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Abstract. The variety of code smells deserves a numerous set of detectors 
capable of sensing them. There exist several sources of data that may be 
examined: code metrics, existence of particular elements in an abstract syntax 
tree, specific code behavior or subsequent changes in the code. Another factor 
that can be used for this purpose is the knowledge of other, already detected or 
rejected smells. In the paper we define and analyze different relations that exist 
among smells and provide tips how they could be exploited to alleviate 
detection of other smells.  
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1   Introduction 

The quality of source code is one of the factors affecting the software maintenance 
cost [1]. Poor quality results both in short term in increased fault ratio and on the long 
run in higher expenditure on modifications and further development of the product. 
Code quality is then a costly, although valued attribute of software, which gives a 
chance for savings and profits in further software maintenance, but requires 
considerable initial investments. 

High quality source code is particularly important in agile methodologies. eXtreme 
Programming (XP) [2], the most popular among them, diminishes the importance of 
documentation in favour to the source code readability and comprehension. Any 
factors that do not contribute to these values are considered potential threats and are 
candidates for improvement. Although there exist numerous different source code 
flaws that can negatively affect the software quality, XP covers all of them by a vague 
term of bad code smell [2]. Smells are defined as constructs in the code that “suggest 
(sometimes scream for) the possibility of refactoring” [3]. This deliberate 
imprecision, which puts stress on the human judgment based on experience and the 
sense of aesthetics, leads to significant problems with automated detection and 
identification of smells. It is illustrated by the diversity of over 20 bad smells 
identified by Fowler, which differ in importance, complexity and localization. The 
range of code elements affected by them spans from entire modules or class 
hierarchies (Parallel Inheritance Hierarchies, Message Chain), through single classes 
and objects (Feature Envy, Divergent Change, Large Class), then methods (Extract 
Method, Long Parameter List), ending up with individual variables, statements and 
expressions (Primitive Obsession, Temporary Field). As a result, there exists no 
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general method of smell detection. Each smell describes a distinct flaw, related to 
either improper structure, communication between objects, low readability and other 
aspects. In turn, each smell is revealed with multiple symptoms of various nature and 
require a unique mechanism of identification. 

In attempt to capture the subtle, complex nature of smells, in [4] we proposed a 
multi-criteria, holistic model of smell detection, which combines various sources 
of information. We identified six such sources considered useful for smell 
detection: 

• Programmer's intuition and experience, 
• Metrics values, 
• Analysis of a source code syntax tree, 
• History of changes made in code, 
• Dynamic behavior of code, 
• Existence of other smells. 

Apart from the programmer's intuition, another four data sources are measurable or at 
least intuitively comprehensible. The last one is special as it reuses information about 
the already discovered smells, so that they can be exploited again in further 
examination. It comes from the observation that smells are not independent, separated 
phenomena and their presence or absence often carries knowledge about other smells. 
Therefore, it is possible to support code smells detection process with already 
available information about the relations existing between smells. Our initial thoughts 
on the smell dependencies have been presented in [11]. 

In this paper we continue the research and examine some relations existing among 
code smells, presenting how they could be exploited for more effective smell detection.  

The paper is structured as follows. Section 2 describes seven identified relations 
among bad code smells. It also suggests how the relations could be exploited in smell 
detection. In section 3 we attempt to evaluate the relevance of the relations on 
selected classes taken from Jakarta Tomcat project [5]. The paper is concluded with a 
summary presented in the section 4. 

2   Inter-smell Dependencies 

Even a superficial analysis of Fowler's bad smells descriptions reveals that most of 
them are related to each other: some appear in groups, while others exclude one 
another. In general, the already confirmed presence or absence of a particular smell 
may carry information about others. It is Fowler who noticed the existence of 
relations and dependencies between smells: “When a class is trying to do too much, it 
often shows up as too many instance variables. When a class has too many instance 
variables, duplicated code cannot be far behind” [3].  

The nature of the relations varies: some smells share a common flaw as an origin, 
whereas others are revealed by similar symptoms or can be eliminated with a single 
transformation. The kind of relationship suggests also the way it could be exploited. 
We focus on the relations that (1) contribute to identification of other smells and (2) 
their elimination.  
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In [11] we proposed five coarse relations that describe dependencies between 
smells. The extended and updated list now contains six relations: 

• Plain support, 
• Mutual support, 
• Rejection. 
• Aggregate support, 
• Transitive support, 
• Inclusion. 

In order to measure the effectiveness of the relations we need a metric reflecting their 
strength. Strength of the plain support relation, which also makes a basis for the other 
ones, can be measured with the certainty factor [12]. Certainty factor for the relation 
r(A, B) is interpreted as a number of objects incriminated with the smell B in the set of 
objects featuring the smell A. The notion of the factor is used in the remaining 
relations respectively. 

