
Studying the Evolution of Quality Metrics in an
Agile/Distributed Project�

Walter Ambu2, Giulio Concas1, Michele Marchesi1, and Sandro Pinna1

1 Dipartimento di Ingegneria Elettrica ed Elettronica, Universitá di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy

{concas, michele, pinnasandro}@diee.unica.it
http://agile.diee.unica.it
2 AgileTec, Via G. Murat, 26

09134 Cagliari, Italy
w.ambu@agiletec.it

http://www.agiletec.it

Abstract. This paper analyzes the development of a project initiated
by a co-located agile team that subsequently evolved into a distributed
context. The project, named JAPS (Java Agile Portal System)[1], has
been monitored on a regular basis since it started in January 2005, col-
lecting both process and product metrics. Product metrics have been
calculated by checking out the source code history from the CVS reposi-
tory. By analyzing the evolution of these metrics, it has been possible to
evaluate how the distribution of the team has impacted the source code
quality.

1 Introduction

In recent years many projects have been developed in a distributed context using
agile practices [2][3][4][5]. Obviously opportunities for a co-located team differ from
those for a dispersed team. Some XP/agile practices can be adopted at the same
level in both contexts, while others cannot [6][5]. Several case studies have been
published reporting experiences in applying agile practices in distributed projects,
but as far as we are aware nothing has been published to date concerning the anal-
ysis of the evolution of source code quality metrics in this kind of project.

1.1 CK Metrics

The quality of a project is usually measured in terms of lack of defects or main-
tainability. It has been found that these quality attributes are correlated with
specific metrics. For Object Oriented systems the Chidamber and Kemerer met-
rics suite [7] [8], usually known as the CK suite, is the most validated. The CK
suite is composed of six metrics:
� This work was supported by MAPS (Agile Methodologies for Software Produc-

tion) research project, contract/grant sponsor: FIRB research fund of MIUR, con-
tract/grant number: RBNE01JRK8.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 85–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

86 W. Ambu et al.

– Weighted Methods per Class (WMC): a weighted sum of all the meth-
ods defined in a class. Chidamber and Kemerer suggest assigning weights
to the methods based on the degree of difficulty involved in implementing
them [7]. Since the choice of weighting factor can significantly influence the
metric value, this is a matter of continuing debate among researchers. Some
researchers resort to cyclomatic complexity of methods while others use a
weighting factor of unity for validation of OO Metrics. In this paper we also
use a weighting factor of unity, thus WMC is calculated as the total number
of methods defined in a class.

– Coupling Between Object Classes (CBO): a count of the number of
other classes with which a given class is coupled, hence it denotes the depen-
dency of one class on other classes in the system. To be more precise, class
A is coupled with class B when at least one method of A invokes a method
of B or accesses a field (instance or class variable) of B.

– Depth of Inheritance Tree (DIT): the length of the longest path from
a given class to the root class in the inheritance hierarchy.

– Number of Children (NOC): a count of the number of immediate child
classes inherited by a given class.

– Response for a Class (RFC): a count of the methods that are potentially
invoked in response to a message received by an object of a particular class.
It is computed as the sum of the number of methods of a class and the
number of external methods called by them.

– Lack of Cohesion of Methods (LCOM): a count of the number of
method-pairs with zero similarity minus the count of method pairs with
non-zero similarity. Two methods are similar if they use at least one shared
field (for example they use the same instance variable).

1.2 Literature on CK Metrics

CK metrics have been widely validated in the literature. In a study of two com-
mercial systems, Li and Henry [9] explored the link between CK metrics and the
maintenance effort. Similarly, based on an investigation of several coupling mea-
sures (including CBO) and the NOC metric of the CK suite in two university
software applications, Binkley and Schach [10] found that the coupling mea-
sure was associated with maintenance changes made in classes. Studying eight
medium-sized systems Basili et al. [11] observed that several of the CK metrics
were associated with class fault proneness. In a commercial setting, Chidamber
et al. [12] noticed that higher values of the coupling and cohesion metrics in the
CK suite were associated with reduced productivity and increased rework/design
effort. Cartwright and Shepperd [13] studied a medium-sized telecommunications
system and found that the inheritance measures of the CK suite (DIT, NOC)
were associated with class defect density.

2 JAPS Process Evolution

JAPS is an open source j2EE solution for building web portals, integrating ser-
vices and handling contents through a content management system (CMS). The

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 87

project was started in January 2005 by the agile team of AgileTec [14], an IT
company based in Italy. JAPS was conceived as a result of some team members’
experience in developing web portals and CMS with open source and legacy
software. The goal was to create an adaptive, non predictive system that was
simple, flexible and easily adaptable to customer needs.

