
Is External Code Quality Correlated with
Programming Experience or Feelgood Factor?�

Lech Madeyski

Institute of Applied Informatics, Wroclaw University of Technology,
Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland

Lech.Madeyski@pwr.wroc.pl
http://madeyski.e-informatyka.pl/

Abstract. This paper is inspired by an article by Müller and Padberg
who study the feelgood factor and programming experience, as candidate
drivers for the pair programming performance. We not only reveal a
possible threat to validity of empirical results presented by Müller and
Padberg but also perform an independent research. Our objective is to
provide empirical evidence whether external code quality is correlated
with the feelgood factor, or with programming experience. Our empirical
study is based on a controlled experiment with MSc students. It appeared
that the external code quality is correlated with the feelgood factor, and
programming experience, in the case of pairs using a classic (test-last)
testing approach. The generalization of the results is limited due to the
fact that MSc students participated in the study. The research revealed
that both the feelgood factor and programming experience may be the
external code quality drivers.

1 Introduction

Pair programming [1] has recently gained a lot of attention, as key software
development practice of eXtreme Programming (XP) methodology [2]. The main
idea of pair programming software development practice is that two programmers
work together, collaborating on the same development tasks. The basic aim of
pair programming, described in section 3.2, is to improve software quality.

Researchers and practitioners have reported numerous, often anecdotal and
favourable studies of XP practices and methodology. Empirical studies on pair
programming often concern productivity [3, 4, 5, 6, 7]. A few studies have focused
on pair programming, or test-driven development, as practices to remove de-
fects [4, 5, 8, 9], to influence the external code quality (measured by the number
of functional, blackbox test cases passed) [10, 11, 12] or reliability of programs
(a fraction of the number of passed tests divided by the number of all tests)
[13, 14, 15] and other quality benefits [16].

In spite of a wide range of studies, there is still limited evidence concerning
the role of the feelgood factor (how comfortably the developers feel in a pair
� This work has been financially supported by the Ministry of Education and Science

as a research grant 3 T11C 061 30 (years 2006-2007).

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 65–74, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 L. Madeyski

session [17]) and the programming experience in pair programming. The aim of
this paper is to fill this gap. So far, the results obtained by Müller and Padberg
[17] indicate that the pair performance is uncorrelated with the programming
experience whereas the feelgood factor is a candidate driver for the performance
of a pair.

The results presented by Müller and Padberg were obtained by applying a
special scheme for pairing the subjects. The most skilled subject had to pair off
with the lowest skilled subject, the second best skilled subject with the second
lowest skilled subject, and so on. The aim was to balance the skill level across
the pairs but, this special scheme for pairing the subjects might have hidden
a possible correlation of pair performance with the programming experience,
as the latter was averaged across pairs. In the Müller and Padberg study, the
performance of a pair was measured by the implementation time [17]. In our
study the implementation time is constant (eight laboratory sessions) and the
dependent variable is the external code quality, measured by the number of
acceptance tests passed (NATP), as suggested by George and Williams [10, 11]
and later used by Madeyski [12]. Therefore, the research question is whether the
external code quality is correlated with the pair feelgood factor, or programming
experience.

2 Problem Statement

The data for this study comes from a controlled experiment performed at Wro-
claw University of Technology. The purpose of the experiment was to investigate
the impact of test-driven development and pair programming practices on soft-
ware development products [12].

The following definition determines a foundation for our study [18]:

Object of study. The objects of study are software development products —
developed code.
Purpose. The purpose is to find whether the quality of software development
products is correlated with the programming experience, or the feelgood factor
of pair programming.
Quality focus. The quality focus is the external code quality (measured by
NATP).
Perspective. The perspective is from the researcher’s point of view.
Context. The study is run using MSc students as subjects and the finance-
accounting system as an object.

Summary: Analyse the software development products for the purpose of find-
ing correlation between quality of software development products and the feelgood
factor, or programming experience with respect to the external code quality, from
the researcher’s point of view, in the context of the finance-accounting system
development by MSc students.

