
P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 175 – 180, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Incorporating Learning and Expected Cost of Change
in Prioritizing Features on Agile Projects

R. Scott Harris1 and Mike Cohn2

1 Montana State University–Billings
sharris@msubillings.edu

2 Mountain Goat Software, LLC
mike@mountaingoatsoftware.com

Abstract. Very little has been written to date on how to prioritize and sequence
the development of new features and capabilities on an agile software develop-
ment project. Agile product managers have been advised to prioritize based on
“business value.” While this seems an appropriate goal, it is vague and provides
little specific guidance. Our approach to optimizing “business value” uses tac-
tics to minimize costs and maximize benefits through strategic learning. In
order to provide specific and actionable advice to agile product managers, we
present two guidelines. These guidelines are meant to provide a set of consid-
erations and a process by which an agile product manager can achieve the goal
of optimizing “business value” while recognizing that different product manag-
ers will vary in their notions of what “business value” is.

1 Introduction

Over the past seven years, agile software development processes such as Scrum [1],
Extreme Programming [2], Feature-Driven Development [3], and DSDM [4] have
emerged and their use has become much more prevalent. Central to these processes is
a reliance upon emergent requirements and architecture. On an agile project, there is
no upfront requirements engineering effort. Instead, the project begins with very high
level requirements, often in the form of “user stories” [5]. The project team builds the
software through a series of iterations and a detailed understanding of the require-
ments is sought only during the iteration in which software supporting those require-
ments is written.

A key tenet of agile processes is that these requirements are prioritized by a cus-
tomer [2], customer team [6], or “product owner” [1] acting as a proxy for the end
users of the intended system. Throughout this paper we will use the term product
manager to represent this role independent of the specific agile process employed.

Product managers are given the relatively vague advice to prioritize based on
“business value” [7][8]. Unfortunately, “business value” is both vague and broad
whereas prioritization decision must be specific. Elsewhere, we have argued that
product managers need to consider specific additional guidelines for prioritizing re-
quirements on agile projects that lead to the fulfillment of maximizing “business
value” [9]. This paper outlines those guidelines and discusses their implications for
agile software development projects.

176 R.S. Harris and M. Cohn

2 The “Knowledge Problem” Facing Product Managers

Applying the work of Hayek [10], and Jensen and Meckling [11][12] to agile proc-
esses, we distinguish between “scientific knowledge” and “specific knowledge.” The
former is knowledge that is universal and can, for example, be taught in schools. In
software development, knowledge of various programming languages and specific
algorithms is “scientific knowledge.” A challenge on any software development pro-
ject is obtaining the “specific knowledge” regarding what the customer and users
want. This is confounded by the fact that often users do not know precisely what they
want and means not only that the customer and users must learn what they want, but
that the product manager must also learn what they want.

Learning is the acquisition of knowledge. “Scientific knowledge” is learned out-
side of the immediate project while the bulk of “specific knowledge” must be learned
during the development process and can be roughly divided into two categories: (a)
learning what it is that users need and (b) learning the best way to develop software to
meet those needs. Participatory design [13], essential use cases [14], and user stories
[5] are techniques that have been developed to address the former; educated guessing
and experimentation can be efficient ways to generate the latter. Because projects
always will have emergent requirements that cannot be defined upfront, experimenta-
tion may be the cheapest way to learn what will work to satisfy a user’s desires.

Others have studied the issue of prioritizing requirements and have concluded that
Saaty’s analytic hierarchy process (AHP) is “the most promising approach.” [15][16]
[17]. Their focus is on upfront prioritization that implicitly assumes that ALL knowl-
edge necessary to complete the project is given to the product manager at the begin-
ning. Further, the focus has been on mechanics of the prioritization process and not on
discussing the standards used that determine the priority order. Certainly for an agile
project this is an overly simplistic view. Through its use of end-of-iteration reviews
an agile team will learn more about the relative desirability of each feature and may
even alter the criteria by which desirability is judged. This will (or should) alter any
previous prioritization, thereby necessitating a new prioritization exercise. If it is
anticipated that a significant amount of learning will take place as the project unfolds,
expected repetitions of AHP or similar prioritization will be cost-prohibitive.

Our focus has been on how learning if project specific knowledge can affect prod-
uct management. Any one-time upfront non-iterative approach to doing this ignores
the crucial issue of learning. Therefore, we rejected the possibility of discovering or
refining a static model to rank features in favor of suggesting guidelines for a dy-
namic process.

3 Guidelines for Prioritization

We define two issues of concern: “learning” and “the cost of change.” We assert that
early and low-cost acquisition of project specific knowledge and decreasing the cost
of change positively impacts “business value.” Though these two concepts are gener-
ally interdependent (i.e., the more one learns, the lower will be the cost of change),
and related in a manner that depends on specific and particular features, we separate
the issues to emphasize how to address each.