2.1   Plain Support 

Plain support relation is the simplest relation that may be identified. A smell B is 
supported by A if the existence of A implies with sufficiently high certainty the 
existence of B. B is then a companion smell of A, and the program entities (classes, 
methods, expressions etc.) burdened with A also suffer from B. The relation makes a 
basis for many other relations analyzed below. 

The importance of the relation comes from observation that in A is often an easy to 
detect smell with few symptoms, while B is a more complex one, embracing  various 
aspects and showing up with different symptoms. Thus, A can be utilized for 
diagnosing B without delving into its complex nature. 

As an example, let us consider the relation between Data Class and Feature Envy. 
A Data Class is a class inappropriately used as a data container [3], which may evince 
through one of the following: 

• Class contains public fields, 
• Class improperly encapsulates a collection, 
• Class is structure equivalent and features with only getting and settings methods. 

We only analyze the structure equivalent violations, because the other are not related 
to the Feature Envy smell. The exemplary structure equivalent symptom, taken from 
Tomcat’s code base (org.apache.catalina.deploy.FilterMap class),  is provided below.  

public class FilterMap implements Serializable { 
    ... 
    private String filterName = null; 
    public String getFilterName() { 
        return (this.filterName); 
    } 
    public void setFilterName(String filterName) { 
        this.filterName = filterName; 
    } 
    private String servletName = null; 
    public String getServletName() { 
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        return (this.servletName); 
    } 
    public void setServletName(String servletName) { 
        this.servletName = servletName; 
    } 
    ... 
} 

A method that is more interested in a class other than the one it actually belongs to, 
is an example of a Feature Envy smell [3]. It indicates that the responsibility is 
improperly distributed among classes. Feature Envious methods should be moved to 
the class that they reference the most. The exemplary Feature Envious method taken 
from Tomcat’s org.apache.catalina.core.ApplicationFilterFactory class is presented 
below. 

public final class ApplicationFilterFactory { 
    ... 
    private boolean matchFiltersServlet( 
        FilterMap filterMap, String servletName) { 
        if (servletName == null) { 
            return false; 
        } else { 
            if (servletName.equals( 
                filterMap.getServletName())){ 
                return true; 
            } else { 
                return false; 
            } 
        } 
    } 
    ... 
} 

The matchFilterServlet() method checks if the actual servlet name matches the 
filter’s servlet name. It makes no use of any of its enclosing class' fields and methods. 
There are two objects referenced by it: filterMap and servletName, each of them 
referenced twice. Since servletName is of a standard type java.lang.String and cannot 
be modified, then filterMap object is considered the possible owner of the method. 
Thus, the method could be moved to the FilterMap class, which is a Data Class. As a 
side effect, the latter smell would be removed as well. 

Of course, there exist several design patterns, like Strategy and Visitor [8], which 
are used primarily to combat the Divergent Change smell [3], that violate this rule. In 
this article we did not take these cases under consideration. 

The conclusion is that the structure equivalent version of the Data Class smell is 
closely related to the Feature Envy smell. If there exist a Data Class, there is usually 
also another class that uses its data. The client almost certainly contains methods that 
are Feature Envy candidates. 
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2.2   Mutual Support 

This relation is a symmetric closure of the plain support: both related smells support 
each other. It is not only simply equivalent to two plain support relations, but also 
suggests that the related smells share common roots and originate from the same 
code flaw. Removing the reason may result in reduction or even removal of both 
smells. 

Seemingly, it gives a powerful ability to attain two goals with a single action. 
However, among the smells identified by Fowler there are no two odors mutually 
supporting each other with considerable certainty. That observation is justified, as 
different smells, although often related to each other, describe at least slightly, yet 
different anomalies. Therefore, even if a smell A supports smell B, the reversed 
relation (if exists) is weaker. Should any such smell be defined in future, it would 
resemble the existing ones so much, that the gain from removing it along with others 
would be negligible.  

Unfortunately, we cannot provide any examples of the mutual support relation. 

2.3   Rejection 

Rejection yields the negative information about smells presence: a smell B is rejected 
by a smell A, if the presence of A excludes the existence of the smell B. Knowing that, 
we may restrict the exploration area to remaining smells and limit the computational 
complexity of the detection process. 

Noticeably, this relation, unlike others, is symmetric: if A rejects B, then B rejects 
A. Presence or confirmed absence of any of smells participating in the relation carries 
information about the other one.  

