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Abstract. We study an extension of the set cover problem, the con-
nected set cover problem, the problem is to find a set cover of minimal
size that satisfies some connectivity constraint. We first propose two al-
gorithms that find optimal solutions for two cases, respectively, and then
we propose one approximation algorithm for a special case that has the
best possible performance ratio. At last we consider how to apply the
obtained result to solve a wavelength assignment problem in all optical
networks.
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1 Introduction

Given a set system (U, F), where U contains n elements and F is a family of m
subsets of U such that every element of U belongs to at least one subset in F ,
here each subset in F has a positive weight, a set cover C of U is a subfamily of
F such that every element in U is in at least one of the subsets in C. The set
cover problem is to find a set cover with the minimal total weight of subsets in
the set cover. For this famous NP-hard problem, Johanson [4] proposed a simple
greedy algorithm for the unweighted case (or equivalently all weights are the
same) with approximation ratio upper bounded by 1 + lnn, and later Chvátal
[2] generalized their algorithms to the weighted case and proved the same result.

The set cover problem has many applications in practice. For example, Ruan
et al [7] studied how to route and allocate wavelengths to a broadcast con-
nection so that the total wavelength conversions required is minimized. Under
some conditions they formulate this problem as two closely related set cover
problems, the minimum wavelength-covering problem and the minimum vertex-
wavelength-covering problem. But some practical problems may have special
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configurations and the set cover model may not appropriate for them. In par-
ticular, the set cover model proposed by Ruan el al [7] is not applicable to the
case of limited wavelength conversions. In this case, connectedness of a set cover
appears to be an important requirement.

We therefore in this paper consider a natural extension of the set cover prob-
lem, the connected set cover problem. Besides the universal set U and a family F
of U , we are also given a graph G with vertex-set V (G) = F and edge-set E(G)
consisting some edges between some pairs of subsets in F . A set cover C ⊆ F of
U is called connected if the induced subgraph G(C) is connected, where G(C)
is a subgraph of G that consists of all edges whose two endpoints are both in
C. The problem is to find a connected set cover with the minimal number of
subsets. It is easy to see that the classic set cover problem is a special case of
the connected set cover problem with a completed graph.

In this paper we will first show that the connected set cover problem is NP -
hard even if at most one vertex of the given graph has degree greater than two,
and it cannot be solved in polynomial-time. We then propose two polynomial-
time algorithms for the case where every vertex in the graph has degree at most
two. For the case where at most one vertex has degree greater than two, we
propose an approximation algorithm with performance ratio at most 1 + lnn
that is the best possible. In the end we discuss an application of the connected
set cover problem to the wavelength assignment of broadcast connections in the
optical networks.

2 Complexity Study

In this section, we study the complexity of the connected set cover problem for
some special graphs. We shall see that the difficulty in solving the connected set
cover problem not only lies in the structure of (U, F) system but also related to
the property of give graph G. Graph G is called a line graph if two vertices in
V (G) have degree one and all others have degree two. Graph G is called a ring
graph if it is connected and every vertex in V (G) has degree two. Graph G is
called a spider graph if G is a tree and only one vertex has degree greater than
two, a spider graph is particularly called a star graph if one vertex has degree
greater than one while all others have degree one.

Theorem 1. The connected set cover problem on star graphs is NP-hard.

Proof. Given an instance of the set cover problem of uniform weight, (U, F), we
construct an instance of the connected set cover problem, (U ′, F ′) and a graph
G on F ′ as follows: the universal set U ′ = U ∪ {u0}, where u0 /∈ U , the family
F ′ = F ∪ {u0}, and graph G has edge-set E(G) = {(u0, f) | f ∈ F}. Clearly, G
is a star graph and every set cover of U ′ must include subset {u0} of U ′. Thus
the set cover problem has a set cover C if and only if the connected set cover
problem has a set cover C ∪ {u0}.

Theorem 2. The connected set cover problem on line or ring graphs can be
solved in polynomial time.
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Proof. Every line graph G can be represented by a path (f1f2 · · · fm−1fm), where
each vertex fi corresponds to a subset in F , and f1 and fm have degree one (they
are two ends of the path). Notice in this case that any connected set cover consists
of subsets whose corresponding vertices make a subpath (fifi+1 · · · fj−1fj) for
some i, j with i ≤ j. Thus to find the minimum connected set cover we just need
to check all

(
m
2

)
possible solutions (some of them may not be set covers) and

then choose the minimum one. This method requires time O(m3n).
Similarly, for ring graphs we just need to check all m(m−1) possible solutions

and then choose the minimum one. This method also requires time O(m3n).

