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Abstract. In this paper we present the first set of approximation and
inapproximability results for the Exemplar Breakpoint Distance Prob-
lem. Our inapproximability results hold for the simplest case between
only two genomes G and H, each containing only one sequence of genes
(possibly with repetitions).
– For the general Exemplar Breakpoint Distance Problem, we prove

that the problem does not admit any approximation unless P=NP;
in fact, this result holds even when a gene appears in G (H) at most
three times.

– Even on a weaker definition of approximation (which we call weak
approximation), we show that the problem does not admit a weak
approximation with a factor m1−ε, where m is the maximum length
of G and H.

– We present a factor-2(1 + log n) approximation for an interesting
special case, namely, one of the two genomes is a k-span genome (i.e.,
all genes in the same gene family are within a distance k = O(log n)),
where n is the number of gene families in G and H.

1 Introduction

In the genome comparison and rearrangement area, a standard problem is to
compute the number (i.e., genetic distances) and the actual sequence of genetic
operations needed to convert a source genome to a target genome. This problem
is important in evolutionary molecular biology. Typical genetic distances include
edit [15], signed reversal [18, 16, 1] and breakpoint [23], etc. (The idea of signed re-
versal and, implicitly, breakpoint, was initiated as early as in 1936 by Sturtevant
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and Dobzhansky [21].) Recently, conserved interval distance was also proposed
to measure the similarity of multiple sequences of genes [4]. (Interested readers
are referred to [11, 12] for a summary of the research performed in this area.)

Until very recently, in genome rearrangement research, it is always assumed
that each gene appears in a genome exactly once. Under this assumption, the
genome rearrangement problem is in essence the problem of comparing and sort-
ing signed permutations [11, 12]. However, this assumption is very restrictive and
is only justified in several small virus genomes. For example, this assumption does
not hold on eukaryotic genomes where paralogous genes exist [17, 20]. On the one
hand, it is important in practice to compute genomic distances, e.g., Hannenhalli
and Pevzner’s method [11], when no gene duplications arise; on the other hand,
one might have to handle this gene duplication problem as well. In 1999, Sankoff
proposed a way to select, from the duplicated copies of genes, the common ances-
tor gene such that the distance between the reduced genomes (exemplar genomes)
is minimized [20]. A general branch-and-bound algorithm was also implemented
in [20]. Recently, Nguyen, Tay and Zhang proposed to use a divide-and-conquer
method to compute the exemplar breakpoint distance empirically [17].

For the theoretical part of research, it was shown that computing the signed
reversals and breakpoint distances between exemplar genomes are both NP-
complete [2]. Recently, Blin and Rizzi further proved that computing the con-
served interval distance between exemplar genomes is NP-complete [3]; more-
over, it is NP-complete to compute the minimum conserved interval matching
(i.e., without deleting the duplicated copies of genes). Before this work, there
has been no formal theoretical results on the approximability of the exemplar
genomic distance problems except the NP-completeness proofs [2, 3].

In this paper, we present the first set of inapproximability and approxima-
tion results for the Exemplar Breakpoint Distance problem, given two genomes
each containing only one sequence of genes drawn from n identical gene fami-
lies. (Some of the results hold subsequently for the Exemplar Reversal Distance
problem.) For the One-sided Exemplar Breakpoint Distance Problem, which is
also known to be NP-complete, we obtain a factor-2(1 + logn), polynomial-time
approximation. The approximation algorithm follows the greedy strategy for
Set-Cover, but constructing the family of sets is non-trivial and is related to a
new problem of longest constrained common subsequences which is related to but
different from the recently studied constrained longest common subsequences [5].

2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes1. The order of the genes
corresponds to the position of them on the linear chromosome and the signs
correspond to which of the two DNA strands the genes are located. While most
of the past research are under the assumption that each gene occurs in a genome
1 In general a genome could contain a set of such sequences. The genomes we focus in

this paper are typically called singletons.
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once, this assumption is problematic in reality for eukaryotic genomes or the
likes where duplications of genes exist [20]. Sankoff proposed a method to select
an exemplar genome, by deleting redundant copies of a gene, such that in an ex-
emplar genome any gene appears exactly once; moreover, the resulting exemplar
genomes should have a property that certain genetic distance between them is
minimized [20].

