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Preface

This volume presents the proceedings of the 11th International Workshop on
Combinatorial Image Analysis. IWCIA 2006 was the 11th in a series of interna-
tional workshops devoted to combinatorial image analysis. Prior meetings took
place in Paris (France 1991), Ube (Japan 1992), Washington DC (USA 1994),
Lyon (France 1995), Hiroshima (Japan 1997), Madras (India 1999), Philadelphia
(USA 2001), Palermo (Italy 2003) and Auckland (New Zealand 2004). For this
workshop we received 59 papers from all over the world. Each paper was assigned
to three independent referees and carefully revised. Finally, we selected 34 papers
for the conference based on content, significance, relevance, and presentation.

Conference papers are presented in this volume in the order they were pre-
sented at the conference. The topics of the conference covered combinatorial
image analysis, grammars and models for analysis and recognition of scenes
or images, combinatorial topology and geometry for images, digital geometry of
curves or surfaces, algebraic approaches to image processing, image, point-clouds
or surface registration as well as fuzzy and probabilistic image analysis.

The program followed a single-track format with presentations of all pub-
lished conference papers. Non-overlapping oral and poster sessions ensured that
all attendees had opportunities to interact personally with presenters. Among
the highlights of the meeting were the talks of our two invited speakers, renowned
experts in the field of discrete geometry, digital topology, and image analysis:

– David Coeurjolly (University of Lyon, France):
Computational Aspects of Digital Plane and Hyperplane Recognition

– Longin Jan Latecki (Temple University, Philadelphia, USA):
Polygonal Approximation of Point Sets.

The editors thank all the referees for their big effort in reviewing the sub-
missions and maintaining the high standard of IWCIA conferences. We are also
thankful to the sponsors of IWCIA 2006: Humboldt University for hosting the
workshop, IAPR for advertising the event, and the German Aerospace Center
for financial support. Finally, the organizers wish to thank all contributing au-
thors and our sponsors. Their support was essential for realizing this workshop.
In addition, we like to express our appreciation to the people whose efforts made
this conference a success.

June 2006 Ulrich Eckardt, Boris Flach, Uwe Knauer,
Konrad Polthier and Ralf Reulke
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Topological Map: An Efficient Tool to Compute
Incrementally Topological Features

on 3D Images

Guillaume Damiand, Samuel Peltier, Laurent Fuchs, and Pascal Lienhardt

SIC - bât. SP2MI, Bvd M. et P. Curie
BP 30179, 86962 Futuroscope Chasseneuil Cedex - France

{damiand, peltier, fuchs, lienhardt}@sic.univ-poitiers.fr

Abstract. In this paper, we show how to use the three dimensional
topological map in order to compute efficiently topological features on
objects contained in a 3D image. These features are useful for exam-
ple in image processing to control operations or in computer vision to
characterize objects. Topological map is a combinatorial model which
represents both topological and geometrical information of a three di-
mensional labeled image. This model can be computed incrementally by
using only two basic operations: the removal and the fictive edge shift-
ing. In this work, we show that Euler characteristic can be computed
incrementally during the topological map construction. This involves an
efficient algorithm and open interesting perspectives for other features.

Keywords: topological features, model for image representation,
intervoxel boundaries, combinatorial map.

1 Introduction

In this paper, we show how to use the three dimensional topological map [1, 2]
in order to compute efficiently topological features on objects contained in a 3D
image. Topological map is a combinatorial model which represents both topo-
logical and geometrical information of a three dimensional labeled image with
particular properties that makes it a good model for features extraction. Indeed,
it represents the topology of 3D labeled images with a minimal number of cells,
while conserving all the region adjacencies and incidences.

More precisely, the topological map is incrementally built from a 3D image by
using simple removal operations of subdivision cells that verify particular proper-
ties. Moreover, removal operations are controlled in order to preserve topological
information. After all removals, the topological map represents the regions of a
3D labeled image by their boundaries, which are closed orientable subdivided
surfaces.

The main idea of this work is to incrementally compute topological features
on regions of a 3D image during the topological map construction. We present
here the case of Euler characteristic computation; this is a first example and our

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 G. Damiand et al.

approach can be extended to several topological features (as canonical polygonal
schema or homology classes computation [3]).

Euler characteristic χ of a subdivided object is the alternating sum of numbers
of cells (vertices, edges, faces, etc). Let S be a closed orientable subdivided
surface and let #V (resp. #E, #F and g) be its number of vertices (resp. edges,
faces and tunnels1). In this case, it is well known that χ(S) = #V −#E +#F =
2(1− g) [4] gives the complete classification of surfaces.

Euler characteristic and its variants have several applications to image analysis
and digital geometry [5]. For example, it can be used to prevent topological
alterations in a transformation process or to validate a given segmentation.

Usually, Euler characteristic is computed from a given subdivision, see [6, 7, 8, 9]
and references therein. Indeed, it is difficult to analyze the consequences of local
changes (adding or removing cells) for topological features. However in our ap-
proach, thanks to image scanning and to topological map, consequences of adding
cells to the subdivision can be translated into local cases analysis and allows us to
obtain the variation of the topological features. Hence the Euler characteristic is
computed during the topological map construction with only a small additional
cost.

To the authors knowledge such incremental approach had not been yet pro-
posed. In the general context of pavings, an incremental algorithm can be de-
duced from some results of [10] but this general approach is not well suited for
3D digital imagery.

The paper is organized as follows: Section 2 gives some recalls on topological
map. Section 3 presents our incremental method to compute incrementally Euler
Characteristic and Section 4 concludes and gives some perspectives.

2 Recalls on Topological Maps

2.1 Combinatorial Maps

A subdivision of a 3D topological space is a partition of the space into 4 subsets
whose elements are 0D, 1D, 2D and 3D cells (respectively called vertices, edges,
faces and volumes, and noted i-cell, i = 0 . . . 3). Border relations are defined
between these cells, where the border of an i-cell is a set of (j<i)-cells. Two cells
are incident when one belongs to the border of the second, and two i-cells are
adjacent if they are both incident to a common (j<i)-cell.

The topology of nD subdivision of orientable spaces without boundary can be
represented by n-dimensional combinatorial maps, or n-maps [11, 12, 13, 14, 15].
Intuitively, a 3D combinatorial map can be obtained by successive decomposi-
tions of an orientable 3D object. We first distinguish the volumes of this object,
then the faces of these volumes, and then the edges of these faces. The elements
resulting from the last decomposition are called darts and are the basic elements
of the combinatorial map definition. To obtain the map, adjacency relations be-
tween i-cells are reported onto darts (denoted βi). These βi have to verify some

1 Or holes in more general topological context.
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particular properties in order to ensure the validity of the represented subdi-
vision (for example β1 is a permutation and other βi are involutions, see for
example [16] for the formal definition).

We present an example of combinatorial map in Fig. 1B, and the correspond-
ing represented object in Fig. 1A. β1 connects an oriented edge and the following
oriented edge incident to the same face and the same volume, β2 connects the
two faces incident to the same edge and the same volume, and β3 connects the
two volumes incident to the same edge and the same face. In order to simplify
the figures, βi are not explicitly drawn but can be (generally) deduced from the
shape of objects.

A B

Fig. 1. Usual representation of a 3D combinatorial map. (A) A 3D object. (B) Implicit
representation of the corresponding combinatorial map, where βi applications are not
explicitly drawn.

Within the combinatorial map framework, all cells are implicitly represented
through the notion of orbit. Intuitively, an orbit < βi1 , . . . , βij > (d) is the set of
darts that can be reached with a breadth-first search algorithm, starting with d,
and using all combinations of all βik

or β−1
ik

permutations ∀k, 1 ≤ k ≤ j. With this
notion, each cell is defined as a particular orbit. Based on the cells definition, we
can retrieve the classical cell degree notion. The degree of an i-cell c is the number
of distinct (i+1)-cells incident to c. Note that in a n-dimensional space, the degree
is not defined for n-cells, since (n+1)-cells do not exists in such a space.

2.2 Removal Operations

Topological maps are constructed mainly by using removal operations. The
i-dimensional removal operation (denoted i-removal) consists in removing an
i-cell. This leads to the merging of the two (i+1)-cells incident to the removed
cell. For 3D subdivisions, we can remove a face (2-removal, e.g. Fig. 2), an edge
(1-removal) or a vertex (0-removal). We only present here the main notions
about these operations. A more complete description can be found in [17] where
general definitions of removal and contraction operations are provided for any
dimension.
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d

A B C

Fig. 2. 2-removal of the face incident to dart d. (A) Initial configuration with two
adjacent volumes. (B) The removed face is isolated. (C) Adjacent faces of the initial
removed face are joined by modifying β2 relations.

Any face of a 3-map can be removed without any constraint (e.g. Fig. 2), since
the degree of a face, in a 3D subdivision, is always equal to one or two. The face
removal operation consists mainly to locally modify the β2 relation for each dart
that belongs to the neighborhood of the removed face (all removal operations
are based on similar principle).

The 1-removal (removal of an edge) can be applied only for edges whose degree
is one or two. Otherwise it is not possible to automatically decide how to connect
the faces incident to the removed edge. This operation is achieved in a similar
way than for face removal, but here by modifying β1 relation. Vertex removal
can only be applied for vertices whose degree is one or two. This operation is
performed in a similar way than for edge removal, but with different cases to
take into account, due to the un-homogeneous definition of combinatorial maps
(β1 is a permutation while others βi are involutions).

Validity of removal operations can be proved whatever the initial configuration
and the cell to remove (even for degenerated cases, as for example removal of a
dangling face adjacent to an unique volume, see [17]).

2.3 Topological Map

Combinatorial maps can be used to represent labeled images [18,19,20,21,22,23,
2,24] where cells correspond to interpixel or intervoxel elements (pointels, linels,
surfels or voxels). For representing 3D labeled images, the main idea of our ap-
proach is first to build a complete combinatorial map, that represents all the
intervoxel cells of the image, and then to progressively simplify it with removal
operations, as long as no topological information is lost. The minimal map ob-
tained by this construction scheme, called topological map, represents all the
adjacency and incidence relations between regions of the image.

This is the main property of topological map: to be minimal according to the
number of cells, while conserving all the adjacency and incidence relations. To
avoid losses of information, we control the operations used during the construc-
tion. There are two cases to consider:
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– the first case is volume disconnection, when a region is completely included into
another one. In this case, we obtain in our model two connected components,
one which represents the external surface, and a second which represents the
inner surface. We add an inclusion tree on the regions of the image, that allows
us to keep relations between these two surfaces2;

– the second case is face disconnection, when a face has different borders. Here,
we add a constraint on the 1-removal operation in order to avoid this type
of disconnection. Indeed, this case only occurs when we remove a degree one
edge, which is not a dangling edge. By avoiding to remove such an edge, we
keep each face connected, and thus homeomorphic to a topological disk. We
call fictive edges the particular edges kept by this additional constraint, since
they do not represent an adjacency relation between regions. By opposition,
other edges are called real edges. We introduce the notion of real degree of a ver-
tex, which is the vertex degree but without considering incident fictive edges.

The topological map construction is made through 5 steps, each one being a
simplification of the map obtained by the previous step:

Step 1: Initialization. Given a 3D labeled image, build a 3-map representing a
3D grid made of cubic volumes, plus an enclosing volume which repre-
sents the infinite region.

Step 2: Remove each face shared by two voxels having the same label. This step
merge volumes that belong to the same region. After this step, each
boundary between two regions is represented by a unique surface made
of square faces (corresponding to surfels).

Step 3: Remove each degree two edge, and each dangling edge, except isolated
edges. This step simplifies the boundaries of each region by merging its
faces. We can classify each edge e depending on its degree d:
• d > 2: e is not removed due to the precondition of the 1-removal oper-

ation. This type of edge belongs to a junction of different boundaries;
• d = 2: e is removed because the two incident faces belong to the

same boundary and can thus be merged into a unique face. Moreover,
this removal can not involves a disconnection since the two faces are
different;
• d = 1 and e is an isolated edge: this case corresponds to the minimal

representation of a sphere with two vertices, one isolated edge and
one face. Thus, e is not removed otherwise we remove a surface that
represents an adjacency relation;
• d = 1 and e is a dangling edge: e is removed because it not represents

an adjacency relation and its removal can not involves a disconnection;
• d = 1 and e is not a dangling edge: e is not removed to avoid the

disconnection of the face. This is the unique case which involves the
creation of a fictive edge.

2 Nevertheless the problem of interlaced rings is not take into account by inclusion tree
but this is a main drawback of all topological structures. This could be eventually
avoided by adding fictive faces to keep cells homeomorphic to balls.
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Step 4: Remove each real degree two vertex incident to two non-loop edges, after
shifting all fictive edges incident to this vertex. This step simplifies the
boundaries of each region by merging real edges. Since this step and the
following are both concerned by the real degree vertex, explanations
are merged and presented after the last step.

Step 5: Remove each real degree zero vertex incident to at least two edges, in-
cluding one non-loop edge, after shifting all fictive edges incident to this
vertex, except one non-loop edge. This step simplifies the boundaries of
each region by grouping fictive edges on same vertices.

We can classify each vertex v depending on its real degree d. We
consider the real degree and not the degree since fictive edges are not
take into account during this simplification of boundaries. But they are
necessary to keep each face connected and for that, they are shifted
(pushed along one incident edge) before the vertex removal. If the real
degree d is:
• d > 2: v is not removed since it belongs to a junction of different

boundaries with more than two real edges;
• d = 2: if at least one real edge is a loop, v is not removed since the loop

corresponds to a face and thus represents an adjacency information.
Otherwise, v is removed since the two incident real edges belong to
the same boundary;
• d = 1: v is not removed because the real edge is a loop (same reason

than the previous case);
• d = 0: if v is incident to an unique edge, it is not removed since this

is the case of the sphere. If v is only incident to 2k loops, v is not
removed since this case corresponds to the minimal representation of
a torus with k holes. Otherwise, there are at least 2 edges and at
least one non-loop edge. In this case, v is removed in order to regroup
fictive edges on a same vertex.

We can see a first example in Fig. 3 which shows a 3D image and the cor-
responding topological map. The second example given in Fig. 4 shows a case
where a region R1 is totally included into another one R2 without other adja-
cency regions. In such a case, the representation obtained in topological map

Fig. 3. (A) A 3D image. (B) The corresponding topological map (partial representation
without the infinite volume). (C) The represented subdivision in intervoxel elements.
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R2

R1

A B C

Fig. 4. (A) A region R1 totally included into another one R2. This is a partial rep-
resentation of a 3D image with other regions around R2 but that are not adjacent to
R1. (B) The corresponding topological map (partial representation without the infinite
volume) with one face, two edges and one vertex. (C) The surfels that compose the
boundary surface between R1 and R2.

corresponds to classical canonical representation of surfaces (in our example we
obtain the torus canonical representation with 1 vertex, 2 edges and 1 face).

We have presented here the construction of topological map by successive
steps. But in practice, we use an incremental extraction algorithm (presented
for example in [25, 2]) which extract topological map in a single scan of the
image. The image is scanned from left to right, from behind to front and from
up to bottom. For each voxel, a cube is added to the combinatorial map already
built. Then, we remove some faces, edges and vertices, depending on the local
current configuration.

3 Incremental Euler Characteristic Computation

Euler characteristic χ of each surface of topological map can be computed using
the alternated sum of numbers of i-cells, for each i = 0 . . . 3. We propose here
to compute incrementally the Euler characteristic during the topological map
construction, with only a small additional cost. This can be achieved just by
studying the different removal operations and their effect on the number of cells.

The incremental Euler computation given here is only valid for regions rep-
resented by a unique surface in topological map. An orientable surface without
boundary is completely characterized by χ (this also can be done with its genus).
Euler characteristic of a set of surfaces does not give any characteristic infor-
mation on surfaces. To extend this work in order to obtain topological features
for region made of many surfaces, we need to study other characteristics. For
example, we are currently interesting on homology groups and the way they can
be computed incrementally by using topological map.

In the following, we note #F the number of faces, #E the number of edges,
and #V the number of vertices of a region, and χ the Euler characteristic before
each operation, and we use the same notation with the prefix n (#nF , #nE,
#nV and nχ) for the same numbers after the operation.
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3.1 Cube Creation

The first step of the incremental extraction algorithm consists in creating a
cube and add it to the combinatorial map already built. Thus, we just increase
the number of cells of the region that contains this voxel #nV = #V + 8,
#nE = #E + 12 and #nF = #F + 6 in order to count all the cells of the new
cube. After this step, some cells are eventually counted twice. Moreover we can
have temporally an invalid Euler characteristic since it corresponds to several
surfaces. But the following simplifications are going to eventually decrease these
numbers, depending on the current configuration, and finally, one connected
component is re-obtained and thus the valid Euler characteristic.

3.2 2-Removal

The face removal is used directly after the cube creation, and uniquely on faces
of the new cube in the case of the incremental algorithm. For this reason, faces
considered here are only square faces, made of 4 edges. Faces are only removed
between volumes that belong to the same region, and thus there are only a
region which is concerned by this removal and for which we need to update its
topological characteristics.

#nF = #F − 2, since faces are counted twice in the initial subdivision and
the both half faces are removed during the 2-removal (see example in Fig. 5).

#nE = #E − 4. There are two cases depending on the degree of the edges
incident to the removed face. If the degree of each edge is greater than two
(e.g. Fig. 5), each edge is counted twice in the initial subdivision and grouped
after the removal. Thus, there are 8 edges before, and 4 after which gives the
difference −4. The second case is when some edges incident to the removed face
are degree two edges (e.g. Fig. 6). In this case, degree one edges are counted only
once in the initial subdivision, but are completely removed after the 2-removal

A B

Fig. 5. Face removal where no edge incident to the face is a degree 2 edge. (A) Before
the 2-removal The new cube is drawn on the right of the current region (we do not
have represented two faces to see the interior of the volume). (B) After the removal:
the 2 dark grey faces are removed, and the 8 bold edges are merged into 4 edges.
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A B C

Fig. 6. Face removal where some edges incident to the face are degree 2 edges. (A) Be-
fore added the new cube (drawn in white) in a region made of 4 voxels. This addition
will be done by 2-removing both dark grey faces. (B) Subdivision obtained after the
first 2-removal. 3 faces are not drawn in order to see the interior of the volume. The
black thick edge incident to the second face to remove is a degree one edge (i.e. incident
twice to the same face). (C) After the second face removal, the degree one edge has
completely disappeared.

operation. For this reason, both cases involve exactly the same evolution on the
number of edges.

#nV =?. Concerning the number of vertices, the problem is more compli-
cated. Indeed, there are many different cases, depending on the number of ver-
tices counted twice in the initial subdivision, and depending also on the number
vertices that are grouped or not after the face removal. Since the number of cases
seems to be too much important, we use the topological map in order to update
the number of vertices.

We just count the number of vertices incident to the removed face before its
removal, and count again the same number after this removal. The difference
gives immediately the new number of vertices depending on the old one. Of
course, this solution involves a small additional cost. But this cost is very small
since we are in a 3D discrete grid and thus we are sure that at most 6 edges are
incident to a given vertex.

3.3 1-Removal

The third step of the construction of topological map consists in removing each
degree two edge, and each dangling edge (except isolated edges). Now, the initial
combinatorial map can have different kind of volumes, since we have already
merged some of them during the first step. But the map is already closed and
when we process an edge, we are sure that this edge is incident to two volumes.
For this reason, number of cells need to be updated in a same way for both
regions incident to the removed edge.

When we remove an edge, two possible different cases can be obtained:
– when a degree two edge is removed;
– when a degree one dangling edge is removed.

Other cases are avoided by definition of topological map.
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d

Fig. 7. 1-removal of the degree two edge incident to dart d. (A) Before the 1-removal.
(B) After.

First case: Degree two edge. This case is shown in Fig. 7. The new charac-
teristics are: #nF = #F − 1: two faces are merged into one; #nE = #E − 1:
one edge is removed; #nV = #V : the number of vertices is still unchanged; and
thus nχ = χ: there are no topological modification.

Second case: Degree one dangling edge. This case is shown in Fig. 8. The
new characteristics are: #nF = #F : since the removed edge is inside a face, no
face are merged; #nE = #E − 1: the edge is removed; #nV = #V − 1: due
to the removal of the edge, the degree one vertex incident to the removed edge
vanishes; and thus nχ = χ: the Euler characteristic remains unchanged.

Thus we can conclude that the 1-removal does not change Euler characteristic
of concerned regions, whatever the configuration of the removed edge.

d

A B

Fig. 8. 1-removal of the degree one dangling edge incident to dart d. (A) Before the
1-removal. (B) After. The removal of the edge involves the disappearance of the degree
one vertex.
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3.4 0-Removal

The last step of the construction of topological map consists in removing each
vertex which is either:

– a real degree two vertex incident to two non-loop edges, after shifting all
fictive edges incident to this vertex;

– a real degree zero vertex incident to at least two edges, including one non-
loop edge, after shifting all fictive edges incident to this vertex, except one
non-loop edge.

The additional conditions (concerning the non-loop edges) ensure that the
0-removal does not involves the disappearance of a face. Thus, there are only
two cases to consider:

– when the degree of the vertex is two;
– when the degree of the vertex is one and the edge is dangling.

Indeed, there are the two unique possible configurations obtained after the fictive
edges shifting starting from both cases (given above) of the topological map
construction.

Actually, these two cases involve the same modifications: the disappearance of
one edge and one vertex. Thus, the new characteristics are: #nF = #F , #nE =
#E− 1, #nV = #V − 1 and thus nχ = χ. We can conclude as for the 1-removal:
the 0-removal does not change Euler characteristic of concerned regions.

Note that for 0-removal, there are many regions that are concerned by these
modifications: each region which is incident to the removed vertex. Thus, topo-
logical characteristics need to be updated for each such regions.

3.5 Fictive Edge Shifting

We also need to study the possible evolutions during the fictive edge shifting.
This can be done immediately since there is no modification, neither for the
number of volumes, nor for faces, edges and vertices. Obviously, the Euler char-
acteristic remains unchanged after this operation.

3.6 Experimentations

We have implemented the incremental Euler characteristic computation in our
computer software which computes the topological map incrementally. This pro-
gram is developed in C++ without particular optimization. All our experiments
were made on a classical personal computer with a Athlon 2000MHz CPU and
512Mb of memory and a Linux Debian System.

Our experiments are made on random artificial images in order to be able to test
easily many different images. We have generated images of size range 4 × 4 × 4
to 160 × 160 × 160, and for each size we have generated 10 random images in
order to compute an average of the obtained results. For each image, the number
of generated regions is a random number between 1 and the size of the image.

We compared the time needed to compute Euler characteristicwith the classical
method (counting the number of cells and compute the altering sum) and with our
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Time

With incremental
Euler computation

Extraction of
of topological map

With classical Euler
computation

14

16

12

10

8

6

4

2

0 Length

Length 4 8 16 32 64 96 128 160
Extraction 0 0 0,02 0,17 1,2 3,51 7,72 14,49
Incremental 0 0 0,03 0,19 1,33 3,88 8,53 15,93

Classical 0 0 0,02 0,19 1,44 4,22 9,27 17,46

Fig. 9. Time (in seconds) necessary to extract topological map alone (in black in the
figure and the first line of the array), with the incremental Euler computation (in dark
grey in the figure and the second line of the array), and with the classical algorithm
(in white and dash line in the figure and the last line of the array). Each time is the
average of 10 extractions for image of size Length × Length × Length.

incremental method. We can see in Fig. 9 the results obtained by our experiments.
Moreover, we have also verified that both methods give the same result.

We can first observe that the additional cost taken by our incremental Euler
characteristic computation is small compared to the time necessary to extract
the topological map alone. Since we do not have optimized our software, this ad-
ditional time can be reduced by using some programming techniques. Second, we
can observe that our incremental algorithm is faster than the classical algorithm
(about 10%), what shows the interest to use the incremental solution.

4 Conclusion and Perspectives

In this paper, we show how to compute Euler Characteristic “on the fly” during
the topological map construction. This computation is efficient since topologi-
cal map construction is efficient and only a small additional cost is needed to
compute Euler Characteristic.

The proposed algorithm is incremental as it uses computations from one step to
determine the result for the next step. Our experiments show that the additional
time necessary to compute incrementally Euler characteristic is very small. More-
over, this solution is more efficient than the classical algorithm which consists in
counting the number of cells of the final subdivision and using the altering sum.

This first result is interesting since we are able to compute efficiently during the
topological map construction, a topological feature. Moreover, this computation
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can be optimized, either by using some programming techniques, or by studying
the different cases that can occur during face removal in order to remove the count-
ing of vertices. For that, it could be possible to study directly the possible cases
by considering directly the added voxel and not only face removal.

Now, we are working on the computation, in a similar way, of other topological
features. We have first results for the canonical polygonal schema computation.
Intuitively, a canonical polygonal schema of a given surface is the minimal poly-
gon such that when each edges are correctly identified two by two, we obtain
the initial surface. We have shown that this notion can be directly obtained
from topological map (for regions that are composed by a unique face since the
polygonal schema is not defined for other cases).

Thenext step is to extend computations of topological features for higher dimen-
sions in order to be able to characterize any type of regions and not only those made
of an unique surface (which is the case for Euler characteristic). For that, we are
interesting on the calculation of homology groups and generators of these groups.

Homology groups are topological invariants that deal with holes in a topolog-
ical spaces. These invariants can be computed into each dimension and concrete
interpretation can be given for low dimensions. In dimension 0, homology groups
characterizes connected components, in dimension 1, homology groups charac-
terizes holes, and cavities are described by dimension 2 homology groups3.

In order to represent homological informations directly on the image, an al-
gorithm that computes generators of homology groups can be used [26]. Such
generators are cycles (i.e. closed paths) that surround holes, see examples given
on figure 10. Our goal is now to compute these generators incrementally during
topological map construction.

A B

Fig. 10. Illustration of homology generators. (A) For a torus, two paths that surround
the two holes are highlighted. (B) For a Klein bottle, two paths are highlighted, one
surround the hole and the other indicates the torsion part of the Klein bottle.

3 Roughly speaking for each dimension p, the p-th homology group Hp is isomorphic
to a direct sum Z ⊕ · · · ⊕ Z

βp

⊕Z/tp
1Z ⊕ · · · ⊕ Z/tp

nZ. where βp is called the p-th Betti

number, the integers tp
1, . . . , t

p
n are called the torsion coefficients of Hp.



14 G. Damiand et al.

References

1. Bertrand, Y., Damiand, G., Fiorio, C.: Topological map: Minimal encoding of
3d segmented images. In: Workshop on Graph-Based Representations in Pattern
Recognition, Ischia, Italy, IAPR-TC15 (2001) 64–73
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Abstract. An important concept in combinatorial image analysis is
that of gap. In this paper we derive a simple formula for the number
of gaps in a 2D binary picture. Our approach is based on introducing
the notions of free vertex and free edge and studying their properties
from point of view of combinatorial topology. The number of gaps char-
acterizes the topological structure of a binary picture and is of potential
interest in property-based image analysis.

Keywords: digital geometry, 2D binary picture, gap, gap-freeness.

1 Introduction

An important concept in combinatorial image analysis is that of gap. Intuitively,
gaps are locations in a digital picture (that is any finite set of pixels/voxels in
2D/3D) through which a “discrete path” can penetrate. Gaps play an important
role in rendering pixelized/voxelized scenes by casting digital rays from the image
to the scene [8, 9]. Thus it is useful to know if a digital picture is gap-free or
it has gaps of certain type. This is particularly interesting when dealing with
digital curves or surfaces. It may also be helpful to have an estimation for the
number of gaps (if any) in the considered object, possibly as a function of other
object characteristics. Such kind of information may help better understand the
topological structure of a binary picture and is of potential interest in property-
based image analysis.

Results of this sort belong to combinatorial topology, but are also of interest in
several other disciplines, such as digital geometry, combinatorial image analysis,
and theory of computer graphics. A classical result is the famous Descartes-Euler
formula v − e + f = 2 that relates the number of vertices (v), edges (e), and
facets (f) of a polytope. For various applications of this last formula and other
similar results to image analysis and digital geometry, see Chapters 4 and 6 of
[10]. In particular, digital picture gap-freeness appears to be equivalent to the
notion of well-composedness of a set of pixels proposed by Latecki, Eckhardt, and
Rosenfeld [13]. This last paper demonstrates the wealth of using well-composed
(i.e., gap-free) sets in image analysis.

A recent work [7] provided the formula g = v − 2(p + c − h) + b, where g
is the number of gaps, v the number of vertices, p the number of pixels, h the
number of holes, c the number of connected components, and b the number of

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 16–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2× 2 grid squares in a digital picture. In the present paper we obtain a simpler
(and computationally more relevant) formula that expresses the number of gaps
in a generic 2D digital picture in terms of the new notions of free vertex and free
edge. We achieve this by certain combinatorial considerations within a digital
topology framework.

In the next section we introduce some basic notions and notations of digital
topology. In Section 3 we present our main results, and we conclude in Section 4.

2 Preliminaries

2.1 Some Basic Notions of Digital Topology

In this section we introduce some basic notions of digital topology to be used in
the sequel. We conform to the terminology used in [10]. See also [11, 15, 18] for
further details.

All considerations take place in the grid cell model that consists of the grid
cells of Z2, together with the related topology. In the grid cell model we represent
pixels as squares, called 2-cells. Their edges and vertices are called 1-cells and
0-cells, respectively.

For every i = 0, 1, 2 the set of all cells of size i (i-cells) is denoted by C(i)
2 .

Further, we define the space C2 =
⋃2

i=0 C(i)
2 . We say that two 2-cells are 0-

adjacent (1-adjacent) if e∩ e′ ∈ C(0)
2 (e∩ e′ ∈ C(1)

2 ). The relation of 0-adjacency
(resp., 1-adjacency) is denoted by A0 (resp., A1). Given a 2-cell p, by A0(p) and
A1(p) we denote the A0 and A1 neighborhoods of p, respectively, that are the
sets of all 2-cells which are 0-adjacent (resp. 1-adjacent) to p. (These are also
called 0/1-neighbors of p.)

We can also consider the grid cell model as an incidence structure, i.e., as
a triple (C2, I, dim) where I is an incidence relation defined as follows. For
every pair of cells e, e′ ∈ C2, we have eIe′ if and only if e is adjacent to e′

or e′ is adjacent to e and dim is a mapping from C2 to the set {0, 1, 2}. Note
that the incidence relation I is reflexive and symmetric while the adjacency
relations A0 and A1 are irreflexive and symmetric. The grid cell model can also
be considered as an abstract cell complex (C2, <, dim) (see [12]). Here < is a
bounding relation, that is antisymmetric, irreflexive, and transitive, and such
that for every e, e′ ∈ C2, e < e′ if and only if eIe′ and dim(e) < dim(e′). Hence
< is a partial order on C2 and the corresponding order topology τ(<) is called
the grid cell topology. In this topology the open sets are precisely the sets U ⊆ C2
such that for every u ∈ U and every v ∈ C2 with u < v, we have v ∈ U .

Since this topology forms a T0 Alexandroff space, for every point c ∈ C2 it
is possible to define its minimal neighborhood η(c), i.e., the smallest open set
containing c. For more details about Alexandroff spaces see [10]. For related
recent results the reader is referred to [3].

For the sake of completeness, we recall that for any subset A of C2 its boundary
∂(A) is defined as the set of all points x of C2 such that every open neighbor-
hood of x meets A and C2 \ A, while its interior int(A) is the set of all points
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x of C2 such that there exists some open neighborhood of x contained in A. The
points of int(A) will be called internal points of A. In the rest of the paper,
we will assume that the abstract cell complex (C2, <, dim) is equipped with the
topology τ(<).

2.2 Gaps in Digital Picturess

Several definitions of a gap are available in the literature (see, e.g., [1, 2, 5]). In
what follows, we will refer to the following one, that is believed to fit best our
purposes.

Definition 1. Let v be a 0-cell (vertex) of a digital picture D. We say that D
has a gap at v if there are two 2-cells (pixels) p1 and p2, such that:

1. v < p1 and v < p2,
2. p1 ∈ A0(p2) \A1(p2), and
3. A1(p1) ∩A1(p2) ∩D = ∅.

Figure 1 illustrates the notion of gap. Let us note that Condition 2 of the above
definition is equivalent to p2 ∈ A0(p1) \ A1(p1), that is, the relation “to have a
gap in a common vertex”, defined in the sets of 2-cells C(2)

2 , is symmetric.

Fig. 1. Gaps in a digital picture

3 Main Results

We start this section by introducing a new definition which will play an impor-
tant role in obtaining our main results.

Definition 2. Let c be a cell (vertex or edge) of a digital picture D. We say
that c is free if η(c) � D. A cell that does not satisfy this condition will be called
non-free.

In the following, the number of free vertices and free edges of a digital picture
D will be respectively denoted by v∗(D) and e∗(D), or simply by v∗ and e∗, if
no confusion arises. By v′(D) and e′(D) (or simply by v′ and e′) we will denote
the number of non-free vertices and non-free edges, respectively.

Proposition 1. Let c be a vertex or edge of a digital picture D. Then c is free
iff it belongs to the topological boundary ∂(D).
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Proof. Let c ∈ D be free. Suppose by contradiction that c /∈ ∂(D). Then
c ∈ D \ ∂(D) = int(D) and so there is an open neighborhood N of c such that
N ⊆ D. Since η(c) ⊆ N is the smallest open set that contains c, it follows
that η(c) ⊆ D, which contradicts the hypothesis that c is free. Conversely, let
c ∈ ∂(D). Then D and its complement have non-empty intersection with every
neighborhood of c. In particular, we have η(c) ∩ C2 \D �= ∅. This implies that
η(c) � D. Hence c is free. 	


Corollary 1. A vertex or an edge c of a digital picture D is non-free iff it is
internal for D.

Let us note that a vertex v is non-free if and only if it is the unique common
vertex of the four pixels in a 2× 2-block B(v) centered at v. Similarly, an edge e
is non-free if and only if it is the common edge of the two pixels in a 2× 1-block
B(e) (see Figure 2).

(a) (b)

Fig. 2. a) Non-free vertex. b) Non-free edge.

Example 1. Recall that a closed digital k-curve C (k = 0 or 1) is a k-connected
set of pixels such that every its pixel has exactly two k-neighbors in C. It is easy
to see that all vertices of C are free.

Given a digital picture D, we will denote by B(D) and b(D) (or, simply, by B
and b) the number of 2 × 2- and 2 × 1-blocks of D, respectively. The following
are easy facts.

Proposition 2. Let D be a digital picture. Then B(D) equals the number v′ of
non-free vertices, and b(D) equals the number e′ of non-free edges.

The above proposition suggests that the study of the gaps of a digital picture
can be based on the analysis of the type of adjacency in a block. As usual, by
|D| we will denote the cardinality of a set of pixels D. With this preparation,
we are ready to prove our main result.

Theorem 1. Let D be a digital picture. Then

g = e∗ − v∗,

where g is the number of gaps of D and e∗ and v∗ denote the number of free
edges and free vertices of D, respectively.
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Proof. We use induction on the number of pixels of D. Let |D| = 1. Then we
have e∗ = 4, v∗ = 4, and g = 4 − 4 = 0, so the basis of induction is proved.
Assume that the theorem holds for any digital picture D with |D| = n−1, where
n is an integer greater than or equal to 2. Now let D′ = D∪ p̄ for a pixel p̄ /∈ D.
Then |D′| = n. We will examine how adding p̄ to D influences the number of
gaps, free edges, and free vertices. Since obviously these last parameters do not
change outside A0(p̄), it suffices to pay attention only to changes that occur
in A0(p̄).

For convenience, we will denote by v−, e−, g−, v+, e+, g+ the number of ver-
tices, edges, and gaps, respectively, that may vanish or occur when adding p̄
to D. We analyze different cases classified with respect to |A(p̄) ∩ D| = i for
i = 0, 1, . . . , 8 (i.e., the cardinality of the set of 0-neighbors of p̄). So, we have
28 = 256 different feasible cases.

Table 1. Values of parameters v∗
−, v∗

+, e∗
−, e∗

+, g−, g+, Σ−, and Σ+ for |A(p̄) ∩ D| =
0, 1, 2, and 3

|A(p̄) ∩ D| code symmetric v∗
− v∗

+ e∗
− e∗

+ g− g+ Σ− Σ+

0 #0 none 0 4 0 4 0 0 0 0
1 #1 3 0 2 1 3 0 0 -1 -1

#2 3 0 3 0 4 0 1 0 0
2 #3 7 0 2 1 3 0 0 -1 -1

#5 3 0 1 2 2 1 0 -1 -1
#9 7 0 1 1 3 0 1 -1 -1
#10 3 0 2 0 4 0 2 0 0
#17 1 0 0 2 2 0 0 -2 -2
#34 1 0 2 0 4 0 2 0 0

3 #7 3 1 1 2 2 0 0 -1 -1
#11 7 0 1 1 3 0 1 -1 -1
#13 7 0 1 2 2 1 0 -1 -1
#14 3 0 2 1 3 0 0 -1 -1
#19 7 0 0 2 2 0 0 -2 -2
#21 3 0 0 3 1 2 0 -1 -1
#35 7 0 1 1 3 0 1 -1 -1
#37 3 0 0 2 2 1 1 -1 -1
#41 3 0 0 1 3 0 2 -3 -3
#42 3 0 1 0 4 0 3 0 0

To facilitate the further description, we encode each configuration of pixels
in a possible neighborhood of p̄, as follows. To any pixel of A0(p̄) we assign a
position in a binary string W of length 8 (remember that A0(p̄) has 8 elements).
Pixels of A0(p̄) are counted clockwise, starting from the top-left corner of the
neighborhood. Accordingly, to each configuration A0(p̄)∩D, there corresponds an
8-bit string W , in a way that positions in W corresponding to pixels from A0(p̄)
contain 1’s, while the others are 0’s. For brevity, we encode a configuration by the
decimal number corresponding to its binary string. See Figure 3 for illustration.



Counting Gaps in Binary Pictures 21

00100011 = #35

Fig. 3. An example of a configuration and its binary and decimal labels

Given a configuration A0(p̄)∩D, its complement A0(p̄)\ (A0(p̄)∩D) to A0(p̄)
is called dual to A0(p̄) ∩ D. It can be viewed as obtained from A0(p̄) ∩ D by
exchanging v−, e−, g− and v+, e+, g+. Clearly, if |A0(p̄) ∩ D| = i, then |A0(p̄) \
(A0(p̄)∩D)| = 8− i. Therefore, we can restrict ourselves to configurations with
|A(p̄) ∩D| = i, for i = 0, 1, 2, 3, 4. Moreover, every case, except for four of them
(see the samples labeled by #0 (and its dual), #85, and #170) admits symmetric
ones (at least one and at most seven) that may also be disregarded. Thus finally
we obtain that it is enough to consider 32 essentially different cases displayed
in Figure 4, the rest being either symmetric or dual to them with essentially
analogous gap characterization.1

Table 2. Values of parameters v∗
−, v∗

+, e∗
−, e∗

+, g−, g+, Σ−, and Σ+ for |A(p̄)∩ D| = 4

|A(p̄) ∩ D| code symmetric v∗
− v∗

+ e∗
− e∗

+ g− g+ Σ− Σ+

4 #15 7 1 1 2 2 0 0 -1 -1
#23 7 1 0 3 1 1 0 -1 -1
#27 3 0 0 2 2 0 0 -2 -2
#39 3 1 0 2 2 0 1 -1 -1
#43 7 0 0 1 3 0 2 -1 -1
#45 7 0 0 2 2 1 1 -1 -1
#46 7 0 1 1 3 0 1 -1 -1
#51 3 0 0 2 2 0 0 -2 -2
#53 7 0 0 3 1 2 0 -1 -1
#54 3 0 1 2 2 1 0 -1 -1
#57 7 0 0 2 2 0 0 -2 -2
#85 none 0 0 4 0 4 0 0 0
#170 none 0 0 0 4 0 4 0 0

Let us denote Σ− = v−−e−+g− and Σ+ = v+−e++g+. Keeping in mind the
definition of gaps, Proposition 2, and Corollary 1, one can easily conclude that,
1 A simple computer program allowed us to easily generate the 32 configurations. Since

we are interested in finding only configurations up to symmetries and duality, for a
current configuration under consideration we have to check if it can be obtained by
one of the seven possible symmetries of the square or if it is the dual to a configuration
already found. If this is the case, we do not count the configuration as a new one.
Note that at any step, in order to quickly verify if such a configuration has to be
added to the list, we do not need to compare it with the whole list of configurations
already found: the representative of each class of symmetries is the configuration
with the minimal label.
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#45 #46 #51 #53 #54 #57

#15 #23 #27 #39 #43#42

#41#37#35#21#19#14

#17#10 #34 #7 #11 #13

#0 #1 #2 #3 #5 #9

#85 #170

Fig. 4. The 32 essentially different configurations A0(p̄) ∩ D

for a given configuration the statement of the theorem holds iff Σ− = Σ+. Thus
it remains to show that this last equality is verified for all the 32 configurations.
As Tables 1 and 2 demonstrate, this condiction holds in all these cases, which
completes the proof. 	


Corollary 2. Let D be a digital picture. Then g = e − v + B − b, where B is
the number of 2× 2-block and b is the number of 2× 1-block.

Proof. By Theorem 1 we have that g = e∗− v∗. Moreover, we have v = v∗ + v′,
e = e∗ + e′, v′ = B, and e′ = b, from where the thesis holds. 	


4 Concluding Remarks

In this paper we proposed a formula for the total number of gaps in a binary
picture in terms of its free vertices and edges. It can be used to test a binary
picture for existence of gaps. As mentioned, the number of gaps characterizes the
topological structure of a binary picture. This may be of practical importance,
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e.g., when trying to define the borders of a digital picture in a way to ensure
gap-freeness (see [10]).

Let us mention that the obtained formula may allow a shorter proof if one
uses certain classical results, e.g., from combinatorial topology or graph theory.
The advantage of the proof presented in this paper is that it is a direct one and
does not resort to previous theoretical developments.

Work in progress is aimed at extending the results to higher dimensions.
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The Exact Lattice Width of Planar Sets and
Minimal Arithmetical Thickness
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Abstract. We provide in this paper an algorithm for the exact com-
putation of the lattice width of an integral polygon K with n vertices
in O(n log s) arithmetic operations where s is a bound on all integers
defining vertices and edges. We also provide an incremental version of
the algorithm whose update complexity is shown to be O(log n + log s).
We apply this algorithm to construct the arithmetical line with minimal
thickness, which contains a given set of integer points.

1 Introduction

Integer Linear Programming is a fundamental tool in optimization, operation
research, economics... Moreover it is interesting in itself since the problem is NP-
hard in the general case. Several results were known for the planar case [1, 2, 3]
before Lenstra [4] proved that Integer Linear Programming can be solved in
polynomial time when the dimension is fixed. Faster and faster algorithms are
nowadays developed and available making the use of Integer Linear Program-
ming reliable even for high dimensional problems. The approach of Lenstra used
the notion of lattice width (see section 2.1 for precise lattice definition) to de-
tect directions for which the polyhedron of solutions is thin. In polynomial time,
the problem is then reduced to a feasibility question: given a polyhedron P ,
determine whether P contains an integer point in it. To solve it, Lenstra ap-
proximated the width of the polyhedron and gave a recursive solution using
problems of smaller dimension. The approximate lattice width is also used in
the recent algorithms of Eisenbrand and Rote [5] and Eisenbrand and Laue [6]
for the 2-variables problem.

In the present paper, we are interested in the computation of the exact lat-
tice width as well as the computation of the whole set of directions for which
the width is the lattice width. To do this, we propose a partitioning of the set
of directions in cones where the problem is shown to be solvable in O(log s)
time where s is a bound on the integers appearing in the problem. For comput-
ing the complexity we use the arithmetic model where each arithmetic opera-
tion +, −, × and / are unit-cost operations. In this model the complexity of
our solution is O(n log s) arithmetic operations on any integer polygon with n
vertices.

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 25–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Preliminaries

2.1 The Lattice Width

In this section, we review some definitions from algorithmic number theory and
provide a precise formulation of the problem we solve. Definitions are taken from
[5, 7, 8].

Let K be a set of points of Rd and Λ a lattice included in Rd. Without loss
of generality, we suppose both structures to be full-dimensional. The width of K
along a direction c �= 0 in Rd is defined as

ωc(K) = max
{
cT x | x ∈ K

}
−min

{
cT x | x ∈ K

}
(1)

The lattice width of K is the minimal value of the width of K among the direc-
tions belonging to the dual lattice Λ∗,

ωΛ(K) = min {ωc(K) | c ∈ Λ∗ \ {0}} (2)

where Λ∗ is given by Λ∗ = {x ∈ Rd | xT v ∈ Z, ∀v ∈ Λ}. When Λ = Zd, we have
Λ∗ = Zd and we write ω(K) instead of ωZd(K). Geometrically, if a set K has a
lattice width of l then K can be covered by at most �l+1 parallel hyperplanes
given by cT x = cst with cst in the integer interval from min{cT x | x ∈ K} to
max{cT x | x ∈ K}.

It is straightforward to see that ω(K) = ω(conv(K)) where conv(K) denotes
the convex hull of K. Here, we also suppose that K is a polyhedral convex set.
K can be given either in H- or in V-representation [9]. In the H-representation,
K is defined as K = {x ∈ Rd | Ax ≤ b} where A ∈ Zm×d and b ∈ Zm. In
the V-representation, we suppose that K is given by a list of vertices and edges.
In this paper, we focus on the V-representation of K. A pre-processing must
be done when K is given by an H-representation. All numbers appearing in the
coordinates of vertices or in the components of vectors are supposed to have bit
size bounded above by log s.

In the present paper, we suppose that d = 2 otherwise stated. Moreover, we
suppose that K is an integer polygon. We denote by n the number of vertices of
K. The lattice Λ is also supposed to be Z2. In this case, the lattice width is an
integer. The problem we would like to solve is the following one:

Problem (Lattice Width)
Given an integer polygon K ∈ Z2 in a V-representation, find its lattice width
ω(K) as well as all vectors c ∈ Z2 such that ωc(K) = ω(K).

It should be noted that we are not interested in approximate solutions of the
problem. An approximate solution of the problem might be found by the follow-
ing algorithm suggested by one of the referees of a preliminary version of this
paper. It is known [4] that the lattice width of a convex set K is obtained for
the shortest vector with respect to the dual norm whose unit ball is the polar
set of the set 1

2 (K + (−K)). In the general case, computing the shortest vector
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is NP-hard. In the case of a polygon, the dual norm is a polyhedral norm whose
unit ball is a polygon with O(n) vertices. The standard approach [7] is to apply a
linear transform which makes the unit ball approximately round. Following the
method of Kaib and Schnörr [10] or a reduction similar to the one of Rote [11],
the shortest vector with respect to the Euclidean norm is a good approximation
of the shortest vector according to the dual norm. This leads to an algorithm with
O(log s) arithmetic operations, to solve the approximate version of the problem
of computing the lattice width.

2.2 Relations with Discrete Geometry

Arithmetical discrete lines have been introduced by Reveillès in [12]. They are
defined by the set of integer points (x, y) ∈ Z2 such that

μ ≤ ax− by < μ + ω (3)

where (a, b) is the direction of the discrete line, μ is its shift at the origin and ω is
its arithmetical thickness. Special values of ω lead to classical 8-connected lines
(ω = max(|a|, |b|)) or 4-connected lines (ω = |a|+ |b|). After the introduction of
this definition, a linear time recognition algorithm has been published by Debled
and Reveillès [13].

The arithmetical thickness corresponds merely to the number of Bezoutian’s
lines (ax− by = k) which are necessary to cover the integer points inside the dis-
crete lines. When it increases, discrete lines become thick. However, no good recog-
nition algorithm have been published for arbitrary thick lines. The problem can
be solved using Integer Linear Programming [7] as a black-box, using the Fourier-
Motzkin elimination [14] when the thickness is a linear function of (a, b), or par-
tially using ad-hoc techniques [15] where optimality could sometimes be reached.

It is easy to see that computing the arithmetical thickness is exactly the same
problem than the one of computing the lattice width of the points of a discrete
line. In the present paper, we use the lattice width to extract the directions of
lines minimizing the arithmetical thickness. This permits to list all the directions
which are solutions. As depicted in Fig. 1, arithmetical thickness can be mini-
mized while geometrical thickness is not. Indeed, if d is the geometrical thickness
of a set along the direction (a, b) and if ω is its arithmetical thickness along (a, b)
then simple geometrical relations lead to the equation: 1 + d

√
a2 + b2 = ω.

(0,0)
(4,−1)

(6,1)

(2,3)
(5,4)

(4,−1)
(6,1)

(5,4)
(2,3)

(0,0)

(0,0)
(4,−1)

(6,1)

(2,3)
(5,4)

width = 4.427...
ω = 17
width = 4.16 ...

ω = 15 ω = 13
width = 4.24 ...

Fig. 1. Minimizing geometrical thickness does not minimize arithmetical thickness
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3 Computing the Exact Lattice Width

3.1 Algorithm

We now propose an algorithm to solve our problem. The idea is based on the
principle that the lattice width of K is necessarily reached for two opposite
vertices of K. The meaning of opposite is given later in the description of the
method. To solve the problem it is then sufficient to have both an efficient
solution for two opposite vertices and an efficient way of considering vertices
such that not all n2 pairs are examined. We will show that we can examine
O(n) pairs of vertices and for each pair, the cost of computing all directions
with minimal width is O(log s). This permits us to provide an algorithm with
O(n log s) arithmetic operations for a convex polygon K. If the input of the
algorithm is a set of points not necessarily convex, the computation cost becomes
O(n log n + n log s) arithmetic operations.

ω (K)c

Dvv

s

D

c

K

v

s

r t

v

su

r

C

u
C

+

+

Fig. 2. (left) Supporting lines and width ωc(K) (right) Cone of rotations

To define the notion of opposite, we rely on the notion of supporting lines well
known in computational geometry [9]. A supporting line of K is a line D such
that D ∩K �= ∅ and K is contained entirely in one of the half-planes bounded
by D. For each supporting line D, there exist at least one vertex v of K such
the parallel line Dv to D passing through v is such that K entirely leads in
the strip bounded by D and Dv. If s denotes a vertex of K belonging to D
then s and v are called opposite (see Fig. 2, left). Opposite pairs are also called
antipodal pairs. Note that in general, a supporting line intersects K at only one
point. The supporting line D intersecting D along an edge is called principal
supporting lines.

We now suppose K to be oriented counter clockwise. As in the classical Rotat-
ing Calipers algorithm of Toussaint [16], we can rotate the principal supporting
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lines D around the right vertex of D∩K. Dv is also rotated around v to keep it
parallel to D. This rotation can be pursued until D or Dv becomes another prin-
cipal supporting line. Note that D and Dv are simply supporting lines during
the rotation. At each position of the rotation s and v form an opposite pair of
points which exactly define ωc(K) where c is the normal direction to D. Hence,
as depicted in Fig. 2 (right), s and v exactly define ωc(K) for all D in a cone
whose apex is v. The point r is such that the segment from v to r has exactly
the same length than the opposite edge of K and the point u is either the next
vertex of K after v or the point on the parallel of the line (st) such that the
length of [st] equals the length of [vu].

After one turn around K, we have constructed at most 2n opposite pairs
and associated cones. Hence, the number of cones is O(n). Moreover, the se-
ries of cones forms a partition of all possible directions of computation for the
lattice width taking into account that ωc(K) = ω−c(K). Hence, as previously
announced, the computation of the lattice width is reduced to the computation
of the minimal value of ωc(K) for each cone.

In each cone C, the computation of the minimal value of ωc(K) is the com-
putation of the shortest vectors for the dual norm. They are thus located at
the vertices of the border of the convex hull of integer points except v inside the
cone [10]. This set is also known as Klein’s sail [17, 18, 19]. Note that to allow the
possibility to find all solutions, repetitions in the convex envelope must be kept.
To compute Klein’s sail, we use an adapted version of the algorithm of Harvey
[20] whose complexity is O(log s) arithmetic operations for constructing the sail.
To bound the complexity of the search, we could also rely on the general theorem
of Cook et al [21] which says that there exists at most O((log s)d−1) vertices in
dimension d, a result also shown by Harvey [20] with an explicit example of the
worst case in two dimension.

We now detail the adapted version of Harvey’s algorithm [20] to our problem.
First, if the vectors vr and vu are reducible via gcd division then we perform the
reduction. Hence, for each vector, we can suppose that their x and y components
are relatively prime. Suppose that r = (a, b) and u = (c, d).

Klein’s sail is perfectly known [19] when considering points in the cone v, r,
u when v = (0, 0), r = (q, p) and u = (1, 0). Let x = p/q. The continued fraction
[22] of x is the expansion,

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(4)

where ai’s are called the partial quotients. The principal convergents of x are
the rational approximations pk/qk obtained by truncating the continued fraction
expansion of x after the k’s term. There are recurrence relations to obtain all
of them in O(log s) arithmetic operations and it is well known that the points
of the sail are exactly the principal convergents with even index [22]. Let us
introduce the matrix
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T =
[
α + kd β − kc
−d c

]
(5)

with α and β such that αc + βd = 1 and k ∈ Z. Then it is straightforward
that T is unimodular with determinant +1 and Tu = (1, 0). We also have Tr =
(aα+bβ−kΔ, Δ) with Δ = bc−ad. Hence, we can enforce Tr to have a positive
x coordinates by setting, k = �(aα + bβ − 1) /Δ. The cone v, Tu and Tr leads
to a sail computed from the principal convergents of the fraction defined by Tr.
To get the original sails, we apply the transformation T (−1).

u = (13,−3)

r = (9,11)

v=(0,0)

Fig. 3. A sail of a cone with irreducible support

To illustrate an example, let us consider the cone of Fig. 3. α and β are solution
of 13α− 3β = 1. This leads to α = 1 and β = 4. We also have Δ = 170. Thus,
k = 0. The image of u is (1, 0) has requested and the image of r is (53, 170). The
even principal convergents are respectively: 0/1, 3/1, 16/5, 170/53. The matrix
T (−1) is the matrix, [

13 −4
−3 1

]
(6)

The image of the previous points by T (−1) are respectively: (13,−3), (1, 0), (1, 1)
and (9, 11). All those points define the sail of the original cone.

To end our algorithm, we store for each cone its list of directions for which
the minimum is reached. Then, we output all lists whose value is the global
minimum. Hence, we obtain the exact lattice width as well as all directions for
which it is attained. The computation of the global minimum obviously costs
O(n) arithmetic operations. Hence, the claim of a complexity in O(n log s) arith-
metic operations is valid. We have solved the problem when Λ = Z2. This result
naturally extends to the case where K is still an integer polygon and Λ is any
full-dimensional lattice of Z2. Indeed, there exists a linear invertible transform M
of Z2 such that MΛ = Z2. If we consider KM = M−1K then ωΛ(K) = ωZ2(KM ).
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3.2 Example

In this part, we consider the example of Fig. 4. All points have been placed such
that the coefficients of all the edges correspond to irreducible couple (a, b). We
also provide on Fig. 4 all the sails obtained for one positive turn around the
convex set. In each cone, we have depicted the sail and shown the arithmetical
thickness associated to the shortest vector. Several comment could be done.
First, the arithmetical thickness of each edge is very high such that the optimal
solution could not correspond to direction given by an edge of the convex set (see
the values of ω inside the convex set). Second, the minimal thickness corresponds
to an horizontal discrete line followed by the solution corresponding to a vertical
one. If we do not consider these specific cases, then all other cones provide
solutions with the same arithmetical thickness. We hence obtained three vectors
of direction leading to the same thickness. It should be noticed that the solution
given by the sail on the lower right correspond to a solution that is only 14
percent higher in terms of geometrical thickness but more than three times
lower in terms of arithmetical thickness than the solution only minimizing the
geometrical thickness. This particular solution could then be considered as a
compromise between both measures.

(7,−2)

(14,3)

a=−2 ; b = 7

a=5 ; b=7

a=−5 ; b=−3

a=−5 ; b=4
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w=70

w=83

(0,0)

w=11

w=19

w=19

w=19

w=15(3,5)

(10,8)

+

Fig. 4. A complete execution of the algorithm with all sails and the arithmetical thick-
ness corresponding to the shortest vector

4 Incremental Construction

We now study an incremental version of the algorithm. The incremental con-
struction of the convex hull can be done in O(log n) update complexity [23].
In this algorithm, the convex hull is stored in a concatenable queue. We now
consider the adding of the new point p (see Fig. 5).

The addition of p implies that two cones will be generated by the edges fu and
fl adjacent to p in the new convex hull and other cones will be added when p is
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fu

fl

p

supported(f  )

supported(e)=p

l

supported(f   )u

Fig. 5. Incremental construction of the cones

a supporting point of an edge e of the convex hull. The set of edges for which p
is a supporting point, is a connected portion of the convex hull. This portion can
be easily determined when the supporting points of fu and fl are known. Only
the extremal edges need to be considered. Indeed if we consider the set of slopes
of these edges, it is monotonous. Hence the corresponding cones at the vertex p
are included one in the other. So to obtain the largest cones, it is sufficient to
consider the extremal positions.

Only two new cones at most will be generated at the point p. Hence, we
finally obtain that at most four new cones must be computed to determine the
new lattice width. Since each computation costs O(log s), we obtain an update
of the cones in O(log s). Now, to find the supporting points of fu anf fl, we use
a binary search over the convex hull. This leads to a O(log n) complexity. At
the end, the total complexity of the modification becomes O(log n + log s) per
update including the complexity of maintaining the convex hull.

5 Conclusion

Our paper raises the problem of the exact computation of the lattice width
of any integer polygon K by a geometric partitioning of the space of possible
directions. Moreover, all directions leading to the lattice width can be computed.
In the incremental case, we provide an extension of the algorithm to maintain the
lattice width. The whole set of solutions could also be obtained by enumerating
the new cones introduced during a modification. An extension to Zd is currently
a work in progress.
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Branch Voxels and Junctions in 3D Skeletons

Gisela Klette
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Abstract. Branch indices of points on curves (introduced by Urysohn
and Menger) are of basic importance in the mathematical theory of
curves, defined in Euclidean space. This paper applies the concept of
branch points in the 3D orthogonal grid, motivated by the need to an-
alyze curve-like structures in digital images. These curve-like structures
have been derived as 3D skeletons (by means of thinning). This paper
discusses approaches of defining branch indices for voxels on 3D skele-
tons, where the notion of a junction will play a crucial role. We illustrate
the potentials of using junctions in 3D image analysis based on a recent
project of analyzing the distribution of astrocytes in human brain tissue.

Keywords: 3D skeletons, 3D curve analysis, branch nodes, branch in-
dex, thinning, medical image analysis, astrocytes.

1 Introduction and Basic Notions

Our theoretical studies on discrete versions of 3D branch indices have been ini-
tiated within a recent project about the analysis of confocal microscope images
of human brain tissue. Those images are taken layer by layer and constitute a
volume, which we assume to be defined within a regular orthogonal grid in 3D
space. Figure 1 shows such a volume where 3D rendering has been used.

This 3D view clearly shows some type of “curve-like structures”, which can be
analyzed after segmentation, skeletonization, and property calculations for vox-
els on skeletons. Similar curve-like structures appear in other biomedical images
such as, for example, in 3D scans of blood vessels, or in 3D ultrasound images.
Long term observations in the School of Medicine at The University of Auck-
land produced the hypothesis that the number, distribution and “complexity”
of astrocytes (i.e., brain cells whose shape resembles that of a star) are related
to brain normality or defined types of abnormality (e.g., epilepsy). However, the
intuitive concept of “complexity” requires a definition and quantitative studies.
Following discussion with colleagues from the School of Medicine we decided to
focus on the number, distribution and complexity of “junctions” of curve-like
structures. This paper will provide a definition of such junctions, and discusses
consequences of the chosen definition. The definition is an adaptation of basic
concepts in 3D curve theory of Euclidean space.

We will point out at first that 3D topological thinning algorithms (see [10, 4])
deliver skeletons which consist of different “types” of voxels, characterized by
branching index. Branching indices will then allow to cluster specific voxels into
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Fig. 1. Example of an input data set of 42 slices of 256 × 256 density images, all
generated by confocal microscopy from a sample of human brain tissue: The astrocytes
are partially located around a blood vessel which has approximately “Y-shape” (from
lower left to upper right) in this sample

Fig. 2. Neighborhoods (left) N2(p), (middle) N1(p), and (right) N0(p)

“junctions”. We then map the 3D skeleton into an undirected graph where nodes
are defined by junctions and endvoxels. We also propose ways of labeling this
graph for supporting the quantitative analysis of curve-like structures. This will
be illustrated for the shown sample (in Figure 1) of brain tissue.

We use common adjacency concepts: 4-, 8- (in 2D), 6-, 18-, 26- (in 3D) for
the grid point model, and 0-, 1- (in 2D), 0-, 1-, 2- (in 3D) for the grid cell model
(see Figure 2 for an illustration in the grid cell model), with notations as in [6].
Any of these adjacency relations Aα, α ∈ {0, 1, 2, 4, 6, 8, 18, 26}, are irreflexive
and symmetric. The α-neighborhood Nα(p) of a pixel or voxel location p includes
p and its α-adjacent pixel or voxel locations.

Concepts for describing curve points in a continuous space are known for more
than 80 years (see [6] for a review). P. Urysohn in 1923 and K. Menger in 1932
proposed (independently) equivalent definitions for simple curves (arcs) based
on the notion of the branching index of a point on a curve (arc). The branching
index of a point on a curve was defined as follows:
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Definition 1. Let p be a point, ε be a positive real, Uε(p) be the ε-neighborhood
of p and F (Uε(p)) be the frontier of Uε(p). A curve γ has branching index m
(m ≥ 0) at p ∈ γ if and only if for any r > 0, there is an ε < r such that the
cardinality of F (Uε(p)) ∩ γ equals m.

Figure 3 shows two examples where q has branching index 4 and p has branching
index 2. It is obvious that the branching index of a curve point p ∈ γ in the
Euclidean space is the number of crossings of a circle (with radius ε < r and
middle point p) and curve γ. For all circles close enough to p this number has
to be constant for defining a branching index.

A simple curve in the Euclidean space is a curve γ in which every point p ∈ γ
has branching index 2. A simple arc is either a curve in which every point p has
branching index 2 except for two endpoints, which have branching index 1, or a
simple curve with one of its points labeled as an endpoint.

An application of those concepts in the 3D digital space (based on 0-adjacency
in the cell model, read if and only if for iff) may lead to the following definitions:

– digital curve ρ has branching index m > 0 at voxel p ∈ ρ iff exactly m
0-adjacent voxels are elements of ρ;

– voxel p ∈ ρ is regular iff p has branching index 2;
– p ∈ ρ is a branch voxel iff p has a branching index of at least 3;
– p ∈ ρ is an endvoxel iff p has branching index 1;
– p ∈ ρ is a singular voxel iff p is either a branch voxel or an endvoxel;
– the digital curve ρ in 3D space is simple iff every voxel in ρ is regular; and
– ρ is a simple arc iff it is either a curve in which every voxel p is regular except

for two endvoxels, or a simple curve where one of its voxels is labeled to be
a (double) endvoxel.

This results into limitations of branching indices at voxels which restricts the
generality of the concept.

Fig. 3. Uε(q) ∩ γ = 4 and Uε(p) ∩ γ = 2, assuming that ε is sufficiently small
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2 Junctions and Abstract Curve Graphs

For ensuring unlimited branching indices we introduce specific clusters of branch
voxels. The need for unlimited branching indices occurred when studying 3D
skeletons of curve-like structures, produced by a 3D topological thinning algo-
rithm. See, for example, [10, 4] for a discussion of 3D skeletonization. (Those
algorithms iteratively delete simple voxels until only non-simple voxels or end-
voxels remain.) A 3D curve skeleton ρ is a digital curve, which we consider with
respect to 0-adjacency.

Definition 2. A 0-region of branch voxels of a digital curve ρ is called a junc-
tion. The branching index of a junction J in ρ is the number of regular voxels
or end voxels in ρ being 0-adjacent to any one of the branch voxels in J .

Figure 4 illustrates a junction which consists of three branch voxels. Note that a
junction is a non empty 0-connected set of branch voxels. A single branch voxel
also represents a junction (with cardinality one).

Fig. 4. Example of a junction containing three voxels

It follows that a junction has a branching index greater than 2. For example,
the branching index of the junction shown in Figure 4 is 3. The complexity of a
junction is measured by its branching index.

The following definition is useful for determining the geometric location of a
junction. Let J be a junction, n be the number of branch voxels pi constituting
J , with pi = (xi, yi), 1 ≤ i ≤ n. The centroid c(J) of J is a 3D point with
coordinates:

x =
∑n

i=1 xpi

n
, y =

∑n
i=1 ypi

n
, z =

∑n
i=1 zpi

n
(1)

We identify the geometric position of a junction with that of its centroid.

Definition 3. A digital curve ρ is mapped into an undirected graph G, where a
node of G is either a junction or an endvoxel of ρ. Two nodes in G are connected
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by an edge iff the corresponding junctions or endvoxels are 0-connected in ρ. G
is the abstract curve graph of ρ.

G is uniquely defined by the chosen adjacency (0-adjacency in our case). The
geometric positions of a junction or of an endvoxel define the geometric positions
of the nodes of G.

In experiments we assign indices to all nodes of the abstract curve graph.
All branch voxels of one junction obtain the same label this way. Edges of the
abstract curve graph correspond to digital arcs between junctions or endvoxels
of the curve. See Figure 5 for an example where the skeleton has been calculated
for a 3D brain tissue scan. Due to using only one label for all branch voxels of one
junction, different arcs may start from different branch voxels which all have the
same label. For example, B14 in Figure 5 consists of three branch voxels. Each of
them is an endvoxel of a digital arc. We use the geometric position (i.e., centroid)
of B14 as endpoint for all of those three arcs, for example for the calculation of
the Euclidean distance to other nodes (i.e., junctions or endvoxels).

A straightforward application of this convention allows the calculation of
Euclidean distances between nodes. For a more accurate estimation of distances
between nodes we apply length estimation based on connecting digital arcs.
First we identify the two endvoxels for each arc. This can be done by a sec-
ond labeling process where all arcs are uniquely labeled. All voxels in one arc
obtain the same label; each branch voxel is mapped (say randomly) to exactly
one arc [5]. After these assignments, we apply a (global) DSS-based length mea-
surement (see [6]), where we decided for the DSS-algorithm as published in [1].
The algorithm cuts an arc into a set of digital straight segments, and the total
length is the sum of the lengths of those segments. We have chosen the way of
DSS-based length estimations because (besides a general theoretical benefit of
being multigrid convergent to the true length) it also proved to be adequate for
characterizing the complexity of distributions of astrocytes.

Fig. 5. Left: a skeleton (junctions are shown as black voxels). Right: abstract curve
graph for this skeleton (nodes are labeled by indices).
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The distances between pairs of singular voxels can now be used for calculating
weights for all edges in the abstract curve graph (using means in case of multiple
arcs). Based on the cost matrix for this weighted graph together with the coor-
dinates of all nodes we then applied traditional algorithms from graph theory
(such as algorithms for calculating the minimum path between any two nodes,
algorithms for determining the total weight of the minimum spanning tree, or
algorithms for finding the diameter of the graph and so on) for further analysis
of the curve-like structure in the given 3D image.

We determined the uniformity of junctions as follows: The volume data are
divided into a set of subcubes (small cubes of identical size). For a fixed branching
index j, we count the number of junctions in each cube having branching index
j. If the number of junctions with branching index j is equal in every subcube
then we say that junctions of branching index j are uniformly distributed in
the whole volume. The deviation from this ideal case characterizes the degree of
non-uniformity.

The division into subcubes can be fixed (a segmentation into pairwise disjoint
subcubes), or there can be a sliding subcube of varying size. In the examples
below we only illustrate the case of a fixed segmentation using pairwise disjoint,
uniformly sized cubes of voxels. (Sliding subcubes experiments are not reported
in this paper.)

For the description of the density of junctions we calculate the shortest path
between (unordered) pairs of distinct junctions with the same branching index j.
The shorter the path, the more dense are the junctions positioned in 3D space.
The total number of junctions in a subcube is a (simple) expression of density
of junctions in this subcube.

The data set shown in Figure 1 is divided into 36 subcubes, all of size 423.
(This also generates some excessive data.) We have chosen this subdivision based
on the sizes of given data sets and we had in mind that experts in the school of
medicine have the hypothesis that there is a relationship between the number of
astrocytes close to the main blood vessels and stages of epilepsy. See Figure 6
for the resulting curve (3D skeleton). We illustrate the approach by results for
this example data set.

All identified junctions have branching indices between 3 and 7. The shaded
cubes in Figure 7 correspond to the location of the main blood vessel, and they
contain in total more than 50% of all junctions, for each branching index between
three and seven. Table 1 presents the total number of junctions per branching
index for all the gray cubes (volume V1) and for the whole volume V2.

We counted the number of junctions of equal types per cube to find out how
they are distributed in the volume. Obviously, they are not (ideally) uniformly
distributed (see Table 2) in the whole volume. Most of them are located close to
the blood vessel.

The cardinality of junctions in this experiment did not exceed four and the
maximum branching index did not exceed seven. The original structure of the
image (elongated parts) and a range of preprocessing steps (segmentation and
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Fig. 6. 3D skeleton of the binarized volume shown in Figure 1

Fig. 7. Location of a main blood vessel (shown as gray cubes) detected by analyzing
the 3D skeleton shown in Figure 6

Table 1. Number of junctions per branching index in the gray cubes (volume V1) and
in the total volume (volume V2)

Branching index j Junctions in V1 Junctions in V2 Ratio between V1 and V2

j = 3 150 276 54.3%
j = 4 53 85 62.4%
j = 5 16 21 76.2%
j = 6 5 7 71.4%
j = 7 2 2 100%

3 ≤ j ≤ 7 226 391 57.8%

noise reduction by a sequence of morphological operations) are reasons for keep-
ing the cardinality and the branching index at low values. Theoretically, this is
not always the case.
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Table 2. Distribution of junctions in subcubes: The horizontal axis represents the
numbers of subcubes, and the vertical axis represents the number of all junctions in a
subcube

3 Properties of Junctions in 3D Curves

The branching index in the continuous space is defined for a single point p ∈ γ
of a curve γ. With above definitions we merge a set (i.e., a 0-connected region)
of branch voxels into a single node in the abstract curve graph G. Interestingly,
the size of this region can grow behind any limit.

The cardinality of a junction can grow if the image size or the grid resolution
grows. Let us consider Figure 8.

– All black voxels are non-regular with a branch index m ≥ 3, and all white
voxels are endvoxels (if the white voxels would be regular then the junction
would not change).

– If endvoxel q (as a grid cube) would share two more vertices with two more
voxels, then q would change into a branch voxel. We could continue this
process of adding two more voxels to one of the new endvoxels. As a con-
sequence the junction would grow and the branching index could increase
behind any limit.

The maximum branching index for a junction with cardinality one is eight;
see Figure 9. We recall the concept of an attachment set to separate branch
voxels into two types. The frontier of a voxel is the union of its six faces. A face
of a voxel includes its four edges, and each edge includes its two vertices. Let
p be an n-cell, 0 ≤ n ≤ 3. The frontier of an n-cell p is a union of i-cells with
0 ≤ i < n (i.e., excluding p itself). For example, if p is a voxel (a 3-cell) then the
frontier consists of eight 0-cells, twelve 1-cells and six 2-cells. Kong [7] defined
the I-attachment set of a cell p for the grid cell model as follows, where I is
an image:
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Fig. 8. A junction with cardinality 10 and m = 9

Fig. 9. A junction with cardinality 1 and m = 8

Definition 4. Let p and q are grid cells. The I-attachment set of a n-cell p in I
is the union of all i-cells, 0 ≤ i < n, on the frontier of p that also lie on frontiers
of other grid cells q with I(p) = I(q), p �= q.

Let m be the number of voxels in N0(p)
⋂

S and n the number of components
in the I-attachment set of p. A branch voxel p is called:

– a proper branch voxel if m = n,
– a normal branch voxel if m > n.

A junction is either a 0-region of normal branch voxels, or a proper branch
voxel. It follows that a proper branch voxel is a junction of cardinality one.
This definition splits the large junction in Figure 8 (for example) into three
disjoint junctions. The black voxels (see Figure 10) represent a new junction
with cardinality eight and m = 7. Voxels p and q are disjoint junctions with
m = 3 each.

This approach increases the number and the density of junctions and it pre-
vents junctions from growing in a certain direction. For the application of the
DSS algorithm we use the centroid of each junction J as a node in the abstract
curve graph G, and each 0-connected regular voxel or end voxel to J is a start
(or end) voxel for the length measurement of a digital arc between two nodes.
We do not use voxels in junctions as start or end voxel for the DSS algorithm.
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Fig. 10. Three 0-connected junctions, one formed by the dark gray voxels, and two
defined by single voxels each (voxels p and q)

The length between two nodes is the calculated length of the arc between two
nodes plus the Euclidean distance from the start voxel of the arc to the centroid
of the 0-connected junction (if it is connected to a junction) plus the Euclidean
distance from the end voxel of the arc to the centroid of the 0-connected junction
(if it is connected to a junction).

4 Conclusions

In this paper we propose a classification of voxels in 3D skeletons for subsequent
length measurements of digital arcs. The definition of branch voxels follows curve
theory for the Euclidean space. Junctions are defined as 0-connected regions of
branch voxels. These junctions and their properties are useful for the analysis of
curve-like structures in biomedical images. An adjustment for the definition of
junctions is introduced to prevent arbitrary growth and to improve the accuracy
of length measurements using the DSS algorithm. The dependency between grid
resolution and the discussed features is an interesting subject of future research.
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Abstract. Critical kernels constitute a general framework settled in the
category of abstract complexes for the study of parallel thinning in any
dimension. In this context, we propose several new parallel algorithms,
which are both fast and simple to implement, to obtain symmetrical skele-
tons of 2D objects in 2D or 3D grids. We prove some properties of these
skeletons, related to topology preservation, and to the inclusion of the
topological axis which may be seen as a generalization of the medial axis.

1 Introduction

Forty years ago, in 1966, D. Rutovitz proposed an algorithm which is certainly
the first parallel thinning algorithm [23]. Since then, many 2D parallel thinning
algorithms have been proposed, see for example [25, 1, 19, 7, 11, 13, 9, 18].
A fundamental property required for such algorithms is that they do preserve
the topology of the original objects. In fact, such a guarantee is not obvious to
obtain, even for the 2D case, see [8] where some counter-examples are given.

In [3], one of the authors introduces a general framework for the study of parallel
thinning in any dimension in the context of abstract complexes. A new definition
of a simple point (a point which may be deleted without “changing the topology
of the object”) has been proposed, this definition is based on the collapse opera-
tion which is a classical tool in algebraic topology and which guarantees topology
preservation. The most fundamental result proved in [3] is that, if a subset Y of
X contains the critical kernel of X , then Y has the same topology as X .

In this paper, we focus on 2D structures in 2D and 3D spaces. We introduce
the notions of crucial faces and pixels (Sec. 5, Sec. 6) which permit to make a
link with the framework of digital topology [16]. Thanks to simple local char-
acterizations, we are able to express thinning algorithms by the way of sets of
masks, as in most papers related to parallel thinning. We introduce the formal
definition of a minimal symmetric skeleton, and we propose an algorithm to
compute it (Sec. 7). The quality of a curvilinear skeleton is often assessed by the
fact that it contains, approximately or completely, the medial axis of the shape.
We introduce the topological axis (Sec. 8), a generalization of the medial axis
(which is not defined for the case of two-dimensional structures in discrete n-
dimensional spaces, n > 2). In 2D, we propose a new parallel algorithm (Sec. 9)
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to compute skeletons which are guaranteed to include the medial axis. We ex-
tend our algorithms to the 3D case by proposing a new algorithm to compute
minimal symmetric skeletons of 2D objects in 3D grids, and also a new algorithm
to compute skeletons of 2D objects in 3D grids which are guaranteed to contain
the topological axis (Sec. 10).

For the sake of space, proofs are not given in this paper, most of them may
be found in [3] or [5].

2 Cubical Complexes

In this section, we give some basic definitions for cubical complexes, see also [17].
We consider here only the two-dimensional case. The reader is invited to check
that many of the notions introduced in the first sections make sense in arbitrary
n-dimensional cubical spaces.

If T is a subset of S, we write T ⊆ S, we also write T ⊂ S if T ⊆ S and
T �= S.

Let Z be the set of integers. We consider the families of sets F1
0, F1

1, such that
F1

0 = {{a} | a ∈ Z}, F1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Zn, n ≥ 2, which is

the Cartesian product of exactly m elements of F1
1 and (n−m) elements of F1

0 is
called a face or an m-face of Zn, m is the dimension of f , we write dim(f) = m.

We denote by Fn
2 the set composed of all m-faces of Zn, m = 0, 1, 2 and n ≥ 2.

An m-face of Zn is called a point if m = 0, a (unit) interval if m = 1, a (unit)
square if m = 2.

In this paper, we will consider only 2D objects which are in 2D or 3D spaces.
Thus, in the following, we suppose that n = 2 or n = 3.

Let f be a face in Fn
2 . We set f̂ = {g ∈ Fn

2 | g ⊆ f} and f̂∗ = f̂ \ {f}.
Any g ∈ f̂ is a face of f , and any g ∈ f̂∗ is a proper face of f .
If X is a finite set of faces in Fn

2 , we write X− = ∪{f̂ | f ∈ X}, X− is the
closure of X .

A set X of faces in Fn
2 is a cell or an m-cell if there exists an m-face f ∈ X ,

such that X = f̂ . The boundary of a cell f̂ is the set f̂∗.
A finite set X of faces in Fn

2 is a complex (in Fn
2 ) if X = X−. Any subset Y of

a complex X which is also a complex is a subcomplex of X . If Y is a subcomplex
of X , we write Y � X . If X is a complex in Fn

2 , we also write X � Fn
2 .

Let X � Fn
2 . A face f ∈ X is principal for X if there is no g ∈ X such that

f ∈ ĝ∗. We denote by X+ the set composed of all principal faces of X .
Observe that, in general, X+ is not a complex, and that [X+]− = X .
Let X � Fn

2 , dim(X) = max{dim(f) | f ∈ X+} is the dimension of X . We
say that X is an m-complex if dim(X) = m.

We say that X is pure if, for each f ∈ X+, we have dim(f) = dim(X).
Let X � Fn

2 and Y � X . If Y + ⊆ X+, we say that Y is a principal subcomplex
of X and we write Y � X . Observe that, for any X � Fn

2 , ∅ � X .
If X � Fn

2 and if X is a pure 2-complex, we also write X � Fn
2 .

Let X � Fn
2 and let Y � X . We set X � Y = [X+ \ Y +]−. The set X � Y is

a complex which is the detachment of Y from X .
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Two distinct faces f and g of Fn
2 are adjacent if f ∩ g �= ∅. Two complexes X ,

Y in Fn
2 are adjacent if there exist f ∈ X and g ∈ Y which are adjacent.

Let X � Fn
2 . A sequence π = 〈f0, ..., fl〉 of faces in X is a path in X (from

f0 to fl) if fi and fi+1 are adjacent for each i = 0, ..., l− 1; the number l is the
length of π. We say that X is connected if, for any pair of faces (f, g) in X , there
is a path in X from f to g. We say that Y � X is a connected component of X
if Y ⊆ X , Y is connected, and if Y is maximal for these two properties (i.e., we
have Z = Y whenever Y � Z � X and Z connected).

Two 2-faces f and g of Fn
2 are strongly adjacent if f ∩ g is a 1-face.

Let X � Fn
2 . A sequence π = 〈f0, ..., fl〉 of 2-faces in X is a strong path in X

(from f0 to fl) if fi and fi+1 are strongly adjacent for each i = 0, ..., l − 1; the
number l is the length of π. We say that X is strongly connected if, for any pair
of 2-faces (f, g) in X , there is a strong path in X from f to g.

If f is a 2-face of Fn
2 , we set:

Γ ∗(f) = {g ∈ Fn
2 | g is a 2-face adjacent to f}, Γ (f) = Γ ∗(f) ∪ {f}; and

Γ ∗
S(f) = {g ∈ Fn

2 | g is strongly adjacent to f}, ΓS(f) = Γ ∗
S(f) ∪ {f}.

3 Simple Cells

Intuitively a cell f̂ of a complex X is simple if its removal from X “does not
change the topology of X”. In this section we propose a definition of a sim-
ple cell based on the operation of collapse [10], which is a discrete analogue of
a continuous deformation (a homotopy). Note that this definition is a rather
general one, in particular, it may be directly extended to n-dimensional cubical
complexes [3].

Let X be a complex in Fn
2 and let f ∈ X+. The face f is a border face for X

if there exists one face g ∈ f̂∗ such that f is the only face of X which contains g.
Such a face g is said to be free for X and the pair (f, g) is said to be a free pair for
X . We say that f ∈ X+ is an interior face for X if f is not a border face. In Fig. 1
(a), the pair (f, j) is a free pair for X , and the complex X has no interior face.

Let X be a complex, and let (f, g) be a free pair for X . The complex X \{f, g}
is an elementary collapse of X .

Let X , Y be two complexes. We say that X collapses onto Y if there exists
a collapse sequence from X to Y , i.e., a sequence of complexes 〈X0, ..., Xl〉 such
that X0 = X , Xl = Y , and Xi is an elementary collapse of Xi−1, i = 1, ..., l; the
number l is the length of the collapse sequence. If X collapses onto Y , we also
say that Y is a retraction of X . See illustration Fig. 1 (a), (b), (c).

We give now a definition of a simple point, it may be seen as a discrete ana-
logue of the one given by T.Y. Kong in [15] which lies on continuous deformations
in the n-dimensional Euclidean space.

Definition 1. Let X � Fn
2 . Let f ∈ X+.

We say that f̂ and f are simple for X if X collapses onto X � f̂ .

The notion of attachment, as introduced by T.Y. Kong [14, 15], leads to a local
characterization of simple cells.
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(a)
j

f
(b) (c)

(d) (e)

g
f

h

(f)

Fig. 1. (a) A complex X, (b) and (c) two steps of elementary collapse of X, (d) the
detachment of f̂ from X, (e) the attachment of the 2-face f is highlighted, the face f
is not simple, whereas g and h are simple, (f) the essential 0- and 1-faces for X are
highlighted

Definition 2. Let X � Fn
2 and let f ∈ X+. The attachment of f̂ for X is the

complex Attach(f̂ , X) = f̂∗ ∩ [X � f̂ ].

In other words, a face g is in Attach(f̂ , X) if g is in f̂∗ and if g is a (proper) face
of a principal face h distinct from f .

The following proposition is an easy consequence of the above definitions.

Proposition 3. Let X � Fn
2 , and let f ∈ X+.

The cell f̂ is simple for X if and only if f̂ collapses onto Attach(f̂ , X).

The attachment of a 2-face f of a complex X is highlighted Fig. 1 (e) and X � f̂
is depicted in (d). It may be seen that f is not simple: there is no collapse
sequence from X (a) to X � f̂ (d). On the other hand the faces g and h are
simple. The next property may be directly derived from Prop. 3.

Proposition 4. Let X � Fn
2 , and let f ∈ X+.

1) If f̂ is a 0-cell, then f̂ is not simple for X;
2) If f̂ is a 1-cell, then f̂ is simple for X if and only if Attach(f̂ , X) is made of
a single point;
3) If f̂ is a 2-cell, then f̂ is simple for X if and only if f is a border face and
Attach(f̂ , X) is non-empty and connected.

From Prop. 4, we easily derive a characterization of simple 2-faces which is an
equivalent, in the framework of 2D complexes in Fn

2 , of the well-known charac-
terization of simple pixels in the square grid given by A. Rosenfeld [21].

Proposition 5. Let X � Fn
2 , and let f be a 2-face for X. The face f is simple

for X if and only if:

i) f is a border face; and
ii) Γ ∗(f) ∩X is non-empty and connected.
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4 Critical Kernels

Let X be a complex in Fn
2 . We observe that, if we remove simultaneously simple

cells from X , we may obtain a set Y such that X does not collapse onto Y . In
other words, if we remove simple cells in parallel, we may “change the topology”
of the original object X . For example, in Fig. 1 (e), g and h are simple for X ,
but the complexes X and X � [ĝ ∪ ĥ] have not “the same topology” (here, the
same number of connected components). Thus, it is not possible to use directly
the notion of simple cell for thinning discrete objects in a symmetrical manner.

In this section, we introduce a new framework for thinning in parallel discrete
objects with the warranty that we do not alter the topology of these objects.
This method may be extended for complexes of arbitrary dimension [3]. As far
as we know, this is the first method which allows to thin arbitrary complexes in
a symmetric way.

This method is based solely on three notions, the notion of an essential face
which allows to define the core of a face, and the notion of a critical face.

Definition 6. Let X � Fn
2 and let f ∈ X . We say that f is an essential face

for X if f is precisely the intersection of all principal faces of X which contain
f , i.e., if f = ∩{g ∈ X+ | f ⊆ g}. We denote by Ess(X) the set composed of all
essential faces of X . If f is an essential face for X , we say that f̂ is an essential
cell for X .

Observe that a principal face for X is necessarily an essential face for X , i.e.,
X+ ⊆ Ess(X). The essential 0- and 1-faces of the complex X of Fig. 1 (a) are
highlighted Fig. 1 (f).

Definition 7. Let X � Fn
2 and let f ∈ Ess(X). The core of f̂ for X is the

complex, denoted by Core(f̂ , X), which is the union of all essential cells for X

which are in f̂∗, i.e., Core(f̂ , X) = ∪{ĝ |g ∈ Ess(X) ∩ f̂∗}.
The preceding definition may be seen as a generalization of the notion of attach-
ment for arbitrary essential cells (not necessarily principal).

Proposition 8. Let X � Fn
2 and let f ∈ X+. The attachment of f̂ for X is

precisely the core of f̂ for X, i.e, we have Attach(f̂ , X) = Core(f̂ , X).

Definition 9. Let X � Fn
2 and let f ∈ X . We say that f and f̂ are regular for

X if f ∈ Ess(X) and if f̂ collapses onto Core(f̂ , X). We say that f and f̂ are
critical for X if f ∈ Ess(X) and if f is not regular for X .

We set Critic(X) = ∪{f̂ | f is critical for X}, Critic(X) is the critical kernel
of X . A face f in X is a maximal critical face, or an M-critical face for X , if f
is a principal face of Critic(X).

Again, the preceding definition of a regular cell is a generalization of the notion
of a simple cell. As a corollary of Prop. 8, a principal face of a complex X � Fn

2
is regular for X if and only if is simple for X .

We propose the following classification of critical faces which is specific to the
2D case.
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(a) (b)

(c) (d)

Fig. 2. (a): a complex X0 in F3
2. (b): highlighted, X1 = Critic(X0). (c): highlighted,

X2 = Critic(X1). (d): X2 is such that Critic(X2) = X2.

Definition 10. Let X � Fn
2 , and let f ∈ Ess(X).

i) f is 0-critical for X if Core(f̂ , X) = ∅;
ii) f is 1-critical for X if Core(f̂ , X) is not connected;
iii) f is 2-critical for X if f is an interior 2-face.

Note that a face f is critical for X � Fn
2 if and only if f is k-critical for some

k ∈ {0, 1, 2}.
The following theorem holds for complexes of arbitrary dimensions (see [3]),

it may be proved quite in a simple manner in the 2D case (first, we collapse
regular 2-faces onto their core, then we collapse regular 1-faces onto their core).
This is our basic result in this framework. See Fig. 2 where the successive critical
kernels of a complex are depicted.

Theorem 11. Let X � Fn
2 . The critical kernel of X is a retraction of X.

Furthermore, if Y � X is such that Y contains the critical kernel of X, then Y
is a retraction of X.

5 Crucial Kernels

If X is a complex in Fn
2 , the subcomplex Critic(X) is not necessarily a principal

subcomplex of X as illustrated Fig. 2. In this paper we investigate thinning
algorithms which take as input a pure 2-complex and which return a principal
subcomplex of the input (thus also a pure 2-complex). In this section, we propose
some notions which allow to recover a principal subcomplex Y of an arbitrary
complex X , with the constraint that Y is a retraction of X .

Definition 12. Let X � Fn
2 , and let f ∈ X+ be a simple face for X .

We say that f is crucial for X , if f̂∗ contains a face which is M-critical for X .
We say that f is k-crucial for X , if f̂∗ contains an M-critical face which is

k-critical for X , k = 0, 1.
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(a) f

gh i

j
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Fig. 3. (a): A complex X0 and its M-critical faces (highlighted). (b): X1 = Cruc(X0)
and its M-critical faces. (c): The complex X2 = Cruc(X1) contains only one M-critical
face (highlighted), and X2 = Cruc(X2).

Thus, a critical face for X is either a principal face (which is not simple) or is
included in a crucial face (which is also simple and principal).

In Fig. 3 (a), the M-critical faces of a complex are highlighted. The faces f
and g are crucial (1-crucial), the faces i and h are simple but not crucial (the
critical faces included in i and h are not M-critical), the face j is not simple (it
is M-critical), thus j is not crucial.

Definition 13. Let X � Fn
2 , and let K be a set of crucial faces for X .

We say that K is a (k-) crucial clique for X , if there exists a (k-critical) face f
which is M-critical for X and such that K is precisely the set of principal faces
of X which contain f . We also say that K is the crucial clique induced by f .

In Fig. 3 (a), the set of faces K = {f, g} is a 1-crucial clique, in (c) the set K ′

composed of the three 2-faces is a 0-crucial clique.

Definition 14. Let X � Fn
2 and let Y � X .

We say that Y is a crucial retraction of X if:

i) Y contains each principal face of X which is critical; and
ii) Y contains at least one face of each crucial clique for X .

From the above definitions, we immediately derive the following property.

Proposition 15. Let X � Fn
2 and let Y � X.

We have Critic(X) ⊆ Y if and only if Y is a crucial retraction of X.

Thus, by Th. 11, if Y is a crucial retraction of X , then Y is a retraction of X . All
algorithms proposed in this paper will iteratively compute crucial retractions.

Let us define the crucial kernel of X as the set Cruc(X) which is the union of
all cells of X which are either not simple for X or crucial for X . In Fig. 3 (a), a
complex X0 and its M-critical faces (three 2-faces and one 1-face) are depicted.
The complex X1 = Cruc(X0) is given in (b) also with its M-critical faces (one
2-face and one 1-face, which are both 1-critical). Finally, in (c), the complex
X2 = Cruc(X1) contains only one M-critical face (which is 0-critical), and it
may be seen that X2 = Cruc(X2).

For thinning objects, we often want to keep other faces than the ones which are
either not simple or crucial. That is why we introduce the following definition.
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Definition 16. Let X � Fn
2 . Let P be a set of faces which are simple for X ,

and let f ∈ P . We say that f is (k-) crucial for 〈X, P 〉, if f belongs to a (k-)
crucial clique which is included in P (k = 0, 1).

Intuitively, the set P corresponds to a set of faces which are candidate for deletion
in parallel. The following definition may be seen as a “template” for our thinning
algorithms (see the expression of all the algorithms proposed in the next sections).
Here, the set K corresponds to a set which is preserved by a thinning algorithm
(like extremities of curves, if we want to obtain a curvilinear skeleton).

Definition 17. Let X � Fn
2 . Let K be a set of principal faces of X , let P be

the set of faces in X \K which are simple for X , and let R be the set composed
of all faces which are crucial for 〈X, P 〉. The set [X+ \ P ]− ∪ R− is the crucial
kernel of X constrained by K.

From the previous definitions, we immediately deduce the following proposition
which ensures that any constrained crucial kernel preserves topology.

Proposition 18. Let X � Fn
2 , and let K be a set of principal faces of X. The

crucial kernel of X constrained by K is a crucial retraction of X.

6 Crucial Pixels in the Square Grid

We introduce the following definitions in order to establish a link between planar
pure complexes (i.e., pure 2-complexes in F2

2) and the square grid as considered
in image processing.

We define the square grid as the set G2 composed of all 2-faces of F2
2. A 2-face

of G2 is also called a pixel. In the sequel, we consider only finite subsets of G2.
For any pure 2-complex in F2

2, i.e., for any X � F2
2, we associate the subset

X+ of G2. In return, to each finite subset S of G2, we associate the complex
S− of F2

2. This will be our basic methodology to “interpret” a set of pixels. In
particular, all definitions given for a principal face in X+ have their counterparts
for a pixel in G2. For example if S ⊆ G2 and p ∈ S, we will say that the pixel
p is simple for S if p is simple for S−. Border, interior, (k-) critical, and (k-)
crucial pixels are defined in the same manner. Observe that, if p ∈ G2, Γ ∗(p)
and Γ ∗

S(p) correspond to the so-called 8- and 4-neighborhood of p, respectively.
We give now some simple local conditions, in the square grid, for crucial pixels.

We express these local conditions by a set of masks, as in most papers related to
parallel thinning in the digital topology framework. The definition of the masks
C, C1, ..., C4 is given Fig. 4.

Proposition 19. Let S ⊆ G2, p ∈ S, and let P be a set of simple pixels of S.

i) The pixel p is 1-crucial for 〈S, P 〉 if and only if p is matched by pattern C;
ii) The pixel p is 0-crucial for 〈S, P 〉 if and only if p is matched by one of the
patterns C1, ...C4.

Using the terminology of section 5, the mask C is a mask for 1-crucial cliques,
and C1, ..., C4 are masks for 0-crucial cliques. For each of these masks, the crucial
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Fig. 4. Patterns and masks for crucial pixels. The 11 masks corresponding to these 5
patterns are obtained from them by applying any series of π/2 rotations. The label 0
indicates pixels that must belong to the complement of S. The label P indicates pixels
that must belong to the set P which is a set composed of simple pixels of S. For mask
C, at least one of the pixels marked A and at least one of the pixels marked B must be
in S. If one of these masks matches the sets S, P , then all the pixels which correspond
to a label P in the mask are recorded as “matched”.

clique is the set composed of P ’s. In fact, it can be shown [5] that these masks
also characterize the minimal non-simple sets introduced by C. Ronse [20], see
also [12, 14]. We observe that, since P is composed of simple pixels of S, the set
of P ’s of each mask C1, ..., C4 is necessarily surrounded by 0’s. Thus, we have:

Proposition 20. Let S ⊆ G2, and let K be a 0-crucial clique for S. Then K is
a connected component of S.

7 Minimal K-Skeletons

A minimal symmetric skeleton of an object may be obtained by deleting itera-
tively, in parallel, all pixels which are neither critical nor crucial.

Definition 21. Let S ⊆ G2. The crucial kernel of S is the set Cruc(S) which
is composed of all critical pixels and all crucial pixels of S.

Let 〈S0, S1, ..., Sk〉 be the unique sequence such that S0 = S, Cruc(Sk) = Sk

and Si = Cruc(Si−1), i = 1, ..., k. The set Sk is the minimal K-skeleton of S.

By Prop. 18 (here K = ∅), the minimal K-skeleton of a set S is a retraction of S.
The following algorithm computes a minimal K-skeleton. The pixels of S which
are kept at each step (04) of the algorithm correspond precisely to the pixels
which are either critical (the set S \ P ) or crucial (the set R).

Algorithm MK2
a

(Input /Output : a set S ⊆ G2)
01. Repeat Until Stability
02. P ← set of pixels which are simple for S
03. R ← set of pixels in P which are 0- or 1-crucial for S
04. S ← [S \ P ] ∪ R

From Prop. 19, we may check if a pixel is 1-crucial by using the pattern C.
Considering all possible rotations, there are in fact only two masks corresponding
to C. On the other hand it may be seen that the checking of a 0-crucial pixel
with the patterns C1, ..., C4 involves 9 masks. In the following, we propose an
algorithm which avoids the use of these 9 masks. This algorithm is based on
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(a) (b)

Fig. 5. (a): A subset S of G2 (in white) and its minimal K-skeleton (in gray). (b): The
medial axis of S (in gray). (c): in gray, AK2(S).

a technic used for computing the so-called ultimate erosions in the context of
mathematical morphology (see [24]).

Let S ⊆ G2, we denote by S � Γ ∗ = {p ∈ S | Γ ∗(p) ⊆ S}, the erosion of S
by Γ ∗, and by S ⊕ Γ ∗ = ∪{Γ ∗(p) | p ∈ S}, the dilation of S by Γ ∗.

Algorithm MK2 (Input /Output : a set S ⊆ G2)
01. Repeat Until Stability
02. P ← set of pixels which are simple for S
03. R ← set of pixels in P which are 1-crucial for S
04. T ← [S \ P ] ∪ R
05. S ← T ∪ [S \ (T ⊕ Γ ∗)]

The correctness of the algorithm lies on the following property.

Proposition 22. Let S ⊆ G2, and let p ∈ S be a simple pixel.
i) If p is not crucial for S, then there exists q ∈ Γ ∗(p) ∩ S such that q is either
critical or 1-crucial for S.
ii) If p is 0-crucial for S, then any q ∈ Γ ∗(p)∩S is neither critical, nor 1-crucial.

Let us denote by MK2(S) the result obtained by algorithm MK2 from the
input S. The set T (line 04) is the set of pixels which are either critical or 1-
crucial. From Prop. 22, the pixels which are added to the set T at step 05 of
MK2 are precisely 0-crucial pixels. Thus, we have the following property.

Proposition 23. Let S ⊆ G2. The set MK2(S) is the minimal K-skeleton of S.

An example of a minimal K-skeleton is given Fig. 5 (a). As far as we know, MK2

is the first algorithm for a minimal symmetric skeleton. Furthermore, the result
of MK2 is an object which is well-defined. To our best knowledge, this is also
the first attempt to give a precise definition of such a notion.

8 Topological Axis and Medial Axis

The quality of a curvilinear skeleton is often assessed by the fact that it contains,
approximately or completely, the medial axis of the shape. We introduce the
following definitions in order to generalize the medial axis for pure 2-complexes
in Fn

2 , for arbitrary n.
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Definition 24. Let X � Fn
2 , and let f ∈ X+. We set ρ(f, X) as the minimum

length of a collapse sequence of X necessary to remove f from X , if such a
sequence exists, and ρ(f, X) =∞ otherwise. We define the topological axis of X
as the set of faces f in X+ such that ρ(f, X) =∞ or ρ(f, X) ≥ max{ρ(g, X) | g ∈
Γ ∗
S(f) and ρ(g, X) �=∞}.

Note that we have ρ(f, X) = 1 if and only if f is a border face for X .
Let X � Fn

2 , and let f ∈ X+. We denote by π′(f, X) the length of a shortest
strong path, in X , from f to a border face of X , if such a path exists, and
π′(f, X) = ∞ otherwise. We denote by π(f, X) the length of a shortest strong
path, in Fn

2 , from f to a border face of X . We observe that ρ(f, X) = π′(f, X)+1.
Now we focus our attention on the case n = 2. Let X � F2

2, and let f ∈
X+. We have necessarily ρ(f, X) �= ∞. Furthermore, since any 1-face in F2

2 is
included in precisely two 2-faces, it may be seen that π(f, X) = π′(f, X), thus
ρ(f, X) = π(f, X) + 1.

In [22], A. Rosenfeld and J.L. Pfaltz have proved that, for the city-block and
the chessboard distance, the medial axis of a shape can be obtained by detecting
the local maxima of its distance transform, the medial axis being defined as
the set of the centers of all the maximal balls for S. From the definition of the
topological axis, and from the preceding remarks, we may deduce that the medial
axis of S with the city-block distance is precisely the topological axis of S−. This
shows that the notion of topological axis indeed generalizes the one of medial
axis (which is not defined for the case of two dimensional structures in discrete
n-dimensional spaces, n > 2).

9 K-Skeletons and Medial Axis

For obtaining a skeleton which includes the medial axis of an object, we define
the following notion of K-skeleton which is constrained to include a given set K.

Definition 25. Let S ⊆ G2 and let K ⊆ S. Let P be the set composed of
all simple pixels for S which are not in K. We denote by Cruc(S, K) the set
composed of all pixels in S \ P and all pixels which are crucial for 〈S, P 〉.

Let 〈S0, S1, ..., Sk〉 be the unique sequence such that S0 =S, Sk = Cruc(Sk, K)
and Si =Cruc(Si−1, K), i = 1, ..., k. The set Sk is the K-skeleton of S constrained
by K.

Again, by Prop 18, the K-skeleton of a set S constrained by a set K is a retrac-
tion of S. We give now a general result on constrained thinning which permits,
under some conditions, to avoid the checking of the 9 masks (corresponding to
C1, ..., C4) for the detection of 0-crucial pixels. This result is a direct consequence
of Prop. 20.

Proposition 26. Let S ⊆ G2. Let K ⊆ S, such that each connected component
of S contains at least one pixel of K, and let P be the set composed of all simple
pixels for S which are not in K. Then, any p ∈ P is necessarily not 0-crucial
for 〈S, P 〉.
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For computing a K-skeleton constrained by the medial axis, we could first extract
the medial axis, and then compute the constrained skeleton, this method is
followed by B.K. Jang and R.T. Chin [13]. We present here an algorithm which
computes at the same time the medial axis and the skeleton.

Algorithm AK2 (Input /Output : set S ⊆ G2)
00. K ← ∅ ; T ← S
01. Repeat Until Stability
02. E ← T � ΓS ; D ← T \ [E ⊕ ΓS ] ; T ← E ; K ← K ∪ D
03. P ← set of pixels of S \ K which are simple for S
04. R ← set of pixels in P which are 1-crucial for 〈S, P 〉
05. S ← [S \ P ] ∪ R

If we denote by AK2(S) the result obtained by algorithm AK2, we have:

Proposition 27. Let S ⊆ G2. The set AK2(S) is the K-skeleton of S con-
strained by the topological axis of S.

In Fig. 5, we show a subset S of G2 together with its topological (medial) axis
(b) and its medial K-skeleton (c). As far as we know, AK2 is the first algorithm
for a symmetric skeleton which contains the medial axis.

10 K-Skeletons of 2D Objects in 3D Grids

We consider in this section objects which are pure 2-complexes in F3
2. We denote

by G3
2 the set composed of all 2-faces of F3

2. A 2-face of G3
2 is also called a surfel.

In the sequel, we consider only finite subsets of G3
2.

As for the square grid, definitions of principal faces of F3
2 have their counter-

parts in G3
2. For example, if S ⊆ G3

2 and p ∈ S, we say that the surfel p is simple
for S if p is simple for S−.

In the square grid, we were able to give a combinatorial characterization of 0-
and 1-crucial pixels. In fact, the number of configurations for 0-crucial surfels is
too high for being directly exhibited. Fortunately, such a characterization is not
mandatory to implement parallel thinning operators based on crucial kernels. It
is possible to have a characterization for 1-crucial surfels which is based solely
on the pattern D given Fig. 6.

Proposition 28. Let S ⊆ G3
2, p ∈ S. Let P be a set of simple surfels of S. The

surfel p is 1-crucial for 〈S, P 〉 if and only if p is matched by the pattern D.

The following algorithm computes a minimal K-skeleton, it has exactly the same
structure as algorithm MK2 for a square grid, but here, the checking of 1-crucial
elements is made with the mask D.

Algorithm MK3
2 (Input /Output : a set S ⊆ G2

3)
01. Repeat Until Stability
02. P ← set of surfels which are simple for S
03. R ← set of surfels in P which are 1-crucial for S
04. T ← [S \ P ] ∪ R
05. S ← T ∪ [S \ (T ⊕ Γ ∗)]
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Fig. 6. Pattern and masks for 1-crucial surfels. The masks corresponding to this pattern
are obtained by applying any series of π/2 rotations. The label Q indicates surfels that
must either be in P or in the complement of S; at least two surfels labeled Q must be
in P . At least one of the surfels marked A and at least one of the surfels marked B
must be in S. If one of these masks matches the sets S, P , then all the surfels of P
which correspond to a label Q are recorded as “matched”.

Fig. 7. Top left: A set of surfels S in F3
2. Top right: The minimal K-skeleton of S.

Bottom left: The topological axis of S. Bottom right: The result of algorithm BK3
2 .

The topological soundness of the algorithm may be proved by establishing the
analogue of Prop. 22 in G3

2. An example of a minimal K-skeleton is given Fig. 7.
As far as we know, MK3

2 is the first algorithm for a minimal symmetric skeleton
for an object made of surfels.

In a similar way, algorithm AK2 may be transposed to design an algorithm
which produces a skeleton containing the topological axis of an object which is
made of surfels. We give here another example of an algorithm which has such
a property.

Algorithm BK3
2 (Input /Output : set S ⊆ G3

2)
00. T ← S
01. Repeat Until Stability
02. T ← {s ∈ T | s is an interior surfel of T}
03. P ← set of simple surfels for S such that Γ ∗

S (p) ∩ T �= ∅
04. R ← set of surfels in P which are 1-crucial for 〈S, P 〉
05. S ← [S \ P ] ∪ R
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It may be seen that BK3
2 (S), the result obtained by BK3

2 from the input S,
contains the topological axis of S. The topological soundness may be proved by
establishing the equivalent of Prop. 26 in G3

2.
An example of a skeleton obtained with BK3

2 is given Fig. 7. To our best
knowledge, there is only one other algorithm for symmetric curvilinear skeletons
of 2D objects in 3D spaces which is the one given by J. Burguet and R. Malgo-
uyres [6]. This algorithm is based on the technic of P-simple points [2]. The 2D
objects which are considered are the sets of surfels which constitute the bound-
ary of 3D objects, or subsets of such boundaries. In this context, surfels which
share a point or an interval are not necessarily considered as adjacent which
makes a difference with the notion of adjacency used in this section. Another
difference is that our algorithm always produce a skeleton which contains the
topological axis of the original object.

11 Conclusion

Based on the framework of critical kernels [3], we studied the case of 2D struc-
tures in 2D and 3D grids. The salient outcomes of this article are the following:

– the definition and some characterizations of crucial faces, allowing for fast
and simple implementations,

– the definition and an algorithm for a minimal symmetric skeleton (MK2),
– the introduction of the topological axis, which generalizes the medial axis,
– a parallel algorithm for a symmetric skeleton which contains the medial axis,
– a parallel algorithm for a minimal symmetric skeleton of an object made of

surfels,
– a parallel algorithm for a symmetric skeleton, which contains the topological

axis of an object made of surfels.

As far as we know, all the above algorithms have no equivalent.
In future works, we will study the case of general skeletons (i.e., which are not

necessarily principal subcomplexes), and the important case of parallel thinning
of 3D objects [4].
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Abstract. In this paper, we study topological watersheds on perfect fu-
sion graphs, an ideal framework for region merging. An important result
is that contrarily to the general case, in this framework, any topological
watershed is thin.

Then we investigate a new image transformation called C-watershed
and we show that, on perfect fusion graphs, the segmentations obtained
by C-watershed correspond to segmentations obtained by topological
watersheds. Compared to topological watershed, a major advantage of
this transformation is that, on perfect fusion graph, it can be computed
thanks to a simple linear-time immersion-like algorithm. Finally, we de-
rive characterizations of perfect fusion graphs based on thinness proper-
ties of both topological watersheds and C-watersheds.

1 Introduction

Region merging methods [1] consist of improving an initial segmentation by
merging some pairs of neighboring regions. The watershed transform [2, 3, 4, 5]
produces a set of connected regions separated by a divide. Therefore it has long
been used as an entry point for region merging methods [6]. In [7], we developed
a theoretical framework for the study of merging properties in graphs. A (binary)
watershed set is a set of vertices which cannot be reduced without changing the
number of connected components of its complementary. It models a frontier in
a graph. In the general case such a watershed set can be thick and thus the
induced region neighboring relationship, used by further merging procedures,
can lack important properties.

An original approach to grayscale watershed [5, 8, 9, 10] consists of modifying
the original image by lowering some points while preserving the connectivity of
each lower section. Such a transformation (and its result) is called a W-thinning,
a topological (grayscale) watershed being an “ultimate” W-thinning. In [8, 10],
the authors prove that the only lowering transformation which preserves the con-
nection value (a notion of contrast) between the minima of the original image is
precisely the W-thinning. Due to this contrast preservation property, the divide
(e.g., the points not in any minimum) of a topological watershed is an interest-
ing segmentation of the original image. Furthermore, this contrast preservation
property is necessary for the correctness of many region merging methods based
on watersheds (see [11, 12] for examples of such methods).

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 60–73, 2006.
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An important result in [7] is that the class of all graphs in which any binary
watershed set is thin is precisely the class of graphs in which any region can
always be merged. Any element in this class is called a fusion graph. Surpris-
ingly, the divides produced by watershed algorithms [2, 3, 4] and in particular by
topological watershed algorithms [9], are not always binary watershed sets and
can sometimes be thick, even on fusion graphs.

Therefore, in this paper, we consider a more restricted class of graphs called
perfect fusion graph [7] which constitutes an ideal framework for region merging.
An important result is that, on perfect fusion graphs, the divide of any topo-
logical watershed is a thin binary watershed set. The algorithms to compute
topological watershed are not linear and require the computation of an auxil-
iary data structure called component tree [13]. Therefore, we investigate a new
grayscale transformation: the C-watershed. Our main contributions concerning
C-watersheds are the following:

1) We prove that, contrarily to the general case, on perfect fusion graphs, any
C-watershed of a map is indeed a W-thinning and thus possesses the contrast
preservation property, needed by morphological region merging methods.
2) On these graphs, the divide of any C-watershed is a thin binary watershed
set. Consequently, we derive characterizations of perfect fusion graphs based on
thinness properties of both C-watersheds and topological watershed functions.
3) We propose and prove the correctness of a new simple and linear-time algo-
rithm to compute C-watershed on these graphs, while the correctness of such an
algorithm cannot be guaranteed in the general case [10].