3 Efficient Algorithms for Line and Ring Graphs

In the proof of Theorem 2 we have described a simple algorithm for the con-
nected set cover problem for line and ring graphs, respectively, both have time-
complexity of O(m3n). In this section, we will propose more efficient algorithms
for these two special cases.

We first study how to find the minimum connected set cover in line graphs
in an efficient way. The basic idea is to delete as many vertices as possible until
the remaining vertices cannot constitute a set cover. This can be carried out
as follows: (1) Delete the vertices from the leftmost to the right one by one
until the remaining vertices can not constitute a set cover, and then delete the
vertices from the rightmost to left one by one until the remaining vertices can
not constitute a set cover. (2) Do the same operations as in (1) but in the
reverse order, that is, deleting first from the rightmost to left and then from
the leftmost to right. (3) Delete the rightmost and then the leftmost vertices
alternatively until the remaining vertices can not constitute a set cover. When
the process is stopped, if the last vertex is deleted from the left (right) side
then repeat delete the vertices from left (right) until the remaining vertices
can not constitute a set cover. (4) Choose the best of these three solutions
obtained.

16151413121110987654321 17

161514 5432 1110987 1312

LR RL LRLR   OPT

Fig. 1. An counterexample

Denote the above three operations by LR, RL, and LRLR. Unfortunately, the
above described method could not find the optimal solution. Fig. 1 gives such
an example with U = {i | i = 1, 2, · · · , 9} and F = {fj | j = 1, 2, · · · , 17}, where
fi is defined as follows.
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f1 = {4, 5, 9}, f2 = {3, 9}, f3 = {6, 8}, f4 = {3, 4, 7},
f5 = {1, 2, 5}, f6 = {7, 9}, f7 = {6, 7}, f8 = {8},
f9 = {2, 3}, f10 = {4, 5}, f11 = {5, 9}, f12 = {1, 2, 3, 4, 5},
f13 = {5, 6, 7, 8, 9}, f14 = {1, 2, 3}, f15 = {4, 5, 6}, f16 = {7, 8, 9},
f17 = {1, 4, 7}.

It can be verified that LR, RL,and LRLR produce three different solutions, but
neither of them is optimal. Observe that the optimal solution {f12, f13} is on
the right half side of the line graph and does not contain the central vertex f9.
However, we shall see that if the optimal solution contain the central vertex,
then the above method can be modified to find the optimal solution.

The above example and analysis suggest that we should first find such an
optimal solution that contains the central vertex, and then find those two optimal
solutions that belong to the left and right half sides of line graph, respectively.
In the end we just choose the best solution among these three solutions.

To implement this method, we can modify operations LR and RL as follows:
deleting vertices from left to right, or from right to left is stopped until the
remaining vertices can not constitute a set cover or the central vertex is reached,
and modify LRLR as follows:adding neighbor vertex (and its adjacent edge) of
left endnodes of current path and deleting vertices from rightmost to left one
by one until the remaining vertices can not constitute a set cover. We use RR
represent the operation deleting vertices from rightmost to left is stopped until
the remaining vertices can not constitute a set cover. The algorithm is described
below as a recursive procedure, where initially i = 1 and j = m.

Algorithm A. Finding an Optimal Set Cover in Line Graphs

procedure LineCover(i, j):
if j − i ≤ 2 then return fi or fj if one of them covers U
else find a cover F1 = {fl1 , fl1+1, · · · , fr1} applying modified LR on path

between fi and fj ;
find a cover F2 = {fl2 , fl2+1, · · · , fr2} applying modified RL on path
between fi and fj ;
find a cover F3 = {fl3 , fl3+1, · · · , fr3} applying procedure
Modified LRLR on path between fl1 and fr1 and path
between fl2 and fr2 ;
return the best among {F1, F2, F3, LineCover(i, j+i

2 ), LineCover( j+i
2 , j)}.

procedure Modified LRLR

Input: F1 = {fl1, fl1+1, · · · , fr1} and F2 = {fl2 , fl2+1, · · · , fr2}
if l1 − l2 ≤ 1 or r1 − r2 ≤ 1 then return the best among {F1, F2}
else for j = 1, 2, · · · , l1 − l2 − 1 do

find a cover Fj = {fl1−j , · · · , fr′
j
} by applying RR on path

between fl1−j and fr′
j−1

.
return the best among {Fj |j = 1, 2, · · · , l1 − l2 − 1}.
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Theorem 3. Given an instance of the connected set cover problem, (U, F) and
a line graph G on F , Algorithm A finds an optimal solution to the problem in
O(nm2) time.

