |S2|), and ck still occurred in S’ with index k’, we define ck is a
ReservedChar of S2 to S1.

Definition 3. ReservedChar Pair Let S’ be an alignment result sequence of S1,
S2 by dynamic programming, cj is a ReservedChar of S1 to S2 occurring in S’
with index j’ , and ck is a ReservedChar of S2 to S1 occurring in S’ with index
k’, if j’ == k’, then we define (cj, ck) a ReservedChar Pair of S1, S2.

For example, given S1 = ACATTA and S2 = AATG, we denote X i as char X
occurred at index j in a given sequence, if S’ = AATG, then A1, A3, T 4 are
reserved chars of S1 to S2 (T 5 is deleted); all chars of S2 are reserved chars of
S2 to S1; (A1, A1), (A3, A2), (T 4, T 3) are reserved char pairs of S1, S2. However,
if S’= ACATTA, then all chars of S1 are reserved chars of S1 to S2; A1, A2, T 3

are reserved chars of S2 to S1; (A1, A1), (A3, A2), (T 4, T 3) are reserved char
pairs of S1, S2.

Evidently, we have Property 1 as follows:

Property 1. If cj is a ReservedChar of S1(to S2) or S2(to S1), then cj belongs
to at most one ReservedChar Pair of S1 and S2.

Definition 4. Reserved Number Let S1, S2 be two sequences from the alphabet∑
= {a1, a2, · · · , an}; We define the Reserved Number of S1,S2 as the total

number of ReservedChar Pairs of S1 and S2, abbreviate as ResNum (S1, S2).

400 D. Wang et al.

As is known, Edit Distance (ED) expresses the difference between two sequences
S1, S2, and here we describe the meaning of ResNum (S1, S2). According to
the definition of ReservedChar pair , cj and ck in ReservedChar Pair (cj , ck)
can be looked upon as a char pair which are matched with no need of insertion,
replacement or deletion operation. So the Reserved Number of S1, S2 expresses
the sameness between S1 and S2.

Property 2. Let S1, S2 be two sequences from the alphabet
∑

={a1, a2, · · · , an};
then ResNum (S1, S2) is a definite value, which is determined by ED(S1, S2).

We define a new function based on ED and ResNum to find similarity of two
sequences.

Definition 5. Similar(S1, S2). Let S1, S2 be two sequences from the alpha-
bet
∑

= {a1, a2, · · · , an}. We define Similar(S1, S2) as: Similar(S1, S2) =
ResNum(S1, S2)/ED(S1, S2).

For example, if S1 = ACATTA and S2 = AATG, then ResNum(S1,S2)=3,
ED(S1,S2)=3, so Similar(S1,S2)=3/3=1.

In fact, Similar(S1, S2) expresses the ratio of the sameness to the difference
between S1 and S2. So, it is reasonable to take Similar(S1, S2) as the criterion
to the similarity between sequences. Obviously, Similar(S1, S2) has the following
properties.

Property 3. The more similar S1 and S2 are, the bigger the value of Similar(S1,
S2) is.

According to the property 3, given a lower bound of similarity value γ, all the se-
quence pairs (Si, Sj) that meet Similar(Si, Sj) ≥ γ are the results of the similarity
search. If we improve γ, the more similar pairs could be found.

Note that, given two sequences S1 and S2, ED(S1, S2) and the ResNum(S1,
S2) is got by DP, then Similar(S1, S2) can be computed. Because of the time and
space complexity of ED computation, we will propose two appropriate filters in
order to produce the smaller candidate set to compute edit distance.

3 Filters Design

Let m and n be the lengths of sequences S1 and S2, then the edit distance,
ED(S1, S2), and the corresponding edit operations can be determined in O(mn)
time and space [12]. In the search of approximate repetitions in DNA sequences,
firstly, the sequences are usually large, even as long as tens of giga bps; secondly,
given a sequence of length n, the number of its substring is as large as O(n2).
If we directly compute edit distance to abtain the value of the function Similar
between sequences, the time and space complexity is unacceptable. So we design
two kinds of filters, and we compute only the function Similar of the sequences
chosen by the filters. We will introduce some background about the filters.

A New Method for Finding Approximate Repetitions in DNA Sequences 401

3.1 Proposed Techniques

Frequency Distance

Definition 6. Frequency Vector. Let S be a string over the alphabet
∑

=
{a1, a2, · · · , an}, then the frequency vector of S, called f(S) is defined as: f(S)
= [f1, · · · , fn],where each fi (≥ 0) corresponds to the occurrences of ai in S.

For example, if S=ACTAT is a genomic sequence (i.e. from alphabet
∑

=
{A, C, G, T }), then f(S) = [2, 1, 0, 2].

Definition 7. Frequency Distance. Let u and v be integer points in dimensional
space. The frequency distance, FD(u, v), between u and v is defined as the min-
imum number of steps in order to go from u to v (or equivalently from v to u)
by moving to a neighbor point at each step.

Let u and v be vectors in the same dimension, let Pos =
∑

ui>vi

ui − vi and

Neg =
∑

ui<vi

vi − ui, then FD(u, v) = max(Pos, Neg). It is obvious that the

computation of FD is linear, so the time and space complexity of FD is much
lower than that of ED. The detail about FD is in [13]. An important property
of frequency distance is that, given two sequences S1 and S2, FD(f (S1), f(S2))≤
ED(S1, S2) [13].

Pearson Correlation
Pearson Correlation, i.e. linear correlation, measures the strength of a linear
relationship between two variables. It ranges from -1 to 1. A correlation of +1
means that there is a perfect positive linear relationship between variables and a
correlation of -1 means the perfect negative linear relationship between variables.
And 0 means there isn’t a clear linear relationship between variables.

For two vector X=[x1, x2, · · · , xn] and Y=[y1, y2, · · · , yn], their Pearson cor-
relation is expressed as follows:

Pearson(X, Y) =
∑

(X − X)(Y − Y)∑
(X − X)2

∑
(Y − Y)2

X =
n∑

i=1

xi

/
n, Y =

n∑
i=1

yi

/
n

In the section of filter design, we will describe how to construct the vectors X
and Y according to the sequences, and take Pearson correlation as the criterion
for sequences similarity.

3.2 Filters Design

FD Based Filter
Frequency distance is widely used as a simple and efficient filter in search of
similar sequences. We propose a FD based filter Similar FD for the function
Similar. As mentioned above, given the sequences S1 and S2, FD(S1, S2) can
be seen as a filter for ED(S1, S2), so the key problem is to define the filter for
ResNum(S1, S2).

402 D. Wang et al.

Definition 8. ResNum FV. Let S1, S2 be two sequences from the alphabet∑
= {a1, a2, · · · , an}. The frequency vectors of S1 and S2 are f(S1)=[f1S1, f2S1,

· · · , fnS1] and f(S2)= [f1S2, f2S2, · · · , fnS2] respectively. ResNum FV is de-
fined as:

ResNum FV (S1, S2) =
n∑

i=1

min(fiS1, f iS2).

Definition 9. Similar FD. Let S1, S2 be two sequences from the alphabet
∑

=
{a1, a2, · · · , an}. Similar FD is defined as: Similar FD(S1, S2) = ResNum FV
(S1, S2) / FD(S1, S2).

Lemma 1. Let S1, S2 be two sequences from the alphabet
∑

= {a1, a2, · · · , an},
ResNum FV (S1, S2) ≥ ResNum(S1, S2).

Theorem 1. Let S1, S2 be two sequences from the alphabet
∑

={a1, a2, · · · , an},
Similar FD(S1, S2) ≥ Similar(S1, S2).

In the interest of space, we omit the proofs of the properties, lemma and theorem
in this paper.

Given the two sequences S1 and S2 and the valve value of Similar() γ, we can
prune S1 and S2 without computing Similar(S1, S2) if Similar FD(S1, S2) < γ.
So we take Similar FD() as the filter for Similar().

We give the performance of the FD based filter in the experiments. Similar
to other methods based on FD, the performance of Similar FD() is quite sat-
isfactory when the sequences are short, however, it descends rapidly when the
sequences are long. So, regarding the longer sequences, we give the following PC
based filter.

PC Based Filter
Experiments show that the performance of the filter based on frequency function
descended with the increasing of the lengths of sequences. We can come to the
same conclusion by theoretical analysis. Let’s take the frequency distance func-
tion FD for example. It uses the occurrence frequency of a char in the compared
sequences as the similarity filter feature. If the sequences are short, it is really
done. However, with the sequence length increasing, the occurrence frequency
of a char will approach some statistical values, which is independent of the se-
quences. For example, in a genetic sequence of length more than 1M, there will
be about 1/4M ’A’ char. That means, when the sequences are long enough, they
will have almost the same frequency vectors. So the FD filter will not function.

So, when the compared sequences are long, the statistical feature of a char
frequency will cover up their every local difference. To solve the problem we
propose a new filter method based on Pearson correlation coefficient.

The new method is sourced from the following idea directly:

1. According to the analysis above, when the compared sequences are short, the
frequency feature can judge the similarity between two sequences well, so we
will split a long sequence into many short subsequences, and then compute
the frequency vector of these subsequences.

A New Method for Finding Approximate Repetitions in DNA Sequences 403

2. If two long sequences S1 and S2 have high similarity, their subsequences in
corresponding region will have high similarity. Reflected to char frequency
feature of the sequences, it means the same char’s frequency value in every
corresponding subsequences of S1 and S2 will be equal almost, that is, the
same char’s distributions in the subsequences are similar. If we take the char’s
frequency value serial in subsequences as two vector respectively, then the
two vector will be high correlated. We measure the correlation by Pearson’s
correlation.

So, given two long sequences S1, S2 to be compared, we propose the filter
method as the following, which includes two step-operation:

Step1: Divide two genomic sequences S1, S2 both into n subsequences and we
get S11, S12,..., S1n of S1 and S21, S22,..., S2n of S2. Then compute t frequency
vectors of the 2n subsequences and we get f (A11, C11, G11, T11), · · · , f (A1n,
C1n, G1n, T1n) and f (A21, C21, G21, T21), · · · , f(A2n, C2n, G2n, T2n). For A,
C, G and T, we can get vectors ((A11, · · · , A1n), (A21, · · · , A2n)), ((C11, · · · ,
C1n), (C21, · · · , C2n)), ((G11, · · · , G1n), (G21, · · · , G2n)) and ((T11, · · · , T1n),
(T21, · · · , T2n)) respectively. Here, we get two vectors for each char to compute
Pearson’s correlation. Take ’A’ as example, we get vector XA = [A11, · · · , A1n]
from S1 and vector YA = [A21, · · · , A2n] from S2.

Step2: Compute Pearson(XA, YA), Pearson(XC, YC), Pearson(XG, YG), and
Pearson(XT , YT). And set a valve r, if the four coefficient value above are all
higher than r∗ Similar()

Similar()+1 , we think the two sequences to be compared are similar
probably and add them into the candidate set.

Here are some explanations. The method presumes if the two sequences to
be compared are similar; the frequency vector got from their subsequences will
have high correlation. In most cases, it is the fact. However, there also are some
exceptional cases. So the filter method will probably filter out some sequence
pairs which are really similar. Fortunately, the lost pairs are very few, but the
filter method can filter long sequences efficiently. In the last part of the paper,
we will show the efficiency of the filter method through thorough experiments.

Hybrid of the Two Filters
In the previous section, we proposed two filters to construct candidate set. The
Similar FD filter will function well if the compared sequences are short while the
PC based filter is efficient for long sequences. So, we integrated the two methods
in practice according to the lengths of sequences and we perform experiments
to determine the borderline value of the two methods. In the experiment section
we will give a detailed discussion about it.

4 Two-Phased Algorithm

4.1 Sequence Partition

Here we design efficient filters for the similar sequences search in database based
on Similar. A key phase for the search of approximate repetitions is to partition

404 D. Wang et al.

the query sequence into fragments and filter the adjacent fragments by the func-
tions discussed above. A general method of partitioning the sequence is sliding
window method and its fatal shortcoming is that only the tandem fragments
with the same length can be found. To avoid this shortcoming we use SUA [15].

SUA is an index structure that we design for finding perfect repetitions [14].
In repetitions finding, the copy of a repetition is generally called pattern. For
example, in repetition ACGACGACG, ACG is the pattern. Through further
analysis of the patterns in the repetitions, we find that a pattern comprises
some units with the same characteristics.

Definition 10. pattern unit. Let S be a sequence and substr be a substring start-
ing with symbol X (it is A, C, G, T or $ in DNA sequence) of S. If the successor
of substr is X or $ and there is no X in substr except for the first symbol, we call
substr a pattern unit of X in S.

For example, in the sequence ACGAGATC$, the substring ACG, AG and ATC
are pattern units of A but ACGAC and AT are not. For the purpose of conve-
nience, ‘$’ is seen as a pattern unit although it cannot be a part of any pattern.

Definition 11. Succeeding Unit Array (SUA). Let S be a DNA sequence of
length n. We sort all the pattern units in ascending order (the regulation of the
sorting is the same as the regulation of string sorting. If two pattern units are
equal, we sort them according to their succeeding string) and get n pattern units.
Every pattern unit and the position of its succeeding pattern unit (succeeding
pattern unit of a pattern unit pu is the pattern unit of the succeeding symbol of
pu) after sorting (the position of $ ’ s succeeding pattern unit is marked as -1)
compose a new array – Succeeding Unit Array.

For example, in the sequence ACACACTAT$, there are four pattern units of A
(one is ACT , one is AT, and the other two are AC), three pattern units of C
(one is CTAT and the other two are CA) and two pattern units of T (one is T
and the other is TA). The SUA is illuminated in figure 1.

pos pattern
unit

successor
pos

0 $ -1

1 AC 2

2 AC 3

3 ACT 4

4 AT 0

5 CA 6

6 CA 7

7 CTAT 0

8 T 0

9 TA 8

Fig. 1. SUA on sequence ACACACTAT$

The construction and the performance of SUA has been discussed in [15]. For
the purpose of convenience, given a sequence S, we call the substring of S a
compound pattern unit which comprises some pattern units of the same symbol.

A New Method for Finding Approximate Repetitions in DNA Sequences 405

4.2 Candidate Phase

In candidate phase, we first take all the pattern units as the copies of repetitions
and then add every pattern unit and its successor pattern unit which is gained
according to the succeeding information in SUA as a pair to candidate set if they
meet the filter function. Secondly, similar to perfect repetitions search in [14],
compound pattern units are produced according to the succeeding information
of pattern units. And then we push the compound pattern units and its successor
into candidate set if they meet the filter function. The details are shown in [14].

Algorithm 1. candidate set
1: /*Tmin=the minimal length of pattern in repetition which requestor need.*/
2: /*Tmax=the maximal length of pattern in repetition which requestor need.*/
3: /*allDone=1 means there might still be candidates.*/
4: allDone=1;
5: while allDone==1 do
6: allDone=0;
7: for each position of sequence do
8: pattern1 = the (compound) pattern unit which starts at the position;
9: pattern2 = the pattern unit which is the successor of pattern1;

10: if the length of pattern1 and pattern2 in [Tmin · · · Tmax] then
11: allDone=0;
12: end if
13: if pattern1 and pattern2 are satisfied with the filter function then
14: Add them as a pair in to candidates;
15: end if
16: end for
17: for each position do
18: pattern1=pattern unit which start at the position;
19: if pattern1 can connect its successor then
20: Connect the pattern1 and successor, procedure a compound pattern unit;
21: end if
22: end for
23: end while

4.3 Verification Phase

Given a list of candidates, the verification phase will work out the real the
approximate repetitions.

The researchers have defined the types of repetitions, the simple, neighboring
and pairwise approximate repetitions [14]. Clearly, different types of approxi-
mate repetitions lead to different verification procedures. Here, for neighboring
approximate repetitions a two-phased verification procedure is performed.

Firstly, the Similar() of every pair in the candidate set is computed by DP to
determine whether the pair meets the query.

Secondly, these two-copy approximate repetitions are connected into repeti-
tions which contain more repeats if the last copy LC of the former repetition is

406 D. Wang et al.

the first copy FC of the latter repetition. The information of connection can be
got by the succeeding information provided by SUA (the details can be found
in [16]). We also found the pairwise approximate repetitions in [16].

In the search for approximate repetitions, we avoid two kinds of redundant
results:(1) For a repetitions P1P2 · · ·Pk,which have k copies and Pi is one copy
(1 ≤ i ≤ k), we only produce the repetitions Pi · · ·Pj (1 ≤ j ≤ k)with i = 1
and j = k. (2) For the repetitions which have the same start position and end
position but different expressions, we only output the expression which has the
most copies.

5 Experiments

In this section, we’ll evaluate performance of filters and compare the repeti-
tions we found with the result of Tandem Repeat Finder. The test data is DNA
fragments from Human chr18 and chr22.

We implement the algorithms in C++ under Windows XP. All the experi-
ments are run on a Dell PC with 2.6GHZ Intel Pentium processor with 512M
memory. And we set the valve value of Similar=3.

We have mentioned the performance of FD based filter will drop rapidly with
the increment of lengths of copies. Let frag short be the shorter one of every
two adjacent fragments, let candidate Num[l] be the number of the candidates
with frag short = l and result Num [l] be the number of correct results with
frag short = l. We use Performance FD(l) = candidate Num [l]/result Num [l]
to evaluate the performance of FD based filter, and in the experiment we set 12
≤ l ≤ 34. When the length of frag short is larger than 18, the curve tendency
of Performance FD increases rapidly. For the efficiency of the method, we use
PC based filter when the copies are longer and our method becomes a heuristic
method because some results will be lost. According to Fig.2, we decide to use
the PC based filter when lengths of the two adjacent fragments are both bigger
than 18. Otherwise, we use FD based filter.

10

15

20

25

30

35

40

45

50

12 14 16 18 20 22 24 26 28 30 32 34length

Fig. 2. Illustration for choosing length

Before using PC based filter to produce candidate set, we need to decide two
parameters, the valve value of the correlation and the value of partitions that we
divide the copies into. We choose these two values according to the proportion
of results and candidates found with PC based filter to those found with FD
based filter in experiments. We use 2 to 5 as the number of partitions and 0.3 to

A New Method for Finding Approximate Repetitions in DNA Sequences 407

0.6 as the valve value of the correlation. We take two fragments with the size of
60K from human chr18 and chr22 as test data. The (A) and (C) of Fig.3 shows
that there is quite a rapid decrease of the proportion of right results found with
PC based filter when valve value of correlation is bigger than 0.4 on different
partitions. But the proportion of candidates decreases smoothly from 0.3 to 0.6
in (B) and (D) of Fig.3. So we choose 0.4 as the valve value of correlation. We
choose partition=3 through the experiments for similar reason for choosing valve
value of correlation. And we use partition=3 and valve value=0.4 to accomplish
following experiments.

(A) Human chr18 (B)

(C) Human chr22 (D)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2 3 4
partition

valve=0.3
valve=0.4
valve=0.5
valve=0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4
partition

valve=0.3
valve=0.4
valve=0.5
valve=0.6

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2 3 4
partition

valve=0.3
valve=0.4
valve=0.5
valve=0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4
partition

valve=0.3
valve=0.4
valve=0.5
valve=0.6

Fig. 3. Illustration to determine valve value and partitions of PC based filter

We compare the efficiency of FD based filter and the hybrid method by ex-
ecution time and the number of right results and candidates. Fig.4 shows that
the right results we lost is smaller than 3% but we cut down more than 35% on
candidates and the saving of execution time is satisfactory.

(A) Results (B)Candidates (C) Time

2000

22000

42000

62000

82000

102000

122000

142000

30 40 50 60 70 80
data(K)

candidate Hybrid method FD

300

400

500

600

700

800

900

30 40 50 60 70 80

data(K)

result Hybrid method FD

0

50

100

150

200

250

300

30 40 50 60 70 80

data(K)

time(s) FD Hybrid method

Fig. 4. Hybrid of the filters

In order to prove the validity of our method, we compare approximate rep-
etitions found with our methods with the results found with Tandem Repeat
Finder under the same condition in Fig.5. Our results always cover almost 95%
of the results found with Tandem Repeat Finder and our results are much more

408 D. Wang et al.

than that of TRF using TRF’s definition as shown in Fig.5, which proves the
efficiency of our methods. The detailed analysis of the results can be found in
http://mitt.neu.edu.cn.

0

50

100

150

200

250

300

350

400

30 40 50 60 70 80
data(K)

n
u
m
b
e
r

o
f
r
e
p
e
a
t
s

TRF Hybrid method

Fig. 5. Number of repeats found with TRF and ours

6 Conclusion

In this paper, we have considered the problem of finding approximate repetitions
in a DNA sequence. We have proposed a new method, which expresses the ratio of
sameness to difference between two sequences, to efficiently judge the similarity
between any two copies in a repetition. We have also provided two new filter
methods to sort out candidate set of approximate repetitions: the Similar FD
filter function based on FD worked efficiently for short sequences; the PC based
filter method worked well for long sequences. When sorting out candidate set, by
using SUA instead of sliding window, we can get patterns of different lengths.
And in this paper, we have given some theoretical analysis and experimental
results to validate the efficiency of our method.

However, the PC based filter method has its limitation in not being able to
work out the complete candidate set. So, the next step for us to take is to search
for some more efficient filter methods for long sequences and to try to apply
our method to looking for dispersed repetitions in DNA sequences to see if it is
efficient enough.

Acknowledgment. This research was supported by the National Natural Sci-
ence Foundation of China (Grant No. 60273079 and 60573089).

References

1. David W. M. Bioinformatics Sequence and Genome Analysis [M], Cold Spring
Harbor Laborary Press. 2001.

2. International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature 409(15): 860-921, Feb, 2001.

3. IBeleza, S., Alves, C., Gonzalez-Neira, A., Lareu, M., Amorim, A., Carracedo, A.,
and Gusmao, L. Extending STR markers in Y chromosome haplotypes. Int.J.Legal
Med. 117(1): 27-33, 2003.

4. Young, D. R., Tun, Z., Honda, K., and Matoba, R. Identifying sex chromosome
abnormalities in forensic DNA testing using amelogenin and sex chromosome short
tandem repeats. J.Forensic Sci. 46(2): 346-348, 2001.

A New Method for Finding Approximate Repetitions in DNA Sequences 409

5. Moore CJ, Daly EM, Tassone F and et al.The effect of pre-mutation of X chromo-
some CGG trinucleotide repeats on brain anatomy.Brain. Oct, 2004.

6. G. Benson. An algorithm for finding tandem repeats of unspecified pattern size.
RECOMB98, pp. 20-29, ACM Press, 1998.

7. G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats.
Proc. Of the 4th Annual Symposium on Combinatorial Pattern Matching. Vol.
684: 120-133, Italy, 1993.

8. S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J, Stoye, R. Giegerich.
REPuter: the manifold applications of repeat analysis on a genomic scale. Nucl.
Acids Res. 29(22): 4633-4642. 2001.

9. G. Benson and M. Waterman. A method for fast database search for all k-nucleotide
repeats. Nucl. Acids Res. 22:4828-4836, 1994.

10. G. Benson. Tandem repeats finder: a program t analyze dna. Nucl. Acids Res.
27(2):573-580, 1998.

11. Y. Wexler, Z. Yakhini, Y. Kashi and D. Geiger. Finding approximate tandem
repeats in genomic sequences. RECOMB04, pp. 223-232, ACM Press, 2004.

12. D. Gusfield. Algorithms on string, trees and sequences: Computer science and
computational biology. Cambridge University Press, 1997.

13. T. Kahveci and A. K. Singh. An efficient index strction of string databases.
VLDB01, pp. 351-360, 2001.

14. D. Wang, G. Wang, Q. Wu and B. Chen. Finding LPRs in DNA sequence based
on a new index SUA. BIBE05, pp. 281-284, IEEE Computer Science, 2005.

15. D. Wang, G. Wang, B. Chen, Q. Wu, B. Wang and D. Han. A new lightweight index
SUA for biological sequence anlysis. J. Huazhong Univ. of Sci. & Tech. 33(12):207-
210, 2005.

16. D. Wang, G. Wang. Q. Wu and B. Chen. Finding approximate repetitions in DNA
sequence based on SUA. Technology Report. http://mitt.neu.edu.cn. 2005.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 410 – 421, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Incremental Data Summarization
for Hierarchical Clustering

Bing Liu, Yuliang Shi, Zhihui Wang, Wei Wang, and Baile Shi

Department of Computing and Information Technology,
Fudan University, Shanghai, China

{031021057, 031021056, 041021056, weiwang1, bshi}@fudan.edu.cn

Abstract. In many real world applications, with the databases frequent inser-
tions and deletions, the ability of a data mining technique to detect and react
quickly to dynamic changes in the data distribution and clustering over time is
highly desired. Data summarizations (e.g., data bubbles) have been proposed to
compress large databases into representative points suitable for subsequent hi-
erarchical cluster analysis. In this paper, we thoroughly investigate the quality
measure (data summarization index) of incremental data bubbles. When updat-
ing databases, we show which factors could affect the mean and standard devia-
tion of data summarization index or not. Based on these statements, a fully
dynamic scheme to maintain data bubbles incrementally is proposed. An exten-
sive experimental evaluation confirms our statements and shows that the fully
dynamic incremental data bubbles are effective in preserving the quality of the
data summarization for hierarchical clustering.

1 Introduction

Knowledge discovery in databases (KDD) is the non-trivial process of identifying
valid, novel, potentially useful, and understandable patterns. Detecting patterns effec-
tively and efficiently is a challenging task since these patterns usually reside in large
amounts of high dimensional and noisy data. As time goes by, the data distribution
and the underlying clustering structure may change whereby previously uncovered
patterns may become obsolete. The ability of a data mining technique to detect and
react quickly to dynamic changes in the data patterns is highly desirable.

One of the primary data analysis tasks in KDD is cluster analysis. The main goal of
a clustering algorithm is to partition a set of data points into groups such that similar
points belong to the same group and dissimilar points belong to different groups.
There are two main kinds of clustering algorithms: partitioning and hierarchical. Par-
titioning algorithms like k-means [1] create k partitions of the points. Hierarchical
clustering algorithms like the OPTICS [2] or Single-Link method [3] compute a rep-
resentation of the possible hierarchical clustering structure of the database in the form
of a dendrogram or a reachability plot from which clusters at various resolutions can
be extracted, as has been shown in [4].

In general, clustering algorithms do not scale well with the size of the data set.
However, many real-world databases contain thousands or even millions of objects.

 Dynamic Incremental Data Summarization for Hierarchical Clustering 411

To be able to perform a cluster analysis of such databases, a very fast method is re-
quired. Therefore, the development of scalable clustering algorithms has received a
lot of attention in recent years. One approach for scaling up a clustering algorithm is
to apply the clustering algorithm to only a summary of the database instead of the
whole database. In data summarization methods such as Data Bubbles [5] and BIRCH
[6], the database is partitioned into a small number of subsets, where each subset
represents its elements by a number of sufficient statistics. A modified version of the
preferred clustering algorithm can be applied to those data summarizations to detect
the interesting patterns. For example, OPTICS [2] was shown to uncover the cluster-
ing structure effectively and very efficiently from data bubbles [5].

Various dynamic updates of deletions and insertions to very large databases add
new challenges to the clustering task by possibly changing the underlying data distri-
bution and the associated clustering structure over time. The naive approach is to
reapply the data mining algorithms and extract the hidden patterns every time follow-
ing a certain fraction of updates to the database. However, this approach is prohibi-
tively slow for fast changing and large databases, especially if an up-to-date clustering
structure is required frequently, e.g., in order to detect the changes in the data distri-
bution after a small fraction of updates occur and important decisions are based on the
current data distribution. Therefore in this paper we focus on achieving incremental
summaries of dynamic databases.

There are two main strategies to address the problem of incremental clustering in a
database environment. In the first strategy, a specialized incremental clustering algo-
rithm is designed to directly handle dynamic changes in the database. In the second
strategy, a data summarization technique is developed and used to compress the data-
base incrementally, and then a slightly modified, standard clustering algorithm is
subsequently applied to the generated data summarizations.

We first discuss some of the proposed algorithms for the first strategy. There are
several incremental clustering algorithms that do not use the data summarization tech-
nique but attempt to directly restructure the clusters to reflect the dynamic changes of
the dataset.

Chen et al. [7] propose the incremental hierarchical clustering algorithm GRIN for
numerical datasets, which is based on gravity theory in physics. Ester et al. [8] present
a new incremental clustering algorithm called Incremental DBSCAN suitable for
mining in a data-warehousing environment. Incremental DBSCAN is based on the
DBSCAN algorithm [9] which is a density based clustering algorithm. However, the
proposed method does not address the problem of changing point densities over time,
which would require adapting the input parameters for Incremental DBSCAN over
time. Widyantoro et al. [10] present the agglomerative incremental hierarchical clus-
tering (IHC) algorithm that utilizes a restructuring process while preserving homoge-
neity of the clusters and monotonicity of the cluster hierarchy. Charikar et al. [11]
introduce new deterministic and randomized incremental clustering algorithms while
trying to minimize the maximum diameters of the clusters.

Unlike the above algorithms that typically invent yet another “new” incremental
algorithm for a particular application, the second strategy is more flexible and generic
as it allows the application of a broad range of existing standard clustering algorithms
(hierarchical and partitioning) to the data summaries. The adaptation of a standard

412 B. Liu et al.

clustering algorithm to data summarization typically requires only minor modifica-
tions, as has been shown in [5]. It also has the advantage that the data summaries can
be used for other data mining tasks such as computing approximate statistics of data
sets or quickly approximating the number of objects in a database within certain at-
tribute ranges of interest.

Samer et al. [12] use the second approach and propose a scheme to incrementally
maintain data summaries of a dynamic database, i.e., they enhance data summariza-
tions to become incremental and capable to adapt to insertions and deletions into a
database. Furthermore, by using a measure of the compression quality called data
summarization index (the fraction of points in the database compressed by the data
bubble), they can identify the data bubbles that still compress their points well follow-
ing the insertions and the deletions.

For the scheme proposed by Samer et al. [12], there are some remaining works
needed to solve. First, they use data summarization index as the measure of the com-
pression quality and Chebyshev’s Inequality to judge the quality of data bubbles.
Using Chebyshev’s Inequality needs to know the mean and standard deviation of the
data summarization index. But they do not give an analysis about how to get the mean
and standard deviation, and do not illustrate which factors will affect them. Second,
they can not deal with the situations where the number of data points or data bubbles
is changed. And they only consider where there is an equal number of insertions and
deletions for each update and the number of data bubbles are unchanged. This is be-
cause they can not judge which data bubbles are not good if the number of points or
data bubbles is changed. In this paper, we will give a thorough analysis about the
incremental update of data bubbles.

The rest of the paper is organized as follows. In section 2, we first present the
background related to the problems of incremental data summarization. Then we
show how to get the theoretic mean and give some statements about the standard
deviation of the data summarization index. Also we propose an algorithm about fully
dynamical incremental data bubble maintenance. In section 3, we perform an exten-
sive experimental evaluation to our methods, confirming the statements presented in
section 2, and showing that incremental data bubbles can preserve the quality of the
data summarization for hierarchical clustering. The conclusions and some future di-
rections are presented in section 4.

2 Dynamic Incremental Data Summarization

In this section, we present a detail discussion about the data summarization index.
Previously it has been shown that for hierarchical clustering algorithms, the data bub-
bles [5] are much more effective than basic clustering features CF=(n, LS, SS), where
LS is the linear sum of the points and SS is their square sum, as proposed, e.g., for
BIRCH. Data bubbles summarize a set of n points by “compressing” the points into
special sufficient statistics that are required for effective hierarchical clustering based
on data summarizations. Data bubbles have been evaluated in [5], using OPTICS [2],
and were shown to reduce the runtime of OPTICS dramatically while still producing
high-quality hierarchical clustering structures.

 Dynamic Incremental Data Summarization for Hierarchical Clustering 413

A data bubble has been defined as follows:

Definition 1. A data bubble B for a set of points X = {Xi}, 1 i n is a tuple B = (rep,
n, extent, nnDist) where

• rep is a representative, defined as the mean of the points in X
• n is the number of points in X
• extent is the radius of B around rep that encloses the majority of the points in

X
• nnDist(k,B) is a function that estimates the average k nearest neighbor dis-

tances in B.

Although the information in a data bubble is more specialized than the basic suffi-
cient statistics (n, LS, SS), it has been shown in [5] that the representative rep, the
extent, and assuming a uniform distribution of points within a data bubble, the aver-
age nearest neighbor distances nnDist(k,B) can be easily derived from n, LS, SS.

The method that has been proposed to construct data bubbles consists of the fol-
lowing two steps:

1. Retrieve randomly s points from the database as “seeds”.
2. Scan the database, and assign each point in the database to the closest seed in the

set obtained in step 1.

We assume that we have initially constructed a set of data bubbles that summarize
a large database of d-dimensional points following the above description. If the data-
base is dynamic, new points are inserted and old points are deleted over time, possibly
changing the underlying data distribution. We are interested in the updated clustering
structure and hence the underlying data summarization after a set of updates.

For incrementally updating a set of data bubbles following a batch of updates to the
underlying database, the sufficient statistics of affected data bubbles are decremented
when deleting the old points and incremented when inserting the new points. When
deleting a point p, the sufficient statistic (n, LS, SS) of the data bubble B where p was
previously assigned are updated to (n-1, LS-p, SS-p2), whereas when inserting a point
p, the sufficient statistics (n, LS, SS) of the data bubble B that is closest to p are up-
dated to (n+1, LS+p, SS+p2).

After these updates, it is possible that some data bubbles do not represent their
points well or lost all of their points such that the overall compression quality is poor,
possibly resulting in a distorted clustering structure based on these data bubbles. In
order to recover from structural distortions due to changes in the data distribution, we
have to identify those data bubbles that significantly degrade the quality of the data
summarization and re-build them quickly, while at the same time maintaining a given
compression rate.

The measure for determining the quality of a data bubble is the number of points it
summarizes relative to the total database size. Roughly speaking, “good” data bubbles
summarize not too many and not too few points. Samer et al. [12] introduce the data
summarization index to capture the quality of a data bubble.

Definition 2. Given a database D of N points and a set of data bubbles that com-
press the points in D, the data summarization index i of a data bubble i that com-
presses n points is defined as i =n/N.

414 B. Liu et al.

Based on Chebyshev's Inequality theorem: 2
11)||(

k
kXP XX −≥<− σμ , paper [12]

distinguishes three classes of data bubbles according to their compression quality.

Definition 3. Given a database D of N points and a set of data bubbles that
compress the points in D, let μ and be the mean and standard deviation of the
distribution of the values for all data bubbles in . Given a probability p (where the
corresponding k value is computed according to Chebyshev's Inequality), a data bub-
ble B with the data summarization index is called:

1. “good” iff [μ - k , μ + k]
2. “under-filled” iff < μ - k

3. “over-filled” iff > μ + k

Figure 1 shows the pseudo code for improving the quality of an over-filled data bub-
ble [12] while keeping the number of data bubbles unchanged. The quality of Bover-filled

is improved by first merging Bunder-filled and then splitting Bover-filled.

DevideOverFilledBubble()

{

Select a random under-filled data bubble Bunder-filled (if
none exists, select the “good” data bubble with lowest
quality in the “good” data bubbles set);

Free Bunder-filled by assigning its points to their next
closest data bubble(s);

Migrate Bunder-filled to the region compressed by Bover-filled
by selecting a new seed s1 for it from the points of Bover-
filled;

Select a new seed s2 for Bover-filled from the points of
Bover-filled ;

Split Bover-filled by reassigning its points between s1
and s2;

}

Fig. 1. Improving the quality of an over-filled data bubble

Although Samer et al. [12] use the data summarization index to judge the quality of
data bubbles, they do not give a further analysis about how to get the mean and stan-
dard deviation of it when the number of points or data bubbles are changed. In their
paper’s last conclusion, they also indicate that the problem of how to dynamically
increase or decrease the number of data bubbles is needed to solve to further improve
the compression of a database. They assume that when building data bubbles from
scratch, the majority of the data bubbles have good compression. So they use the
initial data bubble distribution to compute the mean and standard deviation of the data
summarization index. In their experiments, in order to use these two estimation val-
ues, they keep the number of points and the number of data bubbles unchanged, i.e.

 Dynamic Incremental Data Summarization for Hierarchical Clustering 415

they delete and insert the same number of points for each update. But in real world
applications, with the dynamic update of deletions and insertions to database, the total
number of points may change dramatically. And sometimes, in order to adapt to the
change of database, we also need to change the number of data bubbles. At this time,
the mean and standard deviation estimated from initial data bubble distribution are
useless. So we will give further explore about the mean and standard deviations of the
data summarization index. We will show which factors can affect the mean and stan-
dard deviation and which can not.

We illustrate how to compute the mean of data summarization index in theory, and
also give some statements about the relationships between standard deviation and
some database factors. In the next section, we present the detail experiments support-
ing for these statements. Also, based on these observations, we propose a fully dy-
namic incremental data summarization maintenance algorithm in this section.

Samer et al. [12] use experiment to evaluate the mean of data summarization index.
In this paper, we give a theorem to show how to compute the mean of data summari-
zation index in theory.

Theorem 1. Given a database D of N points and a set of s data bubbles that com-
press the points in D, μ is the mean of the data summarization index for all data
bubbles in .. There is μ =1/s.

Proof: Assume i is the ith data bubble that compresses ni points. According to the

definition of mean, there is μ =
s

N
sN

n
sNN

n

ss

s

i
i

s

i

i
s

i
i

11111

111

=×===
===

β . Thus

μ =1/s.

Theorem 1 shows that μ is only decided by the number of data bubbles and inverse
proportional to it. If we know the number of data bubbles in advance, we can compute
the mean of the data summarization index even in the situations where the database
dramatically changes.

Next we give analysis and statements about the standard deviation of data summa-
rization index (). According to the definition of standard deviation, there is: 2 =

== = ===

−=−+=−=−
s

i
i

s

i

s

i

s

i

ii
s

i

i
s

i
i s

n
NsNs

n

sN

n

ssN

n

ss 1

2
2

1 1 1
22

2

1

2

1

2)
11

(
1

)
21

(
1

)
1

(
1

)(
1

βμβ

where 1 ni N-s+1 and n1+n2+…+ns=N. This formula shows that is related to the
actual number of points in each data bubble, so it is difficult to give a theoretical value
independent to each sampling process. But we can give some statements about which
factors will affect or not. Also we give the intuitional explanations about these
statements. In the next section, we will use experiments to confirm our statements.

First, we show the relationships between and the number of points, the distribu-
tion of points, and the dimensions of points.

Statement 1: Given a database D, is the standard deviation of the data summariza-
tion index for all data bubbles in . is independent to the number of points, the
distribution of points, and the dimensions of points in the database.

We give some explanations about statement 1. In statement 1, we argue that is
not related to the number of points in database. We know that represents the fraction
of points in the database compressed by the data bubble, and the mean of it is

416 B. Liu et al.

independent to the number of points proven by theorem 1. So we speculate that the
standard deviation of is also not affected by the number of points in database.
Statement 1 also says that is independent to the distribution of points, which means
that the clustering structure can not affect . In paper [12], although they do not say
explicitly, they just use this fact. In their experiments, they do not change the number
of points in database, but they change the underlying data distribution and the associ-
ated clustering structure when updating database. We can think that where data distri-
butions are dense, the sample points are also dense, so it is possible that is not
related to the data distribution. In statement 1, we also argue that is independent to

IncrementalDataBubble ()
Input: A batch of data update, original data bubble

number m, new data bubble number n
{
Delete old points and decrease the sufficient statis-

tics of the corresponding data bubbles;
Insert new points and assign them to their closest

data bubbles;
k=|n-m|;
if (n>m) //increase the number of data bubbles
{

for (i=0;i<k;i++)
{

Find the data bubble B that has the maximum num-
ber of points;

Random select two new seed s1 and s2 from B;
Split B by reassigning its points to s1 and s2;

}
}
if (n<m) //decrease the number of data bubbles
{

For (i=0;i<k;i++)
{

Find the data bubble B that have the minimum num-
ber of points;

Free B by assigning its points to their next
closest data bubble(s);

}
}
Use n to compute the new μ and ;
Use the new μ and to determine the upper and lower

boundary for the data bubble quality;
while (exist data bubble B over-filled)

Invoke the DevideOverFilledBubble() for B in figure
1;
}

Fig. 2. Incremental data bubble maintenance

 Dynamic Incremental Data Summarization for Hierarchical Clustering 417

the data dimensions. This statement is easy to understand. Because we use distance
between points to build data bubbles, the dimensions are not related to . In real
world applications, it is common to change the number of data points and data distri-
bution. But it is rare that the data structure (dimensions) will change, so dimensions
do not have too much effect to . In the next section, we will use experiments to
confirm the arguments in statement 1.

Although it is hard to give a precise value about , we can use experiments to es-
timate it. In this section, we first give the statement about how to compute , and in
the next section, we use experiments to confirm this statement.

Statement 2: Given a database D, there are s data bubbles, and is the standard
deviation of the data summarization index for all data bubbles in . There is

 =0.546/s.
Statement 2 claims that is also only decided by the number of data bubbles and it

is inverse proportional to s. And the correlation coefficient is 0.546. Using theorem 1,
the above formula in statement 2 can also be written as =0.546μ .

Using these statements and theorem, we can give a fully dynamic incremental data
bubble maintenance algorithm. This algorithm can deal with the change to the number
of points or data bubbles, which can not be dealt with in paper [12]. We can dynami-
cally increase or decrease the number of data bubbles or keep it unchanged when the
original database is updated.

Figure 2 shows the pseudo code for this algorithm. We first update the existing
data bubbles according to data deleting and inserting. If need to change the number of
data bubbles, we increase or decrease the number of data bubbles to meet the condi-
tion of new data bubble number. Next, according to the new data bubble number we
compute the new μ and based on theorem 1 and statement 2. And we use the new
μ and to decide which data bubbles are good or over-filled. The sequence of syn-
chronized merging and splitting of data bubbles is repeated after updating the data-
base with each batch of insertions and deletions.

3 Experiments

In this section, we perform an extensive evaluation to confirm our statements pre-
sented in section 2, and show the efficiency of our new method for incremental data
bubble maintenance in hierarchical clustering. All results in this section are average
values of 10 repetition tests.

First we give an experiment to illustrate that the standard deviation of data summa-
rization index is independent to the number of points. Figure 3 shows the relationship
between the number of points and standard deviation. We use a 2-dimensional data-
base, and choose 100 data bubbles, the points are randomly generated. According to
theorem 1, the mean of data summarization index is 0.01. In figure 3, the trend of the
standard deviation with the increase of the number of points is nearly a straight line.

Furthermore, we use the following formula to define the difference between the
maximum and minimum standard deviation. And the difference can also give us some
indication about the relationship between standard deviation and other factors. The
difference in figure 3 is about 4.6%. Thus, we can say that the standard deviation of

418 B. Liu et al.

data summarization index is independent to the number of points, which confirms our
statement 1.

)minimum maximum(

2*minimum)-(maximum
 difference

+
=

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

number of points

st
an

da
rd

 d
ev

ia
ti
on

Fig. 3. The standard deviation for different number of points in database

Figure 4 gives the relationship between the dimensions of points and standard de-
viation of data summarization index. We use 10000 points and 100 data bubbles for
different dimensions, and the points are randomly generated. The mean of the data
summarization index is 0.01. In figure 4, the trend of the standard deviation with the
increase of the dimensions is also nearly a straight line. The maximum and minimum
standard deviation’s difference is about 7.1%. Thus, we can say that the standard
deviation of data summarization index is independent to the dimensions of points,
which confirms our statement 1. Because for most real world applications, the dimen-
sions of point rarely change, so we can ignore the effect of this factor when incremen-
tally building data bubbles.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

2 3 4 5 6 7 8 9 10

dimenison

st
an

da
rd

 d
ev

ia
ti
on

Fig. 4. The standard deviation for different dimensions of points

Figure 5 gives the relationship between the distribution of points and standard de-
viation of data summarization index. We use 10000 points and 100 data bubbles for
2-dimensional database. In this experiment, we generate seven types of data distribu-
tion: Random, two clusters (2clus), four clusters (4clus), two clusters where each
cluster contains two sub clusters (2clus2sub), four clusters where each cluster con-
tains two sub clusters (4clus2sub), two clusters where each cluster contains four sub

 Dynamic Incremental Data Summarization for Hierarchical Clustering 419

clusters (2clus4sub), and four clusters where each cluster contains four sub clusters
(4clus4sub). In figure 5, the standard deviation is also nearly a straight line. The
maximum and minimum standard deviation’s difference is about 1.7%. Thus, we can
say that the standard deviation of data summarization index is independent to the
distribution of points, which confirms our statement 1. Also, we confirm paper [12]’s
assumption, where they use this conclusion but not state explicitly.

0

0.001
0.002

0.003
0.004

0.005
0.006
0.007
0.008
0.009
0.01

random 2clus 4clus 2clus2sub 4clus2sub 2clus4sub 4clus4sub

st
an

da
rd

 d
ev

ia
ti
on

Fig. 5. The standard deviation for different distribution of database

Now we discuss the relationship between the number of data bubbles and standard
deviation. Figure 6 gives the line representing the multiplication of standard deviation
() and the number of data bubbles (s). In this experiment, we use 50000 2-
dimensioal points which are randomly generated. Figure 6 shows that (bubble
num)*(standard deviation) is nearly a straight line. Then we can speculate that the
standard deviation is inverse proportional to the number of data bubbles. So there is

=k/s. Using linear regression analysis, we can give an estimation that k=0.546.
Therefore the statement 2 in section 2 is acquired.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000

the number of data bubbles

(b
ub

bl
e

nu
m

)*
(s

ta
nd

 d
ev

ia
tio

n)

Fig. 6. The relationship between the standard deviation and the number of data bubbles

Above experiments confirm the statement 1 and 2 in section 2. Thus, when we
maintain data bubbles incrementally, we know which factors will affect the quality of
data bubbles. And using these conclusions we can dynamically build data bubbles.

To further analyze how our scheme of incremental data bubbles given in figure 2
affects the quality of the data summarization technique, we measure the quality and

420 B. Liu et al.

effectiveness of the incremental data bubbles by studying their effect on the perform-
ance of a clustering algorithm relative to its performance when using completely
rebuilt data bubbles. After each batch of update, we summarize each database of the
current points by building separate incremental and completely rebuilt data bubbles.
Next OPTICS is applied to these data bubbles separately to generate the reachability
plots of the completely rebuilt and incremental clustering structures. The clusters are
extracted from these plots using a modified version of an automatic method devel-
oped in [4]. The performance of OPTICS is determined using the F score measure
[13] (where F = 2*p*r/(p+r), p is precision and r is recall).

In table 1, we give the experimental results about the F score comparison between
complete rebuilt and incremental update. The number of points in database is in-
creased from 10k to 100k gradually, and we also change the distribution of points
similar to the experiment of figure 5. We keep the number of data bubbles propor-
tional to the number of points, where the compression factor is 100, which means the
number of data bubbles is increased from 100 to 1000. Therefore, in this experiment,
the numbers of points and data bubbles are all changed, which can not be dealt with in
paper [12].

We notice from Table 1 that the F score of the clustering algorithm (OPTICS) us-
ing our dynamic incremental scheme is always very similar to (and sometimes
higher than) the F score when using completely rebuilt data bubbles. Thus, our
scheme for dynamically maintaining the incremental data bubbles is effective in pre-
serving the quality of the clustering algorithm as measured by the F score.

Table 1. Comparison of performance using complete and incremental construction

 complete incremental

Number of
points

number of
data bubbles

mean standard
deviation

mean standard
deviation

10k 100 0.84798 0.047775 0.802546 0.066559

20k 200 0.831402 0.05445 0.826384 0.068536

30k 300 0.85953 0.078435 0.762816 0.063264

40k 400 0.810414 0.073953 0.83152 0.068132

50k 500 0.783372 0.044135 0.766926 0.04517

60k 600 0.873392 0.0572 0.818438 0.067877

70k 700 0.77767 0.070965 0.810492 0.067218

80k 800 0.826786 0.075447 0.8377 0.0582

90k 900 0.839904 0.04732 0.875772 0.067626

100k 1000 0.831828 0.046865 0.795815 0.05529

4 Conclusions

In this paper, we have discussed the data summarization index and presented a fully
dynamic scheme for incrementally maintaining data summarization. We show that the
data summarization index is independent to the number of points, the distribution of

 Dynamic Incremental Data Summarization for Hierarchical Clustering 421

points, and the dimensions of points in the database. It is only related to the number of
data bubbles and inverse proportional to it. An extensive experimental evaluation for
various cases confirm our statements, and show that the incremental data bubbles
provide an efficient data summarization technique for dynamically changing large
databases, and is effective in preserving the quality of the clustering algorithm.

References

[1] MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observa-
tions. In 5th Berkeley Symp. Math. Statist. Prob., 281-297, 1967.

[2] Ankerst, M., Breuing, M., Kriegel, H-P., Sander, J. OPTICS: Ordering Points to Identify
the Clustering Structure. In SIGMOD’99, 49-60, 1999

[3] Sibson, R. SLINK: An Optimally Efficient Algorithm for the Single-link Cluster Method.
The Computer Journal, 16(1): 30-34, 1973.

[4] Sander, J., Qin, X., Lu, Z., Niu, N, Kovarsky, A. Automated Extraction of Clusters from
Hierarchical Clustering Representations. PAKDD’03.

[5] Breuing, M., Kriegel, H-P, Kroger, P., Sander, J. Data Bubbles: Quality Preserving Per-
formance Boosting for Hierarchical Clustering. In SIGMOD’01, 79-90, 2001.

[6] Zhang, T., Ramakrishnan, R., Linvy, M. BIRCH: An Efficient Data Clustering Method
for Very Large Databases. SIGMOD’96, 103-114, 1996

[7] Chen, C., Hwang, S., Oyang, Y. An Incremental Hierarchical Data Clustering Algorithm
Based on Gravity Theory. In 6th Pacific Asia Conference on Knowledge Discovery and
Data Mining, 2002.

[8] Ester, M., Kriegel, H-P., Sander, J. Wimmer, M., Xu, X. Incremental Clustering for Min-
ing in a Data Warehousing Enviornment. VLDB’98, 323-333, 1998.

[9] Ester, M., Kriegel, H-P., Sander, J., Xu, X. A Density Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. KDD’96, 226-231, 1996.

[10] Widyantoro, D. H., Ioerger, T. R., Yen, J. An Incremental Approach to Building a Clus-
ter Hierarchy. ICDM’02, 705-708, 2002.

[11] Charikar, M., Chekuri, C., Feder, T., Motwani, R. Incremental Clustering and Dynamic
Information Retrieval. In 29th Symposium on Theory of Computing, 626-635, 1997.

[12] Samer Nassar, Jorg Sander, Corrine Cheng. Incremental and Effective Data Summariza-
tion for Dynamic Hierarchical Clustering. SIGMOD’04, 467-478, 2004

[13] Larsen, B., Aone, C. Fast and Effective Text Mining Using Linear-time Document Clus-
tering. In KDD’99, 16-22, 1999.

Classifying E-Mails Via Support Vector Machine

Lidan Shou1, Bin Cui2, Gang Chen1, and Jinxiang Dong1

1 College of Computer Science, Zhejiang University, Hangzhou, 310027, P.R. China
{should, cg, djx}@cs.zju.edu.cn

2 School of Computing, National University of Singapore, Singapore 117543
cuibin@comp.nus.edu.sg

Abstract. For addressing the growing problem of junk E-mail on the In-
ternet, this paper proposes an effective E-mail classifying technique. Our
work handles E-mail messages as semi-structured documents consisting
of a set of fields with predefined semantics and a number of variable
length free-text contents. The main contributions of this paper include
the following: First, we present a Support Vector Machine (SVM) based
model that incorporates the Principal Component Analysis (PCA) tech-
nique to reduce the data in terms of size and dimensionality of the in-
put feature space. As a result, the input data become classifiable with
fewer features, and the training process has faster convergence speed.
Second, we build the classification model using both the C-support vec-
tor machine and v-support vector machine algorithms. Various control
parameters for performance tuning are studied in an extensive set of ex-
periments. The results of our performance evaluation indicate that the
proposed technique is effective in E-mail classification.

1 Introduction

As the Internet grows at a tremendous speed, E-mail has become a widely used
form of communication. E-mail has gained enormous popularity not only as
a means for letting friends and colleagues exchange messages, but also as a
medium for conducting electronic commerce. Unfortunately, the convenience and
inexpensiveness of E-mail also make it overused by companies, organizations or
people to promote products and spread information, which serves their own
purposes. The unsuspecting mailboxes of users may often be crammed with E-
mail messages a large portion of which are not of interest to them. Searching for
interesting messages out of a thousand unread ones is tedious and annoying. As
a consequence, the need for a personal E-mail filter is pressing.

For the problem of classifying E-mail documents, the objects to be classified
are semi-structured textual documents consisting of two portions. One portion
is a set of structured fields with well-defined semantics and the other portion is
a number of variable length sections of free text. We would like to emphasize
this feature in our study because information from both portions is important.
In the case of E-mail messages, the fields in the mail header such as the sender
and the recipient are very informative when we determine how interesting the

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 422–434, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Classifying E-Mails Via Support Vector Machine 423

message part is. On the other hand, the interestingness of an E-mail message
from the same sender also depends on the content of the body message.

There have been a number of approaches developed for E-mail classification
[8, 4, 10, 2]. In this paper, we propose a novel approach to classifying E-mails us-
ing the Support Vector Machine (SVM). In particular, we treat E-mail messages
as a specific kind of plain text files with structured features, the implication
being that our feature set is relatively large (since there are thousands of dif-
ferent terms in different E-mail files). To speed up the process and reduce the
space/computational cost, we enhance SVM with Principal Component Analysis
(PCA) [7] which is used as a preprocessor to reduce the data in terms of dimen-
sionality so that the input data becomes more classifiable. Note that, PCA only
pre-processes the input features to SVM classification model. We also evalu-
ate the performance of E-mail classification with two SVM mechanisms, i.e. C-
support vector machine and v-support vector machine algorithms. We conduct
a series of experiments on a relatively large dataset composed of real personal
E-mails, and discuss the behaviors of the classification approach in detail. The
experimental results show that this approach provides superior performance in
terms of recall and precision.

The rest of this paper is organized as following: The next section introduces
some related work. In section 3, we present our method for E-mail classification.
In sections 4, we present the experimental results and the analysis. Finally, we
give the conclusions in section 5.

2 Related Work

This section reviews related work in the area of junk E-mail filtering and Prin-
cipal Component Analysis. There are a lot of research works on junk E-mail
filtering in the literature [2, 10, 4, 3]. Sahami et al. proposed a Bayesian approach
to filtering junk E-mail in [10]. The proposal considers domain specific features
in addition to raw text of E-mail messages. It enhances the performance of a
Bayesian classifier by handcrafting and incorporating many features indicative
of junk E-mail. The authors proposed two classifications as the Probabilistic
Classification and the Domain Specific Properties. Representing each individual
message as a binary vector, the proposed method detects junk mail in a straight-
forward manner using a given pre-classified set of training messages. In [2], the
authors compared methods for learning text classifiers focusing on the kinds of
classification problems that might arise in filtering personal E-mail messages. In
[4], the E-mail documents to be classified are regarded as semi-structured textual
documents comprising two parts. One part is a set of structured fields with well-
defined semantics, while the other is a number of variable-length sections of free
text. However, not many text classifiers take both portions into consideration.
Moreover, conventional classification techniques may not be effective when han-
dling variable-length free text. In [3], a model based on the Neural Network was
proposed, which handles fields which having pre-defined semantics as well as the
variable length free-text fields for obtaining higher accuracy. In [5], the authors

424 L. Shou et al.

propose an E-mail classifying system using Support Vector Machine. The results
outperform other three conventional methods in that it provides acceptable test
performance in terms of accuracy and speed, without compromising with long
training time.

In this paper, we propose a new model based on a hybrid technique to im-
prove the efficiency of the system, which integrates Support Vector Machine and
Principal Component Analysis together. PCA [7] is a widely used method for
applications in signal/image filtering and pattern classification. It can transform
data in the original space into another feature space, reduce the dimensionality
of the input data, while keeping the most significant information. It examines
the variance structure in the dataset and determines the directions along which
the data exhibits high variance. The first principal component accounts for as
much of the variability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible. Working as a pre-
processor of SVM E-mail classifier, it can make the input data more classifiable
and reduce the dimensionality of the training and validation dataset by using
only the first several features, thereby speeding up the convergence of the train-
ing process, e.g. 10% number of features after PCA transformation can capture
more than 95% information of the data.

3 The E-Mail Classification Technique

In this section, we discuss the main phases of proposed method for E-mail classifi-
cation in detail. We first introduce the background information for our technique.
Second, a model for E-mail classification based on SVM is presented. Third, we
describe how to integrate the PCA technique in the SVM-based model.

3.1 Support Vector Machine

The Support Vector Machine (SVM) [1] can be simply regarded as a task that
is to find an optimal hyperplane which linearly separates the sample set in their
feature space. More precisely, suppose we have a sample set, say Xi, (i = 1, 2,
, N), where Xi is a k-dimensional vector which means that X can be expressed
as a vector of k features. Then, we can map the sample space into their k-
dimension feature space. For each sample Xi, we assign a target value or class
label di with value -1 or 1. After that, we try to find a hyperplane which linearly
separates the samples according to their target values. There might be many
hyperplanes satisfying the requirement if there exists one such hyperplane. For
these hyperplanes, we define the margin of separation, denoted as R, as the
separation between the hyperplane and the closest data points. The goal of
SVM is to find the optimal hyperplane with the maximum margin of separation.

Here, we give some more details of SVM-based classification algorithms. SVM
is a relatively new learning approach to solve two class pattern recognition prob-
lems based on structural risk minimization principles. Figure 1 shows a very
simple example of SVM classifier. Each circle in the figure represents a docu-
ment in the feature space.