 Incorporating Learning and Expected Cost of Change in Prioritizing Features 177

3.1 Guideline 1: Defer Features with High Expected Costs of Change

There are two aspects to what we call the expected cost of change for a feature. The
first is the risk that a change will be needed; the second is the cost of making the
change. The Expected Cost of Change (ECC) for a feature is the arithmetic product of
the probability that change will be needed and the cost of making the change.

At any time on a project, every feature to be developed has an associated ECC.
Each feature can be ordered from low to high. Those features that are both highly
certain to remain unchanged throughout the project and that have a low cost of change
will be the ones with the lowest ECC; those features that are very likely to change and
that will impose a high cost to change will be the ones with the highest ECC. All
others will fall in between.

When considering only ECC, we have demonstrated that total development cost
can be minimized by developing features in order from lowest ECC first to highest
ECC last [9]. This leads to our first guideline for prioritizing features.

It makes intuitive sense that if a product manager has a choice between developing
features that are more likely to be changed and those that are less, it will lower overall
expected costs if those that are more likely to be changed are deferred until more and
better knowledge about how (or even whether) to develop them is gained. Addition-
ally, one must consider the cost of change and defer developing those features that
will be most costly to change. As the project progresses, project-specific learning will
increase the probabilities that high cost-of-change features will be done correctly the
first time thereby lowering the expectation of ever bearing that cost.

To implement this guideline, if one wants to plan to minimize the total expected
cost of change over the scope of the project when learning takes place, sequential
decisions will have to be based on (1) prioritizing activities that will have the greatest
impact to lower the ECC of the deferred features and (2) deciding which remaining
individual feature has the lowest ECC. In doing so, we should note that it is possible
that these two criteria may not yield the same immediate priority activity. This possi-
bility is discussed below.

Lowering the ECC of deferred features depends on the amount of specific knowl-
edge that is generated during the immediate activity. Addressing that issue leads to
our second guideline.

3.2 Guideline 2: Bring Forward Features That Generate Useful Knowledge

Just as different features will have different ECCs, each feature may have a different
impact on learning. For example, developing one feature may greatly inform the
product manager about the desirability of a feature set or the usability of the main user
interface workflows. Developing different features will impart different amounts of
knowledge to the developers creating the product. While the knowledge expected to
be generated in any immediate activity will not affect the ECCs used in the prioritiza-
tion calculations that decided features to develop in that immediate activity, it will
affect the ECCs of delayed features. This means (a) the value of acquisition of knowl-
edge can be viewed separately from the issue of ranking ECCs given current levels of
knowledge and (b) “useful knowledge” may be prioritize by how it is expected to
lower the ECC of the deferred features.

178 R.S. Harris and M. Cohn

Prioritization based on these two guidelines may or may not agree regarding what
the immediate next activity should be—in which case the product manager or agile
team will have to employ additional criteria to sort out what should be done. How-
ever, the more important outcome is that prioritization using these guidelines will
indicate a lot of features that should NOT be done immediately. Because the specifi-
cation (and even the need for) the deferred features will be more nebulous than those
to be developed immediately, learning that occurs in the immediate activity could—
indeed, should—alter future prioritizations. Therefore, prioritization of features is
only useful in deciding what should be done in the immediate next activity and what
should be delayed. This leads to our third guideline.

3.3 Guideline 3: Incorporate New Learning Often, but Only to Decide What to
Do Next

We cannot emphasize enough that learning is both important and a continuous and
cumulative process that will change the priority of what is best to do next. This im-
plies that a product manager and agile team must be nimble and constantly prepared
to alter plans based on newly-acquired knowledge. Indeed, it should be clear that
becoming wedded to a plan that is any longer than the next activity is both costly to
formulate (if any time is spent on it) and could lead one in the wrong direction.

Because learning is a continuous process, decisions are both simplified and
bounded. The sequence of decision-making only requires that one decide on the im-
mediate project, user story, or feature to develop next and not concern oneself with
the order of deferred activities. Sort the features into just two categories: what to do
“now” versus “not now.” Those features that are not done “now” will then be reevalu-
ated for the next iteration when there is more knowledge upon which to base the
evaluation. This is sequential planning where the “plan” is in the process and not the
result. Without it, there is no agility in agile processes.

It should be noted that this guideline is consistent with and supports the agile pref-
erence for short iterations. While it is often useful to have a loosely-defined release
plan covering the likely set of features to be delivered over the course of a small num-
ber of months, the detailed work of prioritizing and sequencing features should only
be done an iteration at a time.

4 Implications

In this final section we consider an example of how these guidelines can be applied to
the practical decisions of a project. These guidelines are presented to clients in both
training classes and in consulting discussions. We have found it best to tell clients to
perform a rough, initial prioritization of the desired features based on the nebulous
“business value” provided by each. We stress that it is not necessary to prioritize all
remaining features and normally guide product managers to plan two or three times as
much as they expect the team to be able to complete in a single iteration. For these
items product managers are given the guidance to think of expected cost of change
and knowledge generated as “sliders” that can move a feature ahead or backward
within the prioritization. Product managers then review the selected features sliding

 Incorporating Learning and Expected Cost of Change in Prioritizing Features 179

them forward and back based on considerations of expected cost of change and ex-
pected knowledge generated.

