
P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 202 – 204, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evaluation of Test Code Quality
with Aspect-Oriented Mutations

Bartosz Bogacki and Bartosz Walter

Institute of Computing Science, Poznań University of Technology, Poland
{Bartosz Bogacki, Bartosz.Walter}@cs.put.poznan.pl

1 Introduction

Along with growing popularity of agile methodologies and open source movement,
unit testing has become one of the core practices in modern software engineering. It is
particularly important in eXtreme Programming [1], which explicitly diminish the
importance of other artifacts than source code and tests cases. In XP unit test cases
not only verify if software meets functional requirements, but also enable refactoring,
alleviate comprehension and provide guidance on how the production code should be
used. Therefore, they contribute to many other important practices of XP, which
explicitly or implicitly rely on their ability to effectively discover bugs.

Mutation testing [2] is a technique used for verifying the quality of tests. It figures
out how the test cases actually react to faulty response received from deliberately
altered production code. High quality tests are expected to uncover any mutation of
the source code which makes it to behave even slightly differently. Such modified
code (called mutant) is killed when it causes at least one test case to fail.

Despite of its advantages, mutation testing has not been widely adopted by soft-
ware industry. The main drawback its high complexity: it usually includes multiple
phases of mutating source code, compilation and running the tests. Therefore, the
technique is in practice inapplicable for medium or large size systems.

In the paper we present a prototype tool for mutation testing, which employs
aspect-oriented programming (AOP) [3] to generate and execute mutants. It follows
the control of existing test cases and examines how they deal with the altered
production code, while significantly reducing time required to create and run mutants.

2 Architecture of Aspect-Oriented Mutants Generator

In traditional model of mutation testing, mutants are generated by arbitrary or directed
production code modifications, e.g. operator replacement, redefinition of a method
etc. The mutations are performed in separation in order to avoid possible cross-cutting
side effects. Depending on the scope of changes, they are or not externally visible to
test cases through altered results of method execution. To depict the above, let us
consider an exemplary source code presented at Fig. 1 and its test case at Fig. 2. Te
test will fail (kill mutant) if one of three conditions is met: (1) the return value of the
method Foo.bar() called with parameter 3 is different than 3000, or (2) an

 Evaluation of Test Code Quality with Aspect-Oriented Mutations 203

unexpected exception occurs, or (3) the parameter values 0 or 6 do not make the
method to throw an expected exception. However, the mutant cannot be discovered if
it does not affect the method outcome.

public class Foo {
 public int bar(int a)
 throws IllegalArgumentException {
 if ((a > 5) || (a < 1)) {
 throw new IllegalArgumentException();
 }
 int c = a;
 for (int i = 0; i < a; i++) {
 c *= 10;
 }
 return c;
 }
}

Fig. 1. Exemplary source code under test

public void testBar () {
 assertEquals (3000, new Foo().bar(3));
 try {
 new Foo().bar(6);
 fail ("Expected exception for value: 6");
 } catch (IllegalArgumentException e) {}
 try {
 new Foo ().bar(0);
 fail ("Expected exception for value: 0");
 } catch (IllegalArgumentException e) {}
}

Fig. 2. Exemplary JUnit test method for method bar() in class Foo

Hence, it seems sufficient to observe the reaction of test cases to such properties,
without tracking individual changes in the production code and expecting the
change to reveal with tests cases failures. In order to dynamically and non-invasi-
vely access the method results, we employed the capabilities of Aspect-Oriented
Programming. In the example (see Fig. 2) all calls to Foo.bar() could be cap-
tured on the fly by an aspect and their actual results (return value and/or exceptions)
would be replaced with mutants, just as if the mutation had been introduced directly
into the source code.

The proposed prototypic tool, which exploits this observation, is actually com-
posed of two collaborating aspects: MutantGenerator and MutantExecutor. The first
one follows the original flow of a test case and captures control at every method call.
In order to better mimic the normal program behavior, the aspect executes each test
case twice. First, it runs the original method and stores its results and context.
Secondly, it generates mutants of the results, applying typical testing rules, e.g. an
integer yields following mutants: 0, –value, value ± n, Integer.MIN_VALUE and
Integer.MAX_VALUE.

204 B. Bogacki and B. Walter

Subsequently, the other aspect, MutantExecutor, wraps test code execution and
runs each of the generated mutants. Its responsibility is to capture each call to the
tested method in a test case and replace it with subsequent executions of the mutants
generated by MutantGenerator. It also intercepts any exceptions that may be thrown,
preventing them from being propagated to the TestRunner, which could falsely
classify them as assertion failures.

It is important to notice that both aspects are core parts of the tool and do not need
to be created or compiled specifically for the production code to be mutated.

4 Conclusions

To evaluate this approach, we have built a prototype based on AspectJ [4] compiler to
build code and tests and with JUnit [5] as the testing library. Early experiments show
that it appears to generate and run the mutants a few orders of magnitude faster that
the popular Jester [6]. The savings result mainly from the fact that the tool does not
require multiple mutant compilations, reduces the number of equivalent and
transparent mutants, and preserves the syntactic correctness of the mutated code.
However, it differs from Jester in that it learns the code usage from existing test cases,
and then mutates the code. Jester, on the other hand, mutates the code insight into test
cases, which allows for assessing the code coverage, but also leads to redundant or
transparent mutants.

Currently the prototype deals only with primitive Java types and null values for
objects. In future, we plan to employ an on-fly object creation with dynamic proxies
and implement other mutation operators as well as perform a larger scale evaluation.

Acknowledgements

The work has been supported by the Rector of Poznań University of Technology as a
research grant BW/91-429.

References

1. Beck K.: Extreme Programming Explained. Embrace change. Addison-Wesley, 2000.
2. Hamlet R.G.: Testing programs with the aid of compiler. IEEE Transactions on Software

Engineering, Vol. 3(4), July 1978, pp.279-290.
3. Kiczales G., Lamping J. et al.: Aspect Oriented Programming. In: Proceedings of ECOOP

1997, Lecture Notes in Computer Science 1241, Springer Verlag, pp. 220-242.
4. AspectJ Project HomePage, http://www.eclipse.org/aspectj/ (visited in January 2006).
5. JUnit homepage, http://www.junit.org (visited in January 2006).
6. Moore I.: Jester. A Junit test tester. In: Proceedings of the 2nd International Conference on

Extreme Programming and Flexible Processes in Software Engineering, XP2001.

	Introduction
	Architecture of Aspect-Oriented Mutants Generator
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