Classifying E-Mails Via Support Vector Machine 425

Hyperplane

R

Support Vectors

Optimal

Fig. 1. Example of SVM classifier

The algorithms to obtain the optimal hyperplane have been well studied, such
as using quadratic programming technique, e.g. method of Lagrangian multipli-
ers. We show one method as follows:

Given: training sample (di, yi) i = 1 ... N, where di, is a training document and
yi is the desired output, either 1 or -1.

– The problem is to solve for w and b:
wT .di + b ≥ 0, for yi = 1
wT .di + b < 0, for yi = −1
where w is the weight vector and b is the bias.

– The decision formula is g(d) = wT .d + b and the hyperplane for decision is
described by equation g(d) = wT .d + b = 0

3.2 Model of SVM for E-Mail Classification

The work on E-mail filtering can be mapped onto the framework of text classifi-
cation. An E-mail message is regarded as a document. A judgment of whether it
is interesting or not is viewed as a class label given to the E-mail document. The
processing via the SVM involves three steps, namely pre-processing, training and
testing, as shown in figure 2. The Feature Extraction box refers to pre-processing,
which we will discuss shortly. For the training data, once we obtain the selected
features, we feed them into the SVM and generate a classifier. The testing data
are used to validate the efficiency of the SVM model. We adopt two classes
of SVM algorithms, namely the C-support vector machine algorithm and the v-
support vector machine algorithm, to handle the training problem. Details about
these algorithms would be discussed shortly.

The reasons that we use SVM are described as following: (1) Firstly, when
training E-mail classifiers, one has to deal with very many features. As SVM
uses over-fitting protection, which does not necessarily depend on the number
of features. It has the potential of handling these large features. (2) Secondly,
there are few irrelevant features in E-mail classification. One way to avoid these
high dimensional input spaces is to assume that most of the features are irrele-
vant. The feature selection process tries to determine these irrelevant features.

426 L. Shou et al.

Classifier

Feature

Extraction

SVM

Learning

OutputTesting: data

Training: data Feature vectors

Feature vectors

Fig. 2. The overview of the SVM based method

Unfortunately, in E-mail categorization, there are only very few irrelevant fea-
tures. A good classifier should combine many features (learn a “dense” concept),
while that an aggressive feature selection process may cause loss of information.
(3) Thirdly, document vectors are usually sparse. For each E-mail document, the
corresponding document vector contains only few entries that are non-zero. SVM
is well suited for problems with dense concepts and sparse instances. (4) Finally,
most text categorization problems are linearly separable, and the motivation of
SVM is to find the optimal linear separators.

The dataset is divided into the following disjoint sets:

1. Training set: This dataset is used to train the SVM. In the pre-processing
stage, we employ cross-validation and early stopping before presenting the
data to the SVM for training or testing.

2. Validation set: The error of the SVM output averaged over this dataset is
used to decide when the training algorithm has found the optimal approxi-
mation to the data.

3. Testing set: After the validation process, the SVM classifier is applied to the
testing set, and the performance over the testing set is collected.

Pre-processing of the Dataset. E-mail messages are semi-structured docu-
ments that possess a set of structured fields with predefined semantics as well
as a number of variable-length free text fields. The headers of a message are
structured fields and usually contain information pertaining to the document,
such as the sender, the date, the domain etc. The main contents of the message
are variable length free text fields, such as the subject and the body. Both the
structured fields and the free-text portion may contain important information
for determining the class which a message belongs to. Therefore, an effective E-
mail classifier should be able to collect features from both the structured fields
and the free text. In our work, we generate two kinds of input features for each
E-mail in the dataset. The features are as follows:

1. Structured features are features represented by structured fields in the header
part of an E-mail message. These include:
– Attachment: If the attachment occurs in the E-mail, true; else, false.
– Content Type: If the content type of E-mail is “plain text”, true; else

false.

Classifying E-Mails Via Support Vector Machine 427

– Sender Domain: The sender domain from E-mail header, if it contains
“edu”, 1 ; contains “com”, 2 ; else 3.

– FW: “Subject” of E-mail header starts with word “FW”, true, else false.
– Re: “Subject” of E-mail header starts with word “Re”, true, else false.
– To group: The E-mail is sent to a group, true; else, to a single person,

false.
– CC: The content of “CC” in the header of E-mails is not empty, true;

else, false.
2. Textual features. We use general text processing method to handle the textual

features. The terms occur in the body of E-mails and the “Subject” of E-
mail are extracted and preprocessed. These data are regarded as the features
of the body of E-mails. We use Document Frequency Threshold to remove
some features that have little influence on classification work. In this work,
we extract 2160 text features most frequently used. We represent the feature
values of the term in two methods: (1) the simple TF-IDF (Term Frequency-
Inverse Document Frequency) method; and (2) the binary method, where a
value +1 or -1 indicates if the word occurs in the document or not.

Training of SVM. With the results of pre-processing, we perform the training
of SVM and generate a classifier for E-mail filtering. A two-dimensional array of
feature vector is obtained for interesting and uninteresting E-mail messages. The
vector contains features extracted from both the message header and the body.
In this work, we use the C-support vector machine and the v-support vector
machine algorithms to learn the SVMs. These two methods are briefly described
in the following.

There are two class labels {−1, 1} as the result space for the classification.
Given L training vectors xi ∈ Rn, where n is the dimensionality of the vector,
i = 1, . . . , L, there are L labeled training examples: (x1, y1), . . . , (xL, yL), where
yi ∈ {−1, 1}. The primal problem of C-support vector algorithm is defined as:

min(
1
2
WT W + C

L∑
i=1

ξi)

subject to following constraints:

yi(WT Φ(xi) + b) ≥ 1 − ξi , where ξi ≥ 0, (i = 1, . . . , L)

Parameter C is used to penalize variable ξi. However, it is often hard to select
an appropriate C value. Schölkopf et al. proposed the v-support vector classifica-
tion in [11]. They introduce a new parameter v which allows one to control the
number of support vectors and errors. The primal problem of v-SVM is defined
as:

min(
1
2
WT W − vρ +

1
L

L∑
i=1

ξi)

subject to following constraints:

yi(WT Φ(xi) + b) ≥ ρ − ξi , where ρ ≥ 0 and ξi ≥ 0, (i = 1, . . . , L)

428 L. Shou et al.

More specifically, it has been proved that parameter v is an upper bound of
the fraction of the margin errors and a lower bound of the fraction of support
vectors.

Testing of SVM. In the testing stage, we will test the efficiency of the classifier.

1. Like the process in the training part, we generate a feature vector from the
header and the body of the message being tested.

2. We apply the classifier, which has been trained in the training stage, to the
feature vector for each E-mail to compute the output class label.

3.3 Principal Component Analysis of Datasets

We use the PCA method to accelerate the training process of the SVM. The
purpose of using PCA is to reduce the dimensionality of the feature space while
retaining the most feature information. Finding the principal components is
basically a mathematical problem of finding the principal singular vectors of the
input dataset using the singular value decomposition method.

In our approach, we use the PCA method as following: Firstly, in the training
phase, we apply the principal component analysis on the training and validation
dataset. We transform the training and validation dataset into the singular vector
space and calculate the eigenvectors and eigenvalues for the covariance matrix
of the dataset. The dataset for the new data space can then be produced by
multiplying the eigenvector matrix with the original data. In the experiments,
we select a number of the most principal components in the new data space
as the dataset with reduced dimensionality. Secondly, in the testing phase, we
transform the testing dataset into the same space as the training and validation
data. This is done by simply multiplying it with the eigenvector matrix produced
in the first step.

4 Experimental Results

In the experiments, we use the mySVM software tool for computation of the
C-support vector machine and the v-support vector machine algorithms [9].
MySVM uses a novel decomposition algorithm that attains optimality by solving
a sequence of much smaller sub-problems. It proved to be better to iteratively
decompose the problem into a small working set S and minimize the target
function on the working set only, keeping the other variables fixed [6].

All the experiments have been conducted on a SUN E450 machine with SUN
OS 5.7. We have used a total of 2000 personal E-mails as the dataset for our
experiments. We manually label each E-mail as interesting or uninteresting for
the experiments. The number of messages that are interesting is 1500, while that
of those uninteresting is 500. The whole dataset was split into three portions
randomly for different purposes, i.e. training set, validation set, and testing set.
The meanings of these datasets are self-explanatory.

We use recall and precision as the performance metrics of the classifier. Al-
though the training stage is relatively more time-consuming, the testing stage

Classifying E-Mails Via Support Vector Machine 429

is very efficient. The recall and precision for interesting E-mails are defined as:
recall = Nii

N , precision = Nii

Ni
, where N is the total number of interesting E-

mails, Ni is the total number of E-mails classified as interesting, and Nii is the
number of correctly-classified interesting E-mails.

4.1 Effect of Feature Selection

As we described before, the E-mails have structural features and free-text content
features. The subject of E-mail message usually contains much more information
about whether the E-mail is interesting or not. Therefore, if subjects are given
double weights, the result may be more accurate. The primary content features
which appear at least in four messages have 2160 dimensions. In other words,
there are totally 2160 word features. We can then obtain the following schemes
(The following strings in the parentheses are the respective notations for them):

1. The scheme with only body and subject features (sub+con);
2. The scheme with structure features and E-mail body features (str+con);
3. The scheme with structure features, subject features and body features

(str+sub+con);
4. The scheme with structure features, double weighted subject features and

the body features (str+dousub+con);
5. The scheme with structure features, triple weighted subject features and the

body features (str+3sub+con).

In each scheme, the dataset has two representations, i.e. TF-IDF and binary
form. The results are shown in table 1 and plotted in figure 3.

Table 1. The performance of various feature selection schemes

TF-IDF Binary
precision(%) recall(%) precision(%) recall(%)

sub+con 95.83 95.60 96.5 94.82
str+con 91.33 90.76 91.24 90.96

str+sub+con 96.17 95.60 96.83 95.60
str+dousub+con 96.33 95.60 96.83 95.60
str+3sub+con 96.17 95.60 96.83 95.60

From the results, we can see that the binary feature of the structure, sub-
ject and body of E-mail has the best performance. From the results of scheme
“sub+con” and “str+con”, we can see that the structured features contain less
classification information than the subject features. However, comparing the re-
sults of “sub+con”, “str+sub+con”, and “str+dousub+con”, we can assert that
the structured features do contribute to improving the classification problem. It
is important to note that the structured features and the subject features con-
tain a lot of classification information, despite the fact that, when more weight
is put on the subject features, the overall performance improves only marginally.

430 L. Shou et al.

sub+con

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

str+3sub+con

str+dousub+con

str+sub+con

str+con

Pr
ec

is
io

n
(%

)

TF−IDF
Binary

 90

(a) Precision

 100

str+3sub+con

str+dousub+con

str+sub+con

R
ec

al
l(

%
)

str+con

sub+con

TF−IDF
Binary

 94

 99

 98

 97

 96

 95

 93

 92

 91

 90

(b) Recall

Fig. 3. The precision and recall of various feature selection schemes

4.2 Effect of PCA

We use the 2160 features of the dataset, and do the principal component analy-
sis and generate the new feature space with different dimensions (PCs). The
performance of the SVM after PCA is depicted in figure 4.

The PCA method allows us to select the most important features for the
classification effectively and efficiently. From the results, we can see that the
average precision and recall of E-mail classification are above 92% even for the
first 28 features, compared with about 95% when the PCA method is not used,
where 2160 features are used (as shown in table 1). Moreover, when the number
of dimensions is small(< 200), the performance after PCA processing is very
stable. When the number of dimensions is 100, the result is near optimal, i.e.
as good as full features used. Furthermore, the training time and space cost
is only around 5% of the original method when PCA is not used. From these
results, we can see that PCA could select a small set of features which can
describe the whole features of the dataset. Therefore, the time and space costs
could be reduced without compromising the performance. We also observe that
adding many “unimportant” features to the SVM does not necessarily improve

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Pe
rc

en
ta

ge
(%

)

No. of dimensions

Precision
Recall

Fig. 4. The effect of PCA

Classifying E-Mails Via Support Vector Machine 431

the performance of the classification, as the performance does not improve as
the number of dimensions increases.

4.3 Results of the C-SVM

In the C-support vector algorithm, parameter C affects the performance for the
case when the training data is not linear separable by a linear SVM. In general,
there should be an optimal value for this parameter. However, the optimal value
of C cannot be obtained by examining the training data and it is unfair to
do so by examining the test data. Only by using a validation set, would it be
possible to optimize C. The experiment is conducted as follows: (1) First, use
the default C, conduct the experiment to solve the optimal problem, and then
find the performance on the validation set; (2) Pick another C and repeat step
(1) until the performance on the validation set is optimal.

We use the dot and the radial kernel in this experiment. We also use binary
feature vectors composed with structure features, subject features and body
features. The result of the dot kernel algorithm is shown in table 2.

Table 2. Dot kernel training

C precision (%) recall(%) #support vectors #Bounded SVs
600 96.83 95.60 149 2
60 96.83 95.60 148 2
6 96.83 95.60 148 2

0.6 96.83 95.60 148 2
0.06 96.54 95.60 152 2
0.006 96.33 95.60 179 9
0.0006 93.5 95.60 209 25
6e-5 89.5 96 249 105

When parameter C is decreased, the number of support vectors increases.
MySVM provides the mechanism to search for the optimal C by adding or mul-
tiplying some delta increase to the current C value. From the table we can see
that when C is set bigger than 0.6, there is no improvement of the precision
performance. Therefore, we can search for the optimal C-value between 6e-5 and
0.6 with pace 5 (by multiplication). The optimal C is 0.1875, with the respective
performance results as follows: precisionop = 96.83%, recallop = 95.60%.

Table 3. Radial Kernel Training

γ = 0.6 γ = 0.8 γ = 1 γ = 1.2
C precision recall #SV precision recall #SV precision recall #SV precision recall #SV

600 81 80 445 81 90 444 81 90 444 81 90 444
6 81 80 444 81 90 444 81 90 444 81 90 442

0.06 80 90 443 80 90 443 80 90 443 80 90 442
6e-5 80 90 186 80 90 186 80 90 186 80 90 186

432 L. Shou et al.

Table 3 shows the results of the radial kernel algorithm. Same as the dot
kernel algorithm, the number of bounded SVs increases as C decreases (the result
is not presented here). However, when parameter C is increased, the precision
and the number of support vectors both increases. This is different from the
dot kernel support vector machine. When C is greater than 6, the performance
improves little as C increases. From the three criteria listed in the table, namely
the precision, the recall, and the number of support vectors, we can see when
γ is in [0.8, 1.0], the performance is optimal. We also note that the dot kernel
algorithm is more suitable for E-mail classification compared to the radial kernel
algorithm, and we only show the results of dot kernel algorithm in the following
part of the paper.

4.4 Results of the v-SVM

Parameter v controls the upper bounds of the fraction of errors and the lower
bounds of the fraction of support vectors. An increase in v allows for more
errors and wider margin. The larger the v value is selected, the more points are
allowed to lie inside the margin. As for the kernel, we use the popular radial
kernel function k(x, y) = exp(−γ‖x − y‖2), where γ = 1.0. The result is shown
in table 4. Although the v-SVM was proposed to better control the number of
support vectors and errors, it does not show better performance than C-SVM,
i.e. the C-SVM algorithm is more suitable in E-mail classification scenario.

Table 4. v-support training results

v 0.1 0.2 0.3 0.4 0.5
Precision 0.95 0.95 0.94 0.93 0.92
Recall 0.94 0.94 0.94 0.93 0.91

margin (ρ/‖W‖) 0.0002 0.0005 0.0007 0.0009 0.0023
fraction of SVs 0.23 0.28 0.41 0.47 0.58

Table 5. Comparison with other schemes

precision recall space time
PSVM 96.8% 96% 0.4K 0.02S

NN 93% 95% 1K 0.03S
SVM 95% 95.6% 8.6K 0.1S

Decision Tree 90% 91% 8.6K 0.1S
Bayesian Classifier 91% 91% 8.6K 0.1S

4.5 Comparison with Other Schemes

We also compare our model with the Decision Tree [4], the Naive Bayesian Clas-
sifier method [10], the Neural Network method [3] and the original SVM method
[5]. Because of different feature selections, we only compare the optimal perfor-
mance for the five methods. To clarify the presentation, we name our method as

Classifying E-Mails Via Support Vector Machine 433

PSVM which adopts C-support vector algorithm, features selected from “struc-
tured fields+subject+body”, binary feature representation and enhanced with
PCA.

Table 5 shows the performance comparison with other schemes, where the
space is the feature size used for classification. We can see that PSVM method
yields comparable precision and recall rate with NN and original SVM methods,
but is more effective in terms of space and CPU cost. The reason is that our pro-
posed PSVM method captures all the features including structure information,
subject and body text. Additionally, the PCA transformation makes the input
data more classifiable with fewer features.

5 Conclusion

This paper models E-mail messages as a combination of structured features and
textual features, which motivates the work of classifying such documents based
on these features. We presented a SVM model which embeds PCA as a preproces-
sor to E-mail classification. Different ways of feature selection for the model were
also evaluated. Our study indicated that the classification process could be en-
hanced by selecting features from both the structured part and the content part
of the E-mails. The experiments showed that our SVM model provided good
performance in filtering junk E-mails.

For future work, we plan to incorporate other techniques (e.g. E-mail address
analysis, filthy word identification) into our method for better performance in
classification. We can also expand the work from 2-class classification to multiple-
class method, and further to a hierarchy of classes as well.

References

1. C. J. C. Burges: A Tutorial on Support Vector Machine for Pattern Recognition
Data Mining and Knowledge Discovery, 2(2), (1998) 121–167

2. W. W. Cohen: Learning rules that classify e-mail. Proc. AAAI Spring Symposium
on Machine Learning in Information Access, (1996) 124–143

3. B. Cui, A. Mondal, J. Shen, G. Cong and K.-L. Tan: On Effective E-mail Clas-
sification via Neural Networks. Proc. Database and Expert Systems Applications
(DEXA), Copenhagen, Denmark, (2005) 85–94

4. Y. Diao, H. Lu and D. Wu: A Comparative Study of Classification Based Personal
E-mail Filtering. Proc. of PAKDD, Kyoto, Japan, (2000) 408–419

5. H. Drucker, D. Wu and V. N. Vapnik: Support Vector Machine for Spam Catego-
rization. IEEE Trans. on Neural Networks, 10(5), (1999) 1048–1054

6. T. Joachims: Making large-Scale SVM Learning Practical. Advances in Kernel
Methods - Support Vector Learning, Chapter 11, MIT Press (1999)

7. I. T. Jolliffe: Principal Component Analysis. Springer-Verlag, (1986)
8. S. Kiritchenko and S. Matwin: E-mail Classification with Co-Training. Proc. of

CASCON, Toronto, Canada, (2001) 192–201

434 L. Shou et al.

9. S. Rüping: mySVM-Manual. University of Dortmund, Lehrstuhl Informatik 8,
(2000) http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/

10. M. Sahami, S. Dumais, D. Heckerman and E. Horvitz: A bayesian approach to
filtering junk e-mail. Proc. AAAI Workshop Learning for Text Categorization,
Madison, Wisconsin, (1998)

11. B. Schölkopf, A. J. Smola, R. C. Williamson and P. L. Bartlett: New support vector
algorithms. Neural Computation, 12, (2000) 1207–1245

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 435 – 446, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Novel Web Page Categorization Algorithm Based on
Block Propagation Using Query-Log Information

Wenyuan Dai, Yong Yu, Cong-Le Zhang, Jie Han, and Gui-Rong Xue

Apex Data & Knowledge Management Lab
Department of Computer Science and Engineering

Shanghai Jiao Tong University, 200240, Shanghai, China
{dwyak, yyu, zhangcongle, hanjie, grxue}@apex.sjtu.edu.cn

Abstract. Most existing web page classification algorithms, including content-
based, link-based, or query-log analysis methods, treat the pages as smallest
units. However, web pages usually contain some noisy or biased information
which could affect the performance of classification. In this paper, we propose a
Block Propagation Categorization (BPC) algorithm which deep mines web
structure and views blocks as basic semantic units. Moreover, with query log
information, BPC propagates only suitable information (block) among web
pages to emphasize their topics. We also optimize the BPC algorithm to signifi-
cantly speed up the block propagation process, without losing any precision.
Our experiments on ODP and MSN search engine log show that BPC achieves
a great improvement over traditional approaches.

1 Introduction

Classifying web pages into meaningful semantic categories plays an important role in
the domain of web mining. The content-based classification algorithms only concern
word occurrence statistics of document samples; the link-based categorization meth-
ods utilize the relationships between different web pages; and the traditional query log
analysis methods improve the performance of categorization using the associations
between queries and web pages. However, all these categorization techniques have
some shortcomings. First, they failed to consider that most web pages contain noisy
information. Second, not like pure text, huge amount of web pages are composed by
different semantic parts. These biased parts will blur the topic of the web pages.
Moreover, through page-like transmission or iterative reinforcement steps, they will
further weaken the categorization performance.

Our motivation is to deeply use the structure of the web to propagate suitable in-
formation among web pages to emphasize each page’ topic, and hence improve the
categorization result. We noticed that web pages are usually composed by multiple
units, including paragraphs, tables, lists, headings and so on. We denote these units as
blocks. In most cases, blocks have purer topics than web pages. Thus, it is nature to
believe, the reason for user to click one page associated with one query is that he was
interested in certain blocks (usually the blocks share some information with
search results’ snippets) of that page rather than the whole. Therefore, query-page

436 W. Dai et al.

association should be looked upon as query-block association essentially. Our opinion
is that if we could find users’ really interested blocks in web pages according to their
queries, and explore the association between queries and blocks, we would deeper
utilize the query log information to further improve the performance of categoriza-
tion. Our experiment results well prove this opinion.

Based on query-block association, we proposed a novel model to make one page
mine blocks close related to itself. Then, through propagating these blocks to the
page, its topic becomes more centralized, and hence the precision of classification
increases. We denote the pages after propagation process as virtual pages. Those
virtual pages, whose topics are purer than before, will be classified instead of the
original pages.

The contributions of our work are:

1. We explored a query-block relationship and thus deeper mining web informa-
tion could be realized;

2. We proposed Block Propagation Categorization (BPC) algorithm to propagate
only useful and related blocks, while traditional link-based methods always
propagate biased information;

3. We optimized the BPC algorithm to reduce the time usage of Block Propaga-
tion, without loss of any accuracy.

To evaluate our algorithm, the experiments are performed on the Open Directory
Project (ODP) data set together with the click-through log from MSN search engine.
The experiments show that, BPC achieves a significant improvement over traditional
approaches, with an excellent performance in time. More details of the experiments
will be reported later.

The rest of the paper is organized as follows. In section 2, we review some related
work on traditional classification techniques. In section 3, we propose our BPC algo-
rithm and explain it in detail. The experimental results are reported in section 4. Fi-
nally, we conclude the whole paper in section 5.

2 Related Work

Among all the related works, the content-based classification methods should be the
most popular ones. kNN [7] is one of the most well-known classifiers, which is based
on the categories assigned to the k nearest training documents to the input. Lewis
[10], Lang [9] and Joachims [11] designed a document classifier by Naïve Bayes
Classifier, and Joachims proposed the methods of using Support Vector Machines
(SVM) [6, 12] to classify documents. However, all these approaches only consider the
content information, while neglecting the ubiquitous relationships among interrelated
objects. Thus, the content-based categorization algorithms are less powerful in web
domain.

In the link-based techniques, learning algorithms are applied to handle both text in-
formation of web pages and hyperlink relationships among them. Slattery et al. [17]
explored the hyperlink topology using an extended HITS algorithm. Similarly, Cohn
et al. [5] and Glover et al. [8] improved the classification performance by combining
link-based and content-based techniques. Chakrabati et al. [2] showed that directly
incorporating words from neighboring page might not improve the categorization

 A Novel Web Page Categorization Algorithm Based on Block Propagation 437

results. Panteleeva [14] filters the neighboring pages in order to take only useful
pages to enrich the pages’ representation and ignore noisy pages that drift the topic of
source page. As pages usually contain noisy information and the relevance of hyper-
links is not high enough, link-based techniques have limited abilities for classifying
web pages.

Analyzing query log information, Beeferman et al. [1] proposed an innovative
query clustering method based on click-through data. They treat click-though data
sets as a bipartite graph and identify the mapping between queries and the associated
URLs. Queries with similarly clicked URLs can be clustered together. Chuang et al.
[4] propose a technique for categorizing web query terms from the click-through logs
into a predefined subject taxonomy based on their popular search interests. Wang et
al. [19] proposed a method of using query click-through log to iteratively reinforce
query and web page clusters, while Xue et al. [18] categorize the query and web page
by iterative reinforcement technique. However, all these approaches treat web page as
basic unit, and bring the noisy or biased information into other web pages, and hence
reducing the categorization performance.

3 Block Propagation Categorization

According to the discussion in Section 2, most traditional methods are dealing with
noisy or biased information in classification, which affects the results of categoriza-
tion. In order to tackle these problem, we propose a Block Propagation Categorization
(BPC) Algorithm which deeply uses the relationship between the heterogeneous web
objects (queries, web pages and blocks), and propagates only useful information
(block) to emphasize the topics of web pages. In our paper, block denotes the unit
composing web pages, such as paragraphs, tables, lists and headings. Compared with
web pages, blocks usually have more centralized topic. We will take advantage of this
property to improve categorization performance.

We first define an interrelated objects model for this problem. Then we explain the
algorithm in detail. Finally, optimization is designed to improve the efficiency.

3.1 Problem Definition

We consider the web as a model contains three types of objects: queries, web pages
and blocks composing these pages. Besides, there also exist query-page, query-block
and page-block relationships.

However, in order to describe the problem clearly, let’s first consider the model
without blocks (only consist of queries and web pages).

The Web Model Without Blocks. Let’s see Figure 1. P = {p1, p2, …, pN} is used to
denote the set of web pages, while each page pi contains ni blocks. Q = {q1, q2, …,
qM} denotes the set of queries. WN M represents the adjacent matrix whose (i, j)-
element wij represents the weight from web page pi to query qj (higher weight means
more relevance).

438 W. Dai et al.

p1 p2

q1

w11
w21

q2 q3

p3

q4

w22

w14 w34 w33

Web pages

Queries

Fig. 1. Interrelation between Queries and Web pages

The Web Model with Blocks. Now, the feature of blocks will be added into the
model. We use the sets Bi = {bij | 1 j ni} (bij denotes the jth block of page pi) and Si
= {sij | 1 j ni} (sij denotes the degree of similarity (See Equation 1) between bij and
pi) to represent the blocks composing pi and their contribution to pi.

p1 p2

q1

b11 b12 b21

w11 w21

s11 s12 s21

Queries

Web pages

Blocks

query’s weight

query-block association

page-block
similarity

Fig. 2. Interrelation between Queries, Web pages and Blocks

Figure 2 shows the interrelation between queries, web pages and blocks. But, there
is a relation we haven’t defined in the figure – that is the query-block association.

Query-Block Association. A many-to-many mapping {<qi, bjk>} is defined to
represents the query-block association between qi and bjk. Here, the query-block
association exists when bjk contains some keywords of qi.

Jordan

Advertisement: …

Michael Jordan is the greatest

basketball player all over the

world. …

Jordan is a small Arab country

with inadequate supplies of water

and other natural resources. …

Query

query-page
association

query-block
association

Web page

Blocks

Fig. 3. Query-Block Association

 A Novel Web Page Categorization Algorithm Based on Block Propagation 439

Figure 3 illustrates the query-block association. The web page on the right contains
three blocks: first is an advertisement; second and third introduce something
about Michael Jordan and the country Jordan. Since there is a query-page association
between the query and the page and the last two blocks contains the keyword
“Jordan”, there are two query-block associations between the query and the last two
blocks.

Based on the web model we defined above, our problem is how to deeply utilize
the relationships between queries, web pages and blocks to enhance the performance
of categorization. Formally, given the graph G = {V = {Q, P, B}, E = {W, R, f}}, we
aim to classify the web pages P into a set of predefined categories.

3.2 Block Propagation Categorization Algorithm

First, we segment each web page into several blocks from the html DOM tree [3].
After removing stop words and feature selection, we establish the interrelated model
between queries, web pages and blocks, as depicted in Section 3.1 and Figure 3.

We propose a novel block propagation method to enhance the topic of each page,
and thus improving the performance of categorization. Our basic idea is that when a
block and a page are simultaneously associated with an identical query (the block
contains some keywords of the query where query-page association already exists),
the block has high possibility to share the same topic with the page. Hence, propagat-
ing the block to the page will reinforce the topic of the page in most cases.

Thus, in the case of blocks and pages associated with one same query, we set a
threshold to propagate the most similar blocks, together with their contributions (See
Equation 1), to the pages during the block propagation process. After this process,
each page may obtain some new blocks. We use virtual pages to denote the pages
after propagation process.

At last, we classify the virtual pages, instead of the original ones, based on their
contents and contribution of blocks.

The block propagation categorization algorithm is described as follow:

Block Propagation Categorization (BPC) Algorithm

1. Segment each web page pi into a set of blocks Bi = {bij | 1 j ni} from html

DOM tree and then establish query-page and query-block association;
2. For each block b,

2.1 For each the query qi that is associated with b,
2.1.1 Propagate the block b to all the qi-associated web pages which are

similar with the block (i.e. block’s contribution to the page is above
a predefined threshold, Equation 1 shows its calculation);

3. After the step 2, we obtain a set of virtual pages VP instead of the original
web page set P.

4. Classify the virtual pages based on their contents and contribution of blocks.

440 W. Dai et al.

p1 p2

q1

b11 b12 b21

w11 w21

s11 s12 s21

p1 p2

q1

b11 b12 b21

w11 w21

b21 b12

s11 s12 ns21 ns12
s21

Queries

Web pages

Blocks

Fig. 4. An illustration of Block Propagation Process

Suppose the b12 and b21 are both the related blocks which should be propagated.
Figure 4 illustrates the changes of graph after block propagation process. The
result after the process is, p1 obtains a new block b21 with the contribution ns21 (See
Equation 1), and p2 obtains a new block b12 with the contribution ns12.

In the following, we will describe the process in detail.

Degree of Similarity (Contribution) Between Blocks and Web Pages. The degree
of similarity (contribution) between blocks and web pages is an important
measurement in our algorithm. A popular technique to quantify this measurement is
based on the Vector Space Model (VSM) [15, 16] for documents. Here, we convert
the blocks’ and web pages’ content into vectors in VSM. Let pi be the vector of pi,
and bik be the vector of pi’s block bik. Then, the degree of similarity between pi and bik
is defined as the cosine of the angle between pi and bik,

⋅
=

×
⋅=

jj

j

jj

jj

)()(

)()(
),sim(

22

iki

iki

iki

iki
iki

bp

bp

|b||p|

bp
bp (1)

Content-Based Classification. The last step of the algorithm is to classify the web
pages based on their content together with their contribution. We use a weighted
Naïve Bayes Classifier (NBC) which treats the contribution (or degree of similarity)
of blocks as the weight of content. For example, if a word in a block that has a
contribution of 0.5, we would say that the word appears 0.5 time in the block. Thus,
NBC is converted to weighted NBC as

ii
i

ji
w

j
Cc

NB swcaPcPc i

j

⋅== ∏
∈

α ,)|()(maxarg (2)

Here, cNB represents the categorization result of weighted NBC, ai represents a word in
some block of a page, si represents the contribution of the block, and is a parameter.

3.3 Optimization

In the experiments, propagating block content could be rather inefficiency. Based on
mathematic knowledge, we convert the problem to propagate some other information,
such as vector space or probability distribution, instead of block content.

 A Novel Web Page Categorization Algorithm Based on Block Propagation 441

According to Naïve Bayes Classifier, for blocks bi, the classifier works as
following

∏
∈

=
ik

i

ba
jk

w
jij caPcPbcP)|()()|(

Thus, it is not difficult to find the probability distribution of b1⊕ b2⊕ …⊕ bn (the
combination of two blocks)

∏

∏ ∏

∏ ∏

∏ ∏

≤≤

−

≤≤

−

∈

−

≤≤ ∈

−

≤≤ ∈≤≤

=

=

=

=⊕

≤≤

ni
ij

w

w

j
w

w

ni
j

w

w

w

w

ba
jk

w
jj

n

ni ba
jk

w
jj

n

ni ba
jk

w
ji

ni
j

bcPcP

cPcaPcPcP

caPcPcP

caPcPbcP

i

i

ni i

i

i

i

i

i

ik

i

ik

i

ik

i

1

~~
1

1

~
1

~

1

1

~1

1

~

1

)|()(

)(])|()([)(

])|()([)(

)|()()|(

1

 (3)

Here, iw~ represents the contribution of block bi to the new page.

From Equation 3, we observe that we could only propagate the blocks’ probability
distribution and lead to the same accuracy result. Thus, there is no need for propagat-
ing contents. Hence, the time and space complexity got much reduced.

4 Experiment

4.1 Data Set

To evaluate the performance of our algorithm, we performed the experiments on a set
of classified web pages from the Open Directory Project (ODP) (http://dmoz.org).
ODP contains about 1.2 million web pages, in which each web page is classified by
human experts into 17 top level categories (Arts, Business and Economy, Computer
and Internet, Games, Health, Home, Kids and Teens, News, Recreation, Reference,
Regional, Science, Shopping, Society, Sports, Adult and World). We removed the
Regional and World categories, because the web pages in Regional category are also
in other categories and the pages in World category are not in English. Thus, there
remain 15 categories in our experiments.

We collected a real MSN query click-through log as our experiment data set. The
log collection contains about 1.2 million query requests recorded over 12 hours in
August 2003.

Some preprocesses have been applied to the raw queries and web pages. First, we
converted the queries into lower case, and stemmed them using the Porter algorithm,
while the stop words were removed too. The query sessions sharing the same query
and URL are merged into a single one, with the frequencies summed up. Then, we
removed, from the data set, the web pages which are not associated with some query
session, and the blocks are extracted from the web pages. Finally, we got 131,788

442 W. Dai et al.

web pages in 15 top-level categories, 199,564 associated queries and 468,696 query
sessions. Figure 5 shows the distribution of the web pages in 15 categories.

Fig. 5. Distribution of web pages in the 15 categories

4.2 Feature Selection

We used a popular feature selection method, Document Frequency (DF) Thresholding
[20], to cut down the number of features, and speed up the classification. Based on Y.
Yang et al. [20], DF thresholding is suggested, as the method, which has comparable
performance with IG or CHI, is simplest with lowest cost in computation. In our ex-
periments, we set the DF threshold as 3.

4.3 Evaluation Criteria

The performance of the algorithms was evaluated by precision, recall and F1 measures
[21], while micro-average and macro-average [21] were applied to get single per-
formance value over all classification tasks.

4.4 Performance

We use the pure content-based Naïve Bayes Classifier (NBC) as the baseline. Be-
sides, the traditional “Query + Content” (QC) method [18], which use the query meta-
data as additional features of web pages, is introduced for compare use. In order to
evaluate the effect of block propagation, we also compare our Block Propagation
Categorization (BPC) algorithm with the Link-based Page Propagation (LBPP)
method [14] which we have mentioned in the section 2.

We fixed several parameters in our experiments. First, when selecting features, we
set the DF threshold as 3. Second, when propagating blocks, the threshold of similar-
ity is set as 0.5. Third, the parameter in Equation 2 is set as 0.2. Using these values,

 A Novel Web Page Categorization Algorithm Based on Block Propagation 443

our experiment gave a good performance. Table 1 shows the performance of each
classification algorithms.

Table 1. Performance of the four algorithms

MICRO-AVERAGE
 Precision Recall F1 measure
NBC 0.597 0.597 0.597
QC 0.631 0.631 0.631
LBPP 0.633 0.633 0.633
BPC 0.669 0.669 0.669
MACRO-AVERAGE
 Precision Recall F1 measure
NBC 0.594 0.512 0.537
QC 0.631 0.557 0.580
LBPP 0.610 0.559 0.575
BPC 0.650 0.586 0.602

The result in Table 1 shows that the content-based classification method (NBC)
gives poor result, which indicates it is not sufficient to only concern text contents for
classifying web pages. The performance of “Query + Content” (QC) method is much
better, since it utilizes the information of queries. Link-based Page Propagation
(LBPP) has a comparable performance with QC, as it collects the neighborhood
pages’ contents to enrich each page’s topic. However, our BPC algorithm archives the
best categorization result, compared with other three approaches. We believe that is
because BPC deeper uses the information of contents and relationships in the web. It
filters much more noise than most traditional methods during the reinforcement proc-
ess (Block Propagation Process).

45

50

55

60

65

70

75

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300

Length of files (bytes)

F1
(%

)

NBC BPC

Fig. 6. Performance on different file length

444 W. Dai et al.

We conduct the further experiment to show the other performance of our algo-
rithm. Figure 6 shows that NBC has a poor performance when the lengths of files are
too short or too long. The reason is simple. When the length is too short, there is no
sufficient text information for NBC to give confident predictions; when the length is
too long, there is usually amount of noisy information in the web page, which could
affect the categorization results. These web pages may have unclear or confused top-
ics. BPC propagates useful blocks to emphasize the topic of the each page, and hence
emphasizes the topics of these pages. We see that, in Figure 6, BPC achieves bigger
improvement when the lengths of files are quite short or quite long. Comparatively,
the less improvement is given for the files with normal lengths.

Different sizes of data (in number of web pages) were tested in the experiments.
We run our BPC algorithm on the Pentium IV 2.4G PC with 1GB memory. Figure 7
shows the executed CPU time by BPC before and after optimization (Section 3.3). We
see that before optimization, BPC (Naïve BPC) consumes huge amount of time, while
after optimization, BPC (Optimized BPC) has a time complexity which is approxi-
mately linear with the data size. That indicates our algorithm has a good scalable
ability for large data.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Data Size

C
PU

 T
im

e(
s)

Optimized BPC Naïve BPC

Fig. 7. Execute time on different data size

5 Conclusion and Future Work

In this paper, we revealed a relationship between queries and blocks, established the
query-block association, and hence deeply utilize both the contents and relationships
in the web. We proposed a block propagation algorithm to emphasize the pages’
topic, which enhance the performance of categorization. The experiments on ODP
and real MSN query click-though log datasets show that our algorithm thoroughly
improves the web page classification under F1 measure. Finally, we optimized the
classification algorithm to speed up it. And the experiment shows that our algorithm
is scalable well for large web data.

 A Novel Web Page Categorization Algorithm Based on Block Propagation 445

In this paper, we only propagate the blocks for one step. Maybe propagating for
more steps will further improves the performance of classification. But, the difficulty
is how to update the query-block association after block propagation, which could
take huge amount of time and space. Thus, in order to propagate the blocks for more
than one step, we have to design an efficient algorithm to real-time update the query-
block association.

We have already shown that block propagation could improve the traditional web
page classification algorithm. How about the web page clustering?

References

1. D. Beeferman and A. Berger. “Agglomerative clustering of a search engine query log.” In
Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 407-415, 2000.

2. S. Chakrabati, B. Dom and P. Indyk. “Enhanced hypertext categorization using hyper-
links.” In Proceedings of the ACM SIGMOD International Conference of Management of
Data, pages 307-318, Seattle, Washington, June 1998.

3. S. Chakrabarti. “Mining the Web: Discovering Knowledge from Hypertext Data.” Morgan
Kaufmann Publishers, 2002.

4. S. L. Chuang and L. F. Chien. “Enriching Web taxonomies through subject categorization
of query terms from search engine logs.” Decision Support System, Volume 35, Issue 1,
April 2003.

5. D. Cohn and T. Hofmann. “The missing link – a probabilistic model of document content
and hypertext connectivity.” In Advances in Neural Information Processing Systems 13,
pages 430-436. MIT Press, 2001.

6. C. Cortes and V. Vapnik. “Support Vector Networks.” Machine Learning, 20:1-25, 1995.
7. T. Cover and P. Hart, “Nearest neighbor pattern classification.” IEEE Transactions on In-

formation Theory, 13, 21-27, 1967.
8. E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M. Pennock and G. W. Flake. “Using

Web structure for classifying and describing Web pages.” In Proceedings of WWW-02,
International Conference on the World Wide Web, 2002.

9. K. Lang. “Newsweeder: Learning to filter netnews.” Proceedings of the 12th International
Conference on Machine Learning, pages 331-339. San Francisco, 1995.

10. D. Lewis. “Representation and learning in information retrieval.” (COINS Technical Re-
port 91-93). Dept. of Computer and Information Science, University of Massachusetts,
1991.

11. T. Joachims. “A probabilistic analysis of the Rocchio algorithm with IFIDF for text cate-
gorization.” Computer Science Technical Report CMU-CS-96-118. Carnegie Mellon Uni-
versity.

12. T. Joachims. “Text categorization with support vector machines: learning with many rele-
vant features.” In Proceeding of ECML-98, 10the European Conference on Machine
Learning, pages 137-142, Chemnitz, Germany, April 1998.

13. T. M. Mitchell, “Machine Learning.” McGraw-Hill, 1997.
14. N. Panteleeva, “Using neighborhood information for automated categorization of Web”,

http://meta.math.spbu.ru/~nadejda/papers/ista2003/ista2003.html.
15. G. Salton. “The SMART Retrieval System – Experiments in Automatic Document Process-

ing.” Prentice Hall Inc., Englewood Cliffs, NJ, 1971.

446 W. Dai et al.

16. G. Salton and M. E. Lesk. “Computer evaluation of indexing and text processing.” Journal
of the ACM, 15(1):8-36, January 1968.

17. S. Slattery and M. Craven. “Discovery test set regularities in relational domains.” In Pro-
ceedings of ICML-00, 17th International Conference on Machine Learning, pages 895-902,
Stanford, US, 2000.

18. G. R. Xue, D. Shen, Q. Yang, H. J. Zeng, Z. Chen, Y. Yu and W. Y. Ma. “IRC: An Itera-
tive Reinforcement Categorization Algorithm for Interrelated Web Objects.” Proceedings
of the 2004 IEEE International Conference on Data Mining (ICDM-2004). Brighton,
United Kingdom, November 2004.

19. J. D. Wang, H. J. Zeng, Z. Chen, H. J. Lu, L. Tao, and W. Y. Ma. “ReCoM: reinforcement
clustering of multi-type interrelated data objects.” In Proceedings of the ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 274-281, To-
ronto, CA, July 2003.

20. Y. Yang and J. O. Pedersen. “A comparative study on feature selection in text categoriza-
tion.” In Proceeding of the Fourteenth International Conference of Machine Learning,
1997.

21. Y. Yang, “An evaluation of statistical approaches to text categorization.” Journal of In-
formation Retrieval, Vol 1, No. 1/2, pages 67-88 , 1999.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 447 – 459, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Counting Graph Matches with Adaptive
Statistics Collection*

Jianhua Feng, Qian Qian, Yuguo Liao, and Lizhu Zhou

Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China

{fengjh, dcszlz}@tsinghua.edu.cn,
{qqpeter99, liaoyg03}@mails.tsinghua.edu.cn

Abstract. High performance of query processing in large scale graph-structured
data poses a pressing demand for high-quality statistics collection and selectiv-
ity estimation. Precise and succinct statistics collection about graph-structured
data plays a crucial role for graph query selectivity estimation. In this paper, we
propose the approach SMT, Succinct Markov Table, which achieves high preci-
sion in selectivity estimation with low memory space consumed. Four core
notions of SMT are constructing, refining, compressing and estimating. The ef-
ficient algorithm SMTBuilder provides facility to build adaptive statistics
model in the form of SMT. Versatile optimization rules, which investigate local
bi-directional reachability, are introduced in SMT refining. During compress-
ing, affective SMT grouping techniques are introduced. Statistical methods are
used for selectivity estimations of various graph queries basing on SMT, espe-
cially for twig queries. By a thorough experimental study, we demonstrate
SMT’s advantages in accuracy and space by comparing with previously known
alternative, as well as the preferred optimization rules and compressing tech-
nique that would favor different real-life data.

1 Introduction

Graph is widely used to model complex and schemaless data, ranging from XML,
proteins, to chemical compounds. The key problem for many graph-related applica-
tions is how to efficiently process graph query and retrieve corresponding sub-graphs.
For achieving the best query performance in graph-structured data, effective and ac-
curate estimations for selectivities of both simple and complex path queries are cru-
cially needed by determining the optimal query-execution plan. Accurate selectivity
estimation becomes challenging as it relies on exact graph statistics information
which always can’t be afforded in real-life system for time and space constraints..

As the standard for data exchange and integration nowadays, XML is a kind of di-
rected labeled graph, which is self-describing and cycle-enabled in nature. The under-
lying labeled graph model of XML consists of element nodes, which can be

* The work was supported by the National Natural Science Foundation of China under Grant

No.60573094, Tsinghua Basic Research Foundation under Grant No.JCqn2005022 and
Zhejiang Natural Science Foundation under Grant No.Y105230.

448 J. Feng et al.

simple/complex type value node or composite reference node (i.e. id/idref node[2]).
For all the query languages on graph, pattern-based query description is a common
and essential feature. This kind of query is more complex than SQL in RDBMS be-
cause of its capability in graph navigational query, especially for complex twig and
cyclic query pattern. However, similar to RDBMS, accurate selectivity estimation for
graph query is critical for optimal query execution plan choosing as it provides
cost evaluations for different search and traversing plans. The following example
illustrates the importance of selectivity estimation for XML graph query. The query
is expressed in XQuery[3]. Figure 1 is a query expression and its corresponding
structure.

FOR $g in document (“*”)//Prof
WHERE $g/Class = “Database”

AND $g/Year = “2000”
RETURN $g/Name

Fig. 1. A sample query and its structure

The purpose of this complex graph query is to find the names of all professors who
gave “Database” class in 2000. For efficient execution of this query, we need to know
the selectivities of paths //Prof/Class=”Database”, //Prof/Year=”2000” and
//Prof/name. As an assumption, selectivities of path //Prof/Class=”Database” and
//Prof/Year =”2000” are 20 and 400 respectively, which means totally 20 “Database”
classes existed and 400 classes were given in 2000. According to the selectivities
above, the optimal query plan should follow the execution order by fetching the re-
sults from path //Prof/Class=”Database” firstly and matching the condition of
//Prof/Year=”2000” secondly. On the other hand, with selectivity estimations, opti-
mizer in RDBMS also becomes powerful to determine the best Join execution order.
In both scenarios, query optimization highly depends upon efficient and accurate
selectivity estimation.

As a summary, our contributions are listed as follows:

 SMT: A novel graph statistics collection model. It is the core of efficient
and accurate selectivity estimations for graph queries. It outperforms previ-
ous approaches by less memory cost and more precise selectivity.
SMTBuilder is an efficient algorithm to generate SMT from the start point of
0-bisimilarity graph statistics collection.

 Methods of SMT compressing: We propose compressing techniques: Naive
method, Forward Grouping method and Backward Grouping method to
yield compact SMT which is fit for available memory.

 Methods of SMT refining: The optimization rules and the adaptive parameter
m for statistical path length are incorporated in refining process. Optimization
rules help to capture the correlations and distributions of different paths ex-
actly by investigating the local bi-directional reachability. With parameter m,
we can adjust the granularity of our statistical model dynamically.

 Methods of counting matches:. We demonstrate the effectiveness of SMT-
based statistical methods for selectivity estimation on complex graph query.

 Counting Graph Matches with Adaptive Statistics Collection 449

The rest of this paper is organized as follows. Section 2 gives an overview about
related work. Section 3 describes constructing graph statistics collection. Section 4
presents SMT refining approach for selectivity estimation. Section 5 gives three use-
ful compressing techniques. Section 6 contains selectivity estimation methods on
SMT. Section 7 is performance evaluation. Section 8 presents our conclusion.

2 Related Work

Various selectivity estimation approaches have been proposed for path query on semi-
structured data, such as Path Tree and Markov Table presented in [1], which illustrate
selectivity estimation methods for single path query in large-scale web data. Markov
Table [1] adopts a set of pruning and aggregation techniques on the statistics informa-
tion. The approach for twig query estimations is discussed in [5], which presents CST
(Correlated Subpath Tree), a suffix tree representation about statistical information
with value constraints on leaf nodes. It is a general selectivity estimation method for
twig query so far.

Besides, A(k)[7] and D(k)[4] give new index techniques on XML data, which also
can be treated as graph-structured data statistics collection methods. The concept of k-
bisimilarity is introduced in A(k) index, which use a parameter k to adjust index struc-
ture granularity.By extending A(k), D(k) considers the index local features for real
data. Here, k becomes a tunable parameter optimized with the length of path query.
For long path, a big k is suitable; oppositely, a small k is fit for short path. Each ele-
ment in D(k) index always contains two attributes: one is the supported k, the other is
the data nodes contained by this element. However, index is the presentation for data
pointers or offset references. In the problem of selectivity estimation, frequencies of
element and path are key characteristics people concern. Another aspect different
from index technique is the more strict memory constraint, which is affected by real-
life system’s resource restriction.

XPathLearner [8] is an on-line method for refining statistics information by gather-
ing results from user queries as a forward feedback. It updates both of the tag and
value distribution information with a self-tuning mechanism. However, when the
system is running under heavy workload, the on-line tuning method poses extra bur-
den which sometimes can’t be compensated by the benefits it gives. Besides, once
false feedback is taken effect, it lacks the ability of withdrawing and recovering.

3 Constructing Graph Statistics Collection

In general, a common graph statistics collection model can be described as follow: An
original graph data G = (V, E) depicts a directed graph structure. In graph statistics
collection S = (V’, E’), each v’∈V’ with extent(v’)⊆ V is a representation of the
nodes in G classified by certain aggregation principle (i.e. 0-bisimilarity), which re-
cords the number of nodes in it. Each edge (u’, v’) ∈E’ contains all the edges from
extent(u’) to extent(v’). Here, extent(v’) indicates the set of nodes in G which are
corresponding to v’ in S.

450 J. Feng et al.

Figure 2 gives the sample graph-structured data which is expressed in XML by in-
volving ID/IDREF elements [2]. The concepts of “bisimilarity” and “k-bisimilarity”
were proposed by 1-index [10] and A(K)-index[7] respectively. For the concern of
different statistics collection granularity, “k-bisimilarity” can be used as the aggrega-
tion principle in statistics collection graph (S) generation. As the base for selectivity
estimation, we choose “0-bisimilarity” principle for our first-step statistics collection
generation. “0-bisimilarity” principle maps the nodes with identical tag in G to the
same and unique node in S, which we call S(0) , the base statistics collection status in
our approach. Figure 3(a) shows the S(0) of the graph data in Figure 2. Because of
S(0)’s coarseness, some false and cyclic paths may be introduced during its genera-
tion. As well, exact path distribution information is always lost in S(0). That’s the
reason why it can’t achieve satisfied selectivity estimation results..

In Markov Table [1], the selectivity estimations of paths with length m depend only
on the selectivity estimations of sub paths with length m-1 preceding it. In fact, the
process is modeled as a Markov process of order m-1, so this approach is called
Markov Table. It represents an accurate approximation of the structure of the XML
data, but it is only used for simple path query in tree-structured data [1]. In our ap-
proach, we extend it to complex twig query in graph-structured data with new features
added. In order to strengthen Markov Table’s ability for summarizing graph-
structured data, we propose Theorem 1.

Theorem 1. In statistics collection S, the frequency of edge (iu , v), which is one of

all the edges leads to v, can be denoted as follows:

)v(Freq
)u(Freq

)u(Freq
)v,u(Freq

iu i

i
i ×= (1)

Fig. 2. XML data and its graph structure

 Counting Graph Matches with Adaptive Statistics Collection 451

The computation for the frequency of edge (ui, v) mainly considers two factors.

iu i

i

)u(Freq

)u(Freq presents the fraction of edges with start node ui in all the edges leading

to v. Freq(v) is the frequency of the node v in S. Thus, the product of these two fac-
tors is the approximation for frequency of edge (ui, v). This idea is also addressed in
[1] and [11], which is considered as a statistical computation based on uniformity
assumption.

Applying Theorem 1 on the S(0) in Figure 3(a), we can obtain the Markov Table
with path length m=2 in Figure 3(b), which is the initial statistics collection for graph-
structured data in Figure 2.

 (a) (b)

Fig. 3. S(0) of sample graph data in Figure 2 and Markov Table for S(0)

4 SMT Refining

Actually, in Figure 3(b), we can see the frequencies of path “IR/D”, “IR/C” are
2*(19/20) and 5*(19/20) respectively which are computed by Theorem 1. Since the
computation is based on uniformity assumption [11], it is only a coarse estimation
that can’t supply more exact information about correlations and distributions for
them. Because of the accuracy limitation of S(0), we need to investigate optimization
methods for refining graph summarization. As a base for optimization rules, we first
exploit the local bi-directional reachability about edges in graph statistics collection S.
Two definitions are proposed to describe the types of edges in S, which consider the
forward and backward inclusions on the edges.

Definition 1. Forward-Inclusion (FI): For each edge (u, v) in graph statistics collec-
tion S, if u can reach no nodes except v, then the type of (u, v) is FI.

Definition 2. Backward-Inclusion (BI): For each edge (u, v) in graph statistics col-
lection S, if v can only be reached by u, then the type of (u, v) is BI.

Therefore, all the edges in S can be classified into 4 types: FI, BI, FI∧ BI and NI. NI
denotes the type of)BIFI(∨¬ . With the definition 1 and 2, we draw two important

theorems as evidences supporting accurate selectivity estimations.

Theorem 2. Given a path P = (/t1/t2/…/tn) in graph statistics collection S, if types of
all edges (ti/ti+1) in P are BI, then Freq(tn) is an accurate estimation for path P.

452 J. Feng et al.

Theorem 3. Given a path P = (/t1/t2/…/tn) in graph statistics collection S, if types of
all edges (ti/ti+1) in P are FI, then each node in extent(ti) (1 ≤ i<n) has connected path
reaching some node in extent(tn).

As an example for twig query in sample graph data, the query P = /Tsinghua[Cs/C
/DR/IR]/Ds/D has the purpose to find all the D nodes having the pattern matched with
the structure Figure 4(a) describes.

 (a) (b)

Fig. 4. Original query pattern and Optimized query pattern after applying Theorem 3

Because Cs/C, C/DR and DR/IR have types of FI in common, as Theorem 3 defined,
Freq (P) = Freq (/Tsinghua[Cs]/Ds/D) which is simplified by pruning Cs/C, C/DR and
DR/IR. The intrinsic sense of this simplification is based on a fact that the existent prob-
ability of sub path Cs/C/DR/IR is a hundred percent which is concluded from Theorem
3. So the Figure 4(b) shows the simplified structure for selectivity estimation.

In order to leverage Theorem 2 and 3 sufficiently, we propose 4 optimization rules
with goals to depict the graph statistics collection containing more BI and FI type edges.

Optimization Rule 1: Given an edge (u, v) with FI¬ type in graph statistics collection
S, let the type of (u, v) be T. The node u in S can be split into two nodes u1 and u2,
where set(u) = set(u1) set(u2) and set(u1) set(u2)= φ , then the new types of (u1, v)
and (u2, v) are FI T and T respectively.

Optimization Rule 2: Given an edge (u, v) with BI¬ type in graph statistics collection
S, let the type of (u, v) be T. The node v in S can be split into two nodes v1 and v2,
where set(u) = set(u1) set(u2) and set(u1) set(u2)= φ , then the new types of (u, v1)
and (u, v2) are BI T and T respectively.

Optimization Rule 3: Given n edges with FI¬ types which start from node u in graph
statistics collection S, let them be denoted as (u, v1), (u, v2), …, (u, vn). As an assump-
tion, the average frequency of these n edges is a, which is computed by the formula of

Avg(u, vi)=
n

vi) (u,Freqiv . The node u can be split into two nodes u1 and u2, where

set(u) = set(u1) set(u2) and set(u1) set(u2)= φ , such that Freq(u1, vi)>a with vi
connected by u1 and Freq(u2, vj) ≤ a with vj connected by u2.

Optimization Rule 4: Given n edges with BI¬ types which start from node u in graph
statistics collection S, let them be denoted as (u1, v), (u2, v), …,(un, v). As an assump-
tion, the average frequency of these n edges is a, which is also computed by the for-

mula of Avg(ui, v)=
n

v) (ui,Freqiu . The node v can be split into two nodes v1 and v2,

where set(u) = set(u1) set(u2) and set(u1) set(u2)= φ , such that Freq(ui, v1)>a
with ui leads to v1 and Freq(uj, v2)≤ a with uj leads to v2.

 Counting Graph Matches with Adaptive Statistics Collection 453

Clearly, dynamic combination of optimization rules offers a flexible and satisfied
solution to produce more precise graph statistics collections and selectivity estima-
tions. Versatile advantages of different optimization rules for complicated and style-
varied data is an important advantage of our approach which also will be illustrated in
following part. Basing on the optimization rules, we give a concrete demonstration on
the SMT construction algorithm: SMTBuilder.

Algorithm: SMTBuilder
Input: G: Original data graph

m: Maximum path length supported in SMT
RuleSet: Optimization Rules Set

Output: SMT that is optimized by RuleSet
[1] S(0):=GenS(G);//S(0) contains type of each edge;
[2] SMT:=GenMT(m, S(0));
[3] For each R in RuleSet do
[4] SMT:=ApplyRule(SMT, R);
[5] Return SMT;

Figure 5(a)(b)(c) present the local structure changes when IR is split. (d) and (e)
show the statistics collection and SMT by applying RuleSet {1} on IR/D of S(0).

(a) (b) (c)

(d) (e)

Fig. 5. Process of applying Optimization Rule 1 on IR/D, optimized graph statistics collec-
tion and optimized SMT

5 SMT Compressing

Note that SMT represents an accurate approximation of graph-structured data, which
may not be fit in the available memory for its large size. This problem is also bewared
in our former work [6]. An efficient and natural idea to compress SMT is discarding

454 J. Feng et al.

and grouping the paths with the lowest frequencies in SMT. With respect to compen-
sating the loss of accurate structural information, we try to preserve the information
represented in the deleted paths by adding them into groups of deleted paths. Though
with coarser granularity, high scalability can be achieved by appropriate size of statis-
tical information. The precision under compressed SMT turns out to be somehow the
same or quite close to accurate approximation, which will be demonstrated by our
experiments in real life data.