Proof. Notice that if the optimal solution does not include the central vertex in
the line graph, then it must be in either the left half or the right half of the line
graph. Thus to prove that the algorithm returns an optimal solution, it suffices
to show that if there exists an optimal solution F ∗ = {fl, fl+1, · · · , fr−1, fr} that
contains the central vertex, then it can be found by one of the three operations.

Let us denote the solutions obtained by applying modified operations LR, RL,
and LRLR with i = 1 and j = m, by Fi for i = 1, 2, 3, respectively. By the rules of
operations LR, RL, and LRLR, we have l2 ≤ l3 ≤ l1 and r1 ≥ r3 ≥ r2. See Fig. 2.

11 r22 3l 3
m
21 mll rr

Fig. 2. For the proof of Theorem 3

It is easy to verify that when l = l1, F ∗ = F1, when r = r2, F ∗ = F2, and
when l < l1 and r > r2, F ∗ = F3. Thus the solution returned by the algorithm
is optimal.

For the time-complexity of the algorithm, notice that in invoking the pro-
cedure LineCover(i, j) each of the two operations LR, and RL deletes at most
O(j − i) vertices and operation LRLR add and deletes total at most O(j − i)
vertices, and to check if the remaining vertices make a set cover needs time
O(mn). In addition, the procedure LineCover(i, j) is invoked at most ·2k times
for subpaths of length m/2k, each time produces 3 solutions; In the total at most
3

∑log2 m
k=0 2k = 3m solutions are produced, this requires time bounded by

3
log2 m∑

k=0

2k(
m

2k
)2n ≤ 6m2n.

To find the best solution among 3m ones requires times O(m). Thus the algo-
rithm has the running time at most O(m2n).

We now study how to find the minimum connected set cover in ring graphs
in an efficient way. For the simplicity of the presentation, we just consider the
case of even m. The basic idea is to make the given ring graph into a line graph
by removing a vertex, say f1, and then apply Algorithm A to the resulting
line graph. Notice however that the minimum connected set cover may include
vertex f1 excluded from the line graph. Thus we need to apply Algorithm A to
the line graph obtained by removing the vertex fm

2 +1, which is on the opposite
side of vertex f1. As a result, we find two connected set covers. See Fig. 3.

If the better of these two solutions has size less than m/2, then this must be the
optimal solution. Otherwise it has size greater than m/2. In this case, the optimal
solution must contain both vertices f1 and fm

2 +1 and includes either all vertices
in {f1, f2, · · · , fm

2 +1} or all vertices in {fm
2 +1, fm

2 +2, · · · , fm, f1}. Therefore we
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Fig. 3. (a) The original ring graph, (b) and (c) ling graphs obtained by removing two
vertices oppositive to each other on the ring

1f

4f

2

3

f

7

f

f

f

f

5

f

9

6

10

f

8f

f

f

11

12

1f' 4

2

3

f

f

f

f

5

6f

7f'f

f

9

10

f

8f

f11

12

(a) (b) (c)

Fig. 4. (a) The original ring graph, (b) and (c) ring graphs obtained by merging half
number of vertices

can shrink the ring graph of size m to two ring graphs of size m/2 by merging
all vertices in {f1, f2, · · · , fm

2 +1} and {fm
2 +1, fm

2 +2, · · · , fm, f1} into one vertex
f ′
1 and f ′

m
2 +1, respectively. See Fig. 4. In the end, we return the best of the four

obtained solutions.
The problem is now reduced to two subproblems such that optimal solu-

tions must contain the new vertex f ′
1 (f ′

m
2 +1) in two ring graphs of half size,

where the universal set also becomes smaller since those vertices covered by
{f1, f2, · · · , fm

2 +1} and {fm
2 +1, fm

2 +2, · · · , fm, f1} should be removed. This
process is repeated until the optimal solution is found. The algorithm is again
more formally described as a recursive procedure, where initially i = 1, j = m
and U ′ = U .

Theorem 4. Given an instance of the connected set cover problem, (U, F) and
a ring graph G on F , Algorithm B finds an optimal solution to the problem in
O(m2n) time.