The proofs of the properties presented in this paper will be given in a forth-
coming extended version.

2 Watersheds and Fusion Graphs

2.1 Basic Notions and Notations

Let E be a finite set, we denote by 2E the set composed of all the subsets of E.
We denote by |E| the number of elements of E.

We define a graph as a pair (E, Γ ) where E is a finite set and Γ is a binary
relation on E (i.e., Γ ⊆ E×E), which is reflexive (for all x in E, (x, x) ∈ Γ ) and
symmetric (for all x, y in E, (y, x) ∈ Γ whenever (x, y) ∈ Γ ). Each element of E
(resp. Γ ) is called a vertex or a point (resp. an edge). We will also denote by Γ
the map from E to 2E such that, for all x ∈ E, Γ (x) = {y ∈ E | (x, y) ∈ Γ}.
If y ∈ Γ (x), we say that y is adjacent to x. Let X ⊆ E, we define Γ (X) =
∪x∈XΓ (x), and Γ �(X) = Γ (X) \ X . If y ∈ Γ (X), we say that y is adjacent
to X . If X, Y ⊆ E and Γ (X) ∩ Y �= ∅, we say that Y is adjacent to X .

Let (E, Γ ) be a graph, let X ⊆ E, a path in X is a sequence π = 〈x0, ..., xl〉
such that xi ∈ X , i ∈ [0, l], and xi ∈ Γ (xi−1), i ∈ [1, l]. We also say that π is
a path from x0 to xl in X and that x0 and xl are linked for X . We say that X
is connected if any x and y in X are linked for X . In the sequel we will consider
that (E, Γ ) is a graph and we will assume that E is connected.
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Let X ⊆ E and Y ⊆ X . We say that Y is a connected component of X , or
simply a component of X , if Y is connected and if Y is maximal for this property,
i.e., if Z = Y whenever Y ⊆ Z ⊆ X and Z connected. We denote by C(X) the
set of all connected components of X .

Let kmin and kmax be two elements of Z such that kmin < kmax. We set K =
{k ∈ Z; kmin ≤ k < kmax} and K+ = K ∪ {kmax}. We denote by F(E) the set
composed of all functions from E to K. Let F ∈ F(E), let k ∈ K+. We denote
by F [k] the set {x ∈ E; F (x) ≥ k} and by F [k] its complementary set; F [k]
is called an upper section of F and F [k], a lower section of F . A connected
component of F [k] which does not contain a connected component of F [k− 1] is
a (regional) minimum of F . We denote by M(F ) ⊆ E the set of all points which
are in a minimum of F . We say that M(F ) = M(F ) is the divide of F .

2.2 Watershed Set and Fusion Graphs

The notion of (binary) watershed set may be seen as a model of frontier in a
graph. Many segmentation algorithms expect to compute such watershed sets.

In the following definitions “W-” stands for watershed.

Definition 1. Let X ⊆ E and let p ∈ X. We say that p is W-simple for X if p
is adjacent to exactly one component of X.
The set X is a watershed if there is no W-simple point for X.

In Fig. 1a, y is W-simple for the set constituted by the black vertices. Observe
that the set X of black points in Fig. 1b is a watershed set since it contains no
W-simple point for X.
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Fig. 1. Illustration of watersheds. (a): A graph (E, Γ ) and a subset X (black points)
of E; (b): the set of black points is a watershed of X; (c): a graph corresponding to the
8-adjacency relation and a function F ; (d): a topological watershed of F .

Let X ⊆ E and let p ∈ X . We say that p is an inner point for X if p is not
adjacent to X. The interior of X is the set of all inner points for X , denoted
int(X). If int(X) = ∅, we say that X is thin.

For example, the point x in Fig. 1a is an inner point for the set of black
vertices. In Fig. 1b, the set of black vertices is thin. The sets made of black and
gray points in Fig. 3a and b are not thin: their interior, depicted in gray, are not
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empty. Observe also that they are watershed sets since they do not contain any
W-simple points.

The theoretical framework set up in [7] allows to study the properties of
region merging methods in graphs. In particular, one of the most striking theo-
rems, allows to link the region merging properties with the thinness properties
of watershed set.

In the following definition the prefix “F-” stands for fusion.
Let X ⊆ E. Let x ∈ X , we say that x is F-simple (for X), if x is adjacent to

exactly two components of X. Let S ⊆ X . We say that S is F-simple (for X)
if S is adjacent to exactly two components A, B ∈ C(X) such that A ∪B ∪ S is
connected.

Let us look at Fig. 1b. The set X made of the black vertices separates its
complementary set into four components. The points a and c are F-simple for X
whereas b and d are not. The set S = {a, c} is F-simple for X and {b, d} is
not. If we remove from X an F-simple set, S for instance, we obtain a set which
separates its complementary into three components: we “merged two components
of X through S”. This operation may be seen as an elementary merging in the
sense that only two components were merged.

Let X ⊂ E and let A and B be two elements of C(X) with A �= B. We say
that A and B can be merged (for X) through S if S is F-simple and A and B are
precisely the two components of X adjacent to S. We say that A can be merged
(for X) if there exists B ∈ C(X) and S ⊆ X such that A and B can be merged
through S.

We say that (E, Γ ) is a fusion graph if for any subset of vertices X ⊆ E such
that |C(X)| ≥ 2, any component of X can be merged.

Notice that all graphs are not fusion graphs. For instance, the graphs induced
by the 4-adjacency relation depicted on Fig. 3a is not a fusion graph. On the
other hand, the graph induced by the 8-adjacency depicted on Fig. 3c is an
example of fusion graph.

The most striking theorem (33) in [7] states that the class of fusion graphs is
precisely the class of graphs in which any watershed set is thin.

We set Γ �(A, B) = Γ �(A)∩Γ �(B) and if Γ �(A, B) �= ∅, we say that A and B
are neighbors.

Definition 2. We say that (E, Γ ) is a perfect fusion graph if, for any X ⊆ E,
any neighbors A and B in C(X) can be merged through Γ �(A, B).

In other words, the perfect fusion graphs are the graphs in which merging two
neighboring regions can always be performed by removing from the frontier set
all the points which are adjacent to both regions. This class of graphs allows,
in particular, to rigorously define hierarchical schemes based on region merging
and to implement them in a straightforward manner. It has been shown [7] that
any perfect fusion graph is a fusion graph and that the converse is not true.
For instance, the graphs induced by the 8-adjacency relation are not, in general,
perfect fusion graphs (see counter-examples in Appendix A) whereas they are
fusion graphs. In [7] the authors introduce a family of adjacency relations on Zn
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that can be used in image processing and that induce perfect fusion graphs. See
Appendix B for an illustration of these relations on Z2 and Z3.

The two following necessary and sufficient conditions for perfect fusion graphs
show show the deep relation existing between perfect fusion graphs and thin
watershed set.

Theorem 1 (from 41 in [7]). The three following statements are equivalent:

i) (E, Γ ) is a perfect fusion graph;
ii) for any x ∈ E, any X ⊆ Γ (x) contains at most two connected components;
iii) for any watershed Y in E such that C(Y ) ≥ 2, each point x in Y is F-simple.

To conclude this section, we recall the definition of line graphs. This class of
graphs allows to make a strong link between the framework developed in this
paper and the approaches of watershed and region merging based on edges rather
than vertices.

Let (E, Γ ) be a graph. The line graph of (E, Γ ) is the graph (E′, Γ ′) such
that E′ = Γ and (u, v) belongs to Γ ′ whenever u ∈ Γ , v ∈ Γ and u, v share a
common vertex of E.

We say that the graph (E′, Γ ′) is a line graph if there exists a graph (E, Γ )
such that (E′, Γ ′) is isomorphic to the line graph of (E, Γ ).

It has been proved [7] that any line graph is a perfect fusion graph and that
the converse is not true. We point out that the definitions, properties and algo-
rithm for watershed on perfect fusion graph developed in Section 3 also holds
for watershed approaches based on edges rather than vertices.

2.3 W-Thinnings and Topological Grayscale Watersheds

We now recall the notions of W-thinning and topological grayscale watershed
which have been introduced and studied in [5, 8, 9, 10].

Let F ∈ F(E). We denote by [F \ x] the map in F(E) such that [F \ x](x) =
F (x)− 1, and [F \ x](y) = F (y) for any y ∈ E, y �= x.

Definition 3. Let x ∈ E. Let F ∈ F(E) and let k = F (p). We say that p is
W-destructible for F if p is W-simple for F [k].
If there is no W-destructible point for F we say that F is a (topological)
watershed.
Let G ∈ F(E).
We say that G is a W-thinning of F if G = F or if there exists a W-thinning H ∈
F(E) of F and a point x ∈ E, which is W-destructible for H, such that G =
[H \ x].
If G is both a W-thinning of F and a watershed we say that G is a (topological)
watershed of F .

In Fig. 1c and d, assume that the graph is the one corresponding to the
8-adjacency relation. In both Fig. 1c and d, it may be seen that there are three
minima which are the components with levels 0,1 and 2. In Fig. 1c, the point
labeled r is W-destructible. In Fig. 1d, no point is W-destructible. The function
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depicted in Fig. 1d is a watershed of the function in Fig. 1c. Observe that in
Fig. 1d the minima of Fig. 1c have been extended as much as possible while
preserving the number of components of all the lower sections of Fig. 1c. The
divide of a topological watershed constitutes an interesting segmentation [8, 10]
which possesses important properties not guaranteed by most watershed algo-
rithms [2, 3]. In particular, it preserves the connection value between the minima
of the original function; the connection value (see [8, 10, 14, 15]) between two min-
ima is the minimal altitude at which one need to climb in order to reach one
minimum from the other. This contrast preservation property is a requirement
for region merging method based on watershed [11, 12].

3 C-Watersheds: Definitions, Properties and Algorithm

In [7], we have shown that any subset of Z2 equipped with the 8-adjacency
forms a fusion graph but not, in general, a perfect fusion graph. In particular,
the graphs considered in Fig. 1c and d are fusion graphs but not perfect fusion
graphs. Let us consider the function F depicted in Fig. 1d. We have seen that F
is a topological watershed. If we examine the divide of F , it may be seen that
the point labeled s is inner (in the binary sense) for the divide. Thus, on fusion
graphs, there exist topological watersheds whose divides are not thin.

On the same figure, remark also that the point labeled t is W-simple for M(F ),
thus M(F ) is not a binary watershed set. Thus, on fusion graphs, there exist
topological grayscale watersheds whose divides are not binary watershed sets.

In the remaining of this paper, we study W-thinnings and topological grayscale
watersheds on perfect fusion graphs and we show, among other properties, that
the divide of any topological watershed is necessarily a thin watershed set.

Let us first define a type of points that we call M-cliff. Given a graph and
a function, these points are the lowest points adjacent to a single minimum.
We will show that if the graph is a perfect fusion graph, any M-cliff point is
W-destructible (Th. 2).

Definition 4. Let F ∈ F(E) and let x ∈ E. We say that x is a cliff point
(for F) if x ∈ M(F ) and if it is adjacent to a single minimum of F . We say
that x is M-cliff (for F ) if x is a cliff point with minimal altitude (i.e., F (x) =
min{F (y) | y ∈ E is a cliff point for F}).

Let us look at Fig. 2. Thanks to Th. 1.ii, it may be seen that the depicted graphs
are perfect fusion graphs. In Fig. 2a, the points with level 3 are cliff points and
the bold circled point is the only M-cliff point. In figure 2b and c, it can be seen
that there is no M-cliff point and no cliff point.

Let F ∈ F(E) and j ∈ K. The point x is W-destructible with lowest value j
(for F ) if for any h ∈ K such that j < h ≤ F (x), x is W-simple for F [h] and if x
is not W-simple for F [j].

Let h ∈ K such that h < F (x), we denote by [F \ x ↓ h] the function of F(E)
such that [F \ x ↓ h](x) = h and [F \ x ↓ h](y) = F (y) for all y ∈ E \ {x}.
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Fig. 2. Example of function on perfect fusion graphs, the minima are in white; (a): the
bold circled vertex is M-cliff; (b): a C-watershed of (a); (c): a topological watershed of
both (a) and (b)

Theorem 2. Let F ∈ F(E). Let x ∈ E be M-cliff for F and let l ∈ K be the level
of the only minimum adjacent to x. If (E, Γ ) is a perfect fusion graph then x is
W-destructible with lowest value l for F .

Remark that on non-perfect fusion graphs, the points which are M-cliff are not
necessarily W-destructible. For example, the point labeled t in Fig. 1d is M-cliff
whereas it is not W-destructible.

Definition 5. Let F ∈ F(E), we say that G ∈ F(E) is a C-thinning of F if

i) G = F, or if
ii) there exists a function H which is a C-thinning of F and there exists a point x
M-cliff for H, with lowest value k such that G = [H \ x ↓ k].

We say that F is a C-watershed if there is no M-cliff point for F . If G is both a
C-thinning of F and a C-watershed we say that G is a C-watershed of F .

The following property follows immediately from definition 5 and Th. 2.

Property 3. Let (E, Γ ) be a perfect fusion graph and let F ∈ F(E). If F is a
topological watershed then F is a C-watershed. If G is a C-thinning of F then G
is a W-thinning of F .

The converses of the two propositions in Prop. 3 are not true. The function of
Fig. 2b is a C-watershed of Fig. 2a but is not a topological watershed. Indeed,
the points at altitude 9 are W-destructible. The function depicted in Fig. 2c is
a W-thinning of Fig. 2a but not a C-thinning of 2a. Indeed some points at level
9 have been lowered down to 7, and 7 is not the altitude of any minimum.

Observe that, on perfect fusion graphs, since any C-thinning is a W-thinning,
from the contrast preservation theorem presented in the introduction, we can
immediately deduce that C-thinnings, and hence C-watershed, preserves the con-
nection value between the minima of the original map.

It can be easily seen, that in a C-thinning sequence the points which are in a
minimum at a given step become neither M-cliff, nor W-destructible further in
the sequence. This observation leads us to the definition of Algorithm 1, a very
simple algorithm for computing C-watersheds.

At each iteration of the main loop (line 6) of Algorithm 1, F is a C-thinning
and a W-thinning of the input function.
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Algorithm 1. C-watershed
Data: a perfect fusion graph (E, Γ ), a function F ∈ F(E)
Result: F
L := ∅; K := ∅;1

Attribute distinct labels to all minima of F and label the points of M(F ) with2

the corresponding labels;
foreach x ∈ E do3

if x ∈ M(F ) then K := K ∪ {x};4

else if x is adjacent to M(F ) then L := L ∪ {x}; K := K ∪ {x};5

while L �= ∅ do6

x := an element with minimal altitude for F in L;7

L := L \ {x};8

if x is adjacent to exactly one minimum of F then9

Set F [x] to the altitude of the only minimum of F adjacent to x;10

Label x with the corresponding label;11

foreach y ∈ Γ �(x) ∩ K do L := L ∪ {y}; K := K ∪ {y};12

At the end of Algorithm 1, F is a C-watershed of the input function.
In Algorithm 1, the operations performed on the set L are the insertion of an

element and the extraction of an element with minimal altitude. Thus L may be
managed as a priority queue.

Lemma 4. Let F ∈ F(E). Let x ∈ E be M-cliff for F and let k = F (x).
If (E, Γ ) is a perfect fusion graph, any y ∈ E which is inner for M(F ) is such
that F (y) ≥ k.

On non-perfect fusion graphs, the previous lemma is in general not true.
From Lem. 4, we deduce that in Algorithm 1, when the function F is lowered

at a point x with altitude k, any point inserted further in the set L has a level
greater than or equal to k. Thus the set L may be managed by a monotone
priority queue. Recently, M. Thorup [16] proved that if we can sort n-keys in
time n.s(n) then and only then there is a monotone queue with capacity n,
supporting the insert and extract-min operations in s(n) amortized time.

Property 5. If the elements of E can be sorted according to F in o(|E|), then
Algorithm 1 terminates in linear time with respect to (|E|+ |Γ |).

Since Algorithm 1 possesses the monotone property discussed above, it can be
classified in the group of immersion algorithms (see [2, 3, 10] for examples). More-
over, it is the first immersion algorithm proved to compute W-thinnings in linear
time with respect to the size of the graph.

Notice that computing a topological grayscale watershed from a C-watershed
is not straightforward. For more details we refer to [9].

Let us now state some properties of C-watersheds on perfect fusion graphs.
Let G ∈ F(E) and let k = G(x). If x is F-simple for G[k], we say that x is
F-simple for G.
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Theorem 6 (Grayscale characterizations of perfect fusion graphs). The
three following statements are equivalent:

i) (E, Γ ) is a perfect fusion graph;
ii) for any C-watershed G ∈ F(E), any point of M(G) is F-simple for M(G);

iii) for any topological grayscale watershed G ∈ F(E), any point in M(G) is
F-simple for G.

Thanks to Th. 6, we immediately deduce the following theorem.

Theorem 7. Let (E, Γ ) be a perfect fusion graph and let F ∈ F(E). If F is a
C-watershed then M(F ) is a watershed.

In other words, on a perfect fusion graph, the minima of a C-watershed cannot
be further extended.

In this section, we have seen that:

1) on perfect fusion graphs, the C-watersheds preserves the connection value
between the minima of the original map; and
2) in this framework, the divide of any C-watersheds is a thin binary watershed
set.

Since perfect fusion graphs allow to rigorously define region merging procedure,
the divide of C-watersheds on perfect fusion graphs is an ideal entry point for
hierarchical methods based on watersheds.

On perfect fusion graph, any topological watershed is a C-watershed (Prop. 3),
thus we may easily deduce from Th. 6 and 7 that:

i) a graph is a perfect fusion graph if and only if, for any topological watershed F ,
any point of the divide of F is adjacent to exactly two minima of F ; and
ii) on a perfect fusion graph, the divide of any topological grayscale watershed
is a binary watershed set.

4 Perspectives: Perfect Fusion Grids and Hierarchical
Schemes

Following some properties given in [7] and the examples depicted in this paper
(see Fig. 1cd, Fig. 6), it may be seen that there exist topological watersheds
whose divides are not thin in 2D on the 4-, 6- and 8-connected grids, and in 3D
on the 6- and 26-connected grids. In this paper, we have shown that, on perfect
fusion graphs, the divide of any topological grayscale watershed is a thin binary
watershed set. On these graphs, region merging schemes are easy to rigorously
define and straightforward to implement. Thus, the framework of perfect fusion
graph is adapted for region merging methods based on topological watersheds.

In [7], we introduced the family of perfect fusion grids over Zn, for any n ∈ N.
Any element of this family is indeed a perfect fusion graph. We proved that
any of these grids is “between” the direct adjacency graph (which generalizes
the 4-adjacency to Zn) and the indirect adjacency graph (which generalizes the
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8-adjacency to Zn). These n-dimensional grids are all equivalent (up to a trans-
lation) and, in a forthcoming paper, we intend to prove that they are the only
graphs that possess these two properties. Examples of (restrictions of) 2 and
3-dimensional perfect fusion grids are presented in Appendix B.

Perfect fusion grids constitute an interesting alternative for region merging
methods based on watersheds. Future work will include revisiting hierarchical
segmentation methods [11, 12] on perfect fusion grids.
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Appendix A: Counter-Examples of Merging Properties in
Usual Grids

Let us first consider the 4-connected graph depicted in Fig. 3a. Since none of
the components of the complementary of the black vertices can be merged, the
depicted graph is not a fusion graph. As an illustration of the fusion graphs

(a) (b)

x y x x

(c) (d) (e)

Fig. 3. Counter example of merging properties in usual grids (a − c), and illustration
of merging properties in a perfect fusion grid (d, e)

Fig. 4. Samples of the two perfect fusion grids on Z2
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fundamental theorem (33 in [7]) recalled in Section 2, we can observe that the
set of black and gray points is a non-thin binary watershed.

The graph of Fig. 3b, which is a 2D 6-connected graph, is not a fusion graph
since the gray point which is a component of the complementary of the black
vertices cannot be merged.

Since the graph, depicted on Fig. 3c, induced by the 8-adjacency relation is
a fusion graph, any binary watershed on this graph is thin. This property can
be verified, in particular, for the watershed made of the black points on Fig. 3c.
Observe on the same figure that the two neighboring gray components cannot be
merged through {x, y} their common neighborhood. The black vertices is thus
a counter-example of the perfect fusion property for the depicted graph.

In Fig. 3d, the same sets of black and gray points are considered on a perfect
fusion grid. Observe that the two gray components can now be merged through
their common neighborhood {x}. Remark also that the set obtained by removing
{x} from the black points (Fig. 3e) is still a watershed. This desirable property,

=

Fig. 5. A 3-dimensional perfect fusion grid. Black points constitute a set which is a
watershed.
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Fig. 6. Comparison of topological watershed using different grids. The minima, labeled
by letters, are supposed to be at altitude 0; the circled points are inner for the divide
of the depicted function with respect to the assumed adjacency; (a), an image; (b), a
topological watershed of (a) when the 8-adjacency graph is assumed; (c), a topological
watershed of (a) when the 4-adjacency graph is assumed; (d), a topological watershed
of (a) when one of the perfect fusion grids is assumed; (e) same as (d) showing the
assumed adjacency relation.
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which does not hold in the general case, can be easily proved on perfect fusion
graphs.

We finish this appendix section, with a table that sums up the status of the
different graphs used in 2D and 3D image processing. See [7] for more details.
For non trivial images, we have:

fusion graph perfect fusion graph
2D : 4-connected graph is not a is not a
3D : 6-connected graph is not a is not a
2D : 8-connected graph is a is not a
3D : 26-connected graph is not a is not a
2D : 6-connected graph is not a is not a

Appendix B: Perfect Fusion Grids: 2D and 3D Cases

A formal definition of perfect fusion grids can be found in [7]. In Z2, there are two
distinct perfect fusion grids, in Z3 there are four. Actually it has been proved
that, for any strictly positive integer n, there are exactly 2n−1 perfect fusion
grids over Zn which are all equivalent (up to a unit translation). Samples of
the two perfect fusion grids on Z2 are depicted in Fig. 4. Fig. 5 shows a binary
watershed (black points) on one of the 3D perfect fusion grids. To clarify the
figure, we use the following convention: any two points belonging to a same cube
marked by a gray stripe are adjacent to each other.
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Abstract. This paper extends the concepts of image matching in the non-
parametric space and binary distance measures. Matching in the nonparametric 
domain exhibits many desirable properties at relatively small computation 
complexity: It concentrates on capturing mutual relation among pixels in a 
small neighbourhoods rather than bare intensity values, thus improving 
matching discrimination. It is also more resistive against noise and uneven 
lighting conditions of the matched images. Last but not least, the matching 
algorithms operate in the integer domain and can be easily implemented in 
hardware what benefits in dramatic improvement of their run times. In this 
paper we extend the concept of nonparametric image transformation into the 
realm of colour images taking into consideration different colour spaces and 
different distances defined in these spaces. We propose significant bit reduction 
for aggregated block matching in the Census domain. We propose also the 
sparse sampling model for the Census transformation that increase the 
discriminative power of this representation and allows even further reduction of 
bits necessary for matching. The presented techniques have been applied to 
matching of the stereo images but can be employed in any computer vision task 
that requires comparison of images, such as image registration, object detection 
and recognition, etc. Presented experiments exhibit interesting properties of the 
described techniques. 

Keywords: image matching, Census, binary distance. 

1   Introduction 

This paper is a continuation of the work comparing matching strategies for images in 
different nonparametric representations and with various similarity measures.  The 
basic concepts for grey valued (or: one channel) images were reported in [5]. In this 
paper we extend the idea of nonparametric image representation into multi-channel 
images with the colour images as the most frequent examples of such spaces. 

The general idea behind different transformations of data (images in our case) is to 
change their properties into representations which are more suitable for given 
applications. For example, the Karhunen-Loève transformation allows detection of the 
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dominating directions in the multi dimensional data, which further allows data 
compression [7]. The wavelet transform allows time-frequency decomposition of the 
compound signals what enables e.g. a scale space representation of images [10]. 
Similarly, the nonparametric transformations change statistical properties of signals 
by changing in any data sample an absolute value by its rank among the other values 
in this sample. For images the data samples usually are defined as small compact 
rectangular regions around pixels of that image. By this token the nonparametric 
representation exhibits the uniform distribution compared to an unknown distribution 
of the input signal. For the matching task the most interesting showed to be the 
Census transformation, introduced by Zabih and Woodfill [17]. This transformation is 
very helpful in image matching since it conveys information on mutual relations 
among pixels in their local neighbourhoods. This, in turn, allows disambiguation of 
the matches. Its other desirable feature in the light of image matching is the resistance 
to the noise and non-uniform lighting conditions among images. In [5] we presented 
the Census and its modification called the Detailed-Neighbourhood-Relation, as well 
as we compared different binary comparison metrics for image correlation. The main 
conclusion of this work is that, for the same bit-rate, the better matching quality is 
obtained when extending range of local neighbourhoods instead of increasing number 
of bits for precise description of relations among pixels. 

In this paper we focus on matching of the colour images in the nonparametric 
representation. The motivation comes from our experiments of comparing matching 
strategies for the grey-valued (one-channel) with the matching of colour (multi-
channel) images by means of the common measures, such as SAD, SSD, ZSSD, etc. 
For many tested colour images they did not show any, or showed very small, 
improvement in the matching quality, although the amount of data, and computational 
effort, in that case were tripled [3]. This complies as well with results obtained by 
other researchers [12], although they reported a little bit higher degree of quality 
improvement. Thus for image matching the common practice is to convert colour into 
grey (one channel) representation and perform faster matching. Our idea is similar but 
before matching we propose and check some non-linear colour conversions that 
capture the mutual relations in local topological spaces of the multi-channel images. 
As a result this method allows better signal conditioning for the matching stage, on 
the one hand. 

The further contributions of this papers are as follows: Based on the observed 
redundancy in the aggregated block matching we propose a 50% reduction of bits 
resulting in relaxed demands on memory and improved speed of computations. We 
also propose the sparse sampling model for the Census transformation which further 
improves matching with low bit rate. 

The paper is organized as follows: section (2.1) describes nonparametric representa-
tion for scalar images. Then the techniques for data reduction in aggregated blocks (2.2) 
and sparse Census sampling models (2.3) are introduced and explained. Then we 
analyze different methods of the nonparametric representation for multi-channel 
images (2.4). Section (2.5) discusses the distance measures for nonparametric repre-
sentation. The paper closes with the experimental results (4) and conclusions (5). 
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2   Nonparametric Representations of Images 

2.1   Nonparametric Census Representation for a Single Pixel with Scalar Value 

The nonparametric measures rely on the mutual relations among pixel values in a 
local neighbourhood defined around pixels of an image [1][2].  

The Census transform maps the local pixel neighbourhoods, located around a 
certain central pixel P, to a bit string. In this series each bit conveys a binary 0/1 
information, indicating whether a given pixel is less or not from the central one. The 
Census transform for a pixel P in the image I is defined as follows [17]:  
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where I stands for intensity, P is a central pixel, ⊗ denotes concatenation, W(P,β) is a 
local pixel neighbourhood around a pixel P with a radius β, P’ denotes pixels 
belonging to W, and ξ is given by the following formula: 
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To find correspondence of images we first apply (1) to the images and then usually 
compute the Hamming distance between bit strings, although some other measures 
are also possible [5]. The separate question is choice of the window W [4][5].  

 

a b 

Fig. 1. The Census transformation for a single pixel in a 3×3 (a) and 5×5 (b) neighbourhoods 

Computation of the Census transformation for a single pixel “x” in a 3×3 
neighbourhood depicts Fig. 1a, whereas for the 5×5 Fig. 1b (shown selected relations 
only). 
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2.2   Reduced Match Aggregation Schemes for the Census Representation 

The intention of image matching process is unambiguous selection of the best fit 
among pixels. Although this can be done solely on a pixel-by-pixel basis, in practice 
such an approach leads to many errors due to ambiguous matches, which come from 
the limited dynamics of the values assigned to pixels and ubiquitous noise. As was 
shown in [5], binary matching in the Census representation has many advantageous to 
the other measures in this respect and performs much better in the pixel-by-pixel 
scheme since each pixel in Census representation conveys information on its closest 
neighbourhood. Thus with sufficiently large windows W in (1) it is even possible to 
perform reliable pixel-by-pixel matches. 

However, in many cases matching based on single pixels is not sufficient (e.g. for 
large baseline stereo) and larger support region is necessary [11]. If so, then the 
matching usually is done in the corresponding rectangular windows placed in the 
source and destination images. Then for each pair of pixels from the corresponding 
windows the matching measure is computed and added to the total result. If one 
against many windows is checked, then the window with the minimal (or maximal, 
depending on the used measure) score is chosen as the corresponding one.    

This scheme works fine for many different windows and comparison metrics. 
However, for the Census representation of many neighbouring pixels we encounter 
some data redundancy. To see this let us analyse the case presented in Fig. 2 of a 3×3 
match window with each pixel already converted to the 3×3 Census representation 
(i.e. although having different meaning, the two windows are of the same size). 

 

Fig. 2. Explanation of data redundancy for the block of pixels in the Census domain 

We see that the relation between the pixels no. 0 and 4 is computed and stored 
twice: once when computing the 3×3 Census representation (2) for no. 0, then its 
negated value is stored in the 3×3 Census representation, this time computed for no. 4 
(see Fig. 2). Such repeated bits do not convey useful information and one of the two 
can be simply omitted. So, if computing Census representations for pixels that will be 
treated as aggregated blocks (e.g. very common in stereo matching) we need only to 
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compute half the number of comparisons (2). Thus, the computation schemes from 
Fig. 1a and  Fig. 1b have to be modified to the ones in Fig. 3a and Fig. 3b, 
respectively. 

  
a b 

Fig. 3. Reduced Census coding for block of pixels (light grey). An example with Census for a 
3×3 (a) and 5×5 (b) neighbourhoods (darker grey). Larger neighbourhoods are encoded in the 
same way. 

For other Census representations (i.e. the windows W in (1)) the computation 
scheme for the reduced representation is the same: With the top-down and left-right 
bit numbering in W, having selected a central pixel with a number nX, (e.g. in Fig. 3a:  
nX = 4) only pixels with numbers greater than nX are taken into the representation.  
    This simple observation leads to significant improvement of the image matching in 
terms of computation time and memory occupation. This is also a good feature for 
hardware realizations, as well [1][16].  

The proposed reduction of bits for the Census representation for blocks of pixels 
can be interpreted as taking each k-th sample from that block and with the Census 
representation not reduced at the same time. This concept is illustrated in Fig. 4. 

  
a b 

Fig. 4. Taking each k-th pixel in the matching blocks in the not reduced Census representation. 
An example for the 3×3 (a) and 5×5 (b) Census neighbourhoods. Central pixels denoted by ‘x’. 
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However, the drawback of the second approach is its more spread representation of 
the matching block. Let us consider, for instance, the 5×5 Census transformation and 
a 3×3 matching block, which in this method would take 11×11 pixels. In the case of 
stereo matching this can produce excessive smearing in the resulting disparity map. 

2.3   Sparse Sampling Model for the Census Transformation 

An increase of the size of the Census window (Fig. 1) leads to an increase of the 
discriminating power of such feature representation. To some extent this improves 
quality of the image matching [5]. However, too big neighbourhoods do not lead to 
further improvements, since we encounter local deformations in the matching 
neighbourhoods, which are due to different (projective) transformations of the 
matched images. Also, the polynomial growth of a number of bits inhibits practical 
realizations of Census windows larger than say 7×7 (6 bytes per pixel). During 
experiments we noticed that very high discriminating power can be achieved if we 
sparsely sample a Census neighbourhood, computing mutual relations among the 
central pixel and its neighbours separated by a certain distance. Fig. 5 depicts this 
idea. Notice that we employ also the reduced aggregation scheme (2.2), so only the 
neighbours to the right and down are taken into relations. This can be seen as special 
definition of the window W(P,β) in (1). In Fig. 5 we consider two Census windows: 
the inner 5×5 and the outer 9×9, respectively. For the inner representation “x” is 
compared with only four neighbours n11-n14, separated from each other by d1 pixels.  

 

Fig. 5. Sparse relations for Census matching. The inner 
window size is 5×5 but we compute relations with only 4 
neighbours distant by d1. In the outer window we also 
compute only 4 relations among pixels distant by d2. 

    Our experiments showed 
that this four bits represent-
tation produces almost the 
same matching results as the 
full 5×5 representation (24 
bits). However, we can incr-
ease this property even more 
by addition of the next four 
bits from the outer window 
with pixels n21-n22 which are 
separated by d2. In total we get 
8 bits (i.e. very practical size 
of 1 byte) for repre-sentation 
of the whole 9×9 neigh-
bourhood. Let us remind that 
such sparse sampling is done 
for each pixel in the matching 
window, i.e. at xi, xi+1, etc.  

For many images this 
feature could be explained by 
the probabilistic dependence 
among pixels and their nea-
rest  neighbours.   This  comes 

also from some physical phenomena encountered in CCD cameras, e.g. charge 
leaking in neighbouring cells.    
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2.4   Nonparametric Representation for Multi-channel Images 

For scalar valued images a definition of a certain order among pixels does not pose a 
problem. Things become more complicated for non-scalar valued images, such as 
colour or in general matrix or tensor valued. Basically the following schemes can be 
used in the latter case: 

1. Compute the nonparametric representation in each channel separately resulting 
in the nonparametric multi-channel representation; 

2. Convert the multi-channel signal into scalar valued, then compute the 
nonparametric representation; 

3. Compute the nonparametric representation directly from the multi-channel 
representation. 

A direct application of the first option of computing the nonparametric representation 
for each channel separately leads to the number of bits multiplied by a number of 
channels. This showed up to be an over-representation which due to the usual strong 
correlation among the channels does not improve the matching results [3]. Needless to 
say that such a method requires more memory and computation time. Therefore the 
novel idea is to combine the nonparametric representations from separate channels 
into one channel, however in a manner that conveys some additional information. One 
of the methods relies on a dominating-bit voting scheme – called a Dominating-
Census (DC). It is defined for multi channel images with odd number of channels. For 
a given pixel position all bits are checked separately in each of the (binary) channels. 
Then the most dominating value of bits is chosen – see Table 1. It is easy to verify 
that this nonlinear method is different from the second option of converting a colour 
image into a scalar one.   

Table 1. The Dominating-Census (DC) transformation for odd-multi-channel images (three 
colour channels assumed for simplicity). At first the Census is computed in each channel 
separately, then the dominating value across the channels is chosen as an output. 

Channel Bit values 

r 0 0 0 0 1 1 1 1 
g 0 0 1 1 0 0 1 1 
b 0 1 0 1 0 1 0 1 
DC 0 0 0 1 0 1 1 1 

It is easy to derive the logical expression describing the Dominating-Census (DC) 
majority voting rule presented in Table 1 – it is as follows: 

( ) ( ) ( ) ( ) ( )DC r g r b g b r g b g b= ∧ ∨ ∧ ∨ ∧ = ∧ ∨ ∨ ∧  (3) 

The last expression requires four logical operations per one output bit. 
The second of the aforementioned options is a conversion from the multi-channel 

to scalar representation. In the next part we limit our considerations to the three-
channel colour images, although the concepts can be easily extended into more 
channels. 
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There are many ways to convert multi-channel colour images into grey valued ones 
by means of the linear combination of the colour components [10]. For example the 
very common IHS coordinate system provides a quantitative means of specifying the 
intensity I, as well as saturation S and colour H: 

[ ]1 1 1

3 3 3
T

I R G B=  (4) 

where [R G B]T is a three-channel colour vector for a given pixel, I a grey value 
(intensity) of that pixel. The other colour space YCrCb provides us with the following:  

[ ][ ]0.299 0.587 0.114
T

Y R G B=  (5) 

where Y represents a grey value. 
The last option is computation of the nonparametric representation directly from 

the multi-channel representation. The three schemes presented in Fig. 6 –Fig. 8 were 
tested for purpose of this research. In all of them we assumed the same number of bits 
as for the uncompressed representation in a single channel (e.g. 8 bits for 3×3 
neighbourhood). However the ‘cube of influence’ (i.e. a space around a central pixel) 
was of size n×n×n (the best results were obtained for n=4-6). 

 

Fig. 6. The Census transformation computed directly in a n×n×n neighbourhood of pixels. 
Three reference values of a single pixel (X) are used in this scheme. 

Fig. 6 presents the star-like representation with one reference pixel. However, each 
component of the reference is used as a scalar reference in the corresponding channel, 
i.e. red to red, etc. This scheme was motivated by the fact of usual strong correlation 
among channels. The relations X-R0 and X-R6, as well as X-B2 and X-B8, convey 
information among the most distant pixels in the cube.  

Fig. 7 presents a mutation of the scheme presented in Fig. 6. Only one component 
value of a central pixel (X-G4) is used. The other pixels are set in accordance with the 
compressed scheme from Fig. 3.  
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Fig. 7. The Census transformation in a n×n×n neighbourhood. One reference pixel (X-G4) 
used, however other pixels set in accordance with the compressed scheme from Fig. 3. 

Fig. 8 depicts another mutation of the scheme from Fig. 7. This time the three 
reference values (X) are used, each is located in a different channel as in Fig. 6.  

 

Fig. 8. A mutation of the scheme from Fig. 7. Three components of a single pixel (X) used. 

In all direct schemes only 8 bits are computed for a single pixel. In experiments the 
best results were obtained if the pixels were distant by 4 pixels. 

3   Distance Measures for Nonparametric Representation 

The most popular measure for comparison of binary strings of the Census 
representation is the Hamming DH measure. It treats all bits (0 or 1) with the same 
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weight. However, other metrics, such as Tanimoto DT or Dixon-Koehler DDK are also 
possible, which stress more matches on ‘1s’ than on ‘0s’ in a specific way. The latter 
can be of some advantage if bit ‘0’ is defined in (2) to convey information for weak 
order (i.e. for the equality) in (1). In such situations the potential areas of the same 
intensity, which usually cause problems for matching, are treated with a littlelower 
weight. For completeness we provide the formulas for the mentioned measures [5][6]: 

( ) ⊗
=

=
N

i
iiH ba

N
D

1

1
, ba , (6) 

( )
−+

−

==
=

otherwise

if
DT

babbaa

ba
0ba

ba
TTT

T

1

1
, , (7) 

( ) ( ) ( )bababa ,,, THDK DDD = . (8) 

where a, b are the compared vectors of the same length N, ⊗ denotes the exclusive-or 
operation.  

In this paper we used also the weighted Tanimoto DWT measure [15], which 
originates from the biological and chemical sciences, and is defined as follows [8]: 

( ) ( ) ( ) ( ), , 1 ,WT T TD D Dη η= + − ¬ ¬a b a b a b , (9) 

where ¬ denotes bit negation. The second term in the above is called a complement of 
DT. The weight parameter η stabilizes situations of strong correlations only on ‘1s’ or 
only on ‘0s’. In [8] its value is proposed as follows: 

2

3

pη −= , where
2

p
N

+=
T Ta a b b

. (10) 

Certainly, p∈[0,1] and aTa is a number of ‘1s’ in a, while bTb in b. However, in our 
experiments we found that better results are obtained for η=(3-p)/4, since it always 
favours matches on ‘1s’, which is preferable.  

4   Experimental Results 

The presented system was implemented with the Microsoft® Visual C++ 6.0 on the 
IBM PC with Pentium 4 3.4G and 2 GB RAM. It was built upon the image matching 
platform presented in [5]. The test images provided by the Middlebury University 
were used since they are colour versions and are endowed with the ground-truth 
disparity maps [14][13]. The following experimental results are organised to verify 
the consecutive concepts presented in this paper. Then the final conclusions are drawn 
that can lead further research and implementations. 

The first tested concept is comparison of the full and compressed Census 
representations (2.2) and different distance measures (3).  
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a b c 

Fig. 9. The “Tsukuba” 384×288 colour image used for experiments: left image (a), right (b), 
ground-truth map (max. disparity 15) (c) 

  
a b c 

  
d e f 

Fig. 10. Comparison of “Tsukuba” disparities for the reduced (a,b,c) and full (d,e,f) 5×5 Census 
representations. The aggregation windows: 5×5 (a,d), 7×7 (b,e), 11×11 (c,f). The Hamming 
measure used for comparisons; the colour pixels were linearly transformed to grey values.    

   
a b c 

Fig. 11. The “Venus” 434×383 colour image used for experiments: left image (a), right (b), 
ground-truth map (max. disparity 19) (c) 

The tested images are presented in Fig. 9 for 384×288 “Tsukuba“, and in Fig. 11 
for 434×383 “Venus”. In these experiments the colour pixels were linearly 
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transformed into grey values in accordance with (5). The other two test images are: 
434×380 “Sawtooth” and 284×216 “Map” (grey valued). 

Fig. 10 depicts comparisons of the disparity computation with the full (d,e,f) and 
reduced  (a,b,c) 5×5 Census representations for the “Tsukuba”. The aggregation 
windows were: 5×5 (a,d), 7×7 (b,e), 11×11 (c,f). The Hamming measure was used for 
comparisons and the colour pixels were linearly transformed to grey values (5).  

   
a b c 

   
d (19276 rejected) e (9255 rejected) f (8572 rejected) 

   
g h i 

Fig. 12. Comparison of “Venus” disparity maps for the reduced (a,b,c) and full (g,h,i) 11×11 
Census. The rejected points (white) after the cross-checking of the reduced representations 
(d,e,f). The aggregation windows: 3×3 (a,d,g), 9×9 (b,e,h), 13×13 (c,f,i). The Weighted-
Tanimoto DWT measure used; the colour pixels were linearly transformed to grey values. 

The similar tests for the “Venus” test pair and the Weighted-Tanimoto comparison 
measures presents Fig. 12. The maps in Fig. 12d,e,f show pixels removed by the 
cross-checking process which detects the inconsistencies in disparity maps [9]. These 
and many other tests validate our concept of half bit reduction for the aggregated 
blocks of pixels in the Census domain. These important results allowed reduction of 
the computation time from 25-45%, depending on the size of the matching blocks. It 
also shows that better results are obtained for considerably larger Census represent-
tation and possibly smaller aggregation blocks, what is consistent with the results 
presented in [5]. Quantitative accuracy assessments of the methods can be found in 
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Table 2. The “Gr-Tr” column contains the overall error rate of the computed 
disparities and the ground-truth. This is the ratio of the total number of bad matches 
and total number of pixels. The second column denotes ratio of inconsistent pixels 
that were rejected by the cross-checking process to the total number of pixels. The last 
column contains an average execution time in seconds. 

Table 2. Accuracy and computation time for different methods, images and settings (n×nC 
stands for Census size, k×kM denotes matching block size, Lin – linear colour conversion, time 
in seconds). Values in parenthesis concern the redundant (full) Census representations. 

Tsukuba (384×288) Venus (434×383) Sawtooth (434×380) Method 
Gr-T Mis Tme Gr-T Mis Tme Gr-T Mis Tme 

5×5C, 5×5M 
Lin, DH 

19.4 0.21 
(0.2) 

0.7 
(1.2) 

18.2 0.21 
(0.2) 

1.1 
(1.9) 

16 0.18 
 

1 
 

5×5C, 7×7M 
Lin, DH 

17 0.17 
(0.2) 

1.2 
(2.3) 

17.4 0.13 
(0.15) 

1.8 
(3.5) 

15.8 0.19 1.8 
 

5×5C, 11×11M 
Lin, DH 

13.3 0.12 
(0.1) 

2.4 
(4.1) 

16.9 0.2 
(0.23) 

3.8 
(6.2) 

13.1 0.1 3.8 
 

11×11C, 3×3M 
Lin, DWT 

11.4 0.08 3.8 11.4 0.116 4.1 9.14 0.07 4 

11×11C, 9×9M 
Lin, DWT 

10.2 0.05 4.7 10.2 0.055 6.6 7.2 0.06 6.2 

11×11C, 13×13 
Lin, DWT 

13.7 0.06 6.4 13.7 0.05 9.1 6.23 0.06 9.7 

 

 
 

a b c 

 
 

d e f 

Fig. 13. Comparison of the conversion methods from the colour RGB space into the Census 
representation: the Dominating-Census (a,b,c) vs. linear (d,e,f). “Tsukuba” (a,d), “Venus” (b,e), 
and “Sawtooth” (c,f). All disparity maps were obtained in the 11×11 Census representation, 
5×5 matching blocks, and with the Hamming measure. 
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It is interesting to notice that the reduced bit version of the aggregated matches 
shows even greater accuracy (Table 2), although a visual results seem to be worse 
(compare Fig. 10 abc vs. def).  

The next group of experiments was conducted to assess differences between the 
linear conversions of the colour images and the nonlinear Dominating-Census method 
presented in (2.4). Fig. 13 and present results of comparison of the conversion 
methods from the colour RGB space into the Census representation for the three test 
images. The Dominating-Census (a,b,c) vs. linear (d,e,f). All disparity maps were 
obtained in the 11×11 Census, 5×5 matching blocks, and with the Hamming measure. 
These results show no noticeable difference between the two conversion methods. 

Table 3. Comparison of different matching methods (Maj.- majority voting, nb-C – Census 
representation with n-bits, DH – Hamming distance, Tme – time [s]). The best values in bold. 

Tsukuba (384×288) Venus (434×383) Sawtooth (434×380) Method 
Gr-T Mis Tme Gr-T Mis Tme Gr-T Mis Tme 

Lin, 12b-C 20.67 0.22 2.2 22.21 0.13 3.6 26.75 0.09 3.2 
Maj., 12b-C 20.64 0.23 2 23.52 0.17 3.3 27.44 0.12 3.0 
Fig. 6, 8b-C 15.70 0.14 1.3 22.53 0.14 2.4 25.22 0.1 2.3 
Fig. 7, 8b-C 17.27 0.15 1.3 23.29 0.16 2.3 26.28 0.12 2.3 
Fig. 8, 8b-C 17.32 0.17 1.4 23.08 0.15 2.3 27.66 0.12 2.3 
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Sparse, 8b-C 16.97 0.18 1.4 21.22 0.09 2.4 25.7 0.08 2.4 
Lin, 12b-C 15.87 0.15 6 20.34 0.07 9.9 24.46 0.07 9.9 
Maj., 12b-C 15.74 0.15 6 21.04 0.08 9.7 24.75 0.07 9.8 
Fig.6, 8b-C 12.45 0.09 4.4 21.18 0.09 6.8 23.37 0.07 6.6 
Fig. 7, 8b-C 13.69 0.1 4.4 21.36 0.1 6.9 23.76 0.07 6.9 
Fig.8, 8b-C 13.55 0.11 4.3 21.47 0.09 6.8 24.25 0.07 6.8 
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Sparse, 8b-C 14.22 0.12 4.4 19.94 0.05 6.7 23.40 0.06 6.7 

 
Table 3 presents comparison among different methods for three colour images. For 

methods that convert colour into scalars we use 12 bits of the Census representation, 
for colour we use 8 bits only. The best methods are: from Fig. 6 operating directly in 
the RGB space, and the sparse method in Fig. 5 that converts to scalar. 

The HSI colour space [10], as well as the normalized HSI space, were also tested 
but no improvements were detected compared to the already presented methods that 
operate in the RGB space (2.4).  

5   Conclusions 

This paper presents different matching techniques that operate in the nonparametric 
representation of multi-channel (non scalar) images. It extends the work presented in 
[5][3]. The conclusions drawn from this research can be summarized as follows: 

1. The best matching methods are: directly in the RGB space – the method 
operating according to the scheme in Fig. 6, for colour and grey valued images – 
the method with sparse Census sampling model, presented in Fig. 5. 

2. The bit reduction method in the aggregated block matching in the Census 
domain (Fig. 3) allows a 50% reduction of bits without noticeable loss of 
accuracy. 
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3. The sparse Census sampling model allows increase of the discriminative 
properties of the Census representation and further reduction of bits (Fig. 5). 

4. The type of a binary matching measure does not influence much results, 
although the Weighted-Tanimoto allows control of the balance between match 
solely on ‘1’ bits vs. ‘0’ bits. However, the preferable (due to shortest computa-
tion) is the Hamming measure. 

The presented techniques showed to be robust against noise and local image 
imbalances. The software implementation does not require other than integer 
arithmetic. The version with the fixed 11x11 Census and 5x5 matching window was 
also implemented in FPGA and successfully operates in real-time. 
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Abstract. In image processing, it is often of great importance to have
small rotational dependency for distance functions. We present an opti-
mization for distances based on neighbourhood sequences for the face-
centered cubic (fcc) and body-centered cubic (bcc) grids. In the opti-
mization, several error functions are used measuring different geometrical
properties of the balls obtained when using these distances.

1 Introduction

When computing the distance transform of a segmented image, each object grid
point is assigned the value to the closest background grid point. In [1], the
distance transform is defined using the classical city block and chessboard dis-
tances, defined as the shortest path between two grid points using only 4- and
8-neighbours, respectively. Seen as approximations of the Euclidean distance,
these distances are very rough. On the other hand, they have other advantages.
For example, when computing a reversible skeleton, the centres of maximal balls
(the grid points needed for the skeleton to be reversible) are very easy to extract;
they are local maxima in the distance transform, [1]. In [2], it is noted that by
mixing the city block and chessboard distances, the Euclidean distance is better
approximated; the authors state that the approximation obtained when the ratio
between the number of steps using the different neighbourhood relations in Z2

is equal to 1 :
√

2 is optimal. These distances can also be used for computing
reversible skeletons that include the centres of maximal balls, [3].

There is another very common way of modifying the city block and chessboard
distances in order to obtain a less rotational dependent distance, the weighted
distances, [4, 5]. With these distances, each local step is given a weight, which
is considered when computing the distance, i.e., when finding the shortest path.
The calculation of optimal local weights have been the subject of many papers,
see for example [5, 6].

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 89–100, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Non-standard grids in 2D and 3D have also been considered. Weighted dis-
tances for the two-dimensional hexagonal grid is examined in [7, 8] and a skele-
tonization algorithm in [9]. The generalizations of the hexagonal grid in three
dimensions are the face-centered cubic (fcc) and body-centered cubic (bcc) grids.
Weighted distances on these grids have also been examined, [8] and a skeletoniza-
tion algorithm for the fcc and bcc grids is found in [10].

There are several reasons for using the fcc and bcc grids. For example, since
these grids are reciprocal and both have higher packing density than the cubic
grid (the fcc grid is a densest packing lattice in 3D), less samples can be used
without affecting the image representation/reconstruction quality, [11]. The high
number of neighbours at approximately the same distance on these grids (12
neighbours at distance

√
2 for the fcc grid and 14 neighbours at distance

√
3 and

2 for the bcc grid) implies that the rotational dependency for these grids is lower
than for the cubic grid. Many image reconstruction techniques for computed to-
mography images can easily be adjusted to work on the fcc and bcc grids. For
example, the filtered backprojection method use 1D Fourier transforms corre-
sponding to projections of the original object. The dependence on the grid on
which the reconstructed image will be on comes first in the last step, which is an
interpolation from the filtered 1D projections to the grid points. The algebraic
reconstruction technique is applied to the bcc grid in [11].

The distances obtained by mixing steps corresponding to 4- and 8-neighbours
suggested in 1968 by Rosenfeld [2] are called distances based on neighbourhood
sequences. The literature on distances based on neighbourhood sequences is rich;
a theory for periodic neighbourhood sequences not connected to any specific
neighbourhood relations in Zn is presented in [12, 13] and further developed for
the natural neighbourhood structure, by the so-called octagonal neighbourhood
sequences in [14, 15]. Results for general (not necessarily periodic) neighbourhood
sequences are presented in [16, 17].

Many approaches where the deviation from the Euclidean distance is min-
imized in order to find the optimal neighbourhood sequence have been pro-
posed for Z2 and Z3. Several error functions minimizing the asymptotic maxi-
mum difference of two balls of equal radius using a distance based on periodic
neighbourhood sequences and a Euclidean sphere, respectively, is presented in
[13, 18, 19] (Z2), [20] (Z3). An investigation of optimal non-periodic neighbour-
hood sequences in Z2 with optimal sequences also for finite distances is found in
[21]. In [22], an optimization for Z3 is carried out using a geometric approach.

All above approaches are based on the difference between a Euclidean ball
and a ball generated by distances based on neighbourhood sequences of the same
radius. Such error functions are natural in Zn, because a ball generated by a dis-
tance obtained by only considering first-order/n-th order neighbours will always
be an underestimation/overestimation of the Euclidean ball of the same radius.
Using non-standard grids as in this paper, there is in general no order of neigh-
bours generating a distance that is an overestimation of the Euclidean distance.
Instead, error functions that are independent of the radius of the Euclidean ball
are used in the optimization. In [23], optimal neighbourhood sequences for the
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2D hexagonal and triangular grids are found using a “non-compactness ratio” –
the ratio between the squared perimeter and the area of the convex hull of the
disks obtained by using neighbourhood sequences. In this paper, we calculate
the neighbourhood sequences best approximating the Euclidean distance by us-
ing different error functions for the fcc and bcc grids. We use the formulas for
distances based on neighbourhood sequences derived in [24] to find formulas that
describe the geometry of the balls in these grids. The formulas are then used for
the error functions.

2 Notation and Preliminary Results

The following definitions of the fcc and bcc grids are used:

F = {(x, y, z) : x, y, z ∈ Z and x + y + z ≡ 0 (mod 2)}. (1)

B = {(x, y, z) : x, y, z ∈ Z and x ≡ y ≡ z (mod 2)}. (2)

When the two grids are handled in parallel, G is used to denote either F or B.
Observe that, using these definitions, each grid point has integer coordinates.

Two grid points p, q ∈ G are r-neighbours, 1 ≤ r ≤ 2 if

1.
3∑

i=1

|p(i)− q(i)| ≤ 3 and

2. max
i∈{1,2,3}

|p(i)− q(i)| ≤ r

The points p, q ∈ G are adjacent if p and q are r-neighbours for some r. The
neighbourhood relations are visualized in Figure 1 by showing the Voronoi re-
gions (the voxels) corresponding to some grid points.

Fig. 1. The light grey voxel is 1-neighbour to the dark grey voxel. The white and light
grey voxels are 2-neighbours to the dark grey voxel. Left: fcc, right: bcc.

The r-neighbours which are not (r − 1)-neighbours are called strict r-neigh-
bours. In addition, we will use path-generated distances, therefore, the terms
1- and 2-steps will also be used insted of step to a 1-neighbour and step to a
2-neighbour, respectively.

A neighbourhood sequence B is a sequence of integers b(i), B = (b(i))∞i=1. If
B is periodic, i.e., if for some fixed l ∈ N (l > 0), b(i) = b(i + l) is valid for all
i ∈ N, then B is written B = (b(1), b(2), . . . , b(l)).
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A path in a grid is a sequence (p = p0), p1, . . . , (pm = q) of adjacent grid
points. A path is a B-path of length m if, for all i ∈ {1, 2, . . . , m}, pi−1 and
pi are b(i)-neighbours. The B-distance d(p, q; B) is defined as the length of the
shortest B-path(s) between p and q. Usually in digital geometry the shortest
path is not unique. The distance function generated by B is denoted d(B).

Let
1k

B = |{i : b(i) = 1, 1 ≤ i ≤ k}| and

2k
B = |{i : b(i) = 2, 1 ≤ i ≤ k}|.

When B is clear from the context, we will exclude the subscript and write 1k

and 2k for short. Note that, for any B and any k, 1k
B + 2k

B = k.

Definition 1. Let A and B be two neighbourhood sequences in G. The relation
A �∗ B (A is faster than B) is defined as

d(p, q; A) ≤ d(p, q; B) ∀p, q ∈ G. (3)

Definition 2. For any neighbourhood sequence B = (b(i))∞i=1, the sequence
B(j) = (b(i))∞i=j is the j-shifted sequence of B.

The following theorems are from [24]. Observe that Theorem 2 gives a compu-
tationally efficient way of deciding if a distance generated by a neighbourhood
sequence is a metric or not.

Theorem 1. The distance function based on a neighbourhood sequence B is a
metric on G if and only if B(i) �∗ B for all i ∈ N.

Theorem 2. For the fcc and bcc grids, a neighbourhood sequence A is faster
than a neighbourhood sequence B if and only if

j∑
i=1

a(i) ≥
j∑

i=1

b(i) for all j ∈ N.

This can be written as the following equivalent condition:

2j
A ≥ 2j

B for all j ∈ N.

3 Balls in F and B Generated by Distances Based on
Neighbourhood Sequences

A ball BG and a sphere SG in G are defined as

BG(B, k) = {q ∈ G : d(0, q; B) ≤ k} and
SG(B, k) = {q ∈ G : d(0, q; B) = k} , respectively.

The vector (x, y, z) is called the sorted absolute difference vector of p and q,
if it is a permutation of the values d(i) = |p(i) − q(i)| such that x ≥ y ≥ z.
Theorem 3 and 4 are proven in [24].
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Theorem 3 (B-distance in F). Let a neighbourhood sequence B be given. Let
d be the distance of the two grid points (0, 0, 0) and (x, y, z) in F (having sorted
absolute difference vector (x, y, z)). Then

d = min
{

k

∣∣∣∣k = max
{

x + y + z

2
, x− 2k

}}
.

Corollary 1. Let the neighbourhood sequence B and the positive integer k be
given. The value of D =

(
x2 + y2 + z2 : (x, y, z) ∈ SF(B, k)

)
is

– maximized by (
1k

B + 2 · 2k
B,1k

B, 0
)
. (4)

– minimized by either⌊
k

3

⌋
· (2, 2, 2) +

(
k mod 3,

⌈
k mod 3

2

⌉
,

⌊
k mod 3

2

⌋)
(5)

or (
2 · 2k + 1k, 0, 0

)
if 1k is even (6)(

2 · 2k + 1k, 1, 0
)

otherwise (7)

Proof. For (4), see [24].
The minimum of D is reached when the value of max

{
x+y+z

2 , x− 2k
}

is
maximal. This occurs when either x+y+z

2 or x− 2k is maximal (independent of
the other argument).

Obviously, the value of x+y+z
2 is maximal when x + y + z = 2k. This is the

case for a set of grid points. The grid point satisfying d((x, y, z), (0, 0, 0); B) =
k that minimizes D can be written as either (2l, 2l, 2l), (2l + 1, 2l + 1, 2l), or
(2l + 2, 2l + 1, 2l + 1) for some l. This is the case even if 2k = k, i.e. if all steps
are 2-steps. Since any 1-neighbour is also a 2-neighbour and since, for any k ≥ 0,

(2k + 2)2 + (2k)2 + (2k)2 ≥ (2k + 1)2 + (2k + 1)2 + (2k)2 and

(2k + 2)2 + (2k + 2)2 + (2k)2 ≥ (2k + 2)2 + (2k + 1)2 + (2k + 1)2,

we conclude that using 1-steps gives shorter distance and thus, the optimal grid
point can be written as a sum of 1-steps. Equation (5) follows.

The second argument x − 2k is maximized when x is maximized. Equa-
tion (6) and (7) are obviously the grid points best approximating this. �

Theorem 4 (B-distance in B). Let a neighbourhood sequence B be given. Let
d be the distance of the two grid points (0, 0, 0) and (x, y, z) in B (having sorted
absolute difference vector (x, y, z)). Then

d = min
{

k

∣∣∣∣k = max
{

x + y

2
, x− 2k

}}
.
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Corollary 2. Given a neighbourhood sequence B and a positive integer k, the
value of D =

(
x2 + y2 + z2 : (x, y, z) ∈ SB(B, k)

)
is

– maximized by (
1k

B + 2 · 2k
B,1k

B,1k
B

)
if 2 · 1k

B ≤ 2k
B (8)

(k, k, k) otherwise. (9)

– minimized by either

(k, k, 0) if k is even (10)
(k, k, 1) otherwise (11)

or (
1k + 2 · 2k, 0, 0

)
if 1k is even (12)(

1k + 2 · 2k, 1, 1
)

otherwise (13)

Proof. For (8) and (9), see [24].
The minimum of D is reached when the value of max

{
x+y

2 , x− 2k
}

is maxi-
mal. This occurs for all x, y, and z such that either x+y

2 or x − 2k is maximal.
Among the grid points satisfying this, x + y = 2k and z as close to zero as
possible minimize D. By noting that

(k + 2)2 + k2 + 02 ≥ (k + 1)2 + (k + 1)2 + 12

for k ≥ 0, and thus, using only 1-steps give minimal D, the optimal grid
points are obtained by using combinations of only (1, 1, 1), and (1, 1,−1) as
in (10) and (11).

By setting x = k, the value of x − 2k is maximal. With this satisfied, val-
ues of y, z as close to zero as possible minimize D. In B, with this restriction,
(12) and (13) are obtained. �

4 Balls Generated by Distances Based on Neighbourhood
Sequences in R3

In this section, the convex hull of BG(B, k) in R3, denoted HG(B, k), is consid-
ered. The shape of HG(B, k) for different B and k is shown in Figure 2.

Observe that when 2k = 0, −−→QR = (0, 0, 0) and when 1k = 0, then −−→PQ =
(0, 0, 0).

Given an integer k and a neighbourhood sequence B, the grid points in
BG(B, k) located at maximum Euclidean distance from the origin are given by
Corollary 1 and 2. Since these points also are in the convex hull, we have the
following result:
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(a) (b) (c)

(d) (e) (f)

Fig. 2. The shape of HG(B, k), where B = (1), k = 1 (left), B = (1, 2), k = 2 (middle),
and B = (2), k = 1 (right). Up: fcc, down: bcc.

Lemma 1. The vertices of HG(B, k) with x ≥ y ≥ z ≥ 0 are:

F :
(
1k + 2 · 2k,1k, 0

)
(14)

B :
(
1k + 2 · 2k,1k,1k

)
and (k, k, k) . (15)

Proof. A direct consequence of Corollary 1 and 2. �

Using the vertices of the polyhedra given in Lemma 1, the surface area and the
volume of the polyhedra are computed.

Lemma 2. Given a neighbourhood sequence B and a positive integer k, the
surface area A and the volume V of HG(B, k) are
AF = 16

(
1k + 2k

)2√3− 12
(
1k
)2√3 + 12

(
1k
)2,

AB = 24
(
1k
)2 + 24

(
2k
)2√2 + 48 · 2k1k

√
2,

VF = 32
3

(
2k
)3 + 32

(
2k
)2

1k + 32 · 2k
(
1k
)2 + 20

3

(
1k
)3, and

VB = 16
(
2k
)3 + 48

(
2k
)2

1k + 48 · 2k
(
1k
)2 + 8

(
1k
)3.

The proof of Lemma 2 consists entirely of geometric calculations and is omitted.
Lemma 1 can also be used to compute the length of the sides of the polyhedra

HG(B, k), see Figure 2:

|−−→PQ| =
√

2 1k |−−→QR| = 2
√

2 2k (fcc)
|−−→PQ| = 2 1k |−−→QR| =

√
3 2k (bcc)

In the optimization, we need the grid points in BG(B, k) located at minimum
Euclidean distance from (0, 0, 0). The points in HG(B, k) located at minimum
Euclidean distance are easy to find by the geometry of the polyhedra in R3 –
they are given by the following lemma.
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Lemma 3. The points on ∂HG(B, k) such that x ≥ y ≥ z ≥ 0 located at mini-
mal Euclidean distance from (0, 0, 0) are:

F :
( 2k

3 , 2k
3 , 2k

3

)
or (16)(

1k + 2 · 2k, 0, 0
)

(17)
B : (k, k, 0) or (18)(

1k + 2 · 2k, 0, 0)
)
. (19)

Proof. These values of (x, y, z) are obtained by finding the point in HG(B, k) at
maximal distance from the origin in the directions (1, 1, 1), (1, 0, 0), (1, 1, 0), and
(1, 0, 0), respectively, as concluded in the proofs of Corollary 1 and 2. �

The grid points closest to the origin satisfying d((x, y, z), (0, 0, 0); B) = k as
stated in Corollary 1 and 2 are in general not equal to the continuous counterpart.
The difference is, however, bounded as is shown by the following theorem.

Theorem 5. Considering vectors (x, y, z) such that x ≥ y ≥ z ≥ 0, the (Eu-
clidean) length of the difference vector between

i (5) and (16) is bounded by
√

2
3 ,

ii (6), (7) and (17) is bounded by 1,
iii (10), (11) and (18) is bounded by 1, and
iv (12), (13) and (19) is bounded by

√
2.

Proof. For i, we note that(
2k

3
,
2k

3
,
2k

3

)
=
⌊

k

3

⌋
(2, 2, 2) + (k mod 3)

(
2
3
,
2
3
,
2
3

)
The difference vector is thus

(k mod 3)
(

2
3
,
2
3
,
2
3

)
−
(

k mod 3,

⌈
k mod 3

2

⌉
,

⌊
k mod 3

2

⌋)
,

which is (0, 0, 0) for k = 0,
(
− 1

3 ,− 1
3 , 2

3

)
for k = 1, and

(
− 2

3 , 1
3 , 1

3

)
for k = 2. The

proofs of ii – iv are trivial. �

5 Best Approximating Neighbourhood Sequences

In this section, the sequences B that give the best approximations of the Eu-
clidean distance are calculated. Let Br denote the Euclidean ball of radius r.
The following error functions are used:

E1
G = max

x,y∈SG(B,k)
(|x| − |y|) (absolute error) (20)

E2
G = max

x,y∈SG(B,k)

(
|x| − |y|
|y|

)
(relative error) (21)
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E3
G =

A3
G

V 2
G

− 36π

36π
(compactness ratio) (22)

E4
G = min

Br⊂HG(B,k)
(VG − VBr ) (maximal inscribed ball) (23)

E5
G = min

HG(B,k)⊂Br

(VBr − VG) (minimal covering ball) (24)

To calculate (20) and (21) for the fcc grid, equations (4), (5), (6), and (7)
from Corollary 1 are needed. For the bcc grid, we need (8), (9), (10), (11), (12)
and (13) from Corollary 2. Formulas for area and volume of the balls given
by neighbourhood seqences are needed to calculate (22). These are given in
Lemma 2. The radius of the maximal inscribed balls, (23), are given by (16),
(17), (18), and (19) in Lemma 3. To calculate (24), we can use (14) and (15)
from Lemma 1 since these equations give the radii of the minimal covering balls.

Observe that E1
G

and E2
G

are calculated using the discrete spheres SG(B, k)
and not the border of the convex hull in R3, HG(B, k). Since the points in
Lemma 1 and 3 are located at further distance from the origin than the corre-
sponding values in Corollary 1 and 2, the values attained using SG(B, k) are less
than or equal the values attained in HG(B, k).

The values of 1k and 2k are integers by definition, so the optimal ratio is
in general not possible to achieve – since it is irrational it would require neigh-
bourhood sequences of infinite length. By using a sufficiently long initial part of
the neighbourhood sequence, the ratio can be approximated as close as needed.
Among the neighbourhood sequences of length k, the ones with closest approxi-
mations of the above ratios result in the distances with the least deviation from
the Euclidean distance. The convergence of the error functions are shown in
Figure 3. For each 0 < k ≤ 1000, the values of 1k and 2k(= k − 1k) that mini-
mize EG are used to calculate EG. These values of EG are plotted in Figure 3.

The asymptotic optima are easy to calculate using the equations derived in
this paper. They are:

1k =
6− 2

√
3

3
k gives E1

F =
2
3

(√
15− 6

√
3−
√

3
)

k ≈ 0.2763k

1k =
6− 2

√
3

3
k gives E2

F =
√

5− 2
√

3− 1 ≈ 0.2393

1k =
6− 2

√
3

3
k gives E3

F ≈ 0.2794

1k =
6− 2

√
3

3
k gives E4

F ≈ 1.8016k3

1k ≈ 0.7924k gives E5
F ≈ 3.9453k3

for the fcc grid and

1
3
k ≤ 1k ≤

(
2−
√

2
)

k gives E1
B =

(√
3−
√

2
)

k ≈ 0.3178k

1
3
k ≤ 1k ≤

(
2−
√

2
)

k gives E2
B =

√
3
2
− 1 ≈ 0.2247
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1k =
(
2−
√

2
)

k gives E3
B ≈ 0.2147

1k =
(
2−
√

2
)

k gives E4
B ≈ 2.5442k3

1k =
1
3
k gives E5

B =
(

4π
√

3− 424
27

)
k3 ≈ 6.0619k3

for the bcc grid.
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Fig. 3. The performance of E1
G/k (a), E2

G (b), E3
G (c), E4

G/k3 (d), and E5
G/k3 (e). For

each k, the value of the error function given by the values of 1k and 2k that gives the
smallest value of the error functions are plotted. The x-axis shows log10(k).
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6 Conclusions

We have presented an optimization for distances based on neighbourhood se-
quences for the fcc and bcc grids. Using fcc or bcc there are two kinds of neigh-
bours, therefore the 3D space can be described in a more simpler way than using
the cubic grid Z3. For four of the five proposed error functions, the balls on the
fcc grid are optimal for 1k = 6−2

√
3

3 k, so we conculde that this value should be as
closely approximated as possible when using distances based on neighbourhood
sequences. For the bcc grid, 1k = (2−

√
2)k seems to be optimal, but any value

between k/3 and (2−
√

2)k is near optimal, since the absolute and the relative
error are constant on this interval.

In this paper, the asymptotic error is given in closed form when possible.
From the plots in Figure 3, we see that the error functions are bounded also
for neighbourhood sequences of finite length. This is an important point, since
in practice, neighbourhood sequences of infinite length are never used. Figure 3
shows that after the initial fluctuation the optimal value occurs rapidly. This
is due to the fact that a new element of the neighbourhood sequence changes
drastically the characteristics at short (periodic) sequences. So, usually a 10-
length peridic sequence approximates the optimum very well. For k = 10, we have
E1

F
≈ 0.2846k, E2

F
≈ 0.2459, E3

F
≈ 0.2832, E4

F
≈ 2.1696k3, and E5

F
≈ 3.9469k3

for the fcc grid and E1
B
≈ 0.3178k, E2

B
≈ 0.2247, E3

B
≈ 0.2150, E4

F
≈ 2.7780k3,

and E5
F
≈ 6.2776k3 for the bcc grid. These values are all close to the asymptotic

optima and we conclude that longer neighbourhood sequences is superfluous in
most applications, but might be useful when higher exactness is needed or the
aim is more complex.
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Abstract. We present a method for calculating fuzzy distances between
pairs of points in an image using the A∗ algorithm and, furthermore, ap-
ply this method for fuzzy distance based hierarchical clustering. The
method is general and can be of use in numerous applications. In our
case we intend to use the clustering in an algorithm for delineation of
objects corresponding to parts of proteins in 3D images. The image is
defined as a fuzzy object and represented as a graph, enabling a path
finding approach for distance calculations. The fuzzy distance between
two adjacent points is used as edge weight and a heuristic is defined
for fuzzy sets. A∗ is applied to the calculation of fuzzy distance be-
tween pair of points and hierarchical clustering is used to group the
points. The normalised Hubert’s statistic is used as validity index to
determine the number of clusters. The method is tested on three 2D
images; two synthetic images and one fuzzy distance transformed mi-
croscopy image of stem cells. All experiments show promising initial
results.

1 Introduction

In this manuscript we introduce a content based clustering framework for auto-
matic clustering of points in an image. The framework should contain content
based distance calculations between pairs of points in the image, clustering and
cluster validation, i.e., determining the number of clusters present in a data set.
The application in mind is automatic clustering of seed points to aid decomposi-
tion of fuzzy objects, corresponding to proteins, into parts [1]. The proteins are
imaged using Cryo-Electron Tomography (Cryo-ET) [2], which is a technique
used to produce 3D density images of proteins in solution.

In many applications, e.g., grouping of distance map maxima in segmented cell
images, classification is desired to group points in an image based on their spatial
proximity, i.e., how close the points are in space. If neither information about
probabilities nor stochastic distributions of the points is available, classification
has to rely on minimisation of criteria functions or clustering techniques. It is
often the case that the desired number of groups is not known on beforehand.
In such cases hierarchical clustering [3] is the preferred method. The proximity
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measure, i.e., how “similar” two points are, used for the clustering can be based
on a number of different metrics, e.g., Euclidean distance.

The spatial closeness of two points can often depend on the image contents
and cannot always be measured as being the shortest path in the Euclidean
sense, i.e., the shortest path between two points deviates from a straight line.
Imagine a grey-level image as a topographic map where the intensity of each
point is equal to the height value in that point, then the shortest path between
two points, on a map of a hilly terrain, is often considered to circle the hills
instead of going across. In such cases it is of importance to take into account
both spatial information and intensity information when traversing a path.

For the application in mind, the point proximities are affected by the density
of an imaged object. Like in many other image acquisition systems, e.g., most
modalities in medical imaging, the density of the object is reflected by the in-
tensities in the image. Such images often contain uncertainties which make crisp
representations not the most suitable technique. A more natural approach is to
assign each image element a degree of membership to the object(s) in the scene,
thus keeping the uncertainty in the representation. To overcome this problem,
fuzzy sets were introduced in [4]. A fuzzy set adds to each point of the set a mem-
bership value. A fuzzy digital object is a fuzzy set defined on the digital space.
In an image corresponding to a fuzzy set (or several fuzzy sets), the intensity in
each image point is related to its fuzzy membership value.

Fuzzy objects are widely used as representations of objects in medical images,
see [5, 6] and following articles by the same groups. Fuzzy sets can be used as a
framework for formulating the properties of images with content based distances.
In [7], a grey-weighted distance measure was introduced, and in [8] it was given
a theoretical framework and got the name fuzzy distance transform (FDT). The
FDT calculates distances by taking both the spatial information as well as fuzzy
membership into account. More specifically, it is shown that for any fuzzy object,
the fuzzy distance is a metric for the support of the fuzzy object. This makes the
fuzzy distance suitable as a content based proximity measure for images where
the proximity is dependent on the density, e.g., the images for the application
in mind.

In [7], the FDT of a fuzzy set is calculated by repeated raster scans similarly
to the method for computing the chamfer distance transform (CDT) of binary
images [9, 10]. However, the number of scans required to calculate the FDT is
dependent on the image contents (unlike the CDT). In [8], it is suggested to
use dynamic programming for efficiently computing the FDT of fuzzy sets. This
approach is also utilised by the image foresting transform (IFT). See [11] for
a recent survey. The IFT represents the image as a directed graph, with edge
weights corresponding to some application specific weight function. To calculate
the FDT of an image by using the IFT, edge weight is set to the length between
two neighbouring points on a fuzzy path. The resulting IFT distance map will
then correspond to the FDT.

When the FDT of an image is calculated to measure fuzzy distances between
N points, a total of N−1 fuzzy distance maps are required. For complex images,
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the raster scan method will result in many traversals of the image, hence, be
computationally inefficient. The IFT will also be computationally inefficient as
it expands the entire image for each FDT, which means that a large number of
unnecessary computations will be performed to calculate distances to uninter-
esting parts of the image. This is especially the case when the points are closely
situated compared to the image size. An alternate, more efficient, approach in
cases where not the whole fuzzy distance map is of interest but only the fuzzy
distances between a limited set of points, is to view the problem as a minimum
cost path finding problem between each pair of points.

In [12], the A∗ pathfinding algorithm is presented. A∗ is an algorithm which
uses heuristic information to guide the search. Note that there exists a degraded
version of A∗, i.e., the uniform cost algorithm, which is used in [13] to calculate
the distance transform. However, since the uniform cost algorithm does not
incorporate heuristics, it is basically a single-source case of the IFT. Hence,
it gives similar results, and have the same drawbacks, as the IFT if applied to
the fuzzy distance transform.

We present a method to calculate the fuzzy distance between pairs of points
in an image using the A∗ algorithm, including heuristics. The method can be
viewed as a one-source version of the IFT, where a heuristic is used to guide
the path and only expands the tree until the destination node is found. This
enables us to use the general concept of the IFT, but imposes information and
constraints to suit the specific situation. The method is used as a first step
in a framework for automated fuzzy distance based clustering of points in an
image. The other steps are hierarchical clustering and cluster validation, i.e.,
determining the number of clusters present in a data set. Many methods have
been developed for handling the validation problem, see [14] for a recent survey. A
cluster validation method suited for the situation is the relative criteria method
using the normalised Hubert statistic validity index [14]. This technique is used
as the last step in the clustering framework.

The method is presented for nD images, but the experiments are done on
2D images with properties similar to the application in mind, i.e., delineation of
parts of proteins in 3D Cryo-ET images. Experimenting on 2D images instead of
3D images, as an initial evaluation of the method, makes the method behaviour
both easier to analyse and easier to illustrate. The images used in the experi-
ments are two synthetic images and one bright field microscopy image of stem
cells.

Distance calculations on binary sets using A∗ is covered in Section 2. In Sec-
tion 3 the concept is expanded to include fuzzy distance calculations. Section 4
focuses on clustering and cluster validation. Section 5 contains the experiments,
and in Section 6, the conclusions are discussed.

2 Distance Calculations on Binary Sets Using A∗

In this Section we recall the A∗ algorithm [12]. Furthermore, a method for using
A∗ for point-to-point distance calculations on binary sets is presented.
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2.1 The A∗ Algorithm

A∗ is a pathfinding algorithm which can compute the distance (cost) from a start
node to a goal node in a graph. For A∗ to find the shortest path, it needs to be
admissible, i.e., able to find the minimal cost path if a path to the goal exists. To
meet the admissibility criterion the algorithm uses an evaluation function f̂(n),
where n is a graph node, such that the available node having the smallest value
of f̂ is the node to be expanded next. f̂(n) is defined as

f̂ (n) = ĝ (n) + ĥ (n) , (1)

where ĝ (n) is the cost of the path to n with minimum cost so far found by A∗

and ĥ (n) is the heuristic function, i.e., any estimate of the cost of an optimal
path from n to the goal node. To consecutively expand the available node closest
to the goal, ĥ(n) needs to be a lower bound on the true cost of an optimal path
from n to the goal node. If ĥ(n) is not a lower bound, A∗ cannot be guaranteed
to find an optimal path if such a path exists.

A∗ uses two sets to keep track of available and visited nodes. Available nodes
are put in the OPEN set, and visited nodes are put in the CLOSED set. Since
a node is visited only once, f̂(n) does not need to be recalculated once the node
is in the CLOSED set.

A∗ algorithm

1. Initialisation
(a) Start node: Calculate f̂(n) and mark n OPEN

2. Propagation
while nodes left OPEN

(a) Select node n with smallest f̂(n) from OPEN and mark n CLOSED
(b) If n is the goal node, terminate algorithm
(c) For each successor of n not CLOSED, calculate f̂(n) and mark OPEN

The algorithm outputs the minimum cost path from the start node to the
goal node, and the associated cost, i.e., the distance from start to goal.

2.2 A∗ Applied to Binary Sets

The distance from a point p to a point q, where (p, q) ∈ Zn, can be defined as
a function of the number of steps between adjacent points in a minimal path
between p and q. In the function, each step is suitably weighted according to the
neighbourhood relation between the adjacent points. E.g., steps in 3D images
can be weighted according to the chamfer weights w3D = 〈3, 4, 5〉 for steps to a
face, edge and vertex sharing voxel respectively [10].

In accordance with the graph concept of the IFT, the length of a link between
two adjacent points 〈pi, pi+1〉 ∈ Zn can be used as the edge weight. The edge
cost function is, hence, defined as

Wd (pi, pi+1) = ‖pi − pi+1‖wnD
, (2)
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where ‖·‖w denotes the weight of a step from point pi to point pi+1. Consider
the length Π(π) of a path π = 〈p = p1, . . . , pm = q〉 in Zn as

Π (π) =
m−1∑
i=1

Wd (pi, pi+1), (3)

and the minimum distance between p and q as

ω (p, q) = min
π∈Zn

Π (π). (4)

For A∗ to find the shortest distance, a heuristic which is a lower bound on ω,
is needed. The Euclidean distance to the goal node can be used as a heuristic if it
is properly weighted to become a lower bound on ω. The distance obtained with
chamfer coefficients cannot be compared directly with the actual Euclidean dis-
tance, because the distance is scaled. E.g., in 3D the Euclidean distance between
two face-neighbours is 1, while the distance we obtain with chamfer coefficients
is 3. To use Euclidean distance in the heuristic, a multiplication with a coeffi-
cient divided by an Euclidean norm is needed. For simplicity, the coefficients of
the chamfer mask are chosen. By taking the minimum fraction, the heuristic is
ensured to be a lower bound on ω. Hence, the heuristic is defined as

ĥd (p) = kd · ‖p− q‖ , (5)

where ‖·‖ denotes the Euclidean norm, and kd is a constant which will ensure ĥd

to be a lower bound on the true minimum distance, ω. According to the above,
the constant kd needs to be defined differently depending on the step weights.
A lower bound of the edge cost for a single step, Wd, is acquired when

kd = min
i=1...n

(
wi

||vi||

)
, (6)

where n is the number of dimensions, vi is the chamfer vector corresponding
to the chamfer weight wi (e.g. in Z3: v1 = [1, 0, 0] ,v2 = [1, 1, 0] and v3 =
[1, 1, 1]), and ‖·‖ denotes the Euclidean norm. E.g., considering the chamfer
weights w3D = 〈3, 4, 5〉 for 3D images,

kd = min
(

3√
1
,

4√
2
,

5√
3

)
=

4√
2
≈ 2.8, (7)

where the rounding is done downwards to ensure the lower bound. Using kd =
2.8 ensures that the distance to the goal node will always be greater than the
Euclidean distance multiplied by kd, thus, with kd = 2.8, the heuristic in Eq. 5
will be a lower bound on ω.

With Wd as edge weight and ĥd as heuristic, A∗ can be used to perform ef-
fective point-to-point Euclidean distance calculations. The distance is calculated
by applying the A∗ algorithm from the first point, i.e., the start node, to the
second point, i.e., the goal node. As covered in Section 2.1, ĥ(n) is the estimated
cost (distance) from the node n to the goal node, and ĝ(n) is the cost of the
path from the start node to n.
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A∗ algorithm applied to binary sets

1. Initialisation
all nodes: ĝ(n) =∞
start node: ĝ(n) = 0; f̂(n) = ĝ(n) + ĥd(n); Push(n, OPEN)

2. Propagation
while nodes left on OPEN

n = Pop(OPEN); Push(n, CLOSED)
if n == goal node: terminate algorithm
for each p successor of n, where p /∈ CLOSED

f̂(p) = Wd(n, p) + ĝ(n) + ĥd(p)
ĝ(p) = min{Wd(n, p) + ĝ(n), ĝ(p)}
for each p ∈ OPEN

if new f̂(p) < old f̂(p): update p
for each p /∈ OPEN

Push(p, OPEN)

By the above algorithm the distance between two points is obtained. A binary
heap priority queue [15] is used for the OPEN list, and a lookup table is used
for the CLOSED list. A pointer array is used for effective access of nodes in the
OPEN set. Extracting the highest priority node is done in O(log n) time, where
n is the number of nodes in the image, and there are at most n such operations.
Changing the priority of a node is done in O(log n) time (worst case), and there
are at most m such operations, where m is the number of edges in the image. The
computational complexity thus becomes O((n + m) log n) for the entire image.
However, the number of nodes expanded (n) and edges examined (m) before
reaching the goal node is highly dependent on the effectiveness of the heuristic.

3 Distance Calculations on Fuzzy Sets Using A∗

In this Section, some background theory on fuzzy sets and fuzzy distance is
covered. Furthermore, the concept in Section 2.2 is expanded to apply to fuzzy
distance calculations.

3.1 Fuzzy Distance

We recall from fuzzy set theory [4] the following definitions: Let X be a ref-
erence set, then a fuzzy set A in X is defined as a set of ordered pairs A =
{(x, μA (x)) |x ∈ X}, where μA : X → [0, 1] is the membership function of A in
X . An n-dimensional fuzzy digital object O is a fuzzy subset defined on Zn, i.e.,
O = {(p, μO (p)) | p ∈ Zn}, where μO : Zn → [0, 1].

In [8], a fuzzy distance transform (FDT) is presented. The notion of fuzzy dis-
tance between two points p and q is defined as being the shortest length of a path
between p and q. The length ΠO (π) of a path π = 〈p = p1, p2, . . . , q = pm〉 is

ΠO (π) =
m−1∑
i=1

1
2

(μO (pi) + μO (pi+1))× ‖pi − pi+1‖ , (8)
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where the norm ‖·‖ denotes the Euclidean norm. The fuzzy distance, from p ∈ Zn

to q ∈ Zn in O, denoted as ωO (p, q), is the length of any shortest path in O
from p to q [8], i.e.,

ωO (p, q) = min
π∈P (p,q)

ΠO (π) , (9)

where P (p, q) is the set of all paths from p to q in O.

3.2 A∗ Applied to Fuzzy Sets

The edge weight is now defined as the length of a step between two adjacent
points 〈pi, pi+1〉 in a fuzzy object O, instead of two adjacent points in Zn. The
step length can be defined in many different ways, but the definition from Eq. (8)
is used for simplicity. Hence, the edge cost function for fuzzy sets is

Wfd (pi, pi+1) =
1
2

(μO (pi) + μO (pi+1))×Wd (pi, pi+1) . (10)

If the definition of the membership function μO allows mappings to zero, the
shortest possible edge cost will be zero and, hence, the shortest possible fuzzy
distance between two points in O will be zero. This makes the definition of a
positive non-zero heuristic impossible since the lower bound on ωO (Eq. (9))
will be zero and the A∗ algorithm will degrade to the uniform cost algorithm.
This is avoided by using a definition which prevents zero-valued memberships
in the range of input values. Consider a fuzzy object O, where each point p in
the fuzzy object is an image element. If I (p) is the image intensity of point p,
then a non-zero minimal edge cost between any two points p and q in O can be
ensured by defining the membership function as

μO (p) =
{

0 if I (p) < 0
(1− gf ) I(p)

Imax
+ gf if I (p) ∈ [0, Imax]

, (11)

where Imax is the maximum image intensity, and gf ∈ (0, 1). This will ensure
a non-zero minimal edge cost since an image intensity of zero will result in a
membership of gf . Since the membership function of a point with the maximum
image intensity will map to one, the membership function in practice will map to
[gf , 1] for all grey-level images. This gives us the possibility of defining a non-zero
heuristic, and still use a large portion of the membership range.

To find a heuristic which is a lower bound on ωO, a constant, corresponding
to kd for binary sets, is needed. The heuristic for fuzzy sets is defined as

ĥfd (p) = kfd · ‖p− q‖ , (12)

where || · || denotes the Euclidean norm. Since kd was deduced from the lower
bound on Wd and kfd is deduced from the lower bound on Wfd (see Eq. 10),
kfd is defined as

kfd = min
(

1
2

(μO (pi) + μO (pi+1))
)
· kd = gf · kd , (13)
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where the constant gf is the lowest possible value of the term 1
2 (μO (pi)+

μO (pi+1)) in Eq. 10. Thus, kfd ensures the heuristic ĥfd (Eq. 12) to be a lower
bound on ωO. E.g., for 3D images using the chamfer weights w3D = 〈3, 4, 5〉, kfd

is defined as
kfd = gf · kd = 2.8 · gf (14)

to ensure that the fuzzy distance to the goal node always will be greater than
the Euclidean distance multiplied by kfd. Thus, with kfd = gf · kd, the heuristic
in Eq. 12 will be a lower bound on ωO.

An admissible A∗ algorithm, for effective point-to-point fuzzy distance calcu-
lations, is obtained by using Wfd as edge weight, and ĥfd as a heuristic which
is a lower bound on ωO. The algorithm is the same as for binary sets (see Sec-
tion 2.2), but all instances of Wd are substituted with Wfd, and all instances of
ĥd are substituted with ĥfd.

For a fuzzy object containing N points, the fuzzy distance between each pair
of points can be put in a proximity matrix

P =

⎛⎜⎜⎜⎜⎜⎝
0 ||p1 − p2||f . . . ||p1 − pN−1||f ||p1 − pN ||f

||p1 − p2||f 0 . . . ||p2 − pN−1||f ||p2 − pN ||f
...

...
. . .

...
...

||p1 − pN−1||f ||p2 − pN−1||f . . . 0 ||pN−1 − pN ||f
||p1 − pN ||f ||p2 − pN ||f . . . ||pN−1 − pN ||f 0

⎞⎟⎟⎟⎟⎟⎠ ,

(15)
where || · ||f denotes the fuzzy distance. The proximity matrix will be used in
Section 4 when clustering the points and validating the results.

4 Clustering and Validation

This Section covers the clustering of the points from the fuzzy distance calcula-
tions. Furthermore, cluster validation is covered for determining the number of
clusters in the final result.

As mentioned in Section 1, cluster validation is a frequently occurring problem
in cluster analysis. Without any probabilistic information, there is no reliable
method for solving this. Some methods have been proposed to solve this problem.
None of the solutions are above suspicion, but they can aid a more rigorous
manual validation process, or provide automation in cases of well behaved data
where the result is assessed by an expert.

For the application in mind there is no information about probabilities,
stochastic distributions, or even the number of desired clusters. This means that
the only information available for grouping the points in the fuzzy object are
the fuzzy distances calculated in Section 3. In this case the preferred method for
grouping the points is hierarchical clustering [3]. Hierarchical clustering starts
by assigning each point to a unique cluster, and then consecutively merges the
two most similar clusters according to some proximity measure, until there is
only one cluster left. The cluster similarities can be calculated in different ways,
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e.g. using single linkage or complete linkage [3]. Single linkage generates stretched
out clusters, while complete linkage generates compact clusters. Consider a clus-
tering scheme (partition) with nc clusters c1, . . . , cnc , and a proximity measure
d, then the cluster similarity is

ds (ci, cj) = min
x∈ci,y∈cj

d (x, y) , (16)

dc (ci, cj) = max
x∈ci,y∈cj

d (x, y) , (17)

for single linkage and complete linkage respectively.
For the application in mind, compact well separated clusters should be

favoured. Hence, hierarchical clustering is used with complete linkage, and fuzzy
distances as proximity measures. This results in N different clustering schemes,
where N is the number of points in the fuzzy object.

To overcome the cluster validity problem, i.e., determining the number of clus-
ters in a data set, various validity indices have been proposed [14]. A validity
index gives an indication of the quality of a partition. Validation of hierarchical
clustering partitions through validity indices can be done by external, internal or
relative criteria methods [14]. Since external and internal methods are based on
statistical testing, which demand large test sets for probability density estima-
tions, focus is put on the relative criteria method. The relative criteria method
chooses the best clustering scheme, from a set of defined schemes, according to a
pre-defined criterion. In hierarchical clustering, each merge of two clusters result
in a new clustering scheme. With the relative criteria method, the clustering
scheme which best fits the data can be chosen by evaluating a validity index
for each of the partitions. Then the clustering scheme which, according to the
criterion, best fits the data set, is chosen.

Few validity indices can be used when the only information available is
the pairwise proximity of the points. One of them is the normalised Hubert
statistic [14],

Γ̂ =
1

NT

1
σP σM

N−1∑
i=1

N∑
j=i+1

(P (i, j)−mP ) (M (i, j)−mM ) , (18)

where N is the total number of points in the data set, P(i, j) and M(i, j) are
the (i, j) element of matrices P, M respectively, and NT = N(N − 1)/2. Also,
mP , mM , σP , σM are the respective means and variances of P, M matrices.
High values of this index indicate a strong similarity between P and M. Other
possible indices are, e.g., Dunn and Dunn-like indices. However, the Dunn and
Dunn-like indices are more sensitive to noise and more computationally complex
than the Hubert Γ̂ statistic [14]. Since cluster validation analysis is out of the
scope of this article, the cluster validation is chosen to rely on the Hubert Γ̂
statistic.

To use Hubert Γ̂ statistic for relative criteria cluster validation, the proximity
matrix P, and an additional matrix M, are needed. As mentioned in Section 3,
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the proximity matrix holds the proximity measures calculated with the A∗ al-
gorithm, i.e., the pairwise fuzzy distance values. The additional matrix explains
which samples reside in the same cluster. Consider a partition of a data set X as
a mapping, g : X → {1 · · ·nc}, where nc is the number of clusters in the resulting
clustering scheme. The additional matrix needed, M, is then defined as

M (i, j) =
{

1 if g (xi) �= g (xj)
0 otherwise i, j = 1, . . . , N , (19)

where N is the total number of points in the fuzzy object.

Relative criteria cluster validation algorithm using normalised
Hubert’s statistic [14]

1. Create proximity matrix P
2. Run hierarchical clustering algorithm
3. For each of the values of nc

(a) Create the matrix M
(b) Calculate the index Γ̂ using the matrices P and M

4. Plot values of the index Γ̂ as a function of nc

Since the fuzzy distance proximity measures increase as they get further from
each other, i.e., low value for high proximity, the best clustering scheme is iden-
tified by choosing the nc where Γ̂ has a global minimum.

Many validity indices for compact well separated clusters favour cluster
schemes where nc is close to N . In validation methods this is usually handled
by assuming nc << N . For the application in mind, this assumption is seldom
true. However, by using fuzzy distances in the clustering instead of Euclidean
distances, internals of the contents in the image will be enhanced and the clus-
ters will be both further separated and more compact than for Euclidean based
distances, thus loosening the need for the assumption.

5 Experiments

Three experiments were carried out. Each experiment used gf = 0.01 for fuzzy
membership calculations. Since the application in mind consider points in a high
density area to be closely situated, high density should result in low proximity.
Therefore, the intensities of each image was inverted before the fuzzy distances
were calculated in order to make original low intensities costly to traverse. This
led to low fuzzy distance values in high intensity areas, and high fuzzy distance
values in low intensity areas. Furthermore, the parts of the objects for the ap-
plication in mind are approximately spherical. Therefore, experimental images,
which aim to mimic the properties of the application images, with approximately
circular density regions were chosen. The aim of all experiments was to cluster
the points into the natural clusters represented by the high density areas in the
images.
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The first experiment was done on a synthetic image of three large crisp circles
containing 30 points each, and is presented in Section 5.1. The experiment was
chosen to examine how the method behaves for large, fairly close, sets of points
in crisp circles separated by low density areas.

The second experiment was done on a synthetic image of six small fuzzy discs
containing four to five points each, and is presented in Section 5.2. The experi-
ment was chosen to examine how the method behaves for small, closely situated,
sets of points in discs with low gradient borders. This experiment resembles cases
with cells; fuzzy areas around some points belonging to the same cluster if inside
the same fuzzy area, where the points can be, e.g., maxima of the distance map
or fluorescent markers.

The last experiment was done on local maxima points of a fuzzy distance
transformed segmented microscopic cell image, and is presented in Section 5.3.
The experiment was chosen to examine how the method behaves for extremely
small, closely situated, sets of points in non-spherical density areas with low
gradient borders. The situation highly resembles the application in mind, where
delineation is done on proteins imaged by Cryo-ET [1]. However, in the images
for the application in mind, the protein parts are slightly more spherical than
the cells in the experiment.

The computational time for the experiments was a few minutes for the first ex-
periment, and a matter of seconds for the other two experiments, on an ordinary
desktop computer.

5.1 Experiment 1: Points in Crisp Circles

The image in the first experiment was a 100× 80 binary image containing three
filled circles, each having intensity values 255, a diameter 26 pixels, and centres
c1 = [29.5 29.5], c2 = [65.5 29.5], and c3 = [50.5 55.5]. Intensity values of the
background was zero. The points clustered were 90 points taken from three
normal distributions, Ni(mi, 6I), i = 1, 2, 3, where m1 = [30 30], m2 = [70 30],
and m3 = [50 60], 30 points from each distribution. The three circles delineated
the points almost completely, and the image along with the points is shown in
Fig. 1(a).

The points were first clustered using Euclidean distance. The resulting va-
lidity index diagram is shown in Fig. 1(b). Since the number of clusters is
determined by the minimum of the diagram, the cluster validity fails for this
case. The method might have resulted in a representative number of clusters
under the assumption nc << N , but that would depend on the range allowed
for nc.

Secondly, the points were clustered using fuzzy distance. The resulting valid-
ity index diagram is shown in Fig. 1(c). It is clear from the diagram that two
clustering schemes, three and four clusters, fit the data better than any other
partition. The minimum of the diagram is found for four clusters, and the point
in the top left corner is, hence, considered a cluster of its own. This is due to
the large area of low intensity between the point and the nearest circle which
creates a large fuzzy distance.



112 M. Gedda and S. Svensson

(a) (b) (c)

Fig. 1. (a) Synthetic image with random points. (b) Validity index plot for regular
distance based clustering. (c) Validity index plot for fuzzy distance based clustering.

5.2 Experiment 2: Points in Fuzzy Discs

The image in the second experiment was a 61× 61 grey-level image containing
seven filled circles, a diameter of 15 pixels, and centres c1 = [30 12], c2 = [13 21],
c3 = [47 19], c4 = [30 30], c5 = [13 39], c6 = [47 38], and c7 = [31 48]. The
image was Gaussian blurred, with a blur radius of five pixels, to obtain low
gradient borders. The intensity values of the circle centres were 255, and the
background zero. 32 points were positioned manually inside the circles, with
four or five points in each circle. The image along with the points is shown in
Fig. 2(a).

(a) (b) (c)

Fig. 2. (a) Synthetic image with random points. (b) Validity index plot for regular
distance based clustering. (c) Validity index plot for fuzzy distance based clustering.

The points were first clustered using Euclidean distance. The resulting validity
index diagram is shown in Fig. 2(b). Since the resulting number of clusters
is chosen as the minimum of the diagram, the cluster validation for this case
fails in this experiment well. Since the local minimum at nc = 7 is shallow, a
representative result would be difficult to achieve even when assuming nc << N .

Secondly, the points were clustered using fuzzy distance. The resulting valid-
ity index diagram is shown in Fig. 2(c). It is clear from the diagram that the
clustering scheme containing seven clusters fits the data better than any other
partition, and corresponds to the natural clusters in the image. Examination of
the clustering scheme for nc = 7 shows that the clusters correspond to the fuzzy
discs in the image.
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5.3 Experiment 3: Real Image

The third experiment was done on a fuzzy distance transformed image of seg-
mented cells, with the points in the image being the local maxima. The original
images are 634× 504 bright field microscopy images of in vitro stem cells. The
image used in the experiment is a fuzzy distance transformed part (86× 72) of
one image containing a segmented group of cells. The intensities range from zero
(background) to 187. The 18 local maxima of the image were used as points in
the clustering. The image along with the local maxima is shown in Fig. 3(a).

(a) (b) (c)

Fig. 3. (a) FDT of segmented cells with local maxima overlayed. (b) Validity index
diagram. (c) Clustering result.

The local maxima were clustered using fuzzy distance, and the resulting va-
lidity index diagram is shown in Fig. 3(b). The minimum of the diagram is found
for nc = 11, and the resulting clustering scheme is shown in Fig. 3(c). Since the
method was developed for compact well separated sets in circular density areas,
the resulting clusters do not correspond to the seven cells in the image, but to
the clusters which best fit the properties inherent in the method. For the five
bottom cells, the clusters coincide with the respective density areas of the cells.
For the two single point clusters in the upper left part of the image, the low den-
sity surrounding of each point, along with the spatial separations from the other
local maxima, result in a natural cluster for each of the points, like the outlier
in the first experiment. For the four remaining clusters, in the top left and top
right part of the image, the spatial separation inside the elongated density areas
result in two natural clusters in each cell. Thus, the clustering result correspond
to the expected behaviour of the method.

6 Conclusions

We proposed a new method for calculating point-to-point fuzzy distances using
the A∗ algorithm, and used the method in a clustering framework to cluster
points in images with content based proximity measures. The fuzzy distance
enhance the properties of the image contents, and thus, emphasise the separation
and compactness of clusters in density areas approximately spherical. Cluster
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validation was thus more reliable in these cases, and was not in need of the
assumption nc << N .

The examples in this manuscript cover various cases and show results supe-
rior to Euclidean based clustering using the same validation technique. Future
work consist of a quantitative analysis for determining the robustness of the
framework.

One unexplored topic is the effectiveness of the fuzzy distance calculation
between two points. In the worst case scenario, the method performs as well as
the IFT when the IFT is halted after reaching the goal node. The improvement
compared to the IFT, and how it behaves for different values of gf , need further
investigation.

The heuristic is based on the Euclidean distance alone, and does not take
the intensities into account. What effect this has on the efficiency of the fuzzy
distance calculations is left to be examined. Defining a heuristic based on both
distance and intensity would most likely be very difficult, if at all possible.

The performance of the fuzzy distance calculation using different implemen-
tations need to be assessed. E.g., using Dial’s bucket queue as priority queue,
instead of a binary heap, for the OPEN list might increase the speed, and hence,
enable fuzzy distance based clustering of larger data sets.

The presented method, or derivatives using other validity indices, is likely
to be of use in a number of applications where image contents can be used to
emphasise cluster membership when clustering points in an image.
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Abstract. Planar maps have been proposed as a powerful and easy-to-
use representation for various kinds of image analysis results, but so far
they are restricted to pixel accuracy. This leads to limitations in the rep-
resentation of complex structures (such as junctions, triangulations, and
skeletons) and discards the sub-pixel information available in grayvalue
and color images. We extend the planar map formalism to sub-pixel ac-
curacy and introduce various algorithms to create such a map, thereby
demonstrating significant gains over the existing approaches.

1 Introduction

When information is extracted from an image’s raw pixel data, the results must
be stored in a well-defined way. Still, many image analysis approaches use their
own representations (labeled images, region adjacency graphs, regular, or irreg-
ular pyramids, edgel chains, polygons, etc.). This is not only highly confusing,
but also prevents algorithms that perfectly complement each other from actually
being used together – their representation are simply incompatible. During the
last decade, several researchers have worked on powerful unified representations.

The most promising approach is based on the notion of planar maps [1, 2, 3].
Planar maps encode the topological entities (regions, edges, vertices) of a parti-
tioning of the (image) plane, their relations (neighborhood, boundary,
containment, etc.) and their geometry. Basic modification operations support
well-defined manipulations of an existing map structure. Similar concepts have
been used in computer graphics for a long time [4]. Two key problems must
be solved to enable their adaptation to image analysis: first, image analysis al-
gorithms must create valid map structures. This requires the establishment of
a formal correspondence between the initial pixel data and the map’s entities.
Second, the map must be realized in an efficient and easy-to-use way due to the
huge amount of data and the complexity of the image analysis problem in itself.

So far, these goals have only been achieved with grid-based planar maps. Here,
regions, edges and vertices correspond directly to sets of pixels and/or inter-pixel
boundaries, i.e. can be accessed and manipulated by fast array operations. The
map entities can be derived from labeled images, watershed segmentations, and
pixel-based edge detectors (see Sect. 2.2). However, the gray values or colors of
real images contain a considerable amount of sub-pixel information. For exam-
ple, in real images step edges are always blurred by the camera’s point spread

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 116–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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function (before sampling) and by the edge detection filters (after sampling). It
is well known that the location of the ideal step can be recovered to at least
1/10 of a pixel by careful analysis of the blurred step’s shape. This information
is discarded when the representation is restricted to pixel accuracy.

Another limitation of grid-based maps is the representation of junctions. In an
inter-pixel boundary map, at most four edges at 90◦ of each other can ever meet
at a vertex. A pixel-based map can in principle represent more complex junctions,
but these junctions are no longer single Euclidean points [2]. In real images, the
corner and junction geometry is often much more complicated. This is one of
the reasons why vectorial data structures are preferred for the representation of
object geometry in computer graphics. Moreover, grid-based representations are
harder to refine as new information arrives, whereas vectorial representations
can be refined ad infinitum.

In this paper, we extend the existing grid-based map formalism to sub-pixel
accuracy. We show that the map can still be efficiently realized by means of
polygonal lines. Finally, we demonstrate various algorithms to create our new
representation from image data, not only covering boundary detection, but also
the creation of Delaunay triangulations and skeletons. Comparisons of our new
results with their pixel-accurate counterparts reveal a significant gain.

2 A Unified Representation for Topology and Geometry

Before we discuss our new sub-pixel accurate GeoMap, let us summarize
previous efforts for finding a suitable representation for image segmentation
purposes. Segmentation methods impose the following requirements on such a
structure [5, 6, 2]:

1. Topology Inspection. Algorithms need to access topological properties
like the neighborhoods of regions and/or edges, the number of holes, etc.
Thus, a sound topological formalism is required.

2. Geometry Inspection. During the segmentation process, photometric /
geometric properties of regions and / or boundaries are to be derived (e.g.
mean color, variance, size, etc.); typical subtasks include region reconstruc-
tion in a given image, region containment queries, or inspecting image prop-
erties along boundaries (e.g. the image gradient).

3. Modifications. If the representation is to be useful for the segmentation
process itself, it must not be static. We need operations (e.g. merging two
regions) modifying both the topology and the geometry in a consistent
way.

2.1 Topology: Combinatorial Maps

For the representation of topology in image processing, a number of graph-like
structures have been used (dating back to the RAG [7]). Nowadays, the more
powerful formalism of combinatorial maps is commonly used, since it allows to
efficiently encode most information on the embedding of a planar graph:
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Fig. 1. Examples of discrete embeddings of combinatorial maps

Definition 1. A combinatorial map is a triple (D, σ, α) where D is a set of
darts (half-edges), and σ, α are permutations defined on D such that all α orbits
have length 2 and the map is connected, i.e. there exists a σ-α-path between any
two darts:

∀d1, d2 ∈ D : ∃π ∈

⎧⎨⎩ ∏
0≤i≤k

τi

∣∣∣∣∣∣ τi ∈ {σ, α} , k ∈ N

⎫⎬⎭: π (d1) = d2

The dual permutation of σ is defined as ϕ(d) = σ−1(α(d)), where σ−1 denotes
the σ-predecessor of d.

The orbits of σ, α, and ϕ are called vertices, edges, and faces respectively, and
we use the notation σ�(d), α�(d) and ϕ�(d) for the σ-, α-, and ϕ-orbits which
contain d. The orbit σ�(d) is the start vertex of d, and ϕ�(d) is the contour of the
face to the left of d. A combinatorial map is planar, iff the number of vertices,
edges, and faces conforms to Euler’s equation:

|σ|−|α|+|ϕ|=2 (where |α| denotes the number of orbits in α etc.) (1)

When one face is designated as the (infinite) exterior face, all possible embed-
dings of a planar combinatorial map become topologically equivalent. By conven-
tion, one uses positive and negative integer labels for the darts so that α (d) = −d
for each dart labeled d. Since ϕ is determined through α and σ, a single lookup
table for the permutation σ is sufficient to represent a combinatorial map.

Definition 1 does not yet allow to represent multiple boundaries which com-
monly arise in image segmentation (inner contours like the window in Fig. 1(a)).
This is usually solved by using one planar combinatorial map with a marked
exterior face per connected component, plus an additional inclusion relation be-
tween the maps which associates the exterior faces with their parent faces [9, 10].
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An alternative is to introduce auxiliary edges [11] to make the map connected,
which we decided against because it spoils the one-to-one correspondence be-
tween topological edges and their geometrical counterparts (we do not want to
make up geometrical information for the auxiliary edges).

Note that it is perfectly legal that −d ∈ ϕ�(d), which means that edge α�(d)
has the same region on both its left and right side. Such edges are called bridges,
since every path between their two end-vertices must contain d or −d. In many
publications, bridges have been considered illegal [11, 1], but in fact they are
required to (a) represent incomplete boundaries (e.g. arising from edge detectors
like Canny’s [12], which in general does not deliver complete boundaries, or
during sketching) or for (b) representing skeletons (see Sect. 4.4 and Fig. 7).

Given a set of combinatorial maps (Di, σi, αi) with i �= j ⇒ Di ∩Dj = ∅, it is
possible to define D =

⋃
Di and compose the permutations into a single tuple

(D, σ, α) representing all components, such that e.g. d ∈ Di ⇒ α (d) = αi (d).
In the following, the orbits of σ, α, and ϕ are meant to represent all vertices,
edges, and faces respectively. Furthermore, we will occasionally use the general
term “cells” for vertices, edges, or faces, which correspond to 0-, 1-, and 2-cells
in the related context of cell complexes [13].

2.2 Pixel-Accurate Approaches

Combinatorial maps can be used to represent the topology of planar subdivisions,
but they do not define the geometry of a tessellation, which is crucial for image
segmentation. Thus, algorithms often employ a label image (aka. “region image”)
to store the geometry of regions. It is straight-forward to extract a consistent
topology from the inter-pixel boundaries of such an image, in which each pixel
carries the label of the region it belongs to. It has even been shown that the
same is possible for thin 8-connected pixel boundaries [14], which for example
result from watershed algorithms which leave the watersheds unlabelled.

However, from an applications’ perspective it is preferable to have just one
structure to deal with, not separate ones for the geometry and the topology.
Thus, data structures have been developed [8, 5, 6, 2] which encapsulate both
the geometrical and topological aspects and offer means to inspect or modify the
tessellation in a consistent way. Fig. 1 illustrates two pixel-based representations:

1. Inter-pixel boundaries: In the Toger framework [15, 1], a boundary plane
is used to represent the connections between inter-pixel boundaries (at pixel
corners, cf. black dots in 1(b)). This is very memory efficient (only three
bits / pixel), but requires traversals and hash lookups to find the edges /
regions at arbitrary positions. Darts are represented by the vertex position
(cf. gray dots) and a direction.