The JAPS kernel was first built by a co-located team of two experienced
software engineers applying agile practices. These practices include pair pro-
gramming, testing, refactoring, planning game, short iterations [15][16]. After
two months the team released a prototype of the system.

Subsequently, a partnership agreement was drawn up with an IT company and
a commitment made to build two portals. As a result the number of team mem-
bers was increased from two to seven. As the new members came from different
IT companies, it was decided to adopt an open source-like development model.
In particular the team applied dispersed agile development [4] where developers
were physically alone most of the time and connected through communication
channels. Thus, in this phase the team started working in a distributed context.
In defining an agile methodology for this context and integrating agile practices
with open source principles [17], they allowed for the fact that all team members
lived in the same city. For instance, in order to share knowledge and experience,
it was decided to meet once or twice a week. Being located in the same city also
made it possible to schedule pair programming sessions as needed. The lack of
face to face communication in the distribution, made it necessary to define effec-
tive communication strategies. Voip systems, e-mail and mobile phones allowed
the team to communicate [18] effectively during development sessions even if
this involved several iterations.

Frequent releases with working functionalities allowed continuous customer
feedback. Requirements were gathered by using a prioritized backlog list shared
among team members [19]. After a first tuning phase, requirement management
using the backlog list became effective.

The other agile practices had to be adapted to the new distributed context.
This required several iterations before the team developed maturity in adopting
agile distributed practices.

The distributed phase initiated with an already defined test infrastructure.
This included testing frameworks for web-applications, xml and mock objects.
Several iterations were needed for the new team members to effectively im-
plement the testing practices in a JAPS context. Once the team had become
more comfortable with test harnesses, refactoring practices were applied more
effectively.

The JAPS development process is thus characterized by two distinct phases.
In the first phase, the team experimented and optimized some key agile practices
in a distributed context. In the second phase, the team developed maturity in
implementing these practices. The main phases of the evolution of the JAPS
process are summed up below:

– phase 0 (January 2005-February 2005). The kernel was built by a co-located
team of two experienced programmers using agile practices.

88 W. Ambu et al.

– phase 1 (March 2005-July 2005). The 7-strong team, (2 kernel developers +
5 new members), experimented key agile practices in a distributed context.

– phase 2 (August 2005- January 2006): the team developed maturity in the
application of key practices.

In the next section, we will analyze how the source code quality metrics evolved
during phases 1 and 2.

3 JAPS Metrics Evolution

In this section we analyze the evolution of source code metrics at regular two-
week intervals. Each source code snapshot has been checked out from the CVS
repository and analyzed by a parser that creates an xml file containing the
information needed for calculating the metrics. This xml file is parsed by an
analyzer that calculates all the metrics. Both the parser and the analyzer have
been developed by our research group as a plug-in for the Eclipse IDE. The
analyzed metrics are: Number of Classes, Class Size, Number of Test Cases,
Number of Assertions, WMC, RFC, LCOM, CBO, DIT, NOC.

0 5 10 15 20
100

120

140

160

180

200

220

240

260

280

iteration

N
um

be
r

of
 C

la
ss

es

0 5 10 15 20
56

58

60

62

64

66

68

70

iteration

C
la

ss
 L

O
C

S
 (

m
ea

n)

March 2005

January 2006

Fig. 1. Total number of classes and lines of code per class evolution (1 iteration = 2
weeks)

Number of Classes. This metric measures the total number of classes (abstract
classes and interfaces are included) and is a good indicator of system size. When
the distributed phase started, the system comprised 111 classes, then evolved

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 89

0 5 10 15 20
0

10

20

30

40

50

60

70

iteration

T
ot

al
 N

um
be

r
of

 T
es

t C
as

es

0 5 10 15 20
0

50

100

150

200

250

300

350

400

iteration

T
ot

al
 N

um
be

r
of

 A
ss

er
tio

ns
March 2005 January 2006

Fig. 2. Number of test cases and number of assertions for each iteration (1 iteration
= 2 weeks)

rapidly as shown in fig. 1. The last CVS snapshot consists of 277 classes, indicating
that the system doubled in size during the distributed phases (phases 1 and 2).

Class size. The size of a class has been measured by counting the lines of code
(LOC), excluding blanks and comment lines. The mean value of class LOC has
been plotted in Fig 1 for each iteration. It is known that a ”fat” class is more
difficult to read than an agile one. High values of this metric indicate a bad code
smell that should be corrected using refactoring technics. Fig 1 shows a first
phase in which the metric grows rapidly followed by a second phase in which it
decreases.