The following definitions are very much following those in [3]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that
each element is with a sign (+ or −). In general, we allow the repetition of a
gene family in any genome. Each occurrence of a gene family is called a gene,
though we will not try to distinguish a gene and a gene family if the context
is clear. Given a genome G = g1g2...gm with no repetition of any gene, we say
that gene gi immediately precedes gj if j = i + 1. Given genomes G, H , if gene
a immediately precedes b in G and neither a immediately precedes b nor −b
immediately precedes −a in H , then they constitute a breakpoint in G. The
breakpoint distance is the number of breakpoints in G (symmetrically, it is the
number of breakpoints in H).

The number of a gene g appearing in a genome G is called the cardinality of
g in G, written as card(g, G). A gene in G is called trivial if g has cardinality
exactly 1; otherwise, it is called non-trivial. In this paper, we assume that all the
genomes we discuss could contain both trivial and non-trivial genes. A genome G
is called r-repetitive, if all the genes from the same gene family appear at most r
times in G. A genome G is called a k-span genome, if all the genes from the same
gene family are within distance at most k in G. For example, G = −adc − bdaeb
is 2-repetitive and it is a 5-span genome.

Given a genome G = g1g2 · · · gm, an interval [gi, gj] is simply the substring
gigi+1 · · · gj (which will also be denoted as G[i, j]). Example: given G′ = bdc−ag−
e−fh, G′′ = bdce−gafh, between the interval I1 = dc−ag−e−f, I2 = dce−gaf ,
there are 2 breakpoints. A signed reversal on a genome G simply reverses the
order and signs of all the elements in an interval of G. In the previous example,
if a signed reversal operation is conducted on I1 then we obtain a new genome
G∗ = bfe − ga − c − dh. (All the reversals concerned in this paper are signed
reversals. Henceforth, we simply use reversal to make the presentation simpler.)
The reversal distance between genomes G and H is the minimum number of
reversals to transfer G into H .

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears
exactly once in G′. For example, let G = bcaadagef there are two exemplar
genomes: bcadgef and bcdagef .

The Exemplar Breakpoint (Reversal) Distance Problem is defined as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.

Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the breakpoint (reversal) distance between them is at most K?
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In the next three sections, we present inapproximability/approximation re-
sults for the optimization versions of these problems, namely, to compute or
approximate the minimum value K in the above formulation. Given a mini-
mization problem Π , let the optimal solution of Π be OPT . We say that an
approximation algorithm A provides a performance guarantee of α for Π if for
every instance I of Π , the solution value returned by A is at most α × OPT .
(Usually we say that A is a factor-α approximation for Π .) Typically we are
interested in polynomial time approximation algorithms.

In many biological problems, the optimal solution value OPT could be zero.
(For example, in some minimum recombination haplotype reconstruction prob-
lems the optimal solution could be zero.) In that case, if computing such a zero
optimal solution value is NP-complete then the problem does not admit any
approximation (unless P=NP). However, in reality one would be happy to ob-
tain a solution with value one or two. Due to this reason, we relax the above
(traditional) definition of approximation to a weak approximation. Given a mini-
mization problem Π , let the optimal solution of Π be OPT . We say that a weak
approximation algorithm B provides a performance guarantee of α for Π if for
every instance I of Π , the solution value returned by B is at most α×(OPT +1).

3 Inapproximability Bounds

In this section, we present a series of inapproximability bounds on the Exemplar
Breakpoint Distance Problem.

Theorem 1. If both G and H are 2-repetitive genomes, then the Exemplar
Breakpoint Distance Problem cannot be approximated within a factor 1.36.

Proof. We use a reduction from Vertex Cover to the Exemplar Breakpoint Dis-
tance Problem in which each gene appears in G (H) at most twice. Dur and
Safra proved that Vertex Cover cannot be approximated within a factor 1.36 [9].

Given a graph T = (V, E), V = {v1, v2, · · · , vn}, E = {e1, e2, · · · , em}, we
construct G and H as follows. (We assume that the vertices and edges are sorted
by their corresponding indices.) Let Ai be the sorted sequence of edges incident
to vi and −Ai be the signed reversal of Ai. (# is not a gene and is used only for
the readability purpose.)

G : A1#A2# · · · #An−1#An

H : −A1# − A2# · · ·# − An−1# − An

We claim that T has a vertex cover of size K iff the exemplar breakpoint
distance between G and H is K − 1.

