
P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 75 – 84, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Leveraging Code Smell Detection
with Inter-smell Relations

Błażej Pietrzak and Bartosz Walter

Institute of Computing Science, Poznań University of Technology, Poland
{Blazej.Pietrzak, Bartosz.Walter}@cs.put.poznan.pl

Abstract. The variety of code smells deserves a numerous set of detectors
capable of sensing them. There exist several sources of data that may be
examined: code metrics, existence of particular elements in an abstract syntax
tree, specific code behavior or subsequent changes in the code. Another factor
that can be used for this purpose is the knowledge of other, already detected or
rejected smells. In the paper we define and analyze different relations that exist
among smells and provide tips how they could be exploited to alleviate
detection of other smells.

Keywords: Refactoring, bad code smells, inter-smell relations.

1 Introduction

The quality of source code is one of the factors affecting the software maintenance
cost [1]. Poor quality results both in short term in increased fault ratio and on the long
run in higher expenditure on modifications and further development of the product.
Code quality is then a costly, although valued attribute of software, which gives a
chance for savings and profits in further software maintenance, but requires
considerable initial investments.

High quality source code is particularly important in agile methodologies. eXtreme
Programming (XP) [2], the most popular among them, diminishes the importance of
documentation in favour to the source code readability and comprehension. Any
factors that do not contribute to these values are considered potential threats and are
candidates for improvement. Although there exist numerous different source code
flaws that can negatively affect the software quality, XP covers all of them by a vague
term of bad code smell [2]. Smells are defined as constructs in the code that “suggest
(sometimes scream for) the possibility of refactoring” [3]. This deliberate
imprecision, which puts stress on the human judgment based on experience and the
sense of aesthetics, leads to significant problems with automated detection and
identification of smells. It is illustrated by the diversity of over 20 bad smells
identified by Fowler, which differ in importance, complexity and localization. The
range of code elements affected by them spans from entire modules or class
hierarchies (Parallel Inheritance Hierarchies, Message Chain), through single classes
and objects (Feature Envy, Divergent Change, Large Class), then methods (Extract
Method, Long Parameter List), ending up with individual variables, statements and
expressions (Primitive Obsession, Temporary Field). As a result, there exists no

76 B. Pietrzak and B. Walter

general method of smell detection. Each smell describes a distinct flaw, related to
either improper structure, communication between objects, low readability and other
aspects. In turn, each smell is revealed with multiple symptoms of various nature and
require a unique mechanism of identification.

In attempt to capture the subtle, complex nature of smells, in [4] we proposed a
multi-criteria, holistic model of smell detection, which combines various sources
of information. We identified six such sources considered useful for smell
detection:

• Programmer's intuition and experience,
• Metrics values,
• Analysis of a source code syntax tree,
• History of changes made in code,
• Dynamic behavior of code,
• Existence of other smells.

Apart from the programmer's intuition, another four data sources are measurable or at
least intuitively comprehensible. The last one is special as it reuses information about
the already discovered smells, so that they can be exploited again in further
examination. It comes from the observation that smells are not independent, separated
phenomena and their presence or absence often carries knowledge about other smells.
Therefore, it is possible to support code smells detection process with already
available information about the relations existing between smells. Our initial thoughts
on the smell dependencies have been presented in [11].

In this paper we continue the research and examine some relations existing among
code smells, presenting how they could be exploited for more effective smell detection.

The paper is structured as follows. Section 2 describes seven identified relations
among bad code smells. It also suggests how the relations could be exploited in smell
detection. In section 3 we attempt to evaluate the relevance of the relations on
selected classes taken from Jakarta Tomcat project [5]. The paper is concluded with a
summary presented in the section 4.

2 Inter-smell Dependencies

Even a superficial analysis of Fowler's bad smells descriptions reveals that most of
them are related to each other: some appear in groups, while others exclude one
another. In general, the already confirmed presence or absence of a particular smell
may carry information about others. It is Fowler who noticed the existence of
relations and dependencies between smells: “When a class is trying to do too much, it
often shows up as too many instance variables. When a class has too many instance
variables, duplicated code cannot be far behind” [3].