For example, a Lazy Class, which has no or only limited functionality, cannot be 
simultaneously an over-functional Large Class. Lazy Classes are relatively easy to 
identify, because there exist few symptoms of low functionality. Therefore, for 
classes diagnosed as lazy there is no need to look for Large Class signs. The latter 
smell embraces multiple subtle symptoms, which are much harder to detect than Lazy 
Class, like multiple interfaces, multiple instances, multiple subclasses, so the 
knowledge of the Lazy Class presence allows giving up further exploration towards 
Large Class. 

2.4   Aggregate Support 

Aggregate support generalizes the plain support and rejection relations to a case of 
multiple source smells. A finite sets of detected smells A1, A2, …, Am and absent 
smells B1, B2, …, Bm support a smell C as an aggregate, if they all support the 
existence of the smell C with higher certainty than any of individual smells Ai  does or 
the smell C rejects the existence of any of smells Bj. Colloquially speaking, it is the 
synergy of several source smells (both present and absent) that increases the 
probability of existence of the target smell. 

Aggregate support in several cases provides a stronger premise for many smells to 
exist. Source smells usually combine a broader spectrum of symptoms, which gives 
higher accuracy of the final result. The price for that is higher complexity of the 
detection process, resulting from the necessity of analyzing multiple source smells. 
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As an example, let us consider the following relation: if the given class is 
simultaneously composed of setters and getters, is not Inappropriately Intimate, and is 
the target of Move Method performed to remove a Feature Envious method, then it is 
a Data Class. The certainty factor for that relation is then higher than it would be 
without some of the supporting symptoms.  

2.5   Transitive Support 

The relation is a specific example of aggregate support with source smells depending 
on each other. Provided that there exist two plain support relations p: A supports B 
and q: B supports C, we can deduce the presence of a relation r: A supports C.  

As an example we found the chain Data Class supports Feature Envy supports 
Large Class. Large Classes are classes that bear too much functionality. The over-
functionality may result from improper class abstraction and combining several 
classes together. Other reasons include the presence of Feature Envious methods or 
Inappropriate Intimacy with other classes. Such a class needs to be split into smaller 
classes. Therefore, Data Class suggests the presence of the Large Class, because 
Data Class is related to Feature Envy (see 2.1) and the Feature Envy is related to 
Large Class.  

2.6   Inclusion 

Inclusion is a directed relation between smells A and B, in which A is a particular case 
of B. It means that every symptom revealing the smell A is also a sign of B's presence. 
Therefore, by detecting the smell A we always find also the smell B.  

Inclusion is slightly related to plain support, with exception that the special smell 
entirely fulfills symptoms specific to the general one. 

Fowler's catalog contains a few examples of included smells. For instance, Parallel 
Inheritance Hierarchies is a special case of Shotgun Surgery smell. 

2.7   Common Refactoring 

The relations presented above concentrate on direct dependencies between smells. 
There exist other relations, which connect smells indirectly. One of binding elements 
is a common refactoring that once applied, affects all smells involved, either 
removing them or removing some and introducing the other.   

For example, a Move Method applied to a Lazy Class may result in Feature Envy 
smell, because Move Method transfers the envious method outside, possibly reducing 
responsibility carried by that class. 

3   Evaluation 

To evaluate impact of our findings, we performed experiment on 830 classes coming 
from Apache Tomcat 5.5.4 [5] codebase. The project was selected for evaluation due 
to its high quality source code [9]. 

In subsequent sections we provide examples of how the information about smells 
could be exploited to detect other smells.  



 Leveraging Code Smell Detection with Inter-smell Relations 81 

3.1   Data Class and Feature Envy Plain Support 

In order to select Data Class candidates, we employed a simple getter/setter measure. 
We assumed that a class is a structure equivalent if the ratio of such methods is at 
least 80%. Other symptoms (improper encapsulation of fields and collections) were 
ignored. Candidates were then manually inspected to determine actual Data Class 
smell representatives. We also considered a method to be Feature Envious if it 
referenced other classes more frequently than its own class methods.  

During inspection we found 26 classes, which had at least 80% of setter/getter 
methods, and as such were identified as Data Classes. Among them, 24 were 
referenced in Feature Envious methods. Therefore, it yields a high certainty factor 
(equal to 92%), which strongly suggests that the relation exists. 

3.2   Plain Support of Large Class for Feature Envy 

We analyzed the plain support relation between Large Class and Feature Envy. To 
measure class functionality we adopted four popular object-oriented metrics [6,7]. 
Their definitions and accepted thresholds taken from NASA’s historical metrics 
database [10] are presented in Table 1.  