2. Pixel-based boundaries: In [2, 6], the internal representation of a GeoMap is
based on a cell image, where each pixel carries a label and a type (Region/
Line / Vertex). All three topological cell types are represented as connected
components of pixels carrying the corresponding type and label. All topolog-
ical information is extracted via a DartTraverser, which is represented
with a position / direction pair (cf. arrow in Fig. 1(c)). For details see [2, 6].
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The limited resolution of these approaches is not only a cosmetic problem but
also affects the topology: the vertices of inter-pixel boundaries cannot have a
degree > 4, while pixel-based vertices as defined in [2] can have higher degrees if
they consist of more than one pixel, which reduces the geometrical quality and
needs complicated thinning operations after modifications. The new representa-
tion which is presented in the following does not have that problem.

3 Representing Sub-pixel Geometry

The representations discussed in the last section serve as powerful frameworks
which ease the implementation of automatic and (semi-)interactive segmenta-
tion algorithms. However, they are limited to the pixel grid, while many edge
detectors deliver edgels (edge elements) with sub-pixel accuracy (e.g. [12, 16])
which cannot be represented within these frameworks. We will now present a
new approach which overcomes this limitation.

Let us assume we have sub-pixel accurate edgel positions linked into edgel
chains (Sect. 4 will discuss some algorithms which produce these). These chains
are commonly visualized with their approximating polyline (by connecting the
points in order), and these ordered point lists serve as the main representation
of edges in our new sub-pixel GeoMap. This is illustrated in Fig. 2 (left). It
should be stressed that the polylines are only an approximation of the edges,
and that the actual run of an edge between two support points is not represented
(but could be determined on demand). This matters for algorithms analyzing
the geometry, like for instance skeletonization or curvature calculation.

3.1 Meeting Algorithm Requirements

This section explains how the requirements listed in Sect. 2 are fulfilled in our
implementation of the GeoMap framework.

Topology Inspection. In our object-oriented design, each cell is represented with
a CellInfo object which carries its properties. The framework supports the enu-
meration of all vertices, edges, or faces of a map, and lookups by label. CellInfo
objects can be queried for canonical darts (anchors) whose σ, α, or ϕ-orbits
represent the cell (a face contains one anchor per contour, the first always be-
longing to the outer contour). The central tool to inspect the map topology is
the DartTraverser [6]. Similar to an iterator, it represents a current position –
a dart within the map. It offers methods to move to the successor / predecessor
in any of the three permutations, and to get the start-/end-vertices, the edge it
belongs to, or the face to the left/right. Many of the methods are only for your
convenience, but this interface has proven to make the GeoMap framework very
powerful in practice.

Geometry Inspection. The CellInfo objects mentioned above also carry the cells’
geometrical properties (as well as application-specific information, cf. Sect. 3.3):
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Fig. 2. Comparison of the new sub-pixel representation with approaches restricted by
the pixel grid (to integer or half-integer coordinates, respectively)

a vertex simply contains its sub-pixel position, and an edge is represented as
a polyline. The geometry of faces is represented implicitly; its anchors can be
used to get closed polygons for each contour, and standard polygon techniques
can be applied to these for reconstruction of the region, point inclusion tests, or
finding the region containing a point. Since these operations are common, but
rather slow, we speed them up internally with an additional label image, which
Sect. 3.2 describes in more detail.

Note that it is very convenient to have the edge geometry include the vertex
positions - in spite of the slight redundancy, this simplifies many algorithms,
since all polyline segments can be derived from the edges, without looking at
the vertices.

Modifications. We define Euler operators to allow the modification of our
GeoMap. These are atomic operations which make sure that Euler’s equation
(here in its form for more than one boundary component) is an invariant:

|σ|−|α|+|ϕ|−C =1 where C is the number of connected components (2)

In contrast to the relatively complex operations used in other approaches
(e.g. contraction kernels [11]), we define the following minimal set of simple
operations:

merge edges merge the two edges α∗ (d) and α∗ (σ (d)) and the vertex σ∗ (d)
(must have degree 2) into one single edge (|σ′| = |σ| − 1, |α′| = |α| − 1)

remove bridge merge the edge α∗ (d) (which must be a bridge) into the sur-
rounding face ϕ∗ (d)(|α′| = |α| − 1, C′ = C + 1)

merge faces merge the two faces ϕ∗ (d) and ϕ∗ (σ (d)) (must not be identical)
and their common edge α∗ (d) into one face (|α′| = |α| − 1, |ϕ′| = |ϕ| − 1)
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These operations can be composed into more complex ones. For instance, the
removal of all edges between two regions1 is done with the composed operation
merge faces completely which uses merge faces to remove the first common edge,
after which the rest of the common boundary will consist of bridges which are
handled one-by-one with remove bridge.

Note that after the removal of edges, which reduces the degree of their end-
vertices, these vertices may become dispensable. Vertices of degree 2 can be
merged into their surrounding contour with merge edges. However, it may be
worthwhile to purposely leave vertices of degree 2 in the structure, if their geo-
metrical counterpart marks a point of interest (e.g. a corner). Singular vertices
(degree 0) are discarded in our structure.

In theory, all the mentioned operations have their natural inverses (split edge,
create bridge, split face respectively). However, we currently restrict ourselves to
operations reducing the number of cells. The reasons are manifold: (a) Our Euler
Operations can all be parametrized with a single dart, and it is straight-forward
to prove their correctness. Their inverses need additional parameters for the
geometry of the new cells to be created, which poses a problem when adding
edges, since it has to be ensured that the given geometry does not violate the
topology. (b) Conventional split and merge algorithms do not split faces into two,
but use an implicit description of the split regions which is intrinsically limited
to the pixel grid [9]. (c) The bottom-up approach of transforming an initial
oversegmentation into the desired result fits well the basic idea of first looking
for any evidence for boundaries and then applying relevance filtering to it.

3.2 Initializing a GeoMap

Assuming that we have already extracted boundaries from an image (examples
follow in Sect. 4), this section discusses the remaining task for initializing a com-
plete GeoMap: the determination of the boundary topology from its geometry.

The first problem is the initialization of the permutation σ,
which means that we must determine the local cyclic order of
edges around vertices. This may be as trivial as calculating the
angles of the first segments of the approximating polylines at-
tached to the vertex (see illustration). However, when trying to
do this with sub-pixel watersheds (Sect. 4.2), this leads to nu-
merical problems, since watersheds converge tangentially near
a maximum, so subgroups of tangential darts have to be followed until they
eventually diverge (see [16] for details).

Given the σ-orbits, we still have to determine the exterior faces of each con-
nected boundary component and their parent faces. The exterior faces can be
found by calculating the signed area of each contour given by the ϕ-orbits:

A =
1
2

∑
i

(xiyi+1 − yixi+1) ≤ 0 ⇒ exterior contour (3)

1 Note that merge faces removes just one edge, whereas the common boundary might
consist of several edges (cf. Fig. 1, edges 5 and 2 between wall and background).
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up common geometric queries (degree four ver-
tex in the second column, negative labels indi-
cate number of lines intersecting a pixel facet)

Fig. 4. incremental label image
initialization and face embedding
(from top left to bottom right)

If a contour contains only bridges, it is an exterior contour and A should be zero,
but may be a small positive number due to numerical problems. Thus, this case
must be checked explicitly.

As mentioned in Sect. 3.1, we make use of an internal label image to speed up
geometry queries. For point-in-region tests, we mark pixels whose unit square is
not intersected by contours with the corresponding region label. Thus, we can
immediately determine which region contains a given point if it’s not near the
contour, see Fig. 3. Otherwise, the pixel is marked with a negative label, and
we must apply a (more expensive) standard point-in-polygon test on all regions
whose (cached) axis-parallel bounding box contains the point.

In order to derive the inclusion relation from the geometry, we need to check
for polygon inclusion, which corresponds to inclusion of a single point, since the
boundaries do not overlap. For efficiency, the following algorithm will do the face
embedding in parallel to the initialization of the label image (see Fig. 4):

1. The label image is initialized with the label of the infinite outer face.
2. We sort all contours by decreasing absolute area.
3. For each contour, beginning with the largest:

(a) If it is an exterior contour, we find the existing face including this hole
contour and embed it.

(b) Else, we add a new face to the map and apply polygon scan conversion
techniques to update the label image with the new region and its contour.

In order to facilitate updates of the label image, we store the number of edges
intersecting a pixel facet as negative integer (see Fig. 3). Whenever an edge is
removed (by merge faces or remove bridge), the labels of these pixels are incre-
mented and eventually assigned to the surrounding region if they become zero.

3.3 Maintaining Consistency of Application-Specific Data

A bottom-up image segmentation process can be described as reducing an initial
set of candidate boundaries into the final tessellation. We call this reduction
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process relevance filtering. In the context of irregular pyramids, this corresponds
to the pyramid bottom containing an initial oversegmentation and a “tapering”
stack of levels on top with decreasing numbers of cells. In order to create such a
pyramid, automatic segmentation algorithms need to consider (in)homogeneity
properties of regions (boundaries) to decide upon insignificant boundaries.

Typical region properties used for relevance filtering are statistics on the re-
gions’ colors (mean, variance, . . . ), area, or circumference. Boundaries are of-
ten assessed based on the local image gradient, their length, or curvature. The
GeoMap makes it very simple to calculate such information and attach it to
the CellInfo objects. During the segmentation process, this information has to
be kept up-to-date when removing (parts of) boundaries. It would be possible
to re-calculate the information after each change, but for common statistics it
is possible (and much more efficient) to incrementally compute it from the cell
information before the change.

Our GeoMap representation thus supports to register separate pre- and
post-operation callback functions for each Euler operation in order to enable
application-specific statistics to be maintained in a consistent way [6, 1]. This
ensures that each Euler operation is accompanied by the appropriate updat-
ing procedures. The dart which parameterizes the operation is passed to the
pre-operation callbacks, to inform them which cells will be merged. The update
functions will collect the necessary information from the old cells and wait for
the post-operation call, which attaches the updated information to the CellInfo
object of the surviving cell, which it gets passed as parameter.

This approach makes it very easy for an application to manage e.g. photo-
metric information on the regions, specific flags needed to perform the segmen-
tation algorithm, or information on the boundary (like the mean gradient or
a watersheds’ pass value), and it is always guaranteed that this information is
up-to-date. The GeoMap itself maintains some meta information on the cells’
geometry (lengths, areas, bounding boxes), which is also made available and
does not have to be recalculated.

Note that we internally store the partial sum of the signed area (3) for each
edge, which allows us to quickly determine the signed area of any contour. (The
removal of a bridge leads to a new contour whose area is unknown, and the
partial sums efficiently solve the problem that the area is needed to determine
the new exterior contour if the bridge belonged to the old exterior contour.)

4 Applications

Now that we have introduced our new sub-pixel precise representation formalism,
we will show how it can be used with some image analysis algorithms.

4.1 Preliminaries: Continuous View on Input Images

A key tool to all our sub-pixel resolution experiments is that we can adaptively
sample images at any desired (sub-pixel) position. This can be done efficiently
by means of spline interpolation.
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Splines of order n possess n− 1 continuous derivatives and can be efficiently
computed at any location x = (x, y) by convolution of discrete spline coefficients
cij with continuous B-spline basis functions βn:

f(x, y) =
∑
i,j

cij βn(i− x)βn(j − y) (4)

The coefficients cij depend on the order n of the spline and can be computed
from the sampling values fij by a cascade of �n/2 first-order recursive filters.
Details on these computations can be found in [17, 16]. We use spline interpo-
lation throughout this work for retrieving image values at sub-pixel locations,
because of their global continuity across facet borders.

A side effect of the spline reconstruction is that interpolated real images (con-
taining noise) will not have any plateaus in practice (when represented with
floating-point accuracy). This is important for methods relying on the gradient
vanishing only at isolated points (like the contour following methods described
below). Note that it is not necessary to use convolution filters for derivatives,
because they can be derived analytically from the spline approximation.

4.2 Sub-pixel Watersheds

When comparing the classical watersheds-by-flooding algorithm [18] with e.g.
Canny’s edge detector [12], watersheds have the disadvantage of being limited
to the pixel grid. On the other hand, they provide closed contours, so that a
complete topology can be derived [8, 14]. The advantages of both worlds can
be combined by applying a sub-pixel watershed algorithm to the interpolated
boundary indicator function [16, 19]. This algorithm is based on a mathemat-
ical definition of watersheds given by Maxwell [20]: watersheds are flowlines
between maxima and saddles. If the function f is differentiable, a unique flow-
line exists at every point with non-zero gradient, and flowlines can be traced
(upwards, starting at saddle points) by numerically solving their differential
equation

∂x(t)
∂t

= ∇f(x(t)) (5)

(e.g. with the Runge-Kutta method). This is stable near a watershed, because
all flowlines in a neighborhood converge to the same maximum (for details,
see [16]).

The algorithm is significantly slower than pixel-based watershed algorithms,
but gives very high resolution (as can be seen in Fig. 5). Since the flowlines
connect saddles and maxima, the output of the algorithm naturally forms a
graph, which can be turned into a map after determining the σ-order of edges
around each vertex (maximum). As mentioned in Sect. 3.2, the cyclic order of
edges cannot be determined locally due to numerical problems because water-
sheds converge tangentially near maxima, see the detailed close-up in Fig. 5.
The yellow circles mark the locations where the watersheds diverge (as found by
our σ-sorting algorithm [16]). It is advisable to add additional vertices at these
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Fig. 5. Sub-pixel watersheds. left : initial oversegmentation, right : problem of tangential
convergence; additional vertices added (yellow) vs. original vertices / maxima (dark
red).

positions, since otherwise the statistics of a topological edge may contain mixed-
up information from several geometrically unrelated segments. (The exact vertex
positions may be refined later.)

4.3 Sub-pixel Level-Set Contour Tracing

An alternative method for finding an initial boundary set is not to look for ridges,
but for zero-crossings of an appropriate edge detector (e.g. the Laplacian-of-
Gaussian [21]) or of a distance function resulting from variational segmentation
in level-set approaches. More generally, this can be used to find any level lines
implicitly defined by

φ (x, y) = c ⇔ φ̃ (x, y) := φ (x, y)− c = 0

The tangent unit vector t of a level-line is always perpendicular to the gradient
direction: t = ∇φ⊥/ |∇φ|. Thus, the points of a level-line fulfill the PDE

∂x(τ)
∂τ

= ±t(τ) = ±∇φ(τ)⊥

|∇φ(τ)| (6)

with initial condition φ(x0) = 0 and ∇φ(x0) �= 0. In principle, this PDE could
be solved with standard methods (like Runge-Kutta’s), but this does not take
advantage of the fact that the level-line must remain at this particular level.
This constraint is used by predictor-corrector methods which significantly sim-
plify level-line tracing. They use the tangent to extrapolate the curve towards
a new candidate point (predictor step), but these predictions need not be ex-
tremely accurate because the level constraint is subsequently used to move the
new point’s position onto the contour (corrector step). Compared to other meth-
ods, this allows simpler predictors or larger steps. The basic algorithm is as
follows [22]:

1. Given: a differentiable function φ(x) and a starting point x0 such that
φ(x0) = 0. Select an initial step size h and a bound ε0 that specifies how
much φ(x) may deviate from the exact zero level along the line.
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Fig. 6. Level-set contours of an ancient Chinese transcript (right : close-up)

2. While stopping criterion not fulfilled:

(a) Predict candidate point x̂
(0)
i+1 = h t(xi) where t(xi) = ∇φ⊥(xi)

|∇φ(xi)| if xi is

not a saddle point of φ, and t(xi) = xi−xi−1
|xi−xi−1| otherwise.

(b) While
∣∣∣φ(x̂(k)

i+1

)∣∣∣ > ε0:

i. Correct the candidate point by Newton iterations

x̂
(k+1)
i+1 = x̂

(k)
i+1 −

φ
(
x̂

(k)
i+1

)
∣∣∣∇φ

(
x̂

(k)
i+1

)∣∣∣2∇φ
(
x̂

(k)
i+1

)

(c) If the total correction was small, accept x̂
(k+1)
i+1 as new point xi+1, set

i := i + 1, possibly increase h, and go to 2. Else, reduce h and go to (a).

Since level-lines form closed contours, one wants to stop the algorithm when it re-
turns to the starting point. Detecting this is not trivial, but since we define φ(x)
as a spline, there is a simple solution which also solves the problem of detecting
starting points: consider the explicit polynomial representation (4) of a spline
and the locus of points where x = i∨y = j. We get a set of horizontal and verti-
cal lines through the sampling points, enclosing small unit squares. Along these
lines, (4) simplifies to two 1-dimensional polynomials of order n, and the roots of
these polynomials can easily be computed by a standard root finder. Each root
that lies on the side of the corresponding unit square marks a point where the
zero level-line crosses. By iteratively choosing one of the crossings as the starting
point and applying the above algorithm to trace the level-line until it leaves this
square at another of the known crossings, we get connected level contours.

Finally, we must identify the vertices in order to initialize a GeoMap with the
contours (according to Sect. 3.2). Since edges derived from zero-crossings always
form closed contours, there are two kinds of vertices: if the curve self-intersects,
all intersection points are vertices. Otherwise, an arbitrary point on the curve
must be selected as a vertex.
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(a) Constrained Delaunay
Triangulation

(b) CAT (Chordal Axis
Transform) [23]

(c) Pruned CAT Skeleton

(d) light red: contours (after relevance filtering), white: pruned CAT skeletons

Fig. 7. GeoMaps representing contours, triangulations, and skeletons

Fig. 6 shows an example of such level-set contours: again, we can combine
the advantage of high sub-pixel resolution with the advantage of common
thresholding, which does not need any convolution filters and can thus be applied
without implicit smoothing if the signal-to-noise ratio is high enough. In Fig. 6,
this helps us in analyzing the cusps, which are important stroke characteristics.

4.4 Triangulation / Skeletonization

Our map is not only suitable for representing segmentation results, but it is
also an adequate representation for triangulations or for skeletons (the latter
requires the representation of bridges, see Sect. 3). Topological data structures
have a long history in the computation of Delaunay triangulations and Voronoi
diagrams (e.g. the quad-edge structure used in [24]).

The versatility of our GeoMap is illustrated in Fig. 7, which displays the result
of the following example process:
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1. First, we calculate sub-pixel watersheds of the original image from the spline-
interpolated gradient magnitude.

2. (Simple relevance filtering) We iteratively merge regions until the difference
between the average color of all adjacent regions is larger than a threshold
(dark red contours in Fig. 7(d)).

3. Detect letters as hole regions which are darker than their parent face.
4. Apply a constrained Delaunay triangulation (CDT) to all letters, cf. Fig. 7(a).
5. (Chordal Axis Transform) Connect the mid-points of the inner chords to new

edges, create a vertex for each inner (“join”) triangle and connect vertices
and edges to a CAT skeleton map, Fig. 7(b) (for details, see [23]).

6. (Simple pruning) Remove small branches: apply remove bridge to edges
shorter than two pixels with an end-vertex of degree 1 (Fig. 7(c), pruned
parts in light gray).

Fig. 7(d) shows the contours from step 2 in red (note that the width of the
original letter parts is less than two pixels, the whole region of interest is 64×19)
and the pruned skeleton in white (the slight difference between the “5” and the
“S” remains visible in the skeletons). The sampling of the “W” obviously violated
Shannon’s theorem and is hardly recognizable for a human, too.

This example is not meant to be a sophisticated, general feature extraction
method, but it nicely illustrates the power of the GeoMap as a representation
for planar graphs which offers convenient means to

– merge regions (step 2)
– manage statistical information on regions or edges, e.g. a regions’ mean color

(steps 2 and 3) or area (step 3), or the length of edges (step 6)
– inspect the geometry and decide upon inner / outer of regions (CDT, step 4)

5 Conclusion

Unified representations offering both topological and geometrical perspectives
on a segmentation have been shown to be powerful as well as easy-to-use. In this
paper, we extended the GeoMap formalism to achieve sub-pixel accuracy. We
have shown that besides advanced sub-pixel segmentation techniques, triangula-
tion and skeletonization can be performed equally well with our representation.
Our experiments have shown that the advantages of the general planar map
formalism still apply: our GeoMap framework allows for a significantly faster
development of algorithms than without such a representation, and their for-
mulations tend to become more concise due to the high level of abstraction.
Algorithms with previously separate data structures can easily be compared
and combined.

We are planning to release our implementation in the context of the VIGRA
library. On the application side, we are currently working on the integration of
learning methods and more sophisticated edge salience measures (e.g. based on
boundary continuity or curvature) for relevance filtering.
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Abstract. Defuzzification of fuzzy spatial sets by feature distance min-
imization, recently proposed as an alternative to crisp segmentation, is
studied further. Fully utilizing information available in a fuzzy (discrete)
representation of a continuous shape, we present an improved defuzzifi-
cation method, such that the crisp discrete representation of a fuzzy set
is generated at an increased spatial resolution, compared to the resolu-
tion of the fuzzy set. The correspondence between a fuzzy and a crisp set
is established through a distance between their representations based on
selected features, where the different resolutions of the images to com-
pare are taken into account. The performance of the method is tested on
both synthetic and real images.

Keywords: fuzzy sets, defuzzification, multigrid resolution, distance
measure, feature estimates.

1 Introduction

The advantages of representing objects in images as fuzzy spatial sets are numer-
ous and have lead to increased interest for fuzzy approaches in image analysis
[12]. Fuzziness is an intrinsic property of images. It is additionally introduced
in digital image processing by discretization, and as a natural outcome of most
imaging devices. Preservation of fuzziness implies preservation of important in-
formation about objects and images. Our previous results [2, 8, 11] show that
an improved precision of shape description can be achieved if the description is
based on fuzzy shape representation, where the fuzzy membership of a point re-
flects the level to which that point fulfils certain criteria to belong to the object.
Among other shape descriptors, we have analysed perimeter, area, and moments
of order up to two for shapes resulting from area coverage fuzzification. In this
fuzzification approach, membership of a pixel is proportional to the part of its
area covered by the observed object.
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In spite of many advantages of utilizing fuzzy segmented images, a crisp rep-
resentation of objects may still be needed. Reasons for that are, e.g., to facilitate
easier visualization and interpretation. Even though it contains less information,
a crisp representation is often easier to interpret and understand, especially if
the spatial dimensionality of the image is higher than two. Moreover, analogues
for many tools available for the analysis of binary images are still not developed
for fuzzy images. This may force us to perform at least some steps in the analysis
process by using a crisp representation of the objects.

In this paper, we are interested in generating a crisp representation of a fuzzy
digital object. Such a process is known as defuzzification and we suggest to per-
form it by choosing the crisp representation that is closest to the given fuzzy
set. The distance between two sets is expressed in terms of the difference be-
tween a number of selected quantitative features of the two sets. The novelty
of the approach is that the crisp object is generated at higher spatial resolu-
tion, compared to the spatial resolution of the fuzzy object, by exploiting the
additional information contained in the fuzzy representation. In this way, we pro-
pose a (crisp) segmentation technique that provides crisp objects represented at
a higher spatial resolution than the given image resolution.

The paper is organized as follows: Section 2 gives an overview of the existing
results related to defuzzification and lists the main definitions used in the paper.
In Section 3 the main contribution of the paper, feature based defuzzification
at increased spatial resolution, is presented. Section 4 contains examples of de-
fuzzification method applied to one synthetic and two real images. Comments
and concluding remarks are given in Section 5.

2 Background

We give a list of definitions and notions used in the paper and present existing
results related to defuzzification.

2.1 Definitions

Definition 1. A fuzzy set S on a reference set X is a set of ordered pairs
S = {(x, μS(x)) | x ∈ X}, where μS : X → [0, 1] is the membership function of
S in X.

Being interested in applications in digital image analysis, we consider digital
fuzzy sets, where X ⊂ Zn. In addition, when using digital approaches (comput-
ers) to represent, store, and analyse images, the (finite) number of grey-levels
available is a natural limitation to the number of membership values that can
be assigned to a digital point.

We denote by F(X) the set of fuzzy sets on a reference set X and by P(X)
the set of crisp subsets of a set (the power set).

Definition 2. An α-cut of a fuzzy set S, for α ∈ (0, 1], is the set

Sα = {x ∈ X | μS(x) ≥ α}.
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Definition 3. The support of a fuzzy set S is the set

Supp(S) = {x ∈ X | μS(x) > 0}.

Definition 4. The core of a fuzzy set S is the set

Core(S) = {x ∈ X | μS(x) = 1}.

Definition 5. The moment mp,q(S) of a discrete fuzzy set S on a reference set
X ⊂ Z2 is defined by

mp,q(S) =
∑

(i,j)∈X

μS(i, j) ipjq .

Definition 6. The area (cardinality) of a discrete fuzzy set S on a reference set
X ⊂ Z2 is

A(S) =
∑

(i,j)∈X

μS(i, j).

Note that for a fuzzy set S, A(S) = m0,0(S), whereas the centroid of a fuzzy set

S is defined as C(S) = (Cx(S), Cy(S)) =
(

m1,0(S)
m0,0(S)

,
m0,1(S)
m0,0(S)

)
.

Definition 7. The perimeter of a fuzzy step subset S is

P (S) =
m∑

i,j=1
i<j

mij∑
k=1

|si − sj | · l(Bijk),

where si, i = 1, . . . , m, are m different membership values taken over the disjoint
bounded constant-valued subsets of S, and l(Bijk) is the length of the boundary
between two neighbouring (constant-valued) fuzzy subsets having memberships
si and sj, determined as the overall length of the boundary between their supports,
consisting of mij possibly disconnected parts.

Note 1: A fuzzy digital image can be understood as a fuzzy step set, i.e., as a
disjoint union of a finite number of bounded subsets, each having a constant
membership value. In a digital image, each pixel is seen as such constant-valued
subset. A fuzzy step set is formally defined in, e.g., [1].

Note 2: We calculate l(Bijk) and P (S) of a discrete fuzzy set S as suggested
in [11]; the perimeter of a fuzzy set is equal to the weighted sum of the perimeters
of all the α-cuts of the fuzzy set. In the discrete case, a Marching Squares method
is used to calculate the local contributions to the perimeter.

2.2 Related Work

Defuzzification is the process of replacing a fuzzy set with an appropriately cho-
sen crisp set. It can be performed either as an inverse of fuzzification [6], with
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the intention to recover a fuzzified crisp original, or as a process independent
of any fuzzification, but based on some pre-defined conditions that should be
fulfilled for a crisp set to be the representation of a given fuzzy set [3, 7]. In
image analysis the fuzzification function is rarely known, and practically never
analytically defined; fuzzification of the image is a consequence of a combina-
tion of properties of the continuous original, discretization effects, and imaging
conditions. Therefore, the inverse of a fuzzification function cannot, in general,
be used for defuzzification in order to generate a good crisp discrete representa-
tion of the imaged object. Defuzzification is, instead, performed so that certain
predefined criteria are respected in the process; the criteria are formulated with
an intention to use the fuzzy representation as a source of valuable information
about the geometric properties of the object that was fuzzified.

In our previous work [9, 10], we present a defuzzification method which gen-
erates a crisp object having area, perimeter, and centre of gravity as close as
possible to the corresponding features of the fuzzy set, while keeping the simi-
larity between the membership values of the points, as well as the gradient in
each point, of the two sets as high as possible. The crisp object is generated at
the same spatial resolution as the given fuzzy representation.

The results presented in [8, 11] show that the precision of estimates for perime-
ter, area, and higher order moments of a continuous shape, is significantly higher
if a fuzzy discrete shape representation is used instead of a crisp discrete one.
It is shown, either theoretically or through statistical studies, that a fuzzy ap-
proach can provide an alternative to increasing the spatial resolution of the
image. This observation motivated the study presented in this paper: Starting
from a fuzzy shape representation, generate a crisp shape representation at an
r times increased spatial resolution, while preserving features of a continuous
original, estimated with a high precision from its fuzzy representation.

2.3 Defuzzification by Feature Distance Minimization

Preservation of feature values is achieved by minimizing the distance between
the given fuzzy set and the generated defuzzification, measured in an observed
feature space. Details related to defuzzification by feature distance minimization,
the distance measure definition and optimization, feature space construction,
and search algorithms, are given in [10]. We recall here the notation and main
definitions, used in the sequel.

Defuzzification. Given a fuzzy set A ∈ F(X), an optimal defuzzification D(A)
of A, with respect to the distance measure d, is

D(A) ∈ {C ∈ P(X) | d(A, C) = min
B∈P(X)

[d(A, B)]} . (1)

Distance Measure. For an injective mapping Φ from F(X) into a metric space
H , we define a metric on F(X) by requiring that Φ is an isometry.
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We define the distance dΦ
p (A, B) between fuzzy spatial sets A and B, on the

same reference set X, as the Minkowski distance dp between the representations
of the sets A and B in the feature space H ⊂ Rn:

dΦ
p (A, B) = dp(Φ(A), Φ(B)). (2)

For x,y ∈ Rn, the Minkowski distance is defined as

dp(x,y) = p
√
|x1 − y1|p + |x2 − y2|p + · · ·+ |xn − yn|p.

By suitably designing the mapping Φ, the distance measure can be tuned
to provide defuzzifications where both shape characteristics and membership
values are taken into account. This enables defuzzification that fits the individual
problem well, and provides a powerful family of defuzzification methods.

Optimization. In general, Equation (1) cannot be solved analytically. In addi-
tion, the search space P(X) is too big to be exhaustively traversed. As a conse-
quence, we are forced to rely on heuristic search methods. In [10], two methods,
floating search and simulated annealing, are used to find an approximate solu-
tion for Equation (1). Since the optimization task is a well separated problem,
many other search methods can be used to approximatively solve Equation (1).

3 High Resolution Defuzzification

It has been shown in previous papers [2, 8, 11] that many shape features can be
estimated with a higher precision when calculated from a fuzzy, instead of from
a crisp representation of an object at a given image resolution. Utilizing this
higher precision, it is natural to assume that a feature based defuzzification can
provide a crisp representation of an object at a spatial resolution higher than
the resolution of the given fuzzy image.

To perform defuzzification at increased spatial resolution, we need a distance
measure that can relate fuzzy spatial sets represented at different resolutions.
We observe an increase of the spatial resolution by an integer factor r; if rF is
the spatial resolution of the fuzzy set, and rK is the spatial resolution of the
crisp (defuzzified) set, then r = rK

rF
. In that case, each pixel in the low resolu-

tion representation corresponds to a block of r × r pixels in the high resolution
representation, as shown in Figure 1.

We note here that there are two approaches to perform multigrid studies: one
is to observe the (r times) dilated object in the unchanged grid, whereas the
other is to observe the unchanged object inscribed in the (r times) refined grid.
These two approaches are dual. We use the first one, which implies that the size
of the pixel is equal to 1 in all the observed grids, whereas the object features
calculated in different grids are resolution-variant.

A main idea is to generalize membership similarity, which is a local feature,
by interpreting it as a local area similarity. Instead of comparing pairs of corre-
sponding pixels in the fuzzy and the crisp image, we relate the membership value
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Fig. 1. One pixel in a low resolution (fuzzy) image, and the corresponding block of
4 × 4 pixels of a 4 times higher resolution (crisp) reconstruction

of a pixel in the fuzzy image (i.e., the pixel area) to the area of the corresponding
block of r × r pixels (i.e., the number of (sub-)pixels with value 1) in the high
resolution representation.

More formally, for a given membership μ(pf ) = m ∈ [0, 1] of a pixel pf to
a spatial fuzzy set that represents the object, and a given resolution increase
factor r, the area of the portion of the object within the corresponding block of
r× r pixels can be estimated by mr2. This correspondence is used as a basis for
the high-resolution object reconstruction.

Equally important is to utilize the increased accuracy of estimates of global
features – area, perimeter and moments of the first order – achieved when a
fuzzy shape representation is used.

3.1 Feature-Based Representation and Distance Measure

In order to compare the corresponding features calculated in grids of different
sizes, measures have to be rescaled with respect to the spatial resolution of the
image and the dimensionality of the particular feature. It is taken into account
that P (S) = O(rs), A(S) = O(r2

s), m1,0(S) = O(r3
s), m0,1(S) = O(r3

s) for a
set S inscribed into a grid with spatial resolution rS . To get resolution invariant
global features, chosen for the task studied in this paper, we use

P̃ (S) =
P (S)
P (X)

, Ã(S) =
A(S)
A(X)

, C̃x(S) =
Cx(S)
Cx(X)

, C̃y(S) =
Cy(S)
Cy(X)

,

where X is the reference set of resolution rS . In this way, it is provided that
P̃ (S) = O(1), Ã(S) = O(1), C̃x(S) = O(1), C̃y(S) = O(1) for any grid resolu-
tion, which enables (meaningful) comparison of the feature values of fuzzy sets
on different reference sets.

Note 3: The function f(r) ≥ 0 is in the asymptotic complexity class O(g(r))
(which is written as f(r) = O(g(r))) iff there exists a constant c ≥ 0 and a
constant r0 ≥ 1 such that f(r) ≤ c · g(r), for all r ≥ r0.

In addition to preserving the above global features, we also compare the (local)
area of each block of r× r pixels of the crisp set K with the membership (area)



Feature Based Defuzzification at Increased Spatial Resolution 137

of the one corresponding pixel of the fuzzy set F . When observed all together,
global and local features should be of balanced relative size. Therefore, we scale
down the local features in the representations for both fuzzy and crisp sets.

The distance between a fuzzy set

F = {((xi, yi), μ((xi, yi)) , i = 1, . . . , N}

on a reference set of cardinality N , and a crisp set

K =
⋃

i=1,...,N

Ki,

defined as a union of N blocks Ki, where each of the blocks is of size r × r and
is of the form

Ki =
{(

rxi −
r − 1

2
+ k, ryi −

r − 1
2

+ l

)
, for k, l from {0, 1, . . . , r − 1}

}
,

is determined as the Minkowski distance between the feature-based representa-
tions of the two sets, Φ(F ) and Φ(K), in the observed feature space. According to
the choice of features made for this study, we use the following representations:

Φ(F ) =
(

1
p
√

N
μ((x1, y1)), . . . ,

1
p
√

N
μ((xN , yN)), P̃ (F ), Ã(F ), C̃x(F ), C̃y(F )

)
,

Φ(K) =
(

1
p
√

N

1
r2 A(K1), . . . ,

1
p
√

N

1
r2 A(KN ), P̃ (K), Ã(K), C̃x(K), C̃y(K)

)
.

The first N coordinates, corresponding to local features, are scaled down by
the factor p

√
N , which preserves relative size of the contributions of the terms

to the distance measure; it is provided that the N local features have the same
impact on the overall Minkowski distance measure as one of the global features.

3.2 Defuzzification at Increased Resolution

Considering the scale-invariant feature representation introduced above, and
Equations (1) and (2), a defuzzification K of a fuzzy set F at r times increased
resolution is

D(F ) ∈ {K ∈ P(rX) | d(F, K) = min
B∈P(rX)

[d(F, B)]} . (3)

Note 4: rX denotes the reference set X at r times increased resolution.

3.3 Search Algorithm

Simulated annealing [4] is a well known non-deterministic optimization algorithm.
It is based on imitating the physical process of annealing, where the observed sys-
tem, initially at high temperature and high energy, is slowly cooled and the energy
of the system is gradually reduced towards a “frozen” ground state. Starting with
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an energy E and a temperature T , the initial configuration is perturbed and the
resulting change in energy dE is computed. If the change in energy is negative,
the new configuration is accepted. If the change in energy is positive, the new
configuration is accepted with a probability which is dependent on the current
temperature. This process is repeated sufficiently many times to give good sam-
pling statistics for the current temperature. The temperature is then decreased
and the entire process is repeated until a frozen state is achieved, at T = 0.

We apply this algorithm in order to find a crisp solution at a minimal distance
to the given fuzzy set. The energy of the system is easily expressed in terms of
the distance measure dΦ

p , and a perturbation of the system as the addition or
removal of one (sub-)pixel to the defuzzified set. To reduce the search space,
pixels within the core of the fuzzy set are always included in the defuzzification
and pixels outside the support of the fuzzy set are always excluded from the
defuzzification. The starting configuration is taken to be a super-sampling of the
α-cut at α = 0.5 of the observed fuzzy set.

The speed of the cooling process allows a user-controlled trade-off between
the speed and the quality of the optimization process. For the examples pre-
sented in the next section, the temperature is lowered in 3000 steps and at each
temperature level, the number of perturbations tested is 20 times the number of
pixels in the search space.

4 Examples

We present three examples illustrating the performance of the proposed defuzzi-
fication method. The defuzzification of a synthetic image is shown in Figure 2,
whereas two real images are defuzzified and presented in Figures 4 and 5. Each
figure displays five images: original, fuzzy segmented, and defuzzified object at 1,
4, and 8 times higher resolutions, respectively. Minkowski distance is calculated
for p = 2. The core of the fuzzy set is indicated with a darker shade of grey in
the defuzzified images. The centroid of the fuzzy set and of the defuzzified set
are marked with “×” and “+”, respectively. When the two centroids coincide,
the marks overlap and create “+×”.

For the synthetic image shown in Figure 2(a), the fuzzy segmented image
(Figure 2(b)) is obtained by area coverage fuzzification of an 8 times down-
sampled image. Defuzzification is performed by minimizing the distance to the
image in Figure 2(b) at increasing resolutions. The minimal obtained distance,
corresponding to the defuzzification at each resolution, is given below the image.
Figures 2(a) and (e) are at the same spatial resolution. Their visual comparison
is enabled by Figure 3, which shows magnified the upper part of the crisp orig-
inal object superimposed on the defuzzification. It is important to notice that
the defuzzification (Figure 2(e)) is generated from an image (Figure 2(b)) which
contains (approximately) 10 times less information than the original image (Fig-
ure 2(a)). (There are 8 × 8 more pixels in (a) each requiring one bit per pixel,
while the 65 grey-levels in (b) require just above 6 bits per pixel.) In spite of
that, the reconstruction shows very good visual similarity with the original.
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A B

dΦ
2 (A, B) = 0.0029

(a) (b)

C D E

dΦ
2 (B, C) = 0.0792 dΦ

2 (B, D) = 0.0076 dΦ
2 (B, E) = 0.0074

(c) (d) (e)

Fig. 2. Defuzzification of a synthetic object. (a) Synthetic crisp object A. (b) Fuzzifi-
cation B of A at 8 times lower resolution. (c)-(e) Defuzzification C, D, and E of B at
1, 4, and 8 times increased resolution. Distances from the image in (b) are shown for
each defuzzification and for the crisp original.

A second example is defuzzification of a part of a histological image of a bone
implant (inserted in a leg of a rabbit), presented in Figure 4. The original is a
colour image acquired by a light microscope. We tested our method on a part
of the image (Figure 4(a)) containing a bone area (dark grey), surrounded by
a non-bone area (light grey). Figure 4(b) shows a fuzzy object segmented by
minimization of entropy as suggested in [5]. The distances between the defuzzi-
fications (Figures 4(c)-(e)) and the fuzzy object in Figure 4(b) are given.

Our third example shows a slice of a magnetic resonance angiography (MRA)
image of a human aorta (Figure 5(a)). The slice displays the region where the
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Fig. 3. The upper part of the reconstructed object E (Figure 2(e)) indicated with a black
outline, superimposed on the original crisp object A (Figure 2(a)) shown in dark grey

aorta separates into the two iliac arteries, leading from the abdomen into the legs.
Fuzzy segmentation (Figure 5(b)) is obtained by entropy minimization ([5]). The
distances between the defuzzifications (Figures 5(c)-(e)) and the fuzzy object in
Figure 5(b) are given.

5 Comments and Conclusions

By using a fuzzy, instead of a crisp, representation of a shape, which in many
cases is easily obtained from the imaging device, significant improvements of
the accuracy of estimates of geometric features are achievable. It has become
evident that by fully utilizing an often already existing membership resolution,
it is possible to overcome problems of insufficient available spatial resolution.

Defuzzification by feature distance minimization has shown to perform well
as a crisp segmentation technique (in combination with a fuzzy segmentation),
preserving important geometric properties of the object ([10]). In this paper, it is
investigated how such a method can be applied to generate crisp representations
of fuzzy objects at increased spatial resolutions.

Features to preserve are chosen to be area (zero-order moment of a shape),
perimeter, and centroid of a shape (defined in terms of moments of order zero and
one). It should be pointed out that the method for defuzzification presented in
this paper is by no means limited to this set of features and our choice is just one
of many available. The features to preserve should reflect the properties which are
considered important for the object of study, and it should be possible to estimate
these features with a high accuracy and precision from a fuzzy representation.

Some examples of the performance of the method are presented, showing
promising results. The search space for the optimization grows quickly with
increasing resolution. It is noticed that the simulated annealing optimization
applied did not find the optimal solution for the 8 times increased resolution
defuzzification of the synthetic test image in Figure 2; the original object in
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A B

(a) (b)

C D E

dΦ
2 (B, C) = 0.1133 dΦ

2 (B, D) = 0.0444 dΦ
2 (B, E) = 0.0497

(c) (d) (e)

Fig. 4. Defuzzification of a selected part of a microscope image of a bone implant. (a)
Selected part of an image. The dark grey area is bone, the light parts (light grey) are
non-bone areas. (b) Fuzzy segmented bone area in (a). (c)-(e) Defuzzification of B at 1,
4, and 8 times increased spatial resolution. Distances from the image in (b) are shown
for each defuzzification.
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A B

(a) (b)

C D E

dΦ
2 (B, C) = 0.1717 dΦ

2 (B, D) = 0.1262 dΦ
2 (B, E) = 0.1336

(c) (d) (e)

Fig. 5. Defuzzification of a slice of an MRA image of a human aorta. (a) Original
MRA image. (b) Fuzzy segmented vessels. (c)-(e) Defuzzification of B at 1, 4, and 8
times increased spatial resolution. Distances from the image in (b) are shown for each
defuzzification.

Figure 2(a) has a smaller distance to the object to defuzzify (Figure 2(b)) than
the output from the optimization (Figure 2(e)). This highlights the need for
improving the search procedure. One way to achieve that, and also to increase
the robustness of the method, could be to use a scale space approach, where the
object is first reconstructed at a low resolution, and then is successively refined
at higher resolutions. This will be a topic of further studies.
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Abstract. We present an extended Mumford-Shah regularization for
blind image deconvolution and segmentation in the context of Bayesian
estimation for blurred, noisy images or video sequences. The Mumford-
Shah functional is extended to have cost terms for the estimation of
blur kernels via a newly introduced prior solution space. This functional
is minimized using Γ -convergence approximation in an embedded alter-
nating minimization within Neumann conditions. Accurate blur identifi-
cation is the basis of edge-preserving image restoration in the extended
Mumford-Shah regularization. One output of the finite set of curves and
object boundaries are grouped and partitioned via a graph theoretical
approach for the segmentation of blurred objects. The chosen regular-
ization parameters using the L-curve method is presented. Numerical
experiments show that the proposed algorithm is efficiency and robust
in that it can handle images that are formed in different environments
with different types and amounts of blur and noise.

1 Introduction

Blur influences the automation, robustness and efficiency of many visual systems
in many aspects. Blur identification, image restoration and recognition of blurred
or unblurred regions or objects become more important, e.g., shown in Fig. 1.
An ideal image f in the object plane is normally degraded by a linear space-
invariant point spread function (PSF) h with an additive white Gaussian noise
n using the lexicographic notation, g = h ∗ f + n. The equation provides a
good working model for image formation. The two-dimensional convolution is
expressed as h ∗ f = Hf = Fh, where H and F are block-Toeplitz matrices and
can be approximated by block-circulant matrices.

Normally, the point spread function (PSF) of blur is neither known nor per-
fectly known. Such blur identification can be considered as blind image decon-
volution. The challenge of blind image deconvolution (BID) is to uniquely define
the optimized signals only from the observed images and is considered as an ill-
posed problem in the sense of Hadamard [1]. However, knowledge of the direct
model is not sufficient to determine an existent, unique and stable solution, and
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(a) (b) (c)

Fig. 1. Blurred and unblurred regions in video data. (a) A video frame. (b) Blurred
objects. (c) Unblurred object.

it is necessary to regularize the solution using some a priori knowledge. Math-
ematically, the a priori knowledge is often expressed through a regularization
theory [2] which replaces an ill-posed problem by a well-posed problem with an
acceptable approximation to the solution.

The regularization theory [2] presents numerous challenges as well as oppor-
tunities for further mathematical vision modeling to solve ill-posed problems.
Compared to stochastic optimization [3], most blur identification and image
restoration methods have been developed based on the deterministic regular-
ization approach due to the efficiency of computation [4, 5, 6]. Different from
the iterative Tikhonov regularization [4] and the total variational regularization
[5], a general regularization method proposed by Mumford and Shah [6] has
formulated image restoration, denoising and image segmentation in an energy
minimization approach [7]. Currently, some Mumford-Shah (MS) based segmen-
tation approaches combining with the level set method (LST) are intensively
tested on the influences of noises or occlusions [8] and get successful results.
However, curve-evolution based methods do not satisfactorily segment blurred
regions or objects due to unstable and weak differences of gradients between
blurred regions or objects and cluttered background.

Recently, variational regularization for image restoration [9] is investigated.
Bar et. al. use a total variation method providing an initial value to a Mumford-
Shah [6] functional for blur identification and edge preserving restoration. How-
ever, the initialization problem of regularization is still not progressively solved.
This process needs more effective prior information and constraints to yield
a unique solution. The Bayesian estimation framework provides a structured
way to include prior knowledge concerning the quantities to be estimated. The
Bayesian approach is, in fact, the framework in which most recent restoration
methods have been introduced. Blake and Zisserman [10] proposed the use of a
graduate non-convexity method, which can be extended to the blurring problem.
Molina and Ripley [11] proposed the use of a log-scale for the image model in
the Bayesian framework. Green [12] and Bouman et al. [13] used convex poten-
tials in order to ensure uniqueness of the solution. Moreover, even if a unique
solution exists, a proper initialization value is still intractable, e.g., when the
cost function is non-convex, convergence to local minima often occurs without
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proper initialization. Molina et al. [14] have reported that the estimates for the
PSF could vary significantly, depending on the initialization.

In this paper, we treat blur identification, image restoration and segmenta-
tion as a combinatorial optimization problem. Combination of blur identifica-
tion, image restoration and segmentation in an extended MS functional is a
reasonable strategy for such tasks due to the mutual support of edge-preserving
image restoration and segmentation within a variational regularization. Firstly,
Bayesian MAP estimation supports a good initial value for the optimization
to the extended MS functional. Secondly, it is possible to get edge-preserving
image restoration in the extended MS regularization via a Γ -convergence ap-
proximation [15, 9, 16]. Finally, an embedded alternate minimization method is
introduced to achieve the outputs without scale problem between the estimates
of the image and the PSF. One output of the finite sets of curves and object
boundaries with different gradients can be considered as discrete analogues of
graphs. It shows a theoretically and experimentally sound way of how a graph-
theoretical approach is integrated to the extended MS functional for partitioning
and grouping different gradient edges with blur information. The experimental
results shows that the method yields explicit segmentation results as well as
edge-preserving restoration under different kinds and amounts of blur.

The paper is organized as follows. In Sect. (2), the Γ -convergence MS approx-
imation in the context of Bayesian estimation can be interpreted as an energy
functional with respect to the estimation of the image and the PSF. The PSF
learning is presented in Sect. (3). Optimization of three outputs in the newly
designed embedded alternating minimization are presented in Sect. (4). Sect. (5)
introduces a graph partitioning approach to group the detected edges with dif-
ferent gradients with blur constraints. These edges are directly computed from
the extended MS functional. Experimental results are shown in Sect. (6). Con-
clusions are summarized in Sect. (7).

2 Extended MS Regularization in Bayesian Estimation

The Bayesian MAP estimation is utilized to get a maximum a posteriori (MAP)
estimation using some prior knowledge. Following the Bayesian paradigm, the
estimated image f̂ , the estimated PSF ĥ and the observed image g is based on,

p(f̂ , ĥ|g) =
p(g|f̂ , ĥ)p(f̂ , ĥ)

p(g)
∝ p(g|f̂ , ĥ)p(f̂ , ĥ) (1)

Applying the Bayesian paradigm to the blind image deconvolution problem,
we try to get convergence values from Eq. (1) with respect to the estimated
image f̂ and the estimated PSF ĥ. The MAP cost function E with respect to
the estimated image f̂ and the estimated PSF ĥ from Eq. (1) are deducted
according to the following,

E(f̂ |g, ĥ) ∝ p(g|f̂ , ĥ)p(f̂), E(ĥ|g, f̂) ∝ p(g|f̂ , ĥ)p(ĥ) (2)
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This Bayesian MAP approach can be computed in a regularization functional
which optimizes two proposed cost functions in the image domain and the
PSF domain. For the following description, we define the key symbols in
Table. 1.

Table 1. List of key symbols

Symbol Explanation

g, f, n, h Degraded image, original image, additive noise, and blur.
f̂ , ĥ, v Estimates to the original image, the blur and edge-curves.
hi(θ) The i-th PSF parametric model with unknown parameters θ.
E(f̂ |g, ĥ), E(ĥ|g, f̂) Image and blur-domain MAP cost function.
Eε(f̂ , ĥ, v), Eε Approximated MS functional including all the estimates.
α, β, γ Regularization parameters of image, edge and blur term.
G = (V, E) A undirected weight graph with edges between vertices.

2.1 Prior Solution Space of Blur Kernels

Several forms of the prior distribution like Gibbs distribution [3], image smooth-
ness or maximum entropy have been suggested by researchers from different
disciplines but they are based on general knowledge about images. In reality,
most real blurred images, whose power spectral densities vary considerably from
low frequency domain in the uniform smoothing region to medium and high fre-
quency domain in the discontinuity and texture regions. Also, most PSFs exist
in the form of low-pass filters. Up to a certain degree, PSFs of numerous real
blurred images satisfy parametric PSF models. Through these observations, we
know that the performance of blur identification and image restoration should
be according to their characteristics. The proposed prior solution space supports
PSF prior in the Bayesian estimation. It attempts to address these asymme-
tries by integrating parametric blur knowledge into the scheme of the extended
Mumford-Shah regularization.

We define a set Θ as a solution space of Bayesian estimation which consists
of primary parametric PSF models as Θ = {hi(θ), i = 1, 2, 3, ..., N} in Fig. 2.
hi(θ) represents the ith parametric PSF with its own parameters θ, and N is
the number of PSFs.

hi(θ) =

⎧⎨⎩
h1(θ) ∝ h(x, y; Li, Lj) = 1/K, |i| ≤ Li and |j| ≤ Lj

h2(θ) ∝ h(x, y) = K exp(−x2+y2

2σ2 )
h3(θ) ∝ h (x, y, d, φ) = 1/d,

√
x2 + y2 ≤ D/2, tanφ = y/x

(3)

h1(θ) is a pill-box blur kernel with a length of radius K. h2(θ) is a Gaussian PSF
and can be characterized by parameters with its variance σ2 and a normalization
constant K. h3(θ) is a simple linear motion blur PSF with a camera direction
motion d and a motion angle φ. The other blur structures like out-of-focus and
uniform 2D blur [17], [18] have been also built in the solution space as a priori
information.
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Fig. 2. (a) Original image. (b) Pillbox PSF. (c) Gaussian PSF. (d) Linear motion PSF.

2.2 Extended Γ -Convergence MS Regularization

After the discrete cartoon models from [3, 10], the corresponding continuous
model has been invented by Mumford and Shah [6]. The idea of the original
MS functional is to subdivide an image into many meaningful regions (objects).
It means to find a decomposition Ωi of Ω and an optimal piecewise smoothing
approximation f given a degraded image g. Thus, the estimated image f varies
smoothly within each Ωi, and discontinuously across the boundaries of Ωi. The
MS functional is formulated in an energy minimization equation,

E(f, C) =
1
2

∫
Ω

(g − f)2dxdy︸ ︷︷ ︸
fidelityTerm

+ α

∫
Ω\C

|∇f |2dxdy︸ ︷︷ ︸
piecewiseSmoothing

+ β|C|︸︷︷︸
totalEdgeLength

(4)

Then we define
Ω is a connected, bounded and open subset R2, Ω ⊂ R2,
f is the estimated image, f ⊂ Ω \ C,
C ⊂ Ω is a finite set of segmenting curves and unit of object boundaries,
|C| is the length of curve of C,
g is a bounded image-function with uniform feature intensity, g : Ω → R, and

E(f, C) is energy function with respect to the estimates of image and curves.
It is hard to minimize this functional directly for achieving the set C nu-

merically, keeping track of possible changes of its topology, and calculating its
length. Likewise, the number of possible discontinuity sets is enormous even on
a small grid. To solve such difficulties, Ambrosio et. al. [15] have introduced
the Γ -convergence to the Mumford-Shah functional which means to replace the
discontinuous C by a continuous variable v in the third term. An irregular func-
tional E(f, C) is then approximated by a sequence Eε(f) of regular functionals
with a small constant ε, limε→0 Eε(f) = E(f, C) and the minimization of Eε

approximates the minimization of E. The edge set is represented by a charac-
teristic function (1 − xC) which is approximated by an auxiliary function v(x)
of the gradient edge integration map, i.e., v(x) ≈ 0 of x ∈ C for smoothing, and
v(x) ≈ 1 for getting edges. The equation is,

Eε(f, v) (5)

=
1
2

∫
Ω

(g − f)2dxdy + α

∫
Ω

v2|∇f |2dxdy + β

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dxdy
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Recently, Bar et.al. [9, 16] have combined this functional and the total variation
functional for image restoration. Different from the work of [9, 16], we build a
soft PSF learning term based on the PSF prior solution space for this functional.
It improves the accuracy of the initial value of the PSF and also optimizes the
PSF in a parametrical approach. The degradation model f is replaced by h ∗ f
in the first fidelity term. The estimates to the original image and the blur kernel
are denoted in f̂ and ĥ separately. The functional is formulated in the following,

Eε(f̂ , ĥ, v) =
1
2

∫
Ω

(g − f̂ ∗ ĥ)2dxdy + α

∫
Ω

v2|∇f̂ |2dxdy (6)

+β

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dxdy + γ

∫
Ω

|∇ĥ|2dxdy + δ|ĥ− ĥf |2

where ĥf is the final estimated PSF and ĥ is the current estimated PSF. The
fourth term γ

∫
Ω
|∇ĥ|2dxdy represents the regularization of the blur kernel. This

term is necessary to reduce the ambiguity in the division of the apparent blur
between the recovered image and the blur kernel. The flexibility of the last term
δ|ĥ− ĥf |2 denotes the PSF decision learning error of the best-fit parametric
model ĥf . The primary objective of this learning decision approach is to eval-
uate the relevance of parametric structure and integrate the information into
the learning scheme accordingly. The effect of the PSF learning term is to pull
the PSF MAP solution towards the PSF parametric model. It can adjust and
incorporate the parametric model of the PSF throughout the process of blur
identification and image restoration.

This functional can be interpreted as two cost functions with respect to the
estimation of the image and the PSF, and one derived function for edge curves
in the regularization functional. These functions are optimized alternatively in
the embedded alternating minimization algorithm.

3 From Learnt PSF Statistics to PSF Estimation

In this paper, the estimation of PSF as an initial value is a starting point of the
process for the image estimation. In the PSF domain, the PSF can be seen as
the maximization of conditional probability. The cost function of the PSF from
Eq. (2) is described using the extended Mumford-Shah functional,

E(ĥ|g, f̂) = arg max
ĥ

{
p
(
g
∣∣∣ĥ, f̂

)
pΘ

(
ĥ
)}

(7)

= 1
2

∫
Ω

(g − ĥ ∗ f̂)2dxdy + γ

∫
Ω

∣∣∣∇ĥ
∣∣∣2dxdy + δ|ĥ− ĥf |2

where p(g|f̂ , ĥ) ∝ exp
{
− 1

2

∫
Ω
|g − ĥ ∗ f̂ |2dxdy

}
, pΘ(ĥ) ∝ γ

∫
Ω

∣∣∣∇ĥ
∣∣∣2dxdy +

δ|ĥ− ĥf |2 is a priori knowledge including the PSF smoothing and PSF learn-
ing. ĥf is a final selected and estimated parametric PSF model. The PSF estima-
tion consists of the estimate of a sound PSF parametric model with supported
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size, and the coefficients of this PSF model. If the estimated PSF parametric
model differs from the actual PSF, the blur coefficients and support size cannot
be optimized and identified reliably during the following iterative optimization
algorithm, and vice versa. Here, the PSF learning is used to find a suitable PSF
parametric model using the prior PSF solution space which can largely decrease
the searching space.

Since both the original and observed image represent intensity distributions
that cannot take negative values, the PSF coefficients are always nonnegative,
h(x) ≥ 0. Furthermore, since image formation systems normally do not absorb
or generate energy, the PSF should satisfy

∑
x∈Ω h (x) = 1.0, x ∈ Ω, Ω ⊂ R2. A

MAP estimator is used to determine the best fit model hi(θ∗) for the estimated
PSF ĥ in resembling the ith parametric model hi(θ) in a multivariate Gaussian
distribution, hi(θ∗) ∝

argmax
θ

log

{
1

(2π)
LB
2 |
∑

dd|
1
2
· exp

[
−1

2

(
hi (θ)− ĥ

)T ∑−1
dd

(
hi (θ)− ĥ

)]}

where the first subscript i denotes the index of blur kernel. The modeling error
d = hi(θ) − ĥ is assumed to be a zero-mean homogeneous Gaussian distributed
white noise process with covariance matrix

∑
dd = σ2

dI independent of image.
LB is an assumed support size of blur. Then the PSF learning likelihood is
computed based on mahalanobis distance and corresponding model:

li(ĥ) =
1
2
exp[(hi(θ)− ĥ)t

∑−1

dd
(hi(θ)− ĥ)] (8)

In reality, most of blurs satisfy up to a certain degree of parametric structures.
A best fit model hi(θ) for ĥ is selected according to the Gaussian distribution
and a cluster filter. We use a K-NN rule to find the estimated output blur model
ĥf is obtained from the parametric blur models using

ĥf = [l0(ĥ)ĥ +
∑C

i=1
li(ĥ)hi(θ)]/[

∑C

i=1
li(ĥ)] (9)

where l0(ĥ) = 1 −max(li(ĥ)), i = 1, ..., C. The main objective is to assess the
relevance of current estimated blur ĥ with respect to parametric PSF models, and
to integrate such knowledge progressively into the computation scheme. If the
current blur ĥ is close to the estimated PSF model ĥf , that means ĥ belongs to
a predefined parametric blur model. Otherwise, if ĥ differs from ĥf significantly,
this means that current blur ĥ may not belong to the predefined PSF priors.

4 Embedded Alternate Minimization

To achieve the results from Eq. (6), a scale problem arises between the mini-
mization of the PSF and the image via steepest descent. The reason is that the
∂Eε/∂ĥ is

∑
x∈Ω f̂(x) times larger than ∂Eε/∂f̂ . Also, the dynamic range of the
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image [0, 255] is larger than the dynamic range of the PSF [0, 1]. The scale factor
changes dynamically with space coordinates (x, y). To avoid the scale problem,
You and Kaveh [19] introduced an alternate minimization method following the
idea of coordinate descent [20]. Later, Chan and Wong [21] demonstrated the
efficiency of this method in TV (L1 norm) based regularization for joint blur
identification and image restoration.

To estimate the cost of Eε, three outputs of the ideal image f̂ , the edge
integration map v and the PSF ĥ are computed for getting an optimized value
from their partial differential equation of Eε. The minimization of this equation
with respect to v, ĥ and f̂ is carried out based on Euler-Lagrange equations. We
can observe that Eq. (10) is a strictly convex and lower bounded with respect
to the functions f̂ and v if the other one and the blur PSFs are estimated and
fixed. We have designed an embedded alternating minimization algorithm to
get local minimum values simultaneously based on these three equations. These
differentiations are

∂Eε(f̂ , v)
∂v

= 2αv|∇f̂ |2 + β(
v − 1
2ε

)− 2εβ∇2v (10)

∂E(ĥ|g, f̂)

∂ĥ
= (f̂ ∗ ĥ− g) ∗ f̂(−x,−y)− 2γDiv(∇ĥ)− 2δ|ĥ− ĥf | (11)

∂E(f̂ |g, ĥ)
∂f̂

= (ĥ ∗ f̂ − g) ∗ ĥ(−x,−y)− 2αDiv(v2∇f̂) (12)

For solving these three equations, theNeumann conditions∂Eε/∂v = 0,∂Eε/∂ĥ =
0 and ∂Eε/∂f̂ = 0 correspond to the reflection of the image across the boundary
with the advantages of not imposing any value on the boundary. ε is a small pos-
itive constants for discrete implementation. The small positive constant can help
the estimation of image relatively stable in the minimization process. Based on an
initial PSF value h0(x), the estimation of the ideal image f̂ is initialized by the
observed image g, edge parameter v = 1. The algorithm is described:

Initialization: f0(x) = g(x), v = 1, h0(x) is random numbers
while (nmse1 > ε1)

(1). nth it. f̂n(x) = arg min(f̂ |ĥn−1, g), fix ĥ(x)
while (nmse2 > ε2)

(i). v ∝ argmin(v|f̂) = ∂Eε/∂v, fix f̂(x)
(ii). f ∝ argmin(f̂ |v) = ∂Eε/∂f̂ , fix v(x)

end
(2). (n + 1)th it. ĥn+1 = argmin(ĥ|f̂n, g), fix f̂(x)

end

The global convergence can be reached given a small positive threshold ε1 and
ε2 due to the nonnegativity of the image and the PSF. We use normalized mean
square (nmse) values of the PSF and the image to measure the minimization
threshold respectively.
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Since the convergence with respect to the PSF and the image are optimized
alternately, the flexibility of this proposed algorithm allow us to use conjugate
gradient algorithm for computing the convergence. Conjugate gradient method
utilizes the conjugate direction instead of local gradient to search for the minima.
Here, we use gmres method to optimize the cost functions. Therefore, it is faster
and also requires less memory storage when compared with the other methods.
If an image has M ×N pixels, the above conjugate method will converge to the
minimum of E(f̂ |g, ĥ) after m&MN steps based on partial conjugate gradient
method.

5 Graph Partitioning for Blurred and Unblurred Regions

Given a blur degraded image or video frame, we can observe that the gradient
edge map v of foreground blurred objects are very weak and unstable comparing
with the unblurred cluttered background, e.g., in Fig. 5 (b). We extend a spectral
graph partitioning algorithm with a global criterion [22, 23] to the Mumford-
Shah functional for segmenting the blurred regions or objects in video sequences.
The combination of low level processing and mid or high level knowledge can
be used to either confirm these groups or select some for further attention in
repartitioning or grouping blurred and unblurred regions or objects in images.

To achieve the segmentation of such degraded images, we firstly consider a
graph bisection problem. We can partition the vertices of a graph G = (V, E)
into two sets A and B to minimize the number of cut edges, i.e., edges with
one endpoint in A and the other in B, where V are the vertices and E are the
edges between these vertices. V can correspond to pixels in an image or set of
connected pixels. The bisection problem can be formulated as the minimization
of a quadratic objective function by means of the Laplacian matrix L = L(G)
of the graph G, |δmin(A, B)| = min(xT Lx) with components xi = ±1 and∑n

i=1 xi = 0, where L = D−W , W = {wij} is the adjacency matrix of a graph,
and D is the n×n diagonal matrix of the degrees of the vertices of G. Thus the
bisection problem is equivalent to the problem of maximizing similarity of the
objects within each cluster, or, find a cut edge through G with minimal weight
in the form of max(xT Wx)⇐⇒ min(xT Lx).

The minimization problem is NP-complete. The approximation makes the
optimization problem tractable by relaxing the constraints. To avoid unnatural
bias for partitioning out small sets of points, and achieve the total dissimilarity
between the different groups as well as the total similarity within the groups,
Shi and Malik [23] proposed a new measure of the disassociation between two
groups. Instead of looking at the value of total edge weight connecting the two
partitions, the cut cost is computed as a fraction of the total edge connections to
all the nodes in the graph. This disassociation measure is called the normalized
cut (Ncut): Ncut(A, B) = cur(A,B)

asso(A,V ) +
cut(A,B)
asso(A,V ) . A and B are two initial sets. The

similar objects grouping algorithm is fully exploited by an eigensolver called the
Lanczos method which speeds up the running time. The degree of dissimilarity
between two pieces can be computed as total weight of the edges that have been
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removed. The two partition criteria in the grouping algorithm is to minimize
the disassociation between the groups and maximize the association within the
group.

The grouping algorithm is summarized as follows:

1. Given a set of features, set up an undirected weight graph G = (V, E).
Computing the weight on each edge, and summarize the information into
W , and D.

2. Solve (D −W )x = λDx for eigenvectors with the smallest eigenvalues.
3. Use the eigenvector with second smallest eigenvalue to bipartition the graph

by finding the splitting point such that Ncut is maximized. Note that Perona
and Freeman [24] use the largest eigenvector.

4. Decide if the current partition should be subdivided by checking the stability
of the cut, and make sure Ncut is below pre-specified value.

5. Recursively repartition the segmented parts if necessary.

6 Numerical Experiments and Evaluation

Experiments on simulated data and real data are carried out to demonstrate the
effectiveness of our algorithm.

Discrete Implementation. To solve the Γ -convergence to the MS functional,
we use a discrete scheme called a cell-centered finite difference from [25, 9]. Fol-
lowing the way of discretization, Eq. (10) is written in a discrete form,

2αvij [(Δx
+f̂ij)2 + (Δy

+f̂ij)2] + β · vij − 1
2ε

− 2βε(Δx
+Δx

−vij + Δy
+Δy

−vij) = 0

where the forward and backward finite difference approximations of the deriva-
tives ∂f̂(x, y)/∂x and ∂f̂(x, y)/∂y are denoted by Δx±f̂ij = ±(f̂i±1,j − f̂ij) and
Δy

±f̂ij = ±(f̂i,j±1 − f̂ij). To minimize the column-stack ordering of {vij}, the
system is of form Mv = q, where M is symmetric and sparse matrix and solve the
minimization using the minimal residual algorithm. Let H denote the operator
of convolution of different blur PSFs that are pre-estimated. Using the notation
of [25], let L(v) denote the differential operator L(v)f̂ = −Div(v2∇f̂). Eq. (12)
can be expressed as Ĥ∗(Ĥf̂ − g) + 2αL(v)f̂ = 0. Let A(v)f̂ = Ĥ ∗ f̂ + 2αL(v)f̂ ,
we get A(v)f̂ = Ĥ∗ĝ. f̂ is iteratively determined. To obtain f̂n+1, a correc-
tion term d̂n is added to the current value f̂n : f̂n+1 = f̂n + dn × dn is
estimated by A(v)dn = Ĥ∗g − A(v)f̂n via the convergent descent method.
Three outputs of gradient edges v, the restored image f̂ and the estimated PSF
can be achieved after the convergent optimization in the embedded alternate
minimization.

Choosing Parameters for Regularization. The choice of regularization pa-
rameters is crucial due to the scale problem between the image and the PSF.
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(a) (b)

(c) (d)

Fig. 3. (a)Original image. (b) Motion blur with 20dB Gaussian noise. (c)Restoration
using iterative L2 norm regularization. (d) Restoration using MS regularization.

Several papers have addressed the problem of estimating the optimal parame-
ters [19, 21, 14]. We use L-curve [26] due to its robustness for correlated noise.
It is a graphical tool for analysis of discrete ill-posed problems in a log-log plot
for all valid parameters using the compromise between minimization of these
quantities. The novelty is that no prior knowledge about the properties of the
noise and the image (other than its ”smoothness”) is necessary, and required
parameters are computed through this approach. There is a relatively general
scale relation between α and γ with respect to the image and the PSF smooth-
ing term. It is formulated as γ/α =

∑
x∈Ω f̂ (x)maxx∈Ω f̂ (x). The order-of-

magnitude of two parameters are given using the normalized local variance of
image and PSF, αi = 0.5/(1 + 103var(f(i)), γi = 106/(1 + 103var(h(i)) and
δi = 106/(1 + 103var(d(i)), where d = ĥ − ĥf . However, our simulating tests
have shown that blind restoration quality is usually not sensitive to regular-
ization parameters.A meaningful measure called normalized mean square-error
(NMSE) is used to evaluate the performance of the identified blur. NMSE =
(
∑

x

∑
y (h(x, y)− ĥ(x, y))2)1/2/(

∑
x

∑
y h(x, y)).

Blur Identification and Image Restoration for Degraded Images. In the
first experiment, we have compared the results of image restoration using the
weighted L2 norm regularization and the extended MS regularization. The para-
meters in the Mumford-Shah functional are tuned for the best performance



Extended Mumford-Shah Regularization in Bayesian Estimation 155

(a) (b)

Fig. 4. Estimated PSFs based on the solution space. (a) A random initial PSF. (b)
The estimated PSF with parameter adjustment during the iteration.

(a) (b) (c) (d) 

Fig. 5. (a) A blurred walking man. (b) the computed gradient edge map from MS. (c)
Cropped blurred part. (d) Restored result.

α = 10−4, β = 10−8, ε = 10−3 with an estimated PSF from the regularized.
From the results, we can observe that the results from Mumford-Shah functional
is sharper and less ringing artifacts comparing with the weighted L2 norm regular-
ization using the same estimated PSF in Fig. 3. It highlights that the restoration
of the extended MS regularization is towards edge-preserving restoration.

The second experiment has been tested on a real video sequence, shown in
Fig. 5. During the embedded alternate minimization, the PSF for Fig. 5 (c) can
be estimated using the suggested method shown in Fig. 4. The PSF in Fig. 4(a)
is a random initial PSF value. The PSF in Fig. 4(b) is estimated based on prior
PSF solution space and is adjusted using parametric structures of the selected
PSF model. The noise is eliminated gradually using some low pass filters. The
blur kernel is devised to model the computed blur with parametric optimization
for the estimated PSF. The estimated PSF in Fig. 4(b) is a linear motion blur
with certain support size. In Fig. 6, the blur identification and image restoration
are illustrated. The PSF is optimized in the embedded alternating minimization.
From the PSF profile, we can easily observe that some noise is still influencing the
PSF in the pixel level. The degraded video frame is separated into RGB colour
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(a) (b)

Fig. 6. Rstoration of Blurred video frame. (a) Restored result. (b) Estimated PSF.

channels and each channel is processed accordingly. Based on the estimated PSFs
and regularization parameters, piecewise smooth and accurate PSF model helps
to recover the blurred objects.

Segmentation of Partially-Blurred, Noisy Image Regions and Objects.
Segmentation of a blurred, noisy video sequence has good performance using the
suggested method shown in Fig. 7. In Fig. 7(a), cluttered background objects

(a)

(b)

Fig. 7. Segmentation blurred and unblurred foreground objects in (a) and (b)
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with stronger gradients do not influence the segmentation of blurred foreground
objects with unstable and lower gradients. Fig. 7(b) shows unblurred foreground
regions or objects segmented from blurred background. The MS functional can
achieve accurate edge detection, v is initialized as 1, the edges are computed after
a few iterations. These detected edges with different strengths of gradients are
grouped via the extended graph-grouping and partitioning method with a global
segmentation criterion (normalized cuts) into numerical groups. The segmenta-
tion result is labeled and color filled following the partitioned regions. However,
the graph partitioning method for image segmentation needs more memory space
and computation intensively.

7 Conclusions

This paper validates the hypothesis that the challenging tasks of blind image
deconvolution and segmentation are implementable and demonstrated in the
suggested approach. Blind image deconvolution is one kind of ill-posed inverse
problem. Searching for the solution in the largest space is not a good strategy.
A priori knowledge should be used from different viewpoints to improve the so-
lution. Supply of accurate prior information directly to the computation is an
excellent strategy since the approach improves the accuracy of initial value for
the regularization. The Γ -convergence approximated MS regularization is ex-
tended to include cost terms for the estimation of blur kernels. The estimated
PSF is not only based on the Bayesian MAP estimation but also optimized al-
ternately in the extended MS regularization. Three outputs of the estimated
image, the estimated PSF and edge curves are generated simultaneously from
the extended MS functional. Furthermore, a graph spectral partitioning method
is extended to group edges which is derived from the extended MS functional.
These blurred and unblurred regions or objects can then be segmented accurately
with a global segmentation criterion. It is clear that the proposed method is in-
strumental in image restoration and segmentation and can easily be extended in
practical environments.
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Abstract. Our domain of interest is polygonal (and polyhedral) approx-
imation of point sets. Neither the order of data points nor the number
of needed line segments (surface patches) are known. In particular, point
sets can be obtained by laser range scanner mounted on a moving robot
or given as edge pixels/voxels in digital images. Polygonal approximation
of edge pixels can also be interpreted as grouping of edge pixels to parts
of object contours. The presented approach is described in the statistical
framework of Expectation Maximization (EM) and in cognitively moti-
vated geometric framework. We use local support estimation motivated
by human visual perception to evaluate support in data points of EM
components after each EM step. Consequently, we are able to recognize
a locally optimal solution that is not globally optimal, and modify the
number of model components and their parameters. We will show ex-
perimentally that the proposed approach has much stronger global con-
vergence properties than the EM approach. In particular, the proposed
approach is able to converge to a globally optimal solution independent
of the initial number of model components and their initial parameters.

1 Introduction

Expectation Maximization (EM) is a very popular and powerful method that
allows simultaneous estimation of model parameters and assignment of data
points to components of the model. However, EM produces an optimal solution
only if the number of model components is well estimated and the initial values
of model parameters are close to the global optimum. If this is not the case EM
is only guaranteed to produce a locally optimal solution. This is illustrated in
Fig. 1, where (a) shows data points and the initial configuration of two straight
line segments. The number of model components (2 line segments) is correctly
initialized, but their position is not sufficiently close to the global optimum.
Fig. 1(b) shows the final, locally optimal, result obtained by the classical EM
algorithm. Fig. 1(c) shows the globally optimal approximation obtained by the
proposed method on the same input.

Due to the local optimum problem, a correct estimation of the number of
components and the initial parameters of a statistical model is crucial in all EM
applications, and therefore, belongs to one of the most challenging problems in
statistical reasoning. The proposed approach provides a solution to the problem

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 159–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. (a) shows the data points and the initial position of model lines. (b) shows
the optimal approximation of the data points obtained by EM. (c) shows the optimal
approximation result obtained by the proposed method.

of local optimum in EM that is based on cognitively motivated local support
evaluation of EM components. The example shown in Fig. 2 motivates the pro-
posed approach. It is obvious to humans that the approximation in (c) of the
underlying data points is significantly better then the approximation in (a). Ob-
serve the lack of local support in the data points of the middle part of the line
in (a). This observation is the key argument for the proposed extension of EM.
We will evaluate the support in data points of each EM component, and remove
parts of components with insufficient support.

The existing approaches to determine the optimal number of EM components,
of which AIC and BIC (Bayesian Information Criterion), which is equivalent to
MDL (Minimum Description Length) [1], are most known, do not base their
decision on the local support in data points of the model components. They
assume only a fix cost per each model parameter. In particular, this means that
a model component with high data support (i.e., positioned in a data region
with high point density) costs the same as a component with low data support
(i.e., positioned in a regions with low density of data points) although it is
intuitively clear that a component with low data support is far less relevant
than a component with large data support.

AIC, BIC, and MDL require separate EM runs until convergence for all pos-
sible number of model components, each run composed of several EM iterations,
which may even be in the order of several thousands. For AIC, BIC, and MDL
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Fig. 2. It is obvious to us that the approximation in (c) of the underlying data points
is significantly better then the approximation in (a). (a) shows the best possible ap-
proximation of the data points obtained by EM. (b) illustrates the line split (LS) based
on subsegment removal. The removed subsegments are marked with crosses. (c) shows
the final approximation result obtained by EM after the split.

to be successful, it is implicitly assumed that EM converges to global optimum
in each run. However, as illustrated in Fig. 1(b) this is not always the case, since
even with a correct number of components EM may get stuck in local minimum.
Therefore, the correct number of two model components would not be selected by
AIC, BIC, or MDL in our example. By locally evaluating the support in the data
points of the two lines in Fig. 1(b), we can clearly determine that they form a bad
approximation of the data points. By removing most of their parts, and retain-
ing only small parts around the data points, we create a better input for the EM
algorithm. This finally leads to a globally optimal approximation in Fig. 1(c).

The proposed approach provides a solution to the problem of local optimum
in EM by adding two new steps that are well integrated with the standard E
and M steps of EM. The two new steps are geometrically motivated and can
be interpreted as split and merge steps in the context of line fitting. However,
the proposed extension of EM is not restricted to any particular shape of model
components. In the first new step, the split step, the model components obtained
by a previous EM iteration are examined for support of the data points. The
main idea (illustrated by the above example) is that higher point density around
a model component (line segment in our application) indicates a presence of a
linear structure in the data points around the segment. Parts of the segment that
do not have sufficient support are removed. This may lead to segment removal
but generally leads to a split of the segment into several subsegments. The second
new step is merging similar model components. It prevents generating statistical
models that overfit the data, i.e., fit noise in the data. This step requires a
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similarity measure of statistical model components. The merging step can be
interpreted as perceptual grouping that dates back to the first results of Gestalt
psychology in the beginning of 20th century [2].

We will show that integrating the split and merge operations in the EM frame-
work leads to a globally optimal solution. In our experiments, we were able to
obtain a globally optimal solution after just a few iterations (between 5 and 30).
Two example applications of our approach are outlined in Fig. 3. (a) shows an
original input toy image. (b) shows the edges obtained by Canny edge detector
with a substantial amount of added noise, and the initial model for our algo-
rithm. It consists of only two line segments. (c) shows an intermediate step of
our algorithm. The final polygonal approximation obtained after 27 iterations is
shown in (d). (e) shows an image obtained by sampling 3 ground truth segments
(150 points) with a substantial amount of noise (2000 points). (f) shows the ini-
tial model segments for our algorithm. We present the results of our algorithm
after 8 in (g) and 19 iterations in (h).

An overview of techniques for polygonal approximations of curves (when the
order of data points is known), which have been studied at least since early
seventies in computer vision, can be found in [3]. To some popular greed polyg-
onal approximation methods in digital images belong [4] and [5, 6]. An overview
of approaches to obtain polygonal maps from laser range data can be found
in [7, 8].

We do not make any assumptions about the order of data points and extent
of noise. The proposed method avoids the problem of a locally optimal solution
and produces stable approximations not only to straight but also to curved lines.
Moreover, the final number of fitted line segments depends on extent of noise.
This means that the number of model components is adjusted to achieve the
best possible approximation accuracy as the function of noise extent.

In order to show that the geometric and cognitively motivated split and merge
steps can be incorporated into a statistical formalism, we introduce in Section 2
a new target function to be estimated in the EM framework, and reformulate the
E and M steps in Section 3. Then we introduce statistical tests for the proposed
split and merge steps in Section 4. Finally in Section 5, we describe the geometric
parts of the split and merge steps.

2 Optimizing Kullback-Leibler Divergence

Our goal is to approximate the ground-truth density q(x) with a member pΘ(x)
of a parametric family {pΘ(x) : Θ ∈ S} of densities. We use Kullback-Leibler
divergence (KLD) to measure dissimilarity between the ground-truth and para-
metric family of densities. By definition, the KLD between the ground truth q(x)
and the density, pΘ(x) is:

D(q(x)||pΘ(x)) =
∫

log
q(x)

pΘ(x)
q(x)dx

=
∫

log q(x)q(x)dx −
∫

log pΘ(x)q(x)dx (1)



Polygonal Approximation of Point Sets 163

Fig. 3. (a) An original input image. (b) The edges obtained by Canny edge detector,
and two initial line segments. (c) We see the polygonal approximation of the edge
pixels obtained after (d) The final polygonal approximation obtained after 27 iterations
is shown in (e)-(g) Illustrate our approach on simulated data generated by 3 ground
truth segments with only 150 signal and 2000 noise points.

Observe that KLD is able to determine the optimal number of model components
of pΘ. This is due to the fact that KLD D(q||pΘ), viewed as a functional on the
space

{
pΘ

}
of Gaussian mixtures, is convex and hence has a unique minimum.

It can be easily derived that the parameters Θ̂ minimizing (1) are given by

Θ̂ = argmaxΘ

{ ∫
log pΘ(x)q(x)dx

}
(2)

We obtain the classical maximum likelihood estimator by applying the MC
(Monte Carlo) integral estimator to (2) under the assumption that the obser-
vations x1, ..., xn are i.i.d. (independently and identically distributed) sample
points selected from the distribution q(x).

Θ̂ = argmaxΘ

∑
i

log pΘ(xi) (3)
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However, as we derive below (equation (6)), if some proportion of the observa-
tions x1, ..., xn are noisy, a more accurate estimator of Θ in (2) is given by:

Θ̂ = argmaxθ

∑
i

log pθ(xi)sdd(xi), (4)

where sdd is called the smoothed data density and is defined in (7) below.
Equation (4) is the basis of the proposed approach. We demonstrate theoret-

ically and experimentally that maximization in (4) yields substantially better
results than the classical EM maximization in (3). To demonstrate the signif-
icance of (4), we consider the problem of estimating the optimal number of
model components by minimizing the KLD D(q(x)||pΘ(x)) in Θ. The paramet-
ric family

{
pΘ(x)

}
, being a family of Gaussian mixture distributions, is convex.

It follows that there is a unique member pΘ(x) of the Gaussian mixture family
with minimum KLD from q. This minimizing mixture must have the correct
number of model components. However, it is well known that (3) cannot be used
to estimate the correct number of model components, since (3) increases when
the number of model components increases. In contrast, we are able to deter-
mine the correct number of model components when using (4) to estimate the
KLD, D(q(x)||pΘ(x)). Thus, the modified EM algorithm that maximizes (4) is
not only able to estimate model parameters but also the right number of model
components.

One of the key steps in the derivation of (4) is the Monte Carlo (MC) estimate
of the integral given by the right hand side of equation (1). Let x1, . . . , xn be
i.i.d. sample points drown from the probability density function (pdf) q(x). Then
we can approximate the integral of a continuous function f by its MC estimate:∫

f(x)q(x)dx ≈ 1
n

∑
i

f(xi) (5)

In the usual approach to inference, it is a commonly accepted assumption that
sample data points x1, . . . , xn are distributed according to the (estimated) den-
sity q(x). This assumption is the key to insuring that maximum likelihood esti-
mators are appropriate for purposes of estimating parameters of interest. How-
ever, in all real applications, the sample data points are corrupted by a certain
amount of noise. Usually the proportion of noisy points does not decrease when
the number of sample points is increased. Due to the noise, the following equation
provides a substantially better estimate∫

f(x)q(x)dx ≈
∑

i

f(xi)sdd(xi). (6)

Finally equation (4) clearly follows from (6) and (2).
The smoothed data density sdd is defined as

sdd(x) ∝
n∑

i=1

K(
d(x, xi)

h
) =

1
nh

n∑
i=1

G(d(x, xi), 0, h), (7)
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where proportionality refers to the fact that
∑

sdd(xi) = 1, d(x, y) is the Euclid-
ean distance, and G(d(x, y), 0, h) is a Gaussian with mean zero and the standard
deviation (std) h. An intuitive motivation for sdd is as follows:

– If a given data point xj is sampled from the true distribution q(x), then xj

lies in a dense region of the observed sample points and consequently sdd(xj)
is large.

– If a given data point xj is sampled from the noise distribution, then xj is
likely to lie in a sparse region of the sample space, and consequently sdd(xj)
is small.

To estimate the bandwidth parameter h, we can draw from a large literature on
nonparametric density estimation [9, 10]. As we show in the presented experi-
mental results, an accurate bandwidth estimation in not crucial in our approach.

3 E and M Steps

We introduce latent variables z1, ..., zn which serve to properly label the respec-
tive data points x1, ..., xn. It is assumed that the pairs (xi, zi) for i = 1, . . . , n are
i.i.d. with common (unknown) joint (ground truth) density, q(x, z) = q(x)q(z|x);
q(x) is the marginal x-density and q(z|x) is the conditional density of the label z
given x. In this new framework, the KLD between the joint density q(x, z) and
a parametric counterpart density pΘ(x, z) is

D(q(x, z)‖pΘ(x, z)) = D(q(x)q(z|x)‖pΘ(x)pΘ(z|x))

=
∫

x

∫
z

{
log
[

q(x)
pΘ(x)

]
+ log

[
q(z|x)

pΘ(z|x)

]}
q(x)q(z|x)dzdx

=
∫

x

log
[

q(x)
pΘ(x)

]
q(x)dx +

∫
x

q(x)
∫

z

log
[

q(z|x)
pΘ(z|x)

]
q(z|x)dz (8)

We are now ready to introduce the expectation (E) and maximization (M)
steps. Both steps aim at minimizing the same target function (8) in our frame-
work. The expectation step yields the standard EM formula; considerations dis-
cussed above lead to a different solution for the maximization step.

Expectation Step: For a fixed set of parameters Θ, we want to find a condi-
tional density q(z|x) that minimizes D(q(x, z)||pΘ(x, z)). Since KLD is always
nonnegative, and the second summand in (8) is minimized for q(z|x) = pΘ(z|x)
(in which case it is equal to zero), we obtain from (8) that

q(z|x) = pΘ(z|x) minimizes D(q(x, z)||pΘ(x, z)).

In particular, for given sample points x1, . . . , xn, we obtain

q(zi = l|xi) = pΘ(zi = l|xi) = p(zi = l|xi, Θ) (9)

=
p(xi|zi = l, Θ)p(zi = l|Θ)

p(xi|Θ)
(10)

=
p(xi|zi = l, Θ)p(zi = l|Θ)∑k

j=1 p(xi|zi = j, Θ)p(zi = j|Θ)
=

p(xi|zi = l, Θ)πl∑k
j=1 p(xi|zi = j, Θ)πj

, (11)
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where πl = p(zi = l|Θ) and πj = p(zi = j|Θ) are the prior probabilities of
component labels l and j correspondingly.

Maximization Step: For the fixed marginal distribution q(z|x) = pΘ(z|x), we
want to find a set of parameters Θ that maximizes (8). Substituting q(z|x) =
pΘ(z|x) in (8), we obtain

D(q(x, z)||pΘ(x, z)) =
∫

log(
q(x)

pΘ(x)
)q(x)dx = D(q(x)||pΘ(x)) (12)

Thus, minimizing D(q(x, z)||pΘ(x, z)) in Θ is equivalent to minimizing D(q(x)||
pΘ(x)) in Θ. Using the estimate derived in equation (4), minimizing (12) in Θ
is equivalent (in the MC setting discussed above) to maximizing the weighted
marginal density

WM(Θ) =
∑

sdd(xi) log pΘ(xi) =
∑

sdd(xi) log p(xi|Θ)

=
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)p(zi = l|Θ)]

=
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)πl] (13)

where πl = p(zi = l|Θ) are the prior probabilities of component labels l =
1, . . . , k.

Now we explicitly use the incremental update steps of the EM framework.
Using the prior probabilities of component labels π

(t)
l = p(zi = l|Θ(t)) obtained

at stage t for l = 1, ..., k, we obtain from (13) that an update of WM(Θ) is
estimated by maximizing

WM(Θ; Θ(t)) =
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)π(t)
l ] (14)

in Θ with Θ(t) denoting the value of Θ computed at stage t of the algorithm.
The crucial difference between this and the standard EM update is that our

target function is weighted with terms sdd(xi). We note that the known con-
vergence proofs for the EM algorithm apply in our framework, since adding the
weights sdd(xi) in (14) does not influence the convergence.

4 Split and Merge

The proposed split and merge steps adjust the number of model components by
performing compnent split and merge steps only if they increase the value of
our target function (14). Our framework is very general in that it allows many
possible selections of the candidate components for the split and merge steps.
We present specific selection methods of the candidate components in Section 5.
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They are based on a Maximum A Posteriori principle. In the following formulas,
we assume that the candidate components are given.

Split: Assume that we are given two candidate model components l1, l2; we
consider replacing the model component l with components l1, l2. Since our goal
is maximizing QM(Θ; Θ(t)) in formula (14), we simply need to check whether
replacing l with l1, l2 increases WM , where j ∈ {1, . . . , k}:

WM(Θ; Θ(t)) =
n∑

i=1

sdd(xi) log[
∑

j

p(xi|zi = j, Θ)π(t)
j ]

<
n∑

i=1

sdd(xi) log[
∑
j �=l

p(xi|zi = l, Θ)π(t)
l

+ p(xi|zi = l1, Θ)π(t)
l1

+ p(xi|zi = l2, Θ)π(t)
l2

] (15)

We only need to perform ’local’ computation to perform this test, i.e., we only
need to compute the corresponding probabilities for the candidate components
l1, l2, subject to the condition that π

(t)
l = π

(t)
l1

+ π
(t)
l2

. The parameters are esti-
mated following the sparse EM step in Neal and Hinton [11], (see equation (15)).
In accordance with the results of [11] this local computation guarantees that the
target function increases after each iteration (if (15) holds). Convergence is also
guaranteed in this way.

Merge: Given a candidate component l, we merge two existing model compo-
nents l1, l2 to l if for j ∈ {1, . . . , k}

WM(Θ; Θ(t)) =
n∑

i=1

sdd(xi) log[
∑

j

p(xi|zi = j, Θ)π(t)
j ]

>

n∑
i=1

sdd(xi) log[
∑
j �=l

p(xi|zi = l, Θ)π(t)
l

+ p(xi|zi = l1, Θ)π(t)
l1

+ p(xi|zi = l2, Θ)π(t)
l2

] (16)

Again we only need to perform ’local’ computations to perform this test. For
merge, we only need to compute the corresponding probabilities for the candidate
component l, subject to the same constraint π

(t)
l = π

(t)
l1

+ π
(t)
l2

. If (16) holds and
we replace l1, l2 with l, the convergence of our algorithm follows from the results
of [11].

We note that the proposed split and merge steps do not work in the clas-
sical EM framework. To see this, consider sdd(xi) = 1 for all the data points
(i = 1, . . . , n). The merge inequality (16) is not satisfied even if the ground truth
model is assumed to be a single component, since multiple components can better
fit the data, and consequently have a larger log likelihood value. Analogously, if
the split inequality (15) holds for a reasonable selection of candidate component
models, the classical EM framework incorrectly splits ground truth components.
Thus, a mixture model of larger number of components is always prefered in
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the classical EM framework. In the proposed framework, sdd represents an esti-
mated density of the data points. Consequently, in the proposed split and merge
steps, the divergence of parametric components l, l1, l2 from the ground truth is
evaluated with respect to this nonparametric density.

5 Line Segments as Components

We present specific details concerning our use of line segments as EM model
components in the applications presented below. We stress that this section
applies also to hyper planes in any dimensions, but the presentation is given in
terms of line segments for purposes of simplification.

The proposed approach requires a minor extension of EM line fitting to work
with line segments, which we will call Expectation Maximization Segment Fitting
(EMSF). The difference between EMSF and EM line fitting is that our model
components are line segments (rather than lines). The input, for our model, is a
set of line segments and a set of data points. As with EM the proposed EMSF
is composed of two steps:

(1) E-step. The EM probabilities are computed based on the distances of points
to line segments instead of the distances of points to lines.

(2) M-step. Given the probabilities computed in the E-step, the new positions
of the lines are computed by minimizing squared regression error weighted
with these probabilities.

As in the case of EM line fitting, the output of the M-step is a new set of lines
(not line segments). Since we need line segments as input to the E-step, we trim
lines to line segment based on their support in the sample data. This is done by
the split process described in Section 5.2.

Now we describe the specific details related to line segments for steps (1) and
(2). In order to derive the solution of (14) for EM model components being line
segments, we introduce so called EM weights. In the classical EM, the weight
w

(t)
il = p(zi = l|xi, Θ

(t)) represents the probability that xi corresponds to seg-
ment sl for l = 1, . . . , k. We use the notation θl for the parameters of the line
segment sl itself. In our framework

w
(t)
il ∝ sdd(t)(xi) · p(zi = l|xi, Θ

(t)), (17)

and the weights are normalized so that
∑k

l=1 w
(t)
il = 1 for each i. After the E-

step associated with the t’th iteration is accomplished, we obtain a new matrix
(w(t)

il ). Intuitively, each row i = 1, ..., n of this matrix corresponds to weighted
probabilities that the data point xi is associated with the corresponding line
segments; each column l = 1, ..., k can be viewed as weights representing the
influence of each point on the computation of new line positions in the M-step.
Below, we use the notation xi = (xix, xiy) with (i = 1, ..., n) for the coordinates
of the observed data points, and (x̄, ȳ) for the coordinate averages. The line Ll,
constructed below, is constructed to go through the point (x̄, ȳ). To obtain the
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solution of (14), we perform an orthogonal regression weighted with the matrix
(wil). The solution is given as the normal vector to line Ll, which is the vector
corresponding to the smallest eigenvalue of the matrix Ml defined as[∑n

i=1 wil(xix − x̄)2
∑n

i=1 wil(xix − x̄)(xiy − ȳ)∑n
i=1 wil(xix − x̄)(xiy − ȳ)

∑n
i=1 wil(xiy − ȳ)2

]
(18)

Finally the parameters θ
(t+1)
l are given as parameters of the line segment s

(t+1)
l

obtained by trimming the line Ll to the data points.
We are now ready to introduce particular realization of split and merge for

EM model components being line segments. The proposed split and merge EM
segment fitting (SMEMSF) algorithm iterates the following three steps

(1) EMSF (2) Split (3) Merge

Split step is presented in detail in Section 5.2 while Merge step is described in
Section 5.1. Split evaluates the support in the data points of lines obtained by
EMSF and removes the parts that are weakly supported. Since we have a finite
set of data points, this has the effect of trimming the lines to line segments.
Finally the merge step merges similar line segments. Thus, split and merge steps
adjust the number of model components to better fit the data.

5.1 Merging

If inequality (16) holds, we merge two model components represented by para-
meters l1, l2 into one model componet given by parameter l. While components
l1, l2 are present at step t (they are line segments sl1 , sl2), we did not yet spec-
ify hot to compute the candidate component l. Now we describe a particular
method to generate a candidate component l in the particular case in which the
model components are line segments. We stress that other methods are possible
and that inequality (16) applies to them too.

A support set S(sj) for a given line segment sj (model component l) is de-
fined as set of points whose probability of supporting segment sj is the largest,
i.e.,

S(sj) = {xi : wij = max(wi1, . . . , wik)}.
This maps each data point to a unique segment using the Maximum A Posteriori
principle. Given two line segments sl1 , sl2 , the merged segment sl is obtained by
trimming the straight line obtained by regression on data points in S(sl1)∪S(sl2).
Trimming is performed by line split described in Section 5.2.

5.2 Line Split (LS)

A classical case of EM local optimum problem is illustrated in Fig. 2(a), where
the line segment is in a locally optimal position. Clearly, the problem here is that
we have a model consisting of one line only, while two line segments are needed.
Fig. 2(b) illustrates a split operation described in this section. It is based on
removal of subsegments that do not have sufficient support in the data points.
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As the result we obtain two line segments. Finally, Fig. 2(c) shows the globally
optimal approximation of the data points obtained by EM applied to the two
segments.

The main idea is that higher point density along a segment indicates a presence
of a linear structure in the data points around the segment. Each line or line
segment is examined on having sufficient support in data points measured as
point density around it. Only parts of segments that have sufficient support of
the data points remain. This leads to split of existing lines or segments allowing
us to adjust the number of the line segments (i.e., the number of EM model
components) to better fit the input data points.

In [12] the number of points in discretely enumerated rectangular strips (e.g.,
neighborhoods of all possible segments with endpoints in some finite set) is
counted. Then signal strips are selected based on the ratio of the number of
points to the area. Then strips are grouped to polylines based on proximity of
their endpoints and their angles. The main difference of our approach to the
approach in [12] is that we do not select the signal segments, but evaluate the
existing structures selected by EM. This makes our computation more efficient,
since we do not need to numerate all possible strips, and more accurate, since
the line segments are optimally fitted to the data points in our approach.

Line Split (LS) is composed of the following steps:

(2.1) Subsegment support computation.
(2.2) Removal of subsegments with insufficient support that satisfy inequality

(15).

The input to LS are segments s1, . . . , sk obtained by clipping the lines l1, . . . , lk
created in EMSF to the image rectangle. We divide each segment sj ∈ {s1, . . . , sk}
into subsegments of a predefined length 2r, i.e., sj = Ij

1 ∪ . . . ∪ Ij
l , so that two

consecutive subsegments overlap in their common endpoint, where l is the number
of subsegments. (For simplicity we assume that the length of sj is exactly multiple
of 2r.) For each subsegment Ij

k, we define its support as the number of data points
in the square S(Ij

k) whose two sides are parallel to subsegment Ij
k and whose center

is contained in Ij
k, i.e.,

support(Ij
k) = #({xi} ∩ S(Ij

k)).

A few such squares are illustrated in Fig. 2(b).
In each iteration a support threshold C is computed from the statistics of

support(Ij
k) values over all subsegments of all line segments. Finally subseg-

ments Ij
k with support(Ij

k) ≤ C are removed. The subsegments to be removed
are marked with crosses in Fig. 2(b). New segments are created as connected
components of remaining subsegments of segment sj . If inequality (15) holds,
then the original input segment sj is removed, and the newly created segments
are added to the list of original segments for the next iteration of EMSF. If all
its subsegments are removed, then a given segment is removed.
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6 Applications

Two examples of approximations of point sets in digital images are illustrated
in Fig. 3. An example application of our approach in robot mapping is outlined
in Fig. 4. (a) shows an original data set of laser range scan points aligned with
the algorithm presented in [13]. The original set is composed of 395 scans, each
with 361 points. Thus, the original input map is composed of 142,595 points.
We initialize our algorithm with 192 segments, the grid segments, as model com-
ponents. (b) shows the output with 96 segments after the first iteration of our
algorithm. The final polygonal map in (c), obtained after 6 iterations, is com-
posed of 86 segments, i.e., of 172 points. Thus, the proposed approach yields the
data compression ratio of 829:1. The mean distance of scan points to the closest
line segments is 3.5cm. We selected this map, since it contains surfaces of curved
objects. The obtained polylines in (c) illustrate that the proposed approach is

(a) (b) (c)

Fig. 4. (a) An original outdoor map is composed of 142,595 scan points obtained during
the Rescue Robot Camp in Rome, 2004. We begin the approximation process with 192
line segments that form the grid. (b) shows the output after the first iteration of our
algorithm with 96 segments. (c) The final polygonal map obtained after 6 iterations
is composed of only 86 segments. The obtained compression rate is 829:1, and the
approximation accuracy is 3.5cm.

(a) (b)

Fig. 5. (a) An input surface with 744,450 sample points. (b) Approximation with 27
planar patches.
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well suited to approximate linear as well as curved surfaces. For more details on
the application of the proposed method in robot mapping see [14].

Examples illustrating fitting planar patches to 3D range data are given in [15].
Here we show only one example in Fig. 5. Fig. 5(a) shows a 3D projection of the
surface of some industrial part composed of 744,450 laser range scan points, ob-
tained from http://edge.cs.drexel.edu/Dmitriy/Scanned.tar.gz. Fig. 5(b)
shows our approximation with 27 planar patches. The mean distance of each
point to the closest surface patch is 0.49 with the original object size of 100×
90× 100.

7 Conclusions

The combination of Expectation Maximization Segment Fitting with alternat-
ing Segment Splitting and Merging was proven to be a powerful tool to gain a
polyline representation of edge points in digital images, leading to a geometri-
cally higher representation and an excellent data compression rate. The newly
introduced, perceptual grouping based merging step balances the number of seg-
ments, created by partitioning and splitting, in a visually natural way and there-
fore allows for the number of starting segments for the EM step to be imprecise.
The extended EM algorithm is proven to yield globally optimal results.
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Abstract. A new efficient standard discrete line recognition method
is presented. This algorithm incrementally computes in linear time all
straight lines which cross a given set of pixels. Moreover, pixels can be
considered in any order and do not need to be connected. A new invert-
ible 2D discrete curve reconstruction algorithm based on the proposed
recognition method completes this paper. This algorithm computes a
polygonal line so that its standard digitization is equal to the discrete
curve. These two methods are based on the definition of a new general-
ized preimage and the framework is the discrete analytical geometry.

1 Introduction

Several methods such as Marching Squares based methods (equivalent to the
3D Marching Cubes [1]) can be used to perform 2D discrete curve reconstruc-
tion. Another approach, called discrete analytical reconstruction, can also be
considered. This method is composed of two steps: the discrete analytical line
segment recognition and the curve polygonalization. The recognition step con-
sists in determining if a set of pixels belongs to a same discrete line and the
polygonalization one consists in replacing each recognized discrete segment by a
Euclidean straight line segment in order to obtain a polygonal line. In this paper,
we are interested in invertible 4-connected curve reconstruction methods (i.e. the
digitization of the reconstructed object is equal to the original discrete curve).

Many discrete line recognition algorithms have been proposed in the last
decades, mostly to recognize 8-connected discrete lines (see [2] for an overview on
these methods). These algorithms can however be used to recognize 4-connected
lines since 8-connected lines can be transformed into 4-connected ones and vice
versa using shear transforms [3]. In [4], Debled-Rennesson et al. proposed a lin-
ear algorithm which provides at the end of the recognition process the analytical
equation of only one corresponding discrete line. This being very restrictive,
algorithms based on the notion of preimage, introduced by Dorst and Smeul-
ders [5], have been proposed. These algorithms determine from a set of pixels
the set of Euclidean straight lines the digitization of which contains the given
pixels. These lines are deduced from the computation of the preimage of the
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pixels which is the line set representation in a parameter space (see Sec. 2.2).
A drawback of these algorithms is that they assume that pixels are located in
the first octant. Several preimage computation algorithms have been proposed
[6, 7], with a minimal complexity of O(n log2(n)) for unconnected pixels, where
n denotes the number of given pixels.

In this paper, we define the generalized preimage of a given set of pixels. The
main difference between this definition and the preimage definition is that we
make no assumption about the pixel locations. We then propose a new standard
discrete line recognition algorithm based on this definition which computes the
generalized preimage of a pixel set in linear time.

In the second part of this work, we present a new invertible 4-connected dis-
crete curve reconstruction algorithm. In [8] the authors proposed a reconstruc-
tion method using a preimage based recognition algorithm [6]. The principle
of this method is that for each recognized discrete segment, a straight line is
chosen in the set of all possible solutions provided by the recognition algorithm
(see Fig. 1a and 1b). However, the problem arising from this method is that
the different lines can intersect outside the discrete line segments losing the re-
versibility property (see Fig. 1c). To avoid that, patches (small line segments)
are added (see Fig. 1d).

(a) (b) (c) (d)

Fig. 1. Example of reconstruction ’with patches’. (a) Solution line set (in dark grey)
computed for the recognized discrete segment. (b) Line choice. (c) Result of the recog-
nition process. (d) Curve obtained after patches additions.

In [3] the authors proposed a way of reconstructing a discrete 4-connected
curve without patches. The discrete segment recognition process is now con-
strained by a fixed point (see Fig. 2a and 2b) in order to force the first extremity
of the reconstructed segment to lie inside the discrete curve, and then ensure the
reversibility property. The advantage of this method is that no post-processing
is needed, but the number of reconstructed segments is often greater than this
obtained with the previous algorithm (see Fig. 2c).

The method that we propose in this article for reconstructing 2D 4-connected
discrete curves is composed of a recognition and a polygonalization step. The
principle of the recognition step is to constrain the discrete segment recognition
by all points which are reached by the line set computed for the previous rec-
ognized segment. The recognition is thus less constrained than for the method
without patches since the constraint of a fixed extremity for each straight line
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(a) (b) (c)

Fig. 2. Example of reconstruction ’without patches’. (a) All straight lines which cross
the fixed point (in dark grey). (b) Solution line and next fixed point choices. (c) Result.

segment is relaxed. The polygonalization step works basically as follows: a point
is fixed in the last recognized pixel, and a line is chosen in the solution set com-
puted during the recognition step. Then, a straight line segment replaces the
discrete one, and another point is chosen in the pixel extremity. And so on until
the first pixel of the curve is reached (see Fig. 10).

In the next section, we give some useful recalls and definitions. Then, in
Sections 3 and 4, we present our discrete line recognition algorithm and describe
our discrete curve reconstruction method. We conclude in Section 5.

2 Definitions

In this section, we first give some recalls on the standard digitization model.
Then, we present the parameter space we used in this work.

2.1 The Standard Analytical Model

The standard model [9] is a discrete analytical model, defined in any dimension,
which allows in 2D the 4-connected digitization of any linear connected subset
of R2. A standard line (see Fig. 3) is defined analytically as follows:

Definition 1 (2D Standard Line). The standard line with parameters
(a, b, c) ∈ R3 is the set of points (x, y) ∈ Z2 (also called discrete points) ver-
ifying −ω ≤ ax + by + c < ω where ω = |a|+|b|

2 and a > 0, or a = 0 and b > 0.

Remark 1. The standard digitization of a line also consists in all pixels (unit-size
squares centered on discrete points) which are cut by the line, except when the
line crosses a pixel vertex (see Fig. 3). In this case, only two or three pixels of
the four adjacent ones belong to the digitization. This is due to the fact that
one inequality in the standard line definition is strict.

Let O be a subset of R2 and St(O) be its standard digitization. Then,
St(O1 ∩O2) ⊆ St(O1) ∩ St(O2) and St(O1 ∪ O2) = St(O1) ∪ St(O2) (see [9] for
more details).
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y

x

3 x − 7 y = 0

Fig. 3. The standard line with parameters (3, −7, 0)

2.2 Parameter Space

The notion of duality, and especially parameter spaces, is often used in image
processing. For instance, the well known Hough transform (see [10] for a review
on existing variations of this method) which is a very efficient tool used to
recognize parametric shapes in an image, is performed in a parameter space.

Definition and Properties. In this work, we use the parameter space (Oαβ) ⊂
R2 where a point (a, b) stands for a straight line with equation y = ax+ b in the
classical Euclidean space (Oxy). In the same way, a point (x, y) in the Euclidean
space maps to the line with equation β = −xα + y in the parameter space. In
the following, if O is a subset of R2 in the Euclidean or parameter space, we
denote by Dual(O) the corresponding object (or dual object) in the other space.
Let O1 and O2 be two subsets of R2. The following properties can be deduced
from our definition of the duality: Dual(O1 ∩O2) ⊆ Dual(O1) ∩Dual(O2) and
Dual(O1 ∪O2) = Dual(O1) ∪Dual(O2).

Remark 2. Let p ∈ R2 be a point. The dual of each point which lies in Dual(p)
is a line which crosses p (see Fig. 4a).

Dual of a Convex Polygon. Before we present our recognition algorithm, we
need to define the dual of a convex polygon.

Definition 2 (Positive and Negative Extrusions). Let p = (xp, yp) ∈ R2

be a point. The positive extrusion of p is defined by:

p+ = {p′ = (xp′ , yp′) ∈ R2|xp = xp′ and yp ≤ yp′}.

In the same way, the negative extrusion of p is defined by:

p− = {p′ = (xp′ , yp′) ∈ R2|xp = xp′ and yp ≥ yp′}.

Note that if O1 and O2 are two subsets of R2, then (O1 ∪O2)+ = O+
1 ∪O+

2 and
(O1 ∪ O2)− = O−

1 ∪ O−
2 . Moreover, let p ∈ R2 be a point. Then, Dual(p)+ =

Dual(p+), and Dual(p)− = Dual(p−). This property is illustrated in Fig. 4b.
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1

β

4 α
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p

x

β

α

Dual(p)

(a) (b)

Fig. 4. Dual objects. (a) Some properties. (b) Positive extrusion of a point and its dual
object: a half-space.

Let Pc ⊂ R2 be a convex polygon and pi = (xpi , ypi) ∈ R2, 1 ≤ i ≤ k, its
k vertices. We assume that p1 is the vertex with the lowest abscissa and the
lowest ordinate, and that the vertices are ordered on the border of Pc in the
counter clockwise, i.e. the border of Pc is the closed polyline (p1, p2, . . . , pk)
(see Fig. 5a).

2 3

   = i2
4 = i3

1

2 3

4
Pc+ 6

5

Pc−

4i1 = 6

1
Pc

5

(a) (b) (c)

Fig. 5. Illustration of the positive and negative extrusions of a convex polygon. (a) A
convex polygon Pc. (b) Pc positive extrusion. (c) Pc negative extrusion.

Let pi1 be the vertex with the lowest abscissa and the highest ordinate. In
the same way, let pi2 (resp. pi3) be the vertex with the highest abscissa and
the lowest (resp. highest) ordinate. Note that p1 (resp. pi2) can be equal to pi1

(resp. pi3). Finally, let p− = {p1, p2, . . . , pi2} and p+ = {pi3 , pi3+1, . . . , pi1} be
two sets of Pc vertices. The dual of a convex polygon can be defined as follows:

Theorem 1 (Dual of a Convex Polygon). Let Pc be a convex polygon, p+
and p− the two point sets defined previously. Then:

Dual(Pc) =

⎡⎣ ⋃
p∈p−

Dual(p)+
⎤⎦ ∩
⎡⎣ ⋃

p∈p+

Dual(p)−
⎤⎦

Proof. We can deduce from Definition 2 that Dual(Pc) = Dual(Pc)+ ∩
Dual(Pc)− = Dual(P+

c ) ∩ Dual(P−
c ). Let us prove that Dual(P+

c ) =⋃
p∈p− Dual(p)+. The proof of Dual(P−

c ) =
⋃

p∈p+
Dual(p)− can be obtained
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in the same way. Let Pl be the polyline (p1, p2, . . . , pi2). Then, P+
c = P+

l =
(
⋃

j∈{1,...,i2−1}[pj, pj+1])+ where [pm, pn] denotes the line segment with end-
points pm and pn. We deduce that P+

c =
⋃

j∈{1,...,i2−1}[pj , pj+1]+ and then
Dual(P+

c ) = Dual(
⋃

j∈{1,...,i2−1}[pj, pj+1]+) =
⋃

j∈{1,...,i2−1} Dual([pj, pj+1]+).