If T has a vertex cover of size K, then the claim is trivial. Firstly, construct
the exemplar genomes G, H as follows. For all i, if vi is in the vertex cover, then
leave Ai in G and −Ai in H and delete all Aj , −Aj in G, H for which vj is not in
the vertex cover of T . Finally, if ei appears twice in the current genomes G and
H, say in As, At, then delete one copy of ei in either As or At arbitrarily (say
in As), and delete the corresponding copy of −ei in −As. The final exemplar
genomes obtained, G and H , obviously have a breakpoint distance of K − 1. In
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fact, a breakpoint in G, H can only occur at the # positions—between some Ai

and Aj in G (−Ai and −Aj in H).
If the exemplar breakpoint distance between G and H is K −1, the first thing

to notice is that there is no breakpoint in Ai and −Ai; in other words, deleting
ej in Ai inconsistently (say, by deleting ej in Ai and deleting −ej in −As instead
of in −Ai) would increase the number of breakpoints in the exemplar genomes
G, H . Therefore, we can obtain a pair of exemplar genomes G, H by enforcing the
breakpoints to be in between Ai and Aj in G (and symmetrically, −Ai and −Aj

in H), with all redundant edges between them deleted. Clearly, the remaining
Ai’s in G (and −Ai’s in H) correspond to a vertex cover of size K in T .
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Fig. 1. Illustration of a simple graph for the reduction

In the example shown in Figure 1, we have
G : e1e2#e2e3e4#e1#e3e5#e4e5 and
H : −e2 − e1# − e4 − e3 − e2# − e1# − e5 − e3# − e5 − e4.

Corresponding to the optimal vertex cover {v1, v2, v5}, we have G : e1e2#e3e4#e5
and H : −e2 − e1# − e4 − v3# − e5. ��

Corollary 1. If both G and H are 2-repetitive, then the Exemplar Reversal Dis-
tance Problem cannot be approximated within a factor 1.36.

In [17] it was claimed that the Exemplar Breakpoint Distance Problem cannot
be approximated within a constant factor. But the proof, which was included in
Nguyen’s thesis, in fact implies a stronger c log n inapproximability bound as the
reduction was from Set Cover. We extend Theorem 3.1 below to obtain a much
simpler and clean proof of the c log n inapproximability bound, even though this
is not the strongest inapproximability bound in this section.

Corollary 2. The Exemplar Breakpoint Distance Problem cannot be approxi-
mated within a factor c log n, for some constant c > 0.

Proof. Similar to the proof of Theorem 3.1, we use a reduction from Dominating
Set to the Exemplar Breakpoint Distance Problem in which each gene appears
in G (H) as many as n − 1 times. Raz and Safra proved that Dominating Set
cannot be approximated within a factor c log n, for some c > 0 [19].

Given a graph T = (V, E), V = {v1, v2, · · · , vn}, E = {e1, e2, · · · , em}, we
construct G and H as follows. (We assume that the vertices and edges are sorted
by their corresponding indices.) Let Bi be the sorted sequence of vertices incident
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to vi and −Bi be the signed reversal of Bi. (# is not a gene and is again used
only for the readability purpose.)

G : v1B1#v2B2# · · · #vn−1Bn−1#vnBn

H : −B1 − v1# − B2 − v2# · · · # − Bn−1 − vn−1# − Bn − vn

We claim that T has a dominating set of size K iff the exemplar breakpoint
distance between G and H is K − 1.

If T has a dominating set of size K, then the claim is again trivial. Firstly, con-
struct the exemplar genomes G, H as follows. For all i, if vi is in the dominating
set, then leave viBi in G and −Bi − vi in H and delete all other vjAj , −Aj − vj

in G, H for which vj is not in the dominating set of T . Finally, if vi appears x
times in the current genomes G and H, then arbitrarily delete x − 1 copies of
vi in all vsBs which contains vi, and delete the corresponding copy of −vi in
−Bs − vs. The final exemplar genomes obtained, G and H , obviously have a
breakpoint distance of K −1. In fact, a breakpoint in G, H can only occur at the
# positions—between some viBi and vjBj in G (−Bi − vi and −Bj − vj in H).

If the exemplar breakpoint distance between G and H is K −1, the first thing
to notice is that there is no breakpoint in viBi and −Bi − vi; in other words,
deleting vj in viBi inconsistently (say, by deleting vj in viBi and deleting −vj

in −Bs − vs instead of in −Bi − vi) would increase the number of breakpoints
in the exemplar genomes G and H . Therefore, we can obtain a pair of exemplar
genomes G and H by enforcing the breakpoints to be in between viBi, vjBj

in G (and symmetrically, −Bi − vi, −Bj − vj in H), with all redundant vl’s
deleted. Clearly, the remaining viBi’s in G (and −Bi − vi’s in H) correspond to
a dominating set of size K in T .