The nature of the relations varies: some smells share a common flaw as an origin,
whereas others are revealed by similar symptoms or can be eliminated with a single
transformation. The kind of relationship suggests also the way it could be exploited.
We focus on the relations that (1) contribute to identification of other smells and (2)
their elimination.

 Leveraging Code Smell Detection with Inter-smell Relations 77

In [11] we proposed five coarse relations that describe dependencies between
smells. The extended and updated list now contains six relations:

• Plain support,
• Mutual support,
• Rejection.
• Aggregate support,
• Transitive support,
• Inclusion.

In order to measure the effectiveness of the relations we need a metric reflecting their
strength. Strength of the plain support relation, which also makes a basis for the other
ones, can be measured with the certainty factor [12]. Certainty factor for the relation
r(A, B) is interpreted as a number of objects incriminated with the smell B in the set of
objects featuring the smell A. The notion of the factor is used in the remaining
relations respectively.

2.1 Plain Support

Plain support relation is the simplest relation that may be identified. A smell B is
supported by A if the existence of A implies with sufficiently high certainty the
existence of B. B is then a companion smell of A, and the program entities (classes,
methods, expressions etc.) burdened with A also suffer from B. The relation makes a
basis for many other relations analyzed below.

The importance of the relation comes from observation that in A is often an easy to
detect smell with few symptoms, while B is a more complex one, embracing various
aspects and showing up with different symptoms. Thus, A can be utilized for
diagnosing B without delving into its complex nature.

As an example, let us consider the relation between Data Class and Feature Envy.
A Data Class is a class inappropriately used as a data container [3], which may evince
through one of the following:

• Class contains public fields,
• Class improperly encapsulates a collection,
• Class is structure equivalent and features with only getting and settings methods.

We only analyze the structure equivalent violations, because the other are not related
to the Feature Envy smell. The exemplary structure equivalent symptom, taken from
Tomcat’s code base (org.apache.catalina.deploy.FilterMap class), is provided below.

public class FilterMap implements Serializable {
 ...
 private String filterName = null;
 public String getFilterName() {
 return (this.filterName);
 }
 public void setFilterName(String filterName) {
 this.filterName = filterName;
 }
 private String servletName = null;
 public String getServletName() {

78 B. Pietrzak and B. Walter

 return (this.servletName);
 }
 public void setServletName(String servletName) {
 this.servletName = servletName;
 }
 ...
}

A method that is more interested in a class other than the one it actually belongs to,
is an example of a Feature Envy smell [3]. It indicates that the responsibility is
improperly distributed among classes. Feature Envious methods should be moved to
the class that they reference the most. The exemplary Feature Envious method taken
from Tomcat’s org.apache.catalina.core.ApplicationFilterFactory class is presented
below.

public final class ApplicationFilterFactory {
 ...
 private boolean matchFiltersServlet(
 FilterMap filterMap, String servletName) {
 if (servletName == null) {
 return false;
 } else {
 if (servletName.equals(
 filterMap.getServletName())){
 return true;
 } else {
 return false;
 }
 }
 }
 ...
}

The matchFilterServlet() method checks if the actual servlet name matches the
filter’s servlet name. It makes no use of any of its enclosing class' fields and methods.
There are two objects referenced by it: filterMap and servletName, each of them
referenced twice. Since servletName is of a standard type java.lang.String and cannot
be modified, then filterMap object is considered the possible owner of the method.
Thus, the method could be moved to the FilterMap class, which is a Data Class. As a
side effect, the latter smell would be removed as well.

Of course, there exist several design patterns, like Strategy and Visitor [8], which
are used primarily to combat the Divergent Change smell [3], that violate this rule. In
this article we did not take these cases under consideration.

The conclusion is that the structure equivalent version of the Data Class smell is
closely related to the Feature Envy smell. If there exist a Data Class, there is usually
also another class that uses its data. The client almost certainly contains methods that
are Feature Envy candidates.

 Leveraging Code Smell Detection with Inter-smell Relations 79

2.2 Mutual Support

This relation is a symmetric closure of the plain support: both related smells support
each other. It is not only simply equivalent to two plain support relations, but also
suggests that the related smells share common roots and originate from the same
code flaw. Removing the reason may result in reduction or even removal of both
smells.