Lemma 1. Let s = [p1, p2] be a line segment in R2. Then,

Dual(s+) = Dual(p1
+) ∪Dual(p2

+)

Proof. Let p ∈ R2 be a point in Dual(s+). Dual(p) is a line which cuts s+. Then,
Dual(p) cuts p+

1 or p+
2 . Indeed, let us process by contradiction and assume that

Dual(p) does not cut neither p+
1 nor p+

2 . Then, Dual(p) passes under p1 and
under p2 and then under s. We deduce that Dual(p) does not cut s+. The
second inclusion Dual(p1

+) ∪Dual(p2
+) ⊂ Dual(s+) is obvious since p1

+ ⊂ s+

and p2
+ ⊂ s+.

By Lemma 1 it follows:

Dual(P+
c ) =

⋃
j∈{1,...,i1−1}

[
Dual(p+

j ) ∪Dual(p+
j+1)

]
=
⋃

p∈p− Dual(p+)

and thus, Dual(P+
c ) =

⋃
p∈p− Dual(p)+.

Theorem 1 allows us to simply compute the dual of a convex polygon from
its vertices. It is a useful property that we will use in the following sections. An
illustration of Theorem 1 is given in Fig. 6.

4

1

2

3
Dual(Pc+) Dual(Pc−)

5

6 6

5

3

44

1

Dual(Pc)

2

(a) (b) (c)

Fig. 6. Dual of the convex polygon Pc shown in Fig. 5a. (a) Dual of the Pc positive
extrusion. (b) Dual of the Pc negative extrusion. (c) Dual of Pc.

3 Standard Line Recognition

In this section, we present our standard line recognition algorithm. The aim is
to determine if a set of pixels belongs or not to a standard discrete line. The
principle of our algorithm is to compute the set of straight lines (if it exists)
which cross the given pixels. Each line in this set is the dual of a point in the
parameter space which lies in a polygon that we call the generalized preimage of
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the pixels. Hence, if the generalized preimage is empty, the set of pixels does not
belong to a standard discrete line, else, it belongs to it. In the following, we first
give the definition of the generalized preimage. Then, we detail our recognition
algorithm, and give some simplifications we can apply on it in order to improve
its complexity.

3.1 The Notion of Generalized Preimage

As said previously, each point in the generalized preimage GP of a pixel set P is
the dual of a straight line which cuts all pixels in P . We define the generalized
preimage of a pixel set as follows:

Definition 3 (Generalized Preimage). Let P = (P1, . . . , Pn) be a set of n
pixels, and let Dual(Pi) be the dual of Pi in the parameter space, 1 ≤ i ≤ n. The
generalized preimage GP of P is defined by:

GP (P) =
n⋂

i=1

Dual(Pi)

Remark 3. The standard digitization of many lines in the dual of the generalized
preimage does not contain the given pixels (see Remark 1). However, we know
that incorrect lines are located on the border of the generalized preimage since
these lines cross pixel vertices. Thus, in order to obtain a correct line, it is
sufficient to choose a point which is not on the generalized preimage border.

3.2 Recognition Algorithm

Let P = {P1, . . . , Pn} be a set of n pixels. The standard line recognition
(see Algo. 1) is simply performed by computing the generalized preimage GP

of P .
First, GP (P1), i.e. the dual of P1, is computed according to the convex polygon

dual definition given by Theorem 1. Then, GP ({P1, P2}) is computed by doing

Algorithm 1. Standard line recognition algorithm
Data: A set P of n pixels P1, . . . , Pn.
begin

GP ←− Dual(P1);
i ←− 2;
while GP �= ∅ and i ≤ n do

GP ←− GP ∩ Dual(Pi);
i ←− i + 1;

if GP �= ∅ then
P belongs to a standard line.

else
P does not belong to a standard line.

end
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Fig. 7. Example of generalized preimage computation

the intersection between GP (P1) and Dual(P2). And so on until the computation
of GP ({P1, . . . , Pn}) or until GP becomes empty. Fig. 7 shows an illustration of
the recognition process. Note that the pixels can be considered in any order, and
do not need to be connected.

To perform the intersection operations, a first approach is to intersect di-
rectly the generalized preimage and the dual of each pixel. It is not an efficient
method since the dual of a pixel is an open concave polygon. However, some
improvements can be done. We present them in the next section.

3.3 Improvements

Several improvements can be applied to our algorithm. First, it is more inter-
esting to separate the parameter space into two parts: one for α ≥ 0 and one
for α ≤ 0. Indeed, computations are simplified since the dual of a pixel is then
decomposed into two convex polygons. The second improvement comes from the
fact that pixels can be connected. In this case, the generalized preimage is com-
posed of at most two open or closed convex polygons, each one with at most four
edges [5, 11]. Moreover, if the considered pixel is connected with a pixel the dual
of which has already been intersected with the generalized preimage, it is not
necessary to take into account the four dual lines of the current pixel vertices
to perform the intersection. All different cases depending on the pixel connexity
(4 or 8-connected) are shown in Fig. 8.

An illustration of these improvements applied on the example shown in Fig. 7
is given in Fig. 9. These improvements lead to a complexity for our algorithm of
O(n) when applied on a 4-connected curve.
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Fig. 8. Possible improvements (in dark grey: added pixel). Bold numbered lines do not
need to be taken in account.

Fig. 9. Illustration of the improved recognition algorithm

4 Reconstruction of Standard Discrete Curves

In this section, we present a new invertible 4-connected discrete curve recon-
struction algorithm based on the recognition algorithm presented in Section 3.
We first briefly recall the principle of our algorithm, then detail the recognition
and polygonalization steps. Finally, we compare results provided by our method
and the methods with and without patches proposed in [8] and [3].

4.1 Principle

As stated previously, our algorithm works on 4-connected curves. Let C =
(P1, . . . , Pn) be such a curve and P1, . . . , Pn its ordered pixels. The reconstruc-
tion of C according to our method is performed in two steps: the standard line
segments recognition and the polygonalization.
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During the recognition step, C is decomposed in several connected standard
segments. For each one, a set of straight lines the standard digitization of which
contains the segment is computed.

The recognition of the first segment S of C (see Fig. 10a) is performed as
follows: first, S is composed of one pixel. Then, the set of lines which cut all
pixels of S is computed. While this set is not empty, another pixel, adjacent to
the previous one and chosen according to a recognition direction, is added to S.
When the line set becomes empty, it means that the last considered pixel does
not belong to S and a new recognition process starts with the last recognized
pixel of S as starting pixel.

The method used to recognize the following segments (see Fig. 10b) is not the
same. Indeed, let Sprev be the previous recognized segment, Snew the segment to
be recognized, and P their common pixel. Throughout the recognition of Snew,
we want to ensure that there exist straight lines which cut Snew and that these
lines cross in P the lines computed for Sprev. In other words, let I be the point
set in P which is crossed by the lines computed for Sprev. Then, as long as there
exist lines which cut Snew and I, another pixel is added to Snew. The recognition
of Snew ends when the previous conditions are no more verified.

P

p

P

(a) (b) (c)

Fig. 10. Principle of our reconstruction method. (a) First segment recognition. The
starting pixel is in dark grey and the direction indicated by the arrow. (b) Follow-
ing segments recognition. (c) Polygonalization step. The polygonalization direction is
indicated by the arrow.

The polygonalization step consists in replacing each recognized discrete seg-
ment by a Euclidean straight line segment in order to obtain a polyline so that
its standard digitization is equal to C. The digitization of each reconstructed
segment has to be equal to the corresponding discrete one. The polygonalization
process starts with the last recognized discrete segment Slast and is performed
in the reverse recognition direction (see Fig. 10c). A point p is fixed in the last
recognized pixel and a straight line which passes through p is chosen in the com-
puted line set of Slast. Then, a new point is chosen in the first recognized pixel
P of Slast and another segment is computed from this new point since P is also
the last recognized pixel of a segment. The polygonalization ends when the first
recognized pixel of C is reached.

Starting Pixel and Recognition Direction. To ensure the unicity of the
reconstruction, a starting pixel and a direction (white colored pixels and arrows
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in Fig. 1 and 2) are needed to perform the recognition. In this work, we use the
two conventions proposed for open and closed curves by Sivignon et al. in [3]:

– For an open simple curve: the starting discrete point is the curve endpoint
with lowest abscissa and lowest ordinate. The recognition direction is hence
induced by the chosen starting point.

– For a closed simple curve: the starting point is the curve point with lowest
abscissa and lowest ordinate. The recognition direction is the clockwise one.

Note that the starting discrete point choice is not rotation invariant. This is
still an open question.

4.2 Straight Line Segment Recognition

The segment recognition is based on the recognition algorithm presented in Sec-
tion 3. This algorithm computes in the parameter space defined in Section 2.2
the generalized preimage (see Definition 3) of a given set of pixels, i.e. the dual of
all straight lines which cut the pixels, and thus determines if these pixels belong
or not to a standard line.

In this work, the aim is to perform a constrained recognition, i.e. for each
discrete segment S, we want to compute the set of lines which cut all pixels of
S and cut a part, denoted I, of the first recognized pixel P of S (see Fig. 11a
and 11b). If S is not the first segment of the curve to be recognized, this part
is composed of the points which are reached by the line set L computed for the
previous recognized segment, i.e. the intersection between L and P . Else, it is
the whole pixel P . Moreover, I is a convex polygon (this property is simple to
prove).

Hence, the recognition of a segment S is performed as follows: pixels are added
one by one to S and the generalized preimage of S is computed at the same time.
Note that improvements described in Section 3.3 can be applied to compute the
generalized preimage since added pixels are 4-neighbours. The recognition ends
when the starting (resp. last) pixel of the closed (resp. open) curve is reached
or when the intersection between the dual of I and the generalized preimage of
S is empty. Fig. 11 shows an example of recognized curve. The standard curve
recognition method is detailed in Algorithm 2.

4.3 Curve Polygonalization

The polygonalization of the curve C (see Algo. 3) is performed starting from
the last recognized pixel P of C in the reverse recognition direction (see
Fig. 12). Note that if C is a closed curve then P is the recognition starting
pixel. A first point p is chosen in the intersection I between P and the line set
L = Dual(GP (S)) computed for the last recognized segment S. If C is closed
then p is chosen in the intersection I ′ between I and the line set computed for
the first recognized segment (if I ′ is not empty). Since I (resp. I ′) is a convex
polygon, we can for instance choose the barycenter of I (resp. I ′) as p. Then, a
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P I

L

P

I

(a) (b) (c)

Fig. 11. Illustration of the recognition process. (a) First segment recognition con-
straint (I in the figure). Starting pixel (P ). (b) Second segment recognition constraint.
(c) Straight line sets resulting from the curve recognition process.

Algorithm 2. Straight line segments recognition
Data: A set P of n ordered pixels P1, . . . , Pn.
begin

i ←− 1;
I ←− P1;
while i ≤ n do

S ←− {Pi};
GP ←− Dual(I);
while GP �= ∅ and i < n do

i ←− i + 1;
S ←− S ∪ {Pi};
GPtemp ←− GP ;
GP ←− GP ∩ Dual(Pi);

if GP = ∅ then
GP ←− GPtemp ;
S ←− S − {Pi};
i ←− i − 1;

I ←− Dual(GP ) ∩ Pi;

end

line l passing through p is chosen in L. This is done in the parameter space as
follows: the intersection between Dual(L) = GP (S) and Dual(p) is computed.
The dual of each point in this intersection is a line passing through p. A point is
thus chosen in this intersection. Finally, the intersection between l and the first
recognized pixel of S is performed, and the middle point of the obtained segment
is chosen as new first point of the following segment reconstruction. The process
is reiterated until the starting point of the curve is reached.

In case of closed curve, the reconstruction of the last straight line segment is
double constrained, since the first fixed point lies into the starting pixel. Let p be
this point and pf be the first fixed point of the first recognized segment. If there
exists a line passing through p and pf , the last segment is reconstructed. Else,
another point pl is fixed in the starting pixel and a segment is added between pl

and p. Fig. 12 shows an example of reconstructed curve.



186 M. Dexet and E. Andres

L

l

I’
ppl

pf

Fig. 12. Result of the polygonalization process (dotted line). The arrow indicates the
reconstruction direction.

4.4 Results

Table 1 illustrates the performance of the three different reconstruction methods
(with patches, without patches and our method) in terms of number of straight
line segments obtained. The smaller this number, the better the polygonal de-
scription of the discrete object. We can see that our method provides a smaller
number of line segments than equivalent methods with or without patches.

5 Conclusions and Future Work

In this paper, we have presented a new incremental standard discrete line recog-
nition algorithm. Recognized pixels do not have to be connected and can be
considered in any order. This algorithm is based on the notion of generalized
preimage which provides the set of straight lines which cut a given set of pixels.
The generalized preimage is obtained by intersecting the dual of the pixels in
a parameter space and does not depend on their location in the space. More-
over, it is computed in linear time. Finally, we have proposed a new 4-connected
curve reconstruction algorithm based on our recognition algorithm which im-
proves the methods proposed in [8] and [3] (see Fig. 13). This algorithm has been

(a) (b) (c)

Fig. 13. Result of the reconstruction process. (a) Original digital image. (b) Recon-
structed image. (c) Comparison between the discrete and reconstructed curves.
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Algorithm 3. Curve polygonalization
Data: A set S of k connected recognized segments S1, . . . , Sk with

Si = (Pif , . . . , Pil ) and k solution line sets L1, . . . , Lk.

begin
i ←− k;
Choose a real point pif in Pil ;
pf ←− pif ;

while i > 1 do
Choose a line l in Li that passes through pif ;
s ←− l ∩ Pif ;
Choose a new real point pil on s;
Add a segment between pif and pil ;
pi−1f ←− pil ;
i ←− i − 1;

Search a line l in L1 that passes through p1f and pf ;

if l does not exist then
Choose a line l in L1 that passes through p1f ;
s ←− l ∩ P1f ;
Choose a new real point p1l on s;
Add a segment between p1f and p1l and between p1l and pf ;

else
Add a segment between p1f and pf ;

end

Table 1. Comparison between the three reconstruction methods. The number of seg-
ments of the reconstructed curve is given.

Image Curve pixels number With patches Without patches Proposed method

116 22 24 13

356 50 62 39

424 57 66 38

574 71 104 57

852 99 130 84
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implemented in a discrete modeling system which combines continuous and dis-
crete representations of a same object [12].

One of our future extensions will be to adapt our recognition algorithm to
other digitization models and to irregular grids. Indeed, generalized preimage
can be computed for any convex polygon. Another major advantage of the gen-
eralized preimage is that it can be easily extended to higher dimensions. The
standard model being defined in arbitrary dimension, the next step is the exten-
sion of the recognition and reconstruction algorithms to dimension 3.
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Abstract. The recognition of discrete primitives as digital straight seg-
ments (DSS) is a deeply studied problem in digital geometry (see a re-
view in [6]). One characterization of the DSS is purely geometrical: all
the points must lie between two lines whose distance (relative to the infi-
nite norm) is less than 1. A common approach used to solve this question
is to compute the convex hull of the given points. Recent papers explain
how to update the minimum distance when a point is inserted during an
online (incremental) recognition in O(log n) time in the general case [2]
or in O(1) time with assumption [2, 4]. Nevertheless, for other cases like
insertions mixed with deletions or the union of two DSS, we have no opti-
mal method to compute the resulting width. Thus, we propose a unified,
simple and optimal approach applicable for any configuration. Moreover,
our function is called independently from the convex hull processing. This
allows to reuse any existing library without any modification. Thereby,
we offer an efficient tool that opens a new horizon for the applications.

Keywords: digital line, DSS, online, incremental, dynamic, union,
recognition, convex hull, logarithmic complexity.

1 Introduction

1.1 Presentation

This paper focuses on the recognition of digital straight segments and, in a more
general way, digital straight segments of fixed thickness (see Fig. 1).

A class of digital line recognition algorithms is based on the computation of
the convex hull of the current set of points. Efficient algorithms [2, 4] process
the recognition in linear time when the points are entered from left to right for
example. For the online case, the known lower bound is O(n log n) [2, 3]. But,
when the convex hull is known, we have no way to efficiently compute the vertical
distance. The current optimal approach would be in O(log2 n) time at least.

In this paper, we propose a completely new tool usable for this class of al-
gorithms. It is a unified approach that leads to a logarithmic time complexity
in any situation. Even with assumption (points entered from left to right), the
optimal bound of O(1) is preserved provided that we keep the result from the
previous insertion. Our technique is based on a double combined binary search
on the upper and lower borders of the convex hull.

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 189–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



190 L. Buzer

In the first two sections we recall the problem of recognition, the role of
the thickness in the digital line recognition problem and the importance of the
convex hull. In section 4, we explain the previous approach used to compute the
thickness of a given convex hull. In section 5, we present our new technique and
sketch its proof. Throughout this paper, we will denote by P.x the abscissa of a
point P .

1.2 Applications

This technique does not distinguish itself by an important performance gain.
Nevertheless it offers the possibility to deal with new problems. For example,
if you use a hierarchical approach, you may want to determine if the union of
two DSS is always a valid DSS. This time, you can use classical algorithms to
compute the resulting convex hull of the union of the two known convex hulls
and then apply our technique to determine the new thickness in log(n) time.
Libraries of geometry can be reused without modification. It is also sufficient to
later call our little routine. In the same way, we can reuse algorithms developed
for dynamic convex hull computation. It means that points can be entered and
deleted at any time during the recognition process. Our function is applied af-
ter each modification in log(n) time. Thus, we can now afford to tackle other
questions that were a bit too complicate to deal with.

2 The α-Thick Digital Line

We hereafter recall the notion of α-thick digital line (see [5]). Its seminal def-
inition was given by Reveillès in [8]. A digital line D in Z2 is described by a
set of parameters: the normal vector N = (a, b) in Z2\{0} with gcd(a, b) that
is equal to 1, the inferior bound γ in Z and the arithmetic thickness w in Z.
A point (x, y) of a digital line with parameters (a, b), γ, w verifies the following
diophantine inequality:

γ ≤ a.x + b.y < γ + w (1)

If we choose the arithmetic thickness to be equal to the infinity norm of the
normal vector: ||N ||∞ = sup{|a|, |b|}, we obtain an 8-connected object called a
naive digital line (see Fig. 1). Relative to this definition, we use another formu-
lation, namely the α-thick digital line. The α value corresponds to a thickness

ey

(c) 2-thick digital line covers P

ex

(a) a naive digital line

Normal vector (-2,5)ey

(b) a given set of points P

ex

ey

Fig. 1. The recognition problem using different thickness for the digital lines
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ratio whose reference (α = 1) is associated to the thickness of a naive digital
line. A point (x, y) belongs to such a line if it verifies:

γ ≤ a.x + b.y < γ + α. sup{|a|, |b|} (2)

3 Thickness Criterion

3.1 Introducing the Notion of Thickness

The definition of a digital line is intrinsically algebraic. We use an equivalent
characterization which is more linked to the field of Euclidian geometry:

Lemma 1. A set of points is a subset of an α-thick digital line if and only
if these points can be covered by a strip of rational slope and of horizontal or
vertical thickness strictly inferior to α.

|a| > |b||a| = |b| |a| < |b|

Fig. 2. Different types of digital line
orientations

ey

vertical
thickness

height(β)

β ex

Fig. 3. Height and vertical thickness of
a convex hull

3.2 Thickness and Convex Hull

In this subsection, we show that the notion of thickness (more precisely the
thickness of the convex hull of the input points) plays an important role in the
recognition problem.

Definition 1. The height at abscissa β of a convex set C, denoted by height(x),
is defined to be the length of the segment resulting from the intersection of C with
the vertical line x = β. The maximum reached by the function height() is the
vertical thickness of C (see Fig. 3). Width and horizontal thickness are defined
analogously.

Lemma 2. A convex polygon N has a vertical thickness less than α iff there
exists a strip of vertical thickness less than α that covers N .

� Proof: let x denote the abscissa which corresponds to the maximum height
of N . The upper and lower border of N at abscissa x can be linked to either a
vertex or an edge. We can consider three different configurations:

1. edge-edge: this case only appears if both edges are parallel (see Fig. 4.b). If
this were not the case, it would exist a greater value for the vertical thickness
of N (see Fig. 4.a). As N is convex, it is included in the strip defined by
these two edges. So N can be covered by a strip of correct thickness.
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2. edge-vertex: as the maximum is achieved at this abscissa, the line passing
through this vertex and parallel to this edge is tangent to N (see Fig. 4.c).
We use this line and the previous edge to build a valid strip.

3. vertex-vertex: this case is a bit more complicated. Let eul, eur, ell and elr

denote the emerging edges from these two vertices. As the polygon is convex,
we have slopeeur ≤ slopeeul

and slopeelr
≥ slopeell

. The maximum height
reached at this abscissa implies slopeeul

≥ slopeell
and slopeeur ≤ slopeelr

.
If we choose ell as a border of our strip, eul and elr lie inside. Assume
that slopeeur ≤ slopeell

. In this case (see Fig. 4.d) N is included in a valid
strip. In the opposite case where slopeeur > slopeell

(see Fig. 4.e), this edge
can not be chosen as a border for our strip. But, eur is a correct choice.
Indeed, we have slopeeur ≤ slopeeul

and slopeeur ≤ slopeelr
by assumptions;

as slopeeur > slopeell
this finally implies that N is included in a strip of

vertical thickness less than α. �

(c)(b)(a)

(d)

(e)

vertical thickness

vertical thickness vertical thickness

eul eur

eul

ell
elr

elr

eur

ell

α

Fig. 4. The different configurations of the vertical thickness location

Using lemmas 1 and 2, we finally obtain the next property which links the
thickness of a convex hull to the α-thick digital line recognition problem:

Property 1. A set of points is a subset of an α-thick digital line if and only if its
convex hull has an horizontal or vertical thickness inferior to α.

3.3 The Importance of Convex Hull

We have shown that the knowledge of the convex hull thickness is intrinsically
linked to the problem of digital line recognition. When points are inserted in a
given direction (from left to right for example), simple and efficient algorithms
exist [2, 4] and can be used in order to compute the convex hull thickness or
to test wether the convex hull thickness is valid or not. Nevertheless, in other
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configurations, there is no specific algorithm. For example, when the convex hull
has already been processed in a previous stage, we do not know how to efficiently
compute its thickness. The next section introduces this method and explains why
we were stuck to this lower bound.

4 Why This Problem Is Difficult?

Suppose we know the convex hull of a set of points. Now, the only thing we
want to do is to efficiently compute the associated thickness. To introduce this
problem, we first present a naive approach that has a linear time complexity and
then we explain the O(log2 n) time method. In the following, we denote by U []
an array of size nU and L[] an array of size nL that respectively represent the
vertices of the upper and lower borders of the convex hull. This is obvious that
U [1] = L[1] and that U [nU ] = L[nL].

4.1 The Naive Method

We notice that the maximum of the function height(x) is always associated to
a vertex facing a segment (case edge-edge or case edge-vertex ) or a vertex facing
a vertex. Therefore, this function achieves its maximum at the abscissa defined
by a vertex of the convex hull. Thus, to compute the thickness it is sufficient to
compute the values of height(x) at all the abscissae of the vertices of the convex
hull. We can create a simple traversal of the upper and lower borders in order
to easily check all the values of the function height() at each vertex.

Let us imagine a sweep line moving from left to right. When the line passes
trough two vertices at the same time, we process a case vertex-vertex and when
only one vertex lies on the line, we obtain a case edge-vertex where the corre-
sponding edge is the segment cut by the sweep line. To program this traversal,
we only need to update the current rightmost vertex L on the lower hull and the
current rightmost vertex U on the upper hull that are on the left of the sweep
line. The location of the sweep line corresponds to the rightmost of these two
vertices. When we want to shift the sweep line on the right, we must correctly
update this couple of points. To do this, we pick the next vertex encountered
by the sweep line. It can be computed in constant time by choosing the point
between the successor of L and the the successor P that has the lowest abscissa.
This vertex replaces its predecessor on the same border. As we always go for-
ward, we finally obtain a complexity bounded by the number of vertices. Thus,
this algorithm has a linear time complexity in the number of vertices. This is not
efficient but when the number of vertices is small, it can be used. We hereafter
give the source code of this method and show an example in figure 5.

4.2 Using Binary Searches

We do not use any mathematical consideration in the previous algorithm which
leads to poor performance. Let l(x) and u(x) denote the two functions corre-
sponding respectively to the lower and upper border. By definition, we notice
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Step 2 Step 3

Step 4 Step 5 Step 6

Step 1

upper border

lower border

j = 3

i = j = 0

i = 1 i = 1

i = 1 i = 2i = 2

j = 0
j = 1

j = 2

j = 2

Fig. 5. Example of the naive approach

Function COMPUTE VERTICAL THICKNESS (U [],nU ,L[],nL)
{

i = j = 0
MH = 0 // maximal value of the function height()

while ((i �= nU) or (j �= nL))
{

if (L[i].x == U [j].x) CaseVertexVertex(MH,L[i],U[j])
else if (L[i].x < U [j].x) CaseEdgeVertex(MH,L[i]L[i+1],U[j])
else CaseEdgeVertex(MH,U[j]U[j+1],L[i])

// shift the sweep line

if ((i < nU) and (j < nL))
if (L[i + 1].x < U [j + 1].x) i + +
else j + +

else if (i < nL) i + +
else j + +

}
return MH

}

that height(x) = u(x) − l(x). As u(x) is a concave function and l(x) a convex
function, then height(x) is a concave function and so we can perform a binary
search on it in order to find the abscissa of its maximum. Like in the previous
algorithm we only consider abscissae where vertices are lying. Suppose we have
nU vertices on the upper hull. We consider the middle point MU = U [nU/2]
and compute the value of height(MU.x). Consider that an Oracle function tells
us on which side of MU the maximum lies. Then, we can suppress one half of
the points on the upper hull because we know that they will never be used again.
Nevertheless no decimation has been done on the lower hull, so we perform the
same approach on the other border one more time. Thus we are sure that one
half of the vertices were rejected from the problem. So with these two steps,
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the size or our problem reduces by two at each iteration. Therefore, we can
find in a logarithmic number of iterations the maximum value of the function
height().

At each step, we compute the value of height(x) for the abscissa of a given
vertex P and then call an Oracle function. To do this, we must find the facing
edge or the facing vertex of P on the other border. This cannot be performed in
constant time, we have to use another binary search on the abscissae of all the
vertices lying on the other border. Thus, with a logarithmic cost, we can find
the corresponding vertex L[i] (resp. U [j]) of a point U [j] (resp. L[i]).

We now describe the Oracle function. In fact, we can consider the derivative of
height(x) that is linked to the optimum location. This can be done in constant
time when the indexes of the couple of vertices L[i] and U [j] are known. We
simply subtract the slopes of the corresponding segments on the lower and upper
borders to determine the value of the derivative. Notice that this function is not
defined for the abscissae of the vertices because l(x) and u(x) are piecewise
linear functions. But for our algorithm, this is not a problem. We only have to
use the generalized derivative definition, a subgradient, in order to bypass this
difficulty. Let u′ denote the derivative of a function u. So the costly function
is the binary search used to find the facing vertex. As this function is called
a logarithmic number of times, our method has an O(log2 n) time complexity
where n denotes the number of vertices of the convex hull. An example is given
in figure 6.

the facing
segment

the Oracle
answer of

the facing
segment

upper hull   - 7 vertices

lower hull   - 6 vertices

it remains at most one half of the vertices

the Oracle
One iteration produces such a decimation

answer of

Fig. 6. Example of the double binary searches method

4.3 Conclusion

At this step, it seems impossible to beat the performance of O(log2 n). Any
attempt to evaluate the function height(x) will force to set up a correspondence
between the vertices of the lower hull and the upper hull. This cannot be achieved
in constant time unless you use a preprocessing step. Nevertheless in an online
(incremental) approach such preprocessing is not possible. As we must perform at
least a binary search to compute the maximum of the concave function height(x),
we should conclude that this previous approach cannot achieve a logarithmic
time performance.
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5 The Logarithmic Algorithm

5.1 Introduction

We have previously seen that the evaluation of the function height(x) was too
expensive to achieve logarithmic performance. Thus, we have to bypass the
computation of this function and try to preserve the idea of performing a bi-
nary search. Our new method leads to a simple implementation and elemen-
tary explanations are sufficient to describe its principle. Consider the function
height(x) = u(x) − l(x), we are looking for the abscissa where this function
reaches its maximum. Thus, we seek the value of x where height′(x) equals 0.
Looked at another way, we can search for the abscissa where u′(x) = l′(x). As
u(x) is a piecewise linear concave function, its derivative is a non-increasing
function. In the same way, l′(x) is a non-decreasing function.

5.2 Combined Binary Search

At this step, we consider the problem of finding the intersection between one
piecewise constant non-decreasing function l′(x) and one piecewise constant non-
increasing function u′(x). As in the previous algorithms, we only take care to
the abscissae of the present vertices. Suppose we have nU vertices on the upper
hull and nL vertices on the lower hull. Let MU = U [nU/2] and ML = L[nL/2]
denote the two middle points on each border. We are not able to determine a
value for the function height(x) with this information. But, we can compute
the generalized derivatives u′(MU.x) and l′(ML.x) in constant time using the
points U [nU/2 − 1], U [nU/2 + 1], L[nL/2− 1] and L[nL/2 + 1]. For presenta-
tion convenience, we only consider the standard derivative of a function. With
the knowledge of MU.x, u′(MU.x), ML.x and l′(ML.x), we can determine the
optimum location relative to the abscissa of MU.x or relative to the abscissa of
ML.x. In the following, we sketch the proof of our method.

Let us consider the case where MU.x < ML.X and where u′(MU.x) >
l′(ML.x). See figure 7 for an example. The three other configurations are similar.
We now create our Oracle function which determines the optimum location. As
u′() is a non-increasing function, we have for any x < MU.X , u′(x) > u′(MU.x).
In the same way, we notice that for any x < ML.x, we have l′(x) < l′(ML.x). By
assumption, u′(MU.x) > l′(ML.x) and MU.x < ML.x, using these inequalities
we obtain for any x < MU.x: u′(x) > u′(MU.x) > l′(ML.x) > l′(MU.x) > l′(x).
Thus, we can conclude that there exists no intersection between u′ and l′ on the
left of MU . Therefore, we can delete one half of the vertices of the upper hull.
This iteration only requires a finite number of comparisons and so it can be
processed in constant time. All the vertices of the other border are preserved.
In at most log2(nU) + log2(nL) iterations, the number of vertices of the two
borders decreases to a finite number. Thus, the resulting size of the problem is
bounded and the last computations can be done in constant time. This approach
achieves a logarithmic time complexity and avoids the computation of the values
of height(x).
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Step 1: computing the derivatives

Step 3: Considering the monotonicity

Step 4: suppressing one half of the upper vertices

Step 2: local information is sufficient

u′

l′(ML.x)

nU = 5

nL = 7

u′(MU.x)

l′

ML

MU

MU.x ML.x

l′(ML.x)

u′(MU.x)

MU.x ML.x

MU.x ML.x

ML

MU

MU.x ML.x

l(x)

u(x)

Fig. 7. The combined binary search

Geometrical interpretation. This method is equivalent to finding on which
abscissa the tangents of the lower and upper hulls are parallel. We perform two
combined binary search and their two cuts converge to the abscissa associated
to the maximum value of height(x).

6 Conclusion and Future Works

We focus on the digital line recognition problem. The class of the algorithms
we study is based on the computation of the convex hull of the current set of
points. Previous algorithms were optimal in the online case only. In other cases
(deletion, union), awkward approaches were possible. We simplify and unify
these techniques to propose a single, simple and efficient routine that is usable
in any configuration and that preserves an optimal complexity of O(log n) time
and of O(1) time with assumption.

For example, no optimal algorithm was known to compute the vertical thick-
ness of a given convex hull. We can now process such a case in logarithmic time.
The proposed technique is new and it is based on a double and combined binary
search on the tangents of the lower and upper convex hull borders. The imple-
mentation is simple and it leads to an efficient algorithm. To compute a dynamic
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convex hull (that supports insertion and deletion) or to unite two convex hulls,
we can now reuse algorithms in the literature [1, 7] or existing implementations.
At each step, we only have to call our small routine in log n time in order to
determine the current thickness.

This method leads to an efficient implementation and if it is generalized to
the three-dimensional space, it could offer an interesting and efficient algorithm
for digital plane recognition.

Acknowledgement. The author thanks the reviewers for their helpful
comments.
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École Normale Supérieure de Lyon
46, Allée d’Italie 69364 LYON CEDEX 07 - France
{bertrand.nouvel, eric.remila}@ens-lyon.fr

Abstract. A discrete rotation algorithm can be apprehended as a para-
metric map fα from Z[i] to Z[i], whose resulting permutation “looks like”
the map induced by an Euclidean rotation. For this kind of algorithm,
to be incremental means to compute successively all the intermediate
rotated copies of an image for angles in-between 0 and a destination
angle. The discretized rotation consists in the composition of an Euclid-
ean rotation with a discretization; the aim of this article is to describe
an algorithm which computes incrementally a discretized rotation. The
suggested method uses only integer arithmetic and does not compute any
sine nor any cosine. More precisely, its design relies on the analysis of
the discretized rotation as a step function: the precise description of the
discontinuities turns to be the key ingredient that makes the resulting
procedure optimally fast and exact. A complete description of the incre-
mental rotation process is provided, also this result may be useful in the
specification of a consistent set of definitions for discrete geometry.

1 Introduction

The translation of the fundamental concepts of the Euclidean geometry into Zn

comprises the field of discrete geometry. As this theory of geometry is particularly
suitable for combinatorial images and other data manipulated by computers [1],
it would be interesting to provide a set of efficient algorithm for this theory that
uses only integer-arithmetic; as this was suggested in [2].

Several attempts have been realized by various authors that wished to de-
liver back some properties of the Euclidean rotation to the discretized rotations
widely used in computer graphics. A review of various resulting algorithms may
be found in [3].

In this paper, we present an incremental algorithm: it successively computes
all the rotated images according to the an increasing sequence of angles (starting
from 0 to 2π). Since the set of rotated images is finite on a finite picture, this
allows practically to compute all the intermediate rotated images. Moreover, the
suggested procedure is sound and accurate: it returns exactly the same results
as the discretized rotation. The procedure does not use any sine nor any cosine,
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thus there is no precision problem due to the floating point arithmetic. Also,
the algorithm is fast : to compute incremental rotations the algorithm computes
only O(m3log(m)) operations, instead of O(m5) as needed by the naive algo-
rithm. For the incremental rotations, the complexity of this algorithm if it uses
pre-calculated tables, is O(m3); it is optimal: The algorithm updates only the
necessary pixels and only consider the necessary angles. Finally, since the al-
gorithm uses the configurations that can be stored with very few states on the
plane, we believe it is a good candidate for parallelization.

After a brief review of the motivations, and after the essential preliminary de-
finitions, we proceed to a characterization of the discontinuities of the rotation
process. Indeed, we will explain how to code the angles where the discontinuities
happen. Also, with integer arithmetic only, we will specify how to perform the
essential operations on the encoded angles. Naturally, a few technical lemmas
are required to set up all this framework properly. Once this has been set, we
will analyze the alterations that occur in the configuration at the discontinuities.
Strengthened by previous results, we will then be ready to build the incremental
discretized rotation procedure. The last section will be devoted to various exten-
sions and miscellaneous details related to the theory that may lead to a better
understanding of the discretized rotation process.

2 Groundwork

The first sections introduce the fundamental ideas, definitions and lemmas that
matter to fully understand the algorithm. In this section, we review the motiva-
tions and we specify some vocabulary.

2.1 Motivations

The history of discrete geometry begins with the common will to give birth
to an algorithmic theory of the geometry in the discrete spaces that would be
consistent with the Euclidean geometry. We believe that a unified theory would
provide a better understanding of both universe: continuous and discrete. Dis-
crete rotations comprise the famous examples that have strengthened the idea
that discrete and continuous spaces may be radically different. A review of the
differences can be found in the prologue of [4].

More recently, discretized rotations have been an important issue in water-
marking community. Water-marking algorithms that were robust under rotation
were sought for by various teams the community; and it supports many discus-
sions. More generally, the problem of finding algorithms for classification and
recognition of patterns that are robust under discrete rotations is still a not-
trivial issue in the conception of pattern related algorithms.

This paper is focused on an algorithm that uses similar principle as the one
suggested by [5]; the basic idea is to compute a table of all the discontinuities
of the discrete rotation process that occur in within a certain ball of radius m.
Then this table will be used to drive the rotation process. Our paper provides
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a more accurate description of the discontinuities, as-well as a way to compute
the rotation using integer arithmetic only.

The algorithm is designed to comprise the field of discrete geometry: our main
problem is to provide a comprehensive and simple definition of algorithm for the
discrete rotation, independantly of any specific usage, and that can be computed
efficiently.

The usual discretized rotation algorithm is a bit chaotic when iterated: This
is well illustrated by the following story: It has been implemented a physical
simulation of the solar system which for specific reasons was coded with fixed
precision. When the system has been tried, its inventors were surprised that its
first conclusion was to predict a fatal collision in-between the earth and the sun
within the next ten years; naturally there was a “bug”. It was imputable to com-
position of rounding errors during the rotation process. More generally, decades
of computer programmers have known by experience that they should avoid to
compose rotations. The accumulation of the resulting errors may produce an
unwelcome result. Some aspects of the dynamical system that is formed by the
iterated action of a discretized rotation have already been studied; see [6] for
iteration of π/4 rotations.

2.2 Conventions

We work in the complex plane C, where Z[i] denotes the set of Gaussian integers,
i.e. the set of complex numbers whose real and imaginary parts are both integer.
Let m be a positive integer. We denote by Z[i]|m the set of Gaussian integers
whose modulus is at most m; Z[i]|m = {z ∈ Z[i], |z| ≤ m}. Real and imaginary
parts are denoted ((z) and )(z). Let x be a real number. We recall that the
floor function x *→ �x is defined as the greatest integer less or equal to x.
The rounding function is defined as : [x] = �x + 0.5; we also define the map
x *→ {x} by {x} = x − [x]. These maps are extended to complex numbers, by
applying them independently on the real part and on the imaginary part. Let
H be the set of complex number that have a semi-integer coordinate ( in other
terms H = (R × (Z + { 1

2})) ∪ ((Z + { 1
2})× R) ). More generally H denotes the

set of discontinuity points of the operator x *→ [x].
Let α denote an angle in radians, i.e. an element of A = R/(2πZ). The

Euclidean rotation rα is the bijective isometry of C, z *→ zeiα. The discretized
rotation [rα] is precisely defined as the successive computation of the Euclidean
rotation of angle α and of the discretization operator z *→ [z]. Thus, for each z

of C, [rα(z)] = [zeiα]. Remark that, for any z ∈ C we have |[rα](z)| ≤ |z|+
√

2
2 ,

and that |[rα](z)− rα(z)| ≤
√

2
2 .

In this article, a configuration is a mapping from Z[i] to Z[i]. Let m be a

positive integer. A configuration C such that for all z ∈ C, limn�→∞
C([2n z])

2n −
(eiαz)→ 0 is called an α-rotation map. Thus, given a real α, the discrete rotation
[rα] is a configuration.

A partial configuration of radius m is a mapping from Z[i]|m to Z[i]. Each
configuration induces a partial configuration. In this paper, we work on on partial
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Fig. 1. An hinge angle and its generating pair for α = α(9, −4, 7)

configurations (denoted by [rα]|m) induced by discretized rotations. Precisely, we
study the mapping ρm : α *→ [rα]|m. Since Z[i]|m is finite and |[rα(z)]| ≤ |z|+1,
the set {ρm(α), α ∈ R} is finite.

Our aim is to produce an exact incremental rotation algorithm which, given an
integer m successively produces all the values ρm(α) for α ∈ [0, 2π], in the order
where they are reached (moving from 0 to 2π). Informally, it is a ”video” algorithm
which exhibits the successive configurations obtained along the rotation.

3 Hinge Angles

3.1 Definitions

The principal element that has influenced the design of the algorithm is a precise
study the function ρm. We shall prove that ρm is a stair function ( piecewise
constant function ). Thus, a precise study of its discontinuity steps gives the
ability to recover the whole function. The discontinuities also correspond to the
only updates of the configuration stored in the algorithm.

Definition 1. An angle α is a hinge angle if there exists a source point zs in Z[i]
such that the destination point zd = zse

iα has a (proper) semi-integer component
(i.e. zd ∈ H) . For each hinge angle, the source point and the destination point
form a generating pair.

On a topological point of view, the hinge angles are the discontinuity points of
the map α *→ [rα].

It is immediate from the definition that an angle is a hinge angle if and only
if there exists integers p, q, k such that 2 q cos(α) + 2 p sin(α) = 2 k + 1.
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The value |zs(α)|2 is called the order of α. We can note that if (zs, zd) gen-
erates α then (z̄s, z̄d) generates −α. Note, also that if (zs, zd) generates α then
(iQzs, i

Qzd) generates the same angle, for any Q ∈ {0, 1, 2, 3}. We also define Sα

the set of source points of α: Sα = {z ∈ Z[i]|eiαz ∈ H}.

3.2 Fundamental Lemmas

The Pythagorean angles, as seen in [7] or [8], are such that α = arctan(a/b)
where a and b are issued from a Pythagorean triple (a, b, c) ∈ N3 (such that
a2 + b2 = c2). The positive integer c is the radius of the Pythagorean angle. An
angle is Pythagorean if and only if its cosine and sine are rational.

Lemma 1. Hinge angles and Pythagorean angles form disjoint sets.

Proof: Assume that it exists an angle which is both Pythagorean and hinge.
By definition, since it is a hinge angle, there exists a Gaussian integer zs of Z[i]
which is transformed by rotation in a point of H. We can easily check that:
{((eiαzs)} = {((zd)} = 1

2 . More exactly, ((zd) = ((zs) cos(α)−)(zs) sin(α).
If α is Pythagorean, cos(α) = a

c and sin(α) = b
c , where (a, b, c) is a primary

Pythagorean triple (i.e. belongs to Z and a2 + b2 = c2, gcd(a, b, c) = 1). {((zd)}
can be written as n

c where n as an integer, while c is odd. But this is contradict-
ing: {((zd)} = 1

2 	

A corollary of this lemma is that for any hinge angle, we have that cos(α) or
sin(α) is an irrational quadratic number. They can be simultaneously irrational.

Let p, q, k be a triple of integers, such that p2 + q2 > |k + 1
2 |, we state r2 =

p2 + q2, and λ =
√

r2 − (k + 1
2 )2. We define the angle α(p, q, k) by the equality

eiα(p,q,k)(p + qi) = k + 1
2 + λ i; thus for this angle ((p + qi), (k + 1

2 + λ i)) forms
a generating pair.

Lemma 2 (Coding of the Hinge Angles). Let (p, q, k) and (p′, q′, k′) be
two distinct generating triples such that α(p, q, k) = α(p′, q′, k′), then we have

det
[

p q
p′ q′

]
= 0.

Proof: The proof is straightforward: Let α = α(p, q, k), thus 2p sin(α) +
2q cos(α) = 2k+1, and similarly; 2p′ sin(α)+2q′ cos(α) = 2k′+1. Consider these

two equations as a linear system of cos(α) and sin(α). If det(
[

p q
p′ q′

]
) �= 0 then

cos(α) and sin(α) have to be rational, and the angle have to be Pythagorean. But
this would contradict the Lemma 1. Therefore (p, q) and (p′, q′) are colinear. 	

The lemma implies that arg(zs(α)) and arg(zd(α)) are uniquely defined for an
angle α up to the choice of a quadrant. Thus, they are important characteristics
of the hinge angle. An immediate corollary of Lemma 2 is that all generating pairs
of α(zs, zd) are necessarily of the form (η zs, η zd) or of the form (i η zs, i η zd)
with η ∈ Q.
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A triple (p, q, k) that generates an angle α, the triple (p, q, k) is called primary
if p is positive and if it is minimal, i.e. it has the smallest p2 + q2 among the
generating triples of α. Obviously, there exists for each hinge angle a unique
primary generating triple.

Lemma 3 (Primary Generating Triple). Let (p, q, k) be the primary gener-
ating triple of an angle α; the set of generating triples of α is {((2n + 1)p, (2n+
1)q, (2n + 1)k + n), for n ∈ Z}.
Proof: It is evident that if zs = (p+qi) ∈ Sα is the source point issued from the
primary generating triple (p, q, k) then (2n+1)zs ∈ Sα, since {((2n + 1)eiαzs} =
1
2 for any n in Z. Also we can notice that for any n ∈ Z, this is another generating
triple ((2n + 1) p, (2n + 1) q, (2n + 1) k + n) of the same angle. It is also evident
that for any n′, n′′ ∈ Z, (2pn′, 2qn′, n′′) cannot be a generating triple of α since
eiα(p+ qi) ∈ H implies that eiα(2 pn′+2 qn′i) /∈ H. Now, we can notice βp+βqi
with β ∈ R\Z cannot be a source for arithmetical reasons: β(p+qi) /∈ Z[i]. Now,
assume there exists r

s ∈ Q \ Z and k′ ∈ Z such that ( r
sp, r

sqi, k′) is a generating
pair of α, this would implie that r

s (p+qi) is a Gaussian integer and thus gcd(p, q)
should be divisible by s (as r is not). Moreover ((eiα( r

sp + r
sqi)) = 2k′+1

2 . This
can only happen if 2k′+1 is also divisible by s. Now p, q, 2k+1 are all divisible by
n, thus the generating pair is not primary, and this contradicts our hypothesis.
Thus, β(p+qi) /∈ Sα for β ∈ R\Z. Thus, consequently to previous lemma and to
these points, there is no other generating triples for the angle α than the listed
ones. 	


3.3 Main Properties

From the previous lemmas, we can state the following properties that are useful
for the rotation algorithm.

Proposition 1. Any hinge angle can be uniquely described by its primary gen-
erating triple.

This proposition is actually a corollary of Lemma 2 and 3.

Proposition 2. The number of hinge angles of order at most m is lower
than 8m3.

This is easily proven by the fact that |p| < m, |q| < m, |k + 1
2 | < m

Upper bounds on the number of possible hinge angles can be found in [5].
This formula can be slightly refined by using r2(k) that represents the number
of decomposition of an integer as the sum of two squares. The upper bound on
the number of possible hinge angles is then: #(AH|m) ≤

∑m
i=1 r2(i)�

√
i− 1

2 ≤
(
∑m

i=1 r2(i)) �
√

m − 1
2 ≤ (2m)3. Finally note that there is twice more rotation

maps in ρm(α) than the number of hinge angles in AH|m.

Proposition 3. The elements of Sα forms 4 rays: Sα = ∪Q∈{0,1,2,3}{(2l +
1)iQ(p + qi), l ∈ N}
This proposition is another consequence of the Lemma 3.
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4 The Algorithm

The algorithm that we are going to explain takes as input an integer m that
describes the side of the square [−m, m]2, and it computes successively all α-
rotation maps [rα]|m ( for all the possible angles, in the trignometric order ).
The algorithm contains only one map that is updated progressively. Each time
the map is in correct state the algorithm notifies this information, which can be
used by another procedure for the analysis of the rotated configuration.

Schematically, the algorithm is structured in two main parts. During this first
period of the algorithm, it starts with the enumeration of all the hinge angles
whose order is smaller than the maximum order of the points of the picture.
In the algorithm, the angles are not represented by floating point values but
only via their associated triples (three small integer numbers). This encoding of
the angles provides a convenient way to recover all the necessary informations
required to transform one image into the next image during the incremental
rotation process. This first part of the algorithm can be seen as a process similar
to the generation of a sine table and it can be done once for all.

The second part of the process consists in a loop through the cycle of hinge
angles. This loop applies successively the small transformations that are required
to pass from ρm(α) to ρm(α′) ( where α′ is the successive representative angle ).
Practically, the algorithm stores the map ρm(α), this allows to know directly the
position of the image through the transformation [rα]|m. However, for various
usages, such rotations in cellular automata, the user should may prefer variant
encoding of the transformation such as rotation configurations (maps from Z[i]
to a finite set) [4]. The principle of this algorithm is translatable on these kind
of configurations.

4.1 Enumerate and Sort Hinge Angles

To enumerate all hinge angles in AH|m, it is sufficient to enumerate all the
Gaussian integers whose module is smaller than m (as source point), and to
consider all possible semi-integers whose absolute value is smaller than m. This
requires a time of O(m3). Some angles will be enumerated twice, but the dupli-
cates can be identified and removed during the sorting process.

The usual sorting algorithms handle n elements in O(n log(n)) operations, if
we provide them a constant time comparison operator. The goal of this section
is to explain how to compare two hinge angles via their generating triple coding.
This comparison needs constant time. Using a quicksort on generated triples,
the enumeration and the sorting of the hinge angles can therefore be computed
in O(m3log(m)).

Lemma 4 (Integer-Based Comparison). Let α ∈ AH which is associated
to the triple (p, q, k) and α′ ∈ AH which is associated to the triple (p′, q′, k′),
it is possible to decide, in constant time, whether α < α′ using by knowing
p, q, k, p′, q′, k′.

Proof(sketch): With the notations previously introduced we have: cos(α) =
(p(k + 1

2 ) + qλ)/(p2 + q2) and sin(α) = (pλ− q(k + 1
2 ))/(p2 + q2).
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The key-argument is that the numbers used in the expressions of cos(α) and
sin(α) are all integer, except λ, but 4λ is a square root of an integer, thus the
other equations will simplify.

Thus the signs of cos(α) and sin(α) can be easily computed, reducing to the
problem to the sign of an integer inequality that involves only usual operations.
Hence, the “quadrant” of α can be computed with integer arithmetic-only.

If α and α′ belongs to the same quadrant then we have to compare cos(α)
and cos(α′). This can also be reduced to determining the sign of an integer
expression, that can be computed using only integer arithmetic. 	


4.2 Transforming [rα− ] into [rα+ ] When α ∈ AH

Let α ∈ AH, we now know that there exists zs(α) ∈ Z[i] and ((zd(α)) + 1
2 ∈ Z

and also )(zd(α)) > 0. Due to the trigonometric orientation, and to the chosen
discretization operator, lim

α′ �→α,α′<α
[rα′ ](zs) = [rα](zs) while lim

α′ �→α,α′>α
[rα](zs) =

([rα](zs)−1). However, we can also notice that lim
α′ �→α,α′<α

[rα′ ](−zs) = ([rα](−zs)

+ 1) while lim
α′ �→α,α′>α

[rα′ ](−zs) = [rα](−zs). These results can be summarized

in the following theorem:

Proposition 4. ∀Q ∈ {0, 1, 2, 3}, lim
ε �→0,ε>0

[rα+ε]
(
(zsi

Q)− [rα−ε](zsi
Q)
)

= iQ+2

Let ψz0 denote the map such that if z is in (z0i
Q(2n + 1)), with n, Q ∈ N, then

ψz0(z, p) = p + iQ+1 else ψz0(z, p) = p. Thus, it can now be stated that for any
z in Z[i],[rα+ ](z) = ψzs(z, [rα− ](z)).

4.3 The Sketch of the Algorithm

With the previous statements, we now have the necessary elements to under-
stand the scheme of the algorithm. The algorithm may pass through all possible
rotation maps. This version of the algorithm simply updates a discretized ro-
tation map from on angle to another and it calls a function doextproc that is
user-specified that is notified at each update. We will later see a more com-
plex version which explains how to make rotate incrementally an image without
storing any copy of the original. See Algorithm 1.

Most of the subtilty of the algorithm actually proceeds from the strategic
sequence of the hinge angles (See Section 5.4). In the real implementations, var-
ious technical details shall be solved: Some additional code has generallly to be
added to take in account the fact that most programs store images into rec-
tangular buffers. Also, this version of algorithm actually jumps over the hinge
angles, and it does not compute the [rα]|m that is associated to the hinge angle
it self. This is easily fixable: Apply ψ on the two first quadrants, then call the
procedure for notification; the algorithm has then to terminate the transforma-
tion associated to the hinge angle by computed the next two quadrants, and to
call once more the notification procedure.
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Algorithm 1. incremental rotation via map and notifications(doextproc)
1: AH|m ← list sort hinge angles(m)
2: ∀p ∈ Z[i]|m, R[p]← p
3: i← 0
4: while true do
5: (zs, zd)← AH|m[i]
6: i← (i + 1) mod #AH|m
7: for Q← 0 to 3 do
8: k ← 0
9: while |(2k + 1)zs| < m do

10: op← R((2k + 1)zsi
Q)

11: np← op + iQ

12: R((2k + 1)zsi
Q)← np

13: k ← k + 1
14: end while
15: end for
16: doextproc(R, zs)
17: end while
r denotes the radius of the image, op means old position, np stands for new
position, the function “doextproc” is a parameter function that is called each
time the image has been set up in according to a configuration that corresponds
to the image of a discretized rotation.

Description of the Algorithm 1: The lines 3 to 6, and 17 of the algorithm
corresponds to the main loop of the algorithm that passes though all the hinge
angles. The lines 7 to 15 are responsible of updating the configuration. In each
quadrant Q, we will consider all the points where a change occurs ( that stand
within the map, i.e. “|(2k + 1)zs| < m” ) . R is the configuration that contains
the map [rα]|m . Line 10, we recover the code point whose image is alterated,
line 11 we compute its new image, and line 12 the updated position of the image
is stored in the configuration.

4.4 Application to Rotation of Images

The previous version of the algorithm computes an image of the rotation map,
however the discretized rotation is not intrisically bijective on Z2 and it is not
suitable to compute incrementally rotations of an image without any copy of
the original. This version of the algorithm takes as input an interger m that
describes the size of the of the α - rotation map to be computed, as well as an
image (an application from Z[i]|m to QC where QC is a the set of colors on which
the image is defined.

It is well-known that a point of the discretized rotation has never more than
two antecedents by discretized rotation (See [4]). Thus, to create lossless dis-
cretized rotation, one natural idea is to store both antecedents when the func-
tion is not injective. This requires one additional layer: hence, an image in our
algorithm shall be an element of Q

(Z[i]×{0,1})
C , where QC is a set of colors.
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Algorithm 2. incremental rotation of an image(img0, doextproc)

1: AH|m ← list sort hinge angles(m)

2: ∀p ∈ Z[i]|m, R[p]← p, L[p]← 0
3: i← 0
4: while true do
5: (zs, zd)← ((AH|m)[i])
6: i← (i + 1) mod #AH|m
7: for Q← 0 to 3 do
8: k=0
9: while |(2k + 1)zs| < m do

10: p← (2k + 1)zs

11: op← R[p]
12: ol ← L[p]
13: np← op + iQ

14: img1(np)← imgol(op)
15: R[p]← np; L[p]← 1;
16: alone← true;
17: for d← 0 to 3 do
18: if R[p + id] = op then
19: alone ← false; p′ ←

p + id

20: end if
21: end for
22: if ¬alone and L[p′] = 1

then
23: L[p′]← 0
24: t← img1[op]
25: img1[op]← img0[op]

26: img0[op]← t
27: end if
28: alone← true;
29: for d← 0 to 3 do
30: if R[p + id] = np then
31: alone ← false; p′ ←

p + id

32: end if
33: end for
34: if ¬ alone then
35: if p′ < p then
36: L[p′]← 1;L[p]← 1
37: else
38: L[p′]← 2;L[p]← 0
39: t← img1[np]
40: img1[np]← img0[np]
41: img0[np]← t
42: end if
43: else
44: L[p]← 0
45: t← img1[np]
46: img1[np]← img0[np]
47: img0[np]← t
48: end if
49: end while
50: end for
51: doextproc(R, zs, img0)
52: end while

The notations are the similar to the one used for previous algorithm. Addi-
tionally, img0 and img1 denotes the two layers of the picture. L is a part of the
configuration that is used to memorize the destination layer of a pixel.

Practically, the code is modified such that: the dataspace on which rotation
are computed can support up to two “colors” for each position of Z[i]|m. We will
use an arbitrary order (the lexical order or anything fast to compute) to decide
which pixel will stand on the layer 1. The details that have been added allows
to compute the 2-layers discretized rotation. See Algorithm 2.

Description of the Algorithm 2: The global structure of the algorithm is
similar to the Algorithm 1: We have an initialization (lines 1 and 2) and line
3,4,5,6, and 52, one main loop that passes through all the possible hinge an-
gles. It contains a loop that updates that picture quadrant by quadrant. In
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each quadrant, all the points where a change occurs within the configuration
are considered. However the update process is here more complicated: lines 11,
13 and 15 are the same as in the previous process. At line 15 we also make
the assumption that when a point moves to another then the cell is busy and
the incoming datas has to wait on the second layer (L = 2). From line 17 to 21,
the algorithm looks at if there was another point p′ that was in the the cell that
was left. If there was one, then this point if it was on layer 1 has to fallback on
the layer 0 and has to be displayed (lines 22 to 27). The code from lines 29 to
48 does similar process but for the destination position. We can see on line 35
that the algorithm takes in account a predefined order < to decide which pixel
shall stay on the layer 0.

4.5 Analysis of the Complexity

This algorithm has really a different complexity compared to the usual algorithm
for rotations. This algorithm is slower than the usual one if you aim to do only
one rotation, but it is faster when incremental rotations are needed. Note, it is
generally assumed that each processor uses a sine/cosine table which allows to
compute sine and cosine very efficiently.

Space Complexity: The second part of the algorithm uses the amount of mem-
ory required to store a 2 layer image and the rotation map. Thus, the algorithms
uses about 3Km2, (where K is the memory cost to store one color, or one vector
(assuming that these two data-types can be stored with the same number of
bytes K)). The traditional algorithm uses about 2Km2 bytes of memory. Thus,
for this part the space requirements are of the same order O(m2) and simi-
lar in terms of multiplicative factors. The first part of the algorithm requires
O(m3log(m)) bytes of memory to construct a b-tree of hinge angles in AH|m.
This table can be computed once for all.

Time complexity: In the first part, the list-and-sort procedure for hinge angles
needs O(m3log(m)) operations. The time of one iteration of the loop in the
second part is intrisically linear in m (the complexity of the user contributed
function, doextproc can of course decrease these performances). Although, the
main loop is called O(m3) times and contains another loop, the algorithm also
requires only O(m3) operations: we update only m2 pixels and each pixel crosses
at most 4m times the dual of the grid. To compute all ρ(α)|m, for α ∈ [0, 2π[
with traditional rotation algorithms would have needed O(m5) operations.
Note: In the implementation, we have presented the incremental rotation with
an endless loop. The algorithm can be easily modified to stop when it reaches a
specified angle.

4.6 Open-Source Implementation

We have written an implementation of this algorithm. The C++ code of this pro-
gram can be downloaded from the following URL: http://perso.ens-lyon.fr/
bertrand.nouvel/transitive-rotations/. The implementation relies on sim-
ilar ideas but it is actually slightly different: For historical reasons and other
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reasons that are related to the more general project in which we plan to use this
code, it uses two types of configurations. The first kind is [rα]|m and is used to
compute efficiently images by discrete rotations. While Cα ( See [4] ) is used for
some additional local checking.

5 Transitive Discretized Rotations

An map fα depending of a real parameter α is transitive on a set X , if for any
element x ∈ X , and for any couple α0, α1 ∈ R, we have fα0 ◦fα1(x) = fα0+α1(x).

Our aim in this section is to formalize the existence of a transitive discretized
rotation operator �rα� that acts a set X , where X is a cartesian product of
the possible positions in the image, and of a configuration that represents the
internal state of the algorithm. Thus there should exists an onto morphism h
from X to Z[i]. Moreover, the operator should verify:

– ∀α, β ∈ A, ∀x ∈ X, �rα� ◦ �rβ�(x) = �rα+β�(x) ( transitvity )
– For any α ∈ A, for any x ∈ X, we have h(�rα�(x)) = [rα](h(x)) + zε, with
|zε| ≤ 3. In other terms, the operator may use some additional informations,
but it has to provide almost the same result as a discretized rotation, and it
may correct the “mistakes” made by the discretized rotation when iterated.

Since the goal of this operator is to formalize what does the incremental
algorithm inside the the operator �rα�. We will consider that X is either:

Xm = Z[i]× {0, 1} × {C ∈ Z[i]|Z[i]|m
m+1 |∃α ∈ A, C = [rα]|m}

X∞ = Z[i]× {0, 1} × {C ∈ Z[i]Z[i]|∃α ∈ A, C = [rα]}

Since the set of real numbers is a dense and non countable set, transitive
rotation operators implies that Card(X) = Card(R). Thus, rotations of finite
objects cannot lead to transitive rotations. However, we will establish a similar
but weaker notion, ε-quasi-transitivity: An map fα depending of real parameter
α is ε-quasi-transitive on a set X if there exists a constant ε ∈ R, such that for any
element C ∈ X , and for any couple α0, α1 ∈ R, we have fα0 ◦ fα1(C) = fα2(C),
with |α2 − α1 − α0| < ε.

This section starts with some considerations on the angles that represent the
equivalence classes of angles induce by the equality through ρm(A). We will then
discuss of the application of the rotation algorithm to infinite configurations.
Everything will be set up properly for defining an ε-quasi-transitive rotation op-
erator on finite configuration. This operator will turn to be transitive on infinite
configurations. This operator is completely equivalent to the algorithm that has
been explained. Hence, it is just a formalization of its application, it is an at-
tempt to build a discrete framework where transitive discrete rotations would
be possible.
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5.1 Equivalence Classes of Angles for ρ|m(α)

We denote by IH|m the open intervals of angles of the form ]α0, α1[ where α0
and α1 are two consecutive hinge angles of AH|m. For any angle α ∈ A and any
m ∈ N either α ∈ AH|m either there exists a unique I ∈ IH|m such that α ∈ I.
To each element of IH|m of the form ]α0, α1[, we associate an angle Γ (]α0, α1[)
which is equal to α0+α1

2 .
Let ÂH|m = Γ (IH|m) ∪ AH|m. The set ÂH|m has the following properties:

– ∀α ∈ A, ∃α′ ∈ ÂH|m, such that ρm(α′) = ρm(α)
– ∀α1, α2 ∈ ÂH|m, (α1 �= α2)⇔ ρm(α′) �= ρm(α2).

As ρm can be seen as a bijection from ÂH|m to ρm(A), we define the function
φm that associates to each configuration ρm(α) an the element α′ of ÂH|m such
that ρm(α) = ρm(α′).

5.2 Rotations of the Entire Grid Z2

If we consider infinite configurations, then {C ∈ Z[i]Z[i]|∃α ∈ A|C = [rα]} is in
bijection with A. More precisely, for any α, α′ ∈ A, [rα] = [r′α] if and only if and
α = α′. This is true since limm �→∞(φm ◦ ρm(α)) − α→ 0. See also [4].

Moreover, there exists a convergent process that consists in computing grad-
ually each ρm(α) having m that increments gradually from 1 to ∞.

5.3 Transitivity and ε-Quasi-transitivity

The following lemma is necessary to conclude:

Lemma 5. AH is dense subset of A.

Proof. Let απ = atan(a/b) be a Pythagorean angle with a, b, c ∈ Z such that
a2 + b2 = c2, and c odd. We have c eiαπ = a + ib. Thus, ((a + ib) zs, c zd) is
again a generating pair since (a + ib) zs is again a Gaussian integer. Also the
parity of c justifies that c zd belongs again to H. Since the Pythagorean angles
forms a dense subset of A and that hinge angle are closed under addition of a
Pythagorean angle, we have the necessary elements to conclude.

We now have the necessary elements to prove the existence of a transitive discrete
rotation operator on infinite configurations.

The Section 4.2 and the rotation algorithm specify which map ψ shall be
applied to transform one rotation map [rα− ] into another [rα+ ] ( with respect
to the transformations that have previously been applied ).

Let m ∈ N, we define �rα� as the application from Xm to Xm that does the
same as the previous algorithm. More formally, assume x ∈ Xm and x = (z, l, R),
where z is a point we consider; l is the current layer it relies on, and R is the initial
rotation map “from which we will restart”. There exists an angle αd0 = φm(R),
such that R = ρm(αd0). We put �rα�(x) = (z′, l′, R′). The application of the
algorithm starting from R, and for a rotation of α radians, consists in applying
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all the maps ψ that are associated with the hinge angles that lie in-between
αd0 and αd1 , with αd1 = αd0 + α. Thus R′ is equal to (ψzs,1 ◦ ψzs,2 ◦ ...)(R),
where {zs,i} is the sequence of the source points issued from the decreasing
sequence of the hinge angles that stand in-between αd0 and αd1 . Also, we will
have z′ = R′(y) where y is the unique Gaussian integer such that R(y) = z and
such that the destination layer of y is l. We define l′ as the destination layer of
z′ (i.e. [rα](y)) according to the order that has been chosen in the algorithm.
With this definition, �rα� is ε - quasi-transitive on Xm, in the following meaning:
�rα� ◦ �rβ� = �rα+β+ε(α,β,m)�, where ε(α, β, m) is the error that is made due to
the fact the hinge angles of order at most m are a finite set. This error is bounded
by the maximum distance between two consecutive hinge angles in AH|m.

From this discussion, we conclude that �rα� can be interpreted as a transitive
rotation operator on infinite configurations (on X∞): the density of the hinge
angles (Lemma 5) implies that ε(α, β, m) = 0 when m goes to infinity.

5.4 Additional Remarks

Center of the rotation. One important limitation of the operator �rα� is that
it can only been applied successively on rotations around the same center.

Remarks Dealing with Hinge Angles. Let’s note that the hinge angles have
many arithmetical properties which are beyond the scope of this paper. For
instance, by the mean of arithmetical arguments, it can be stated that if α is
a hinge angle then kα is a hinge angle for k �= 0 mod 3 (by recurrence kα is
a hinge angle then (k + 3)α is also a hinge angle) , if α is a zs(α) �= eik π

2 then
its sine and its cosine are rationally dependant, {Zeiα} forms span of 2gcd(x, y)
lines of slopes x

y in (R/Z)[i]... Note also that the set of hinge angles that has
been obtained and studied here is dependant of the discretization that has been
used (and of the real center of the rotation).

Questions Related to the Computation of the Next Hinge Angle in
AH|m. One of the remaining problem of our algorithm is that the only way to
compute efficiently the successor angle is now, up to our current knowledge, to
construct and use a table of the hinge angles.

The question of the structure of hinge angles seems to be linked with some
famous arithmetic and number theory results, such as the Jacobi two-squares
Theorem. Also, the hinge angles can be seen as the subset of the more general set
of angles: α ∈ R that verifies: acos(α) + b sin(α) = c, with a, b, c ∈ {−m, ..., m}.
Although this equation seems familiar due to its similarity to formulas for rota-
tions, very few is known about its integer solutions.

6 Conclusions and Perspectives

This algorithm for discretized rotations has the numerous useful properties: Since
it is an exact algorithm, that is valid on any size of data, it returns the same
result as the direct discretized rotation. However, this algorithm proceeds incre-
mentally, and it will be useful in any procedure that needs to do some checking
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along the rotation process. It is faster to compute than naive incremental rota-
tions that would iterate the discretized rotation. More precisely, it leads to O(n3)
updates of pixel instead ofO(n5). As the discretized rotations, the process is very
accurate in terms of spatial errors: The error made on the position of the image
of point is bounded by

√
2

2 (which is optimal). The fact that it does not use any
sine nor any cosine also contributes to the accuracy of the algorithm.

A similar study shall also be tractable for the 3-shears rotations. The main
advantage that motivates this remark is that these rotations are natively bi-
jective, thus apart the configuration, no additional layer would be required to
implement incremental 3-shear rotations.

Finally, although the hinge angles are sortable using only integer arithmetic,
the procedure is slowed down the necessity to use large integer numbers. To speed
up the algorithm, as suggested in 5.4, a trend for ongoing research is to find an
efficient procedure that computes the successor of an hinge angle in AH|m.
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thesis, Université d’Aix-Marseille II (Luminy) (2003)

7. Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: Pro-
ceedings of the International Workshop on Combinatorial Image Analysis (IWCIA).
Number 3322 in LNCS (2004)

8. Voss, K.: Discrete Images, Objects and Functions in Zn. Springer, Berlin (1993)
9. Nouvel, B., Remila, E.: On colorations induced by discrete rotations. In: Proceedings

of Discrete Geometry for Computer Imagery (DGCI). Number 2886 in LNCS (2003)



Discrete Homotopy of a Closed k-Surface

Sang-Eon Han

Department of Computer and Applied Mathematics
Honam University, Gwangju, 506-714, Korea

sehan@honam.ac.kr

Abstract. Let SCni,li
ki

be a simple closed ki-curve in Zni with li el-
ements, i ∈ {1, 2}. After doing a (3n1+n2 − 1)-homotopic thinning of
SCn1,l1

k1
× SCn2,l2

k2
to obtain a closed (3n1+n2 − 1)-surface, we calculate

the (3n1+n2 − 1)-fundamental group of SCn1,l1
k1

× SCn2,l2
k2

by the use of
some properties of an (8, 3n1+n2 − 1)-covering.
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1 Introduction

Several approaches have been proposed for the study of topological properties of
a binary digital image (X, k). Precisely, the digital(or discrete) topological ap-
proach, the connected order topological space(briefly COTS), the complex cell
approach, and the Alexandroff topological approach were established[1, 2, 14]. In
this paper we use the discrete topological approach to study a digital image with
one of the general k-adjacency of Zn. For a subset X ⊂ Zn, the discrete topo-
logical subspace (X, DX) is induced from (Zn, D). Then consider a k0-adjacency
relation on (X, DX) ⊂ Zn0 and a k1-adjacency relation on (Y, DY ) ⊂ Zn1 .

The study of k-surfaces in Z3 has proceeded in order to find their discrete
topological characterizations, such as the 3D Jordan theorem, a strong homotopy,
local property of a strong 18- or 26- surface, a thinning algorithm within a
digital Jordan surface, the digital k-topological number, and the digital k-linking
number [1, 2, 15]. Moreover, a generalized simple closed k-surface was recently
established in [6] with the restricted k-adjacency relations of Zn, n ≥ 3, which
is a generalization of a Malgouyres’ 18-surface. Further, its digital topological
properties were studied in relation with the digital connected sum in [6], the
topological number, a minimal simple closed 18-surface and so forth [8]. Recently,
the notion of (equivalent) (k0, k1)-covering was established in [7, 9, 10, 11], which
is essentially used to calculate the digital fundamental group of some digital
image.

In this paper we find some discrete topological property of some discrete k-
surfaces in Zn by the digital fundamental group, a k-homotopic thinning, and
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a digital (k0, k1)-covering. Finally, each digital image (X, k) is assumed to be
k-connected.

2 Preliminaries

For a positive integer m with 1 ≤ m ≤ n, two distinct points p = (p1, p2, · · · , pn),
q = (q1, q2, · · · , qn) ∈ Zn, we say that p and q are adjacent according to m if

(1) there are at most m indices i such that |pi − qi| = 1; and
(2) for all other indices i such that |pi − qi| �= 1, pi = qi.

In the following, the statement consisting of the two conditions (1) and (2) is
called (CON�) [4, 5, 6, 7, 8, 9, 10, 11].

Precisely, as the generalization of the commonly used 4- and 8-adjacency of
Z2; and 6-, 18- and 26-adjacency of Z3 in [1], given a natural number m in
(CON�) with 1 ≤ m ≤ n, m determines each of the general k-adjacency rela-
tions of Zn in terms of (CON�) [4, 5, 6, 7, 8, 9, 10, 11] as follows.

k ∈ {2n(n ≥ 1), 3n−1(n ≥ 2), 3n−
r−2∑
t=0

Cn
t 2n−t−1(2 ≤ r ≤ n−1, n ≥ 3)}.·(2−1)

In this paper the pair (X, k) is considered in a usual digital picture (Zn, k,
k̄, X) in [1, 2, 3, 6], which is called a digital image, where (k, k̄) ∈ {(k, 2n), (2n,
3n − 1)}. Further, k �= k̄ except the case (Z, 2, 2, X) in Z owing to the digital
k-connectivity paradox[13]. For a, b ∈ Z with a � b, the set [a, b]Z = {n ∈ Z|a ≤
n ≤ b} is called a digital interval. A k-path from x to y in X is assumed to be
a sequence (x = x0, x1, x2, · · · , xm−1, xm = y) in X such that each point xi is
k-adjacent to xi+1 for m ≥ 1 and i ∈ [0, m− 1]Z. Then the number m is called
the length of this path. If x0 = xm, then the k-path is said to be closed. For a
digital image (X, k), two distinct points x, y ∈ X are k-connected if there is a
k-path from x to y in X , and if any two distinct points in X are k-connected,
then X is called k-connected. For an adjacency relation k, a simple k-path with
m elements in Zn is assumed to be a sequence (x0, x1, x2, · · · , xm−1) ⊂ Zn such
that xi and xj are k-adjacent if and only if either j = i+1 or i = j +1 [3, 6, 7, 8].

Now the following notion of digital continuity is efficiently used to study
digital k-curves, k-surfaces in Zn[6, 8], and the digital (k0, k1)-covering in
[5, 6, 7, 8, 9, 10, 11].

Proposition 1. [4, 5, 6, 7, 8, 9, 10, 11] Let (X, k0) ⊂ Zn0 and (Y, k1) ⊂ Zn1 be
digital images. A function f : X → Y is (k0, k1)-continuous if and only if for
every x0 ∈ X, ε ∈ N, and Nk1(f(x0), ε) ⊂ Y , there is δ ∈ N such that the
corresponding Nk0(x0, δ) ⊂ X satisfies f(Nk0(x0, δ)) ⊂ Nk1(f(x0), ε), where
Nk(x0, ε) := {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, and lk(x0, x) is the length of a
shortest simple k-path from x0 to x in X.

For example, (n, m, k) ∈ {(2, 1, 4), (2, 2, 8); (3, 1, 6), (3, 2, 18), (3, 3, 26); (4, 1, 8),
(4, 2, 32), (4, 3, 64), (4, 4, 80); (5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4, 210), (5, 5, 242);
(6, 1, 12),(6,2,72),(6,3,232),(6, 4, 472),(6, 5, 664),(6, 6, 728)}[4, 5, 6, 7, 8,9, 10,11].
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Indeed, a simple closed k-curve with l elements in X ⊂ Zn is the image of a
(2, k)-continuous function f : [0, l − 1]Z → X such that f(i) and f(j) are k-
adjacent if and only if either j = i + 1(mod l) or i = j + 1(mod l)[3]. Now we
use the notation SCn,l

k which can be assumed to be a sequence (ci)i∈[0,l−1]Z with
f(i) = ci.

For a digital image (X, k) and its subset (A, k), we call (X, A) a digital image
pair with k-adjacency. Furthermore, if A is a singleton set {x0}, then (X, x0) is
called a pointed digital image [3]. A relative digital homotopy to a subset A ⊂ X ,
motivated by the pointed digital homotopy in [3], is efficiently used to study
a digital k-surface in Zn, n ≥ 3, and is essentially used to do a k-homotopic
thinning.

Definition 1. [6] Let (X, k0) in Zn0 and (Y, k1) in Zn1 be digital images and let
(A, k0) be a subset of (X, k0). Let f, g : X → Y be (k0, k1)-continuous functions.
Suppose there exist m ∈ N and a function F : X × [0, m]Z → Y such that

• for all x ∈ X, F (x, 0) = f(x) and F (x, m) = g(x);
• for all x ∈ X, the induced function Fx : [0, m]Z → Y given by
Fx(t) = F (x, t) for all t ∈ [0, m]Z is (2, k1)-continuous;
• for all t ∈ [0, m]Z, the induced function Ft : X → Y given by
Ft(x) = F (x, t) for all x ∈ X is (k0, k1)-continuous;
• for all t ∈ [0, m]Z, the induced map Ft on A is fixed, i.e., Ft(x) = x for x ∈ A.
Then we call F a (k0, k1)-homotopy relative to A between f and g, and we say
f and g are (k0, k1)-homotopic rel A in Y .

Especially, if A = {x0} ⊂ X in Definition 1, then we say that F is a pointed
(k0, k1)-homotopy at {x0}[3]. When f and g are pointed (k0, k1)-homotopic in
Y , we use the notation f -(k0,k1) g. Furthermore, we say that a digital image
X is k-contractible if 1X -k c{x0}, where c{x0} is a constant map for some
point x0 ∈ X [3]. We say that a (k0, k1)-continuous function f : X → Y is
k1-nullhomotopic in Y if f is k1-homotopic in Y to a constant function c{y0}
for some y0 ∈ Y [3]. Now we use the pointed (k0, k1)-homotopy for the digital
fundamental group.

In order to understand the pointed digital k-homotopy in relation with the
digital k-fundamental group, we need the notion of trivial extension in [3]: Pre-
cisely, if mf ≤ mf ′ , we can obtain a trivial extension of a loop f : [0, mf ]Z → X
to a loop f ′ : [0, mf ′ ]Z → X given by

f ′(t) =

{
f(t) if 0 ≤ t ≤ mf ;

f(mf) if mf ≤ t ≤ mf ′ .

Due to the pointed digital homotopy for a pointed digital image (X, x0) and
the notion of trivial extension in [3], the (digital) k-fundamental group πk

1 (X, x0)
was originally established in [3, 12] with the Khalimsky operation in [12]. To
be specific, let F k

1 (X, x0) = {f |f is a k − loop based at x0}. For members
f : [0, mf ]Z → X , g : [0, mg]Z → X of F k

1 (X, x0), we obtain the map in [12]
f ∗ g : [0, mf + mg]Z → X defined by
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f ∗ g(t) =

{
f(t) if 0 ≤ t ≤ mf ;

g(t−mf ) if mf ≤ t ≤ mf + mg.

If x0 and x1 belong to the same k-connected component of X , then πk
1 (X, x0)

and πk
1 (X, x1) are proved isomorphic to each other[3]. Thus, for a k-connected

digital image X , we need not fix a base point for the k-fundamental group.
In addition, for digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h :

X → Y is called a (k0, k1)-homeomorphism in [4, 5, 6, 7, 8, 9, 10] if h is (k0, k1)-
continuous and bijective and further, h−1 : Y → X is (k1, k0)-continuous. Then
we use the notation X ≈(k0,k1) Y . If k0 = k1, we call it a k0-homeomorphism
[3, 4, 5, 6, 7, 8, 9, 10]. Besides, if X is pointed k-contractible, then πk

1 (X, x0) is
proved to be trivial[3]. Further, a pointed k-connected digital image (X, x0) is
called simply k-connected if πk

1 (X, x0) is a trivial group[9].
By Definition 1 we have the following notion of strong k-deformation retract

in [4, 11] which is useful for a k-homotopic thinning of a torus-like digital image
SCn1,l1

k1
× SCn2,l2

k2
in Section 3.

Definition 2. [4, 11] Suppose that (X, A) is a digital image pair with k-adjacency
and i : A→ X is the inclusion map, A is called a k-retract of X if and only if there
is a k-continuous map r : X → A such that r(a) = a for all a ∈ A. Then the
map r is called a k-retraction of X onto A. For a digital image pair (X, A) with
k-adjacency, we say that X is a strong k-deformation retract onto A if there is a
k-homotopy relative to A F : X × [0, m]Z → X such that F (x, m) is a k-retract
onto A for x ∈ X.

Indeed, for a digital image (X, k), a simple k-point is one whose removal does
not change the digital topological property of (X, k) up to a k-connectivity [1].
Then we usually say that a k-thinning is the processing of deleting some simple
k-points from a digital image (X, k).

Definition 3. [4, 11] For a digital image (X, k), we can delete some points
from X in terms of a strong k-deformation retract. In other words, if (A, k)
is a k-deformation retracted subimage of (X, k), then we say that A is a k-
homotopically thinned digital image from X. Further, this processing is called a
k-homotopic thinning.

Indeed, there is a big difference between a usual k-thinning and the current
k-homotopic thinning in [11] and Example 4(1).

Theorem 1. [4, 11] If (A, x0) is a strong k-deformation retract of (X, x0), then
πk

1 (X, x0) is isomorphic to πk
1 (A, x0).

3 Closed (3n1+n2 − 1)-Surface Structure of the
(3n1+n2 − 1)-Homotopically Thinned Digital Image
from SCn1,l1

k1
× SCn2,l2

k2

We now need some terminologies in order to study a digital k-surface. A point
x ∈ X is called a k-corner if x is k-adjacent to two and only two points y, z ∈ X
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such that y and z are k-adjacent each other[2]. Further, the k-corner x is called
simple if y, z are not k-corners and if x is the only point k-adjacent to both y, z
[1]. X is called a generalized simple closed k-curve if what is obtained by removing
all simple k-corners of X is a simple closed k-curve in [2]. For a k-connected
digital image (X, k) in Z3, we recall |X |x = N∗

26(x) ∩X , N∗
26(x) = {x′|x and x′

are 26-adjacent}[1, 2]. More generally, for a k-connected digital image (X, k) in
Zn, n ≥ 3, we can state |X |x = N∗

3n−1(x) ∩X , where N∗
3n−1(x) = {x′|x and x′

are (3n − 1)-adjacent}. In other words, |X |x = N3n−1(x, 1)− {x} in Zn[6].
Indeed, the essential notions above allow us to have a generalized closed k-

surface with one of the k-adjacency relations in (2-1) as the generalization of
the digital k1-surface in Z3[15, 17], where k1 ∈ {6, 18, 26}. In this paper we will
not consider the orientability of a closed k-surface in [17]. Indeed, a closed k-
surface in Zn was studied with the restricted (3n − 2n − 1)-adjacency in [6]
and a simple closed k-surface in Zn was introduced with one of the general k-
adjacency relations in (2-1), where k �= 2n. But it is too restrictive to define a
closed 2n-surface and a closed k-surface not simple, where k �= 3n − 2n − 1.

Thus we now study the more generalized criterion of a closed k-surface in Zn,
where the k-adjacency is taken from (2-1).

Definition 4. [11] Let (X, k) be a digital image in Zn, n ≥ 3, and X̄ = Zn−X.
Then X is called a closed k-surface if it satisfies the following.

(1) In case that (k, k̄) ∈ {(k, 2n), (2n, 3n − 1)}, where the k-adjacency is taken
from (2-1) with k �= 3n − 2n − 1, then
(a) for each point x ∈ X, |X |x has exactly one k-component k-adjacent to x;
(b) |X̄|x has exactly two k̄-components k̄-adjacent to x; we denote by Cx x and
Dx x these two components; and
(c) for any point y ∈ Nk(x) ∩X, Nk̄(y) ∩ Cx x �= φ and Nk̄(y) ∩Dx x �= φ.
Further, if a closed k-surface X does not have a simple k-point, then X is called
simple.
(2) In case that (k, k̄) = (3n − 2n − 1, 2n), then
(a) X is k-connected,
(b) for each point x ∈ X, |X |x is a generalized simple closed k-curve.
Further, if the image |X |x is a simple closed k-curve, then the closed k-surface
X is called simple.

The current cases (1) and (2) of Definition 4 are respectively generalizations of
the closed k-surface in [17] and a closed 18-surface in [15], where k ∈ {6, 26} with
the pair (k, k̄) ∈ {(6, 26), (26, 6)}. Obviously, we see that each closed 6-surface is
simple.

Example 1. According to the criterion of a closed (simple) k-surface in Definition
4, examine the minimal simple closed 6-surface MSS6 and two types of minimal
simple closed 18-surfaces MSS18 and MSS′

18 in [8].

Consider a simple closed ki-curve with li elements in Zni , denoted by SCni,li
ki

,
i ∈ {1, 2}. Assume that SCn1,l1

k1
:= (ci)i∈[0,l1−1]Z and SCn2,l2

k2
:= (dj)j∈[0,l2−1]Z
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as sequences. Then we remind that the number mi is always taken from the
ki-adjacency by (CON�), i ∈ {1, 2}. Let us consider the following closed 4-,
8-curves in Z2 and closed 18-curves in Z3 used later in this paper.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

SC2,8
4 := ((0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0)),

SC2,4
8 := ((0, 0), (1, 1), (2, 0), (1,−1)),

SC2,6
8 := ((0, 0), (1, 1), (1, 2), (0, 3), (−1, 2), (−1, 1)), and

SC
3,6
18 := ((0, 0, 0), (1, 0, 1), (1, 1, 2), (0, 2, 2), (−1, 1, 2), (−1, 0, 1))}.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
· · · (3 − 1)

Indeed, a torus-like digital image SCn1,l1
k1

×SCn2,l2
k2

⊂ Zn1+n2 is presented by
an (l1× l2)-matrix with the component ti j := (ci, dj) ∈ SCn1,l1

k1
×SCn2,l2

k2
, which

is indeed an (n1 + n2)-ordered pair in Zn1+n2(see Example 2).

Example 2. A closed 50-surface SC2,6
8 × SC3,6

18 ⊂ Z5 is simple but is not 50-
contractible. Further, it is also a closed k-surface not 210-simple in Z5, where
k ∈ {130, 210, 242}.

Proof: First, for SC2,6
8 and SC3,6

18 in (3-1), SC2,6
8 × SC3,6

18 := DT50 ⊂ Z5 is
presented in terms of the following row Ti, i ∈ [0, 5]Z.

Indeed, Ti and Ti+1(mod 6) are 50-adjacent and further, T j and T j+1(mod 6) are
50-adjacent, T j stands for the j-th column of DT50. Further, we see that DT50
satisfies the case (1) of Definition 4, which implies to be a closed 50-surface.

Similarly, we see that DT50 is also a closed k-surface, k ∈ {130, 242}.
Moreover, for each point p ∈ DT50, since |DT50|p = N242(p, 1) − {p} is a

generalized simple closed 210-curve, DT50 is also proved a closed 210-surface,
but DT50 is not 210-simple because for some point x ∈ DT50, |DT50|x is not a
simple closed 210-curve.

Next, since neither of any 50-loops on {ci}×SC3,6
18 ⊂ SC2,6

8 ×SC3,6
18 nor each

50-loop on SC2,6
8 ×{dj} ⊂ SC2,6

8 ×SC3,6
18 is 50-nullhomotopic in SC2,6

8 ×SC3,6
18 ,

SC2,6
8 × SC3,6

18 can not be 50-contractible. �

In relation with Example 2 we obtain a closed k-surface from SCn1,l1
k1

× SCn2,l2
k2

by a strong k-deformation retract even if m1 ≤ m2.

Theorem 2. SCn1,l1
k1

×SCn2,l2
k2

can be (3n1+n2 −1)-homotopically thinned to be
a closed (3n1+n2 − 1)-surface.

Proof: SCn1,l1
k1
×SCn2,l2

k2
:= (ci)i∈[0,l1−1]Z×(dj)j∈[0,l2−1]Z can be considered as an

(l1× l2)-matrix with the component ti j := (ci, dj), i ∈ [0, l1− 1]Z, j ∈ [0, l2− 1]Z
so that it can be assumed to be the set ∪i∈[0,l1−1]ZTi = ∪j∈[0,l2−1]ZT j in terms
of the following row and column Ti = {ci} × SCn2,l2

k2
and T j = SCn1,l1

k1
× {dj}.
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Now for SCn1,l1
k1

× SCn2,l2
k2

, assume that m1 ≤ m2. We say that Ti = (ti j)
j∈[0,l2−1]Z and Ti+2(mod l1) = (ti+2(mod l1)j)j∈[0,l2−1]Z are (3n1+n2 − 1)-connected
if ti j and ti+2(mod l1)j are (3n1+n2 − 1)-connected for each j ∈ [0, l2 − 1]Z.

If Ti and Ti+2(mod l1) are (3n1+n2 −1)-connected, then delete Ti+1(mod l1) from
∪i∈[0,l1−1]ZTi = SCn1,l1

k1
×SCn2,l2

k2
. For each i ∈ [0, l1−1]Z, we do this processing

consecutively. Thus we obtain the submatrix

∪i∈[0,l′1−1]ZTi ⊂ SCn1,l1
k1

× SCn2,l2
k2

, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(3 − 3)

where {{ci} × SCn2,l2
k2

:= Ti|i ∈ [0, l′1 − 1]Z} is a subset of {{ci} × SCn2,l2
k2

:=
Ti|i ∈ [0, l1 − 1]Z}, (ci)i∈[0,l′1−1]Z is a subsequence of (ci)i∈[0,l1−1]Z and l′1 =
l1− the cardinal number of the set {i + 1(mod l1)| Ti and Ti+2(mod l1) are
(3n1+n2 − 1)− connected, i ∈ [0, l1 − 1]Z}.

Next, write the submatrix ∪i∈[0,l′1−1]ZTi in (3-3) by ∪j∈[0,l2−1]ZT j, where
T j := (ci, dj)i∈[0,l′1−1]Z , j ∈ [0, l2 − 1]Z. Then we say that T j = (ci, dj)i∈[0,l′1−1]Z

and T j+2(mod l2) = (ci, dj+2(mod l2))i∈[0,l′1−1]Z are (3n1+n2−1)-connected if (ci, dj)
and (ci, dj+2(mod l2)) are (3n1+n2 − 1)-connected for all i ∈ [0, l′1− 1]Z. If T j and
T j+2(mod l2) are (3n1+n2−1)-connected, then delete T j+1(mod l2) from the matrix
∪j∈[0,l2−1]ZT j. For each j ∈ [0, l2 − 1]Z, do this processing consecutively so that
we obtain the submatrix

∪j∈[0,l′2−1]ZT j := {(ci, dj)|i ∈ [0, l′1 − 1]Z, j ∈ [0, l′2 − 1]Z}, · · · · · · · (3− 4)

where l′2 = l2− the cardinal number of the set {j+1(mod l2)| T j and T j+2(mod l2)

are (3n1+n2 − 1)-connected, j ∈ [0, l2 − 1]Z}.
Then we denote by DT3n1+n2−1 the submatrix ∪j∈[0,l′2−1]ZT j in (3-4). Now we

obviously see that DT3n1+n2−1 is taken from SCn1,l1
k1

× SCn2,l2
k2

in terms of such
a kind of (3n1+n2−1)-homotopic thinning and is a closed (3n1+n2 −1)-surface.�
Hereafter, by DT3n1+n2−1 we denote the (3n1+n2 − 1)-homotopically thinned
digital image in Theorem 2 and use it later in this paper.

Example 3. Consider the two digital images X := SC2,10
4 := ((0, 0), (1, 0), (2, 0),

(2, 1), (2, 2), (2, 3), (1, 3), (0, 3), (0, 2), (0, 1)) := (ci)i∈[0,9]Z which is a simple closed
4-curve with ten elements in Z2 and SC3,6

18 := (dj)j∈[0,5]Z in (3-1). Then the
Cartesian product X ×Y is assumed to be a (10× 6)-matrix with the component
ti j := (ci, dj) ∈ X×SC3,6

18 . Then, do 242-homotopic thinning on X×SC3,6
18 so that

we obtain the 242-homotopically thinned digital image X ′×SC3,6
18 from X×SC3,6

18
by Theorem 2, where X ′ := ((1, 0), (2, 1), (2, 2), (1, 3), (0, 2), (0, 1)) := (ci)i∈[0,5]Z .
We see that X ′ × SC3,6

8 := DT242 ⊂ Z5 is a closed 242-surface.

Indeed, Theorem 2 plays an essential role in calculating the (3n1+n2 − 1)-
fundamental group of SCn1,l1

k1
× SCn2,l2

k2
by the use of some properties of an

(8, 3n1+n2 − 1)-covering map in Sections 4, 5(see Theorems 3, 4).
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4 (8, 3n1+n2 − 1)-Covering, (Z × Z, p1 × p2, DT3n1+n2−1)

Due to the digital (k0, k1)-covering theory in [7, 9, 10, 11], the calculation of the
digital fundamental group of some digital image was studied, e.g., π4

1(SC2,8
4 )

and π8
1(SC2,6

8 ) are, respectively, isomorphic to infinite cyclic groups, precisely,
(8Z, +) and (6Z, +) [9]. Further, an equivalent presentation of the (k0, k1)-
covering in [9] is shown in [10, 11] as follows.

Definition 5. [10, 11] Let (E, k0) and (B, k1) be digital images and let p : E →
B be a (k0, k1)-continuous surjection. Suppose, for any b ∈ B, there exists ε ∈ N
such that

(1) for some index set M , p−1(Nk1(b, ε)) = ∪i∈MNk0(ei, ε) with ei ∈ p−1(b);
(2) if i, j ∈M and i �= j, then Nk0(ei, ε) ∩Nk0(ej , ε) = φ;
(3) the restriction map p on Nk0(ei, ε) is a (k0, k1)-homeomorphism for all
i ∈M .

Then the map p is called an equivalent (k0, k1)-covering map and (E, p, B) is
said to be an equivalent (k0, k1)-covering.

The k1-neighborhood Nk1(b, ε) is called an elementary k1-neighborhood of b with
some radius ε and further, E is called a (k0, k1)-covering space of B. In the follow-
ing, we use the equivalent (k0, k1)-covering when we state a (k0, k1)-covering. For
example, let p : Z → SCn,l

k := (ci)i∈[0,l−1]Z be a map given by p(r) = cr(mod l),
r ∈ Z. Then the map p is obviously a (2, k)-covering map [9, 10, 11].

Definition 6. [5] For digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a (k0, k1)-
continuous map h : X → Y is called a local (k0, k1)-homeomorphism if, for any
x ∈ X, Nk0(x, 1) ⊂ X is (k0, k1)-homeomorphic to Nk1(h(x), 1) ⊂ Y . If n0 = n1
and k0 = k1, then the map h is called a local k0-homeomorphism.

Definition 7. [7, 10, 11] A (k0, k1)-covering (E, p, B) is called a radius n-(k0,
k1)-covering if ε ≥ n in Definition 5.

Remark 1. If (E, p, B) is a (k0, k1)-covering, then the map p is a radius 1-(k0, k1)-
covering map because a (k0, k1)-homeomorphism is a local (k0, k1)-homeomorphic
bijection[5]. Thus we may take ε = 1 in Definition 5.

By the use of some properties of the (2, k)-covering (Z, p, SCn,l
k ) we have the

following.

Theorem 3. In Theorem 2 consider the map p1× p2 : Z×Z→ DT3n1+n2−1 :=
(ci)i∈[0,l′1−1]Z×(dj)j∈[0,l′2−1]Z given by p1×p2((r1, r2)) = (cr1(mod l′1), dr2(mod l′2)).
Then the map p1 × p2 is an (8, 3n1+n2 − 1)-covering map.

Proof: Assume that SCn1,l1
k1

× SCn2,l2
k2

= ∪i∈[0,l1−1]ZTi ⊂ Zn1+n2 , where each
Ti = {ci} × SCn2,l2

k2
can be considered as the sequence Ti := (ti j)j∈[0,l2−1]Z ,

ti j = (ci, dj) and i ∈ [0, l1 − 1]Z. Since

DT3n1+n2−1 := (ci)i∈[0,l′1−1]Z × (dj)j∈[0,l′2−1]Z ⊂ SCn1,l1
k1

× SCn2,l2
k2
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is a closed (3n1+n2 − 1)-surface by Theorem 2, we now prove that Z2 is an
(8, 3n1+n2 − 1)-covering space of DT3n1+n2−1.

First, the map p1 × p2 : Z× Z→ DT3n1+n2−1 given by

p1 × p2((r1, r2)) = (cr1(mod l′1), dr2(mod l′2))

is proved an (8, 3n1+n2 − 1)-continuous surjection. Precisely, for any element
ti j := (ci, dj) ∈ DT3n1+n2−1 and its (3n1+n2 − 1)-neighborhood with radius 1 in
DT3n1+n2−1, there is the following 8-neighborhood with radius 1

N8((r1, r2), 1) ⊂ Z× Z such that

p1 × p2(N8((r1, r2), 1)) = N3n1+n2−1(ti j , 1),

where r1(mod l′1) = i and r2(mod l′2) = j, which implies an (8, 3n1+n2 − 1)-
continuous surjection of p1 × p2. To be specific, p1 × p2(N3n1+n2−1(t0 0, 1)) =
∪m,n∈ZN8((ml′1, nl′2), 1) in Fig.1.

Next, for any element ti j ∈ DT3n1+n2−1, we prove that N3n1+n2−1(ti j , 1) is an
elementary (3n1+n2 − 1)-neighborhood of the point ti j with radius 1. Precisely,

(p1 × p2)−1(N3n1+n2−1(ti j , 1)) = ∪(r1,r2)∈M1×M2⊂Z2N8((r1, r2), 1), · · · (4-1)
where r1(mod l′1) = i and r2(mod l′2) = j.

(0, 0)

(l   , l    )(0, l   )

(l  , 0)1

2 21

Fig. 1. (p1 × p2)−1(N3n1+n2−1(t0 0, 1)) of the (8, 3n1+n2 − 1)-covering

In (4-1), for any (r1, r2) �= (r′1, r
′
2) ∈M1 ×M2 ⊂ Z× Z, we see that

N8((r1, r2), 1) ∩N8((r′1, r
′
2), 1) = φ.

Moreover, the restriction map p1 × p2 on N8((r1, r2), 1) is an (8, 3n1+n2 − 1)-
homeomorphism for all (r1, r2) ∈M1 ×M2 ⊂ Z× Z.

Thus the proof of an (8, 3n1+n2 − 1)-covering (Z× Z, p1 × p2, DT3n1+n2−1) is
completed, as required. �

Example 4. (1) Consider SC2,8
4 × SC2,4

8 := (ci)i∈[0,7]Z × (dj)j∈[0,3]Z with the
following (8 × 4)-matrix presentation(see (4-2)).
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(0, 0, 0, 0) (0, 0, 1, 1) (0, 0, 2, 0) (0, 0, 1,−1)
(0, 1, 0, 0) (0, 1, 1, 1) (0, 1, 2, 0) (0, 1, 1,−1)
(0, 2, 0, 0) (0, 2, 1, 1) (0, 2, 2, 0) (0, 2, 1,−1)
(1, 2, 0, 0) (1, 2, 1, 1) (1, 2, 1, 2) (1, 2, 0, 3)
(2, 2, 0, 0) (2, 2, 1, 1) (2, 2, 1, 2) (2, 2, 0, 3)
(2, 1, 0, 0) (2, 1, 1, 1) (2, 1, 1, 2) (2, 1, 0, 3)
(2, 0, 0, 0) (2, 0, 1, 1) (2, 0, 1, 2) (2, 0, 0, 3)
(1, 0, 0, 0) (1, 0, 1, 1) (1, 0, 1, 2) (1, 0, 0, 3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎝
T1
T3
T5
T7

⎞⎟⎟⎠ := DT80 · · · (4− 2)

Further, put T j := SC2,8
4 × {dj} and Ti := {ci} × SC2,4

8 , where SC2,8
4 :=

(ci)i∈[0,7]Z and SC2,4
8 := (dj)j∈[0,3]Z . Thus we have the notation SC2,8

4 ×SC2,4
8 :=

∪i∈[0,7]ZTi := ∪j∈[0,3]ZT j. Since Ti and Ti+2(mod 8) are 80-connected, i ∈ {1, 3,
5, 7}, we can delete the subset ∪i∈{0,2,4,6}Ti from the set ∪i∈[0,7]ZTi in (4-2) in
terms of the 80-homotopic thinning on SC2,8

4 × SC2,4
8 . Consequently, we have a

closed 80-surface 80-homotopically thinned.
Besides, we now consider an (8, 80)-covering map p1 × p2 : Z×Z→ DT80 by

the same method as Theorem 3.
(2) Similarly, by Example 2 we obtain that (Z×Z, p1 × p2, SC2,6

8 × SC3,6
18 ) is

an (8, 242)-covering. �

5 (3n1+n2 − 1)-Fundamental Group of SCn1,l1
k1

× SCn2,l2
k2

Even if SCn1,l1
k1
×SCn2,l2

k2
is not a closed k-surface, we can calculate the (3n1+n2−

1)-fundamental group of SCn1,l1
k1
×SCn2,l2

k2
in terms of the (3n1+n2−1)-homotopic

thinning method in Theorem 2 and some properties of an (8, 3n1+n2−1)-covering
map in Theorem 3.

For three digital images (E, k0) ⊂ Zn0 , (B, k1) ⊂ Zn1 , and (X, k2) ⊂ Zn2 , let
p : E → B be a (k0, k1)-continuous map. For some (k2, k1)-continuous map f
from X into B, as a digital analogue of a lifting in [16], we say that a digital lifting
of f is a (k2, k0)-continuous map f̃ : X → E such that p ◦ f̃ = f [6, 7, 9, 10, 11].
Let p : (E, e0) → (B, b0) be a (k0, k1)-covering map which preserves the base
point. Any k1-path f : [0, m]Z → B beginning at b0 has a unique digital lifting
to a k0-path f̃ in E beginning at e0 [9, 10, 11]. Moreover, the following digital
homotopy lifting theorem was originally introduced in [7].

Lemma 1. [7] Let ((E, e0), k0) and ((B, b0), k1) be pointed digital images. Let
p : (E, e0) → (B, b0) be a radius 2-(k0, k1)-covering map. For k0-paths g0 :
[0, m0]Z → (E, e0) and g1 : [0, m1]Z → (E, e0) that begin at e0 = g0(0) = g1(0),
if p ◦ g0 and p ◦ g1 are k1-homotopic rel {p(e0), p(g0(m0)) = p(g1(m1))} in B,
then g0 and g1 are k0-homotopic rel {e0, g0(m0) = g1(m1)} in E.

In order to study the digital fundamental group of some digital closed k-surface,
we need the following.
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Definition 8. [10, 11] For digital images ((E, e0), k0), ((B, b0), k1), let p :
(E, e0) → (B, b0) be a pointed (k0, k1)-covering map. If p∗πk0

1 (E, e0) is a nor-
mal subgroup of πk1

1 (B, b0), then ((E, e0), p,(B, b0)) is called a regular (k0, k1)-
covering.

In Theorem 3 we obtain a base point preserving radius 2-(8, 3n1+n2−1)-covering
((Z×Z, (0, 0)), p1 × p2, (DT3n1+n2−1, t0 0)). Then, by Lemma 1 we have the fol-
lowing which is the digital version of covering map property in [16]:

If (p1 × p2)−1(t0 0) is a group, then we obtain the following: (p1 × p2)−1(t0 0)
is isomorphic to

π3n1+n2−1
1 (DT3n1+n2−1, t0 0)/(p1×p2)∗π8

1((Z×Z, (0, 0)) · · · · · · · · · · · · · · · (5−1),

where (p1 × p2)∗ : π8
1((Z × Z, (0, 0)) → π3n1+n2−1

1 (DT3n1+n2−1, t0 0) is a group
homomorphism induced from the covering map p1 × p2.

Hereafter, for the product set SCn1,l1
k1
×SCn2,l2

k2
:= {(ci, dj)|i ∈ [0, l1−1]Z}, j ∈

[0, l2 − 1]Z}, assume that

each of the subsets {ci}×SCn2,l2
k2

and SCn1,l1
k1

×{dj} in SCn1,l1
k1

×SCn2,l2
k2

is not
(3n1+n2 − 1)-contractible.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5 − 2)

Indeed, for the digital image SCn1,l1
k1

× SCn2,l2
k2

:= (ci)i∈[0,l1−1]Z × (dj)

j∈[0,l2−1]Z , its (3n1+n2−1)-fundamental group is stated by the fact that π1(SCn,l
k )

is isomorphic to the infinite cyclic group, precisely, (lZ, +)[4, 5, 6, 7, 8, 9, 10].

Theorem 4. With the hypothesis of (5-2) π3n1+n2−1
1 (SCn1,l1

k1
× SCn2,l2

k2
) is iso-

morphic to l′1Z × l′2Z, where l′1 = l1− the cardinal number of the set of simple
(3n1+n2 − 1)-points in SCn1,l1

k1
× {dj} ⊂ SCn1,l1

k1
× SCn2,l2

k2
and l′2 = l2− the

cardinal number of the set of simple (3n1+n2 − 1)-points in {ci} × SCn2,l2
k2

⊂
SCn1,l1

k1
× SCn2,l2

k2
.

Before proving Theorem 4, we need to show the hypothesis of (5-2) as follows: In
case that SCni,li

ki
= SCni,4

2ni
, i ∈ {1, 2}, we see that π3ni−1

1 (SCni,4
2ni

) is trivial(see
Example 2). Without the hypothesis of (5-2), Theorem 4 may not be true(for
more details, see Remark 2).

Proof: By Theorem 2, after doing a (3n1+n2−1)-homotopic thinning on SCn1,l1
k1
×

SCn2,l2
k2

, we have the (3n1+n2 − 1)-homotopically thinned digital image
DT3n1+n2−1 ⊂ SCn1,l1

k1
× SCn1,l1

k1
such that (Z × Z, p1 × p2, DT3n1+n2−1) is a

radius 2 − (8, 3n1+n2 − 1)-covering by Theorem 3. Since Z × Z is simply 8-
connected, it is a radius 2− (8, 3n1+n2 − 1)-regular covering map. Thus, by (5-1)
(p1× p2)−1(t0 0) = l′1Z× l′2Z is isomorphic to π3n1+n2−1

1 (DT3n1+n2−1, t0 0) which
is isomorphic to π3n1+n2−1

1 (SCn1,l1
k1

× SCn2,l2
k2

, t0 0) by Theorems 1 and 3. Thus
the proof is completed, as required. �
Example 5. By Theorem 3 we see that π242

1 (Y ×SC3,6
18 ) is isomorphic to 8Z×6Z,

where Y := SC2,8
8 := {(0, 0), (1, 1), (1, 2), (1, 3), (0, 4), (−1, 3), (−1, 2), (−1, 1)}.
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Proof: By the (8, 242)-covering (Z×Z, p1×p2, DT242 := Y ×SC3,6
18 ) in Theorem

3 and (5-1) the proof is completed. �

Remark 2. In view of Theorem 4 if either {ci} × SCn2,l2
k1

or SCn1,l1
k1

× {dj} is

(3n1+n2 − 1)-contractible, then π3n1+n2−1
1 (SCn1,l1

k1
× SCn2,l2

k2
) need not be iso-

morphic to l′1Z × l′2Z. Precisely, consider SC2,8
4 × SC2,6

8 . Then, since SC2,8
4 is

8-contractible [3, 6, 7, 8, 11], SC2,8
4 × {dj} is 80-contractible. But {ci} × SC2,6

8
is not 80-nullhomotopic in SC2,8

4 × SC2,6
8 because SC2,6

8 is not 8-contractible
[4, 5, 6, 7, 8, 9]. Thus π80

1 (SC2,8
4 ×SC2,6

8 ) - 6Z which is not isomorphic to 8Z×6Z.
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Abstract. In digitizing 3D objects one wants as much as possible object
properties to be preserved in its digital reconstruction. One of the most
fundamental properties is topology. Only recently a sampling theorem for
cubic grids could be proved which guarantees topology preservation [1].
The drawback of this theorem is that it requires more complicated re-
construction methods than the direct representation with voxels. In this
paper we show that face centered cubic (fcc) and body centered cubic
(bcc) grids can be used as an alternative. The fcc and bcc voxel repre-
sentations can directly be used for a topologically correct reconstruction.
Moreover this is possible with coarser grid resolutions than in the case
of a cubic grid. The new sampling theorems for fcc and bcc grids also
give absolute bounds for the geometric error.

1 Introduction

In 3D image analysis one often has to deal with the huge amount of data of volu-
metric images. Using non-standard grids, like bcc and fcc grids for digitizing 3D
objects is a very promising method in order to reduce the amount of data, since
these grids have a very high packing density (i.e. the ratio between the volume of
the largest ball completely enclosed in a voxel and the volume of the voxel itself)
in comparison to cubic grids [2, 3]. The advantages of the bcc and fcc grids has
led to various applications in very different areas, e.g. in fuzzy segmentation [4]
and in computer graphics and data visualization, [2,5,6]. Also, image processing
algorithms on which many applications rely have been developed for these grids,
e.g. weighted distance transforms [7] and multiscale representation of images [8].

The question addressed in this paper is, if these grids can be used for topol-
ogy preserving digitization and if they are advantageous regarding this problem
relatively to the common cubic grid.

While first solutions to topology preserving digitization in 2D have already
been published in 1982 [9,10], the 3D generalization remained unproved for over
20 years. In fact it is proved that topological changes can never be avoided if
one uses the digital reconstruction on a cubic grid, i.e. the union of the voxels

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 226–240, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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whose sampling points lie inside the object [11]. At least connectivity and the
number of the objects components could be reliably detected with the digital
reconstruction, as shown in [12]. But this is not all the topological information.
Only recently one of the authors showed together with Siqueira and Latecki that
one can digitize 3D r-regular objects with a sufficiently dense sampling grid, such
that the whole topological information is unchanged, if one uses not the digital
reconstruction based on the voxels, but certain other reconstruction methods [1].