Naïve Method: The first method for compressing SMT, which we call it Naïve
method, uses the strategy of “simply discarding”. Low-frequency paths in SMT are
simply discarded without further grouping. When using SMT to estimate selectivity
by Naïve compressing, if any of the required paths is not found, we estimate a selec-
tivity of zero. In Naïve compressing, it is appropriately assumed that paths, which do
not exist in the compressed SMT, neither exist in the original SMT.

Forward Grouping Method: The second method for compressing SMT, which we
call forward grouping, uses a special path *-paths [1] to represent all deleted paths
with different length, such as * presents all the deleted paths with length 1, while
//* for all the deleted paths with length 3. We develop the algorithm SMTFor-
wardGrouping as follow:.

Algorithm: SMTForwardGrouping
Input: smt: Original SMT

n: low frequency threshold
Output: smt that is compressed by forward grouping
[1] DS := φ ; //Deleted Set for paths in SMT
[2] nextPath := nextLowFreqPath(smt, n);
[3] while(nextPath!= null)
[4] if((deletedPathSet=hasSamePrefix(DS,nextPath))!= φ)
[5] compressToSMT(smt, deletedPathSet, nextPath);
[6] else addToDeletedSet(DS, nextPath)
[7] nextPath = nextLowFreqPath(smt, n);
[8] End;
[9] If(DS!= φ)
[10] CompressToSMT(smt, deleledPathSet);

In forward grouping, we keep a set of deleted paths, DS. If we delete a path of
length 3, say A/B/C from original SMT, we look up DS for the paths with same start
tag with A. If A/B/D exists in DS, we remove A/B/D from DS as well as A/B/C from
original SMT, add A/B/* to SMT to represent these two deleted paths with frequency
of summing freq(A/B/C) and freq(A/B/D). If no such prefix-A path exists in DS, we
just remove path A/B/C from original SMT and add it to DS. At the end of compress-
ing, paths remaining in DS are compressed to complete * paths, such as */*, */*/* etc.
The average frequency of these remained paths is the frequency for their correspond-
ing *-paths. During the process of selectivity estimation, say for path A/B/C, if
A/B/C is not found in SMT, we search A/B/*, A/*/*, and */*/* for its frequency se-
quentially.

Backward Grouping Method: The third method for compressing SMT, which we call
backward grouping, adopts an opposite direction to group low frequency paths con-
trasted to forward grouping method. In our example, if path A/B and C/B individu-
ally qualify for deletion, then they are combined into */B. With SMT compressed by

 Counting Graph Matches with Adaptive Statistics Collection 455

backward grouping method, selectivity also needs estimating reversely. It is inevitable
that backward grouping may delete fewer paths to compress SMT, but it has advan-
tages in estimating complex queries with wildcard “//” and “*”.

6 SMT-Based Selectivity Estimation for Complex Graph Query

In this section, we give formal identification of our approach and demonstrate accu-
racy enhancement in selectivity estimation by real case.

Theorem 1 in section 3 defines a universal method to calculate the frequency of
edge (u, v). For a given simple path query P = (//t1/t2/…/tn), the selectivity of it can be
computed by the following formula based on SMT with path length up to m:

Freq(/ 1t / 2t /…/ nt) = Freq(/ 1t / 2t /…/ mt)×∏
−

= −+++

+++
mn

i imii

imii

ttt

ttt

1 121

21

)/...//(/Freq

) /… / //(Freq (2)

Equation (2) can be inferred from Theorem 1 extending from length 1 to m. Essen-
tially, only with exact correlation information supplied, accurate estimations can be
performed. SMT is a step-by-step optimized graph statistics collection for selectivity
estimation, which has the ability in nature to offer the precision on the statistical in-
formation needed in estimations. Given a complex twig path query having two sub
paths, P=/t1/t2/…/tn[tn+1/tn+2/…/tn+m]/tn+m+1/tn+m+2/…/tn+m+k, here we assume P1=/t1/t2/…
/tn with length n, P2=/tn+1/tn+2/…/tn+m with length m and P3=/tn+m+1/tn+m+2 /…/tn+m+k
with length k. According to the statistical model for twig query selectivity estimation
in [11], we can use following equation to compute the selectivity of P:

Freq (P1[P2]/P3) = [r(P1) × r(P2|P1) × r(P3|P1)]×Freq(tn+m+k) (3)

in which r(P1) denotes occurrence probability of P1, also posterior beliefs with
r(P2|P1) and r(P3|P1). Because of the path independence assumption in [11], we have
r(P2|P1)≈ r(P2), r(P3|P1)≈ r(P3).

As a detail example, the complex path query is P=/Tsinghua/Ss/S[DR/IR/D]/CR
/IR/C. From original graph data in Figure 2, we find that 5 is the accurate count for
the node C which corresponds to the query pattern described above. The selectivity
for P can be decomposed into following parts according to equation (3).

r(Tsinghua/Ss/S)=
hua)Freq(Tsing

)sTsinghua/S(Freq ×
Freq(Ss)

)Ss/S(Freq

r(S/CR/IR/C)=
Freq(S)

)S/CR(Freq ×
Freq(CR)

)CR/IR(Freq ×
Freq(IR)

)IR/C(Freq

r(S/DR/IR/D)=
Freq(S)

)S/DR(Freq ×
Freq(DR)

)DR/IR(Freq ×
Freq(IR)

)IR/D(Freq

which derivate from the formulas in [11].
If without SMT approach, we look up original Markov Table in Figure 4 to esti-

mate the selectivity of P.

456 J. Feng et al.

r(Tsinghua/Ss/S)=
1

1 ×
1

4
=4; r(S/CR/IR/C)=

4

10 ×
10

10 ×
19

)20/19(5×
=0.625;

r(S/DR/IR/D)=
4

4 ×
9

9 ×
19

)20/19(2×
=0.10. Freq(C) = 5. Thus, Freq(P1[P2]/P3) =

[4×0.625×0.10)]×5=1.25 with relative error rate 75.0
5

25.15
1 =−=μ . With the help

of SMT, we look up SMT in Figure 9(e). As the split of IR, the sub path CR/IR,
DR/IR, IR/C, IR/D are converted to CR/IR2, DR/IR1, IR2/C, IR1/D respectively.
Therefore,

r(Tsinghua/Ss/S)=
1

1 ×
1

4
=4; r(S/CR/IR/C)=

4

10 ×
10

10 ×
10

)11/10(5×
=1.136

r(S/DR/IR/D)=
4

4 ×
9

9 ×
9

)10/9(2×
=0.20.

So, Freq(P1[P2]/P3) = [4 × 1.136 × 0.20)] × 5=4.55 with relative error rate

09.0
5

55.45
2 =−=μ . Satisfyingly, the relative error rate is reduced from 0.75 to 0.09,

totally 88 percentages decrease.

7 Performance Evaluation

In this section, we report our experiments that validate the efficiency and flexibility of
SMT. The experiments mainly focus on three parts: efficiency of SMT by comparing
with CST[5], the benefits of flexible combination about Optimization Rules, and
different compressing methods on SMT .

Experiment Data and Query Set. We use three kinds of standard XML testing data-
sets in our experiments: Shakespeare[12], XMark[13] and DBLP[9]. Table.1 records
the major features of these three datasets with the terms of element number, document
size, S(0) Size and SMT Size. The SMT Size here is generated with 4 Optimization
Rules applied once for each S(0).

We choose 1000 complex path queries for each dataset. These queries are obtained
by off-line scanning of the graph statistics collection generated by our GenS() func-
tion in SMTBuilder.

Evaluation Criterion AER and Experiment Results. We use AER, Average Error
Rate, as our evaluation criterion which has strong ability to apperceive the effects
brought by different methods, queries, memory sizes, and graph data. CST[5] both do
well in trading off the accuracy and memory space, in which Correlated Suffix Trees
are used to depict graph summarization. The range for memory size is from 0 to 50
KB in our experiments.

Table 1. Features of three datasets

 Shakespeare XMark DBLP
Element number 65,006 67,514 89,170
Document Size (MB) 19.3 36.0 42.0
S(0) Size (KB) 6.5 5.4 15.2
SMT Size (KB) 18.2 48.5 32.6

 Counting Graph Matches with Adaptive Statistics Collection 457

Experiment 1: Comparison between SMT and CST.

Fig. 6. AER on three datasets

In Figure 6, with the change in memory space constraints, the results of compari-
sons between SMT and CST show the advantages of SMT in AER. Optimization
Rules 1 to 4 are repeatedly applied until reaching the memory size constraint.

Experiment 2: AER with different Rule Sets.

Fig. 7. AER with different ORs

Figure 7 shows results by different choosing and combination strategies of
optimization rules named ORs.

Experiment 3: Experiments on different compressing methods.

Fig. 8. AER of different compressing methods on SMT

458 J. Feng et al.

There are three sub conclusions we can draw from three-step experiments. First,
with the comparisons between SMT and CST on three standard datasets, we believe
that SMT has advantages in accuracy of selectivity estimations. Second, different
usage of optimization rules fits for different features of real-life data. From the results
above and real data features considered, optimization rules 1, 2 are more suitable for
graph data with less tags and more long paths. Oppositely, optimization rules 3, 4 are
good at graph data with more tags and instances for each tag. Third, Figure 8 gives us
evidences to believe our compressing methods on SMT bring advantages in estima-
tions of complex path queries under rigorous memory constraints.

8 Conclusion

In this paper we presented SMT, a precise and adaptive approach for selectivity esti-
mation of complex graph query. Our approach has been validated to be precise and
scalable for estimating the selectivities of complex graph queries. With the trading off
between memory space constraints and accuracy, we exploit the important features of
local forward/backward inclusions and propose 4 Optimization Rules for SMT con-
struction. SMTBuilder, as a core algorithm for SMT generation, is fulfilled with dy-
namic characteristics on optimization rules choosing and combination. Three affective
and practical techniques: Naïve, Forward Grouping and Backward Grouping are pro-
posed for compressing SMT to meet rigorous memory constraints. Our experiments
show that SMT performs better for selectivity estimations, especially for complex
graph queries. This work also can be extended to cyclic graph queries based on
SMT’s capabilities of collecting statistics and refining.

References

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the selectivity
of XML path expressions for internet scale applications. VLDB2001.

[2] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Extensible Markup Language
(XML) 1.0 (Second Edition). W3C Recommendation , October 2000.

[3] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. XQuery
1.0: An XML query language. W3C Working Draft, June 7, 2001.

[4] Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An adaptive structural summary for graph-
structured data. SIGMOD2003.

[5] Zhiyuan Chen, H.V. Jagadish, Flip Korn, Nick Koudas, S. Muthukrishnan, Raymond Ng,
and Divesh Srivastava. Counting twig matches in a tree. ICDE2001.

[6] Jianhua Feng, Qian Qian, Yuguo Liao, Guoliang Li, Na Ta. DMT: A flexible and versatile
selectivity estimation approach for graph query. WAIM2005.

[7] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting Local Similarity for Effi-
cient Indexing of Paths in Graph Structured Data. ICDE2002.

[8] Lim L., Wang M., Padmanabhan S., Vitter J., Parr R.: XPathLearner: An On-Ling Self-
Tuning Markov Histogram for XML Path Selectivity Estimation. VLDB2002.

[9] M. Ley. DBLP XML records, 2001.

 Counting Graph Matches with Adaptive Statistics Collection 459

[10] T. Milo and D. Suciu. Index structures for Path Expressions. ICDT1999.
[11] N. Polyzotis, M. Garofalakis, Statistical Synopses for Graph-Structured XML Databases,

SIGMOD2002.
[12] Shakespeare dataset. http://www.cs.kuleuven.ac.be/~ml/ie/
[13] XMARK: The XML-benchmark project. http://monetdb.cwi.nl/ xml, 2002

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 460 – 471, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Tight Bounds on the Estimation Distance
Using Wavelet

Bing Liu, Zhihui Wang, Jingtao Li, Wei Wang, and Baile Shi

Department of Computing and Information Technology,
 Fudan University, Shanghai, China

{031021057, 041021056, lijt, weiwang1, bshi}@fudan.edu.cn

Abstract. Time series similarity search is of growing importance in many ap-
plications. Wavelet transforms are used as a dimensionality reduction technique
to permit efficient similarity search over high-dimensional time series data. This
paper proposes the tight upper and lower bounds on the estimation distance us-
ing wavelet transform, and we show that the traditional distance estimation is
only part of our lower bound. According to the lower bound, we can exclude
more dissimilar time series than traditional method. And according to the upper
bound, we can directly judge whether two time series are similar, and further
reduce the number of time series to process in original time domain. The ex-
periments have shown that using the upper and lower tight bounds can signifi-
cantly improve filter efficiency and reduce running time than traditional
method.

1 Introduction

The quantity of data stored in computers is growing rapidly. Many of these data, par-
ticularly collected automatically by sensing or monitoring applications, are time series
data. Thus time series data are of growing importance in many new database applica-
tions, such as data warehouse and data mining etc. A time series is a real-valued se-
quence, which represents the status of a single variable over time. Typical examples
include stock prices and currency exchange rates, biomedical measurements, weather
data, etc … collected over time. Therefore, it is hardly surprising that much of re-
search has recently been devoted to the efficient management of time series data.
Analysis of time series data is rooted in the ability to find similar time series [1, 2].
Similarity is defined in terms of a distance metric, most often Euclidean distance. For
different applications, there are also other distance metrics to define the similarity of
time series, such that Lp-norms and DTW may also be used. Because of the high
dimensionality of most time series, the direct indexing and searching of time series is
prohibitive. As a result, dimensionality reduction appears to be the most promising
method for overcoming this problem.

Wavelet Transform (WT) or Discrete Wavelet Transform (DWT) [3] has been
found to be effective in many applications in signal processing, speech, computer
graphics and image processing [4, 5]. Recent Studies have also demonstrated the
applicability of wavelets in database fields, such as similarity search in time series

 Tight Bounds on the Estimation Distance Using Wavelet 461

[6~10], approximate query processing over massive relational tables [11~13], and
clustering in very large databases [14], etc.

For wavelet transform applied to time series, paper [6] first proposes to use Haar
wavelet transform for time series similarity search and show that DWT outperforms
Discrete Fourier Transform (DFT) in query performance. Paper [7] gives another type
of wavelet transform to show the superiority of wavelet in time series similarity
search. In paper [8], they present a detail performance study using different wavelets
on the similarity search for time series data. In this paper, based on previous re-
searches as shown in papers [6~8] and other related works [9~10], we give the tight
upper and lower bounds on the estimation distance using wavelet transform. The
experiments have shown that we can further reduce the number of original time series
to process and improve filter efficiency.

The rest of the paper is organized as follows. Section 2 gives distance function
definitions and wavelet transform related to this paper. In section 3, we discuss the
upper and lower tight bounds on the estimation distance using wavelet transform and
give a new range query algorithm based on the tight bounds. Our experimental results
are reported and discussed to show its superiority to traditional methods in section 4.
Finally, section 5 contains conclusions and the direction of future work.

2 Related Concepts

Before into the details of our proposed method, we first give the similarity models
usually used in time series similarity search. The first definition is the Euclidean dis-
tance between two time series X and Y.

Definition 1. Given a threshold ε, two time series X(x0…xn-1) and Y (y0…yn-1) are said
to be Euclidean distance similar if

−

=

≤−=
1

0

2/12))((),(
n

i
ii xyYXD ε

A shortcoming of definition 1 demonstrated in figure 1 is that it does not consider
the effect of vertical offset to similarity. From human interpretation, X and Y may be
quite similar if Y can be shifted down vertically to obtain X or vice versa. However,
they will be considered not similar by definition 1 because errors are accumulated at
each pair of xi and yi. Therefore, another similarity model is given by definition 2.

Definition 2. Given a threshold ε, two time series X(x0…xn-1) and Y (y0…yn-1) are said
to be v-shift similar if

−

=

≤−−−=
1

0

2/12)))()(((),(
n

i
AAii xyxyYXD ε

where
−

=

=
1

0

1 n

i
iA x

n
x

−

=

=
1

0

1 n

i
iA y

n
y

According to definition 2, any two time series are said to be v-shift similar if the
Euclidean distance is less than or equal to a threshold ε neglecting their vertical off-
sets. This definition can give a better estimation of the similarity between two time
series with similar trends running at two completely different levels.

462 B. Liu et al.

Fig. 1. Example of vertical shifts of time series

Because Haar wavelet transform allows good approximation with a subset of coef-
ficients and it can be computed quickly and easily, it has been used as a research tool
in many database fields, including time series similarity search.

Haar wavelet transform can be seen as a series of averaging and differencing op-
erations on a discrete time function. We first give the normalized Haar wavelet defini-
tion as following and the detail description can be found in [4].

)2(2)(2/ ixx jjj
i −Ψ=Ψ , i = 0,…,2j-1

where

<≤−
<≤

=Ψ
otherwise 0

12/1for 1

2/10for 1

)(x

x

x

An example to find the normalized Haar wavelet transform of a time series f(x) =

(5, 3, 8, 6) is shown in table 1. The wavelet transform discussed in this paper all refers
to normalized Haar wavelet transform.

Table 1. The wavelet transform of time series (5, 3, 8, 6)

Resolution Averages Coefficients

4 (5,3,8,6)

2 ((5+3)/ 2 ,(8+6) / 2) ((5-3)/ 2 ,(8-6) / 2)

1 ((5+3+8+6)/(2 × 2)) ((5+3-8-6)/(2 × 2))

Resolution 4 in table 1 is the full resolution of the time series f(x) representing the

time series itself. In resolution 2, ((5+3)/ 2 , (8+6) / 2) is the sums of (5, 3) and

(8, 6) divided by 2 respectively. ((5-3)/ 2 , (8-6) / 2) is the differences of (5,

3) and (8, 6) divided by 2 respectively. This process is recursively continued until

X

Y

 Tight Bounds on the Estimation Distance Using Wavelet 463

resolution 1 is reached. The wavelet transform H(f(x)) = ((5+3+8+6)/(2 × 2),

(5+3-8-6)/(2 × 2), (5-3)/ 2 , (8-6) / 2) = (11,-3, 2 , 2) is obtained.

3 Tight Bound Estimation Using Wavelet

Generally speaking, the superiority of using wavelet transform is that it allows good
approximation with a subset of coefficients. We can use these coefficients as synopses
to the original time series. Because the basis function of normalized Haar wavelet
transform is orthonormal, there is the following lemma [4]:

Lemma 1. R(r0…rn-1) is the wavelet transform of time series X(x0…xn-1), there is
||X||2=||R||2, which means:

−

=

−

=

=
1

0

2
1

0

2
n

i
i

n

i
i rx

According to lemma 1, we can deduce lemma 2:

Lemma 2. R and S are the wavelet transform of time series X and Y, there is:
||X-Y||2 =||R-S||2

Proof: Because R and S are the wavelet transform of X and Y, there are R=AX, S=AY
(A is the wavelet transform basis function satisfying orthonormality). We have R-
S=AX-AY=A(X-Y), which means R-S is the corresponding wavelet transform of X-Y.
According to lemma 1, there is ||X-Y||2 =||R-S||2.

Above two lemmas show that Haar wavelet transform can keep the original time se-
ries’ energy unchanged, which means that the Euclidean distance between two time
series data is also preserved after wavelet transform.

For the general similarity search methods based on wavelet transform for time se-
ries database, they first transform the time series using wavelet, and then keep the first
k wavelet coefficients as synopses, and search in wavelet domain. If the two wavelet
synopses’ distance is less than a predefined threshold ε, the methods use original time
series to remove all false alarms. Otherwise, it is known that they are not similar. The
algorithms use wavelet as a filter and no false dismissal will occur, which is guaran-
teed by lemma 1 and lemma 2. Therefore the aim of using wavelet is to reduce the
number of time series to process in original time domain.

In order to present this paper’s main contribution, we first give another lemma.

Lemma 3. There are two time series P(p0,…,pn-1), Q(q0,…,qn-1), the distance between
them satisfying the following inequality:

(PT - QT)2 ||P-Q||2 (PT +QT) 2

where PT
2 =

−

=

1

0

2
n

i
ip , QT

2 =
−

=

1

0

2
n

i
iq (PT QT)

This lemma is easy to understand. P, Q and P-Q can be seen as three edges of a tri-
angle. Therefore lemma 3 is the statement of triangle inequality and reverse triangle
inequality.

Depending on analysis to the wavelets transform and above lemmas, we present
the following theorem:

464 B. Liu et al.

Theorem 1. R(r0…rn-1) and S(s0…sn-1) are the wavelet transform of time series X and
Y, there is:

−

=

−
1

0

2)(
k

i
ii sr + (RT - ST)2 ||X-Y||2

−

=

−
1

0

2)(
k

i
ii sr + (RT +ST)

 2

where RT
2 =

−

=

1
2

n

ki
ir ST

2 =
−

=

1
2

n

ki
is (RT ST)

Proof: According to lemma 2, because ||X-Y||2 =||R-S||2, the inequality can be written

as
−

=

−
1

0

2)(
k

i
ii sr + (RT - ST)2 ||R-S||2

−

=

−
1

0

2)(
k

i
ii sr + (RT +ST) 2. Since ||R-

S||2=
−

=

−
1

0

2)(
n

i
ii sr , we only need to prove (RT - ST)2

−

=

−
1

2)(
n

ki
ii sr (RT +ST) 2, and

according to lemma 3, this holds true. Therefore we complete the proof of
theorem 1.

RangeQuery()
Input: query time series Y(y0…yn-1), query radius ε
{

Compute wavelet sequence S(s0…sn-1)from Y, and compute
the corresponding ST;

for(p=1 to m) /*m is the number of time series in da-
tabase*/

{
 /*If the query radius is less than the lower bound in

theorem 1, Xp and Y are not similar; finish this loop and
continue next loop */

(1) if (ε
−

=

−
1

0

2
 ,)(

k

i
iip sr + (RTp - ST)

2)

{ print(“Xp is not similar to Y”); continue; }
/*If the query radius is greater than the upper bound

in theorem 1, Xp and Y are similar; finish this loop and
continue next loop */

(2) if (
−

=

−
1

0

2
 ,)(

k

i
iip sr + (RTp+ST)

 2 ε)

{ print(“Xp is similar to Y”); continue; }
(3) Compute the actual distance between Xp and Y to

judge whether their distance is less than ε;
}

}
Fig. 2. The range query algorithm for time series database

 Tight Bounds on the Estimation Distance Using Wavelet 465

Theorem 1 gives lower and upper bounds on the distance between two time series
using wavelet. Based on theorem 1, we can give a range query algorithm using it.
Suppose there is a database including time series X1(x1,0….x1,n-1)…Xm (xm,0…xm,n-1),
and the number of time series in database is m. The corresponding wavelet sequences
are R1(r1,0…r1,n-1)…Rm(rm,0…rm,n-1). For the given preserved number of wavelet coef-

ficients k, we can compute RT1…RTm, where RTp
2 =

−

=

1
2
,

n

ki
ipr (1 p m, RTp). Figure 2

shows the pseudo code for range query based on upper and lower bounds in
theorem 1.

In order to compare the difference between our new algorithm and traditional algo-
rithm, we give a description about traditional method using wavelet in figure 3.

TraditionalRangeQuery()
Input: query time series Y(y0…yn-1), query radius ε
{

Compute wavelet sequence S(s0…sn-1)from Y;
for(p=1 to m)
{

if (ε
−

=

−
1

0

2
 ,)(

k

i
iip sr)

{ print(“Xp is not similar to Y”); continue; }
Compute the actual distance between Xp and Y to

judge whether their distance is less than ε;
}

}
Fig. 3. The traditional range query algorithm

Now we give further explanations about above algorithms. Because the original
time series is usually very long, and sometimes the length is greater than a few hun-
dreds, it is not efficient to compute the distance directly in time domain. Wavelet
transform is used as a dimensionality reduction method, and only a few dimensions
are remained as data synopses. The algorithms first compute in the wavelet domain
using synopses. Compared to original time domain, the cost of computing in wavelet
domain is relative low. The aim of using wavelet is to reduce the computation amount
in original time domain to improve query efficiency, namely avoiding the execution
of step (3) in figure 2. And this is usually used as the criterion to judge algorithm’s

efficiency. As shown in figure 3, the traditional method only uses ε
−

=

−
1

0

2
 ,)(

k

i
iip sr

as the filter criterion in wavelet domain. Our algorithm’s step (1) ε
−

=

−
1

0

2
 ,)(

k

i
iip sr +

(RTp - ST)2 can filter out more dissimilar time series compared to traditional methods
for the given ε. And the traditional method does not have the filter criterion of step (2)
in figure 2, which can directly judge whether two time series are similar. We can see

466 B. Liu et al.

that ε
−

=

−
1

0

2
 ,)(

k

i
iip sr for traditional method is contained in the lower bound of our

algorithm. Our algorithm proposes stricter upper and lower distance bounds between
two time series in wavelet domain. According to the lower bound, we can exclude
more unmatched time series than traditional method. And according to the upper
bound, we can directly judge whether two time series are similar, then further reduce
the number of original time series to compare in time domain. Therefore compared to
traditional methods, our method can significantly reduce the number of original time
series to process in time domain and improve query efficiency.

We give an example to illustrate our new algorithm’s superiority to traditional

method. There are 3 time series in database: X1(1+1/ 2 ,1-1/ 2 ,0,0), X2(1,1, 2 ,-

2), X3(1+1/ 2 ,1-1/ 2 ,1/ 2 ,-1/ 2). The corresponding wavelet sequences

are R1 (1,1,1,0), R2 (1,1,0,2), R3 (1,1,1,1). If k=2, there are RT1= 1�RT2=2�RT3
 = 2 .

For a query time series Y(1,1,0,0) and query radius 3, the corresponding wavelet se-
quence is S (1,1,0,0) and there is ST =0. According to our range query algorithm in
figure 2, step (1) can directly judge that X2 is not similar to Y, and step (2) can directly
judge that X1 and X3 are similar to Y. Now we need not to compute the actual distance
in the original time domain, which means that step (3) needs not to execute one time.
But for traditional method in figure 3, it can not judge which time series is similar or
dissimilar to the query time series in wavelet domain. Now it has to compute the ac-
tual distances in the original time domain three times.

4 Experiments

In this section, we perform an extensive evaluation using the method given in this
paper. The experiments use two types of data. The first type is computer generated
random walk time series: pi=pi-1+xi. And another type is real-world data: stock data
from Dow Jones Industrials [15]. We use sliding windows to cut the long sequences
and every time series’ length is 128. The number of time series generated for each
type is 100K. We use the same method to create query time series. All experimental
results given in this section are the average of 10 trials.

After transforming time series from time domain to wavelet domain, we keep the
first three wavelet coefficients as synopses. We will compare the filter efficiency and
running time of our new algorithm and traditional algorithm. From section 3, we
know that the aim of using wavelet is to reduce the number of original time series to
process, namely try to avoid the execution of step (3) of the range query algorithm in
figure 2. In order to compare our new method and traditional method, we define filter
efficiency as:

databasein seriestimeofnumber the

domain in wavelet filtered series timeofnumber the
efficiencyfilter =

For the above formula, the number of time series filtered in wavelet domain also
refers to those that can be determined whether they are similar or dissimilar to
query time series directly in wavelet domain. The example in section 3 shows that

 Tight Bounds on the Estimation Distance Using Wavelet 467

traditional method can not judge which time series in database is similar or dissimilar
to query time series only using wavelet synopses, so its filter efficiency is 0. But our
new algorithm can directly determine the similarity between time series in database
and query time series only using wavelet synopses, so the filter efficiency is 100%.
Also, the running time is related to the filter efficiency for similarity search. If the
filter efficiency is relative high, the number of time series needed to process in origi-
nal time domain is less, therefore the query time is reduced.

Figure 4 and 5 give the filter efficiency and running time comparison between tra-
ditional algorithm and our new algorithm given in section 3. They use computer gen-
erated random walk data and Euclidean distance. Figure 4 shows the filter efficiency
comparison as the query radius increases. This figure illustrate that our new algorithm
is always better than traditional algorithm in filter efficiency for any query radius.
And with the query radius increasing, the filter efficiency of new algorithm is further
better than that of traditional algorithm. Figure 5 shows the running time comparison.
Although the running time of new algorithm is a little longer than that of traditional
method when query radius is relative short, as query radius increases new algorithm’s
running time is better than that of traditional method at most situations.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

20 60 100 140 180 220 260 300 340 380

query radius

fi
lte

r
ef

fi
ci

en
cy

traditional

new

Fig. 4. The filter efficiency for random walk data in Euclidean distance

0

1

2

3

4

5

6

7

20 60 100 140 180 220 260 300 340 380

query radius

tim
e(

se
co

nd
s)

traditional

new

Fig. 5. The running time for random walk data in Euclidean distance

Figure 6 and 7 give the comparisons of filter efficiency and running time using
computer generated random walk data and v-shift distance defined in section 2.

468 B. Liu et al.

Figure 6 gives the filter efficiency comparison for traditional algorithm and new
algorithm as the query radius increases. It also shows that new algorithm is better than
traditional algorithm. The running time comparison in figure 7 further confirms this
conclusion.

0

0.2

0.4

0.6

0.8

1

10 19 28 37 46 55 64 73 82 91

query radius

fi
lte

r e
ff

ic
ie

nc
y

traditonal

new

Fig. 6. The filter efficiency for random walk data in v-shift distance

0

5
10

15

20

25
30

35

40

10 19 28 37 46 55 64 73 82 91

query radius

tim
e(

se
co

nd
s)

traditional

new

Fig. 7. The running time for random walk data in v-shift distance

0.8

0.85

0.9

0.95

1

25
00

50
00

75
00

10
00

0

12
50

0

15
00

0

17
50

0

20
00

0

22
50

0

25
00

0

query radius

fi
lte

r
ef

fi
ci

en
cy

traditional

new

Fig. 8. The filter efficiency for Dow Jones Industrials data in Euclidean distance

 Tight Bounds on the Estimation Distance Using Wavelet 469

Figure 8 and 9 give the comparisons of filter efficiency and running time using
Dow Jones Industrials data and Euclidean distance. Also they show that the filter
efficiency and running time of new algorithm are gradually better than that of tradi-
tional algorithm.

0
1
2
3
4
5
6
7
8

25
00

50
00

75
00

10
00

0

12
50

0

15
00

0

17
50

0

20
00

0

22
50

0

25
00

0

query radius

tim
e(

se
co

nd
s)

traditional
new

Fig. 9. The running time for Dow Jones Industrials data in Euclidean distance

Figure 10 and 11 give the comparisons of filter efficiency and running time using
Dow Jones Industrials data and v-shift distance. Similar to above observations, the
filter efficiency and running time of new algorithm are better than that of traditional
algorithm.

0

0.2

0.4

0.6

0.8

1

16
50

18
30

20
10

21
90

23
70

25
50

27
30

29
10

30
90

32
70

query radius

fil
te

r
ef

fi
ci

en
cy

traditioinal

new

Fig. 10. The filter efficiency for Dow Jones Industrials data in v-shift distance

Observed from above figures, the filter efficiency of traditional algorithm gradually
reduces when the query radius increases. This is because that the traditional algorithm
only uses lower bound as filter criterion. When the query radius ε increases, the filter

effect of ε
−

=

−
1

0

2)(
k

i
ii sr reduces. For the new algorithm given in this paper, when

the query radius increases, the filter efficiency first reduces, and then increases, which

470 B. Liu et al.

is especially obvious in figure 10. This is because that the new algorithm uses upper
and lower bounds as filter criterion. When the query radius increases, the filter effect
of lower bound reduces similar to traditional algorithm, but the power of upper bound
is gradually strengthened. Since the running time is approximately proportional to the
filter efficiency, the comparisons for running time have the similar trend as the filter
efficiency.

0
5

10
15
20
25
30
35
40

16
50

18
30

20
10

21
90

23
70

25
50

27
30

29
10

30
90

32
70

query radius

tim
e(

se
co

nd
s)

traditional

new

Fig. 11. The running time for Dow Jones Industrials data in v-shift distance

In a summary, for different data sets, distance functions and query radiuses, the fil-
ter efficiency and running time of new algorithm is better than that of traditional algo-
rithm at most situations. And sometimes the filter efficiency and running time of new
algorithm significantly outperform traditional method.

5 Conclusion

In this paper, we present the strict upper and lower bounds of wavelet transform in
similarity search for time series, and propose a new range query algorithm based on it.
Using it we can get better filter efficiency and running time than traditional method.
Experimental results on synthetic and real-world data confirm our conclusion.

There are some future works. The first is to study the tight bound for different
wavelet basis functions other than Haar wavelet transform. The second is to use in-
dexes such as R-tree to further improve the query efficiency.

Acknowledgement. We thank Prof. Jian Pei (Simon Fraser University, Canada) and
Haixun Wang (IBM T. J. Watson Research Center) for discussing some issues about
this paper.

References

[1] C. Faloutsos, M. Ranganathan, Y. Manolopoulos. Fast subsequence matching in time-
series databases. In Proc. of SIGMOD 1994

[2] R. Agrawal, C.Faloutsos, A.Swami. Efficient similarity search in sequence databases. In
Proc. Of the 4th FODO, 1993

 Tight Bounds on the Estimation Distance Using Wavelet 471

[3] C. Siney Burrus, R. A. Gopinath, H. Guo. Introduction to Wavelets and Wavelet Trans-
forms, A Primer. Prentice Hall, 1997

[4] Eric J. Stollnitz, Tony D. Derose, David H. Salesin. Wavelets for Computer Graphics.
Morgan Kaufmann, 1996

[5] Han Hua, Wang Xueling, Peng Silong. Image Restoration Based on Wavelet-Domain
Local Gaussian Model. Journal of Software, 2004,15 (3):443-450

[6] Kinpong Chan, Ada Waichee Fu. Efficient time series matching by wavelets In Proc of
ICDE 1999

[7] Zhang Haiqin, Cai Qingsheng. Time Series Similar Pattern Matching Based on Wavelet
Transform. Chinese Journal of Computers, 2003,26(3) :372-377

[8] Ivan Popivanov, Renee J. Miller. Similarity search over time series data using wavelets.
In Proc of ICDE 2002

[9] Zhao Hui, Hou Jianrong, Shi Baile. Research on Similarity of Stochastic Non-Stationary
Time Series Based on Wavelet-Fractal. Journal of Software, 2004,15 (5):633-640

[10] Zheng Cheng, Ouyang Weiming, Cai Qingsheng, An Efficient dimensionality reduction
technique for times series data sets. Mini-Macro System, 2002,23(11):1380-1383

[11] J.S Vitter, M. Wang. Approximate computation of multidimensional aggregates of sparse
data using wavelets. In Proc of SIGMOD 1999

[12] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, Kyuseok Shim. Approximate
Query Processing Using Wavelets. The VLDB Journal, 2001,10(3):199-223

[13] A. Deligiannakis, N. Roussopoulos. Extended wavelets for multiple measures. In Proc of
SIGMOD 2003

[14] G. Sheikholeslami. S., Chatterjee., A, Zhang. Wavecluster: a wavelet based clustering
approach for spatial data in very large databases. VLDB Journal, 2000: 289-304

[15] http://finance.yahoo.com/

Load Shedding for Window Joins over Streams

Donghong Han, Chuan Xiao, Rui Zhou, Guoren Wang,
Huan Huo, and Xiaoyun Hui

Northeastern University, Shenyang 110004, China
wanggr@mail.neu.edu.cn

Abstract. We present a novel load shedding technique over sliding
window joins. We first construct a dual window architectural model
including join-windows and aux-windows. With the statistics built on
aux-windows, an effective load shedding strategy is developed to pro-
duce maximum subset join outputs. For the streams with high arrival
rates, we propose an approach incorporating front-shedding and rear-
shedding, and then address the problem of how to cooperate these two
shedding processes through a series of calculations. Based on extensive
experimentation with synthetic data and real life data, we show that
our load shedding strategy delivers superb join output performance, and
dominates the existing strategies.

1 Introduction

Data stream applications such as network monitoring, on-line transaction flow
analysis, intrusion detection and sensor networks pose tremendous challenges
to traditional database systems. Unbounded continuous input streams require
specific processing techniques different from fixed-size stored data sets.

As for “join”, a traditional important operator, it is not practical to compare
every tuple in one infinite stream with every tuple in another, thus, sliding
window join is put forward [1]. It restricts the set of the most recent tuples that
participate in the join within a bounded-size window, and produces acceptable
approximate join outputs. There are mainly two types of windows: time-based
window and tuple-based window [3]. As for time-based window, the number of
tuples in window is not fixed. The higher the stream arrival rate is, the more
tuples the window memory holds. For tuple-based window, the number of tuples
in window is fixed. The higher the arrival rate is, the newer the window tuples
are. In our paper, we primarily focus on tuple-based window, and time-based
window is reserved for future work.

Note that even with a window predication, join operator may lack of CPU
or memory resources when streams have high arrival rates. Therefore, we need
load shedding (drop some tuples to reduce system load) to facilitate the join
processing, so as to keep pace with the incoming streams. There are two types
of join approximation [5]: max-subset results and sampled results. We take max-
subset approximation as the evaluation criterion for shedding strategies.

For time-based window joins, we have two kinds of resource limitations, CPU
deficiency and memory shortage [4]. For tuple-based joins, the two limitations

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 472–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Load Shedding for Window Joins over Streams 473

can attribute to CPU deficiency exclusively, because the buffer memory that
holds tuples will not overflow if CPU is fast enough. Considering the evaluating
process of joins, since probes(checking the opposite window for matching tuples)
take up most of the CPU resources, we develop a novel shedding strategy by
letting part of the tuples enter window without performing probes. We “drop”
the tuples in this way rather than discard them directly, for the sake that future
tuples from the other stream may produce join results with these ones. Further-
more, we implement a semantic selection of the shedding tuples based on sta-
tistics of aux-windows(Section 2), which shows good performance on producing
max-subset outputs and is denoted as rear-shedding stategy(Section 3). If stream
arrival rates are high, a large percent of tuples will be dropped. CPU resources
are primarily spent on the operation of entering/leaving windows. Considering
an extreme case, stream speeds are so high that no probes can be performed,
then no join outputs will be obtained. Paradoxically, if we discard part of tuples
beforehand, some CPU resource will be saved to perform probes, with a subset
of join outputs gained. We name the shedding strategy here front-shedding, and
address the problem of how to cooperate these two shedding processes through
a series of calculations(Section 4). Experiment results are shown in Section 5.
Related literatures are fully summarized in Section 6.

2 Dual Window Model

Our goal is to process a sliding window equi-join between two streams A and B
producing maximum subset of join outputs with load shedding if necessary.

We adopt the join process similar to those presented in [1,5]. Assume the two
streams are Stream A and Stream B. On each arrival of a new tuple from Stream
A, three tasks must be performed:

1. Scan Stream B’s window, looking for matching tuples, and propagate them
to the result. This task is called probing.

2. Insert the new tuple into Stream A’s window.
3. Invalidate the oldest tuple in Stream A’s window.

From the above, we conclude that there are two kinds of tasks for CPU to
perform: probe (1) and updates (2,3). As for tuple-based window, for one tuple,
updates (replacing the oldest tuple in the join window with a new coming one)
can be performed more efficiently than probe. In cases of high stream speeds,
CPU is unable to perform the whole join process (both probe and updates) for
every arriving tuple, therefore we need to shed load by letting part of the tuples
enter window without performing probes, yet the other tuples perform probes as
normal. Notice that we do not discard the tuples that do not perform probes, for
future tuples from the other stream may produce join results with these tuples.
Consequently, CPU can keep pace with the streams whose speeds are faster than
CPU’s processing ability. Figure 1 shows our model on window joins. We divide
the memory into three parts. For each stream, we have :

474 D. Han et al.

join-windowaux-windowqueue

rear-shedding

histogram A

stream B

front-shedding

stream A

histogram B

Output

Fig. 1. Dual Window Model

1. join-window, the join window holding the tuples with which a new arriving
tuple from the opposite stream will perform join.

2. aux-window, auxiliary window, which is the same size as the join-window.
We also construct a window-histogram based on the aux-window, and with
the help of its statistics we can implement effective load shedding by dropping
those tuples producing fewer join results.

3. queue, serves as a buffer. We can detect stream speeds by monitoring the
queue size of each stream.

When the queue length reaches the threshold when buffer is about to overflow,
and the stream speeds are still faster than CPU processing rate, we start load
shedding by keeping part of the tuples from performing probes. Hence CPU can
process more tuples per time interval, though some join results are left out. We
denote this load shedding process as rear-shedding, whose evaluation is executed
when a tuple leaves aux-window, and preparing to enter join-window. If the in-
coming stream speeds further increase, exceeding another threshold (interpreted
in sections below), we start front-shedding to cooperate with rear-shedding to
produce max-subset join results.

3 Rear-Shedding

For convenience, in Table 1, we introduce notations for the constants and vari-
ables used in this paper. These notations are also used in the following sections.
W , D are set up according to specific application, while Vj and Vw are deter-
mined by CPU processing ability and can be tested from experiments.

3.1 Determining kr

We do not need load shedding if CPU can perform the joins of every tuple.
In order to keep the queue from overflow, we need to maintain an approxi-
mately constant queue length. Based on this prerequisite, we have the following
deduction:

The time for one tuple to enter queue is 1
Vq

, and the time for one tuple to
leave aux-window and to join is 1

Vw
+ 1

Vj
. Since the window size is fixed, the time

for one tuple to leave aux-window is equal to that for one tuple to enter aux-
window, which is equal to the time for one tuple to leave queue. For a constant

Load Shedding for Window Joins over Streams 475

Table 1. Constants and Variables

Name Description
Vs speed of stream
Vq speed of tuples entering queue
Vj maximum number of tuple probes per time interval without

considering the cost of entering and leaving windows
Vw maximum number of tuples entering/leaving window per time

interval without considering the cost of probes
kr rear-shedding rate
kf front-shedding rate
W window size
D domain of the join attribute

queue length, the time for one tuple to enter queue and the time for one tuple
to leave queue are equal, thus we have:

1
Vq

=
1

Vw
+

1
Vj

Likewise, we can get the following equation when performing load shedding:

1
Vq

=
1

Vw
+

1 − kr

Vj

Then kr is determined as:

kr = 1 − Vj(
1
Vq

− 1
Vw

) (1)

Furthermore, for a constant queue length, we obtain Vq = Vs. Vs can be de-
tected by the system, thus we can find a shedding rate kr to let CPU coordinate
with the incoming streams. The faster the streams are, the higher kr is adopted.

3.2 Determining Which Tuple to Shed

Suppose we perform joins on tuple’s attribute Attr, and take integer as data
type for simplicity. For each stream, we build a window-histogram based on
its aux-window by mapping the values of Attr into an array of counters. The
array size is D. Figure 2 gives an example. There are two 1s, four 2s, one 3, zero 4,
and one 5 in aux-windowB. Window-histogram is maintained dynamically, and
when a new tuple enters aux-window or when an old one leaves, updates will be
carried out by means of increasing or decreasing the corresponding counter of
the tuple’s attribute value.

Assume the two streams have the same speed(Processing of different speed
ratio is omitted due to space limitation. Readers can refer to our technical report
[14].), for such speed ratio 1:1, we let the aux-windows and join-windows of the
two streams have the same size. CPU alternatively takes out a tuple from one
of the aux-windows and performs joins with the opposite join-window.

476 D. Han et al.

histogramB

key
counter

aux-window

A B

1 2 3 4 5 ...

2 4 1 0 1 ...

1

2

3

2

2

1

5

2

Fig. 2. Window-histogram

number of outputs
to produce 0 1 2 3 4 5 6 7

tuples in
aux-window 4 3 6 8 4 2 1 0

4+3+6+8=21

Fig. 3. Calculating n with Frequency Array

Now we introduce the strategy to determine which tuple should be shed. Take
Stream A for example. When a tuple g is about to enter aux-windowA, we check
its join attribute value in the window-histogram of the opposite window (window-
histogramB), find how many join outputs it will produce, and save this number
N . Accordingly, we construct an array C for all the tuples in aux-windowA,
recording the number of join outputs that each tuple will produce. Moreover,
a frequency array is built on the array C, counting how many tuples in aux-
windowA will produce a specific number(C[i]) of join outputs. Therefore, when
g leaves aux-windowA, it is able to count how many tuples in aux-windowA will
produce less join outputs than N , denoted as n. Figure 3 provides an example:
the tuple being judged will produce 4 join outputs, we need to count how many
tuples in its aux-window will produce less than 4 join outputs. There are 4 tuples
will produce 0 join outputs, 3 will produce 1, 6 will produce 2, and 8 will produce
3, there are 4+3+6+8=21 (n=21) tuples in all to produce less than 4 outputs.
From Algorithm 1, we know that for a tuple g leaving aux-windowA, if the aux-
windowA has krW or more tuples that will produce join outputs fewer than N ,
g will not be shed.

Algorithm 1. SheddingAlgorithm()
Function: Judge whether a tuple should be shed or not
1: if n/W < kr then
2: update(enter its own join-window without probing the opposite join-window);
3: else
4: probe; update;
5: end if

Considering a case that many tuples in aux-windowA have the same number
of join outputs. For example, suppose window size is 100, and of the 100 tuples

Load Shedding for Window Joins over Streams 477

in aux-windowA, 20 tuples will produce 0 join result, 50 tuples will produce 1
join result, and 30 tuples will produce 2 join results. Now we have the shedding
rate kr=0.6, thus we should shed all 20 resultless tuples and also 40 tuples from
50 which will produce 1 join result. The 40 tuples will be chosen randomly. The
algorithm is easy and omitted here.

4 Front-Shedding

Suppose stream speeds are extremely high, e.g. Vs > Vw. We have to shed all
the tuples (kr=1), and CPU resources are all spent on performing updates, with
no join results produced. Nevertheless, the speed of tuples entering queue is still
higher than the speed of tuples leaving queue. The queue length will increase
with no limit, and the system will become unstable. However, if we discard part
of the incoming tuples before pushing them into the queue, letting Vq < Vw,
some CPU resources will be saved to perform probes, and some join results
will be obtained. We introduce front-shedding, controlling Vq < Vw. Figure 4
shows an approximate join outputs curve without front-shedding. When Vs <=
Vj ∗Vw/(Vj +Vw) (we can get it from equation 1), system needs no load shedding
(kr=0), and output results will increase in proportion to the stream speeds. As
the stream speeds become higher, shedding rate increases correspondingly. When
the stream speeds reach Vw, the shedding rate kr is 1, and the output results
are 0. Since the stream speeds and the shedding rate kr are continuous, there
exists a maximum number of join outputs at a certain speed, Vopt. (opt means
optimal.) Next, we will calculate Vopt.

number of outputs
per time interval

s tream speeds

O max

Vopt

Vw

ideal

dual window
rear-shedding only

(Vj+Vw)
Vj Vw

Vq=

Fig. 4. Rear-shedding Outputs

Suppose the two incoming stream have the same distribution. Take uniform
distribution as an example. Other types of distribution, such as Zipfian can be
deduced similarly. For a tuple g with attribute value a, the probability it appears
is 1/D, where D is the value domain of the attribute. The probability that in
the opposite window, there are exactly i tuples with the same attribute value a
as tuple g is:

Pi =
(

W
i

)
(

1
D

)i(1 − 1
D

)W−i

478 D. Han et al.

Suppose we will shed all the tuples producing outputs fewer than M(M ∈
[0, W]), and part of the tuples producing M outputs, denote the ratio as r,
i.e. among the tuples that will produce M outputs, the number of tuples to be
shed divided by all such tuples. Thus the shedding rate kr is determined as:

kr =
M−1∑
i=0

Pi + r · PM (0 ≤ r ≤ 1)

And tuples joined per time interval is: Vq(1 − kr). The average number of join
outputs each tuple can produce is:

Otuple = (1 − r) · M PM

1 − kr
+

W∑
i=M+1

i · Pi

1 − kr

Thus the total number of outputs per time interval is:

O = Vq(1 − kr) · Otuple = Vq[M(
M∑
i=0

Pi − kr) +
W∑

i=M+1

i · Pi]

Our goal is to achieve the max-subset of join output results, letting O reach the
maximum Omax. As is known in equation (1), kr is a function of Vq . Substitute
kr with Vq, we obtain:

O = Vq[M(
M

i=0
Pi + Vj

Vq
− Vj

Vw
− 1) +

W

i=M+1
i · Pi]

M−1

i=0
Pi ≤ kr = 1 − Vj(1

Vq
− 1

Vw
) ≤

M

i=0
Pi

(2)

Let Vq = Vopt, when O reaches its maximum Omax. let λ = Vj/Vw, then Vq =

Vj/(λ+1−kr). Substitute Vq with kr and λ; and let α = M
M∑
i=0

Pi +
W∑

i=M+1
i · Pi,

β = λ + 1, we can get:

O = Vj · α − Mkr

β − kr
= Vj · (M +

α − βM

β − kr
) (3)

In equation (3), for a definite M , α, β, Vj are all constant. Hence O changes
monotonically with kr. As a result, there is no such kr:

M−1∑
i=0

Pi < kr <

M∑
i=0

Pi

that produces Omax. Omax is obtained only at endpoints, i.e. the ratio r = 0.
The following equation can be deduced:

kr =
M−1∑
i=0

Pi or kr =
M∑
i=0

Pi

Load Shedding for Window Joins over Streams 479

Equation (2) can be reduced to:⎧⎪⎪⎨
⎪⎪⎩

O = Vq

W∑
i=M+1

i · Pi

M∑
i=0

Pi = kr = 1 − Vj(1
Vq

− 1
Vw

)

M is in [0,W]. For a given window size and distribution, W and Pi are fixed;
only M is variable. Therefore Omax can be easily found through a search of M
among W+1 values. Vopt and kr can be then determined by M . Furthermore we
can use a binary search to reduce the searching cost remarkably, for the function
O has the shape like “Λ”, which means it first increases, and then decreases.
The proof is omitted due to page limitation.

Based on the discussions above, we summarize the applying of front-shedding
and rear-shedding strategies as follows:

– If Vs <= Vopt, only rear-shedding will be adopted.
– If Vs > Vopt, rear-shedding and front-shedding will cooperate. Control Vq by

front-shedding, letting Vq = Vopt.

Front-shedding rate kf is determined as kf = 1 − Vopt

Vs
. Semantic information

is ignored in front-shedding, because the long queue may impair its efficacy in
prediction over joins. Therefore, we choose a subset of the streams in a random
way, namely a simple but efficient way.

5 Experiments

To assess the practical performance of our model, we perform several sets of ex-
periments on both synthetic and real life datasets. We compare the performance
of our strategies (referred to as DUAL) with another two load shedding strate-
gies. One is dropping tuples randomly from the join input buffers (referred to as
RAND); the other is a heuristic strategy [4] (referred to as PROB). Additionally,
we use an optimal offline strategy [4] (referred to as OPT) to better evaluate
the results. All the experiments are performed on P4 3.2G, 512M, Windows XP.
The experiments indicate that our dual-window model histogram-based load
shedding strategy works surprisingly well in practice.

5.1 Experiments on Front-Shedding

Our first set of experiments is focused on studying the function of front-shedding.
We compare two strategies, both front-shedding and rear shedding (referred to
as DUAL), and rear-shedding only (referred to as REAR). We use window size
400, domain size 50, and input data generated from Zipfian distribution with
skew parameter 1. From the tested speed of join probes and that of the tuples
entering/leaving window, we obtain that Vopt = 117.396 by calculation, which
accords with our experiment results. Vopt is determined similarly in subsections

480 D. Han et al.

Output Vs Speed for w=400 Zipfian distribution, d=50

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

40 80 120 160 240 320 400 480 560 640

Stream speeds of two streams (tuples/ms)

O
ut

pu
t t

up
le

s
pe

r
se

co
nd

DUAL

REAR

Fig. 5. Front-shedding and Rear-shedding

5.2 and 5.3, with respect to fixed data distributions and predefined window sizes.
Figure 5 shows the comparison between the two strategies.

When stream speeds are lower than Vopt, front-shedding has not been started,
thus two strategies have the same results. As the stream speeds increase, we can
easily see the difference: the result from DUAL keeps approximately a constant
number, because front-shedding controls the tuples entering queue at a constant
speed, and rear-shedding drops tuples at a constant shedding rate.

5.2 Effect of Window Size

Figures 6 and 7 show the number of join outputs for window sizes of 400 and
800 respectively. In this set of experiments, we use input data generated from
Zipfian distribution with skew parameter 1, domain size 50. Four load shedding
strategies are to be compared: OPT, RAND, PROB, and DUAL.

Output Vs Speed for w=400 Zipfian distribution, d=50

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

20 40 60 80 100 120 140 160 180 200

Stream speeds of two streams (tuples/ms)

O
ut

pu
t t

up
le

s
pe

r
se

co
nd

DUAL

RAND

PROB

OPT

Fig. 6. Window Size (W=400)

Output Vs Speed for w=800 Zipfian distribution, d=50

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

10 20 30 40 50 60 70 80 90 100

Stream speeds of two streams (tuples/ms)

O
ut

pu
t t

up
le

s
pe

r
se

co
nd

DUAL

RAND

PROB

OPT

Fig. 7. Window Size (W=800)

As shown in the figures, DUAL works much better than PROB and RAND,
especially when stream speeds are high. The performance of the different strate-
gies do not change much as the window size is varied. Increased window size
only produces more join outputs at one stream speed, for a tuple needs to probe
more tuples in the opposite window; but not impacts the performance of the
load shedding strategies.

Load Shedding for Window Joins over Streams 481

5.3 Effect of Distribution

Figure 8 shows the performance of the different load shedding strategies for
a window size of 400 when both the incoming streams have a uniform data
distribution in a domain size of 50. The experiment results indicate that for less
regular input data, shedding by heuristic information is not a good option, while
our strategy has a significant advantage over shedding by heuristic information
or random selection.

The input data streams consist of tuples with uniformly distributed attribute
values have different affects on the performance of different load shedding strate-
gies. Since all the tuples have the same probability of finding a tuple with equal
attribute value in the opposite window, heuristic information is trivial in judg-
ing which tuple will produce more join results. Therefore PROB will be as poor
as RAND, however, DUAL is able to perform as well as on Zipfian distributed
input data. Aux-windows are introduced to predict the number of join outputs
that each tuple can produce, therefore enable the selection among tuples within
a range of window size. Such preferences are accumulated through large streams,
and finally lead to the advantage over the other two strategies.

5.4 Real Life Dataset Experiments

We use CO2 data available at [10] as our real life datasets for experiments. We
perform a streaming sliding window join using the air temperature at 38.2 meters
in two years - 1995 and 1998 - as two datasets, and we set window size as 1000.
After deleting invalid data items and considering the warmup phase [4], 15471
tuples are left for join queries. Such join query results can be potentially used
to research the change of ambient CO2 concentration at the same temperature
in the three years. For the calculation of Vopt, we perform a sampling of the
datasets, and then obtain an approximate distribution of the input data, thus
Vopt can be determined as described in Section 4. Figure 9 shows the results from
different strategies as a percentage of ideal case, namely the results produced by
fast enough CPU.

Output Vs Speed for w=400 Uniform distribution, d=50

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

5.0E+05

5.5E+05

20 40 60 80 100 120 140 160 180 200

Stream speeds of two streams (tuples/ms)

O
ut

pu
t t

up
le

s
pe

r
se

co
nd

DUAL

RAND

PROB

OPT

Fig. 8. Uniform Distribution

Output Vs Speed for w=1000 CO 2 data

0%

20%

40%

60%

80%

100%

8 12 16 20 24 28 32 36 40 44

Stream speeds of two streams (tuples/ms)

O
ut

pu
t t

up
le

s
as

 a
 p

er
ce

nt
ag

e
of

 id
ea

l

DUAL

RAND

PROB

OPT

Fig. 9. Real Life Datasets

From the figure, it is observed that our strategy DUAL performs much better
than PROB and RAND. The real life datasets are neither as random as uniform

482 D. Han et al.

distribution data, nor as regular as Zipfian distribution data. Therefore, heuristic
information may be used to judge which tuple will produce more join outputs,
but the judgment might not be accurate, in other words, the tuples with attribute
value that produced more join outputs in the past might not produce more
join outputs in the future. At the same time, DUAL performs well because the
judgment is within one window instead of among all the tuples, and therefore
more accurate than selection by heuristic information.

6 Related Work

There has been considerable work on data stream processing. The survey in [11]
gives an overview of stream work, and has summarized the issues of build-
ing a data stream management system. Specialized systems have been built
to process streaming data, such as Aurora [6], STREAM [2], NiagaraCQ [7] and
TelegraphCQ [9].

The papers [1, 4, 5, 12, 13] focus on performing joins over streaming data. [1]
introduces an implementation of join process, and addresses the cost models of
nested loop joins and hash joins, which adopts the simplest random shedding
strategy. [4] provides an architectural model, primarily discusses the offline load-
shedding strategies, and introduces some heuristic online strategies. [5] puts
forward the concepts of sampled results and age-based model, apart from max-
subset results and frequency-based model in [1,4]. Our work consider max-subset
results and frequency-based model. We also construct an architectural model,
and develop an online shedding strategy according to window statistics. In the
literature of multi-joins, [12] analyzes the cost of nested loop joins and hash joins,
and proposes join ordering heuristics to minimize the processing cost per unit
time. [13] provides a symmetric multi-join operator for multiple joined streams
to minimize memory usage as opposed to using multiple binary join operators.

7 Conclusions and Future Work

In this paper, we addressed a novel load shedding technique over sliding window
joins. We propose a dual window architectural model, and build statistics based
on the aux-windows. Effective semantic load shedding can be implemented, for
the number of join outputs can be predicted by window-histograms in advance.
With the cooperation of front-shedding and rear-shedding, we can deal with
high stream arrival rate scenarios, and manage to produce max-subset results.
A promising direction for future work is to consider time-based window joins in
order to serve for different kinds of applications.

Acknowledgments. This research was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 60273079 and 60573089) and Spe-
cialized Research Fund for the Doctoral Program of Higher Education (SRFDP).