Proof. The correctness of the proof follows from two facts: (1) If the optimal
solution Fopt has size less than m/2, then it must be either F1 or F2 since it must
be included in either F \{f1} or F \{fm

2 +1} (maybe in both of them). (2) If Fopt
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has size greater than m/2 and it is not equal to F1 or F2, then it must be either
{fm

2
, · · · , f1}∪RingCover(1, m/2, UL) or {f1, · · · , fm

2
}∪RingCover(m/2, 1, UR).

Algorithm B. Finding an Optimal Set Cover in Ring Graphs

procedure RingCover(1, m, U):
if m − 1 ≤ 2 then return f1 or f2 or {f1, f2} if one of them covers U .
else find the optimal cover F1 with f1 removed using Algorithm A,

find the optimal cover F2 with fm removed using Algorithm A,
find the optimal cover F3 with f1 included using
Procedure RingCover(i, j, U ′, fi) on ring (1, m).

return the best of three covers, F1, F2, F3.

procedure RingCover(i, j, U ′, fi):
if j − i ≤ 2 then return fi or fj if one of them covers U .
else find the optimal cover F1 with f i+j

2
removed using Algorithm A,

if the cover has size less than j−i
2 then return it

else set UL be the set consisting of vertices in U not covered by
{f j+i

2
, · · · , fi}, fi = ∅

set UR be the set consisting of vertices in U not covered by
{fi, · · · , f j+i

2
}, fi = ∅.

return the best of three covers, F1,
{f j+i

2
, · · · , fi} ∪ RingCover(i, j+i

2 − 1, UL, fi), and

{fi, · · · , f j+i
2

} ∪ RingCover( j+i
2 + 1, i, UR, fi).

For the time-complexity of the algorithm, notice that each time when we
invoke the procedure RingCover(i, j, U ′), we produce F1 using Algorithm
A, this requires time O(n(j − i)2) by Theorem 3. In addition, the procedure
LineCover(i, j) is invoked at most ·2k times for subrings of length m/2k, each
time produces 2 solutions; In the total at most 2

∑log2 m
k=0 2k = 2m solutions are

produced, this requires time bounded by

2
log2 m∑

k=0

2k6(
m

2k
)2n ≤ 24m2n.

To find the best solution among 2m ones requires times O(m). Thus the algo-
rithm has the running time at most O(m2n).

4 Approximation Algorithm for Spider Graphs

As in the previous section we have proved that the connected set cover prob-
lem is NP -hard even for star graphs, thus in this section we will propose an
approximation algorithm for the problem in spider graphs. We will show that
this algorithm has almost the best possible approximation ratio.
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Suppose that G is a spider graph with central vertex f0 ∈ V (G) having degree
k > 2. We now decompose the graph into line subgraphs L1, L2, · · · , Lk, which
have a common end f0. Then there are two possible cases for an optimal set
cover F ∗, (1) it consists of only vertices in one of the line subgraphs, and (2) it
includes at least two vertices belonging to different line graphs. For case (1) we
can find the optimal solution by running Algorithm A k times (just choose the
best among k solutions). For case (2) we can first transform the problem into the
set cover problem, and then solve the problem approximately by the generalized
greedy algorithm [2].

The transformation can be done as follows: For each subset f ∈ F with f �= f0,
which corresponds to a vertex in graph G, we define a new subset f ′ that is the
union of the subsets whose corresponding vertices in G are on the path p(f, f0)
between f and f0 and delete the elements contained in f0, and define f ′

0 = f0.
We then construct a new family of subsets F ′ = {f ′ | f ∈ F}. We also assign a
weight w(f ′) to f ′ which is equal to the number of edges in p(f, f0), f �= f0, and
w(f ′

0) = 1. The following lemma shows that the new set system (U, F ′) has the
property that we need for our algorithm.

Lemma 1. The set system (U, F) with a graph G on F has a minimum con-
nected set cover C of size |C| that includes subset f0 if and only if the set system
(U, F ′) has a minimum weighted set cover C′ with weight w(C′) = |C|.