As we will show in this paper, the use of a sufficiently dense bcc or fcc grid
leads to a topologically correct digital reconstruction, i.e. one does not need to
use more complicated reconstruction methods. Moreover the grid density which
is necessary for proving the preservation of topology is for both fcc and bcc grids
smaller than for cubic grids, i.e. one needs much less sampling points in order
to guarantee the right topology.

2 Preliminaries

The (Euclidean) distance between two points x and y in Rn is denoted by d(x, y),
and the Hausdorff distance dH(·, ·) between two subsets of Rn is the maximal
distance between each point of one set and the nearest point of the other. Let
A ⊂ Rn and B ⊂ Rm be sets. A function f : A→ B is called homeomorphism if
it is bijective and both it and its inverse are continuous. If f is a homeomorphism,
we say that A and B are homeomorphic. Let A, B be two subsets of R3. Then
A homeomorphism f : R3 → R3 such that f(A) = B and d(x, f(x)) ≤ r, for
all x ∈ R3, is called an r-homeomorphism of A to B and we say that A and B
are r-homeomorphic. A Jordan curve is a set J ⊂ Rn which is homeomorphic
to a circle. Let A be any subset of R3. The complement of A is denoted by Ac.
All points in A are foreground while the points in Ac are called background. The
open ball in R3 of radius r and center c is the set B0

r(c) = {x ∈ R3 | d(x, c) < r},
and the closed ball in R3 of radius r and center c is the set Br(c) = {x ∈ R3 |
d(x, c) ≤ r}. Whenever c = (0, 0, 0), we write B0

r and Br. We say that A is open
if, for each x ∈ A, there exists a positive number r such that B0

r(x) ⊂ A. We
say that A is closed if its complement, Ac, is open. The boundary of A, denoted
∂A, consists of all points x ∈ R3 with the property that if B is any open set of
R3 such that x ∈ B, then B ∩ A �= ∅ and B ∩ Ac �= ∅. We define A0 = A \ ∂A
and A = A ∪ ∂A. Note that A0 is open and A is closed, for any A ⊂ R3. Note
also that B0

r(c) = (Br(c))0 and Br(c) = B0
r(c). The r-dilation A ⊕ B0

r of a set
A is the union of all open r-balls with center in A, and the r-erosion A � B0

r is
the union of all center points of open r-balls lying inside of A. We say that an
open ball B0

r(c) is tangent to ∂A at a point x ∈ ∂A if ∂A ∩ ∂B0
r(c) = {x} and

∂A∩B0
r(c) = ∅. We say that an open ball B0

r(c) is an osculating open ball of radius
r to ∂A at point x ∈ ∂A if B0

r(c) is tangent to ∂A at x and either B0
r(c) ⊆ A0 or

B0
r(c) ⊆ (Ac)0. Since all of the known topology preserving sampling theorems in

2D require the object to be r-regular [9,10,11], we will use the 3D generalization
for our approach (refer to Fig. 1):
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2r

Fig. 1. For each boundary point of a 2D/3D r-regular set there exists an outside and
an inside osculating open disc/ball of radius r

Definition 1. A set A ⊂ R3 is called r-regular if, for each point x ∈ ∂A, there
exist two osculating open balls of radius r to ∂A at x such that one lies entirely
in A and the other lies entirely in Ac.

Note, that the boundary of an r-regular set is a 2D manifold surface.
A countable set S ⊂ R3 of sampling points with dH(R3, S) ≤ r′ for some

r′ ∈ R+ such that S ∩A is finite for each bounded set A, is called r′-grid. r′ is
called the covering radius. The voxel VS(s) of a sampling point s is its Voronoi
region, i.e. the set of all points lying at least as near to this point as to any other
sampling point.

Given a translation vector t and a rotation matrix R in 3D, the bcc and fcc
r′-grids are defined by S := {t + R · 2√

5
(x1, x2, x3)|x1, x2, x3 ∈ Z, x1 ≡ x2 ≡

x3(mod2)} and S := {t+R · (x1, x2, x3)|x1, x2, x3 ∈ Z, x1 +x2 +x3 ≡ 0(mod2)}.

(a) (b) (c)

Fig. 2. Both fcc (a),(b) and bcc (c) grids can be embedded in cubic grids of higher
resolution. The points are neighboring sampling points of the shown voxel of the fcc,
respectively bcc grid, and the dashed lines show the cubic grid. The shown spheres
have radius r′. The dual grid of an fcc r′-grid consists of octahedra (a) and tetrahedra
(b). All line segments of them have length

√
2r′. The faces of both octahedra and

tetrahedra are equilateral triangles. Based on the included cubic grid, a bcc r′-grid can
be completely separated into octahedral configurations (c). Four of the line segments

of the octahedra have length 4√
5
r′ and eight have length 2

√
3
5r′. The faces of the

octahedra are isosceles triangles with one angle of 2 arcsin
(

1√
3

)
≈ 70.53◦ and two

angles of arccos
(

1√
3

)
≈ 54.74◦. Note that the fcc r′-grid is embedded in a cubic

√
3

2 -

grid, while the bcc r′-grid is embedded in a cubic
√

5
3 r′-grid.
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Due to the scaling factor these grids are r′-grids. Note that the Hausdorff dis-
tance between a 3D object and an r′-grid is at most r′, thus different sampling
grids with the same covering radius lead to results with a geometrically compa-
rable accuracy (see Fig. 10(2) to (4)). Note, that both bcc and fcc grids can be
embedded in a cubic grid, as is illustrated in Fig. 2.

The intersection of A ⊆ R3 with S is called the digitization of A with S. The
digital reconstruction of A with S is the union of all voxels belonging to the
sampling points of the digitization. Two voxels are face-adjacent or adjacent if
they share a face. They are vertex-adjacent if they intersect in exactly one point
(this is not possible for bcc grids).

3 Digital Reconstruction of r-Regular Sets

Let A ⊂ R3 be an r-regular object, let S be a bcc or a fcc r′-grid, and consider
the digital reconstruction Â of A with respect to S. Assume that no sampling
point of S lies on ∂A. This assumption is not a restriction, as if some sampling
point lies on ∂A, there always exists an ε > 0 such that the ε-dilation A⊕Bε is
(r − ε)-regular with r − ε > r′, and A ⊕ Bε has the same digital reconstruction
as A, thus by updating r to the value of r − ε, the assumption is true.

In this section we will show that certain configurations of neighboring voxels
in an fcc or a bcc grid can not occur in a sufficiently dense digitization of an
r-regular set and we will use this to show that the topology does not change
during digitization. Therefore we need some definitions and lemmas about the
local behavior of r-regular sets, which have already been introduced in [1]:

Definition 2. Let x, y be two points in R3. Further let s > d(x, y). Then, the
intersection Ps(x, y) of all closed s-balls containing x and y,

Ps(x, y) =
⋂
{Bs(v) | x, y ∈ Bs(v)},

is called s-path region between x and y.
Now, let x, y, z be three points in R3, and assume that s > 1

2 max{d(x, y),
d(x, z), d(y, z)}. Then, the intersection Ps(x, y, z) of all closed s-balls containing
x, y and z,

Ps(x, y, z) =
⋂
{Bs(v) | x, y, z ∈ Bs(v)},

is called s-surface region between x, y and z.
A nonempty set B is called an r-simple-cut set if it is the intersection of (a

maybe infinite number of) closed balls with radii smaller than r.

Lemma 1. Let A be an r-regular set and x, y be two different points in A with
d(x, y) < 2r. Further, let L be the straight line segment from x to y. Then, the
function f mapping each point of L to the nearest point in A is well-defined,
continuous and bijective, and the range of f is a simple path from x to y.

Proof. Each point L ∩A is its own nearest point in A. Since the intersection of
surface normals of r-regular sets has a minimal distance of r to the surface [13],
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there exists for each point in L \A exactly one nearest point in ∂A because each
of these points has a distance smaller than r to the boundary. Thus f must be a
continuous function since if f would not be continuous at some point, this point
would have more than one nearest point in ∂A. Note that any point of L lies on
the normal vector of ∂A in its nearest boundary point. Now suppose one point
p of ∂A would be the nearest point to at least two different points l1 and l2 of
L. Then l1 and l2 both lie on the normal of ∂A in p. This implies that any point
in L including x and y lies on this normal. Since the normal vectors of length r
of an r-regular set do not intersect, the distance between x and y has to be at
least 2r which contradicts d(x, y) < 2r. Thus f is bijective. Since every bijective
continuous function of a compact metric space is continuous in both directions,
f must be a homeomorphism. This implies that the range is a simple path from
x to y. 	


Definition 3. Let A be an r-regular set and x, y be two different points in A
with d(x, y) < 2r. Further, let L be the straight line segment from x to y. Then,
the range of the function f mapping each point of L to the nearest point in A is
called the direct path from x to y regarding A.

Lemma 2. Let A be an r-regular set and x, y be two points both inside A or both
outside A with d(x, y) < 2r. Then, Ps(x, y) is a simple-cut set for any s with
1
2 ·d(x, y) ≤ s < r, the direct path from x to y regarding A lies inside A∩Ps(x, y)

and the direct path from x to y regarding (A� Bε)c lies inside Ac ∩ Ps(x, y) for
a sufficiently small ε > 0.

Proof. First, let x, y ∈ A. Since d(x, y) < 2r, Ps(x, y) is a simple cut set for any
s with 1

2 · d(x, y) ≤ s < r. Now, suppose there exists a point p on the direct
path lying outside of Ps(x, y). Then the outside osculating open r-ball of A in p
must cover either x or y which implies that they cannot lie on ∂A or inside A.
Thus, the direct path has to be inside Ps(x, y). If x, y ∈ Ac the analog is true by
looking at the (r − ε)-regular set (A⊕ Bε)c for a sufficiently small ε > 0, since
there alway exists an ε such that x and y remain outside A⊕Bε and s < (r− ε).

	


Lemma 3. Let A be an r-regular set and let B be an s-simple-cut set with s < r.
Further, let B0∩A0 �= ∅ and B∩Ac �= ∅. Then, the intersection of the boundaries
of A and B, ∂A ∩ ∂B, is a Jordan curve.

Proof. Let c1 and c2 be two arbitrary points in B ∩ A and let P be the direct
path from c1 to c2. Then P lies inside of B due to lemma 2 and Ps(c1, c2) ⊂ B.
This implies that B ∩A must be one connected component.

Now, consider the two points c1 and c2 lying in B ∩Ac. Then the direct path
does not necessarily lie in Ac since this set is open, but in Ac. Thus for any open
superset of the intersection of all r-balls containing c1 and c2 there exists a path
from c1 to c2 inside this superset having a minimal distance to the direct path
in Ac. (B ∩ Ac)0 is such a superset, since ∂(B ∩ Ac) intersects the intersection
only in c1 and c2.
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Thus both B ∩ A and B ∩ Ac have to be one component and thus the inter-
section of the boundaries, I = ∂A ∩ ∂B, must also be one component.

It remains to be shown that I is a Jordan curve. Since I separates ∂B in one
part inside of A and one part outside of A, it is a Jordan curve if and only if
there exists no point where B and A meet tangentially. Such a point would imply
that either the inside or the outside osculating ball of A at this point covers B.
Both cases are impossible since then B0 ∩A0 = ∅ or B ∩Ac = ∅. Thus, ∂A∩∂B
is a Jordan curve. 	


Definition 4. Let A be an r-regular set and let x, y, z be three arbitrary points
inside of A0 ⊕ Br. Then, the inner surface patch Is(x, y, z) of x, y, z regarding
A is the set defined by mapping each point of the triangle T spanned by points
x, y, z to itself if it lies inside of A and mapping it to the nearest boundary point
in ∂A otherwise.

Now, let x, y, z be three arbitrary points inside of Ac ⊕ Br. Then the outer
surface patch Os(x, y, z) of x, y, z regarding A is the set defined by mapping each
point of the triangle T between the points to itself if it lies inside of (A⊕ Bε)c

and mapping them to the nearest boundary point ∂(A⊕ Bε)c otherwise, with ε
being half the minimal distance from the sampling points in Ac to ∂A.

Lemma 4. Let A be an r-regular set and x, y, z be three points inside A with
max{d(x, y), d(x, z), d(y, z)} < 2r. Then Ps(x, y, z) is a simple cut set for any s
with 1

2 · d(x, y) ≤ s < r and the inner surface patch is homeomorphic to a disc,
lies inside A∩Ps(x, y) and is bounded by three paths, one going from x to y inside
of Ps(x, y, z)∩Ps(x, y), another going from y to z inside of Ps(x, y, z)∩Ps(y, z)
and the third going from z to x inside of Ps(x, y, z)∩Ps(z, x). The analog is true
for x, y, z lying outside of A and the outer surface patch.

Proof. The mapping used in definition 4 is a direct generalization of the mapping
in definition 3 and it is a homeomorphism for the same reasons if x, y, z lie inside
A and max{d(x, y), d(x, z), d(y, z)} < 2r. Its boundaries are equal to the direct
paths between each two of the three points. If x, y, z lie outside of A the proof
is analog. 	


In the next two subsections we will use these properties of r-regular objects for
our proofs of the topology preservation. Therefore let s be an arbitrary but fixed
number with r′ < s < r − ε.

3.1 Digital Reconstruction on FCC Grids

Let us have a closer look at fcc grids. The Delaunay grid separates the space
R3 into octahedra and tetrahedra due to the two types of voxel corners in an
fcc grid with 6 respectively 4 neighboring voxels (see Fig. 2(a) and (b)). The
digital reconstruction inside an octahedron respectively tetrahedron is totally
determined by the sampling points at its vertexes. By our above assumption,
each vertex of such an octahedron is either inside (i.e., a foreground point) or
outside (i.e., a background point) A. So, there are at most 26 = 64 distinct
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configurations for a octahedron and 24 = 16 configurations for a tetrahedron
with respect to the binary “status” of the vertices. However, up to rotational
symmetry, reflectional symmetry, and complementarity (switching foreground
and background points), these configurations are equivalent to the 6 canonical
configurations for the octahedron and the 3 configurations for the tetrahedron
shown in Fig. 3. In the following we will show that case 4 of the 6 octahedron

(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Fig. 3. There are 64+16 distinct configurations in an fcc grid for neighboring sampling
points that are either inside or outside a digitized set. However, up to rotational symme-
try, reflectional symmetry, and complementarity (switching foreground and backgroud
points), these 80 configurations are equivalent to the above 9 canonical configurations.

configurations can not occur if one digitizes an r-regular object with a sufficiently
dense fcc grid. The problem of topology preserving digitization is that in case
of configuration 4 a non-manifold surface is reconstructed, which can not be
guaranteed to be topologically equivalent to the surface of the original object.
This can be avoided by using a sufficiently dense sampling grid for digitizing an
r-regular object, as shown by the following theorem:

Theorem 1. Configuration 4 in Fig. 3 cannot occur in the digital reconstruction
of an r-regular object with an fcc r′-grid with

√
2r′ < r.

Proof. In the following let the dark sampling points in Fig. 3 be in the foreground
and the white sampling points in the background. Further, let the sampling
points p1, p2, . . . p6 of an octahedron be numbered as shown in Fig. 3(a).

Suppose to the contrary, configuration 4 occurs in the digital reconstruction
of an r-regular object A. Since the distance from p1 to p6 is 2r′ and thus smaller
than 2r, there exists a foreground path between these points lying completely
inside Ps(p1, p6).

On the other side, the three background points p2, p3, p4 have each a distance
being smaller than 2r. Thus, due to Lemma 4, there exists an outer surface patch
between them. This patch lies inside Ps(p2, p3, p4) with its surface boundary lying
inside the union of Ps(p2, p3), Ps(p2, p4) and Ps(p3, p4). Analogously there exists
a outer surface patch between the three background points p2, p4, p5 with its
boundary in Ps(p2, p4), Ps(p2, p5) and Ps(p4, p5). Due their definition, the two
outer surface patches have the boundary part inside Ps(p2, p4) in common such
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that together they form a surface patch between the four points p2, p3, p4, p5.
Fig. 4(b) and (c) show that Ps(p1, p6) goes through this surface patch without
intersecting the bounding r-path regions for

√
2r′ = r (Obviously this is also true

for smaller r′). Since both p1 and p6 lie outside Ps(p2, p3, p4)∪Ps(p2, p4, p5), the
path from p1 to p6 must go through the combined surface patch and thus there
has to exist a point lying both in A and Ac. It follows that case 4 cannot occur
in the digital reconstruction of an r-regular object if

√
2r′ < r. 	


(a) (b) (c)

Fig. 4. Case 4 is impossible in dense digitizations (a) of r-regular objects with an fcc
grid, since the path region crosses the outer surface region (b) and topview (c)

We have seen that case 4 is impossible if we use a sufficiently dense sampling grid.
As one can see, in the remaining cases the intersection of one of the octahedra
and the boundary of the digital reconstruction is always either empty (case 1)
or homeomorphic to a disc, such that the octahedron is divided into an inner
and an outer part, both homeomorphic to a ball (cases 2,3,5 and 6), see Fig. 5.
This fact allows us to derive the following sampling theorem: The above theorem

(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Fig. 5. Local reconstructions with the fcc grid inside the octahedra and tetrahedra.
Note that for all cases except of cases 1, 4 and 7 the surface of the reconstruction
inside the octahedra and tetrahedra is homeomorphic to a disc.

allows us to derive a sampling theorem for fcc grids, since it implies that the
surface of the reconstruction is locally disc-shaped, which is also the case for the
original r-regular object.

Theorem 2. Let A be an r-regular object and S be an fcc r′-grid with
√

2r′ < r.
Then the digital reconstruction is 2r′ + ε-homeomorphic to A.
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Proof. Due to Theorem 1, the only cases which can occur in the digitization of an
r regular object with an fcc r′-grid with

√
2r′ < r are cases 1 to 9 except of case 4.

Now consider a configuration of case 2,3,5 or 6 and let O denote the octahe-
dron defined by the six sampling points. In these cases the intersection of ∂O
and the boundary of the digital reconstruction is a Jordan curve (see Fig. 5).
The same is true for cases 8 and 9 in the tetrahedron. Now each face Fi of the
octahedron respectively tetrahedron is a triangle with its corner points having a
distance of

√
2r′, i.e. smaller than 2r. We define a new surface patch for such a

triangle between three sampling points in the following way:
If all three sampling points p1, p2, p3 lie inside of A, we take the inner surface

patch. Analogously if all three sampling points lie outside of A, we take the outer
surface patch.

(a) (b) (c) (d)

Fig. 6. In order to construct a surface between three sampling points being not all in
the foreground (a), we combine the inner (b) and the outer surface patch (c) such that
the result (d) is cut by ∂A into exactly two parts

If only one sampling point p1 lies inside of A, we use the mapping of the inner
surface patch for each point lying inside the smaller triangle.(p1,

p1+p2
2 , p1+p3

2 )
and the mapping of the outer surface patch otherwise, see Fig. 6 for an illus-
tration. In order to get a connected surface, we further add the straight line
connections between the inner and the outer surface patch for any point lying
on the straight line from p1+p2

2 to p1+p3
2 . If one sampling point lies outside and

the other two inside of A, we define the mapping analogously.
This leads to a surface patch between the three points which is always homeo-

morphic to a disc. Furthermore, since any of the added straight line connections
follows a normal of ∂A and thus cuts ∂A exactly once, the intersection of the
surface patch with ∂A is a simple curve.

By combining the surface patches of the octahedron respectively tetrahedron
faces we get a surface homeomorphic to the octahedron respectively tetrahedron
surface intersecting ∂A in a Jordan curve.

In order to guarantee that the new surface patches can be combined without
topological errors, we have to show that they can only intersect in their bound-
aries. This is true if any two path regions can only intersect in common sampling
points. Since any angle α of any of the equilateral octahedron or tetrahedron tri-
angles is 60◦, we only have to ensure that the opening angle β of the cigar shaped
path regions is smaller than 60◦. One can easily show that β = 2 arcsin

(
l

2r

)
with

l =
√

2r′ being the distance between the two sampling points, and thus β < 60◦

for
√

2r′ < r.
If we have a octahedron of case 1 or a tetrahedron of case 7, we also can

take the above surface patch construction, since it only consists of triangles
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lying completely inside respectively completely outside of A and thus the surface
patches are well-defined. The resulting combined surface does not intersect ∂A
at all.

Thus we have partitioned the whole space into deformed octahedral and
tetrahedral regions separated by the new surface patches. The original object
is homeomorphic to the result of the digital reconstruction inside each of the
regarded regions. The combination of the local homeomorphisms (each being a
(2r′ + ε)-homeomorphism) leads to a global r-homeomorphism from A to the
reconstructed set. 	


The above theorem states that an r-regular object can be reconstructed without
any change in the topological information by using an fcc r′-grid with

√
2r′ < r.

This means that one only needs 4 sampling points per cube of sidelength 2r′ and
thus only a bit more than

√
2 sampling points per cube of sidelength r. This is

much better than using a cubical sampling grid: The sampling theorem for cube
grids derived in [1] needs 2r′ < r and thus more than 8 sampling points per cube
of sidelength r in order to guarantee topology preservation. This is more than
5.6 times the number of sampling points needed with an fcc-grid! See Fig. 10(5)
to (7) for an example.

In addition to that topology preserving digitization on a cubic grid needs more
complicated reconstruction methods than the digital reconstruction, as shown
in [11] and [1] – whereas by using an fcc grid one can directly use the digital
reconstruction.

There is another interesting implication of the above sampling theorem: Given
an r-regular object we have to use a sampling grid with 2r′ < r if we want to
guarantee topology preservation and if we use cubic sampling grids. Now we
make use of the fact that one can construct an fcc 2√

3
r′-grid by removing every

second sampling point in a cubic r′-grid. Then we only need
√

2 · 2√
3
r′ < r.

Thus by throwing away half of the sampling points of the cubic grid and using
the digital reconstruction on the resulting fcc grid, we can derive the correct
topology at resolutions where this is not possible by reconstructing directly on
the cubic grid, as can be seen in Fig. 10(8) to (13).

3.2 Digital Reconstruction on BCC Grids

In this subsection we will derive an analogous result to the ones of the last
section for bcc grids. The voxels of a bcc grid are truncated octahedra having
eight hexagonal and six square faces (see Fig. 2(c)). Thus two face-adjacent bcc
voxels share either a hexagonal face or a square face.

Similarily to the fcc grid, we can partition the space R3 into octahedra based
on the bcc grid. These octahedra are not directly given by the Delaunay grid.
They are instead each a union of 4 tetrahedra of the Delaunay grid and they
can be defined as follows: The bcc grid S = { 2√

5
(x1, x2, x3)|x1, x2, x3 ∈ Z, x1 ≡

x2 ≡ x3(mod2)} contains the cubic grid S′ = { 4√
5
(x1, x2, x3)|x1, x2, x3 ∈ Z},

such that the remaining sampling points of S \ S′ are the center points of the
dual cubes in S′. Now we can define for each face of a dual cube an octahedron
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by connecting its four corner points with the center points of the two adjacent
dual cubes (see Fig. 2(c)). Each octahedron connects two bcc voxels sharing a
square face and their common four neighbors (see Fig. 8(a)). The same partition
into octahedra is used in [6] for building a polygonal surface reconstruction.

In contrast to the regular octahedra of the fcc grids, these octahedra are
not regular, but square dipyramids with baselength 4√

5
and pyramid height 2√

5
.

Thus not 6 but 10 different canonical configurations have to be distinguished,
see Fig. 7. Analogously to case 4 of the fcc grid we will now show that cases 4a
and 4b can not occur if one digitizes an r-regular object with a sufficiently dense
bcc grid.

(1) (2a) (2b) (3a) (3b)

(4a) (4b) (5) (6a) (6b)

Fig. 7. There are 64 distinct configurations in a bcc grid for sampling points in an
octahedron. However, up to rotational symmetry, reflectional symmetry, and comple-
mentarity (switching foreground and backgroud points), these 64 configurations are
equivalent to the above 10 canonical configurations.

Theorem 3. Configuration 4a and 4b in Fig. 7 cannot occur in the digital re-

construction of an r-regular object with a bcc r′-grid with
√

33
10r′ < r.

Proof. In the following let the dark sampling points in Fig. 7 be in the foreground
and the white sampling points in the background. Further, let the sampling
points p1, p2, . . . p6 be numbered as shown in Fig. 7(a).

Suppose configuration 4a occurs in the digital reconstruction of an r-regular
object A. Since the distance from p1 to p6 is 4√

5
r′ and thus smaller than 2r, there

exists a foreground path between these points lying completely inside Ps(p1, p6).
Analogously to the proof for the fcc grid, there exists a surface patch between

the four points p2, p3, p4, p5, since their pairwise distance is at most 4
√

2√
5
r′ < 2r.

Fig. 8(b) and (c) show that Ps(p1, p6) goes through this surface patch without

intersecting the bounding r-path regions for
√

33
10r′ = r (Obviously this is also

true for smaller r′). Since both p1 and p6 lie outside Ps(p2, p3, p4)∪Ps(p2, p4, p5),
the path from p1 to p6 must go through the combined surface patch and thus
there has to exist a point lying both in A and Ac.

Now suppose configuration 4b occurs in the digital reconstruction of an r-
regular object A. Then the distance from p2 to p4 is 4

√
2√
5
r′ and thus smaller
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than 2r, such that there exists a foreground path between these points lying
completely inside Ps(p2, p4).

In this case there can be constructed a surface patch between the four points
p1, p3, p5, p6, since their pairwise distance is at most 4

√
2√
5
r′ < 2r. Fig. 8(d) and

(e) show that Ps(p2, p4) goes through this surface patch without intersecting the

bounding r-path regions for
√

33
10r′ = r (Obviously this is also true for smaller

r′). Since both p2 and p4 lie outside Ps(p1, p3, p5)∪Ps(p3, p5, p6), the path from
p2 to p4 must go through the combined surface patch and thus there has to exist
a point lying both in A and Ac.

It follows that both cases 4a and 4b cannot occur in the digital reconstruction

of an r-regular object if
√

33
10r′ < r. 	


(a) (b) (c) (d) (e)

Fig. 8. Cases 4a (see (b) and (c)) and 4b (see (d) and (e)) are impossible in dense
digitizations (a) of r-regular objects with a bcc grid

We have seen that cases 4a and 4b are impossible if we use a sufficiently dense
sampling grid. Fig. 9 illustrates that again in any of the remaining cases the
boundary of the digital reconstruction intersects the octahedron in a simple
surface, being homeomorphic to a disc, such that we can derive the following
sampling theorem for bcc grids:

(1) (2a) (2b) (3a) (3b)

(4a) (4b) (5) (6a) (6b)

Fig. 9. Local reconstructions with the bcc grid inside the octahedra. Note that for all
cases except of cases 1, 4a and 4b the surface of the reconstruction inside the octahedra
is homeomorphic to a disc.

Theorem 4. Let A be an r-regular object and S be a bcc r′-grid with
√

33/10r′

< r. Then the digital reconstruction is 4
√

2/5r′ + ε-homeomorphic to A.
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(1)

(2) (3) (4)

(5) (6) (7)

(8) (9) (10)

(11) (12) (13)

Fig. 10. Digitization of an r-regular object (1) with different r′-grids. Second row:
Digital reconstruction with cubic (2), fcc (3) and bcc (4) r′-grid with 4r′ = r. As one
can see, the quality of the reconstructions seems to be comparable for different grid
types with the same r′, while a different number of voxels is needed (972 voxels in
(2), 774 voxels in (3) and 537 voxels in (4). Third row: Digital reconstruction with r′

chosen near the critical values of the different grid types, i.e. 2r′ = r − ε for the cubic

grid (5),
√

2r′ = r − ε for the fcc grid (6) and
√

33
10 r′ = r − ε for the bcc grid (7). For

this example the topologically correct digital reconstruction needs 125 voxels in (5), 30
voxels in (6) and 43 voxels in (7). Fourth and fifth row: Digital reconstruction based
on a cubic r′-grid with 1.5r′ = r. This resolution is not enough to guarantee topology
preservation on cubic grids, as can be seen in the marked region in (8), but it allows
topology preserving digitization on the two fcc subgrids (9) and (10). As can be seen
in (11), (12) and (13), the sampling points of (8) are divided into two disjunct subsets
of sampling points in fcc grid order.
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Proof. Due to Theorem 3, cases 4a and 4b can not occur in the digitization of
an r regular object with a bcc r′-grid with

√
33/10r′ < r.

Now consider a configuration of one of the other cases except of case 1 and
let O denote the octahedron defined by the six sampling points. In these cases
the intersection of ∂O and the boundary of the digital reconstruction is a Jordan
curve (see Fig. 9). Now each face Fi of the octahedron is a triangle with its cor-
ner points having a distance smaller than 2r. We define a new surface patch for
such a triangle between three sampling points in the same way as in Theorem 2.

Again, by combining the surface patches of the octahedron faces we get a sur-
face homeomorphic to the octahedron surface intersecting ∂A in a Jordan curve.

In order to guarantee that the new surface patches can be combined with-
out topological errors, we have to show that they can only intersect in their
boundaries. This is true if any two path regions can only intersect in com-
mon sampling points. There exist two different angles α1 = arccos(1/3) and
α2 = 2 arcsin(1/

√
3) in the corners of the octahedron triangles (see Fig. 7(a)).

In both cases we have to ensure that these angles are bigger than the sum of
the opening angles of the two corresponding path regions. While α1 is between a
triangle side of length l1 = 4/

√
5 · r′ and a triangle side of length l2 = 2

√
3/5r′,

the angle α2 is between two triangle sides of length l2. Thus the two inequalities
arcsin(l1/2) + arcsin(l2/2) < α1 and 2 arcsin(l2/2) < α2 have to be true, which
is the case for

√
33/10r′ < r.

Analogously to the proof of Theorem 2 it follows the existence of a homeomor-
phism from A to its digital reconstruction. This homeomorphism is a 4

√
2/5r′ +

ε-homeomorphism, since 4
√

2/5r′ is the maximal diameter of the octahedra. 	


Thus not only fcc grids but also bcc grids can directly be used to reconstruct
an r-regular object without any change in the topological information. In case
of bcc grids one only needs 2 sampling points per cube of sidelength 4/

√
5 · r′

and thus only a bit more than 33
64

√
33/2 ≈ 2.09 sampling points per cube of

sidelength r. This is 3.8 times better than a cubic grid, although it is not as
good as an fcc grid.

4 Conclusions

We have analysed the problems of topology preservation during digitization of
r-regular objects in 3D with fcc and bcc grids. We showed that with a sufficient
sampling density both fcc and bcc grids directly lead to a topology preserving
reconstruction, which is not the case for cubic grids as shown in [1], where
one needs more complicated reconstruction methods. Thus we derived the first
sampling theorem for topology preserving digitization with non-standard grids
in 3D.

Both fcc and bcc grids outperform cubic grids in the sense that (1) less sam-
pling points are needed and (2) a bigger covering radius of the sampling grid is
allowed if one wants to guarantee the correct topology of the digitized object. We
got better results for the fcc grid than for the bcc one. We even showed that at
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certain resolutions, where a cubic grid does not guarantee topology preservation,
one can remove half of the sampling points from the cubic grid such that one
gets an fcc grid with a resolution which is enough to reconstruct the topology!
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Abstract. Dimension is a fundamental concept in topology. Mylopoulos
and Pavlidis [17] provided a definition for discrete spaces. In the present
paper we propose an alternative one for the case of planar digital ob-
jects. It makes up certain shortcomings of the definition from [17] and
implies dimensionality properties analogous to those familiar from clas-
sical topology. We also establish relations between dimension of digital
objects and their Euler characteristic.

Keywords: digital topology, 2D binary object, dimension.

1 Introduction

Dimension is a fundamental concept in topology. It is a topological invariant
[10] and plays an important role in defining and studying properties of basic
geometric objects, such as curves and surfaces [11].

In digital topology the notion of dimension has attracted comparatively little
attention, unlike some other topological notions (such as connectivity, tunnels,
gaps, cavities, and others, see, e.g., [13, 12, 6]). In fact, already in 1971 Mylopou-
los and Pavlidis [17] provided a definition of dimension for subsets of discrete
spaces and, to our knowledge, it is the only one available in the literature. Re-
cently Brimkov and Klette [5] applied that definition for defining digital curves
and hypersurfaces. Overall, however, it has not been used very often in digital
geometry.

In the present paper we first expose some shortcomings of the Mylopoulos-
Pavlidis definition, for instance the fact that there may be 3-dimensional objects
in a 2-dimensional digital space. Then we propose an alternative definition for the
case of planar digital objects. Our definitions make up the “defects” of the one
from [17] and imply dimensionality properties analogous to those familiar from
classical topology. In particular, it makes possible to define a digital curve as a
one-dimensional “digital” continuum (see Section 6), that parallels the classical
definition of a curve proposed by Urysohn [19] and Menger [15]. We also provide
characterization of dimension in terms of Euler characteristic, which is another
basic topological invariant.
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The paper is organized as follows. In Section 2 we introduce some notions and
notations to be used in the sequel. In Section 3 we recall Mylopoulos-Pavlidis
definition of dimension and discuss some undesirable phenomena within that
framework. In Section 4 we present our main results. Characterization of dimen-
sion in terms of Euler characteristic is provided in Section 5. In Section 6 we
use the proposed definition for defining digital curves. We conclude with some
remarks in Section 7.

2 Preliminaries

Throughout we conform to the terminology used in [12] (see also [20, 13, 4]). All
considerations take place in the grid cell model that consists of the grid cells
of Z2, together with the related topology. In the grid cell model we represent
pixels as squares, called 2-cells. Their edges and vertices are called 1-cells and
0-cells, respectively. For every i = 0, 1, 2 the set of all i-cells is denoted by C(i)

2 .
Further, we define the space C2 =

⋃2
i=0 C(i)

2 . We say that two 2-cells are 0-
adjacent (1-adjacent) if e∩ e′ ∈ C(0)

2 (e∩ e′ ∈ C(1)
2 ). The relation of 0-adjacency

(resp., 1-adjacency) is denoted by A∗
0 (resp., A∗

1). Given a 2-cell p, by A∗
0(p) and

A∗
1(p) we denote the A∗

0 and A∗
1 adjacency neighborhood of p, respectively, that

are the sets of all 2-cells that are 0-adjacent (resp. 1-adjacent) to p. We also
denote by Aα(p) = A∗

α(p) ∪ {p}, α = 0 or 1, the incidence neighborhood of p.
The grid cell model can also be viewed as an abstract cell complex (C2, <, dim)
(see [14]). Here < is a bounding relation, that is antisymmetric, irreflexive, and
transitive, and such that for every e, e′ ∈ C2, e < e′ if and only if eIe′, where
I = A0 ∪A1, and dim(e) < dim(e′). Hence < is a strict partial order on C2 and
the corresponding order topology τ(<) is called the grid cell topology. In this
topology the basic open sets (i.e., the open sets of the base) are precisely the
sets U ⊆ C2, such that, for every u ∈ U and every v ∈ C2 with u < v, we have
v ∈ U .

A digital object (or digital picture) D is any finite set of pixels in C(2)
2 .

Next we recall some other notions of digital geometry. Let α = 0 or 1. An
α-path in a digital object D is a sequence of pixels from D such that every two
consecutive pixels are α-adjacent. Two pixels are α-joined if there is an α-path
between them. A digital object D is α-connected if there is an α-path joining
any two pixels of D. Otherwise D is α-disconnected.

Let M be a subset of a binary picture S. If S \M is not k-connected, then the
set M is said to be k-separating in S. Now let M be a finite set of pixels that is
k-separating in C2 (note: k = 0 or k = 1). The infinite 1-component of C2 \M
is called the background component of M , while the other (finite) 1-components
of S \M are called 1-holes of M (see Fig. 1).

Finally, we will call a 2-block any 2 × 2 square of pixels, a 1-block any 2 × 1
rectangle of pixels, and an L-block any 2-block with exactly one pixel missing
(see Figure 2a,b).
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(a) (b)

Fig. 1. a) Both ‘0’s define one hole each, the former with respect to 0-adjacency and
the latter to 1-adjacency. The ‘C’s a hole-free. b) A general digital 0-curve with three
holes.

3 Review of Mylopoulos-Pavlidis Theory of Dimension

Mylopoulos and Pavlidis [17] proposed definition of dimension of a (finite or
infinite) set of n-cells D ⊆ Cn with respect to an adjacency relation Aα (see [16]
for more details; for its use see also [12]).

Let Aα(c) be the union of Aα(c) with all n-cells c′ for which there exist
c1, c2 ∈ A∗

α(c) such that a shortest α-path from c1 to c2 not passing through c
passes through c′. Note that for n = 2 we have A1(c) = A0(c) = A0(c).1 We also
denote Aα

∗
(c) = Aα(c) \ {c}.

A nonempty set D ⊆ Cn is called totally α-disconnected iff A∗
α(x)∩D = ∅ for

each x ∈ D.
D ⊆ Cn is called linearly α-connected whenever |A∗

α(x)∩D| ≤ 2 for all x ∈ D
and |A∗

α(x) ∩D| > 0 for at least one x ∈ D.

Definition 1. Let D be a digital object and Aα an adjacency relation on Cn.
The dimension dimα(D) is defined as follows:

(1) dimα(D) = −1 if and only if D = ∅,
(2) dimα(D) = 0 if D is a totally α-disconnected nonempty set (i.e., there is
no pair of cells c, c′ ∈ D such that c �= c′ and {c, c′} is α-connected),

1 For higher dimensions these sets may not coincide; e.g., for n = 3, we have A2(c) =
A1(c) = A1(c) and A0(c) = A0(c) �= A1(c), i.e., A2(c) �= A0(c).
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L 1

L 2

L 3

L 4

(a) (c)(b)

Fig. 2. a) 2-block. b) The four possible L-blocks. c) Left: 2-dimensional (top) and
1-dimensional (bottom) objects with respect to A0; Middle: 2-dimensional (top) and
1-dimensional (bottom) objects w.r.t. A1; Right: 3-dimensional object w.r.t. A0.

(3) dimα(D) = 1 if D is linearly α-connected,
(4) dimα(D) = max

c∈D
dimα(Aα

∗
(c) ∩D) + 1 otherwise.

The following characterization of 2-dimensionality in C2 was given in [12]:

Proposition 1. M ⊆ C2 is two dimensional with respect to adjacency relation
Aα if and only if:

For α = 0, M contains an L-block as a proper subset;
For α = 1, M contains a 2-block as a proper subset.

The above proposition suggests that a 2-dimensionality of a digital object is
equivalent to existence of L- (resp. 2-) blocks in a digital object. Note how-
ever that, according to Definition 1, an L-block (resp. 2-block) itself, is one-
dimensional with respect to A0 (resp. A1). To us, this is a shortcoming of this
definition.

Another “defect” of the definition, which seems to be even more serious to
us, is that a digital object in the two-dimensional digital space C2 may have
dimension three! This can be easily seen if we apply Definition 1 to an object
that contains a (3× 3)-block (see Figure 2c (right)).

With the above examples in mind, in the next section we provide definitions
of dimension, through which the above problems are resolved.

4 Main Results

Definition 2. Let D be a digital object and let the space C2 be equipped with an
adjacency relation Aα, α ∈ {0, 1}. The dimension of D relative to Aα adjacency
is denoted by dimα(D) and defined as follows:

1. dimα(D) = −1 if D = ∅,
2. dimα(D) = 0 if D is totally α-disconnected,
3. dimα(D) = 1 if: α = 0 and D is not totally α-disconnected and does not

contain any L-block; or α = 1 and D is not totally α-disconnected and does
not contain any 2-block,



On the Notion of Dimension in Digital Spaces 245

4. dimα(D) = 2 otherwise (more precisely, if α = 0 and D contains at least
one L-block or α = 1 and D contains at least one 2-block).

Remark 1. Note that in Definition 2, points (3) and (4) can be reformulated by
using mathematical morphology [18, 9]. (Remember that in these cases D is not
totally α-disconnected.) More precisely, we can define dim(D) = 1 iff α = 1
and εB(D) = D � B = ∅ where the structuring element B is a 2-block, or
α = 0 and

⋃4
i=1 εLi(D) =

⋃4
i=1 D� Li = ∅ where Li, i = 1, . . . , 4, represents all

possible L-blocks (see Figure 2b displaying the four possible L-blocks). Further,
dim(D) = 2 iff α = 1 and εB(D) �= ∅, or α = 0 and

⋃4
i=1 εLi(D) �= ∅.

In order to give a sort of “local” characterization of dimension, we now define
dimension of a point of a digital object D.

Definition 3. Let D be a nonempty digital object and p ∈ D. The local di-
mension of p within D with respect to A0 is denoted dim0(p, D) and defined as
follows:

1. dim0(p, D) = 0 if A0(p) ∩D = ∅;
2. dim0(p, D) = 1 if A0(p) ∩D is totally 0-disconnected;
3. dim0(p, D) = 2 otherwise (i.e., if A0(p) ∩D is not totally 0-disconnected).

Lemma 1. Let D be a nonempty digital object and p ∈ D. Then dim0(p, D) = 2
iff p belongs to an L-block in D.

Proof. Let dim0(p̃, D) = 2, i.e, A0(p) ∩D is not totally 0-disconnected. Then
there are at least two pixels p1, p2 ∈ A0(p) ∩D such that (p1, p2) ∈ A0. Up to
symmetries with respect to p̃, there are only two possible cases: (p1, p2) ∈ A1
or (p1, p2) ∈ A0 \ A1. In both, the pixels p̃, p1, p2 form an L-block (see Figure
3a). Conversely, if p belongs to an L-block, then A0(p) ∩ D is not totally 0-
disconnected and, by Definition 3, dim0(p, D) = 2. 	


p~ p~ pp2

p
1

p
1

p2

p
1

(b)(a)

b

a

Fig. 3. a) Illustration to the proofs of Lemma 1. b) Illustration to the proofs of Propo-
sition 4.

Remark 2. As a consequence of Lemma 1, we have that if in a digital object
there is a pixel of dimension 2, then the same object must contain at least two
other distinct pixels of the same dimension.

The next proposition characterizes 0-dimensionality in terms of local 0-
dimensionality.
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Proposition 2. Let D be a nonempty digital object. Then dim0(D) = max
{dim0(p, D) : p ∈ D}.

Proof. First let us suppose that dim0(D) = 0, i.e., D is totally 0-disconnected.
This is equivalent to saying that for every p ∈ D, A0(p) ∩ D = ∅, that is,
dim0(p, D) = 0. Hence max{dim0(p, D) : p ∈ D} = 0.

Now suppose that dim0(D) = 1, i.e., there is no L-block in D. By Lemma 1,
for every p ∈ D, dim0(p, D) ≤ 1 and at least one pixel has dimension one. Thus
max{dim0(p, D) : p ∈ D} = 1. Conversely, suppose that max{dim0(p, D) : p ∈
D} = 1, i.e., for every p ∈ D, dim0(p, D) ≤ 1 and there exists some p̃ ∈ D such
that dim0(p̃, D) = 1. By Lemma 1 it follows that no pixel of D can belong to an
L-block. So, by Definition 2, dim0(D) ≤ 1. Since dim0(p̃, D) = 1, it follows that
dim0(D) �= 0. Hence, dim0(D) = 1.

Finally, let dim0(D) = 2. Then D contains at least one L-block L. By Lemma
1, every pixel p ∈ L is such that dim0(p, D) = 2. Thus max{dim0(p, D) : p ∈
D} = 2. Conversely, suppose that max{dim0(p, D) : p ∈ D} = 2. Then there
exists at least one pixel p̃ ∈ D such that dim0(p̃, D) = 2 and, by Lemma 1, p̃
belongs to some L-block L. This implies that dim0(D) = 2. 	

We also have the following property.

Proposition 3. Let D be a nonempty digital object and let p ∈ E ⊆ D. Then
dim0(p, E) ≤ dim0(p, D).

Proof. Suppose by contradiction that dim0(p, E) > dim0(p, D). We have the
following cases:

1. dim0(p, E) = 2 and dim0(p, D) ≤ 1,
2. dim0(p, E) = 1 and dim0(p, D) = 0.

Consider first case 1. Since dim0(p, E) = 2, we have that A0(p)∩E is not totally
0-disconnected with respect to A0. We have however that A0(p)∩E ⊆ A0(p)∩D.
This means that A0 ∩ (D) is not totally 0-disconnected with respect to A0, too.
Then dim0(p, D) = 2, which is a contradiction.

Now consider case 2. Since dim0(p, E) = 1, we have that A0(p) ∩ E is a
non-empty totally 0-disconnected set. However, A0(p) ∩ E ⊆ A0(p) ∩ D. So,
A0(p) ∩D cannot be the empty set. This implies that dim0(p, D) �= 0, which is
a contradiction. 	

Propositions 4 and 3 immediately imply the following.

Corollary 1. Let D be a nonempty digital object and let E ⊆ D. Then dim0(E)
≤ dim0(D).

Definition 3 and the related results allow us to give the following definition of
local dimension with respect to A1 adjacency.

Definition 4. Let D be a nonempty digital object and let p ∈ D. The local di-
mension of p within D with respect to A1 is the nonnegative integer dim1(p, D) =
dim0(A0(p) ∩D).
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Lemma 2. Let D be a nonempty digital object and p ∈ D. Then dim1(p, D) = 2
if and only if p belongs to a 2-block in D.

Proof. Let dim1(p, D) = 2. Then by Definition 4 we have that dim0(p, (A0(p)∩
D)) = 2. Therefore, by Definition 2, A0(p) ∩D contains at least one L-block L.
This implies that B = {p} ∪ L is a 2-block of D and p a pixel of its. Now let p
belong to a 2-block. Then we have that A0(p)∩D contains an L-block. Therefore
dim0(A0(p) ∩D) = 2. That is, by Definition 4, dim1(p, D) = 2. 	

We also have the following characterization of dimension with respect to A1
adjacency.

Proposition 4. Let D be a nonempty digital object. Then dim1(D) = max
{dim1(p, D) : p ∈ D}.
Proof. Suppose first that dim1(D) = 0. Then D is totally 1-disconnected. This
is equivalent to saying that for every p ∈ D, A1(p)∩D = ∅. Then, for every p ∈ D,
we have that A0(p) ∩D is totally 0-disconnected, i.e., dim0(A0(p) ∩D) = 0. In
fact if, by contradiction, A0(p) ∩D was not totally 0-disconnected, then there
should exist at least two 0-joined pixels p1, p2 ∈ A0 ∩ D. Wlog, consider pixel
p1. Clearly, it must belong to A0(p) \ A1(p), since otherwise A1(p) ∩ D �= ∅.
However, p2 is 0-adjacent to p1. So, it must be in one of the positions a or b
depicted in Figure 3c. Hence, p2 ∈ A1(p) ∪D, which is clearly a contradiction.
All this implies that max{dim0(A0(p) ∩D) = dim1(p, D) : p ∈ D} = 0.

Now, let us suppose that dim1(D) = 1, i.e., that there is no 2-block contained
in D. By Lemma 2, for every p ∈ D, dim1(p, D) ≤ 1 and there is at least one
pixel p̃ such that dim1(p̃, D) = 1. Thus max{dim1(p, D) : p ∈ D} = 1. Con-
versely, suppose that max{dim1(p, D) : p ∈ D} = 1. Then for every p ∈ D,
dim1(p, D) ≤ 1 and there exists some p̃ ∈ D such that dim1(p̃, D) = 1.
By Lemma 2, it follows that no pixel of D can belong to a 2-block. There-
fore, by Definition 2, dim1(D) ≤ 1. Since dim1(p̃, D) = 1, dim1(D) �= 0. So,
dim1(D) = 1.

Finally, suppose that dim1(D) = 2. Then D contains at least one 2-block B.
By Lemma 2, every pixel p ∈ B has dimension 2. Thus max{dim1(p, D) : p ∈
D} = 2. Conversely, suppose that max{dim1(p, D) : p ∈ D} = 2. Then there
exists at least one pixel p̃ ∈ D such that dim1(p̃, D) = 2 and, by Lemma 2, p̃
belongs to some 2-block B. This implies that dim1(D) = 2. 	

Corollary 2. Let D be a digital object. Then dim1(D) ≤ dim0(D).

Proof. Let p ∈ D. Then dim0(p, (A0(p)∩D)) ≤ dim0(p, D) ≤ max{dim0(p, D) :
p ∈ D} = dim0(D). Hence dim0(D) is greater than each element of the set
{dim0(p, A0(p) ∩ D) : p ∈ D}. So, dim1(D) = max{dim1(p, D) : p ∈ D} =
max{dim0(p, (A0(p) ∩D)) : p ∈ D} ≤ dim0(D). 	

In a similar way one can prove the following properties that parallel well-known
properties of dimension theory in Rn.

Proposition 5. Let D be a nonempty digital object and p ∈ E ⊆ D. Then
dim1(p, E) ≤ dim1(p, D).
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Proposition 6. Let D be a nonempty digital object and E ⊆ D. Then dim1(E)
≤ dim1(D).

Proposition 7. Let D1 and D2 be two mutually disjoint digital objects. Then
dimα(D1 ∪D2) = max(dimα(D1), dimα(D2)), where α ∈ {0, 1}.

5 Dimension and Euler Characteristic

In this section we establish relations between dimension of digital objects and
their Euler characteristic. In combinatorial topology, Euler characteristic is a
fundamental theoretic concept and basic topologic invariant. Recall that, given
a subset D of the abstract cell complex (C2, <, dim), its Euler characteristic is
the number

χ(D) = c0 − c1 + c2, (1)

where ci is the number of the i-dimensional cells of D, i = 0, 1, 2. In describing
our results, we will also use the notion of a skeleton of a digital object, which we
introduce next.

Definition 5. Let D be a non-empty digital object and let the space C2 be
equipped with an adjacency relation Aα, α ∈ {0, 1}. We call a skeleton of D
the graph Sα(D) = (V, E) (S(D), for short), whose set of vertices V are labeled
by the elements of D (i.e., we may think that V = D), and, given two vertices p
and q, (p, q) ∈ E ⇐⇒ p and q are α-adjacent.

In what follows, we will characterize dimensionality in C2 with respect to A1
adjacency, the characterization with respect to A0 adjacency being similar. Be-
cause of Proposition 4, it is enough to consider the case of connected digital
objects. We have the following theorem.

Theorem 1. Let D be a 1-connected digital object with a skeleton S(D) =
(V, E). In terms of the denotations in equality 1, |V | = |D| = c2. Let |E| = m.
Then the following holds:

1. dim1(D) = −1, if c2 = 0
2. dim1(D) = 0, if c2 �= 0 and m = 0
3. dim1(D) = 1, if c2 > m > 0
4. If m = c2 > 0, then

(a) dim1(D) = 1 if χ(D) = 0
(b) dim1(D) = 2 if χ(D) > 0

5. If m > c2 > 0,
(a) dim1(D) = 1 if χ(D) < 0
(b) dim1(D) = 2 if χ(D) ≥ 0

Before proving the above theorem, we recall some well-known elementary prop-
erties from graph theory (see, e.g., [3]).

Proposition 8. Let G be a connected graph with n vertices and m edges. We
have that:
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1. n ≤ m + 1,
2. G is a tree iff n = m + 1, or, equivalently, if G has no cycle,
3. G has a unique cycle Ci of length i ≥ 3 iff m = n.

We will also use the following simple lemma.

Lemma 3. Let G be a connected graph with n vertices and m edges. Then G
has at least two distinct cycles iff m > n.

Proof. Suppose that G has at least two cycles. Then, by Part 2 of Proposition
8, G is not a tree, and n < m + 1. Since G has at least two cycles, by Part 3 of
Proposition 8, we have that n �= m. Hence, m > n.

Conversely, if m > n, by Part 2 of Proposition 8 we have that G is not a tree.
Since G is connected, it has at least one cycle. If we assume by contradiction
that there are no other cycles, by Part 3 of Proposition 8 we will have m = n -
a contradiction. 	

Let us also list the following fact.

Lemma 4. Let D ⊂ C2. Then

c0 − c1 = c− h− c2, (2)

where c and h are the number of the (0-)connected components and (1-)holes of
D, respectively.

Indeed, the following Euler-Poincare result is well-known in combinatorial
topology:

χ(D) = c0 − c1 + c2 = β0 − β1 + β2,

where β0, β1, and β2 are the Betti numbers (see, e.g., [12]). These count
respectively the number of connected components, tunnels, and cavities of a
cell-complex. Since a plane digital object D is homotopic to a one-dimensional
CW-complex [21], we clearly have β2 = 0, from where we get the result stated.

We are now ready to prove Theorem 1.

Proof of Theorem 1. For Cases 1 and 2 the proof is trivial. We prove for the
other three cases.

Case 3. Let c0 > m. By Proposition 8 (Part 2), S(D) is a tree. Suppose, by
contradiction, that dim1D �= 1. Since n > m > 0, it necessarily follows that
dim1(D) = 2, i.e., D admits at least one 2-block. Hence, S(D) has at least one
cycle C4, which contradicts the fact that S(D) is a tree.

Case 4. Let c0 = n and χ(D) > 0. Suppose, by contradiction, that dim1(D) = 1.
Then D contains no 2-blocks or, equivalently, S(D) contains no cycle C4 as a
subgraph. Then by Proposition 8 (Part 3), S(D) must have at least one cycle
Ci, where i is an even number greater than or equal to 8.

Since D is connected, c = 1 and the equality of Lemma 4 becomes c1 − c0 =
c2 + h− 1 (c0, c1, c, h �= 0). Since c1 − c0 < c2, we have that c2 + h− 1 < c2. It
follows that h < 1, that is, h = 0, a contradiction.



250 V.E. Brimkov, A. Maimone, and G. Nordo

Now let c2 = m and χ(D) = 0. Suppose, by contradiction, that dim1(D) = 2.
So, D contains at least a 2-block and, consequently its skeleton has a C4 sub-
graph.

As before, by Lemma 4, c1 − c0 = c2 + h− 1. Since χ(D) = c0 − c1 + c2 = 0,
we obtain c2 + h− 1 = c2, i.e., h = 1. By Lemma 3, this implies that m > c2, a
contradiction.

Case 5. Let m > c2 > 0 and c0 − c1 + c2 ≥ 0. Suppose by contradiction that
dim1(D) = 1. Then D has no 2-block and, consequently, S(D) has no cycle C4
as a subgraph. Since m > c2, we have by Lemma 3 that S(D) has at least two
cycles different than C4. Hence, h > 1. Since χ(D) = c0 − c1 + c2 ≥ 0 and from
Lemma 4, it follows that h ≤ 1, a contradiction. 	


Remark 3. It is easy to see that Theorem 1 covers all possibilities. Thus a dig-
ital object D has dimension k, −1 ≤ k ≤ 2 only if D satisfies a corresponding
condition of the theorem. Formally, the case “c2 = m and χ(D) < 0” is not
considered. However, it is easily verified to be non-admissible. In fact, by Propo-
sition 8 (Part 3) we have that S(D) has a unique cycle. Here we distinguish two
subcases. Case (a): The unique cycle is C4. We have c = 1 and h = 0. Case (b):
The unique cycle is C2n, n > 3. In this case c = 1 and h = 1. So, in both cases
1 = c ≥ h, i.e., χ(D) ≥ 0. However, χ(D) = c − h = 1 − h < 0, which implies
1 < h, a contradiction.

Lemma 4 and Theorem 1 imply the following corollary.

Corollary 3. Let D be a 1-connected digital object whose skeleton S(D) has c2
vertices and m edges. Then the following implications hold:

1. If c2 > m then dim1(D) = 1,
2. If c2 = m and h < 1 then dim1(D) = 2,
3. If c2 = m and h = 1 then dim1(D) = 1,
4. If m > c2 and h ≤ 1 then dim1(D) = 2,
5. If m > c2 and h > 1 then dim1(D) = 1.

Characterization of dimension under 0-adjacency is similar to one under 1-
adjacency. The points from 1 through 4 of Theorem 1 can be reformulated also for
0-adjacncy. Note that, since there may be 1-dimensional objects with m > c2 > 0
and χ(D) < 0, the last item of the theorem changes as follows:

5′. If m > c2 > 0 and χ(D) ≥ 0, then dim0(D) = 2.

6 Application to Digital Curves and Surfaces

Various definitions of digital curves and surfaces are available in the literature
(see, e.g., [8]). A short survey of these is found in [5]. This last paper provided
the first definitions of digital curves and hypersurfaces involving the notion of
dimension as introduced in [17]. We give a more general definition of a digital
curve next.
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Recall that, since Urysohn [19] and Menger [15], a curve γ ⊂ R2 is known to
be a one-dimensional continuum2. By analogy, we can define digital continuum
as a nonempty, finite, and (α-)connected set of cells in a digital space. Then the
classical Urysohn-Menger’s definition would apply to the case of digital curves,
as well:

Definition 6. A digital curve γ ⊂ C2 (with respect to a certain adjacency rela-
tion) is a one-dimensional digital continuum.

See Figure 4 for some illustration. The above definition straightforwardly gener-
alizes for digital curves in a space of arbitrary dimension.

Fig. 4. Digital curves. Left: 0-curve in the two-dimensional digital space. Right: 1-curve
in the three-dimensional digital space.

Similarly, one can define a digital surface and other topological objects. We
believe this could be one more step towards developing a unified topological
theory for both continuous and discrete spaces.

7 Concluding Remarks

In this paper we proposed definitions of dimension for planar digital objects for
which the dimension is an essential characteristic. They serve as an alternative to
the one proposed by Mylopoulos and Pavlidis [17], and make up some shortcom-
ings of the latter. We believe that the notion of object dimension in digital spaces
will play an increasing role in theoretical research, helping to make notions and
results of digital topology compatible with those from classical topology. On-
going research is focused on extending the presented definitions and results to
higher dimensions and these will be included in the full-length journal version
of the paper.

2 Continuum in R2 is a nonempty subset of a topological space that is compact (closed
and bounded) and topologically connected.
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Abstract.  This paper presents an image analysis measurement algorithm - best-
fit rectangle for particle size and shape. The best-fit rectangle approach is a 
combination of the Ferret method and the least 2nd moments minimization, only 
requiring calculation of three moments about the center of gravity, and maxi-
mum and minimum co-ordinates in a co-ordinate system oriented in the direc-
tion of the axis of least 2nd moments, and a simple area ratio. It is a simple 
 rotation-invariance method, reflecting shape (Elongation and angularity). The 
algorithm is introduced theoretically in details, analyzed and compared to other 
widely used methods, and has been tested by a large number of solid particle 
samples in a laboratory. The test results show that by using this method, the  
results are very close to manual measurements. 

1   Introduction 

Image analysis techniques have been used for particle size measurement in the last 
twenty years [1-12]. As computers are widely used today, the cost of an image system 
is low, and particle size and shape analysis can be handled easily and fast. Within 
image analysis two dimensional images are normally analyzed. The image analysis 
techniques rely on first obtaining a digitized outline of each individual particle from a 
photograph or a video film, then measuring the size and shape parameters of the parti-
cle by computer and software. In image analysis, different ways of measuring particle 
size, such as chord size [1], equivalent circle diameter [2], maximum size [3], size of 
equivalent ellipse [4], and simple Ferret diameter [5] have been used. A reasonable 
representation of particle size should reflect the shape of particles. It can also be ap-
plication dependent. Size determinations used in the previous studies [1-5], were often 
based on traditional measuring methods, not image analysis. Few researchers analyze 
if the determinations are reasonable in discrete image measuring procedures.  

As investigated, if one uses a bounded rectangle to characterize the shape of a par-
ticle, the area ratio (R) between a particle and its bounded rectangle, may be a pa-
rameter to show the shape or rectangularity (angularity). It is convenient to classify 
the crushed solid particles into five basic shapes (see Fig. 1):  

a) Triangle-like: a particle with three main sides, R will be about 50%; 
b) Diamond-like: a particle with four main sides, but R will be about 50-60%; 
c) Trapezoid-like: a particle with four main sides, R will be about 60-90%; 
d) Polygon-like: a particle with more than four main sides, R can be about  

60-90%; 
e) Rectangle-like: a particle with four main sides, but R will be over 90%. 
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Fig. 1. Classification of crushed solid particles 

The corners of categories (2)-(4) particles are somewhat rounded. Note also that we 
use the suffix "like" to stress that this is a crude shape description of the particle 
boundary. Figure 2, below, shows real particle shapes, where twelve solid particles of 
size 32-64 mm were randomly sampled from a rockpile in a quarry. They represent 
the five different shapes more or less. This is an underlying model in the discussion 
and evaluation of methods in this paper. The question is how to make the bounded 
rectangle – best-fit rectangle for each of the particles by image analysis, and to ensure 
the size and shape measurement rotation-invariant.  

 

   
 (a)  (b) 

Fig. 2. Shapes of crushed solid particles. (a) The original image includes 12 particles. (b) Parti-
cles are constructed by triangles, diamonds, trapezoids and polygons. 

A method of solid particle size measurement should consider the following as-
pects: (1) solid particles locate and orient randomly in an image, we cannot expect 
that orientations of particles are in a certain orientation in an image; (2) solid particles 
are irregular in shape; (3) in a quarry or mining industry, the boundaries of solid  
particles are very rough, owing to either their physical properties or technique of 
photograph or image digitizing and (4) even solid particles having the same size or 
elongation, they may have extremely different shapes. 

Based on the above considerations, any method for aggregate size and shape meas-
urements should meet the following requirements: 

(1) A method should have a size definition in which no matter how a particle is 
positioned in an image, the measured size should be unique, independent of im-
age scanning direction or particle rotation, which is called rotational-invariance. 

1 2 3
4 5
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(2) The first shape parameter is Elongation. Flakiness (the ratio between thickness 
and length) or Elongation is a very important piece of information in aggregate 
industry in addition to particle size. Mora and Kwan, in their study [5-6], de-
scribed several shape factors as the functions of Elongation. 

(3) The second shape parameter is angularity and should be robust, in reference  
[5-6], the authors found that angularity definition varies among different re-
searchers, and the traditional method or definition is un-reasonable. Here, we 
mean crude expression of angularity, not angularity description in detail. Two 
particles may have the same size and elongation, but their angularity is different. 
This parameter is also important information in aggregate industry.  

(4) The measurement itself should be as simple as possible; Complicated algorithms 
or measurements are not necessarily suitable for multiple solid particle meas-
urements (e.g. for an on-line system). As is well known, Fourier and Fractal 
measurement methods are very good for characterizing particle size and shape, 
but they are neither suitable for a single particle, nor for statistical analysis of 
multiple solid particles. 

If a method of solid particle size measurement by image analysis meets the above 
four basic conditions, the measurement will be stable, and size and shape can be re-
producible. Based on the four conditions, let us analyze and evaluate the existing and 
widely used methods. 

Table 1 shows a comparison of six measurement methods. One can see that the 
Multiple Ferret method meets best the four conditions described above. The remain-
ing question is to improve it, which is the topic of next section. 

Table 1. Evaluation of the existing particle size and shape measurement methods 

Methods Rot. invariance Elongation Angularity Simple 
Chord sizing No No No Yes 
Simple Ferret No No No Yes 
Maximum diameter Yes No No No 
Equivalent circle  Yes No No Yes 
Equivalent ellipse Yes Yes, not 100% No No 
Multiple Ferret  Yes, not 100% Yes Yes, not 100% No 

2   New Method of Solid Particle Size and Shape Measurement 

Empirically, as mentioned, the shapes of solid particles vary between triangular-like, 
diamond-like, trapezoidal-like, polygon-like and rectangular-like with intermediate 
shapes in between. 

To make a measurement method rotationally invariant, reproducible, of low bound-
ary roughness sensitivity and reflecting crude shape, a new measurement method, 
called the best-fit rectangle, has been developed. A summary of the measurement 
sequence is as follows:  

(a)  Obtain orientation of a particle by using least-second moment method (= rotation-
ally invariant) which yields a simple closed formula for the orientation. 
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(b)  Length and width can be obtained by using a Ferret box in the orientation of the 
least 2nd moment. Thus, rotation- invariant elongation is defined implicitly. 

(c)  The area ratio in the orientation of the axis of least 2nd moment yields approxi-
mate rectangularity. For crushed or blasted solid particles, the manufacturers 
want to know not only the elongation of a particle, but also angularity or rectan-
gularity, so the area ratio obtained from the Ferret box in the direction of the least 
2nd moment is of great practical importance. It is less practical to find the rectan-
gularity by a discrete minimization procedure over possible Ferret boxes, since 
many directions need to be investigated in order to safeguard an exact minimum.  

In order to resolve the problem of rotation dependence, some image analyzers 
measure a fixed number of Ferret diameters, usually 2, 4, 8 or more, and the user may 
be able to select how many of these are to be measured, then the maximum length can 
be obtained. In this method, only the length that is approximately close to maximum 
length can be obtained, the reproducibility and rotationally-invariant cannot be fully 
achieved. To meet the above conditions, we studied a new measurement method, 
which is a combination of multiple Ferret and the least second moments methods, as 
described as the follows. 

2.1   Dot Product Method (Multiple Ferret) 

Before the advent of automatic image analyzers, several quickly measurable parame-
ters were defined, which would help particle size analysts to classify irregular-shaped 
particles by using a single linear measurement. One of the easiest to measure is the 
caliper diameter, the distance between two parallel tangents which are on opposite 
sides of the particle. This method was proposed by L.R..Ferret (1931) [7], and the 
measurement is often referred to by his name. In systems employing boundary-coding 
techniques, a single pass around the boundary of an object noting maximum and 
minimum x and y co-ordinates will yield vertical and horizontal Ferret diameters. So, 
Ferret diameter strongly depends on the direction of system scanning, which is not 
rotationally-invariant. 

By co-ordinate transformation, it is possible to measure the Ferret diameter at any 
angle to the horizontal. The detailed description, so-called dot products, was men-
tioned by Fischler [8-9] can be summarized as 

Let , for i=1, 2, ..., N be the sampled boundary points. Let �  for j=1, 2, ..., D be 

the so-called reference vectors. In one pass, traversing the points i=1, 2, ..., N in any 
order, calculate:  

x ui
T

1 , x ui
T

2 , ..., x ui
T

D , (1) 

Save only:  ( )j
T
i uxMAX max= , and ( )j

T
i uxMIN min=   (2) 

For each j=1, 2, ...,D, as well as those coordinates that give rise to the D maxima 
and D minima. The combined dot product method and convex hull method can be 
described as follows: 

 
 



 Size and Shape Measure of Particles by Image Analysis 257 

As before calculate for i=1, 2, ..., N: 

x ui
T

1 , x ui
T

2 , ..., x ui
T

D ,. Save only ( )j
T
i uxMAX max= , together with all other val-

ues that are in the interval [MAX - T·(MAX - MIN), MAX], and ( )j
T
i uxMIN min=  

together with values in the interval [MIN + T·(MAX - MIN), MIN], ∀j , as well as 
those coordinates that give rise to these values. Call this new subset of points S. For 
all the points in S calculate the exact diameter using the convex hull method. 

The multiple Ferret method, in the sense that { }DLLL ,...,,max 21
is chosen as the di-

ameter, coincides with the dot product method, if new scanning directions are imple-
mented using dot products with new coordinate axes. The only difference is that the 
directions chosen are multiples of 2, and multiple Ferret is often not implemented as a 
one-pass algorithm. Alternative, we have to find out the particle’s orientation first by 
using the following method. 

2.2   Orientation Definition  

How precisely do we define the orientation for an object? The usual practice is to 
choose the axis of length. Least moment measurement is the only way to construct the 
minimal circumscribed rectangle for a particle. Let’s review how to find the orienta-
tion of a particle by the use of least moment measurement with reference to Figure 4 
[10]. Note that least moment measurements aim at determining a suitable orientation 
of an object, but combining the orientation with Ferret boxes has not been considered 
before. 

Figure 3 is a two-dimensional equivalent of the axis of the least inertia. We search 
for the line for which the integral of the square of the distances between the points in 
the object and the line is a minimal: 

=
I

dxdyyxfRE ),(2  (3) 

where R is the perpendicular distance from the point (x, y) to the line sought after; 

( )yxf ,  is a binary image. 

From Figure 3, one has: 
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area of the object. 
Minimization of E gives: 
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Fig. 3. Least second moment measurement for obtaining the orientation of a particle: The per-
pendicular distance from a point (x,y) to a line which pass through the center of an object 

Of the two solutions, the ones with the plus signs give minimum for E, whereas 
ones with minus signs correspond to the maximum.  

For a discrete binary image, we have 

( ) ( )
( ) 01tan

1,1

2,00,2
tan 2 =−−+ θθ

I

II  (6) 

where  

( ) ( )= jibjiqpI qp ,, , p q, , ,= 0 1 2  (7) 

with b i j( , )  the binary image, I and j are co-ordinates. 
In conclusion, the best way to obtain the orientation of an object is by using least-

second moment method, it is rotation-invariant. And the circumscribed rectangle will 
tend to be of minimal area. 

To avoid small-scale fluctuations along boundaries of solid particles, polygonal 
approximation for every particle (object) is applied. In our case, the goal of a polygo-
nal approximation is to smooth the boundary on a certain scale and obtain the signifi-
cant boundary segment lines. The boundary can be approximated with varying  
precision. Here, we just use maximum eight segment lines to construct a polygon for 
each of the particles. The detailed information for the polygonal approximation we 
used can be found in [11]. The best-fit rectangles constructed by using our new 
method, is displayed in Figure 4(b). Particles’ elongations and angularities are illus-
trated in Figure 5. The particles of triangle shape (No. 1-4 in Figure 5(a)), have angu-
larities about 50% (or 0.5), but having varying elongations. The particles of trapezoid 
or polygon shape (No. 5-12 in Figure 5(a)) have a range of angularity between 0.58 to 
0.70, and elongations varying from 0.62 to 0.98. This is reasonable situation: triangles 
(or diamond) and rectangles can be easily distinguished from other shapes by using  
 

(x,y

(x0,
)
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Fig. 4. Segmented real solid particles in Fig. 2. (a) The number of each particle has been 
marked; (b) The best-fit rectangle has been marked for each particle. 

 
 (a) (b) 

Fig. 5. Shape parameters for particles:  (a) Angularity (rectangularity); (b) Elongation 

our crude angularity definition, and elongation is independent on the angularity.  
Further detection of particle shapes is needed for more detailed analyses; see Conclu-
sions and further studies.  

Sieving size is just a size as measured by sieves; it cannot provide any other di-
mensional information. To compensate for this, we manually measured crudely three 
dimensions of every particle in our laboratory. As a general consideration, the manual 
measurement might be person-dependent. In order to eliminate subjective measure-
ment errors, two engineers did the measurement together. In this manual measure-
ment, we used two types of apparatus. One, as a standard apparatus, is for measuring 
length and an index of flakiness (the index only indicates if a particle has a flakiness 
over 1/3). The other one was made by author for measuring the thickness (T) and the 
width (W) of a particle. 

For image analysis, solid particles were placed on a white plane to contrast with 
the color of the particles, and separated manually to ensure that every particle in a 
stable position. A camera was installed above the plane. Good illumination was con-
trolled by light sources (both frontlighting and backlighting illuminations). The cap-
tured images are of a fairly good quality see Figure 6. The samples were analyzed by 
our image systems. Image segmentation programs are interactive programs which can 
be used by an operator to exactly delineate every particle in an image. The lengths, 
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 (a) (b) 

Fig. 6. Images taken under different illuminations. (a) Two bulbs around a camera, gives a 
diffuse frontlighting illumination. (b) One lighting box gives backlighting illumination. 

widths, elongations, rectangularity and areas of particles were measured by using the 
algorithm- best-fit-rectangle described in the previous section. The number of solid 
particles for comparison between image analysis and manual measurement was up to 
2000.   

3   Comparison Between Sieving, Manual and Image Analyses 

In the following weighted distribution curves, sieving and manual measurements are 
weighted by weight, and image measurements are weighted by area*λ (λ: experiment 
constant) [12]. In order to distinguish manual from image measurements, Lets assign 
a mark (m) for manual measurements and a mark (i) for image measurements.  

Figure 7 shows the results, it can be seen that the width of the image analysis is 
compares well with that of manual measurements, but deviates from that of the  
 

 

Fig. 7. Size distributions measured by sieving, manual measurements and image analysis 
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sieving analysis. The sieving analysis curve is located between in thickness and width 
(m) or width (i), they are parallel each other, which can be used for estimation of 
thickness and sieving analysis results. The comparison of the lengths shows that the 
image analysis curve has slightly shifted to the left compared with the curve of the 
manual measurements. The reason for this may be that it is difficult to obtain the 
exact lengths of particles by manual measurements. For a given width, a small length 
L will give a small elongation, which explains why the curve of elongation(i) is to the 
left of that of elongation (m), see Figure 8. In Figure 8, the flakiness curve has a much 
higher cumulative percentage than the other curves do. The comparison of the results 
also show that the particles in this sample have the property that W/L is close to T/W. 

 
 

 

Fig. 8. Comparison between different elongation and flakiness 

4   Conclusions and Further Studies 

The best-fit rectangle method works very well for image analysis. This is particularly 
for solid particles such as crushed solid particles, which can be classified into five 
basic types of shape: Triangle-like, Diamond-like, Trapezoid-like, Polygon-like and 
Rectangle-like. The method is rotational-invariant, reflects well the shape (Elongation 
and angularity), and is simple. The test results show that by using this method, the 
measurement results agree well with manual measurements (for size, elongation and 
angularity). The accumulative width curve is parallel to the curves of sieving and 
thickness, implying that sieving analysis and thickness measurement can be easily 
estimated by the width. 

The measurement method of the best-fit rectangle only gives general information 
about the shapes of particles. In order to obtain more detailed information on particle 
shape and boundary roughness, corner detection by polygonal approximation might 
be a possible way.  
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Abstract. In this paper, we analyze two conceptionally different ap-
proaches for shape matching: the well-known iterated closest point (ICP)
algorithm and variational shape registration via level sets. For the lat-
ter, we suggest to use a numerical scheme which was introduced in the
context of optic flow estimation. For the comparison, we focus on the
application of shape matching in the context of pose estimation of 3-D
objects by means of their silhouettes in stereo camera views. It turns out
that both methods have their specific shortcomings. With the possibil-
ity of the pose estimation framework to combine correspondences from
two different methods, we show that such a combination improves the
stability and convergence behavior of the pose estimation algorithm.

1 Introduction

Shape matching or shape registration is the basis for many computer vision
techniques, such as image segmentation, pose estimation, and image retrieval,
to name only few of them. As a consequence, a multitude of works on shape
matching can be found in the literature, e.g., [4, 25, 11, 23, 14, 17]; see [24] for a
survey.

Most of these approaches rely on classic explicit shape representations given
by points that can be connected by lines or higher order curve segments to form a
shape. A very popular shape matching method working on such representations
is the iterated closest point (ICP) algorithm [2], at which we will take a closer
look in Section 2.

An alternative to explicit shape models emerged in the form of implicit repre-
sentations by means of level sets [10, 16]. Instead of representing a 2-D shape by the
points on its contour, the contour is constituted implicitly by the zero-level line of
a 2-D embedding function. Level set methods enjoy great popularity in the context
of image segmentation with active contours. Recent methods in this field improve
the results by integrating the knowledge of previously learned shapes [15], which
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involves matching the learned shape representation to the shape that is found in
the image. Shape matching with level set representations has been suggested in
this context by [15, 17, 9, 19]. In Section 3, we are concerned with such implicit
shape representations and propose a numerical scheme from optic flow estima-
tion for matching. In comparison to previous numerics in this field, this matching
scheme ensures stability and provides a significant speedup.

Since the two mentioned classes of shape matchers are based on very differ-
ent concepts, the question of superiority of the one or the other arises.1 We
have therefore compared both approaches in the case of one prominent applica-
tion, namely silhouette based 2-D-3-D pose estimation. The relevance of shape
matching in this context is briefly described in Section 4. The comparison in
Section 5 shows that both matching concepts have their pros and cons. By a
combination one can, at least in the context of silhouette based pose estimation,
obtain the best of both approaches. The paper is concluded by a summary in
Section 6.

2 Shape Matching with ICP

The goal of shape registration can be formulated as follows: Given two shapes
and a distance measure, the task is to determine from a certain class of transfor-
mations one that leads to the minimum distance between the two shapes. The
original ICP algorithm registers two point sets P and Q provided TP ⊆ Q with
the transformation T being a rigid transformation:

1. Nearest point search: for each point p ∈ P find the closest point q ∈ Q.
2. Compute registration: determine the transformation T that minimizes

the sum of squared distances between pairs of closest points (p, q).
3. Transform: apply the transformation T to all points in set P .
4. Iterate: repeat step 1 to 3 until the algorithm converges.

This algorithm converges to the next local minimum of the sum of squared
distances between closest points. A good initial estimate is required to ensure
convergence to the sought solution. Unwanted solutions may be found, if the
sought transformation is too large, e.g. many shapes have a convergence radius
in the area of 20◦ [7], or if the point sets do not provide sufficient information
for a unique solution.

The original ICP algorithm has been modified in order to improve the rate of
convergence and to register partially overlapping point sets. Zhang [25] uses a
modified cost function based on robust statistics to limit the influence of outliers.
The work also suggests to use a K-dimensions tree to partition the point set
1 We want to note here that the ICP algorithm can also match surfaces and, hence,

could as well be used to match implicit contours represented by level sets (which are
surfaces, in fact). The focus of our comparison is on explicit and implicit contour
representations. We take here the ICP algorithm as a representative for matching
methods that work with explicit contours. Consequently, ICP has to be interpreted
in this paper as ICP with an explicit contour representation.
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and the author further reports on a significant speedup when registering large
range image data sets. Bergevin et al. [1] extended the ICP algorithm to range
images from multiple views. They ensure an even distribution of registration
errors between overlapping views and report errors less than the range image
measurement noise for multiple views of complex objects.

The accuracy of ICP depends on the geometric information (e.g. local cur-
vatures) contained in the point sets. If insufficient shape information is avail-
able, inaccurate or incorrect registration may occur. Pennec et al. [18] developed
a framework to characterize the uncertainty in point registration. Other ap-
proaches aim at the avoidance of local minima during registration subsuming the
use of Fourier descriptors [21], color information [13], or curvature features [22].

The advantages of ICP algorithms are obvious: they are easy to implement
and will provide good results, if the sought transformation is not too large.
ICP algorithms have also been used for silhouette based 2D-3D pose estimation
[20, 21]. In this context, additional problems arise due to ambiguities of trans-
formations in direction of the projection rays. Sampling methods can be used
to avoid some of these additional local optima, yet this is usually a very time
consuming procedure.

3 Shape Matching with Level Sets and Optic Flow

3.1 Shape Representation with the Euclidean Distance Transform

In contrast to the point sets used for ICP algorithms, the method suggested in
this section deals with shapes represented by an embedding function Φ : Ω ⊂
R2 → R. The contour can be obtained from such a representation as the zero-
level line C := {x ∈ Ω|Φ(x) = 0}.

For a given contour, the representation by an embedding function is not
unique. In general, one sets the values of Φ to the signed Euclidean distance
of the next contour point

Φ(x) =

⎧⎨⎩D(x, C) x inside C
−D(x, C) x outside C
0 x ∈ C

(1)

where D(x, C) denotes the Euclidean distance of x ∈ Ω to the closest point x̃ on
the contour C. This choice of Φ has, among others, the nice property of being
invariant under rotation and translation. It can be efficiently computed from a
binary shape image by the algorithm given in [12]. The distance functions of two
shapes are shown in Fig. 1.

Although the embedding of a shape in a higher dimensional space appears,
on the first glance, to be less efficient than explicit representations, a closer look
reveals many advantages. One such advantage is the flexibility of implicit shapes
concerning their topology. While many explicit shape representations induce
problems when a shape consists of several parts or contains enclosures, such
cases are naturally handled in the level set framework.
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Fig. 1. Top: Source and target shapes that are to be matched. Bottom: Euclidean
distance functions Φ of these shapes shown by gray value images in the range [0, 255]
where 128 marks the zero-level of Φ, i.e., dark areas show negative values of Φ, bright
areas show positive values.

A straightforward distance measure for shapes being represented by embed-
ding functions Φ1 and Φ2 is:

d2(Φ1, Φ2) =
∫

Ω

(Φ1(x)− Φ2(x))2 dx. (2)

Other distance measures for implicit shape representations as well as an analysis
of their shortcomings can be found in [8]. The distance in (2) reveals a further
important advantage of implicit shapes: one can not only measure a discrepancy
for given points on the contour, but also for all points aside. Thus, matching two
embedding functions not only takes the contour into account but also the area
of the shapes. For instance the representation in (1) contains the skeleton [3] of
the shape. Thus minimizing (2) also seeks to match the skeletons of two shapes.

Although the concept carries over to shapes of arbitrary dimension D ≥ 2, in
the following we will focus on the 2-D case.

3.2 Shape Matching with Optic Flow

Matching two shapes respective the distance measure in (2) can be formulated
as the minimization over a group of transformations T :
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E(T ) =
∫

Ω

(Φ1(x)− Φ2(T x))2 dx → min . (3)

The transformations may include, e.g., translation, rotation, and scaling, as in
[9], or the group of perspective transformations, as in [19]. In [17] the transfor-
mation further comprises arbitrary deformations w(x) := (u(x), v(x))� of the
shape, i.e., T x = x+ w(x). As the minimization of (3) yields an ill-posed prob-
lem under these conditions, it was suggested to impose a regularization term to
the deformation field:

E(u, v) =
∫

Ω

(Φ1(x)− Φ2(x + w))2 + α(|∇u|2 + |∇v|2) dx (4)

where α ≥ 0 is a regularization parameter that steers the influence of the regu-
larization relative to the matching criterion.

In all existing works on shape matching, the minimization of such function(al)s
is performed by means of gradient descent. However, this approach has its per-
fidies: for each optimization variable in (3), one has to choose a step size, and
it is not sure, so far, how the step size has to be chosen to ensure convergence.
Setting the step size too large can result in severe instabilities depending on the
data. A gradient descent on (4), moreover, converges very slowly.

For an alternative numerical scheme, we suggest to make use of recent ad-
vances in optic flow estimation. Optic flow generally describes the 2-D motion
field between images, and (4) is a well-known functional for computing optic
flow. When regarding Φ1 and Φ2 as gray scale images, the estimation of the
shape deformation field w yields an optic flow estimation problem. The first
term in (4) contains the non-linearized optic flow constraint, which, in this case,
implements the constraint that w(x) matches points with the same distance to
the contour. The second term is a regularizer that penalizes variations in the
flow field. This means, in particular, that there should be as few deformations
as possible and the deformation field is sought to be smooth.

It has been shown in [5] that the minimization of such a nonlinear functional
can be performed by solving a sequence k = 0, ..., n of linear systems(

Φk
xduk + Φk

ydvk + Φk
z

)
Φk

x − αΔ(uk + duk) = 0(
Φk

xduk + Φk
ydvk + Φk

z

)
Φk

y − αΔ(vk + dvk) = 0
(5)

with w0 = 0, wk+1 = wk + (duk, dvk)�, the abbreviations Φk
x := ∂xΦ2(x +wk),

Φk
y := ∂yΦ2(x + wk), Φk

z := Φ2(x + wk) − Φ1(x), and Δ = ∂xx + ∂yy the
Laplace operator. Note that in comparison to the more general functional in [5],
the terms in (4) are both quadratic. Consequently, the inner fixed point iteration
loop performed in [5] is not necessary. Quadratic terms for both the matching and
the smoothness constraints are sufficient for the matching problem here, since
there is basically no noise in Φ1 and Φ2 and discontinuities in the deformation
field w are not desired. Robust non-quadratic regularizers or matching terms do
not appear to be necessary but are conceivable.

This numerical scheme does not rely on a gradient descent. The linear systems
in (5) are the outcome of a semi-implicit scheme that does not introduce a
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time step size. For solving the linear systems, one can employ iterative solvers
such as Gauss-Seidel or SOR. These solvers always converge under the given
conditions, independent from the data, and they converge much faster than a
comparable gradient descent. A multi-resolution implementation as in [5] leads
to an additional speedup and real-time performance (13 frames/sec with non-
optimized C++ code on a 2GHz Laptop and 219× 132 images). In the sequel,
we will compare this optic flow based shape matcher with the ICP algorithm.

4 An Application: Silhouette Based 2-D-3-D Pose
Estimation

We test the two shape matching methods in the context of contour based 2-D-
3-D pose estimation. In this application, a known 3-D surface model (we use
a tea pot here) is projected to the image plane to yield the object silhouette
there. This silhouette is compared via shape matching to the contour extracted
from the image by a segmentation method. This yields correspondences between
points from the model silhouette to points from the contour, which are then used
for a pose update. A summary of the algorithm is as follows:

1. Surface projection: project the surface with the initial pose to the image
plane.

2. Contour extraction: segment the object region in the image.
3. Shape matching: register the two shapes by either ICP or optic flow.
4. Pose update: use the point correspondences from the matching for a pose

update.
5. Iterate: repeat step 1 to 4 until convergence.

Point correspondences stemming from different camera views can be easily con-
solidated in step 4. For a detailed description of the method we refer to [6]. The
critical issue, apart from the segmentation, is the shape matching. It is impor-
tant that the matching can cope with noisy shapes due to segmentation errors
as well as deformations due to 3-D rotations. In the following section, the per-
formance of ICP as well as optic flow based point correspondences is evaluated.
We also tested the simultaneous usage of correspondences from both matchers:
Since both algorithms provide a set of 2D-3D correspondences, in step 4 they
can be used together and solved simultaneously.

5 Experiments

We first analyzed the influence of the shape matching method on the accuracy
and stability of the pose estimation when the images are disturbed by noise,
partial occlusions, or changing lighting conditions. To this end, we used a stereo
sequence consisting of 350 frames, to which we added Gaussian noise with a
standard deviation of up to 80. Some sample frames without noise are shown in
Fig. 2. During the whole sequence the object is not moving, thus, it is possible



A Comparison of Shape Matching Methods 269

Fig. 2. Some frames from a static stereo sequence (350 frames) with illumination
changes and partial occlusions. Top row: left view. Bottom row: right view.

to regard the pose variance for a quantitative analysis. Note that the pose esti-
mation method is able to capture moving objects, as well, as shown in a further
experiment. The parameters were not tuned for the specific sequence.

The diagrams in Fig. 3 show the deviation from the mean pose when the
method employed ICP, optic flow (OF), or their combination for matching
(ICP+OF). Obviously, ICP provides a slightly more stable pose than the match-
ing with optic flow. This can also be conjectured from Table 1 that lists the vari-
ances for the three matchers and different levels of noise. One can also see that
the combination of point correspondences from both matching methods yields
similar results as ICP alone. Figure 4 shows two example frames of the sequence.
The pose is overlaid in the images.

While the first experiment evaluated the matchers in a situation where the
shapes are already close to each other, in the second experiment, we tested the
performance, when the model silhouette is far from the object contour in the
images. For this purpose, we computed the contours as well as the pose in the
first frame of the sequence as usual. We then disturbed the object’s pose by
a rotation in the area of [−60 . . .60] degrees around the x, y, and z axes, or
a translation in the area of [−150 . . .150] mm along these axes. We generated
1000 samples in these intervals. Fig. 5 depicts for which rotations and trans-
lations the method was able (blue stars) or not able (red crosses) to converge
back to the initially estimated pose. For an absolute translational deviation of
less than 3mm, the pose was counted as converged, otherwise as failure. Obvi-
ously, the ICP matcher has more problems in case of large transformations than
the optic flow based matcher. Combining both matchers yields a similar perfor-
mance as for the optic flow matcher. Fig. 6 shows some exemplary rotations for
which the method with the OF-ICP matcher converged, but the method using
the plain ICP-algorithm did not. Table 2 summarizes the convergence rates in
percent.
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Fig. 3. Deviations from the mean pose for rotation (along the x, y and z-axes in radians)
and translation (along the x, y and z-axes in mm) when the method uses the matching
with optic flow, ICP, or the combination of both, respectively

According to the literature, as a rough rule for convergence, rotations must
be below 20 degrees [7]. This is approximately the convergence radius we also
obtained for ICP. Obviously, with the optic flow matcher, the convergence radius
can be significantly larger (up to 40 degrees). A possible explanation for this
outcome is the richer description of a shape by means of the signed distance
function. This includes area based properties of a 2-D shape, which help in
the usually ill-posed problem of fitting a 3-D surface to its projections in the
image.
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Table 1. Variances of the pose parameters (rotation, translation) for different matchers
and noise levels (Gaussian noise with standard deviation 0, 40, and 80). The rotations
are given in radians and the translations in millimeters.

Noise Matcher Rx Ry Rz Tx Ty Tz

0 ICP+OF 0.0004 0.00009 0.00009 0.97 0.54 1.25
0 OF 0.0005 0.00017 0.00017 1.64 0.61 2.31
0 ICP 0.0007 0.0005 0.000045 1.39 0.6 1.84
40 ICP+OF 0.0005 0.00013 0.00013 1.79 0.31 1.76
40 OF 0.001 0.00034 0.000355 5.01 0.32 6.4
40 ICP 0.0003 0.0001 0.00009 0.96 0.48 1.49
80 ICP+OF 0.0004 0.0002 0.00019 2.29 0.53 2.16
80 OF 0.0069 0.00036 0.00036 4.58 0.57 5.08
80 ICP 0.00048 0.0002 0.0002 2.18 0.79 2.44

Fig. 4. Two exemplary pose results for the sequence with heavy noise

Finally, Fig. 7 shows pose results of a second stereo sequence, in which the
tea pot is grabbed and moved around. We artificially distorted the images by
overlaying rectangles of random size, position and color. The bottom row shows
pose results in a virtual environment. Also for this sequence, we show a tracking
diagram in Fig. 8. It compares the estimated x- y- and z-axis of the estimated
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Fig. 5. Convergence of the three investigated methods for the same 1000 random dis-
turbances in rotation (left) and translation (right). Blue stars show the disturbances
for which the algorithm was able to converge back to the correct pose, red crosses show
the cases of failure. The methods using the combination of ICP and optic flow (top) or
solely the optic flow (middle) reveal a similar performance that is significantly better
than the performance using the ICP algorithm alone (bottom).

Table 2. The convergence rate for the second experiment (see figure 5) in percent

Matcher Rotation Translation
ICP+OF 51,4 % 50,1 %

OF 55,7 % 46,7 %
ICP 27,8 % 32,9 %
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Fig. 6. Example rotations, which still converged using the ICP+OF algorithm but
failed with ICP alone

pose for different matching strategies (ICP+OF, OF, and ICP). Furthermore,
we overlaid the result of the non-distorted sequence (which can be regarded as
rough ground truth).

The distortions lead to errors in the pose estimation. With the ICP and
ICP+OF matching these errors are mainly within a range of a few millime-
ter. Solely the results of the plain OF-approach show significantly larger errors
in some parts of the sequence. One such part is indicated in the diagram. Ob-
viously, the OF matcher is more sensitive to this kind of distortion than the
ICP approach. This is because the distance function propagates the errors in
the contour, whereas the ICP approach often ignores smaller occlusions by al-
ways taking the closest point for matching. Nonetheless, the combined ICP+OF
approach still shows a stable tracking behavior.

Fig. 7. A second stereo sequence where the object is moved (345 frames). The han-
dle of the tea pot temporarily vanishes behind the container and reappears. Finally
the tea pot is moved around. Top: Pose results for different frames. Bottom: Syn-
thetic visualization of the object and the estimated pose from different perspective
views.
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Fig. 8. Visualization of the x, y and z-axis while tracking the sequence in Fig. 7. The
values show the results of the OF (red), ICP (gray), and ICP+OF (blue) matcher for
the artificially distorted images. Furthermore, the result for the non-distorted images
and the ICP+OF matcher is overlaid (black). All diagrams show a similar behavior,
except for the OF matcher, which is more sensitive to this kind of distortion.

6 Conclusions

Two very different shape matching concepts have been investigated, one based on
explicitly given contour points and another based on implicit shape representa-
tions via level sets. We have shown that matching shapes in the level set frame-
work can be performed efficiently with a numerical scheme known from optic flow
estimation. Moreover, we compared an ICP algorithm on an explicit contour rep-
resentation and the level set based matching in the context of silhouette based
3-D pose estimation. It turned out that ICP on explicit contours yields estimates
with less variations, whereas the optic flow matcher on the level set representation
shows a clearly better convergence in case of large transformations. With the pos-
sibility to combine results from both matchers in the pose estimation framework,
we demonstrated that one can obtain the best of both registration methods.
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Abstract. In this paper we present a graph based approach for min-
ing geospatial data. The system uses error-tolerant graph matching to
find correspondences between the detected image information and the
geospatial vector data. Spatial relations between objects are used to find
a reliable object-to-object mapping. Graph matching is used as a flexible
query mechanism to answer the spatial query. A condition based on the
expected graph error has been presented which allows to determine the
bounds of error tolerance and in this way characterizes the relevancy of
a query solution. We show that the number of null labels is an impor-
tant measure to determine relevancy. To be able to correctly interpret
the matching results in terms of relevancy the derived bounds of error
tolerance are essential.

1 Introduction

Information Retrieval (IR) is a field of science concerned with searching for
useful information in large, loosely structured or unstructured collections. The
notion of relevance plays an extremely important part in Information Retrieval.
The concept of relevance while seemingly intuitive, is nevertheless quite hard
to define, and even harder to model in a formal fashion [1]. The core of pub-
lished work on relevance is in the domain of document retrieval. Classic models
of relevance are based on probabilistics models using the probabilistics ranking
principle. These models explicitely attempt to model word occurrences in rel-
evant and non-relevant classes of documents and use these models to classify
the retrieved documents into the more likely class. While different models have
been proposed [2], the absence of training data makes it difficult to estimate
an efficient relevance model. Recent work using a language modeling approach
focuses on viewing documents as models and queries as strings of text randomly
sampled from these models [3].

For image retrieval, research on relevance has concentrated on integrating
relevance feedback from the user into content-based image retrieval systems [4].
A straightforward way of getting the user into the retrieval loop is to ask the user
to tune the system parameters during the retrieval process. This however proves
too much a burden for the common. A more intuitive form of interaction is to
ask the user to provide feedback regarding the relevance of the current retrieval
results. The system then learns from these training examples to achieve better
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Fig. 1. Example satellite images with the road data in overlay. Local inconsistencies
between the two datasets are apparent.

performance in the next iteration. Interaction is given in the form of feedback
for positive and negative examples as a binary decision or with a degree of
(ir)relevance for each.

In our work, we focus on data mining in the context of assessment and con-
trol of the quality of the spatial data. The rapid growing number of sources of
geospatial data, ranging from high-resolution satellite and airborne sensors, GPS
pose severe problems for integrating data. Content providers face the problem
of continuously ensuring that the information they produce is reliable, accurate
and up-to-date (cfr.Fig. 1). In this field, automated detection of change and
anomalies in the existing databases using image information can form an essen-
tial tool to support quality control and maintenance of spatial information. In
such a system, digitized information extracted from images needs to be located
within the spatial vector information in the GIS database. Fig. 2 illustrates the
process. In this example, road junctions are extracted from the images. Each set
of junctions is posed as a query to the GIS database and the spatial location of
the set within the database is returned if overlap is found. In addition, a measure
of correspondence should be reported for the overlapping region characterizing
the spatial quality of the GIS data with respect to the image information. In
some cases only partial or no spatial coordinates are available with the images
(e.g. cost of accurate spatial registration) justifying the matching process. In our
work, the query process, based on attributed graph matching, is driven by the
spatial relations between the object features and takes into account different er-
rors that can occur (e.g. spatial inaccuracy, data inconsistencies between image
and vector data).

Paramount in this work is the reliability of the system. The relevance of the
reporting should be high, meaning that the correct region should be found and
if change between the image and vector region is reported, it should reflect the
real life situation. This means we should be able to clearly define the meaning
of relevant versus irrelevant results and the tolerance margins for inaccuracy.
In this paper, we will discuss how error-tolerant graph matching is applied as
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Fig. 2. Road junctions are detected in each image. The set of image junctions forms
a query to find the corresponding set of junctions in the GIS database and a spatial
quality measure should be reported.

flexible query mechanism to solve the spatial query. We derive an expression
which characterizes the bounds where an image feature is identified as part of
the object model or as a noise structure. This condition which maps a feature
on the null label is a difficult constraint to model and has been traditionally set
using heuristic rules-of-thumb. We show how the expected graph error of the
object model can be used to determine this constraint.

The remainder of this paper is organized as follows. Section 2 introduces error-
tolerant graph matching and derives the error bound to characterize acceptable
over inacceptable inconsistencies. Section 3 gives experimental results on syn-
thetic data which validates the derived bounds and applies the results to data
mining.Section 4 concludes the paper.

2 Error-Tolerant Graph Matching for Data Mining

The problem can be represented as finding the correspondence between two sets
of features: one set originating from the database and one set originating from the
image. This can of course be generalized to situations other than image-to-GIS
registration, like image-to-image or GIS-to-GIS. Given these features an abstract
representation can be built as an attributed graph. The vertices of the graph
represent image features and the vertex attributes can contain measurements
on these features. The edges of the graph represent relations between features
and the edge attributes can contain measurements on spatial relations. A similar
graph can be built on the vector data, using data objects as vertices and relations
between objects as edges. The problem of registration is represented as a graph
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matching problem, which seeks the correspondence of similar vertices between
two attributed graphs.

In solving the correspondence problem, one should allow tolerance to impreci-
sion and inconsistencies. Errors can occur on the location of the junction due to
inaccurate detection, differences in spatial resolution of the data and data incon-
sistency. In addition false positives can be present in both datasets. In computer
vision error tolerant graph matching techniques form an important class of tech-
niques. These techniques seek a graph or subgraph morphism, which allows for
distortions. A general distortion model defines the deletion and addition of graph
vertices and edges, and replacement of attribute values. A similarity measure or
distance function between two graphs is used that models the occurring distor-
tions using heuristics. Early techniques were a generalization of string matching.
More recent models are based on information theoretic principles or Bayesian
modeling. Solving the correspondence problem is difficult and several optimal
and approximate techniques have been proposed. These include, among others,
search trees, dynamic programming, annealing and genetic algorithms. In this
work, we examine relaxation labeling, a popular approximate technique which
has low, polynomial time complexity [13, 8].

2.1 Graph Matching Defined as a Constraint Satisfaction Problem

The graph matching problem can be defined as a constraint satisfaction problem,
which consists out of the following elements:

1. a set of objects i ∈ Ωi, corresponding to image features;
2. a set of labels λ ∈ Ωλ, corresponding to GIS features;
3. a neighbour relationship over the objects;
4. constraints on possible labels between pairs of neighbouring objects, rij(λ, λ′).

The constraints are defined as compatibility coefficients, rij(λ, λ′), for each pair
of neighbouring objects i and j and for each pair of labels λ and λ′. These
coefficients express the compatibility of assigning label λ to object i in combina-
tion with assigning label λ′ to object j. Negative values express incompatibility,
positive values compatibility. Different types of soft constraints can be checked
in this way (spatial, topological, attribute relations). Several constraints can be
applied simultaneously, where the total compatibility coefficient for a labeling is
the sum over all constraints.

The optimal solution of the graph matching problem is then defined as the
following quadratic problem. To each object i a probability distribution {pi(λ)}
λ∈Ωλ

is associated that expresses that object i has label λ:

0 ≤ pi(λ) ≤ 1,
∑

λ∈Ωλ

pi(λ) = 1 (1)

A labeling for theproblem is specifiedby thematchmatrix P̄ ={pi(λ)}i∈Ωi,λ∈Ωλ
.

The matrix P̄ is found such that the following objective function is maximized:

E(P̄ ) =
∑

i,j∈Ωi

∑
λ,λ′∈Ωλ

pi(λ)pj(λ′)rij(λ, λ′) (2)
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This quadratic function can be found in various forms in the literature. In
graph theory, the problem is known as the maximum clique problem [7]. The
optimal consistent correspondence is equivalent with the maximum clique in
the association graph between two graphs. Based on a theory of Motzkin and
Strauss, it has been shown how the global optima of a quadratic problem based
on the adjacency matrix of a graph are equivalent to the maximum cliques [12].
The quadratic problem is similar to Eq. 2 where the compatibility matrix equals
the adjacency matrix.

In computer vision, the graph matching problem has been studied using differ-
ent techniques. In [8] a Bayesian model is developed which leads to a probabilistic
relaxation scheme. In [10] it is shown how the updating equation of probabilistic
relaxation can be written in a quadratic form similar to Eq. 2, with the compat-
ibility coefficients related to conditional probabilities. In [11], a Markov random
field approach is introduced to solve the matching problem using a relational de-
scription of the scene. The problem is modeled using normal distributions, which
makes the modeling similar to the one used in [8]. The essential difference lies
in the optimization technique which is applied. In the case of MRF, the optimal
solution is found using annealing techniques. Probabilistic relaxation uses the
relaxation equations, which are a form of gradient descent. After review of the
literature, we find that the published techniques differ mostly in the optimization
technique that is applied (i.e. search trees, annealing, genetic algorithms). We
examine the modeling of the matching problem irrespective of the optimization
technique used.

2.2 Defining the Correct Problem for Data Mining

In this work, we concentrate on the correct modeling of a problem. If a problem
is badly modeled, it will always lead to the wrong solution, regardless of the
optimization technique that is used. The problem lies in a good definition of the
compatibility coefficients, rij(λ, λ′), since they determine the quadratic problem.

The value of the compatibility coefficient of a constraint is used in two ways.
Firstly, it encodes the level of violation of the constraint, i.e. more negative
values mean a higher violation. Secondly, it encodes the relative ordering of the
constraints. Some constraints are more important than others, which is reflected
in the value of their compatibility coefficient. Setting proper values to these
coefficients is not straightforward and is often neglected in the literature.

To guarantee a good solution of the matching problem, the compatibility
coefficients rij(λ, λ′) need to be determined correctly. In most applications, the
value of these coefficients are determined using heuristics which basically impose
a relative order on the constraints. Strong constraints receive a higher absolute
value then weak constraints. The specific ratio between the constraints is usually
determined through trial-and-error. For some constraints like the null assign-
ment, it is however difficult to determine a correct value for the compatibility
coefficient rij(λ∅, λ′). Since each object is a priori a possible null object, every
assignment is consistent with the null assignment. The problem is to assess the
relative importance of the null assignment with respect to the other constraints.
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It should be avoided that the null solution is the most consistent solution of the
system. On the other hand, false correspondences of spurious points should be
less consistent than the null assignment.

To illustrate the importance of the coefficients, we take again the problem
of data mining using point matching. Fig. 3 illustrates a general problem. On
the left are images which are used as a query. These images contain a number
of random points. The middle image is a reference image in the database. It is
a noisy copy of the first image on the left (i.e. jitter on the spatial position of
the points, missing and spurious points). Matching the top left image with the
reference image gives the result illustrated in the top right image. This image
shows the query and the reference image in overlay and reports the matched
and null labels. For this example, the result is 100% correct: 3 points had been
deleted in the reference image and are correctly assigned the null label; the
other 5 points are correctly matched. When matching the bottom left image,
which is not related to the reference image, the result is depicted in the bottom
right image. The matching reports 2 matched points and 6 null matches. What
we want to illustrate here is that the number of null matches is an important
indicator whether or not the result of the query is relevant of not. A high number
of null matches can indicate that two images are not related and it is therefor
important to control the behaviour of the null condition with respect to other
constraints.

Fig. 3. Illustration of a query q1 and q2 with a pattern pi in the database. The result
is shown on the right with the matched points connected by a line and the number of
null labels reported.



Relevance Criteria for Data Mining Using Error-Tolerant Graph Matching 283

2.3 Consistency to Determine Correct Compatibility Coefficients

To determine the correct optimal solution of the quadratic problem, we rewrite
Eq. 2 as a variational inequality, based on the mathematical concept of ”con-
sistency” [10]. The problem of finding consistent solutions of Eq. 2 is shown to
be equivalent to solving a variational inequality.The concept of consistency then
offers guidance in determining good compatibility coefficients.

The support of a label λ for the object i given by the correspondence P̄ is
defined as

si(λ) = si(λ, P̄ ) =
∑
j∈Ωi

∑
λ′∈Ωλ

rij(λ, λ′)pj(λ′) (3)

Given a non-ambiguous solution P̄ (i.e. pi(λ) = 0 or 1), with λ1, ..., λn the
labels which are given to the resp. object i,...n, then p̄ is a consistent solution iff

si(λi, P̄ ) ≥ si(λ, P̄ ), ∀λ, i = 1...n (4)

For a non-ambiguous solution P̄ , this can be extended to the weighted sum of
the support functions. P̄ is a consistent solution iff∑

λ∈Ωλ

pi(λ)si(λ, P̄ ) ≥
∑

λ∈Ωλ

vi(λ)si(λ, P̄ ), i = 1...n (5)

for all labelings V̄ .
Eq. 5 defines the solution P̄ through a system of n inequalities. Hummel and

Zucker have shown that if the compatibility matrix rij(λ, λ′) is symmetric, the
solution can be calculated as maximizing E(P̄ ) given by Eq. 2. In the context
of consistency, E(P̄ ) depicts the average local consistency. The interpretation
of the optimal solution in graph matching then becomes the solution P̄ which
maximizes the average local consistency.

The definition of consistency can be used to determine the correct values.
The definition not only determines the optimal solution of the labeling problem,
it also determines what values the compatibility coefficients should take for an
”ideal” solution to become the optimal solution of the system. The ideal solution
is the matching we wish to find given the noise properties of the detection. For
a correct null assignment, we need to determine when the errors, which occur
in the neighbour structure of a node, are acceptable and when the number of
errors becomes too large so that the null label should be assigned. To analyse
this, we should look at the support of the different assignments. In the case of
the null assignment, the support can be written as:

si(λ∅, P̄ ) =
∑
j∈Ωi

∑
λ′∈Ωλ

rij(λ∅, λ′)pj(λ′)

= w∅
∑
j∈Ωi

∑
λ′∈Ωλ

pj(λ′)

= w∅d(i)

(6)
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with d(i) the degree of node i (i.e. the number of neighbours). We have simplified
rij(λ∅, λ′) = w∅ if j ∈ Ωi (else rij(λ∅, λ′) = 0). The constant factor w∅ is
reasonable in the absence of prior knowledge of assignments.

The support for a non-null label can be split up into three classes Ω+
i , Ω−

i and
Ω0

i , namely positive coefficients which express compatibility, negative coefficients
which express incompatibility and negative coefficients which control the null
assignment. If we consider the first two classes of coefficients constant (resp. w+
and w−) within the neighbourhood of node i then the support for λi can be
simplified to

si(λi) =
∑

j∈Ω+
i

r+
ij(λi, λj) +

∑
j∈Ω−

i

r−ij(λi, λj) +
∑

j∈Ω0
i

r0
i

= w+n+ + w−n− + w∅n0

(7)

Here n+ is the number of compatible neighbours, n− the number of incompatible
neighbours and n0 the number of null-neighbours, with n+ + n− + n0 = d(i).
Eq.(6) and (7) give the following condition which holds in the optimal solution:

w+n+ + w−n− + w∅n0 > w∅d(i) (8)

or equivalently
(1− f0)w∅ < f+w+ + f−w− (9)

where f+, f− and f∅ are the fraction of compatible, incompatible and null
assignments in the neighbourhood of object i for the ideal mapping.

Eq. 9 can be used to determine the weights for the compatibility matrix given
the expected relational graph error. It allows to make a distinction between
points showing small distortions, which should find a correspondent in the other
dataset, and points showing severe distortions, which should be assigned the null
label. As previous research usually relied on rules-of-thumb to determine these
weights [13], the importance of this equation is that it allows precise definition of
the weights of the graph matching problem with respect to the expected graph
error of the system.

Figure 4 gives an example. The figure shows a mapping of an object i of
dataset 1 which should be mapped on object λ of dataset 2. The immediate
neighbourhood of each object is shown, where the neighbouring objects in the
first dataset are mapped on their prime correspondent in the second set. A
special case is the sixth object which is given the null label in the ideal mapping.
The attributes of the graph edges are color coded in different shades of grey.
The relational graph error in this case is expressed by a attribute error f− =
2/6 = 33.3% (i.e. edges 2 and 4 change color when mapped) and a null error
f∅ = 1/6 = 16.7% (i.e. one null assignment in the neighbourhood of object i).
Given these values of f− and f∅, the following condition w∅/w− < 2/5 should
be taken into account when determining the weights. This ensures that objects
which show more errors in their neighbourhood are mapped onto the null label.
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Fig. 4. Mapping of object i on λ and neighbouring objects mapped on their prime
correspondent. Object 6 is given the null label. Graph edges having a different color
have a different edge attribute. The mapping shows an attribute error f− = 2/6 =
33.3% and a null error f∅ = 1/6 = 16.7%.

3 Experimental Results

A first set of experiments has been performed on images containing randomly
scattered points. Each image is generated twice: one copy which serves as a
reference and one copy which contains perturbations on the scattered points
(e.g. noise on the position, added spurious points). The aim is to find the
corresponding points between the two copies using graph matching while ig-
noring the spurious points in the data. The experiment is an abstraction of
the correspondence problem between image and GIS data after features like
road junctions have been detected in the image. To apply the technique to
matching sets of points, we need to introduce the constraints which define
similarity.

In our work, we use geometric invariants between subsets of corresponding
points. The most simple constraints are binary relations like geometric relations
(e.g. angle, distance) between a point and its neighbours to find correspondences.
These are stable features, given the detection quality which can realistically be
expected from road detection. In these experiments we rely only on the relative
angle between pairs of points. In mapping a pair of points i and j on λ and
λ′ the relative angle between the lines ij and λλ′ does not exceed a given .α.
(e.g. π/4). If this constraint is violated, the compatibility coefficient rij(λ, λ′) is
assigned a negative weight w−.