Load Shedding for Window Joins over Streams 483

References

1. J. Kang, J. F. Naughton, and S. D.Viglas. Evaluating Window Joins over Un-
bounded Streams. In Proc. 2003 Intl. Conf. on Data Engineering, Mar. 2003.

2. The STREAM Group. STREAM: The Stanford Stream Data Manager. IEEE Data
Engineering Bulletin ,26(1):19-26,March 2003.

3. A. M. Ayad, J. F. Naughton. Static Optimization of Conjunctive Queries with
Sliding Windows Over Infinite Streams. In Proc. ACM SIGMOD Conf., June 2004.

4. A. Das, J. Gehrke, and M. Riedewald. Approximate Join Processing Over Data
Streams. In Proc. 2003 ACM SIGMOD Conf., June 2003.

5. U. Srivastava, J. Widom. Memory-Limited Execution of Windowed Stream Joins.
In Proc. 30th Int. Conf. on Very Large Data Bases, 2004.

6. D. Abadi, D. Carney, et al. Aurora: a new model and architecture for data stream
management. VLDB Journal, Vol.12(2),pp.120-139,2003.

7. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continous
query system for internet databasses. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 379-390, 2000.

8. P. M. Fenwich. A New Data Structure for Cumulative Frequency Tables. Software
- Practice and Experience, Vol 24, No 3, pp 327-336, Mar 1994.

9. J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, et al. Adaptive query process-
ing: Technology in evolution. IEEE data Engineering Bulletin, 23(2):7-18,2000.

10. D. Baldocchi, K. Wilson, et al. Half-Hourly Measurements of CO2, Water Vapor,
and Energy Exchange Using the Eddy Covariance Technique from Walker Branch
Watershed, Tennessee, 1995-1998. http://cdiac.esd.ornl.gov/ftp/ameriflux/data/
us-sites/walker-branch/

11. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proc. Principles of Database Systems (PODS), June 2002.

12. L. Golab, M. T. Ozmu. Processing Sliding Window Multi-joins in Continuous
Queries over Data Streams. In Proc. Conf. on Very Large Databases, Sept. 2003.

13. S. D. Viglas, J. F. Naughton, J. Burger. Maximizing the Output Rate of Multi-
Way Join Queries over Streaming Information Sources. In Proc. Int. Conf. on Very
Large Databases (VLDB), Sept. 2003.

14. D. Han, R. Zhou, C. Xiao. Load shedding for Window Joins over Data Streams,
June 2004, Technical report, Northeastern University. http://mitt.neu.edu.cn/
publications/HZX05-Joins.pdf

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 484 – 495, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Error-Adaptive and Time-Aware Maintenance of
Frequency Counts over Data Streams*

Hongyan Liu1, Ying Lu2, Jiawei Han2, and Jun He3

1 Tsinghua University, China 100084
hyliu@tsinghua.edu.cn

2 University of Illinois, Urbana-Champaign, USA 61801
{yinglu, hanj}@uiuc.edu

3 Renmin University of China, China 100872
hejun@ruc.edu.cn

Abstract. Maintaining frequency counts for items over data stream has a wide
range of applications such as web advertisement fraud detection. Study of this
problem has attracted great attention from both researchers and practitioners.
Many algorithms have been proposed. In this paper, we propose a new method,
error-adaptive pruning method, to maintain frequency more accurately. We
also propose a method called fractionization to record time information together
with the frequency information. Using these two methods, we design three
algorithms for finding frequent items and top-k frequent items. Experimental
results show these methods are effective in terms of improving the maintenance
accuracy.

1 Introduction

With the emergence of data stream applications, data mining for data streams has
attracted great attention from both researchers and practitioners. Among the mining
tasks for stream data, maintaining frequency counts over data streams is a basic
mining problem with a wide range of applications, such as web advertisement fraud
detection and network flow identification[1][2]. A number of algorithms have been
proposed to tackle this problem [1] [2] [3] [4] [5] [6] [7] [8]. A comprehensive
introduction to these algorithms is given in reference [2]. Most of these algorithms are
designed to maintain a set of approximate frequency counts satisfying an error
requirement within a theoretical memory bound, and they are mostly false-positive
oriented. Usually the error bound is given by an end user. To satisfy this error bound,
different algorithms use different methods to consume as less memory as possible.
Among these algorithms, an algorithm called space-saving [2] uses an integrated
approach for finding both frequent items and top-k frequent items. Both theoretical
analysis and experimental results show that this method achieves a better performance
in terms of accuracy and memory usage compared to other algorithms, such as

* This work was supported in part by the National Natural Science Foundation of China under

Grant No. 70471006 and 70321001, and by the U.S. National Science Foundation NSF IIS-
02-09199 and IIS-03-08215.

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 485

GroupTest [3], FREQUENT [4], CountSketch [7] and Probabilistic-InPlace [4].
However, after studying these existing algorithms, we have following observations:

• Timestamp information is ignored at processing each data arrival. Stream data are
temporally ordered, fast changing, massive, and potentially infinite sequences of
data. So time dimension is an important point of view to look at the data. Also,
people are usually interested in recent changes of the data streams. However, as far
as we know, all of these existing algorithms for approximating the frequency
counts do not take this kind of information into account.

• Precision and recall may not be enough to measure the performance of an
algorithm. Many algorithms use precision and recall as important measures to
judge if an algorithm is good. However, precision and recall depend on minimum
support parameter (minsup in short) and top-k parameter (k in short). For high
minsup or low k value in a skewed data stream, they are usually 1. From these two
measurements, it is hard for us to know how well an algorithm does for
maintaining the frequency counts as a whole. For example, if we use 10000
counters to monitor frequency counts of items over a data stream with length of
100,000 and 10000 distinct items. More than 50% of the frequency counts
maintained by space-saving are 1, and in the meantime they also have the highest
estimation error among all the counts maintained, while the exact answer tells us
that only 4% of these counts are 1. But this aspect is not easy to be seen from
precision and recall.

In this paper we focus on addressing these two issues described above. We propose
three algorithms: SSTime, Adaptive, and AdaTime. Following are some contributions
made in this paper:

• We propose to make use of time dimension information when designing the
pruning strategy. In order to do that, we propose a method, called fractionization ,
to compress timestamp of each arrival for an item into existing count and error
data. We also propose several methods to utilize this information to achieve better
pruning result.

• We propose to use the sum of maintained error and the error of estimation error as
well as the sum of all errors to measure the quality of mining algorithm. In order
to improve the quality of mining results in terms of these measurements, we
develop a pruning strategy, called error-adaptive pruning, to prune items
adaptively so that the error bound can be achieved and in the meantime a low
maintained error can also be achieved.

• We develop and implement an algorithm named Adaptive to use error-adaptive
pruning technique to maintain frequency counts over data streams. Comprehensive
experimental studies indicate that this algorithm can achieve better performance.

• We design and implement two algorithms, SSTime and AdaTime, to extend the
existing space-saving algorithm and the new algorithm Adaptive by taking the time
dimension into consideration. Experimental results show that time information is
effective in terms of improving the mining quality.

The remainder of the paper is organized as follows. Section 2 describes how to
keep and use time dimension, and give the description of algorithm SSTime. Section 3
describes the error-adaptive pruning technique, and presents two new algorithms

486 H. Liu et al.

Adaptive and AdaTime. Section 4 gives three measures as a complement to existing
measures for performance study and presents experimental results, and section 5
concludes the paper.

2 Keeping and Using Time Information

In this section, we describe our method to consider time information while
summarizing the dynamic data stream.

2.1 Problem Definition

Let I be a set of single items, I = {e1, e2, …, en}. Given a single item stream D of size
N, an item ei is called frequent if its frequency count, fi, in this stream exceeds a user-
specified support ϕN , where ϕ is a user-specified threshold, called minimum
support (minsup). An item ej is called a top-k frequent item if its frequency count is
among the k highest frequencies, where k is specified by user.

For a data stream application, the exact solution of finding all of the frequent items
or finding all of the top-k frequent items is usually impractical due to time and space
limitation. Therefore, the problem becomes finding an approximate set of frequent
items and top-k items. To solve this problem, except for the parameter minsup and k,
an error rate, , is also given by a user. With the relaxation of the original problem, the
task of mining frequent items becomes finding all of frequent items whose estimated
frequency counts exceeds ϕN , where the difference between the estimated counts
and their true counts is at most N. Similarly, the task of finding top-k frequent items
becomes finding k items with highest estimated frequency counts, where the
difference between the estimated counts and their true counts is also at most N.

2.2 Fractionization: A Method to Keep Time Information

Existing algorithms for mining frequent items in data streams can be categorized into
two kinds of techniques: counter-based and sketch-based. Counter-based method use
an individual counter for each item monitored. In this paper we only discuss this
method.

Due to the space limitation and the big size of the stream, usually only a subset of
all of items can be monitored in the main memory. Suppose we use m counters in
memory to keep frequency counts, then at any point of time, only m distinct items are
monitoring.

Almost all of the counter-based algorithms use the following method to maintain
item’s frequency. If the newcome item is currently monitored, its frequency is
increased. Otherwise, an item currently monitored is pruned to make room for the
new item. Although these existing algorithms are different from each other in terms of
pruning method, they all neglect the time information of each item arrival. In real
applications, items in data stream are changing as time changes. For example, old
frequent items may become infrequent as time goes on. Therefore, a straightforward
way to use time information is that whenever pruning is required, among candidates,

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 487

we choose old one instead of recent one to prune. But how can we judge which one is
older than others?

The answer to this question depends on how time information for every arrival of
items is recorded. If we have enough space, it is easy to record time information. But
in order to achieve high accuracy, we need to use as less memory as possible for each
counter. Therefore, how to put time information into existing information that a
counter keeps is important.

Suppose for each counter we maintain three pieces of information for an item: key,
guaranteed count, and maximum error, which can be represented as a triple (item,
count, error), where each element of this triple is usually saved as an integer. Our
method to save time information of each item arrival is called Fractionization , which
means that we first transform the information of each item into a decimal fraction, and
then save it as a decimal part of existing triple element such as error. In this case, we
use float rather than integer to represent it. However, even by this way, we still cannot
record every occurrence of an item. In order to save space, we sum all of time
information of its occurrence, and then save it as a subpart of the error element.

Now the problem becomes how to express the time information of an occurrence
of an item. There are many ways to do that. A simple one is that we use the
occurrence order to represent the timestamp of each item arrival. For example, the
timestamp of the first item in the stream is 1, and second is 2, and so on. In this way,
since the length of stream increases continually, the sum of timestamp may become
very big. After fractionization , it may become very small. To prevent this problem,
before fractionization , we can do logarithm computation such as natural logarithm.
Taking natural logarithm as an example, in order to transform the sum of timestamp
into a decimal, we can get the inverse of this number. So the sum of time stamp
should be greater than one. As a result, if we use natural logarithm computation, the
time stamp of the first item in the stream could be 3.

In sum, we could use the following formula (1) to record the time information of a
monitored item (ei, counti, errori):

)ln(

1

1=

+=
icount

j

ii

jtimestamp
errorerror

(1)

Besides the linear sum of the timestamp information of an item’s each monitored
arrival, we can also record the square sum of the timestamp information by a similar
way as shown in formula (2). Here, we put the time information in the item element,
and the timestamp of an item’s arrival can use the natural logarithmic value of its
occurrence order. For example, the timestamp of the first item in a stream is ln(3).

)ln(
1

2

1

=

+=
icount

j

ii

jtimestamp

ee

(2)

2.3 Algorithm: SSTime

To show the effectiveness of using item’s time information, we integrate the time
keeping and using method with the space-saving algorithm [2]. The algorithm called
SSTime is outlined in Fig.1.

488 H. Liu et al.

This algorithm is similar to space-saving. There are two differences between them.
The first is that SSTime records not only the count and error information of an item,
but also its time information. In Fig. 1, we use formula (1) to record the time
information (line 6-8 and line 14). We can also use both formulae (1) and (2) to
record more information about time. When an item is pruned from the memory, i.e., it
is not monitored currently, its time information is lost at the same time (line 13-15).
We can also record this information in the item that replaces it. The second difference
is that when choosing the pruning item, SSTime takes time into consideration. Among
all of items with the same (count + error), where error means the integer part of the
counter’s error element, the “oldest” item is chosen to prune first. To judge which
item is old is not an easy job. In this algorithm, we use a straightforward method. The
smaller the sum of timestamps of an item is, the older the item is. This method is
shown in formula (3). We can also use some complex method, which will be
discussed in the next section.

)(int)(maxarg iicandidateep errorerrore i −= ∈ (3)

Fig. 1. Algorithm SSTime. This algorithm is an extending of the algorithm space-saving by
incorporating time information of items to it.

With the information maintained by this algorithm, at any point of time, a query
could be submitted to output all of the frequent items according to a user-specified
minsup, or to output k most frequent items when the user gives the value of k. The
method to fulfill these two kinds of queries is the same as given in space-saving, and
we do not give them here due to the space limitation. This is the same for the other
two algorithms which will be described in the following sections.

Algorithm: SSTime(m counters, stream D)
1 timestamp=2;
2 For each item, ei, in D {
3 timestamp++;
4 If ei is monitored by counter (ei, counti, errori) {
5 counti= counti+1;
6 temp=exp(1/(errori-(int)errori));
7 temp=temp+timestamp;
8 errori=(int)errori+1/ln(temp);
9 }
10 else {
11 candidate={ej | ej has the least value of min=(count+(int)error)}
12 Let ep be the “oldest” item among items in candidate
13 Replace ep with ei.
14 errori= min+1/ln(timestamp);
15 The counter for ei becomes (ei, 1, errori)
16 }
17 }

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 489

3 Error-Adaptive Pruning Method and Algorithm

3.1 Error-Adaptive Pruning Method

As discussed in section 1, using the pruning method proposed in space-saving, most
of the frequency counts maintained in memory have only one guaranteed frequency
count, whereas they have the highest estimated error. In other words, most of them are
very untrustworthy, and the estimation error as a whole is high. In order to improve
this, we propose a new pruning method, called error-adaptive.

The pruning method used in space-saving is that whenever an existing monitored
item needs to be pruned, one of the items (we call them candidate items) with the
minimum estimated count, i.e. (count + error), is selected. The problem of this
method is that among these candidate items, some have very high guaranteed counts,
and others have only one guaranteed count. Treating them equally during pruning will
lead to high estimation error. Therefore, in our new pruning method, we try to treat
them differently, and in the meantime, we need to guarantee the error rate and high
recall and precision. This method is shown in Definition 2.

Definition 1. (pruning point N) A time point is called a pruning point if at this time
point, a new coming item in data stream cannot find a counter to monitor its
frequency count. Let the current length of the stream is N, then this pruning point is
called pruning point N.

Definition 2. (error-adaptive pruning method) Suppose user-specified error rate is ,
at pruning point N. Let ecounti be the estimated count, (counti + errori) for each
monitored item ei. The error-adaptive pruning method selects all of items ej satisfying
both of the following conditions as candidate items:

1) ecountj ≤ N/m where m= 1/
2) countj=min(counti) i=1, 2, …, m

At pruning point N, the Nth item, en, of the stream comes, and one of the candidate
items is selected. Suppose the counter for the selected item is (ep, countp, errorp). Then
after pruning, this counter becomes (en, 1, countp+ errorp) and is used to monitor en.

Using error-adaptive pruning method, we have the following lemmas.

Lemma 1. Let N be the current length of a data stream, then at any time point the
following equation (4) holds.

∀
+=

monitoredisei
ii

i
errorcountN

|
)(

(4)

Proof. Each item arrival in data stream D only increases one counter’s count by 1.
This is obviously true when this item is currently monitored. Even when it is not
monitored, it will replace one existing item. The counter for the existing item will be
used to monitor the new arrival item. This counter’s original count and error will be
saved to error and its count will be set to 1. So the count of old arrival is kept, and the
new arrival is also recorded. Hence, at any time point, the summation of any counter’s
count and error equals the number of item arrivals currently in data stream.

490 H. Liu et al.

Lemma 2. At any pruning point N, there is always at least one candidate item that can
be found to prune.

Proof. Lemma 1 means at any pruning point there is at least one monitored item
satisfying (count + error) ≤ N/m. The proof is by contradiction. Assume every item
monitored has an estimated count > N/m, then the sum of the estimated counts of m
counters must satisfy: sum(counti + errori) > N/m*m = N, which is contradictory to
Lemma 1.

Lemma 3. Using error-adaptive pruning method, the frequency count estimation error
rate for any item is not greater than .

Proof. Items can be classified into two categories: items that are monitored currently,
and items that are not monitored currently. For those monitored, if it is monitored
before all of the counters are used up and have not been pruned yet, its estimation
error is zero, which is obviously less than . If it is monitored at the pruning point N
by replacing a monitored item, then its error should be less than or equal to N
according to definition 2. That is to say, its error rate (error/N) is not greater than .
For those not monitored, we regard its frequency count zero. Suppose it is last pruned
at the pruning point N, then according to definition 2, before its pruning, the sum of
its count and error (i.e., count + error) must be less than or equal to N . Since its
estimated count is zero, the maximum error is (count + error), which is not greater
than N . Therefore, the lemma also holds for this case.

Using this error-adaptive pruning method for mining task given in section 2.1, the
output will only include false positive, no false negative. This is already proven in
algorithm space-saving. In space-saving, at every pruning point, the error for the new
coming item is overestimated as the minimum estimated count, which is min(count +
error). By our method, the error estimated is no less than min(count + error), so it is
also an overestimation. Therefore, there is only false positive among output frequency
count. This is also demonstrated by comprehensive experimental study results.

Based on this error-adaptive pruning method, we propose two algorithms, Adaptive
and AdaTime, for finding frequent items and top-k frequent items.

3.2 Algorithm: Adaptive

Adative is the algorithm we design for finding frequent items and top-k frequent items
based on error-adaptive pruning method. It is depicted in Fig.2.

In this algorithm we do not consider time information. Based on user-specified
error rate , we use m (=1/) counters to monitor items in stream D. When a new item
arrives in the stream, if it is currently monitored, its count is increased by one (lines 5-
6). If it is a pruning candidate, we delete it from the candidate set (line 7). If it is not
monitored and there is no candidate item in candidate set for pruning, a function,
Getcandidate(), is called to select candidate items from all of counters based on error-
adaptive pruning method described in Definition 2 (lines 13-14). Then, one candidate
item is randomly picked to prune and make its counter available to the new item (line
15). If it is not monitored, but the candidate set is not empty, we choose one item
from the candidates to prune instead of selecting pruning item from all of the counters
again (line 15). By doing this, we could save time without affecting error rate. The
items in candidate are selected during a former pruning point, say N. At that point,

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 491

each of them satisfies (count + error) ≤ N . Suppose the current pruning point is M,
(M > N), then items in candidate satisfy (count + error) ≤ N ≤ M too. After pruning
an existing item, its counter is incremented and used to monitor the new item (lines
16-18).

Algorithm: Adaptive(m counters, stream D)
1 n = 0;
2 candidate={};
3 for each item, ei, in stream D {
4 n = n+1;
5 if ei is monitored by counter (ei , counti, errori) {
6 counti = counti +1;
7 If ei is in candidate, erase it from candidate
8 }
9 else {
10 if there is a free counter to use
11 New counter (ei , 1, 0) for ei;
12 else {
13 if candidate is empty
14 candidate=GetCandidate(m, n);
15 Let ep be one of the items in candidate
16 Replace ep with ei
17 errori=countp+errorp;
18 The counter for ei becomes (ei, 1, errori)
19 }
20 }
21 }

Function GetCandidate(m counters,
n current length of stream D)
1 min=n;
2 for each item, ei, monitored currently {
3 if (counti+(int)errori <= n/m) {
4 if (counti = =min) then
5 put ei in candidate;
6 else if counti <min {
7 min = counti;
8 empty candidate;
9 put ei in candidate;

10 }
11 }
12 }
13 return candidate;

Fig. 2. This is the main procedure of algorithm Adaptive

The function GetCandidate(m, n) is called to find all of the candidate items from m
counters at pruning point n. This is done by traversing from counters with the
minimum estimated count, (counti + errori). We use the same data structure used in
Space-saving. All of the counters with the same estimated count are attached to a
bucket, and all of the buckets are linked together according to the estimated count
value. Therefore, when traversing buckets from the one with the lowest estimated
count, once this value is greater than n , we could stop further traverse.

3.3 Algorithm: AdaTime

To show the effect of the time information to the error-adaptive pruning method, we
propose another algorithm, AdaTime, which is outlined in Fig. 3.

The major difference between algorithms Adaptive and AdaTime is shown in lines
7, 15 and 18. In line 7, we record time information together with count and error
information in the counter. We can use the same method used in algorithm SSTime.
Here we introduce another way. Suppose the timestamp for the nth arrival is ln(n+2),
then we could put linear sum of each timestamp of this item to error, and put the
square sum of each timestamp in the key of the item. We use the fractionization
method introduced in section 2 to do that. In line 15, instead of randomly picking one
item from the candidate set, we choose the relatively old item to prune. To decide
which item is older, we can use the linear sum of the timestamps and square sum of
the timestamps to compute a distance between the occurrences of this item and the

492 H. Liu et al.

new coming item. Due to the space limitation, we do not give the further detail of this
method. The larger the distance is, the older the item is. Similar to line 7, in line 18, at
the pruning point, time information is also recorded.

Fig. 3. Algorithm AdaTime is an algorithm using error-adaptive pruning method, and it also
considers time information when do pruning

4 A Performance Study

4.1 Measures

In order to evaluate performance of an algorithm completely, besides the measures
such as recall, precision, space, and time, we propose three other measures to evaluate
the effectiveness of various pruning method.

Let |I| be the number of distinct items in a data stream, and m be the number of
counters used to maintain frequency counts for these items. The first measure is the
average absolute error of all items, or aError in short. It is defined in formula (5).
The second is the average absolute error of maintained counts, or mError in short, as
shown in formula (5).

||

||

1

I

counttruecount
aError

I

i

ii

=

−
=

m

counttruecount
mError monitoredei

ii −
= (5)

The third is the average absolute error of maintained error, or eError in short, as
shown in formula (6).

m

counttruecounterror
eError monitoredei

iii)(−−
= (6)

Algorithm: AdaTime(m counters, stream D)
1 n = 0;
2 candidate={};
3 for each item, ei, in stream D {
4 n = n+1;
5 if ei is monitored by counter(ei , counti, errori) {
6 counti = counti +1;
7 Record timestamp information;
8 If ei is in candidate, erase it from candidate
9 }
10 else {
11 if counters# < m, create a new counter for ei;
13 else {
14 if candidate is empty, candidate=GetCandidate(m, n);
15 Let ep be “oldest” items in candidate
16 Replace ep with ei by counter (ei, 1, errori)

17 errori=countp+(int) errorp;
18 Record timestamp information;
19 }
20 }
21 }

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 493

We have implemented the three algorithms proposed in this paper in C language
and run them on a Pentium IV 2GHz IBM Thinkpad laptop with 1.5G memory
running Window 2003 Server system. For algorithm SSTime and AdaTime, when we
implement them, we have tried several different methods to record and use time
information. But due to space limitation, we only report the result of the simple
method as shown in Fig. 1.

We use synthetic data generated by following a Zipf-like distribution [8].

4.2 Varying the Data Skew

In this set of experiments, we change the skew factor of the data stream, and measure
the recall, precision, aError, mError, eError, and time. We fix the number of distinct
items to be 100,000, the length of stream to be 10,000,000, and the error rate to be
0.0001. We compare the performance of our algorithms with space-saving which
proves to have better performance than other algorithms in [2], and is implemented to
our best knowledge. Since we use the data structure as used in space-saving, the space
used by our algorithms is similar to space-saving. We vary the skew factor from 0.5
to 2, and the results are shown in Fig. 4 and 5.

From Fig. 4 (a) and (b) and Fig. 5 (a) we can see that algorithms Adaptive and
AdaTime produce better error results than space-saving and SSTime. Furthermore,
although it is hard to see from these figures, algorithm AdaTime is slightly better than
Adaptive, and SSTime is slightly better than AdaTime.

SpaceSaving SSTime Adaptive AdaTime

Zipf

SpaceSaving SSTime Adaptive AdaTime

 (a) (b)

Fig. 4. These two figures show aError and mError for several data streams with length
10000000 and 100000 distinct items. Their skew factors are changed from 0.5 to 2.

Zipf

SpaceSaving SSTime Adaptive AdaTime

Zipf

T
im

e

SpaceSaving SSTime Adaptive AdaTime

(a) (b)

Fig. 5. These two figures show eError and runtime when running four algorithms for four data
streams with length 10000000 and 100000 distinct items. Their skew factors are different.

494 H. Liu et al.

Fig. 5 (b) indicates that among these four algorithms, space-saving is the fastest,
and SSTime is slowest, while Adaptive is better than AdaTime. Since both recording
time information and selecting candidate based on time information take more time, it
is not difficult to understand this result. The reason why SSTime is much slower than
others is that at each pruning point, every item with the min(count + error) is needed
to scan and compare.

4.3 Varying the Query Parameters

In this set of experiments, we fix the number of distinct items to be 100,000, the
length of stream to be 10,000,000, the error rate to be 0.0001, and skew factor to be 1.
We change two parameters, minsup and k, to see the recall, precision. Since this data
set is one of those used in section 4.2, the other measures for this data set remain the
same as given above. The results are depicted in Fig. 6.

One can see from Fig. 6 (a) and (b), for low minsup, Adaptive and AdaTime have
better recall and precision than space-saving and SSTime, whereas AdapTime is better
than Adaptive and SSTime is a little better than space-saving. As the top-k query, the
results for recall are the same as precision, so we do not put the figure here. Fig. 6(c)
shows us that for high k, these algorithms have the same behavior shown in (a)
and (b).

0

0.2

0.4

0.6

0.8

1

0.0005 0.05 0.1 0.2 0.4 1

Adaptive AdaTime space-saving SSTime

0

0.2

0.4

0.6

0.8

1

0.0005 0.05 0.1 0.2 0.4 1

Adaptive AdaTime space-saving SSTime Adaptive AdaTime space-saving SSTime

 (a) (b) (c)

Fig. 6. (a) and (b) show the recall and precision of four algorithms respectively as minsup
varies, and (c) shows the precision as k varies

5 Conclusions

We study the problem of maintaining frequency counts for items over data streams in
this paper. We propose to use time information when pruning items, and give a
fractionization method to represent and record the time information without spending
much space. We also propose a new pruning method, error-adaptive pruning, to
improve maintenance accuracy as a whole. Using these two methods, we design and
implement three algorithms, Adaptive, AdaTime, and SSTime, and conduct
comprehensive experiments. Our experimental results show that time information can
improve the maintenance accuracy, but needs more runtime. Our results also indicate
that the new pruning method is effective for improving accuracy as a whole.

 Error-Adaptive and Time-Aware Maintenance of Frequency Counts 495

References

1. G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. In Proc.
of 28th Intl. Conf. on Very Large Data Bases, pages 346 – 357, 2002.

2. A. Metwally, D. Agrawal, and A. El Abbadi. Efficient. Computation of Frequent and Top-k
Elements in Data Streams. In Proceedings of the 10th ICDT. International Conference on
Database Theory, pages. 398–412, 2005.

3. G. Cormode and S.Muthukrishnan. What’s Hot and What’s Not: Tracking Most Frequent
Items Dynamically. In Proc. Of 22nd ACM Symposium on Principles of Database Systems
(PODS), pages 296 – 306, 2003.

4. E. Demaine, A. Lopez-Ortiz, and J. Munro. Frequency Estimation of Internet Packet
Streams with Limited Space. In Proc. of 10th Annual European Symposium on Algorithms,
2002.

5. C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou. Dynamically Maintaining Frequent Items Over
a Data Stream. In Proc. Of CIKM, 2003.

6. J. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False Negative: Mining Frequent
Item Sets from High Speed Transactional Data Streams. In Proc. of 30th VLDB, pages 204–
215, 2004.

7. M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Streams. In
Proc. of the Int. Colloquium on Automata, Languages and Programming (ICALP), pages
693 – 703, 2002.

8. D. E. Knuth. The Art of Programming. Addison-Wesley, 1973.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 496 – 507, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Supporting Efficient Distributed Top-k Monitoring*

Bo Deng, Yan Jia, and Shuqiang Yang

School of Computer Science
National University of Defense Technology

Changsha 410073, China
dengbomail@gmail.com, jiayanjy@vip.sina.com, sqyang9999@126.com

Abstract. This paper addresses the efficient processing of distributed top-k
monitoring, which is continuously reporting the k largest values according to a
user-specified ranking function over distributed data streams. To minimize
communication requirements, the necessary data transmitting must be selected
carefully. We study the optimization problem of which objects are necessary to
be transmitted and present a new distributed top-k monitoring algorithm to re-
duce communication cost. In our approach, few objects are transmitted for
maintaining the top-k set and communication cost is independent of k. We ver-
ify the effectiveness of our approach empirically using both real-world and syn-
thetic data sets. We show that our approach reduces overall communication cost
by a factor ranging from 2 to over an order of magnitude compared with the
previous approach when k is no lees than 10.

1 Introduction

The objective of the top-k query is to find the “top k” results, according to a user-
specified ranking function. In many database applications, top-k query processing is
natural behavior, and the database research communities have studied the issue of
efficient processing of top-k queries for a long time [9, 11, 12, 13, 17].

Recently, much attention has been focused on online monitoring of aggregate func-
tions over data streams such as call records, sensor readings, web usage logs, network
packet traces, etc. [6, 7, 15, 19]. Often, data streams originate from multiple remote
sources and many online monitoring tasks, e.g. detecting distributed denial-of-service
(DDoS) attacks, only require that attention be focused on atypical behavior in the
environment being monitored, while habitual behavior is to be ignored.

Babcock and Olston presented an original algorithm for distributed top-k monitor-
ing, which is continually identifying the top k data values over distributed data
streams [4, 5]. In Babcock&Olston’s algorithm, arithmetic constraints are maintained
at remote stream sources to ensure that the most recently provided top-k
answer remains valid to within a user-specified error tolerance. Distributed communi-
cation is only necessary on occasion, when constraints are violated. However,
Babcock&Olston’s algorithm needs transmitting entire top-k set and its current partial

* This research is partly supported by the National High Technology Research and Develop-

ment Plan (863 plan) of China under Grants No.2004AA112020 and No.2003AA111020.

 Supporting Efficient Distributed Top-k Monitoring 497

data values, and a border value to the central processing system when constraints are
violated. In this paper, we show that transmitting entire top-k set is unnecessary.The
first contribution of this paper is studying the optimization problem of which objects
are necessary to be transmitted to reduce communication cost of distributed top-k
monitoring. We show that when constraints are violated, only the objects which break
the constraints and two border values need to be transmitted. Our second contribution
is a careful implementation of a new distributed top-k monitoring algorithm and the
communication cost of our new algorithm is independent of k. Extensive experiments
with real and synthetic data show that, compared to previous technique (Bab-
cock&Olston’s algorithm), our approach reduces overall communication cost by a
factor ranging from 2 to over an order of magnitude when k is no lees than 10. The
rest of the paper is organized as follows. Section 2 defines the problem of distributed
top-k monitoring formally. Section 3 discusses the background and related work.
Section 4 introduces our new Minimal Refresh algorithm (MR). Section 5 studies of
the performance of MR. Finally, Section 6 concludes the paper.

2 Problem Statement

We address the same problem described in [4, 5]. We consider a distributed online
monitoring environment with m+1 nodes: a central coordinator node N0, and m re-
mote monitor nodes N1, N2,…, Nm. Collectively, the monitor nodes monitor a set U of
n logical data objects U = {O1, O2,…, On}, which have associated numeric (real)
values V1, V2, …, Vn. The values of the logical data objects are not seen by any indi-
vidual node. Instead, updates to the values arrive incrementally over time as a se-
quence S of Δ,, ji NO tuples, which may arrive in arbitrary order. The meaning of

the tuple Δ,, ji NO is that monitor node Nj detects a change of Δ , which may be

positive or negative, in the value of object Oi. A tuple Δ,, ji NO is seen by monitor

node Nj but not by any other node Nl, l j. For each monitor node Nj, we define partial
data values V1,j, V2,j, …, Vn,j representing Nj ’s view of the data stream, where Vi,j
= Δ∈Δ SNO ji ,, . The overall logical data value of each object Oi, which is not material-

ized on any node, is defined to be Vi = ≤≤ mj jiV1 , .

The coordinator is responsible for tracking the top k logical data objects within a
bounded error tolerance. More precisely, the coordinator node N0 must maintain and
continuously report a set UT ⊆ of logical data objects of size kT =|| . T is called the

approximate top-k set, and is considered valid if and only if:

stst VVTUOTO ≥+−∈∀∈∀ ε:, . (1)

where 0≥ε is a user-specified approximation parameter. If 0=ε , the coordinator
must continuously report the exact top-k set. For non-zero values of ε , a correspond-
ing degree of error is permitted in the reported top-k set.

The goal for distributed top-k monitoring is to provide, at the coordinator, an ap-
proximate top-k set that is valid within ε at all times, while minimizing the overall

498 B. Deng, Y. Jia, and S. Yang

cost to the monitoring infrastructure. For our purposes, cost is measured as the mes-
sage size exchanged among nodes.

3 Background and Related Work

Among the ample work on top-k query processing, the TA family of algorithms for
monotonic score aggregation [12, 13, 17] stands out as an extremely efficient and
highly versatile method for centralized data management. Based on TA, many effi-
ciency approaches have been developed for distributed top-k query processing [2, 3,
8, 10, 16]. However, these one-time query algorithms are not suitable for online moni-
toring because they do not include mechanisms for detecting changes to the top-k set.

Top-k monitoring of a single data stream was studied in [14]. This work only con-
siders single data streams rather than distributed data streams and concentrates on
reducing memory requirements rather than communication costs.

Babcock and Olston presented an original algorithm for distributed top-k monitor-
ing in [4, 5]. In Babcock&Olston’s algorithm, the coordinator node N0 maintains an
approximate top-k set T that is valid withinε . In addition to maintaining the top-k set,
the coordinator also maintains n(m + 1) numeric adjustment factors, labeled ji,δ , one

corresponding to each pair of object Oi and node Nj, which must at all times satisfy
the following two adjustment factor invariants:

Invariant 1: For each object Oi, the corresponding adjustment factors sum to zero:
00 , =≤≤ mj jiδ .

Invariant 2: For all pairs −∈∈ TUOTO st , , 0,0, st δεδ ≥+ .

At the outset, the coordinator initializes the approximate top-k set T by running an
efficient algorithm for one-time top-k queries, e.g. TA. Then, a reallocation subrou-
tine (described later) is used to set the adjustment factors that satisfy the two invari-
ants and for each monitoring node Nj:

jsjsjtjtst VVTUOTO ,,,,:, δδ +≥+−∈∀∈∀ . (2)

If Invariant 1, 2 and formula 2 are satisfied, then formula 1 is satisfied. Whenever
the constraints are violated at some monitor node Nc , a three-phase distributed proc-
ess called resolution is initiated to maintain the current approximate top-k set:

Phase 1: Nc sends a message to the coordinator N0 containing the resolution set
TCR ∪= and its current partial data values, and a special “border value” Bc , where

C is the set of objects whose partial values at Nc are involved in violated constraints.
(C contains one or more objects from T plus one or more objects not in T, and called
C as the conflict set), and)}(max),(minmin{ ,,,, fsfs

CTUO
ftftTOc VVB

st

δδ ++=
−−∈∈

.

Phase 2: The coordinator considers each pair −∈∈ TUOTO st , whose constraint

has been violated and performs the following validation test:

jssjsjttjt VV ,0,,,0,, δδδδ ++≥++ . If this test succeeds, let T’ = T, the coordinator per-

forms reallocation to update the adjustment factors pertaining to those two nodes to

 Supporting Efficient Distributed Top-k Monitoring 499

reestablish all arithmetic constraints, and notifies Nc of its new adjustment factors. If
the test fails, the phase 3 is required.

Phase 3: The coordinator contacts all monitor nodes other than Nc, and for each node

Nj, ,1 mj ≤≤ j c, the coordinator requests the current partial data values Vi,j of ob-

jects Oi in the resolution set R as well as the border value Bj (as defined above for
node Nc), calculates new approximate top-k set T’ , then, performs reallocation across
all nodes to establish new adjustment factors to serve as parameters for those con-
straints, and notifies all monitor nodes of the new approximate top-k set T’ and the
new adjustment factors.

To reallocate the adjustment factors, let the set participating nodes N is: If reallo-
cation is performed during Phase 2, then N = {N0, Nc}, If reallocation is performed
during Phase 3, then N = {N0, N1, N2,…, Nm}. Each node Nj, ,0 mj ≤≤ is allocated an

allocation parameter Fj. 10 ≤≤ jF for all j, 10 =≤≤ mj jF and Fj = 0 if NFj ∉ . Let

Vi,0 = 0 for all i and 0,,10 max iRUOni i
B δ−∈≤≤= . For each object Oi, Oi’s participating sum

)(,,0 , jiNNmj jiiN j
VV δ+= ∈≤≤ . Similarly, = ∈≤≤ NNmj jN j

BB ,0 . The detail of the subrou-

tine reallocation as follows.

INPUTS: }{},{},{},{,,' ,, jjijij FVBRT δ

OUTPUT: }{ '
, jiδ

1. For each object in the resolution set ROi ∈ , compute the leeway iλ :

−
∈+−

=

 otherwiseBV

TOifBV

NiN

iNiN
i

ε
λ

2. For each object in the resolution set ROi ∈ and each monitor node NN j ∈ par-

ticipating in resolution, assign:

+−
=∈−+−

=

0,
'

,

,

, otherwiseFVB

jTOifFVB

ijjij

iijjij

ji λ
ελ

δ

In Babcock&Olston’s algorithm, distributed communication is only necessary on
occasion, when constraints are violated. Communication cost is dominated by the size
of the resolution set TCR ∪= . However, in Section 4, we show that transmitting the
conflict set C is enough and the communication cost can be reduced significantly.

4 Minimal Refresh Algorithm

As described in Section 3, the communication cost is dominated by the size of the
resolution set R. The basic idea behind MR is reducing the size of resolution set by
transmitting the necessary objects. We show that, the monitor nodes only need trans-
mitting the conflict set C and its current partial data values, and two border values in
the resolution process. Note that the conflict set C is the minimal resolution set.

We first bring to light some key observations towards defining an efficient distrib-
uted top-k monitoring algorithm in Section 4.1. In Section 4.2 we introduce our new

500 B. Deng, Y. Jia, and S. Yang

algorithm for distributed top-k monitoring termed Minimal Refresh (MR) algo-
rithm and prove the correctness. In Section 4.3 we discuss the efficiency of our
approach.

4.1 Key Observations

Let the down conflict set CTCT ∩= and the up conflict set CTUC TU ∩−=−)(.

Claim 1. stTUst VVCTUOTO ≥+−−∈∀∈∀ − ε:, .1

Proof. ,UO∈∀ O satisfies the invariant 1, which described in Section 3. ,TOt ∈∀

TUs CTUO −−−∈∀ , st OO , still satisfies the invariant 2 and formula (2). Therefore,

stTUst VVCTUOTO ≥+−−∈∀∈∀ − ε:, .

Claim 2. stTUsTt VVCOCTO ≥+∈∀−∈∀ − ε:, .

Proof. ,UO∈∀ O satisfies the invariant 1. TUsTt COCTO −∈∀−∈∀ , , st OO , still

satisfies the invariant 2 and formula (2), Therefore, ε+∈∀−∈∀ − tTUsTt VCOCTO :,

sV≥ .

Theorem 1. Let || TCTp −= . Let I is a subset of C, pkI −=|| and ∈∀∈∀ st OIO ,

st VVIC ≥− : . Let ICTT T ∪−=)(' , then T’ can be a new approximate top-k set after

resolution process, i.e. kT =|'| and stst VVTUOTO ≥+−∈∀∈∀ ε:',' .

Proof. There are two cases for the new approximate top-k set ICTT T ∪−=)(' :

Case 1: ,' TT = that means stTUsTt VVCOCO ≥∈∀∈∀ − :, . By Claim 2, we know

that stTUsTt VVCOCTO ≥+∈∀−∈∀ − ε:, . Thereby, stTUst VVCOTO ≥+∈∀∈∀ − ε:, .

By Claim 1, we know that stTUst VVCTUOTO ≥+−−∈∀∈∀ − ε:, . Therefore, tO∀

sts VVTUOT ≥+−∈∀∈ ε:, , i.e. stst VVTUOTO ≥+−∈∀∈∀ ε:',' .

Case 2: ,' TT ≠ that means sisTUi VVICOCIO ≥−∈∀∩∈∃ − :),(. By Claim 2, we

know that stTUsTt VVCOCTO ≥+∈∀−∈∀ − ε:, . Thereby, −∈∀−∈∀ COCTO sTt ,

sit VVVI ≥≥+ ε: . From the definition of I, we know that ≥−∈∀∈∀ tst VICOIO :,

sV . Thereby, ε+−∈∀∪−∈∀ tsTt VICOICTO :,)(sV≥ On the other hand, if ≠'T

,T)(ICCO Td −∩∈∃ . Note that sdTUs VVCTUO ≥+−−∈∀ − ε: , and st OIO ∀∈∀ ,

st VVIC ≥−∈ : . Therefore, stTUst VVCTUOIO ≥+−−∈∀∈∀ − ε:, . By Claim 1, we

know that stTUsTt VVCTUOCTO ≥+−−∈∀−∈∀ − ε:, . Therefore, −∈∀ TOt (

stTUsT VVCTUOIC ≥+−−∈∀∪ − ε:,) . Note that ICTT T ∪−=)(' , and =− 'TU

)()(TUCTUIC −−−∪− , therefore, stst VVTUOTO ≥+−∈∀∈∀ ε:',' .

1 We assume that no partial values are updated during resolution. The definition of correctness

ensures the convergence property described in [5].

 Supporting Efficient Distributed Top-k Monitoring 501

As discussed above, stst VVTUOTO ≥+−∈∀∈∀ ε:',' and kpkpT =−+=)(|'| .

Therefore, 'T can be a new approximate top-k set after resolution process.
The implication of Theorem 1 is that, in the resolution process, we can keep the

objects in the set TCT − and choose the pk − objects with largest aggregation values

from the conflict set C to rebuild the new approximate top-k set T’.

4.2 Algorithm

In our new algorithm MR, at the outset, the coordinator uses the same approach of
Babcock&Olston’s algorithm to initialize the approximate top-k set T and set the
adjustment factors that satisfy the invariant 1, 2 and formula (2).

Whenever the local arithmetic constraints are violated at some monitor node Nc , a
three-phase distributed process called MR-Resolution is initiated to maintain the cur-
rent approximate top-k set. MR-Resolution uses the method in Theorem 1 to rebuild
the new approximate top-k set T’. To make sure T’ and 'TU − still satisfy the invari-
ant 1, 2 and formula (2), we define two border values: cB and cH .

)}(max),(minmin{ ,,,, cscs
CTUO

ctctTOc VVB
st

δδ ++=
−−∈∈

)}(max),(minmax{ ,,,, cscs
TUO

ctctCTOc VVH
st

δδ ++=
−∈−∈

The detail of the subroutine MR-Resolution as follows.

Algorithm MR-Resolution

Phase 1: Nc sends a message to the coordinator N0 containing the conflict set C and its
current partial data values, and the two border values Bc and Hc of Nc.

Phase 2: The coordinator considers each pair −∈∈ TUOTO st , whose constraint

has been violated and performs the following validation test:

jssjsjttjt VV ,0,,,0,, δδδδ ++≥++ . If this test succeeds, let I = CT, the coordinator per-

forms MR-Reallocation to update the adjustment factors pertaining to those two nodes
to reestablish all arithmetic constraints, and notifies Nc of its new adjustment factors.
If the test fails, the phase 3 is required.

Phase 3: The coordinator contacts all monitor nodes other than Nc, and for each node

Nj, ,1 mj ≤≤ j c, the coordinator requests the current partial data values Vi,j of ob-

jects Oi in the conflict set C as well as the border value Bj and Hj (as defined above for
node Nc), calculates the set I by the method in Theorem 1, then, performs MR-
Reallocation across all nodes to establish new adjustment factors to serve as parame-
ters for those constraints, and notifies all monitor nodes of the new adjustment factors.
Every node rebuilds the new approximate top-k set T’, where ICTT T ∪−=)(' .

To reallocate the adjustment factors, we use the same definition of participating
nodes N, allocation parameter and participating sum of Babcock&Olston’s algorithm.
In MR-Reallocation, let)}(max),(minmin{ 0,0,0 s

FTUO
tTO st

B δεδ
−−∈∈

= , +=
−∈ 0,0 (minmax{ tDTOt

H δ

502 B. Deng, Y. Jia, and S. Yang

)}(max), 0,s
TUOs

δε
−∈

, = ∈≤≤ NNmjN j j
BB ,0 and = ∈≤≤ NNmjN j j

HH ,0 . The detail of the subrou-

tine MR-Reallocation as follows.

Algorithm MR-Reallocation

INPUTS: }{},{},{},{},{,, ,, jjijijj FVHBCI δ

OUTPUT: }{ '
, jiδ

1. Compute the thresholdτ and the interpolation factorα :
2/)))(max,max())(min,(min(,'

'
,'' Ns

ICs
NNtItN VBVH

−∈∈
++= ετ

>−−
=

 0

 /)(

otherwise

BHifBHB NNNNNτ
α

2. For each monitor node NN j ∈ , compute the threshold jτ :

jjjj BBH +−=)(ατ

3. For each object in the conflict set COi ∈ , compute the leeway iλ :

−
∈+−

=

otherwiseV

IOifV

iN

iiN
i τ

ετ
λ

4. For each object in the conflict set COi ∈ and each monitor node NN j ∈ par-

ticipating in resolution, assign:

+−
=∈−+−

=

0,
'

,

,

, se otherwiFV

jIOifFV

ijjij

iijjij

ji λτ
ελτ

δ

From Theorem 1, we know that T’ is a correct new approximate top-k set. Now, we
prove the new adjustment factors ji,'δ satisfy the invariant 1, 2 and formula (2).

Note that ττ =∈≤≤ NNmj j j,0 and 10 ≤≤ jF for all j, 10 =≤≤ mj jF and Fj = 0 if NFj ∉ ,

thereby = ∈∈ NN jiNN ji jj ,
'
, δδ , the new adjustment factors ji,'δ satisfy the invariant 1.

Lemma 1.))(max,max())(min,min(,'
'

,'' Ns
ICs

NNtItN VBVH
−∈∈

≥+ ε .

Proof. For each node Nj (mj ≤≤0), Hj ≥ Bj, therefore, NBH
N
≥ . Note that

)(max)(min ,'
'

,'' Ns
ICs

NtIt
VV

−∈∈
≥+ ε , NNtTtNtTtNtIt

BVVV ≥+≥+≥+
∈∈∈

)(min)(min)(min ,,,''
εεε and

)(max ,'
'

Ns
Cs

VH
TU

N
−∈

≥ . If ,' TT = then TUCIC −=− ,)(max ,'
'

Ns
ICs

VH
N −∈
≥ . If ,' TT ≠ then

)(TUi CIO −∩∈∃ ,)(max ,'
'

, Ns
ICs

Ni VVH
N −∈

≥≥ . Thereby, max())(min,min(,''
≥+

∈
εNtItN VH

))(max, ,'
'

Ns
ICs

N VB
−∈

.

By Lemma 1, we know that, in MR-Reallocation :',' '' TUOTO st −∈∀∈∀

NsNs
ICs

NNtItNNt VVBVHV ,','
'

,'','))(max,max())(min,min(≥≥≥+≥+
−∈∈

τεε . (3)

 Supporting Efficient Distributed Top-k Monitoring 503

Furthermore, by Lemma 1, we know that, in the MR-Reallocation process, the lee-
way 0≥iλ and 0≤sλ for all IOi ∈ and ICOs −∈ . Note that the interpolation fac-

tor]1,0[∈α , Vi,0 = 0 for all i, thereby, for all pairs εδ +−∈∈ 0,''' ,',' tst TUOTO

0,'sδ≥ , i.e. the new adjustment factors ji,'δ satisfy the invariant 2.

Theorem 2. Let ji,'δ be the new adjustment factor output by MR-Reallocation if

COi ∈ and NN j ∈ , and let jiji ,
'
, δδ = otherwise. It is the case that ≥+ '

, , jtjtV δ
'

, , jsjsV δ+ for all monitor nodes jN , for all 'TOt ∈ , 'TUOs −∈ .

Proof. Note that]1,0[∈α , for each monitoring node Nj, −−∈∀−∈∀ TUOCTO sTt ,

jsjsjjjjtjtTU VBHVC ,',',',': δτδ +≥≥≥≥+− . Note that 10 ≤≤ jF , and, in the MR-

Reallocation process, 0≥iλ and 0≤sλ for all IOi ∈ and ICOs −∈ . Thereby, for

each monitoring node Nj, '' TOt ∈∀ , :'' TUOs −∈∀ jsjsjjtjt VV ,',',',' δτδ +≥≥+ .

4.3 Efficiency

We use the message size exchanged between the monitor nodes and the coordinator
during resolution as the metric of communication cost. The message size is governed
by the size of the conflict set C for our algorithm MR and the size of the resolution
set TCR ∪= for Babcock&Olston’s algorithm.

There are two types of events that can cause local arithmetic constraints to become
violated, triggering resolution: either a partial value of an object that is not in the
current approximate top-k set can increase, or a partial value of an object that is in the
current approximate top-k set can decrease. In the first case, 1|||| += TCC and the size

of R is always 1+k . In the second case, 1|||| += −TUCC , |||| TUCkR −+= . Based on

our simulations, we found that, more than 98%, 1|| =TC for the first case, and

4|| ≤−TUC for the second case. In our simulations, the average number of || C is rang-

ing from 2 to 4, depending on the parameters used when running the algorithm.
As discussed above, || C is independent of k and kC <<|| in most situations,

while TCR ∪= and kT =|| , therefore || R is always greater than k and || C .

Based on our simulations (Section 5) we found that, the total number of messages
exchanged of MR is higher (%40<) than Babcock&Olston’s algorithm. Taking into
account the size of the border values, the ratio of communication cost of our approach
to Babcock&Olston’s algorithm is approximate ||/||2 RC× .

To keep the size of the messages exchanged as low as possible, we modified our
algorithm by an alternative resolution procedure described in [5]: whenever a change
in a partial data value would result in the violation of more thanΦ local arithmetic
constraints. For our purposes, we set 20=Φ (these situations are less than 1%). The
alternative procedure, generates 2m extra messages (m is the number of monitor
nodes) in addition to the ones generated by the ordinary MR-Resolution procedure.

504 B. Deng, Y. Jia, and S. Yang

5 Experimentation

In this Section, we first give the experimental setting in Section 5.1. In Section 5.2 we
discuss the leeway allocation policies. In Section 5.3 we experimentally compared the
performance of our proposed algorithm MR against Babcock&Olston’s algorithm.

5.1 Experimental Setting

We used both real-world and synthetic data sets to evaluate our new algorithm:

 WorldCup: we used a 24-hour HTTP server log from the web site for the
FIFA World Cup Soccer on June 15, 1998, which consisting of 58 million
page requests distributed across 29 servers that were active during that period
and serving some 17,000 distinct files [1].

 Zipf-WorldCup: we replaced the real page requests number of each page in
WorldCup by the score initialized by the Zipf’s distribution [18] with a Zipf
factor , and distributed the synthetic score in the server log by the uniform
distribution.

We present two continuous monitoring queries for every data set that the adminis-
trators of the World Cub web site might have liked to have posed:

Monitoring Query 1. Which web documents are the most popular from the begging
of monitoring, across all servers?

Monitoring Query 2. Which web documents are the most popular in the last one
hour, across all servers?

Monitoring Query 1 represents the first case that causes local arithmetic constraints
to become violated, triggering resolution, and Monitoring Query 2 represents a hybrid
example of the first case and the second case.

Our implementation of the test-bed and the related algorithms was written in GNU
C++. All the experiments are conducted on Intel Pentium IV CPU 2.4GHz with
512MB RAM running Red Hat Linux 9.

Fig. 1. Performance of difference leeway allocation policies

5.2 Leeway Allocation Policies

Recall from Section 4.2 that our MR-Reallocation algorithm is parameterized by m+1
allocation parameters F0, F1, …, Fm that specify the fraction of leeway allocated to the

Monitoring Query 1 for WorldCup, k=20

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

0 0.2 0.4 0.6 0.8 1

Coordinator allocation parameter (F0)

T
ot

al
 m

es
sa

ge
 s

iz
e even, =0

proportional, =0
even, =200
proportional, =200

 Supporting Efficient Distributed Top-k Monitoring 505

adjustment factors at each node Nj participating in resolution. We compared the two
basic leeway allocation policies described in [4, 5]:

Figure 1 Shows the results of our experiments on Monitoring Query 1 for World-
Cup, 20=k and two different error tolerance values: 0=ε , and a larger value
(200=ε) that permits a moderate amount of error with respect to the data queried
(similar results occur with all other monitoring queries, and are omitted for the space
reasons).

In all cases, the value assigned to F0 turns out to be the largest factor in determin-
ing cost. Our results suggest that an efficient allocation policy is:

Hybrid: set 5.00 =F and using the proportional allocation whenε is small, and set 00 =F

and using the even allocation when ε is large. The cutoff point between “small” and
“large” values ofε comes roughly whenε is 1/500 of the thresholdτ . This conclusion is
supported by the results presented in this section and also by additional experimental
results not presented here due to space considerations ([4, 5] used the same hybrid policy
while the cutoff point is 1/1000 of the largest data value in the data set).

5.3 Comparison Against Alternative

We compared our algorithm against Babcock&Olston’s algorithm using a simulator
that for both algorithms assumes that communication and computation latencies are
small compared with the rate at which data values change. We used the hybrid policy
for our algorithm and Babcock&Olston’s algorithm.

Fig. 2,3. Comparison against alternative for real-world data sets

Figure 2, 3, 4 and 5 show the results for Monitoring Queries 1 and 2 of both data
sets for 20=k . For simplicity, we set the Zipf factor 0.8= (similar results occur
with all other tested values of , and are omitted for the space reasons). In each graph,
the approximation parameter ε is plotted on the x-axis. The y-axis shows total mes-
sage size, on a logarithmic scale.

In all cases our algorithm achieves a significant reduction in cost compared with
Babcock&Olston’s algorithm. The overall performance of MR outperforms Bab-
cock&Olston’s algorithm by a factor ranging from 2 to 8. The main reason of MR
outperforming Babcock&Olston’s algorithm is that, when constraints are violated,
MR only need take into account the conflict set C while Babcock&Olston’s algorithm

Monitoring Query 2 for WorldCup, k=20

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 20 200 2000
Epsilon

T
ot

al
 m

es
sa

ge
 s

iz
e

Babcock&Olston’s algorithm
MR

Monitoring Query 1 for WorldCup, k=20

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 20 200 2000
Epsilon

To
ta

l m
es

sa
ge

 si
ze

Babcock&Olston’s algorithm
MR

506 B. Deng, Y. Jia, and S. Yang

need take into account the resolution set TCR ∪= , and |||| RC << in most situations

described in Section 4.3.

Fig. 4,5. Comparison against alternative for synthetic data sets

We measured the message size and message number of our experiments on Moni-
toring Query 1 of WorldCup for different monitoring query result number k from 10
to 100 with 200=ε (similar results occur with all other experimental results, and are
omitted for the space reasons). Figures 6, 7 show the results respectively.

Fig. 6,7. Performance of difference monitoring query result number k

Figure 6 shows that, as k increases, the advantage of MR over Babcock&Olston’s
algorithm is magnified, often by over an order of magnitude (note that the y-axis is on
a logarithmic scale). The main reason is that, || C is independent of k and kC <<|| in

most situations, while TCR ∪= and kT =|| , therefore || R is always greater than k.

Figure 7 shows that message number of MR is higher (%40<) than Bab-
cock&Olston’s algorithm. The main reason is that, in the resolution process, comparing
with our algorithm, Babcock&Olston’s algorithm reallocates additional adjustment
factors of the set || CT − , which decreases some potential constraint conflicts.

6 Conclusions

In this paper, we have studied the optimization problem of which objects are neces-
sary to be transmitted in distributed top-k monitoring, and presented the MR

Monitoring Query 1 of WorldCup, =200

0.0E+00
5.0E+04
1.0E+05
1.5E+05
2.0E+05
2.5E+05
3.0E+05
3.5E+05
4.0E+05

10 20 30 40 50 60 70 80 90 100

Monitoring query result number k

T
ot

al
 m

es
sa

ge
 n

um
be

r Babcock&Olston’s algorithm

MR

Monitoring Query 1 of WorldCup, =200

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

10 20 30 40 50 60 70 80 90 100

Monitoring query result number k

To
ta

l m
es

sa
ge

 si
ze

Babcock&Olston’s algorithm
MR

Monitoring Query 1 for Zipf-WorldCup, k=20

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 20 200 2000
Epsilon

T
ot

al
 m

es
sa

ge
 s

iz
e

Babcock&Olston’s algorithm
MR

Monitoring Query 2 for Zipf-WorldCup, k=20

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0 20 200 2000
Epsilon

T
ot

al
 m

es
sa

ge
 s

iz
e

Babcock&Olston’s algorithm
MR

 Supporting Efficient Distributed Top-k Monitoring 507

algorithm, an efficient distributed top-k monitoring algorithm. In our approach, only
few objects are transmitted for maintaining the top-k set and the communication cost
is independent of k. We have verified the effectiveness of our approach empirically
using both real-world and synthetic data sets. The experiments results have shown
that our approach reduces overall communication cost by a factor ranging from 2 to
over an order of magnitude compared with the previous approach (Babcock&Olston’s
algorithm) when k is no lees than 10.

References

1. M. Arlitt and T. Jin. 1998 world cup web site access logs, August 1998. Available at
http://www.acm.org/sigcomm/ITA/.

2. N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accessible data-
bases. In ICDE, 2002.

3. W.-T. Balke, W. Nejdl, W. Siberski, et al. Progressive Distributed Top-k Retrieval in Peer-
to-Peer Networks. In ICDE 2005.