Proof. “Only-if”: For i = 1, 2, · · · , k, let f i ∈ C be the subset whose correspond-
ing vertex in Li has the longest path to f0. Then C contains every subset whose
corresponding vertex is on path p(f i, f0). Clearly, the size of C \ {f0} is equal
to the sum of number of edges in path p(f i, f0) for i = 1, 2, · · · , k. Hence f

′
0 and

f
′
i for i = 1, 2, · · · , k constitute a set cover of U that has weight |C|.
“If”: Notice that C′ does not contain two subsets f ′ and g′ such that the

corresponding vertices f and g are in the same line graph Li for some i, otherwise
either f ′ ⊂ g′ or g′ ⊂ f ′, thus one of them is redundant contradicting that C′

is a minimum set cover. Let f ′
i ∈ C be the subset which includes w(f ′

i) vertices
in Li \ {f0}, i = 1, 2, · · · , k. Hence the union of the subsets whose corresponding
vertices are within w(f ′

i) distance from f0 on line graph Li, for i = 1, 2, · · · , k,
makes a connected set cover C of U with size |C| =

∑
i w(f ′

i).

Algorithm C. Finding Connected Set Covers in Spider Graphs

Decompose the spider graph into line graphs Li’s.
Find the optimal set cover Fi for each i using Algorithm A.
Construct a new set system (U, F ′).
Find a set cover F ′

0 of U using the generalized greedy algorithm.
Produce the corresponding set cover F0 of (U, F ′) from F ′

0.
Return the best set cover among {Fi | i = 0, 1, 2 · · ·}.
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Theorem 5. Given an instance of the connected set cover problem, (U, F) and
a spider graph G on F , Algorithm C returns a solution in time of O(m2n)
whose size is at most log n times that of the optimal solution.

Proof. Let Fopt be an optimal solution, and FC be a solution returned by
Algorithm C. If a line graph Li contains Fopt for some i, then FC = Fopt. If
not (there are two sets in Fopt such that one is in line graph Li while the other
in line graph Lj ), w(FC ) ≤ w(F ′

0) ≤ log nw(Fopt), the last inequality comes
from Chvátal’s result [2].

In fact, we will show that Algorithm C is the best possible approximation
algorithm for the connected set cover problem in spider graphs. To prove this
we need the following lemma due to Feige [3].

Lemma 2. For any 0 < ρ < 1, there is no approximation algorithms with per-
formance ratio ρ ln n for the set cover problem unless NP ⊂ DTIME(npoly log n).

Theorem 6. For any 0 < ρ < 1, there is no approximation algorithms with
performance ratio ρ ln n for the connected set cover problem in spider graphs
unless NP ⊂ DTIME(npoly log n).

Proof. Suppose, by contradiction argument, that there exists an algorithm Aρ′

with approximation performance ratio ρ′ < 1 for the connected set cover problem
in spider graphs. We now design an algorithm Aρ for the set cover problem using
algorithm Aρ′ as a subroutine.

Given an instance I of the set cover problem, a set system (U, F), construct
an instance I ′ of the connected set cover problem, a set system (U ′, F ′) and a
graph G on F ′ as follows: Let U = {ui | i = 1, 2, · · · , n}, F= {fi|i = 1, 2, · · · , m},
and take k = 
ρ′/(1 − ρ′)�. w.l.o.g suppose that k < m. Set U ′ = U ∪ {u0} ∪ W
and F ′ = F ∪ {fij | i = 1, 2, · · · , m, j = 1, 2, · · · , k} ∪ {u0}, and spider graph
G has central vertex u0 and m paths < u0fi1fi2 · · · fikfi > are attached to u0
for i = 1, 2, · · · , m, where W = {i1, i2, · · · , im},

⋃k
j=1 fij = W, i = 1, · · · , m,

and for every pair (i, j) �= (i′, j′), fij �= fi′j′ . It is easy to see that instance I
has a set cover C with |C| > 1 if and only if instance I ′ has a set cover C′

with |C| > 2 and C′ = C ∪ {fij | fi ∈ C} ∪ {u0}. Let Copt and C′
opt be optimal

solutions to instances I and I ′, respectively, then |C′
opt| = k|Copt| + 1 if Copt

is not a singleton. We now apply algorithm Aρ′ to instance I ′ and obtain a set
cover C′ satisfying |C′| ≤ ρ′(ln n)|C′

opt|. Thus we have

k|C| + 1 ≤ ρ′(ln n)(k|Copt| + 1) = kρ′(ln n)|Copt| + ρ′ ln n,

from which we deduce

|C| < ρ′(ln n)|Copt| +
ρ′

k
ln n ≤ ρ′(ln n)(1 +

1
k

)|Copt|.