The graph representation of the data is of course not restricted to angles
and can be readily generalized to incorporate other measurements like connec-
tivity, distance or other topological relations. In our case, the angle between
junctions was chosen because it could be reliably measured in the image. Other
measurements like connectivity between junctions are more difficult to measure
in the image due to the degree of fragmentation in road detection. Compared
to relative distance, we found angle measurements to be able to report more
fine distortions [9]. Nevertheless, the graph matching technique is generic and
applicable once image and GIS information are described in terms of attributed
graphs.
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3.1 Optimal Parameter Set

In the experiments, points are randomly scattered within an image of 512× 512
pixels. The first set of points contains 30 points and the second set contains
100 points. Both sets have 20 points in common with a perturbation on their
position using gaussian noise with a standard deviation between one and eight
pixels. The matching result needs to make a distinction between points which
are common between the two datasets (so called ”real” points) and spurious
points.

To determine the optimal weights of the graph matching process, Eq. 9 is
used. In these experiments, the parameters of RL have been set at .α = π/32
and w− = −0.5. Compatible matches are not awarded, meaning that w+ = 0.
The data contains a ratio of 10:30 outlier points so that f∅ = 1/3. Eq. 9 can
then be used to determine the weight w∅, which varies over the experiments since
the graph label error f− increases as more noise is added to the position. An
added difficulty is that the label error f− is a stochastic variable. To use Eq. 9,
we need to determine the value of f− which optimally makes the distinction
between real distorted points and spurious points. This can be done by modeling
the exhibited graph errors of real and spurious points as normal distributions
with a certain mean and standard deviation, and taking the maximum likelihood
estimate (MLE) as the optimal decision boundary f−

opt. Label errors f− below
this threshold are then regarded as acceptable errors belonging to real points.
Label errors f− above this threshold are regarded as severe errors belonging to
spurious points.

We measured the mean and standard deviation of the graph label error over
a selection of 10 image pairs for a given amount of noise σnoise. For real points,
the ideal mapping is known and the graph label error for these points can be
measured. Table 1 gives a summary of the label error statistics (m1, σ1) for the
different amounts of noise. For spurious points, we selected the best matching
corresponding point in the second dataset. Since this is a combinatorial problem,
the match is approximated under the condition of a near ideal mapping, i.e.
the real points are mapped on the correct correspondents, the other spurious
points are mapped on the null label. Under these conditions, finding the best
match for a point is a linear search. For this match, we measure the graph
label error that would occur if a spurious point is mapped on his most likely
candidate. Measured over the dataset, this gives an mean label error mn =
38.5% with standard deviation σn = 16%. Using MLE on these statistics, the
threshold f−

opt can be calculated and consequently wopt
∅ using Eq. 9. Table 1 gives

the calculated wopt
∅ . These calculated weights are compared to the measured

optimal weights wmeas
∅ . The weights wmeas

∅ have been determined by plotting
the ”receiver operating characteristic” (ROC) curve by varying w∅. For this
curve, sensitivity and specificity are defined as follows:

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

(10)
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where {TP, FP, TN, FN} stands for true positive, false positive etc. If sensitivity
is plotted along the X-axis and specificity along the Y-axis, the optimal perfor-
mance is defined as the point on the ROC curve closest to the upper right corner
(1, 1). The weight associated with this sample is taken as the optimal measured
weight wmeas

∅ . Table 1 shows a good correspondence between the calculated op-
timal weight wopt

∅ and the measured optimal weight wmeas
∅ . This illustrates the

relevance of Eq. 9 to tune the graph matching process based on the expected
graph error.

Table 1. Determining the null weight based on maximal likelihood with respect to the
expected graph error. Statistics spurious points mn = 38.5% and σn = 16%.

stdev [pix] m1 σ1 wopt
∅ wmeas

∅

1 0.5% 1.1% 0.05 0.05
2 2.3% 2.8% 0.09 0.07
4 7.8% 6.2% 0.19 0.15
8 21.7% 10.4% 0.32 0.25
12 29.1% 12.2% 0.38 0.31

3.2 Data Mining Experiments

The previous experiments show how Eq. 9 can be used to determine the para-
meters for optimal graph matching performance. In these experiments, we show
how the interpretation of the matching results can help in determining the rel-
evancy of the query solution. Again we use datasets of random point patterns
with the first set of points containing 30 points and the second set containing 100
points. The second set is a copy of the first point pattern with a perturbation
on the position using gaussian noise and added random spurious points. When
a reference point pattern is shown as a query, noisy copies of this pattern are
regarded as relevant solutions while other point patterns are regarded as irrele-
vant solutions (cfr.Fig. 3). The dataset contains 10 unique point patterns. Each
pattern is reproduced 10 times using gaussian noise with a standard deviation
of 4, 8, 12, 16 and 20 pixels, which gives 50 relevant solutions for each pattern.
The total dataset thus contains 500 patterns.

We perform matching using w0 = 0.3 and .α = π/32. The plot in Fig. 5
shows the importance of the number of null labeling in determining relevancy.
For each point pattern q which is posed as a query, the optimal correspondence
P̄i is sought with each pattern pi in the database. Each correspondence P̄i is
characterized by a number of matched points and a number of null labels. The
matched points can be used to measure the degree of correspondence between q
and pi by measuring the average graph distortion that is introduced under the
mapping P̄i of q on pi. In our case, this is done by counting the number of la-
bel errors in a graph node neighbourhood, averaged over each graph node. This
is similar to the classic graph edit distances used in the literature. Intuitively,
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Fig. 5. Plot containing the average label error and average number of null labels for
relevant and irrelevant query solutions for different noise levels

one can expect a higher degree of distortion to correspond with less relevant
solutions. However looking at the results in Fig. 5, we see a saturation of the
distortion measure for high standard deviation. This implies that the distortion
measure cannot determine the correct order of relevancy above a noise level
σnoise = 12 pixels. The reason for this behaviour is that graph nodes which
show a severe graph distortion in their neighbourhood are mapped on the null
label and do not contribute to the average graph distortion.

In addition when we compare the average graph distortion of the relevant
solutions with the distortion of the irrelevant solutions, we see that above noise
level σ = 12 these values lie very close together.

Alternatively, we can use the number of null labels N0 in a correspondence
P̄i as a measure of relevance. In Fig. 5, we see that this measure has a better
behaviour. The number of null labels N0 shows a linear increase with the noise
level introduced in the point patterns. This means that N0 can distinguish be-
tween mildly distorted and severely distorted relevant solutions. Additionally,
the number of null labels N0 of the relevant solutions is much lower than N0 of
the irrelevant solutions.

In Fig. 6, the statistics for correct relevant and irrelevant query solutions are
summarized for each noise level σnoise. For w0 = 0.30, the threshold on N0 is set
to 9. This means that if P̄i for the query solution pi has less than 9 null labels,
pi is regarded as relevant, in the other case pi is irrelevant. Fig. 6a shows a very
good suppression of irrelevant point sets with only a few percent being returned
as a relevant solution. Fig. 6b shows a high return of relevant point sets with
a deterioration at higher noise levels as can be expected. At the highest level,
some point patterns are regarded as irrelevant due to the degree of distortion.
At this stage it is important to set a good value for the parameter w0. Redoing
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Fig. 6. Bar chart showing performance results of the mining process for different noise
levels and different coefficients w0: (above) correctly classified as irrelevant, (below)
correctly classified as relevant

the experiment with w0 = 0.15, we see the same performance for filtering the
irrelevant point sets but a decrease in returning the correct solutions at high
noise levels.

4 Conclusion

In this paper we presented a graph based approach for data mining geospatial
information. The system uses error-tolerant graph matching to find correspon-
dences between the detected image information and the road vector data. Spatial
relations between objects are used to find a reliable object-to-object mapping.
Graph matching is used as a flexible query mechanism to answer the spatial
query. A condition based on the expected graph error has been presented which
allows to determine the bounds of error tolerance and in this way characterizes
the relevancy of a query solution. We show that the number of null labels is
an important measure to determine relevancy. Determining when a null label is
being assigned or not is dependent of the values of the compatibility coefficients
which order the graph matching constraints. It is therefor important to correctly
set these values to be able to control the behaviour of the graph matching process
and to be able to interpret the matching results in terms of relevancy.
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Abstract. In these note we review some basic approaches and algo-
rithms for discrete plane/hyperplane recognition. We present, analyze,
and compare related theoretical and experimental results and discuss on
the possibilities for creating algorithms with higher efficiency.

1 Introduction

In discrete geometry various definitions and properties of linear structures –
such as straight lines, planes, or hyperplanes – have been proposed. On this ba-
sis, computational efficient analytic characterizations of these objects have been
obtained. In many applications one considers a reverse problem: given a set of
pixels or (hyper)voxels, decide if it is a portion of a discrete line or (hyper)plane.
For this, a recognition algorithm is needed.

In dimension two, the arithmetic structure of discrete straight lines (DSL)
has been exploited to design efficient algorithms, as both their asymptotic com-
putational cost and practical efficiency have been studied (see [31] for a survey
on the matter). In higher dimension, similar arithmetic structures still exist in
digital planes and hyperplanes. However, to solve a recognition problem, one
usually adapts algorithms from linear programming (LP) [13, 14, 19, 27] or com-
putational geometry (CG) [23, 24, 35]. As a rule, there is a gap between the
theoretical time complexity bounds obtained for linear programming or com-
putational geometry problems and the practical efficiency of these algorithms
when applied to discrete objects. Indeed, one can observe that the existing time
complexity bounds are not tight when experimental analysis is performed.

In this presentation we review certain basic approaches for digital plane and
hyperplane recognition and consider related computational aspects from both
theoretical and practical point of view. In particular, we compare approaches
and results related to computational geometry on one hand and integer linear
programming on the other.
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2 Approaches to Defining Digital Planarity

Throughout the paper we will refer to a set of integer points S = {p1, p2, . . . , pm}.
In this section we review three basic approaches for defining digital planes and
hyperplanes. Chronologically the first one is the following.

Consider a Euclidean hyperplane Γ defined by γ0+
∑n

i=1 γixi = 0 with {γi} ∈
R, |γi| ≤ |γn| for 1 ≤ i < n and |γn| > 0 (the axis xn is called the major axis
of the plane, see below). Let p = (p1, . . . , pn) be the intersection point of Γ and
the straight line defined by x1 = r1, x2 = r2, . . . , xn−1 = rn−1 with ri ∈ Z,
1 ≤ i ≤ n. The grid point P = (r1, r2, . . . , rn) ∈ Zn with pn − 1

2 < rn ≤ pn + 1
2

is the digital image of p with respect to Γ . We have the following definition.

Definition 1 (Digital hyperplane [35]). S ⊂ Zn is a digital hyperplane iff
there exists an Euclidean hyperplane H such that each grid point P of S is the
digital image of a point p ∈ H.

Another approach is based on the following definition.

Definition 2 (Digital flatness [36]). Let S ⊂ Zn. S is called flat iff there
exist n + 1 real numbers γ0, . . . , γn such that:

1. max{|γ0|, . . . , |γn|} = 1 ;
2. every point P = (P1, . . . , Pn) ∈ S satisfies the condition

−1
2

< γ0 +
n∑

i=1

γiPi ≤
1
2

. (1)

In [36] Veelaert proves that a discrete set satisfying Definition 1 is flat. Note
that Veelaert’s definition is more anisotropic since there is no constraints on the
Euclidean hyperplane orientation (i.e., the conditions |γi| ≤ |γn| for 1 ≤ i < n
and |γn| > 0 in Definition 1).

Another way to define a digital hyperplane is the following.

Definition 3 (Discrete analytic hyperplane [3]). A discrete analytic hy-
perplane P with coefficients (a1, a2, . . . , an, b) ∈ Zn+1, gcd(a1, . . . , an) = 1, and
thickness ω ∈ N∗ is given by:

P (a1, a2, . . . , an, b) = {(x1, x2, . . . , xn) ∈ Zn|0 ≤ b +
n∑

i=1

aixi < ω} (2)

Thus a set S ⊂ Zn is a subset of a discrete analytic hyperplane iff there exists a
vector (a1, a2, . . . , an, b) ∈ Zn+1 with gcd(a1, . . . , an) = 1 and ω ∈ N∗, such that
S ⊂ P (a1, a2, . . . , an, b).

This last definition is more general than the previous one since it allows to control
the thickness of the set of grid point (see [3]). In what follows, we consider a
class of discrete analytic hyperplanes, called naive, which have thickness ω =
maxi=1..n{|ai|}.
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If the coefficients of the Euclidean plane in Definition 1 are rational numbers,
then the digital hyperplane obtained by that definition is a discrete analytic
hyperplane according to Definition 3 as well. Note that in plane recognition
problems we usually have to consider finite subsets of grid-points. Hence, the
case of irrational coefficients handled by Definitions 1 and 2 may not occur.

In the following, we will use the abbreviation DHP for a digital (or discrete)
analytic hyperplane, and DHPS (Digital Hyperplane Segment) for a finite subset
of grid points belonging to a DHP. In dimension three, we will denote digital
planes (resp. digital plane segments) by DP (resp. DPS).

We conclude this section with one more technical notion to be used in the
sequel.

Definition 4 (Major axis and DHP base). Let S be either a digital hyper-
plane or a naive discrete analytic hyperplane. Then there exists a major axis xj

such that the projection S̄ of S along xj onto the plane xj = 0 is a one-to-one
and onto mapping. The (n−1)-dimensional set S̄ is called the base of the DHP.

It was proved in [10] that every digital plane has a major axis. For instance, in
Definition 1 the major axis is xn, in Definition 2 it is xj provided that |γj | = 1,
while in Definition 2 the major axis is xj whenever ω = |aj |.

3 Survey on DHP Recognition Algorithms

In this section we review algorithmic solutions for the discrete (hyper)plane
recognition problem that can be stated as follows: Decide if a given finite set
S ⊂ Zn is a DHPS. Furthermore, if the answer to this last question is positive,
we would like the determine the DHP parameters.

We can distinguish two basic classes of recognition algorithms: ones based on
computational geometry techniques and ones using linear programming.

3.1 Computational Geometry Algorithms

The first algorithms of this kind have been proposed in [23, 24] for DPS (i.e. for
dimension n = 3). Let us define a support of a point set S to be a Euclidean
plane such that all points from S lie on the same side of the plane. Then we have
the following theorem.

Theorem 1. [23] Let S ⊂ Z3. S is a DPS iff there is a support H of S, such
that the distance between the points from S and H is less than 1.

This theorem has been stated for n = 3 but it trivially extends to higher
dimensions.

To find such a support plane, Kim considered the faces of the convex hull
CH(S) of S. He stated that S is a DPS iff there is a face of CH(S) that induces
a support plane satisfying the distance criterion of Theorem 1. In [23] and [24]
Kim proposed several algorithms to discover such a face. The last statement,
however, turned out to be wrong: as shown in [18, 12], the support of S can be
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defined by an edge of CH(S). In such a case, S can be a DPS and there may be
no face of its convex hull satisfying the distance criterion.

Another geometric approach to recognize DHPS is based on point set sepa-
rability. We have the following theorem.

Theorem 2. [35] Let S ⊂ Zn. S is a DHPS iff there exists an Euclidean hyper-
plane H that separates S from S′, where S′ is obtained by a translation of S at
distance 1 along the major axis xn of H.

Thus the recognition problem is reduced to a separability test for two sets of grid-
points. In [35], two algorithms are detailed. One of them uses linear programming
(see below). The other is based on computation of convex hull and polytopes
intersection [29]. Specifically, S can be separated from S′ by a plane iff CH(S)∩
CH(S′) = ∅. Thus first CH(S) and CH(S′) are found, then their intersection
is computed. Convex hulls computation takes O(m · log m + m�n/2�) time, while
the polytopes intersection can be found in O(2n ·m2n−2n · log m) (see [35]).

Finally, a class of algorithms are based on the notion of thickness of S (defined
for n = 3). The thickness can be linked to the distance criterion proposed in
Theorem 1. To this end, let us define the chords set of S as the set {P−P ′|P, P ′ ∈
S} [22]. Without loss of generality, suppose that the major axis of S is x3. Then
the geometric thickness of S is the x3 coordinate of the intersection point of the
convex hull of the chords set of S and the ray defined by x3 and the origin O
where x3 ≥ 0. The following theorem holds.

Theorem 3. [22] Let S ⊂ Z3. S is a DPS iff its geometric thickness is less
than 1.

These definitions and results have been proposed for dimension n = 3, but ad-
mit easy generalizations. Some of the above-mentioned computational geometry
algorithms are illustrated in Figure 1.

Fig. 1. Illustration of Computational Geometry recognition algorithms. From left to
right: The input set of grid points S, recognition using a support, recognition using the
separability test, and recognition based on the thickness of the chords set.

3.2 Linear Programming and Integer Linear Programming
Algorithms

Since DHP definitions are based on inequalities, the aim of these recognition
techniques is to directly solve a linear inequality system using tools from Linear
Programming or Integer Linear Programming (ILP). Applying Definition 2 (resp.
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Definition 3), we can associate to each grid-point P of S two inequalities with
n+1 unknowns {γ0, . . . , γn} in R (resp. n+1 unknowns {a1, . . . , an, b} in Z). For
example using Definition 2, for each grid point P ∈ S we have the inequalities
γ0− 1

2 +
∑n

i=1 γiPi ≤ 0 and γ0 + 1
2 +
∑n

i=1 γiPi > 0. Using LP or ILP algorithms
to these linear inequality systems, we can thus decide if the set S is a DHPS
or not.

If we consider a specific orientation of the DHPS, i.e. if we restrict our
attention to DHPS with a major axis xn, the dimension can be reduced
from n + 1 to n by considering the unknowns {γ0/γn, . . . , γn−1/γn, 1} or
{a1/an, . . . , an−1/an, 1, b/an}. Note that for the last system the unknowns are
in Q. Hence, for each grid point P ∈ S we have, for example, the constraints:

Γ0 −
1
2

+ Pn +
n−1∑
i=1

ΓiPi ≤ 0 and Γ0 +
1
2

+ Pn +
n−1∑
i=1

ΓiPi > 0 . (3)

For solving such kind of linear programs one can take advantage of the rich
arsenal of available linear programming algorithms (see, e.g., [32]). Optimal theo-
retical algorithms exist to decide if a set of grid points is a DHPS using Megiddo’s
theorem:

Theorem 4 ([27]). Given a LP problem with m linear inequalities in Rn where
n is fixed, an algorithm exists to solve the problem in O(m) time.

Unfortunately, the above bound O(m) includes an implicit factor that is exponen-
tial in n (but is a constant when n is fixed). Considering the DHPS recognition
problem based on ILP problems, complexity results can be founded in [13].

Algorithms Based on Preimage Computation. For the sake of clarity we
will present separately the algorithms based on preimage computation, although
these methods are deeply linked to those using linear programming.

Definition 5 (DHP preimage). Given a DHP (resp. DHPS) S, its preimage
is the set of Euclidean hyperplanes whose digitization coincides with/contains S.

Note that for each DHP definition from Section 2 a digitization scheme can
be specified. So in what follows, whenever a digitization scheme is considered,
we will suppose that it is the one related to the particular DHP definition
adopted.

Basically, the preimage is nothing but the feasible region of the LP inequality
system associated with a set of grid points. If we suppose that the major axis is
known (xn, for example), the preimage is an n-dimensional polytope, possibly
unbounded, whose vertices have rational coordinates. Obviously, if the preimage
associated with a set S is empty, then S is not a DHPS. Note that if the major
axis and the sign of each {Γi} are known (i.e. if one knows the global orientation
of the DHPS), the preimage polytope is initialized using the unit hypercube
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since (Γ0, . . . , Γn−1) ∈ [0, 1]n. A simple incremental DHPS recognition algorithm
is given next. Considering n−dimensional DHPS, the step 6 in Algorithm 1 may
have high computational cost due the combinatorial aspects of n−dimensional
polytopes.

However, if n = 3, several efficient DPS recognition algorithms have been
proposed [38, 15]. Indeed, if we denote by E the number of preimage vertices,
the intersection of a Euclidean plane and a convex polyhedron can be computed
in O(E) time. It is not hard to realize that in this case the computational cost
of the above algorithm is O(m · E). Moreover, the algorithm admits an online
implementation which runs in time O(E).

To have a tight computational cost bound, we need to bound E by the number
of grid points m. Several approaches have been proposed to solve this problem
for n = 3 (see [17]). It is not trivial, however. In dimension 3, we can easily
see that E is bounded by the number of vertices of CH(S). This can be proved
using either the construction of the feasible region based on dual transformation
proposed in [29] or simply by observing that the preimage corresponds to the set
of Euclidean planes separating CH(S) and CH(S′) in view of Theorem 2. In this
case extremal Euclidean planes are defined by one or two grid points in CH(S)
and two or one grid point in CH(S′). Hence, the number of such extremal planes
is bounded by O(|CH(S)|). Finally, for n = 3, a bound on |CH(S)| is also a
bound on E.

In the experimental results presented in Section 5.3, E is always less than
|CH(S)| whatever the dimension. Further developments on that point is an
important challenge since it is directly linked to the efficiency of Algorithm 1.

Algorithm 1. DHPS preimage based recognition

1: Let S be a set of grid points
2: Preimage initialization
3: for each grid point P of S do

4: Let C1 and C2 be the two linear constraints of dimension n − 1 associated to P
using Equation (3)

5: for each constraint C in {C1, C2} do

6: Update the preimage cutting the polytope with the oriented hyperplane C
7: if the preimage is empty then

8: Stop the recognition, S is not a DHPS
9: end if

10: end for

11: end for

3.3 Other Algorithms

In this section we present some other algorithms that are not based on results
from computational geometry or linear programming. The first one has been
proposed by Veelaert [37]. It recognizes a DPS whose base is a strip, that is a
2-D set of the form {(x, y) | r ≤ x ≤ s} with r, s ∈ Z. The recognition process
is based on the concept of evenness of a DHP [36].
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Definition 6 ([36, 37]). S ⊂ Zn is called even iff its projection along the xn axis
is a one-to-one mapping, and for every quadruple (A, B, C, D) of points in S such
that Axn=0−Bxn=0 = Cxn=0−Dxn=0, it holds |(Axn −Bxn)− (Cxn −Dxn)| ≤ 1.

This characterization is related to the Rosenfeld’s DSL chord property [30] as
well as to the Kim’s DP chordal triangle property [23]. Veelaert showed that a
strip of voxels S is a subset of a digital plane iff S is even [37]. (Note however that
such an equivalence does not hold for arbitrary dimension.) This result implies
an O(m2) algorithm for DPS recognition.

Another approach is based on the parametrization of DP by least-squares fits.
It is proved in [25] that, given a rectangular base DPS S, there is a one-to-one
correspondence between least-squares plane fit parameters and the coefficient of
the DPS S. Although these authors’ goal was just to give a finite parametrization
of DPS, the result can be used to obtain a simple recognition algorithm that
consists of two stages:

1. Given an input set S, first the least-squares plane fit is computed, which
provides the coefficients of the relevant Euclidean plane H . This stage takes
O(m) time since the fitting problem is of linear complexity.

2. Then it is verified if the digitization of the plane H obtained in Stage 1
coincides with S. If it is so, then S is a DPS that is precisely the digitization
of H . Otherwise, S is not a DPS. It is shown that such a verification can be
done in O(m) time.

It is easy to show that the following holds.

Theorem 5. The least-squares plane fit algorithm solves correctly the rectangu-
lar base DPS recognition problem.

Proof. The proof is straightforward: if the two sets coincide, then S is a DPS
by Definition 1 or 2. Conversely, if S is a DPS, then because of the one-to-one
correspondence between leas-squares fit parameters and DPS coefficients, there
exists a unique least-squares plane fitting whose digitization coincides with S.�

Although the algorithm described above is restricted to DPS’s with rectangular
bases, generalizations to other base shapes as well as to higher dimension seem
possible (see, e.g. [25] for a recent related results).

4 Efficiency of DHP Recognition Algorithms

Table 1 summarizes data about some basic DHPS recognition algorithms. One
can see that optimal algorithms exist to recognize DHPS in any fixed dimension.
However, these are only theoretical since no their implementation is available.
In fact, only few algorithms have been implemented for n = 3. Among these are
some algorithms based on point set thickness arguments [22], Fourier-Motzkin
elimination [19, 20], direct LP [26], and preimage computation [38, 34].
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Table 1. Survey of DPS and DHPS recognition techniques

Description Sources Dimension Time Online
time

Remark

Convex hull width [23, 24] 3 O(m2) -
Convex hull separability [35] n fixed O(m · log m +

m�n/2� +
2n · m2n−2n ·
log m)

-

Point set width [22] 3 O(m7) yes

Fourier-Motzkin Algorithm [19] 3 n.a. -
Direct Linear Programming [27] n fixed O(m) O(1)

[14]
Separability test based on LP [35] n fixed O(m) O(1)

[14]
Integer Linear Programming [13] n fixed O(m · log D)1 -

Arithmetic Preimage [38] 3 O(m3 · log m) O()
Arithmetic Preimage [15] 3 O(m · log2 m) −

Preimage 3 O(m · E) O(E)
Evenness property [37] 3 O(m2) strip base

DPS

Least-squares fits [25] 3 O(m) no rectangular
base DPS

Arithmetic recognition [28] 3 - rectangular
base DPS

Considering the asymptotic bounds on these algorithms’ complexity, one can
observe that there is a gap between those bounds and the estimations of algo-
rithms’ efficiency obtained through experiments. To illustrate this point, con-
sider, for instance, the point set thickness algorithm from [22]. Its theoretic
computational cost is O(m7) whereas in practice it features near linear time
complexity when m increases.

Among the algorithms presented in Table 1, we will focus on the preimage
based techniques. We have two serious arguments to do so. First, these are
online algorithms and their incremental computational cost depends on the DPS
specific characteristics (see below). Moreover, preimage computation provides a
complete description of all Euclidean hyperplanes that satisfy the DP definitions.
These two features appear to be important requirements in various applications,
such as discrete surface segmentation into DPS and reversible polyhedrization
of binary objects [20, 26, 33, 34, 16].

In the next section, we consider some results from number theory, theory
of lattice polytopes, and integer linear programming in order to obtain time
complexity bounds for DHPS recognition algorithms based on preimage com-
putation. More precisely, we focus on bounds on the size of the convex hull
of S that allows us to obtain bounds on the number of preimage vertices (see
Section 3.2).
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5 Towards Obtaining Tight Bounds on the Computational
Cost of DP and DHP Recognition

5.1 Integer Programming and Associated Lattice Polytopes

Consider the integer linear programming problem (ILP) [32]:

max cx (4)
Ax ≤ b (5)
x ∈ Zn (6)

with A = (aij) ∈ Zm×n, b = (bi) ∈ Zm and c = (cj) ∈ Zn. The special case when
m = 1 and all coefficients as well as the solution components are nonnegative is
known as a knapsack problem.

It is well-known [21] that both ILP and KP are NP-complete, i.e., it is unlikely
to have polynomial algorithms for their solution. Despite of this, many results
have been obtained to characterize the set of grid-points in the feasible region
of system (5) [32, 7, 39, 6].

Let us denote by P the convex polytope defined by Equation (5) and by P
the convex hull of P ∩ Zn. Further, let N(A, b) be the set of vertices of P and
|N(A, b)| its cardinality. Various upper and lower bounds on |N(A, b)| have been
found (see, for instance, [39] for a recent survey). In particular, we have the
following theorem.

Theorem 6. Let A = (aij) ∈ Zm×n, b = (bi) ∈ Zm, c = (cj) ∈ Zn and
α = max{|aij |, i = 1, . . . , m, j = 1, . . . , n}. Then

|N(A, b)| ≤ cnm�n/2� logn−1(1 + α) (7)

where α is an upper bound on the largest (by absolute value) coefficient in the
ILP formulation and cn is a quantity depending only on n.

Moreover, upper bound (6) is tight, i.e., there is a class of matrices A and
vectors b for which

|N(A, b)| ≥ c′nm�n/2� logn−1(α)

where c′n is a constant depending only on n.

Similar tight bounds hold for the number of the knapsack polytope vertices.
Now let P be a non-empty n-dimensional lattice polytope and fk(P ) the

number of its k−dimensional facets for 0 ≤ k < n. In particular, f0 is the
number of vertices of P . Then the following theorem holds.

Theorem 7. [8]

fk ≤ cn(Vol P )
n−1
n+1 (8)

where cn is a quantity depending only on n and (Vol P ) the volume of P .



300 D. Coeurjolly and V. Brimkov

In dimension 2, the above result can be linked to the maximal number of edges
e(N) of a convex digital polygon included into an N ×N -grid [5, 2]:

e(N) =
12

(4π2)1/3 N2/3 + O(N1/3log(N)) . (9)

Theorem 8. [8] Let K ∈ C(D) where C(D) is the family of convex bodies with
C2 boundary and radius of curvature at every point and every direction between
1/D and D, D ≥ 1. Let K̄ = conv(K ∩ Zn). If the diameter of K is enough
large, then for every n ≥ 2 there are constants c1(n) and c2(n) such that for all
k ∈ {0, 1, . . . , n− 1},

cndn n−1
n+1 ≤ fk(K̄) ≤ c′ndn n−1

n+1 . (10)

In the following, we use these results to give bounds on the size of the convex
hull and the preimage of S.

5.2 Application to DPS Recognition

In the following, we suppose that S is parametrized using the discrete analyti-
cal hyperplane definition (see Definition 3). Hence, let α = max{|a1|, . . . , |an|}.
Obviously, diverse parametrizations exist for a DHPS. However, in a recognition
process it is common to consider a parametrization that minimizes α and this
parameter is usually bounded by the diameter of S (i.e. bounded by O(N) in
our framework).

Theorem 9. 1. Let S be a DHPS with a hyper-rectangular base. Then

|CH(S)| ≤ cn logn−1(1 + α) ; (11)

2. Alternatively,

|CH(S)| ≤ cnN
(n−1)2

n+1 ; (12)

where c, cn are some quantities depending only on n.
3. If S is a DPS with digitally convex base containing the origin, then

|CH(S)| ≤ cN
2
3 log2(1 + max{N, α}) . (13)

Proof. We first proof Equation (11). Given DHPS S with a hyper-rectangular
base, we can construct CH(S) using 2 · n + 2 linear constraints in dimension
n. First, 2 · n constraints are necessary to define the hyper-rectangular base (all
these are given by {0 ≤ xj ≤ bj} for 0 ≤ j ≤ n− 1 and bi ∈ N). Moreover, two
additional constraints are needed to encode the two parallel Euclidean leaning
hyperplanes associated with the DHPS. Finally, we can construct a matrix A =
(aij) ∈ Z(2·n+2)×n with max{|aij |, i = 1, . . . , m, j = 1, . . . , n} = α whose size
depends only on n. Hence, using Theorem 6 with m = 2 · n + 2, we obtain
Equation (11).
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To prove Equation (12), it suffices to observe that S is included in an Nn

grid, therefore Vol CH(S) is bounded by O(Nn−1). Indeed, the thickness of
CH(S) is necessarily lower than 1. Finally, using Theorem 7, we obtain the result
stated.

Similarly, to prove Equation (13), we observe that if S is a DPS with a dig-
itally convex base, then the base can be encoded by at most O(N

2
3 ) 2-D linear

constraints (one constraint per edge of the 2-D convex hull of the base using
Equation (9)). Furthermore, since S is included in an N × N × N grid, the
coefficients of the linear constraints are bounded by N . Finally, using the two
constraints that define the 3-D discrete plane, CH(S) can be represented by
O(N

2
3 ) constraints overall. Then Equation (13) follows from Theorem 6. �

Note that for dimension three, the bound for a DHPS with a hyper-rectangular
base conforms to earlier results about rectangular base DPS presented in [17].
Combining geometric and number-theoretic approaches, the author also proves
that, under some assumptions, the preimage has at most O(log N) facets.

Through some experiments presented in the next section, we quantify the
differences between the size of the convex hull of S and its preimage.

5.3 Experimental Results

To evaluate the size of both the convex hull and the preimage of a DHPS, we
have utilized a specific experimental framework. First, we need a DHPS random
generator. Since no uniform random generator of DHPS is available, we created
one that conforms to the following natural scheme:

Without loss of generality let us fix the major axis to be xn. Then:

1. Construct the DHPS base in an Nn−1-grid;
2. Use a uniform normal vector generator to obtain the DHPS parameters;
3. Raise the base along the xn axis using the parameters obtained in stage 2.

To generate the base, we consider two main classes of DHPS. The first is a
hyper-rectangular one in which the lengths of the (n − 1)-rectangle are given
by independent random generators. DHPS’s from the second class have digitally
convex bases. In the latter case we generate a random set of cospherical Euclidean
points that belong to the hyperparallelepiped [−1, 1]n−1. Then the Euclidean
convex hull of this set is computed and digitized for a given grid resolution in
order to obtain digitally convex bases with round shapes. We choose this point
distribution since it seems to be close to the worst-case regarding the convex
hull size.

Figure 2 gives some examples of randomly generated DHPS’s in dimension 3.
To test the theoretical results from Section 5.2, we use the well-known qhull

program for n−dimensional convex hulls computation [1, 9]. To evaluate the
number of vertices of n−dimension preimages, we first obtain a system of lin-
ear inequalities. For this, we apply Equation (3). Then we make use of the
lrs software to convert an H-representation (half-space) of a polytope into a
V-representation (vertex/ray) or vice versa, as exact arithmetic is used [4].
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Fig. 2. First row : a rectangular base DPS, its convex hull and its preimage in the
parameter space. Second row : a rounded base DPS, its convex hull and its preimage in
the parameter space.

The above algorithm has been designed for problems of arbitrary dimension
n, so it is not surprising that it is outperformed by the incremental Algorithm 1
from Section 3.2 on practical three-dimensional recognition problems.

We present results concerning the two classes of DHPS defined above with
increasing N . In the graphs presented in Figure 3, 4 and 5, x-axis corresponds
to the number of grid points given by the DHPS generators and the y-axis
corresponds to either |CH(S)| or |Preimage(S)| with n = {3, 4, 5, 6}. Figure 3
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Fig. 3. Evaluation of |CH(S)| on randomly generated DHPS. Left: the hyper-
rectangular base class, and Right: the cospherical base DHPS class.
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Fig. 4. Evaluation of |Preimage(S)| on randomly generated DHPS. Left: the hyper-
rectangular base class, and Right: the cospherical base DHPS class.
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Fig. 5. Comparison between |CH(S)| and |Preimage(S)| for n = 3. Left the hyper-
rectangular base class and right, the cospherical base DHPS class.

shows results on |CH(S)| and Figure 4 the results on |Preimage(S)|. Finally,
Figure 5 details a comparison between |CH(S)| and |Preimage(S)| for n = 3.

As expected in view of Theorem 9, the logarithmic behavior of both |CH(S)|
and |Preimage(S)| for hyper-rectangular base DHPS clearly appears in the
graphs. However, for the other class of DHPS with dimension greater than 3, the
experimental results do not show a polynomial behavior of the curves. Further
theoretical analysis is thus expected to lead to bounds closer to the experimental
framework.

6 Conclusion and Future Works

In this article we have first reviewed algorithmic solutions to recognize DHPS
whatever the dimension. We have theoretically optimal in time algorithm with-
out efficient implementations and fast algorithms with quite high worst case
computational costs. Our analysis suggests that specificities of DHPS recog-
nition problems should be taken into account to obtain tights bounds. Based
on results from integer programming and associated lattice polytopes, several
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theoretical results have been proposed to bound the number of vertices of the
convex hull of a DHPS and the number of vertices of its preimage.

One may attempt to solve the recognition problem taking advantage of the
theoretical results of Section 5.2. Our experimental results suggest the following
conclusions. The direct use of convex hull computation may not be tractable
since the design of incremental and output sensitive convex hull algorithms is
a difficult task [11]. For dimension n = 3, our experiments on preimage com-
putation showed that the quantity E defined in Section 3.2 is indeed quite low
whatever the number of grid points. Thus Algorithm 1 appears to be a very
simple and practically efficient incremental DPS recognition algorithm.

Several questions related to DHPS recognition are still open. Among these we
list the following:

1. Are there tighter bounds on |CH(S)| in higher dimensions?
2. Can arithmetical structures of DHPS speed up recognition algorithms?
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Abstract. Polygonal representations of digital sets with the same convexity
properties allow a simple decomposition of digital boundaries into convex and
concave parts.

Representations whose vertices are boundary points, i.e. are integer numbers,
attract most attention. The existing linear Algorithm UpPolRep computes polyg-
onal representations with some uncorresponding parts. However, the algorithm is
unable to decide if a corresponding polygonal representation still exists and in the
case of existence it is unable to compute the representation. Studying situations
where uncorrespondences appear we extended the algorithm. The extention does
not change the time complexity. If a digital set possesses a corresponding rep-
resentation then it detects this representation. Otherwise, it recognizes that such
representation does not exist.

Keywords: digital convexity, discrete lines and discrete curves, convex and con-
cave parts of discrete curves, polygonal representation.

1 Introduction

Convex and concave parts of sets determine their visual components, i.e. such parts
are meaningful for our perception. Decomposition boundaries into convex and concave
parts has an important application. It is recognition objects by comparing with shapes
from a database [10].

In the plane R2, the boundary of a polygonal set can be decomposed into convex and
concave parts in an obvious way. In digital geometry it becomes a very difficult task
(see e.g. [5]).

There are several techniques for the decomposition of digital sets into meaningful
parts, e.g. proposed in [10] and [5]. Both methods have an approximative character.
Another method for the decomposition of digital sets into convex and concave parts
is proposed in [4]. It is exact. Here, the boundary of a digital set is decomposed into
meaningful parts by means of Scherl’s descriptors and fundamental segments. Descrip-
tors introduced by Scherl [12] are points of local support with respect to a certain finite
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number of directions. Fundamental segments are related to definition of arithmetical
discrete lines [11, 1].

In [3] (see also [5]) following problem was studied: Can a digital set be represented
by a polygonal set in the plane R2 such that it is a Jordan curve, it has only integer
vertices and contains exactly the points of the set in its interior? One wants the rep-
resenting polygon to have the same convexity properties as the digital set. A linear
Algorithm UpPolRep for computing this kind of representations was proposed. It is
based on the mentioned above exact method for decomposition digital sets into con-
vex and concave parts [4] as well as the technique for segmentation digital curves into
discrete line segments [1]. The origial algorithm computes representations with some
uncorresponding parts. However, a corresponding polygonal representation with integer
vertices may still exist [3]. Studying situations where uncorrespondences appear we ex-
tended the algorithm. If a digital set possesses a corresponding representation then our
algorithm detects this representation. Otherwise, it recognizes that such representation
does not exist.

Section 2 defines theoretical preliminaries. These contain the definition for digital
(0,1)-curves and notations about discrete lines. In Section 3 we sketch the method
proposed in [4] for the decomposition of (0,1)-curves into convex and concave parts by
means of fundamental segments. Section 4 shows how to decompose the boundary of a
digital set into convex and concave parts. It is based on the method for (0,1)-curves.

In Section 5 we recall notations and main results about polygonal representations
from [3]. Then, in Section 6 critical situations where uncorrespondences appear are
studied. The extention of Algorithm UpPolRep is presented. At the end of this section
we shortly discuss about another method designed for the same purpose.

2 Preliminaries

We focus on 8-neighborhood structure for sets of Z2 and 4-neighborhood structure for
complements of sets.

Definition 1. Given an 8-connected digital set K ⊆ Z2. K is called a digital 8-curve
whenever each point x ∈ K has exactly two 8-neighbors in K with the possible excep-
tion of at most two points, the so-called end points of the curve, having exactly one
neighbor in K .

A curve without end points is named a closed curve.

Each digital 8-curve can be ordered (or oriented) in a natural manner by means of a
simple compact ordered data structure. It contains the coordinates of one element of K
and a sequence of code numbers {0,1, · · · ,7}. It indicates for each point of K which of
its neighbors will be the next point on the curve. This data structure was proposed by
Freeman [7] and is known as the chain code.

Definition 2. Given an ordered digital 8-curve K = (κ1, · · · ,κn). For a code number
k ∈ {0, · · · ,7}, the curve K is called a (k,k + 1(mod 8))-curve whenever the chain code
representation of K consists exclusively of at most two chain codes k and k+1(mod 8).
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For a code number ν ∈ {0, · · · ,7}, a level of K is a maximal subset of the curve
whose chain code representation consists only of the code number ν. The number of
successive elements of a level is called the length of the level.

Since each (k,k + 1(mod 8))-curve is rotation of some (0,1)-curve, in the later sections
we may focus, without loss of generality, on (0,1)-curves.

If the convex hull of a finite (0,1)-curve possesses only elements of the curve then
it is a segment of a discrete line. The arithmetical definition of discrete lines was intro-
duced by J.-P. Reveillès [11].

Definition 3. A discrete line D(a,b,μ,ω) with slope a/b, b �= 0 and pgcd
(a,b) = 1, lower bound μ, arithmetical thickness ω (all parameters are integer num-
bers) is the set of grid points which satisfies the double diophantine inequality

μ≤ ax−by < μ + ω.

We note the preceding discrete line D(a,b,μ,ω). We are mostly interested in naı̈ve lines
which verify ω = sup(|a|, |b|), we shall note them D(a,b,μ). Without loss of generality
we may consider discrete lines under restrictions a,b > 0 and a < b, therefore ω =
max(a,b) = b.

The real straight lines ax−by = μ and ax−by = μ + b−1 are called upper leaning
line and lower leaning line of D(a,b,μ), respectively. The grid points satisfying the
leaning line equalities are called upper and lower leaning points.

Let K be a segment of a discrete line D(a,b,μ). The problem to determine the
convex hull of the elements of K is solved in [2]. The convex hull of K is a closed
polygonal curve which can be subdivided into two polygonal curves joining its first
and last points : the lower frontier and upper frontier of the convex hull. How to detect
all points which belong to the lower and upper frontier is shown in [2, Proposition 3,
p.120]. Since the curve K is a segment of a discrete line, the intersection of K and its
convex hull consists only of elements of K .

Definition 4. A digital curve K is said to be lower digitally convex if there is no grid
point between K and the lower frontier of the convex hull of K .

3 Convex and Concave Parts of (0,1)-Curves

In [4] we introduced a method how to decompose a digital curve into meaningful parts.
This technique is based on the concept of fundamental segments, which are segments
of discrete lines having maximal possible lengths.

Definition 5. Let K = (κ1, · · · ,κn) be a (0,1)-curve. Parameters a and b in discrete
line segments considered below are assumed to be minimal. A part (κi, · · · ,κ j) is called
a fundamental segment of K whenever one of the following conditions is true:

– i = 1, j = n and (κ1, · · · ,κn) is a segment of D(a,b,μ). Then K consists of one
single fundamental segment.



310 H. Dörksen-Reiter and I. Debled-Rennesson

– i=1, j < n and (κ1, · · · ,κ j) is a segment of D(a,b,μ) such that (κ1, · · · ,κ j+1) is not
a segment of any discrete line. Here, (κ1, · · · ,κ j) is the first fundamental segment
of K .

– i > 1, j = n and (κi, · · · ,κn) is a segment of D(a,b,μ) such that (κi−1, · · · ,κn) is not
a segment of any discrete line. Here, (κi, · · · ,κn) is the last fundamental segment of
K .

– i > 1, j < n and (κi, · · · ,κ j) is a segment of D(a,b,μ) such that (κi−1, · · · ,κ j) and
(κi, · · · ,κ j+1) are not segments of any discrete line.

The fundamental segment (κi, · · · ,κ j) will be denoted by F (a,b,μ).

All fundamental segments can be ordered in the sense of the oriented curve, we mark
these Fi(ai,bi,μi), i = 1, · · · ,m.

The problem to find decomposition of a (0,1)-curve into fundamental segments is
equivalent to the problem to determine subsets of the curve having constant tangents. A
linear algorithm is proposed in [6]. An example of a (0,1)-curve with its fundamental
segments is demonstrated in Figure 1.

F
1
(1,7,−5) 

F
2
(2,5,7) 

F
3
(1,4,−1) 

F
4
(8,11,71) 

F
5
(3,5,17) 

F
6
(1,3,−13) 

Fig. 1. Fundamental segments Fi(ai,bi,μi), i = 1, · · · ,6 of a digital curve. The first point of the
curve is (0,0). Lower bounds μi, i = 1, · · · ,6 are computed with respect to (0,0).

In [4] we proved that a digital curve is lower digitally convex if and only if the se-
quence of the slopes of its fundamental segments is increasing. Then, parts of the curve,
whose fundamental segments possess increasing slopes, were defined as convex, such
possessing decreasing slopes were defined as concave. In this manner, we introduced
maximal convex and maximal concave parts of curves.

Definition 6. Let K be a finite (0,1)-curve and Fi(ai,bi,μi), i = 1, · · · ,m be fundamen-
tal segments of K . A part consisting of successive fundamental segments Fu(au,bu,μu),
· · ·,Fv(av,bv,μv), 1≤ u≤ v≤ m is called a maximal convex part of K whenever one of
the following conditions is true:

– u = 1, v = m and
a j
b j

<
a j+1
b j+1

, 1≤ j ≤ m−1.

– u �= 1, v �= m, au−1
bu−1

> au
bu

, av
bv

> av+1
bv+1

and
a j
b j

<
a j+1
b j+1

for all u≤ j ≤ v−1.
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– u = 1, v �= m, av
bv

> av+1
bv+1

and
a j
b j

<
a j+1
b j+1

for all 1≤ j ≤ v−1.

– u �= 1, v = m, au−1
bu−1

> au
bu

and
a j
b j

<
a j+1
b j+1

for all u≤ j ≤ m−1.

A maximal concave part of K is defined in the same manner by replacing the signs ‘<’
and ‘>’ in the above definition.

The curve from Figure 1 has four maximal parts: two maximal convex parts which
are (F1,F2) and (F3,F4), two maximal concave parts which are (F2,F3) and (F4,
F5,F6).

Polygonal curves on R2, whose edges are leaning lines of fundamental segments, are
called fundamental polygonal representations (see [4]). Obviously, fundamental polyg-
onal representations possess the same convexity properties as the curve.

4 Segmentation Boundaries of Digital Sets into (0,1)-Curves

We use the term (oriented) boundary of digital sets. For a comprehensive view of this
concept, we refer to books and articles on digital geometry and topology (e.g. [9, 14, 8]).

Boundary of a digital set can be decomposed into (0,1)-curves by means of Scherl’s
descriptors (see [3, Chapter 2]). Descriptors introduced by Scherl [12] are boundary
points of a digital set belonging to local extrema of linear functions with following
main directions: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦. Thus, descriptors are
segments of horizontal, vertical and diagonal grid lines and belong to locally convex or
concave parts of the set. These are respectively named T- or S-descriptors. In Figure 2
Scherl’s descriptors of a digital set are shown.

The succession of descriptor points on the oriented boundary of a digital set is not
arbitrary [5, 12]. It can be shown that the boundary of an 8-connected digital set can
be decomposed into (k,k + 1(mod 8))-curves such that the part on the boundary be-
tween two such successive curves consists only of descriptor points [5]. Since T - and
S-descriptors belong to locally convex and concave parts, respectively, technique for

T T

T

T
T

T

T

T
T

S
S

S

T

S
S

S

S

S
S

S

S

Fig. 2. Scherl’s descriptors of a digital set. T- and S-descriptors are indicated.
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partition curves mentioned in Section 3 can be extended to decomposition boundaries
of digital sets into convex and concave parts (see also [4]).

An alternative definition for Scherl’s descriptors was given in [3] and a linear algo-
rithm for computing descriptor points was proposed.

5 Polygonal Representations of Digital Sets

In this section we recall notations and main results about polygonal representations of
digital sets from [3].

Definition 7. Given a digital set S. ⊆Z2. A polygonal representation of S. is a polyg-
onal set Π⊆ R2 with vertices V such that: x ∈ S. ⇐⇒ x ∈Π∩Z2.
Π is called:

− discrete if all vertices of Π are in Z2;
− faithful if the succession of convex and concave parts of the boundary of S. corre-

sponds to the succession of convex and concave parts of the boundary of Π.

The chain code representation of a digital set contains its all boundary points. It is
discrete, but not faithful. The fundamental polygonal representation mentioned in Sec-
tion 3 is a faithful one. This representation is in general not discrete. Here, polygonal
representations which are both discrete and faithful attract most attention.

The previous sections have shown that the calculation of polygonal representations
of digital sets can be restricted to the calculation of representations of (0,1)-curves. The
polygonal representation of a (0,1)-curve K = (κ1, · · · ,κn) can be subdivided into two
polygonal curves between κ1 and κn lying above and below K . They are called upper
and lower polygonal representation, respectively. Obviously, the lower polygonal repre-
sentation of K is an upper polygonal representation of the curve K̃ = (κn ·A, · · · ,κ1 ·A),

where A =
(
−1 0
0 −1

)
.

In the literature it is more used to consider lower polygonal representations. Here,
upper polygonal representations are analysed since they are more convenient for com-
putation [3].

5.1 Upper Representations of Concave Curves

Given a concave (0,1)-curve K with fundamental segments Fi(ai,bi,μi), i = 1, · · · ,m.
We note UF the upper leaning point of a discrete line segment whose x-coordinate is
minimal, UL is the leaning point if it is maximal. Upper leaning points of fundamental
segments are successive elements on the concave curve (dual case of [4, Proposition
4.1]). Further, vertices of the upper polygonal representation between UF1 and ULm are:
{UF1 ,UL1 ,UF2 ,UL2 , · · · ,UFm ,ULm} (dual case of [4, Theorem 4.1]). Note that for the
numerical implementation it is not recommendable to determine fundamental segments.
In spite of linearity, this technique is applicable only to concave curves.

Algorithm UpPolRep [3] detects a discrete faithful polygonal representation. It is
constructed on the basis of Algorithm AddPoint [2]. Algorithm AddPoint determines
the segment (κ1, · · · ,κ j) of a discrete line belonging to K = (κ1, · · · ,κn) such that j = n
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or (κ1, · · · ,κ j+1) is not a segment of a discrete line. Further, if the second case appears
then it begins to determine the next segment of a discrete line from the last calculated
leaning point UL.

The next proposition shows the theoretical background behind this procedure if the
curve is concave. It is the dual case of [3, Proposition 4.2]. Here, we give an improved
proof for it.

Proposition 1. Let K be a concave (0,1)-curve and Fi(ai,bi,μi), i = 1, · · · ,m are its
fundamental segments. Then ULj ∈ F j+1(a j+1,b j+1,μ j+1) for all 1≤ j ≤ m−1.

Proof. It holds xUL j
≤ xUFj+1

for all 1 ≤ j ≤ m− 1 (dual case of [4, Proposition 4.1]).
The case xUL j

= xUFj+1
is trivial. We concentrate on xUL j

< xUFj+1
. Since K is concave

then by duality of [4, Proposition 4.2] there is no another grid point between ULj and
UFj+1 and the real line through ULj and UFj+1 . Thus, the segment between ULj and UFj+1

belongs to a discrete line such that first leaning point of it is ULj , last leaning point
is UFj+1 . Assume ULj �∈ F j+1(a j+1,b j+1,μ j+1). Then it holds UFj+1 �∈ F j(a j,b j,μ j).
Further, assume that first and last elements of fundamental segments F j(a j,b j,μ j) and
F j+1(a j+1,b j+1,μ j+1) are κp, κp+q and κs, κs+t , respectively. Elements on K between
κp, UFj+1 and ULj , κs+t are not discrete line segments. We deduce that elements between
UFj , UFj+1 and ULj , ULj+1 are not discrete line segments, too. Hence, we can find another
fundamental segment between F j(a j,b j,μ j) and F j+1(a j+1,b j+1,μ j+1) that leads to a
contradiction of their succession. �

Algorithm AddPoint detects not all leaning points of fundamental segments. It is
demonstrated in Figure 3.

The solution of this problem is given in [2]. For a segment (κ1, · · · ,κn) of a discrete
line D(a,b,μ) and r(x,y) = ax−by holds: vertices of the upper frontier between κ1 and
UF are given by the maximal sequence of points {Pi=1,···,k} such that r(κ1) > r(P1) >
· · · > r(Pk) > r(UF), vertices between UL and κn are given by the maximal sequence
such that r(κn) > r(P1) > · · ·> r(Pk) > r(UL).

UpPolRep. Upper polygonal representation of a digital curve
V ← /0; /∗ vertices of the upper polygonal representation ∗/
START ← κ1;
repeat

Determine the segment (START, · · · ,κ j) of a discrete line such that j = n or
(START, · · · ,κ j+1) is not a segment of any discrete line;
V ←V∪ maximal sequence {Pi=1,···,k} between START and UF ;
V ←V ∪UF ∪UL;
if (START, · · · ,κ j+1) is not a segment of any discrete line then

START ←UL;
else

STOP;
end

until STOP;
V ←V∪ maximal sequence {Pi=1,···,k} between UL and κn;
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Fig. 3. The vertex UF2 = UL2 of the upper discrete faithful polygonal representation of this con-
cave curve will be not detected

5.2 Upper Representations of Convex Curves

Assume now that the curve K = (κ1, · · · ,κn) is convex. In difference to concave curves,
K may have no discrete faithful representation, or may have more than one. Curves
which do not have discrete and faithful polygonal representations are not exceptional.
The sequences of points of the upper frontier between κ1, UF1 and ULm , κn, if not empty,
belong to each upper discrete polygonal representation and they are concave vertices.
Here, there exists no discrete faithful representation. Another difference to concave case
is the fact that leaning points of fundamental segments of a non concave curve can be
successive elements or not as demonstrates Figure 4.

U
F1

=U
L1

U
F2

U
F3

U
L2

U
L3

Fig. 4. For upper leaning points of fundamental segments of this convex curve holds xUL1
< xUF2

,
however, xUL2

> xUF3

Studying of these problems led to the results which are represented in the following
two propositions and the lemma. Their proofs can be found in [3].

Proposition 2. Given a convex (0,1)-curve K with 2 fundamental segments. If xUL1
<

xUF2
, then there exists no upper faithful polygonal representation of K which is discrete.

Moreover, there exists at least one point between UL1 and UF2 which is a concave vertex
of each discrete polygonal representation.

Examples for Proposition 2 are given in Figure 5.

Proposition 3. Given a convex (0,1)-curve K with 2 fundamental segments. If one of
the following conditions is true:
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Fig. 5. Examples for convex curves having no upper discrete faithful representations. On the
left curve, Algorithm UpPolRep computes the vertex P which is concave. On the right curve, it
computes the convex vertex P such that UL1 and UF2 are concave.

1. xUF2
= xUL1

,
2. xUF2

< xUL1
and there is no element κ∈K such that xUL1

< xκ < xUL2
and κ is lying

above the real line through UL1 and UL2 ,
3. xUF2

< xUL1
and there is no element κ∈K such that xUF1

< xκ < xUF2
and κ is lying

above the real line through UF1 and UF2 ,

then there exists an upper discrete and faithful polygonal representation between UF1

and UL2 .

An example for Proposition 3 is demonstrated in Figure 6.

U
F1

U
L1U

F2

U
L2

P

Q

Fig. 6. Points P,Q ∈ K of this convex curve are lying above real line segment between UL1 and
UL2 . Condition 1 is violated. Algorithm UpPolRep computes the concave vertex P. Condition 2
is true, i.e. UF1 , UF2 and UL2 are vertices of a discrete faithful representation (between UF1 and
UL2 ). If the orientation is reversed then Algorithm UpPolRep computes this representation.

Lemma 1. Let K be a convex (0,1)-curve with m≥ 2 fundamental segments. For each
fundamental segment F j(a j,b j,μ j), j = 1, · · · ,m−1 the sequence of first leaning points{

UFj+i

}
, i≥ 1, j + i≤ m such that xUFj+i

≤ xUL j
is not empty. Assume for the sequence{

UFj+i

}
the index i is maximal and the following condition is true:

there is no element κ∈K such that xUL j
< xκ < xUL j+i

and κ is lying above the
real line through ULj and ULj+i ,

then there exists an upper discrete and faithful polygonal representation of the segment
of K between UF1 and ULm.

Figure 7 represents an example which satisfies this lemma.
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Fig. 7. Convex curve with fundamental segments Fi(ai,bi,μi), i = 1, · · · ,7 satisfying Lemma 1
is demonstrated. Vertices {UF1 ,UL1 ,UL4 ,UL6 ,UL7} of an upper discrete and faithful polygonal
representation between UF1 and UL7 will be calculated by Algorithm UpPolRep. The slopes of
the representation are 0.2308, 0.3636, 0.4118, 0.5000.

6 Extention of Algorithm UpPolRep

In this section we will study situations where uncorrespondences between digital sets
and their polygonal representations appear and we will extend Algorithm UpPolRep.

Assume Algorithm UpPolRep is applied to an arbitrary curve. Then it calculates
a discrete representation. Examples in Figure 5 and Figure 6 present the only critical
situations where the calculated representations may be not faithful. We will study these
situations deeply.

Assume Algorithm UpPolRep is applied to the curve from Figure 5, right. Here, the
situation is characterised by the fact that Algorithm UpPolRep stops twice at the same
point. We define it as a double-step. In this case we immediately know that we are on a
convex part. On a concave part, Algorithm UpPolRep cannot have double-steps.

Now the curve is extended on the left and right by one fundamental segment at
each side. We have four fundamental segments. The elements of the original curve are
in the second and third fundamental segments of the extended curve, this part is con-
vex. If the part consisting of first and second fundamental segments is concave and
the part consisting of third and fourth ones is concave as well, then Algorithm UpPol-
Rep calculates a discrete faithful representation. Otherwise, there exists no discrete and
faithful representation. For numerical implementations we have to check if successive
calculated slopes increase. We must also take into account that Algorithm UpPolRep
can have double-steps (at most in each loop). The slope of a double-step will not be
considered.

The next situation: Algorithm UpPolRep is applied to curve from Figure 5, left. This
curve does not possess a discrete faithful representation. Algorithm UpPolRep needs
two steps. The computed leaning lines have increasing slopes. It indicates that we are
on a convex curve. Further, the property, that in the corresponding successive steps UL

(previous) and UF (next) are not identical, characterises this situation.
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Now the curve is extended on the right side and has three fundamental segments.
If successive calculated slopes increase, then this curve does not have a discrete and
faithful representation. Also here slopes of double-steps will not be considered.

Assume Algorithm UpPolRep is applied to the curve from Figure 6. The curve pos-
sesses a discrete faithful representation, however, Algorithm UpPolRep will not com-
pute it. This situation is characterised by increasing slopes and by the property that UL

(previous) and UF (next) are not identical. A faithful representation will be found if we
apply Algorithm UpPolRep to the curve with reversed orientation.

Considering the described critical situations, we construct the extention for
Algorithm UpPolRep. Here we decide about the existence of a faithful representation
comparing successive slopes. We replace vertex if a similar situation to the one from
Figure 6 appears. The slope of a double-step is not considered and at the beginning it
will be assumed that the representation is discrete and faithful.

In Figure 8 extended Algorithm UpPolRep is applied to the curve from Figure 1.

Extention of Algorithm UpPolRep
/∗ representation is discrete and faithful ∗/;
if double-step then

if previous slopes increase or next slopes increase then
/∗ there exists no discrete and faithful representation ∗/;

end
end
if slopes increase and corresponding UL (previous) and UF (next) are not identical then

if next slopes increase then
/∗ there exists no discrete and faithful representation ∗/;

end
end
if slopes increase and corresponding UL (previous) and UF (next) are not identical and for
reversed curve UL (previous) and UF (next) are identical then

/∗ replace vertex ∗/;
end

Fig. 8. Extended Algorithm UpPolRep computes a discrete faithful representation of the curve
from Figure 1 (between UF1 and UL6 )
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There is another technique for computing polygonal representations suggested in [5].
It uses the concept of so-called convex and concave exposed points. Exposed points de-
fine vertices of a polygonal representation. There is a difficulty by calculating exposed
points since it relies on the Hübler-transform which is initially not known. Moreover,
the algorithm based on this technique is unable to decide if calculated representation is
faithful and if such a representation actually exists.

7 Conclusions

The precise examination fundamental segments of a discrete curve makes us enable to
settle if a discrete faithful polygonal representation exists or not. Leaning points and
leaning lines gives the most improtant characteristics.

We developed an extention for linear Algorithm UpPolRep [3]. In its original version
Algorithm UpPolRep computes polygonal representations with some uncorresponding
parts. Unfortunately, Algorithm UpPolRep is unable to decide if a discrete faithful rep-
resentation still exists and in the case of existence it is unable to compute this represen-
tation. Now if a digital set possesses a discrete faithful representation then the extention
detects it. Digital sets for which discrete faithful polygonal representations do not exist
will be recognized, too. Furthermore, extended Algorithm UpPolRep has linear time
complexity.
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Abstract. In this paper, we address the topic of monogenic curvature
scale-space. Combining methods of tensor algebra, monogenic signal and
quadrature filter, the monogenic curvature signal, as a novel model for in-
trinsically two-dimensional (i2D) structures, is derived in an algebraically
extended framework. It is unified with a scale concept by employing
damped spherical harmonics as basis functions. This results in a mono-
genic curvature scale-space. Local amplitude, phase and orientation, as
independent local features, are extracted. In contrast to the Gaussian
curvature scale-space, our approach has the advantage of simultaneous
estimation of local phase and orientation. The main contribution is the
rotationally invariant phase estimation in the scale-space, which delivers
access to various phase-based applications in computer vision.

1 Introduction

It is well know that corners and junctions play an important role in many com-
puter vision tasks such as object recognition, motion estimation, image retrieval,
see [1, 2, 3, 4]. Consequently, signal modeling for such structures is of high sig-
nificance. There are bulk of researches for intensity-based modeling, e.g. [5, 6, 7].
However, those approaches are not stable when the illumination varies. Phase
information carries most essential structure information of the original signal
[8]. It has the advantage of being invariant with respect to the illumination
change. Hence, we intend to design a model for local structures with phase in-
formation contained. For 2D images, there are three types of structures, which
can be associated with the term intrinsic dimension [7]. As a local property of
multi-dimensional signals, it expresses the number of degrees of freedom neces-
sary to describe local structures. The intrinsically zero dimensional (i0D) signals
are constant signals. Intrinsically one dimensional (i1D) signals represent lines
and edges. Corners, junctions, line ends, etc. are all intrinsically two dimensional
(i2D) structures which have certain degrees of curvatures. There are lots of re-
lated work for 2D structures modeling. The structure tensor [5] estimates the
main orientation and the energy of 2D structures. However, phase information
is neglected. The Gaussian curvature scale-space [9, 10] enables the extraction
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of signal curvature in a multi-scale way with no phase contained. A nonlinear
curvature scale-space was proposed in [11] for shape representation and recogni-
tion, but it is impossible to extract phase information in this framework. Bülow
and Sommer [12] proposed the quaternionic analytic signal, which enables the
evaluation of the i2D signal phase. But it has the drawback of being not rota-
tionally invariant. The monogenic signal [13] is a novel model for i1D signals. It
is a generalization of the analytic signal in 2D and higher dimensions. However,
the monogenic signal captures no information of the i2D part. A phase model is
proposed in [14], where the i2D signal is split into two i1D signals and the cor-
responding two phases are evaluated. Unfortunately, steering is needed and only
i2D patterns superimposed by two perpendicular i1D signals can be correctly
handled.

In this paper, we present a novel approach to model i2D structures in a multi-
scale way. Combining methods of tensor algebra, monogenic signal and quadra-
ture filter, the monogenic curvature signal, as a novel model for i2D structures,
is derived in an algebraically extended framework. It is unified with a scale con-
cept by employing damped spherical harmonics as basis functions, which results
in a monogenic curvature scale-space. Local amplitude, phase and orientation,
as independent local features, are extracted. In contrast to the Gaussian cur-
vature scale-space, our approach has the advantage of simultaneous estimation
of local phase and orientation, which enables many phase-based applications in
computer vision tasks.

2 Geometric Algebra Fundamentals

Geometric algebras [15, 16, 17] constitute a rich family of algebras as generaliza-
tion of vector algebra. Compared with the classical framework of vector algebra,
the geometric algebra enables a tremendous extension of modeling capabilities.
By embedding our problem into a certain geometric algebra, more degrees of
freedom can be obtained, which makes it possible to extract multiple features of
i2D structures. For the problem we concentrate on, 2D image data is embedded
into the Euclidean 3D space. Therefore, an overview of geometric algebra over
Euclidean 3D space is given. The Euclidean space R3 is spanned by the ortho-
normal basis vectors {e1, e2, e3}. The geometric algebra R3 of the 3D Euclidean
space consists of 23 = 8 elements,

R3 = span{1, e1, e2, e3, e23, e31, e12, e123 = I3} (1)

Here e23, e31 and e12 are the unit bivectors and the element e123 is a trivector
or unit pseudoscalar. In this geometric algebra, vectors square to one, bivectors
and trivector all square to minus one. A general combination of these elements
is called a multivector

M = a + be1 + ce2 + de3 + ee23 + fe31 + ge12 + hI3 (2)

The geometric product of two multivectors M1 and M2 is indicated by juxtapo-
sition of M1 and M2, i.e. M1M2. The multiplication results of the basis elements
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are shown in table 1. The geometric product of two vectors x = x1e1 + x2e2
and y = y1e1 + y2e2 can be decomposed into their inner product (·) and outer
product (∧)

xy = x · y + x ∧ y (3)

where the inner product of x and y is x ·y = x1y1 +x2y2 and the outer product
is x ∧ y = (x1y2 − x2y1)e12.

Due to the orthogonality of basis vectors, their outer products are equivalent
to their geometric products.

e1 ∧ e2 = e1e2 = e12 (4)
e2 ∧ e3 = e2e3 = e23 (5)
e3 ∧ e1 = e3e1 = e31 (6)

The k-grade part of a multivector is obtained from the grade operator 〈M〉k. A
blade of grade k, i.e. a k-blade Bk, is the outer product (∧) of k independent
vectors x1, ...,xk ∈ R3

Bk = x1 ∧ ... ∧ xk = 〈x1...xk〉k (7)

Hence, 〈M〉0 is the scalar part of M , 〈M〉1 represents the vector part, 〈M〉2
indicates the bivector part and 〈M〉3 is the trivector part, which commutes with
every element of R3.

Table 1. The geometric product of basis elements

1 e1 e2 e3 e23 e31 e12 I3

1 1 e1 e2 e3 e23 e31 e12 I3

e1 e1 1 e12 −e31 I3 −e3 e2 e23

e2 e2 −e12 1 e23 e3 I3 −e1 e31

e3 e3 e31 −e23 1 −e2 e1 I3 e12

e23 e23 I3 −e3 e2 -1 −e12 e31 −e1

e31 e31 e3 I3 −e1 e12 -1 −e23 −e2

e12 e12 −e2 e1 I3 −e31 e23 -1 −e3

I3 I3 e23 e31 e12 −e1 −e2 −e3 -1

The dual of a multivector M is defined to be the product of M with the
inverse of the unit pseudoscalar I3

M∗ = MI−1
3 = −MI3 (8)

The modulus of a multivector is obtained by |M | =
√
〈MM̃〉0, where M̃ is the

reverse of a multivector defined as M̃ = 〈M〉0 + 〈M〉1 − 〈M〉2 − 〈M〉3.
If only the scalar and the bivectors are involved, the combined result is called

a spinor
S = a + ee23 + fe31 + ge12 (9)
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All spinors form a proper subalgebra of R3, that is the even subalgebra R+
3 .

A spinor represents a scaling-rotation, i.e. S = rexp(θB), where B is a bivector
indicating the rotation plane, θ is the rotation angle within that plane and r
refers to the scaling factor. It is shown in table 1 that the square of the bivector
or trivector equals -1. Therefore, the imaginary unit i of the complex numbers
can be substituted by a bivector or a trivector, yielding an algebra isomorphism.
A vector-valued signal f in R3 can be considered as the result of a spinor acting
on the e3 basis vector, i.e. f = be1 + ce2 + de3 = e3S. The transformation
performed under the action of the spinor delivers access to both the amplitude
and phase information of the vector-valued signal f [18]. From the logarithm
of the spinor representation, two parts can be obtained. They are the scaling
which corresponds to the local amplitude and the rotation which corresponds to
the local phase representation. The R3-logarithm of a spinor S ∈ R+

3 takes the
following form

log(S) = 〈log(S)〉0 + 〈log(S)〉2 = log(|S|) +
〈S〉2
|〈S〉2|

atan
(
|〈S〉2|
〈S〉0

)
(10)

where atan is the arc tangent mapping for the interval [0, π). The scalar part
〈log(S)〉0 = log(|S|) illustrates the logarithm of the local amplitude, hence, local
amplitude is obtained as the exponential of it

|S| = exp(log|S|) = exp(〈log(S)〉0) (11)

The bivector part of log(S) indicates the local phase representation

〈log(S)〉2 =
〈S〉2
|〈S〉2|

atan
(
|〈S〉2|
〈S〉0

)
(12)

3 Damped Spherical Harmonics

In the light of the proposal in [14], 2D damped spherical harmonics are employed
as basis functions. Since we are more interested in the angular portions, the polar
representation of damped spherical harmonics is used instead of the Cartesian
form. Assume the angular behavior of a signal is band limited, therefore, only
damped spherical harmonics from order zero to three are applied, otherwise,
aliasing would occur. Damped spherical harmonics in the spectral domain have
much simpler forms than that in the spatial domain. An nth order damped
spherical harmonic in the Fourier domain reads

Hn = exp(nαe12)exp(−2πρs) = [cos(nα) + sin(nα)e12] exp(−2πρs) (13)

where n indicates the order of the damped spherical harmonic, ρ and α repre-
sent the polar coordinates, s is the scale parameter. The 2D damped spherical
harmonics can be alternatively regarded as 2D spherical harmonics exp(nαe12)
combined with a Poisson kernel exp(−2πρs) [19]. The Poisson kernel is a low-
pass filter which, like the Gaussian kernel, will result in a linear scale-space,
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called Poisson scale-space. As a result, local signal analysis can be realized in
a multi-scale approach. Except for the zero order, every damped spherical har-
monic consists of two orthogonal components. In the spatial domain, damped
spherical harmonics from order 0 to 3 are illustrated in Figure 1. The first or-

Fig. 1. From left to right are damped spherical harmonics from order 0 to 3 in the
spatial domain (white:+1, black:-1). Except for zero order, every damped spherical
harmonic consists of two orthogonal components.

der damped spherical harmonic H1 is basically identical to the conjugate Poisson
kernel [14]. When the scale parameter is set to zero, the conjugate Poisson kernel
equals the Riesz transform [13].

4 The Monogenic Curvature Scale-Space

It is a well-known fact that 1D analytic functions correspond directly to 2D
harmonic fields. In mathematics, these functions are also called holomorphic.
Such functions are characterized by having a local power series expansion about
each point [20]. This generalizes to 2D such that monogenic functions correspond
to 3D harmonic fields. In Clifford analysis, the term monogenic is used to express
the multidimensional character of the functions. Since in this paper, we present
a novel approach which is to some degree a generalization of the analytic signal
to the i2D case, it thus is called the monogenic extension of a curvature tensor.
The monogenic curvature signal, as a novel model for i2D structures, can be
derived from it. The monogenic scale-space, shown in Figure2, is formed by the
monogenic curvature signal at all scales.

4.1 Monogenic Extension of the Curvature Tensor

Motivated from the differential geometry, the curvature tensor can be con-
structed. Two dimensional intensity data can be represented as surfaces in 3D
Euclidean space. Such surfaces in geometrical terms are Monge patches of the
form

f = {xe1, ye2, f(x, y)e3} (14)

This representation makes it easy to use differential geometry to study the
properties of the surface. The primary first-order differential quantity for an
image is the gradient, which is defined as

∇f =
2∑

i=1

giei
∂f
∂xi

(15)
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Fig. 2. The monogenic curvature scale-space

where gi indicates the following basis

g1 =
[
1
0

]
g2 =

[
0
1

]
(16)

Thereby, the gradient is reformulated as

∇f =
[
e1

∂
∂xf(x, y)e3

e2
∂
∂y f(x, y)e3

]
=
[
fxe13
fye23

]
(17)

Analogously, as second-order differential quantity, the Hessian matrix H is
given by

H =

[
e1

∂
∂xfxe13 e2

∂
∂yfxe13

e1
∂
∂xfye23 e2

∂
∂yfye23

]
=
[

fxxe3 −fxye123
fxye123 fyye3

]
(18)

This representation belongs to a hybrid matrix geometric algebra M(2, R3),
which is the geometric algebra of a 2× 2 matrix with elements in R3, see [21].

According to the derivative theorem of Fourier theory [22], the Hessian matrix
in the spectral domain reads

F {H} =

[
(−4π2ρ2 1+cos(2α)

2 F) (4π2ρ2 sin(2α)
2 F)e12

(−4π2ρ2 sin(2α)
2 F)e12 (−4π2ρ2 1−cos(2α)

2 F)

]
(19)

where F indicates the Fourier transform and F is the Fourier transform of the
original signal f . The angular parts of the derivatives are related to spherical
harmonics of even order 0 and 2. It is well known that the Hessian matrix contains
curvature information. Based on it, i0D, i1D and i2D signals can be separated by
computing the trace and determinant. Therefore, we are motivated to construct
a curvature tensor Te, which is related to the Hessian matrix. The curvature
tensor can be obtained from a tensor-valued filter, i.e. Te = F−1 {FHe}, where
F−1 means the inverse Fourier transform and He indicates a tensor-valued filter
in the frequency domain with the following form



326 D. Zang and G. Sommer

He =
1
2

[
H0 + 〈H2〉0 −〈H2〉2
〈H2〉2 H0 − 〈H2〉0

]
=

1
2

[
1 + cos(2α) − sin(2α)e12
sin(2α)e12 1− cos(2α)

]
exp(−2πρs)

=
[

cos2(α) − 1
2 sin(2α)e12

1
2 sin(2α)e12 sin2(α)

]
exp(−2πρs) (20)

The angular portion of this filter is the same as that of the Hessian, according
to equations (13) and (19), it is composed of even order 2D spherical harmon-
ics H0 and H2. In this filter, components cos2(α) and sin2(α) are two angu-
lar windowing functions. They yield two perpendicular i1D components of the
2D image along the e1 and e2 coordinates. The other components of the filter
are also the combination of two angular windowing functions, i.e. 1

2 sin(2α) =
1
2 (cos2(α− π

4 )− sin2(α− π
4 )). These two angular windowing functions result in

two i1D components of the 2D image, which are oriented along the diagonals
of the plane spanned by e1 and e2. All of the angular windowing functions are
shown in Figure 3. They make sure that i1D components along different ori-
entations are extracted. Consequently, this even filter enables the extraction of
differently oriented even i1D components of the 2D image. Since the conjugate

Fig. 3. From left to right are the angular windowing functions of cos2(α), sin2

(α − π
4 ), sin2(α) and cos2(α − π

4 ) with white:+1 and black:0

Poisson kernel H1 [14] is able to evaluate the corresponding odd information
of the i1D signal, the odd representation of the curvature tensor is obtained
by employing H1 to its elements. Besides, the odd representation of the curva-
ture tensor, denoted as To, can also result from a tensor-valued odd filter Ho,
i.e. To = h1 ∗ Te = F−1 {HoF} with h1 referring to the spatial representation of
the conjugate Poisson kernel. Thereby, the odd filter Ho can be obtained from
the even filter by employing the conjugate Poisson kernel, i.e. Ho = H1He. In
the spectral domain, the odd filter thus takes the following form

Ho =
1
2

[
H1(H0 + 〈H2〉0) H1(−〈H2〉2)

H1(〈H2〉2) H1(H0 − 〈H2〉0)

]
(21)

Combing the curvature tensor and its odd representation forms a general 2D
image representation, i.e. T = Te+To. This algebraically extended representation
can also be regarded as the monogenic extension of the curvature tensor.

4.2 The Monogenic Curvature Signal

Analogous with the differential geometry approach, 2D structures can be clas-
sified by computing the determinants and traces of the tensor pair Te and To.
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Since the non-zero determinant indicates the existence of i2D structures, the
even and odd parts of i2D structures are obtained from the determinants of the
curvature tensor and its odd representation, respectively. The even part of i2D
structures reads

oe(x; s) = det(Te)e3 = Ae3 (22)

The determinant of the curvature tensor is scalar valued. Therefore, same as
the monogenic signal, the even part of i2D structures is embedded as the e3
component in the 3D Euclidean space. The odd part of i2D structures is

oo(x; s) = det(To)e2 = Be1 + Ce2 (23)

Because det(To) is spinor valued, by multiplying the e2 basis from the right,
oo(x; s) takes a vector valued representation. Hence, a local representation for
i2D structures is obtained by combining the even and odd parts of i2D structures.
This local representation for i2D structures is called the monogenic curvature
signal and it takes the following form

fi2D(x; s) = oe(x; s) + oo(x; s) = Ae3 + Be1 + Ce2 (24)

The original scalar signal f(x),x ∈ R2 is thus mapped to a vector-valued signal
fi2D(x; s) in R3 as a local representation of i2D signals.

4.3 Local Features and Geometric Model

According to the introduction in Section 2, local features of the monogenic cur-
vature signal can be defined using the logarithm of R+

3 . The spinor field which
maps the e3 basis vector to the monogenic curvature signal fi2D(x; s) is given by
fi2D(x; s)e3. The local amplitude and local phase representation are obtained as

|fi2D(x; s)| = exp(〈log(fi2D(x; s)e3)〉0) = exp(log(|fi2D(x; s)e3|)) (25)

arg(fi2D(x; s)) =
〈fi2D(x; s)e3〉2
|〈fi2D(x; s)e3〉2|

atan
(
|〈fi2D(x; s)e3〉2|
〈fi2D(x; s)e3〉0

)
(26)

where arctan(·) ∈ [0, π) and arg(·) denotes the argument of the expression. As
the bivector part of the logarithm of the spinor field fi2D(x; s)e3, this local
phase representation describes a rotation from the e3 axis by a phase angle ϕ in
the oriented complex plane spanned by fi2D(x; s) and e3, i.e. fi2D(x; s)∧e3. The
orientation of this complex plane indicates the local main orientation. Therefore,
the local phase representation combines local phase and local orientation of i2D
structures. The dual of the complex plane fi2D(x; s) ∧ e3 is a rotation vector

r(x; s) = (arg (fi2D(x; s)))∗ = 〈log (fi2D(x; s)e3)〉∗2 (27)

The rotation vector r(x; s) is orthogonal to the local orientation and its absolute
value represents the phase angle of the i2D structure. With the algebraic embed-
ding, a geometric model for the monogenic curvature signal can be visualized as
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Be1

Ae3

Ce2r

fi2D

2θ

ϕ

Fig. 4. The geometric model for the monogenic curvature signal. Here, ϕ is the phase,
2θ denotes the main orientation in terms of double angle representation, r indicates
the rotation vector.

is shown in Figure 4. The geometric model is an ellipsoid, which looks very sim-
ilar to that of the monogenic signal. However, each axis encodes totally different
meaning. The even part of the i2D structure is encoded within the e3 axis, and
the odd information is encoded within the plane spanned by e1 and e2 axes.
The angle ϕ represents the phase and 2θ is the main orientation in a double
angle representation form. The rotation vector r lies in the plane orthogonal to
e3 since it is dual to the bivector fi2D ∧ e3. Combining the local amplitude and
local phase representation, the monogenic curvature signal for i2D structures,
can be reconstructed as

fi2D = |fi2D|exp (arg (fi2D)) (28)

Having a definition for the i2D local features, we recognize that local ampli-
tude, phase and orientation are scale dependent. However, they are independent
of each other at each scale.

Gaussian curvature scale-space [9, 10] and the morphological curvature scale-
space [11] are suitable for recovering invariant geometric features of a signal at
multiple scales. However, the definition of curvatures and the scale generating
operator are totally different from our approach. Besides, no phase information
is contained in those frameworks. In contrast to these methods, our approach en-
ables the simultaneous estimation of local amplitude, local phase and orientation
information in a common scale-space concept. Consequently, the monogenic cur-
vature scale-space has a unique advantage if a quadrature relationship concept
is required.

5 Experimental Results

In this section, we show some experimental results in the framework of the
monogenic curvature scale-space. A synthetic image superimposed by an angular
and a radial modulation is adopted as the test image. The blobs in this image
are regarded as i2D structures. The monogenic curvature signal at a certain scale
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Fig. 5. Top row: from left to right are the test image and the orientation estimation
at a certain scale of the monogenic curvature scale-space. Bottom row: local energy
outputs at three different scales.

Fig. 6. Top row: from left to right are the test image and its phase estimation. Bottom
row: the illumination changed test image and its phase evaluation.

can be obtained to characterize i2D structures. The test image and extracted
local features are illustrated in Figure 5.
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Fig. 7. Top row: test image, the energy of the monogenic signal and its phase. Bottom
row: Energy and phase of the monogenic curvature signal.

The estimated orientation denotes the continuous main orientation at a cer-
tain scale. Because the evaluated orientation has a value between 0 and π, it
is wrapped along the horizontal axis. The local energy output, i.e. square of
the local amplitude, indicates the existence of i2D structures. Besides, it also
demonstrates the rotation-invariant property of the monogenic curvature signal.
Local energy outputs of the test image at three different scales are shown.

Another test image is composed of two cosine signals with different frequen-
cies, amplitudes and orientations. The test image and the estimated phase infor-
mation are shown in Figure 6. Because the local amplitude and local phase are
independent of each other, when the illumination of the original image varies,
the estimated local phase is still stable. This delivers access to many phase-based
processing techniques in computer vision.

The monogenic curvature signal is a novel model for i2D structures, which
handles the type of structure that the monogenic signal cannot correctly deal
with. The third experiment aims to show the difference of these two models.
Figure 7 demonstrates local energies and local phases extracted from the mono-
genic signal and the monogenic curvature signal. It is obvious that the monogenic
signal responds to i1D structures and the monogenic curvature signal extracts
features from i2D structures.

6 Conclusions

We present the monogenic curvature scale-space in this paper. Coupling meth-
ods of tensor algebra, monogenic signal and quadrature filter, the monogenic
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curvature signal, which characterizes i2D structures is obtained. Employing
damped spherical harmonics as basis functions unifies a scale concept with
the monogenic curvature signal. The monogenic curvatures scale-space is thus
formed by the monogenic curvature signals at all scales. Local amplitude, local
phase and local orientation of i2D structures, as independent features, can be
extracted. Compared with the Gaussian curvature scale-space and the morpho-
logical curvature scale-space, our approach has remarkable advantage of simul-
taneous estimation of local phase and local orientation, which delivers access to
various applications in the computer vision.

References

1. Costabile, M.F., Guerra, C., Pieroni, G.G.: Matching shapes: a case study in time
varying images. Computer Vision, Graphics and Image Processing 29 (1985) 296–
310

2. Han, M.H., Jang, D.: The use of maximum curvature points for the recognition of
partially occluded objects. Pattern Recognition 23 (1990) 21–33

3. Liu, H.C., Srinath, M.D.: Partial classification using contour matching in distance
transformation. IEEE Transactions on Pattern Analysis and Matchine Intelligence
12 (1990) 1072–1079

4. Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation.
Image and Vision Computing 13 (1995) 695–703

5. Förstner, W., Gülch, E.: A fast operator for detection and precise location of
distinct points, corners and centers of circular features. In: Proc. ISPRS Inter-
commission Conference on Fast Processing of Photogrammetric Data, Interlaken,
Switzerland (1987) 281–305
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12. Bülow, T., Sommer, G.: Hypercomplex signals - a novel extension of the analytic
signal to the multidimensional case. IEEE Transactions on Signal Processing 49
(2001) 2844–2852

13. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal
Processing 49 (2001) 3136–3144

14. Felsberg, M.: Low-level image processing with the structure multivector. Technical
Report 2016, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und
Praktische Mathematik (2002)



332 D. Zang and G. Sommer

15. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press (1997)
16. Ablamowicz, R.: Clifford Algebras with Numeric and Symbolic Computations.
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Abstract. Singular points in the linear scale space provide fundamen-
tal features for the extraction of dominant parts of an image. Employing
the geometrical configuration of singular points, it is possible to con-
struct a tree in scale space. This tree expresses a hierarchical structure
of dominant parts. In this paper, we clarify the graphical grammar for
the construction of this tree in the linear scale space and morphological
scale space. Furthermore, we show a combinatorial structure of singu-
lar points in the linear scale space and morphological scale space using
conformal mapping from Euclidean space to the spherical surface.

1 Introduction

In this paper, we analyse deep structure properties of linear scale space and mor-
phological scale space. In the linear scale space general functions are generated
by the convolution of the input function and Gauss kernel. The morphological
scale space analysis is the set theoretical version of scale space analysis.

The singular-point configuration in the linear scale space yielded by Gaussian
blurring of function is called deep structure in the linear scale space. Morpholog-
ical scale space is introduced from view point of set theoretical image analysis.
Deep structure such as medial axis and skeleton first introduced in digital image
processing [2, 1] and later described using morphological operations [3]. We ex-
tend the deep structure analysis to the binary morphological scale space of binary
signals and images. We derive an algorithm for the construction of stationary
tree for as a deep structure of binary signals and images.

Recently, Kuijper [17, 18] introduced a method for image hierarchical analy-
sis based on the trajectory of singular point in the Gaussian scale space. The
Gaussian scale-space analysis [4, 5, 7, 6, 8, 9, 10] is an established image analysis
tool which provides multi-resolution analysis and expression of steel images and
sequence of images[11, 19]. Hereafter, we use DSSS for the abbreviation of deep
structure in the linear scale space. DSSS describes hidden topological nature of
the original functions dealing with gray values of a n-variable function in the scale
space as a (n + 1)-dimensional topographical maps [12, 13, 14, 15, 16, 17, 18, 19].
The configuration of singular points in the scale space depends on the scale. If the
scale changes the configuration of singular points transformed. This transition
of the singular-point configuration defines a tree for a function [12, 13, 14, 16].

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 333–346, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we clarify the graphical grammar for the construction of tree
from singular-point configurations in the linear scale space and in the morpho-
logical scale space. Furthermore, we show a relation between this grammar and
the deformation of polytopes which are defined by the configuration of singular
points in each scale.

Kuijper et al [17, 18] dealt with the singular points with zero second-derivatives
as a DSSS feature. This class of singular point in the linear scale space is called the
top points or the critical points. A top-point is a singular point in the scale space
on which both first and second derivatives are zero. Since in the higher dimensional
space, the second order local properties of surface are described by Hessian, the
sign of second derivative is expressed by the signs of the eigenvalues of the Hessian
matrix.

Iijima [4] defined the singular points with the first derivative is zero. Iijima
called this class of singular points in the scale space the stationary points. Fur-
thermore, Iijima showed that the stationary points define the centres of view
fields which extract a dominate portions of an image for a fixed scale [4]. Zhao
and Iijima proposed [12, 13] a tree construction strategy in the linear scale space
using the configuration of their stationary points.

In sections 3, and 4, we show the symbolic structure of DSSS for 2D images
in the linear scale space and morphological scale space , respectively. Further-
more, we introduce a grammatical structure which describes the transition of
the singular-points configuration when the scale parameter increases.

2 Mathematical Preliminary

2.1 Linear Scale Space

In the n-dimensional Euclidean space R2, for an orthogonal coordinate system
x-y defined in R2, a vector in R2 is expressed by x = (x, y)� where ·� is the
transpose of a vector. Setting |x| to be the length of x, the linear scale-space
transform for function f(x), such that

f(x, τ) =
1

4πτ

∫ ∞

−∞

∫ ∞

−∞
f(y) exp(−|x− y|2

4τ
)dy, (1)

defines the general image of function f(x). Therefore, function f(x, τ) is defined
in R2×R+ [4]. The function f(x, τ) is the solution of the linear diffusion equation

∂f(x, τ)
∂τ

= Δf(x, τ), τ > 0, f(x, 0) = f(x). (2)

The solution of eq. (2) is formally expressed

f(x, τ) = exp(Δτ)f(x) (3)

using the theory of Lie group [9].
Stationary points for the topographical maps in the scale space [4, 12, 14] are

defined as the solutions of the equation ∇f(x, τ) = 0. The stationary-curves
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in the scale space are the collections of the stationary points. We denote the
trajectories of the stationary points as x(τ). Setting H to be the Hessian ma-
trix of f(x, τ), Zhao and Iijima [12] showed that the stationary-curves for a
n-dimensional image are the solution of,

H
dx(τ)

dτ
= −∇Δf(x(τ), τ) (4)

and clarified topological properties of the stationary-curves for two-dimensional
patterns Since the Hessian matrix is always singular for singular points, this
equation is valid for nonsingular points. The definitions are formally valid to
functions defined in Rn for n ≥ 3. Using the second derivations of f(x, τ), we
classify the topological properties of the stationary points on the topographical
maps. In the neighbourhood of the point x which satisfies the relation∇f(x, τ) =
0, we have the equation

d2f

d n2 = n · ∇(n · ∇f) = n�Hn (5)

Equation (5) means that the eigenvectors of Hessian matrix of f(x, τ) gives the
extremal of D2 and that the extremal are achieved by the eigenvalues of the
Hessian of f(x, τ), since α1 ≥ n�Hn ≥ αn for |n| = 1. Furthermore, the rank
of the Hessian matrix in the higher-dimensional space classifies the properties of
the singular points.

Definition 1. For 2D functions, a point is the singular point, if the rank of the
Hessian matrix at the point is one.

Fig. 1. Scale space singularity of an image. (a) An image. (b) Stationary curve of the
image (a). (c) Tree extracted from (c). (d) Field of view with respect to scales extracted
by the tree (c).

Figure 1 shows scale space singularity of an image and extraction of hierachical
structure of the image in linear scale space. (a) is an original image. (b) shows
stationary curve of the image (a). (c) is the tree extracted by detecting stationary
points on the curve. (d) shows fields of view with respect to scales extracted by
the tree (c).
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2.2 Morphological Scale Space

Mathematical Preliminary. Setting A to be a finite closed set in the n-
dimensional Euclidean space R2, the Minkowski addition and subtraction of
sets are defined as

A⊕B =
⋃

x∈A,y∈B

(x + y), A�B = A⊕B. (6)

The inner and outer boundary of point set A with respect to radius λ are defined
as

Δ+
δ A = (A⊕ δD) \A, Δ−

δ A = A \ (A� δD) (7)

for the unit disc such that D = {x|x ≤ 1}, where λA = {λx|x ∈ A} for λ > 0.
We call

Aδ = Δ+
δ A
⋃

Δ−
δ A (8)

the boundary belt of A with respect to λ. Geometrically, we have the relation

lim
δ→+0

Aδ = ∂A, (9)

where ∂A is the boundary curve of set A.

Set Theory Definition. Let τij such that

ri + rj + τij = |ci − cj | (10)

is the minimum of distances among Fi

For a small positive constant ε, we define

τ+ = τij + ε, τ− = τij − ε. (11)

If τ = τ−, τ = τij , and τ = τ+, Fi and Fj are disjunct, touching and overlapping,
respectively. Therefore, we set

Fτ1 = (
⋃

k �=i,j

Fk)
⋃

Fij (12)

where
Fij = rijD⊕ {cij}, (13)

for
cij =

rj + τ1

ri + rj + 2τ1
ci +

ri + τ1

ri + rj + 2τ1
cj , (14)

and
r2
ij = (ri + τ1)2 + (rj + τ1)2. (15)

We set

Fτ+ =
n(τ+)⋃
k=1

Fk (16)



Combinatorial Properties of Scale Space Singular Points 337

by reordering the suffices of elements for n(τ+) = n(τ−) − k for k ≥ 1, where k
is the number of merged disks. These relations lead to the conclusion that for a
collection of disjoint sets the minimum of distances among sets defines the life
time of merging of elements in the collection.

Figure 2 shows evolution of discs. Two discs in (a) are merged to a disc in (c)
through the configuration in (b).

Fig. 2. Evolution of discs. Two discs in (a) are merged to a disc in (c) through the
configuration in (b).

Functional Definition. Setting

f(x) =
{

1, if x ∈ F ,
0, otherwise, (17)

we can have a binary function from set of points in a Euclidean space.

f(x, τ) =
{

1, if x ∈ F τ ,
0, otherwise, (18)

For binary functions defined on the real line, setting

h(x) =
∫ ∞

−∞

∫ ∞

−∞
f(x)g(y − x)dx (19)

the relation

h(x) =
{

1, if x ∈ F⊕G,
0, otherwise, (20)

is satisfied, where integration is computed based on the relation

a + b = max(a, b), aḃ = min(a, b), a, b ∈ {0, 1} (21)

For a binary functions, we have the relation

ΔF = {x|∇f �= 0}. (22)

where the gradient is operated as a hyperfunction. Setting x(s) ∈ δF for 0 ≤
s ≤ S, we define the binary gradient as ∇f(xs) = ẋ(s)�. Using this definition
in R2 this equation is expressed as

∂

∂τ
ΔF =

∇f

|∇f | . (23)



338 A. Imiya and T. Sakai

Furthermore, for
Si|τ=0 = {x||x− ci| = ri}, (24)

the curvature flow
∂S

∂τ
= n, (25)

where n is the unit outer normal of surface S describes the evolution of the
boundary of Fi, that is

S = ∂(Fi ⊕ τD), (26)

for Fi = {x||x− ci| ≤ ri}.
The distance between a point and a set is defined as

d(x,F) = min
y∈F

d(x, y). (27)

Furthermore, the distance between a pair of disjoint sets F and G in a space is
defined as

d(F,G) = min
x∈F,y∈G

d(x, y), (28)

for the distance d(x, y) in Rn. For a collection of disjoint convex sets {F i}ni=1,
such that

Fiτ ∩ Fjτ = ∅, (29)

using distance we define the Voronoi tessellation.
A point is a special convex set, since a point is a circle with zero radius. If

each element of a collection of disjoint convex sets is a circle with finite radius,
the Voronoi tessellation with this collection of sets preserves the same topology
with the Voronoi tessellation with the centroid of each disc. This topological
property is satisfied for the Voronoi tessellation with n-ball in n-dimensional
Euclidean space. Furthermore, if each element of a collection of disjoint convex
sets is convex set, this topological property is also preserved.

Using Voronoi tessellation with generators {Fi}ni such that Fi ∩ Fj = ∅, we
define and classify the singular points such that

∇f = 0, det[∇∇�f ] �= 0. (30)

The Voronoi tessellation in Rn corresponds to a convex n-polytope in Rn+1.
Setting V (k) to be a k-dimensional facet of Voronoi tessellation, a generator
defines a n-dimensional facet in Rn+1. Using this convex polytope, we define the
numbers of negative eigenvalue of the point such that ∇f = 0.

Voronoi tessellation derives Delaunay triangulation defines the Delaunay facet
using the Voronoi generator as 0-dimensional facets. a (n − k) dimensional
Voronoi facets for k ≥ 0 shares points with k-dimensional facets. Using this
geometric property, we define DSS in morphological scale space.

Definition 2. A point in a k-dimensional Voronoi facet and (n−k) dimensional
Delaunay facet is a k-dimensional singular point.
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Definition 3. At a singular point on a k-dimensional facet in Rn, ∇f = 0 and
the number of negative eigenvalue of Hessian matrix at this point is n.

It is possible to construct a conformal mapping to transform locally a collection of
closed finite set {Fi}ni=1 to a collection of n-disks {Di}ni=1. Using this conformal
mapping, we can apply the disk-model of linear morphological scale space to
general sets. In this case, mass conservation law described from from eq. (10) to
eq. (16) is repressed by set preservation law

Fij ⊕ τD = (F∪Fj)⊕ τD. (31)

3 Scale Space Tree in 2D Linear Scale Space

Denoting the signs of the eigenvalues of the Hessian matrix of a functionf which
is expressed as H = ∇∇�f , as (−,−), (+,−) and (+, +) in the linear scale
space, these labels of points correspond to the local maximum points, the saddle
points, and the local minimum points, respectively.

For two-dimensional positive functions with a finite number of extrema, we
define labelling function such that

S(x, τ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MM, r = 2, αi < 0,
Mm, r = 2, α1 · α2 < 0,
mm, r = 2, αi > 0,
sM, r = 1, α1 < 0,
sm, r = 1, α1 > 0,
m∞ |x| =∞,

(32)

for points ∇f = 0. sM and sm correspond to s in 1D configurations.
Since Ms and ms correspond to s in 1D configurations, these configurations

appear as (MM)(Ms)∗(Mm) and (mm)(ms)∗(mM) as 2D configurations. For
these two configurations, we have local rewriting rules,

(MM)(Mm)(MM) = M(MmM)→MM, (33)
(Mm)(mm)(Mm) = (MmM)m→Mm, (34)
(mm)(Mm)(mm) = (mMm)m→ mm. (35)

Using these rules, we have a simple example of transition such that

MM
Mm mm mM
MM mM MM

→
MM
Mm
MM

→ · · · →MM →MMm∞ → ∅. (36)

The intermediate configurations

M(MmM)→M(sMM)→MM, (37)
(MmM)M → (MsM)M →MM, (38)
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m(MmM)→ m(sMM)→Mm, (39)
(MmM)m→ (MsM)m→Mm, (40)
m(mMm)→ m(smm)→ mm, (41)
(mMm)m→ (msm)m→ mm, (42)

define the order of the hierarchical expression same as the case of 1D functions.
If all three transitions appear concurrently, the tree

MM〈MM, Mm, MM, Mm, mm, Mm, MM〉 (43)

is derived. This transition appears if three isotropic Gaussian with the same
variance are located at the three vertices of a regular triangle. For any triangles,
the tree structures are derived as the rotations of the tree

MM〈MM, sM〈mM〈mM, sm〈mm, mM〉MM〈MM, sM〈mM, MM〉〉〉. (44)

These two tree structures are the primitives of tree structures derived by the
linear-scale-space singular points. In Figure 3, (a) and (b) show trees extracted
from a regular triangle and a triangle, respectively. Therefore, combinations of
these two primitives and three rewiring rules describe the transition of the config-
urations and derive tree structures from branching structures. This combinatorial
structure is equivalent to the transition of the topology of a function with re-
spect to the scale parameter τ on x-τ -f(x, τ) space. The branching geometry and
the location of point (xs∗, τ)�, where ∇f(xs∗) = 0 and rank∇∇�f(xs∗) = 1,
completely and uniquely define the structure of tree in the linear scale space.

Mmmm m

MM

MM

MM
Mm

MmMM

mM

mM m

MM

MM

SM

mM mmMM mM MMMM

Fig. 3. Trees of triangle probes. (a) The tree extracted from a regular triangle. (b) The
tree extracted from a triangle.

According to one-to-one mapping between function on Euclidean plane R2

and the unit sphere S2, the scale space extrema, local maxima, saddle, local
minima corresponds to vertices, edges, and faces on a polyhedron. Furthermore,
these extrema are defined as the results of Voronoi tessellation and Delauney
triangulation in the following manner.

1. Construct Voronoi tessellation form generators, such that,

∇f |x = 0, [∇∇�f ]x = αx

for α > 0.
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N

P'P'

P

O

Fig. 4. Evolution of a function in the linear scale space. (a) Merging process of sta-
tionary curves for a two-dimensional function. (b) The spherical expression of the
singular-point configuration.

2. Construct Delaunay triangulation from Voronoi tessellation.
3. Accept generators as local maxima, which become Delauney vertices.
4. Accept the common point between Voronoi edges and Delaunay edges as

saddles.
5. Accept Voronoi vertices as local minima,
6. Accept the infinite point as a local minima.

Since a Delaunay graph of a finite number of generators on a plane is a finite
graph, this Delaunay graph derives a polyhedron which is topologically equiv-
alent to unit-sphere in the three-dimensional Euclidean space. In this transfor-
mation, the infinite face which is the infinite region separated by the boundary
edges of the graph corresponds to the minimum at the infinity.

Same as the scale space evolution of one-dimensional functions, the evolution
of the singular point configurations in the linear scale space of a two-dimensional
function is the evolution of a polyhedral graph by the elimination of vertices.

Using one-to-one correspondences between a sphere and the Euclidean plane,
for the numbers of the singular points, we have the next theorem.

Theorem 1. Setting |MM |, Mm|, |mm|, and |m∞| to be the numbers of sin-
gular points with symbols MM , Mm, mm, and m∞, for χ2.

χ2 = |MM | − |Mm|+ (|mm|+ |m∞|) (45)

the relation χ2 = 2 is satisfied for 0 ≤ τ ≤ ∞.

Figure 4 shows evolution of a function in the linear scale space. (a) Merging
process of stationary curves for a two-dimensional function. (b) The spherical
expression of the singular-point configuration.

4 Scale Space Tree in 2D Morphological Scape Space

For sets on the real plane such that

F τ = ∪n
i=1F iτ , F iτ ∩ F jτ = ∅, (46)

and each F i is convex, we define three types of singular points
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– The centroid of each set F i where f(x) = 1 if x ∈ F i.
– The Voronoi vertices.
– The Voronoi edges.

Using Voronoi tessellation, we define the singular points as followings.

1. Construct Voronoi tessellation form generators.
2. Construct Delaunay triangulation from Voronoi tessellation.
3. Accept generators as local maxima, which become Delaunay vertices.
4. Accept the common point between Voronoi edges and Delaunay edges as

saddles.
5. Accept Voronoi vertices as local minima,
6. Accept the infinite point as a local minima.

Since a Delaunay graph of a finite number of generators on a plane is a finite
graph, this Delaunay graph derives a polyhedron which is topologically equiv-
alent to unit-sphere in the three-dimensional Euclidean space. In this transfor-
mation, the infinite face which is the infinite region separated by the boundary
edges of the graph corresponds to the minimum at the infinity. The evolution of
the singular point configurations in the linear scale space of a two-dimensional
function is the evolution of a polyhedral graph by the elimination of vertices.

For two-dimensional positive functions with a finite number of extrema, we
define labelling function such that

SM (x, τ) =

⎧⎪⎪⎨⎪⎪⎩
MM, local maxima,
Mm, saddle,
mm, local minima
m∞ |x| =∞.

(47)

According to the analysis in section 2.2, the branching points of the tree is
determined by the minimum of the distances among discs. Furthermore, we have
the next theorem for evolution of a tree in morphological scale space.

Theorem 2. Tree evolution in morphological scale space satisfies the same re-
lation with that in the linear scale space without symbol s.

Therefore, we have local rewriting rules,

(MM)(Mm)(MM) = M(MmM)→MM, (48)
(Mm)(mm)(Mm) = (MmM)m→Mm, (49)
(mm)(Mm)(mm) = (mMm)m→ mm. (50)

Moreover, using one-to-one correspondences between a sphere and the Euclidean
plane, for the numbers of the singular points, we have the next theorem.

Theorem 3. Setting |MM |, Mm|, |mm|, and |m∞| to be the numbers of sin-
gular points with symbols MM , Mm, mm, and m∞, for χ2.

χ2 = |MM | − |Mm|+ (|mm|+ |m∞|) (51)

the relation χ2 = 2 is satisfied for 0 ≤ τ ≤ ∞.
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5 Top Point Tree

We call the trees defined in the previous sections the stationary trees. The top
points for two-variable functions are the points at which the rank of the Hessian
matrix is one. Using singular points, we define the top-point.

Definition 4. On the top points the rank of the Hessian matrix is less than the
number of variable of the function.

Therefore, a top point corresponds to the branch point of the stationary curves
for two-valued functions. This geometric property derives an algorithm for the
construction of the top-point tree from the stationary tree. Using the stationary
trees, we define the hierarchical structure of the top points. On a stationary tree,
a top point correspond to a node labelled s, s∗, and s ∗ ∗ for 1- and 2-variable
functions, respectively. This geometrical property permits us to mathematically
define the top-point tree from the stationary tree.

Theorem 4. Purring leaves without label s from the stationary tree derives the
top-point tree.

This definition implies there is one-to-one mapping between a stationary tree
and a top point tree for a function. Figure 5 shows the extracted top-point tree
from the stationary tree.

Fig. 5. Tree and top-point tree. (a) The top-point tree extracted from the tree of (b).
(b) Merging process of stationary curves for a two-dimensional function.

6 Scale Space Tree in 3D

Symbolically it is possible to extend grammars proposed in the previous sections
to 3D objects.

Denoting the signs of the eigenvalues of the Hessian matrix of a function
f which is expressed as H = ∇∇�f , as (−,−,−), (+,−,−), (+, +,−), and
(+, +, +) in the linear scale space, these labels of points correspond to the local
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maximum points, the negative saddle points, the positive saddle points and the
local minimum points, respectively.

For three-dimensional positive functions with a finite number of extrema, we
define a labelling function such that

S(x, τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MMM, r = 3, αi < 0,
MMm, r = 3, α1 > 0 > α2 ≥ α3,
Mmm, r = 3, α1 ≥ α2 > 0 > α3,
mmm, r = 3 αi > 0,
sMM, r = 2, αi < 0,
sMm, r = 2, α1 > 0 > α2,
smm, r = 2, α1 ≥ α2 > 0,
ssM, r = 1, α1 < 0,
ssm, r = 1, α1 > 0,
m∞, |x| =∞,

(52)

for points ∇f = 0. Labels s ∗ ∗ and ss∗ correspond to s in 1D configurations.
Since labels s ∗ ∗ and ss∗ correspond to s in 1D configurations, we have the

the rewriting rules.

(MMM)(MMm)(MMM)→MM(MMm)→MMM (53)
(MMm)(Mmm)(MMm)→Mm(MMm)→MMm (54)
(Mmm)(mmm)(Mmm)→ mm(MMm)→Mmm (55)
(MMm)(MMM)(MMm)→MM(Mmm)→Mmm (56)
(Mmm)(MMm)(Mmm)→Mm(MMm)→MMm (57)
(mmm)(Mmm)(mmm)→ mm(Mmm)→ mmm. (58)

For these rules, the intermediate configurations are expressed as

(MMM)(MMm)(MMM)→MM(MMm)→MM(sMMm) (59)
(MMm)(Mmm)(MMm)→Mm(MMm)→Mm(sMMm) (60)
(Mmm)(mmm)(Mmm)→ mm(MMm)→ mm(sMMm) (61)
(MMm)(MMM)(MMm)→MM(Mmm)→MM(sMmm) (62)
(Mmm)(MMm)(Mmm)→Mm(MMm)→Mm(sMmm) (63)
(mmm)(Mmm)(mmm)→ mm(Mmm)→ mm(sMmm). (64)

These intermediate configurations define the order of branching structure of
trees. This combinatorial structure is equivalent to the transition of the topology
of a function with respect to the scale parameter τ on x-τ -f(x, τ) space. The
branching geometry and the location of point (xs∗∗, τ)�, where ∇f(xs∗∗) = 0
and rank∇∇�f(xs∗∗) = 2, completely and uniquely define the structure of a
tree in the linear scale space.

Using one-to-one mapping from R3 to S3 For the numbers of the singular
points, we have the next theorem since singular points with labels (MMM),
(MMm), (Mmm), and (mmm) correspond to the vertices, edges, faces, and
volumes of polytopes in R3.
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Theorem 5. Setting | ∗ ∗ ∗ | to be the number of singular points with symbol
∗ ∗ ∗, for χ3,

χ3 = |MMM | − |MMm|+ |Mmm| − (|mmm|+ |m∞|), (65)

the relation χ3 = 0 is satisfied.

It is possible to deal with 4-dimensional polytopes as spatial graphs in R3, same
as the case that we deal with a polyhedral without any holes as a planar graph.

For morphological scale space for 3D objects, the consideration of the symbols
s and s∗ is not required.

7 Conclusions

Singular points in the linear scale space provide fundamental features for the
extraction dominant parts of an image. Employing the geometrical configura-
tion of singular points, it is possible to construct a tree in scale space. This tree
expresses a hierarchical structure of dominant parts. In this paper, we clarified
the graphical grammar for the construction of this tree in the linear scale space.
Furthermore, we show a combinatorial structure of singular points in morpholog-
ical scale space using conformal mapping from Euclidean plane to the spherical
surface.

We defined symbolic expression of the evolution of the configurations of sin-
gular points in the morphological scale space. These rules show that as the
intermediate expression, the trajectory of saddle points defines the order of the
branching geometry, that is, the saddle points define the local trunk as the main
curve and local branch as the top point when a triplet of singular points merged
to a singular point in the linear scale space of one-valuable functions. This ge-
ometry is first proposed by Zhao and Iijima [12, 13, 14]. For one-dimensional
functions, in a successive triplet of singular points with a minimum and two
maxima in both side, are merges to a saddle and a maximum and finally a max-
imum and a saddle point are merged to a local maximum. This local maximum
is locally called the trunk. This transition of three singular points to a singular
point is uniquely determined based on the configuration of singular points in the
linear scale space. If the merge process of minimum and maximum appears for
both maxima at the both ends of the configuration, we have the second branching
geometry as trinary branching. In this case the main trunk after transition is the
maximum. In higher dimensional functions, the same merging process appears
at each branching point.
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Abstract. Additive subsets have been introduced in the framework of
discrete tomography with the underlying notion of x-rays. This notion
can be defined from two different ways. We provide in the paper exten-
sions of the two definitions and a proof of their equivalence in a frame-
work where x-rays are replaced by any subsets. It results a pair of dual
definitions of additivity cleared out from dispensable assumptions and a
proof of their equivalence reduced to a separation theorem.