Seemingly, it gives a powerful ability to attain two goals with a single action.
However, among the smells identified by Fowler there are no two odors mutually
supporting each other with considerable certainty. That observation is justified, as
different smells, although often related to each other, describe at least slightly, yet
different anomalies. Therefore, even if a smell A supports smell B, the reversed
relation (if exists) is weaker. Should any such smell be defined in future, it would
resemble the existing ones so much, that the gain from removing it along with others
would be negligible.

Unfortunately, we cannot provide any examples of the mutual support relation.

2.3 Rejection

Rejection yields the negative information about smells presence: a smell B is rejected
by a smell A, if the presence of A excludes the existence of the smell B. Knowing that,
we may restrict the exploration area to remaining smells and limit the computational
complexity of the detection process.

Noticeably, this relation, unlike others, is symmetric: if A rejects B, then B rejects
A. Presence or confirmed absence of any of smells participating in the relation carries
information about the other one.

For example, a Lazy Class, which has no or only limited functionality, cannot be
simultaneously an over-functional Large Class. Lazy Classes are relatively easy to
identify, because there exist few symptoms of low functionality. Therefore, for
classes diagnosed as lazy there is no need to look for Large Class signs. The latter
smell embraces multiple subtle symptoms, which are much harder to detect than Lazy
Class, like multiple interfaces, multiple instances, multiple subclasses, so the
knowledge of the Lazy Class presence allows giving up further exploration towards
Large Class.

2.4 Aggregate Support

Aggregate support generalizes the plain support and rejection relations to a case of
multiple source smells. A finite sets of detected smells A1, A2, …, Am and absent
smells B1, B2, …, Bm support a smell C as an aggregate, if they all support the
existence of the smell C with higher certainty than any of individual smells Ai does or
the smell C rejects the existence of any of smells Bj. Colloquially speaking, it is the
synergy of several source smells (both present and absent) that increases the
probability of existence of the target smell.

Aggregate support in several cases provides a stronger premise for many smells to
exist. Source smells usually combine a broader spectrum of symptoms, which gives
higher accuracy of the final result. The price for that is higher complexity of the
detection process, resulting from the necessity of analyzing multiple source smells.

80 B. Pietrzak and B. Walter

As an example, let us consider the following relation: if the given class is
simultaneously composed of setters and getters, is not Inappropriately Intimate, and is
the target of Move Method performed to remove a Feature Envious method, then it is
a Data Class. The certainty factor for that relation is then higher than it would be
without some of the supporting symptoms.

2.5 Transitive Support

The relation is a specific example of aggregate support with source smells depending
on each other. Provided that there exist two plain support relations p: A supports B
and q: B supports C, we can deduce the presence of a relation r: A supports C.

As an example we found the chain Data Class supports Feature Envy supports
Large Class. Large Classes are classes that bear too much functionality. The over-
functionality may result from improper class abstraction and combining several
classes together. Other reasons include the presence of Feature Envious methods or
Inappropriate Intimacy with other classes. Such a class needs to be split into smaller
classes. Therefore, Data Class suggests the presence of the Large Class, because
Data Class is related to Feature Envy (see 2.1) and the Feature Envy is related to
Large Class.

2.6 Inclusion

Inclusion is a directed relation between smells A and B, in which A is a particular case
of B. It means that every symptom revealing the smell A is also a sign of B's presence.
Therefore, by detecting the smell A we always find also the smell B.

Inclusion is slightly related to plain support, with exception that the special smell
entirely fulfills symptoms specific to the general one.

Fowler's catalog contains a few examples of included smells. For instance, Parallel
Inheritance Hierarchies is a special case of Shotgun Surgery smell.

2.7 Common Refactoring

The relations presented above concentrate on direct dependencies between smells.
There exist other relations, which connect smells indirectly. One of binding elements
is a common refactoring that once applied, affects all smells involved, either
removing them or removing some and introducing the other.

For example, a Move Method applied to a Lazy Class may result in Feature Envy
smell, because Move Method transfers the envious method outside, possibly reducing
responsibility carried by that class.

3 Evaluation

To evaluate impact of our findings, we performed experiment on 830 classes coming
from Apache Tomcat 5.5.4 [5] codebase. The project was selected for evaluation due
to its high quality source code [9].