4. B. Babcock, C. Olston. Distributed Top-K Monitoring. In SIGMOD, 2003.
5. B. Babcock and C. Olston. Distributed top-k monitoring. Technical report, Stanford Uni-

versity Computer Science Department, 2002. http://dbpubs.stanford.edu/pub/2002-61.
6. D. Carney, U. Cetintemel, M. Cherniack, et al. Monitoring streams - a new class of data

management applications. In VLDB, 2002.
7. J. Chen, D. J. DeWitt, F. Tian, et al. NiagaraCQ: A scalable continuous query system for

internet databases. In SIGMOD, 2000.
8. K.C.-C. Chang, S.-W. Hwang: Minimal probing: supporting expensive predicates for top-k

queries. In SIGMOD 2002.
9. M. J. Carey and D. Kossmann. On saying “Enough already!” in SQL. In SIGMOD, 1997.

10. P. Cao, Z. Wang. Efficient top-k query calculation in distributed networks. In PODC,
2004.

11. R. Fagin. Combining fuzzy information from multiple systems. In J. Comput. System Sci.,
pages 58:83–99, 1999.

12. R. Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
In PODS, 2001.

13. U. Güntzer, W.-T. Balke, and W. Kie ling. Optimizing multi-feature queries for image da-
tabases. In VLDB, 2000.

14. P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving ap-
proximate query answers. In SIGMOD, 1998.

15. S. Madden, J. M. Hellerstein, M. Shah, et al. Continuously adaptive continuous queries
over streams. In SIGMOD, 2002.

16. S. Michel, P. Triantafillou, and G. Weikum. KLEE: A Framework for Distributed Top-k
Query Algorithms. In VLDB, 2005.

17. S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia) data-
bases. In ICDE, 1999.

18. G. K. Zipf: Human Behavior and the Principle of Least Effort. Addison-Wesley Press,
1949.

19. R. Zhang, N. Koudas, B.C. Ooi, et al. Multiple Aggregations Over Data Streams. In
SIGMOD, 2005.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 508 – 519, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing Quality XML Schemas from E-R Diagrams

Chengfei Liu and Jianxin Li

Faculty of Information and Communication Technologies
Swinburne University of Technology

 Melbourne, VIC 3122, Australia
{cliu, jili}@ict.swin.edu.au

Abstract. XML has emerged as the standard for representing, exchanging and
integrating data on the Web. To guarantee the quality of XML documents, the
design of quality XML Schemas becomes essentially important. In this paper,
we look into this problem by designing quality XML Schemas from given E-R
diagrams. We first discuss several criteria in designing a good XML Schema.
Following these criteria, transformation rules are then devised that take all con-
structs of an E-R diagram into account. Finally, a recursive algorithm is devel-
oped to transform an E-R diagram to a corresponding quality XML Schema.

1 Introduction

XML has emerged as the standard for representing, exchanging and integrating data
on the Web. Given that the structure of XML documents is much more flexible than
that of a relational database, the design of a quality XML document for an application
is non-trivial. By a quality XML document, we mean that it reflects the semantics of
the application accurately and can be accessed, updated and integrated efficiently. To
guarantee the quality of XML documents, the design of quality XML schemas be-
comes essentially important.

We reckon that several criteria need to be followed in designing a quality schema. (1)
information preservation - it is fundamental that the target XML Schema preserves
structural and semantic information of the application entirely. (2) highly nested struc-
ture - nesting is important in XML documents because it allows navigation of the paths
in the document tree structures to be processed efficiently. (3) no redundancy - there is
no data redundancy in the XML documents that conform to the target XML schema,
thus no inconsistency will be introduced while updating the XML documents. (4) con-
sideration of dominant applications - the structure of XML document should be
accommodated such that dominant applications can be guaranteed to be processed effi-
ciently. (5) reversibility of design - the original design can be achieved from the target
XML schema, which is fundamentally important to data integration.

Kleiner and Lipect [1] proposed a method for generating XML DTD [2] from E-R
diagrams. The method preserved as much structural information from E-R diagrams as
possible. However, due to the limitation of the DTD, only annotations were used to
represent some E-R constructs that have no counterparts in DTD. Many-to-many rela-
tionships were translated into top-level elements only so nesting is not maximised.
Some advanced features in E-R model such as ISA and aggregation were not considered
in their work. Bird et al. [3] proposed an approach to design XML Schemas from the

 Designing Quality XML Schemas from E-R Diagrams 509

Object Role Model (ORM) [4]. The approach considered the dominant applications by
analysing the weighting and anchoring of factor types. However, nesting was not dis-
cussed in their work. Effort has been put for translating relational database schemas to
XML Schemas. An early work in transforming relational schema to XML schema is
DB2XML [5]. DB2XML uses a simple algorithm to map flat relational model to flat
XML model in almost one-to-one manner. DTD is used for the target XML schema.
Based on a flat translation similar to DB2XML, Lee et al. [6] presented two algorithms
NeT and CoT. NeT derives nested structures from flat relations by repeatedly applying
the nest operator on tuples of each relation. The resulting nested structures may be use-
less because the derivation is not at the type level. CoT considers inclusion dependen-
cies as constraints to generate a more intuitive XML Schema. XViews [7] constructs a
graph based on primary key/foreign key relationship and generates candidate views by
choosing the node with either maximum in-degree or zero in-degree as the root element.
The candidate XML views generated maybe highly nested. DTD is also chosen for
target XML schema. This approach does not consider the preservation of integrity con-
straints. It also suffers considerable level of data redundancy. Liu et al. [8] proposed an
approach that ensures the transformed schema in XML Schema [9] is highly nested,
redundancy free and preserves all the integrity constraints. However, the dominant ap-
plications and the reversibility of transformation were not discussed in their work.
Bohannon et al. [10] developed the notion of DTD schema embedding that preserves
information by ensuring both effective invertible mapping and efficient XML query
translation. Lots of work has been done on mapping from XML to relational databases
for storage purpose. Recently, Barbosa et al. [11] proposed a framework for informa-
tion-preserving XML-to-relational mapping. The framework is extensible and guaran-
tees the target relational schema is equivalent to the original XML Schema.

We aim at designing quality XML Schemas that follows all five criteria we dis-
cussed above. Similar to conventional database design, we use E-R model [12] for
conceptual modelling, so we assume that E-R diagrams are given when we design
XML schema. In this paper, we present our transformation rules and algorithms that
automatically generate quality XML Schemas from E-R diagrams by following all
five criteria. To preserve information, we choose XML Schema as the target schema
language instead of DTD because XML Schema provides far more powerful model-
ling features than DTD.

The rest of the paper is organised as follows. In Section 2, we briefly introduce the
E-R model and XML Schema. Following our design criteria, we design transforma-
tion rules that consider all the constructs in the E-R model in Section 3. In Section 4,
we propose a recursive algorithm that generates a quality XML schema from a given
E-R diagram. Section 5 concludes the paper.

2 E-R Model and XML Schema

Before we discuss the mapping from an E-R diagram to its correspondent schema in
XML Schema, we briefly review both the E-R model and XML Schema.

The E-R model employs three basic notions: entities (entity sets), relationships, and
attributes. There are two types of entity sets: regular and weak. The existence of a weak
entity depends on another entity (its parent entity). A relationship has two basic proper-
ties: cardinality (one-to-one, one-to-many, many-to-many) and participation (total and
partial). Two or more participants may be involved in a relationship. The former is

510 C. Liu and J. Li

called binary while the latter is called n-ary. Sometimes, a relationship may have par-
ticipants that belong to same entity set and play different roles. This relationship is
called a recursive relationship. The relationship from a parent entity set to a weak entity
set is called identifying relationship. An attribute can be atomic or composite by having
its own attributes, and meanwhile can be single-valued or multi-valued.

The set of attributes that can uniquely identify an entity in a regular entity set is
called a key. The set of attributes that can identify a weak entity in the context of its
parent entity is called a local key. A global key of a weak entity consists of its local
key and the key of its parent entity. A key for a relationship consists of all keys of its
participant entity sets.

The E-R model is also extended to support some advanced features. These include
ISA (generalisation and specialisation), and aggregation where some relationships
are treated as high-level entity sets.

To incorporate all the constructs introduced above, we give a formal definition in
connection to an E-R diagram as follows.

Definition 1. An E-R diagram is represented δ = (E, R, A, ρ , nd, s, p, k), where

(1) E is the set of entity sets. Each e∈E is defined as (ne, t) where ne, t are the name
and type of e, and t ∈{regular, weak, high-level}. If t(e) = “high-level”, e has its
own E-R diagram eδ which includes a single relationship.

(2) R is the set of relationships. Each r∈R is defined as (nr, {(e, card, par, role)})
where nr is the name of the relationship and each tuple (e, card, par, role) in the
set is used to describe a participant entity set. The participant entity set, its cardi-
nality, participation and role in the relationship are recorded. Here, e∈E, card
∈{1, n}, par ∈{total, partial}.

(3) A is the set of attributes. Each a∈A is defined as (na, vt, st) where na is the attrib-
ute name, vt ∈{single-valued, multi-valued}, and st ∈{atomic, composite}.

(4) ρ : E ∪ R ∪ A → A2 defines the attribute sets of entities, relationships, and

composite attributes.
(5) nd is the name of the diagram.
(6) s : E → E defines the ISA relationship. For e∈E, s(e) is the super entity set of e.

(7) p : E → E defines the identifying relationship. For a weak entity set e∈E, p(e) is
the parent entity set of e.

(8) k : E → A2 defines the key for entity sets. If t(e) = “weak”, k(e) gives the attrib-
ute set for its local key only. The key for a relationship is derived from the keys
of all its participant entity sets.

XML Schema is the W3C XML language for describing and constraining the con-
tent of XML documents. Compared with DTD, it offers many appealing features. (1)
XML Schema provides very powerful data typing. A rich set of built-in data types are
provided. Based on that, users are allowed to derive their own simple types by restric-
tion and complex types by both restriction and extension. An ISA construct in an E-R
diagram can be mapped to complex type derived by extension. In DTD, only very
limited number of built-in types is provided, most for defining attributes only. User
cannot define their own types, not to mention complex types. (2) XML Schema pro-
vides comprehensive support for representing integrity constraints such as id/idref,

 Designing Quality XML Schemas from E-R Diagrams 511

key/keyref, unique, fine grained cardinalities, etc. while DTD only provides limited
support such as id/idref. The cardinality constraints provided by DTD is mainly
based on Kleine closure. (3) Apart from the sequence and selection compositors for
grouping elements, XML Schema also provides other compositors such as set. (4)
XML Schema has the same syntax as XML. This allows schema itself be processed
by the same tools that read the XML documents it describes. In contrast, DTD is in a
non-XML syntax. (5) Namespaces are well supported in XML Schema while not in
DTD. While DTD is still used for very simple applications, XML Schema is becom-
ing a dominant XML schema language.

For the purpose of information preservation, obviously XML Schema rather than
DTD is a better choice for the target schema language.

3 Transformation Rules

To map all constructs of an E-R diagram defined in Section 2 and follow all criteria
discussed in Section 1, we design the following set of transformation rules.

Rule 1: E-R diagram - For an E-R diagramδ (E, R, A, ρ , nd, s, p, k), a root ele-
ment named nd is created as follows.
<xsd:element name=“nd”>
 <xsd:complexType>
 <xsd: sequence >
 <!-- detail of transformed XML schema goes here -->
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Rule 2: Regular entity set - For an entity set e(ne, t) of the E-R diagram δ where
t(e) = “regular”, an element named ne is created and put under the element for δ .
The key of e is specified by a key declaration where k(e) = {k1, … ,kn}.
 <xsd:element name=“ne”>
 <xsd:complexType>
 <xsd: sequence >
 <!-- detail of the entity set goes here -->
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
<xsd:key name=“key_ne”>
 <xsd:selector xpath=“path_ne”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:key>

Rule 3: Weak entity set - For an entity set e(ne, t) of the E-R diagram δ where t(e)

= “weak” and p(e) = e’, an element named ne is created and put under the element for

e’. The key of e is specified by a key declaration where k(e’) = {k11, … ,k1m}, k(e) =
{k21, … ,k2n}.
<xsd:key name=“key_ne”>
 <xsd:selector xpath=“path_ne”/>
 <xsd:field xpath=“../k11”/> … <xsd:field xpath=“../k1m”/>
 <xsd:field xpath=“k21”/> … <xsd:field xpath=“k2n”/>
</xsd:key>

512 C. Liu and J. Li

Rule 4: High-level entity set - For an entity set e(ne, t) of the E-R diagram δ where
t(e) = “high-level”, an element named ne is created and put under the element for δ .
A high-level entity set is used to represent one and only one relationship. As such, the
key of e is the key of the relationship which can be achieved while generating the
detail of the entity by applying Rule 1 to its own E-R diagram eδ .

Dominant queries are those queries that are most frequently used. Instead of defin-
ing a dominant query, we define the dominant entity set (or role) of a relationship and
the dominant relationship of an entity as follows.

Definition 2. Dominant entity set (or role): The dominant entity set e or role l of a
relationship r(nr, {(e, card, par, role)}) is one of its participant entity sets or roles
such that e or l has the highest frequency from which r is visited.

Definition 3. Dominant relationship: The dominant relationship r of an entity set
e(ne, t) is one of its participating relationships such that r has the highest frequency
from which e is visited.

Rule 5: One-to-one relationship - For a relationship of the form r(nr, {(e1, 1, p1, _),
(e2, 1, p2, _)}), an element named nr is first created, then depending on p1 and p2,
apply different rules as follows.

(1) both are “total” - suppose that e1 is the dominant entity set, put the element for r
under the element for e2 and change to put the element for e2 to under the ele-
ment for e1.

(2) one of them, say p1, is “partial” - put the element for r under the element for e2
and change to put the element for e2 to under the element for e1.

(3) both are “partial” - suppose that e1 is the dominant entity set, put the element for
r under the element for e1. Foreign key attributes are added in r with a separate
keyref declaration where k(e2) = {k1, … ,kn}.
<xsd:keyref name=“foreignKey_r” refer=“key_ne2”>

 <xsd:selector xpath=“path_r”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:keyref>

Rule 6: One-to-many relationship - For a relationship of the form r(nr, {(e1, 1,
p1, _), (e2, n, p2, _)}), an element named nr is first created, then depending on p2, ap-
ply different rules as follows.

(1) p2 is “total” - put the element for r under the element for e2, then change the
element for e2 by adding maxOccurs=“unbounded” and move it to under the
element for e1.

(2) p2 is “partial” - put the element for r under the element for e2. Foreign key at-
tributes are added in r with a separate keyref declaration where k(e1) = {k1, …
,kn}.
<xsd:keyref name=“foreignKey_r” refer=“key_ne1”>

 <xsd:selector xpath=“path_r”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:keyref>

Rule 7: Many-to-many relationship - For a relationship of the form r(nr, {(e1, n,
_, _), (e2, n, _, _)}), an element named nr is first created with maxOccurs attribute set
to “unbounded”, then put the element for r under the element for the dominant entity

 Designing Quality XML Schemas from E-R Diagrams 513

set, say e1. Foreign key attributes are added in r with a separate keyref declaration
where k(e2) = {k1, … ,kn}.
<xsd:keyref name=“foreignKey_r” refer=“key_ne2”>
 <xsd:selector xpath=“path_r”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:keyref>

Rule 8: Recursive relationship - For a relationship of the form r(nr, {(e1, c1, _, r1),
(e1, c2, _, r2)}), depending on c1 and c2, apply different rules as follows.

(1) c1 = c2 = “1” - suppose that r1 is the dominant role, an element named nr_r1 is
created and put under the element for e1, and foreign key attributes for r2 are
added with a separate keyref declaration.

(2) c1 = c2 = “n” - suppose that r1 is the dominant role, an element named nr_r1 is
created with maxOccurs set to =“unbounded” and put under the element for e1,
foreign key attributes for r2 are added with a separate keyref declaration.

(3) c1 ≠ c2 (suppose c1 > c2) - an element named nr_r1 is created and put under the
element for e1, and foreign key attributes for r2 are added with a separate keyref
declaration.

Rule 9: ISA relationship - For an entity set e1, if e2 = s(e1) is defined and the com-
plexType defined for the element for e2 is t_e2, then an element for e1 can be created
with the t_e2 as the extension type.
<xsd:element name=“e1”>

<xsd:complexType>
 <xsd:extension base=“t_e2”>
 <xsd:sequence>
 <!-- transformation of extra attributes of e1 goes here -->
 </xsd:sequence>
 </xsd:extension>
<xsd:complexType>

</xsd:element>

Rule 10: N-ary relationship - For a relationship of the form r(nr, {(e1, c1, _, _), … ,
(en, cn, _, _)}), an element named nr is created and put under the element for the domi-
nant entity set, say e1. Foreign key attributes are added in r with n-1 separate keyref
declarations where k(e2) = {k21, … ,k2m1}, … , k(en) = {kn1, … ,knmn}. If exists ci=“n”,
(2≤i≤n), maxOccurs=“unbounded” is added to the element.
<xsd:keyref name=“foreignKey_r_e2” refer=“key_ne2”>
 <xsd:selector xpath=“path_r”/><xsd:field xpath=“ k21”/> … <xsd:field xpath=“ k2m1”/>
</xsd:keyref>
… …
<xsd:keyref name=“foreignKey_r_en” refer=“key_nen”>
 <xsd:selector xpath=“path_r”/><xsd:field xpath=“ kn1”/> … <xsd:field xpath=“ knmn”/>
</xsd:keyref>

Rule 11: Composite attribute - For an attribute a(na, vt, st) where st(a)= “compos-
ite”, of the entity set e or relationship r or composite attribute a’, an element named na
is created and put under the element for e or r or a’. maxOccurs=“unbounded” is
added to the element if vt(a)= “multi-valued”.

514 C. Liu and J. Li

Rule 12: Atomic attribute - For an attribute a(na, vt, st) where st(a)= “atomic”, of
the entity set e or relationship r or composite attribute a’, different rules apply de-
pending on vt(a).

(1) If vt(a) = “multi-valued”, an element named na is created and put under the ele-
ment for e or r or a’. maxOccurs=“unbounded” is added to the element. The type
of a is specified in the type attribute of the element.

(2) If vt(a) = “single-valued”, either an attribute named na associated with the ele-
ment for e or r or a’, or an element named na can be created and put under the
element for e or r or a’.

From the above transformation rules, it is easy to find that

- Information preservation and design reversibility criteria have been considered in
all the transformation rules.

- Highly nested structure criterion has been taken into account in Rules 3, 5, 6 and
7.

- No redundancy criterion has been applied in Rules 3 and 6.
- Dominant applications criterion has been used in Rules 5, 7 and 8.

4 Mapping E-R Diagrams to XML Schemas

Given an E-R diagram δ (E, R, A, ρ , nd, s, p, k), we design a transformation algo-

rithm called ERD2XSD to generate a corresponding XML schema by applying the
transformation rules introduced in the previous section. Normally an ISA relationship
only applies to regular entity sets. In ERD2XSD, we first generate XML schema
elements for regular entity sets (Line 4-9) and ISA relationships (Line 10-14), then
generate elements for all other entity sets (Line 15-26). If an entity set is of type
“high-level”, the algorithm is called recursively to transform the E-R diagram of the
high-level entity set first. The weak entity sets are processed after the regular and
high-level entity sets because of the global key derivation caused by the existence
dependency. If a weak entity set e1 depends on another weak entity set e2, e1 will also
be processed after e2. After that, relationships are processed (Line 27-49). The order
for transforming relationships is considered carefully in the algorithm such that nest-
ing of one entity set under another is done just once. Finally, XML schema ele-
ments/attributes are generated for composite or atomic attributes in the diagramδ
(Line 50-54).

4.1 Transformation Algorithm

The algorithm ERD2XSD is given below.

Algorithm : ERD2XSD
Input: an E-R diagram δ (E, R, A, ρ , nd, s, p, k)
Steps:
1. apply Rule 1 to create the root element for δ ;
2. E1 = {e | e ∈ E ∧ t(e) = “regular”};

 Designing Quality XML Schemas from E-R Diagrams 515

3. E2 = E – E1;
4. for each e ∈ E1 { /* process “regular” entity sets without supersets
5. if s(e) is not defined {
6. apply Rule 2 to generate the element for e;
7. E1 = E1 – {e};
8. }
9. }
10. while E1 ≠ ∅ do { /* process ISA relationships
11. get e ∈ E1 such that s(e) ∉ E1; /* no dependency on entity sets in E1
12. apply Rule 9 to generate the element for e based on its s(e);
13. E1 = E1 – {e};
14. }
15. while E2 ≠ ∅ do { /* process “high-level” and “weak” entity sets
16. get e ∈ E2;
17. if t(e) = “high-level” {
18. apply Rule 4 to generate the element for e;
19. ERD2XSD(eδ); /* recursively processing e
20. E2 = E2 – {e};
21. }
22. else if p(e) ∉ E2 { /* check dependency between weak entity sets
23. apply Rule 3 to generate the element for e;
24. E2 = E2 – {e};
25. }
26. }
27. R1 = R; /* process relationships other than 1:1 relationships
28. for each r ∈ R1 {
29. if nary(r) > 2 { /* nary(r) returns the number of participant entity sets
30. apply Rule 10 to generate and nest the element for r;
31. R1 = R1 – {r};
32. }
33. else if nary(r) = 1 {
34. apply Rule 8 to generate and nest the element for r;
35. R1 = R1 – {r};
36. }
37. else if card(r.e1)=“n”∧card(r.e2)=“n” {/* card(r.e) returns cardinality of e in r
38. apply Rule 7 to generate and nest the element for r;
39. R1 = R1 – {r};
40. }
41. else if card(r.e1)=“n”∨ card(r.e2)=“n” {
42. apply Rule 6 to generate and nest the element for r and to adjust
 the nesting of e1 and e2;
43. R1 = R1 – {r};
44. }
45. }
46. for each r ∈ R1 { /* the remaining relationships are all 1:1
47. apply Rule 5 to generate and nest the element for r;

516 C. Liu and J. Li

48. R1 = R1 – {r};
49. }
50. for each a ∈ A { /* the remaining relationships are all 1:1
51. if st(a)= “atomic” apply Rule 12 to generate and nest an ele-

ment/attribute for a;
52. else apply Rule 11 to generate and nest an element for a;
53. A = A – {a};
54. }

Output: the root element named nd for δ in the target XML schema

4.2 Transformation Example

Figure 1 shows an E-R diagram named company. The keys and local keys for regular
and weak entity sets are underlined with solid and dotted lines, respectively. Given
this E-R diagram as input to the ERD2XSD algorithm, the XML schema with the
following root element will be generated.

dependentOf

supervise ISA

workFor

employee

clerk

dependent

manager manage

worksOn

job

department

control

project

ssn

jobID

deptID

nameprojID

name

name

workTime

startDate

name

.........
hourlyRate

n

1

n

n

n

n

1
1

1

1

1

emp

mgr

.....

duration

Fig. 1. An example E-R diagram company

<xsd:element name=“company”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“employee” type=“t_employee” maxOccurs=“unbounded”/>
 <xsd:element name=“job” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“worksOn” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:attribute name=“projID” type=“xsd:int”/>
 <xsd:attribute name=“ssn” type=“xsd:int”/>
 <xsd:attribute name=“workTime” type=“xsd:time”/>
 </xsd:complexType>
 <xsd:keyref name=“foreignKey_worksOn_employee” refer=“key_employee”>
 <xsd:selector xpath=“//worksOn”/><xsd:field xpath=“@ssn”/>

 Designing Quality XML Schemas from E-R Diagrams 517

 </xsd:keyref>
 <xsd:keyref name=“foreignKey_worksOn_project” refer=“key_project”>
 <xsd:selector xpath=“//worksOn”/><xsd:field xpath=“@projID”/>
 </xsd:keyref>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:attribute name=“jobID” type=“xsd:int” use=“required”/>
 <xsd:attribute name=“hourlyRate” type=“xsd:int”/>
 <xsd:key name=“key_job”>
 <xsd:selector xpath=“//job”/><xsd:field xpath=“@jobID”/>
 </xsd:key>
 </xsd:element>
 <xsd:element name=“department” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“name” type=“xsd:string”/>
 <xsd:element name=“clerk” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:extension base=“t_employee”>
 <xsd:sequence>
 <xsd:element name=“worksFor”> … … </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=“manager”>
 <xsd:complexType>
 <xsd:extension base=“t_employee”>
 <xsd:sequence>
 <xsd:element name=“manage”>
 <xsd:complexType>
 <xsd:sequence><xsd:element name=“startDate” type=“xsd:date”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=“project” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“control”/>
 <xsd:complexType><xsd:attribute name=“duration” type=“xsd:duration”/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=“projID” type=“xsd:int” use=“required”/>
 <xsd:attribute name=“name” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:key name=“key_project”>

518 C. Liu and J. Li

 <xsd:selector xpath=“//project”/><xsd:field xpath=“@projID”/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=“deptID” type=“xsd:int” use=“required”/>
 <xsd:attribute name=“name” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:key name=“key_department”>
 <xsd:selector xpath=“//department”/><xsd:field xpath=“@deptID”/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
<xsd:key name=“key_employee”>
 <xsd:selector xpath=“//employee”/><xsd:field xpath=“@ssn”/>
</xsd:key>
<xsd:complexType name=“t_employee”>
 <xsd:sequence>
 <xsd:element name=“supervise_emp” >
 <xsd:complexType> <xsd:attribute name=“mgr” type=“xsd:int”/></xsd:complexType>
 <xsd:keyref name=“foreignKey_supervise” refer=“key_employee”>
 <xsd:selector xpath=“//supervise_emp”/><xsd:field xpath=“@mgr”/>
 </xsd:keyref>
 </xsd:element>
 <xsd:element name=“dependent” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:attribute name=“name” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:key name=“key_dependent”><xsd:selector xpath=“//dependent”/>
 <xsd:field xpath=“../@ssn”/><xsd:field xpath=“@name”/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=“ssn” type=“xsd:int”/>
 <xsd:attribute name=“name” type=“xsd:string”/>
</xsd:complexType>

5 Conclusion

In this paper, we first discussed design criteria of a good quality XML schema. Then,
we designed transformation rules that translate all the constructs of an E-R model into
their counterparts in XML Schema. We claimed that these set of rules follow all five
criteria discussed in the paper, i.e., information preservation, highly nested structures,
no redundancy, consideration of dominant applications, and design reversibility.
Based on the transformation rules, a recursive algorithm called ERD2XSD was pro-
posed that takes an arbitrary E-R diagram as input and generates a correspondent high
quality XML schema as output. An illustrative example was given in the end. In the
future, we will build a prototype using this algorithm and improve it as a real XML
schema design tool.

 Designing Quality XML Schemas from E-R Diagrams 519

Acknowledgement

This work was supported by the Australian Research Council Discovery Project under
the grant number DP0559202.

Reference

1. C. Kleiner and U. W. Lipeck: Automatic Generation of XML DTDs from Conceptual Da-
tabase Schemas. GI Jahrestagung (1) 2001. pp. 396-405.

2. C. M. Sperberg-McQueen, E. Maler, T. Bray, J. Paoli and F. Yergeau: Extensible Markup
Language (XML) 1.0 (Third Edition). W3C Recommendation, 2004. http://www.w3.org/
TR/REC-xml/.

3. L. Bird, A. Goodchild and T. A. Halpin: Object Role Modeling and XML-Schema. ER
2002. pp. 309-322.

4. P. Bernus, K. Mertins and G. Schmidt: Handbook on Architecture of Information Systems.
Chapter 4. pp. 81-101. Springer-Verlag, Berlin, 1998.

5. V. Turau: Making Legacy Data Accessible for XML Applications. 2001.
http://www.informatik.fh-wiesbaden.de/~turau/DB2XML/.

6. D. Lee, M. Mani, F. Chiu and W. Chu: NeT & CoT: Translating Relational Schemas to
XML Schemas using Semantic Constraints. CIKM 2002. pp. 282-291.

7. C. Baru: XViews: XML Views of Relational Schemas. DEXA Workshop. 1999. pp.
700-705.

8. C. Liu, M. W. Vincent and J. Liu: Constraint Preserving Transformation from Relational
Schema to XML Schema. World Wide Web Journal, 9(1):93-110, March 2006.

9. D. Beech, N. Mendelsohn, M. Maloney and H. S. Thompson: XML Schema Part 1: Struc-
tures Second Edition, W3C Recommendation, http://www.w3.org/TR/xmlschema-1/.

10. P. Bohannon, W. Fan, M. Flaster and P. P. S. Narayan: Information Preserving XML
Schema Embedding. VLDB 2005. pp. 85-96.

11. D. Barbosa, J. Freire and A. O. Mendelzon: Designing Information-Preserving Mapping
Schemas for XML. VLDB 2005. pp. 109-120.

12. P. Atzeni, S. Ceri, S. Paraboschi and R. Torlone: Database Systems Concepts, Languages
& Architectures, part 2. pp. 163-179. McGraw-Hill International (UK) Limited, 1999.

Validating Semistructured Data Using OWL

Yuan Fang Li1,�, Jing Sun2, Gillian Dobbie2, Jun Sun1, and Hai H. Wang3,��

1 School of Computing, National University of Singapore, Singapore
{liyf, sunj}@comp.nus.edu.sg

2 Department of Computer Science, The University of Auckland, New Zealand
{j.sun, gill}@cs.auckland.ac.nz

3 Department of Computer Science, University of Manchester
hai.wang@cs.manchester.ac.uk

Abstract. Semistructured data has become prevalent in both web applications
and database systems. This rapid growth in use makes the design of good
semistructured data essential. Formal semantics and automated reasoning tools
enable us to reveal the inconsistencies in a semistructured data model and its in-
stances. The Object Relationship Attribute model for Semistructured data (ORA-
SS) is a graphical notation for designing and representing semistructured data.
This paper presents a methodology of encoding the semantics of ORA-SS in the
Web Ontology Language (OWL) and automatically validating the semistructured
data design using the OWL reasoning tool - RACER. Our methodology provides
automated consistency checking of an ORA-SS data model at both the schema
and instance levels.

Keywords: Semistructured Data, Semantic Web, OWL, Formal Verification.

1 Introduction

Semistructured data has become prevalent in both web applications and database sys-
tems. It acts as a hinge technology between the data exchanged on the web and the
data represented in a database system. This rapid growth in use makes the design
of good semistructured data essential. Many data modeling languages [1, 3, 5, 10] for
semistructured data have been introduced to capture more detailed semantic informa-
tion. The Object Relationship Attribute model for Semistructured data (ORA-SS) [4, 9]
is a semantic enriched graphical notation for designing and representing semistructured
data [8, 9, 11]. The ORA-SS data model not only reflects the nested structure of semi-
structured data, but also distinguishes between object classes, relationship types and
attributes. The main advantages of ORA-SS over other data models is its ability to ex-
press the degree of an n-ary relationship type, and distinguish between the attributes
of relationship types and the attributes of object classes. This semantic information is

� The author would like to thank Singapore Millennium Foundation (SMF) for the financial
support.

�� This work was supported in part by the CO-ODE project funded by the UK Joint Information
Services Committee, the HyOntUse Project (GR/S44686) funded by the UK Engineering and
Physical Science Research Council.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 520–531, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Validating Semistructured Data Using OWL 521

essential, even crucial for semistructured data representation and management, but it is
lacking in other existing semistructured data modeling notations.

A major concern in designing a good semistructured data model using ORA-SS for
a particular application is to reveal any possible inconsistencies at both the schema
and instance levels. Inconsistencies at the schema level arise if a customized ORA-SS
schema model does not conform to the ORA-SS notation. Inconsistencies at the instance
level arise if an instance document is not consistent with its ORA-SS schema definition.
For example, an inconsistency that might arise at the schema level is the specification
of a ternary relationship between only two object classes. An inconsistency that might
arise at the instance level is a many to many relationship between elements when a
one to many relationship is specified in the schema. These two aspects of validation
are essential in the semistructured data design process. Thus, the provision of formal
semantics and automated reasoning support for validating ORA-SS semistructured data
modeling is very beneficial.

Recent research on the World Wide Web has extended to the semantics of web con-
tent. More meaningful information is embedded into the web content, which makes it
possible for intelligent agent programs to retrieve relevant semantic as well as structural
information based on their requirements. The Semantic Web [2] approach proposed by
the World Wide Web Consortium (W3C) attracts the most attention. It is regarded as
the next generation of the web. The Ontology Web Language (OWL) is an ontology
language for the Semantic Web. OWL can provide not only the structural information
of the web content but also meaningful semantics for the information presented. The
aim of this paper is to encode the semantics of the ORA-SS notation into the Web On-
tology Language (OWL) and automatically verify the semistructured data design using
the OWL reasoning tool RACER [6].

The reason that we chose OWL to fulfil our goal is due to the nature of the semistruc-
tured data and its strong connections to web technologies. Semistructured data is typi-
cally represented using eXtensible Markup Language (XML). XML is a commonly used
exchange format in many web and database applications. The introduction of the Seman-
tic Web is to overcome the structure-only information of XML, and to provide deeper
semantic meanings to the data. The ORA-SS data model is a semantically enriched data
modeling language for describing semistructured data. From the point of capturing more
semantic information in semistructured data, OWL and ORA-SS are two approaches that
fulfil the same goal, where the former is rooted from the web community and the latter
has its basis in the database community. We believe that Semantic Web and its reasoning
tools can contribute to the verification phase of the semistructured data design.

In this paper, we propose a methodology to validate semistructured data design using
OWL and its reasoner RACER. Firstly, we define an ontology model of the ORA-SS
data modeling language in OWL. It provides a rigorous semantic basis for the ORA-SS
graphical notation and enable us to represent any ORA-SS data model and its instances
in OWL. Furthermore, RACER is used to perform the automated verification of the
correctness in a semistructured data design. Our approach is able to provide automatic
consistency checking on large semistructured data models and their instances.

The remainder of the paper is organized as follows. Section 2 briefly introduces
the background knowledge for the semistructured data modeling language ORA-SS,

522 Y.F. Li et al.

Semantic Web ontology language OWL and its reasoning tool RACER. Section 3
presents OWL semantics of the ORA-SS notation and its data models. Section 4 demon-
strates a case study on a complete ontology reasoning process for verifying semistruc-
tured data design. Examples of both class-level reasoning and instance-level reasoning
are presented. Finally, Section 5 concludes the paper.

2 Background

2.1 The ORA-SS Data Modeling Language

The Object Relationship Attribute model for Semistructured data (ORA-SS) data mod-
eling language [4, 9] consists of four basic concepts: object class, relationship type,
attribute and reference. It represents these concepts through four diagrams: schema di-
agram, instance diagram, functional dependency diagram and inheritance diagram. We
will focus on the schema and instance diagram in this paper since they are sufficient for
our purposes. A full description of the ORA-SS data modeling language can be found
in [4, 9].

– An object class is like an entity type in an ER diagram, a class in an object-oriented
diagram or an element in an XML document. The object classes are represented as
labeled rectangles in an ORA-SS diagram.

– A relationship type represents a nesting relationship among object classes. It is de-
scribed as a labeled edge by a tuple (name, n, p, c), where the name denotes the
name of relationship type, integer n indicates degree of relationship type, p repre-
sents participation constraint of parent object class in relationship type and c repre-
sents participation constraint of child object class in relationship type.

– Attributes represent properties and are denoted by labeled circle. An attribute can be
a key attribute which has a unique value and represented as a filled circle. Other types
of attributes include single valued attribute, multi-valued attribute, required attribute,

cs, 2, 4:n, 3:8

cp, 2, 0:5, 1:n

code

course

title

laboratory

grade

lecture
theatre

cs
venue
exam

prerequisite

*

name feedbackstaff

cst

preferred
area

tutor

number

name
number
student

home

number street name

hostel

name

sport club

join date

sportname

sm, 2, 1:n, 1:n

sm

member

sh, 2, 1:1, 1:n

cst, 3, 1:1, 1:n

student

student

Fig. 1. The ORA-SS Schema Diagram of a Course-Student data model

Validating Semistructured Data Using OWL 523

composite attribute, etc. An attribute can be a property of an object class or a property
of a relationship type.

– An object class can reference another object class to model recursive and symmetric
relationships, or to reduce redundancy especially for many-to-many relationships. It
is represented by a labeled dashed edge.

For the design of semistructured data, an ORA-SS schema diagram constrains the
relationships, participations and cardinalities among the instances of the object classes
in a semistructured data model. For example, Fig. 1 represents an ORA-SS schema di-
agram of a Course-Student data model. In the diagram, each course has code,
title, exam venue as its attributes. A relationship type cs, which indicates the
relationship between a course object class and a student object class is binary, and
each course consists of 4 to many students and each student can select 3 to 8 courses.
The student object class in the cs relationship type has a reference pointing to its
complete definition. The grade attribute is an attribute belonging to the cs relation-
ship type. Based on the above schema definition, two levels of validation can be carried
out. Firstly, consistency checking can be performed to determine whether the defined
schema model is correct with respect to the ORA-SS language. Secondly, consistency
checking can be performed to determine whether a particular instance of semistruc-
tured data satisfies the defined ORA-SS schema model. Hence automated tool support
for validating the consistency in an ORA-SS data model would be highly desirable.

2.2 Semantic Web – OWL and RACER

Description logics are logical formalisms for representing information about knowledge
in a particular domain. It is a subset of first-order predicate logic and is well-known for
the trade-off between expressivity and decidability.

The Web Ontology Language (OWL) [7] is the de-facto ontology language for the
Semantic Web. It consists of three increasingly expressive sublanguages: OWL Lite, DL
and Full. OWL DL is very expressive yet decidable. As a result, core inference prob-
lems, namely concept subsumption, consistency and instantiation, can be performed
fully automatically. In OWL, conceptual entities are organized as classes in hierarchies.
Individual entities are grouped under classes and are called instances of the classes.
Classes and individuals can be related by properties. We will be using a synatx similar
to that presented in [7].

RACER, the Renamed ABox and Concept Expression Reasoner [6], is a reasoning
engine for ontologies languages DAML+OIL and OWL. It implements a TBox and
ABox reasoner for the description logic ALCQHIR+(D)− [6]. It is fully automated
for reasoning over OWL Lite and DL ontologies.

3 Modeling ORA-SS Data Design Models in OWL

In this section, we show the modeling of ORA-SS schema and instance diagrams as
OWL ontologies in three parts. Firstly, we define the ORA-SS ontology in Section 3.1,
which contains the OWL definitions of essential ORA-SS concepts. Secondly, in the
next 3 subsections, we show how individual schema diagram ontology can be con-
structed based on the ORA-SS ontology. Finally, in Section 3.5, we show how instance
diagrams can be represented in OWL.

524 Y.F. Li et al.

Our modeling approach can be regarded as a methodology for creating the OWL rep-
resentation of ORA-SS diagrams. By strictly following this methodology, a lot of poten-
tial modeling errors can be avoided, which will become more evident as we present the
approach below. To effectively illustrate the modeling approach, the schema diagram in
Fig. 1 is used as a running example.

3.1 The ORA-SS Ontology

The ORA-SS ontology1 contains the OWL definitions for ORA-SS concepts such as
object class, relationship type, attribute, etc. We will model these definitions as OWL
classes. The basic assumption here is that all named OWL classes are by default mu-
tually disjoint, which is implied in the ORA-SS diagrams. Essential properties are also
defined in the ontology. This ontology, with a namespace of ora-ss, can be used later
to define ontologies for ORA-SS schema diagrams.

Entities. As each object class and relationship type can be associated with attributes
and other object classes or relationship types, we define an OWL class ENTITY to
represent the super class of both object class and relationship type. The OWL class
structure is shown as follows.

ENTITY � 	
OBJECT � ENTITY

RELATIONSHIP � ENTITY

ATTRIBUTE � 	
ENTITY
 ATTRIBUTE = ⊥
OBJECT
 RELATIONSHIP = ⊥

It may not seem very intuitive to define relationship types as OWL classes. In ORA-
SS, relationship types are used to relate various object classes and relationship types, it
might be natural to model relationship types as OWL properties. However, there are two
reasons that we decide to model relationship types as OWL classes. Firstly, the domain
of ORA-SS relationship types can be relationship types themselves, which describes
the relationships of ternary and more. Secondly, classes and properties in OWL DL are
disjoint. In our model, a relationship type class consists of instances which are actually
pointers to the pairs of object classes or relationship types that this relationship relates.

As ORA-SS is a modeling notation for semistructured data, we need to cater to un-
structured data. We define a subclass of ATTRIBUTE called ANY as a place holder to
denote any unstructured data appearing in a model. In ORA-SS, a composite attribute is
an attribute composed of other attributes. We also define it as a subclass of ATTRIBUTE.

ANY � ATTRIBUTE

ANY
 CompositeAttribute = ⊥
CompositeAttribute � ATTRIBUTE

Properties. A number of essential properties are defined in the ora-ss ontology.

Properties Among Entities
In ORA-SS, object classes and relationship types are inter-related to form new relation-
ship types. As mentioned above, since we model relationship types as OWL classes, we
need additional properties to connect various object classes and relationship types.

1 Available at http://www.comp.nus.edu.sg/˜liyf/ora-ss/ora-ss.owl

Validating Semistructured Data Using OWL 525

Firstly, this is accomplished by introducing two object-properties, parent and child,
which map a RELATIONSHIP to its domain and range ENTITYs. The following state-
ments define the domain and range of parent and child. As in ORA-SS, the domain of
a relationship (parent) can be either an object class or another relationship type, i.e., an
ENTITY. The range (child) must be an OBJECT. These two properties are functional as
one relationship type has exactly one domain and one range node. Moreover, we assert
that only relationship types can have parents and child but object classes cannot.

≥ 1 parent � RELATIONSHIP

	 � ∀ parent.ENTITY

	 �≤ 1 parent

≥ 1 child � RELATIONSHIP

	 � ∀ child.OBJECT

	 �≤ 1 child

RELATIONSHIP � ∀ parent.ENTITY RELATIONSHIP � ∀ child.OBJECT

Secondly, we define two more object-properties: p-ENTITY-OBJECT and
p-OBJECT-ENTITY. These two properties are inverse of each other and they serve
as the super properties of the properties that are to be defined in later ontologies of
ORA-SS schema diagrams. Those properties will model the restrictions imposed on the
relationship types.

The domain and range of p-ENTITY-OBJECT are ENTITY and OBJECT, respec-
tively. Since the two properties are inverse, the domain and range of p-OBJECT-ENTITY
can be deduced.

p-OBJECT-ENTITY = (−p-ENTITY-OBJECT)

≥ 1 p-ENTITY-OBJECT � ENTITY

	 � ∀ p-ENTITY-OBJECT.OBJECT

ENTITY � ∀ p-ENTITY-OBJECT.OBJECT

≥ 1 p-OBJECT-ENTITY � OBJECT

	 � ∀ p-OBJECT-ENTITY.ENTITY

OBJECT � ∀ p-OBJECT-ENTITY.ENTITY

Properties Between Entities and Attributes
First of all, we define an object-property has-ATTRIBUTE, whose domain is ENTITY
and range is ATTRIBUTE. Every ENTITY must have ATTRIBUTE as the range of
has-ATTRIBUTE.

≥ 1 has-ATTRIBUTE � ENTITY

	 � ∀ .has-ATTRIBUTE.ATTRIBUTE

ENTITY � ∀ has-ATTRIBUTE.ATTRIBUTE

For modeling the ORA-SS candidate and primary keys, we define two new ob-
ject properties that are sub-properties of has-ATTRIBUTE. We also make the property
has-primary-key inverse functional and state that each ENTITY must have at most one
primary key. Moreover, we restrict the range of has-candidate-key to be ATTRIBUTE.

has-candidate-key � has-ATTRIBUTE

	 � ∀ has-candidate-key.ATTRIBUTE

ENTITY �≤ 1 has-primary-key

has-primary-key � has-candidate-key

	 �≤ 1 has-primary-key−

526 Y.F. Li et al.

3.2 Object Classes

In this subsection, we present how ORA-SS object classes in a schema diagram are rep-
resented in OWL. Moreover, we will discuss how object class referencing is modeled.

Example 1. The schema diagram in Fig. 1 contains a number of object classes 2.

course � OBJECT

student � OBJECT

hostel � OBJECT

· · ·

tutor � OBJECT

sport club � OBJECT

home � OBJECT

· · ·
Referencing. In ORA-SS, an object class can reference another object class to refer to
its definition, which we say that a reference object class references a referenced object
class. In our model, we model the reference object class a sub class of the referenced
object class. If the two object classes are of the same name, the reference object class
is renamed. By doing so, we ensure that all the attributes and relationship types of the
referenced object classes are reachable (meaningful). Note that there are no disjointness
axioms among the reference and referenced object classes.

Example 2. In Fig. 1, the object class student is referenced by object classes student and
member. Hence, we rename the reference student to student 1 and add the following
axioms in to the model.

student � OBJECT student 1 � student member � student

3.3 Relationship Types

In this subsection, we present the details of how ORA-SS relationship types are modeled
in OWL. Various kinds of relationship types, such as disjunctive relationship types and
recursive relationship types are also modeled. We begin with an example to show the
basic modeling of relationship types.

For example, Fig. 1 contains 5 relationship types, namely cs, sh, sm, cp and cst. The
relationship type cs is bound by the parent/child properties as follows. We use both
allValuesFrom and someValuesFrom restriction to make sure that only the intended
class can be the parent/child class of cs.

cs � ∀ parent.course

cs � ∃ parent.course

cs � ∀ child.student 1

cs � ∃ child.student 1

Auxiliary Properties. As discussed in Section 3.1, for each ORA-SS relationship type
we define two object-properties that are the inverse of each other.

Example 3. Take cs as an example, we construct two object-properties:
p-course-student and p-student-course. Their domain and range are also defined.

p-student-course = (−p-course-student)

p-course-student � p-ENTITY-OBJECT

≥ 1 p-course-student � course

	 � ∀ p-course-student.student 1

p-student-course � p-OBJECT-ENTITY

≥ 1 p-student-course � student 1

	 � ∀ p-student-course.course

2 For brevity reasons, the class disjointness statements are not shown from here and onwards.

Validating Semistructured Data Using OWL 527

Participation Constraints. One of the important advantages that ORA-SS has over
XML Schema language is the ability to express participation constraints for parent/child
nodes of a relationship type. This ability expresses the cardinality restrictions that must
be satisfied by ORA-SS instances.

Using the terminology defined previously, ORA-SS parent participation constraints
are expressed using cardinality restrictions in OWL on a sub-property of
p-ENTITY-OBJECT to restrict the parent class Prt. Child participation constraints can
be similarly modeled, using a sub property of p-OBJECT-ENTITY.

Example 4. In Fig. 1, the constraints captured by the relationship type cs state that a
course must have at least 4 students; and a studentmust take at least 3 and at most
8 courses. The following axioms are added to the ontology. The two object-properties
defined above capture the relationship type between course and student.

course � ∀ p-course-student.student 1

course �≥ 4 p-course-student

student 1 � ∀ p-student-course.course

student 1 �≥ 3 p-student-course

student 1 �≤ 8 p-student-course

Disjunctive Relationship Types. In ORA-SS, a disjunctive relationship type is used
to represent disjunctive object classes, where only one object can be selected from a set
of object classes. To model this in OWL, we will create a dummy class as the union
of the disjoint classes and use it as the range of the object-property representing the
relationship type. Together with the cardinality constraint that exactly one individual of
the range can be selected, the disjunctive relationship type can be precisely modeled.

Example 5. In Fig. 1, sh is a disjunctive relationship type where a student must live in
exactly one hostel or one home, but not both. We use the following OWL statements to
model this situation. Note that p-student-sh is an object-property that maps student to
its range class home hostel, which is the union of hostel and home.

hostel � OBJECT

home hostel = hostel � home

home � OBJECT

	 � ∀ p-student-sh.home hostel

hostel
 home = ⊥
≥ 1 p-student-sh � student

Given the above definitions, the disjunctive relationship type sh in the schema dia-
gram can be modeled as follows.

student � ∀ p-student-sh.home hostel student �= 1 p-student-sh

3.4 Attributes

The semantically rich ORA-SS model notation defines many kinds of attributes for
object classes and relationship types. These include candidate and primary keys, single-
valued and multi-valued attributes, required and optional attributes, etc. In this subsec-
tion, we will discuss how these attributes can be modeled.

Example 6. The schema diagram in Fig. 1 includes attributes such as code, title and
exam venue, which are all sub classes of ATTRIBUTE.

528 Y.F. Li et al.

Modeling of Various Definitions. As OWL adopts the Open World Assumption [7]
and an ORA-SS model is closed, we need to find ways to make the OWL model capture
the intended meaning of the original diagram. The following are some modeling tricks.

– For each ENTITY, we use an allValuesFrom restriction on has-ATTRIBUTE over the
union of all the ATTRIBUTE classes this ENTITY has in the ORA-SS model to denote
the complete set of attributes it holds.

Example 7. In the running example, the object class student has student number and
name as its attributes.

student � ∀ has-ATTRIBUTE.(student number � name)

– Each entity (object class or relationship type) can have a number of attributes. For
each of the entity-attribute pairs in an ORA-SS schema diagram, we define an object-
property, whose domain is the entity and range is the attribute.

Example 8. In Fig. 1, the object class sport club has an attribute name. It can be
modeled as follows.

≥ 1 has-sport club-name � sport club

	 � ∀ has-sport club-name.name

has-sport club-name � has-ATTRIBUTE

sport club � ∀ has-sport club-name.name

Required and Optional Attributes. We use cardinality restrictions of respective
object-properties on the owning ENTITY to model the attribute cardinality constraints
in the ORA-SS model. The default is (0:1). We use a cardinality ≥ 1 restriction to state
a required attribute.

Single-Valued vs. Multi-valued Attributes. Single-valued attributes can be modeled
by specifying the respective object-property as functional. Multi-valued attributes, on
the contrary, are not functional. An attribute is by default single valued.

Primary Key Attributes. For an entity with a primary key attribute, we use an all-
ValuesFrom restriction on the property has-primary-key to constrain it. Since we have
specified that has-primary-key is inverse functional, this suffices to show that two dif-
ferent objects will have different primary keys. Moreover, for every attribute that is the
primary key attribute, we assert that the corresponding object property is a sub property
of has-primary-key.

Disjunctive Attributes. Similar to the treatment of disjunctive relationship types, we
create a class as the union of a set of disjunctive attribute classes. Together with the
cardinality ≤ 1 restriction, disjunctive attributes can be represented in OWL.

3.5 Instance Diagrams in OWL

The representation of ORA-SS instance diagrams in OWL is a straightforward task. As
the name suggests, instance diagrams are semistructured data instances of a particular
ORA-SS schema diagram. The translation of an instance diagram to an OWL ontology
is done by the following 3 steps:

Validating Semistructured Data Using OWL 529

1. Defining individuals and stating the membership of these individuals, by declaring
them as instances of the respective OWL classes of object classes, relationship types
and attributes defined in the schema diagram ontology.

2. For each OWL class, we state that all its instances are different from each other.
3. By making use of the object-properties defined in the schema diagram ontology, we

state the relationships among the individuals.

4 Reasoning About ORA-SS Instance Models

In this section, we demonstrate the validation of ORA-SS schema and instance diagrams
using OWL and RACER. We will again use Fig. 1 as the running example.

4.1 Validation of Schema Diagram Ontologies

In order to ensure the correctness of an ORA-SS schema diagram, a number of proper-
ties have to be checked, such as:

– The parent of a relationship type should be either a relationship type or an object
class, where the child should only be an object class.

– The parent of a higher-degree relationship type (higher than 2) must be a relationship
type.

– An object class or relationship type can have at most one primary key, which must be
part of the candidate keys.

To manually check the validity of a given schema diagram against these constraints
is a highly laborious and error-prone task. By following the methodology presented in
this section systematically, a lot of potential violation of the above constraints can be

Fig. 2. Schema inconsistency detected by RACER

530 Y.F. Li et al.

avoided. Moreover, the highly efficient OWL reasoners such as RACER can check the
consistency of ORA-SS schema diagrams in OWL fully automatically. For example,
suppose that in the case study, the child of relationship type cs is mistakenly put as cst
instead of student 1. Hence, the axiom ! " ∀ child.OBJECT is violated. This error
can be picked up by RACER automatically, as shown in Fig. 2. Three classes, cs, cst
and tutor are highlighted as inconsistent. Classes cst and tutor are inconsistent because
they are both related to cs using existential or cardinality restrictions. Other types of
checking can be similarly performed.

It can be seen from Fig. 2 that the detection of inconsistencies in the ORA-SS schema
ontology by RACER is quite efficient. On a Pentium IV 2.4GHz machine with 1GB
memory, the consistency checking by RACER took only 0.75 second.

4.2 Validation of Instance Diagram Ontologies

After transforming an ORA-SS instance diagram into an OWL ontology. Validation of
the consistency of the instance ontology can be done fully automatically by invoking
ontology reasoners capable of ABox reasoning. We will use RACER to demonstrate the
checking of the above ontology using a few examples.

– Entity/attribute cardinality constraints
In Fig. 1, each instance of relationship type cst has exactly one tutor. Suppose that in
the instance ontology, cs1 is mapped to two tutors, tutor1 and tutor2 by cst.

〈cs1, tutor1〉 ∈ p-cs-tutor 〈cs1, tutor2〉 ∈ p-cs-tutor

– Primary key related properties
Suppose that by accident, two students, student4 and student5, are both assigned to
the same student number.

〈student4, student number 4〉
∈ has-student-student number

〈student5, student number 4〉
∈ has-student-student number

By using RACER And RacerPorter (a graphical front-end of RACER) together, the
instance ontology is detected to be inconsistent automatically in the above two cases. In
each case, RACER takes less than 1 second to conclude the incoherence of the ontology.

5 Conclusion

In this paper, we explored the synergy between the Semantic Web and the database mod-
eling approaches in the context of verifying semistructured data design. We demonstrate
the approach of using the OWL and its reasoning tool for the consistency checking of
the ORA-SS data model and its instances. The advantages of our approach lie in the fol-
lowing perspectives. Firstly, we defined a Semantic Web ontology model for the ORA-
SS data modeling language. It not only provides a formal semantic for the ORA-SS
graphical notation, but also demonstrates that Semantic Web languages such as OWL
can be used to capture more semantic information of a semistructured data. Further-
more, such a semantics can be adopted by many Semantic Web applications that use the

Validating Semistructured Data Using OWL 531

ORA-SS semistructured data model. Secondly, ontology reasoning tool was adopted to
perform automated verification on a semistructured data model. The RACER reasoner
was used to check the consistency of an ORA-SS schema model and its instances. We
illustrated the various checking tasks through a Course-Student example model. In
our previous work, we used the Alloy Analyzer for the validation of the ORA-SS data
model. The main advantage of our current OWL approach over this is that consistency
checking on large ORA-SS models are made feasible, as one of the shortcomings of the
current Alloy Analyzer is its limited abilities on verifying large-scale models. More-
over, as Semantic Web reasoners employ highly optimized tableaux-based algorithms,
the performance in terms of time is also significantly better than Alloy Analyzer.

References

1. V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors, G. Nicol, J. Robie,
R. Sutor, C. Wilson, and L. Wood. Document Object Model (DOM) Level 1 Specification.
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):35–43, 2001.

3. P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding Structure to Unstruc-
tured Data. In ICDT ’97: Proceedings of the 6th International Conference on Database
Theory, pages 336–350. Springer-Verlag, 1997.

4. G. Dobbie, X. Wu, T. Ling, and M. Lee. ORA-SS: Object-Relationship-Attribute Model for
Semistructured Data. Technical Report TR 21/00, School of Computing, National University
of Singapore, Singapore, 2001.

5. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimization
in Semistructured Databases. In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, editors, VLDB’97: Proceedings of 23rd International
Conference on Very Large Data Bases, pages 436–445. Morgan Kaufmann, 1997.

6. V. Haarslev and R. Möller. Practical Reasoning in Racer with a Concrete Domain for Lin-
ear Inequations. In I. Horrocks and S. Tessaris, editors, Proceedings of the International
Workshop on Description Logics (DL-2002), Toulouse, France, Apr. 2002. CEUR-WS.

7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. J. of Web Semantics, 1(1):7–26, 2003.

8. T. Ling, M. Lee, and G. Dobbie. Applications of ORA-SS: An Object-Relationship-Attribute
data model for Semistructured data. In IIWAS ’01: Proceedings of 3rd International Confer-
ence on Information Integration and Web-based Applications and Serives, 2001.

9. T. W. Ling, M. L. Lee, and G. Dobbie. Semistructured Database Design. Springer, 2005.
10. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database Manage-

ment System for Semistructured Data. SIGMOD Record, 26(3):54–66, 1997.
11. X. Wu, T. W. Ling, M. L. Lee, and G. Dobbie. Designing Semistructured Databases Using

the ORA-SS Model. In WISE ’01: Proceedings of 2nd International Conference on Web
Information Systems Engineering, Kyoto, Japan, 2001. IEEE Computer Society.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 532 – 543, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Data Distribution of High Level Architecture
Based on Publication and Subscription Tree*

Yintian Liu 1,2, Changjie Tang1, Chuan Li1, Minfang Zhu1,3, and Tao Zeng1

1 School of Computer Science, Sichuan University, Chengdu, 610065, China
2 Nanjing Army Command College, Nanjing, 210045, China

3 Dept. of Computer Sci. & Tech., Shaanxi Univ. of Tech., Hanzhong, 723003 China
{liuyintian, tangchangjie, lichuan,
zhumingfang, zengtao}@cs.scu.edu.cn

Abstract. To ensure the efficiency of data exchange between simulation
members via multicast groups in the simulation system based on High Level
Architecture (HLA), this paper proposes a novel method of dynamic data
distribution based on publication and subscription tree (PS-Tree). The main
contributions of this paper include: (1) Proposing the structure of PS-Tree
which can manifest the relationship of data exchange between simulation
members. (2) Describing the method of dynamic data distribution based on PS-
Tree by mining association rule and (3) Analyzing the performance. Experiment
shows that this dynamic data distribution method can implement data
distribution efficiently and effectively.