1 Introduction

Reconstruction of binary images from local information is an overall task which
has been mainly investigated in the framework of discrete tomography. The
problem introduced independently by H.J. Ryser [1] and D. Gale [2] in 1957
consisted in constructing a binary image (or a binary matrix) with prescribed
numbers of 1s in each row and column. The generalization of the problem in
dimension 3 (a kind of time-table problem) has been proved to be NP-hard
in 1976 [3] and other generalizations have been considered since the nineties
under influence of electron-microscopy or tomography. A new field called Discrete
Tomography emerged in 1994 (DIMACS at Rutgers University) with the main
purpose to provide solutions for reconstructing lattice sets with prescribed x-rays
(historic details are developed in [4]).

The notion of x-ray (an x-ray of a lattice set S is the function which gives the
cardinalities of the intersections of S with parallel lines or more generally with
parallel affine spaces [5]) is in the center of the topic but it is also possible to
consider intersections of a lattice set with other kinds of subsets than lines. Such
an extension of the reconstruction problem has been done for instance in [6]
where a rectangular window is translated all over the lattice. The combinatorial
problem remains essentially the same: reconstructing a binary image with given
numbers of 1s in some given subsets of the image. We can even disregard the
lattice structure of the image and consider the problem of reconstruction of a
subset S of a given unstructured set A with prescribed cardinalities yi for its
intersections S ∩Ai with a family of given subsets Ai ⊂ A. This overall problem
is purely combinatorial and it is clear that deciding the existence of a solution
from the input is an overall class of problems known as NP-hard (even if the
cardinalities given as input are restricted to be only 0s and 1s) since it covers
tomographic problems known as NP-complete [3] [7].

We focus in this paper on a notion of discrete tomography called ”additivity”.
This notion is of much interest for many questions regarding the uniqueness of a
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solution or stability requirements [8]. It has been conjectured by A. Daurat and S.
Brunetti in [9] that convex sets (and even Q-convex sets) are additive according
to ”good” sets of directions (see conjecture 11). Parallel conjectures have been
formulated by L. Thorens or R. Gardner. We emphasize that if such results
could be proved, they would generalize and extend some important theorems
concerning for instance the uniqueness of a convex solution. Another framework
in which additivity is used is the one of minimal matrices [10] [11].

The notion of additivity has been first introduced by Fishburn et al. in [12].
The tomographic framework of this work has leaded the authors to base their
definition of additivity on a family of linear manifolds [13] while we could try to
extend it to any family of subsets. The extension of tomography to non linear
subsets as it is done for instance with rectangular subsets [6] leads to try to ex-
tend the notion of additivity in a more general framework and although previous
authors did not mention it, this combinatorial extension is completely natural.

Thus the task of the paper is to show how the tomographic notion of additiv-
ity can be extended to the combinatorial framework of an unstructured set (we
just assume that it is ordered to simplify notations). There exist two possible
approaches, one related with linear programming and the other one related with
existence of ”generating” functions. The two corresponding definitions are equiv-
alent in the original theory and the challenge is to prove that their extensions
keep this property.

While we could think that the task could be harder in a general combinatorial
framework, it appears in fact that the linearity of the subsets considered in to-
mography is useless for proving the equivalence of the two definitions. The proof
that we present in the paper is a consequence of a classical geometrical theorem
of separation of convex cones (or a Farkas lemma in linear programming theory).
This approach is derived from a rewriting in a general combinatorial framework
of a proof given by S. Onn and E. Vallejo in [10]. The use of the theorem of
separation of convex cones leads to the conclusion that the two definitions of
additivity are dual from each other.

Duality has leaded to present the result in two sections. First section presents
the primal definiton of additivity while the second one is devoted to its trans-
formation by duality in a second definition that we call ”dual”.

2 Primal Definition of Additivity

We start by introducing a combinatorial framework of a finite set of cardinality
n. By assuming that its elements can be ordered, we identify it with the set of in-
tegers {1 · · ·n}. Any subset A of {1 · · ·n} can be represented by its characteristic
vector χ(A) ∈ {0, 1}n that coordinates verify for any index j between 1 and n the
equivalence between χ(A)j = 1 and j ∈ A. With this representation, the results of
counting numbers of elements can be done by computing scalar products: the car-
dinality of the intersection A ∩B of two subsets of {1 · · ·n} is exactly χ(A).χ(B).

We consider now the general combinatorial problem of computing a subset S
of {1 · · ·n} having fixed number of elements in given subsets of {1 · · ·n}.
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Problem 1. Input: a list of m subsets Ai ⊂ {1 · · ·n} and of m positive integers
yi (the index i going from 1 to m)
Output: a subset S of {1 · · ·n} verifying for any index i from 1 to m the equalities
cardinality(S ∩Ai) = yi.

The vector of the cardinalities cardinality(S∩Ai) = χ(S).χ(Ai) can be expressed
by matrix product Aχ(S) where A is the (m, n)-matrix of entries ai,j = χ(Ai)j .
In this framework, conjunction of conditions cardinality(S ∩Ai) = yi is equiva-
lent with Aχ(S) = y where y ∈ Zm is the vector of coordinates yi. Thus problem
1 is equivalent with solving a 0-1 integer programming instance Ax = y where
A is a given binary matrix and y a given vector. Problems of discrete tomogra-
phy enter in this general framework. As already said, this class of problems is
NP-hard (even in the case of a binary input y) since it covers some NP-complete
classes of tomographic problems.

We consider now the relaxed problem where the binary constraint xj ∈ {0, 1}
on each coordinate xj of x becomes xj ∈ [0, 1]. It means that x is requested to
belong to unit hypercube [0, 1]n instead of being necessarily one of its vertices.
Solving equation Ax = y with x in the unit hypercube is a usual linear pro-
gramming instance. Relaxing a binary constraint in a [0, 1] interval is one of the
main principles used in combinatorial optimization (see for instance branch and
bound or branch and cut techniques).

We focus in this paper on the generalization of the notion of additivity.

Definition 1. A subset S of {0, 1}n is said additive with respect to a finite
family of subsets Ai ⊂ {1 · · ·n} (with i between 1 and m) if the intersection
between the unit hypercube [0, 1]n and the affine space Ax = Aχ(S) (where entries
of A are ai,j = χ(Ai)j) does not contain any other point than χ(S).

The points of the affine space AX = Aχ(S) represent the multisets (with real
multiplicities) of {1 · · ·n} having the same number of points than S in each
subset Ai (Fig. 1). The additivity of S with respect to Ai family means that S is

Fig. 1. We represent the hypercube [0, 1]n. The point χ(S) is one of its vertices. The
affine space Ax = Aχ(S) represents the multisets that numbers of points in each Aj

are the same than S. In the case of an additive set S (on the left) its intersection with
the hypercube is reduced to χ(S) while in the case of a non additive set (on the right)
the affine space contains other points than χ(S) in the hypercube.
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unique among all multisets with multiplicities in [0, 1] to share with all subsets
Ai the same number of elements than S.

From a computational point of view, it means that S is the unique solution of
the corresponding linear program Ax = Aχ(S) with x ∈ [0, 1]n. This condition
guarantees that problem 1 with matrix A and vector y = Aχ(S) as input can be
solved quite easily because it can be obtained directly as unique solution of the
linear program Ax = Aχ(S) with x ∈ [0, 1]n without needing help of any integer
or 0-1 linear programming technique.

3 Dual Definition of Additivity

This section requires to introduce some geometrical material. The duality that
we mention is formalized by a separation theorem on polyhedral cones.

3.1 Separation Theorems

We mean by cones union of half-lines issued from a same vertex and by polyhedral
cone the convex hull of a finite number of half-lines issued from a common vertex
(see [14] for details). One of the main theorems of convex geometry says that
convex cones issued from the origin have only the origin in common if and only
if they can be ”separated” by an hyperplane [15]:

Theorem 1. Let K and M be closed convex cones in Rd issued from the origin.
By assuming that K does not contain any line, we have the equivalence between

(i) K and M intersect only in the origin.
(i) there is a non-zero vector u ∈ Rd such that u.x < 0 for all x ∈ K −{O} and

u.x ≥ 0 for all y in M .

By applying previous theorem on polyhedral cones we obtain next corollary:

Corollary 1. Let C and C′ be two polyhedral cones of Rd issued from a common
vertex v. We assume also that C does not contain any line. Their intersection
C ∩C′ is reduced to v if and only if there exists an affine hyperplane separating
them (there exists a normal vector u ∈ Rd verifying for any x in C − {v}
inequality u.(x− v) < 0 and for any x in C′ the inequality u.(x− v) ≥ 0).

We can consider now the particular case where C′ is an affine space containing v
and of normal direction the linear space denoted C′⊥. In this case the condition
on u that for any x in C′ we have u.(x−v) ≥ 0 can be improved. If u.(x−v) > 0
then by taking as x′ the symmetric point of x with respect to v (x′ belongs
also to C′) we have u.(x′ − v) < 0 which contradicts characterization of u. It
follows that if C′ is an affine space then the condition that for all x in C′ we
have u.(x− v) ≥ 0 becomes that for any x in C′ we have u.(x− v) = 0. It means
exactly that u is in the normal linear space C′⊥. Thus we obtain a new version
of corollary 1 :
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Corollary 2. Let C be a polyhedral cone of Rd which does not contain any line
and which has the point v as vertex. Let H be an affine space of Rd containing
v. Their intersection C ∩H is reduced to v if and only if there exists a vector
u ∈ H⊥ verifying for any x in C − {v} inequality u.(x− v) < 0.

We provide a last version of previous theorems by denoting that inequality u.(x−
v) < 0 holds for all points x in polyhedral cone C − {v} if and only if it holds
for all the half-lines that polyhedral cone is the convex hull.

Corollary 3. Let C be the convex hull of a finite number of half-lines [v, v+yk)
of Rd. We also assume that C does not contain any line. Let H be an affine
space of Rd containing v. Their intersection C ∩H is reduced to v if and only if
there exists a vector u ∈ H⊥ verifying for any index k the inequality u.yk < 0.

3.2 Some Remarks

If we consider the details of primal definition of additivity (definition 1), it is
question of the intersection between the affine space Ax = Aχ(S) and hypercube
[0, 1]n. They both contain χ(S). The hypercube [0, 1]n is not a cone but we can
introduce the cone containing all the half-lines issued from χ(S) and passing
through one of its points (Fig. 2). We denote it cone(S) (we have by definition
cone(S) = {x ∈ Rn/∃λ ∈ R�+, λx + (1 − λ)χ(S) ∈ [0, 1]n}).

Definition of cone(S) leads to important remarks

1. The cone cone(S) does not contain any line.
2. By construction, the cone of S (cone(S)) is the convex hull of the n half-

lines issued from χ(S) and directed by the n oriented edges of the hypercube
going out of χ(S). With an index j between 1 and n, these n vectors can be
denoted (−1)χ(S)j ej where ej has null coordinates except the jth equal to 1
(the ej are the canonical basis of Rn).

Fig. 2. We represent the hypercube [0, 1]n, its vertex χ(S) and the polyhedral cone
cone(S)
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3. By linearity of the affine space Ax = Aχ(S), its intersection with the hyper-
cube [0, 1]n is reduced to χ(S) if and only if its intersection with cone(S) is
also reduced to χ(S).

Remark 3 provides an equivalent definition of additivity in terms of cones: a set
S is additive if and only if the intersection of the affine space Ax = Aχ(S) with
cone(S) is reduced to χ(S). Corollary 3 associated to remarks 1 and 2 provides
next intermediary lemma:

Lemma 1. A subset S of {0, 1}n is additive with respect to a finite family of
subsets Ai ⊂ {1 · · ·n} (with i between 1 and m) if and only if there exists a
vector u in the orthogonal linear space {x ∈ Rn/Ax = Aχ(S)}⊥ verifying for
any index j from 1 to n inequality u.(−1)χ(S)j ej < 0.

3.3 Dual Definition

To obtain the dual definition of additivity, it remains only to write what is the
orthogonal to the affine space Ax = Aχ(S) and to precise what means condition
u.(−1)χ(S)j ej < 0 of lemma 1.

To answer first question we just recall that the n entries of ith line of matrix A
are exactly the n coordinates of χ(Ai). It follows that the normal linear space to
affine space Ax = Aχ(S) is the linear space generated by m vectors χ(Ai). Thus
existence of u in the normal space of Lemma 1 verifying for any index j from 1 to
n inequality u.(−1)χ(S)jej < 0 is equivalent with the existence of m coordinates
λi verifying for any index j from 1 to n inequality

∑m
i=1(−1)χ(S)j λiχ(Ai).ej < 0.

This last inequality can be rewritten (−1)χ(S)j
∑m

i=1 λiχ(Ai)j < 0. Thus ex-
istence of u in Lemma 1 means exactly that there exists a linear combina-
tion

∑m
i=1 λiχ(Ai) of characteristic vectors χ(Ai) such that each coordinate∑m

i=1 λiχ(Ai)j has contrary sign from (−1)χ(S)j . This formulation of existence
of u in lemma 1 leads to a final dual definition of additivity:

Theorem 2. A subset S of {0, 1}n is additive with respect to a finite family of
subsets Ai ⊂ {1 · · ·n} (with i between 1 and m) if and only if there exists a linear
combination of characteristics vectors χ(Ai) that jth coordinate is strictly posi-
tive if j ∈ S and strictly negative otherwise (for any index j between 1 and n).

4 Conclusion

The first point of this paper is to break with the false idea that additivity is
only related with ”linear” x-rays: Other kinds of subsets can be introduced. It
allows to generalize the notion of additivity in neighboring topics from discrete
tomography. The second point is to show that the equivalence between the two
possible definitions comes from duality.

These two ideas which have not been noticed in previous papers can be useful
for a better understanding of this important notion. Additivity is the center of
general conjectures related with convex sets. As other perspective than these
hard theoretical problems of discrete tomography, we add a last question which



Additive Subsets 353

is perhaps not completely disjoint: Given a subset, what are the different families
of subsets which make it additive?
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Abstract. Nivat et al [3] introduced Context-free Puzzle grammars for
generating connected picture arrays in the two-dimensional plane. Basic
Puzzle grammars [6] constitute a subclass of these grammars. In this
note we consider the Cooperating Array Grammar Systems introduced
by Dassow et al [2] with Basic Puzzle grammar rules in the components
instead of array grammar rules and examine the picture generating power
of the resulting system, called, Cooperating Basic Puzzle Grammar Sys-
tem, in the maximal mode.

1 Introduction

The theory of Grammar systems was developed to provide a theoretical frame-
work for modelling distributed computation at the symbolic level. A grammar
system consists of several grammars or other language identifying mechanisms,
that cooperate according to some well-defined protocol. The components of the
system correspond to the agents, the current string(s) in generation to a sym-
bolic environment, and the system’s behaviour is represented by the language. A
variety of string grammar system models have been introduced and studied [1].

On the other hand, in the study of generation and description of picture
patterns considered as connected digitized, finite arrays of symbols, syntactic
approaches have played a significant role on account of their structure-handling
ability. Adapting the techniques of formal string language theory, various types of
picture or array grammars have been introduced and investigated [4, 5]. Most of
the array grammars developed to handle picture languages, are based on Chom-
skian string grammars. Context-free array grammars (CFAG) and Regular array
grammars (RAG) are two such classes of array grammars well-studied for picture
generation. Another model of grammars called Puzzle grammars has been intro-
duced in [3]. It is known that context-free puzzle grammars (CFPG) and context-
free array grammars (CFAG) coincide [3] whereas a subclass of CFPG, called Basic
Puzzle grammars is known [6] to properly include the class of RAG’s.
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The power of the mechanism of cooperation in generating pictures by array
grammars has been investigated in [2] by introducing Cooperating Array Gram-
mar Systems and it is shown that cooperation increases the generative capacity
even in the case of systems with regular array grammar components. Here we
consider Basic Puzzle grammars in the components of Cooperating Array gram-
mars. The resulting system, called Cooperating Basic Puzzle Grammar system, is
examined, in this note, for its generative power in the maximal derivation mode.

2 Preliminaries

Let Σ be a finite alphabet. A picture over Σ is a finite connected array of symbols
in the two-dimensional plane with the symbols belonging to Σ.

We refer to [3] for notions of Puzzle grammars and to [4] for array grammars.
We recall only the definition of Basic Puzzle grammars [6].

Definition 1. A Basic Puzzle Grammar (BPG) is a structure G = (N, T, R, S)
where N and T are finite sets of symbols; N ∩ T = ∅. Elements of N are called
non-terminals and elements of T , terminals. S ∈ N is the start symbol or the
axiom. R consists of rules of the following forms;

A −→ a��
��

B , A −→ a��
��

B , A −→ B ��
��

a , A −→ B��
��

a ,

A −→ a��
��

B

, A −→ a

��
��

B
, A −→ B

��
��

a
, A −→ B��

��

a
, A −→ a��

��

where A, B ∈ N and a ∈ T .
Derivations begin with S written in a unit cell in the two-dimensional plane,

with all the other cells containing the blank symbol #, not in N ∪T . In a deriva-
tion step, denoted ⇒, a non-terminal A in a cell is replaced by the right-hand
member of a rule whose left-hand side is A. In this replacement, the circled sym-
bol of the right-hand side of the rule used, occupies the cell of the replaced symbol
and the non-circled symbol of the right side occupies the cell to the right or the
left or above or below the cell of the replaced symbol depending on the type of rule
used. The replacement is possible only if the cell to be filled in by the non-circled
symbol contains a blank symbol.

The set of pictures or arrays generated by G, denoted L(G), is the set of
connected, digitized finite arrays over T , derivable in one or more steps from the
axiom.

3 Cooperating Basic Puzzle Grammar Systems

Cooperating string grammar systems, [1] have been extended, for two-dimensional
picture description, in [2] to Cooperating Array grammar Systems by taking the
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components as array grammars. We now introduce a variation in Cooperating Ar-
ray Grammar system by considering Basic Puzzle Grammar rules instead of
context-free or regular array rewriting rules. Also we consider here only the max-
imal derivation mode.

Definition 2. Formally, a Cooperating Basic Puzzle grammar system (CBPGS)
is Γ = (N, T, S, P1, P2, . . . , Pn), where N is the nonterminal alphabet; T is the
terminal alphabet; N ∩ T = ∅; S ∈ N and Pi, i = 1, . . . , n are finite sets of basic
puzzle grammar rules over N∪T . For each i, 1 ≤ i ≤ n,⇒Pi is the usual derivation
relation using the BPG rules of Pi.⇒∗

Pi
is the reflexive, transitive closure of⇒Pi .

For arrays X, Y the maximal derivation ⇒t
Pi

is defined by X ⇒t
Pi

Y , if and only
if X ⇒∗

Pi
Y and there is no Z ∈ (N ∪ T )∗∗ such that Y ⇒Pi Z. For CBPGS , the

array language generated by Γ in the maximal derivation mode is

Lt(Γ ) = {X ∈ T ∗∗/S ⇒t
Pi1

X1 ⇒t
Pi2

X2 ⇒ · · · ⇒t
Pim

Xm = X,

m ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ m}

The family of array languages generated by CBPGS with at most n compo-
nents in the maximal derivation mode is denoted by CDn(BPG, t), n ≥ 1.

Remark 1. Every regular array grammar rule is indeed a BPG rule. Hence a
cooperating regular array grammar system is a CBPGS.

Example 1. Consider the CBPGS
Γ = ({S, A, B, C, D, E, F, Y, Z}, {X}, S, P1, P2) where

A B A
P1 = { S−→

⊗
, A−→

⊗
, B−→

⊗
C, C−→

⊗
D, D−→

⊗
, D−→

⊗
,

E

E −→
⊗

, E −→ F
⊗

, F −→ F
⊗

, F −→ Y
⊗

, Y −→ Z
⊗
}

E

P2 = {Y −→
⊗
}

x x x
x x

x x x x
x x

x x x x
x x
x x x x x x x

Fig. 1.

Γ generates an array language that consists of ”Staircases of x’ s of fixed
width”(Figure 1)

Note that Γ is in fact a cooperating regular array grammar system.
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Proposition 1. For n ≥ 1,

i. CDn(BPG, t) ⊆ CDn+1(BPG, t)
ii. CDn(REGA, t) ⊆ CDn(BPG, t) ⊆ CDn(CFA, t)
iii. CD1(BPG, t) = BPL

Inclusions i) and ii) are obvious from definitions, as every regular array grammar
rule is a Basic puzzle grammar rule, which in turn is a context - free array
grammar rule. Equality iii) is due to the fact that a BPG can be considered as
a system with one component.

Proposition 2. REGA = CD1(REGA, t) ⊂ CD1(BPG, t) = BPL
It is known [2] that REGA = CD1(REGA, t). The strict inclusion is due to the
fact that the set of pictures of ”isosceles triangles of x ’s” cannot be generated
[7] by any regular array grammar but is generated [7] by a BPG.

Proposition 3. CD2(BPG, t)− CFA �= ∅

Proof. The set RHF of hollow rectangular frames (Figure 2) of thickness one
over one letter alphabet x can not be generated by any context - free array gram-
mar, since even the set of hollow rectangles (Figure 3) is known [2] to be not
generable by any context-free array grammar.

But the following Cooperating Basic Puzzle grammar system Γ generates RHF

in the t−mode

Γ = ({S, A, B, C, D, E, I, J, K, X, Y, Z}, {x}, S, P1, P2)

P1 = {S −→ x , S −→ x , A −→ x B , B −→ C ,��
��

��
��

��
��

��
��S A x

C −→ x C , C −→ D x , D −→ E , E −→ x ,��
��

��
��

��
��

��
��x

F

I −→ J x , J −→ J x , J −→ K x , K −→ x ,��
��

��
��

��
��

��
��Z

F −→ x , F −→ I }

F

��
��

x

��
��

P2 = {K −→ X , X −→ x Y , Y −→ x }��
��

��
��

��
��

x
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x x
x x x x x x x x

x x
x x

x x x x x x x x
x x

Fig. 2.

x x x x x
x x
x x
x x x x x

Fig. 3.

Proposition 4

i CFA− CDn(BPG, t) = ∅, for all n ≥ 1
ii CFA and CDn(BPG, t) are incomparable for n ≥ 2.

Proof. The array language consisting of the only array M in Figure 4 cannot be
generated by any CBPGS as BPG rules can handle only one cell ”protrusions”
whereas in M , there are two-cell protrusions on all four directions (North, West,
South, East) of the middle cell in M .

x
x

x x x x x
x
x

Fig. 4. Array X

This proves (i)
Statement (ii) is consequence of (i) and proposition 3.

Proposition 5. CDn(BPG, t) = CD2(BPG, t), for n ≥ 2.
This result is analogous to and can be proved in a similar manner to the proof
of the result CDn(REGA, t) = CD2(REGA, t).

4 Parallel Basic Puzzle Grammars

An array with a ”one-stroke path” [7] from a cell to another cell in the array
and passing through all the cells in the array except for one-cell ”protrusions”
[6] can be generated by a sequence of Basic Puzzle grammar rules. For instance,
the array X in Figure 5 has a one-stroke path from a to b and with a protrusions
at c and d.
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a
c x b

d

Fig. 5. Array X

So instead of a sequence of BPG rules generating the array X in Figure 5, we
can have an equivalent single rule of the form S → X with the cell containing
a being circled. With the modified BPG rules of this kind we can consider a
variation of BPG that has an axiom array and tables of modified BPG rules
that cooperate and rewrite an array in parallel, rewriting the nonterminals and
terminals with applicable rules. The resulting grammar is called a Parallel Basic
Puzzle Grammar.

We illustrate with an example to bring out the feature of increase in generative
capacity when the rules of a table are applied in parallel.

Example 2. Consider the Parallel Basic Puzzle Grammar (PBPG) G with non-
terminals A, D, terminal a and axiom array Z as in Figure 6 and tables t1, t2 of
modified BPG rules:

t1 = {A −→ a A , A −→ A a , D −→ a }
��
��

��
��

��
��

D
t2 = {A −→ a , D −→ a }

��
��

��
��

A a A
D

Fig. 6. Array Z

The PBPG G generates pictures describing token ”T” with equal ”arms”
(Figure 7). These pictures cannot be generated by any BPG as equal ”arms”
cannot be maintained in a BPG.

a a a a a
a
a

Fig. 7. Array of TokenT

Although the example mentioned above has not really used the modified BPG
rules, it can be seen that interesting picture classes such as sets of rectangles or
squares can be generated by their use with a small number of rules.

5 Conclusion

Maximal derivation mode being an interesting mode, we have examined in this
note, the picture description power of cooperation in grammar systems with
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Basic puzzle grammar rules in the components. It remains to examine other
modes of derivation in these systems.

Acknowledgement. The authors thank the referees for their useful comments.
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Abstract. In this paper we present a simple method for minimal dis-
tortion development of triangulated surfaces for mapping and imaging.
The method is based on classical results of F. Gehring and Y. Väisälä re-
garding the existence of quasi-conformal and quasi-isometric mappings
between Riemannian manifolds. A random starting triangle version of
the algorithm is presented. A curvature based version is also applica-
ble. In addition the algorithm enables the user to compute the maximal
distortion errors. Moreover, the algorithm makes no use to derivatives,
hence it is suitable for analysis of noisy data. The algorithm is tested on
data obtained from real CT images of the human brain cortex.

1 Introduction

Two-dimensional representation of three-dimensional object scan, are encoun-
tered in image processing. Medical imaging, computer aided design and reverse
engineering are three of the important examples. For example, one should be
able to present the three-dimensional MRI/CT scans of the brain cortex, as a
(set of) two-dimensional images. Yet, in order to do so in a meaningful manner,
so that diagnosis will be accurate, it is essential that the geometric distortion,
in terms of change of angles and lengths, caused by this representation will be
minimal. In computer graphic, this problem is sometimes refereed to as, sur-
face/freeform parameterization. Applications are also found in texture mapping,
surface re-meshing, surface compression, and others.

In most cases, since the surfaces considered are not isometric to the plane,
one cannot expect a zero distortion solution. Yet, a reasonable solution to this
problem is given by conformal maps (i.e. maps that preserve angles). This is done
by mapping the surface conformally to the (complex) plane. Since this cannot
be achieved in a global way, all solutions are local.

If one is willing to absorb some bounded amount of distortion then quasi-
isometric/quasi-conformal maps (i.e. maps that are almost isometries/conformal
– the precise definition will follow in Section 2) will also suffice.

As in many other cases, the tradeoff is between simplicity/cost of implementa-
tion on one hand and accuracy on the other. Common to all proposed solutions is

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 361–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the fact, which really cannot be avoided because of the inevitable distortion, that
the more locally one is willing to focus, the more accurate the results become.

1.1 Related Works

As stated above, the problem of minimal distortion flattening of surfaces at-
tracted, in recent years, a great attention and interest, due to its wide range of
applications.

In this section we briefly review some of the methods that were proposed for
dealing with this problem.

Variational Methods. Haker et al. ([8], [9]) introduced the use of a variational
method for conformal flattening of CT/MRI 3-D scans of the brain/colon for the
purpose of medical imaging. The method is essentially based on solving Dirichlet
problem for the Laplace-Beltrami operator .u = 0 on a given surface Σ, with
boundary conditions on ∂Σ. A solution to this problem is a harmonic (thus
conformal) map from the surface to the (complex) plane. The solution suggested
in [8] and [9] is a PL (piecewise linear) approximation of the smooth solution,
achieved by solving a proper system of linear equations.

Circle Packing. Hurdal et al. ([10]) attempt to obtain such a conformal map
by using circle packing. This relies on the ability to approximate conformal
structure on surfaces by circle packings. The authors use this method for MRI
brain images and conformally map them to the three possible models of geometry
in dimension 2 (i.e. the 2-sphere, the Euclidian plane and the Hyperbolic plane).
Yet, the method is applicable for surfaces which are topologically equivalent to a
disk whereas the brain cortex surface is not. This means that there is a point of
the brain (actually a neighborhood of a point), which will not map conformally
to the plane, and in this neighborhood the dilatation will be infinitely large.
An additional problem arises due to the necessary assumption that the surface
triangulation is homogeneous in the sense that all triangles are equilateral. Such
triangulations are seldom attainable.

Holomorphic 1-Forms. Gu et al. ([6], [7], [5]) are using holomorphic 1-forms
in order to compute global conformal structure of a smooth surface of arbi-
trary genus given as a triangulated mesh. holomorphic 1-forms are differential
forms (differential operators) on smooth manifolds, which among other things
can depict conformal structures. The actual computation is done via comput-
ing homology/co-homology bases for the first homology/co-homology groups of
the surface, H1, H1 respectively. This method indeed yields a global conformal
structure hence, a conformal parameterization for the surface however, comput-
ing homology basis is extremely time consuming.

Angle Methods. In [12] Sheffer et al. parameterize surfaces via an angle based
method in a way that minimizes angle distortion while flattening. However, the
surfaces are assumed to be approximated by cone surfaces, i.e. surfaces that are
composed from cone-like neighborhoods.
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To summarize, all the methods described above compute only approxima-
tion to conformal mappings, therefore producing only quasi-conformal mappings,
with no precise estimates on the dilatation.

In this paper we propose yet another solution to this problem. The proposed
method relies on theoretical results obtained by Gehring and Väisalä in the
1960‘s ([4]). They were studying the existence of quasi-conformal maps between
Riemannian manifolds. The basic advantages of this method resides in its sim-
plicity, in setting, implementation and its speed. Additional advantage is that
it is possible guarantee not to have distortion above a predetermined bound,
which can be as small as desired, with respect to the amount of localization one
is willing to pay (and, in the case of triangulated surfaces, to the quality of the
given mesh). The suggested algorithm is best suited to cases where the surface
is complex (high and non-constant curvature) such as brain cortex/colon wrap-
ping, or of large genus such as skeleta, proteins, etc. Moreover, since toghether
with the angular dilatation, both length and area distortions are readily com-
putable, the algorithm is ideally suited for applications in Oncology, where such
measurements are highly relevant.

The paper is organized as follows, in the next section we introduce the the-
oretical background, regarding the fundamental work of Gehring and Väisalä.
Afterwards we describe our algorithm for surface flattening, based on their ideas.
In Section 4 we present some experimental results of this scheme and in Section
5 we discuss possible extensions of this study. We include two appendices regard-
ing some classical notions in quasi-conformal mapping theory and the definition
of the essential supremum, respectively.

2 Theoretical Background

2.1 Basic Definitions

Definition 1. Let D ⊂ R3 be a domain. A homeomorphism f : D → R3 is
called a quasi-isometry (or a bi-lipschitz mapping), if there exists 1 ≤ C < ∞,
such that

1
C
|p1 − p2| ≤ |f(p1)− f(p2)| < C|p1 − p2| , for all p1, p2 ∈ D.

C(f) = min{C | f is a quasi− isometry} is called the minimal distortion of
f (in D).

Note. For the case of surface embedded in R3 distances are the induced intrinsic
distances on the surfaces.

Remark 1. If f is a quasi-isometry then KI(f) ≤ C(f)2 and KO(f) ≤ C(f)2

where KI(f), KO(f) represent the inner, respective outer dilatation of f , (see
Appendix 1). It follows that any quasi-isometry is a quasi-conformal mapping
(while – evidently – not every quasi-conformal mapping is a quasi-isometry).
Quasi-conformal is the same as quasi-isometry where distances are replaced by
angles between tangent vectors.



364 E. Appleboim et al.

Definition 2. Let S ⊂ R3 be a connected set. S is called admissible (see Fig. 1)
iff for any p ∈ S, there exists a quasi-isometry ip such that for any ε > 0
there exists a neighbourhood Up ⊂ R3 of p, such that ip : Up → R3 and
ip(S ∩ Up) = Dp ⊂ R2, where Dp is a domain and such that C(ip) satisfies:

(i) sup
p∈S

C(ip) <∞

and
(ii) ess sup

p∈S
C(ip) < 1 + ε .

S

R2

p

U

U     S

U

p

i(p)

p

Fig. 1. An Admissible Surface

2.2 The Projection Map

Let S be a surface, n̄ be a fixed unitary vector, and p ∈ S. Let V - D2,
D2 = {x ∈ R2

∣∣ ||x|| ≤ 1} be a disk neighbourhood of p. Moreover, suppose that
for any q1, q2 ∈ S, the acute angle �(q1q2, n̄) ≥ α (see Figure 2). We refer to the
last condition as the Geometric Condition or Gehring Condition.

S

p
n
_

α

α

  V  ~_D

q
q1

2

2

Fig. 2. The Geometric Condition
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Then for any x ∈ V there is a unique representation of the following form:

x = qx + un ;

where qx lies on the plane through p which is orthogonal to n and u ∈ R.
Define:

Pr(x) = qx .

Note: n need not be the normal vector to S at p.

By [4], Section 4.3 and Lemma 5.1, we have that for any p1, p2 ∈ S and any
a ∈ R+ the following inequalities hold:

a

A
|p1 − p2| ≤ |Pr(p1)− Pr(p2)| ≤ A|p1 − p2| ;

where

A =
1
2
[(a cscα)2 + 2a + 1]2 +

1
2
[(a cscα)2 − 2a + 1]2 .

In particular for a = 1 we get that

C(f) ≤ cotα + 1

and

K(f) ≤
((1

2
(cotα)2 + 4

) 1
2 +

1
2

cotα
) 3

2 ≤ (cot α + 1)
3
2 ;

where
K(f) = max

(
KO(f), KI(f)

)
is the maximal dilatation of f .

Hence we have thus obtained the desired quasi-isometry, Pr, having maximal
dilatation,

C(f) ≤ cotα + 1 .

The Geometric Condition. From the discussion above we conclude that S ⊂
R3 is an admissible surface if for any p ∈ S there exists np such that for any
ε > 0, there exists Up - D2, such that for any q1, q2 ∈ Up the acute angle
�(q1q2, np) ≥ α, where

(i) inf
p∈S

αp > 0 ;

and
(ii) ess inf

p∈S
αp <

π

2
− ε .

Example 1. Any surface in S ∈ R3 that admits a well-defined continuous turning
tangent plane at any point p ∈ S is admissible.



366 E. Appleboim et al.

3 The Algorithm

We will present in this section the algorithm that is used for obtaining a quasi-
isometric (flat) representation of a given surface.

First assume the surface is equipped with some triangulation T . Let Np stand
for the normal vector to the surface at a point p on the surface.

Second, a triangle Δ, of the triangulation must be chosen. We will project a
patch of the surface quasi-isometrically onto the plane included in Δ. This patch
will be called the patch of Δ, and it will consists of at least one triangle, Δ itself.
There are two possibilities to chose Δ, one is in a random manner and the other
is based on curvature considerations. We will refer to both ways later. For the
moment assume Δ was somehow chosen. After Δ is (trivially) projected onto
itself we move to its neighbors. Suppose Δ′ is a neighbor of Δ having edges e1,
e2, e3, where e1 is the edge common to both Δ and Δ′.

We will call Δ′ Gehring compatible w.r.t Δ, if the maximal angle between e2 or
e3 and NΔ (the normal vector to Δ), is greater then a predefined measure suited
to the desired predefined maximal allowed distortion, i.e. max {ϕ1, ϕ2} ≥ α,
where ϕ1 = �(e2, NΔ), ϕ2 = �(e3, NΔ).

We will project Δ′ orthogonally onto the plane included in Δ and insert it to
the patch of Δ, iff it is Gehring compatible w.r.t Δ.

We keep adding triangles to the patch of Δ moving from an added triangle
to its neighbors (of course) while avoiding repetitions, till no triangles can be
added.

If by this time all triangles where added to the patch we have completed
constructing the mapping. Otherwise, chose a new triangle that has not been
projected yet, to be the starting triangle of a new patch. A pseudocode for this
procedure can be easily written.

Remark 2. There are two ways for choosing a base triangle for each patch. One
is by taking a triangle which the sum of the (magnitude of) curvatures of its
vertices is minimal, and the other one is by letting the user choose a triangle for
each new patch.

Remark 3. One should keep in mind that the above given algorithm, as for any
other flattening method, is local. Indeed, in a sense the (proposed) algorithm
gives a measure of “globality” of this intrinsically local process.

e

e

e
1

2

3

N
Δ

Δ
Δ'

Fig. 3. Gehring Compatible Triangles
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Remark 4. Our algorithm is best suited for highly folded surfaces, because of its
intrinsic locality, on the one hand, and computational simplicity, on the other.
However, on “quasi-developable” surfaces (i.e. surfaces that are almost cylindri-
cal or conical) the algorithm behaves similar to other algorithms, with practically
identical results).

4 Experimental Results

We now proceed to present some experimental results obtained by applying the
proposed algorithm, both on synthetic surfaces and on data obtained from actual
CT scans.

In each of the examples both the input surface and a flattened representation
of some patch are shown. Details about mesh resolution as well as flattening
distortion are also provided. The number of patches needed in order to flatten
the surface is also given. In all images, the small rectangle shown on the surface
represents a base triangle for the flattened patch.

The algorithm was implemented in two versions, or more precisely two possible
ways of processing, automatic versus user defined.

Fig. 4. Knotted Torus: The resolution of the model is of 46,464 triangles. The patch
contains 11, 475 triangles. The low selected value of α is 5◦, giving a dilatation equal
to 1.0875. Due to the low Gauss curvature of the embedding of the knot, two such
patches cover most of the flattened surface.
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1. Automatic means that the triangles serving as base points for the patches
to be flattened are chosen automatically according to curvature, as stated
in Remark 3.1. The discrete curvature measure employed is that of angular
defect, due to its simplicity and high reliability (see [13]).

2. User defined means that at each stage the user chooses a base triangle for
some new patch.

The colored area in each of the images represents the patch being flattened.
Experiments have shown that results of the automatic process are similar, in

terms of the dilatation, to those obtained from the user defined process yet, in
order to flatten entire surface in the user defined method one needs in average
25 percent more patches.

5 Concluding Remarks and Future Study

In this paper we presented a new algorithm for flattened presentation of polyhe-
dral meshes, with minimal dilatation while flattening is done. The algorithm is
based upon the works of Gehring-Väisala and others concerning the existence of
quasi-isometric/conformal/meromorphic mappings between Riemannian mani-
folds.

From the implementation results it is evident that this algorithm while being
simple to program as well as efficient, also gives good flattening results and
maintains small dilatations even in areas where curvature is large and good
flattening is a challenging task. Moreover, since there is a simple way to assess
the resulting dilatation, the algorithm was implemented in such a way that the
user can set in advance an upper bound on the resulting dilatation.

An additional advantage of the presented algorithm is related to the fact
that, contrary to some of the related studies, no use of derivatives is made.
Consequently, the algorithm does not suffer from typical drawbacks of derivative
computations like robustness, etc.

Moreover, since no derivatives are employed, no smoothness assumption about
the surface to be flattened are made, which makes the algorithm presented herein
ideal for use in cases where smoothness is questionable (to say the least).

The algorithm may be practical for applications where local yet, good analysis
is required such as medical imaging with the emphasis on flattened representation
of the brain and the colon (virtual colonoscopy) – see [1], [2]. Further study is
currently undertaken.

The main issue for further investigation, remains the transition from local to
global in a more precise fashion, i.e. how can one glue two neighbouring patches
while keeping fixed bounded dilatation. (In more technical terms, this amounts
to actually computing the holonomy map of the surface – see [14].)

Indeed, we may flatten the neighborhood of some vertex u obtaining the flat
image Iu and the neighborhood of another vertex v obtaining the image Iv so
that these two neighborhood have some intersection along the boundary yet, it
will not be possible to adjust the resulting images to give one flat image Iu∪v of
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the union of these neighborhood, yet satisfy the quasi-isometric property. This
too is also under current investigation.
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Appendix 1

Let D ⊂ R3 be a domain, let f : D
∼→ f(D) and let p ∈ D.

We make the following notations:

L(p) = lim sup
x→p

|f(x)− f(p)|
|x− p| ;

l(p) = lim inf
x→p

|f(x)− f(p)|
|x− p| ;

J(p) = lim sup
r→0

V ol
(
f(B3(p, r))

)
V ol
(
B3(p, r)

) .

L(p), l(p) are called the maximal, respective minimal stretching, of f . If f is
differentiable then J(p) = |Jacobian(f)(p)|.

Then, if J > 0 and if f is ACL (see, e.g. [15]), then the maximal and minimal
stretching can be defined as follows:

KI(f) =

√
ess sup

p∈D

J(p)
l3(p)

;

KO(f) =

√
ess sup

p∈D

L3(p)
J(p)

.

Appendix 2

The essential supremum of f is the smallest number a for which f only exceeds
a on a set of measure zero. More formally, we have the following definition:

Definition 3. Let (X,B, μ) be a measure space, let f : X → R, and let a ∈ R.
Define Ma = {x | f)x) > 0} and A0 = {a ∈ R |μ(x) = 0}. Then:

ess sup f = infA0 .

(If A0 = ∅ , then we define ess sup f =∞ .)

Remark 5. In our case μ is the 2-dimensional Hausddorff measure (see, e.g. [3]).
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Fig. 5. Skull model: The resolution is of 60,339 triangles. Top: α = 7◦ and the dilatation
is 1.1228. Bottom: α = 10◦ and the dilatation is 1.1763.
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Fig. 6. A Analytic Surface: Observe the role of low Gauss curvature in producing large
patches, even of genus higher then 0, (b). Here the resolution is 6720 triangles and
α = 5◦.



Quasi-isometric and Quasi-conformal Development 373

Fig. 7. Cerebral Cortex Flattening: The location of the cortical region selected for
flattening in the previous figure

Fig. 8. Cerebral Cortex Flattening: Partial view of the parietal region. Observe that a
non-simply connected patch is obtained. The resolution is 15.110 triangles, the angles
chosen are 5◦, producing dilatations of 1.0875.
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Fig. 9. Cerebral Cortex Flattening: Two patches obtained in the flattening of the
parietal region. The resolution is 15.110 triangles, the angles chosen are 5◦ and 10◦,
producing dilatations of 1.0875 and 1.1763, respectively.
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Abstract. We study two scenarios of limited-angle binary tomography
with data distorted with an unknown convolution: Either the projec-
tion data are taken from a blurred object, or the projection data them-
selves are blurred. These scenarios are relevant in case of scattering and
due to a finite resolution of the detectors. Assuming that the unknown
blurring process is adequately modeled by an isotropic Gaussian con-
volution kernel with unknown scale-parameter, we show that parameter
estimation can be combined with the reconstruction process. To this
end, a recently introduced Difference-of-Convex-Functions programming
approach to limited-angle binary tomographic reconstruction is comple-
mented with Expectation-Maximization iteration. Experimental results
show that the resulting approach is able to cope with both ill-posed
problems, limited-angle reconstruction and deblurring, simultaneously.

1 Introduction

It is a general characteristic of imaging systems that the acquired images are
some distorted versions of the ideal images of real objects. The distortion is
due to physical limitations, e.g., finite resolution in space and time, non-uniform
sensitivity in the field of view, etc. In many cases the distorted image can be
modeled as the convolution of the ideal image with some function describing the
distortion [1].

The situation is the same in tomography when the cross-sections of some 3D
object are reconstructed from its projections. The pixel values in the projection
images are usually only some approximations of the line integrals to be measured
by a perfect imaging system in an ideal physical situation. In different applica-
tion areas of tomography there are several correction methods to improve the

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 375–388, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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quality of the reconstructed images. The correction strategies can be divided into
two classes roughly. The first class contains the methods aiming to correct the
projection data before reconstruction (let us call them preprocessing) and then
the reconstruction is performed from the corrected projection data. The second
class is the family of special methods when the correction is included into the
reconstruction process. We believe that both strategies can be useful. If the cor-
rection can be done as a preprocessing step before reconstruction then one of the
methods from the first class is preferable. However, there are situations when the
correction is impossible or too complicated before reconstruction, e.g., scatter
correction in CT or in SPECT, then the correction during the reconstruction
can still give a good solution.

The situation is very similar in the case of binary tomography, when the
range of the function to be reconstructed is just the set {0, 1} (as a summary
of binary tomography see [2]). The known discrete range can be used in the
reconstruction process as a kind of a priori information, and binary functions
can be reconstructed effectively from very few projections (e.g., 2-5). As binary
tomography is getting to be applied in several areas, the problem of distortion
of such tomography images becomes an important problem to be studied. There
are publications discussing different corrections in DT, e.g. in X-ray and neutron
tomography [3, 4], and electron microscopy [5].

In this paper we deal with the general distortion model when the distortion can
be described by the convolution with a Gaussian kernel Gσ(·). If the parameter σ is
known in advance then the correction (deconvolution) can be done as a preprocess-
ing step before the reconstruction. However, if the parameter is not known then we
are going to show that there is still a way to binary tomography by including this
parameter as an unknown value to be determined. To motivate our approach we
present some reconstructions, see figure 1, performed without deblurring.

Section 2 shows the mathematical model of distorted DT and the reconstruc-
tion problem to be solved. Our reconstruction approach including the deconvolu-
tion adaptation is described in Section 3. The optimization algorithm is specified
in section 4. Several experiments have been done to test our reconstruction pro-
cedure for both noiseless and noisy data. The corresponding results are presented
in Section 5. We conclude and indicate further work in Section 6.

2 Problem Statement

2.1 Binary Tomography and Reconstruction by DC-Programming

We consider the reconstruction problem of transmission tomography for binary
objects. As explained in figure 2, the imaging process is represented by the
algebraic system of equations

Ax = b , A ∈ Rm×n , x ∈ {0, 1}n , b ∈ Rm , (1)

where A and b are given, and the binary indicator vector x representing the
unknown object has to be reconstructed. To this end, we introduced in [6] the
variational approach
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Fig. 1. Reconstruction without deblurring fails. Panel (a) shows an object
which was blurred with a Gaussian convolution kernel Gσ at three different scales
σ ∈ {0.5, 1.0, 2.0}, and then projected along 5 directions 0◦, 22.5◦, 45◦, 67.5◦, 90◦.
Panels (b)-(d) show the reconstruction results without deblurring. The performance
considerably deteriorates for increasing σ. Note that the original object (a) can be
reconstructed without error from three projections only.

x∗
μ = argmin

x∈[0,1]n
Jμ(x) , Jμ(x) = D(x) + αS(x) − μ

1
2
〈x, x − e〉 (2)

where
D(x) =

1
2
‖Ax− b‖2 (3)

and S(x) is a convex smoothness prior (see section 3.2) which favors spatially
homogeneous objects as reconstructions and e := (1, 1, . . . , 1)� ∈ Rn.

Problem (2) constitutes a numerically convenient relaxation of the combina-
torial problem (1) because the set of feasible solutions [0, 1]n is convex. Starting
with the global optimum x0 of the convex functional J0, the last term in (2)
gradually enforces a locally optimal binary solution for increasing values of para-
meter μ. Although global optimality cannot be guaranteed, experimental results
showed an excellent reconstruction performance [6, 7]. For further details of this
framework and an overview from the optimization point of view, we refer to [8].
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Fig. 2. Discretization model for transmission tomography. The measured pro-
jection data are given in terms of a vector b ∈ Rm. Each component bi corresponds to
a projection ray measuring the absorption along the ray through the volume which is
discretized into cells. The absorption aj in each cell is assumed to be proportional to
the density of the unknown object. x1, x2, . . . are binary variables indicating whether
the corresponding cells belong to the object (xk = 1) or not (xk = 0). Assembling all
projection rays into a linear system gives Ax = b, x ∈ {0, 1}n, from which the unknown
binary object, represented by x, has to be determined.

2.2 Binary Tomography with Blurred Data

Let Gσ denote the matrix that represents the linear mapping of some data
by convolving it with an isotropic Gaussian kernel and scale-parameter σ. We
generalize problem (1) along two directions:

Reconstruction from Projections of Blurred Objects
The corresponding generalization of the reconstruction problem (1) reads:

AGσx = b , A ∈ Rm×n , x ∈ {0, 1}n , b ∈ Rm (4)

Reconstruction from Blurred Projection Data
The corresponding generalization of the reconstruction problem (1) reads:

GσAx = b , A ∈ Rm×n , x ∈ {0, 1}n , b ∈ Rm (5)

For notational simplicity, we used in both cases the same symbol Gσ, although
Gσ denotes a block-circulant matrix in (4) corresponding to the convolution of
multi-dimensional data x, whereas Gσ represents the one-dimensional convolu-
tion of the projection data in (5).

Accordingly, the variational approach (2) generalizes to

x∗
μ = argmin

x∈[0,1]n
Jμ(x; σ) , Jμ(x; σ) = D(x; σ) + αS(x)− μ

1
2
〈x, x− e〉, (6)

where the data term D(x; σ) indicates the dependency on the unknown convo-
lution operator in (4) and (5), respectively.
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3 Approach

3.1 Data Term and Scale Estimation

Optimization of Jμ in (6) is complicated through the unknown scale-parameter
σ of the convolution operator Gσ. A common and natural approach to solve this
problem is to apply the well-known Expectation-Maximization (EM) iteration
(cf.,e.g. [9]) to the probabilistic interpretation of the data term D(x; σ) as a
likelihood term, provided this is computationally feasible. We elaborate this
approach in this section.

We regard minimization of Jμ in (6) as Maximum-A-Posteriori (MAP) esti-
mation of x, given the data b:

p(x|b) ∝ exp
(
− Jμ(x; σ)

)
∝ p(b|x)p(x) (7a)

p(x) ∝ exp
(
− αS(x) + μ

1
2
〈x, x − e〉

)
(7b)

Remark. The normalizing term missing in (7a) only depends on b and therefore
it is unessential for estimating x.

The data likelihood p(b|x) is unknown due to the dependency of the data
term D(x; σ) on the unknown parameter σ. Given some estimate x̂, the standard
EM-approach is then to maximize instead the following lower bound, commonly
called Q-function, which does not depend on σ:

log p(b|x) ≥
∫

R+

p(σ|b, x̂) log
p(b, σ|x)
p(σ|b, x̂)

dσ

Expanding the log-expression shows that only the first term, commonly called
Q-function, depends on x and therefore is relevant:

Q(x|x̂, b) :=
∫

R+

p(σ|b, x̂) log p(b, σ|x)dσ (8)

To compute (8), the first term under the integral is evaluated via Bayes’ rule

p(σ|b, x̂) =
p(b|σ, x̂)p(σ|x̂)

p(b|x̂)
.

The denominator does not depend on σ and therefore it is unessential for mar-
ginalizing σ on the right in (8). The first term of the numerator is given by
the data term p(b|σ, x̂) = Z−1 exp(−D), where Z is a normalizing constant.
Furthermore, it is reasonable to assume independency p(σ|x) = p(σ). Thus, we
obtain

p(σ|b, x̂) ∝ 1
Z

exp
(
−D(x̂; σ)

)
p(σ). (9)

For the second term under the integral in (8), we compute

log p(b, σ|x) ∝ log p(b|σ, x) + log p(σ) ∝ −D(x; σ) + log p(σ) (10)



380 S. Weber et al.

using again p(σ|x) = p(σ), and dropping the normalizing constant of the first
term on the right, as explained above in the remark after eqns. (7). Furthermore,
we can drop the last term log p(σ) in (10) because it neither depends on x, nor
does it contribute to the averaging of D(x; σ) with respect to σ.

As a result, we insert the remaining term −D(x; σ), together with (9), into
(8) and denote the resulting expression again with Q:

Q(x|x̂, b) :=
∫

R+

1
Z

exp
(
−D(x̂; σ)

)
p(σ)

(
−D(x; σ)

)
dσ (11)

This expression shows clearly how the unknown dependency on σ of the objective
criterion (6) is dealt with: Given a current estimate x̂ and a prior distribution
p(σ), the unknown data term D(x; σ) is replaced by maximizing the average (11).
Consequently, we replace the functional Jμ(x; σ) in (6) by the approximation

Eμ(x; x̂) := −Q(x|x̂, b) + αS(x) − μ
1
2
〈x, x − e〉. (12)

In practice, we choose the prior p(σ) to be uniform within a reasonable interval
[σmin, σmax], and x̂ is the current estimate on x. Q(x|x̂, b) is then evaluated by
computing the one-dimensional integral (11) numerically using the trapezoidal
rule.

3.2 Smoothness Term

As smoothness prior S(x) in (12), we use a discrete approximation of the total-
variation (TV) measure ∫

Ω

|∇x|dΩ

of x (here temporarily regarded as a function), whose edge-preserving properties
are well-known in image processing [10]. Recently, it has also been successfully
used in connection with discrete tomography [11].

4 Optimization

The problem to minimize the functional Eμ(x; x̂) in (12) over the convex set
of feasible solutions B := [0, 1]n can be written with a corresponding indicator
function IB(x) = 0 if x ∈ B and IB(x) = +∞ if x �∈ B, as

inf
x∈Rn

Eμ(x; x̂) , Eμ(x; x̂) = F (x; x̂)−Hμ(x), (13)

where
F (x; x̂) := −Q(x|x̂, b) + αS(x) + IB(x)

is a proper lower-semicontinuous convex functional, and where

Hμ(x) := μ
1
2
〈x, x− e〉
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is convex as well, thus concave when subtracted in (13). Therefore, a natural
minimization approach is DC (Difference of Convex functions) programming
[12, 13].

To specify the algorithm, recall the following definitions from convex analysis
[14] for a function f :

dom(f) :=
{
x ∈ Rn | f(x) < +∞

}
effective domain of f

∂f(x̄) :=
{
v | f(x) ≥ f(x̄) + 〈v, x− x̄〉

}
subdifferential of f at x̄

f∗(y) := sup
x∈Rn

{
〈x, y〉 − f(x)

}
conjugate function

We apply to (13) the following algorithm adopted from [13]:

Subgradient Algorithm

Choose x0 ∈ dom(F ) arbitrary (this choice does not dependent
on the second argument of F ).
For k = 0, 1, ... compute until convergence:

yk ∈ ∂Hμ(xk) (14)
xk+1 ∈ ∂F ∗(yk; x̂) (15)

The investigation of this algorithm in [13] includes the following results:

Proposition 1. [13] Assume F (·; x̂), Hμ : Rn → R to be proper, lower-
semicontinuous and convex, and dom(F ) ⊂ dom(Hμ), dom(H∗

μ) ⊂ dom(F ∗).
Then

(i) the sequences {xk}, {yk} according to the equations (15) and (14) are well-
defined,

(ii)
{
F (xk; x̂)−Hμ(xk)

}
is decreasing,

(iii) every limit point x∗ of {xk} is a critical point of Eμ(x; x̂) = F (x; x̂) −
Hμ(x).

Remarks
Concerning the full reconstruction algorithm, as listed on the subsequent page,
we point out:

– Estimation of the unknown scale-parameter σ through the EM-iteration
(cf. section 3.1) is done as part of step (15) – see lines 9-14 of the reconstruc-
tion algorithm listed on the following page.

– The global optimum of the convex optimization problem in line 11 of the
reconstruction algorithm (cf. subsequent page) can be computed using any
method. In our implementation, we used a dedicated algorithm [15] in view
of the simple structure of the box-constraints x ∈ [0, 1]n.
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Reconstruction Algorithm

1 Choose x0 arbitrary (for example x0 := (1
2 , ..., 1

2 )�)
2 Choose δμ ∈ R+ (our choice: δμ ∈ (0, 0.5])
3 Choose ε > 0 (our choice: 10−4 ≤ ε ≤ 10−2)
4 Set i := 0, μ0 := 0
5 Do (μ-loop)
6 Set k := 0
7 Do (DC-loop)
8 yk := ∇Hμi(xk)
9 Set l := 0, x̂0 := xk

10 Do (EM-loop)
11 x̂l+1 := argmin

x∈[0,1]n

{
F (x; x̂l)− 〈yk, x〉

}
12 l := l + 1
13 while ||x̂l − x̂l−1||2 > ε (EM-loop)
14 xk+1 := x̂l

15 k := k + 1
15 while ||xk − xk−1||2 > ε (DC-loop)
16 μi+1 := μi + δμ

17 while ∃xk
j ∈ [ε, 1− ε] , j = 1, . . . , n (μ-loop)

5 Evaluation

5.1 Reconstruction from Projections of Blurred Objects

In figure 1, we showed that binary reconstruction fails in case of blurred objects.
We repeated the experiment, however, this time taking deblurring into account.
The results shown in figure 3 reveal that our novel reconstruction algorithm
copes with both problems, deblurring by scale-parameter estimation and binary
reconstruction, at the same time.

Further experiments showed, that the original object can be reconstructed
even with four projections only (0◦, 45◦, 90◦, and 135◦, for σ = 1.0).

5.2 Reconstruction from Blurred Projections

The upper-left image shown in figure 4 was projected along for directions 0◦, 45◦,
90◦, 135◦. Panel (b) shows these projections for illustration, and panel (d) the
blurred version (σ = 1.5). The latter data was used to compute the reconstruc-
tion shown in panel (c). Panels (e) and (f) show the reconstructions for σ = 1.0
with and without deblurring, respectively. While the latter result clearly shows
the ill-posedness of the combined deblurring-reconstruction problem, the results
(c) and (e) demonstrate the stability of our new reconstruction algorithm even
under such severe conditions.
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Fig. 3. Reconstruction from blurred objects. (a) Original image, 32 × 32. (c)
and (e): original image convolved with different Gaussian kernels, σ ∈ {1.0, 2.0}. 5
projections were taken for both images 0◦, 22.5◦, 45◦, 67.5◦, 90◦. Figures (d), and (f)
show the corresponding results of our reconstruction algorithm. Since we obtained for
σ = 0.5 the original image we present in this case the reconstruction from only three
projections, 0◦, 45◦, and 90◦. Throughout the experiments the smoothing parameter
α was set to 0.01.

To illustrate the deblurring process further, figure 5 depicts the expressions
exp(−D(x̂; σ))/Z and D(x̂; σ), respectively, as a function of σ during the recon-
struction process. It can be clearly seen that the former expression peaks most
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Fig. 4. Reconstruction from blurred projections. Projections at 0◦, 45◦, 90◦, and
135◦ were taken from the image shown in panel (a) and convolved with a Gaussian kernel,
σ = 1.5. Panels (b) and (d) show the correct projections and the blurred projections,
respectively. Panel (c) shows the reconstruction result (α = 0.05). Panel (e) shows the
reconstruction from projection data that were blurred with σ = 1.0. Panel (f) shows the
erroneous reconstruction without taking deblurring into account.

around the correct value σ = 1.5, whereas the latter term attains its global
minimum there.

The experiments also revealed that reconstruction from blurred projections is
more difficult that reconstruction from projections of blurred objects, as in the
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Fig. 5. Upper half: The term exp(−D(x̂; σ))/Z as a function of σ during the iteration.
Lower half: The term D(x̂; σ) as a function of σ during the iteration. While the former
term peaks most near the correct value σ = 1.5, the latter attains its global minimum
there. This illustrates that the inner EM-loop of the overall reconstruction algorithm
is well-defined and robust.
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(a) Original (b) Original

(c) Without deblurring (σ = 1.0) (d) Without deblurring (σ = 1.0)

(e) With deblurring (σ = 1.0) (f) With deblurring (σ = 1.0)

Fig. 6. Reconstruction from blurred projections. (a),(b) Original image, 128 ×
128. For both images, reconstruction problems were set up using 5 projections, 0◦, 36◦,
72◦, 108◦, and 144◦, and blurring these projections with a Gaussian kernel, σ = 1.0.
(c),(d) Reconstruction without deblurring. (e),(f) Reconstruction with deblurring.
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former section: Perfect reconstruction of the original object was possible for a
smaller blurring scale only (σ = 0.8).

6 Conclusion and Further Work

We extended our reconstruction algorithm for binary tomography with an
Expectation-Maximization (EM) step to improve its behavior in the presence
of degradations during data acquisition. For evaluation purposes we defined two
different degradation models. The same reconstruction algorithm can be applied
to either of them which accurately estimates an unknown scale-parameter σ,
during the reconstruction. Our results show that our approach stabilizes the
reconstruction process in the presence of degradations.

Regarding the Q function in the EM-step, further work includes an adaptive
sampling strategy of the supporting points. This is important for two reasons:
First, it is expected to produce a more accurate approximation of the integral
especially in areas where the true σ is suspected. Second, it should also reduce
the number of supporting points since we can skip areas which are of low interest.
The latter should further speed up our algorithm.

We suppose that our approach is sufficiently general to be applied to other
combined reconstruction – missing parameter estimation scenarios as well. This
will also be subject to our future work.
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and X-ray three-dimensional computed tomography at the Budapest research re-
actor site. Nuclear Instruments and Methods in Physics Research A, 542 (2005)
22–27
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Abstract. Tomography deals with the reconstruction of the density dis-
tribution inside an unknown object from its projections in several direc-
tions. In Discrete tomography one focuses on the reconstruction of objects
having a small, discrete set of density values. Using this prior knowledge
in the reconstruction algorithm may vastly reduce the number of projec-
tions that is required to obtain high quality reconstructions.

Recently the first generation of real-time tomographic scanners has
appeared, capable of acquiring several images per second. Discrete to-
mography is well suited for real-time operation, as only few projections
are required, reducing scanning time. However, for efficient real-time op-
eration an extremely fast reconstruction algorithm is also required.

In this paper we present a new reconstruction method, which is based
on a feed-forward neural network. The network can compute reconstruc-
tions extremely fast, making it suitable for real-time tomography. Our
experimental results demonstrate that the approach achieves good re-
construction quality.

1 Introduction

Fig. 1. Basic principle of
tomography, 2 projections

Tomography deals with the reconstruction of the
density distribution inside an unknown object from
its projections in several directions [8]. Figure 1
shows the basic principle. In this paper we look
at transmission tomography, where the projections
are obtained by sending a beam (e.g., X-rays, neu-
trons, etc.) through the object and measuring the
attenuated beam that has passed through the ob-
ject. Tomography is used extensively in medical
imaging, industrial imaging and, more recently, in
materials science and biology. Typically, a large
number of projections is required (more than 100)
to obtain good reconstruction quality.

When it is known in advance that the scanned object consists of only a few
different materials, it may be possible to vastly reduce the number of required
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projections by using this prior knowledge in the reconstruction algorithm. Dis-
crete tomography focuses on the tomographic reconstruction of objects for which
the set of pixel values in the reconstructed image is discrete and small. In par-
ticular, the reconstruction of binary images (i.e., black-and-white images) has
received considerable attention [6].

Most tomographic scanners acquire static images, i.e., a single image, either
2D or 3D, of the object is reconstructed from the projection data. Therefore
it is not possible to do imaging of dynamic processes, where the scanned ob-
ject changes significantly in a short period of time. Recently, real-time medical
tomographic scanners have emerged [9], which are capable of acquiring several
images per second. Besides medical imaging, real-time tomography could prove
very useful in industrial imaging.

Discrete tomography is well suited for real-time imaging, since the small num-
ber of required projections results in a substantial reduction of the scanning time.
However, to compute a long series of reconstructions in reasonable time, a very
fast reconstruction algorithm is required. Several authors have proposed algo-
rithms for discrete tomography, usually for the reconstruction of binary images.
All these algorithms require at least several dozens of seconds to reconstruct a
single 2D 256× 256 image [1, 2, 12, 13].

In this paper we present a new reconstruction method, which is based on
a feed-forward neural network. The neural network is first trained on a set of
representative images, which may take a substantial amount of time. After the
training phase, the network can be used to compute a reconstruction very fast.
When implemented on a Field Programmable Gate Array (FPGA), a piece of
computer hardware, frame rates of several hundreds per second are realistic.

We focus on the reconstruction of binary images from parallel projections.
Additional prior knowledge other than the binary constraint that is present in
the training set, is learned by the neural network during the training phase, so
it does not have to be modelled explicitly. Besides real-time tomography, our
approach can also be used to compute a good start solution for more accurate,
time-consuming reconstruction algorithms.

Neural network reconstruction methods for other types of tomographic recon-
struction have been considered in the literature, e.g., [10, 11]. Neural networks
are not well suited for general transmission tomography from many projections,
as the number of variables in the reconstruction problem is extremely large.
Besides that, it is very difficult to outperform other available approaches. In
discrete tomography the amount of projection data is much smaller, making the
reconstruction problem underdetermined. Neural networks are well known for
their ability to learn additional prior knowledge, which makes them suitable for
discrete tomography.

Section 2 contains a short description of the tomographic reconstruction prob-
lem. In Section 3 we first propose a basic neural network approach and discuss
its abilities and limitations. Subsequently we refine the approach, obtaining a
so-called single-pixel neural network architecture that is capable of computing
real-time reconstructions of large images. In Section 4 we provide experimental
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results of the neural network approach and a brief comparison with a continuous
tomography algorithm. Section 5 concludes.

2 Reconstruction Problem

Figure 2 shows the main setting of the binary tomography problem. We assume
that the object of interest is contained in the disc

A = {(x, y) ∈ R2 : x2 + y2 ≤ R2}

with radius R. We call this disc the imaging area. For the sake of convenience
we assume that R is a positive integer.

O
(R, 0)

θ

Fig. 2. Basic setting for the tomography problem in disc A; the angle between the
parallel beam and the y-axis is denoted by θ

The unknown binary image that we would like to reconstruct is considered as a
mapping f : R2 → {0, 1}, where 0 is black and 1 is white. We assume that the
support of f , i.e., the set {(x, y) ∈ R2 : f(x, y) = 1}, is a measurable set that is
contained in A. Define the function Tθ : R2 → R as follows:

Tθ(x, y) = x cos θ + y sin θ.

We call Tθ(x, y) the point projection of (x, y) for angle θ. Projections are mea-
sured along lines Lθ,t of the form

Lθ,t = {(x, y) ∈ R2 : Tθ(x, y) = t}.

The Radon transform Pf of f is defined (cf. [5], where also Radon’s original
paper is reproduced) as

Pf (θ, t) =
∫

Lθ,t

f(x, y) ds for θ ∈ [0, 2π), t ∈ R.
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We can now formulate the main reconstruction problem, where the parameter n
determines the number of angles:

Problem 1. Let D = {θ1, θ2, . . . , θn} be a given set of projection angles with
0 ≤ θ1 < θ2 < . . . < θn < π, and let φ1, φ2, . . . , φn be given functions (the
measured projections) from R to R. Construct a function f : R2 → {0, 1} such
that Pf (θi, ·) = φi(·) for i = 1, 2, . . . , n.

When the measured projections are obtained through physical measurements,
Problem 1 usually does not have an exact solution. Even if the reconstruction
problem has an exact solution theoretically, we need to approximate its solution
by representing it on a pixel grid.

In practice, the function Pf (θ, ·) is usually not measured in single points t.
Instead, the total projection in a strip, covering a small t-interval (t�, tr), is
measured as

Sθ,f(t�, tr) =
∫ tr

t=t�

Pf (θ, t) dt.

Typically, the value Sθ,f(t�, tr) is measured for consecutive strips of fixed width.
Without loss of generalization we assume that all these strips have width 1. For
any angle θ, 2R strip projections are measured. The first strip corresponds to
the t-interval (−R,−R + 1), the last strip to (R − 1, R). In our neural network
approach we also need to evaluate Sθ,f(t�, tr) for other values of (t�, tr), often
with integer width tr − t�. These values are computed by linear interpolation of
the measured projection data.

Although the reconstruction problem is defined using the projection data,
the performance of reconstruction algorithms is often evaluated by considering
a known image f and its projections Pθ1,f , Pθ2,f , . . . , Pθk,f , and comparing the
reconstruction to the original image f . In practice, resemblance to the original
image is often more important than perfect correspondence to the projection
data. This is particularly important if the projection data by itself is not enough
to determine the image f and additional prior knowledge must be used in the
reconstruction algorithm, which is the case if the number of projection angles n
is relatively small: the problem is then underdetermined.

3 Neural Network Approach

In this section we will discuss two neural network approaches to the discrete to-
mography problem. A feed-forward neural network consists of neurons, grouped
in layers, where neurons from one layer can have a weighted connection to neu-
rons from the next layer. The weights are trained simultaneously, hopefully to-
ward optimal values, by presenting the network with correct input-output pairs.

Both proposed networks are feed-forward back-propagation networks (see, e.g.,
[4, 7]) with one input layer, one hidden layer and one output layer. The networks
are fully connected. The first and probably most obvious version (referred to as
a full-image network) has one output node for each pixel. The second version (a
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so-called single-pixel network) has only one output node, to reconstruct one pixel,
but can be used — through appropriate adaptation — to reconstruct the whole
image. This type of network has several advantages over the full-image network.

3.1 A Full-Image Network for Tomography

The input nodes of the network contain the values of the projections, the output
nodes contain the pixel values. So the number of input nodes equals the number
of projections, while the number of output nodes equals the size of the imaging
area, i.e., approximately πR2. The hidden nodes are connected to all input nodes
and all output nodes. Output values are interpreted as gray values, yielding the
gray level reconstruction. If necessary, these values can be rounded in a post-
processing step to 0/1-values for a “crisp” or “rounded” reconstruction. These
networks were first introduced and examined in [3].

Training is performed as follows. The input pattern, consisting of the projec-
tion values, is offered to the input nodes. Every connection has a real-valued
weight, that is adapted during training. The hidden nodes receive the weighted
sum of their incoming connections, and generate an output through the standard
sigmoid σ : x *→ 1/(1 + e−x). Output nodes operate in a similar way. In each
epoch, a number (50,000, say) of random images (sampled from a certain distri-
bution) with their projections are presented to the network; after each epoch the
learning rate α is somewhat decreased. Note that samples are used only once,
unless they are by chance regenerated.

The weights are adapted using the normal back-propagation rule. A weight
wji from hidden node j to output node i is adapted through

wji ← wji + α · aj ·Δi, Δi = σ′(ini) · (ti − ni).

Here aj is the output of node j, ini =
∑

j wjiaj is the weighted input to node i,
ni = σ(ini) is its output (for output nodes this is the net output) and ti is the
desired target value, i.e., the true pixel value. The update rule for weight wkj

from input node k to hidden node j is a little more complicated (cf. [4, 7]):

wkj ← wkj + α · ak ·Δj , Δj = σ′(inj) ·
∑

i

wjiΔi.

As usual, one extra input node and one extra hidden node clamped to −1 are
added, the so-called bias nodes.

In [3] hidden nodes with only a small number of connections (so-called local
nodes, as opposed to the more common global nodes mentioned above) are added.
These local nodes are connected to a few input nodes and output nodes; they keep
track of the constraints that affect a pixel and its immediate neighbours. Each lo-
cal node corresponds with a unique pixel, receives input from the line projections
that intersect with that pixel, and is connected to the 9 output nodes correspond-
ing with the pixel and its immediate neighbours (6 or 4 near the boundaries). This
general network architecture is depicted in Figure 3. Though this type of network
was shown to perhaps have some advantages, in the sequel we will for comparison
purposes just report on the version with only global nodes.
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outputs

inputs

bias

bias

−1

−1

global hidden nodes local hidden nodes

...

... ...

...

Fig. 3. General structure of the full-image network. Global hidden nodes are connected
to all input nodes and all output nodes. Local hidden nodes are connected to only a
few input and output nodes.

3.2 A More Efficient Architecture: The Single-Pixel Network

Although the network from Section 3.1 is suitable for real-time reconstruction
once the training phase is complete, it has some disadvantages:

– The network contains a large number of input/output nodes; a large number
of hidden nodes is required to obtain reasonable reconstructions. Due to the
large number of nodes and connections between them, training the network
takes a very long time.

– Millions of training images and their projections are required to train the
network. In practical applications it is usually impossible to obtain such large
data sets.

In the sequel we propose an improvement by focussing on the reconstruction of
a single pixel, instead of the whole image. This vastly reduces the number of
hidden to output connections.

Reconstructing a Single Pixel

One of the principal goals of our neural network design is a reduction of the
number of input nodes in comparison to the network from Section 3.1. When
reconstructing a single pixel p = (xp, yp) within the imaging area A, it is clear
that projected lines that pass through p are more important for determining its
value than the other projected lines. Also, if we assume that the image is locally
smooth, projected lines that pass near p are more important than lines that pass
far away from this pixel, as neighbouring pixels of p are highly relevant to the
value of p.

We use this intuitive notion of relative importance between projected lines to
preprocess the projection data. The inputs of the neural network from Section 3.1
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correspond directly to the measured projection values. In the new single-pixel
network, each input corresponds to a strip projection. Strips that are far away
from p are much broader than strips near p.

Let k be a positive integer. Let 0 < d0 ≤ d1 ≤ . . . ≤ dk be real values, the
strip sizes. We require that the strip sizes satisfy

d0/2 +
k∑

i=1

di ≥ 2R. (1)

Define the strip boundaries s−k, . . . , s0, . . . , sk+1 as follows:

s0 = −d0/2;
si = si−1 + di−1 (i = 1, . . . , k + 1);
si = si+1 − d−i (i = −k, . . . ,−1).

Put τθ = Tθ(xp, yp), the point projection of p for angle θ. The set Iθ of input
strips for angle θ can now be defined as

Iθ =
k⋃

i=−k

{(θ, τθ + si, τθ + si+1)}.

Each element of Iθ is a 3-tuple, consisting of the angle θ and the left and
right boundary of a t-interval, which jointly define a strip through the imag-
ing area. The constraint in Equation (1) ensures that the strips in Iθ cover at
least the entire imaging area A, independent of the position of p. Given the
angles θ1, θ2, . . . , θn, define the set I of all input strips as I =

⋃n
i=1 Iθi .

For every triple (θ, t�, tr) ∈ I there is an input node in the neural network,
giving a grand total of (2k + 1) · n input nodes. The input for such a node is
Sθ,f(t�, tr), the strip projection for angle θ in the t-interval (t�, tr).

Figure 4 shows three possible choices for the set {d0, d1, . . . , dk} of strip sizes.
Setting d0 = d1 = . . . = dk yields equally spaced strips (Figure 4a). Setting
d0 = 1 and di = i for i ≥ 1 yields a set of strips for which the size increases
linearly as the distance from the pixel p increases (Figure 4b). In Section 4 we
will show that even if we set d0 = 1, di = 2i−1 for i ≥ 1 (Figure 4c), the results
are still satisfactory. Using strip sizes that grow exponentially with the distance
to p yields a large reduction in the number of inputs of the neural network.

Training the single-pixel network proceeds as in the case of the full-image
network. However, training a separate network for each pixel would take a huge
amount of time. Also, the problem that the training requires a large number of
training examples remains. In the sequel we will show how both problems can
be solved.

Reconstructing All Pixels

Although the binning approach from the previous section drastically reduces the
number of inputs of the network, a large number of images is still required to
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. . . . . .

d0 d1 d2 d3 d4d1d2d3d4

s0 s1 s2 s3 s4 s5s−1s−2s−3s−4

. . . . . .

d0 d1 d2 d3 d4d1d2

s0 s1 s2 s3 s4 s5s−1s−2

Fig. 4. Three different strip size configurations; a, top: constant, b, middle: linear, c,
bottom: exponential

perform the training. If a separate network needs to be trained for each pixel in
the image, the total training time may be even larger than for the basic network
from Section 3.1.

Note that all inputs of the single-pixel network are relative to the projections
of the center of the pixel. Therefore, there is no obvious reason why the network
cannot be used to reconstruct a different pixel, elsewhere in the image. The
only difference between two different pixels is that the relative position of the
imaging area A is different. However, if we use a varying set of pixels from the
training images, instead of using the same single pixel from each image, it may
be possible to train the network without providing additional information on
the relative position of the imaging area. This reconstruction task is harder,
since less information is offered to the network. In Section 4 we show that one
single-pixel network is capable of reconstructing arbitrarily positioned pixels.
This offers some major advantages over the network from Section 3.1:

– If exponentially increasing strip sizes are used (see Figure 4c) both the num-
ber of inputs (logarithmic in R) and the number of outputs (constant, 1)
is vastly reduced when compared to the network from Section 3.1, reducing
training time for the single-pixel network.

– Only a single network has to be trained, instead of a new network for each
pixel.

– Each training image, with its projections, now yields a new training example
for each pixel in the image. The network from Section 3.1 requires a new
image for each training example.

And finally, as we shall see in Section 4, the single-pixel networks seem more
capable of reconstructing images from their projections, rather than learning
images from certain classes.
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3.3 Computational Complexity

For a feed-forward neural network having NI input nodes, NH hidden nodes
and NO output nodes, the time required to propagate an input pattern to the
output nodes is O(NINH + NHNO). The time complexity for training a single
input-output pattern is of the same order.

For the full-image network from Section 3.1 we have NI = O(nR) and NO =
O(R2), so that propagating a pattern takes O(NH(nR + R2)) time. (Remember
that n is the number of projection angles or directions, and R is the radius of
the imaging area.) Typically R is much larger than n. Once the training phase
is complete, the time complexity of computing a reconstructed image from a set
of projection data is of this same order.

For the single-pixel network with logarithmic strip sizes from Section 3.2 we
have NI = O(n log R) and NO = 1, yielding a time complexity of O(nNH log R)
for propagating a pattern. To use the network for reconstruction after the train-
ing phase, a new input projection pattern has to be propagated through the net-
work for every pixel in the image, yielding a time complexity of O(nNHR2 log R).
Also, for this network the projection data must be preprocessed first to obtain
the input data for the network, with time complexity O(R). Note that the num-
ber NH can vary heavily between different types of networks.

Since the value that is computed at each (non-input) node of a feed-forward
network only depends on the values in the previous layer, the values for all nodes
in a layer can be computed in parallel. Moreover, the computation that needs to
be performed at each node is very simple. This allows for very efficient parallel
implementations.

4 Experimental Results

In this section we present experimental results for the full-image network from
Section 3.1 and the single-pixel network from Section 3.2. We restrict ourselves
to two classes of synthetic images.

Fig. 5. Top: 128×128 images from the 7-class; bottom: images from the 50-class
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The first class of examples consists of images with four large white ellipses
and three smaller black ones inside, in a dark background. This class is referred
to as the 7-class, or just “7”. The second class consists of images with fifty small
white ellipses in a dark background, and is referred to as the 50-class, or just
“50”. Figure 5 contains some examples.

Table 1. Results from experiments for the full-image network; 32 × 32 and 64 × 64
images; training runtime in hours

image angles image hidden gray 0–1 run-
width class nodes error error time

average over 3 runs
32 4 7 50 0.074 0.052 2.15
32 4 7 100 0.058 0.042 5.05
32 4 7 200 0.046 0.044 9.85
32 4 50 50 0.069 0.044 2.15
32 4 50 100 0.056 0.037 5.05
32 4 50 200 0.054 0.036 10.00
32 10 7 50 0.104 0.076 3.30
32 10 7 100 0.066 0.050 6.30
32 10 7 200 0.040 0.040 12.10
32 10 50 50 0.065 0.042 3.40
32 10 50 100 0.044 0.030 6.35
32 10 50 200 0.019 0.017 12.15
64 4 7 50 0.148 0.109 12.80
64 4 7 100 0.118 0.092 27.30
64 4 7 200 0.063 0.062 58.30
64 4 50 50 0.145 0.098 12.75
64 4 50 100 0.131 0.091 27.20
64 4 50 200 0.126 0.087 58.00
64 10 7 50 0.199 0.151 14.80
64 10 7 100 0.145 0.112 30.30
64 10 7 200 0.078 0.077 63.15
64 10 50 50 0.142 0.097 14.80
64 10 50 100 0.118 0.086 30.25
64 10 50 200 0.077 0.077 63.35

All experiments were repeated three times, and averages were taken over these
three runs. Because all images are in fact located within a circle (the imaging
area), we do not consider errors outside this area; therefore, mean error values
are computed with respect to pixels within the imaging area. Average absolute
errors are reported on independent test sets consisting of 1,000 images, both for
gray level reconstruction and for rounded reconstruction (the 0–1 error). Table 1
shows results for the full-image network for two image sizes: 32×32 and 64×64.
Table 2 gives results for the single-pixel network for three image sizes: 32× 32,
64× 64 and 128× 128. The parameters are as follows: three sizes of the hidden
layer: 50, 100 and 200 hidden nodes; and two different sets of projection angles,
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Table 2. Results from experiments for the single-pixel network; 32 × 32, 64 × 64 and
128× 128 images; training runtime in hours; (*) contains run with 0–1 error equal to 0

image angles image hidden gray 0–1 run-
width class nodes error error time

average over 3 runs
32 4 7 50 0.038 0.026 3.05
32 4 7 100 0.038 0.025 4.95
32 4 7 200 0.037 0.025 9.65
32 4 50 50 0.054 0.034 3.10
32 4 50 100 0.054 0.034 4.95
32 4 50 200 0.054 0.034 9.55
32 10 7 50 0.004 0.003 6.95
32 10 7 100 0.004 0.002(*) 12.20
32 10 7 200 0.004 0.003 21.65
32 10 50 50 0.016 0.011 6.95
32 10 50 100 0.015 0.011 12.10
32 10 50 200 0.015 0.011 21.50
64 4 7 50 0.046 0.029 3.70
64 4 7 100 0.044 0.032 5.80
64 4 7 200 0.044 0.029 11.10
64 4 50 50 0.116 0.083 3.70
64 4 50 100 0.114 0.083 5.80
64 4 50 200 0.118 0.082 11.15
64 10 7 50 0.006 0.005 8.95
64 10 7 100 0.006 0.005 14.75
64 10 7 200 0.006 0.005 25.20
64 10 50 50 0.051 0.034 9.00
64 10 50 100 0.052 0.033 14.65
64 10 50 200 0.051 0.033 25.20
128 4 7 50 0.042 0.028 4.75
128 4 7 100 0.041 0.029 7.15
128 4 7 200 0.039 0.028 13.35
128 4 50 50 0.130 0.094 4.70
128 4 50 100 0.129 0.092 7.10
128 4 50 200 0.129 0.100 13.40
128 10 7 50 0.005 0.003 12.20
128 10 7 100 0.005 0.002 18.30
128 10 7 200 0.005 0.003 30.50
128 10 50 50 0.057 0.038 12.20
128 10 50 100 0.056 0.039 18.15
128 10 50 200 0.055 0.040 30.45

consisting of 4 and 10 projections, equally spaced in the interval [0◦, 180◦). In all
experiments 200 epochs, each consisting of 50,000 examples (full-pixel network)
or 2,300,000 examples (single-pixel network), were used for training. The number
of examples per epoch was chosen so that the training of the two networks took
the same amount of time for the case of 32× 32 images from the 7-class using 4
projections and 100 hidden nodes. The reason for using more examples to train
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the single-pixel network is that each example only contains information on a
single pixel in that case. When using a real measured dataset, a new training
example can be constructed from each pixel in the dataset. Experiments were
run on a single processor AMD Athlon 2.2 GHz PC. Runtimes in the tables
refer to the training times of the networks; once trained, reconstruction of a new
image is almost instantaneously. The learning rate α started at 0.5, and was
multiplied by 0.99 after each epoch.

Experiments with the full-image network show that the network is capable
of reconstructing small images with acceptable quality, e.g., 32 × 32 images.
This requires a reasonably large number of hidden nodes, e.g., 200, giving a
huge number of connections. For larger images however, quality drops down,
while computing time increases heavily (therefore, no experiments on 128 ×
128 images were performed). The results suggest that a further increase in the
number of hidden nodes might improve reconstruction quality. Figure 6 shows
some examples from a run of the full-image network for 10 projections on the
7-class for 64 × 64 images, using 100 hidden nodes. The average absolute pixel
error for this particular run (using 1,000,000 training examples) was 0.133 (gray
level reconstruction) and 0.102 (rounded reconstruction).

Fig. 6. From left to right: 64 × 64 original, gray level reconstruction and rounded recon-
struction using a full-imagenetwork,with absolute total errors 413.7 and 291, respectively

As another example, we show results for 64 × 64 images within the 50-class,
using 10 projections, and 100 hidden nodes, see Figure 7. The figure shows best
and worst reconstruction from a random set of 25 images from the 50-class.

Fig. 7. From left to right: two pairs of 64 × 64 original and rounded reconstruction
using a full-image network, with absolute total errors 235 and 310, respectively

Clearly, the results for the 50-class are not satisfactory. As we can see in
Table 2, single-pixel networks give much better reconstructions. We now consider
the single-pixel network exclusively.
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For all test cases in Table 2 the number of hidden nodes has hardly any
effect on the quality of the reconstructions. This suggests that a relatively small
number of hidden nodes suffices. Structural Risk Minimization might be used to
find a suitable size for the hidden layer. The 50-class is clearly more difficult to
learn than the 7-class.

Figure 8 compares the single-pixel network and filtered backprojection (FBP),
which is the fastest algorithm available for continuous tomography and the only
one that can be used for real-time reconstruction. The FBP reconstructions were
computed with the MATLAB Imaging Toolbox, using the Ram-Lak filter mul-
tiplied by a Hann window. The single-pixel reconstructions are clearly better.
Other discrete tomography algorithms might be capable of producing more ac-
curate reconstructions, perhaps even using fewer projections. However, to our
knowledge these algorithms are far too slow for real-time reconstruction.

Fig. 8. From top to bottom: three 128 × 128 images and their reconstructions using
filtered backprojection, rounded filtered backprojection and the single-pixel network,
respectively; top and middle image from the 7-class, with 10 projections; bottom image
from the 50-class, with 18 projections. Absolute 0–1 errors for the single-pixel network
reconstructions are 101, 84 and 153, respectively.

A natural question to ask is whether the network is capable of reconstructing
images outside the class it was trained on. Figure 9 shows the reconstruction
results of two such images, which are clearly not in any of the training classes.
Though not perfect, the results are surprisingly good.

Though results from [3] suggest that local nodes might give some improvement
for the full-pixel network (putting more complexity into the network), this was
only shown for relatively small images. In the current paper we have chosen
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Fig. 9. From left to right: two pairs of a 128 × 128 image and its reconstruction;
original images are not from the 7-class for which the single-pixel network was trained.
Absolute 0–1 errors are 189 and 291, respectively.

Fig. 10. From left to right: 32 × 32 original and reconstruction using a full-image
network and a single-pixel network, respectively; only one projection

for global nodes only, to allow for better comparison between full-image and
single-pixel networks.

Another issue with the full-image networks is that they are more inclined
to learn location dependent information, in particular when there are very few
projections. In that extraordinary case they behave quite differently from the
single-pixel networks. As an example, in Figure 10 we show some results for the
reconstruction of a 32× 32 image using only projection in one horizontal direc-
tion. The single-pixel reconstruction shows the density distribution of the 0–1
intensity in the projection direction, as any two pixels on the same horizontal
line cannot be distinguished by the network. The imaging area is clearly visible.

As mentioned before, the final 0–1 image is generated from the gray level re-
construction by simply rounding, giving a crisp figure, cf. Figure 6. Experiments
suggest that errors often occur for pixels that have a raw reconstruction value
near 0.5. It is possible to slightly improve the final reconstructed image by (for
those pixels, in parallel) trying both 0 and 1 as reconstruction value, meanwhile
comparing with the projections. Time restrictions clearly allow just a few pixels
to be toggled simultaneously. The quality of the reconstruction may also be im-
proved by introducing a stochastic model of the image class and computing an
image (in a postprocessing step) that corresponds well with both the output of
the neural netwerk and the model of the image class.

5 Conclusions

We conclude that the single-pixel network from Section 3.2 is capable of gen-
erating very good quality reconstructions of images from both classes, given
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sufficiently many projection directions. Once trained, such a network can com-
pute new reconstructions almost instantaneously, making it very suitable for
real-time reconstruction. The full-image networks from Section 3.1 perform less
satisfactory, but behave well if only very few projection directions are available
and the images are small.

Although we use the networks for the reconstruction of binary images, there is
no apparent reason why they could not be used for the reconstruction of images
that contain a larger set of gray values, or even a continuous range. We intend to
explore the possibility of using our neural network approach for continuous to-
mography in future research. For continuous tomography the size of the network
will increase significantly, as the number of projections that is required to ob-
tain a good reconstruction is typically much larger than for discrete tomography.
This will increase the training time and the reconstruction time after training.
For continuous tomography algorithms are already available that are both accu-
rate and fast. For discrete tomography, however, the current approach seems to
provide competitive algorithms, in particular for real-time reconstruction.
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Abstract. A reliable and robust verification approach using hand-print
features is presented in this paper. The characteristics of the proposed
approach are that two hand-base features are employed, the palm-print
and finger-print features. The system consists of two parts: a convenient
device for hand-print image acquisition and an efficient algorithm for fast
hand-print recognition. A robust and adaptive image coordinate system
is defined to facilitate feature extraction. Discrete wavelet zero-crossing
encoding scheme and 2-D Gabor filter is applied to hand-print feature
extraction and representation. The experimental results demonstrate the
effectiveness of the proposed system.

1 Introduction

Biometrics-based personal identification is regarded as an effective method for
automatically recognizing, with a high confidence, a person’s identity. Many bio-
metric verification technique dealing with various human physiological features
including facial images, hand geometry, fingerprint and iris have been proposed
to improve the security of personal verification. Each technique has its strengths
and limitations, and not being possible to determine which one is the best with-
out considering the application environment. Nevertheless, it is known that,
palm-print identification is regarded as one of the most promising and power-
ful means. Palm-print has received wide investigation from researchers lately
[1]-[7]. There are two popular approaches. One is based on the statistical fea-
tures, and works such as eighpalm [1], fisherpalms [2], Gabor filters [3], Fourier
Transform [4], and local energy [5] appear. While the other approach is based
on the structural features, the direction projection algorithm [6] and directional
line detectors [7] are employed.

In this paper, a novel hand-print verification method for personal identifica-
tion is presented. A hand-print identification approach, combining palm-print
and finger-print, is proposed. 1-D finger-print feature represented using wavelet
zero-crossing and palm-print features coded using wavelet zero-crossing and 2-D
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Gabor filter are applied. And the experimental results demonstrate the discrim-
inative characteristic of the extracted 1-D features.

The rest of this paper is organized as follows: Section 2 gives a brief descrip-
tion of our hand-print identification approach. A hand-print coding scheme is
described in Section 3. Model-based hand-print matching is detailed in Section
4. Section 5 reports our experimental results and presents the conclusions.

2 System Description

2.1 Hand-Print Images Acquisition

A feasible and convenient hand-print capture device is designed, a flatbed optical
scanner is used. To facilitate the later processing, a case and a cover are used
to form a semi-closed environment. It possesses the benefits of high availability,

Fig. 1. The original gray-level images of hand-print captured from four different per-
sons. (a1)−(a4) are captured from the same person. Similarly, (b1)−(b4), (c1)−(c4)
and (d1)−(d4) are captured from three different persons, respectively. (a1)−(b4) are
from female users, and (c1)−(d4)are from male.
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Fig. 2. The key-points detection and the hand-print feature generation

uniform and consistent good image quality, convenience and low cost. In our
work, the resolution of the scanner is set at 150 dpi. What the users need to do
is put their hands on the scanner platform. And the device avoid the limitation
of guidance pegs. Fig. 1 shows the hand-print images captured in our work.

2.2 Adaptive Coordinate System

In method above, no guidance pegs are fixed on the scanner’s platform and the
users are allowed to place their hands freely on the platform of the scanner during
capturing. Thus, hand images with different translation and rotations are pro-
duced. Therefore, it is important to define a robust coordinate system to provide
the foundation for both reliable feature extracting, pattern matching in a certain
degree of translation and rotation. To extract the central part of a palm-print, a
Polar coordinate system on the palm is constructed, particularly, the pole is the
palm center. (Fig. 2). The six major steps of coordinate system definition are:

Step 1. Obtain the hand contours f(x, y) using the border tracing algorithm, and
the coordinates of each traced pixel (bxi, byi)(i = 1, 2, ...) should be maintained
to represent the shape of the hand.
Step 2. Compute the coordinate (X0, Y0) of the centroid C of the hand shape,
which is invariant to translation, using the regular moment mpq [10].

mpq =
∫ ∫

xpyqf(x, y)dxdy, p, q = 0, 1, 2, ... . (1)

X0 =
m10

m00
, Y0 =

m01

m00
. (2)
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Fig. 3. Profile of Euclidean distance from hand contour pixels to the centroid C

Step 3. Transform the set of coordinates of contours of hand shape into the
profile of Euclidean distance di to the centroid C as shown in Fig. 3.

di =
√

(bxi −X0)2 + (byi − Y0)2 . (3)

Step 4. Find the local points with extremum, which are regarded as the corner
points.
Step 5. Line up P0 and Pc to find the coordinate of center of the palm (cx, cy)
based on the crucial points P3, P5 , and P7. Where, P0Pc is the perpendicular
and bisector line of P3P5, and P0Pc equals P3P7 in length (Fig. 2).
Step 6. Define a polar coordinate system based on pole Pc and polar axis PcP0.

Thus, to a specific sample image, an adaptive polar coordinate system is
constructed.

3 Hand-Print Representation

In order to use the hand-print pattern for identification, it is important to define
a representation that is well adaptive for extracting the hand-print information
content for hand-print signatures. In this way, we introduce an algorithm for
extracting unique features from hand-print signatures and representing these
features using discrete dyadic wavelet transform [11] which can reflect the posi-
tion and shape variance of signal and 2-D Gabor filter [3] which is an effective
tool for texture analysis.

3.1 Wavelet Transform and Zero-Crossing Representation

When a signal includes important structures that belong to different scales, it
is often helpful to reorganize the signal information into a set of ”detail com-
ponents” of varying size. The wavelet transform (WT) can decomposes a signal
into components that appear at different resolutions.
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Let S(x) ∈ L2(R) and W2j(S(x))j∈Z be the original signal and its dyadic
wavelet transform [9]. For constructing the zero-crossing representation, the
mother wavelet ψ(x) is defined here as the second derivative of a smoothing
function θx .

ψ(x) =
d2θ(x)
dx2 . (4)

Then, record the value of the integrals between any pair of consecutive zero-
crossings of W2j whose abscissae are (zn−1, zn) :

Then, record the value of the integrals between any pair of consecutive zero-
crossings of whose abscissae are :

en =
∫ zn

zn−1

W2jS(x)dx . (5)

For any function W2jS(x) , the position of the zero-crossings (zn)n∈Z and the
integral (en)n∈Z can be represented by a piece-wise constant function Z2jS(x)
defined by:

Z2jS(x) =
en

zn − zn−1
, x ∈ [zn−1, zn] . (6)

The sequence of piece-wise constant functions Zf = (Z2jS(x))j∈Z is referred to
as the zero-crossing representation of S(x) .

In order to stabilize the zero-crossings, consideration can be restricted to
dyadic scales, such as in the dyadic wavelet transform, instead of considering
the zero-crossing on a continuous scale. In practical implementations, the input
signal, in our case the hand-print signature is measured with both coarse and
finite resolution that imposes both coarse and finite scale when computing the
dyadic wavelet transform. Since information at fine resolution levels is strongly
affected by noise, a few low resolution levels, excluding the coarsest one will
be used in our work. Fig. 4 shows the wavelet transform and the zero-crossing
representation at a particular scale 2j .

3.2 2-D Gabor Filter

The general form of Gabor filter in spatial domain is :

G(x, y, θ, u, σ) =
1

2πσ2 exp−x2 + y2

2σ2 × exp2πi(ux cos θ + uy sin θ) , (7)

where i =
√
−1 , u is the frequency of the sinusoidal wave, θ controls the orien-

tation of the function and σ is the standard deviation of the Gaussian envelope.
It has been widely used in iris recognition [11] and in palm-print recognition [3].
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Fig. 4. Hand-print representation. (a)1-D Finger-print feature, (b)1-D palm-print
feature.

3.3 Finger-Print Feature Coding

The lines on the fingers are important information used to guide a selection of a
small set of similar candidates from the database, though is not discriminative
enough to differentiate persons. The finger-print feature is coded in a plane
rectangular coordinate system. The grey-level values on three center lines of three
middle fingers (as shown in Fig. 2) are recorded as the finger-print signature Sf .
In addition, we employ discrete wavelet zero-crossing representation to obtain
finger-print pattern Zff (Fig. 4a).

Zff = (Z2jSf (x))j∈Z . (8)

3.4 Palm-Print Representing

In studying the characteristics of the palm-print, it is merely required to deal
with samples of the grey-level profiles and use them to construct a representation.
The main idea of the proposed technique is to represent the 1-D features of the
palm-print by fine-to-coarse approximations at different resolution levels based
on the WT zero-crossing representation, and to code the 2-D palm-print features
by Gabor filter.

As mentioned before, a polar coordinate system with pole Pc and polar axis
PcP0 has been defined, which ensures the representation be translation- and
rotation-invariant. Thus, the palm-print signature Sp is the grey-level values on
the contours of concentric circles, which is centered at the pole Pc (the center of
the palm), with fixed radio and angular increments of 2π/Ls , where Ls is the
length of palm-print signature:

Sp = I(cx + r cos θ, cy + r sin θ), 0 ≤ θ ≤ 2π/Ls , (9)

where (cx, cy) is the coordinate of Pc. It should be pointed out that the start
point of the signal is always on the polar axis defined above. pattern.
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Fig. 5. The images cropped from original figures automatically to be used for 2-D
palm-print representation

Then the zero-crossing representation Zfp of palm-print feature is:

Zfp = (Z2jSp(x))j∈Z . (10)

Fig. 2 shows the locations of these concentric circles on the palm. The ex-
tracted data from one of the circles are shown in Fig. 4b as the palm-print
signature. Then its wavelet zero-crossing representation is obtained as the 1-D
palm-print.

As shown in Fig. 2, the circumscribing square ABCD of the maximal concen-
tric circle can be found, and AB is perpendicular to the polar axis PcP0. The
2-D palm images cropped from different individuals are shown in Fig. 5.

Then, according to formula (7) the 2-D palm-print feature coded by Gabor
filter is:

G(x, y, θ, u, σ) =
1

2πσ2 exp−x2 + y2

2σ2 × exp2πi(ux cos θ + uy sin θ) . (11)
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Fig. 6. The 2-D palm-print feature extracted using Gabor filter, from (a1), (b1), (c1),
(d1) in Fig. 5 respectively

In our study, three parameters are selected to be θ = 3π/4, u = 1.1, σ = 0.36,
and the Gabor representation are shown in Fig. 6.

4 Identification

Identification is a process of comparing a query image against candidate images.
In this section, we design a practical model-based technique to model the verifier
of a specific person. Matching algorithm using the correlation function is a com-
mon and practical technique utilized in many pattern recognition applications.
In the learning phase, the system will construct the model representations of the
hand-print signature, and in the classification phase, a query signature will be
matched with a specific model.

Considered a query signature q and candidate model t at a particular resolu-
tion level j of zero-crossing representation, in order to classify unknown signa-
tures, the dissimilarity functions have been used as follows:

d
(1)
j = min

m

N∑
n−1

|Zjq(n)− Zjt(n + m)|2, m ∈ [0, N − 1] , (12)

where N is the number of data points of the zero-crossing representation. In
addition, the overall dissimilarity value of the query signature and the candi-
date model over the resolution interval [K, L] will be the average of a certain
dissimilarity function calculated at each resolution level in this interval.

The application of Hamming distance based matching is to compute the dis-
similarity degree of 2-D palm-print features as follows.

d(2) =
1

M ×M

m∑
i=1

m∑
j=1

q(i, j)⊕ t(i, j)) , (13)

where ⊕ denotes Exclusive-OR, and M×M is the size of 2-D palm-print feature.
There are three phases in identification, which are detailed as follows:

First of all, construct the finger-print and palm-print representation of the
query sample.
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Coarse-level identification based on finger-print representation:

Step 1. Calculate the dissimilarity degree between the unknown and the candi-
date models in the database.
Step 2. Provide the candidates whose dissimilarity degree d

(1)
j is smaller than a

pre-defined threshold value for the palm-print matching.

Fine-level identification based on 1-D and 2-D palm-print features:

Step 3. Compare the sample with the candidates selected in Step 2 in terms of
1-D palm-print feature to calculate their dissimilarity degree, for the palm-print
pattern at a certain polar distance.
Step 4. Add the candidates whose dissimilarity degree d

(1)
j is smaller than a

pre-defined threshold to next level matching.
Step 5. Go to Step 3 and repeat the same procedure until all of the polar distances
are considered or only one candidate remained.
Step 6. Compare the sample with the candidates selected in Step 2 in terms of
2-D palm-print feature, and add the candidates whose dissimilarity degree d(2)

is smaller than a pre-defined threshold .
Step 7. Go to Step 6 and repeat the same procedure until all the candidates are
considered or only one candidate remained.

Confirmation

Step 8. The candidate sample selected not only from step 5 but also step 7 is
the final result.

5 Experimental Results

5.1 Hand-Print Database

We collect hand-print images from 50 individuals’ right hand using our hand-
print capture device. They are mainly from our students and teachers at the
age of younger than 30 years old and 27 people are male. In addition, we collect
the hand-print images at an interval of around 3 months. The captured images
are of size 1000× 1000, and resized to 500× 500. Thus, the images used in the
following experiments are 50× 500 of 150 dpi resolution.

5.2 Speed

In our research, a standard PC with Intel Pentium processor (2.40GHZ) and 256
MB random access memorizes is used. The system is implemented using Matlab
6.5.1. The execution time in different phases is shown in Table. 1. In fact, we
have not yet optimized the program code, so it is possible that the computation
time could be reduced.

5.3 Identification Results

As mentioned above, coarse to fine scheme is employed in identification phase.
This sub-section reports some experimental results obtained in each stages. In
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Table 1. The average execution time in the system (in seconds(s))

Preprocessing(s) Center-location(s) Feature extraction Matching

Finger-print 0.5920 0.0320 0.1021 0.0290
Palm-print 0.5920 0.0320 0.0940 0.0014

Table 2. Comparison of different palm-print matching methods

[8] [5] Ours

Database size 1500/50 200/ 500/50
Device freedom Pegs scanner Prints No pegs scanner
User comfort No Yes Yes
Feature extraction Wavelet/Pca Texture/ feature points WT zero-crossing/Gabor
Coarse matching Hand geometry (1-D) Texture energy (2-D) Finger-print (1-D)
Fine matching Palm-print (1-D) Feature points (1-D) Palm-print (1-D and 2-D)
Speed Good Limited Good
Accuracy FRR=5.3% FAR=3.7% 95% FAR=FRR=2.3%

coarse level matching, we reduce the false rejection rate (FRR) to zero in order
to increase the tolerance for similar features and the corresponding performance
using finger-print features is evaluated by eliminating rate which is 87% at av-
erage. The final confirmation in fine level is operated on the candidate patterns
selected from coarse level matching, the performance using 1-D zero-crossing fea-
tures and 2-D Gabor features is 3.7% and 3.5% respectively (the value where the
FAR and FRR are made equal by adjusting the decision threshold). Then, the
coarse-level and the fine-level verification modules were sequentially combined
to obtain the average performance of FAR=FRR=2.3%.

5.4 Conclusions

In this paper, a novel approach is presented to authenticate individuals by us-
ing hand-print features. The hand images of low resolution are captured using
a scanner without any fixed peg. This mechanism is very suitable and comfort-
able for all users. Compared with the current existing techniques for palm-print
identification, our approach integrates finger-print and palm-print features rep-
resented by wavelet zero-crossing and 2-D Gabor. Table. 2 summarizes the major
characteristics of our method and the other techniques [8] [5]. The experimental
results presented above provide the basis for the further development of a fully
automated hand-based security system.
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Abstract. Since 1987 it is known that the Euclidean shortest path prob-
lem is NP-hard. However, if the 3D world is subdivided into cubes, all of
the same size, defining obstacles or possible spaces to move in, then the
Euclidean shortest path problem has a linear-time solution, if all spaces
to move in form a simple cube-curve. The shortest path through a sim-
ple cube-curve in the orthogonal 3D grid is a minimum-length polygonal
curve (MLP for short). So far only one general and linear (only with re-
spect to measured run times) algorithm, called the rubberband algorithm,
was known for an approximative calculation of an MLP. The algorithm
is basically defined by moves of vertices along critical edges (i.e., edges
in three cubes of the given cube-curve). A proof, that this algorithm al-
ways converges to the correct MLP, and if so, then always (provable) in
linear time, was still an open problem so far (the authors had success-
fully treated only a very special case of simple cube-curves before). In
a previous paper, the authors also showed that the original rubberband
algorithm required a (minor) correction.

This paper finally answers the open problem: by a further modification
of the corrected rubberband algorithm, it turns into a provable linear-
time algorithm for calculating the MLP of any simple cube-curve.

The paper also presents an alternative provable linear-time algorithm
for the same task, which is based on moving vertices within faces of
cubes.

For a disticntion, we call the modified original algorithm now the edge-
based rubberband algorithm, and the second algorithm is the face-based
rubberband algorithm; the time complexity of both is in O(m), where m
is the number of critical edges of the given simple cube-curve.

1 Introduction

A cube-curve g is a loop of face-connected grid cubes in the 3D orthogonal grid;
the union g of those cubes defines the tube of g. The paper discusses Euclidean
shortest paths in such tubes, which are defined by minimum-length polygonal
(MLP) curves (see Figure 1).

The Euclidean shortest path problem is as follows: Given a Euclidean space
which contains (closed) polyhedral obstacles; compute a path which (i) connects
two given points in the space, (ii) does not intersect the interior of any obstacle,
and (iii) is of minimum Euclidean length. This problem (starting with dimension
2) is known to be NP-hard [2].

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 415–429, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A cuboidal world: seven robots at the lower left corner, and the bold curve is
an initial guess for a 3D walk (or flight) through the given loop of shaded cubes. The
length of the 3D walk needs to be minimized, which defines the MLP.

There are algorithms solving the approximate Euclidean shortest path prob-
lem in 3D in polynomial time, see [3]. Shortest paths or path planning in todays
3D robotics (see, for example, [15], or the annual ICRA conferences in general)
seems to be dominated by heuristics rather than by general geometric algorithms.
If a cuboidal world can be assumed then this paper provides two general and
linear-time shortest path algorithms.

3D MLP calculations generalize MLP computations in 2D; see, for example,
[8, 17] for theoretical results and [5, 21] for 2D robotics scenarios. Shortest curve
calculations in image analysis also use graph metrics instead of the Euclidean
metric; see, for example, [20].

Interest in 3D MLPs was also raised by the issue of multigrid-convergent
length estimation for digitized curves. The length of a simple cube-curve in 3D
Euclidean space can be defined by that of the MLP; see [18, 19], which can be
characterized as a ‘global approach’. A ‘local approach’ for 3D length estimation,
allowing only weighted steps within a restricted neighborhood, was considered
in [7]. Alternatively to the MLP, the length of 3D digital curves can also be
measured (within time, linear in the number of grid points on the curve) based
on DSS-approximations [4].

The computation of 3D MLPs was first time published in [1], proposing a
‘rubberband’ algorithm1. This iterative algorithm was experimentally tested and
showed linear run-time behavior. It also was correct for all the tested inputs

1 Not to be confused with a 2D image segmentation algorithm of the same name [16].
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(where correctness was tested manually!). However, in this publication, no math-
ematical proof was given for linear run time or general correctness (i.e., that its
solution iterates, for any simple cube-curve, to the MLP). This original rubber-
band algorithm is also published in the monograph [10]. Recent applications of
this algorithm are in 3D medical imaging; see, for example, [6, 22].

The authors approached the correctness and linearity problem of the rubber-
band algorithm along the following steps:

[11] only considered a very special class of simple cube-curves and developed a
provable correct MLP algorithm for this class. The main idea was to decompose
a cube-curve of that class into arcs at “end angles” (see Definition 3 in [11]),
that means, the cube-curves have to have end-angles, that the algorithm can be
applied.

[12] constructed an example of a simple cube-curve whose MLP does not have
any of its vertices at a corner of a grid cube. It followed that any of cube-curve
with this property does not have any end angle, and this means that we cannot
use the MLP algorithm as proposed in [11]. This was the basic importance of
the result in [12]: we showed the existence of cube-curves which require further
algorithmic studies.

[14] showed that the original rubberband algorithm requires a modification
(in its Option 3) to guarantee that calculated curves are always contained in the
tube g. This corrected rubberband algorithm achieves (as the original rubberband
algorithm) minimization of length by moving vertices along critical edges (i.e.,
grid edges incident with three cubes of the given simple cube-curve).

This paper now (finally) extends the corrected rubberband algorithm into
the edge-based rubberband algorithm and shows, that it is correct for any (!)
simple cube-curve. The paper also presents a totally new algorithm, the face-
based rubberband algorithm, and shows that it is also correct for any simple
cube-curve. We prove that both, the edge-based and the face-based rubberband
algorithm, have time complexity in O(m) time, where m is the number of critical
edges in the given simple cube-curve.

Further (say, ‘more elegant’) algorithms for calculating MLPs in simple cube-
curves may exist; this way this article may be just the starting point for more
detailed performance evaluations. Also, the given modifications of the original
rubberband algorithm might be not always necessary, or the simplest ones.

The paper is organized as follows: Section 2 describes the concepts used in this
paper. Section 3 provides mathematical fundamentals for our two algorithms.
Section 4 describes the edge-based and face-based rubberband algorithm, and
discusses their time complexity. Section 5 presents an example illustrating how
the edge-based and face-based rubberband algorithms are converging to identical
results (i.e., to the MLP ). Section 6 gives our conclusions.

2 Definitions

Following [10], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of a
grid cube with faces parallel to the coordinate planes, with edges of length 1,
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and vertices at its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n + 1), if ci

⋂
ck �= φ then either |i− k| = 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci

⋂
ck is a vertex.