Table 1. Metrics used for measuring functionality and their accepted thresholds (source: [6,10]) 

 
 

Description Max. 
accepted  

NOM Number of methods in the class 20 
WMC Sum of cyclomatic complexities of class methods 100 
RFC Number of methods + number of methods called by 

each of these methods (each method counted once) 
100 

CBO Number of classes referencing the given class 5 

We assumed that a class is considered large if at least one metric value exceeds the 
accepted threshold. Moreover, we also experimentally found that a Large Class has at 
least one Feature Envious method. Table 2 depicts the results of the evaluation. There 
exist 230 classes classified by common detectors as large. Out of these, 205 
referenced Feature Envious methods. As we supposed, it turns out that most Large 
Classes have at least one Feature Envious method (certainty factor is equal to 89%), 
which helps in detecting the smell. 

Table 2. Analysis of Large Class, Inappropriate Intimacy and Feature Envy smell relations 
(source: [11]) 

Metric Value 
Total number of analyzed classes 830 
Number of classes with Feature Envious methods 463 
Number of Inappropriately Intimate classes  159 
Number of Large Classes found with common detectors  230 
Number of Large Classes found exploiting relations between smells 501 
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3.3   Rejection 

The rejection relation was analyzed with Inappropriate Intimacy and Data Class 
smells. Inappropriately Intimate classes “spend too much time delving in each other 
private parts” [3]. There are two violations covered by this smell: 

• Bi-directional associations between classes, and 
• Subclasses knowing more about their parents than their parents would like them to 

know. 

Data Classes are mere data holders and thus do not have bi-directional associations 
with other classes. In other words, if a class is Inappropriately Intimate, then it cannot 
simultaneously be a Data Class.  

Due to difficulties with automatic detection of the latter symptom of Inappropriate 
Intimacy, we considered only bi-directional associations between classes. Even a 
single association was considered to be smelly. The evaluation revealed 159 of 830 
inspected classes to have such association. The number of possible checks for the 
Data Class smell was therefore reduced by 19%, because Inappropriate Intimacy 
excludes that smell. 

3.4   Aggregate Support 

As an example of this relation we evaluated Data Class structure equivalent smell 
[3]. A simple detector based on the setter/getter ratio found 66 candidates, out of 
which, after manual verification, only 26 have been found actually smelly (39% of 
accuracy).  

We used this result to verify a hypothesis that information about support and 
rejection relations of other smells with Data Class smell may increase the accuracy of 
the detector, leaving the programmer with the smaller list of refactoring candidates to 
manual assessment. Therefore we evaluated the following aggregate relation: if a 
class has at least 80% of getter/setter methods, and is not Inappropriately Intimate 
smell, and is the target of Move Method refactoring of the Feature Envy method, then 
it is a Data Class.  

Among 26 actual smell classes from 66 candidate classes we found 24 Data 
Classes referenced by Feature Envy methods and simultaneously being not Inappro-
priately Intimate. Another 12 were Data Classes referenced by Inappropriately 
Intimate classes. Therefore, there are only 30 classes left (out of 66) for manual 
inspection. The certainty factor for the analyzed aggregate support relation is then 
92% (24 out of 26 candidate classes featured that smell). 

3.5   Relations with a Common Refactoring 

The knowledge about the relations between smells may be helpful also while 
removing them, i.e. at refactoring. We evaluated Feature Envy smell removal with 
Move Method transformation. Moved methods targeted also 21 Data Classes and 
simultaneously minimized the number of these smelly classes from 26 to 7. More 
details can be found in [11]. 
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4   Conclusions 

Every code smell is characterized by a different set of symptoms. To alleviate smell 
detection, we exploit the fact that some of them are related to others and carry 
information about them. The existence of already discovered smells becomes then a 
valuable indicator of other flaws. Whereas it infrequently plays a primary role in 
smell detection, it could be successfully utilized as an auxiliary source of smell-
related data. 

In the paper we identified six distinct inter-smell relations that appeared useful for 
smell detection. Another one relates smells through a common refactoring. The 
experiment showed that the use of the knowledge about already identified smells in 
Jakarta Tomcat code supports the detection process. We found examples of several 
smell dependencies, including simple, aggregate and transitive support and rejection 
relation. The certainty factor for those relations in that code suggests the existence of 
correlation among the dependent smells and applicability of this approach to smell 
detection. 

Several activities benefited from the dependency analysis: in most cases it 
improved effectiveness and efficiency of the smell detection process; in others it 
suggested a single refactoring to remove several smells at once. Therefore, there are 
multiple applications of the inter-smell relations. 

Future research plans include examination of other smells and their relations, and  
development of  a tool for assisting a programmer in smell detection utilizing the 
presented approach. 
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