This contradicts Lemma 2 since ρ′(1 + 1/k) < 1.
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5 Application

In this section we shall study the wavelength assignment problem of broadcast
connections in optical networks, which is a special case of the connected set cover
problem. An optical network can be modelled as a connected graph G(V, E, w),
where V is the vertex-set of graph G representing the set of routing nodes in
the network, E is the edge-set of graph G corresponding to optical fiber links
between nodes in the network, and w(e) represents the wavelengths available
on edge e ∈ E. Fig. 5(a) shows an example of such a network of 10 vertices.
Observe that 5 wavelengths {w1, w2, · · · , w5} are used in the network, but only
two wavelengths w2 and w3 are available on edge between v4 and v8.

In multi-hop optical networks where wavelength converters are equipped at
routing nodes, a broadcast connection between communication nodes consists of
one or more light-trees. A wavelength conversion is required at the joint of two
light-trees if they use different wavelengths. In an all optical network, the optical
signal is allowed in the optical domain throughout the conversion process, how-
ever shifting wavelength channels from one to another makes routing/switching
complicated. Thus an incoming wavelength at a routing node is allowed to con-
vert to a subset of available wavelengths [6]; In particularly, it is allowed to be
shifted only to neighboring wavelengths. For example, w3 can only be shifted to
w2 or w4. Thus it is desirable to minimize the number of wavelength used to
reduce the conversion delay and workload of routing nodes.

Our problem here is how to construct a spanning tree T of given graph
G(V, E, w) such that the number of wavelengths used is minimized. Fig. 5(b)
shows an optimal wavelength assignment for the example given in Fig. 5(a),
where four wavelengths are needed and wavelength conversions are required at
vertices v4 and v8.

Let us see how to formulate this problem as a connected set cover problem.
Let U be the vertex-set V , and fi be the set of vertices in V that are incident to
some edges e with wi ∈ w(e), that is the set of vertices covered by wavelength
wi. For the example of Fig. 5(a), f1 = {v2, v3, v4, v5}. First we assume that
the vertices in fi induce a connected subgraph of G(V, E, w). The network of
Fig. 5(a) satisfies this assumption. Now define a graph Gw on the set system
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Fig. 5. (a) An optical networks, and (b) an optimal wavelength assignment
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(U, F = {fi}) such that there is an edge between fi and fi+1 if and only if
fi ∩ fi+1 �= ∅. Clearly, Gw is a line graph of union of two or more line graphs.

Thus we can use Algorithm A to find the minimal number of wavelengths
to cover all vertices in V . As a result, we obtain a subgraph of G(V, E, w) with
only selected wavelengths on its edges. Notice that the subgraph may not be a
tree, so we need to remove some edges. Moreover, there may exist some edge e
with w(e) including more than one wavelengths selected, so we must determine
which one to use. These two tasks can be carried out as follows: remove edges
and the wavelength wi such that the vertices in the resulting fi still constitute
a connected subgraph of G(V, E, w). Fig. 6 shows the obtained subgraph of
example Fig. 5(a). After removing two edges (v2, v3), (v6, v7), and wavelengths
w2 and w3 on (v3, v4) and (v4, v8), respectively, we get the optimal solution as
shown in Fig. 5(b).
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Fig. 6. Establishing a broadcast connection from the obtained subgraph

In the end let us consider the case where the vertices in fi do not induce a
connected subgraph of G(V, E, w) for some i. In this case we can modify the
original graph G(V, E, w) as follows: Suppose that the vertices in fi form k
disjoint connected components C1, C2, · · · , Ck for some k > 1. We can replace
one wavelength wi by k different dummy wavelengths wi1, wi2, · · · , wik in such a
way that wavelength wij is available on all edges in Cj . These k new wavelengths
are not introduced physically in the network, they are just wavelength wi and
used only for the simplicity of discussion. After such a modification, we are able
to use the above described method.

6 Conclusions

We have studied the connected set cover problem and also discussed its appli-
cation to the wavelength assignment problem of broadcast connections in all
optical networks.

Another possible application comes from the biological conservation [1,5]. The
problem concerned is how to establish a series of protected areas or reserves
in order to conserve species or habitat types. The objective is to select the
minimal number of sites (from some candidate sites) to represent all species
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in the area. Clearly, this can be modeled as a set cover problem. The obtained
solution, however, often produces a highly fragmented network since the solution
generally neglect the spatial location of sites. This restricts the possibility of
dispersal between sites, which for many species may be essential for long-term
persistence. When incorporating considerations of reserve connectivity and the
cost, we will get a weighted version of the connected set cover problem, which is
more difficulty to solve.
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