1 Introduction

In the High Level Architecture (HLA), Data Distribution Management (DDM)
services [2,3,4,5,6] are used to implement data filtering, which can reduce the amount
of irrelevant data being exchanged between simulation members. DDM is based
on two methods, i.e. region-based matching and grid-based multicast groups
transmission. Through region matching, DDM determines the supply and demand
relationship between simulation members, and then the data are exchanged effectively
between the members through the multicast groups which are overcast by the
matching region’s grids. Chunlei Xu [7] proposed a relevant filtering method based
on multi-level grid to overcome the shortcoming of even-grid method (difficult to fit
all entities in the simulation). Yachong Zhang [8] proposed an algorithm to allocate
multicast groups dynamically based on current cells in which there are update
and subscription regions matching. These methods can effectively reduce the
complexity of region matching and make use of multicast groups to realize the
filtering of data belonging to the same object class attributes.

* Supported by Grant of National Science Foundation of China (60473071), Specialized

Research Fund for Doctoral Program by the Ministry of Education (SRFDP 20020610007)
and the Software Innovation Project of Sichuan Youth (AA0807).

 Dynamic Data Distribution of High Level Architecture Based on PS-Tree 533

However, by the restriction of multicast groups resource, a region may overcast
several multicast groups and various regions binding with various object class
attributes or object instance attributes can also overcast the same multicast group.
It causes various types of object instance attributes being exchanged via the same
multicast group. This phenomenon is especially grievous in a large-scale military
simulation system. It is so called the reuse of multicast group address and results
in the problem that the subscriber will receive irrelevant data belonging to different
object classes although he has not subscribed them via the multicast group he
is intercepting. These irrelevant data, i.e. invalid data, worsen the burden of the
receiver who will have to consume time and system resource to receive and process
every data sent to him to filter for the data he is subscribing. Furthermore, invalid data
will make the simulation system unsafely, for the simulation member receives data
he should not have received. The traditional methods can not resolve the filtering of
invalid data.

To solve the problem of invalid data and to make the simulation system more
secure, this paper proposes a dynamic data distribution method based on PS-Tree. The
essential idea of this method is: (a) finding the inefficient multicast groups causing
invalid data receiving between each pair of publisher and subscriber, (b) constructing
a strategy to forward data via other appropriate multicast groups, (c) modifying
the strategy along with the advance of system to ensure the efficiency of data
exchange by trying to reduce the invalid data receiving.

The rest of the paper is organized as follows: Section 2 introduces the symbols and
terms. Section 3 describes the PS-Tree structure. Section 4 gives the association
 rule mining algorithms of PS-Tree. Section 5 constructs the dynamic data distribution
strategy based on PS-Tree. Section 6 analyses the performance of the dynamic data
distribution. Section 7 conducts experiments. Section 8 summarizes the paper, and
describes future work on PS-Tree.

2 Symbols and Terms

To get the PS-Tree and mine association rules of simulation system based on HLA,
it is necessary to transform the publication affairs and subscription affairs of system to
publication & subscription records through region matching and region overcastting.
The symbols used in this paper are summarized in Table 1.

In a simulation system based on HLA, a number of object instance attributes
belonging to the same object class attribute(Ia:count) are transmitted from the
publisher(Ip) to the subscriber(Is) through a multicast group (Im), which reflects
the path and direction of data stream between the simulation members. At the same
time, while the simulation system advances forward at the interval of time step,
the data stream will change including direction and content. The formal description of
the data stream is defined as follows:

Definition 1. In a simulation system based on HLA, the Data Exchange between
simulation members is a 5-tuple E=(P, S, M, A, R) where

534 Y. Liu et al.

(1) P ={Ip} is the finite set of simulation members who publish data.
(2) S={Is} is the finite set of simulation members who subscribe data.
(3) M={Im}is the finite set of multicast groups who transmit data between

publisher and subscriber.
(4) A={Ia}is the finite set of object class attribute who are transmitted between Ip

and Is through Im,
(5) R={δ} is the set of publication & subscription records, and δi=(Ip, Is, Im,

Ia:count), which describes the action that Ia with quantity of count is
transmitted from Ip to Is through Im.

During the process of simulation system, the set of publication&subscription
records forming during a time step is denoted as PubsubSet, and the increase and
decrease of publication&subscription records between two time steps are denoted as
PubsubSetNew and PubsubSetDel respectively.

Table 1. Definition of Symbols

Symbol Definition
Imi multicast group item

{Im} multicast group items set of simulation system
Iai attribute item of object class

{Ia} attribute items set of simulation system
Ipi publisher item

{Ip} publisher items set of simulation system
Isi subscriber item

{Is} subscriber items set of simulation system
Iri region item

{Ir} region items set of simulation system
(Ir, {Im}) region item and multicast group items it overcastting
(Is, Ir, Ia) Subscription affair that Is subscribes Ia with Ir
(Ip, Ir, Ia) Publication affair that Ip publishes Ia with Ir
(Is, Ia, Im) Subscription record that Is receives Ia via Im
(Ip, Ia, Im) Publication record that Ip sends Ia through Im

(Ip, Is, Im, Ia: count) record Ip transmits Ia to Is via Im with number of count
{(Ip,Is,Im,Ia:count)} Publication&subscription records set of system at a time

[1] The members who subscribe all data and seldom publish data should not be included in the Is or Ip set.
[2] In DDM, function SubscribeObjectClassAttributesWithRegion() is based on object class and a region

can bind with various object class attributes; the function RegisterObjectInstanceWithRegion() or
AssociateRegionForUpdates() is based on object instance and a region can bind with various object
instance attributes, but a object instance attribute can only be bound with a region at a time.

[3] A region can only bind with a simulation member.
[4] Subscriber receives an object instance attribute from the publisher via multicast group, if it is valid

then form a publication&subscription record (Ip,Is,Im,Ia:1), else form a publication&subscrip-tion
record (Ip,Is,Im,Inull:1), Inull means the invalid data Is has not subscribed from Ip through Im.

Definition 2. A Forwarding Record is a 5-tuple (Ip, Is, Im, Ia, Im
’), where Ip is

publisher item; Is is subscriber item; Im is the original multicast group item; Ia is the
attribute item; Im

’ is the forwarding multicast group item. The record describes how to

 Dynamic Data Distribution of High Level Architecture Based on PS-Tree 535

forward Ia from Ip to Is via Im
’ instead of the original Im. The set of all forwarding

records is denoted as ForwardTable = {(Ip, Is, Im, Ia, Im
’)}.

The dynamic data distribution strategy includes following steps: (1) gaining the
PubsubSet according to region matching and region overcastting processes; (2)
constructing the PS-Tree according to PubsubSet; (3) mining association rules of
PubsubSet via PS-Tree and deciding the role of each path of PS-Tree; (4) creating
ForwardTable according to the PS-Tree; (5) gaining the PubsubSetAdd and
PubsubSetDel between two time steps, and modifying the PS-Tree according to these
record sets and reflecting the modification into ForwardTable.

3 PS-Tree and Related Algorithms

A publication & subscription record (Ip, Is, Im, Ia: count) describes the path of data
transmission from Ip to Is, and the PubsubSet reflects the whole data stream (including
direction and quantity) of simulation system. The dynamic data distribution uses PS-
Tree to describe the data stream in a simulation system.

Definition 3. A PS-Tree(publication and subscription tree) is a converse compressed
tree with structure as follows:

(1) The depth of PS-Tree is 5 and each layer describes an item set,
(2) The zero-th layer is the root node of tree; the first layer is the node set of

publisher item Ip; the second layer is the node set of subscriber item Is; the
third layer is the node set of multicast item Im; and the fourth layer is the leaf
node set of attribute item Ia,

(3) Each record of PubsubSet is reflected to a branch of PS-Tree. The branch
begins at root node; the child node of root is node Ip; the child node of Ip is
node Is; the child node of Is is node Im; and the child node of Im is node Ia; the
branches can share a common prefix,

(4) Each node of PS-Tree marks its parent link, children links, node-link, count.
The node-link is used to link the node-chain with the same item-name which
can make the node to find all the nodes with the same item-name. The count
reflects the number of data transmitted via this node (marks respectively with
valid_count and null_count),

(5) A chain of Ip-Is-Im denotes a path which means the link between Ip and Is
through Im, for each path of PS-Tree, the Im node marks the role of the path
Ip-Is-Im, the Is node marks the node Im

’ used to forward the data between Ip
and Is.

For example, given the first five records of PS_Set as follows: (Ip1, Is2, Im3, Ia1: 1),
(Ip1, Is3, Im3, Ia2: 3), (Ip1, Is3, Im4, Inull: 7), (Ip2, Is2, Im4, Ia1: 5), and (Ip2, Is3, Im5, Ia2: 2). The
PS-Tree is then constructed in the following steps: Creating the root node of the tree
firstly, and then inserting each record in order of Ip Is Im Ia into the tree.

For the first record (Ip1, Is2, Im3, Ia1: 1), construct the first branch of PS-Tree, where
Ip1 is linked as a child of the root, Is2 is linked to Ip1, Im3 is linked to Is2, Ia1 is linked to
Im3, and increase the valid count of each node by 1. Each node’s node-link links to the
relevant node-chain with the same item-name and adds to the node-chain. After the

536 Y. Liu et al.

Algorithms of PS-Tree

PST-Insert(p, N, m_count, m_nullcount)
Input: node p, parent node N, count of valid/invalid data m_count/m_nullcount
Output: insert node p to his parent node N and increase their related count
1: if (N has a child node p’ such that p’.item-name == p.item-name) then
2: increase valid_count/null_count of p’ by m_count/m_nullcount
3: else
4: create a new node p’ with p’.item-name = p.item-name
5: set its valid_count/null_count by m_count/m_nullcount respectively
6: set its parent link by N
7: set its node-link by the node-chain with same item-name and add to chain
8: return

PST-Build(PubsubSet)
Input: PubsubSet = {(Ip, Is, Im, Ia:count)}
Output: PS-Tree
1: create the root node of PS-Tree
2: for each record (item[4],count) in PubsubSet do
3: m_count = (Ia == Inull)? 0 : count
4: m_nullcount = (Ia == Inull)? count : 0
5: PST-Insert(item[0], root, m_count, m_nullcount)
6: for(i=0,i<4,i++) do
7: PST-Insert(item[i+1],item[i],m_count,m_nullcount)
8: return PS-Tree

PST-Delete(item[4], m_count)
Input: publication & subscription record (Ip, Is, Im, Ia:count)
Output: modified PS-Tree
1: find the branch in PS-Tree corresponding to the record
2: if (Ia == Inull) then
3: decrease the null_count of each node in the branch by m_count
4: else
5: decrease the valid_count of each node by m_count
6: if (Ia.valid_count == 0) then delete node Ia from branch
7: if (Im.valid_count == 0 and Im.role == “Forwarding”) then
8: rebuild PS-Tree
9: return
10: if (Im.valid_count == 0 and Im.role != “Forwarded”) then
11: decrease the null_count of root,Ip,Is by Im’s null_count and delete Im
12: if (Is.valid_count == 0) then
13: decrease the null_count of root and Ip by Is’s null_count and delete Is
14: if (Ip.valid_count == 0) then
15: decrease the null_count of root by Ip’s null_count and delete Ip
16: if (root.valid_count == 0) then delete root
17: return

 Dynamic Data Distribution of High Level Architecture Based on PS-Tree 537

insertion of the record, the first branch of PS-Tree is constructed: root:1,0-Ip1:1,0-
Is2:1,0-Im3:1,0-Ia1:1,0. For the second record (Ip1, Is3, Im3, Ia2: 3), insert it into PS-Tree
like the first record to construct the second branch. Because this branch would share a
common prefix root-Ip1 with the first branch and the count of the second branch is
valid, we instead increase the valid count of the nodes root and Ip1 by the count of
second branch i.e. 3.

For the third record (Ip1, Is3, Im4, Inull: 7), insert it into PS-Tree in the order of
Ip1 Is3 Im4 Inull and add the nodes to their node-chains. This branch shares a
common prefix root-Ip1-Is3 with the second branch. Because the data of this record is
invalid, each node’s invalid count of this branch increases by 7.

The PS-Tree obtained after the insertion of these five records is shown in Figure 1
and the relevant algorithms of PS-Tree are given as follows.

Fig. 1. A PS-Tree

To implement the node insertion algorithm, we store the nodes into a hash table
with the item-name as the key. This takes just a step to find whether a node exists and
gains its pointer of address. We can gain the PS-Tree via inserting all the records into
the tree, and it needs scan the PubsubSet just once, which costs O(n) time.

4 The Association Rule Mining of PS-Tree

4.1 Confidence Calculation of PS-Tree

For a PS-Tree, Ipi.valid_count denotes the valid data sent by Ipi and its value equals to
the node Ipi’s valid_count, Isi.valid_count denotes the valid data received by Isi and its
value equals to the sum of all the nodes Isis’ valid_count, Imi.valid_count denotes the
valid data transformed through Imi and its value equals to the sum of all the nodes Imis’
valid_count, Ipi-Isj.valid_count denotes the valid data transmitted from Ipi to Isj and its
value equals to the node Isj’s valid_count whose father node is Ipi, Ipi-Imj.valid_count
denotes the valid data sent by Ipi through Imj and its value equals to the sum of all the
nodes Imjs’ valid_count whose grandfather node is Ipi, Isi-Imj.valid_count denotes the
valid data received by Isi via Imj and its value equals to the sum of all the nodes Imjs’

538 Y. Liu et al.

valid_count whose father node is Isi, Ipi-Isj-Imk.valid_count denotes the valid data
transmitted from Ipi to Isj through Imk and its value equals to the node Imk’s valid_count
of the chain Ipi-Isj-Imk. The process of invalid data is similar to valid data.

To mine the association rule of PS-Tree, three types of confidences are proposed.

(1) Csm = confidence(Im Is)
= support(Ip Im)/support(Im) = Is-Im.valid_count/Im.valid_count.

This confidence describes the ratio of the data Is receiving from Im to the data all Is
receiving from Im.
(2) Cpsm = confidence(Ip,Im Is)=support(Ip Is Im)/support(Ip Im)

=Ip-Is-Im.valid_count /(Ip-Is-Im.valid_count + Ip-Is-Im.null_count).
This confidence describes the ratio of the data from Ip to Is through Im to the data

from Ip to all Is through Im.
(3) Cmix = Csm*weight1 + Cpsm*weight2 (weight1,weight2 (0, 1.0) and weight1>

weight2, weight1 + weight2 = 1).

This confidence describes the efficiency of a multicast item Im used to sent data
form Ip to Is compared with the efficiency of other paths Ipj-Isj-Im.

4.2 Role Decision of Each Path in PS-Tree

To decide the role of each path with confidence, following thresholds are proposed.

(1) threshold_max, threshold_min (threshold_max (0.5, 1.0), threshold_min
(0, (1-threshold_max)).

Thresholds of Csm. If Csm>threshold_max, the Im can be selected by the Is to
forward data, and all the valid data other Isj receiving from Im should be forwarded by
other Imj. To reduce the invalid data, the threshold_max should be as big as possible.
The bigger Csm is, the smaller invalid data receive. On the other hand, it is difficult
to find an Im for an Is if the value of thredshold_max is too big. So we can properly
reduce the value of threshold_max within the permission of network bandwidth to
find an Im for the Is.

If Is receive too many invalid data through Im, i.e. Csm<threshold_min, the Is
needn’t intercept this multicast Im and all the data it receives form Im should be
forwarded through other Imj.
(2) threshold_tran (0.5, 1.0).

Threshold of Cpsm. For a path Ip-Is-Im, if Csm>threshold_max and Cpsm>
threshold_tran, it means that the most data from Ip to Is are transmitted through Im and
the most data Ip transmitting through Im are received only by Is. The data from Ip to Is
can be forwarded through Im.
(3) threshold_min_mix (0, 1.0).

Threshold of Cmix. For a path Ip-Is-Im that threshold_min<Csm<threshold_max and
Cmix>threshold_min_mix, it means that whether the path Ip-Is-Im is used to forward
data or the data under path Ip-Is-Im should be forwarded, there are too many repeated
data being created and the network data flow will add quickly. So the data from
Ip to Is through Im are transmitted by its own multicast group and path Ip-Is-Im will not
forward other path’s data.

 Dynamic Data Distribution of High Level Architecture Based on PS-Tree 539

The path Ip-Is-Im of PS-Tree is defined to take one of the roles as follows.

(1) Forwarded role. Ia under this path should be forwarded through other Imj;
(2) Retained role. Ia under this path should be forwarded through its own Im,

including valid data and invalid data;
(3) Forwarding role. This path forwards not only its own valid data Ia under this

path, but also other valid data Ia between Ip and Is.

Procedure MineAssociation() //Association rules Mining of PS-Tree
Input: PS-Tree, threshold_max, threshold_min, threshold_min_mix,

weight1, weight2
Output: the PS-Tree marked role and transmission path
1: for each path (Ip-Is-Im) in PS-Tree do
2: calculate Csm, Cpsm, Cmix
3: if (Csm>thredshold_max) then
4: set all the other paths Ip-Is-Im including Im as Forwarded role
5: if (Cpsm>0.5) then
6: set path as Forwarding role and Ip-Is.forward_channel=Im
7: else
8: if (Cmix>threshold_min_mix) then set path as Retained role
9: else set path as Forwarded role
10: else
11: if (Csm<threshold_min) then
12: mark the role of this path as Forwarded
13: else
14: if (Cmix>threshold_min_mix) then set path as Retained role
15: else set path as Forwarded role
16: return

If there are several paths between Ip and Is whose role is “Forwarding”, then
compare their Cmix, the largest one is used to forward data.

5 The Dynamic Data Distribution Based on PS-Tree

Based on the association rule mining, the role of each path in PS-Tree is decided. The
next step is to deal with this PS-Tree and to achieve the ForwardTable.

The ForwardTable can be built by scanning PS-Tree only once. Each branch forms
a forwarding record, and the forwarding Im

’ can get just by checking the role of path
and the forwarding multicast group between Ip and Is.
During the time advance of simulation system, when an object instance attribute Ia
needs to be transmitted from Ip to Is through Im, Ip finds the forwarding record in
ForwardTable according to Ip, Is, Im, and obtains the forwarding multicast group Im

’.
Along with the time advance of simulation system, some of the records in

PubsubSet die and new records occur. It is necessary to reflect the modification of
PubsubSet real time and modify the ForwardTable.

540 Y. Liu et al.

Especially, if a node Im marked as “Forwarding” was deleted, or controlled by
simulation system manually, the dynamic distribution strategy should be rebuilt.
It needn’t reconstruct the structure of PS-Tree because the PS-Tree has been modified
real time according to PubsubSetNew and PubsubSetDel. The rebuilding of
distribution strategy can be realized by simply re-mining association rules of PS-Tree
and gaining the new ForwardTable. The rebuilding of distribution strategy is quick.

The procedure describing the modification of ForwardTable is shown as follows.

Procedure StrategyAdjust(PS_SetNew, PS_SetDel)
Input: PubsubSetNew, PubsubSetDel
Output: Adjusted ForwardTable
1: for each record (Ip, Is, Im, Ia:count) in PubsubSetNew do
2: Insert record into PS-Tree
3: if (new branch occurred) then
4: forward_record=(Ip, Is, Im, Ia, Im

’)
// Im

’ is decided according the original path Ip-Is-Im, if the share
//prefix don’t include Im, the role of new path is “Forwarded”

5: ForwardTable.add(forward_record)
6: for each record (Ip, Is, Im, Ia:count) in PubsubSetDel do
7: decrease the valid_count or null_count form the relevant branch
8: if (there is branch deletion) then
9: forward_record = (Ip, Is, Im, Ia, Im

’) // Im
’ = Is.forward_channel

10: ForwardTable.delete(forward_record)
11: return ForwardTable

6 Performance Analysis of Dynamic Data Distribution

Now consider the application of dynamic data distribution. Note that (a) The
forwarding of data will result in the repeating transmission of the same data, it will
increase the amount of data sent by publishers to some degree, and the whole
system’s network traffic increases. (b) For the subscribers, the quantity of invalid data
they receive can be decreased to the least degree, which can decrease their burden for
data filtering and ensure the safety of simulation system too.

Suppose the size of all the object instance attributes is equal and each of them is
represented by 1 unit. By the support count calculation of each path of PS-Tree, we
can get the performances data of dynamic data distribution, as shown in Table 2.

Table 2 shows that (1) By the association rules mining via PS-Tree, it is easy to
gain the relationship of data exchange between publishers and subscribers including
direction and size before the push forward of simulation system. (2) We can realize
the dynamic data distribution to modify the publication and subscription of members
to reduce the receiver of invalid data and the processing burden of subscriber. (3) We
can implement the real-time adjustment of distribution strategy according to the
network state by modifying the values of the weights and thresholds, which ensure the
effective balance between the efficiency of simulation system and the occupation of
system resources.

 Dynamic Data Distribution of High Level Architecture Based on PS-Tree 541

Table 2. Performances Table of Data Distribution

Content Formula Comments
Before Strategy Application

Amount of data Ip sent
Dpub

+
miI

unt)Im.null_co-Ip ount Im.valid_c-(Ip

Imi Im nodes set under Ip
subtree, and Imi!=Imj

Amount of data Is

received Dsub
+

piI

unt)Is.null_co-Ip ount Is.valid_c-(Ip

Amount of data trans-
mitted through network
Dnet

piI

Dpub

After Strategy Application
Amount of data Ip sent
Dpub

’
+

+

si miI I

[2]

[1]

ount)Im.valid_c-Is-(Ip

unt)Im.null_co-Ip ount Im.valid_c-(Ip
miI

[1]Imi Retained Im nodes set

under Ip subtree, Imi != Imj
[2]Im Forwarded or forwarding

Im nodes set between Ip and Is

Amount of data Is

received Dsub
’

+

+

pi mi

pi mi

I I

I I

[2]

]1[

ount)Im.valid_c-Is-(Ip

unt)Im.null_co-Is-Ip ount Im.valid_c-Is-(Ip
[1]Imi Retained Im nodes set

under Ip subtree
[2]Im Forwarded or forwarding

Im nodes set between Ip and Is

Amount of data trans-
mitted through network
Dnet

’

'Dpub
piI

Performance Affection
The increment Ip sent
Dpub_add

−
si mi

si

I I

I

[2]

]1[

I

untIm.null_co-Is-Ip

ountIm.valid_c-Is-Ip
mi

[1]Im Forwarded Im nodes set

between Ip and Is
[2]Im Forwarding Im nodes set

between Ip and Is

The increment network
transmitted Dnet_add piI

Dpub_add

The decrease Is
received Dsub_reduce piI miI

untIm.null_co-Is-Ip

Im Forwarded or Forwarding Im
nodes set between Ip and Is

The decrease system
received Dsys_reduce siI

eDsub_reduc

7 Experimental Study

The key steps of experiment include: (a) Integrating the PS-Tree structure and
dynamic data distribution technique into UTS-RTI, (b) building a training
environment to evaluate the data exchange between simulation members via network
by means of recording the data count each member sent and received during every
time step, including valid and invalid data, and (c) comparing the amount of data sent
and received before and after the application of dynamic data distribution strategy
under different scale simulation members and multicast groups.

Figure 2 depicts the change of data during the system propelling process with 50
simulation members and 60 multicast groups. Figure 3 depicts the proportion of the
reduction of received data and the increase of published data for the following

542 Y. Liu et al.

environments: 50 members and 30 channels, 50 members and 60 channels, 100
members and 30 channels, and 100 members and 60 channels.

(a) performance before the use of strategy (b) performance after the use of strategy

 (c) comparison of system publication data (d) comparison of system receiving data

(e) the summary of system performance

Fig. 2. System performance under the environment of 50 members and 60 multicast groups

0

5

10

15

30 60

100 members
50 memebers

Fig. 3. Ratio variation along with the number of multicast groups

The experiment results show that: (1) The HLA DDM, by multicast technique,
greatly reduces the data processing burden of publishers and the quantity of network
data flow. (2) The dynamic data distribution greatly reduces the amount of invalid

 Dynamic Data Distribution of High Level Architecture Based on PS-Tree 543

data and release data processing burden of subscribers. (3) Although the dynamic data
distribution increases the data publication amount of publishers and the burden of
network bandwidth, when compared with the reduction of invalid data, the latter
covers larger proportion. Besides, this advantage is more obvious under the condition
with numerous participants and insufficient multicast group resources. As a result,
within the allowable range of system network bandwidth, the dynamic data
distribution can well balance the network bandwidth and the processing burden of
members, and enhance the stability and security of simulation system based on HLA.

8 Conclusion and Future Work

Association rule-based dynamic data distribution can well handle the problem of
receiving large amount of invalid data in simulation system based on High Level
Architecture. This method can balance the relationship of network resources
consumption and the efficiency of system real time data exchange.

The PS-Tree can well manifest the data exchange of the whole simulation system,
this article only researches on how to mine association rules via PS-Tree in order to
implement the optimization of data distribution. Besides, we can also mine the
complicated association rules between all kinds of objects, especially in complex
military simulation; by analyzing the relationship of data stream between simulation
members via PS-Tree, we can provide effective data support for the decision-making
of command and control, the evaluation of campaign, etc.

References

[1] Jiawei Han, and Micheline Kambr. Data Mining-Concepts and Tech- niques[M]. Beijing:
Higher Education Press, 2001. 225-245.

[2] Department of Defense High Level Architecture Interface Specification, Version 1.3.
DMSO [S]. April 1998, available at http://hla.dmso.mil.

[3] High Level Architecture Run-Time Infrastructure Programmer's Guide. DMSO [S]. 1998,
available at http://hla.dmso.mil.

[4] Morse, K.L., and J.S. Steinman. Data Distribution Management in the HLA: Multi-
dimensional Regions and Physically Correct Filtering [C]. In Proc. the 1997 Spring
Simulation Interoperability Workshop (Orlando, FL, March). Spring 1998. 343-352.

[5] Rak, S.J., and D.J. Van Hook. Evaluation of Grid-Based Relevance Filtering for Multicast
Group Assignment [C]. In Proc. 14th Workshop on Standards for the interoperability of
Distributed Simulations (Orlando, FL, September), March 1996. 739-747.

[6] Katherine L. Morse, Lubomir Bic, and Kevin Tsai. Multicast grouping for dynamic data
distribution management [C]. in Proc. 31st Society for Computer Simulation Conference
(SCSC '99). 1999.

[7] Xu Chunlei, Zeng Liang, and Li Sikun. An Efficient Multi-level Grids Based Relevance
Filtering Method. In Proc. Journal of National University of Defense Technology, Vol. 24
No. 4, Jan 2002.

[8] Zhang Yachong, Sun Guoji, and Yan Hairong. New Algorithm of Data Distribution
Management for Distributed Interactive Simulation. In Proc. Journal of System
Simulation, Vol. 7 No. 1, Jan 2005.

A Framework for Query Reformulation Between
Knowledge Base Peers

Biao Qin, Shan Wang, and Xiaoyong Du

School of Information, Renmin University of China, Beijing 100872, P. R. China
{qinbiao, swang, duyong}@ruc.edu.cn

Abstract. The problem of sharing data in peer-to-peer environment
has received considerable attention in recent years. However, knowledge
sharing in peer architectures has received very little attention. This pa-
per proposes a framework for query reformulation in peer architectures.
We first consider a mapping language based on a particular description
logic that includes class connectors. Then a set of rules are proposed for
building graphs. Because the axioms in a knowledge base have differ-
ent properties, our graph generation algorithm classifies the generated
graphs into four sets (Ugraph, Bgraph, Cgraph and Dgraph). Further-
more, based on the properties of the unification nodes, our algorithms can
reformulate each kind of atom in a special way. Finally we do extensive
simulation experiments and simulation results show that the proposed
method has better performance than those of Mork’s [8].

1 Introduction

The problem of sharing data in peer-to-peer environment has received consid-
erable attention in recent years. Two basic problems in the peer-based integra-
tion system are: how to discover, express, and compose the mappings between
peers [1, 2, 3], and how to exploit the mappings in order to answer queries posed
to one peer [4, 5]. In [6], Tatarinov et al. develop techniques for pruning paths in
the reformulation process and for minimizing the reformulated queries as they
are created.

However, knowledge sharing in peer architectures has received very little at-
tention. In [7], Calvanese considers the problem of ontology-based query re-
formulation between knowledge base peers. Based on the peer architecture, he
proposes an algorithm, called computeWAT, to answer queries posed to the local
peer by relying only on the two query answering services available at the peers.
In [8], Mork adopts a description logic formalism to describe the transforma-
tions between peers for knowledge sharing. He establishes a set of rules to build
a hierarchy H . Based on H , the axiomatic and full reformulation algorithms are
proposed. However, if a predicate can be unified with more than one node in H ,
neither axiomatic nor full reformulation algorithms can deal with it.

Based on the works in [7, 8], we propose a framework for query reformulation
between knowledge base peers. We consider a mapping language based on a

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 544–556, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Framework for Query Reformulation Between Knowledge Base Peers 545

particular description logic that includes class connectors. Then we establish a
set of rules to build graphs, which are classified into four sets. Based on them,
our algorithms can handle the situation that a predicate is unified with more
than one node in the graphs. The main contributions of this paper are as follows.

– This paper establishes a set of rules to build graphs. Based on the rules, this
paper proposes a graph generation algorithm, in which the subgraphs are
classified into four sets according to different properties of the axioms.

– Based on the graph, this paper proposes the basic and extending reformula-
tion algorithms to reformulate conjunctive queries between knowledge base
peers. From our algorithms, a predicate can be unified with more than one
node in the graphs.

The paper is organized as follows. Section 2 presents the description logical
formalism of knowledge base peers. Section 3 describes our query reformulation
algorithms. We do extensive simulation and present the representative experi-
mental results in section 4. Section 5 discusses related work. Section 6 concludes.

2 The Description Logic Between Knowledge Base Peers

Each knowledge-based peer contains a knowledge base K, which comprises two
components: a TBox and an ABox [9]. The peer exports a suitable schema S of
K to the agents willing to use the peer, here called clients. Clients can ask to the
peer only queries that are accepted by the peer. The peer answers such queries by
exploiting inference from its knowledge base K. Apart from using its knowledge
base K, each peer can be connected with other knowledge-based peers which
can answer its queries accepted by them. Suitable mappings between the peers
give the means to interpret the answers to queries posed to the remote peer. A
knowledge-based peer system is formed by many peers sharing the domain of
interpretation and the set of standard names.

Definition 1. A knowledge base peer is a tuple of the form KP =< K, S, M >
where K is a knowledge base written in description logic (we do not consider
functions in this paper); S is the schema which is the exported fragment of K,
further S =< C, P, AT , CT > where C is a set of classes, P is a set of properties,
AT is a set of logical axioms, CT is a set of class connectors and the set C ∪ P
is called S’s terminology; M is a set of mapping assertions between peers.

Subclass axiom is used to explicitly construct class hierarchy. Components
constraints, which include the first component (FCom) and the second compo-
nent (SCom) axioms, are used in restrict ways in which the class is the first or
second component of property. So component axiom includes FCom and SCom
axioms. The only number restriction we consider is minimum cardinality (or
mandatory participation), which asserts that every instance of a given class
has a value for the indicated property. The participation includes the first par-
ticipation component which is denoted by FPart and the second participation
component which is denoted by SPart. So participation axiom includes FPart

546 B. Qin, S. Wang, and X. Du

Table 1. Axioms place the following restrictions on interpretations

Axiom Syntax Semantic Restriction
Subclass C1 ⊆ C2 I(C1) ⊆ I(C2)
FCom FCom(P) = C {x ∈ R|∃y. < x, y >∈ I(P)} ⊆ I(C)
SCom SCom(P) = C {y ∈ R|∃x. < x, y >∈ I(P)} ⊆ I(C)
FPart MinCardF (C, P) = 1 I(C) ⊆ {x ∈ R|∃y. < x, y >∈ I(P)}
SPart MinCardS(C,P) = 1 I(C) ⊆ {y ∈ R|∃x. < x, y >∈ I(P)}
Disjoint Disjoint(B, C) I(B) ∩ I(C) = ∅

Table 2. Connectors define some classes in terms of other classes

Connector Syntax Semantic Restriction
Union C = C1 ∪ ... ∪ Cn I(C) = I(C1) ∪ ... ∪ I(Cn)
Intersection C = C1 ∩ ... ∩ Cn I(C) = I(C1) ∩ ... ∩ I(Cn)
Complement C = ¬B I(C) = R\I(B)

and SPart axioms. And we support disjoint axioms, which are used to indicate
that two classes have no resources in common. We describe the restrictions these
axioms place on an interpretation in table 1. In addition to atomic classes, we
can define complex classes using class connectors based on set operations. These
connectors place additional restrictions on which interpretations are valid as
described in table 2.

Definition 2. If A(x) = B1(x) ∧ ... ∧ Bn(x), we call predicate A a conjunc-
tive predicate. If A(x) = B1(x) ∨ ... ∨ Bn(x), we call predicate A a disjunctive
predicate.

We coordinate the schemata using mappings that provide additional axioms
for logical mediation. In the spirit of Bernstein [10], a mapping is a schema
extended to include a set of equivalences that relate the terminologies in S and
T to the terminologies in M .

Definition 3. A mapping M : S ⇔ T that relates S and T is a schema (<
C, P, AT , CT >) augmented with two functions EP : (S.P ∪ T .P) → M.P and
EC : (S.C ∪ T .C) → M.C. These functions further restrict the interpretation of
M : ∀ < Q, R >∈ EP : I(Q) = I(R) and ∀ < A, B >∈ EC : I(A) = I(B).

Furthermore, Mork [8] gives the definition of valid and minimal rewritings as
follows.

Definition 4. Given M : S ⇔ T , a query QT (posed against T) is a valid
rewriting of QS (posed against S) if and only if the following two conditions
hold:

1) I(QT) ⊆ I(QS) for all valid interpretations of S, T , and M .
2) The predicates appearing in the body of QT are all equivalent to some

predicate appearing in T ’s terminology.

A Framework for Query Reformulation Between Knowledge Base Peers 547

Definition 5. A minimal rewriting QT is a valid rewriting of QS such that
whenever any predicate in the body QT is removed, the result is not a valid
rewriting of QS .

3 Reformulation Algorithms Between Peers

3.1 Graph Generation Algorithm

For any two peers S and T , there is a mapping M related to them. Before
reformulating any queries between them, our graph generation algorithm (GGA)
builds a graph according to the axioms in M , S and T . We call the graph building
by the GGA algorithm the GGA graph, in which each node represents an atom.
And each atom consists of a predicate (appearing in the mapping’s terminology)
and an ordered list of arguments. These arguments can include variables (such
as x), wildcards (indicated using), and constants (drawn from the universal
resource namespace). We build the GGA graph using the following rules.

Rule 1. If I(A1) ⊆ I(A) and A is an unary predicate, we have 1) A(x) is the
parent node of A1(x) if A1 is an unary predicate; 2) A(x) is the parent node
of A1(x,) or A1(, x) if A1 is a binary predicate. If A is a binary predicate, we
have 1) A(x,) or A(, x) is the parent node of A1(x) if A1 is an unary predicate;
2) A(x,) or A(, x) is the parent node of A1(x,) or A1(, x) if A1 is a binary
predicate.

From rule 1, the axioms in table 1 and table 2 can form the following graphs:

1) For each axiom B ⊆ C, make C(x) a parent node of B(x);
2) For each axiom FCom(P) = C, make C(x) a parent node of P (x,);
3) For each axiom SCom(P) = C, make C(x) a parent node of P (, x);
4) For each axiom MinCardF (C, P), make P (x,) a parent node of C(x);
5) For each axiom MinCardS(C, P), make P (, x) a parent node of C(x);
6) If C = C1 ∩C2 ∩ ...∩Cn and for any two predicates Ci and Cj , which have

Disjoint(Ci, Cj), make each Ci(x) a parent node of C(x);
7) If C = C1 ∪C2 ∪ ...∪Cn and for any two predicates Ci and Cj , which have

Disjoint(Ci, Cj), make C(x) a parent node of each Ci(x).
Because the Subclass, FCom and SCom axioms have association, they form a

set. And we call them SFS axioms. When we build the graph, we sort the SFS
axioms in a topological order. Then those axioms generate the Ugraph, because
their parent nodes are unary predicates. The rule for topologically sorting the
SFS axioms is as follows.

Rule 2. If a predicate A is in the front of a predicate B, one of the following
two cases happens: 1) If they have association, the leaf node of predicate A is
the parent node of predicate B; 2) They have no association.

The disjunctive axioms in a knowledge base may have association. When we
build the graph, we sort them in a topological order. Then those axioms generate
a Dgraph, which come from disjunctive axioms. The rule for topologically sorting
disjunctive axioms is as follows.

548 B. Qin, S. Wang, and X. Du

Rule 3. If a disjunctive predicate A is in the front of a disjunctive predicate B,
one of the following two cases happens: 1) If they have association, one of leaf
node of disjunctive predicate A is the parent node of disjunctive predicate B; 2)
They have no association.

Algorithm 1. GraphGenerationAlg(Axioms As, Graph G, Class C, Prop-
erty P)
sorts the SFS axioms of As in a topological order;
generates the Ugraph of G;
if (a class C is not unified with any node in the Ugraph) then

puts an independent node in the Ugraph of G;
end
for (each Spart or FPart axiom A of As) do

puts a subgraph Gs into the Bgraph of G;
end
if (a property P is not unified with any node in the Bgraph) then

puts an independent node in the Bgraph of G;
end
for (each conjunctive axiom A of As) do

puts a subgraph Gs into the Cgraph of G;
end
sorts the disjunctive axioms of As in a topological order;
generates the Dgraph of G;
return G;

For each FPart or SPart axiom, the GGA algorithm generates an independent
subgraph in Bgraph, whose parent node is binary predicate. For each conjunctive
axiom, the GGA algorithm generates an independent subgraph in Cgraph, which
comes from conjunctive predicate. For each class C ∈ M.C, if it can not be
unified with any node in the Ugraph, an independent node C(x) is added into
the Ugraph. For each property P ∈ M.P , if it can not be unified with any node
in the Bgraph, an independent node P (x, y) is added into the Bgraph. Our graph
generation algorithm is as shown in algorithm 1

3.2 Basic Reformulation Algorithm

From the GGA algorithm, we know C(x) is the parent node of P (x,) and P (, x)
in FCom and SCom axioms respectively. So the binary predicates only appear

Algorithm 2. BasicQueryReformulation(Query Q, Graph G, Schema T)
Result = {c};
for (each A in Q) do

Rewritings = BasicAtomReformulation(A, G, T);
Result = ConjunctionAlgorithm(Rewritings, Result);

end
return Result;

A Framework for Query Reformulation Between Knowledge Base Peers 549

Algorithm 3. BasicAtomReformulation(Atom A, Graph G, Schema T)
Result = ∅;
if (A is an unary predicate) then G = (Ugraph) G;
else G = (Bgraph) G;
(N,f) = G–>unify(A);
for (each n in G–>sub(HN)) do

if (T–>containsPredicate(n)) then Result += f(n);
end
return Result;

in the leaf nodes of the Ugraph. And we know P (x,) or P (, x) is a parent of
C(x) in the SPart or FPart axiom, the unary predicates only appear in the leaf
nodes of the Bgraph. Because the atom of a leaf node can not be reformulated
by the atoms of other nodes, the binary predicate need not unify with any node
in the Ugraph. For the same reason, the unary predicate need not unify with
any node in the Bgraph.

Given a target schema T and a query Q, we consider each atom of Q in turn.
For each atom, we find the corresponding nodes in the graph based on unification.
An atom A unifies with a node N if they refer to the same predicate, and there
exists a function f from the constants and variables in A′s argument list to the
variables in N ′s argument list. We define HN to be the subgraph in the Ugraph
rooted at N ; HN contains N and all of N ′s descendants. Let n be a node in
HN . If n′s predicate is an element of T ′s terminology, then f(n) is a rewriting
of A: replace each variable in n′s argument list with the corresponding constant
or variable from A.

At this point, we have a collection of partial rewritings, one for each atom.
The final result is the cross-product of these partial rewritings, which is the
function of ConjunctionAlgorithm(). The basic reformulation algorithm (BRA)
is summarized in algorithm 2. The basic rule in the BRA algorithm is as follows.

Rule 4. If a predicate A is conjunctive with a constant c, the result is the
predicate. That is, A ∧ c = A.

Example 3.1. Consider the schemata in figure 1. Schema S contains three
classes and two properties. Moreover, S asserts that the first component of S D
is S B. Schema T contains one class and one property (and no axioms).

Let M be a mapping that asserts that S D is equivalent to T D (i.e., they are
both equivalent to M D) as proposed in [10]. This mapping also asserts that the
first participation of M E, with respect to M F is 1. So TBox contains axioms
FCom(S D) = S B and MinCardF (M F, M E) = 1. Thus the GGA algorithm
builds the graph as shown in figure 2 and figure 3.

Now, consider the query QS(x) ← S B(x), S E(x,). In figure 2, the unifi-
cation node of atom S B(x) is M B(x), whose descendant node is M D(, x)
because of the FCom axiom in TBox. In figure 3, the unification node of atom
S E(x,) is M E(x,), whose descendant node is M F (x) because of the FPart
axiom in TBox. From the BRA algorithm, a valid rewriting for QS is QT (x) ←
T D(, x), T F (x).

550 B. Qin, S. Wang, and X. Du

Schema S

T_D

T_FM_F

S_E

S_D

S_C

S_B

S_A

Schema TMapping M

M_E

M_D

M_C

M_B

M_A

Fig. 1. An example mappings between peers

M_B(x)

M_D(_,x)

Fig. 2. The Ugraph of FCom axiom

M_F(x)

M_E(x,_)

Fig. 3. The Bgraph of FPart axiom

3.3 Extending Reformulation Algorithm

From the GGA algorithm, we know the conjunctive predicate only appears in the
leaf node of the Cgraph. And in the subgraphs of the Dgraph, each leaf node is
unified with a basic predicate. The extending reformulation algorithm (ERA) is
shown in algorithm 4. Given a target schema T and a query Q, we consider each
atom of Q in turn. For each conjunctive predicate, the ERA algorithm unifies it
with the leaf node of each subgraph in the Cgraph. If an atom A(x) can unify
a node N , the reformulation of A(x) is the cross-product of all elements of N ’s
parent nodes. For each disjunctive predicate, the ERA algorithm unifies it with
the non-leaf nodes of each subgraph in the Dgraph. If an atom B(x) can unify
a node N , each descendent node is a valid reformulation of the atom B(x). For
each basic predicate, the ERA algorithm unifies it with the leaf nodes of each
subgraph in the Dgraph. In each subgraph, at most a node can be unified with
it. If it can be unified with more than one node, its reformulation results are the
cross-product of the predicates in different subgraphs.

Example 3.2. Consider the schemata in figure 4. Schema S contains one con-
cept. Schema T contains two concepts. The TBox includes three axioms:
M AC = M A∪M C, M CE = M C∪M E and Disjoint(M A, M E). Based
on the GGA algorithm, we build the Dgraph as shown in figure 5 and figure 6.

Now, consider the query QS(x) ← S C(x), neither T B nor T D can be
used to answer the original query. However, from ERA algorithm, atom S C(x)
can unify with two nodes in figure 5 and figure 6. In figure 5 the unification
node of atom S C(x) is M C(x), whose ascendent node is M AC(x). In fig-

A Framework for Query Reformulation Between Knowledge Base Peers 551

Algorithm 4. ExtendingQueryReformulation(Query Q, Graph G, Schema
T)
Result = c;
for (each A in Q) do

Rewritings = ExtendingAtomReformulation(A, G, T);
Result = ConjunctionAlgorithm(Rewritings, Result);

end
return Result;

ure 6 the unification node of atom S C(x) is M C(x), whose ascendent node is
M CE(x). Thus, a valid rewriting for QS is QT (x) ← T B(x), T D(x) by the
ERA algorithm.

3.4 Discussion on the Proposed Algorithm

In this paper, we propose a graph generation algorithm. Based on it, we pro-
poses basic and extending reformulation algorithms, which rewrite each atom of
QS independently. For each atom, the two algorithms search the corresponding
subgraphs to find the unification node.

Lemma. The GGA graph generated by the proposed algorithm is acycle.

Schema S

T_DM_AC

S_C

Schema TMapping M

M_CE

M_C

M_A

M_E

M_C

T_B

Fig. 4. An example mappings of disjunctive axioms

Proof. From the GGA algorithm, four kinds of subgraphs are generated. They
are the Ugraph, Bgraph, Dgraph and Cgraph. Because each subgraph of the
Bgraph and Cgraph is built by an axiom, there is no cycle in them.

Because binary predicates only appear in the leaf nodes, FCom and SCom
axioms can not cause any cycle in the Ugraph. We assume that Subclass axioms
cause a cycle (A −→ B and B −→ A) in the Ugraph. Because of A −→ B, we
have B ⊆ A from the rules. Because of B −→ A, we have A ⊆ B. However,
because A ⊆ B and B ⊆ A, A is the same class as B. So the two nodes in the
graph merge. Thus there is no cycle in the Ugraph.

We assume that disjunctive axioms cause a cycle (A −→ B and B −→ A) in
the Dgraph. Because of A −→ B, we have A = B ∪ B1... ∪ Bn from the rules.

552 B. Qin, S. Wang, and X. Du

Algorithm 5. ExtendingAtomReformulation(Atom A, Graph G, Schema
T)
Result = BasicAtomReformation(A, G, T);
if (A is a binary predicate) then return Result;
if (A is a conjunctive predicate) then

G = (Cgraph) G;
(N,f) = G–>unify(A);
Result += cross-product of all elements in G–>parent(N);

end
if (A is a disjunctive predicate) then

G = (Dgraph) G;
(N,f) = G–>unify(A);
for (each n in G–>sub(HN)) do

if (T–>containsPredicate(n)) then Result += f(n);
end

end
if (A is a basic predicate and unified with more than one nodes in Dgraph) then

G = (Dgraph) G;
Rewritings2 = {c};
for (each subgraph Gd of G) do

(N,f) = Gd–>unify(A);
if (T–>containsPredicate(Gd–>parent(N))) then

Rewritings1 = f(Gd–>parent(N));
Rewritings2 = (Rewritings1 and Rewritings2);

end
end

end
Result += Rewritings2;
return Result;

Then we have B ⊂ A. Because of B −→ A, we have B = A ∪ A1... ∪ An. Then
we get A ⊂ B. However, B ⊂ A and A ⊂ B is impossible. So there is no cycle
in the Dgraph. Thus the theorem follows.

Theorem 1. Let S and T be schemata and let M : S ⇔ T be a mapping . Let
QS be a conjunctive query expressed against S. The extending reformulation
algorithm terminates.

Proof. First, there are finite axioms in QS . Second, each axiom in S has map-
pings with finite axioms in T . Finally, there are no cycle in the GGA graph. So
the extending reformulation algorithm terminates. Thus, the theorem follows.

Theorem 2. Let S and T be schemata and let M : S ⇔ T be a mapping. Let QS

be a conjunctive query expressed against S. Let QT be a minimal rewriting of
QS expressed against T . After applying the extending reformulation algorithm
to QS , the output of the extending reformulation algorithm will contain QT .

Proof. Assume that QT is a minimal rewriting of QS not generated by the
extending reformulation algorithm. Because QS is a conjunctive query, for each

A Framework for Query Reformulation Between Knowledge Base Peers 553

atom AS ∈ QS , there exists some qT ⊆ QT which is satisfied with qT ⊆ AS .
And each atom in QT must be unified with a node in the graph. Otherwise QT

would not be a valid rewriting. We must now show that qT is generated by the
ERA algorithm. There are the following three cases:

M_AC(x)

M_C(x)M_A(x)

Fig. 5. The Dgraph of M AC = M A ∪
M C

M_CE(x)

M_E(x)M_C(x)

Fig. 6. The Dgraph of M CE = M C ∪
M E

First, if qT is unified with an independent node in the graph, it is identified
by the basic reformulation algorithm.

Second, if qT is unified with a node below AS in the graph, there are the
following two cases: 1) If the graph is built by the axioms in the table 1, qT

is identified by the basic reformulation algorithm. 2) If the graph is built by
disjunctive axioms, qT is identified by the extending reformulation algorithm.
In those cases, qT must only contain a single atom, or the minimal condition is
violated.

Finally, if qT is the conjunctive of some predicates, there are the following two
cases: 1) If AS is a conjunctive predicate, qT is the cross-product of all elements
in G− > parent(AS). 2) If AS is a basic predicate and it is unified with more
than one node Bi in the Dgraph, qT is the cross-product of the predicates in
G− > parent(Bi) (i = 1, ..., n). So in those cases qT is identified by the extending
reformulation algorithm.

So for any qT ⊆ AS , the extending reformulation algorithm can generate qT .
The assumption is wrong. Thus the theorem follows.

In [8], Mork gives a set of rules to build a hierarchy H . Based on it, he proposes
the axiomatic and full reformulation algorithms to reformulate ontology-based
conjunctive queries. And he gives the similar theorem as theorem 2. However,
he only proves the first two cases in our theorem 2.

4 Simulation

Our knowledge base architecture is made up of two peers. They are related to
university ontology. One is based on [11], the other is ours. Based on the peer ar-
chitecture, we do extensive simulation experiments comparing the reformulation
efficiency of the proposed algorithms with Mork’s. The simulation system was
tested on a Windows XP Pentium 4 PC running at 2.8 GHz with 1G of memory.
During the experiments, we classify our BRA algorithm and Mork’s axiomatic
reformulation algorithm into the same set, which is called basic set and denoted

554 B. Qin, S. Wang, and X. Du

by BSet. We classify our ERA algorithm and Mork’s full reformulation algorithm
into the same set, which is called extending set and denoted by ESet.

Fig. 7. The reformulation efficiency of our algorithms vs. Mork’s

The simulation results are shown in Figure 7, from which we know the pro-
posed algorithms have better performance than those of Mork’s for two reasons.
First, for any atom A(x) in a conjunctive query, our BRA algorithm does as
follows. The binary predicate is only unified with the nodes in the Bgraph, and
the unary predicate is only unified with the nodes in the Ugraph. However, for
any atom A(x), the axiomatic algorithm searches the whole hierarchy to find
the unification node. So our BRA algorithm has better performance than that
of axiomatic reformulation algorithm. Second, the algorithms in BSet are based
on the algorithms in ESet. For each conjunctive predicate, the ERA algorithm
unifies it with the leaf nodes of each subgraph in the Cgraph. For each disjunctive
predicate, the ERA algorithm unifies it with the non-leaf nodes of each subgraph
in the Dgraph. For each basic predicate, the ERA algorithm unifies it with the
leaf nodes of each subgraph in the Dgraph. However, the full reformulation algo-
rithm also searches the whole hierarchy to find the unification node. So our ERA
algorithm has better performance than that of full reformulation algorithm.

5 Related Work

In [12], Calvanese addresses the fundamental problem of how to specify the map-
ping between the global ontology and the local ontologies. He argues that for
capturing such mapping in an appropriate way, the notion of query is a crucial
one, since it is very likely that a concept in one ontology corresponds to a view
over the other ontologies. As a result query processing in ontology integration
systems is strongly related to view-based query answering in data integration.
In [13], information integration over ontology-based information sources is ob-
tained through a mediator comprising an ontology and a set of articulations
to the information sources. Information queries are addressed to the mediator
whose task is to analyze each query into sub-queries, translate them into queries
to appropriate sources, then merge the results to answer the original query.

A Framework for Query Reformulation Between Knowledge Base Peers 555

Based on the peer-based knowledge system, Calvanese [7] investigates how to
solve the so-called ”What-To-Ask” problem. And he shows that a solution to
this problem exists in the case of peers based on a basic ontology language and
provide an algorithm to compute it. In [8], Mork considers a mapping language
based on a particular description logic that includes class constructors. Then he
proposes a rule system to build hierarchy H . Based on it, he proposes axiomatic
and full reformulation algorithms. However, the two algorithms search the whole
hierarchy H to find the unification node. Furthermore, his algorithms can not
deal with that a predicate can be unified with more than one node in H .

In this paper, we propose a graph generation algorithm, which classifies the
graph into four sets. For the conjunctive queries, we propose the basic and ex-
tending reformulation algorithms. For each atom, our algorithms only search the
corresponding subgraphs to find the unification nodes. And our ERA algorithm
can solve the problem that Mork’s algorithms meet.

6 Conclusions and Future Work

This paper researches on query reformulation between knowledge base peers. In
this paper, we first consider a mapping language based on a particular description
logic that includes class connectors. Then we propose a set of rules for building
graphs. Because the axioms in a knowledge base have different properties, our
graph generation algorithm classifies the generated graphs into four sets. For
each kind of atom, our algorithms find the corresponding nodes in the subgraphs
based on unification and reformulate it in a special way.

In the future, we will extend our research work to disjunctive queries. Also, we
will study query answering in the case where the knowledge bases at the peers
are mutually inconsistent, since this is of relevance in real domains.

Acknowledgements. This work is supported by National Natural Science
Foundation of China under Grant No. 60503038, 60473069, 60496325 and
60573092.

References

1. J. Madhavan, and A. Y. Halevy. Composing mappings among data sources. VLDB
2003, pp: 572-583.

2. P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis., J. Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data management for peer-to-peer computing: A vision. WebDb
2002.

3. R. Fagin, P. G. Kolaitis, L. Popa, and W. -C. Tan. Composing schema mappings:
Second-order dependencies to the rescue. PODS 2004, pp: 83-94.

4. A. Y. Halevy. Answering queries using views: A survey. Very Large Database Jour-
nal. 2001, 10(4): 270-294.

5. M, Lenzerini. Data integration: A theoretical perspective. PODS 2002, pp: 233-246.
6. I. Tatarinov, A. Halevy. Efficient Query Reformulation in Peer Data Management

Systems. SIGMOD 2004.

556 B. Qin, S. Wang, and X. Du

7. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. What to
Ask to a Peer: Ontology-based Query Reformulation. Proc. of the 9th Int. Conf.
on Principles of Knowledge Representation and Reasoning, 2004.

8. P. Mork. Peer Architectures for Knowledge Sharing. PhD thesis, University of
Washington, 2005.

9. F. Baader, D. Calvanese, D. Mcguinness, D. Nardi, and P. F. Patel-Schneider. The
Description Logic Handbook - Theory, implementation, and applications. Cam-
bridge University Press 2003.

10. P. A. Bernstein. Applying Model Management to Classical Meta-Data Problems.
CIDR 2003, pp: 209-220.

11. http://www.cs.umd.edu/projects/plus/SHOE/onts/univ1.0.html.
12. D. Calvanese, G. De Giacomo, M. Lenzerini. A framework for ontology integration.

In I. Cruz, S. Decker, J. Euzenat and D. McGuinness, The Emerging Semantic Web
- Selected Papers from the First Semantic Web Working Symposium. IOS Press.
2002, pp: 201-214.

13. Y. Tzitizkas, P. Constantopouslos, and N. Spyratos. Mediators over ontology-based
information sources. WISE 2001, pp: 31-40.

An Efficient Indexing Technique for Computing
High Dimensional Data Cubes�

Fangling Leng, Yubin Bao, Ge Yu, Daling Wang, and Yuntao Liu

School of Information Science & Engineering,
Northeastern University, Shenyang 110004, P.R.China

{baoyb, yuge}@mail.neu.edu.cn

Abstract. The computation of a data cube is one of the most essential
but challenging issues in data warehousing and OLAP. Partition based
algorithm is one of the efficient methods to compute data cubes on high
dimensionality, low cardinality, and moderate size datasets, which exist
in real applications like bioinformatics, statistics, and text processing.
To deal with such high dimensional data cubes, we propose an efficient
indexing technique consisting of a compressed bitmap index and two al-
gorithms for cube constructing and querying. Experimental results show
that our method saves at least 25% on storage space and about 30% on
computation time compared with the Frag-Cubing algorithm.

1 Introduction

Data warehousing and on-line analytical processing(OLAP) are essential ele-
ments of decision support, which has increasingly become a focus of the data-
base industry [1]. Computation of a data cube is a very important problem in the
area of data warehousing and OLAP. To fulfill the requirement of fast interactive
multidimensional data analysis, database systems have to pre-compute aggrega-
tion views on some subsets of dimensions and their corresponding hierarchies.
For this task, many efficient cube computation algorithms have been proposed,
such as ROLAP-based multi-dimensional aggregate computation [2], multi-way
array aggregation [3], Top-k H-Cubing [4], and Star-Cubing [5]. Since computing
the whole data cube not only requires a substantial amount of time, but also
generates a huge number of cube cells to be stored. Many efficient computation
methods have been put forward, such as partial materialization of a data cube
[6], Condensed Cube [7], Dwarf [8], Quotient Cube [9], and Object Deputy Model
[10]. However, there exist datasets in real applications like bioinformatics, sta-
tistics, and text processing that are characterized by high dimensionality, e.g.,
over 100 dimensions, and moderate size, e.g., around 106 tuples that can not be
well processed by these algorithms. Since a data cube grows exponentially with
the number of dimensions, it is too costly in both computation time and storage
space to materialize a full high dimensional data cube. For example, a data cube
� Supported by the National Natural Science Foundation of China under Grant

No.60473073, 60503036, 60573090.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 557–568, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

558 F. Leng et al.

of 100 dimensions each with 10 distinct values may contain as many as 11100

aggregate cells. Iceberg Cube [4] used a pruning method to avoid calculating
the aggregations below a certain threshold, which is an effective way to derive
nontrivial multidimensional aggregations, but the number of the cells in the com-
puting result is still large. For example, an Iceberg cube with 6 million tuples
and 60 dimensions will still produce about 260 cells when the threshold is set to
be 5. Quotient Cube [9] compresses the data cube through sharing the tuples,
but on the same condition the cube size is more than double of the Iceberg Cube
[11]. So, it is not suitable for high dimensional datasets. The space complexity
of Dwarf [8] was O(T 1+1/(logd C)) [12], where d is the number of dimensions, C
is the cardinality, and T is the number of tuples. In a high dimensional dataset
above-mentioned where d is large, C is small, logd C could become quite small
and the cube size still explodes. Frag-Cubing [11] proposed an algorithm based
on partitions, but its space cost and time cost are still large.