Is External Code Quality Correlated with Programming Experience 67

3 Study Description

3.1 Context Selection

The context of the experiment was the Programming in Java (PIJ) course, and
hence the experiment was run off-line (not industrial software development) [18].
Java was the programming language, and Eclipse 3.0 was the Integrated Devel-
opment Environment (IDE). All subjects had prior experience in at least C and
C++ programming (using object-oriented approach). The PIJ course consisted
of seven 90 minute lectures and fifteen laboratory 90 minute sessions. The course
introduced Java programming language, using test-driven development and pair
programming as key XP practices. The subjects’ practical skills in programming
in Java, using pair programming, and test-driven development were evaluated
during the first seven laboratory sessions. The experiment took place during
the last eight laboratory sessions. The problem addressed the development of
the finance-accounting system. The requirements specification consisted of 27
user stories. The subjects participating in the study were mainly second and
third-year (and few fourth and fifth-year) computer science MSc students. MSc
programme of Wroclaw University of Technology is a 5-year programme after
high school. In total, 188 students were involved in the experiment, but only 132
students were working in pairs, see table 1.

3.2 Variables and Subjects Selection

The variables considered in this study are:

– The external code quality was measured by the number of acceptance tests
passed (NATP). This measure was proposed by George and Williams [10],
[11]. The number of acceptance tests passed was collected automatically by
our measurement infrastructure. In contrast to some productivity measures,
e.g. Source Lines Of Code (SLOC) per person-month, NATP takes into
account functionality and quality of software development products.

– The pair feelgood factor (PFF) was measured by the mean value of the
individual feelgood factors, collected by means of a post-test questionnaire.
The post-test questionnaire asked how comfortable the subject felt during
the pair programming session. An even number of alternatives (0–bad, 1–
sufficiently, 2–good, 3–very good) was chosen, because it forces the subjects
to get off the fence, and to prevent large numbers of neutral answers. The
answer ranges on an ordinal scale and this metric is called the individual
feelgood factor of a developer. Since our questionnaire did not ask the pairs
to specify a joint feelgood factor, the mean of the individual assessments was
taken as a substitute. The resulting metric is called the pair feelgood factor.
This approach to calculate the pair feelgood factor was used by Müller and
Padberg [15]. It may be questionable, because the individual feelgood factor
is an ordinal value, but we used it for compatibility reasons.

– The mean programming experience (MPE) was measured by the mean
value of the individual programming experience of each pair programmers,

68 L. Madeyski

collected by means of questionnaires. Not only industrial but also school
(university) experience was included.

The subjects are chosen based on convenience — the subjects are students
taking the PIJ course. Prior to the experiment, the students filled in a pre-
test questionnaire. The aim of the questionnaire was to get a description of the
students’ background, see table 1. The ability to generalize from this context is
further elaborated when discussing threats, see section 3.4.

In this study we analysed pairs using test-driven development practice (de-
noted as TP) and classic (test-last) testing approach (denoted as CP).

Table 1. The context of the study

Context factors CP TP

Number of MSc students: 62 70
– in the 2nd year 40 39
– in the 3rd year 18 27
– in the 4th year 3 4
– in the 5th year 1 0
– with industry experience 8 15
Median of individual feelgood factor 3 3
(0–bad...3–very good)
Mean of programming experience 3.61 3.86
(years)

Pair programming is a practice in which two programmers (called the driver
and navigator) work together at one computer, collaborating on the same de-
velopment tasks (e.g. design, test, code). The driver, is typing at the computer
or writing down a design. The navigator observes the driver’s work, reviews the
code, proposes test cases and considers the implementations strategic implica-
tions [4, 19].

Test-driven development (TDD) is a practice based on specifying a piece of
functionality, as a low level test before writing production code, on implement-
ing the functionality, so that the test passes, and on refactoring (e.g. removing
duplication) and iterating the process. The tests are run frequently while writing
production code. In case of classic (test-last) development, the tests are specified
after writing production code and less frequently [20].