In the example shown in Figure 1, we have
G : v1v2v3#v2v1v4v5#v3v1#v4v2v5#v5v2v4 and
H : −v3−v2−v1#−v5−v4−v1−v2#−v1−v3#−v5−v2−v4#−v4−v2−v5.

Corresponding to the optimal dominating set {v1, v4}, we have G : v1v2v3#v4v5
and H : −v3 − v2 − v1# − v5 − v4. ��

Corollary 3. The Exemplar Reversal Distance Problem cannot be approximated
within a factor c log n, for some constant c > 0.

Proof. Construction is the same as above. The claim that T has a dominating
set of size K iff the exemplar reversal distance between G and H is K can be
proved similarly. ��

Next, we show an even stronger negative result for the Exemplar Breakpoint
Distance Problem; namely, deciding whether the exemplar distance between G
and H is zero is NP-complete. This implies that for the Exemplar Breakpoint
Distance Problem there is no approximation unless P=NP. From now on we
simply call this problem the zero breakpoint distance (ZBD) problem.

Theorem 2. Deciding if two genomes G and H have zero breakpoint distance
is NP-complete.
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Proof. We construct a reduction from the SAT problem [10] to the ZBD problem.
Let F = f1

∧
f2

∧
· · ·

∧
fq be a conjunctive normal form, where each sub-

formula fi is a disjunctive clause like (x2
∨

x5
∨

¬x7). We construct a pair of
sequences G and H such that F is satisfiable iff G and H have breakpoint distance
zero.

Assume that x1, x2, · · · , xn are the boolean variables in the formula F . For
each variable xi, we construct two sequences Si and S∗

i . Let fi1 , · · · , fiu be the
sub-formulas in F that contains xi, and let fj1 , · · · , fjv be the sub-formulas of
F that contains ¬xi. Let Si = fi1 · · · fiufj1 · · · fjv and S∗

i = fj1 · · · fjvfi1 · · · fiu ,
where f1, · · · , fq are considered as the names of q genes in G and H.

Let G = S1g1S2g2 · · · gn−1Sn and H = S∗
1g1S

∗
2g2 · · · gn−1S

∗
n, where g1, · · · , gn

are (peg) genes that occur only once in G or H.
Assume that x1 = b1, · · · , xn = bn are assignments that make F true. If

bi = 1, adjust both Si and S∗
i to S′

i = fi1 · · · fiu and S∗′

i = fi1 · · · fiu , respec-
tively. If bi = 0, adjust both Si and S∗

i to S′
i = fj1 · · · fjv and S∗′

i = fj1 · · · fjv ,
respectively. It is easy to see that G′ = S′

1g1S
′
2 · · · S′

n−1gn−1S
′
n is the same as

H ′ = S∗′

1 g1S
∗′

2 · · · S∗′

n−1gn−1S
∗′

n . Since the assignments make F true, each sub-
formula ft ∈ {f1, · · · , fq} is true due to xi = bi for some i. That is, ft must
occur in Si and S∗

i . If ft occurs more than once in G′ and H ′ then we can delete
their corresponding occurrences in G′ and H ′. Finally, notice that both G′ and
H ′ contain all q + n − 1 genes in {f1, · · · , fq, g1, · · · , gn−1}.

Assume that G is converted into G′′ and H is converted into H ′′ via re-
moving some genes such that G′′ = H ′′ and they contain all genes in the set
{f1, · · · , fq, g1, · · · , gn−1}. Let S”

i and S∗”
i be the substrings in G′′ and H ′′ with

respect to Si and S∗
i in G and H respectively. This implies that S”

i and S∗”
i

are the common subsequence of either fi1 · · · fiu or fj1 · · · fjv , because Si =
fi1 · · · fiufj1 · · · fjv and S∗

i = fj1 · · · fjvfi1 · · · fiu . If S”
i is empty then we can

assign a value to xi arbitrarily. If S”
i is not empty and it is a subsequence of

fi1 · · · fiu then we assign xi = 1. If S”
i is not empty and it is a subsequence of

fj1 · · · fjv then we assign xi = 0. As each ft ∈ {f1, · · · , fq} occurs in G′′, H ′′