A tube g is the union of all cubes contained in a cube-curve g. A tube is a
compact set in R3; its frontier defines a polyhedron. A curve in R3 is complete
in g iff it has a nonempty intersection with every cube contained in g. Following
[18, 19], we define:

Definition 1. A minimum-length curve of a simple cube-curve g is a shortest
simple curve P which is contained and complete in tube g. The length L(g) of g
is defined to be the length L(P ).

It turns out that such a shortest curve P is always a polygonal curve, called
MLP for short; it is uniquely defined if the cube-curve is not contained in a
single layer of cubes of the 3D grid (see [18, 19]). If it is contained in just one
layer then the MLP is uniquely defined up to a translation orthogonal to that
layer. We speak about the MLP of a simple cube-curve.

Fig. 2. A simple cube-curve and its MLP (see also Table 1)

Figure 2 shows a simple-cube curve and (as bold polygonal curve) its MLP;
grid edges containing vertices of the MLP are also shown in bold.

Definition 2. A critical edge of a cube-curve g is a grid edge which is incident
with exactly three different cubes contained in g. If e is a critical edge of g and l
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Table 1. Coordinates of endpoints of critical edges shown in Figure 2 (also used later
in an experiment)

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 -0.5 1 -0.5 -0.5 1 0.5
e1 -0.5 2 -0.5 -0.5 2 0.5
e2 -1.5 3 -0.5 -1.5 3 0.5
e3 -2.5 3 -0.5 -2.5 4 -0.5
e4 -3.5 3 -0.5 -3.5 4 -0.5
e5 -3.5 3 -1.5 -3.5 4 -1.5
e6 -4.5 3 -1.5 -4.5 4 -1.5
e7 -5.5 4 -2.5 -5.5 4 -1.5
e8 -6.5 4 -2.5 -5.5 4 -2.5
e9 -6.5 4 -2.5 -6.5 5 -2.5
e10 -6.5 4 -3.5 -6.5 5 -3.5
e11 -7.5 4 -3.5 -7.5 5 -3.5
e12 -7.5 4 -4.5 -7.5 5 -4.5
e13 -8.5 4 -5.5 -7.5 4 -5.5
e14 -8.5 4 -6.5 -8.5 4 -5.5
e15 -8.5 3 -6.5 -8.5 3 -5.5
e16 -9.5 -1 -5.5 -8.5 -1 -5.5
e17 -8.5 -2 -0.5 -8.5 -1 -0.5
e18 -0.5 -1 -0.5 -0.5 -1 0.5

is a straight line such that e ⊂ l, then l is called a critical line of e in g or critical
line for short. If f is a face of a cube in g and one of f ’s edges is a critical edge
e in g then f is called a critical face of e in g or critical face for short.

Definition 3. A simple cube-curve g is called first-class iff each critical edge of
g contains exactly one vertex of the MLP of g.

Figure 3 shows a first-class simple cube-curve. The cube-curve shown in Figure 2
is not first-class because there are no vertices of the MLP on the following
critical edges: e1, e4, e5, e6, e8, e9, e10, e11 and e14 (will be later shown in the
experiments, summarized in Table 4).

Unfortunately, we need also a few rather technical definitions:

Definition 4. Let e be a critical edge of a simple cube-curve g and f1, f2 be
two critical faces of e in g. Let c1, c2 be the centers of f1, f2 respectively. Then
a polygonal curve can go in the direction from c1 to c2, or from c2 to c1, to visit
all cubes in g such that each cube is visited exactly once. If e is on the left of
line segment c1c2, then the orientation from c1 to c2 is called counter-clockwise
orientation of g. f1 is called the first critical face of e in g. If e is on the right of
line segment c1c2, then the direction from c1 to c2 is called clockwise orientation
of g.

Figure 2 shows all critical edges (e0, e1, e2, . . ., e18) and their first critical faces
(f0, f1, f2, . . ., f18) of a simple cube-curve g.
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Fig. 3. A first-class simple cube-curve

Definition 5. A minimum-length pseudo polygon of a simple cube-curve g, de-
noted by MLPP , is a shortest curve P which is contained and complete in tube
g such that each vertex of P is on the first critical face of a critical edge in g.

From results in [19] it follows that the MLPP of a simple cube-curve g is unique.
The number of vertices of an MLPP is the number of all critical edges of g.
p40p41 · · · p418 (see Table 3) is the MLPP of g as shown in Figure 2.

Let fi1, fi2 be two critical faces of ei in g, i = 1, 2. Let ci1, ci2 be the centers
of fi1, fi2 respectively, for i = 1, 2. Obviousely, the counter-clockwise orientation
of g defined by c11, c12 is identical to the one defined by c21, c22.

Definition 6. Let e0, e1, e2, . . . em and em+1 be all consecutive critical edges
of g in the counter-clockwise orientation of g. Let fi be the first critical face
of ei in g, and pi be a point on fi, where i = 0, 1, 2, . . ., m or m + 1. Then
the polygonal curve p0p1 · · · pmpm+1 is called an approximate minimum-length
pseudo polygon of g, denoted by AMLPP .

The polygonal curve p10p11 · · · p118 (see Table 2) is an AMLPP of g shown in
Figure 2.

Definition 7. Let p1, p2 and p3 be three consecutive vertices of an AMLPP of
a simple cube-curve g. If p1, p2 and p3 are colinear, then p2 is called a trivial
vertex of the AMLPP of g. p2 is called a non-trivial vertex of the AMLPP of
g if it is not a trivial vertex of that AMLPP of g.

A simple cube-arc is an alternating sequence a = (f0, c0, f1, c1, . . . , fk, ck, fk+1)
of faces fi and cubes ci with fk+1 �= f0, denoted by a = (f0, f1, . . . , fk+1) or
a(f0, fk+1) for short, which is a consecutive part of a simple cube-curve. A subarc
of an arc a = (f0, f1, . . . , fk+1) is an arc (fi, fi+1, . . . , fj), where 0 ≤ i ≤ j ≤ k.

Definition 8. Let a polygonal curve P = p0p1 · · · pmpm+1 be an AMLPP of g
and pi ∈ fi, where fi is a critical face of g, i = 0, 1, 2, . . ., m or m + 1. A
cube-arc ρ = (fi, fi+1, . . . , fj) is called
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– a (2,3)-cube-arc with respect to P if each vertex pk is identical to pk−1 or
pk+1, where k = i +1, . . ., j - 1, 2

– a maximal (2,3)-cube-arc with respect to P if it is a (2,3)-cube-arc and pi is
not identical to pi+1 and pi−1, and pj is not identical to pj−1 and pj+1,

– a 3-cube-arc unit with respect to P if it is a (2,3)-cube-arc such that j = i
+ 4 (mod m + 2) and pi+1, pi+2, pi+3 are identical.

– a 2-cube-arc with respect to P if it is a (2,3)-cube-arc and no three consec-
utive vertices of P on a are identical,

– a maximal 2-cube-arc with respect to P if it is both a maximal (2,3)-cube-arc
and a 2-cube-arc as well,

– a 2-cube-arc unit with respect to P if it is a 2-cube-arc such that j = i + 3
(mod m + 2) and pi+1 is identical to pi+2,

– a regular cube-arc unit with respect to P if a = (fi, fi+1, fj) such that pi is
not identical to pi+1 and pj is not identical to pi+1,

– a cube-arc unit with respect to P if a is a regular cube-arc unit, 2-cube-arc
unit or 3-cube-arc unit, or

– a regular cube-arc with respect to P if no two consecutive vertices of P on
a are identical.

Let P18i = pi0p11 · · · p118 (see Table 2), where i = 1, 2, 3, 4. Then there are four
maximal 2-cube-arcs with respect to P18i : (pi18 , pi0 , pi1 , pi2), (pi2 , pi3 , pi4 , pi5),
(pi7 , pi8 , pi9 , pi10) and (pi12 , pi13 , pi14 , pi15) in total, where i = 1, 2, 3. They are
also maximal 2-cube-arcs and 2-cube-arc units with respect to P18i , where i =
1, 2, 3. There are no 3-cube-arc units with respect to P18i , where i = 1, 2, 3.
(pi1 , pi2 , pi3) is a regular cube-arc unit with respect to P18i and (pi4 , pi5 , pi6 ,
pi7 , pi8) is a regular cube-arc with respect to P18i , where i = 1, 2, 3.

There are three maximal 2-cube-arcs with respect to P184 : (p418 , p40 , p41 , p42),
(p42 , p43 , p44 , p45), and (p412 , p413 , p414 , p415) in total. They are also maximal
2-cube-arcs and 2-cube-arc units with respect to P184 . (p46 , p47 , p48 , p49 , p410 ,
p411 , p412) is a (2,3)-cube-arc with respect to P184 . (p46 , p47 , p48 , p49 , p410) is a
unique 3-cube-arc unit with respect to P184 .

Definition 9. Let ρ = (fi, fi+1, . . . , fj) be a simple cube-arc and pk ∈ fk, where
k = i, j. A minimum-length arc with respect to pi and pj of ρ, denoted by
MLA(pi, pj), is a shortest arc (from pi to pj) which is contained and complete
in ρ such that each vertex of MLA(pi, pj) is on the first critical face of a critical
edge in ρ.

3 Basics

We provide mathematical fundamentals to be used in the following. We start
with citing a theorem from [9]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.
2 Note that it is impossible that four consecutive vertices of P on ρ are identical.
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Let de(p, q) be the Euclidean distance between points p and q.
Let e0, e1, e2, . . ., em and em+1 be m+2 consecutive critical edges in a simple

cube-curve g, and let l0, l1, l2, . . ., lm and lm+1 be the corresponding critical
lines. We express a point pi(ti) = (xi +kxiti, yi +kyiti, zi +kziti) on li in general
form, with ti ∈ R, where i = 0, 1, . . ., or m + 1.

Let ei, ej , and ek be three (not necessarily consecutive) critical edges in a
simple cube-curve.

Lemma 1. ([11], Lemma 1) Let dj(ti, tj , tk) = de(pi, pj) + de(pj , pk). It follows
that ∂2dj

∂tj
2 > 0.

By elementary geometry, we also have:

Lemma 2. Let P be a point in .ABC such that P is not on any of the three
line segments AB, BC and CA. Then dPA + dPB < dCA + dCB.

The following Lemma is straightforward but useful in our description of the
edge-based rubberband algorithm in Section 4.

Lemma 3. Let pi and pi+1 be two consecutive vertices of an AMLPP of g. If
pi is identical to pi+1 then pi and pi+1 are on a critical edge of g.

Lemma 4. ([13], Lemma 4) The number of MLPP s of a first-class simple cube-
curve g is finite.

Let pi ∈ fi, where fi is the first critical face of ei in g, i = 0, 1, 2, . . ., m or
m + 1. Let P be a polygonal curve p0p1 · · · pmpm+1 .

Corollary 1. The number of MLPP s of a simple cube-curve g is finite.

Proof. If there is a vertex pi ∈ fi such that pi is not on an edge of fi (i.e, pi is
a trivial vertex of MLPP ), then pi−1, pi and pi+1 are colinear. In this case, pi

can be ignored because it is defined by pi−1 and pi+1. Therefore, without loss
generality, we can assume that each pi is on one edge of fi, where i = 0, 1, 2,
. . ., m or m+1. In this case, the proof of this lemma is exactly the same as that
of Lemma 4. 	


Fig. 4. Illustration for the proof of Lemma 2
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Lemma 5. ([13], Lemma 14) Each first-class simple cube-curve g has a unique
MLPP .

Analogous to the proof of Lemma 5, we also have

Lemma 6. Each simple cube-curve g has a unique MLPP .

Theorem 2. P is an MLPP of g iff for each cube-arc unit a = (fi, fi+1, . . . , fj)
with respect to P , the arc (pi, pi+1, . . . , pj) is equal to MLA(pi, pj).

Proof. The necessarity is straightforward. The sufficiency is by Lemma 6. 	


Analogously to the proof of Theorem 1 we also obtain

Lemma 7. If a vertex p of an AMLPP of g is on a first critical face f but not
on any edge of it, then p is a trivial vertex of the AMLPP .

4 Algorithms

We present two algorithms which are both linear-time and provable convergent
to the MLP of a simple cube-curve. We start to describe some useful procedures
which will be used in those two algorithms (as subroutines).

4.1 Procedures

Given a critical e in g, and two points p1 and p3 in g, by Procedure 1, we can
find a unique point p2 in f such that dp1p2 + dp3p2 = min{dp1p + dp3p : p ∈ e}.
Procedure 1
Let the two endpoints of e be a and b. Then by Lemma 6 of [13], p2 = a +
t ∗ (b − a), where t = −(A1B2 + A2B1)/(B2 + B1), A1, A2, B1 and B2 are
functions of the coordinates of p1, p3, a and b.

Given a critical face f of a critical edge in g, and two points p1 and p3 in g, by
Procedure 2, we can find a point p2 in f such that dp1p2 + dp3p2 = min{dp1p +
dp3p : p ∈ f}.
Procedure 2
Case 1. p1p3 and f are on the same plane. Case 1.1. p1p3 ∩ f �= φ. In this case,
p1p3 ∩ f is a line segment. Let p2 be the end point of this segment such that it
is close to p1. Case 1.2. p1p3 ∩ f = φ. By Lemmas 2, p2 must be on the edges of
f . By Lemmas 1, p2 must be uniquely on one of the edges of f . Apply Procedure
1 on the four edges of f , denoted by e1, e2, e3 and e4, we get p2i such that dp1p2i

+ dp3p2i = min{dp1p + dp3p : p ∈ ei}, where i = 1, 2, 3, 4. Then we can find a
point p2 such that dp1p2 + dp3p2 = min{dp1p2i + dp3p2i : i = 1, 2, 3, 4.}.
Case 2. p1p3 and f are not on the same plane. Case 2.1. p1p3 ∩ f �= φ. It follows
that p1p3 ∩ f is a unique point. Let p2 be this point. Case 2.2. p1p3 ∩ f = φ.
In this case, p2 can be found exactly the same way as in Case 1.2.
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The following procedure is used to convert an MLPP into an MLP .

Procedure 3
Given a polygonal curve p0p1 · · · pmpm+1 and three pointers addressing vertices
at positions i - 1, i, and i + 1 in this curve. Delete pi if pi−1, pi and pi+1 are
colinear. Next, the subsequence (pi−1, pi, pi+1) is replaced in the curve by (pi−1,
pi+1). Then, continue with vertices (pi−1, pi+1, pi+2) until i + 2 is m + 1.

Let pi ∈ li ⊂ fi ,. . ., pj ∈ lj ⊂ fj be some consecutive vertices of the AMLPP of g,
where fi, . . ., fj are some consecutive critical faces of g, and lk is a line segment on
fk, k = i, i+1, . . ., j. Let ε = 10−10 (this value defines the accuracy of the output
of this algorithm). We can apply the method of Option 3 of rubberband algorithm
(page 967, [1], and see correction in [14]) on cube-arc ρ = (fi, fi+1, . . . , fj) to
find an approximate MLA(pi, pj) as follows:

Procedure 4

1. Calculate the length of arc pipi+1 · · · pj−1pj , denoted by L1;
2. Let k = i+1;
3. Take two points pk−1 ∈ fk−1 and pk+1 ∈ fk+1;
4. For line segment lk on a critical face fk in g, and points pk−1 and pk+1 on

lk−1 and lk+1, respectively, apply Procedure 1 to find a point qk ∈ lk such
that dpk−1qk

+ dpk+1qk
= min{dpk−1p + dpk+1p : p ∈ lk}. Let pk = qk.

5. k = k + 1;
6. If k = j, calculate the length of arc pipi+1 · · · pj−1pj , denoted by L2.
7. If L1 - L2 > ε, let L1 = L2 and go to Step 2. Otherwise, output the arc

pipi+1 · · · pj−1pj .

Let e0, e1, e2, . . . em and em+1 be all consecutive critical edges of g in the
counter-clockwise orientation of g. Let fi be the first critical face of ei in g, and
ci be the center of fi, where i = 0, 1, 2, . . ., m or m + 1. All indices of points,
edges and faces are taken mod m + 2. Let ε = 10−10. By Procedure 5, we can
compute an AMLPP of g and its length.

Procedure 5

1. Let P be a polygonal curve p0p1 · · · pmpm+1;
2. Calculate the length of P , denoted by L1;
3. Let i = 0;
4. Take two points pi−1 ∈ fi−1 and pi+1 ∈ fi+1;
5. For the critical face fi of an critical edge ei in g, and points pi−1 and pi+1 in

fi−1 and fi+1, respectively, apply Procedure 2 to find a point qi in fi such
that dpi−1qi + dpi+1qi = min{dpi−1p + dpi+1p : p ∈ fi}. Let pi = qi.

6. i = i + 1;
7. If i = m + 3, calculate the length of the polygonal curve p0p1 · · · pmpm+1,

denoted by L2.
8. If L1 - L2 > ε, let L1 = L2 and go to Step 2. Otherwise, output the polygonal

curve p0p1 · · · pmpm+1 as an AMLPP of g and its length L2.
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Given an n-cube-arc unit (fi, . . ., fj) with respect to a polygonal curve P of
g, where n = 2 or 3. Let pi ∈ fi and pj ∈ fj . We can find an MLA(pi, pj) by
the following procedure.

Procedure 6

1. Compute the set E = {e: e is an edge of fk, k = i +1, . . ., j - 1};
2. Let I = 1 and L = 100;
3. Compute the set SE = {S: S ⊆ E and |S| = I };
4. Go through each S ∈ SE, input pi, e1, . . ., el, pj to Procedure 4 to compute

an approximate MLA(pi, pj) such that it has minimal length with respect to
all S ∈ SE, denoted by AMLA(I, SE), where ek ∈ S, k = 1, 2 , . . ., l and l
= |S|. If the length of AMLA(I, SE) < L, let MLA(pi, pj) = AMLA(I, SE)
and L = the length of AMLA(I, SE);

5. Let I = I +1.
6. If I < n then go to Step 3. Otherwise, stop.

Lemma 8. For each cube-arc unit ρ = (fi, fi+1, . . . , fj) with respect to P ,
MLA(pi, pj) can be computed in O(1).

Proof. If ρ is a regular cube-arc unit, then MLA(pi, pj) can be found by Proce-
dure 2, which has complexity O(1). Otherwise, ρ is an n-cube-arc unit, where n
= 2 or 3. Then, by Lemma 7, MLA(pi, pj) can be found by Procedure 6, which
can be computed in O(1) because n = 2 or 3. 	


4.2 Algorithms

The original rubberband algorithm was published in [1] and slightly corrected
in [14]. We now extend this corrected rubberband algorithm into the following
(provable correct) algorithm.

The Edge-Based Rubberband Algorithm

1. Let P0 be the polygon obtained by the (corrected) rubberband algorithm;
2. Find a point pi ∈ fi such that pi is the intersection point of an edge of P0

with fi, where i = 0, 1, 2, . . ., m or m + 1. Let P be a polygonal curve
p0p1 · · · pmpm+1;

3. Apply Procedure 6 to all cube-arc units of P . If for each cube-arc unit ρ =
(fi, fi+1, . . . , fj) with respect to P , the arc (pi, pi+1, . . . , pj) = MLA(pi, pj),
then P is the MLPP of g (by Theorem 2), and go to Step 4. Otherwise, go
to Step 3.

4. Apply Procedure 3 to obtain the final MLP .

The Face-Based Rubberband Algorithm

1. Take a point pi ∈ fi, where i = 0, 1, 2, . . ., m or m + 1;
2. Apply Procedure 5 to find an AMLPP of g, denoted by P ;
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3. Find all maximal 2-cube-arcs with respect to P , apply Procedure 4 to up-
date the vertices of the AMLPP , which are on one of the 2-cube-arcs. (By
Lemma 3, the input line segments of Procedure 4 are critical edges.) Repeat
this step until the length of the updated AMLPP is sufficiently accurate (
i.e., previous length minus current length < ε);

4. Apply Procedure 5 to update the current AMLPP ;
5. Find all maximal (2,3)-cube-arcs with respect to the current P , apply Pro-

cedure 4 to update the vertices of the current AMLPP , which are on one
of the (2,3)-cube-arcs. The input line segments of Procedure 4 can be found
such that they are on the critical face and parallel or perpendicular to the
critical edge of the face. Repeat this step until the length of the updated
AMLPP is sufficiently accurate;

6. Apply Procedure 5 to update the current AMLPP .
7. Apply Procedure 6 to all cube-arc units of P . If for each cube-arc unit ρ =

(fi, fi+1, . . . , fj) with respect to P , the arc (pi, pi+1, . . . , pj) = MLA(pi, pj),
then P is the MLPP of g (by Theorem 2), and go to Step 8. Otherwise, go
to Step 3.

8. Apply Procedure 3 to obtain the final MLP .

4.3 Computational Complexity

It is obvious that Procedures 1 and 2 can be computed in O(1), and Procedure
3 can be computed in O(m), where m is the number of critical edges of g. The

Table 2. Comparison of results of steps of the face-based rubberband algorithm. p10 ,
p11 , . . ., p118 are the results of Step 2, and p20 , p21 , . . ., p218 are the results of Step 3.

p1i x1i y1i z1i p2i x2i y2i z2i

p10 -0.5 1 0 p20 -0.5 1 -0.21
p11 -0.5 1 0 p21 -0.5 1 -0.21
p12 -1.5 3 -0.34 p22 -1.5 3 -0.34
p13 -2.5 3.29 -0.5 p23 -2.5 3.23 -0.5
p14 -2.5 3.29 -0.5 p24 -2.5 3.23 -0.5
p15 -3.5 3.5 -1.11 p25 -3.5 3.45 -1.11
p16 -4.15 3.64 -1.5 p26 -4.15 3.64 -1.5
p17 -5.5 3.94 -2.32 p27 -5.5 3.94 -2.32
p18 -5.8 4 -2.5 p28 -5.69 4 -2.5
p19 -5.8 4 -2.5 p29 -5.69 4 -2.5
p110 -6.5 4 -3.32 p210 -6.5 4 -3.32
p111 -6.65 4 -3.5 p211 -6.65 4 -3.5
p112 -7.5 4 -4.5 p212 -7.5 4 -4.5
p113 -7.95 4 -5.5 p213 -8 4 -5.5
p114 -7.95 4 -5.5 p214 -8 4 -5.5
p115 -8.5 3 -5.5 p215 -8.5 3 -5.5
p116 -8.5 -1 -5.5 p216 -8.5 -1 -5.5
p117 -8.5 -1 -0.5 p217 -8.5 -1 -0.5
p118 -0.5 -1 -0.1 p218 -0.5 -1 -0.1
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Table 3. Comparison of results of steps of the face-based rubberband algorithm. p30 ,
p31 , . . ., p318 are the results of Step 4, and p40 , p41 , . . ., p418 are the results of Step 7.

p3i x3i y3i z3i p4i x4i y4i z4i

p30 -0.5 1 -0.21 p40 -0.5 1 -0.5
p31 -0.5 1 -0.21 p41 -0.5 1 -0.5
p32 -1.5 3 -0.41 p42 -1.5 3 -0.5
p33 -2.5 3.23 -0.5 p43 -2.5 3.22 -0.5
p34 -2.5 3.23 -0.5 p44 -2.5 3.22 -0.5
p35 -3.5 3.47 -1.13 p45 -3.5 3.48 -1.17
p36 -4.09 3.62 -1.5 p46 -4 3.61 -1.5
p37 -5.5 3.95 -2.38 p47 -5.5 4 -2.5
p38 -5.69 4 -2.5 p48 -5.5 4 -2.5
p39 -5.69 4 -2.5 p49 -5.5 4 -2.5
p310 -6.5 4 -3.4 p410 -6.5 4 -3.5
p311 -6.59 4 -3.5 p411 -6.5 4 -3.5
p312 -7.5 4 -4.5 p412 -7.5 4 -4.5
p313 -8 4 -5.5 p413 -8 4 -5.5
p314 -8 4 -5.5 p414 -8 4 -5.5
p315 -8.5 3 -5.5 p415 -8.5 3 -5.5
p316 -8.5 -1 -5.5 p416 -8.5 -1 -5.5
p317 -8.5 -1 -0.5 p417 -8.5 -1 -0.5
p318 -0.5 -1 -0.27 p418 -0.5 -1 -0.5

main operation of Procedure 4 is Step 4, which can be computed in O(n), where
n is the number of points of the arc. Analogously, Procedure 5 can be computed
in O(m), where m is the number of points of the polygonal curve.

[14] has proved that the (corrected) rubberband algorithm can be computed
in O(m), where m is the number of critical edges of g. The main additional oper-
ation of the edge-based rubberband algorithm is Step 3 which can be computed
in O(m), where m is the number of critical edges of g (by Lemma 8). It follows
that the edge-based rubberband algorithm can be computed in O(m), where m
is the number of critical edges of g.

For the face-based rubberband algorithm, Step 1 is trivial; Steps 2, 4, 6 have
the same complexity as Procedure 5. Step 3 can be computed in N1(ε)O(m),
where N1(ε) depends on the accuracy ε, where m is the number of points of
the polygonal curve. Analogously, Step 5 can be computed in N2(ε)O(m), where
N2(ε) depends on the accuracy ε (Note that there is a constant number of dif-
ferent combinations of input line segments of Procedure 4). By Lemma 8, Step 7
can be computed in O(m), where m is the number of critical edges of g. There-
fore, the face-based rubberband algorithm can be computed in O(m), where m
is the number of critical edges of g.

5 An Example

We approximate the MLP of the simple cube-curve g, shown in Figure 2. Table 1
lists all coordinates of critical edges of g. We take the centers of the first critical
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Table 4. Results of the edge-based rubberband algorithm. p40 , p41 , . . ., p418 are the
vertices of the MLP of the simple cube-curve shown in Figure 2.

finalpi xi yi zi

p40 -0.5 1 -0.5
p42 -1.5 3 -0.5
p43 -2.5 3.22 -0.5
p47 -5.5 4 -2.5
p412 -7.5 4 -4.5
p413 -8 4 -5.5
p415 -8.5 3 -5.5
p416 -8.5 -1 -5.5
p417 -8.5 -1 -0.5
p418 -0.5 -1 -0.5

Table 5. Lengths of calculated curves at different steps of the face-based rubberband
algorithm, compared with the length calculated by the edge-based rubberband algorithm

step initial 2 3 4 8 edge-based rubberband algorithm
length 35.22 31.11 31.08 31.06 31.01 31.01

faces of g to produce an initial polygonal curve for the face-based rubberband
algorithm. The updated polygonal curves are shown in Tables 3 2 and 3. We take
the middle points of each critical edge of g for the initialization of the polygonal
curve of the (corrected) rubberband algorithm. The resulting polygon is shown
in Table 4. Table 5 shows that the edge-based and face-based rubberband
algorithms converge to the same MLP of g.

6 Conclusions

We have presented an edge-based and a face-based rubberband algorithm and
have shown that both are provable correct for any simple cube-curve. We also
have proved that their time complexity is O(m), where m is the number of
critical edges of g. The presented algorithms followed the basic outline of the
original rubberband algorithm [1].
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Abstract. We introduce a data processing pipeline designed to gener-
ate registration markers from range scan data. This approach uses cur-
vature maps and histogram-templates to identify local surface features.
The noise associated with real-world scans is addressed using a (com-
mon) Gauss filter and expansion-segmentation. Experimental results are
presented for data from The Digital Michelangelo Project.

1 Introduction

There are a number of challenges associated with 3D range scan digitizations
(or 3D surface reconstructions in general) of real-world objects. At first the
captured data should be accurate, and second the (in general) various data
sets need to be unified into one consistent surface model. In general, only a
partial section of an object surface is acquired with each scan, and a number
of scans need to be aligned and subsequently merged together. When each scan
is taken from a different uncalibrated viewpoint, aligning the scans can be time
consuming [11, 15]. There exists a number of algorithms [2, 3, 14], including the
widely used Iterative Closest Point algorithm (ICP), that can refine a given
rough alignment of scan pairs, two at a time. Initial matching and alignment of
multiple (possible many) 3D scans is still largely an open problem. Since range
scans normally already each have the same scaling, alignment to some fixed
reference points involves a linear transformation consisting of a 3D translation
and a 3D rotation. Exact alignment is in practice not possible due to the noise in
real-world data. Input data uncertainty is also present when surface patches have
been generated via less reliable computer vision 3D surface recovery techniques
such as photometric stereo or structure from motion (see, e.g., [10] for 3D surface
recovery techniques).

Early work used 2D features, such as contour based grouping using relaxation
methods [13]. For the visualization of implicit surfaces we cite [1]. More recent
work in [5] uses (what they refer to) a “curvature map method” to characterize
a local signature for every point in a scan. This can be seen as a continuation of
surface characterizations by Gauss maps in differential geometry, or by extended
Gaussian images (see, e.g., [17]) in computer vision.

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 430–444, 2006.
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In this paper we propose a matching and initial alignment approach based on
identifying a small number of registration markers. The registration markers that
we generate are based on local surface curvature features. An advantage to using
surface curvature is that it is rotation and translation invariant. However, one
problem that needs to be overcome is that curvature, being a second derivative
property [4, 9], is very sensitive to local noise.

The sequence of steps in the processing pipeline that we use for surface marker
generation is to (i) calculate (noisy) curvatures from the point data, (ii) filter
and segment the curvature data, and then (iii) identify and mark local features
using the curvature data. We illustrate the application of this sequence of steps
to multiple scans by an example. For each step in this processing pipeline, we
select and define appropriate methods and algorithms.

As a particular difficulty, in practice, scan overlap regions can be small relative
to the scan size, and thus our registration markers need to be smaller than the
scan overlap. We keep, from the outset, the demands of extensive real-world
datasets in mind. Finally we demonstrate our approach on data from The Digital
Michelangelo Project [11, 12].

2 Curvature and Curvature Estimators

Studies on surface curvature can be traced back to original work by Gauss [6];
see books on differential geometry (e.g., [4]) or a discussion of surface curvature
in the context of 3D image analysis in [9]. The surface curvature of continuous
smooth surfaces is a well-defined property, however, when working with point
set data, triangulated surfaces or 3D digital images, the surface curvature can
only be estimated. There are a number of different existing curvature estimators
for such situations [9]. In this paper, we use an uncompensated orthogonal cut
method to calculate a mean curvature as described in [16].

The curvature estimation approach that we use, for each scan point, is to
firstly identify the four nearest neighbor points associated with two orthogonal
planar cuts. Next, for each of the two cuts, calculate an estimated signed planar
line curvature. Finally, take the mean of these two curvatures as an estimate of
the mean surface curvature.

With reference to Figure 1, the planar line curvature (in each planar cut) is
estimated as the incremental angular advance divided by the incremental change
in length

κ =
α

(d1 + d2)/2
(1)

where d1 is the length of the line segment from p1 to p2 and d2 is the length of
the line segment from p2 to p3. Consequently, the curvature can be calculated
as

κ =
(

2
||v1||+ ||v2||

)
cos−1

(
v1 · v2

||v1|| ||v2||

)
(2)

where v1 = p2 − p1 and v2 = p3 − p2.
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Fig. 1. Planar line curvature estimation

In practice this results in a (noisy) mean curvature value associated with each
3D scan point. We also tested further curvature measures (as described in [9]);
however, the mean curvature estimate gives results that correspond to actual im-
age appearance of the object and thus is the most relevant feature for our purposes.

3 Curvature Maps, Filtering and Segmentation

In this section, we convert the mean curvature data at surface scan points into a
(2D) curvature map, which is an array of the same dimension (ignoring squash-
ing) as the given 2D scan array, where values are mean curvatures at scan points
[16]. There are a number of advantages when using such curvature maps, includ-
ing the possibility of visualization and processing using 2D image processing
techniques. Pixels in 2D images are, by standard convention, stored in 2D ar-
rays and we apply adjacency definitions based on the related orthogonal grid. If
the 3D point data has been acquired in a 3D orthogonal grid, then the curvature
mapping is straightforward (defined by orthogonal cuts parallel to coordinate
planes, see [7]).

Data acquired in the Michelangelo project uses a hexagonal adjacency (i.e., 6-
adjacency in the image plane) in a virtual projection plane, defined by the order
and geometry of scan acquisition. In such a case we can use a special squashed
dot mapping [16].

Mappings for both cases, either orthogonal or hexagonal, are shown in
Figure 2, with the reverse mapping as shown in Figure 3. The second map-
ping has the expense of quadrupling the number of pixels. (We do not discuss
further scan acquisition geometries in this paper).

Fig. 2. Mappings of orthogonal (on the left) or hexagonal (on the right) grids into an
orthogonal grid
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Fig. 3. Reverse mappings of orthogonal (on the left) or squashed hexagonal (on the
right) grids into the original grid

We then apply a 2D Gaussian filter to the curvature map to reduce noise.
As an illustration of this effectiveness of this technique, consider noisy data
from a sampled planar surface. The noisy data points will (incorrectly) exhibit
a symmetrical distribution of positive and negative curvatures centered around
zero, with the average value being (correctly) zero. The Gaussian filter performs
exactly the desired spatial averaging. Note that we are addressing the noisy data
problem in 2D rather than in the original 3D domain. The terms in an n1 × n2
Gaussian convolution kernel centered at (0, 0) are determined (as usual) using
the formula

h(n1, n2) =
hg(n1, n2)∑
n1

∑
n2

hg

with hg(n1, n2) = e−(n2
1+n2

2)/2σ2

where σ is effectively (in our case) a smoothing area factor.
The filtering process correctly reduces the extremes in the distribution of

mean curvature values. The resulting mean curvatures are more representative
of the actual surface curvature, which is concentrated in a much smaller range
around zero. Now, in order to reveal previously obscured detail, we perform a
linear expansion centered around this zero-curvature region of interest.

Multi-threshold segmentation of the expanded data is then performed to par-
tition the data into a number of curvature bins. This data reduction enables
the approach presented in the next section. An example of how we perform a
combined expansion-segmentation operation is given in the experiment section
of this paper.

Also, in preparation for local feature identification, we reverse the 3D to a
2D curvature mapping process, by selecting pixels, depending on the original
adjacency as illustrated in Figure 3, and update the mean curvature associated
with each of the 3D scan points with its filtered and expansion-segmented value.

4 Local Feature Identification

We use histogram-templates to search through the filtered and segmented curva-
ture data for local surface features. A histogram-template consists of (i) a sliding
window that is segmented into subsets and (ii) a set of histograms, one for each
subset. Each histogram accumulates curvature counts into a number of curva-
ture bins. The number of histogram curvature bins is assigned to be exactly the
same as the number of segmentation curvature bins in the previous section.
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Fig. 4. Subsets for the definition of a histogram template (here: four histograms for
indicated positions) for a surface pit; the individual histograms are not shown in this
figure

Note that, even though we are now working within the 3D dataset, we do the
histogram-template search in a 2D fashion using the 2D orthogonal grid.

The histogram-templates are carefully designed (at the given scale of scan
data) to characterize local surface features; a multi-scale approach would be
relevant if uncertainty increases for the given scale of scan data. An example
histogram template is shown in Figure 4.

In the example, the histogram-template is designed to characterize pit-like
surface defects which have radial symmetry. The template indicates that four
histograms, indexed zero through three, are tabulated for each selected 3D data
point 1. Histogram two is the center region which should contain negative cur-
vature values, histogram one is the pit perimeter which should contain positive
curvature values, histogram zero is a guard ring which should contain low curva-
ture magnitude values, and histogram three is a “don’t care” region. Individual
histogram bins are assigned such that first bin accumulates the count of largest
negative magnitude curvatures and the last bin accumulates the count of largest
positive magnitude curvatures.

The histogram-template is used to search through the curvature values looking
for the desired feature match.

5 Performance Evaluation

The value of algorithm performance evaluation in the field of computer vision
has been discussed in [8]. A possible starting point for performance evaluation is
1 Excluding those close to the array’s border.
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to use a data set having known indisputable characteristics. These indisputable
characteristics can be used to establish what is referred to as a ground truth.

One way to insure the existence of ground truth in a data set is to model and
generate synthetic data having known properties. In our case we have chosen to
synthesize data using a hexagonal adjacency orthogonal projection grid. Because
curvature is scaling dependent, we needed to establish numerical distance values
for our grid. Figure 5 shows the values that we used2. We will refer to the
illustrated vertical dimension as the resolution of the scan.

0.39

0.58

Fig. 5. Scanning grid

The synthetic objects that we “scanned” consisted of a planar surfaces having
spherical indentations and spherical bumps. The indentation model is shown in
Figure 6. Note that the sphere cuts into the plane by a distance of one half the
radius. Spherical bumps are modeled similarly.

r

Fig. 6. The indentation model

5.1 Synthetic Data

5.2 Performance Measures

We evaluated our curvature estimator in the presence of varying levels of Gaus-
sian noise. We defined noise level by a scale factor relative to the scan resolution.
A noise scale factor of one means that the noise sigma value is equal to the resolu-
tion. A factor of two means that the noise sigma value is equal to the resolution
dived by two, and so on. Of course, the actual curvature of a planar surface
is zero and the curvature at any point on a sphere is a constant equal to the
reciprocal of its radius.
2 These values closely match those used in the real-world data that we explore later

in this paper.
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Fig. 7. Curvature estimation: no noise, sf:16, sf:8, sf:4, sf:2, sf:1

Figure 7 illustrates the performance of the 2-cut curvature estimator in the
presence of varying levels of noise. Positive curvature is shading coded as white.
Zero curvature is shading coded as medium gray and maximum negative curva-
ture is encoded as black. Thus, bumps are shown in the top half of the figure
and indentations in the bottom half of the figure.

Fig. 8. Filtered and segmented: no noise, sf:16, sf:8, sf:4, sf:2, sf:1

Figure 8 illustrates the performance of the filtering and segmentation process,
again in the presence of varying noise levels.

5.3 Feature Identification Evaluation

We applied the complete feature identification process to a scan of a more com-
prehensive synthetic object. The object has sixteen indentations associated with
spheres having radii which vary from 0.1 to 2.0. Figure 9 illustrates the results
pictorially. Identified features are each marked with five red pixels. Note that
because the feature identification process searches through (nearly) every image
pixel, the same feature is usually hit and marked more than once.

The results from Figure 9 are summarized in Table 1. We can make a number
of observations. Increasing noise levels tend to cause the process to associate
a smaller size to the feature. The fixed size matching template does in fact
identify a range of indentation feature sizes. There are no false positives, even
in the presence of rather high noise.
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Fig. 9. Feature identification results: synthetic data and six noise levels

Table 1. Summary of feature marker hits from Figure 9

noise factor marker hits: small radius —————— large radius indentation features
none 3 9 10 8 4 3 2 1 8
16 9 10 12 8 6 5 3 3 8
8 3 9 10 12 10 5 5 3 2 9
4 7 10 10 8 12 6 6 5 3 9
2 2 8 10 13 3 9 7 11 2 2 10
1 1 3 9 12 2 4 6

6 Experiments and the David Dataset

We have also tested our approach using the extensive David dataset from the
University of Stanford Digital Michelangelo Project [11, 12]. The David data
set consists of 1.93 giga-bytes of data which has been made available in nine

Fig. 10. The scanner acquiring 3D data [11] using structured lighting (known as light
plane projection [10])
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Fig. 11. Points from two scans (“blue” and “red scan”) rendered with lighting

compressed files. The uncompressed data set represents approximately 1.1 billion
3D space points. There are a total of 6,540 raw scan files collected into 515
groupings. Each scan was acquired over a fixed width of approximately 140mm

Fig. 12. The scanner’s imaging volume [11]
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and a height of generally no larger than 600mm. The David statue is over five
meters tall.

The scanner is shown acquiring data in Figure 10, and a rendered image
of the points from two adjacent overlapping scans is shown in Figure 11. It is
not uncommon for a scan to contain upwards of 800,000 points. The scanning
system’s physical geometry is illustrated in Figure 12. The cyan colored boxes
represent the volume regions associated with possible individual scans.

The University of Stanford group responsible for the project undertook a
rather time consuming initial manual alignment of the individual scans. They
reported both on this process and the need for an automated global match-
ing method[12]. The surface identification markers described in this paper are
candidates for a feature based global matching technique.

6.1 Data Structure

Each scan is acquired in a regular sweeping pattern of scan lines, left-to-right,
and top-to-bottom. Each scan line consists of a zig-zag pattern of 486 points as
shown in Figure 13. The scanning pattern results in a hexagonal grid. Of course,
the scanner does not find the reflective surface of an object at all points, and this
is illustrated, for example, in Figure 13 where the white dots represent the surface
of an object and the darker dots mean that nothing was found in that direction.

The regular scanning pattern suggests 6-adjacency (based on the hexagonal
grid) shown in Figure 14. A ‘-1’ entry in the array means that no surface point was
found. A non-negative integer entry is an index value into another array of surface
point data including its 3D location and a not yet calculated mean curvature value.

Fig. 13. Top left corner of the scanning sequence

Fig. 14. The hexagonal grid of a scan
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6.2 Curvature Estimators, Filtering and Segmentation

Since the 3D data points have 6-adjacency within each scan, the nearest neighbor
orthogonal planar cut points 3 are selected as shown in Figure 15 (dark squares),
and the squashed dot mapping is used as discussed above.

Fig. 15. 6-adjacency and orthogonal cut points
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Fig. 16. Noisy mean curvature map (on the left) and its histogram

An eight-bit precision mean curvature map of a section of a scan of David’s
face is shown in Figure 16 along with a histogram of that entire scan. Posi-
tive surface curvature is defined as that which bends away from the scanning
source or, equivalently in this case, as that curvature associated with viewing a
convex hull from the outside. Maximum positive curvature is shading coded as
white. Zero curvature is shading coded as medium gray and maximum negative
curvature is encoded as black. Surface detail in this image is obscured by noise.

For Gaussian filtering of the David data, a sigma of four is large enough to
smooth noise but not so large as to remove surface detail. A Gaussian filtered
version of the previous curvature map is shown in Figure 17. Note that there
3 Note that, particularly in the case of data having 6-adjacency, a three-cut mean

calculation is also possible. Experiments using this more expensive method gave
similar results to those presented in this paper.
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Fig. 17. Processed map (on the left) and used Gaussian filter
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Fig. 18. Processed map: multi-level segmentation

is now not much visible detail and that the levels are now mostly concentrated
around the middle medium gray as shown in the associated histogram.

As mentioned earlier in this paper, we need to expand the middle histogram
region to recover detail. Because of the eight-bit precision used, the middle re-
gion contains only a small discrete range of integer values. We perform a linear
expansion around the center (medium gray) and clip the results (to full-black
and full-white). The result, in this example, is an image containing pixels having
only eleven different integer intensity values.

In general, this limited precision expansion will always also simultaneously
multi-level segment the data into a limited number of segmentation bins.

An expansion segmented version of the previous mean curvature map is shown
in Figure 18. Curvature detail is now readily apparent. The histogram shows the
range of eleven segmentation values.
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Fig. 19. Every-other-row pixel subset for feature searching (shown as white)

We now reverse the squashed dot mapping process, by selecting pixels as
illustrated in Figure 3, and update the mean curvature associated with each 3D
point with its filtered and expansion-segmented value.

6.3 Feature Identification

There are numerous small (approximately 2-4mm diameter) surface ‘pits’, due
to weathering and abuse, found scattered on the surface of the David statue4

that are ideal candidates for surface markers. The pit-like features certainly meet
the requirement of being smaller than scan overlap regions. One of these pits is
clearly visible in Figure 18. A pit can be characterized by its center of negative
curvature and a rim of positive curvature.

Experimental comparison showed that it was possible to reduce the histogram
template search time by employing data thinning, as illustrated in Figure 19,
where only every other row is examined5. This thinning also results in pixels
defined in an orthogonal grid, which, rather conveniently, means that we can use
a rectangular search template.

We used precisely the histogram template given earlier as an example in
Figure 4 to search through the curvature data for pit surface features. In this
particular experiment, the non-square dimensions of the template compensate
for the unequal aspect ratio of the rectangular data pixel subset. In fact, this
template maps back to a (nearly) square region in the 3D dataset.

The identification test for pit features that we used with the David dataset is
a minimum of twelve black (fully negative curvature) values in the center region,
a minimum of four white, or nearly white (very positive curvature) values in the
rim, a maximum of four black or nearly black (very negative curvature) values in
the guard ring, and a maximum of two white (fully positive curvature) values in
the guard ring. This identification test was able to identify pit surface features
as reported in the next section.

6.4 Some Feature Mapping Results

We illustrate the application of the example histogram template to four different,
but overlapping, scans of David. The results are shown in Figure 20. The first
4 This can be verified by rendering images of triangle mesh versions of the scan data

with specular reflections and appropriately placed lighting.
5 The sampling frequency appears to be at least double that of the Nyquist frequency

associated with the smallest underlying surface features, and thus, there is no aliasing
associated with data thinning by a factor of two.
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and third scans where acquired from the same view-point. The second and forth
scans where acquired from different view-points. Note that there is at least one
feature that links each scan to at least two other scans. For example, there is a
feature just below the left eye that links scan one to each of scans two and three.

Comparison, by the authors, with visual observations of the 3D triangle mesh
models mentioned previously, confirms that common features in different scans
have been successfully identified and marked using our processing pipeline. Be-
cause these registration markers are associated with the 3D dataset, additional
3D marker characteristics, such as the size of the pits, can be calculated.

Fig. 20. Marker results

7 Conclusions

We have demonstrated the possibility and effectiveness of data smoothing after
a shading encoded mean curvature calculation on noisy data. In general, this ap-
proach reduces complexity in that it moves the smoothing process from the 3D do-
main into the 2D domain. We have also demonstrated the effectiveness of using 2D
(rotation invariant) radially symmetric matching templates to identify 3D surface
features.

Further work is anticipated to include additional marker characterizations
and using curvature based registration markers to automatically generate an
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initial alignment of diverse overlapping scans of the same object. Results using
different curvature measures (besides the mean curvature) will be published in
a forthcoming report.
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Abstract. We present a 2D matching method based on corresponding
shape outlines. By working in discrete space, our study is done by us-
ing discrete operators and avoids interpolations and approximations. To
encode shapes, we polygonalize their contours and we proceed by the
extraction of intrinsic properties namely length, curvature and normal
vectors. We optimize then a measure of similarity controlled by weight
parameters over a dynamic programming process. The approach is not
sensitive to sampling errors and affine transformations. We validate our
approach on simple and complex forms, we made tests also to recognize
shapes. The weight parameters could be interactively modified by an
end-user to customize the matching.

1 Introduction

The object matching is of great interest in computer vision operation like regis-
tration, segmentation and shape recognition. The methods applied can be further
classified as boundary, region and model based methods. Any of these applica-
tions may require correspondence between pairs of regions, curves or points. In
our case, we deal with 2D shapes and we try to match their contours. The curve-
based methods suffer from problems related to sampling, affine transformations
and shapes’ articulations. A good shape description and a pre-processing stage
could solve some of these problems.

We present in this paper a curve-based matching method based on finding an
optimized correspondence. This optimization is done by minimizing a similarity
function over the whole set of points. The criteria are based on distance, curva-
ture and normals properties and are controlled by weight parameters. The order
in which points are treated is taken into account in the optimization process. We
describe first of all, in section 3 a pre-processing stage to encode our contours and
compute our discrete parameters. In section 4 we optimize the matching with
a dynamic programming approach. Results and shape recognition extension are
given in section 5. But first of all, let us give a little state of the art about shape
matching in the following section.

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 445–452, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 State of the Art

Many approaches are proposed in literature. Deformation-based methods try to
find a mapping between two curves that minimizes an elastic function [You98].
Other approaches choose to match shapes basing on their medial axis or skele-
tons [ZY96]. Some of them try to resolve a part of the problem. For Instance
Wolfson tries to find the longest common sub-curve of two curves to assemble
them like in a puzzle [Wol90]. This approach was motivated by the algorithm of
Schwartz and Sharir [SS87] consisting of finding the translation and the rotation
of a sub-curve giving its best least squares fit to a longer curve.

More general techniques use geodesic paths [CH98]. The curves are defined
as a source area S and destination area D. The matching is done through the
computation of paths connecting these two areas. Geodesic distance maps are
computed for each area in order to quantify the similarity. Parametric solutions
could also resolve matching problem [WT04]. Authors propose an approach
which combines the use of B-spline and Curvature Scale Space (CSS) match-
ing. It generates the CSS image of the smoothed B-Spline of the original curve
and then matches an input image with the generated model following the CSS
matching algorithm [MaK96].The CSS matching technique suffers from noise
sensibility due to curvature computation. A similar approach was also used
in [AG03]. Authors try, starting from a given pair of curves (C1, C2), to find
a re-parametrization such that the pair is better aligned with respect to a cost
function of curvature conservative variational energy.

In [SKKC00], computing a curve atlas, based on deriving a correspondence
between two curves, is studied. The optimal correspondence is found by a dy-
namic programming method based on a measure of similarity between the in-
trinsic properties of curves. Our method can be considered as a discrete version
of this approach but with more robust description of curves by avoiding an uni-
form subdivision of contours, we do not interpolate nor approximate. We have
furthermore the use of normals criteria and the possibility to optimize results in-
teractively if the end-user approves the need by introducing a control coefficient
for each parameter. Let us now explain it more precisely.

3 Pre-processing

Let us consider two binary figures F and F ′, each of them contains only one
connected component, without hole, called shape in the following and denoted
respectively by f and f ′. We proceed by a registration and scaling process. f
and f ′ are aligned according to their maximal elongation (principal component
associated to the first eigen vector) with maximum interior intersection. Let
us now consider the respective borders of each shape, that is to say the set
of points that belongs to the shape and that have at least one 4−background
neighbor. Just remark that we consider then 8−connected borders. Let us denote
respectively by C and C′ the borders of f and f ′. We suppose that the border
C contains N pixels and the border C′ contains M pixels with N not necessary
equals to M .
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In order to accelerate the process, we do not consider all the points of the
borders but just some of them: the points which are the extremities of the seg-
ments obtained by polygonalization. We explain more precisely this extraction
in the following subsection. We also precise in this subsection the parameters we
compute for each point.

The subsection 3.2 deals with the weights we affect to each parameter and
how we combine them to obtain a cost for each association between one point
of C and one of C′.

3.1 Discrete Parameters

Just remark that we could have consider all the points of the two borders and
compute parameters for each of them. But, in order to be more efficient, we
first make a polygonalization of the borders and compute parameters on the
extremities of the segments extracted from the polygonalization. More precisely,
we use Debled’s linear polygonalization algorithm[DR94] which divides C and C′

into digital line segments. Just remark that, as C and C′ are closed curves, the
number of obtained segments depends on the starting point and we could have
used Feschet and Tougne’s algorithm [FT05] in order to minimize the number of
obtained segments. But, as this number only differs by one, we thought it was
negligible in our context. Let us denote by Pi with i from 0 to n the extremities
of segments extracted from C, remark that P0 = Pn, and P ′

j with j from 0 to m
the extremities of segments extracted from C′ with P ′

0 = P ′
m. On each point Pi

and P ′
j we compute parameters that will help to associate a cost to each pair of

points (Pi, P
′
j).

The first parameter that seems obvious to compute is the distance between
the points of one pair. So, we consider the Euclidean distance and we compute :

d(Pi, P
′
j) =

√
(xPi − xP ′

j
)2 + (yPi − yP ′

j
)2

Remark that this parameter may dominate the other parameters because
intuitively we would like to associate nearest points. Nevertheless, this parameter
is not sufficient because sometimes it will be better to associate points that are
not the nearest but those which are not too moved away and such that the
borders on these points are locally similar.

So, the two other parameters we compute compare locally the two borders
C and C′. One measures the difference between the curvatures in the points Pi

and P ′
j and the second compares the normal vectors.

We obtain very easily the curvature on each point Pi (respectively P ′
j) by

considering the points Pi−1 and Pi+1 (respectively P ′
j−1 and P ′

j+1). As a matter
of fact, we compute the radius RPi (respectively RP ′

j
) of the osculator circle

C(Pi) (respectively C(P ′
j)) going through the three points Pi, Pi−1 and Pi+1

(respectively P ′
j , P ′

j−1 and P ′
j+1). We associate to the point Pi (respectively P ′

j)
the curvature κPi = 1

RPi
(respectively κP ′

j
= 1

RP ′
j

).

Just remark that if we have considered all the points of the borders, we could
have used an efficient and similar algorithm to compute the curvature in each
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point. As a matter of fact, we could have compute for each point its right tangent
and its left tangent and compute the circle going through the point and its semi-
tangent extremities. Such computation has a complexity in O(n) [Tou04] but
obviously the number of computations would have be more important.

So, to the pair of points (Pi, P
′
j) we associate the difference of curvatures :

κ(Pi, P
′
j) =| κPi − κP ′

j
|

Fig. 1. Discrete parameters computation: polygonalization, curvature and normals.
Figures a and b illustrate the polygonalization process. Figures c and d show oscula-
tor circles used in figure e to compute curvature=1/R and extract the normal as an
extension of the line handling the radius.

In order to avoid to associate points that would be near, with a quasi-similar
local curvature but with inverse curve orientation, we compute a last parameter
that compares the normal vectors at the points Pi and P ′

j . Such vectors are
also obtained very easily. The direction of the normal vector associated to the
point Pi (respectively P ′

j) is given by the direction of the line going through
the center c(Pi) (respectively c(P ′

j)) of the circle C(Pi) (respectively C(P ′
j)) and

the point Pi (respectively P ′
j). Its orientation is given by the orientation of the

vector
−−−−→
c(Pi)Pi (respectively

−−−−−→
c(P ′

j)P
′
j). Hence, we associate to the pair of points

(Pi, P
′
j), the angle made by the two normal vectors :

α(Pi, P
′
j) =

̂−−−−→
c(Pi)Pi,

−−−−−→
c(P ′

j)P
′
j

Figure 1 illustrates the different parameters computation. Let us now explain
how we combine such parameters in order to obtain a cost associated to each
pair (Pi, P

′
j).

3.2 Parameters Weighting

We suppose, at this stage, that for each point Pi, P ′
j we know its curvature, its

curvilinear coordinates and its normal. We will now quantify curves matching.
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For this reason, lets consider a mapping M of the two curves:

M : [0, n] −→ [0, m], M(Pi) = P ′
j .

Our goal is to minimize a measure of similarity on this mapping. Lets define
this measure by φ[M ] =

∑
F (Pi, P

′
j) where F is similarity cost function. F is

computed by considering the distance parameter between each pair of points, the
curvature difference and respective normal vectors angle. The question is how
to try all combinations of matching points and determine the best one. This
is ensured by dynamic programming process. Knowing that we registrated our
shapes before, it would be easy to locate and predict the best matching between
points of each curve. We just have to precise how should F be quantified:

F [0, n]× [0, m] −→ R+

F (Pi, P
′
j) = d(Pi, P

′
j) + κ(Pi, P

′
j) + α(Pi, P

′
j)

Note that in order to make more robust and efficient optimization, we chose to
add to coefficients k1 and k2 ε[0, 1] in order to control the influence of d(Pi, P

′
j)

and κ(Pi, P
′
j) respectively in the optimization. By considering k1 = 1 − k2:

F (Pi, P
′
j) = k1d(Pi, P

′
j)+k2κ(Pi, P

′
j)+α(Pi, P

′
j). This can give more flexibility to

the end-user to control matching especially if there are shapes disturbed or rather
different. The normal vectors angle criteria should have a constant influence in
order to make convergence fast. It should be noticed also that all parameters
are normalized in order to be in the same scale of comparison. They can also
be determined automatically: we have just to vary them in a complementary
way such that we obtain the minimum of the cost function. It is a standard
minimization process.

4 Matching Optimization

Before proceeding with the optimization process, based on dynamic program-
ming, lets define the structure which will be used. This structure, as shown
in figure 2 is a grid of intersections expressing the cost F (Pi, P

′
j). So we can

consider that our grid is n × m elements where each intersection of the axes
joining Pi and P ′

j is the cost of matching Pi to P ′
j . This structure contains

twice the same matrix for circular matching reason. When we suppose for ex-
ample that P0 is matched to P ′

0, we update all other costs according to this
choice. It is important to notice that the global cost function is monotic in the
sense that we could not match point Pi+1 with P ′

j−1 if we matched before Pi

to P ′
j as illustrated in the right part of figure 2. That is to say that the up-

date for a cost between a pair of points (Pi, P
′
j) could only be done by adding

min(cost(Pi−1, P
′
j−1), cost(Pi−1, P

′
j), cost(Pi, P

′
j−1)). This is the application of

the direct acyclic graph (DAG). The idea is to find a path which permits the
matching of all chosen points of polygonalization with the minimum cost [DAG].
With this technique, we could find a combination that minimize the whole cost
of matching. The combination could match one point of a curve to more than
one in the other curve and vice versa. The minimal cost path determines the
pairs of points to be matched while going up and picking the positions i and j.
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Fig. 2. Matching optimization based on directed acyclic graph

5 Results and Application to Shape Recognition

We made tests on simple and complex shapes. For each pair of shapes, we pro-
ceed by a registration process, then we compute the intrinsic properties and
finally we search the best path candidate to join all points forming the cor-
responding contours. We can modify the final result, by modifying the associ-
ated weighted parameters to curvature and curvilinear coordinates as shown in
figure 3. The complexity is linear for both the registration and parameters com-
puting processes contrary to the optimization stage which presents a logarithmic
complexity. Figure 3(left) illustrates the result we obtain on the examples of

Fig. 3. Simple and complex shape matching
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figure 1 and a more complex shape matching is shown in figure 3(right). We
should obtain best results if we take into account noise factor specially in the
polygonalization process [RRR03]. The final result could be a pre-processing
stage to 2D atlas construction.

We extended our tests to shape recognition application. Starting for a given
form and a database of different shapes, we try to measure the similarity be-
tween the input shape and the base. This measure is based on the same intrinsic
properties: curvature, euclidian distance and normals angle. The shape which
has the maximum (the minimum) value of resemblance (difference) is the best
candidate. Figure 4 shows a comparative study between different shapes and
gives the final choice for each input image. The last row of the figure shows the
best candidate selected, the result is satisfying.

Fig. 4. Shape recognition: best candidate selection
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6 Conclusion and Future Works

We have presented a matching method between two 2D curves. Our approach is
totally discrete and could be extended to shape recognition by a good parame-
trization of the optimization process. It should be noticed also that the method is
independent of scaling and initial positions of shapes, but it depends on a course of
contours in the same direction. Noise also could be a source of inefficiency specially
in polygonalization, but this can be avoided by fuzzy polygonalization [RRR03].
The proposed approach could be a pre-processing stage to compute 2D statistical
atlases based on principal component analysis [CT01]. Extension to 3D is under
study in spite of problem of landmarks order that will not be determined in a sim-
ilar way between shapes.
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Abstract. This paper aims to introduce a class of non-linear diffusion
filterings based on deep structure analysis in scale space. In linear scale
space, the trajectory of extrema is called stationary curves. This curves
provides deep structure analysis and hierarchical expression of signals.
The motion of extrema in linear scale space is controlled by a function of
the higher derivatives of the signals. We introduce a non-linear diffusion
filterings based on the absolute values of second derivative of signals.

1 Introduction

In this paper, we show an algorithm for the construction of hierarchical tree of
an image using diffusion filtering. The singular points in the scale space derived
by diffusion filtering define the deep structures. This structure yields hierarchical
structure of images.

The deep structures of the linear scale space are defined as the trajectories of
extrema of topographic map of diffused images derived from diffusion filtering
based on a linear diffusion equation. These trajectories are called critical curves
[5] and stationary-curves [2, 3, 4] in the context of linear scale space analysis.
Singular points on the curves derive a collection of feature points for the expres-
sion of hierarchical properties of images. In this paper, we call these trajectories
stationary-curves. In the linear scale space, the deep structures provide features
for the hierarchical description of images, since the linear scale space analysis
was first introduced for extraction of the hierarchy of dominant parts as the
attention field [2, 3, 4, 6].

Non-linear diffusion filtering performs region segmentation employing the ex-
traction of boundaries of segments. The segmented regions yield features for the
hierarchical expression of these extracted regions in an image if we extract re-
gions for many scales in the scale space. Existing non-linear diffusion filtering
control smoothness of images using the gradient map of an image, since the gra-
dient map indicates boundaries of regions as the steepest points at appropriate
neighbourhoods in an image for each scale. However, the deep structures of the
non-linear scale space have not analysed yet. In this paper, we first show prop-
erties of 1D deep structure of the non-linear scale space. Constructing 1D basic
theory, we discuss properties of 2D deep structure of the non-linear scale space.

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 453–465, 2006.
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2 1D Filtering

2.1 Linear Diffusion Filtering

On the real line R, the linear scale-space transform for function f(x), such that

f(x, τ) =
1

(
√

2πτ )

∫ ∞

−∞
f(y) exp(− (x− y)2

2τ
)dy, (1)

defines the general function of function f(x). Therefore, function f(x, τ) is de-
fined in R ×R+ [1]. The function f(x, τ) is the solution of the linear diffusion
equation

∂

∂τ
f(x, τ) =

∂2

∂x2 f(x, τ), τ > 0, f(x, 0) = f(x). (2)

The solution of eq. (2) is formally expressed

f(x, τ) = exp(τ
d2

dx2 )f(x) (3)

using the theory of Lie group. Stationary points for the topographical maps in
the scale space [1, 2] are defined as the solutions of the equation.

2.2 Non-linear Diffusion Filtering

On the real line R, we deal with the operations in the form

∂

∂τ
f(x, τ) =

∂

∂x

(
g(x)

∂

∂x
f(x, τ)

)
, f(x, 0) = f(x), (4)

for a positive function g(x), which is the diffusivity of the diffusion equation.
The diffusivity of the Perona-Malik type [7] and the Weickert type [8] are, for

a non-zero constant λ,

g(|fx|) =
1

1 +
(

|fx|
λ

)2 , (5)

and

g(|fx|) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if |fx| = 0

1− exp

⎛⎜⎝−3.31488(
|fx|
λ

)4

⎞⎟⎠ otherwise, (6)

respectively.
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2.3 Linear Scale Space Hierarchy

The stationary-curves in the scale space are the collections of the stationary
points. We denote the trajectories of the stationary points as x(τ). Setting H to
be the Hessian matrix of f(x, τ), Zhao and Iijima [2] showed that the stationary-
curves for a two-dimensional image are the solution of

∂2

∂2x
f(x, τ)

d

dτ
x(τ) = − ∂3

∂x3 f(x, τ) (7)

and clarified topological properties of the stationary-curves for signals.
The point x∞ for limτ→∞ x(τ) = x∞ is uniquely determined for any f(x).
We call a curve on which point x∞ lies and a curve which is open to the

direction of −τ the trunk and branch, respectively. On the top of each branch,
a singular point exists. For the construction of unique hierarchical expression of
stationary points, Zhao and Iijima [2] considered that the sub-root of a branch
is the stationary point of the top of the branch curve and that a sub-root and
the trunk are connected by a line segment parallel to the x axis.

2.4 Non-linear Scale Space Hierarchy

The stationary-curve is the solution of a system of equations

∂

∂τ
f(x, τ) =

∂

∂x

(
g(x)

∂

∂x
f(x, τ)

)
,

∂

∂x
f(x, τ) = 0. (8)

The derivative of the system of equations eq. (8) is expressed in the form

d

dτ
x(τ) = G(g, fx, fxx, fxxx, · · · f (n) · · · ). (9)

If g = 1 for G, following theorem is proven.

Theorem 1. If g = 1,

G(g, fx, fxx, fxxx, · · · f (n) · · · ) = −f−1
xx fxxx. (10)

This theorem implies that for the linear diffusion filtering, the speed of motion
of extrema in the linear scale space is

∂2f

∂x2

dx

dτ
= −∂3f

∂x3 . (11)

Therefore, in this paper, for g �= 1, we deal with the case

G(g, fx, fxx, fxxx, · · · f (n) · · · ) = −γgf−1
xx fxxx, (12)

for a positive constant γ, since G is the speed of the trajectory of the extrema.
Therefore, if the relation of eq. (12) is fulfilled, the extrema move in a similar
manner with the motion of extrema in the linear scale space.
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For G, we have the next theorems.

Theorem 2. For g(x) > 0, if gx(0) = 0, eq. (12) is fulfilled.

Corollary 1. The Perona-Malik type diffusivity fulfils the condition of the
theorem 2.

Corollary 2. The Weickert type diffusivity fulfils the condition of the
theorem 2.

Theorem 3. For a positive constant α, if αgfxxx = 2gxfxx, eq. (12) is fulfilled.

Corollary 3. g = |fxx| fulfils the condition of the theorem 2.

Proofs of Theorems and Corollaries. For a one dimensional non-linear
diffusion equation in the form eq. (4), considering fx(x, τ) = 0, we have the
relation

fxx
dx

dτ
= −gfxxx − 2gxfxx. (13)

Therefore, we have theorems 2 and 3.
For the Perona-Malik type diffusivity defined by eq. (5), we have the relation

gx = −2fxfxx

{
λ

(
1 +

fx
2

λ2

)}−2

. (14)

Since for extrema fx = 0, we have the relation

d

dx

(
1 +
|fx|
λ2

)−1

= 0. (15)

For the Weickert type diffusivity defined by eq. (6), we have the relation

gx = −4× 3.31488× λ4 exp
(
− 3.31488

(|fx/λ|4)

)
fxx

fx
5 . (16)

Since limfx→0+ gx = 0, we have the corollary.
Since, for g = |fxx|, we have the relation

∂2f

∂x2

dx

dτ
=

{
−3∂2f

∂x2
∂3f
∂x3 if fxx > 0,

3∂2f
∂x2

∂3f
∂x3 if fxx < 0.

(17)

this relation derives the equation,

∂2f

∂x2

dx

dτ
= −3

∣∣∣∣∂2f

∂x2

∣∣∣∣ ∂3f

∂x3 . (18)
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2.5 Stable View-Points

Setting S(x, τ) = |dx(τ)
dτ |, Zhao and Iijima [2, 3] defined the stable view-points.

The stable view-points are the points which satisfy S(x, τ) = 0, or are the iso-
lated points with the conditions dS(x,τ)

dτ = 0, and d2S(x,τ)
d2τ > 0. They also devel-

oped an algorithm to define a stable view-point tree whose nodes are the stable
view-points on the stationary-curves, and introduced a hierarchical expression
of a signal using this tree. From the stable view-points on the stationary-curves,
the tree is constructed according to the order of the stable view-points. For the
stable view-points on the stationary-curves, the order of the stable view-points
is defined as

x(τ) 1 x(τ ′) if τ > τ ′. (19)

3 2D Filtering

3.1 Linear Scale Space

In the two-dimensional Euclidean space R2, for an orthogonal coordinate system
x-y defined in R2, a vector in R2 is expressed by x = (x, y)�, where ·� is the
transpose of a vector.

For the original function f(x), the general function f(x, τ) is the solution of
the equation

∂

∂τ
f(x, τ) = Δf(x, τ), τ > 0, f(x, 0) = f(x). (20)

The space R2 × (0 ≤ τ < ∞) is called the scale space. Points x which satisfies
the condition ∇f(x, τ) = 0 with the classification based on the signs of the
eigenvalues of Hessian matrix H expresses the topological structure of image
f(x, τ). We extend this idea to the general images. The solution of eq. (20) is
expressed as

f(x, τ) =
1

4πτ

∫ ∞

−∞
f(y) exp(−|x− y|2

4τ
)dy. (21)

Zhao and Iijima [2] showed that the stationary-curves for a function are the
solution of

H
d

dτ
x(τ) = −∇Δf(x(τ), τ). (22)

For fixed τ , since the Hessian matrix is always singular for singular points,
this equation is valid for nonsingular points. Using the second derivations of
f(x, τ), we classify the topological properties of the stationary points on the
topographical maps. The relation d2f

dn2 = n · ∇(n · ∇f) = n�Hn means that
the eigenvectors of Hessian matrix of f(x, τ) gives the extrema of D2f(x, τ) and
that the extremal are achieved by the eigenvectors of the Hessian of f(x, τ),
since α1 ≥ n�Hn ≥ α2 for |n| = 1, where α1 ≥ α2 are two eigenvalues of the
2× 2 Hessian matrix H. Therefore, we have the relations max(D2

x(τ)) = α1 and
min(D2

x(τ)) = α2.
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Denoting the signs of the eigenvalues of the minus of the Hessian matrix as
(+, +), (+,−) and (−,−) in the linear scale space, these labels of points corre-
spond to the local maximum points, the saddle points, and the local minimum
points, respectively for fixed τ .

In [2, 3], they pay attention to the maximum and minimum points. In this
paper, we deal with all of three classes of extrema. The saddle points in the
scale space appear on walls and valley which connect maximum points and min-
imum points, respectively, Therefore, the motion of the saddle points in the
scale space corresponds to the changes of the topology of images in the scale
space. According to the second directional derivation, we can define three types
of stationary-curves: maximum curves, minimum curves, and saddle curves.

3.2 Non-linear Scale Space

In the two-dimensional Euclidean space R2, For the original function f(x), we
deal with the diffusion filtering in the form

∂

∂τ
f(x, τ) = ∇ · F (∇f(x, τ)), x ∈ Rn, τ > 0. (23)

If F (∇f(x, τ)) = ∇f(x, τ), that is, F is the identity operation, eq. (23) coincides
with the linear diffusion filtering. Next, we take a more precise form of F as

F (∇f(x, τ)) = g(|∇f |)∇f(x, τ). (24)

This class of F means that diffusion is controlled by the gradient map |∇f | of
f at each τ .

The stationary points for the non-linear diffusion filtering satisfy the system
of equations

∂

∂τ
f(x, τ) = ∇ · F (∇f(x, τ)), x ∈ Rn, τ > 0 ∇f(x, τ) = 0 (25)

From eq. (25), the stationary-curves in the non-linear scale space are the solution
of

Hf
dx(τ)

dτ
= −g∇Δf − (ΔfI + Hf )∇g. (26)

Theorem 4. If g = 1,

H
d

dτ
x(τ) = −∇Δf(x, τ). (27)

Therefore, in this paper, for g �= 1, we deal with the case

H
d

dτ
x(τ) = −γg∇Δf(x, τ) (28)

for a positive constant γ, since

d

dτ
x(τ) = −γgH−1∇Δf(x, τ) (29)
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is the speed of the trajectory of the extrema for det(H) �= 0. Therefore, if the
relation of eq. (28) is fulfilled, the extrema move in a similar manner with the
motion of extrema in the linear scale space. We have the next theorem.

Theorem 5. For g(x) > 0, if ∇g(0) = 0, eq. (28) is fulfilled.

The diffusion functions of the Perona-Malik type [7] and the Weickert type [8]
are, for a positive constant λ,

g(|∇f |) =
1

1 +
(

|∇f |
λ

)2 , (30)

and

g(|∇f |) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if |∇f | = 0

1− exp

⎛⎜⎝−3.31488(
|∇f |

λ

)8

⎞⎟⎠ otherwise, (31)

respectively. These diffusion functions are basically and historically introduced
to the edge detection for segmentation. For the Perona-Malik type diffusion
function, we can derive the relation,

∇g(|∇f |) =
−2Δf∇f

λ2(1 + |∇f/λ|2)2 . (32)

Therefore, the Perona-Malik type diffusion function satisfies the relations g = 1
and ∇g = 0 for ∇f = 0. Furthermore, from eq. (31), the Weickert diffusion
function satisfies the relation ∇g = 0 for ∇f = 0. From these analysis on the
non-linear diffusion filterings, we have the following corollaries.

Corollary 4. The Perona-Malik type diffusion fulfils the condition of the
theorem 5.

Corollary 5. The Weickert type diffusion fulfils the condition of the theorem 5.

Additionally, we have the next theorem.

Theorem 6. If the diffusivity g which satisfies a condition

αg∇Δf = (ΔfI + H)∇g (33)

is exist, eq. (28) is fulfilled.

Since for one-dimensional signals, H = ∂2f
∂x2 , theorem 5 derives theorem 3 for

one-dimensional signals.
As an analogous to corollary 3, it is possible to deal with diffusion controlled

by Laplacian |Δf |,
F (∇f(x, τ)) = g(|Δf |)∇f(x, τ), (34)
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for
g(x)(1 +

x

λ
), (35)

since for g(Δf) = c exp
(

|Δf |
λ

)
(1 +

|Δf |
λ

) - exp
(
|Δf |

λ

)
. (36)

However, this function does not satisfy theorem 6.
The Laplacian of an image generally approaches to zero with increasing τ .

Therefore, the diffusion based on eq. (35) converges to the linear diffusion with
the constant diffusivity 1. This mathematical property means that the diffusion
is controlled by the Laplacian map for small values of τ , and the diffusion behaves
as the linear diffusion filtering for large values of τ . In the sense of geometry,
the diffusivity of the form (1 + |Δf |

λ ) accelerates the diffusion term in small
values of τ .

3.3 Trees of Scale Space Hierarchy

The Structure Tree. Since the stationary-curves consist of many curves for
τ > 0, we call each curve a branch curve. The point x∞ for

lim
τ→∞x(τ) = x∞ (37)

is uniquely determined for any image. We call a curve on which point x∞ lies and
a curve which is open to the direction of −τ the trunk and branch, respectively.

On the top of each branch, a singular point exists. Therefore, for the construc-
tion of a unique hierarchical expression of stationary points, Zhao and Iijima [2]
proposed the following rules.

1. The sub-root of a branch is the singular point, such that detH = 0, of the
top of the branch curve and a sub-root.

2. The sub-root is connected to the trunk by a line segment parallel to x-y plane.

Using these rules, the structure tree is constructed. The nodes of structure
tree are x∞ (root), singular points (sub-root) and stationary points at the finest
scale (leaf).

The Stable View-point Tree. Setting S(x, τ) = |dx(τ)
dτ |, Zhao and Iijima

[2, 3] defined the stable view-points. The stable view-points are the points which
satisfy S(x, τ) = 0, or are the isolated points with the conditions dS(x,τ)

dτ = 0

and d2S(x,τ)
d2τ > 0. They also developed an algorithm to define a unique tree

whose nodes are the stable view-points on the stationary-curves, and introduced
a unique hierarchical expression of an image using this tree. For the stable view-
points on the stationary-curves, the order of the stable view-points is defined as

x(τ) 1 x(τ ′) if τ > τ ′. (38)
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From the stable view-points on the stationary-curves, the tree is constructed
according to the order of the stable view-points.

4 Numerical Experiments

4.1 Numerical Scheme

The stability of the schemes based on the explicit finite difference schemes such as
forward time centred space (FTCS) depends on the magnitude of the diffusivity g.

Since the diffusivity depends on the values of f at each points, we cannot pre-
determinate the diffusivity of filtering. This mathematical structure of non-linear
diffusion might cause instability of computation. Therefore, implicit schemes or
backward in the iteration steps have been adopted to generate the nonlinear
scale space in a number of applications [9, 12].

4.2 1D Filtering

Using f(x) = (6x−1)2 exp(−x2/2), we show 1D numerical examples. The struc-
ture trees corresponding to these stationary-curves are equivalent as shown in
Fig 1. In Fig. 1, (e), (f), (g) and (h) show the stationary-curves yielded by the
linear, Perona-Malik type, Weickert type and second-derivative-based diffusion
filtering operations, respectively.

There are many stable view-points, which are not exist on the trunk of
stationary-curve yielded by the linear diffusion filtering operation. According
to this consequence, it might be said that the linear and the second-derivative-
based diffusion are better than the Perona-Malik type and the Weickert type
diffusion for constructing the structure tree based on stable view-point as the
points of attention for the extraction of global features of signals. For 1D sig-
nals, eq. (12) indicated that the direction of the motion of stationary point is
determined by the sign of fxxx/fxx for nonsingular points. Second derivative fxx

is negative (positive) at the local maximum (minimum) points. Therefore, the
direction of motion is controlled by the sign of fxxx.

4.3 2D Filtering

In Fig. 2, (b), (e) and (h) show the stationary-curves yielded by the linear,
Perona-Malik and Weickert type diffusion filtering operations, respectively. We
set λ = 7.5 for the Perona-Malik type diffusion function, λ = 25.0 for the Weick-
ert type diffusion function. (e) and (h) show topologically similar curves. These
figures show that the Perona-Malik type and the Weickert type diffusions derive
similar stationary-curves as shown in Figs. 2 (e) and (h). In these two stationary-
curves, there exist side-branches in the left of main trunks. Furthermore, trees
of (c) and (l) posses the same structure in the large scale.

Since in 2D, we extracted points such that ∇f = 0, for (+, +), (+,−), and
(−,−), the extracted trees by the linear and non-linear scale spaces are different.
In 2D scale space, we deal with a class of trajectory of stationary point which
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x

tau

f(x)

(a) linear

f(x)

tau

x

(b) Perona-Malik

f(x)

x

tau

(c) Weickert

f(x)

x

tau

(d) Second derivative

tau

x

(e) linear

tau

x

(f) Perona-Malik

tau

x

(g) Weickert

tau

x

(h) Second deriva-
tive

(i) Linear (j) Perona-Malik (k) Weikert (l) Second
derivative

Fig. 1. Diffused signals and stationary-curves for the linear, the Perona-Malik type, the
Weickert type, and the second-derivative-based diffusion filtering operations. (a)(e)(i)
Signals in the scale space, the stationary-curve, and the structure tree of the linear dif-
fusion. (b)(f)(j) Signals in the scale space, the stationary-curve, and the structure tree
of the Perona-Malik type diffusion, (c)(g)(k) Signals in the scale space, the stationary-
curve, and the structure tree of the Weickert type diffusion, (d)(h)(l) Signals in the
scale space, the stationary curve, and the structure tree of g = |fxx| diffusion. As
shown in the fourth column, the structure trees derived from these stationary-curves
are equivalent.

satisfy eq. (28). Let A = diag(α1, α2) for the eigenvalues of the Hessian matrix
H and R be the eigenmatrix of H, that is, H = RAR�. From eq. (29)

dy

dτ
= −K∇Δf(y, τ), K =

(
γgα−1

1 0
0 γgα−1

2

)
, y = Rx, (39)

since R�∇f(Rx) = ∇f(x). Therefore, the direction of the velocity is controlled
by the signs of the eigenvalues of H locally in the coordinate system whose axes
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(a) Linear ; τ =
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tau

(b) Linear (c) Linear

(d) Perona-
Malik; τ = 600
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"lmax.dat"
"lmin.dat"

"saddle.dat"

tau

(e) Perona-
Malik: λ = 7.5

(f) Perona-Malik

(g) Weickert;
τ = 600

 1000

"lmax.dat"
"lmin.dat"

"saddle.dat"

tau

(h) Weickert:
λ = 25.0

(i) Weickert

(j) Laplacian ;
τ = 600

 1000

"lmax.dat"

"lmin.dat"

"saddle.dat"

tau

(k) Laplacian (l) Laplacian

Fig. 2. Input image and Stationary-curves yielded by the three types of diffusion fil-
tering. (a) The linear diffusion, (d) the Perona-Malik type diffusion, λ = 7.5, (g) the
Weickert type diffusion, λ = 25.0. (j) Laplacian Diffusion (b), (e), (h), and (k) are
stationary curve in scale space. (c) Structure tree derive by linear diffusion. (f), (i),and
(l) show the Perona-Malik type, the Weickert type and he Laplacian-controlled diffu-
sions derive equivalent structure trees. In two structure trees in (e) and (h), there exist
side-branches in the left of main trunks.

depend on the direction of the eigenvectors of the matrix H. The direction of
the motion of singular points in the scale space is not usually parallel to the
coordinate axes of the image expression.
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5 Concluding Remarks

In this paper, we analysed local geometric properties of the deep structures
yielded by non-linear scale space analysis. We first showed properties of 1D
deep structure of the non-linear scale space. Constructing 1D basic theory, we
discuss properties of 2D deep structure of the non-linear scale space, that is,
we described the local properties of the deep structures of the Perona-Malik and
Weickert types diffusion filtering. Furthermore, we introduce the Laplacian-map-
based diffusion filtering. Comparisons of deep structure of linear and non-linear
diffusion filterings, we found that difference of diffusivity functions affects to
discrete properties of deep structure.

Setting

h(λ) =

{ ∞∑
n=0

anλn

}−1

, a0 = 1, an ≥ 0 (40)

∞∑
n=0

an <∞,
∞∑

n=0

an
2 <∞, a1 = 0 (41)

the diffusion functions of Perona-Malik and Weickert types are expressed as

g(|∇f |) = h(λ)
∣∣
λ=|∇f | (42)

for specified coefficient set {an}∞n=0 for small |an|, n ≥ 1 and |∇f |. These proper-
ties of the diffusion functions, which control diffusivity, suggest that it is possible
to derive a class of diffusions for non-linear diffusion filtering operations substi-
tuting the gradient map |∇f | in a class of filter functions. As the Laplacian map
version of the diffusion kernel we deal with filtering operations expressed as a
series of |Δf | such that,

g(|Δf |) = h(z)
∣∣
z=|Δf | (43)

for a specified coefficient set.
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Abstract. A new particle filter, which combines genetic evolution and kernel 
density estimation, is proposed for moving object tracking. Particle filter (PF)
solves non-linear and non-Gaussian state estimation problems in Monte Carlo 
simulation using importance sampling. Kernel particle filter (KPF) improves 
the performance of PF by using density estimation of broader kernel. However, 
it has the problem which is similar to the impoverishment phenomenon of PF. 
To deal with this problem, genetic evolution is introduced to form new filter. 
Genetic operators can ameliorate the diversity of particles. At the same time, 
genetic iteration drives particles toward their close local maximum of the 
posterior probability. Simulation results show the performance of the proposed 
approach is superior to that of PF and KPF. 

1   Introduction 

Object tracking is required by many vision applications such as human-computer 
interfaces, video communication, or surveillance [1]. Particle filtering has proven very 
successful for solving non-linear and non-Gaussian state estimation problems and 
managing multi-modal density function effectively [4]. So PF is widely applied in 
visual tracking. In Monte Carlo simulation, the posterior density is approximated by a 
weighted sum based on the discrete grid sequentially chosen by the importance 
sampling. Generally, uniform re-sampling is employed in particle filtering, which 
results in the particle impoverishment problem, i.e., the loss of diversity for the 
particles. A large number of particles can be sampled to deal with this problem in the 
filtering. However, this produces large computational costs. 

In order to reduce the impoverishment effect, layered sampling [6], annealed 
importance sampling [7], and partitioned sampling [5] are proposed. They employ 
complex sampling strategies or specific prior knowledge about the objects. In [9], kernel 
particle filter which includes an inherent re-sampling step at every iteration can 
approximate the posterior with smaller number of kernel. However, the particle 
impoverishment problem still exists. In [10], a mean shift based particle filter is proposed 
to obtain robust tracking in which mean shift is applied to each particle independently.  

In this paper we present genetic evolution based kernel particle filter (GEKPF) for 
visual tracking. Introducing optimization procedures into particle filtering is similar to 
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the mean shift based particle filter. However, it is derived in a different manner that 
uses evolutionary computation. Genetic evolution is incorporated into KPF. In 
GEKPF, kernel density estimation can form continuous estimate of the posterior. The 
iterative procedure of genetic evolution can redistribute particles to the local modes of 
the observation effectively. At the same time, this procedure can perform implicitly 
iterative sampling to alleviate the particle impoverishment phenomenon greatly 
through genetic operator. The experiments on visual tracking demonstrate that 
compared to PF and KPF, the performance of the proposed approach is superior. 

This paper is organized as follows. Section 2 presents the kernel density estimation 
of the posterior density. In section 3, we discuss the classical particle filter and KPF 
respectively. We propose the new filter which incorporates genetic evolution into KPF 
in section 4. Some results of experiments on object tracking are showed in section 5. 
Finally conclusions are briefly drawn in section 6. 

2   Kernel Density Estimation of the Posterior Density 

In [2], through non-linear and time-varying functions f  and h  particle filter solves 

the problem based on the system model 

( )1t t tf −x = x , w  , (1) 

and on the observation model 

( )t t thy = x , v  , (2) 

where tx  is the state at time t , ty  the observation at time t , and both tw and tv  the 

independent white noises. 0 t:y  is defined as the history sequence of the random 

variables. Our problem consists in computing the posterior density ( )0:|t tp x y of the 

state tx  at each time t , which can be obtained through prediction and update 

recursively. By Eq. (1), we realize prediction according to the following equation 

( ) ( )0 1 1 1 0: 1( ) = | |t t t t t tp p p d− −: - -x  | y  x  x x y x  . (3) 

To obtain the posterior density, we update this prediction with the observation 

ty in terms of the Bayes’ rule 

( ) ( ) ( )
( ) ( )

0 1
0:

0 1

| t t t t
t t

t t

p p
p

p p d
= : -

: -

y | x x | y
x y

y | x x | y x
 . (4) 

For particle set ( ) ( )( ){ }1,2,...,

n n
t t

n N
q

=
s , , where ts is the particle state, tq  the weight 

associated to the particle, and n  the number of particles, we approximate the 
posterior with the following weighted sum on the discrete grids. 
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( ) ( ) ( )( )0:
1

|
N

n n
t t t t t

n

p q δ
=

≈ −x y x s  , (5) 

where ( )δ • is Dirac’s delta function.  

Kernel density estimation is one of the most popular nonparametric methods of 
probability density estimation [3]. It is used here to form a continuous estimate of the 

posterior. Given a set { }, 1,2,...,i i N=x  in the d-dimensional space dR , kernel 

density estimation with kernel ( )k x  and bandwidth h  is defined as 

( )
1

1 N
i

k d
i

p k
Nh h=

−= x x
x  , (6) 

where ( )k x  is the Gaussian kernel. So Gaussian kernel density estimation of the 

posterior ( )0:|t tp x y  is obtained by the formulation 

( ) ( )
( )

0:
1

1
|

nN
n t t

t t td
n

p q k
Nh h=

−= x s
x y  . (7) 

3   Kernel Particle Filter 

Particle filter solves non-linear and non-Gaussian state estimation problems in Monte 
Carlo simulation using importance sampling, in which the posterior density is 
approximated by the relative density of particles in a neighborhood of state space. 
Generally, the SIR algorithm [11] is composed of three steps: sampling, weighting, 
and re-sampling. In the sampling step, new particles are generated by drawing from 
the importance distribution. In the importance step, the weights associated to particles 
are evaluated by means of the observation model. Then the weights are normalized so 
that the weights add up to unity. In the re-sampling step, new particles are drawn from 
the distribution representation by the previous particle set, and all weights associated 

to the particles are set to be equal weight1 N . The re-sampling step is crucial in the 

implementation of particle filtering because without it, the variance of the particle 
weights quickly increases, i.e., very few normalized weights are substantial. If uniform 
re-sampling is used in particle filtering, it will result in the particle impoverishment 
problem, i.e., the loss of diversity for the particle set. 

The kernel based particle filter improves the performance of the traditional 
algorithm by using density estimation of broader kernel [9]. It has three merits. Firstly, 
it does not need optimization of kernel parameters at every step. Secondly, the 
approximation of the integral includes an inherent re-sampling step, which allows the 
particle filter accuracy to survive longer than the standard version. Finally, using 
kernels with nonzero width can realize the continuous density estimation of the 
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posterior. Each kernel can be propagated through the mapping ( )1|t tp −x x  by using 

a local linearization, yielding a continuous output distribution ( )0:|t tp x y , this is 

again a sum of kernels but the kernels are no longer identical. The prediction step is 
defined by the kernel representation equation   

( ) ( ) ( ) ( ) ( )( )0: 1 1 1 1 1 1 1
1

| | ( )
N

n n n
t t t t t t t t t

n

p q p k d− − − − − − −
=

= −x y x x A x s x  , (8) 

where tA  is a transformation matrix used to keep track of distortions of the kernel in 

each iteration. To avoid too much distortion, a re-sampling schema can be applied. All 
kernels in Eq. (8) are assumed that they are small compared to the dynamic in the non-

linearity such that f can be locally linearized. Then the Jacobian ( ) ( )1
1

| |n
nt

t

f
− −

∂=
∂ ss

J
x

 is 

obtained by linearizing f around ( )
1

n
t−s , and ( )n

tA  is updated by the equation  

( ) ( )
( )

1

1
1 |

n
t

n n
t t

−

−
−=

s

A A J  . (9) 

If we consider only Gaussian kernel, the transformation matrix is the covariance 

matrix. So the update of the transformation matrix ( )n
tA can be replaced with an update 

of the covariance matrix  as follows: 

( )
( )

( )
( )

1 1
1| |n n

t t

n n T
t t

− −
−=

s s
J J  . (10) 

For given particle set, the posterior density ( )0:|t tp x y  can be estimated by the 

formulation:   

( ) ( ) ( ) ( )( )( )0:
1

|
N

n n n
t t t t t t

n

p q k
=

≈ −x y x s  . (11) 

And the weight update is obtained as follow:  

( ) ( ) ( )( ) ( )
1

1
1 | | | |n

t

n n n
t t t tq q p

−

−
−=

s
y s J  . (12) 

4   Genetic Evolution Based Kernel Particle Filter 

Kernel particle filter can approximate the posterior with smaller number of kernel than 
PF, which produces smaller computation cost. However, the posterior density is 
estimated by a single kernel after several updates. This problem is similar to the 
impoverishment phenomenon of PF. We presented a novel approach to overcome this 
problem by incorporating genetic evolution into KPF.  
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Genetic evolution is stochastic global optimization approach and the solution of 
problem is a searching process in which the chromosomes are then evolved through 
iteratively performed selection and genetic operators [8]. At the beginning of each update 
of GEKPF, all particles are taken as the initial population of genetic operation. We only 
utilize the genetic evolution to achieve sub-optimization. Then genetic iteration can 
realize two functions. One is an iterative seeking procedure and the other is the implicitly 
iterative sampling. The iterative seeking procedure can redistribute particles to the local 
maxima of the posterior density, which produces the proper local representation of the 
posterior density. During implicitly iterative sampling, genetic operation can work as the 
re-sampling step in which mutation and crossover operator which can ameliorate the 
diversity of particles. If the iteration number of genetic operation, crossover probability 
and mutation probability are set properly, the consequential particles set will not include 
too many repeated points, so the impoverishment problem is efficiently overcome. 
Moreover, the proposed algorithm requires fewer particles to maintain multiple modes, 
because particles can be redistributed to their close local maxima actively after genetic 
iteration. Even though we sample more particles, most particles may converge to the 
same local maximum due to genetic iteration. Thus GEKPF can maintain multiple modes 
using fewer particles than KPF.  

We can divide the proposed tracker into the following steps [12]. The first step is 
initialization. The particles are generated by using Eq. (1) and code the state of each 
particle to be a binary chromosome. So a particle set is mapped to a chromosome set. 
Initialize the values of crossover rate and mutation rate. The second step evaluates the 
fitness of each chromosome in the chromosome set, in which the weights, i.e. the fitness 
of chromosomes, are recomputed by using the observation model. The third step selects 
chromosomes to perform crossover and mutation operation from the chromosome set 
according to the fitness, the crossover ratio and mutation ratio. New chromosomes are 
evaluated by their fitness function value in the fourth step. In the final step new 
chromosomes are inserted into chromosome set and bad chromosomes in fitness are 
eliminated through selection. The above steps iterate several times. When iteration stops, 
particles can reach their close local maxima and the weighted average of all 
chromosomes is calculated to obtain the output state of the tracked object. At time t , we 

can define the procedure of one genetic iteration as operation : d dR R→GE , where 

d is the state space dimension. So we can rewrite Eq. (11) as 

( ) ( ) ( ) ( )( )( )0:
1

|
N

n n
t t t t t t

n

p q k
=

≈ −x y x GE s  , (13) 

where ( )tGE s  iterates several times. 

5   Experiment 

In this section we present the comparison among PF, KPF, and GEKPF. All 
algorithms are applied to track moving human head which include horizontal 
acceleration, changes of direction, and self-occlusion and moving face whose motion 
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is rapid. The test sequences of moving human which are downloaded from [3] are a 
resolution of 384x288 pixels and a slow motion. The real video of moving face with 
noises is a resolution of 320x240 pixels. Trackers are initialized manually. The object 
is modeled as a rectangle. So we define the state of the tracked object using four 

components , , ,
T

x y x y
• •

=s , where ( ),x y is the coordinates of the rectangle 

center, and x
•

, y
•

the velocity. We only focus on the dynamics of ( ),x y . In the 

experiments, we use a simple second-order AR process as the system model 

1 1 2t t t t t− − −− = − +s s s s w  . (14) 

We adopt color distribution based the method in the observation model [1]. Then 
the particles are measured on the color probability distribution image. So the weights 
associated to particles, which represent the fitness of chromosomes, can be 
approximated using a Gaussian distribution of the Bhattacharyya distance Bd  as 
follow: 

( )
( )2

2

1
exp

22

n
n

t

Bd
q

σπσ
= −  , (15) 

where variance σ  is empirically set as 0.2 .                  
The best state at each time is derived based on the approximation of the expectation 

( ) ( ) ( )
0:

1

1
|

N
n n

t t t t
n

E q
N =

≈x y s  . (16) 

A comparison of the tracking results is shown in Fig. 1 and Fig. 2. In Fig. 1, the 
white rectangles represent the mean states; the tracking results of PF with 220 
particles are shown in the top row; the tracking results of KPF with 65 particles are 
shown in the middle row; the tracking results of GEKPF with 25 particles and 4 
iterations are shown in the bottom row. In Fig. 2, the red rectangles represent the mean 
states; the first row is the tracking results using PF with 250 particles; the second row 
is the tracking results using KPF with 60 particles; the final row is the tracking results 
using GEKPF with 25 particles and 4 iterations.  

All results show PF even with a lot of particles produces unstable results. For slow 
motion, KPF can achieve good tracking using fewer particles than PF. However, KPF 
loses tracking because of rapid motion of the object. GEKPF can obtain robust 
tracking with fewer particles than the conventional algorithms for both slow and rapid 
motion. 

GEKPF improves the performance of particle filtering at the cost of introducing 
extra complexity. Due to reduce the total number of particles, GEKPF can alleviate 
the computation costs.  
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frame #1                           frame #49                     frame #105 

Fig. 1. Some frames illustrate the tracking of three algorithms in slow motion including self-
occlusions and changes of direction 

 

 

 

frame #19                    frame #23                     frame #27 

Fig. 2. Some frames of tracking rapid motion by using three algorithms respectively 
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6   Conclusion 

For robust tracking, we present a novel particle filter, i.e., genetic evolution based 
kernel particle filter. It incorporates genetic evolution and kernel method in particle 
filtering. Genetic evolution can shift particles to the local maxima of the posterior 
density and reduce the particle impoverishment problem. Kernel density estimation 
can realize a continuous estimate of the posterior. The experiments on visual tracking 
demonstrate that the proposed approach outperforms particle filter and kernel particle 
filter while using fewer particles than the conventional algorithms. Our future work is 
focused on analyzing and comparing the performance of other optimization and swarm 
intelligence approaches in particle filtering. 
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Abstract. We define the projection of a tiling as a matrix P = (pij)
where pi1 is number of t1,2 tiles in row i and pi2 is the number of t2,1

tiles in row i. We give an efficient algorithm to tile a 2D-square grid with
only t1,2, t2,1, t1,1 tiles such that the projection of this tiling is the same
as the given projection.

1 Introduction

The area of discrete tomography is concerned about reconstruction of a discrete
object or its geometrical properties from its projections or some other infor-
mation. This has application in fields such as: computer vision, VLSI design,
image processing, statistical data security, biplane angiography, graph theory,
crystallography etc. [4] gives the fundamentals related to this topic.

Here we consider the reconstruction of tilings. We are given a collection of
tiles where each tile can have different shapes. A tiling is a placement of non
overlapping copies of the tiles in a n × n grid, where each copy is obtained by
translating one of the tiles. [2, 3] deal with several problems related to this. [1]
gives many results relating to the complexity of problems for different types of
tiles. In [1], reconstruction of the tiling is considered where both row and column

projection are given. If the tiles are , and the problem is NP complete.

But with one projection the problem can have a solution. In fact the solution
need not be unique. Usually, there exist several possibilities of tiling for the
same projection. This is shown in [1]. In [1] it is shown that the problem is NP
complete for 3 atoms.

Considering the aim of tomography to reconstruct objects, it should be noted
that objects are in general three dimensional. Here our tiling problem is restricted
to two dimensions. It would be interesting to extend the reconstruction of tiling
problems to three dimensions. In 3D-tiling, 3D tiles such as t2,1,1, t1,2,1, t1,1,2
are to considered . For example, the 2 atom problem and 3 atom problem can
be considered in three dimensions also. When the problem is NP complete in
two dimensions, it would naturally be NP complete for three dimensions. In a
plane, we consider row and column projections. In three dimensions, we have to
consider the projections along CY plane, YZ plane and XZ plane.

U. Eckardt et al. (Eds.): IWCIA 2006, LNCS 4040, pp. 474–480, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1.

Extending the problem of 2D-tiling to three dimensions, we consider 3 types
of dominoes shown in figure below.

Considering projections in 3 planes the problem will be NP complete. As a first
step, we can consider reconstruction from projection on one plane. Projecting on

to XY plane we will have three types of tiles in one plane , and . Hence as

a first step of solving this three dimensional problem, we consider the following
two dimensional problem in this paper: Construct a tiling with the given projec-
tion in one direction. We have given an algorithm in [5] for this problem using
backtracking. Here we give an algorithm without backtracking.The algorithm
works in polynomial time. It is to be noted that we are considering “complete”
tiling and not “partial” tiling.

In the next section, we give the algorithm and illustrate with a few examples.
In section 3, we briefly discuss the complexity and correctness and also the possi-
ble solutions one can get from a particular solution using switching components.
The paper concludes with a brief remark in section 4.

2 Reconstruction of Tiling from One Projection

In this section, we give an algorithm to reconstruct a tiling whose tiling has the
same projection as the given projection. Let τn×n be a family of tilings of n× n

grid with t1,2 ( ), t2,1 ( ) and t1,1 ( ) Let T ∈ τn×n and

P =

rh
1 rc

1
rh
2 rc

2
...

...
rh
n rc

n

Let Al
i,j = {i′|i′ < i and ti′,j is covered with t1,2 and t1,1}

andAr
i,j = {i′|i′ < i and ti′,j+1 is covered with at1,2or t1,1 }.

We define the ti,j of T to be possible starting position of t1,2 (PSP ). Let
T be consistent with the vector P. Consider the following properties for PSP
computation : ti,j of T is PSP if any of the following cases are true:
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Let ilm =
{

max
{
i′|i′ ∈ Al

i,j

}
ifAl

i,j �= φ
0 Otherwise

}
and irm =

{
max

{
i′|i′ ∈ Ar

i,j

}
ifAr

i,j �= φ
0 Otherwise

}
.

Let ldiff = i− ilm and rdiff = i− irm.

Case(i) : Both ldiff and rdiff are odd.
Case(ii) : If ldiff is odd and rdiff is even then there should be a row j such that
j − irm is odd and rc

j ≥ 1
If rdiff is odd and ldiff is even then there should be a row j such that j − ilm is
odd and rc

j ≥ 1
Case(iii) : Both ldiff and rdiff are even and there exist two rows j and k such
that j − ilm and k − irm are odd, and rc

j + rc
k ≥ 2

A pair of sub tilings is said to be switching components if one component can
be replaced by other component of the pair without affecting projection.

If the switching component does not have any non trivial switching compo-
nent (switching component with more then one tile) as its sub tiling, then the
switching component is called as elementary switching component. The possible
elementary switching components with respect to projection onto column are
given below:

1. Switching components involving only t1,2 and t2,1 tiles{
1 0 0
1 0 0

,
0 0 1
0 0 1

}
2. Switching components involving only t1,1 and t2,1 tiles{

1 2
1 2

,
2 1
2 1

}
3. Switching components involving only t1,2 and t1,2 tiles{

2 0 0 , 0 0 2
}

4. Switching components involving t1,2, t1,2 and t1,2 tiles{
0 0 1
2 2 1

,
1 0 0
1 2 2

}

and also

{
2 2 1
0 0 1 ,

1 2 2
1 0 0

}



An Efficient Reconstruction of 2D-Tiling with t1,2, t2,1, t1,1 Tiles 477

Algorithm: Tiling Reconstruction ( τn×n , P )
Input:

A matrix P =

⎡⎢⎢⎢⎣
rh
1 rc

1
rh
2 rc

2
...

...
rh
n rc

n

⎤⎥⎥⎥⎦
Output: A tiling T ∈ τn×n such that, for each 1 ≤ i ≤ m, rh

i counts the number
of t1,2 in the i-th row of T and rc

i counts the number of t1,1 in the i-th row of
T, if it exists else give FAILURE.

Step1 :
If 2rh

1 ≤ n then place rh
1 number of t1,2 from position (1,1) to position

(1, 2rh
1 ) in the first row of T and set rh

1 = 0, else give FAILURE.
If rc

1 > n− 2rh
1 Give FAILURE.

Step2 :
for each 2 ≤ i ≤ n

If rh
i �= 0 then

for each 1 ≤ k ≤ rh
i

(i) Find the leftmost PSP cell of the i-th row of T if possible,
else give FAILURE

(ii) Check whether or not P [i][1] horizontal dominoes can be placed
in row i using even number of clear cells.
if possible, Place an t1,2 starting from leftmost PSP
if (i, j) is the PSP cell and (i− 1, j) is not tiled with clear cell
otherwise Place an t1,2 starting from leftmost PSP .

(iii) k = k + 1
Step3 :
for each incorrect tiled column j
/ ∗Here incorrect tiled column means the odd number of consecutive
vacant cells ∗ /

(i) Find i such that rc
i > 0

(ii) Place clear cell at ti,j if correct tiling is possible.
Step4 :
for each pair (i, j), 1 ≤ i ≤ n , 1 ≤ j ≤ n such that rc

i �= 0 and rc
j �= 0 and

j − i is odd,
find column k such that placing clear cells at ti,k and tj,k gives correctly

tiled column k.
Step5 :
Fill the empty cells with vertical dominoes

If not possible give FAILURE.

EXAMPLE 1
The above algorithm is illustrated with an example, Let us represent horizontal

domino by 0 0 , vertical domino by
1
1

and clear cell 2 .
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Input : P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2
1 3
1 1
1 3
1 2
1 1
1 1
0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step1 : Tile first row with h-dominoes and even part of clear cells

T :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
1 3
1 1
1 3
1 2
1 1
1 1
0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step2 : Tiling with h-bars starting from 2nd row

T :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 • •
0 0 • • • • • •
0 0 • • • • • •
0 0 • • • • • •
0 0 • • • • • •
0 0 • • • • • •
0 0 • • • • • •
• • • • • • • •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 3
0 1
0 3
0 2
0 1
0 1
0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step3 : Correct all incorrect columns with available clear cells.

T :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 • •
0 0 2 2 2 • • •
0 0 • • • • • •
0 0 • • • 2 • •
0 0 • • • • • •
0 0 • • • • • •
0 0 • • • • • •
2 2 • • • • • •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 0
0 1
0 2
0 2
0 1
0 1
0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Step4 : Place all possible pairs of remaining clear cells with even distance apart

T :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2 2
0 0 2 2 2 • • •
0 0 2 • • • • •
0 0 • • • 2 2 2
0 0 • 2 2 • • •
0 0 2 • • • • •
0 0 • • • 2 • •
2 2 • 2 2 2 • •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step5 :

T :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2 2
0 0 2 2 2 1 1 1
0 0 2 1 1 1 1 1
0 0 1 1 1 2 2 2
0 0 1 2 2 1 1 1
0 0 2 1 1 1 1 1
0 0 1 1 1 2 1 1
2 2 1 2 2 2 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3 Correctness

Let us denote a cell (i, j) as E − cell or O − cell if ldiff is odd or even
respectively. We denote sequence of consecutive E − cells as E − block and
sequence of consecutive O − cells as O − block . An E − block or O − block is
said to be odd or even if number of cells in the block is odd or even respectively.

Lemma 1. In any row i, the number of odd E − blocks is at most one.

Let us prove the lemma by induction on row i. Since all the cells in row 1 is
E−cell, the number of odd E−blocks is one if n is odd, zero otherwise. Assume
that the lemma is true for all all i < k. If each row i < k has even number of
clear cells, then each horizontal dominoes should have been placed starting from
odd column. Hence odd E − block is possible in row k only when no cells in A
is tiled by any tile.

where A = {(i, j) | 1 ≤ i ≤ k and (i, j) ∈ E-block }.

If some rows have odd number of clear cells, then consider the largest row i
such that 1 ≤ i < k, and row i has odd number of clear cells, and consider
column j such that j is maximum and (i, j) is tiled by clear cell. clearly there
is no oddE − blocks among cells (k, j′) such that 1 ≤ j′ ≤ j + 2 ∗ h where h
is number of horizontal dominoes placed in row i + 1 starting from column j .
Hence placement of clear cell in position (i, j) will not make new odd E− blocks
in row i + 1 and hence in remaining rows. Hence there can’t be more than one
E − blocks in any row.
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Theorem 1. If the algorithm could not place a horizontal domino in any row
i, then there exists no tiling consistent with given projection.

By lemma 1, algorithm places maximum number of horizontal dominoes in each
row. Hence the Theorem.

Theorem 2. If the algorithm could not place any clear cell in any row i then
there exists no tiling consistent with given projection.

Theorem 3. If the algorithm could not place any vertical domino in any row i
then there exists no tiling consistent with given projection.

As the placement of horizontal and clear cells are made such that there is no
odd length of vertical blocks of free cells, theorem is evident.

4 Complexity

Step 1 uses O(n) operations. In Step 2, PSP is called O(n2) time, PSP finds
ldiff and rdiff in O(n) time and then checks whether or not there exist j and
k such that j − ilm and k− irm are odd in O(n) time. Hence step 2 takes O(n3)
time. Step 3 and 4 take O(n4) time.

5 Conclusion

In this paper we have considered a particular case of tiling problem with 3 tiles,
with one projection. We have also shown that another solution can be obtained
from an existing one by switching the switching components. We are working
on improving the algorithm. The extension of this problem to three dimensions
where we consider dominoes in three directions is a topic for further exploration.
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Sobel, Marc 159
Sommer, Gerald 320
Stelldinger, Peer 226
Strand, Robin 89, 226
Subramanian, Kumbakonam G. 354
Svensson, Stina 101



482 Author Index

Tougne, Laure 445

Vedhanayagam, Masilamani 474

Wang, Qicong 466
Wang, Weixing 253
Wang, Yuru 404

Weber, Stefan 375
Wu, Zhigang 466

Zang, Di 320
Zeevi, Yehoshua Y. 361
Zeitoun, Ofir 361
Zheng, Hongwei 144


	Frontmatter
	Combinatorics and Counting
	Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images
	Counting Gaps in Binary Pictures
	The Exact Lattice Width of Planar Sets and Minimal Arithmetical Thickness

	Thinning and Watersheds
	Branch Voxels and Junctions in 3D Skeletons
	New 2D Parallel Thinning Algorithms Based on Critical Kernels
	Grayscale Watersheds on Perfect Fusion Graphs

	Distances
	Matching of the Multi-channel Images with Improved Nonparametric Transformations and Weighted Binary Distance Measures
	Approximating Euclidean Distance Using Distances Based on Neighbourhood Sequences in Non-standard Three-Dimensional Grids
	Fuzzy Distance Based Hierarchical Clustering Calculated Using the A<Superscript> $\ast$ </Superscript> Algorithm

	Image Representation and Segmentation
	A New Sub-pixel Map for Image Analysis
	Feature Based Defuzzification at Increased Spatial Resolution
	Extended Mumford-Shah Regularization in Bayesian Estimation for Blind Image Deconvolution and Segmentation

	Invited Paper
	Polygonal Approximation of Point Sets

	Approximations I
	Linear Discrete Line Recognition and Reconstruction Based on a Generalized Preimage
	Digital Line Recognition, Convex Hull, Thickness, a Unified and Logarithmic Technique
	Incremental and Transitive Discrete Rotations

	Digital Topology
	Discrete Homotopy of a Closed {\itshape k}-Surface
	Topology Preserving Digitization with FCC and BCC Grids
	On the Notion of Dimension in Digital Spaces

	Shape and Matching
	Size and Shape Measure of Particles by Image Analysis
	A Comparison of Shape Matching Methods for Contour Based Pose Estimation
	Relevance Criteria for Data Mining Using Error-Tolerant Graph Matching

	Invited Paper
	Computational Aspects of Digital Plane and Hyperplane Recognition

	Approximations II
	A Linear Algorithm for Polygonal Representations of Digital Sets
	The Monogenic Curvature Scale-Space

	Combinatorics and Grammars
	Combinatorial Properties of Scale Space Singular Points
	Additive Subsets
	Cooperating Basic Puzzle Grammar Systems

	Tomography
	Quasi-isometric and Quasi-conformal Development of Triangulated Surfaces for Computerized Tomography
	Binary Tomography with Deblurring
	A Neural Network Approach to Real-Time Discrete Tomography

	Poster Session
	A Novel Automated Hand-Based Personal Identification
	Shortest Paths in a Cuboidal World
	Surface Registration Markers from Range Scan Data
	Two-Dimensional Discrete Shape Matching and Recognition
	Hierarchical Tree of Image Derived by Diffusion Filtering
	Object Tracking Using Genetic Evolution Based Kernel Particle Filter
	An Efficient Reconstruction of 2D-Tiling with {\itshape t}<Subscript>1,2</Subscript>, {\itshape t}<Subscript>2,1</Subscript>, {\itshape t}<Subscript>1,1</Subscript> Tiles

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