The assignment of subjects to groups was performed first by stratifying the
subjects with respect to their skill level, measured by graders, and then assign-
ing them at random to test-driven development, or classic (test-last) testing
approach teams. However, the assignment to pair programming teams took into
account the people’s preferences (as it seemed to be more natural and close
to the real world agile software development practice). The students who did
not complete the projects (did not check in the project prerequisites the final

Is External Code Quality Correlated with Programming Experience 69

version of their program, or did not fill in questionnaires) were not included in
the analysis. The outcome was an unbalanced design, with 35 pairs using TDD
practice and 31 pairs using classic (test-last) testing approach.

3.3 Materials

The materials prepared for the experiment consisted of requirements specifica-
tion (user stories), pre-test and post-test questionnaires, Eclipse project frame-
work, a detailed description of software development methods, and of duties of
the subjects, instructions how to use the experiment infrastructure (e.g. CVS
Version Management System), and examples (e.g. sample source code of appli-
cations developed using TDD approach and JUnit tests). The number of accep-
tance tests passed was collected using automated infrastructure developed by
e-Informatyka team members of Wroclaw University of Technology.

3.4 Validity Evaluation

The fundamental question concerning the results of each study is how valid
the results are. Shadish, Cook and Campbell [21] defined four types of threats:
statistical conclusion, internal, construct and external validity.

The threats to the statistical conclusion validity are considered to be under
control. Robust statistical techniques, tools (e.g. Statistica) and large sample
sizes to increase statistical power are used. The risk in the treatment imple-
mentation is that the study was spread across laboratory sessions. To avoid the
risk, the access to the CVS repository was restricted to the specific laboratory
sessions (access hours and IP addresses). The validity of the study is highly de-
pendent on the reliability of the measures. The basic principle is that when you
measure a phenomenon twice, the outcome should be the same. The number of
acceptance tests passed is considered reliable because it can be repeated with
the same outcomes.

Concerning the internal validity, the risk of rivalry between groups must be
considered. The group using the traditional method may do their very best
to show that the old method is competitive. On the other hand, the subjects
receiving less desirable treatments may not perform so well as they generally do.
However, the subjects were informed that the goal of the study was to measure
different development methods, and not the subjects’ skills. A possible diffusion
or imitation of treatments were under control of the graders.

Threats to the construct validity are not considered very harmful. The mono-
operation bias is a threat, as the study was conducted on a single software
development project; however, the the project addressed a similar to real-life
situation problem (the development of the finance-accounting system). Using a
single type of measure would be a mono-method bias threat; however, measures
used in the study were rather objective.

The largest threat to the external validity is that students (who had short
experience in pair programming and test-driven development) were used as sub-
jects. Kitchenham et al.[22] states that students are the next generation of

70 L. Madeyski

software professionals, so, they are relatively close to the population of inter-
est. Replicated experiments by Porter and Votta [23] and Höst et al. [24] also
suggest that students may provide an adequate model of professional population.
However, it is too optimistic when we evaluate experience.

In summary, the threats are not regarded as being critical.

4 Operation

The experiment was run at Wroclaw University of Technology during eight lab-
oratory sessions. The data was primarily collected by automated experiment
infrastructure. Additionally, the subjects filled in pre-test and post-test ques-
tionnaires, primarily to get a description of their experience and preferences.
The package for the experiment was prepared in advance and is described in
section 3.3. A few people were involved in the experiment planning, operation
and analysis.

5 Analysis

The data are analysed with scatterplot and Spearman’s correlation coefficient.
Before conducting any correlational analysis, it is essential to plot a scatterplot
to look at the general trend of the data.

5.1 Discovering General Trend

A scatterplot tells us whether there seems to be a relationship between the vari-
ables, what kind of relationship it is, and whether any cases differ substantially
from the general trend of the data. We use an overlay scatterplot, as we want
to look at the role of both the pair feelgood factor and the programming experi-
ence on external code quality (but not the relationship between the pair feelgood
factor and the programming experience).