once, it must occur in a non-empty S”
i . It is easy to see that F is true by the

assignments to those variables x1, · · · , xn.
The reduction takes linear (in the length of F , |F |) time. A sub-formula fj

with y literals appears in G (H) exactly y times and there are n − 1 additional
peg genes in G (H). Therefore, the length of G and H are both bounded by c|F |
for some constant c > 1. ��
The above theorem implies that the Exemplar Breakpoint Distance problem
does not admit any approximation unless P=NP—if such a polynomial-time
approximation existed then it would be able to decide whether G and H have
zero breakpoint distance in polynomial time hence contradicting Theorem 3.5. If
we parameterize the ZBD problem to kZBD, which is to decide if two k-repetitive
sequences have zero break point distance, then the above theorem can be further
strengthened as follows.

Theorem 3. Deciding if two 3-repetitive genomes have zero breakpoint distance
is NP-complete.
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Proof. Using the same reduction, a 3SAT sub-formula fj with three literals
appears in G (H) exactly three times. Therefore, we can reduce 3SAT to 3ZBD
in linear time. ��

We now have the following corollary.

Corollary 4. Unless P=NP, the Exemplar Reversal Distance Problem cannot
be approximated even if both G and H are 3-repetitive.

4 Weak Inapproximability Bounds

In this section, we try to generalize Theorem 3.5 to obtain some inapproxima-
bility bound under a weak approximation model. Let opt(G, H) be the optimal
exemplar breakpoint distance between G and H. (We also use d(X, Y ) to denote
the minimum breakpoint distance between two genomes X and Y , where X
and Y do not have to be exemplar.) We obtain the following inapproximability
bounds under a much weaker model of approximation.

Theorem 4. Let ε > 0 and g(x) : N → N be a function computable in poly-
nomial time. If there is a polynomial time algorithm such that given G and
H of length at most m it can return exemplar genomes G and H satisfying
d(G, H) ≤ g(m)opt(G, H) + m1−ε, then P=NP.

Proof. Let f be a SAT formula. Let G(f), H(f) be the sequences as constructed
in Theorem 3.5 such that f is satisfiable if and only if d(G(f), H(f)) = 0.

Let u be the length of f . Then |G(f)| = |H(f)| ≤ cu for some positive constant
c > 1. Let x be a number such that ux > u(1+x)(1− ε

2 ). Let M = ux.
Let Σ(S) be the alphabet of a sequence S. If Σi is a different set of letters

with |Σi| = |Σ(S)|, we define S(Σi) to be a new sequence obtained by replacing
all letters in S, in one to one fashion, by those in Σi.

Let Σ1, Σ2, · · · , ΣM be M disjoint sets of letters of size |Σ(G(f))|. Let G1 =
G(f)(Σ1), G2 = G(f)(Σ2), · · · , GM = G(f)(ΣM ) be the sequences derived from
G(f). Let H1 = H(f)(Σ1), H2 = G(f)(Σ2), · · · , HM = G(f)(ΣM ) be the se-
quences derived from H(f).

Define G = G1s1G2s2 · · ·GMsM and H = H1s1H2s2 · · · HMsM , where si is a
peg gene appearing only once in G and H. The total length of G, H is bounded by
c(u+1)M ≤ 2cux+1. Let m be the maximum length of G and H, then m ≤ c′ux+1

for some c′ > 2.
Assume that some polynomial time algorithm A outputs G, H such that G is

an exemplar genome of G and H is an exemplar genome of H, and d(G, H) ≤
g(m)d(G, H) + m1−ε, we can then decide if f is satisfiable by checking whether
d(G, H) ≤ m1−ε. If f is satisfiable, it is easy to see that d(G, H) = 0 then
d(G, H) ≤ m1−ε. If f is not satisfiable, then from Theorem 3.5 d(Gi, Hi) ≥ 1.
As no letter is shared by Gi, Gj , we have d(G, H) ≥ M = ux > u(1+x)(1− ε

2 ) ≥
(m

c′ )1−
ε
2 > m1− 3

4 ε when m is sufficiently large. Since G, H are exemplar genomes
of G, H, d(G, H) > m1− 3

4 ε. ��
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Corollary 5. Let ε > 0. If there is a polynomial time algorithm such that given
G and H of length at most m it can return exemplar genomes G and H satisfying
d(G, H) ≤ m1−ε[opt(G, H) + 1], then P=NP.