In subsequent sections we provide examples of how the information about smells
could be exploited to detect other smells.

 Leveraging Code Smell Detection with Inter-smell Relations 81

3.1 Data Class and Feature Envy Plain Support

In order to select Data Class candidates, we employed a simple getter/setter measure.
We assumed that a class is a structure equivalent if the ratio of such methods is at
least 80%. Other symptoms (improper encapsulation of fields and collections) were
ignored. Candidates were then manually inspected to determine actual Data Class
smell representatives. We also considered a method to be Feature Envious if it
referenced other classes more frequently than its own class methods.

During inspection we found 26 classes, which had at least 80% of setter/getter
methods, and as such were identified as Data Classes. Among them, 24 were
referenced in Feature Envious methods. Therefore, it yields a high certainty factor
(equal to 92%), which strongly suggests that the relation exists.

3.2 Plain Support of Large Class for Feature Envy

We analyzed the plain support relation between Large Class and Feature Envy. To
measure class functionality we adopted four popular object-oriented metrics [6,7].
Their definitions and accepted thresholds taken from NASA’s historical metrics
database [10] are presented in Table 1.

Table 1. Metrics used for measuring functionality and their accepted thresholds (source: [6,10])

Description Max.
accepted

NOM Number of methods in the class 20
WMC Sum of cyclomatic complexities of class methods 100
RFC Number of methods + number of methods called by

each of these methods (each method counted once)
100

CBO Number of classes referencing the given class 5

We assumed that a class is considered large if at least one metric value exceeds the
accepted threshold. Moreover, we also experimentally found that a Large Class has at
least one Feature Envious method. Table 2 depicts the results of the evaluation. There
exist 230 classes classified by common detectors as large. Out of these, 205
referenced Feature Envious methods. As we supposed, it turns out that most Large
Classes have at least one Feature Envious method (certainty factor is equal to 89%),
which helps in detecting the smell.

Table 2. Analysis of Large Class, Inappropriate Intimacy and Feature Envy smell relations
(source: [11])

Metric Value
Total number of analyzed classes 830
Number of classes with Feature Envious methods 463
Number of Inappropriately Intimate classes 159
Number of Large Classes found with common detectors 230
Number of Large Classes found exploiting relations between smells 501

82 B. Pietrzak and B. Walter

3.3 Rejection

The rejection relation was analyzed with Inappropriate Intimacy and Data Class
smells. Inappropriately Intimate classes “spend too much time delving in each other
private parts” [3]. There are two violations covered by this smell:

• Bi-directional associations between classes, and
• Subclasses knowing more about their parents than their parents would like them to

know.

Data Classes are mere data holders and thus do not have bi-directional associations
with other classes. In other words, if a class is Inappropriately Intimate, then it cannot
simultaneously be a Data Class.

Due to difficulties with automatic detection of the latter symptom of Inappropriate
Intimacy, we considered only bi-directional associations between classes. Even a
single association was considered to be smelly. The evaluation revealed 159 of 830
inspected classes to have such association. The number of possible checks for the
Data Class smell was therefore reduced by 19%, because Inappropriate Intimacy
excludes that smell.

3.4 Aggregate Support

As an example of this relation we evaluated Data Class structure equivalent smell
[3]. A simple detector based on the setter/getter ratio found 66 candidates, out of
which, after manual verification, only 26 have been found actually smelly (39% of
accuracy).

We used this result to verify a hypothesis that information about support and
rejection relations of other smells with Data Class smell may increase the accuracy of
the detector, leaving the programmer with the smaller list of refactoring candidates to
manual assessment. Therefore we evaluated the following aggregate relation: if a
class has at least 80% of getter/setter methods, and is not Inappropriately Intimate
smell, and is the target of Move Method refactoring of the Feature Envy method, then
it is a Data Class.

Among 26 actual smell classes from 66 candidate classes we found 24 Data
Classes referenced by Feature Envy methods and simultaneously being not Inappro-
priately Intimate. Another 12 were Data Classes referenced by Inappropriately
Intimate classes. Therefore, there are only 30 classes left (out of 66) for manual
inspection. The certainty factor for the analyzed aggregate support relation is then
92% (24 out of 26 candidate classes featured that smell).