Scatterplot has been used to plot the relationship between the pair feelgood
factor and external code quality and between the programming experience and
external code quality simultaneously, see figure 1. From figure 1 it seems that
both the pair feelgood factor and programming experience are positively related
to the external code quality, at least in the case of classic (test-last) development
method used by pairs (CP). Spearman’s correlations were used to follow up these
findings.

5.2 Discovering Correlations

Table 2 shows Spearman’s correlations and significances for two experimental
groups (CP and TP).

In case of classic (test-last) testing approach the external code quality (mea-
sured by NATP) achieved by pairs is correlated with the pair feelgood fac-
tor (p = .022) and mean programming experience of programmers in pairs

Is External Code Quality Correlated with Programming Experience 71

Fig. 1. Scatterplot of Number of Acceptance Tests Passed against Pair Feelgood Factor
and Mean Programming Experience

Table 2. Nonparametric Correlations – Spearman’s rho

NATPTP NATPCP

NATP Correlation Coefficient 1.000 1.000
N 35 31

Pair Feelgood Factor Correlation Coefficient 0.121 0.364
Sig.(1-tailed) 0.244 0.022

Mean Programming Experience [years] Correlation Coefficient 0.222 0.512
Sig.(1-tailed) 0.100 0.002

(p = .002). The fact that a correlation exists is not sufficient to conclude that
the feelgood factor, or programming experience, actually drives the external code
quality in case of classic testing approach e.g. it is unclear whether a pair per-
forms well because the feelgood factor is high, or, whether the developers feel
comfortable because they have the impression that the number of acceptance
tests passed is high.

In the case of pairs using test-driven development practice, the effect is
smaller, and the results are not statistically significant (p > .05). A possible ex-
planation is that the number of acceptance tests passed is significantly affected

72 L. Madeyski

by the software testing approach. It appeared that the number of acceptance
tests passed was lower when test-driven development was used instead of the
classic, test-last software development approach in case of solo programmers
(p = .028) and pairs (p = .013) [12].

6 Summary and Conclusions

The previous research conducted by Müller and Padberg [17] revealed that pair
performance may be uncorrelated with the programming experience, but cor-
related with the pair feelgood factor. A possible threat to validity of empirical
results presented by Müller and Padberg is that they used a special scheme for
pairing the subjects that averaged the programming experience.

The results obtained in our study suggest that both the pair feelgood factor and
programming experience are correlated, in case of classic testing approach,with the
number of acceptance tests passed, which is a measure of the external code quality,
as suggested by George and Williams [10, 11]. Therefore, both the pair feelgood
factor and programming experience may be external code quality drivers.

The existence of correlations should be considered as a basis for future re-
search. From the correlation alone, one can not decide whether the number of
acceptance tests passed is high because the pair feelgood factor or mean program-
ming experience was high. To answer that question, further empirical studies are
necessary. A further research (e.g. experiment with the pair feelgood factor in
mind) is needed to establish evidence of the impact of the pair feelgood factor,
and programming experience on the external code quality and to evaluate the
impact of the pair feelgood factor and programming experience in other contexts
(e.g. in industry).

The validity of the results must be considered within the context of the limi-
tations discussed in the validity evaluation section.

Acknowledgments

The author expresses his gratitude to the students participating in the re-
search, the graders and the members of the e-Informatyka team (Wojciech Gdela,
Tomasz Poradowski, Jacek Owocki, Grzegorz Ma̧kosa, Mariusz Sadal and Micha�l
Stochmia�lek) for their help during preparations of the experiment infrastructure,
and to anonymous reviewers for helpful suggestions.