Number of test cases. The number of test cases may be considered as an
indicator of testing activity. As shown in fig. 2, the metric increases more rapidly
in the second phase than in the first one. This might be explained by the faster
growth of the total number of classes in the second phase but examination of the
plot in fig 1 shows that this hypothesis can be reasonably ruled out. The main
reason is certainly the maturity developed by the team in the second phase, that
enabled them to write more tests during development.

Number of Assertions. Simply using the number of test cases, however, could
be considered a poor indicator of testing activity. In fact, new test methods
could be added to existing test cases without increasing their total number.
The number of test methods might be a better indicator of testing activity
than the simple test case count. On the other hand, a test method may have

90 W. Ambu et al.

0 5 10 15 20
6

7

8

iteration

W
M

C
(m

ea
n)

WMC

0 5 10 15 20
15

20

25
RFC

iteration

R
F

C
(m

ea
n)

0 5 10 15 20
15

20

25
LCOM

iteration

LC
O

M
(m

ea
n)

0 5 10 15 20

6

8

10
CBO

iteration

C
B

O
(m

ea
n)

0 5 10 15 20
0.4

0.6

0.8
DIT

iteration

D
IT

(m
ea

n)

0 5 10 15 20
0

0.5

1
NOC

iteration

N
O

C
(m

ea
n)

March 2005 January 2006

Fig. 3. CK Metrics Evolution (1 iteration = 2 weeks)

one or more assertions that compare expected and actual values. An assertion
is a call to those methods of TestCase that have a name beginning with the
string ”assert”(assertEquals, assertSame, assertNotNull.....). The total number
of assertions may be regarded as a more comprehensive indicator of testing
activity. This metric, reported in fig. 2 shows the same trend observed for the
number of test cases.

LCOM and WMC. The evolution of LCOM reported in fig. 3 shows a first
phase where classes are characterized by low cohesion and a second phase where
this metric has been progressively improved through refactoring. The same con-
siderations discussed above also apply to WMC: a first phase characterized by a
growing number of methods per class and a second phase where fat classes were
split into cohesive classes with a small number of methods.

CBO. The evolution of this metric reported in fig. 3 shows a first phase where
class complexity increases followed by a second phase where this metric remains
approximately constant. The mean value increases from 6 to 8 during phase 1
and stabilizes at 8 during phase 2.

RFC. As previously mentioned, the response for a class is calculated by summing
the number of methods and the number of calls to external methods. The RFC
evolution (fig. 3) shows an initial increasing phase followed by a second phase
in which the metric decreases slightly. This decrease could be explained by the
strong reduction of WMC and an approximately constant trend of coupling
between objects.

DIT and NOC. These metrics, that measure class inheritance characteristics,
exhibit an increasing trend during the distributed phase.

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 91

4 Discussion

In this section we attempt to match the observed metrics evolution with the
development process phases. To do this we can group metrics exhibiting similar
behavior.

LCOM, WMC. The initial increasing phase can be explained by the lack of
rigorous application of certain key practices like testing and refactoring. In the
second phase, the team was able to reduce these metrics by applying simple
refactoring practices. The bad smell was due essentially to the large number of
methods and their low cohesion. These smells were eliminated by splitting the
fat classes into classes with a small number of more cohesive methods, and by
eliminating duplicated code. This also resulted in a reduction in the number of
lines of code, as shown in fig. 1.

CBO, RFC. The interesting consideration that emerged from observation of
these metrics lies in the second part of the plots. In fact, the effective adoption
of key practices by the distributed team did not lead to the expected reduction
in coupling and response for a class. This might be explained by the very nature
of these metrics, that measure class interrelationship. To reduce this metric it is
necessary to modify not only the single class but also the complex relationships
with other system classes. Distribution of the team resulted in the programmer
developing specialized knowledge on specific modules. Each time a programmer
performed refactoring he did so on components of his competence. Programmers
were apprehensive about changing something they knew little about. Their un-
easiness grew as system complexity increased. It should also be noted that the
kernel was built by two senior programmers and several meetings were planned
at the beginning of the distributed phase to disseminate knowledge to new team
members. Weekly meetings and a number of pair programming sessions did not
enable effective knowledge sharing across team members in the distributed en-
vironment. This specialization resulted in the impossibility of reducing those
metrics that depend on class interrelationships.

DIT and NOC. The same considerations made above hold here too. In fact,
refactoring a class hierarchy requires a broad vision of the system and this is
exactly what the distributed team did not have.