This negative result shows that even under a much weaker model, it is not
possible to obtain a good approximation unless P=NP. In next section, we will
present a factor-2(1+logn) approximation for the One-Sided Exemplar Reversal
Distance Problem in which one of the two genomes is a k-span genome. It is not
surprising that this problem is also known to be NP-complete, in fact, it is
NP-complete even when k = 1 [2].

5 A 2(1 + log n)−Approximation for the One-Sided Case

Given a k-span genome Gk and a general genome H, each is a sequence con-
taining O(m) signed or unsigned genes (drawn from the n gene families and
genes from the same family in Gk are at most k positions away and there are
possibly any kind of repetitions in H), the problem is to compute the minimum
exemplar breakpoint distance between two exemplar genomes G, H (obtained by
deleting redundant genes in Gk and H). Let Gk = a1a2 · · · an1 , H = b1b2 · · · bm1 .
Throughout this section we assume that k = O(log n).

Let opt(Gk, H) be the size of the optimal solution of the above One-sided
Exemplar Breakpoint Distance Problem.

Let A = [ai, ai+sp−1 ] ∈ Gk and B = [bj , bj+tp−1 ] ∈ H. If a gene family, which
is a multi-set of genes in Gk(H), all appear in A (B) then it is called a multi-
set of whole-family genes in A (B). Example: Let G3 = ga − fgedbedc − e and
H = acefgac − fbebdach − g. Consider the interval IG = a − fgedbed in G3 and
the interval IH = gac − fbebdc in H. The multi-set of whole-family genes in IH

is {{b, b}, {d}}.
Given A = [ai, ai+sp−1 ] ∈ Gk and B = [bj , bj+tp−1 ] ∈ H, an interval I =

c1c2...cp or its signed reversal −I is called a Non-Breaking Interval (NB-interval
for short) if I contains no repetition of any gene, for each multi-set of whole-
family genes in A and B one of them must appear in I, and I appears in Gk with
c1 = ai, c2 = ai+s1 , · · · , cp = ai+sp−1 (or c1 = −ai+sp−1 , c2 = −ai+sp−2 , · · · , cp =
−ai) and in H with c1 = bj , c2 = bj+t1 , · · · , cp = bj+tp−1 (or c1 = −bj+tp−1 , c2 =
−bj+tp−2 , · · · , cp = −bj) for some sp−1 > sp−2 > · · · > s1 > 0 and some tp−1 >
tp−2 > · · · > t1 > 0. The length p is called the size of I. Given A = [ai, ai+sp−1 ] ∈
Gk and B = [bj , bj+tp−1 ] ∈ H, we are interested in computing a NB-interval
of maximum size (length). Notice that a maximum NB-interval is very much a
longest constrained common subsequence of A and B, it is related to but different
from the recently studied constrained longest common subsequence [5]. From now
on, we will only talk about maximum NB-intervals, which we will simply use NB-
intervals if the context is clear.

Now let A = g1g2 · · · gN , B = h1h2 · · · hM be strings on z identical gene fam-
ilies, and g1 = h1, gM = hN . We assume that both A, B are long enough, say,
at least of length 20k (otherwise we can simply use a brute-force method).
Let W (A[i, j]), W (B[s, t]) be the whole-family gene sets in A[i, j] and B[s, t]
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respectively. We show below a polynomial time dynamic programming algo-
rithm to compute the NB-interval between strings A, B. Let A[i, j] = PaHPb,
where |Pa| = |Pb| = k. Since A is a k-span genome, Pa, Pb have no common
genes when |H | ≥ k. Let Ha, Hb be exemplar genomes selected from Pa, Pb re-
spectively. In the dynamic programming table, table(i, j, Ha, Hb, s, t) stores a
longest constrained common subsequence HaV Hb of A[i, j] and B[s, t] such that
W (A[i, j]), W (B[s, t]) all appear in HaV Hb and there is no repetition of any
gene in HaV Hb.