To solve high dimensional cube computation, we propose a new efficient
technique called compressed bitmap index cubing. The cube construction algo-
rithm based on compressed bitmap index vertically partitions a high dimensional
dataset into a set of disjoint low dimensional datasets called segments. For each
segment, the local data cube is fully computed, and the bitmap index of each
attribute value in the segment data cube is constructed. If the value of a bit in
a bitmap is equal to 1, it indicates the attribute value is appeared in the corre-
sponding tuple. Then we can re-construct the corresponding cuboid upon request
using bit-AND operations. Since the experiments show that there are many con-
tinuous 0-bit redundancy in the beginning and the end of the bitmap indices, we
can compressed the bitmap indices using two pointers called start valid pointer
and end valid pointer. Because of the fast speed of bit-AND operations and
the 0-bit redundancy in the beginning and the end of the bitmap indices, the
computation time of data cubes and the storage space spending on compressed
bitmap indices are highly reduced.

The method proposed in this paper has excellent performance on computing
data cubes with high dimension and low cardinality in both computation time
and storage space. The smaller the distinct value is, the better the performance
of the method is. In addition, experiments show that the computation time and
the storage space of our method are competitive with the Frag-Cubing algorithm
either with the dimensions varied from 10 to 80, or with the tuples ranged from
60 thousand to 160 thousand.

The remainder of the paper is organized as follows. Section 2 describes the
motivation. We discuss the structure of the compressed bitmap index and two
algorithms for cube constructing and querying in Section 3. Section 4 shows the
results of experiments and analysis. We gives the conclusion in Section 5.

2 Motivation

To fulfill the requirement of fast interactive multidimensional data analysis, view
materialization is very important, especially to the datasets in real applications
like bioinformatics, statistics, and text processing that are characterized by high

An Efficient Indexing Technique 559

dimensionality, low distinct attribute values, and moderate size. Since a data
cube grows exponentially with the number of dimensions, it is too costly in both
computation time and storage space to materialize a full high dimensional data
cube. We propose an efficient indexing technique, compressed bitmap index, to
deal with the computation of such high dimensional data cubes.

2.1 Limitations of Other Cube Computation Algorithms

Most of the traditional cube computation algorithms are focused on partial or
fully materializing a data cube. When a cube is partly materialized, if a query
can not be answered by the existing materialized views, the re-computation
on the whole dataset is necessary. And the speed is sometimes the bottleneck.
When a cube is to be fully materialized, the space cost and the time cost are
sometimes hardly tolerant. Practices in real applications show that although data
analysis tasks may involve a high dimensional space, most OLAP operations are
performed only on a small number of dimensions at a time. Most analyses will
drill down and pivot a small set of dimensions, and other dimensions are set with
a certain value or all values involved, respectively [11]. In [11] the segment cube
are fully materialized. The high dimensional dataset is vertically partitioned
into a set of disjoint low dimensional datasets. For each partition, the local
data cube is fully materialized. If the dimensions involved in a query are in the
same partition, the results can be retrieved from the materialized segment cube
directly. Otherwise the corresponding attributes in the separate materialized
segment cubes are dynamically combined. This might be done efficiently and
satisfy the response time of OLAP operations by a partition based method.

2.2 Limitations of Other Partition Based Algorithms

Researchers have proposed a method based on partitions to compute high di-
mensional data cubes before, e.g., Frag-Cubing algorithm [11]. But it also has
its shortcomings. Formally, suppose a database has T tuples, C cardinalities,
and D dimensions. In the algorithm Frag-Cubing each tuple ID is associated
with D attributes and thus will appear D times in the inverted index. Since
there are T tuple IDs in total, the entire inverted index will still need D × T
integers [11]. For example, for a cube with 60-dimensional base cuboids of T
tuples, the amount of space to store the fragment of size 3 is on the order of
T (60

3)(23 − 1) = 140T . Suppose there are 106 tuples in the database and each
tuple ID takes 4 bytes. The space needed to store the fragments of size 3 is
roughly estimated as 140 × 106 × 4 = 560MB.

In the above expression, 140 indicates the number of the cuboids, and the
106 × 4 is the byte number of the index of each cuboid occupied. If we can
reduce the space cost of each cuboid, the total space cost will be reduced. It is
well known that bitmap index is suitable for the data with low cardinality, and
the bit-AND operation runs faster than the intersecting operation. So we can
use bitmap index to compute high dimensional data cubes. Let’s see the bitmap
index using the same example above-mentioned. Each attribute value takes �T

8 �
bytes to indicate all the tuples, the space one cuboid needed is between C ×�T

8 �

560 F. Leng et al.

and Min(C3, T)×�T
8 � bytes. So the total space is between 140×C ×�T

8 � bytes
and (60

3)×(Min(3C, T) + Min(3C2, T) + Min(C3, T))×�T
8 � bytes. When T is

106, and C is 5, the space is between 87.5MB and 537.5MB. We can see that
even on the worst case, the space is smaller than [9].And on the best case the
space saving is very excellent. Let C is 10, the result will be between 175MB
and 3325MB. With the changing of C from 5 to 10, the space is increasing.
The space is very large on the worst case. Thereby if we make good use of
bitmap index such as compressing it reasonably, we will get good effects. So we
proposed an efficient indexing technique, compressed bitmap index, to compute
high dimensional data cubes.

The above observations are very considerable to us. The idea of vertically
partitioning the whole data cube into a set of disjoint low dimensional datasets
is very good, but the storage of the inverted list and the intersecting operation
take a very large amount of resource. If we can find a more effective technique, the
performance would be more efficient. By investigating deeply into the bitmap
index technique, we find that when we use bitmap index to indicate the ID-
lists of a certain attribute value, the continuous 0 bits appeared many times
in the beginning, in the end, and in the middle part of the bitmap index. The
bitmap index itself is suitable for the low cardinality datasets, and the bit-
AND operation is very fast, the rather that we can avoid the storage of the
0-bit redundancies in a bitmap index by recording the start and the end valid
positions of the nonzero bits.

3 Compressed Bitmap Index Based Method

Stemming from the above motivation, we propose a new method, called com-
pressed bitmap index, and two algorithms: one for constructing a data cube,
and the other one for processing queries. This new method will be able to han-
dle OLAP on datasets with extremely high dimensionality and low cardinality.
The general idea is to use a bitmap index compressed by two valid pointers on
the divided partitions. The base dataset is projected onto each segment, and the
data cube of each segment is fully materialized. With the pre-computed segment
cubes, we can dynamically assemble the attributes and answer the queries on-
line, which is done efficiently by bit-AND operations on the compressed bitmap
indices.

3.1 Compressed Bitmap Index

Many kinds of indices can be used in constructing data cubes, such as B-tree,
Hash table. But considering the high dimensional datasets with low cardinality in
each dimension, we use the bitmap index in order to storage the data effectively.
And it converts the standard comparing, joining and aggregating operations to
the bit arithmetic operations and reduces the runtime enormously. Thereby it
can improve the performance of the system [13].

To illustrate the algorithm, a tiny dataset (see Table 1) is used as a running ex-
ample. Let the cube measure be count(). Other measures will be discussed later.

An Efficient Indexing Technique 561

The following illustrates the construction and computation of the compressed
bitmap index. Firstly, suppose that we divide the 5 dimensions in Table 1 into

Table 1. An example data set

tid A B C D E
1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

2 independent segments, namely (A, B, C) and (D, E). In the real world appli-
cations the attributes in a segment may be determined by the semantics of the
data and the query patterns on the data.

Then, it should construct the corresponding bitmap indices (shown in Table
2). Each line in Table 2 records a value of an attribute and the bitmap index,
which tells which tuples contain the value. For example, the value a2 appears in
tuple 4 and tuple 5, and then the bitmap index for a2 contains two 1 bits in the
4th and 5th positions. We use the segment (A, B, C) as an example to illustrate

Table 2. The bitmap index of dimension A, B, C, D and E

Attribute tid Bitmap Index Size
a1 11100 3
a2 00011 2
b1 10011 3
b2 01100 2
c1 11111 5
d1 10111 4
d2 01000 1
e1 11000 2
e2 00110 2
e3 00001 1

the local materialization operation of the method. Use the bit-AND operation
in Table 3 on the tid bitmap index of dimension A and dimension B in Table
2, and we can get the Cuboid AB. Similarly we can get the Cuboid ABC using
the Cuboid AB and the tid bitmap index corresponding with c1 in Table 2.
Experiments show that the computation time complexity and the storage space
complexity are increased linearly with the number of the dimensions when the
number of the dimensions in each fragment is less than 4 and more than 2 [11].
Finally, the data cube of each segment is computed. Taking segment (A, B, C) as
an example, there are 7 cuboids, namely A, B, C, AB, AC, BC and ABC, to be
computed. We can compute the complete data cube by bit-ANDing the bitmap

562 F. Leng et al.

Table 3. The bitmap index structure of Cuboid AB

Cell bit-AND tid Bitmap Index Size
a1b1 11100&10011 10000 1
a1b2 11100&01100 01100 2
a2b1 00011&10011 00011 2
a2b2 00011&01100 00000 0

indices in table 2 in a bottom-up depths-first order in the cuboids lattice. For
example, to compute the cell {a1, b2, ∗}, we may bit-AND the bitmap indices of
a1 and b2 to get a new bitmap index of {2, 3}. Cuboid AB is shown in Table 3.

After computing Cuboid AB, we can similarly compute Cuboid ABC by bit-
ANDing all pair wise combinations between Table 3 and the row c1 in Table
2. Note that the entry (a2, b2) can be effectively discarded because it is all 0
bits. The same process can be applied to computing segment (D, E), which is
completely independent from computing (A, B, C). So, it can be computed in
parallel.

In this method, we use different approaches to compute different aggregations.
For the cube with only the tuple-counting measure, it is unnecessary to access the
original dataset for aggregation since the number of the 1 bits in a corresponding
index is equivalent to the number of tuples in a group. But for the solution to
average() or sum(), it is necessary to keep an ID measure array instead of the
original dataset. For example, for computing average(), we just need to keep
an array with three elements: (tid, count, sum). The measures of each aggregate
cell can be computed by only accessing this ID measure array.

a: 0x00 · · · 0x00︸ ︷︷ ︸
n

0xA5· · ·0xE78856724523

b: 0xE84445673211· · ·0xFF 0x00 · · · 0x00︸ ︷︷ ︸
n

abc: 0x00 · · · 0x00︸ ︷︷ ︸
n1

0xA5· · · 0xE7 0x00 · · · 0x00︸ ︷︷ ︸
n2

Fig. 1. The bitmap index of Cells

Analysis and experiments on the real data distribution show that the bitmap
index structure also has great redundancies. Cell a and Cell b (Cell: attribute
value, its bitmap index and the corresponding aggregation value) have large
amounts of continuous 0 bits in the beginning and the end (see Fig.1). The
cases occur frequently in many cells under the combination of multi-dimensional
datasets (see Table 3). So it is very necessary to reduce the redundancies.

The compressed bitmap index based algorithm of cube construction registers
the start position and the end position of non-zero using two pointers, called

An Efficient Indexing Technique 563

start valid pointer and end valid pointer, in order to compress the storage
space of the bitmap index (shown in Fig.2). In this way we only need to store
the two pointers and the bitmap index segment between them, but not the whole
bitmap index, thereby the 0-bit redundancies in the beginning and the end are
reduced, and the storage space is saved.

beginPos endPos
↓ ↓

abc : 0x00 · · · 0x00︸ ︷︷ ︸
n1

0xA5 · · · 0xE7 0x00 · · · 0x00︸ ︷︷ ︸
n2

Fig. 2. The compressed bitmap index of Cells

For example, there are two bitmap sequences Index1 and Index2, and the
valid pointer of Index1 are beginPos1 and endPos1, the valid pointer of Index2
are beginPos2 and endPos2. To bit-AND such two bitmap sequences only
needs to bit-AND the bits between max(beginPos1, beginPos2) and min
(endPos1, endPos2), but not bit-AND all bits of the sequences. Especially, if
the min(endPos1, endPos2) is not bigger than max(beginPos1, beginPos2), we
need do nothing but set all the bits to 0. We only need (endPos − beginPos
+1)/8 bytes to store the result instead of (the total number of the tuples/8)
bytes, so the memory consuming is reduced greatly.

3.2 Cube Construction Algorithm

Based on the above discussion, the algorithm for constructing a data cube using
compressed bitmap index can be summarized as follows.

Algorithm 1. Compressed Bitmap index based Algorithm for cube Construction
(CBAC).

Input: a fact table D with n dimensions (A1, · · · , An);
Output: 1) a set of segment partitions {P1, · · · , Pk} and the corresponding

cubes {S1, · · · , Sk}, where Pi indicates a set of dimensions and
P1 ∪ · · · ∪ Pk are all the n dimensions; and
2) if the measure is not count(), output the ID measure array;

1. partition the dimension set (A1,· · ·,An) into a set of k segments {P1,· · ·,Pk};
2. for each tuple t in D do {
3. insert each 〈tid, measure〉 into ID measure array ;
4. construct bitmap index 〈ai, BitmapIndex〉 for each element ai of each

dimension Ai; }
5. for each segment partition Pi do {
6. compute the local cube Si using bit-AND operation;
7. compute the corresponding measures;
8. save Si and its measure on the disk. }

564 F. Leng et al.

CBAC algorithm firstly vertically partitions the dataset(line 1), secondly scans
the original dataset(line 2) and extracts 〈tid, measure〉 into the ID measure
array if the measure is not count()(line 3), at the same time it constructs the
bitmap index of each attribute(line 4), thirdly constructs the data cube of each
segment(line 5) by the bit-AND operation(line 6), and then computes the ag-
gregations of each segment(line 7), lastly stores the compressed bitmap index on
the disk(line 8).

To the line 3, if the aggregation is count(), it is not necessary to construct the
ID measure array because the number of 1 bits in the bitmap index equals the
number of the tuples. And for other aggregations, e.g., average(), the aggrega-
tions should be computed using the ID measure array.

Because of the limitation of bitmap index itself [14], the algorithm’s perfor-
mance will be affected by the datasets with high cardinalities. With the cardinal-
ity increasing the number of 0 bits will increase, and the distribution of attribute
values in the tuples will become randomization, so the effect of the compressed
algorithm will be weaken.

3.3 Querying Algorithm

The general query for an n-dimensional dataset is in the form of 〈 a1, a2, · · ·, an :
M 〉. Each ai has 3 possible values: (a) an instantiated value, (b) aggregate *, (c)
inquire ?. The first step is to gather all the instantiated ai’s if there are any. We
examine the partitions to check which ai’s are in the same segments. Once that
is done, we retrieve the bitmap indices associated with the instantiations at the
highest possible aggregation level. For example, suppose aj and ak were in the
same segment, we would then retrieve the bitmap indices from the (aj , ak) cuboid
cells. The obtained bitmap indices are to be bit-ANDed to derive the instantiated
base table. If all the bits in the bitmap indices are 0s, query processing stops
and returns the empty result.

If there are no inquired dimensions, we simply fetch the corresponding mea-
sures from the ID measure array and finish the query. If there is at least one
inquired dimension, we continue as follows. For each inquired dimension, we re-
trieve all its possible values and their associated bitmap indices. If two or more
inquired dimensions are in the same segment, we retrieve all their pre-computed
combinations and the bitmap indices. Once these bitmap indices are retrieved,
they are to be bit-ANDed with the instantiated base table to form the local base
cuboid of the inquired and instantiated dimensions.

The above discussion leads our algorithm to processing all the possible queries.
Note that function merge index() is implemented by bit-ANDing the corre-
sponding tid bitmap indices of the BDi ’s . Function compute cube() takes the
merged instantiated indices and the inquired dimensions as input, derives the
relevant base cuboid, and uses the most efficient cubing algorithm to compute
the multi-dimensional cubes. The ID measure array will be referenced after the
cube is derived in this compute cube() function.

If the dimensions in a query are not in the same segment, we can bit-AND the
bitmap indices of the different segments on line, and can get the right answer

An Efficient Indexing Technique 565

in time. The computation time complexity and storage space complexity are
reduced to linear with the number of the dimensions as well as guaranteeing
the response time requirement. So it was suitable for the computation of the
above-mentioned high dimensional data cubes.

Algorithm 2. Compressed Bitmap index based Algorithm for Querying(CBAQ).
Input: 1) a set of segment partitions {P1, · · · , Pk} and the corresponding

cubes {S1, · · · , Sk}, where Pi indicates a set of dimensions, and
P1 ∪ · · · ∪ Pk are all the n dimensions; and
2) an ID measure array if the measure is not count(); and
3) a query with the form 〈a1, a2, · · · , an : M〉, where each ai is
either instantiated, aggregated, or inquired for the dimension Ai.
M is the measure of the query;

Output: The computed measure(s) if the query contains only instantiated
dimensions. Otherwise, the data cube whose dimensions are the in-
quired dimensions;

1. for each Pi {//instantiated dimensions
2. if Pi ∩ {a1, · · · , an}includes instantiation(s)
3. Di ← Pi ∩ {a1, · · · , an} with instantiation(s);
4. BDi ← cells in Di with associated tid bitmap index; //inquired dimen-

sions
5. if Pi ∩ {a1, · · · , an} includes inquire(s)
6. Qi ← Pi ∩ {a1, · · · , an} with inquire(s);
7. RQi ← cells in Qi with associated tid bitmap index; }
8. if there exists at least one not all 0 bits BDi

9. Bq ← merge index(BD1 ,· · · ,BDk
);

10. if there exists at least one not all 0 bits RQi

11. Cq ← compute cube(Bq,RQ1 ,· · ·, RQk
).

4 Experimental Evaluation

In this section we will give the performance analysis and comparison of the pro-
posed algorithm on datasets with different sizes, different dimension numbers and
different cardinalities. All the experiments are conducted on an Intel Pentium-4,
2.4GHz system with 512MB RAM. The operating system runs Windows 2000
professional. And the dataset is KDD-CUP-99 [15] with 200000 tuples. The ex-
periments in [2] are performed on datasets with 3 to 6 attributes, and obviously
it is not to deal with high dimensional datasets. [4] contains only aggregates
above certain thresholds, and the information it provides may not satisfy the
requirements. Others are similar with them except [11]. So we compare the al-
gorithms with the ones in [11]. To be in step with the Frag-Cubing algorithm
and satisfy with the requirement of low cardinality on each dimension, we use
3 as the dimension number of each segment used in the Frag-Cubing algorithm
in the following experiments. In the figures, we denote the cardinality as C,
Frag-Cubing as FC, and CBAC as CB.

566 F. Leng et al.

4.1 Computation Time and Storage Space Under Different
Dimension Numbers

Figure 3(a) describes the CBAC algorithm and the Frag-Cubing algorithm’s
computation time changed with the number of dimensions varying from 10 to 80
and the cardinalities are 8 and 15 respectively. It shows that algorithm CBAC
is notable on time saving by about 30%. The construction time increases linear
with the increasing of the number of the dimensions and the distinct value of each
dimension is not affected most to the time complexity. Figure 3(b) describes the
CBAC algorithm and the Frag-Cubing algorithm’s storage space changed with
the number of dimensions varying from 10 to 80 and the cardinalities are 8
and 15 respectively. In the two different cases, the compression ratio of CBAC
is very notable, especially when the distinct value is 8, and the compression
ratio achieved 80%. However, just as mentioned in Sect.3, it is affected by the
limitation of bitmap index itself, when the distinct value increased from 8 to 15,
the spatial compression ratio is decreased.

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80

T
i
m
e

(
s
)

Dimensions
(a)

FC-15C
CB-15C
FC-8C
CB-8C

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80

S
p
a
c
e

(
M
B
)

Dimensions
(b)

FC-15C
CB-15C
FC-8C
CB-8C

Fig. 3. Computation time(a) and storage space(b) of different dimensions

4.2 Computation Time and Storage Space Under Different Tuple
Numbers

Figure 4(a) and (b) respectively show the computation time and the storage
space cost of the CBAC algorithm and the Frag-Cubing algorithm with the
tuple number varying from 60 thousand to 160 thousand, where the cardinality
is 15 and the number of dimensions is 40. From the figures we can see the
savings of the computation time and the storage space of algorithm CBAC is
very obviously, and it is linear with the increasing of the tuple numbers. Thus,
our new algorithm is scalable.

In conclusion, the proposed algorithm CBAC is very suitable for computation
of data cubes on the data of bioinformatics, statistics, and text processing that
characterized by high dimensionality and low cardinality. And it has more no-
table compression ratio and faster computing speed than Frag-Cubing. That is
very significant for the computation of high dimensional data cubes.

An Efficient Indexing Technique 567

 20

 30

 40

 50

 60

 70

 80

 6 8 10 12 14 16

T
i
m
e

(
s
)

Tuples (104)
(a)

FC
CB

 20

 30

 40

 50

 60

 6 8 10 12 14 16

S
p
a
c
e

(
M
B
)

Tuples (104)
(b)

FC
CB

Fig. 4. Computation time(a) and storage space(b) on different tuple numbers

5 Conclusions

In this paper we propose an efficient indexing technique consisting of a bitmap in-
dex, and two algorithms for cube computation and querying for high dimensional
datasets. The compressed bitmap index structure has the following advantages:
(a) a very fast bit-AND operation based on the compressed bitmap index; (b)
greatly reduced operations of bit-ANDing and the memory consumption by the
introduced start valid pointer and end valid pointer; (c) effectively savings of
the disk space of datacubes. The experimental results show that comparing with
the Frag-Cubing algorithm computation time of the algorithm CBAC is saved by
30%, and the storage space is saved by more than 25%, and it is more applicable
than the Frag-Cubing algorithm for the datasets with high dimensional and low
cardinality.

When the number of the distinct value of each dimension is large, the per-
formance of the CBAC will become worse. We intend to solve this problem to
improve our compressing policy for the bitmap index. Not only in the begin-
ning and the end, but also in the middle and other positions there are many
continuous 0 bits. So we can compress the bitmap index further to improve the
performance. At the same time, the incremental update is important as the com-
putation and storage for an OLAP system, so another future work is to study
the issues of on-line incremental update based on compressed bitmap index.

References

1. S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Tech-
nology. In SIGMOD, September (1997) 26(1):65-74

2. S. Agarwal, R. Agrawal, P. M. Deshpande, et al. On the computation of multidi-
mensional aggregates. In VLDB, Bombay, India (1996) 506-521

3. Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for
simultaneous multidimensional aggregates. In SIGMOD, Tucson, Arizona (1997)
159-170

4. J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes with
complex measures. In SIGMOD, Santa Barbara, CA, USA (2001) 1-12

568 F. Leng et al.

5. D. Xin, J. Han, X. Li, and B. W. Wah. Starcubing: Computing iceberg cubes by
top-down and bottom-up integration. In VLDB, Berlin, Germany (2003) 476-487

6. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-
ciently. In SIGMOD (1996) 205-216

7. W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed cube: An effective approach
to reducing data cube size. In ICDE, Madison, Wisconsin (2002) 464-475

8. Y. Sismanis, N. Roussopoulos, A. Deligianannakis, and Y. Kotidis. Dwarf: Shrink-
ing the petacube.In SIGMOD (2002) 564-475

9. L. V. S. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to summarize the
semantics of a data cube. In VLDB, Hong Kong, China (2002) 778-789

10. Z. Peng, Q. Li, L. Feng, et al. Using Object Deputy Model to Prepare Data for
Data Warehousing. In TKDE, September (2005) 17(9):1274-1288

11. X. L. Li, J. W. Han, and H. Gonzalez. High-Dimensional OLAP:A Minimal Cubing
Approach. In VLDB, Toronto, Canada (2004) 528-539

12. Y. Sismanis and N. Roussopoulos. The dwarf data cube eliminates the high dimen-
sionality curse. TR-CS4552, University of Maryland (2003)

13. M. C. Wu and A. P. Buchmann. Encoded bitmap indexing for data warehouses. In
ICDE, Orlando, Florida, USA, (1998) 220-230

14. C. Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation. In SIGMOD,
Seattle, Washington, (1998) 355-366

15. KDD CUP 1999 Data http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
(1999)

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 569 – 580, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Scientific Workflow Framework Integrated with
Object Deputy Model for Data Provenance∗

Liwei Wang1, Zhiyong Peng1, Min Luo2, Wenhao Ji2, and Zeqian Huang1

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
davilisa@yahoo.com.cn, peng@whu.edu.cn

2 Computer School, Wuhan University, Wuhan 430072, China

Abstract. There is a critical need to automatically manage large volumes of sci-
entific data and applications in scientific workflows. Database technologies
seem to be well suited to handle highly complex data managements. However,
most of the workflow management systems (WFMSs) only utilize database
technologies to a limited extent. In this paper, we present a DB-integrated sci-
entific workflow framework which adopts the object deputy model to describe
the execution of a series of scientific tasks. This framework allows WFMS
management operations to be performed in a way analogous to traditional data
management operations. Most important of all, data provenance method of this
framework can provide much higher performance than other methods. Three
kinds of schemas for data provenance are proposed and performance for each
schema is analyzed in this paper.

1 Introduction

Today the integration of workflow technology into domains that belong to the natural
sciences has recently gained increased interest and become a unifying mechanism for
handling scientific data.

Scientific workflows, while sharing commonalities with business workflows, are
typically data-centric as opposed to task-centric business workflows [1]. Several sci-
entific WFMSs, such as Kepler [2], ZOO [3], GridDB [4], are architected with a data-
centric view of workflows. They can provide a data-centric interactive interface to
manipulate workflows more conveniently, and allow users to inspect intermediate
results in order to determine the next step of experiments [2], and so on. However,
most of current WFMSs do not integrate tightly with data, so they can not satisfy the
requirements of data-centric scientific experiments.

Database technologies seem to be well suited to handle highly complex data man-
agements. However, they have been utilized only to a limited extent [5]. To our
knowledge, systems advocating a tighter integration of DBMS and WFMS only in-
clude ZOO [3], GridDB [4] and [5]. Some technologies such as query optimization,

∗ This research is supported by National Natural Science Foundation of China (60573095), the

Program for New Century Excellent Talents at University of China (NCET-04-0675), Re-
search Fund for the Doctoral Program of Higher Education(20050486024) and State Key Lab
of Software Engineering under grant: SKLSE05-01.

570 L. Wang et al.

fault-tolerance, view, and data provenance should be also applied to workflows in
order to enhance the power of large magnitudes of data managements. For example,
view mechanism can increase the degree of workflow automation, and combine dif-
ferent experimental results in a view so as to compare them. Data provenance pro-
vides derivation histories for terabytes of data products (data in any form, such as
files, tables [6]) generated by scientific workflows in order to make sense of and use
them. The importance of data provenance has already been recognized in several
scientific workflow projects, such as GridDB [4], Chimera [7], myGRID [8], CMCS
[9]. As far as we know, the solutions of determining data provenance in the literature
usually involve annotations that comprise of the derivation history of a data product
and inversion that generates a “reverse” query to find the origins supplied to derive a
data product. Annotations may not scale well for fine-grained data as the complete
annotations for the data may outsize the storage space required for the data itself.
Inversion seems to be more optimal from a storage perspective since an inverse func-
tion or query identifies the provenance for an entire class of data. However, it requires
a reverse query to be generated and executed to compute provenance every time the
provenance of a data product is required.

In this paper, we present a scientific workflow framework integrated with object
deputy model [10] which increases automation of scientific workflows by means of
update propagation that is similar to view update, and can freely combine different
experimental results by means of the object deputy algebra. Moreover, this framework
can support incompleteness and uncertainty of workflow specifications. Most impor-
tant of all, in our framework, it is easy to find sources of data products in terms of bi-
directional pointers between the data products and their sources, not only saving a
mass of storage space, but also decreasing extra computation cost.

The remainder of this paper is organized as follows: In section 2, a scientific work-
flow framework integrated with object deputy model is introduced. In section 3 we
present provenance method in our framework and propose three kinds of schemas for
data provenance. Experimental results and analysis are given in section 4. In section 5
we analyze and compare some related work. Finally, we present a summary of our
contributions and our future work.

2 A Scientific Workflow Framework Integrated with Object
 Deputy Model

Object deputy model [10] can satisfy the requirements stemming from complex, high
performance scientific data managements with the concepts of deputy objects and
deputy classes. In this section, we adopt the object deputy model to describe the proc-
ess of scientific workflow executions. Deputy objects and deputy classes are called
derived objects and derived classes in our framework.

2.1 Basic Concepts

Scientific workflows consist of scientific data and scientific analysis programs ma-
nipulating them. Initial inputs can be described as base scientific objects, intermediate
results and outputs can be described as derived scientific objects, and scientific analy-

 A Scientific Workflow Framework Integrated with Object Deputy Model 571

sis programs can be defined as read methods of object attributes. Scientific classes
have no definitions of functions.

Definition 1. Each scientific object has an identifier and some attributes. The schema
of scientific objects with the same attributes is defined as a class C = <O, A>.

1. O is the extent of C, O is one of instances of C.
2. A is the set of attribute definitions of C, (Ta : a) A, where Ta and a respectively

represent type and name of an attribute. The value of attribute a of scientific ob-
ject o is expressed by o.a. For each attribute, there are two basic methods.
read(o, a) o.a, write(o, a, v) o.a := v.
Here , stand for operation invoking, result returning.

Definition 2. A derived scientific object is derived from object(s) or other derived
object(s). The latter is called source object(s) of the former. Source objects and
derived objects are linked by bi-directional pointers between them. Derived objects
have their own persistent identifiers, and can inherit some attributes from their source
objects by switching operations without occupying storage space, and can also add
their additional attributes. A derived class defines the schema of derived objects with
the same attributes. Let Cs = <Os, As > be a source class, its derived class Cd is defined
as Cd = <Od, Ad Ad

+>.

1. Derived object Od = {od
i | o

d
i os

i | os
i {os

i}, sp(os
i) | jp(os

i

) ({os
i}) = = true }, is the extent of Cd, where od

i os
i | os

i

{os
i} denote od

i is a derived object of os
i, os

i , {os
i}, and sp, jp, gp rep-

resent selection, combination, and grouping predicate respectively.
2. Ad Ad

+ is the set of attribute definitions of Cd.
1) (Tad : ad) Ad is the attributes inherited from (Tas : as) As, and attribute val-

ues of derived object od are computed through switching operations that need to read
attribute values of source objects. In scientific computing environments, it is not al-
lowed to update the inherited attributes, so the write method of these attributes is not
defined. Switching operation for the read method of these attributes is defined as

read(od, ad) fTas Tad (read(os, as))
2) (Tad

+ : ad
+) Ad

+ is the additional attributes of Cd, of which basic methods are
defined as

read(od, ad
+) od. ad

+, write(od, ad
+, vd

+) od. ad
+ := vd

+

According to above definitions, during the course of each query, attribute values of
derived scientific objects inherited from source objects are still computed through
switching operations that need to communicate with the underlying information
source. However, in scientific computing environments, outputs may be generated by
long running scientific analysis programs, and information sources may be remote or
unavailable for some time, so it might be best to materialize their inherited attribute
values instead of re-generating them on each query. The definition of the read method
for the inherited attribute of which value is materialized is changed as follows:

read(od, ad) od.ad.

That is, the inherited attribute values can be directly read from the derived object.

572 L. Wang et al.

Definition 3. Update propagation between scientific objects and their derived
scientific objects.

1. If a scientific object o is added into class C, then all of derived scientific classes
of C are checked. If o satisfies the predicate of some derived class Cd, an object
od of Cd is created as a derived object of o. Deleting a scientific object causes de-
letion of all of its derived scientific objects.

2. If a scientific object o in class C is updated, all of its derived scientific objects
will be updated automatically. Suppose that there are some derived scientific
classes of C, of which predicates might not be satisfied by o before the update
and may become satiable after the update, new derived objects of o can be added
to these classes. Modification of a scientific object may cause deletion of its de-
rived scientific objects.

Based on the object deputy model, we have implemented a database system called
TOTEM and designed an object deputy database language which can create various
kinds of deputy classes, including SelectionDeputyClass, JoinDeputyClass, Union-
DeputyClass, and GroupDeputyClass.

2.2 A High-Energy Physics Example

In this section, we use the Atlas High-Energy Physics workflow [4] to explain our
framework. This workflow consists of three programs: an event generator (gen); fast
simulation (atlfast); and slower simulation (atlsim). Gen is invoked with inputting an
integer parameter pmas, and produces an event file. The event file is then used to feed
atlfase and atlsim, each simulating a detector’s reaction to the event, and producing a
file which contains an integer value fImas or sImas. The outputs of two different
simulations are compared finally. The Atlas workflow is shown in figure 1(a).

We adopt an object deputy database language [11] to set up the Atlas workflow in
the following. Instead of encoding the workflow in a procedural script, we encode it
with a schema definition language. Three programs: gen, atlfast and atlsim are de-
fined as read methods of event, fImas and sImas respectively.

1. Create Class gC (pmas int);
2. Create SelectionDeputyClass evts as (Select gen(pmas) as (event int) from gC);
3. Create SelectionDeputyClass fC as (Select atlfast(event) as (fImas int) from

evts);
4. Create SelectionDeputyClass sC as (Select atlsim(event) as (sImas int) from

evts);
5. Create JoinDeputyClass compare as (Select fC.fImas, sC.sImas from fC, sC

where fC evts.event = sC evts.event);
6. or Select evts fC.fImas, evts sC.sImas from evts

Class evts derived from class gC stores event files produced by program gen,
where parameter event contains the identifiers of the files. Likewise, fC and sC re-
spectively store outputs of program altfast and atlsim, where outputs fImas and sImas
are described as integer. We use JoinDeputyClass to compare results of two different
simulations, atfast and atlsim. We can also achieve the same goal by select operation
instead of explicitly deriving class compare. Implementation of the function for com

 A Scientific Workflow Framework Integrated with Object Deputy Model 573

<pmas>

<event>

<fImas> <sImas>

gen

atlfast atlsim

compare

Fig. 1(a). The Atlas workflow Fig. 1(b). The internal data structures

paring mainly depends on cross-class query (“ ”)[11]. We can start from an initial
object (base object or derived object) to one or more target objects by means of bi-
directional pointers between them, and the query path length and the direction are not
limited. Therefore workflows are composed by deriving classes in our framework.
The internal data structures for Atlas workflows integrated with object deputy model
are shown in figure 1(b), in which all pmas values change from 100 to 200.

Most scientific data is not relational in nature, but the inputs and outputs to work-
flows can be still represented as tables. In our framework, they are represented as
classes. An example is the output event of the program gen; it is a file that needs to be
stored in file format (such as XML), but it can be also represented as an object. More-
over, most scientific analysis programs are written to deal with data in files. TOTEM
allows users to specify a schema for data stored in the file system and query these data
using a SQL-like language. It also allows executing external programs that process data
in file systems. In TOTEM, files are described as one-attribute objects, which mainly
record identifiers of the files. Actual files are stored in od_largeobject system table.

Our framework does not need to materialize the intermediate results and outputs,
thus reducing storage overhead and maintenance cost. This can optimize workflow
executions using database techniques. However, in scientific environments, the de-
rived scientific classes are usually generated by the outputs of possibly long running
programs. As we have mentioned above, on each query, inherited attribute values of
derived objects are computed through switching operations that need to read attribute
values of source objects. In order to avoid re-computing them on each query, it might
be best to materialize them. This prevents unnecessary re-execution of programs. The
materialized method can be also supported in our framework. We emphasize that final
data products must be materialized.

2.3 Workflow Automation and Flexibility

Workflow automation is accomplished by insertion of values into the base classes.
For example, the workflow is invoked by the following Insert statements.

Insert into gC values (100)
etc.

574 L. Wang et al.

Our model can automatically invoke an execution of workflow by means of update
propagation according to definition 3. Once a scientific object (for example, gC101)
is inserted into gC, then derived class evts of gC is checked. Because gC101 satisfies
selection predicate of evts, its derived object evts101 is automatically added to class
evts. In fact, the value of attribute event of evts101 does not occupy storage space, but
shares with gC101 by means of the read method (gen) defined in attribute event.
Likewise, the insertion of evts101 in evts makes derived objects fC101 and sC101 be
added to fC and sC respectively, eventually resulting in addition of derived object
compare101. Thereby each input of class gC corresponds to a separate execution of
the workflow. In addition, if base scientific objects need to be revised, then successive
stages of the workflow can be automatically invoked and derived scientific objects
can be updated. For example, if gC0 is modified, all of its derived objects including
evt0, fC0, and sC0 will be re-computed automatically. The mechanism, which is simi-
lar to ‘push’ mechanism in materialized view, would increase the degree of WFMS
automation.

Scientific workflows are loosely-defined, that is, the complete structures of work-
flows are difficult to determine in advance. Our framework allows creating derived
classes for partial known experimental steps. By analyzing intermediate results, users
are allowed to determine the next step of experiments by defining a new derived class
for the new experimental task. For example, we can only define a derived class evts
for the first experimental step. After experimental results generated by program gen
are analyzed, we are allowed to define succeeding experimental steps by deriving
class fC, sC and compare. Furthermore, in a scientific environment, a specification
may change rapidly as the experimental results are analyzed even while a workflow is
being executed. We can also dynamically change specifications of workflows by
defining new derived classes instead of the old.

The framework presented above is meant for tight integration with a database. The
declaration and definition of workflows are in a SQL-like workflow manipulating
language (object deputy database language), and the invocation and query are done in
SQL. This will allow most WFMS management operations to be performed in a way
analogous to traditional data management operations.

3 Data Provenance

In this section, we first present data provenance method of our framework, and argue
that our method has the advantage over annotations and inversion. Then, we propose
three kinds of schemas that trace data provenance.

3.1 Tracing Data Provenance

There are two main approaches to representing provenance information, annotations
and inversion. From database perspective, we prefer the latter because inversion
mainly uses a data-oriented model of provenance. Provenance can be associated not
just with data products, but with the processes that enabled the creation of the data
products [12], including queries and functions defined by users. According to [2],

 A Scientific Workflow Framework Integrated with Object Deputy Model 575

intermediate data products should be also recorded in a scientific workflow system.
We first give a definition about data provenance.

Definition 4. Given an object o, the origins from which object o evolved, and the
transformations of these origins undergo are called provenance of the object o. That
is,

1. Let fun be a scientific analysis program, and let Cd = fun (C1
s,…, Cm

s) be the
class that results from applying fun to classes C1

s,…,Cm
s. Given a object od Cd,

we define od’s provenance in classes C1
s,…,Cm

s to be provenance (od) (C1
s
,…, Cm

s
) =

{<{o1j
s},…,{omj

s}>, fun|m, j }, where fun-1(od) = {{o1j
s},…,{omj

s}|
{o1j

s},…,{omj
s} are subsets of scientific objects in C1

s,…,Cm
s}.

2. Likewise, if C1
b,…,Cn

b are base scientific classes. od’s provenance in base
classes C1

b,…,Cn
b can be described by using the above definition 4.1 recursively.

In TOTEM, we adopt a system table called od_collate to store relationships be-
tween source objects and derived objects. Thereby querying the origins of a data
product can be directly switched to its source objects. Scientific analysis programs as
read methods of object attributes are stored in od_switching system table. The internal
data structures of od_collate and od_switching are shown in figure 2.

Fig. 2. The internal data structures of od_collate and od_switching

Considering the example in section 2.2, if we want to compute provenance of ob-
ject fC0 in derived class fC, it is easy to find that this object is derived by applying
scientific analysis program atlfast to the object evt0 in evts, which is derived by ap-
plying gen to the object gC0 in gC. Therefore the provenance of object <fC0> =
{<gC0>, gen, <evt0>, atlfast}.

Compared with either annotations or inversion, our method has the advantage over
them. Firstly, annotations are attached to a data product, describing the derivation
history of the data product, so annotations can be larger than the data itself even if the
data is coarse-grained. In our method, derivation history of a data product can be
directly constructed by bi-directional pointers between the data product and its
sources, thus saving a mass of storage space. Secondly, our method shares some simi-
larities with inversion, for example, we also require “reverse” query to find the source
data supplied to derive the data. However, it is not necessary to compute provenance
using inverse queries or inverse functions because we can directly find source data of
derived data by bi-directional pointers. This method also effectively avoids some
issues about inexistence of inverse functions or inaccuracy of inverse computations.
Finally, since source data may be remote or unavailable for some time, the inverse

576 L. Wang et al.

method usually requires storing additional auxiliary information in order to reduce or
entirely avoid source accesses. In our method, derived objects can materialize some
attribute values from source objects, thus avoiding source accesses.

3.2 Materialize Intermediate Products

During tracing data provenance, intermediate data products also need to be queried,
so choosing to materialize intermediate data products can help query intermediate
results directly without re-computing them. In this section, we propose three kinds of
schemas for materializing intermediate data products.

1. Materializing Nothing
This schema is to materialize no intermediate data products. During tracing data
origins, this schema retrieves all necessary information from source data, and then
computes intermediate results. It incurs no extra storage or maintenance cost for in-
termediate data products, but leads to poor tracing performance.

2. Materializing Intermediate Data Products
Compared with the first schema, materializing intermediate data products can im-
prove tracing performance. For example, if we materialize event files in class evts.
Once users pose tracing provenance of a derived data product in class fC, the inter-
mediate data products in class evts can be find at once without computing values by
switching to class gC. However, intermediate data products may be large and be
usually expensive to maintain, even lots of the intermediate data products may be
irrelevant to final data products in which users are interested. Thus, extra storage and
maintenance cost for intermediate data products increase.

3. Materializing Partial Intermediate Data Products
An alternative way of decreasing storage and maintenance cost is to materialize par-
tial intermediate data products, where only contains intermediate data products having
derived objects. For example, we assume a part of event files are used to feed pro-
grams atlfast and atlsim, and then only these event files are required to materialize,
which can greatly save storage spaces. Otherwise, in this schema, provenance query
for final data products is only related with materialized intermediate data products,
hence this schema does not affect tracing query performance.

4 Experiments and Analysis

In this section, we will evaluate performance of the three proposed kinds of schemas
for tracing query, maintenance cost and storage cost under the same environmental
setting.

4.1 Experimental Model and Design

We design a simple experiment with the architecture in figure 1(b). For simplicity, we
assume there is only two-level selection derived class, where the second-level derived
class fC has been materialized. The first-level derived class evts stores results of an
event generator (gen), and completely inherits objects in base scientific class gC; the

 A Scientific Workflow Framework Integrated with Object Deputy Model 577

second-level derived class fC stores results of the fast simulation (atlfast), and inherits
about 40% of objects in evts. Scientific data analysis programs used in the experiment
are some simple mathematic functions. In order to simulate the real environments, we
assume that gen and atlfast consume 3 seconds and 2 seconds respectively. Three
kinds of schemas used to materialize class evts respectively are represented by the
symbol 1, 2 and 3. The experiment runs on a Celeron machine which has 2.0 GHz
CPU, 256MB main memory, and Linux operating system.

In our performance analysis we consider several performance metrics. The first is
tracing query, where we use the average object tracing time as the metric. The second
metric measures update maintenance cost, including the total time for maintaining the
derived classes evts and fC. The third metric measures storage cost, including the
storage spaces occupied by evts and fC. We adopt two types of operations, either
tracing query or update maintenance, and compute the number of operations having
been finished successfully during a given period, about half an hour. We assume that
each operation only traces or updates an object.

4.2 Experimental Results and Analysis

Our experiments compare the performance of three proposed kinds of schemas as
base class size increases. We vary the size of base class from 100,000 to 500,000
objects. Figure 3(a) shows the average object tracing time of each schema. Figure 3(b)
and figure 3(c) show the maintenance cost and the storage cost in each schema re-
spectively. The x-axis represents the number of objects in a base class and the y-axis
represents the relevant costs.

From figure 3(a) we can see that the first schema achieves much lower tracing per-
formance than the other two schemas, while the performance is identical for the latter
two schemas. The longer the tracing time consumed by the first schema, the more the
base class size increases. Because of no materialized intermediate data products in the
first schema, in order to get values of the intermediate products, the system has to find
their source objects by bi-directional pointers and computes their values, thus con-
suming a mass of time.

 Fig. 3(a). Tracing query Fig. 3(b). Maintenance cost Fig. 3(c). Storage cost

From the results in figure 3(b), we observe the third schema achieves the best main
tenance performance, and maintenance cost of the second schema is close to that of
the first schema when scaling up source class size. We divide into two cases to

578 L. Wang et al.

analyze the reasons. The first is that updating of objects in gC does not cause updating
of derived objects in fC. In this case, the second schema requires consuming extra
time (t1) to maintain class evts completely materialized. The second is that updating of
objects in gC will cause updating of derived objects in fC, all the three kinds of sche
mas require maintaining the materialized derived class fC, while maintenance time
(t2) of the first schema is higher than that of the other two schemas. It is mainly be-
cause the first schema has to find the top-level base objects, and then computes their
values, thus consuming a mass of time. At beginning, t2 is longer than t1. As the base
class size increases, t2 is gradually close to t1, thus maintenance cost of the second
schema is close to, even exceeds that of the first schema.

It is evident that the storage cost of the second schema is highest, while the storage
cost of the first schema is lowest in figure 3(c).

From above analysis, we can know which schema to be adopted mainly depends on
the requirements of practical applications. The first schema can be used in applica-
tions which store terabytes of scientific data generated by short running programs,
while the second schema is fit for managing a small quantity of scientific data. The
third schema can be especially useful when a base scientific class has wide objects but
the final data products have only a small fraction.

5 Related Work

A few of research efforts have already been made to integrate some database tech-
nologies into scientific workflow management systems [2,3,4,5]. The first system in
this domain is ZOO [3]. In ZOO, the workflow is fully defined as an object-oriented
database schema. The relationships between tasks and data are represented by ordi-
nary object-oriented relationships. Invocation of workflow is triggered by active rules
on these relationships. GridDB [4] and [5] share many similarities with ZOO; for
example, workflows in these systems are architected with a data model. However,
both [4] and [5] use the simpler relational model, and are mainly focused on the grid
environment. In GridDB, the inputs and outputs of programs are modeled as relational
tables. Programs and workflows can be represented as typed functions. So users can
define programs and the relationships between their inputs and outputs in a schema
definition language. Insertion of tuples in input table triggers automatically execution
of programs and workflows. However, GridDB requires storing some function memo
tables for automation of workflow executions, which will increase storage cost. [5]
presents a workflow modeling language that tightly integrates workflow management
systems and database management systems. Initial input data and programs are de-
scribed as active relational tables, and derived data and programs are described as
active views, so workflows are composed by declaring active views. Although this
method does not cause extra storage, any section of the workflow must be invoked by
issuing a SQL query on the corresponding views or tables, which will decrease auto-
mation of workflow executions.

As a critical component, data provenance has been studied by a lot of scientific
workflows and database communities. To our knowledge, annotations and inversion
are two main approaches to representing provenance information. At present, most of
the workflow management systems more depend on annotations [7,8,9]; Chimera [7]

 A Scientific Workflow Framework Integrated with Object Deputy Model 579

analyzes the virtual data catalog and comes up with an abstract DAG representing the
sequence of operations that produce that data. Some provenance systems [8,9] also
provide semantic information using RDF and OWL in order to realize interaction of
scientific workflows in collaborative environments. However, annotations may occupy
a mass of storage spaces and even outsize the storage spaces required for the data itself,
even if some systems such as Chimera [7] only record the immediately previous source
data and transformation step that creates the data product in order to reduce storage
cost. Inversion seems to be more optimal from a storage perspective especially for a
large number of fine-grained data since an inverse function or query identifies the
provenance for an entire class of data. Many database communities adopting this
method such as [13,14,15,16] provide data-oriented provenance services to users. Any
scientific workflow systems that use database queries and functions to model work-
flows can apply such techniques. Trio [14] just uses the inverse method [16] to auto-
matically determine the source data for tuples created by view queries or user defined
functions. However, inversion used in these systems may not be the best way for not
all functions has inverse functions [6]. [15] presents a framework for computing the
approximate provenance based on weak inversion. The paper does not, however, pro-
vide a mechanism for generating the weak inversion. Computing provenance using
inverse methods usually requires accessing sources which are inaccessible or time
consuming. By storing additional auxiliary information in the warehouse, [16] can
reduce or entirely avoid source accesses. [17] indicates that it is not a good choice to
compute provenance if a large amount of provenance information are required.

6 Conclusions and Future Work

In this paper, we have presented a DB-integrated scientific workflow framework
which adopts the object deputy model to describe execution of a series of scientific
tasks. In particular, the deputy objects, which are similar to view, improve workflow
automation greatly and incur no extra storage or maintenance cost. The object deputy
approach is superior in resolving automatic update maintenance and supporting
dynamic or incomplete specification of workflows. Most important of all, data prove-
nance method of this framework can provide much higher performance than annota-
tions or inversion. At present, web services, as a standard for inter-operability, have
widely used in distributed grid applications and workflows, and grid has also become
the platform for the creation, processing, and management of experimental data.
Hence, scientific experimental environments tuned to an increasingly distributed and
service-oriented grid infrastructure. How to seamlessly integrate our framework into
the infrastructure is one of our future works.

References

1. Bertram Lud ascher, Carole Goble: Guest Editors’ Introduction to the Special Section on
Scientific Workflows. SIGMOD Record, Vol. 34, No. 3. 2005

2. B. Lud¨ascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J.
Tao, and Y. Zhao: Scientific workflow management and the Kepler system. Concurrency
and Computation: Practice & Experience, Special Issue on Scientific Workflows, 2005

580 L. Wang et al.

3. Anastassia Ailamaki, Yannis E. Ioannidisz, Miron Livny: Scientific Workflow Manage-
ment by Database Management. In 10th conference on scientific and statistical database
management (SSDBM).1998

4. David T. Liu Michael J. Franklin. GridDB: A Data-Centric Overlay for Scientific Grids.
Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004

5. Srinath Shankar Ameet Kini David J DeWitt Jeffrey Naughton: Integrating databases and
workflow systems. SIGMOD Record, Vol. 34, No. 3. 2005

6. Y. L. Simmhan, B. Plale, and D. Gannon: A Survey of Data Provenance Techniques. In
Technical Report TR-618: Computer Science Department, Indiana University, 2005

7. I. Foster, J. Vöckler, M. Wilde, Y. Zhao: Chimera: A Virtual Data System for Represent-
ing, Querying, and Automating Data Derivation. In 14th conference on scientific and statis-
tical database management (SSDBM). 2002, 37-46.

8. J. Zhao, C. A. Goble, R. Stevens, S. Bechhofer: Semantically Linking and Browsing
Provenance Logs for E-science. In ICSNW, 2004, 158-176

9. C. Pancerella, J. Hewson, W. Koegler, D. Leahy, edc: Metadata in the collaboratory for
multi-scale chemical science. In Dublin Core Conference, 2003

10. Zhiyong Peng, Qing Li, Ling Feng, etc: Using Object Deputy Model to Prepare Data for
Data Warehousing. IEEE Transaction on Knowledge and Data Engineering. Vol. 17, No.
9. 2005

11. Boxuan Zhai, Zhiyong Peng: object-deputy database language. The Fourth International
Conference on Creating, Connecting and Collaborating through Computing, 2006, to be
appear.

12. M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin, L. Moreau, and T.
Oinn: Provenance of e-Science Experiments - experience from Bioinformatics. In Proceed-
ings of the UK OST e-Science 2nd AHM, 2003

13. P. Buneman, S. Khanna, and W. C. Tan: Why and Where: A Characterization of Data
Provenance. In ICDT, 2001, 316-330

14. J. Widom: Trio: A System for Integrated Management of Data, Accuracy, and Lineage. In
CIDR, 2005

15. A. Woodruff and M. Stonebraker: Supporting Fine-grained Data Lineage in a Database
Visualization Environment. In ICDE, 1997, 91-102

16. Y. Cui and J. Widom: Practical Lineage Tracing in Data Warehouses. In ICDE, 2000
17. Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, Gaurav Vijayvargiya: An Anno-

tation Management System for Relational Databases. In Proceedings of the 30th VLDB
Conference, Toronto, Canada, 2004

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 581 – 592, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Development of a Multiple-Compensation
Mechanism for Business Transactions

Zaihan Yang and Chengfei Liu

Faculty of Information and Communication Technologies
Swinburne University of Technology

Melbourne, VIC 3122, Australia
{zyang, cliu}@ict.swin.edu.au

Abstract. Compensation is a widely used concept for maintaining atomicity in
both the advanced transaction models and transactional workflow systems.
Some Web service protocols also adopt the compensation mechanism for fail-
ure recovery when providing transaction management. However, the compensa-
tion mechanisms used in these models or protocols are too fixed and cannot
satisfy the various requirements of different applications. In this paper, a multi-
ple-compensation mechanism is proposed and defined explicitly in a business
process model. An algorithm on how to implement this multiple-compensation
mechanism for backward recovery is designed and its computation complexity
is analysed.

1 Introduction

These years have seen the widespread use of transaction management in non-
traditional applications. The transactions in these applications are different from tradi-
tional transactions [1,2] for their long-time running and for that they may access data
held in heterogeneous, autonomous and distributed systems. The ACID properties
will be too strict for them to follow. To overcome the limitations of traditional trans-
actions, some advanced transaction models (ATMs) [3] have been proposed, such as
Sagas [4], closed/open nested transactions [5, 6], multi-level transactions [6], flexible
transactions [7] and Contracts [8].

The mechanism of compensation is originally proposed by Gray in [9], and then
widely used in ATMs to maintain atomicity when the isolation property has been
relaxed [9, 10]. For a transaction T, its compensating transaction C is a transaction
that can semantically eliminate the effects of the transaction T after T has been suc-
cessfully committed. For example, for a DEPOSIT transaction, its compensating
transaction can be a WITHDRAW. We take the Sagas model as an example to clarify
how the compensation mechanism is used. In Sagas, the long transaction is divided
into several short subtransactions each of which strictly follows the ACID properties.
The isolation for the global transaction is relaxed, since subtransactions can release
the resources they hold and publicise their effect to other subtransactions before the
global transaction commits. For each subtransaction (except for the very last one),
there exists a corresponding compensating transaction. When a subtransaction fails, it

582 Z. Yang and C. Liu

will firstly be rollbacked by a transaction manager and all its preceding subtransac-
tions will be compensated by executing their corresponding compensating transac-
tions in a reverse order.

A compensating transaction has some special characteristics besides the fundamen-
tal properties of a transaction. First of all, a compensating transaction eliminates a
transaction’s effect in a semantic manner, rather than by physically restoring to a prior
state. Secondly, a compensating transaction is retriable, namely, once the compensat-
ing transaction is invoked to execute, it will ultimately commit successfully. Thirdly,
a compensating transaction is always regarded as being associated with a compen-
sated-for transaction. In most situations, it is the programmer’s responsibility to pre-
define a compensating transaction.

Compensation mechanism is not only widely used in ATMs but also adopted by
transactional workflows to maintain reliability and consistency of business processes.
It is assumed that users can define for each task in a business process one compensat-
ing task [11, 12]. When some committed tasks which are called compensated-for
tasks need to be undone, their corresponding compensating tasks will be invoked.

The loosely coupled property of Web services offers a good environment for busi-
ness process collaborations. Some existing Web service protocols, such as WSCI
[13], BPEL4WS [14] and WS-CDL [15] also provide some transaction management
by supporting the open nested transaction model and compensation mechanism.

Currently, each task can only have one compensating task. This compensation
mechanism is too fixed and not flexible enough to adjust to different application re-
quirements. For example, when penalty has to be considered for carrying out compen-
sation, different penalty polices will result in different compensation strategies. As a
result, a multiple-compensation mechanism is necessary. This paper proposes a con-
cept of multiple-compensation and describes how to incorporate it in workflow sys-
tems. The rest of the article is organised as follows. Section 2 gives a motivating ex-
ample to clarify the importance of multiple-compensation. Section 3 defines a busi-
ness process model with the multiple-compensation feature. Section 4 introduces an
algorithm on how to implement the multiple-compensation mechanism and analyse its
complexity. Section 5 discusses the related work on compensation. Section 6 con-
cludes the paper and indicates the future work.

2 Motivating Example for Multiple-Compensation

Consider a travel reservation process shown in Figure 1 as an example. The whole
business process has ten tasks. Travellers will send their trip requests to a travel agent
(SR). After receiving the request and sending back acknowledgment (SA), the travel
agent will invoke two concurrent activities at the same time: to reserve proper tickets
for the traveller via the airline company (BAT) and to book a hotel for the traveller to
reside in the destination place (BH). Whether to rent a car in the visiting place is an
optional task determined upon the traveller’s requirements (RC). During the booking
process, travellers should provide their credit card information for identity validation.
After all the necessary reservations have been completed, the travel agent will send an
itinerary describing the reservation information and an invoice to the traveller (SBS).
The traveller can send acknowledgment to confirm his or her bookings (ACK). Before

 On the Development of a Multiple-Compensation Mechanism 583

the airplane departure, the traveller can still choose to cancel the booking (TC) or
confirm the booking by paying the money (TP). After the traveller finishes purchas-
ing, the travel agent will send airplane ticket and confirmation letter for hotel booking
and for car rental to the traveller. If the traveller cancels the booking or does not com-
plete purchasing after departure, a penalty will apply.

Fig. 1. A travel reservation business process example

There exists compensation dependency among tasks. For example, since BAT and
BH are concurrent tasks, and only when both of them successfully complete can the
succeeding task be executed, consequently, either BAT or BH fails, the other commit-
ted task should be compensated.

Consider the situation for the traveller to cancel the booking after having sent out
the acknowledgment information. Some corresponding compensation tasks should be
carried out due to the cancelling behaviour. Associated with these cancellations, the
companies such as the airline company will normally take actions based on some
penalty policies for the sake of their own interests. The following table illustrated the
penalty policies taken by an airline company.