References

1. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley (2002)
2. Beck, K.: Extreme Programming Explained: Embrace Change. 2nd edn. Addison-

Wesley (2004)
3. Nosek, J.T.: The case for collaborative programming. Communications of the

ACM 41(3) (1998) 105–108

Is External Code Quality Correlated with Programming Experience 73

4. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case
for pair programming. IEEE Software 17(4) (2000) 19–25

5. Williams, L.: The Collaborative Software Process. PhD thesis, University of Utah
(2000)

6. Nawrocki, J.R., Wojciechowski, A.: Experimental evaluation of pair programming.
In: ESCOM ’01: European Software Control and Metrics. (2001) 269–276

7. Nawrocki, J.R., Jasiński, M., Olek, L., Lange, B.: Pair Programming vs. Side-
by-Side Programming. In Richardson, I., Abrahamsson, P., Messnarz, R., eds.:
EuroSPI. Volume 3792 of Lecture Notes in Computer Science., Springer (2005)
28–38

8. Williams, L., Maximilien, E.M., Vouk, M.: Test-Driven Development as a Defect-
Reduction Practice. In: ISSRE ’03: Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, Washington, DC, USA, IEEE Computer
Society (2003) 34–48

9. Maximilien, E.M., Williams, L.A.: Assessing Test-Driven Development at IBM.
In: ICSE ’03: Proceedings of the 25th International Conference on Software Engi-
neering, IEEE Computer Society (2003) 564–569

10. George, B., Williams, L.A.: An Initial Investigation of Test Driven Development
in Industry. In: SAC ’03: Proceedings of the 2003 ACM Symposium on Applied
Computing, ACM (2003) 1135–1139

11. George, B., Williams, L.A.: A structured experiment of test-driven development.
Information and Software Technology 46(5) (2004) 337–342

12. Madeyski, L.: Preliminary Analysis of the Effects of Pair Programming and Test-
Driven Development on the External Code Quality. In Zieliński, K., Szmuc, T.,
eds.: Software Engineering: Evolution and Emerging Technologies. Volume 130 of
Frontiers in Artificial Intelligence and Applications. IOS Press (2005) 113–123

13. Müller, M.M., Hagner, O.: Experiment about test-first programming. IEE Pro-
ceedings - Software 149(5) (2002) 131–136

14. Müller, M.M.: Are Reviews an Alternative to Pair Programming? In: EASE ’03:
Conference on Empirical Assessment In Software Engineering. (2003)

15. Müller, M.M.: Are Reviews an Alternative to Pair Programming? Empirical Soft-
ware Engineering 9(4) (2004) 335–351

16. Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair Pro-
gramming on Product Quality. In: ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, New York, NY, USA, ACM Press (2005)
495–504

17. Müller, M.M., Padberg, F.: An empirical study about the feelgood factor in pair
programming. In: METRICS ’04: Proceedings of the Software Metrics, 10th Inter-
national Symposium on (METRICS’04), Washington, DC, USA, IEEE Computer
Society (2004) 151–158

18. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell, MA, USA (2000)

19. Williams, L.A., Kessler, R.R.: All I really need to know about pair programming
I learned in kindergarten. Commun. ACM 43(5) (2000) 108–114

20. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of the Test-First
Approach to Programming. IEEE Transactions on Software Engineering 31(3)
(2005) 226–237

21. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mifflin (2002)

74 L. Madeyski

22. Kitchenham, B., Pfleeger, S.L., Pickard, L., Jones, P., Hoaglin, D.C., Emam, K.E.,
Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software Engi-
neering. IEEE Transactions on Software Engineering 28(8) (2002) 721–734

23. Porter, A., Votta, L.: Comparing detection methods for software requirements
inspections: A replication using professional subjects. Empirical Softw. Engg. 3(4)
(1998) 355–379

24. Höst, M., , Wohlin, C., Thelin, T.: Experimental context classification: incentives
and experience of subjects. In: ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, New York, NY, USA, ACM Press (2005)
470–478

	Introduction
	Problem Statement
	Study Description
	Context Selection
	Variables and Subjects Selection
	Materials
	Validity Evaluation

	Operation
	Analysis
	Discovering General Trend
	Discovering Correlations

	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