Let A[i, j] = PaHPb, with H = H1PcPdH2 and |Pc| = |Pd| = k. Assume that
A[i, j1] = PaH1Pc and A[j1, j] = PdH2Pb, we can merge table(i, j1, Ua, Ub, s, t1)
and table(j1+1, j, Ta, Tb, t1+1, t) into table(i, j, Ha, Hb, s, t)—if UbTa is exemplar
and selected from PcPd then all whole family genes in PcPd must be in UbTa and
no gene is repeated in UbTa; moreover, among all such candidates we select the
longest one as UbTa. So when j1, t1 is fixed this merge takes O(k2 + n) = O(n)
time. As we need to try different combinations j1 and t1, the final content in
table(i, j, Ha, Hb, s, t), which should be the longest, can be computed in O(n3)
time, provided that table(i, j1, Ua, Ub, s, t1) and table(j1 + 1, j, Ta, Tb, t1 + 1, t)
are already available.

There are at most 2k ways to select Ha from Pa (Hb from Pb). Therefore, this
dynamic programming algorithm uses O(22kn5) space (there are O(22kn4) cells
in the table, each could store a sequence of length O(n)) and it takes O(22kn7)
time to compute the (maximum) NB-interval between A and B, which is stored
in table(1, N, −, −, 1, M). Finally, notice that each signed/unsigned gene in Gk

or H is a degenerate (maximum) NB-interval of length one.
This dynamic programming algorithm will be used as a subroutine in our

final approximation for the One-sided Exemplar Breakpoint Distance Problem.
Now consider the problem of covering all genes in Gk and H using the minimum
number of (disjoint) NB-intervals. Let C∗(Gk, H) be the size of the optimal
solution for this covering problem.

Lemma 1. C∗(Gk, H) ≤ opt(Gk, H) + 1.

Proof. Trivial, as each breakpoint in the exemplar genomes G, H can only occur
between two NB-intervals. ��
We now show how to obtain a factor 2(1+logn) approximation for C∗(Gk, H) by
converting it to a set-cover problem (X, F). In this case, each (degenerate and
non-degenerate) NB-interval is a set S ∈ F . X contains all of the n genes. The
problem is to compute the minimum number of (disjoint) NB-intervals which
cover all the genes. The algorithm follows the greedy method [7, 13, 14].

(1) Start with Gk, H. Enumerate all pairs of intervals A = [ai, ai+s] and B =
[bj , bj+t] with ai = bj , ai+s = bj+t. For each such pair (A, B), use the above
dynamic programming algorithm to compute a maximum length NB-interval.

(2) Among all the maximum NB-intervals computed at Step (1), select one
with the maximum size, I, and put it in the approximation solution.

(3) Delete all the (signed/unsigned) genes in I to have two updated versions
of Gk, H. Repeat Step (1)-(2) until all the genes are covered.
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Let App(Gk, H) be the number of the NB-intervals obtained in the above
approximation solution. Following [7, 13, 14], we have the following lemma.

Lemma 2. App(Gk, H) ≤ (1 + log n) · C∗(Gk, H).

We have the following theorem.

Theorem 5. App(Gk, H) ≤ 2(1 + log n) · opt(Gk, H).

Proof. By Lemmas 5.1 and 5.2, App(Gk, H) ≤ (1+ logn) · opt(Gk, H)+ logn+1.
When opt(Gk, H) > 0, App(Gk, H) ≤ (1 + log n) · opt(Gk, H) + log n + 1 ≤ (1 +
log n) · opt(Gk, H) + (1 + log n) · opt(Gk, H) = 2(1 + log n) · opt(Gk, H). When
opt(Gk, H) = 0, which can be identified by the above dynamic programming
algorithm, we can ignore using this approximation algorithm. ��

The running time of the above approximation algorithm is as follows: There could
be O(n) rounds in the greedy selection process. At each round we could have enu-
merated O(n2) intervals and each call to the dynamic programming procedure
takes O(22kn7) time. Therefore, the overall running time of the approximation
algorithm is O(22kn10). The approximation algorithm uses O(22kn5) space.

We comment that for this problem, when k = 1, the above factor-2(1+ log n)
approximation can be greatly simplified. The complex dynamic programming
method can be replaced by a Longest Common Subsequence computation [6]
and the algorithm runs in O(n5) time and O(n2) space, which is clearly much
more efficient.

6 Concluding Remarks

We present the first set of inapproximability/approximation results for the
Exemplar Breakpoint Distance Problem. Although it seems that the general
problem does not admit any approximation, for a special one-sided case, de-
cent approximation does exist. This also partially conforms with the real-life
dataset that repetitions of genes are typically pegged and not very far away [17].
It would be interesting to study some meaningful special cases. For example,
can be obtain a good approximation when G is 2-repetitive and H is a 3-span
genome?
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