Table 1. An example of the penalty policy of an airline company

Time column indicates when the traveller cancels his booking, 2 weeks before de-
parture, 5 days, 2 days or right before departure (0 days); User column indicates the
different status of the users and correspondingly they have different privileges. Pen-
alty column indicates the different charges the company will ask for due to the time to
cancel and the user status.

A penalty policy is associated with a compensation task and can be regarded as
part of the compensation task. Different penalty policies will be adopted in different
cases, leading to different compensation tasks. Our multi-compensation mechanism is
motivated to deal with this situation.

584 Z. Yang and C. Liu

3 Business Processes with Multiple-Compensation Mechanism

From the motivating example described in the previous section, we can see that the
multiple compensations are common phenomena in real applications. Consequently, a
corresponding multiple-compensation mechanism should be considered and reflected
in the business process models. In this section, we introduce the multiple-
compensation mechanism in a business process environment which associates for
each task several compensating tasks. We give formal definitions of a business proc-
ess model with a multiple-compensation feature in the following.

Definition 1. A business process can be modelled as an acyclic directed graph in the

form of),,,(sntENG , where

(1) N is a set of nodes. Each node corresponds to a task in the business process.
Namely, },...,,{ 21 mnnnN = ,)1(miNni ≤≤∈ represents a task.

(2) E is a set of directed edges. Each edge Enne ∈=),(21 corresponds to the con-

trol dependency between n1 and n2, where n1, n2 ∈ N.
(3) For each Nn∈ , Ind(n) and Outd(n) define the number of edges which take n as

the terminating node and starting node, respectively.
(4) t: N→ Type is a mapping function, where Type={normal, And-Join, And-Split,

Or-join, Or-Split} . It is easy to see that:
 If t(n) = “normal” then ind(n) = outd(n) = 1.
 If t(n) = “And-Split” or ”Or-Split” then ind(n) = 1, outd(n) > 1.
 If t(n) = “And-Join” or ”Or-Join” then ind(n) > 1, outd(n) = 1.
(5) sn is the starting task of the business process, which satisfies that sn N∈ and

() 0sInd n = .

Tasks are the main components of a business process. A task can be modelled as a
combination of a normal part (of operations), which is used for forward execution and
a compensation part (of operations), which is used for backward recovery. In order to
introduce the mechanism of multiple-compensation, we define for the compensation
part of each task not only one, but a set of compensating tasks. We can model a task
as follows.

Definition 2. A task n is defined as),,(Ctbtf where,

(1) tf defines the forward execution part (normal part) of n. The set of input and

output parameters of tf is denoted as Par. When tf is invoked, Par will be re-

corded in a system log.
(2) tb defines the backward execution part (compensation part) of n. When tb is

invoked, the Par, which is stored in a system log, will be adopted.
(3) C is a set which consists of a set of compensating tasks defined for the task n.

When a task needs to be compensated, its backward execution part tb will be in-
voked. Then the tb will select from the set C one appropriate compensating task
for execution according to some decision criteria.

 On the Development of a Multiple-Compensation Mechanism 585

More details on the process of selecting will be explained in Section 4.

Definition 3. An instance of a business process graph (, , ,)sG N E t n is defined as an

acyclic graph (, , , , , ,)sG N E t st et s n , where

(1) N N⊆ Each Nni ∈ corresponds to a task instance in the business process

instance.
(2) E E⊆ . Each edge 1 2(,)e n n E= ∈ corresponds to the control dependency be-

tween task instances 1n and 2n , where 1 2,n n N∈ .

(3) :t N Type→ is the same mapping function as that defined in the business proc-

ess model G .

(4) , :st et N Time→ are functions which map a in N∈ to a specific system time,

where ()ist n indicates the starting time of in and ()iet n indicates the terminating

time of in .

(5) :s N States→ is a function which maps each task instance in set N to a certain
kind of states in set States , where States ={initial, active, complete, ended, se-
lecting, compensating, faulting}.

(6) sn indicates the starting task instance.

(7) NNsuccprec 2:, → are functions which define for each task instance Nn i∈ its

preceding task instances and succeeding task instances respectively. jn is said to

be the preceding task instance of in when it exists that (,)j in n E∈ . jn is said to

be the succeeding task instance of in when it exists that (,)i jn n E∈ .

Definition 4. The executed part of (, , , , , ,)sG N E t st et s n is denoted as

(, , , , , ,)E E E sG N E t st et s n , where EN , EE are subsets of N and E respectively and for

each i En N∈ , () " "is n initial≠ .

4 Implementing Multiple-Compensation

Upon the definitions given in Section 3, we present an algorithm on how to imple-
ment the multiple-compensation mechanism in this section. Before the presentation of
the algorithm, the main ideas of it will be firstly introduced. The analysis for the com-
putational complexity of the algorithm will be given in the end.

4.1 Algorithm Introduction

The algorithm describes what should be done with the multiple-compensation mecha-
nism to maintain atomicity and consistency of the whole business process in the pres-
ence of tasks’ failures. The algorithm is invoked by the input of the executed part of a

586 Z. Yang and C. Liu

business process instance EG with one or more failed task instances. A system log

will play an important role in the algorithm. For each executed task instance En G∈ ,

the input/output parameters Par of tfn. , the starting time ()st n , the terminating time

()et n and the current state ()s n will all be kept in a system log.

Due to the compensation dependencies among tasks, the abortion or compensation
of some tasks will lead to the abortion or compensation of other tasks. For example,
when a “normal” task is aborted or compensated, its only one preceding task should
be compensated. When an “And-Join” task is aborted or compensated, all of its multi-
ple preceding tasks should be compensated. When a task that is one of the succeeding
tasks of an “And-Split” task is aborted or compensated, not only the “And-Split” task
itself but all the tasks on its succeeding branches should also been compensated for.
The abortion or compensation of tasks should be executed in a reverse order with the
business process control flow.

The main principle of the algorithm is to traverse the graph EG twice in opposite

directions. One is backward traversing (recovery), which keeps processing and
removing nodes from set NP (Nodes-to-be-Processed) as well as repetitively
adds new traced preceding tasks into set NP for processing. The other is forward trav-
ersing (tracing), which keeps tracing succeeding tasks until some certain tasks are
reached.

The algorithm starts from a failed task in graph EG and invokes the backward trav-

ersing first. During the process of backward traversing, the preceding tasks except
those And-Split tasks of the currently processed task will be put into set NP in order
for processing. The order of adding tasks into set NP indicates the corresponding
compensation order. The tasks in NP, which have not been completed successfully,
will be aborted by system. Other tasks in NP, which have already successfully com-
mitted will be compensated for. When a task is going to be compensated, its back-
ward part tb will be invoked. The backward part tb will then select from the set of
compensating tasks one appropriate compensating task to execute according to those
system-logged information of the task.

When the preceding task of the currently processed task is an And-Split task, a
forward traversing process will be needed. The forward traversing process will trav-
erse all the succeeding branches of the And-Split task until a certain task of each
branch which has no further succeeding task or which has already been in set NP is
reached. The whole algorithm will be terminated when the starting task instance in
graph EG is reached.

Please note that we only consider the execution part of the business process
instance. So for those Or-Join and Or-Split tasks, their proceding tasks and
succeeding tasks will be specific. We can treat them as normal tasks.

4.2 Algorithm Description

We now describe the algorithm for implementing the multiple-compensation mecha-
nism in a more formal way as follows.

 On the Development of a Multiple-Compensation Mechanism 587

Algorithm 1. backward-recovery
Input
The executed part of a business process instance (, , , , , ,)E sG N E t st et s n , where

)"")((faultinginsNinin =∧∈∃ .

Output
The updated executed part of a business process instance (, , , , , ,)E sG N E t st et s n , where

)"")((endedinsNinin =→∈∀ .
Steps:

1. for each in N∈ , if () " "is n faulting= then {NP={ in }; Skip} /* put one faulting

 task in NP */
2. ASMarded = φ /* used for marking tasks of the type “And-Split” */

3. for each in NP∈ {

 /* Processing Part*/
4. if () " "is n active= then () " "is n ended= ;

5. if () " "is n faulting= then () " "is n ended= ;

6. if () " "is n complete= then { () " "is n selecting= ; multiple-compensate(in);}

/* invoke algorithm 3 of multiple-compensate*/
7. { }iNP NP n= − ;

8. if i sn n= then return updated EG .

 /* Generating Part */
9. if () " "it n normal= or () " "it n And Split= − then {

10. (())p in getone prec n= ; /* getone(s) take one element from set s */

11. if () " "pt n And Split≠ − then { }pNP NP n= ;

12. else if pn ASMarked∉ then { /* the And-Split node has not been marked*/

13. forward-tracing (, , , () { })E p iG NP ASMarked succ n n−);

/* invoke algorithm 2 of forwardtracing*/
14. { }pASMarked ASMarked n= ;

15. }
16. else { /* the And-Split node has been marked*/
17. ()pAsucc succ n= ;

18. for each jn Asucc∈ if () " "js n ended= then { }jAsucc Asucc n= − ;

19. if Asucc φ= then { { }pNP NP n= ; { }pASMarked ASMarked n= − ;}

20. }
21. }
22. else if () " "it n And Join= − then ()iNP NP prec n= ;

23. }

Algorithm 1 describes the backward traversing process. It takes the executed part
of a business process instance graph EG as an input and starts from an arbitrary fault-
ing task in the graph. After the execution of the algorithm, all the current states of
tasks in EG will be set into “ended”. The main body of the algorithm consists of two
parts, processing part and generating part. During the processing part, tasks in set NP

588 Z. Yang and C. Liu

will be processed differently. For those tasks with current states of “active” or
faulting”, they will be undone by the transaction manager, while if their states are
“complete”, they will be compensated for. Algorithm 3 will be invoked to compensate
these compensated-for tasks. During the generating part, the preceding tasks of the
currently processed task will be traced. For a normal task or And-Split task, its pre-
ceding task that is not an And-Split task will be added into set NP. For an And-Join
task, all its preceding tasks will be added into set NP. The process happens repeti-
tively until at last the starting task is reached. When an And-Split task is first reached,
a forward tracing process is associated, which will be described explicitly in algo-
rithm 2. In order to avoid reduplicate traversing, a set ASMarked is constructed. The
And-Split tasks, which have once been processed, will be added into set ASMarked.
They will not be forward traced again even though they will be reached later during
the traversing.

Algorithm 2. forward-tracing
Input: , , ,EG NP ASMarked Asucc

Output: NP
Steps:

1. AJMarked φ=
2. for each in Asucc∈ {
3. { }iAsucc Asucc n= − ;

4. if in NP∉ and ()isucc n φ= then { }iNP NP n=
5. else if ()isucc n φ≠ then {
6. (())iAsucc Asucc succ n AJMarked= − ;
7. if () " "it n And Split= − then { }iASMarked ASMarked n=

8. else if () " "it n And Join= − then { }iAJMarked AJMarked n=
9. }
10. }
11. return NP.

Algorithm 2 describes a forward tracing process invoked when an And-Split task is

first reached. For those And-Split tasks, all of its succeeding branches except those
that have been processed will be traversed until the task of each branch that has

Algorithm 3. multiple-compensate
Input: in

Steps:
1. invoke .in tb ;

2. (, (), ()) :i i j jtb par st n et n c c C→ ∈ ; /* select from set C one appreciate compensating task

based on some system-logged information*/
3. () " "is n compensating= ;

4. execute jc ;

5. () " "is n ended= ;

6. return.

 On the Development of a Multiple-Compensation Mechanism 589

already been in set NP or has no succeeding task is reached. In the latter situation, the
task that has no succeeding tasks will be put into set NP. To avoid reduplicate trav-
ersing, two sets ASMarked and AJMarked are used to contain those And-Split tasks
and And-Join tasks that have once been traversed.

Algorithm 3 describes the multiple-compensation process. When a task in set NP is
going to be compensated, its tb part will be invoked. Then it will choose from the set
of its compensating tasks one appropriate task for executing.

4.3 Computational Complexity Analysis

Algorithms 1, 2 and 3 describe the whole process of backward recovery using the
multiple-compensation mechanism. The main principle is to traverse the graph EG
for two times, one for backward traversing, and the other for forward traversing.

For algorithm 1, we can see that it traverses backward through edges in the graph

EG from a faulting node to the starting node and repetitively adds preceding nodes

into set NP. Set NP grows dynamically during the process of traversing. Conse-
quently, the complexity of algorithm 1 should be equal to O (|E|).

For algorithm 2, it describes a forward traversing process from any And-Split node
in the graph to the node of each of its branch paths that is in set NP or has no succeed-
ing nodes. New found succeeding nodes during traversing are added into set Asucc
thus makes it grow gradually. Its complexity should also be equal to O (|E|).
However, extra cost comes from step 6, which contains two set computation bet-
ween succ(ni) (through traced edges) and Asucc and AJMarked, respectively. We
consider the worst situation when Asucc and AJMarked are proportional to |N|,
so the complexity for (())iAsucc Asucc succ n AJMarked= − will be equal to

(| | log | |)O E N (we may use indices for both Asucc and AJMarked). As a result, the

complexity of algorithm 2 should be (| | log | |)O E N .

For algorithm 3, it will be invoked for all nodes that have been completed success-
fully. The complexity for selecting one appropriate compensating task among several
compensating tasks would be a constant. So, the complexity for algorithm 3 would be
O (|N|), which is less than O (|E|).

We can conclude that the total complexity for algorithms 1, 2 and 3 is
(| | log | |)O E N .

5 Related Work

Compensation mechanism is firstly proposed in ATMs. It is then widely adopted by
transactional workflows and Web service transaction protocols to maintain atomicity
when isolation property is relaxed.

For transactional workflow systems, the notion of compensation is of great impor-
tance, since most workflow instances tend to be long running and the processing enti-
ties of some tasks do not support transaction management (such as file systems or
legacy systems). The backward recovery based on compensation is well supported in
some workflow systems, the most typical of which are the FlowMark workflow sys-
tems and the Virtual Transaction Model.

590 Z. Yang and C. Liu

In FlowMark [16] workflow systems, the notion of sphere of joint compensation,
which is proposed by Frank Leymann [17] for providing partial backward recovery, is
well supported. A sphere is a collection of tasks in a workflow. It should be satisfied
that either all the tasks in the sphere successfully complete or all of them should be
compensated. Each sphere and each task enclosed in the sphere is defined to be asso-
ciated with a compensating task. The sphere can be aborted by compensating its com-
posed tasks individually or by invoking the compensation task for the sphere as a
whole. Spheres can overlap and be nested. If a task fails, the sphere that immediately
encloses it is compensated. Optionally, other spheres that enclose this sphere can be
compensated and this can go on recursively.

The Virtual transaction model [18] specifies Virtual Transaction (VT) regions on
top of a workflow graph. Upon a failure during the execution of a task enclosed in a
VT region, all tasks in the region are compensated in the reverse order of their for-
ward execution, until a compensation end point is reached.

Confirmation is a new mechanism proposed in [19]. It is able to modify some non-
compensatable tasks to make them compensatable. While compensation is to semanti-
cally eliminate the effects of some completed tasks, confirmation is to semantically
commit them. With confirmation mechanism, a task in a business process will not
only be associated with a compensating task but also a confirmation task. Once a
workflow process instance is executed successfully, the confirmation tasks of all the
executed tasks will be executed automatically.

The technology of Web service is developing rapidly. It offers a good environment
for business process execution since the Web service components are loosely coupled
with each other. Some Web service protocols include transactional support mecha-
nism. For example, the WSCI, WSBPEL and WS-CDL all support open nested trans-
action model and compensation mechanism. The Web service business activity trans-
action protocol (WS-BA) [20] is also compensation-based.

Compared with our multiple-compensation mechanism, those compensation
mechanisms proposed in ATMs, transactional workflows are not flexible enough.
They associate for each task only one compensating task. The compensation mecha-
nism adopted in some Web service protocols is targeted at a scope (or context) level.
Scopes and contexts can be nested, which will lead to redundant definition of com-
pensation tasks and cannot be executed automatically. Our multiple-compensation
mechanism defines for each task several compensating tasks, thus can satisfy various
application demands. The compensating task can be invoked and executed automati-
cally once its corresponding task needs to be compensated for.

6 Conclusion

Compensation is an important mechanism for backward recovery in long running
business processes. Its main principle is to semantically eliminate the effects of some
successfully committed tasks in the business process. System developers or users can
define for each task in the business process a corresponding compensating task. When
a certain task needs to be compensated, its compensating task will be invoked.

In the previous studies, only one compensating task is defined to be associated with
a task, which cannot satisfy the different requirements in real applications when some

 On the Development of a Multiple-Compensation Mechanism 591

other conditions should be considered, such as penalty, time limits, different user
privilege, etc. In this paper, we took into account this problem and proposed a new
mechanism of multiple-compensation, which associates for each task several compen-
sating tasks. When a task should be undone, one appropriate compensating task will
be selected to invoke under some pre-fixed conditions.

We incorporated the multiple compensation mechanism into a business process
model by giving some formal definitions. We then introduced and described in detail
an algorithm on how to decide which tasks should be compensated, in which order
they should be compensated and which one specific compensating task should be
selected to compensate them. The algorithm is efficient, which basically traverses the
executed part of a business process graph twice. In most cases, the complexity of the
algorithm is O (|E|), with the worst case to be (| | log | |)O E N .

For future work, we would like to take into account the concept of sphere of the
joint compensation to see how the multiple compensation mechanism can be applied
to it. We also would like to incorporate the mechanism of multiple-compensation into
a Web service environment to see what benefits it will bring to improve the existing
Web service protocols on Web service transactions.

Acknowledgement

This work is supported by the Australian Research Council Discovery Project under
the grant number DP0557572.

References

1. J. Gray and A.Reuter. Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann,1993.

2. N.Lynch, M.Merritt, W.Weihl and A. Fekete. Atomic Transactions. Morgan Kaufmann,
1993.

3. A. Elmagarmid (Ed.). Database Transaction Models for Advanced Applications, Morgan
Kaufmann, 1992.

4. H. Garcia-Molina, K. Salem. Sagas. In the Proceedings of the ACM Conference on Man-
agement of Data, 1987, pp.249-259.

5. J.Moss. Nested Transactions and Reliable Distributed Computing. In Proceeding of the 2nd
Symposium on Reliability in Distributed Software and Database Systems, 1982, pp. 33-39,
Pittsburgh, PA. IEEE CS Press.

6. G.Weikum and H. Schek. Concepts and applications of multiple transactions and open-
nested transactions. A.Elmagarmid(Ed.), Morgan Kaufmann, chapter 13, 1992.

7. A. Zhang, M. Nodine, B. Bhargava and Bukhres,O. Ensuring Rlaxed Atomicity for Flexi-
ble Transactions in Multidatabase Systems. In Proceedings of 1994 SIGMOD International
Conference on Management of Data, 1994, pp. 67-78.

8. H. Wachter and A. Reuter. “The Contract Model”, Database Transaction Models for Ad-
vanced Applications, A.Elmagarmid (Ed.) Morgan Kaufmann, San Francisco, CA, 1992.

9. J. Gray. The transaction concept: Virtues and Limitations. In Proceeding of the Interna-
tional Conference on Very Large Data Bases, Cannes, France, 1981, pp. 144-154.

592 Z. Yang and C. Liu

10. H.F. Korth, E. Levy and A. Silberschatz. A formal approach to recovery by compensating
transactions. In the Proceedings of the 16th VLDB Conference, 1990, pp. 139-146.

11. B. Kiepuszewski, R. Muhlberger and M. Orlowska. Flowback: Providing backward recov-
ery for workflow systems. In the Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 1998, pp. 555-557.

12. D.Kuo, M. Lawley, C. Liu and M. Orlowska. A model for transactional workflows. R.
Topor (Ed.). In the Seventh Australasian Databases Conference Proceedings, vol. 18, Mel-
bourne, Australia, 1996, Australian Computer Science Communications, pp. 139-146.

13. A.Arkin, et al. Web Service Choreography Interface (WSCI) 1.0, August 2002,
http://www.w3.org/TR/wsci/.

14. T.Andrews, et al. Business Process Execution Language for Web Services (BPEL4WS)
1.1, May 2003, http://www.ibm.com/developerworks/library/ws-bpel.

15. N.Kavantzas. et al. Web Services Choreography Description Language (WS-CDL) 1.0.
2004. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427.

16. F.Leymann and D.Roller. Business process management with FlowMark. In the Proceed-
ings of IEEE CompCon (San Francisco, CA, 1994) (Los Alamitos), CA: IEEE Computer
Society Press), pp 230-234.

17. F.Leymann. Supporting business transactions via partial backward recovery in workflow
management systems. In the Proceedings of BTW’95, 1995, pp. 51-70.

18. V.Krishnamoorthy and M.Shan. Virtual Transaction Model to support Workflow Applica-
tions. SAC (2), 2000, pp. 876-881

19. C. Liu, X. Lin, M. E. Orlowska and X. Zhou. Confirmation: increasing resource availabil-
ity for transactional workflows. Inf. Sci. 153, 2003, pp. 37-53.

20. L. F. Cabrera et al. Web Services Business Activity Framework (WS-BusinessActivity).
2005. http://ftpna2.bea.com/pub/downloads/webservices/WS-BusinessActivity.pdf.

OS-DRAM: A Delegation Administration Model
in a Decentralized Enterprise Environment

Changwoo Byun1, Seog Park1, and Sejong Oh2

1 Department of Computer Science, Sogang University,
Seoul, 121-742, South Korea

{chang, spark}@dblab.sogang.ac.kr
2 Department of Computer Science, Dankook University,

Cheonan,330-714, South Korea
sejongoh@dankook.ac.kr

Abstract. In this paper, we propose an effective delegation admin-
istration model using the organizational structure. From a user-level
delegation point of view, previous delegation models built on the (Ad-
ministrative) Role-Based Access Control model cannot present the best
solution to security problems such as the leakage of information and
the abuse of delegation in a decentralized enterprise environment. Thus,
we propose a new integrated management model of administration role-
based access control model and delegation policy, which is called the
OS-DRAM. This defines the authority range in an organizational struc-
ture that is separated from role hierarchy and supports a clear criterion
for user-level delegation administration. Consequently, the OS-DRAM
supports a decentralized user-level delegation policy in which a regular
user can freely delegate his/her authority to other users within a security
officer’s authority range with-out the security officer’s intervention.

1 Introduction

In recent years, access control has been monitored as an important security area.
The Role-Based Access Control (RBAC) model is well known among enterprise
organizations because its main concept is based on an enterprise environment
[1-3]. The RBAC model is guided by its central aim of preventing users from
discretionally accessing the organization’s information. As such, access rights
are associated with roles, and users are assigned to appropriate roles.

In a large organization, security administration is a critical issue because a
single security officer cannot manage the whole access control system. Therefore,
the Administrative RBAC (ARBAC) model was proposed for a decentralized
RBAC administration [4,6,7,9,10].

It is important for administrative RBAC to support the efficient execution of
business activity such as the delegation of duties, which should be considered
in access control. The basic idea behind delegation is that some active entities
(users) in an organization can delegate authority to another active entity (user)
to carry out some functions on behalf of the former [13]. Since delegation can
cause unexpected information flow, delegation should be dealt with carefully.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 593–604, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

594 C. Byun, S. Park, and S. Oh

In general, granting/revoking access rights is part of the security officer’s
rights. In user-level delegation, however, an individual user grants (revokes) own
access rights to (from) others. Fig. 1(a) shows this situation. Therefore, the
abuse of delegation authority power leads to exclusion from the security officer’s
authority range. Fig. 1(b) depicts a wrong delegation of authority. The objective
of our work is to control user-level delegation authority power within the security
officer’s authority range as shown in Fig. 1(c).

User

Authority

Security

Officer ‘s

Authority

delegation

User

delegation

Security

Officer’s

Authority

Range

User

delegation

Security

Officer’s

Authority

Range

(a) The property of delegation (b) A wrong delegation (c) A right delegation

Fig. 1. The quality of delegation

Our proposed delegation methodology is similar to that of the Permission-
Based Delegation Model (PBDM) [13] which is built on the ARBAC model for
managing administrative activities. However, the ARBAC model induces vari-
ous administration problems by role hierarchy for basis of the security officer’s
authority range. These problems affect the PBDM. We describe the detailed
shortcomings of the ARBAC model and PBDM in Section 2. We also try to
develop an effective and practical model for decentralized delegation adminis-
tration. Delegation administration implies managing users’ delegation authority
range, restricting delegation role creation, user-delegation role assignment, and
permission-delegation role assignment, managing can-delegate constraints, and
so on. We refer to the OS-RBAC model for the administrative RBAC model
[10], which modifies the ARBAC model and adds new components in the orga-
nizational structure.

Our proposed model is called the ’Organizational Structure and Delegation
Role Administration Model’ (OS-DRAM).

The rest of this paper is organized as follows: In Section 1, we briefly review
the ARBAC model and related models, and describe their weaknesses. Then we
explain the reason in choosing PBDM’s delegation methodology in Section 2.
Section 3 introduces the motivation of this work and some problems involved in
the PBDM which is built in the ARBAC97 model. In Section 4, we introduce
an integrated management model, the OS-DRAM, which integrates delegation
policy into the OS-RBAC model. In addition, we suggest integrity rules of del-
egation for preventing security threats in this new model. Example scenarios
are discussed in Section 5, followed by the conclusion which summarizes our
contributions and discusses future research directions in Section 6.

2 Related Works

The ARBAC Model. In the ARBAC97 model [4] which is based on the RBAC
model [3], administrative roles and administrative role hierarchy are added for

OS-DRAM: A Delegation Administration Model 595

RBAC administration. Security officers are assigned to proper administrative
roles. The ARBAC97 model has three components: (1) URA97 which is con-
cerned with user-role assignment, (2) PRA97 with permission-role assignment,
and (3) RRA97 with role-role assignment. The purpose of these components is
to assign administrative authority to security officers and to prevent any illegal
activity from them [4,5]. However, the ARBAC97 model has a lot of shortcom-
ings [6,7]. Its main shortcoming is its authority range for security officers in the
role hierarchy. As a result, unexpected outcomes may take place when a secu-
rity officer modifies the role hierarchy. To prevent this, ARBAC97 puts strict
integrity rules into RRA97, thereby restricting flexible administration.

The ARBAC02 model moves user/permission pool from role hierarchy to or-
ganizational structure [7]. It adopts two separated organizational structures for
user pool and permission pool. However, it does not solve the RRA97 prob-
lem. Furthermore, there is no information on how to manage administrative role
hierarchy.

The Administrative Organization-Based Access Control (AdOr-BAC) model
[9] suggests using the organization for access control. The AdOr-BAC model adds
administrative function to the Or-BAC model [8] which adopts contextual rules
for access control. In spite of AdOr-BAC’s advantages, it does not fully use the
ARBAC feature. Furthermore, there is no clear principle for making contextual
rules and administrative functions in AdOr-BAC. If the chief security officer fails
to make safe rules, there can be no safe access control.

Delegation Methods on the RBAC Model. Barka and Sandhu [11] dis-
cussed some advanced features of the Role-Based Delegation Model (RBDM).
The delegation method used in RBDM is the URA method. Role Delegation
Model 2000 (RDM2000) [12] proposed a rule-based framework and specification
language for role-based delegation. The RDM2000 model also uses the URA
method and additionally, the PRA method for partial delegation. To illustrate,
Fig. 2(a) shows Bob assigning a role PL to Tom. This URA method results in
two disadvantages. One is that Bob cannot delegate a piece of role. The other
is that Tom can inherit the sub-role(s) of the role PL through the inheritance
property of role hierarchy. Fig. 2(b) shows Bob partially assigning the ’con-
firm program’ of role PL to role PE1 which is assigned to Tom. In this PRA
method, another user U1 assigned to role PE1 can access the ’confirm program’.
Consequently, both URA and PRA methods result in the violation of the ’least
privilege principle’.

The Permission-Based Delegation Model (PBDM) [13] solved these role-level
delegation problems in a role- and permission-level delegation way through the

(a) URA method (b) PRA method

Bob

Chang

Tom

PL

PE1

change_schedule

confirm_program

req_program

Bob

Chang

Tom

PL

PE1

change_schedule

confirm_program

req_program

U1

Fig. 2. Simple delegation method in RBAC

596 C. Byun, S. Park, and S. Oh

creation of new delegation roles. However, the PBDM was built on the ARBAC97
model for delegation role administration in which delegation role(s) would be
included in the role hierarchy. In this case, invalid permission inheritance and
user-delegation role assignment may also happen. In Section 3, we will further
elaborate on this problem.

The OS-RBAC Model. The main issue in decentralized security adminis-
tration is the determination of each security officer’s authority range. The OS-
RBAC model is designed for decentralized security administration [10]. It follows
the basic features of the RBAC model and the administrative role/hierarchy of
ARBAC97. The main idea of OS-RBAC is injecting organizational structure to
RBAC for security administration. An organizational structure is a hierarchy
of organizational units. Meanwhile, an organizational unit pertains to a depart-
ment such as the sales department, the accounting department, or a project
team. Each organizational unit involves workers and authority to achieve its
mission. In the OS-RBAC model, workers are identified as users and authority
as permission.

The OS-RBAC model has two sub-models. The Organizational Structure Ad-
ministration Model guides a company to build and modify its organizational
structure. If a security officer SO1 belongs to an organizational unit OU1, SO1
can create a new organizational unit OU2 under OU1, and link OU1 to OU2
by adding an edge between them. Edge OU1 → OU2 denotes that OU1 is a
parent organizational unit of OU2. SO1 can also move users/permissions from
OU1 to OU2 (or from OU2 to OU1). Finally, SO1 can delete OU2. This model
involves administration rules for the above administration activities. These rules
are grouped into three–UOA (user-organization assignment), POA (permission-
organization assignment), and OOA (organization-organization assignment) as
shown in Fig. 3.

Meanwhile, the Role Administration Model states that administration activ-
ities such as creating/deleting a role, assigning users/permissions to the role,
and composing a part of role hierarchy are related to the roles of each security
officer. This model is also composed of administration rules for these adminis-
tration activities. These rules are categorized into three groups: URA (user-role

URA

RRA

PRA

Users

Roles

Admini-

strative

Roles

Permi-

ssions

Admin.

Permi-

ssions

Constraints

Role hierarchy

Administrative

Role hierarchy

OU hierarchy

URA PRA

RRA

Organization

unit

Users

UOA

POA

POA

Permi-

ssions

Admin.

Permi-

ssions

OOA

URA

RRA

PRA

Users

Roles

Admini-

strative

Roles

Permi-

ssions

Admin.

Permi-

ssions

Constraints

Role hierarchy

Administrative

Role hierarchy

OU hierarchy

URA PRA

RRA

Organization

unit

Users

UOA

POA

POA

Permi-

ssions

Admin.

Permi-

ssions

OOA

Fig. 3. The OS-RBAC model combining the Organizational Structure Administration
Model and the Role Administration Model

OS-DRAM: A Delegation Administration Model 597

assignment), PRA (permission-role assignment), and RRA (role-role assignment)
as shown in Fig. 3.

3 Motivation

If the PBDM is supported in the ARBAC97 model, there are two resulting
problems from the fact that a basic security officer’s authority range is a role
hierarchy. One is the position problem of a delegation role in role hierarchy. The
other is the invalid inheritance problem through role hierarchy, which results in
a wrong delegation as shown in Fig. 1(b). We further discuss these problems in
the following paragraphs.

3.1 Position Problem of a Delegation Role in Role Hierarchy

The PBDM has three integrity rules which prevent users from discretionally
accessing the organization’s information. One of them is as follows [13]:

[Integrity rule of PBDM] For each delegation role, there is no senior regular
role: {x ∈ RR | x is a parent role of y ∈ set of Delegation Role } = ∅

Since the PBDM is supported in the ARBAC97 model and since the base
of the security officer’s authority range is a role hierarchy, delegation role(s) is
included in the security officer’s authority range.

Project leader 1 (PL1)

Production

Engineer 1

(PE1)

Quality

Engineer 1

(QE1)

P2

P3

DR1 P1

Project leader 1 (PL1)

Production

Engineer 1

(PE1)

Quality

Engineer 1

(QE1)

P1

P2

P3

DR1 P1

Project leader 1 (PL1)

Production

Engineer 1

(PE1)

Quality

Engineer 1

(QE1)

P1

P2

P3

DR1

P1

(a) Independent of a regular role

b) Parent of a regular role (c) Child of a regular role

Fig. 4. Relationship between delegation role and regular role

Fig. 4 shows three cases with respect to the position of a delegation role in role
hierarchy. Fig. 4(b) shows that a delegation role DR1 is the parent role of a regu-
lar role PL1. In this case, a delegatee assigned to DR1 can get invalid permissions
assigned to PL1 and sub-roles PE1 and QE1 by the inheritance property of role
hierarchy. Thus, this approach is not reasonable. Fig. 4(c) shows DR1 as a child
role of PL1. This case prevents DR1 from getting invalid permissions. However,
this approach leads to an administrative problem. Others who are assigned to
PL1 get the authority of DR1. Fig. 4(a) shows that DR1 is separated from the
role hierarchy. This case does not lead to the invalid inheritance of Fig. 4(b) and
the invalid user-delegation role assignment of Fig. 4(c). However, the insertion
of a delegation role which has no parent/child is not permitted in the RRA97
sub-model of the ARBAC97 model because this case makes the delegation role
not to belong to any authority ranges.

598 C. Byun, S. Park, and S. Oh

3.2 Deviation of Delegation from the Authority Range

The ARBAC97 and ARBAC02 models need administrative data. Data-based
administration involves at least three problems. First, there may be integrity
problems in the administrative data. If there are wrong administrative data
stored, some security officers can do illegal administration. A more serious prob-
lem is that there is no criterion to find wrong administrative data. Data in-
tegrity is wholly the responsibility of the senior security officer. Second, there
may be inconsistency among the administrative data. Third, there can be an
illegal modification of the administrative data. In general, administrative data
are separately stored from the access control module. A malicious security offi-
cer may modify administrative data if the system is vulnerable. These problems
directly affect the can-delegate constraint because this constraint is closely re-
lated to can-assign and can-assignp administrative data. The PBDM defines the
can-delegate constraint as follows: (r1, cr, s, n) ∈ can-delegate.

This means that a user assigned to a role r1 (or a role senior to the r1)
can delegate a set of permissions (delegation range) s through the inheritance
property of role hierarchy.

Users assigned to the role PE1 or a role senior to PE1 (e.g., PL1 and DIR)
may be a delegator. Users assigned to the role ED or a role senior to ED (e.g., E1,
PE1, QE1, PL1, E2, PE2, QE2, PL2, and DIR) may be a delegatee. Thus, this
can-delegate constraint allows bottom-up and top-down delegations. However,
bottom-up delegation leads to illegal information flow.

Fig. 5. The can-delegate constraint and an example of deviation of delegation

There exists another problem in the can-delegate constraint. For example,
suppose that Tom delegates ’req program’ to John who is assigned to a role
PE2. This delegation is permitted because PE2 is senior to ED, and John is
assigned to PE2. In this case, John may not properly use Tom’s authority because
Tom’s administration role is PSO1, but John is beyond PSO1’s authority range.
The right side of Fig. 5 depicts this case. If the type of Tom’s delegation is
’backup of role,’ it is not reasonable. However, if the type of Tom’s delegation
is ’collaboration of work’, it may be permitted. Therefore, different delegation
policies are required for ’backup of role’ delegation and ’collaboration of work’
delegation.

OS-DRAM: A Delegation Administration Model 599

4 An Integrated Management Model of OS-RBAC and
Delegation Policy

Our delegation policy is as follows: First, if a user who is not a security ad-
ministrator wants to delegate his/her task, he/she can create a delegation role
and specify the initial value of the ’DR.org unit’ which is capable of including
delegating permissions. Second, the user who created the delegation role in the
previous step assigns his/her permissions to the delegation role. Finally, the user
de-escalates the ’org unit’ of the delegation role and the permissions in the del-
egation role, and assigns the delegation role to other users. Fig. 6 shows the
OS-DRAM to support this user-level delegation policy.

Fig. 6. The OS-DRAM

Before we describe the delegation policy, we first define common terms in the
OS-DRAM.

• OT: set of organizational unit ot.
• U: set of user u.
- u.org unit : attribute that contains an organizational unit.
• P: set of permission p.
- p.org unit : attribute that contains an organizational unit.
- p.type: attribute that contains one of the ’GPs’(general permissions or

’APs’(administrative permissions).
• R: set of role r.
- r.org unit : attribute that contains an organizational unit.
- r.type: attribute that contains one of the ’GRs’(general roles) or

’ARs’(administrative roles).
- r.group: attribute that contains one of the ’DRs’(department roles) or

’JRs’(job roles).
• DR: set of delegation role dr.
- dr.org unit :attribute that contains a delegatee’s organizational unit.
- dr.type: attribute that contains one of the ’GRs’(general roles) or

’ARs’(administrative roles).

600 C. Byun, S. Park, and S. Oh

- dr.creator : attribute that contains a tuple(user’s ID, regular role).
- dr.d type: attribute that contains one of the delegation type

’C’(Collaboration of work) or ’B’(Backup of role).
• R = RR ∪ DR: RR means regular roles in the OS-RBAC model.
• RR ∩ DR = ∅.
• Permission(r): R → 2P , a function mapping a role (regular role or

delegation role) to a set of permissions.
• Set:U(user data set),R(role data set),P(permission data set),URA

(user − role data set),PRA(permission − role data set).
– ∃dr ∈ DR, (dr.creator = (du, rr)) ∧ ((du, rr) ∈ URA) → Permissions(dr) ∈

Permission(rr).
- If a delegator du generates a delegation role dr, du can only delegate

permissions assigned to his/her own regular role rr. That is, permissions
inherited from sub-roles cannot be assigned to any delegation role.

4.1 Rules in Generating a Delegation Role

[D-Rule 1] (Create a delegation role) A delegator DU who is a member of a
regular role r can create a delegation role DR. DU should specify the values of
DR.org unit, DR.type, DR.creator, and DR.d type subject to:

(DU.org unit ≥ DR.org unit) ∧ (DR.creator = (DU, r))

[D-Rule 2] (Delete a delegation role) The DU can delete the DR subject to:
(DR.creator = (DU, r)) ∧ (DU.org unit ≥ DR.org unit)

4.2 PDRA (Permission-Delegation Role Assignment) Rules

[D-Rule 3] (Assign a delegating permission) A delegator DU can assign a
permission p to DR subject to:

(DR.creator = (DU, r))∧((DU, r) ∈ URA)∧((p, r) ∈ PRA)∧(DU.org unit ≥
DR.org unit) ∧ (DR.org unit ≥ p.org unit) ∧ (DR.type = p.type)

[D-Rule 4] (Revoke a delegated permission) DU can revoke a permission p
from DR subject to:

(DR.creator = (DU, r)) ∧ (DU.org unit ≥ DR.org unit)

4.3 UDRA (User-Delegation Role Assignment) Rules

If a delegator wants to assign a delegatee to a delegation role, He/she should
de-escalate the initial organizational units of both the delegation role and the
permissions in the delegation role.

[D-Rule 5] (De-escalate a delegation role and permissions in the delegation
role) A delegator DU can de-escalate an organizational unit of a delegation role
DR and a permission p in DR in order to assign a delegatee DDU to DR subject
to:

(DR.creator = (DU, r)) ∧ (DU.org unit ≥ DR.org unit) ∧ (DDU.org unit ≥
DR.org unit) ∧ (DU.org unit ≥ p.org unit) ∧ (DDU.org unit ≥ p.org unit)

OS-DRAM: A Delegation Administration Model 601

[D-Rule 6] (Assign a delegatee) DU can assign DDU to DR subject to:
(DR.creator = (DU, r)) ∧ (DU.org unit ≥ DDU.org unit) ∧ (DDU.org unit ≥

DR.org unit)

[D-Rule 7] (Revoke a delegatee) DU can revoke DDU from DR subject to:
(DR.creator = (DU, r)) ∧ (DU.org unit ≥ DDU.org unit) ∧ (DU.org unit ≥

DR.org unit)

4.4 Delegation Authorization and Additional Integrity Rule

In delegation authorization, the goal of the can-delegate constraint is to restrict
the range of delegation activity. In the OS-DRAM, a security officer should
select who and what belongs to his/her own organizational unit or its child or-
ganizational units. We call it the ’integrity rule of generating can-delegate
constraints’.

• Extension to the can-delegate constraint :(rr, pc, s, n) ∈ can-delegate
A user assigned to a role rr (or a role senior to rr) can delegate a set of permis-

sions (delegation range) s to others who satisfy the pre-requisite condition
pc. In addition, re-delegation is permitted within the maximum depth of
delegation n. This generation of the can-delegate constraint can be
run within the same security officer’s authority range.

[D-Rule 8] (Generate the can-delegate constraint)
(SO.org unit ≥ rr.org unit) ∧ (SO.org unit ≥ max{pc.org unit}) ∧ ((∃u1,

u2 ∈ U , (u1, rr), (u2, pc) ∈ URA → (u1.org unit ≥ max{pc.org unit})) ∧
(u1.org unit ≥ u2.org unit))∧(∃{s} ⊆ P , rr.org unit ≥ max{s.org unit})∧({s} ⊆
Permission(rr))

Another additional rule is a delegation type [13]. The ’backup of role’ delega-
tion type should be dealt with in a security officer’s authority range. However,
the ’collaboration of work’ delegation type may be dealt with beyond a security
officer’s authority range. A senior security officer manages this delegation.

[D-Rule 9] (Two types of delegation policy) If the delegation type is ’backup
of role’, the delegation is managed by a delegating user. If the delegation type is
’collaboration of work’, the delegation is managed by a security officer who can
be responsible for the delegation. In addition, [D-Rule 8] is disregarded.

- (DR.d type =′ B′) ∧ (DR.creator = (DU, r))
- (DR.d type= ′C′)∧(DR.creator = (SO(security officer), administrativerole)

∧ ([D − Rule8]isdisregarded)

5 Scenarios Forbidding Illegal Delegation Role
Administration

The purpose of each delegation rule is to prevent individual users from per-
forming unauthorized activities, and to keep the integrity of the can-delegate

602 C. Byun, S. Park, and S. Oh

SO1 SO2

DSO

user role

legal delegation illegal delegation

u1

u2

u3

u4

r1

r2

r3

r4

r5

u5

DSO

SO1 SO2

org. unitorg. unitorg. unitorg. unit

DRDR Delegation role

DRDR

DRDR

DRDR

DRDR

C

C

B

B

B

B

B

B

DRDR

u6

r7

u7

DRDR

B: backup of role C: collaboration of work

Fig. 7. The OS-DRAM

constraint. Fig. 7 shows an example of legal and illegal delegation. If a user U1
delegates parts of his/her own permissions to a user U2, and the can-delegate
constraint allows this delegation process, it is a legal delegation. If the delegation
type is ’collaboration of work’, U1 can delegate parts of his/her own permissions
to a user U5, within the organizational unit, DSO. However, the delegating entity
is a security officer DSO and not U1.

We assume that there exist URA and PRA as follows:
(U1, r1), (U7, r7) ∈ URA, (p1, r1) ∈ PRA.
Suppose that U1 tries to illegally delegate some tasks. There exist some ex-

amples of illegal delegation as follows:

1) U1 tries to delegate his/her own permissions, which belong to SO1’s author-
ity range, to user U4 who does not belong to SO1’s authority range.

2) U1 tries to delegate permissions, which do not belong to SO1’s authority
range, to a user U6 who belongs to SO1’s authority range.

3) U1 tries to delegate permissions, which do not belong to SO1’s authority
range, to a user U3 who does not belong to SO1’s authority range.

The first case is prevented by U1.org unit ≥ U2.org unit in [D-Rule 6], while
the second case is prevented by U1.org unit ≥ DR.org unit in [D-Rule 3]. The
third case is also prevented by U1.org unit ≥ DR.org unit in [D-Rule 1],
DR.org unit ≥ target permission.org unit in [D-Rule 3], and U1.org unit ≥
U3.org unit in [D-Rule 1]. Similarly, we can detect the delegation activities which
are able to get out of the security officer’s authority range from [D-Rule 1] to
[D-Rule 7]. However, we cannot detect disallowed delegation activities in the
same security officer’s authority range. Nevertheless, these delegation activities
are detected by the can-delegate constraints.

We assume that there exists a can-delegate constraint which is as follows:
(r1, r2, p1, 1) ∈ can-delegate.
Suppose that U1 tries to delegate parts of his/her own permissions, which

belongs to SO1’s authority range, to a user U7 who belongs to SO1’s authority

OS-DRAM: A Delegation Administration Model 603

range. This delegation process is trivially illegal because this can-delegate con-
straint explains that a delegatee should be assigned to a role r2. Now we observe
the integrity problem of generating the can-delegate constraint.

4) Security officer SO1 tries to add the can-delegate constraint, (r3, r1, p3, 1)
5) Security officer SO1 tries to add the can-delegate constraint, (r1, r4, p1, 1)
6) Security officer SO1 tries to add the can-delegate constraint (r1, r6, p4, 1)

The fourth to sixth cases are prevented by [D-Rule 8], respectively.

Case 4: SO1.org unit ≥ r3.org unit (r3 is not a regular role of SO1),
Case 5: SO1.org unit ≥ r4.org unit (r4 is not included in SO1’s authority

range),
Case 6: {p4} ⊆ {p1} (p1 is a unique permission of the regular role r1).

However, if the type of delegation is ’collaboration of work’ [13], the delegation
can be performed not by U1 but by a responsible senior security officer, DSO.
We can review other delegation administration rules in a similar way, but for
brevity’s sake, we have omitted their reviews.

6 Conclusion

In this paper, we presented a new integrated management model, the OS-DRAM
which satisfies the needs of delegation role administration and delegation policy
in large decentralized organizations or information systems. Although delega-
tion raises the degree of availability of individual users’ access rights, it violates
confidentiality and integrity in a distributed environment. Therefore, if the de-
centralized administrative access control model has no suitable way to control
delegation, it may excessively restrict availability, or infringe upon confidentiality
and integrity.

The main reasons why the OS-DRAM can support efficient decentralized ac-
cess control management and available delegation policy are the separation of
authority range and role hierarchy. Organizational structure plays on the bound-
ary of delegation activity.

As a result, the OS-DRAM supports a decentralized user-level delegation in
which individual users can freely delegate their authorities to other users within
a security officer’s authority range and without the security officer’s intervention.
This paper followed the multi-step delegation method of the PBDM. However,
multi-step delegation is very difficult to perform. We will probe further as to what
constitutes a secure multi-step delegation. In addition, we will add the ’Separation
of Duty’ constraint when a delegation role has two or more regular roles.

Acknowledgements

This research was supported by the MIC(Ministry of Information and Com-
munication), Korea, under the ITRC(Information Technology Research Center)
support program supervised by the IITA(Institute of Information Technology
Assessment).

604 C. Byun, S. Park, and S. Oh

References

1. D. Ferraio, J. Cugini, and R. Kuhn, ”Role-based Access Control (RBAC): Features
and motivations”, Proc. of 11th Annual Computer Security Application Confer-
ence, pp. 241-248, Dec. 1995.

2. R.Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, ”Role-Based Access
Control Method”, IEEE Computer, vol.29, pp. 38-47, Feb. 1996.

3. R. Sandhu, D. Ferraiolo, and D. Kuhn, ”The NIST model for role-based access
control: towards a unified standard”, Proc. of Fifth ACM Workshop on Role-Based
Access Control, pp. 47-63.

4. R. Sandhu, V. Bhamidipati, and Q. Munawer, ”The ARBAC97 model for role-
based admini-stration of roles”, ACM Trans. Inf. And Syst. Sec. 1, 2, pp. 105-135.

5. S. I. Gavrila and J. F. Barkley, ”Formal Specification for Role Based Access Con-
trol User/Role and Role/Role Relationship Management”, Proc. of the 3rd ACM
workshop on Role-Based Access Control, pp. 81-90, 1998.

6. R. Sandu, Q. Munawer, ”The ARBAC99 Model for Administrative Roles”, 15th
Annual Conputer Security Applications Conference, pp. 229-240, Dec. 1999.

7. S. Oh and R. Sandhu, ”A Model for Role Administration Using Organization Struc-
ture”, Proc. of the 7th ACM Symposium on Access Control Models and Technolo-
gies (SACMAT 2002), pp. 155-162, June 2002.

8. F. Cuppens, P. Balbiani, S. Benferhat, Y. Deswarte, A. Abou El Kalam, R. El-
baida, A. Mige, C. Saurel, and G. Trouessin, ”Organization Based Access Control”,
Proc. of IEEE 4th Inter-national Workshop on Policies for Distributed Systems and
Networks (POLICY 2003), pp. 120-130, Jun. 2003.

9. F. Cuppens and A. Mige, ”Administration Model for Or-BAC”, Workshop on Meta-
data for Security, International Federated Conference (OTM’03), pp. 754-768, Nov.
2003.

10. S. Oh, C. Byun, and S. Park, ”An Organizational Structure-Based Administra-
tion Model for Decentralized Access Control”, Journal of Information Science and
Engineering, 2005(submitted).

11. E. Barka and R. Sandhu, ”A Role-Based Delegation Model and Some Extensions”,
Proc. Of 23rd National Information Systems Security Conference (NISSC) 2000.

12. Longhua Zhang, Gail-Joon Ahn, Bei-Tseng Chu, ”A Rule-Based Framework for
Role-Based Delegation and Revocation”, ACM Transactions on Information and
System Security, Vol.6, No.3, pp.404-441, Aug. 2004.

13. Xinwen Zhang, Sejong Oh and Ravi Sandhu, ”PBDM: A Flexible Delegation Model
in RBAC”, Proc. 8th ACM Symposium on Access Control Models and Technologies
(SACMAT), pp.149-157, 2003.

Author Index

Álvarez, Manuel 252

Bae, Hae Young 362
Bao, Shenghua 97
Bao, Yubin 557
Böttcher, Stefan 300
Byun, Changwoo 593

Cao, Feng 372
Chang, Jae-Woo 13
Chen, Baichen 397
Chen, Erdong 97
Chen, Gang 422
Chen, Jidong 158
Chen, Lijun 109
Chen, Shyh-Kwei 1
Chen, Zhifeng 287
Chi, Chi-Hung 182
Cui, Bin 422

Dai, Wenyuan 435
Deng, Bo 496
Deng, Shuiguang 240
Dobbie, Gillian 520
Dong, Guozhu 109
Dong, Jinxiang 422
Du, Xiaoyong 544

Feng, Jianhua 447
Feng, Yaokai 49

Gao, Jun 36, 275
Gao, Song 362
Gonçalves, Alexandre 122
Gong, Zhiguo 134

Han, Donghong 472
Han, Jiawei 484
Han, Jie 435
He, Jun 484
Hidalgo, Justo 252
Huang, Liusheng 217
Huang, Zeqian 569
Hui, Xiaoyun 61, 472

Huo, Huan 61, 472
Hwang, Chong-Sun 26

Im, SeokJin 26

Ji, Wenhao 569
Jia, Yan 496
Jin, Long 349

Kang, Sang-Won 26
Kim, Gyoung Bae 362
Kim, Ho Seok 362
Kim, Jongwan 26
Kong, Lingbo 36

Lai, Caifeng 158
Lee, Yongmi 349
Leng, Fangling 557
Li, Benzhao 158
Li, Chuan 532
Li, Jianxin 508
Li, Jingtao 205, 460
Li, Juanzi 85
Li, Qing 217, 263
Li, Rui 97
Li, Ying 240
Li, Yu 263
Li, Yuan Fang 520
Li, Zude 193
Liao, Yuguo 447
Lin, Pei-chun 229
Lin, Yaping 337
Ling, Yanyan 73
Liu, An 217
Liu, Bing 146, 205, 410, 460
Liu, Chengfei 508, 581
Liu, Hongyan 484
Liu, Lin 182
Liu, Qian 134
Liu, Yintian 532
Liu, Yuntao 557
Long, Min 97
Lu, Ying 484
Luo, Min 569

606 Author Index

Makinouchi, Akifumi 49
Meng, Weiyi 73
Meng, Xiaofeng 73, 158, 263
Mu, Su 182

Oh, Sejong 593
Ouyang, Jingcheng 337

Pacheco, Roberto 122
Pan, Alberto 252
Park, Seog 593
Peng, Zhaohui 385
Peng, Zhiyong 569

Qian, Qian 447
Qin, Biao 544
Qin, Lu 385

Raposo, Juan 252
Ryu, Keun Ho 349

Seo, Sungbo 349
Shi, Baile 146, 410, 460
Shi, Yuliang 410
Shou, Lidan 422
Song, Dawei 122
Sun, Jing 520
Sun, Jun 520
Sun, Weiwei 313

Tang, Changjie 532
Tang, Jie 85
Tang, Shiwei 36
Tung, Anthony K.H. 372

Um, Jung-Ho 13
Uren, Victoria 122

Wang, Daling 557
Wang, Di 397
Wang, Guoren 61, 397, 472
Wang, Hai H. 520
Wang, HongGuang 182
Wang, Jiliang 337
Wang, Liping 263
Wang, Liwei 569
Wang, Min 325

Wang, Qian 205
Wang, Shan 385, 544
Wang, Tengjiao 36, 275
Wang, Wei 146, 313, 410, 460
Wang, Xiaoyuan 313
Wang, X. Sean 325
Wang, Xueping 205
Wang, Zhihui 146, 410, 460
Wu, Jian 240
Wu, Kun-Lung 1
Wu, Qingquan 397
Wu, Zhaohui 240

Xiao, Chuan 61, 472
Xia, Ying 362
Xu, Hui 85
Xue, Gui-Rong 435

Yang, Dongqing 36, 275
Yang, Shuqiang 496
Yang, Zaihan 581
Ye, Xiaojun 193
Yu, Ge 557
Yu, Philip S. 1
Yu, Yong 97, 435
Yu, Yongqian 61

Zeng, Tao 532
Zhan, Guoqiang 193
Zhang, Cong-Le 435
Zhang, Gendu 205
Zhang, Jianming 337
Zhang, Jingbai 134
Zhang, Jun 385
Zhang, Kuo 85
Zhang, Lei 97
Zhang, Yan 287
Zhao, Yi 397
Zhou, Aoying 372
Zhou, Haofeng 146
Zhou, Lizhu 447
Zhou, Rui 61, 472
Zhou, Siwang 337
Zhou, Yuanyuan 287
Zhu, Jianhan 122
Zhu, Minfang 532
Zhu, Qing 170

	Frontmatter
	Indexing
	On-Demand Index for Efficient Structural Joins
	An Efficient Indexing Scheme for Moving Objects' Trajectories on Road Networks
	Spatial Index Compression for Location-Based Services Based on a MBR Semi-approximation Scheme

	XML Query Processing
	KCAM: Concentrating on Structural Similarity for XML Fragments
	A New Structure for Accelerating XPath Location Steps
	Efficient Evaluation of Multiple Queries on Streamed XML Fragments

	Information Retrieval I
	Automated Extraction of Hit Numbers from Search Result Pages
	Keyword Extraction Using Support Vector Machine
	LSM: Language Sense Model for Information Retrieval

	Information Retrieval II
	Succinct and Informative Cluster Descriptions for Document Repositories
	LRD: Latent Relation Discovery for Vector Space Expansion and Information Retrieval
	Web Image Retrieval Refinement by Visual Contents

	Sensor Networks and Grid Computing
	An Effective Approach for Hiding Sensitive Knowledge in Data Publishing
	Tracking Network-Constrained Moving Objects with Group Updates
	Dynamic Configuring Service on Semantic Grid

	Peer-to-Peer
	Object Placement and Caching Strategies on AN.P2P
	Role-Based Peer-to-Peer Model: Capture Global Pseudonymity for Privacy Protection
	A Reputation Management Scheme Based on Global Trust Model for Peer-to-Peer Virtual Communities

	Web Services
	QoS-Aware Web Services Composition Using Transactional Composition Operator
	Optimizing the Profit of On-Demand Multimedia Service Via a Server-Dependent Queuing System
	Service Matchmaking Based on Semantics and Interface Dependencies

	Web Searching
	Crawling Web Pages with Support for Client-Side Dynamism
	{\itshape RecipeCrawler:} Collecting Recipe Data from WWW Incrementally
	CCWrapper: Adaptive Predefined Schema Guided Web Extraction

	Caching and Moving Objects
	MiniTasking: Improving Cache Performance for Multiple Query Workloads
	Cache Consistency in Mobile XML Databases
	Bulkloading Updates for Moving Objects

	Temporal Database
	Finding the Plateau in an Aggregated Time Series
	Compressing Spatial and Temporal Correlated Data in Wireless Sensor Networks Based on Ring Topology
	Discovery of Temporal Frequent Patterns Using TFP-Tree

	Clustering
	DGCL: An Efficient Density and Grid Based Clustering Algorithm for Large Spatial Database
	Scalable Clustering Using Graphics Processors
	TreeCluster: Clustering Results of Keyword Search over Databases

	Clustering and Classification
	A New Method for Finding Approximate Repetitions in DNA Sequences
	Dynamic Incremental Data Summarization for Hierarchical Clustering
	Classifying E-Mails Via Support Vector Machine

	Data Mining
	A Novel Web Page Categorization Algorithm Based on Block Propagation Using Query-Log Information
	Counting Graph Matches with Adaptive Statistics Collection
	Tight Bounds on the Estimation Distance Using Wavelet

	Data Stream Processing
	Load Shedding for Window Joins over Streams
	Error-Adaptive and Time-Aware Maintenance of Frequency Counts over Data Streams
	Supporting Efficient Distributed Top-k Monitoring

	XML and Semistructured Data
	Designing Quality XML Schemas from E-R Diagrams
	Validating Semistructured Data Using OWL

	Data Distribution and Query Processing
	Dynamic Data Distribution of High Level Architecture Based on Publication and Subscription Tree
	A Framework for Query Reformulation Between Knowledge Base Peers
	An Efficient Indexing Technique for Computing High Dimensional Data Cubes

	Advanced Applications
	A Scientific Workflow Framework Integrated with Object Deputy Model for Data Provenance
	On the Development of a Multiple-Compensation Mechanism for Business Transactions
	OS-DRAM: A Delegation Administration Model in a Decentralized Enterprise Environment

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