5 Conclusions

In this paper we have analyzed a project initiated by a co-located team and
subsequently developed in a distributed manner. We have also presented the
strategies employed by the team to effectively implement agile practices in the
distributed context. The project has been divided into three main phases:

– phase 0: A co-located team developed the kernel.
– phase 1: The team experimented and optimized agile practices in a dis-

tributed environment.

92 W. Ambu et al.

– phase 2: The team applied agile practices effectively despite not being co-
located.

The project was monitored by calculating product metrics during its develop-
ment. These metrics include the CK suite of quality metrics. Analyzing the
evolution of these metrics we found that in phase 1 the team increased system
complexity. In phase 2 we observed that the effective implementation of agile
practices resulted in system simplification. However, we also observed that the
team was unable to improve all metrics to the same extent. In particular it
proved impossible to reduce the value of those metrics that measure class inter-
relationships (CBO, DIT, NOC). This is likely due to the specialization of team
members in specific components of the system. Therefore, in our experience,
the adoption of agile practices in a distributed context may be effective only in
reducing a subset of complexity metrics. Moreover, in the initial experimental
phase of agile distributed practices system complexity was found to increase sig-
nificantly. This study has given the team an opportunity to reflect on how to
improve knowledge dissemination in a dispersed development environment. The
JAPS project has now been released as open source [1] and we will continue
monitoring both the process and metrics evolution in this new ”phase 3”.

References

1. JAPS: Java agile portal system. Url: http://www.japsportal.org (2005)
2. Poole, C.J.: Distributed product development using extreme programming. In

Eckstein, J., Baumeister, H., eds.: Extreme Programming and Agile Processes in
Software Engineering. (2004) 60–67

3. Fowler, M.: Using an agile software process with offshore development.
http://www.martinfowler.com/articles/agileOffshore.html (2004)

4. Braithwaite, K., Joyce, T.: Xp expanded: Distributed extreme programming. In
Baumeister, H., Marchesi, M., Holcombe, M., eds.: Extreme Programming and
Agile Processes in Software Engineering. (2005) 180–188

5. Baheti P., Williams L., G.E., D., S.: Exploring pair programming in distributed
object-oriented team projects. In: OOPSLA Educator’s Symposium. (2002)

6. Maurer, F.: Supporting distributed extreme programming. In: Proceedings of the
XP/Agile Universe 2002: Second XP Universe and First Agile Universe Conference.
(2002)

7. Chidamber, S., Kemerer, C.: Towards a metrics suite for object oriented design.
Proc. Conf. Object Oriented Programming Systems, Languages, and Applications
(OOPSLA’91) 26(11) (1991) 197–211

8. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE
Trans. Software Eng. 20 (1994) 476–493

9. Li, W., Henry, S.: Object oriented metrics that predict maintainability. J. Systems
and Software 23 (1993) 111–122

10. Binkley, A., Schach, S.: Validation of the coupling dependency metric as a predictor
of run-time failures and maintenance measures. Proc. 20th Int’l Conf. Software
Eng. (1998) 452–455

11. V. Basili, L.B., Melo, W.: A validation of object oriented design metrics as quality
indicators. IEEE Trans. Software Eng. 22 (1996) 751–761

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 93

12. S.R. Chidamber, D.D., Kemerer, C.: Managerial use of metrics for object oriented
software: An exploratory analysis. IEEE Trans. Software Eng. 24 (1998) 629–639

13. Cartwright, M., Shepperd, M.: An empirical investigation of an object-oriented
software system. IEEE Trans. Software Eng. 26(7) (2000) 786–796

14. AgileTec: Agiletec it company. Url: http://www.agiletec.it (2005)
15. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley

(1999)
16. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change- Second

Edition. Addison-Wesley (2004)
17. Koch, S.: Agile principles and open source software development: A theoretical and

empirical discussion. In Eckstein, J., Baumeister, H., eds.: Extreme Programming
and Agile Processes in Software Engineering. (2004) 85–93

18. Steven Fraser, Angela Martin, M.A.C.C.D.H.M.P.M.S.: Off-shore agile software
development. In H. Baumeister, M. Marchesi, M.H., ed.: Extreme Programming
and Agile Processes in Software Engineering. (2005) 267–272

19. Bent Jensen, A.Z.: Cross continent development using scrum and xp. In March-
esi, M., Succi, G., eds.: Extreme Programming and Agile Processes in Software
Engineering. (2003) 146–153

	Introduction
	CK Metrics
	Literature on CK Metrics

	JAPS Process Evolution
	JAPS Metrics Evolution
	Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