3.5 Relations with a Common Refactoring

The knowledge about the relations between smells may be helpful also while
removing them, i.e. at refactoring. We evaluated Feature Envy smell removal with
Move Method transformation. Moved methods targeted also 21 Data Classes and
simultaneously minimized the number of these smelly classes from 26 to 7. More
details can be found in [11].

 Leveraging Code Smell Detection with Inter-smell Relations 83

4 Conclusions

Every code smell is characterized by a different set of symptoms. To alleviate smell
detection, we exploit the fact that some of them are related to others and carry
information about them. The existence of already discovered smells becomes then a
valuable indicator of other flaws. Whereas it infrequently plays a primary role in
smell detection, it could be successfully utilized as an auxiliary source of smell-
related data.

In the paper we identified six distinct inter-smell relations that appeared useful for
smell detection. Another one relates smells through a common refactoring. The
experiment showed that the use of the knowledge about already identified smells in
Jakarta Tomcat code supports the detection process. We found examples of several
smell dependencies, including simple, aggregate and transitive support and rejection
relation. The certainty factor for those relations in that code suggests the existence of
correlation among the dependent smells and applicability of this approach to smell
detection.

Several activities benefited from the dependency analysis: in most cases it
improved effectiveness and efficiency of the smell detection process; in others it
suggested a single refactoring to remove several smells at once. Therefore, there are
multiple applications of the inter-smell relations.

Future research plans include examination of other smells and their relations, and
development of a tool for assisting a programmer in smell detection utilizing the
presented approach.

Acknowledgements

The work has been supported by the Rector of Poznań University of Technology as a
research grant BW/91-429.

References

1. Pearse T., Oman P.: Maintainability Measurements on Industrial Source Code Mainte-
nance Activities. In: Proceedings of International Conference of Software Maintenance
1995, Opio (France), pp.295-303.

2. Beck K.: Extreme Programming Explained. Embrace Change. Addison-Wesley, 2000.
3. Fowler M.: Refactoring. Improving Design of Existing Code. Addison-Wesley, 1999.
4. Walter B., Pietrzak B.: Multi-criteria Detection of Bad Smells in the Code. In: Proceedings

of 6th International Conference on Extreme Programming, 2005, Lecture Notes in
Computer Science 3556, pp.154-161.

5. The Apache Jakarta Project: Tomcat 5.5.4, http://jakarta.apache.org/tomcat/index.html,
January 2005.

6. Chidamber S.R., Kemerer C.F.: A Metrics Suite from Object-Oriented Design. IEEE
Transactions on Software Engineering, Vol. 20, No. 6, 1994, 476-493.

7. Marinescu R., Using Object-oriented metrics for Automatic Design Flaws Detection in
Large Scale Systems. ECOOP Workshop Reader 1998, Lecture Notes In Computer
Science; Vol. 1543, pp.252-255.

84 B. Pietrzak and B. Walter

8. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

9. Tomcat Defect Metric Report, http://www.reasoning.com/pdf/Tomcat_Metric_Report.pdf,
visited in April 2005.

10. NASA Software Assurance Technology Center: SATC Historical Metrics Database,
http://satc.gsfc.nasa.gov/metrics/codemetrics/oo/java/index.html, January 2005.

11. Pietrzak B., Walter B.: Exploring Bad Code Smells Dependencies. In: Zielinski K., Szmuc
T. (eds.): Software Engineering: Evolution and Emerging Technologies. Frontiers in
Artificial Intelligence and Applications, Vol. 130, pp.353-364.

12. Łukasiewicz J.: Die logischen Grundlagen der Wahrscheinilchkeitsrechnung. Kraków,
1913, in: L. Borkowski (ed.), Łukasiewicz J.: Selected Works. North Holland Publishing
Company, Amsterdam, London, Polish Scientific Publishers, Warsaw, 1970.

	Introduction
	Inter-smell Dependencies
	Plain Support
	Mutual Support
	Rejection
	Aggregate Support
	Transitive Support
	Inclusion
	Common Refactoring

	Evaluation
	Data Class and Feature Envy Plain Support
	Plain Support of Large Class for Feature Envy
	Rejection
	Aggregate Support
	Relations with a Common Refactoring

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