Following this process, we find that features with architectural implications that
will not have exceptionally high expected costs of change but that will increase
knowledge dramatically can justifiably be developed in an earlier iteration than would
be justified by prioritization solely on business value. We have applied the guidelines
in this way to support the early selection of a particular application server. We have
also used this on projects to justify the higher prioritization of features that influenced
design approaches for a security framework as well as internationalization and local-
ization. Similarly, when applied in this way, the guidelines can support the earlier
development of features that generate significant learning about the main metaphors
of the user experience being designed.

On the other hand, features with a high expected cost of change that will provide
little new knowledge, should be deferred. By deferring such features we put their
design off to the point where our knowledge about the product and system has in-
creased and to where we can presumably make better decisions about those features
with an initially high expected cost of change. Further, since developing these fea-
tures would not provide significant new knowledge to the product manager or team,
we are able to defer these features while foregoing no opportunities to learn. We have
applied the guidelines in this way to a project struggling to choose between three
competing client technologies. This decision was deferred while maximizing the
team’s learning through the development of other features.

Through the application of these guidelines on commercial projects we are able to
provide more guidance to agile product managers than the conventional “prioritize
based on business value.” We have found that instructing them to consider relative
changes in the cost of change and, more importantly, the amount of knowledge gener-
ated by the development of a feature leads to better decisions. Most importantly, the
guideline-based approach described here requires very little effort and allows
the product manager to make easier decisions such as “what one thing should be
done next” rather than the harder “what is the full set of priorities.” This more itera-
tive approach to prioritization acknowledges that learning occurs throughout a devel-
opment project and is more consistent with the agile management of software
development projects.

References

1. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall, Upper
Saddle River, NJ (2001).

2. Beck, K.: Extreme Programming Explained: Embrace change. Addison-Wesley, Upper
Saddle River, NJ (1999).

3. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. Addison-
Wesley, Upper Saddle River, NJ (2002).

4. Stapleton, J.: DSDM: Business-Focused Development, 2nd edn. Pearson Education, Upper
Saddle River, NJ (2003).

5. Cohn, M.: User Stories Applied for Agile Software Development. Addison-Wesley, Upper
Saddle River, NJ (2004).

6. Poppendieck, T.: The Agile Customer’s Toolkit at www.poppendieck.com.

180 R.S. Harris and M. Cohn

7. Andrea, J.: An Agile Request For Proposal (RFP) Process. Proceedings of the Agile De-
velopment Conference, Salt Lake City, UT (2003) 152–161.

8. Augustine, S.: Great COTS! Implementing Packaged Software With Agility. Presentation
at Agile Development Conference, Sydney, Australia (2004).

9. Harris, R.S., Cohn, M.: The Role of Learning and Expected Cost of Change in Prioritizing
Features on Agile Projects, Ms (2006). Available at www.moutaingoatsoftware.com.

10. Hayak, F.A.: The Use of Knowledge in Society. American Economic Review, Vol.
XXXV, No. 4 (Sept. 1945) 519–530.

11. Jensen, M.C., Meckling, W.H., Baker, G.P., Wruck, K.H.: Coordination, Control, and the
Management of Organizations: Course Notes. Harvard Business School Working Paper
#98-098 (October 17, 1999).

12. Jensen, M.C., Meckling, W.H.: Specific and General Knowledge, and Organizational
Structure. In Werin, L., Wijkander, H. (eds.): Contract Economics. Blackwell, Oxford
(1992). Also published in Journal of Applied Corporate Finance (Fall 1995) and Jensen,
M.C.: Foundations of Organizational Strategy. Harvard University Press, Boston (1998).

13. Schuler, D., Namioka, A. (eds.): Participatory Design: Principles and practice. Erlbaum,
Hillsdale, NJ (1993).

14. Constantine, L.L., Lockwood, L.A.D.: Software for Use. Addison-Wesley, Reading, MA
(1999).

15. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE Soft-
ware, Vol. 14, no. 5 (1997) 67–74.

16. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980).
17. Karlsson, J., Wohlin, C., Regnell, B.: An Evaluation of Methods for Prioritizing Software

Requirements. Journal of Information and Software Technology, Vol. 39, No. 14–15
(1998) 939-947.

	Introduction
	The “Knowledge Problem” Facing Product Managers
	Guidelines for Prioritization
	Guideline 1: Defer Features with High Expected Costs of Change
	Guideline 2: Bring Forward Features That Generate Useful Knowledge
	Guideline 3: Incorporate New Learning Often, but Only to Decide What to Do Next

	Implications
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

